

Contents

Title and Copyright Information

Preface

	Documentation Accessibility
	Conventions

1 Introduction and Roadmap

	Document Scope and Audience
	Guide to This Document
	Related Documentation
	New and Changed WLST Features in This Release

2 WebLogic Server WLST Online and Offline Command Reference

	WebLogic Server WLST Command Summary, Alphabetically By Command
	WebLogic Server WLST Online Command Summary
	WebLogic Server WLST Offline Command Summary

3 WLST Command and Variable Reference

	Overview of WLST Command Categories
	Browse Commands
	cd
	currentTree
	prompt
	pwd

	Control Commands
	addTemplate
	closeDomain
	closeTemplate
	connect
	createDomain
	disconnect
	exit
	readDomain
	readTemplate
	updateDomain
	writeDomain
	writeTemplate

	Customization Commands
	addHelpCommandGroup
	addHelpCommand

	Deployment Commands
	deploy
	distributeApplication
	getWLDM
	listApplications
	loadApplication
	redeploy
	startApplication
	stopApplication
	undeploy
	updateApplication

	Diagnostics Commands
	exportDiagnosticData
	exportDiagnosticDataFromServer
	getAvailableCapturedImages
	saveDiagnosticImageCaptureFile
	saveDiagnosticImageCaptureEntryFile

	Editing Commands
	activate
	assign
	cancelEdit
	create
	delete
	encrypt
	get
	getActivationTask
	invoke
	isRestartRequired
	loadDB
	loadProperties
	save
	set
	setOption
	showChanges
	startEdit
	stopEdit
	unassign
	undo
	validate

	Information Commands
	addListener
	configToScript
	dumpStack
	dumpVariables
	find
	getConfigManager
	getMBean
	getMBI
	getPath
	listChildTypes
	lookup
	ls
	man
	redirect
	removeListener
	showListeners
	startRecording
	state
	stopRecording
	stopRedirect
	storeUserConfig
	threadDump
	viewMBean
	writeIniFile

	Life Cycle Commands
	migrate
	resume
	shutdown
	start
	startServer
	suspend

	Node Manager Commands
	nm
	nmConnect
	nmDisconnect
	nmEnroll
	nmGenBootStartupProps
	nmKill
	nmLog
	nmServerLog
	nmServerStatus
	nmStart
	nmVersion
	startNodeManager
	stopNodeManager

	Tree Commands
	custom
	domainConfig
	domainCustom
	domainRuntime
	edit
	jndi
	serverConfig
	serverRuntime

	WLST Variable Reference

4 Infrastructure Security Custom WLST Commands

	Overview of WSLT Security Commands
	Audit Configuration Commands
	getNonJavaEEAuditMBeanName
	getAuditPolicy
	setAuditPolicy
	getAuditRepository
	setAuditRepository
	listAuditEvents
	exportAuditConfig
	importAuditConfig

	SSL Configuration Commands
	addCertificateRequest
	addSelfSignedCertificate
	changeKeyStorePassword
	changeWalletPassword
	configureSSL
	createKeyStore
	createWallet
	deleteKeyStore
	deleteWallet
	exportKeyStore
	exportKeyStoreObject
	exportWallet
	exportWalletObject
	generateKey
	getKeyStoreObject
	getSSL
	getWalletObject
	importKeyStore
	importKeyStoreObject
	importWallet
	importWalletObject
	listKeyStoreObjects
	listKeyStores
	listWalletObjects
	listWallets
	removeKeyStoreObject
	removeWalletObject

	Oracle Identity Federation Commands
	addConfigListEntryInMap
	addConfigMapEntryInMap
	addConfigPropertyListEntry
	addConfigPropertyMapEntry
	addCustomAuthnEngine
	addCustomSPEngine
	addFederationListEntryInMap
	addFederationMapEntryInMap
	addFederationPropertyListEntry
	addFederationPropertyMapEntry
	deleteCustomAuthnEngine
	deleteCustomSPEngine
	deleteProviderFederation
	deleteUserFederation
	changeMessageStore
	changePeerProviderDescription
	changeSessionStore
	createConfigPropertyList
	createConfigPropertyListInMap
	createConfigPropertyMap
	createConfigPropertyMapInMap
	createFederationPropertyList
	createFederationPropertyListInMap
	createFederationPropertyMap
	createFederationPropertyMapInMap
	createPeerProviderEntry
	getConfigListValueInMap
	getConfigMapEntryInMap
	getConfigProperty
	getConfigPropertyList
	getConfigPropertyMapEntry
	getFederationListValueInMap
	getFederationMapEntryInMap
	getFederationProperty
	getFederationPropertyList
	extractproviderprops
	setproviderprops
	getFederationPropertyMapEntry
	listCustomAuthnEngines
	listCustomSPEngines
	loadMetadata
	oifStatus
	removeConfigListInMap
	removeConfigMapEntryInMap
	removeConfigMapInMap
	removeConfigProperty
	removeConfigPropertyList
	removeConfigPropertyMap
	removeConfigPropertyMapEntry
	removeFederationListInMap
	removeFederationMapInMap
	removeFederationMapEntryInMap
	removeFederationProperty
	removeFederationPropertyList
	removeFederationPropertyMap
	removeFederationPropertyMapEntry
	removePeerProviderEntry
	setConfigProperty
	setCustomAuthnEngine
	setCustomSPEngine
	setFederationProperty

	Directory Integration Platform Commands
	Security Commands
	createAppRole
	deleteAppRole
	grantAppRole
	revokeAppRole
	listAppRoles
	listAppRolesMembers
	grantPermission
	revokePermission
	listPermissions
	deleteAppPolicies
	migrateSecurityStore
	listCred
	updateCred
	createCred
	deleteCred
	modifyBootStrapCredential
	addBootStrapCredential
	exportEncryptionKey
	importEncryptionKey
	restoreEncryptionKey
	reassociateSecurityStore
	upgradeSecurityStore
	createResourceType
	getResourceType
	deleteResourceType
	listAppStripes
	createResource
	deleteResource
	listResources
	listResourceActions
	createEntitlement
	getEntitlement
	deleteEntitlement
	addResourceToEntitlement
	revokeResourceFromEntitlement
	listEntitlements
	grantEntitlement
	revokeEntitlement
	listEntitlement
	listResourceTypes

	Oracle Access Manager Commands
	listOAMAuthnProviderParams
	createOAMIdentityAsserter
	updateOAMIdentityAsserter
	createOAMAuthenticator
	deleteOAMAuthnProvider
	updateOAMAuthenticator
	addOAMSSOProvider
	displayTopology
	displayMetrics
	displayOamServer
	createOamServer
	editOamServer
	deleteOamServer
	displayOssoAgent
	editOssoAgent
	deleteOssoAgent
	displayWebgateAgent
	editWebgateAgent
	deleteWebgateAgent
	changeLoggerSetting
	changeConfigDataEncryptionKey
	displayUserIdentityStore
	editUserIdentityStore
	createUserIdentityStore
	deleteUserIdentityStore
	configRequestCacheType
	displayRequestCacheType
	exportPolicy
	importPolicy
	importPolicyDelta
	migratePartnersToProd
	exportPartners
	importPartners
	configureOAAM
	registerOIFDAPPartner
	enableCoexistMode
	disableCoexistMode
	editGITOValues
	editWebgate11gAgent
	deleteWebgate11gAgent
	displayWebgate11gAgent
	displayOAMMetrics
	updateOIMHostPort
	configureOIM
	updateOSSOResponseCookieConfig
	deleteOSSOResponseCookieConfig
	displaySimpleModeGlobalPassphrase
	exportSelectedPartners
	migrateArtifacts
	registerThirdPartyTAPPartner

	Oracle Security Token Service
	getPartner
	getAllRequesterPartners
	getAllRelyingPartyPartners
	getAllIssuingAuthorityPartners
	isPartnerPresent
	createPartner
	updatePartner
	deletePartner
	getPartnerUsernameTokenUsername
	getPartnerUsernameTokenPassword
	setPartnerUsernameTokenCredential
	deletePartnerUsernameTokenCredential
	getPartnerSigningCert
	getPartnerEncryptionCert
	setPartnerSigningCert
	setPartnerEncryptionCert
	deletePartnerSigningCert
	deletePartnerEncryptionCert
	getPartnerAllIdentityAttributes
	getPartnerIdentityAttribute
	setPartnerIdentityAttribute
	deletePartnerIdentityAttribute
	getAllWSPrefixAndPartnerMappings
	getWSPrefixAndPartnerMapping
	createWSPrefixAndPartnerMapping
	deleteWSPrefixAndPartnerMapping
	getAllPartnerProfiles
	getPartnerProfile
	createRequesterPartnerProfile
	createRelyingPartyPartnerProfile
	createIssuingAuthorityPartnerProfile
	deletePartnerProfile
	getAllIssuanceTemplates
	getIssuanceTemplate
	createIssuanceTemplate
	deleteIssuanceTemplate
	getAllValidationTemplates
	getValidationTemplate
	createWSSValidationTemplate
	createWSTrustValidationTemplate
	deleteValidationTemplate

	Oracle Keystore Service
	changeKeyPassword
	changeKeyStorePassword
	createKeyStore
	deleteKeyStore
	deleteKeyStoreEntry
	exportKeyStore
	exportKeyStoreCertificate
	exportKeyStoreCertificateRequest
	generateKeyPair
	generateSecretKey
	getKeyStoreCertificates
	getKeyStoreSecretKeyProperties
	importKeyStore
	importKeyStoreCertificate
	listExpiringCertificates
	listKeyStoreAliases
	listKeyStores

5 User Messaging Service (UMS) Custom WLST Commands

	UMS WLST Command Group
	manageUserMessagingPrefs
	deployUserMessagingDriver

6 DMS Custom WLST Commands

	DMS Metric Commands
	displayMetricTableNames
	displayMetricTables
	dumpMetrics
	reloadMetricRules

	DMS Event Tracing Commands
	addDMSEventDestination
	addDMSEventFilter
	addDMSEventRoute
	enableDMSEventTrace
	listDMSEventConfiguration
	listDMSEventDestination
	listDMSEventFilter
	listDMSEventRoutes
	removeDMSEventDestination
	removeDMSEventFilter
	removeDMSEventRoute
	updateDMSEventDestination
	updateDMSEventFilter
	updateDMSEventRoute

7 Logging Custom WLST Commands

	Log Configuration Commands
	configureLogHandler
	getLogLevel
	listLoggers
	listLogHandlers
	setLogLevel

	Search and Display Commands
	displayLogs
	listLogs

	Selective Tracing Commands
	configureTracingLoggers
	listActiveTraces
	listTracingLoggers
	startTracing
	stopTracing

8 Metadata Services (MDS) Custom WLST Commands

	Repository Management Commands
	createMetadataPartition
	deleteMetadataPartition
	deregisterMetadataDBRepository
	registerMetadataDBRepository

	Application Metadata Management Commands
	deleteMetadata
	exportMetadata
	importMetadata
	purgeMetadata

	Sandbox Metadata Management Commands
	exportSandboxMetadata
	importSandboxMetadata

	Application Label Management Commands
	createMetadataLabel
	deleteMetadataLabel
	listMetadataLabels
	promoteMetadataLabel
	purgeMetadataLabels

	Application Management Deployment Commands
	getMDSArchiveConfig
	importMAR

	Multitenancy Management Commands
	deprovisionTenant
	listTenants

9 Oracle SOA Suite Custom WLST Commands

	Overview of WSLT Command Categories
	Deployment Commands
	sca_deployComposite
	sca_undeployComposite

	SOA Composite Application Management Commands
	sca_startComposite
	sca_stopComposite
	sca_activateComposite
	sca_retireComposite
	sca_assignDefaultComposite
	sca_getDefaultCompositeRevision
	sca_listDeployedComposites

	Configuration Plan Management Commands
	sca_attachPlan
	sca_extractPlan
	sca_generatePlan
	sca_validatePlan

	Task Validation Commands
	sca_validateTask

	SOA Composite Application Compilation Commands
	sca_setProp
	sca_compile

	SOA Composite Application Packaging Commands
	sca_package

	SOA Composite Application Test Commands
	sca_test

	SOA Composite Application HTTP Client-Based Export and Import Commands
	sca_exportComposite
	sca_exportUpdates
	sca_importUpdates
	sca_exportSharedData
	sca_removeSharedData

	SOA Composite Application MBean-Based Export and Import Commands
	sca_exportCompositeMb
	sca_exportUpdatesMb
	sca_importUpdatesMb
	sca_exportSharedDataMb

	SOA Composite Application Partition Management Commands
	sca_createPartition
	sca_deletePartition
	sca_startCompositesInPartition
	sca_stopCompositesInPartition
	sca_activateCompositesInPartition
	sca_retireCompositesInPartition
	sca_listPartitions
	sca_listCompositesInPartition

10 WebCenter Portal Custom WLST Commands

	WebCenter Portal WLST Command Categories
	General
	deleteConnection
	setWebCenterServiceFrameworkConfig
	getWebCenterServiceFrameworkConfig
	webcenterErrorOccurred
	getWebCenterConnectionTypes
	cloneWebCenterManagedServer

	Analytics
	createAnalyticsCollectorConnection
	setAnalyticsCollectorConnection
	listAnalyticsCollectorConnections
	setDefaultAnalyticsCollectorConnection
	listDefaultAnalyticsCollectorConnection
	setAnalyticsCollectorConfig
	listAnalyticsCollectorConfig
	listAnalyticsEventTypes

	Activity Graph
	exportAGMetadata
	importAGMetadata
	exportAGProviderConfiguration
	deleteAllAGMetadata
	deleteAGAction
	deleteAGNodeClass
	deleteAGSimilarityCalculation
	deleteAGRankCalculation
	deleteAGProviderAssignment
	deleteAGQRPPRegistration
	deleteAGProviderConfiguration
	renameAGAction
	renameAGNodeClass
	setAGProperty
	getAGProperty
	setAGPasswordCredential

	Activity Stream
	archiveASByDate
	archiveASByDeletedObjects
	archiveASByClosedSpaces
	archiveASByInactiveSpaces
	restoreASByDate
	truncateASArchive

	Content Repository
	createJCRContentServerConnection
	setJCRContentServerConnection
	listJCRContentServerConnections
	createJCRPortalConnection
	setJCRPortalConnection
	listJCRPortalConnections
	createJCRFileSystemConnection
	setJCRFileSystemConnection
	listJCRFileSystemConnections
	createJCRSharePointConnection
	setJCRSharePointConnection
	listJCRSharePointConnections
	listDocumentsSpacesProperties
	setDocumentsSpacesProperties
	deleteDocumentsSpacesProperties

	Discussions and Announcements
	createDiscussionForumConnection
	setDiscussionForumConnection
	setDiscussionForumConnectionProperty
	deleteDiscussionForumConnectionProperty
	listDiscussionForumConnections
	listDefaultDiscussionForumConnection
	setDefaultDiscussionForumConnection
	setDiscussionForumServiceProperty
	removeDiscussionForumServiceProperty
	listDiscussionForumServiceProperties
	setAnnouncementServiceProperty
	removeAnnouncementServiceProperty
	listAnnouncementServiceProperties
	addDiscussionsServerAdmin
	syncDiscussionServerPermissions
	setDiscussionsServerProperty
	getDiscussionsServerProperty
	removeDiscussionsServerProperty

	External Applications
	createExtAppConnection
	setExtAppConnection
	listExtAppConnections
	addExtAppField
	setExtAppField
	removeExtAppField
	addExtAppCredential
	setExtAppCredential
	removeExtAppCredential

	Instant Messaging and Presence
	createIMPConnection
	setIMPConnection
	setIMPConnectionProperty
	deleteIMPConnectionProperty
	listIMPAdapters
	listIMPConnections
	listDefaultIMPConnection
	setDefaultIMPConnection
	setIMPServiceProperty
	removeIMPServiceProperty
	listIMPServiceProperties
	createIMPExtAppConnection

	Mail
	createMailConnection
	setMailConnection
	setMailConnectionProperty
	deleteMailConnectionProperty
	listMailConnections
	listDefaultMailConnection
	setDefaultMailConnection
	setMailServiceProperty
	removeMailServiceProperty
	listMailServiceProperties
	createMailExtApp

	Notifications
	setNotificationsConfig
	getNotificationsConfig

	Personal Events
	createPersonalEventConnection
	setPersonalEventConnection
	listPersonalEventConnections

	Personalization
	createWCPSCMISConnection
	createWCPSActivityGraphConnection
	createWCPSPeopleConnection
	createWCPSCustomConnection
	listWCPSCMISConnection
	listWCPSActivityGraphConnection
	listWCPSPeopleConnection
	listWCPSCustomConnection
	deleteWCPSCMISConnection
	deleteWCPSActivityGraphConnection
	deleteWCPSPeopleConnection
	deleteWCPSCustomConnection
	setWCPSConnectionProperty

	Portlet Producers
	registerWSRPProducer
	setWSRPProducer
	listWSRPProducers
	deregisterWSRPProducer
	listWSRPProducerRegistrationProperties
	listWSRPProducerUserCategories
	mapWSRPProducerUserCategory
	registerPDKJavaProducer
	setPDKJavaProducer
	deregisterPDKJavaProducer
	listPDKJavaProducers
	registerPageletProducer
	setPageletProducer
	listPageletProducers
	deregisterPageletProducer
	refreshProducer
	registerOOTBProducers
	deregisterOOTBProducers
	registerSampleProducers
	deregisterSampleProducers

	RSS News Feeds
	getRssProxyConfig
	setRssProxyConfig
	unsetRssProxyConfig

	Search - Oracle SES Search
	createSESConnection
	setSESConnection
	listSESConnections
	setSearchSESConfig
	listSearchSESConfig
	createFederationTrustedEntity

	Search - Oracle SES Search Crawlers
	createSpacesCrawler
	createDocumentsCrawler
	createDiscussionsCrawler
	listSpacesCrawler
	listDocumentsCrawler
	listDiscussionsCrawler
	startSpacesCrawler
	startDocumentsCrawler
	startDiscussionsCrawler
	stopSpacesCrawler
	stopDocumentsCrawler
	stopDiscussionsCrawler
	deleteSpacesCrawler
	deleteDocumentsCrawler
	deleteDiscussionsCrawler

	Search - WebCenter Portal Search
	setSearchConfig
	listSearchConfig
	setSpacesCrawlProperties
	getSpacesCrawlProperties

	Worklists
	createBPELConnection
	setBPELConnection
	listBPELConnections
	addWorklistConnection
	removeWorklistConnection
	listWorklistConnections

	Spaces Application
	getSpacesWorkflowConnectionName
	setSpacesWorkflowConnectionName
	refreshGroupSpaceCache
	refreshSpaceTemplateCache

	WebCenter Portal Identity Store
	setWebCenterIdStoreSearchConfig
	listWebCenterIdStoreSearchConfig
	startSyncProfiles
	stopSyncProfiles
	isSyncProfilesRunning
	syncProfile
	setProfileCacheNumberOfObjects
	setProfileSyncLDAPReadBatchSize
	setProfileCacheTimeToLive
	printProfileConfig
	renameUsersInWebCenterApplication
	synchronizeUserInformation

	WebCenter Portal Import and Export
	exportWebCenterApplication
	importWebCenterApplication
	exportGroupSpaces
	exportGroupSpaceTemplates
	importGroupSpaces
	exportWebCenterResource
	importWebCenterResource
	exportPortletClientMetadata
	importPortletClientMetadata
	importWebCenterTranslations
	setSpaceState
	showProducerImportFailures
	retryAllFailedProducerImports

	WebCenter Portal Upgrade
	upgradeWebCenterDomain
	upgradeWebCenterPermissions
	upgradeWebCenterApplication

11 Application Development Framework (ADF) Custom WLST Commands

	Overview of WLST Command Categories
	ADF-Specific WLST Commands
	adf_createFileUrlConnection
	adf_createHttpUrlConnection
	adf_setURLConnectionAttributes
	adf_listUrlConnection
	getADFMArchiveConfig

12 Portal Custom WLST Commands

	Database Access Descriptor Commands
	listDads
	createPortalDad
	updatePortalDad
	deletePortalDad

	Configuration Commands
	configurePortalCache
	configurePortalPageEngine
	listPortalWebcacheConfigAttributes
	listPortalSiteConfigAttributes
	listPortalOIDConfigAttributes
	setPortalWebcacheConfig
	setPortalOIDConfig
	setPortalMidtierConfig

13 Java Required Files Custom WLST Commands

	Java Required Files Commands
	applyJRF
	cloneDeployments

14 Web Services Custom WLST Commands

	Overview of Web Services WLST Commands
	Specifying Application, Composite, and Service Names
	Web Services WLST Command Categories

	Web Service and Client Management Commands
	listWebServices
	listWebServicePorts
	listWebServiceConfiguration
	setWebServiceConfiguration
	listWebServiceClients
	listWebServiceClientPorts
	listWebServiceClientStubProperties
	setWebServiceClientStubProperty
	setWebServiceClientStubProperties

	Policy Management Commands
	listAvailableWebServicePolicies
	listWebServicePolicies
	attachWebServicePolicy
	attachWebServicePolicies
	enableWebServicePolicy
	enableWebServicePolicies
	detachWebServicePolicy
	detachWebServicePolicies
	listWebServiceClientPolicies
	attachWebServiceClientPolicy
	attachWebServiceClientPolicies
	enableWebServiceClientPolicy
	enableWebServiceClientPolicies
	detachWebServiceClientPolicy
	detachWebServiceClientPolicies
	setWebServicePolicyOverride

	Policy Set Management Commands
	beginRepositorySession
	commitRepositorySession
	describeRepositorySession
	abortRepositorySession
	createPolicySet
	listPolicySets
	clonePolicySet
	displayPolicySet
	modifyPolicySet
	setPolicySetPolicyOverride
	setPolicySetConstraint
	enablePolicySet
	enablePolicySetPolicy
	setPolicySetDescription
	validatePolicySet
	deletePolicySet
	deleteAllPolicySets
	attachPolicySet
	attachPolicySetPolicy
	detachPolicySetPolicy
	migrateAttachments

	Oracle WSM Repository Management Commands
	upgradeWSMPolicyRepository
	resetWSMPolicyRepository
	exportRepository
	importRepository

	Deployment Descriptor Migration Commands
	exportJRFWSApplicationPDD
	importJRFWSApplicationPDD
	savePddToAllAppInstancesInDomain

15 Diagnostic Framework Custom WLST Commands

	Incident Commands
	createIncident
	getIncidentFile
	listADRHomes
	listIncidents
	listProblems
	showIncident

	Diagnostic Dump Commands
	describeDump
	executeDump
	listDumps

16 Information Rights Management Custom WLST Commands

	Overview of WLST IRM Commands
	General Server Commands
	addIRMRefreshPeriod
	getIRMRefreshPeriod
	getIRMRefreshPeriods
	removeIRMRefreshPeriod
	updateIRMRefreshPeriod
	addIRMSyncWindow
	getIRMSyncWindow
	getIRMSyncWindows
	removeIRMSyncWindow
	updateIRMSyncWindow
	getIRMCryptoSchema
	setIRMCryptoSchema
	getIRMDeviceCount
	setIRMDeviceCount
	getIRMJournalCleanUp
	setIRMJournalCleanUp
	getIRMLicenseStateCleanUp
	setIRMLicenseStateCleanUp
	getIRMPrivacyURL
	setIRMPrivacyURL
	getIRMKeyStore
	setIRMKeyStore

	Migration Commands
	setIRMExportFolder
	getIRMExportFolder
	setIRMImportFolder
	getIRMImportFolder

	Test Content Commands
	addIRMTestContent
	getIRMTestContent
	getIRMTestContents
	removeIRMTestContent
	updateIRMTestContent

	Languages Support Commands
	addIRMTranslation
	getIRMDefaultTranslation
	getIRMTranslations
	removeIRMTranslation
	setIRMTranslations

	Oracle IRM Desktop Installers Commands
	addIRMDownload
	getIRMDownload
	getIRMDownloads
	removeIRMDownload
	updateIRMDownload

17 Oracle WebCenter: Imaging Custom WLST Commands

	Overview of Imaging WLST Command Categories
	Diagnostic Commands
	clearIPMWorkflowFaults
	listIPMWorkflowFaults
	repairIPMWorkflowFaults
	sumIPMWorkflowFaults
	resetIpmDMSMetrics

	Imaging Configuration Commands
	createIPMConnection
	getIPMConfig
	grantIPMCredAccess
	importIPMApplication
	importIPMInput
	importIPMSearch
	listIPMConfig
	listIPMExportFile
	refreshIPMSecurity
	setIPMConfig
	submitIPMToWorkflow

18 Oracle Business Process Management Custom WLST Commands

	BPMLifecycleAdmin Command Group
	create_public_share
	unlock_public_share
	export_public_share
	delete_public_share
	publish_template
	export_template
	delete_template

19 Oracle WebCenter Content Custom WLST Commands

	Overview of WLST WebCenter Content Command Categories
	WLST WebCenter Content Help
	Getter and Setter Methods Implementation
	Server Configuration Commands
	getUCMHttpServerAddress
	setUCMHttpServerAddress
	getUCMServerPort
	setUCMServerPort
	getUCMIPAddressFilter
	setUCMIPAddressFilter
	getUCMUseSSL
	setUCMUseSSL

	E-Mail Configuration Commands
	getUCMMailServer
	setUCMMailServer
	getUCMSmtpPort
	setUCMSmtpPort
	getUCMSysAdminAddress
	setUCMSysAdminAddress

	Additional Commands
	getUCMCSVersion
	getUCMServerUptime

20 Enterprise Scheduler Custom WLST Commands

	Enterprise Scheduler Custom Commands
	essGetRequestContent
	essManageRequest
	essManageRuntimeConfig
	essManageServer
	essQueryRequests

15 Diagnostic Framework Custom WLST Commands

The Diagnostic Framework aids in capturing relevant and timely diagnostics for critical errors. The diagnostics can be sent to Oracle Support for further analysis. Use the Diagnostic Framework commands to generate incidents, query existing incidents and execute individual diagnostics dumps to gather specific diagnostics data.

For additional information about using the Diagnostic Framework, see "Diagnosing Problems" in the Oracle Fusion Middleware Administrator's Guide.

	
Note:

To use the Diagnostic Framework custom WLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide.

Table 15-1 lists the different categories of Diagnostic Framework commands.

Table 15-1 Diagnostic Command Categories

	Command Category	Description
	
Incident Commands

	
View problems and incidents and to create incidents.

	
Diagnostic Dump Commands

	
Display information about dumps and to execute dumps.

Incident Commands

Use the commands in Table 15-2 to view problems and incidents and to create incidents.

Table 15-2 Incident Commands

	Use this command...	To...	Use with WLST...
	
createIncident

	
Create a diagnostic incident.

	
Online

	
getIncidentFile

	
Retrieves the contents of the specified incident file.

	
Online

	
listADRHomes

	
List the set of ADR Home paths.

	
Online

	
listIncidents

	
List a set of diagnostic incidents.

	
Online

	
listProblems

	
List a set of diagnostic problems.

	
Online

	
showIncident

	
Show the details of a specified incident.

	
Online

createIncident

Use with WLST: Online

Description

Creates a diagnostic incident, using the specified information to determine the set of diagnostic rules and actions to execute.

Syntax

createIncident([adrHome] [,incidentTime] [,messageId] [,ecid] [,appName]
 [,description] [,server])

	Argument	Definition
	

adrHome

	
The path for the ADR Home in which to create the incident. The ADR Home must exist. If this argument is not specified, the default ADR Home is used.

The default ADR Home is the following location:

ADR_BASE/diag/OFM/domain_name/server_name

	

incidentTime

	
The timestamp at which the incident occurred. If this not specified, the current time is used. You can specify the following:

	
The time of the current day, in the format HH:MM. For example: 19:45

	
The date and time, in the format MM/DD/YYYY HH:MM

	

messageId

	
The ID of the error message. For example, MDS-50400.

	

ecid

	
The Execution Context ID for the error message.

	

appNname

	
The name of the deployed application for which the diagnostics are being gathered.

For example, if you have multiple ADF applications deployed, each may register a dump called adf.dump. To execute this command for a specific application, you must specify the application name.

	

description

	
Descriptive text to associate with the incident. This is useful when reviewing the incident at a later time.

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example creates an incident that is related to messages with the ID MDS-50400:

createIncident(messageId="MDS-50400", description="sample incident")
Incident Id: 55
Problem Id: 4
Problem Key: MDS-50400 [MANUAL]
Incident Time: 25th March 2010 11:55:45 GMT
Error Message Id: MDS-50400
Flood Controlled: false

getIncidentFile

Use with WLST: Online

Description

Retrieves the contents of the specified incident file.

Syntax

getIncidentFile(id, name [,outputFile] [,adrHome] [,server])

	Argument	Definition
	

id

	
The ID of the incident that you want to retrieve.

	

name

	
The name of the file to retrieve. To find the name of the file, use the showIncident command.

	

outputFile

	
The name of the file to which to write the output.

	

adrHome

	
The path for the ADR Home from which to retrieve the information. If this argument is not specified, the default ADR Home will be queried.

The default ADR Home is the following location:

ADR_BASE/diag/OFM/domain_name/server_name

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example writes the contents of the incident dms_metrics3_i1.dmp to the specified output file:

getIncidentFile(id='1', name='dms_metrics3_i1.dmp', outputFile='/tmp/incident1_dms.txt')
The content of 'dms_metrics3_i1.dmp'is written to /tmp/incident1_dms.txt

listADRHomes

Use with WLST: Online

Description

Lists the paths of all of the ADR Homes for the server.

Syntax

listADRHomes([server])

	Argument	Definition
	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example lists the paths of the ADR homes:

listADRHomes()
diag/ofm/base_domain/WLS_Spaces

diag/ofm/fusionapps/GeneralLedger

listIncidents

Use with WLST: Online

Description

Lists the set of diagnostic incidents for the given problem ID, if specified, or all available incidents.

Syntax

listIncidents([id] [, adrHome] [,server])

	Argument	Definition
	

id

	
The ID of the problem for which you want to list the set of diagnostic incidents.

	

adrHome

	
The path for the ADR Home from which to query incidents. If this argument is not specified, the default ADR Home will be queried.

The default ADR Home is the following location:

ADR_BASE/diag/OFM/domain_name/server_name

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example lists the incidents associated with the problem with the ID 1:

listIncidents(id="1")
Incident Id Problem Key Incident Time
 10 MDS-50300 [WLS_Spaces] [oracle.mds.repos] Mon Mar 15 11:22:12 PDT 2010
 24 MDS-50300 [WLS_Spaces] [oracle.mds.repos] Thu Mar 11 15:11:35 PDT 2010

listProblems

Use with WLST: Online

Description

Lists the set of diagnostic problems associated with the specified ADR Home.

Syntax

listProblems([adrHome][,server])

	Argument	Definition
	

adrHome

	
The path for the ADR Home from which to query problems. If this argument is not specified, the default ADR Home will be queried.

The default ADR Home is the following location:

ADR_BASE/diag/OFM/domain_name/server_name

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example lists the diagnostic problems in the default ADR home:

listProblems()
Problem Id Problem Key
 1 MDS-50300 [WLS_Spaces] [oracle.mds.repos]
 2 JOC-38922 [AdminServer] [oracle.cache.network]

showIncident

Use with WLST: Online

Description

Shows the details of the specified incident.

Syntax

showIncident(id, [adrHome][, server])

	Argument	Definition
	

id

	
The ID of the incident that you want to view.

	

adrHome

	
The path for the ADR Home from which to query the incident. If this argument is not specified, the default ADR Home will be queried.

The default ADR Home is the following location:

ADR_BASE/diag/OFM/domain_name/server_name

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example displays information about the incident with the ID 10:

showIncident(id="10")
Incident Id: 10
Problem Id: 1
Problem Key: MDS-50300 [WLS_Spaces] [oracle.mds.repos]
Incident Time: 25th March 2010 10:12:15 GMT
Error Message Id: MDS-50300
Execution Context: 0000ICK4rbYC8xT6uBf9EH1AX1qF000000
Flood Controlled: false
Dump Files :
 dms_ecidctx1_i1.dmp
 jvm_threads2_i1.dmp
 dms_metrics3_i1.dmp
 odl_logs4_i1.dmp
 diagnostic_image_AdminServer_2010_03_25_11_12_15.zip
 readme.txt

Diagnostic Dump Commands

Use the commands in Table 15-3 to display information about dumps and to execute dumps.

Table 15-3 Diagnostic Dump Commands

	Use this command...	To...	Use with WLST...
	
describeDump

	
Display a description of the specified diagnostic dump.

	
Online

	
executeDump

	
Execute the specified diagnostic dump.

	
Online

	
listDumps

	
Display the set of diagnostic dumps that can be executed.

	
Online

describeDump

Use with WLST: Online

Description

Displays a description of the specified diagnostic dump.

Syntax

describeDump(name [,appName] [.server])

	Argument	Definition
	

name

	
The name of the dump for which to display information.

	

appName

	
The name of the deployed application for which information is gathered.

For example, if you have multiple ADF applications deployed, each may register a dump called adf.dump. To execute this command for a specific application, you must specify the application name.

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example displays information about the dump with the name odl.logs. You use the listDumps command to retrieve the list of available dumps.

describeDump(name="odl.logs")
Name: odl.logs
Description: Dumps recent ODL logs, or logs correlated by ECID
Manadatory Arguments:
Optional Arguments:
 Name Type Description
 ECID String Execution Context Id to correlate log entries with
 timestamp String Timestamp to query logs 5 minutes before/after

executeDump

Use with WLST: Online

Description

Executes the specified diagnostic dump.

Syntax

executeDump(name [,args] [,outputFile] [,id] [,adrHome] [,server])

	Argument	Definition
	

name

	
The name of the diagnostic dump to execute.

	

args

	
Mandatory or optional arguments to pass to the dump.

	

outputFile

	
The name of the file to which to write the dump. If you do not specify this argument, the output is written to the console.

	

id

	
The ID of the incident to which to associate the dump. By default, the specified dump will not be associated with an incident.

	

adrHome

	
The ADR home that contains the incident. If you do not specify this argument, the default ADR home is used.

The default ADR Home is the following location:

ADR_BASE/diag/OFM/domain_name/server_name

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Arguments that are either required or are optional can be specified using the "args" keyword. For example:

executeDump("java.sysprops",args={"prop" : "os.name"})

Examples

The following example executes the dump with the name jvm.threads and writes it to the file dumpout.txt:

executeDump(name="jvm.threads", outputFile="/tmp/dumpout.txt")
Diagnostic dump jvm.threads output written to /tmp/dumpoutput.txt

The following example executes the dump with the name jvm.threads and the Incident ID for 33 and writes it to the file dumpout.txt:

executeDump(name="jvm.threads", outputFile="/tmp/dumpout.txt", id="33")
Diagnostic dump jvm.threads output associated with incident 33 in ADR Home diag/ofm/base_domain/AdminServer

The following example executes a dump with the argument prop set to the value os.name:

executeDump("java.sysprops",args={"prop" : "os.name"})

listDumps

Use with WLST: Online

Description

Displays the set of diagnostic dumps that can be executed.

Syntax

listDumps([appName] [,server])

	Argument	Definition
	

appName

	
The name of a deployed application for which diagnostics are being gathered.

For example, if you have multiple ADF applications deployed, each may register a dump called adf.dump. To execute this command for a specific application, you must specify the application name.

If you specify this argument, the command returns the dumps for the specified application. If you do not specify this argument, the command returns the system dumps.

	

server

	
The name of the Managed Server from which to collect information. This argument is valid only when you are connected to the Administration Server.

Example

The following example lists all of the available dumps.

listDumps()
dms.metrics
jvm.classhistogram
jvm.threads
odl.logs

Use the command describeDump(name=<dumpName>) for help on a specific dump.

18 Oracle Business Process Management Custom WLST Commands

This chapter lists and describes the custom WLST commands for Oracle Business Process Management.

BPMLifecycleAdmin Command Group

Table 18-1 lists and describes the BPMLifecycleAdmin commands for project lifecycle administration.

Table 18-1 BPMLifecycleAdmin Commands for Project Lifecycle Administration

	Use this command...	To...	Use with WLST...
	
create_public_share

	
Create a public share

	
Offline

	
unlock_public_share

	
Unlock a public share

	
Offline

	
export_public_share

	
Export a public share to the file system

	
Offline

	
delete_public_share

	
Delete a public share

	
Offline

	
publish_template

	
Publish a template to MDS

	
Offline

	
export_template

	
Export a template to the file system

	
Offline

	
delete_template

	
Delete a template from MDS

	
Offline

create_public_share

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to create a public share from a template. The template must exist in MDS.

Syntax

create_public_share(composerUser, composerPassword, connectionURL, templateName, publicshareId, mdsconfigLocation, [Override], [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

templateName

	
Name of the template in MDS

	

publicshareId

	
Name of the public share to be created

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	
projectLocation

	
The path where the public share will be created. If the path does not exists it will be created. The root is '/'.

	

Override

	
Enables you to override the public share if a public share exists in MDS with the same name. The template is not overwritten when you execute this command.

	

oracleHome

	
Optional. The Oracle home to be used.

Examples

The following example creates a public share named Sample_PublicShare. It is based on the template with name Sample_Template. The name of the public share is Sample_PublicShare, and the location of the mds-config.xml file is /tmp/mds-config.xml.

create_public_share('user_name', 'password', 'host:port','Sample_Template', 'Sample_PublicShare','/tmp/mds-config.xml')

The following example creates a public share named Sample_PublicShare. It is based on the template named Sample_Template that exists in MDS. The public share, not the template, is overridden. The location of the mds-config.xml file is /tmp/mds-config.xml.

create_public_share('user_name', 'password', 'host:port','Sample_Template', 'Sample_PublicShare','/tmp/mds-config.xml','true')"

unlock_public_share

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to unlock a public share. For example, when you create project by using the Ant task create_public_share command, the project is created as locked. You can then unlock it by using the unlock_public_share command.

A lock is also set by enabling or disabling the check box enable sharing in the project creation page in Oracle Business Process Composer.

It is also released when the user publishes a project from Business Process Composer.

The public share must exist in MDS.

Syntax

unlock_public_share(composerUser, composerPassword, connectionURL, publicshareId, mdsconfigLocation, [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

publicshareId

	
Name of the public share to be unlocked

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	

oracleHome

	
Optional. The Oracle home to be used

Example

The following example unlocks a public share named Sample_PublicShare. The location of the mds-config.xml file is /tmp/mds-config.xml.

unlock_public_share('user_name', 'password', 'host:port','Sample_PublicShare', '/tmp/mds-config.xml')

export_public_share

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to export the public share from MDS to the file system.

Syntax

export_public_share(composerUser, composerPassword, connectionURL, publicshareId,fsLocation, mdsconfigLocation, [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

publicshareId

	
Name of the public share to be exported

	

fsLocation

	
File system location where the project is to be downloaded

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	

oracleHome

	
Optional. The Oracle home to be used

Example

The following example specifies the public share name as Sample_PublicShare, the file system location as /tmp, and the location of the mds-config.xml file as /tmp/mds-config.xml.

export_public_share('user_name', 'password', 'host:port','Sample_PublicShare','/tmp', '/tmp/mds-config.xml')

delete_public_share

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to delete a public share from MDS. Executing this command requires that the public share is not locked.

Syntax

delete_public_share(composerUser, composerPassword, connectionURL, publicshareId, mdsconfigLocation, [releaseLock], [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

publicshareId

	
Name of the public share to be deleted

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	

releaseLock

	
Optional. If the public share is locked, this lock can be released and the delete operation completed. You can set this attribute to either true or false. If not specified, default value is false.

	

oracleHome

	
Optional. The Oracle home to be used

Examples

The following example specifies the name and location of a public share to be deleted.

delete_public_share('Sample_PublicShare','/tmp/mds-config.xml')

The following example specifies the name and location of a public share to be deleted, and that the public share should be deleted even if locked.

delete_public_share('user_name', 'password', 'host:port','Sample_PublicShare','/tmp/mds-config.xml','true')

publish_template

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to publish the template from the file system to MDS.

Syntax

publish_template(composerUser, composerPassword, connectionURL, templateName,fsLocation, mdsconfigLocation, [Override], [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

templateName

	
Name of the template to be published

	

fsLocation

	
File system location of the template project

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	
projectLocation

	
The path where the public share will be created. If the path does not exists it will be created. The root is '/' .

	

Override

	
When you publish a template in MDS, this attribute enables you to override an existing template with the same name. Can either be 'true' or 'false'. If not specified, default value is 'false'.

	

oracleHome

	
Optional. The Oracle home to be used

Example

The following example publishes a template named Sample_Template_Name_MDS. to the root folder.

f('user_name', 'password', 'host:port','Sample_Template','/tmp/MyTemplate','/', '/tmp/mds-config.xml')

The following example publishes a template named Sample_Template_Name_MDS.to the '/WorkingOn/' folder.

publish_template('user_name', 'password', 'host:port','Sample_Template','/tmp/MyTemplate','/WorkingOn', '/tmp/mds-config.xml')

export_template

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to export the template from MDS to the file system.

Syntax

export_template(composerUser, composerPassword, connectionURL, templateName, fsLocation, mdsconfigLocation, [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

templateName

	
Name of the template to be exported

	

fsLocation

	
File system location where the project is to be downloaded

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	

oracleHome

	
Optional. The Oracle home to be used

Example

The following example specifies the template name as Sample_Template, the file system location as /tmp, and the location of the mds-config.xml file as /tmp/mds-config.xml.

export_template('user_name', 'password', 'host:port','Sample_Template','/tmp','/tmp/mds-config.xml')

delete_template

Command Category: BPMLifecycleAdmin Commands

Use with WLST: Offline

Description

Use this command to delete the template from MDS.

Syntax

delete_template(composerUser, composerPassword, connectionURL, templateName,mdsconfigLocation, [oracleHome])

	Argument	Definition
	
composerUser

	
The Business Process Composer user who performs the current operation.

	

composerPassword

	
BPM Composer user's password

	

connectionURL

	
JNDI connection URL to the security server service in format host:port

	

templateName

	
Name of the template to be deleted

	

fsLocation

	
File system location of the template project

	

mdsconfigLocation

	
Location of the mds-config.xml to be used to connect to MDS

	
projectLocation

	
The path where the public share will be created. If the path does not exists it will be created. The root is '/' .

	

oracleHome

	
Optional. The Oracle home to be used

Example

The following example deletes the template named Sample_template from MDS.

delete_template('weblogic', 'welcome1', 'host:port','/Sample_template','/tmp/mds-config.xml')

6 DMS Custom WLST Commands

Use the Dynamic Monitoring Service (DMS) commands in the categories in Table 6-1 to view performance metrics and to configure Event Tracing.

	
Note:

To use these DMS custom WLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide.

Table 6-1 DMS Command Categories

	Command category	Description
	
DMS Metric Commands

	
View information about performance metrics.

	
DMS Event Tracing Commands

	
Configure Event Tracing

DMS Metric Commands

Use the commands in Table 6-2 to view information about a specific performance metric, a set of performance metrics, or all performance metrics for a particular server or component.

For additional details about metrics, see the chapter "Monitoring Oracle Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide and the appendix "Instrumenting Applications with DMS" in the Oracle Fusion Middleware Performance Guide.

Table 6-2 DMS Commands

	Use this command...	To...	Use with WLST...
	
displayMetricTableNames

	
Displays the names of the available DMS metric tables.

	
Online

	
displayMetricTables

	
Displays the content of the DMS metric tables.

	
Online

	
dumpMetrics

	
Displays available metrics.

	
Online

	
reloadMetricRules

	
Reloads the metric rules.

	
Online

displayMetricTableNames

Command Category: DMS Metrics

Use with WLST: Online

Description

Displays the names of the available DMS metric tables. The returned value is a list of metric table names.

Syntax

displayMetricTableNames([servers])

	Argument	Definition
	

servers

	
Optional. Specifies the servers from which to retrieve metrics. Valid values are a list of WebLogic Server instance names and system component names.

To specify one server, use the following syntax:

servers='servername'

To specify multiple servers, use one of the following syntax options:

servers=['servername1', 'servername2', ...]
servers=('servername1', 'servername2', ...)

If this argument is not specified, the command returns the list of metric table names for all WebLogic servers and system components.

Examples

The following example displays metric table names for all WebLogic servers and system components:

displayMetricTableNames()
ADF
ADFc
ADFc_Metadata_Service
ADFc_Region
ADFc_Taskflow
ADFc_Viewport
BAM_common_connectionpool
BAM_common_connectionpool_main
BAM_common_messaging
BAM_common_messaging_consumers
.
.
.

The following example displays metric table names for the WebLogic Managed Server soa_server1:

displayMetricTableNames(servers='soa_server1')
ADF
JVM
JVM_ClassLoader
JVM_Compiler
JVM_GC
JVM_Memory
JVM_MemoryPool
JVM_MemorySet
JVM_OS
JVM_Runtime
.
.
.

The following example displays metric table names for two WebLogic Managed Servers:

displayMetricTableNames(servers=['soa_server1', 'bam-server1'])
ADF
ADFc
ADFc_Metadata_Service
ADFc_Region
ADFc_Taskflow
ADFc_Viewport
BAM_common_connectionpool
BAM_common_connectionpool_main
BAM_common_messaging
BAM_common_messaging_consumers
.
.
.

displayMetricTables

Command Category: DMS Metrics

Use with WLST: Online

Description

Displays the content of the DMS metric tables.

The returned value is list of DMS metric tables, with the following information about each table:

	
The metric table name.

	
The metric table schema information.

	
The metric table Rows.

The metric table schema information contains the following:

	
The name of the column.

	
The type of the column value.

	
The unit of the column.

	
The description of the column.

Syntax

displayMetricTables([metricTable_1] [, metricTable_2], [...] [, servers]
 [, variables])

	Argument	Definition
	

metricTable_n

	
Optional. Specifies a list of metric tables. By default, this argument displays all available metrics. The metric table name can contain special characters for simple pattern matching. The character '?' matches any single character. The character '*' matches zero or more characters.

You specify the metric table name. You can specify multiple metric table names in a comma-separated list.

These are the same names output by the WLST command displayMetricTableNames.

	

servers

	
Optional. Specifies the servers from which to retrieve metrics. Valid values are a list of WebLogic Server instance names and system component names.

To specify one server, use the following syntax:

servers='servername'

To specify multiple servers, use one of the following syntax options:

servers=['servername1', 'servername2', ...]
servers=('servername1', 'servername2', ...)

If this argument is not specified, the command returns the list of metric tables for all WebLogic servers and system components.

	

variables

	
Optional. Defines the metric aggregation parameters. Valid values are a set of name-value pairs. It uses the following syntax:

variables={name1:value1, name2:value2, ...}

The specific name-value pairs depend on the aggregated metric tables. Each aggregated metric table has its specific set of variable names.

Examples

The following example displays the data from the JVM and the weblogic.management.runtime.WebAppComponentRuntimeMBean metric tables, and limits it to data retrieved from soa_server1 and bam_server1:

displayMetricTables('JVM','weblogic.management.runtime.WebAppComponentRuntimeMBean',
 servers=['soa_server1','bam_server1'])
.
.
.
ApplicationRuntime: soa-infra
ComponentName: /integration/services/IdentityService
ContextRoot: /integration/services/IdentityService
DeploymentState: 2
FilterDispatchedRequestsEnabled: false
IndexDirectoryEnabled: false
JSPDebug: false
JSPKeepGenerated: false
JSPPageCheckSecs: 1
JSPVerbose: true
ModuleId: /integration/services/IdentityService
ModuleURI: IdentityService.war
Name: soa_server1_/integration/services/IdentityService
ObjectName: com.bea:ApplicationRuntime=soa-infra,Name=soa_server1_/integration/services/IdentityService,
 ServerRuntime=soa_server1,Type=WebAppComponentRuntime
OpenSessionsCurrentCount: 0
OpenSessionsHighCount: 0
.
.
.

The following example displays the aggregated metric tables with the specified metric aggregation parameters:

displayMetricTables('j2ee_application:webservices_port_rollup',
 servers=['soa_server1','bam_server1'],
 variables={'host':'hostname', 'servletName':'dms'})
--
j2ee_application:webservices_port_rollup
--

Faults: 0
Requests: 0
Requests.averageTime: 0.0
Requests.totalTime: 0.0
ServerName: soa_server1
moduleName: RuntimeConfigService
moduleType: WEBs
portName: RuntimeConfigServicePortSAML
processRequest.active: 0
service.throughput: 0.0
service.time: 0.0
startTime: 1238182359291
webserviceName: RuntimeConfigService

Faults: 0
Requests: 0
Requests.averageTime: 0.0
Requests.totalTime: 0.0
ServerName: soa_server1
moduleName: TaskMetadataService
moduleType: WEBs
portName: TaskMetadataServicePort
processRequest.active: 0
service.throughput: 0.0
service.time: 0.0
startTime: 1238182358096
webserviceName: TaskMetadataService
.
.
.

The following example displays the metric tables which names match the specified patterns:

displayMetricTables('J??', 'JVM_*')
.
.
.

JVM_ThreadStats

Host: hostname.us.oracle.com
JVM: JVM
Name: threads
Parent: /JVM/MxBeans
Process: AdminServer:9001
ServerName: AdminServer
contention.value: enabled in JVM
daemon.value: 60 threads
deadlock.value: 0 threads
live.value: 61 threads
peak.value: 66 threads
started.value: 241 threads

Host: hostname.us.oracle.com
JVM: JVM
Name: threads
Parent: /JVM/MxBeans
Process: soa_server1:9001
ServerName: soa_server1
contention.value: enabled in JVM
daemon.value: 68 threads
deadlock.value: 0 threads
live.value: 74 threads
peak.value: 74 threads
started.value: 105 threads
.
.
.

dumpMetrics

Command Category: DMS Metrics

Use with WLST: Online

Description

Displays available metrics in the internal format or in XML. The returned value is a text document.

Syntax

dumpMetrics([servers] [, format])

	Argument	Definition
	

servers

	
Optional. Specifies the servers from which to retrieve metrics. Valid values are a list of WebLogic Server instance names and system component names.

To specify one server, use the following syntax:

servers='servername'

To specify multiple servers, use one of the following syntax options:

servers=['servername1', 'servername2', ...]
servers=('servername1', 'servername2', ...)

If this argument is not specified, the command returns the list of metric tables for all WebLogic servers and system components.

	

format

	
Optional. Specifies the command output format. Valid values are 'raw' (the default), 'xml, and 'pdml'. For example:

format='raw'
format='xml'
format='pdml'

DMS raw format is a simple metric display format; it displays one metric per line.

Examples

The following example outputs all available metrics, including native WebLogic Server metrics and internal DMS metrics, in the XML format:

dumpMetrics(format='xml')
<table name='weblogic_j2eeserver:jvm' keys='ServerName serverName'
 componentId='bam_server1' cacheable='false'>
<row cacheable='false'>
<column name='serverName'><![CDATA[bam_server1]]></column>
<column name='nurserySize.value' type='DOUBLE'>0.0</column>
<column name='jdkVersion.value'><![CDATA[1.6.0_05]]></column>
<column name='jdkVendor.value'><![CDATA[BEA Systems, Inc.]]></column>
<column name='daemonThreads.active' type='LONG'>68</column>
<column name='cpuUsage.percentage' type='DOUBLE'>100.0</column>
<column name='threads.active' type='LONG'>71</column>
<column name='ServerName'><![CDATA[bam_server1]]></column>
<column name='heapUsed.value' type='DOUBLE'>0.0</column>
</row>

The following example outputs metrics from Server-0 in the default raw format:

dumpMetrics(servers='Server-0')
.
.
.
 /JVM/MxBeans/threads/Thread-44 [type=JVM_Thread]
 ECID.value: null
 RID.value: null
 blocked.value: 0 msec
 blockedCount.value: 1 times
 cpu.value: 40 msecs
 lockName.value: null
 lockOwnerID.value: null
 lockOwnerName.value: null
 name.value: LDAPConnThread-0 ldap://10.229.149.27:7001
 state.value: RUNNABLE
 waited.value: 0 msec
 waitedCount.value: 0 times
 /JVM/MxBeans/threads/Thread-45 [type=JVM_Thread]
 ECID.value: null
 RID.value: null
 blocked.value: 0 msec
.
.
.

The following example outputs metrics from soa_server1 and bam_server1 in XML format:

dumpMetrics(servers=['soa_server1', 'bam_server1'], format='xml')
<table name='oracle_soainfra:high_latency_sync_composites' keys='ServerName
 soainfra_composite soainfra_composite_revision soainfra_domain'
 componentId='bam_server1' cacheable='false'>
</table>
<table name='weblogic_j2eeserver:ejb_transaction' keys='ServerName appName
 ejbModuleName name serverName' componentId='bam_server1' cacheable='false'>
<row cacheable='false'>
<column name='serverName'><![CDATA[bam_server1]]></column>
<column name='name'><![CDATA[MessagingClientParlayX]]></column>
<column name='ejbTransactionCommit.percentage' type='DOUBLE'>0.0</column>
<column name='ejbTransactionRollback.completed' type='LONG'>0</column>
<column name='ejbTransactionTimeout.throughput' type='DOUBLE'>0.0</column>
<column name='ejbTransactionCommit.completed' type='LONG'>0</column>
<column name='ejbTransactionTimeout.completed' type='LONG'>0</column>
<column name='appName'><![CDATA[usermessagingserver]]></column>
<column name='ejbTransactionRollback.throughput' type='DOUBLE'>0.0</column>
<column name='ServerName'><![CDATA[bam_server1]]></column>
<column name='ejbTransactionCommit.throughput' type='DOUBLE'>0.0</column>
<column name='ejbModuleName'><![CDATA[sdpmessagingclient-ejb-parlayx.jar]]></column>
</row>
.
.
.

reloadMetricRules

Command Category: DMS Metrics

Use with WLST: Online

Description

Reloads the metric rules. You must run this command after you deploy system components or after you modify metric rules. Generally, Oracle does not recommend that you modify metric rules.

Syntax

reloadMetricRules()

Example

The following example reloads metric rules for all servers running in the domain:

reloadMetricRules()
Location changed to domainRuntime tree. This is a read-only tree with DomainMBean
 as the root.
For more help, use help(domainRuntime)

loaded 'server-oracle_eps_server-11.0.xml'
loaded 'server-weblogic_j2eeserver-11.0.xml'
loaded 'server-oracle_bamweb-11.0.xml'
loaded 'server-oracle_federation-11.0.xml'
loaded 'server-portal-11.0.xml'
loaded 'server-weblogic_j2ee_application_webcenter-11.0.xml
.
.
.

DMS Event Tracing Commands

Use the commands in Table 6-3 to configure Event Tracing. Event Tracing configures live tracing with no restarts. DMS metrics that were updated using Oracle Fusion Middleware products may be traced using the DMS Event Tracing feature.

For information about using DMS Event Tracing, see "DMS Tracing and Events" in the Oracle Fusion Middleware Performance Guide.

Table 6-3 DMS Tracing Commands

	Use this command...	To...	Use with WLST...
	
addDMSEventDestination

	
Add a new destination to the Event Tracing configuration.

	
Online

	
addDMSEventFilter

	
Add a filter to the Event Tracing configuration.

	
Online

	
addDMSEventRoute

	
Adds the specified event route to the Event Tracing configuration

	
Online

	
enableDMSEventTrace

	
Enable an event trace and create a filter with a specified condition and destination and an enabled event-route.

	
Online

	
listDMSEventConfiguration

	
Display an overview of the event tracing configuration.

	
Online

	
listDMSEventDestination

	
Display the full configuration for a destination or a list of all destinations.

	
Online

	
listDMSEventFilter

	
Displays the configuration of a filter or a list of all filters.

	
Online

	
listDMSEventRoutes

	
Displays event routes and their status (enabled or disabled).

	
Online

	
removeDMSEventDestination

	
Removes the specified destination.

	
Online

	
removeDMSEventFilter

	
Removes the specified filter.

	
Online

	
removeDMSEventRoute

	
Removes the specified event route.

	
Online

	
updateDMSEventDestination

	
Updates configuration of an event destination.

	
Online

	
updateDMSEventFilter

	
Updates the configuration of an event filter.

	
Online

	
updateDMSEventRoute

	
Updates the configuration of an event route.

	
Online

addDMSEventDestination

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Adds a new destination to the Event Tracing configuration. If a destination with the same ID already exists, the command reports this and does not add the destination. You must be connected to the Administration Server to add a destination. If you are not, an error is returned.

Syntax

addDMSEventDestination(id=id [, name=dest_name] ,class=class_name
 [, props= {'name': 'value'...}] [,server=server_name])

	Argument	Definition
	

id

	
The unique identifier for the specified destination.

	

name

	
Optional. A name for the destination.

	

class

	
The full class name of the destination.

See Table 6-4 for a list of available classes.

	

props

	
Optional. The name/value properties to use for the destination. Some destinations require properties. For example, the LoggerDestination class requires the property loggerName.

See addDMSEventFilter for information about the syntax and allowed values.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Table 6-4 shows the built-in destinations, with the full runtime class name.

Table 6-4 Built-In Destinations

	Runtime Destination Class Name	Description
	
oracle.dms.trace2.runtime.LoggerDestination

	
Uses ODL to send the log messages to a file.

	
oracle.dms.event.HTTPRequestTrackerDestination

	
Dumps the set of active HTTP requests, allowing an administrator to get a snapshot of activity.

	
oracle.dms.jrockit.jfr.JFRDestination

	
Passes events to the JRockit Flight Recorder so that they can be viewed in the context of other data coming from the JRockit JVM and WLDF using JRockit Mission Control.

	
oracle.dms.jmx.MetricMBeanFactory

	
Exposes Nouns as MBeans.

	
oracle.dms.util.StackTraceCollatorDestination

	
Collates the stack traces that are in play whenever the events of interest occur. This is primarily a debugging tool.

The collated data is written out on shutdown, and also when an event being handled has not been reported for a certain period of time (defaults to one minute).

Examples

The following example adds a destination with the ID jfr, the name Flight-Recorder, and the class oracle.dms.event.JRockitFlightRecorder:

addDMSEventDestination(id='jfr', name='Flight-Recorder',
 class='oracle.dms.event.JRockitFlightRecorder')

Destination "jfr" added.

The following example adds a destination with the ID destination1, the name File-system, the class oracle.dms.trace2.runtime.LoggerDestination. Because the LoggerDestination requires the property loggerName, it sets the value to trace2-logger:

addDMSEventDestination(id='destination1', name='File-system',
 class='oracle.dms.trace2.runtime.LoggerDestination',
 props={'loggerName': 'trace2-logger'})

Destination "destination1" added.

The following example attempts to add a destination with an ID that already exists:

addDMSEventDestination(id='destination1', name='File-system',
 class='oracle.dms.trace2.runtime.LoggerDestination',
 props={'loggerName': 'trace2-logger'})

Destination "destination1" already exists. Unable to add this.

addDMSEventFilter

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Adds a filter to the Event Tracing configuration. If a filter with the same ID already exists, the command returns an error and does not add the filter.

You must be connected to the Administration Server to add an event filter. If you are not, an error message is reported.

Syntax

addDMSEventFilter(id=id [, name=name] [, etypes]
 , props= {'prop-name': 'value'...}
 [, server=server_name])

	Argument	Definition
	

id

	
The unique identifier for specified filter.

	

name

	
Optional. The name of the filter.

	

etypes

	
Optional. A string containing a comma-separated list of event/action pairs. This argument allows you to create a filter with a broader granularity when used with a condition. It also allows you to create a filter with a broader range of metrics. For example, all nouns or all nouns with the action create.

	

props

	
prop-name: The name of the filter property. <condition> is the only valid property, and only one condition may be specified.

value: The value of the property of the filter.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

The following shows the syntax for etypes:

<etypes>:==
<type>:[<action>]

The following lists the valid etypes:

EXECUTION_CONTEXT
EXECUTION_CONTEXT:START
EXECUTION_CONTEXT:STOP
HTTP_REQUEST
HTTP_REQUEST:START
HTTP_REQUEST:STOP
NOUN
NOUN:CREATE
NOUN:DELETE
STATE_SENSOR
STATE_SENSOR:CREATE
STATE_SENSOR:DELETE

The following shows an etype with two event/action pairs, separated by a comma:

etypes='NOUN:DELETE, STATE_SENSOR:DELETE'

The following shows the syntax for the <condition> property of the argument props. The arguments are described in the tables following the syntax:

<condition>::=
<type> [<operator> <condition>]

<type>::=
<nountype> | <context>

<nountype>::=
NOUNTYPE <nountype-operator> value

<nountype-operator>::=
"equals" | "starts_with" | "contains" | "not_equals"

<context>::=
CONTEXT <name> <context-operator> [<value>] [IGNORECASE=true|false] [DATATYPE="string|long|double"
]

<context-operator>::=
"equals" | "starts_with" | "contains" | "not_equals" | "is_null" | "gt" | "le" | "ge"

<operator>::=
 AND |OR

The following table describes the arguments for <type>:

	Value	Description
	

<nountype>

	
Each Sensor, with its associated metric, is organized in a hierarchy according to Nouns. A Noun type is a name that reflects the set of metrics being collected. For example, JDBC could be a Noun type. For information about Sensors and Nouns, see "Understanding DMS Terminology (Nouns and Sensors)" in the Oracle Fusion Middleware Performance Guide

	

<context>

	
An Execution Context is an association of the Execution Context ID (ECID), Relationship ID (RID), and Maps of Values. This argument allows the data stored in the map of values to be inspected and used by the filter. For example, if the map contains the key "user", you can create a filter that returns requests with "user" equal to "bruce".

The following table describes the arguments for <nountype>:

	Value	Description
	

NOUNTYPE

	
A keyword.

	

<nountype-operator>

	
The following are valid operators:

	
equals: Filters only if the Noun type name equals the value.

	
starts_with: Filters only if the Noun type name starts with the value.

	
contains: Filters only if the Noun type name equals the value.

	
not_equals: Filters only if the Noun type name does not equal the value.

	

value

	
The name of the Noun type on which to operate. The name can be any object for which you want to measure performance.

The following table describes <context>

	Value	Description
	

CONTEXT

	
A keyword.

	

name

	
The name of the context to filter.

	

value

	
The name of the context on which to operate.

	

<context-operator>

	
The following are valid operators:

	
equals: Filters only if the context name equals the value.

	
starts_with: Filters only if the context name starts with the value.

	
contains: Filters only if the context name equals the value.

	
not_equals: Filters only if the context name does not equal the value.

	
is_null: Filters only if the context name is null.

	
lt: Filters only if the context name is less than the value.

	
gt: Filters only if the context name is greater than the value.

	
le: Filters only if the context name is less than or equal to the value.

	
ge: Filters only if the context name is greater than or equal to the value.

	

IGNORECASE

	
Optional. If specified, the case of the value is ignored.

	

DATATYPE

	
Optional. The valid values are string, long, or double. The default is string.

Examples

The following example adds a filter with the name MyFilter, specifying a Noun type and context:

addDMSEventFilter(id='mds1', name='MyFilter',
 props={'condition': 'NOUNTYPE equals MDS_Connections AND CONTEXT user equals bruce IGNORECASE'})

Filter "mds1" added.

The following example attempts to add a filter with the same id. The command returns an error:

addDMSEventFilter(id='mds1', name='MyFilter',
 props={'condition': 'NOUNTYPE equals MDS_Connections AND CONTEXT user equals bruce'})

Filter "mds1" already exists. Unable to add this.

The following example adds a filter with two event/action pairs:

addDMSEventFilter(id='mds2', name='MyFilter',
 etypes='NOUN:CREATE,HTTP_REQUEST:START',
 props={'condition': 'NOUNTYPE equals MDS_Connections
 AND CONTEXT user equals bruce IGNORECASE=true'})
 Filter "mds2" added.

addDMSEventRoute

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Adds the specified event route to the Event Tracing configuration. If an event route with the same ID already exists, the command returns an error and does not add the event route.

You must be connected to the Administration Server to add an event route. If you are not, an error is returned.

Syntax

addDMSEventRoute([filterid=filter_id], destinationid=destination_id, [enable=true|false] [,server=server_name])

	Argument	Definition
	

filterid

	
Optional. The unique identifier for the filter.

	

destinationid

	
The unique identifier for the specific destination. The destination must exist.

	

enable

	
Optional. Enables the filter. Valid values are true and false. The default is true.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Examples

The following example adds an event route with the filter id of mds1 and the destination id of jrf:

addDMSEventRoute(filterid='mds1', destinationid='jfr', enable='false')
Event-route for filter "mds1", destination "jfr" added.

The following example attempts to add an event route that already exists:

addDMSEventRoute(filterid='mds1', destinationid='jfr', enable='false')
Event-route for filter "mds1", destination "jfr" already exists. Unable to add this.

enableDMSEventTrace

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Enables an event trace and creates a filter with a specified condition and destination and an enabled event-route. This is a simple way to start filtering, without having to explicitly create a filter, destination and event-route, but with less configuration options. The specified destination must exist.

You must be connected to the Administration Server to enable a DMS event trace. If you are not, an error is returned.

If you require a more complex configuration, use the addDMSEventDestination, addDMSEventFilter, and addDMSEventRoute.

Syntax

enableDMSEventTrace(destinationid=destinationid [, etypes=etype]
 [, condition=condition] [, server=server_name])

	Argument	Definition
	

destinationid

	
The unique identifier for the specific destination. Any existing destination is valid.

	

etypes

	
Optional. A string containing a comma-separated list of event/action pairs. See addDMSEventFilter for a list of available etypes.

	

condition

	
Optional. A condition on which to filter. See addDMSEventFilter for the syntax for a condition.

If no condition is specified, all DMS events will be passed

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Example

The following example enables an event trace with a specified condition:

enableDMSEventTrace(condition='CONTEXT username EQUALS Joe AND CONTEXT ip EQUALS 192.168.1.5')

Filter "EventTrace9", using Destination "LoggerDestination" added, and event-route enabled.

listDMSEventConfiguration

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Displays an overview of the Event Tracing configuration.

Syntax

listDMSEventConfiguration([server=server_name]]

	Argument	Definition
	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Example

The following example lists the configuration for the Managed Server to which you are connected:

listDMSEventConfiguration()

Event routes:
 FILTER DESTINATION
 MyFilter des1
 MyFilter des2
 null des3

Filters with no event route:
 Fred

Destinations with no event route:
 des4

listDMSEventDestination

Command Category: DMS Event Tracing

Use with WLST: Online

Description

For a specific destination, display the full configuration. If no destination ID is specified, list the destination ID and name for all the destinations in the Event Tracing configuration.

Syntax

listDMSEventDestination([id=id] [, server=server_name)

	Argument	Definition
	

id

	
Optional. The unique identifier for the specific destination.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Examples

The following example displays information about the destinations for the Managed Server to which you are connected:

listDMSEventDestination()
ID : destination1
NAME: File-system
ID : jrf
NAME: Flight-Recorder

The following example displays information about the destinations for the Managed Server, MS1:

listDMSEventDestination(server='MS1')
ID NAME
Network1 Send file over network
desman1 File-system

The following example displays information about the destination destination1:

listDMSEventDestination(id='destination1')
ID: destination1
NAME: File-system
CLASS: oracle.dms.trace2.runtime.LoggerDestination
PROPERTIES:
NAME VALUE
LoggerName trace2-logger

listDMSEventFilter

Command Category: DMS Event Tracing

Use with WLST: Online

Description

For a specific filter, displays the full configuration. If you do not specify a filter ID, the command displays the filter ID and name for all the filters in the Event Tracing configuration.

Syntax

listDMSEventFilter([id=id] [, server=server_name])

	Argument	Definition
	

id

	
Optional. The unique identifier for specified filter.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Example

The following example displays the list of all the filters in the Event Tracing configuration:

listDMSEventFilter()

ID NAME
mds1 MyFilter
mds2 MDS2Filter

The following example displays the configuration of the filter mds1:

listDMSEventFilter(id='mds1')

ID : mds1
NAME: MyFilter
PROPERTIES
CONDITION: NOUNTYPE equals MDS_Connections AND CONTEXT user equals
bruce IGNORECASE=false

listDMSEventRoutes

Command Category: DMS Event Tracing

Use with WLST: Online

Description

List the events routes and their status (enabled or disabled) that are associated with the specified filter or destination. If you do not specify a filterid or destinationid, this command lists all the event routes in the Event Tracing configuration.

Syntax

listDMSEventRoutes([filterid=filter_id] [, destinationid=destination_id]
 [, server=server_name])

	Argument	Definition
	

filterid

	
Optional. The unique identifier for the filter.

	

destinationid

	
Optional. The unique identifier for the specific destination. The destination must exist.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Examples

The following example lists all event routes:

listDMSEventRoutes()
 FILTER : mdsbruce
 DESTINATION: jfr
 ENABLED : false
 FILTER : null
 DESTINATION: destination1
 ENABLED : true

The following example lists the event routes with the filter id of filter1:

listDMSEventRoutes(filterid='filter1')
 FILTER : filter1
 DESTINATION: jfr
 ENABLED : true
 FILTER : filter1
 DESTINATION: destination1
 ENABLED : true

The following example lists the event routes with the destination id of destination1:

listDMSEventRoutes(destinationid='destination1')
 FILTER : filter1
 DESTINATION: destination1
 ENABLED : true

removeDMSEventDestination

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Removes an existing destination from the Event Tracing configuration. You can remove a destination only if no event route depends on the destination. If an event route that depends on the destination exists, a warning is returned.

You must be connected to the Administration Server to remove a destination. If you are not, an error is returned.

Syntax

removeDMSEventDestination(id=id [, server=server_name])

	Argument	Definition
	

id

	
The unique identifier for the destination to be removed.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Examples

The following example removes the destination jfr:

removeDMSEventDestination(id='jfr')

Destination "jfr" removed.

The following example attempts to remove the destination styx.inpass.db1. However, because an event route exists for the destination, the command returns an error.

removeDMSEventDestination(id='styx.inpass.db1')

Destination "'styx.inpass.db1'" cannot be removed. An event-route currently
exists for that destination. Remove the event-route first using the command
removeDMSEventRoute().

removeDMSEventFilter

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Removes an existing filter from the Event Tracing configuration. You can remove a filter only if no event route depends on the filter. If an event route that depends on the filter exists, a warning is returned.

You must be connected to the Administration Server to remove an event filter. If you are not, an error is returned.

Syntax

removeDMSEventFilter(id=id [, server=server_name])

	Argument	Definition
	

id

	
The unique identifier for the filter to be removed.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Example

The following example removes the filter mds1:

removeDMSEventFilter(id='mds1')

Filter "mds1" removed.

The following example attempts to remove a filter for which and event-route currently exists:

removeDMSEventFilter(id='allaccounts')

Filter "allaccounts" cannot be removed. An event-route currently exists for that
filter. Remove the event-route first using the command removeDMSEventRoute().

removeDMSEventRoute

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Removes the specified event route. You must be connected to the Administration Server to add an event route. If you are not, an error is returned.

Syntax

removeDMSEventRoute([filterid=filter_id] [, destinationid=destination_id]
 [, server=server_name])

	Argument	Definition
	

filterid

	
Optional. The unique identifier for the filter.

	

destinationid

	
Optional. The unique identifier for the specific destination. The destination must exist.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Example

The following example removes the event route with the filterid mds1 and the destination jfr:

removeDMSEventRoute(filterid='mds1', destinationid='jfr')
Event-route for filter "mds1", destination "jfr" removed

The following example removes the event route with the destination destination1:

removeDMSEventRoute(destinationid='destination1')
Event-route for filter "None", destination "destination1" removed

updateDMSEventDestination

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Updates an existing destination, allowing a specified argument to be updated. You must be connected to the Administration Server to update a destination. If you are not, an error is returned.

Syntax

updateDMSEventDestination(id=id [, name=dest_name], class=class_name
 [,props= {'name': 'value'...}] [, server=server_name)

	Argument	Definition
	

id

	
The unique identifier for the destination to be updated.

	

name

	
Optional. A name for the destination.

	

class

	
The full classname of the destination.

See Table 6-4 for a list of available destinations.

	

props

	
Optional. The name/value properties to use for the destination. You can add a new property, or update or remove an existing one. If you update properties, you must specify all properties. If you omit a property, it is removed. For example, if a destination contains the properties LoggerName and severity, and you omit severity, it will be removed from the destination.

See addDMSEventFilter for information about the syntax and allowed values.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Examples

The following example updates the name of the destination jfr:

updateDMSEventDestination(id='jfr', name='Alternative Flight-Recorder')

Destination "jfr" updated.

The following example attempts to update a destination that does not exist. The command returns an error:

updateDMSEventDestination(id='destination1',
 props={'loggerName': 'MyNewTrace2-logger'})

Destination "destination1" does not yet exist. Unable to update this.

updateDMSEventFilter

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Updates an existing filter in the Event Tracing configuration.

You must be connected to the Administration Server to update an event filter. If you are not, an error is returned.

Syntax

updateDMSEventFilter(id=id [, name=name] [,etypes=etypes],
 props= {'prop-name': 'value'...}
 [,server=server_name])

	Argument	Definition
	

id

	
The unique identifier for the filter to be updated.

	

name

	
Optional. The name of the filter to be updated.

	

etypes

	
Optional. A string containing a comma-separated list of event/action pairs. See addDMSEventFilter for a list of valid values.

	

props

	
prop-name: The name of the filter property. <condition> is the only valid property, and only one condition may be specified. See addDMSEventFilter for information on the syntax of prop-name.

value: The value of the property of the filter.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Examples

The following example updates the filter properties for the filter with the id mds1:

updateDMSEventFilter(id='mds1',
 props={'condition': 'NOUNTYPE equals XYZ_Total_Connections AND CONTEXT user equals bruce'})

Filter "mds1" updated.

The following example attempts to update a filter that does not exist:

updateDMSEventFilter(id='Filter2')

Filter "Filter2" does not yet exist. Unable to update this.

updateDMSEventRoute

Command Category: DMS Event Tracing

Use with WLST: Online

Description

Enables or disables the specified event route. You must be connected to the Administration Server to update an event route. If you are not, an error is returned.

Syntax

updateDMSEventRoute([filterid=filter_id], destinationid=destination_id
 [, enable=true|false] [, server=server_name])

	Argument	Definition
	

filterid

	
Optional. The unique identifier for the filter.

	

destinationid

	
Optional. The unique identifier for the specific destination. The destination must exist.

	

enable

	
Optional. Enables the filter. Valid values are true and false.

	

server

	
Optional. The server on which to perform this operation. The default is the server to which you are connected.

Example

The following example disables the event route with the filterid mds1 and the destinationid jfr:

updateDMSEventRoute(filterid='mds1', destinationid='jfr', enable='false')
Event-route for filter "mds1", destination "jfr" disabled .

1 Introduction and Roadmap

This section describes the contents and organization of this guide—WebLogic Scripting Tool Command Reference.

	
Document Scope and Audience

	
Guide to This Document

	
Related Documentation

	
New and Changed WLST Features in This Release

Document Scope and Audience

This document describes all of the commands that are available to use with the WebLogic Scripting Tool (WLST). This document includes WLST commands for WebLogic Server, as well as custom WLST commands that can be used to manage installed Oracle Fusion Middleware components.

	
Note:

Custom WLST commands for a given Oracle Fusion Middleware component are available for use only if the component is installed in the ORACLE_HOME directory.

This document is written for WebLogic Server administrators and operators who deploy Java EE applications using the Java Platform, Enterprise Edition (Java EE) from Oracle. It is assumed that readers are familiar with Web technologies and the operating system and platform where WebLogic Server is installed.

Guide to This Document

This document is organized as follows:

	
This chapter, "Introduction and Roadmap," introduces the organization of this guide and lists related documentation.

	
Chapter 2, "WebLogic Server WLST Online and Offline Command Reference," summarizes WebLogic Server WLST commands alphabetically and by online/offline usage.

	
Chapter 3, "WLST Command and Variable Reference," provides detailed descriptions for each of the WebLogic Server WLST commands and variables.

	
Chapter 4, "Infrastructure Security Custom WLST Commands," provides detailed descriptions for each of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Infrastructure Security components.

	
Chapter 5, "User Messaging Service (UMS) Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware User Messaging Service (UMS) component.

	
Chapter 6, "DMS Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Dynamic Monitoring Service (DMS) component.

	
Chapter 7, "Logging Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Logging component.

	
Chapter 8, "Metadata Services (MDS) Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Metadata Services (MDS) component.

	
Chapter 9, "Oracle SOA Suite Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware SOA component.

	
Chapter 10, "WebCenter Portal Custom WLST Commands," provides detailed descriptions for each of the custom WLST commands that can be used to manage the Oracle Fusion Middleware WebCenter component.

	
Chapter 11, "Application Development Framework (ADF) Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware ADF component.

	
Chapter 12, "Portal Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Portals component.

	
Chapter 13, "Java Required Files Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware JRF component.

	
Chapter 14, "Web Services Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Web Services component.

	
Chapter 15, "Diagnostic Framework Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Diagnostic Framework component.

	
Chapter 16, "Information Rights Management Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Fusion Middleware Information Rights Management component.

	
Chapter 17, "Oracle WebCenter: Imaging Custom WLST Commands," provides detailed descriptions of the custom WLST commands that can be used to manage the Oracle Imaging and Process Management component.

	
Chapter 18, "Oracle Business Process Management Custom WLST Commands," provides detailed descriptions of the custom WLST commands for Oracle Business Process Management.

	
Chapter 19, "Oracle WebCenter Content Custom WLST Commands," provides detailed descriptions of the custom WLST commands for Oracle WebCenter Content.

	
Chapter 20, "Enterprise Scheduler Custom WLST Commands," provides detailed descriptions of the custom WLST commands for Oracle Enterprise Scheduling Service (ESS).

Related Documentation

For information about how to use the WebLogic Scripting Tool, refer to Oracle WebLogic Scripting Tool.

WLST is one of several interfaces for managing and monitoring WebLogic Server. For information about the other management interfaces, see:

	
"Using Ant Tasks to Configure and Use a WebLogic Server Domain" in Developing Applications for Oracle WebLogic Server, describes using WebLogic Ant tasks for starting and stopping WebLogic Server instances and configuring WebLogic domains.

	
"Deployment Tools" in Deploying Applications to Oracle WebLogic Server describes several tools that WebLogic Server provides for deploying applications and stand-alone modules.

	
Administration Console Online Help describes a Web-based graphical user interface for managing and monitoring WebLogic domains.

	
Creating WebLogic Domains Using the Configuration Wizard describes using a graphical user interface to create a WebLogic domain or extend an existing one.

	
Creating Templates and Domains Using the Pack and Unpack Commands describes commands that recreate existing WebLogic domains quickly and easily.

	
Developing Custom Management Utilities With JMX for Oracle WebLogic Server describes using Java Management Extensions (JMX) APIs to monitor and modify WebLogic Server resources.

	
SNMP Management Guide for Oracle WebLogic Server describes using Simple Network Management Protocol (SNMP) to monitor WebLogic domains.

	
Oracle Fusion Middleware Administrator's Guide describes how to manage Oracle Fusion Middleware, including how to start and stop Oracle Fusion Middleware, how to configure and reconfigure components, and how to back up and recover.

New and Changed WLST Features in This Release

For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.

17 Oracle WebCenter: Imaging Custom WLST Commands

The following sections describe the WLST commands that are specific to Oracle WebCenter: Imaging. Topics include:

	
Overview of Imaging WLST Command Categories

	
Diagnostic Commands

	
Imaging Configuration Commands

Overview of Imaging WLST Command Categories

WLST commands specific to Imaging are divided into the following categories.

Table 17-1 Imaging WLST Command Categories

	Command category	Description
	
Diagnostic Commands

	
Return workflow agent and other processing information.

	
Imaging Configuration Commands

	
Configure settings specific to Imaging and Process Management.

Diagnostic Commands

Use the Imaging WLST diagnostic commands, listed in table Table 17-2, to list and organize processing failures during workflow processes.

Table 17-2 Diagnostic Commands for Imaging

	Use this command...	To...	Use with WLST...
	
clearIPMWorkflowFaults

	
Clear processing failures that occurred during workflow agent processing.

	
Online

	
listIPMWorkflowFaults

	
Provide details of processing failures that occurred during workflow agent processing.

	
Online

	
repairIPMWorkflowFaults

	
Repair processing failures that occurred during workflow agent processing.

	
Online

	
sumIPMWorkflowFaults

	
Count processing failures during workflow agent processing, grouped by choice of date, application ID, or batch ID.

	
Online

	
resetIpmDMSMetrics

	
Reset DMS metrics to zero.

	
Online

clearIPMWorkflowFaults

Command Category: Diagnostic Commands

Use with WLST: Online

Description

Clear processing failures that have occurred during workflow agent processing.

Syntax

clearIPMWorkflowFaults([startDate], [endDate], [appId], [batchId])

	Argument	Definition
	

startDate

	
Optional. The start of the date range for which error details should be repaired, in yyyy-MM-dd format.

	

endDate

	
Optional. The end of the date range for which error details should be repaired, in yyyy-MM-dd format.

	

appId

	
Optional. The application ID for which error details should be repaired, in yyyy-MM-dd format.

	

batchId

	
Optional. The batch ID for which error details should be repaired.

Example

The following example clears the faults within the specified parameters.

clearIPMWorkflowFaults(startDate="2009-06-01", endDate="2009-06-02")
clearIPMWorkflowFaults(appId=3)
clearIPMWorkflowFaults(batchId=15)
clearIPMWorkflowFaults(startDate="2009-06-01", endDate="2009-06-02", appid=3)

listIPMWorkflowFaults

Command Category: Diagnostic Commands

Use with WLST: Online

Description

List details on processing failures that have occurred during workflow agent processing.

Syntax

listIPMWorkflowFaults([startDate], [endDate], [appId], [batchId])

	Argument	Definition
	

startDate

	
Optional. The start of the date range for which error details should be repaired, in yyyy-MM-dd format.

	

endDate

	
Optional. The end of the date range for which error details should be repaired, in yyyy-MM-dd format.

	

appId

	
Optional. The application ID for which error details should be repaired.

	

batchId

	
Optional. The batch ID for which error details should be repaired.

Example

The following example lists the faults within the specified parameters.

listIPMWorkflowFaults(startDate="2009-06-01", endDate="2009-06-02")
listIPMWorkflowFaults(appId=3)
listIPMWorkflowFaults(batchId=15)
listIPMWorkflowFaults(startDate="2009-06-01", endDate="2009-06-02", appId=3)

repairIPMWorkflowFaults

Command Category: Diagnostic Commands

Use with WLST: Online

Description

Repair processing failures that have occurred during workflow agent processing.

Syntax

repairIPMWorkflowFaults([startDate], [endDate], [appId], [batchId])

	Argument	Definition
	

startDate

	
Optional. The start of the date range for which error details should be repaired, in yyyy-MM-dd format.

	

endDate

	
Optional. The end of the date range for which error details should be repaired, in yyyy-MM-dd format.

	

appId

	
Optional. The application ID for which error details should be repaired.

	

batchId

	
Optional. The batch ID for which error details should be repaired.

Example

The following example repairs the faults within the specified parameters.

repairIPMWorkflowFaults(startDate="2009-06-01", endDate="2009-06-02")
repairIPMWorkflowFaults(appId=3)
repairIPMWorkflowFaults(batchId=15)
repairIPMWorkflowFaults(startDate="2009-06-01", endDate="2009-06-02", appid=3)

sumIPMWorkflowFaults

Command Category: Diagnostic Commands

Use with WLST: Online

Description

Provides a count of processing failures that have occurred during workflow agent processing. The results are grouped by date, application ID, or batch ID.

Syntax

sumIPMWorkflowFaults(group)

	Argument	Definition
	

groupOption

	
Required. One of the following:

	
DATE: Returns fault counts grouped by date.

	
APPID: Returns fault counts grouped by application ID.

	
BATCHID: Returns fault counts grouped by batch ID.

Example

The following example returns all workflow faults grouped first by date, then by applications ID, then again grouped by batch ID.

sumIPMWorkflowFaults(group="DATE")
sumIPMWorkflowFaults(group="APPID")
sumIPMWorkflowFaults(group="BATCHID")

resetIpmDMSMetrics

Command Category: Diagnostic Commands

Use with WLST: Online

Description

Resets all Dynamic Monitoring Server (DMS) metrics associated with I/PM to zero. This is generally done if the administrator finds that historical performance data is skewing the current results.

Syntax

resetIpmDMSMetrics()

Example

The following example resets all DMS metrics to zero.

resetIpmDMSMetrics()

Imaging Configuration Commands

Use the Imaging configuration commands, listed in Table 17-3, to list and set configuration values specific to Imaging.

Table 17-3 Configuration Commands for Imaging

	Use this command...	To...	Use with WLST...
	
createIPMConnection

	
Creates a new Imaging connection from a connection definition file.

	
Online

	
getIPMConfig

	
Get an Imaging configuration setting value, similar to navigating to the custom Imaging config mbean and using the standard WLST set command.

	
Online

	
grantIPMCredAccess

	
Grants CredentialAccessPermissions to Imaging when Imaging Managed Servers are in a separate domain home from the Administration Server.

	
Online

	
importIPMApplication

	
Imports an application definition from a previously exported definition file.

	
Online

	
importIPMInput

	
Imports an input definition from a previously exported definition file.

	
Online

	
importIPMSearch

	
Imports a search definition from a previously exported definition file.

	
Online

	
listIPMConfig

	
Lists Imaging configuration mbeans.

	
Online

	
listIPMExportFile

	
Lists the contents of an exported Imaging definitions file.

	
Online

	
refreshIPMSecurity

	
Refresh security items currently stored in the Imaging database.

	
Online

	
setIPMConfig

	
Sets an Imaging configuration value.

	
Online

	
submitIPMToWorkflow

	
Submits a document to the workflow agent.

	
Online

createIPMConnection

Command Category: Imaging Configuration Commands

Use with WLST: Online

Description

Creates a new Imaging connection from a connection definition file. The connection definition file is an XML file that describes a single Imaging connection definition using the Connection element type from the Imaging ConnectionService web services API schema definition. This schema is available from a running Imaging server using at the following URL:

http://ipm_server_machine:ipm_server_port/imaging/ws/ConnectionService?xsd=1

For more information about the connection definition file format, see the Oracle WebCenter Content Administrator's Guide for Imaging.

Syntax

createIPMConnection(connectionFile)

	Argument	Definition
	

connectionFile

	
Required. A full path to the connection definition file's location on the Imaging server Node. Must be enclosed in single or double quotes.

Example

The following example creates a connection based on the specified attribute.

createIPMConnection(connectionFile="/home/ipmuser/localCSConnection.xml")

getIPMConfig

Command Category: Imaging Configuration Commands

Use with WLST: Online

Description

Gets an Imaging configuration setting value. The command is equivalent to browsing the custom mbean hierarchy to the Imaging config mbean and using the standard WLST set command to set an mbean attribute.

Syntax

getIPMConfig(attrName)

	Argument	Definition
	

attrName

	
Required. Name of the attribute to be read. Must be enclosed in single or double quotes.

Example

The following example returns the value for the specified attribute names.

getIPMConfig('AgentUser')getIPMConfig('CheckInterval')

grantIPMCredAccess

Grants CredentialAccessPermissions to Imaging so that it can read credentials from the credential store. This command is required in configurations where Imaging managed servers are in a separate domain home from the Administration Server. When at least one Imaging managed server is in the same domain home as the Administration Server, this command is not required, as CredentialAccessPermissions are granted during Imaging startup.

When the Imaging Managed Server is not in the same domain home as the Administration Server, however, the Imaging startup grant only affects the local settings. Local settings get overwritten when the Administration Server synchronizes its copy as the domain wide configuration, so this command updates the Administration Server configuration such that permissions are distributed correctly to all domain nodes.

Syntax

grantIPMCredAccess()

Example

The following example returns a list of all Imaging configuration mbeans.

grantIPMCredAccess()

importIPMApplication

Imports an application definition from a previously exported definition file.

Syntax

importIPMApplication(exportFile, action, name, repository, securityOption, securityMember, docSecurityOption, docSecurityGroup, storageOption, storageVolume)

	Argument	Definition
	

exportFile

	
Required. A full path to the export definition file's location on the Imaging server node. Must be enclosed in single or double quotes.

	

action

	
Required. The action to be performed. Available actions are:

	
Add: Creates a new input. Fails if an application with the same name already exists.

	
Update: Modifies and existing input. Fails if an application with the same name does not exist.

	
AddOrUpdate: Creates a new application if it does not already exist or updates one that does.

	

name

	
Required. The name of the application being imported from the exported definitions file.

	

repository

	
The name of the repository in which to create the application. Required when adding an application, ignored when updating or modifying an application.

	

securityOption

	
Optional. Specifies how to define security for the imported application as follows:

	
Existing: Uses application security as defined in the existing definition. Valid only for an update action.

	
Imported: Attempts to use application security as defined in the import file. Fails if any members defined in the import file are invalid.

	
ValidOnly: Uses application security as defined in the import file and filters out any invalid members.

	
CurrentUser: Sets full permissions to the user used to connect to the server.

	
User: Sets full permissions to the user name provided in the securityMember parameter.

	
Group: Sets full permissions to the group name provided in the securityMember parameter.

	

securityMember

	
Name of the user or group given full permissions to the application. Valid only when securityOption is set to either User or Group, otherwise it is ignored.

	

docSecurityOption

	
Optional. Specifies how to define document security for the imported application.

	
Existing: Uses document security as defined in the existing application. Valid only for an update action.

	
Imported: Attempts to use document security as defined in the import file. Fails if any members defined in the import file are invalid.

	
ValidOnly: Uses document security as defined in the import file and filters out any invalid members.

	
Group: Sets full permissions to the group name provided in the docSecurityGroup parameter.

	

docSecurityGroup

	
Name of group given full permissions to document security. Valid only when docSecurityOption is set to Group, otherwise it is ignored.

	

storageOption

	
Optional. Specifies how to define the storage policy for the imported application.

	
Existing: Uses the document storage policy as defined in the existing application. Valid only for an update action.

	
Imported: Attempts to use storage policy as defined in the import file.

	
Volume: Uses the specific volume named in the storageVolume parameter.

	
Default: Sets up the storage policy to use the system default volume.

	

storageVolume

	
Required. Volume for setting storage policy. Valid only when a storageOption of Volume is used. Ignored otherwise.

Example

The following example updates an existing application named Invoices. Note that the repository is listed as None because the update action uses the repository specified in the original application.

importIPMApplication(exportFile="/home/ipmuser/exportdefinitions.xml", action="Update", name="Invoices", repository=None, securityOption="Existing")

Example

The following example creates a new application named Receipts. Note that the repository is explicitly named because the add action requires a valid repository be named.

importIPMApplication(exportFile="/home/ipmuser/exportdefinitions.xml", action="Add", name="Receipts", repository="LocalCS", securityOption="ValidOnly")

importIPMInput

Imports an input definition from a previously exported definition file.

Syntax

importIPMInput(exportFile, action, name, securityOption, securityMember)
)

	Argument	Definition
	

exportFile

	
Required. A full path to the export definition file's location on the Imaging server node. Must be enclosed in single or double quotes.

	

action

	
Required. The action to be performed. Available actions are:

	
Add: Creates a new input. Fails if an input with the same name already exists.

	
Update: Modifies an existing input. Fails if an input with the same name does not exist.

	
AddOrUpdate: Creates a new application if it does not already exist or updates one that does.

	

name

	
Required. The name of the input being imported from the exported definitions file.

	

repository

	
The name of the repository in which to create the application. Required when adding an application, ignored when updating or modifying an application.

	

securityOption

	
Optional. Specifies how to define security for the imported application as follows:

	
Existing: Uses input security as defined in the existing definition. Valid only for an update action.

	
Imported: Attempts to use input security as defined in the import file. Fails if any members defined in the import file are invalid.

	
ValidOnly: Uses input security as defined in the import file and filters out any invalid members.

	
CurrentUser: Sets full permissions to the user used to connect to the server.

	
User: Sets full permissions to the user name provided in the securityMember parameter.

	
Group: Sets full permissions to the group name provided in the securityMember parameter.

	

securityMember

	
Name of the user or group given full permissions to the input. Valid only when securityOption is set to either User or Group, otherwise it is ignored.

Example

The following example updates an existing input named Invoices. Note that the repository is listed as None because the update action uses the repository specified in the original application.

importIPMInput(exportFile="/home/ipmuser/exportdefinitions.xml", action="Update", name="Invoices", securityOption="Existing")

Example

The following example creates a new input named Receipts. Note that the repository is explicitly named because the add action requires a valid repository be named.

importIPMInput(exportFile="/home/ipmuser/exportdefinitions.xml", action="Add", name="Receipts", securityOption="ValidOnly")

importIPMSearch

Import a search definition from a previously exported definition file.

Syntax

importIPMSearch(exportFile, action, name, securityOption, securityMember)

	Argument	Definition
	

exportFile

	
Required. A full path to the export definition file's location on the Imaging server node. Must be enclosed in single or double quotes.

	

action

	
Required. The action to be performed. Available actions are:

	
Add: Creates a new search. Fails if a search with the same name already exists.

	
Update: Modifies an existing search. Fails if a search with the same name does not exist.

	
AddOrUpdate: Creates a new search if it does not already exist or updates one that does.

	

name

	
Required. The name of the search being imported from the exported definitions file.

	

repository

	
The name of the repository in which to create the application. Required when adding an application, ignored when updating or modifying an application.

	

securityOption

	
Optional. Specifies how to define security for the imported application as follows:

	
Existing: Uses search security as defined in the existing definition. Valid only for an update action.

	
Imported: Attempts to use search security as defined in the import file. Fails if any members defined in the import file are invalid.

	
ValidOnly: Uses search security as defined in the import file and filters out any invalid members.

	
CurrentUser: Sets full permissions to the user used to connect to the server.

	
User: Sets full permissions to the user name provided in the securityMember parameter.

	
Group: Sets full permissions to the group name provided in the securityMember parameter.

	

securityMember

	
Name of the user or group given full permissions to the search. Valid only when securityOption is set to either User or Group, otherwise it is ignored.

Example

The following example updates an existing search named Invoices. Note that the repository is listed as None because the update action uses the repository specified in the original application.

importIPMSearch(exportFile="/home/ipmuser/exportdefinitions.xml", action="Update", name="Invoices", securityOption="Existing")

Example

The following example creates a new search named Receipts. Note that the repository is explicitly named because the add action requires a valid repository be named.

importIPMSearch(exportFile="/home/ipmuser/exportdefinitions.xml", action="Add", name="Receipts", securityOption="ValidOnly")

listIPMConfig

Command Category: Imaging Configuration Commands

Use with WLST: Online

Description

Provides a listing of Imaging configuration mbeans. The command is equivalent to browsing the custom mbean hierarchy and listing the Imaging mbean attributes.

Syntax

listIPMConfig()

Example

The following example returns a list of all Imaging configuration mbeans.

listIPMConfig()

listIPMExportFile

Lists the contents of an exported Imaging definitions file.

Syntax

listIPMExportFile(exportFile="<path to file>")

	Argument	Definition
	

exportFile

	
Required. A full path to the export definition file's location on the Imaging server node. Must be enclosed in single or double quotes.

Example

The following example returns the contents of an Imaging definitions file.

listIPMExportFile(exportFile="/home/ipmuser/exportdefinitions.xml")

refreshIPMSecurity

Command Category: Imaging Configuration Commands

Use with WLST: Online

Description

Refreshes security items currently stored in the Imaging database. This is typically done when migrating security to a different policy store and only updates security items found in the new policy store.

Syntax

refreshIPMSecurity()

Example

The following example refreshes the security items stored in the Imaging database.

refreshIPMSecurity()

setIPMConfig

Command Category: Imaging Configuration Commands

Use with WLST: Online

Description

Sets an Imaging configuration setting value. The command is equivalent to browsing the custom mbean hierarchy to the Imaging config mbean and using the standard WLST 'set' command to set an mbean attribute.

Syntax

setIPMConfig(attrName, value)

	Argument	Definition
	

attrName

	
Required. Name of the attribute to be set. Must be enclosed in single or double quotes.

	

value

	
Required. Value of the attribute to be set. Only enclosed in single or double quotes if value is a string literal.

Example

The following example sets the specified values for the specified attribute names.

setIPMConfig('AgentUser', 'agentadmin')setIPMConfig('CheckInterval', 30)

submitIPMToWorkflow

Submits a document to the workflow agent. Note that a confirmation message is displayed stating that the document has been submitted, however if the document is stored in an application that is not configured with a workflow, no action is taken.

Syntax

submitIPMToWorkflow(documentId)

	Argument	Definition
	

documentId

	
Required. The unique document ID of the submitted document.

Example

The following example submits a document to a workflow.

submitIPMToWorkflow(documentId="2.IPM_12345")

5 User Messaging Service (UMS) Custom WLST Commands

Use the User Messaging Service commands, listed in Table 5-1, to download user messaging preferences from your backend database.

	
Note:

To use these commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide.

Table 5-1 User Messaging Service for WLST Configuration

	Command category	Description
	
UMS WLST Command Group

	
Manage Oracle Unified Messaging Service commands.

UMS WLST Command Group

The UMS WLST commands are listed under the command group "ums".

manageUserMessagingPrefs

Command Category: UMS

Use with WLST: Offline

Description

manageUserMessagingPrefs is used to download the user messaging preferences from a backend database to the specified XML file, or to upload the user messaging preferences from an XML file into the backend database.

Syntax

manageUserMessagingPrefs (operation=, filename, url, username, password,
[encoding], [guid], [merge])

	Argument	Definition
	
operation

	
specifies the upload or download operation to be performed.

	
filename

	
For download, a unique file name (path) to download the user preferences to. For example, /tmp/download.xml (Linux) or C:\\temp\\download.xml (Windows).

For upload, the file name (path) from which to upload the user preferences.

	
url

	
The JNDI URL to access the User Messaging Server. For example: t3://<hostname>:<port>

	
username

	
The username with login permission to access the User Messaging Server.

	
password

	
The password of the username.

	
encoding

	
Character encoding to use to download the user preferences.

	
guid

	
The globally unique identifier (guid) of a list of users to use to download their preferences. If no guid is specified, the preferences for all users are downloaded.

	
merge

	
This option is for upload only. Valid values are:

create_new (default): Create new user device, device addresses and/or ruleset entities. An exception will be thrown if an entity with the same primary key already exists and processing will terminate.

overwrite: Remove all existing entities of a user and then create new entities.

append: Only upload entities that do not already exist.

Examples

To download the user messaging preferences of all users to the specified file.

wls:offline> manageUserMessagingPrefs(operation='download',
filename='download.xml', url='t3://localhost:8001', username='weblogic',
password='<password>')

To download the user messaging preferences of all users to the specified file using UTF-8 character encoding.

wls:offline> manageUserMessagingPrefs(operation='download',
filename='download.xml', url='t3://localhost:8001', username='weblogic',
password='<password>', encoding='UTF-8')

To download the user messaging preferences of the user with guid 'john.doe' to the specified file.

wls:offline> manageUserMessagingPrefs(operation='download',
filename='download.xml', url='t3://localhost:8001', username='weblogic',
password='<password>', guid='john.doe')

To download the user messaging preferences of the users with guid 'john.doe' and 'jane.doe' to the specified file using UTF-8 character encoding.

wls:offline> manageUserMessagingPrefs(operation='download',
filename='download.xml', url='t3://localhost:8001', username='weblogic',
password='<password>', guid='john.doe,jane.doe', encoding='UTF-8')

To upload the user messaging preferences from the specified file to the backend database.

wls:offline> manageUserMessagingPrefs(operation='upload', filename='upload.xml',
url='t3://localhost:8001', username='weblogic', password='<password>')

To upload the user messaging preferences from the specified file to the backend database and overwrite existing preferences.

wls:offline> manageUserMessagingPrefs(operation='upload', filename='upload.xml',
url='t3://localhost:8001', username='weblogic', password='<password>',
merge='overwrite')

deployUserMessagingDriver

Command Category: UMS

Use with WLST: Online

Description

deployUserMessagingDriver is used to deploy additional instances of user messaging drivers.Specify a base driver type (for example: email, xmpp, voicexml, and others) and a short name for the new driver deployment. The string usermessagingdriver- will be prepended to the specified application name. Any valid parameters for the deploy command can be specified, and will be passed through when the driver is deployed.

Syntax

deployUserMessagingDriver(baseDriver, appName, [targets], [stageMode],
[options])

	Argument	Definition
	
baseDriver

	
Specifies the base messaging driver type.

Must be a known driver type, such as 'email', 'proxy', 'smpp', 'voicexml', or 'xmpp'.

	
appName

	
A short descriptive name for the new deployment. The specified value will be prepended with the string usermessagingdriver-

	
targets

stageMode

options

	
Optional. Additional arguments that are valid for the deploy command can be specified and will be passed through when the new driver is deployed.

Examples

To deploy a second instance of an email driver with name myEmail.

wls:base_domain/servereConfig> deployUserMessagingDriver(baseDriver='email',
appName='myEmail')

To deploy a second instance of an email driver, specifying deployment targets.

wls:base_domain/servereConfig> deployUserMessagingDriver(baseDriver='email',
appName='email2', targets='server1,server2')

3 WLST Command and Variable Reference

The following sections describe the WLST commands and variables in detail. Topics include:

	
Overview of WLST Command Categories

	
Browse Commands

	
Control Commands

	
Customization Commands

	
Deployment Commands

	
Diagnostics Commands

	
Editing Commands

	
Information Commands

	
Life Cycle Commands

	
Node Manager Commands

	
Tree Commands

	
WLST Variable Reference

Overview of WLST Command Categories

	
Note:

It is recommended that you review "Syntax for WLST Commands" in Oracle WebLogic Scripting Tool for command syntax requirements.

WLST commands are divided into the following categories.

Table 3-1 WLST Command Categories

	Command Category	Description
	
Browse Commands

	
Navigate the hierarchy of configuration or runtime beans and control the prompt display.

	
Control Commands

	
	
Connect to or disconnect from a server.

	
Create and configure a WebLogic domain or domain template.

	
Exit WLST.

	
Customization Commands

	
Add the command group help and command help that is displayed by the WLST help() and help('commandGroup') commands.

	
Deployment Commands

	
	
Deploy, undeploy, and redeploy applications and standalone modules to a WebLogic Server instance.

	
Update an existing deployment plan.

	
Interrogate the WebLogic Deployment Manager object.

	
Start and stop a deployed application.

	
Diagnostics Commands

	
Export diagnostic data.

	
Editing Commands

	
Interrogate and edit configuration beans.

	
Information Commands

	
Interrogate WebLogic domains, servers, and variables, and provide configuration bean, runtime bean, and WLST-related information.

	
Life Cycle Commands

	
Manage the life cycle of a server instance.

	
Node Manager Commands

	
Start, shut down, restart, and monitor WebLogic Server instances using Node Manager.

	
Tree Commands

	
Navigate among MBean hierarchies.

Browse Commands

Use the WLST browse commands, listed in Table 3-2, to navigate the hierarchy of configuration or runtime beans and control the prompt display.

Table 3-2 Browse Commands for WLST Configuration

	Use this command...	To...	Use with WLST...
	
cd

	
Navigate the hierarchy of configuration or runtime beans.

	
Online or Offline

	
currentTree

	
Return the current location in the hierarchy.

	
Online

	
prompt

	
Toggle the display of path information at the prompt.

	
Online or Offline

	
pwd

	
Display the current location in the hierarchy.

	
Online or Offline

cd

Command Category: Browse Commands

Use with WLST: Online or Offline

Description

Navigates the hierarchy of configuration or runtime beans. This command uses a model that is similar to navigating a file system in a Windows or UNIX command shell. For example, to navigate back to a parent configuration or runtime bean, enter cd('..'). The character string .. (dot-dot), refers to the directory immediately above the current directory. To get back to the root bean after navigating to a bean that is deep in the hierarchy, enter cd('/').

You can navigate to beans in the current hierarchy and to any child or instance.

The cd command returns a stub of the configuration or runtime bean instance, if one exists. If you navigate to a type, this command returns a stub of the configuration or runtime bean instance from which you navigated. In the event of an error, the command returns a WLSTException.

	
Note:

The cmo variable is initialized to the root of all domain configuration beans when you first connect WLST to a server instance. It reflects the parent configuration bean type until you navigate to an instance. For more information about the cmo variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.

Syntax

cd(mbeanName)

	Argument	Definition
	

mbeanName

	
Path to the bean in the namespace.

Examples

The following example navigates the hierarchy of configuration beans. The first command navigates to the Servers configuration bean type, the second, to the myserver configuration bean instance, and the last back up two levels to the original directory location.

wls:/mydomain/serverConfig> cd('Servers')
wls:/mydomain/serverConfig/Servers> cd('myserver')
wls:/mydomain/serverConfig/Servers/myserver> cd('../..')
wls:/mydomain/serverConfig>

currentTree

Command Category: Browse Commands

Use with WLST: Online

Description

Returns the current location in the hierarchy. This command enables you to store the current location in the hierarchy and easily return to it after browsing. In the event of an error, the command returns a WLSTException.

Syntax

currentTree()

Example

The following example stores the current location in the hierarchy in myTree and uses it to navigate back to the Edit MBean hierarchy from the runtime MBean hierarchy on an Administration Server instance.

wls:/mydomain/edit> myTree=currentTree()
wls:/mydomain/edit> serverRuntime()
Location changed to serverRuntime tree. This is a read-only tree with
ServerRuntimeMBean as the root.
For more help, use help('serverRuntime')

wls:/mydomain/serverRuntime> myTree()
wls:/mydomain/edit>

prompt

Command Category: Browse Commands

Use with WLST: Online or Offline

Description

Toggles the display of path information at the prompt, when entered without an argument. This command is useful when the prompt becomes too long due to the length of the path.

You can also explicitly specify on or off as an argument to the command. When you specify off, WLST hides the WLST prompt and defaults to the Jython prompt. By default, the WLST prompt displays the configuration or runtime navigation path information.

When you disable the prompt details, to determine your current location in the hierarchy, you can use the pwd command, as described in pwd.

In the event of an error, the command returns a WLSTException.

Syntax

prompt(myPrompt)

	Argument	Definition
	

myPrompt

	
Optional. Hides or displays WLST prompt. Valid values include off or on.

	
The off argument hides the WLST prompt.

If you run prompt('off'), when using WLST online, the prompt defaults to the Jython prompt. You can create a new prompt using Jython syntax. For more information about programming using Jython, see http://www.jython.org. In this case, if you subsequently enter the prompt command without arguments, WLST displays the WLST command prompt without the path information. To redisplay the path information, enter prompt() again, or enter prompt('on').

	
The on argument displays the default WLST prompt, including the path information.

Examples

The following example hides and then redisplays the path information at the prompt.

wls:/mydomain/serverConfig/Servers/myserver> prompt()
wls:/> prompt()
wls:/mydomain/serverConfig/Servers/myserver>

The following example hides the prompt and defaults to the Jython prompt (since the command is run using WLST online), changes the Jython prompt, and then redisplays the WLST prompt. This example also demonstrates the use of the pwd command.

	
Note:

For more information about programming using Jython, see http://www.jython.org.

wls:/mydomain/serverConfig/Servers/myserver> prompt('off')
>>>sys.ps1="myprompt>"
myprompt> prompt()
wls:> pwd()
'serverConfig:Servers/myserver'
wls:> prompt()
wls:/mydomain/serverConfig/Servers/myserver>

pwd

Command Category: Browse Commands

Use with WLST: Online or Offline

Description

Displays the current location in the configuration or runtime bean hierarchy.

This command is useful when you have turned off the prompt display of the path information using the prompt command, as described in prompt.

In the event of an error, the command returns a WLSTException.

Syntax

pwd()

Example

The following example displays the current location in the configuration bean hierarchy.

wls:/mydomain/serverConfig/Servers/myserver/Log/myserver> pwd()
'serverConfig:/Servers/myserver/Log/myserver'

Control Commands

Use the WLST control commands, listed in Table 3-3, to perform the following tasks:

	
Connect to or disconnect from a server (connect and disconnect commands)

	
Create a new WebLogic domain from a domain template, similar to the Configuration Wizard (createDomain, readTemplate, writeDomain, and closeTemplate commands)

	
Update an existing WebLogic domain, offline (readDomain, addTemplate, updateDomain, and closeDomain commands)

	
Write a domain template (writeTemplate command)

	
Exit WLST

Table 3-3 lists the control commands for WLST configuration.

Table 3-3 Control Commands for WLST Configuration

	Use this command...	To...	Use with WLST...
	
connect

	
Connect WLST to a WebLogic Server instance.

	
Online or Offline

	
disconnect

	
Disconnect WLST from a WebLogic Server instance.

	
Online

	
createDomain

	
Create a new WebLogic domain using the specified template.

	
Offline

	
readTemplate

	
Open an existing domain template for domain creation.

	
Offline

	
writeDomain

	
Write the domain configuration information to the specified directory.

	
Offline

	
closeTemplate

	
Close the current domain template.

	
Offline

	
readDomain

	
Open an existing WebLogic domain for updating.

	
Offline

	
addTemplate

	
Extend the current WebLogic domain using an application or service extension template.

	
Offline

	
updateDomain

	
Update and save the current domain.

	
Offline

	
closeDomain

	
Close the current domain.

	
Offline

	
writeTemplate

	
Writes the configuration information to the specified domain template file.

	
Offline

	
exit

	
Exit WLST from the interactive session and close the scripting shell.

	
Online or Offline

addTemplate

Command Category: Control Commands

Use with WLST: Offline

Description

Extends the current WebLogic domain using an application or service extension template. Use the Template Builder to create an application or service extension template. See Oracle WebLogic Server Creating Templates Using the Domain Template Builder.

In the event of an error, the command returns a WLSTException.

Syntax

addTemplate(templateFileName)

	Argument	Definition
	

templateFileName

	
Name of the application or service extension template.

Example

The following example opens a WebLogic domain and extends it using the specified extension template, DefaultWebApp.jar.

wls:/offline> readDomain('c:/Oracle/Middleware/user_projects/domains/wlw')
wls:/offline/wlw> addTemplate('c:/Oracle/Middleware/wlserver_10.3
/common/templates/applications/DefaultWebApp.jar')
wls:/offline/wlw>

closeDomain

Command Category: Control Commands

Use with WLST: Offline

Description

Closes the current domain. The domain is no longer available for editing once it is closed. In the event of an error, the command returns a WLSTException.

Syntax

closeDomain()

Example

The following example closes the current domain:

wls:/offline> readDomain('c:/Oracle/Middleware/user_projects/domains/medrec')
...
wls:/offline/medrec> updateDomain()
wls:/offline/medrec> closeDomain()
wls:/offline>

closeTemplate

Command Category: Control Commands

Use with WLST: Offline

Description

Closes the current domain template. The domain template is no longer available once it is closed. In the event of an error, the command returns a WLSTException.

Syntax

closeTemplate()

Example

The following example opens an existing domain template, performs some operations, and then closes the current domain template.

wls:/offline> readTemplate('c:/Oracle/Middleware/wlserver_10.3
/common/templates/domains/wls.jar')
...
wls:/offline/wls> closeTemplate()
wls:/offline>

connect

Command Category: Control Commands

Use with WLST: Online or Offline

Description

Connects WLST to a WebLogic Server instance.

Requires you to provide the credentials (user name and password) of a user who has been defined in the active WebLogic security realm. Once you are connected, a collection of security policies determine which configuration attributes you are permitted to view or modify. (See "Default Security Policies for MBeans" in the WebLogic Server MBean Reference.)

You can supply user credentials by doing any of the following:

	
Enter the credentials on the command line. This option is recommended only if you are using WLST in interactive mode.

	
Enter the credentials on the command line, then use the storeUserConfig command to create a user configuration file that contains your credentials in an encrypted form and a key file that WebLogic Server uses to unencrypt the credentials. On subsequent WLST sessions (or in WLST scripts), supply the name of the user configuration file and key file instead of entering the credentials on the command line. This option is recommended if you use WLST in script mode because it prevents you from storing unencrypted user credentials in your scripts.

	
Use the credentials that are stored in the Administration Server's boot.properties file. By default, when you create an Administration Server in development mode, WebLogic Server encrypts the credentials that were used to create the server and stores them in a boot.properties file. When you create an Administration Server in production mode, no boot.properties file is created. If your production domain does not contain a boot.properties file, you can create one manually; see "Creating a Boot Identify File for an Administration Server" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

When you run the connect command, if there is a boot.properties file containing the encrypted username and password for the domain, you do not have to enter the username and password to connect to the Administration Server. You do, however, have to specify the name of the Administration Server in the connect command.

Please note:

	
If you run the connect command in a script without specifying the username and password or user configuration file and key file, a WSLTException occurs. In interactive mode, you are prompted for the username and password.

	
Oracle strongly recommends that you connect WLST to the server through the SSL port or administration port. If you do not, the following warning message is displayed:

Warning: An insecure protocol was used to connect to the server. To ensure
on-the-wire security, the SSL port or Admin port should be used instead.

	
If you are connecting to a WebLogic Server instance through an SSL listen port on a server that is using the demonstration SSL keys and certificates, invoke WLST using the following command:

java -Dweblogic.security.SSL.ignoreHostnameVerification=true
-Dweblogic.security.TrustKeyStore=DemoTrust weblogic.WLST

For more information about invoking WLST, see "Main Steps for Using WLST in Interactive or Script Mode" in Oracle WebLogic Scripting Tool.

	
If you are connecting to a WebLogic Server instance via HTTP, ensure that the TunnelingEnabled attribute is set to true for the WebLogic Server instance. For more information, see "TunnelingEnabled" in Oracle WebLogic Server MBean Reference.

	
When trying to connect to the WebLogic Server Administration Server from WLST using localhost as the host name, the following message may be displayed if the listen-address attribute of the Administration Server has been restricted to certain IP addresses:

javax.naming.CommunicationException [Root exception is
java.net.ConnectException : <t3://HOST:PORT> : Destination unreachable;
nested exception is: java.net.ConnectException: Connection refused; No
available router to destination

You can use either of the following workarounds for this issue:

	
Check that the listen-address attribute of the Administration Server has been set correctly. For example, in the domain configuration file:

<server>
 <name>AdminServer</name>
 <ssl>
 .
 .
 .
 </ssl>
 <machine>your_machine</machine>
 <!-- listen-address><your_ip_address></listen-address -->
</server>

	
Use the hostname of the Administration Server, instead of localhost, in the WLST connect command.

After successfully connecting to a WebLogic Server instance, all the local variables are initialized.

In the event of an error, the command returns a WLSTException.

Syntax

connect([username, password], [url], [timeout])
connect([userConfigFile, userKeyFile], [url], [timeout])
connect([url], [adminServerName], [timeout])

	Argument	Definition
	

username

	
Optional. Username of the operator who is connecting WLST to the server. If not specified, WLST processes the command as described above.

	

password

	
Optional. Password of the operator who is connecting WLST to the server. If not specified, WLST processes the command as described above.

	

url

	
Optional. Listen address and listen port of the server instance, specified using the following format: [protocol://]listen-address:listen-port. If not specified, this argument defaults to t3://localhost:7001.

	

timeout

	
Optional. The number of milliseconds that WLST waits for online commands to complete (return).

When you invoke a WLST online command, WLST connects to an MBean Server, invokes an MBean server method, and returns the results of the invocation. If the MBean server method does not return within the timeout period, WLST abandons its invocation attempt. Use the following syntax for this argument:

timeout='milliseconds'

A value of 0 indicates that the operation will not time out. This argument defaults to 300,000 ms (or 5 minutes).

	

userConfigFile

	
Optional. Name and location of a user configuration file which contains an encrypted username and password. Use the following syntax for this argument:

userConfigFile='file-system-path'

If not specified, WLST processes the command as described above.

When you create a user configuration file, the storeUserConfig command uses a key file to encrypt the username and password. Only the key file that encrypts a user configuration file can decrypt the username and password. (See storeUserConfig.)

	

userKeyFile

	
Optional. Name and location of the key file that is associated with the specified user configuration file and is used to decrypt it. Use the following syntax for this argument:

userKeyFile='file-system-path'

If not specified, WLST processes the command as described above.

See storeUserConfig.

	

adminServerName

	
Optional. Name of the Administration Server for the domain. Causes the connect command to use the credentials that are stored in the Administration Server's boot.properties file. Use the following syntax for this argument:

adminServerName='server-name'

This argument is valid only when you start WLST from a domain directory. If the boot.properties file for the Administration Server is located in the domain directory, then you do not need to specify this argument.

If not specified, WLST processes the command as described above.

Examples

The following example connects WLST to a WebLogic Server instance. In this example, the Administration Server name defaults to AdminServer. Note that a warning is displayed if the SSL or administration port is not used to connect to the server.

wls:/offline> connect('weblogic','welcome1','t3://localhost:8001')
Connecting to weblogic server instance running at t3://localhost:8001 as
username weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain
'mydomain'.

Warning: An insecure protocol was used to connect to the server. To ensure
on-the-wire security, the SSL port or Admin port should be used instead.

wls:/mydomain/serverConfig>

The following example connects WLST to a WebLogic Server instance at the specified URL. In this example, the username and password are passed as variables. This example uses a secure protocol.

wls:/offline> username = 'weblogic'
wls:/offline> password = 'welcome1'
wls:/offline> connect(username,password,'t3s://myhost:8001')
Connecting to weblogic server instance running at t3://myhost:8001 as
username weblogic...

Successfully connected to Admin Server 'AdminServer' that belongs to domain
'mydomain'.
wls:/mydomain/serverConfig>

The following example connects WLST to a WebLogic Server instance using a user configuration and key file to provide user credentials.

wls:/offline> connect(userConfigFile='c:/myfiles/myuserconfigfile.secure',
userKeyFile='c:/myfiles/myuserkeyfile.secure')
Connecting to t3://localhost:7001 with userid username ...

Successfully connected to Admin Server 'AdminServer' that belongs to domain 'mydomain'.
wls:/mydomain/serverConfig>

The following example shows the prompts that are displayed in interactive mode if you run the command without parameters:

wls:/offline> connect()
Please enter your username :username
Please enter your password :
Please enter your server URL [t3://localhost:7001] :
Connecting to t3//localhost:7001 with userid username

createDomain

Command Category: Control Commands

Use with WLST: Offline

Description

Creates a WebLogic domain using the specified template.

	
Note:

If you wish to modify the domain configuration settings when creating a WebLogic domain, see Option 2 in "Editing a Domain (Offline)" in Oracle WebLogic Scripting Tool.

The createDomain command is similar in functionality to the unpack command, as described in Creating Templates and Domains Using the pack and unpack Commands.

In the event of an error, the command returns a WLSTException.

Syntax

createDomain(domainTemplate, domainDir, user, password)

	Argument	Definition
	

domainTemplate

	
Name and location of the domain template from which you want to create a domain.

	

domainDir

	
Name of the directory to which you want to write the domain configuration information.

Oracle recommends that you create all domains for your environment outside of the Middleware home directory. This makes it easier for you to remove an existing installation or install a new version of WebLogic Server without having to recreate your domains and applications.

	

user

	
Name of the default user.

	

password

	
Password of the default user.

Example

The following example creates a new WebLogic domain using the Avitek MedRec template and sets the default username to weblogic and the password to welome1. The domain is saved to the following directory: c:/Oracle/Middleware/wlserver_10.3/user_projects/domains/medrec.

wls:/offline> createDomain('c:/Oracle/Middleware/wlserver_10.3/common
/templates/domains/wls_medrec.jar','c:/Oracle/Middleware/user_projects/domains/medrec',
'weblogic', 'welcome1')

disconnect

Command Category: Control Commands

Use with WLST: Online

Description

Disconnects WLST from a WebLogic Server instance. The disconnect command does not cause WLST to exit the interactive scripting shell; it closes the current WebLogic Server instance connection and resets all the variables while keeping the interactive shell alive.

In the event of an error, the command returns a WLSTException.

You can connect to another WebLogic Server instance using the connect command, as described in connect.

Syntax

disconnect(force)

	Argument	Definition
	

force

	
Optional. Boolean value specifying whether WLST should disconnect without waiting for the active sessions to complete. This argument defaults to false, indicating that all active sessions must complete before disconnect.

Example

The following example disconnects from a running server:

wls:/mydomain/serverConfig> disconnect()
Disconnected from weblogic server: myserver
wls:/offline>

exit

Command Category: Control Commands

Use with WLST: Online or Offline

Description

Exits WLST from the user session and closes the scripting shell.

If there is an edit session in progress, WLST prompts you for confirmation. To skip the prompt, set the defaultAnswer argument to y.

By default, WLST calls System.exit(0) for the current WLST JVM when exiting WLST. If you would like the JVM to exit with a different exit code, you can specify a value using the exitCode argument.

	
Note:

When the WLST exit command is issued within an Ant script, it may also exit the execution of the Ant script. It is recommended that when invoking WLST within an Ant script, you fork a new JVM by specifying fork="true".

In the event of an error, the command returns a WLSTException.

Syntax

exit([defaultAnswer], [exitcode])

	Argument	Definition
	

defaultAnswer

	
Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are y and n. This argument defaults to null, and WLST prompts you for a response.

	

exitcode

	
Optional. Exit code to set when exiting WLST.

Example

The following example disconnects from the user session and closes the scripting shell.

wls:/mydomain/serverConfig> exit()
Exiting WebLogic Scripting Tool ...
c:\>

The following example disconnects from the user session, closes the scripting shell, and sets the error code to 101.

wls:/mydomain/serverConfig> exit(exitcode=101)
Exiting WebLogic Scripting Tool ...
c:\>

readDomain

Command Category: Control Commands

Use with WLST: Offline

Description

Opens an existing WebLogic domain for updating.

WLST offline provides read and write access to the configuration data that is persisted in the config directory for the WebLogic domain, or in a domain template JAR created using Template Builder. This data is a collection of XML documents and expresses a hierarchy of management objects.

When you open a template or WebLogic domain, WLST is placed at the root of the configuration hierarchy for that domain, and the prompt is updated to reflect the current location in the configuration hierarchy. For example:

wls:/offline/base_domain>

For more information, see "Navigating and Interrogating MBeans" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

Syntax

readDomain(domainDirName)

	Argument	Definition
	

domainDirName

	
Name of the WebLogic domain directory that you want to open.

Example

The following example opens the medrec domain for editing.

wls:/offline> readDomain('c:/Oracle/Middleware/user_projects/domains/medrec')
wls:/offline/medrec>

readTemplate

Command Category: Control Commands

Use with WLST: Offline

Description

Opens an existing domain template for domain creation.

When you open a domain template, WLST is placed into the configuration bean hierarchy for that domain template, and the prompt is updated to reflect the current location in the configuration hierarchy. For example:

wls:/offline/base_domain>

WebLogic Server configuration beans exist within a hierarchical structure. In the WLST file system, the hierarchies correspond to drives; types and instances are directories; attributes and operations are files. WLST traverses the hierarchical structure of configuration beans using commands such as cd, ls, and pwd in a similar way that you would navigate a file system in a UNIX or Windows command shell. After navigating to a configuration bean instance, you interact with the bean using WLST commands. For more information, see "Navigating and Interrogating MBeans" in Oracle WebLogic Scripting Tool.

	
Note:

Using WLST and a domain template, you can only create and access security information when you are creating a new WebLogic domain. When you are updating a WebLogic domain, you cannot access security information through WLST.

In the event of an error, the command returns a WLSTException.

Syntax

readTemplate(templateFileName)

	Argument	Definition
	

templateFileName

	
Name of the JAR file corresponding to the domain template.

Example

The following example opens the medrec.jar domain template for WebLogic domain creation.

wls:/offline> readTemplate('c:/Oracle/Middleware/wlserver_10.3/common/templates
/domains/wls_medrec.jar')
wls:/offline/wls_medrec>

updateDomain

Command Category: Control Commands

Use with WLST: Offline

Description

Updates and saves the current WebLogic domain. The domain continues to be editable after you update and save it.

In the event of an error, the command returns a WLSTException.

Syntax

updateDomain()

Example

The following examples opens the medrec domain, performs some operations, and updates and saves the current domain:

wls:/offline> readDomain('c:/Oracle/Middleware/user_projects/domains/medrec')
...
wls:/offline/medrec> updateDomain()

writeDomain

Command Category: Control Commands

Use with WLST: Offline

Description

Writes the domain configuration information to the specified directory.

Once you write the WebLogic domain to file system, you can continue to update the domain template object that exists in memory, and reissue the writeDomain command to store the domain configuration to a new or existing file.

By default, when you write a WebLogic domain, the associated applications are written to WL_HOME/user_projects/applications/domainname, where WL_HOME specifies the WebLogic Server home directory and domainname specifies the name of the WebLogic domain. This directory must be empty; otherwise, WLST displays an error.

When you have finished using the domain template object in memory, close it using the closeTemplate command. If you want to edit the WebLogic domain that has been saved to disk, you can open it using the readDomain command.

	
Note:

The name of the WebLogic domain is derived from the name of the domain directory. For example, for a domain saved to c:/Oracle/Middleware/user_projects/domains/myMedrec, the domain name is myMedrec.

Before writing the domain, you must define a password for the default user, if it is not already defined. For example:

cd('/Security/base_domain/User/weblogic')
cmo.setPassword('welcome1')

In the event of an error, the command returns a WLSTException.

Syntax

writeDomain(domainDir)

	Argument	Definition
	

domainDir

	
Name of the directory to which you want to write the domain configuration information.

Example

The following example reads the medrec.jar domain templates, performs some operations, and writes the domain configuration information to the c:/Oracle/Middleware/user_projects/domains/medrec directory.

wls:/offline> readTemplate('c:/Oracle/Middleware/wlserver_10.3/common/templates
/domains/wls.jar')
...
wls:/offline/base_domain> writeDomain('c:/Oracle/Middleware/user_projects/domains/base_domain')

writeTemplate

Command Category: Control Commands

Use with WLST: Offline

Description

Writes the domain configuration information to the specified domain template. You can use the domain configuration template to recreate the WebLogic domain.

Once your write the configuration information to the domain configuration template, you can continue to update the WebLogic domain or domain template object that exists in memory, and reissue the writeDomain or writeTemplate command to store the domain configuration to a new or existing WebLogic domain or domain template file. For more information, see writeDomain or writeTemplate, respectively.

In the event of an error, the command returns a WLSTException.

	
Note:

The writeTemplate command is similar in functionality to the pack command; see "The pack Command" in Creating Templates and Domains Using the pack and unpack Commands. However, writeTemplate does not support creating a Managed Server template.

Syntax

writeTemplate(templateName)

	Argument	Definition
	

templateName

	
Name of the domain template to store the domain configuration information.

Example

The following example writes the current domain configuration to the domain template named c:/Oracle/Middleware/user_projects/templates/myTemplate.jar.

wls:/offline> readDomain('c:/Oracle/Middleware/user_projects/domains/mydomain')
...
wls:/offline/base_domain> writeTemplate('c:/Oracle/Middleware/user_projects
/templates/myTemplate.jar')

Customization Commands

Use the WLST customization commands, listed in Table 3-4, to add the command group help and command help that is listed by the WLST help() and help('commandGroup') commands. For more information about adding command help to WLST, see "Adding Integrated Help for Custom Commands" in Oracle WebLogic Scripting Tool.

Table 3-4 Customization Commands for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
addHelpCommandGroup

	
Adds a new help command group to those shown by the WLST help() command.

	
Online or Offline

	
addHelpCommand

	
Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the help('commandGroup') command.

	
Online or Offline

addHelpCommandGroup

Command Category: Customization Commands

Use with WLST: Online or Offline

Description

Adds a new command help group to those shown by the WLST help() command, and specifies the resource bundle in which the help information is defined for the group.

Syntax

addHelpCommandGroup(commandGroup, resourceBundleName)

	Argument	Definition
	

commandGroup

	
Use a unique name for the command group. Do not use a command group name that is already shown by the WLST help() command.

	

resourceBundleName

	
Represents either a class name or property resource file name. The resource bundle contains help text for entries for the command group using a standard pattern. The resource bundle name will be passed to ResourceBundle.getBundle(...). Multiple command groups can use the same resource bundle.

The resource bundle must be present in the classpath.

See "Adding Integrated Help for Custom Commands" in Oracle WebLogic Scripting Tool for information on how to define the help text for each command group and command.

For more information on resourceBundles and localization, refer to http://download.oracle.com/javase/6/docs/api/java/util/ResourceBundle.html.

Examples

The following example adds the boot command group to the list of groups shown by the help() command, and specifies that the help text is located in the property resource file 'myhelp':

wls:/offline> addHelpCommandGroup('boot','myhelp')

The following example adds the boot command group to the list of groups shown by the help() command, and specifies that the help text is located in the class foo.bar.MyResourceBundleClass:

wls:/offline> addHelpCommandGroup('boot','foo.bar.MyResourceBundleClass')

addHelpCommand

Command Category: Customization Commands

Use with WLST: Online or Offline

Description

Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the help('commandGroup') command. You can also specify whether or not the command is listed by the help('online') and help('offline') commands.

Syntax

addHelpCommand(commandName,commandGroup,[offline=false, online=false])

	Argument	Definition
	

commandName

	
The name of the command as defined in the command group specified by commandGroup.

	

commandGroup

	
The commandGroup to which the command belongs.

	

online

	
Optional. Boolean value that determines whether or not the command shows up in the help('online') output. The default value is 'false'.

	

offline

	
Optional. Boolean value that determines whether or not the command shows up in the help('offline') output. The default value is 'false'.

Example

The following example shows how to add the online command bootDB to the listing output by the help('boot') and help('online') commands:

wls:/offline> addHelpCommand('bootDB','boot',online='true',offline='false')

Deployment Commands

Use the WLST deployment commands, listed in Table 3-5, to:

	
Deploy, undeploy, and redeploy applications and standalone modules to a WebLogic Server instance.

	
Update an existing deployment plan.

	
Interrogate the WebLogic Deployment Manager object.

	
Start and stop a deployed application.

For more information about deploying applications, see Deploying Applications to Oracle WebLogic Server.

Table 3-5 Deployment Commands for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
deploy

	
Deploy an application to a WebLogic Server instance.

	
Online

	
distributeApplication

	
Copy the deployment bundle to the specified targets.

	
Online

	
getWLDM

	
Return the WebLogic DeploymentManager object.

	
Online

	
listApplications

	
List all applications that are currently deployed in the WebLogic domain.

	
Online

	
loadApplication

	
Load an application and deployment plan into memory.

	
Online and Offline

	
redeploy

	
Redeploy a previously deployed application.

	
Online

	
startApplication

	
Start an application, making it available to users.

	
Online

	
stopApplication

	
Stop an application, making it unavailable to users.

	
Online

	
undeploy

	
Undeploy an application from the specified servers.

	
Online

	
updateApplication

	
Update an application configuration using a new deployment plan.

	
Online

deploy

Command Category: Deployment Commands

Use with WLST: Online

Description

Deploys an application to a WebLogic Server instance.

The deploy command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException.

	
Note:

If there is an edit session in progress, the deploy command does not block user interaction.

Syntax

deploy(appName, path, [targets], [stageMode], [planPath], [options])

	Argument	Definition
	

appName

	
Name of the application or standalone Java EE module to be deployed.

	

path

	
Name of the application directory, archive file, or root of the exploded archive directory to be deployed.

	

targets

	
Optional. Comma-separated list of the targets. Each target may be qualified with a Java EE module name (for example, module1@server1) enabling you to deploy different modules of the application archive on different servers. This argument defaults to the server to which WLST is currently connected.

	

stageMode

	
Optional. Staging mode for the application you are deploying. Valid values are stage, nostage, and external_stage. For information about the staging modes, see "Controlling Deployment File Copying with Staging Modes" in Deploying Applications to Oracle WebLogic Server. If you do not specify a stage mode, the default stage mode is used. On the Administration Server, the default stage mode is nostage and on Managed Servers, it is stage.

	

planPath

	
Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the plan/plan.xml file in the application directory, if one exists.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. Valid options include:

	
altDD—Location of the alternate application deployment descriptor on the Administration Server.

	
altWlsDD—Location of the alternate WebLogic application deployment descriptor on the Administration Server.

	
archiveVersion—Archive version number.

	
block—Boolean value specifying whether WLST should block user interaction until the command completes. This option defaults to true. If set to false, WLST returns control to the user after issuing the command; you can query the WLSTProgress object to determine the status of the command. If you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

	
clusterDeploymentTimeout—Time, in milliseconds, granted for a cluster deployment task on this application.

	
createPlan—Boolean value indicating that user would like to create a default plan. This option defaults to false.

	
defaultSubmoduleTargets—Boolean value indicating that targeting for qualifying JMS submodules should be derived by the system, see "Using Sub-Module Targeting with JMS Application Modules" in Deploying Applications to Oracle WebLogic Server. Default value is true.

	
deploymentPrincipalName—String value specifying the principal for deploying the file or archive during server starts (static deployment; it does not effect the current deployment task). Make sure the user exists. This option adds <deployment-principal-name> to the <app-deployment> element in the config.xml file.

	
forceUndeployTimeout—Force undeployment timeout value.

	
gracefulIgnoreSessions—Boolean value specifying whether the graceful production to admin mode operation should ignore pending HTTP sessions. This option defaults to false and only applies if gracefulProductionToAdmin is set to true.

	
gracefulProductionToAdmin—Boolean value specifying whether the production to Admin mode operation should be graceful. This option defaults to false.

	
libImplVersion—Implementation version of the library, if it is not present in the manifest.

	
libraryModule—Boolean value specifying whether the module is a library module. This option defaults to false.

	

options

(Continued)

	
	
libSpecVersion—Specification version of the library, if it is not present in the manifest.

	
planVersion—Plan version number.

	
remote—Boolean value specifying whether the operation will be remote from the file system that contains the source. Use this option when you are on a different machine from the Administration Server and the deployment files are already at the specified location where the Administration Server is located. This option defaults to false.

	
retireGracefully—Retirement policy to gracefully retire an application only after it has completed all in-flight work. This policy is only meaningful for stop and redeploy operations and is mutually exclusive to the retire timeout policy.

	
retireTimeout—Time (in seconds) WLST waits before retiring an application that has been replaced with a newer version. This option default to -1, which specifies graceful timeout.

	
securityModel—Security model. Valid values include: DDOnly, CustomRoles, CustomRolesAndPolicies, and Advanced.

	
securityValidationEnabled—Boolean value specifying whether security validation is enabled.

	
subModuleTargets—Submodule level targets for JMS modules. For example, submod@mod-jms.xml@target | submoduleName@target.

	
testMode—Boolean value specifying whether to start the Web application with restricted access. This option defaults to false.

	
timeout—Time (in milliseconds) that WLST waits for the deployment process to complete before canceling the operation. A value of 0 indicates that the operation will not time out. This argument defaults to 300,000 ms (or 5 minutes).

	
upload—Boolean value specifying whether the application files are uploaded to the WebLogic Server Administration Server's upload directory prior to deployment. Use this option when the Administration Server cannot access the application files through the file system. This option defaults to false.

	
versionIdentifier—Version identifier.

Example

The following example deploys the businessApp application located at c:/myapps/business, A default deployment plan is created.

The deploy command returns a WLSTProgress object that you can access to check the status of the command. The WLSTProgress object is captured in a user-defined variable, in this case, progress.

wls:/mydomain/serverConfig/Servers> progress= deploy(appName='businessApp',
path='c:/myapps/business',createplan='true')

The previous example stores the WLSTProgress object returned in a user-defined variable, in this case, progress. You can then use the progress variable to print the status of the deploy command. For example:

wls:/mydomain/serverConfig/Servers> progress.printStatus()
Current Status of your Deployment:
Deployment command type: deploy
Deployment State : completed
Deployment Message : null
wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

The following example deploys the demoApp application in the archive file located at c:/myapps/demos/app/demoApp.ear, targeting the application modules to myserver, and using the deployment plan file located in c:/myapps/demos/app/plan/plan.xml. WLST waits 120,000 ms for the process to complete.

wls:/mydomain/serverConfig/Servers> deploy('demoApp',
'c:/myapps/demos/app/demoApp.ear', targets='myserver',
planPath='c:/myapps/demos/app/plan/plan.xml', timeout=120000)

The following example deploys the jmsApp application located at c:/myapps/demos/jmsApp/demo-jms.xml, targeting the application module to a specific target.

wls:/mydomain/serverConfig/Servers> deploy('jmsApp',path=
'c:/myapps/demos/jmsApps/demo-jms.xml', subModuleTargets='jmsApp@managed1')

The following example shows how to set the application version (appVersion) to a unique identifier to support production (side-by-side) redeployment. This example deploys the demoApp application in the archive file located at c:/myapps/demos/app/demoApp.ear, and sets the application and archive version numbers to the specified values.

wls:/mydomain/serverConfig> deploy('demoApp', 'c:/myapps/demos/app/demoApp.ear',
archiveVersion='901-101', appVersion='901-102')

For more information about production redeployment strategies, see "Redeploying Applications in a Production Environment" in Deploying Applications to Oracle WebLogic Server.

distributeApplication

Command Category: Deployment Commands

Use with WLST: Online

Description

Copies the deployment bundle to the specified targets. The deployment bundle includes module, configuration data, and any additional generated code. The distributeApplication command does not start deployment.

The distributeApplication command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException.

Syntax

distributeApplication(appPath, [planPath], [targets], [options])

	Argument	Definition
	

appPath

	
Name of the archive file or root of the exploded archive directory to be deployed.

	

planPath

	
Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the plan/plan.xml file in the application directory, if one exists.

	

targets

	
Optional. Comma-separated list of targets. Each target may be qualified with a Java EE module name (for example, module1@server1) enabling you to deploy different modules of the application archive on different servers. This argument defaults to the server to which WLST is currently connected.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see the options argument description in deploy.

Example

The following example loads the BigApp application located in the c:/myapps directory, and stores the WLSTProgress object in a user-defined variable, in this case, progress.

The following example distributes the c:/myapps/BigApp application to the myserver, oamserver1, and oamcluster servers, using the deployment plan defined at c:/deployment/BigApp/plan.xml.

wls:/offline> progress=distributeApplication('c:/myapps/BigApp',
'c:/deployment/BigApp/plan.xml', 'myserver,oamserver1,oamcluster')
Distributing Application and Plan ...
Successfully distributed the application.

The previous example stores the WLSTProgress object in a user-defined variable, in this case, progress. You can then use the progress variable to determine if the distributeApplication command has completed. For example:

wls:/mydomain/serverConfig/Servers> progress.isCompleted()
1
wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

getWLDM

Command Category: Deployment Commands

Use with WLST: Online

Description

Returns the WebLogic DeploymentManager object. You can use the object methods to configure and deploy applications. WLST must be connected to an Administration Server to run this command. In the event of an error, the command returns a WLSTException.

Syntax

getWLDM()

Example

The following example gets the WebLogicDeploymentManager object and stores it in the wldm variable.

wls:/mydomain/serverConfig> wldm=getWLDM()
wls:/mydomain/serverConfig> wldm.isConnected()
1
wls:/mydomain/serverConfig>

listApplications

Command Category: Deployment Commands

Use with WLST: Online

Description

Lists all applications that are currently deployed in the WebLogic domain.

In the event of an error, the command returns a WLSTException.

Syntax

listApplications()

Example

The following example lists all the applications currently deployed in mydomain.

wls:/mydomain/serverConfig> listApplications()
SamplesSearchWebApp
asyncServletEar
jspSimpleTagEar
ejb30
webservicesJwsSimpleEar
ejb20BeanMgedEar
xmlBeanEar
extServletAnnotationsEar
examplesWebApp
apache_xbean.jar
mainWebApp
jdbcRowSetsEar

loadApplication

Command Category: Deployment Commands

Use with WLST: Online and Offline

Description

Loads an application and deployment plan into memory. When used in online mode, you can connect only to the Administration Server; you cannot connect to a Managed Server.

The loadApplication command returns a WLSTPlan object that you can access to make changes to the deployment plan. For more information about the WLSTPlan object, see "WLSTPlan Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException.

Syntax

loadApplication(appPath, [planPath], [createPlan])

	Argument	Definition
	

appPath

	
Name of the top-level parent application directory, archive file, or root of the exploded archive directory containing the application to be loaded.

	

planPath

	
Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the plan/plan.xml file in the application directory, if one exists.

	

createPlan

	
Optional. Boolean value specifying whether WLST should create a plan in the application directory if the specified plan does not exist. This argument defaults to true.

Example

The following example loads the c:/myapps/myejb.jar application using the plan file at c:/myplans/myejb/plan.xml.

wls:/offline> myPlan=loadApplication('c:/myapps/myejb.jar', 'c:/myplans/myejb/plan.xml')
Loading application from c:/myapps/myejb.jar and deployment plan from c:/myplans/myejb/plan.xml ...
Successfully loaded the application.

The previous example stores the WLSTPlan object returned in the myPlan variable. You can then use myPlan variable to display information about the plan, such as the variables. For example:

wls:/offline> myPlan.showVariables()
MyEJB jndi.ejb
MyWAR app.foo

For more information about the WLSTPlan object, see "WLSTPlan Object" in Oracle WebLogic Scripting Tool.

redeploy

Command Category: Deployment Commands

Use with WLST: Online

Description

Reloads classes and redeploys a previously deployed application.

The redeploy command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

For more information about redeploying applications, see "Overview of Common Deployment Scenarios" in Deploying Applications to Oracle WebLogic Server.

Syntax

redeploy(appName, [planPath], [options])

	Argument	Definition
	

appName

	
Name of the application to be redeployed.

	

planPath

	
Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the plan/plan.xml file in the application directory, if one exists.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see options argument description in deploy.

In addition, the following deployment option can be specified for the redeploy command:

	
appPath—Name of the archive file or root of the exploded archive directory to be redeployed.

	
deploymentPrincipalName—String value specifying the principal for redeploying the file or archive during server starts. You can use this option to overwrite the current <deployment-principal-name> in the config.xml file.

Example

The following example redeploys myApp application using the plan.xml file located in the c:/myapps directory.

wls:/mydomain/serverConfig> progress=redeploy('myApp' 'c:/myapps/plan.xml')
Redeploying application 'myApp' ...
Redeployment of 'myApp' is successful
wls:/mydomain/serverConfig>

The previous example stores the WLSTProgress object returned in a user-defined variable, in this case, progress. You can then use the progress variable to access the state of the redeploy command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()
'completed'
wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

startApplication

Command Category: Deployment Commands

Use with WLST: Online

Description

Starts an application, making it available to users. The application must be fully configured and available in the WebLogic domain.

The startApplication command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException.

Syntax

startApplication(appName, [options])

	Argument	Definition
	

appName

	
Name of the application to start, as specified in the plan.xml file.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see options argument description in deploy.

Example

The following example starts the BigApp application with the specified deployment options.

wls:/mydomain/serverConfig/Servers> progress=startApplication('BigApp', stageMode='NOSTAGE', testMode='false')
Starting the application...
Successfully started the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this case, progress. You can then use the progress variable to access the state of the startApplication command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()
'completed'
wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

stopApplication

Command Category: Deployment Commands

Use with WLST: Online

Description

Stops an application, making it unavailable to users. The application must be fully configured and available in the WebLogic domain.

The stopApplication command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

Syntax

stopApplication(appName, [options])

	Argument	Definition
	

appName

	
Name of the application to stop, as specified in the plan.xml file.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see options argument description in deploy.

Example

The following example stops the BigApp application.

wls:/offline> progress=stopApplication('BigApp')
Stopping the application...
Successfully stopped the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this case, progress. You can then use the progress variable to check whether stopApplication command is running. For example:

wls:/mydomain/serverConfig/Servers> progress.isRunning()
0
wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

undeploy

Command Category: Deployment Commands

Use with WLST: Online

Description

Undeploys an application from the specified servers.

The undeploy command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException.

For more information about deploying and undeploying applications, see "Overview of Common Deployment Scenarios" in Deploying Applications to Oracle WebLogic Server.

Syntax

undeploy(appName,[targets],[options])

	Argument	Definition
	

appName

	
Deployment name for the deployed application.

	

targets

	
Optional. List of the target servers from which the application will be removed. If not specified, defaults to all current targets.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see options argument description in deploy.

Example

The following example removes the businessApp application from all target servers. WLST waits 60,000 ms for the process to complete.

wls:/mydomain/serverConfig> undeploy('businessApp', timeout=60000)
Undeploying application businessApp ...
<Jul 20, 2005 9:34:15 AM EDT> <Info> <J2EE Deployment SPI> <BEA-260121>
<Initiating undeploy operation for application, businessApp [archive: null],
to AdminServer .>
Completed the undeployment of Application with status
Current Status of your Deployment:
Deployment command type: undeploy
Deployment State : completed
Deployment Message : no message
wls:/mydomain/serverConfig>

updateApplication

Command Category: Deployment Commands

Use with WLST: Online

Description

Updates an application configuration using a new deployment plan. The application must be fully configured and available in the WebLogic domain.

The updateApplication command returns a WLSTProgress object that you can access to check the status of the command. For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException.

Syntax

updateApplication(appName, [planPath], [options])

	Argument	Definition
	

appName

	
Name of the application, as specified in the current plan.xml file.

	

planPath

	
Optional. Name of the new deployment plan file. The filename can be absolute or relative to the application directory.

	

options

	
Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see options argument description in deploy.

Example

The following example updates the application configuration for BigApp using the plan.xml file located in c:/myapps/BigApp/newPlan.

wls:/offline> progress=updateApplication('BigApp',
'c:/myapps/BigApp/newPlan/plan.xml', stageMode='STAGE', testMode='false')
Updating the application...
Successfully updated the application.

The previous example stores the WLSTProgress object returned in a user-defined variable, in this case, progress. You can then use the progress variable to access the state of the updateApplication command. For example:

wls:/mydomain/serverConfig/Servers> progress.getState()
'completed'
wls:/mydomain/serverConfig/Servers>

For more information about the WLSTProgress object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.

Diagnostics Commands

Use the WLST diagnostics commands, listed in Table 3-6, to retrieve diagnostics data by executing queries against the WebLogic Diagnostics Framework (WLDF) data stores. For more information about WLDF, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

Table 3-6 Diagnostic Command for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
exportDiagnosticData

	
Execute a query against the specified log file.

	
Offline

	
exportDiagnosticDataFromServer

	
Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework (WLDF) data.

	
Online

	
getAvailableCapturedImages

	
Returns a list of the previously captured diagnostic images.

	
Online

	
saveDiagnosticImageCaptureFile

	
Downloads the specified diagnostic image capture.

	
Online

	
saveDiagnosticImageCaptureEntryFile

	
Downloads a specific entry from the diagnostic image capture.

	
Online

exportDiagnosticData

Command Category: Diagnostics Commands

Use with WLST: Offline

Description

Executes a query against the specified log file. The results are saved to an XML file.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

exportDiagnosticData([options])

	Argument	Definition
	

options

	
Optional. Comma-separated list of export diagnostic options, specified as name-value pairs. Valid options include:

	
beginTimestamp—Timestamp (inclusive) of the earliest record to be added to the result set. This option defaults to 0.

	
endTimestamp—Timestamp (exclusive) of the latest record to be added to the result set. This option defaults to Long.MAX_VALUE.

	
exportFileName—Name of the file to which the data is exported. This option defaults to export.xml.

	
logicalName—Logical name of the log file being read. Valid values include: HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog, HTTPAccessLog, WebAppLog, ConnectorLog, and JMSMessageLog. This option defaults to ServerLog.

	
logName—Base log filename containing the log data to be exported. This option defaults to myserver.log.

	
logRotationDir—Directory containing the rotated log files. This option defaults to "." (the same directory in which the log file is stored).

	
query—Expression specifying the filter condition for the data records to be included in the result set. This option defaults to "" (empty string), which returns all data. For more information, see "WLDF Query Language" in Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

	
storeDir—Location of the diagnostic store for the server. This option defaults to ../data/store/diagnostics.

Example

The following example executes a query against the ServerLog named myserver.log and stores the results in the file named myExport.xml.

wls:/offline/mydomain>exportDiagnosticData(logicalName='ServerLog',
logName='myserver.log', exportFileName='myExport.xml')
{'elfFields': '', 'logName': 'myserver.log', 'logRotationDir': '.',
'endTimestamp': 9223372036854775807L, 'exportFileName': 'export.xml',
'storeDir': '../data/store/diagnostics', 'logicalName': 'ServerLog',
'query': '', 'beginTimestamp': 0}

Exporting diagnostic data to export.xml
<Aug 2, 2005 6:58:21 PM EDT> <Info> <Store> <BEA-280050> <Persistent store
 "WLS_DIAGNOSTICS" opened: directory="c:\Oracle\Middleware
\wlserver_10.3\server\data\store\diagnostics"
 writePolicy="Disabled" blockSize=512 directIO=false driver="wlfileio2">

wls:/mydomain/serverRuntime>

exportDiagnosticDataFromServer

Command Category: Diagnostics Commands

Use with WLST: Online

Description

Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework (WLDF) data. The results are saved to an XML file.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

exportDiagnosticDataFromServer([options])

	Argument	Definition
	

options

	
Optional. Comma-separated list of export diagnostic options, specified as name-value pairs. Valid options include:

	
beginTimestamp—Timestamp (inclusive) of the earliest record to be added to the result set. This option defaults to 0.

	
endTimestamp—Timestamp (exclusive) of the latest record to be added to the result set. This option defaults to Long.MAX_VALUE.

	
exportFileName—Name of the file to which the data is exported. This option defaults to export.xml.

	
logicalName—Logical name of the log file being read. Valid values include: HarvestedDataArchive, EventsDataArchive, ServerLog, DomainLog, HTTPAccessLog, WebAppLog, ConnectorLog, and JMSMessageLog. This option defaults to ServerLog.

	
query—Expression specifying the filter condition for the data records to be included in the result set. This option defaults to "" (empty string), which returns all data.

Example

The following example executes a query against the HTTPAccessLog and stores the results in the file named myExport.xml.

wls:/mydomain/serverRuntime> exportDiagnosticDataFromServer(logicalName="HTTPAccessLog", exportFileName="myExport.xml")

getAvailableCapturedImages

Command Category: Diagnostics Commands

Use with WLST: Online

Description

Returns, as an array of strings, a list of the previously captured diagnostic images that are stored in the image destination directory configured on the server. The default directory is SERVER\logs\diagnostic_images.

This command is useful for identifying a diagnostic image capture that you want to download, or for identifying a diagnostic image capture from which you want to download a specific entry.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

getAvailableCapturedImages()

Example

The following example returns an array of strings named images, which contains a list of the diagnostic image capture files available in the image destination directory, and prints the entries contained in the diagnostic image named diagnostic_image_myserver_2009_06_15_14_58_36.zip.

wls:/mydomain/serverRuntime>images=getAvailableCapturedImages()
Connecting to http://localhost:7001 with userid weblogic ...
wls:/mydomain/serverRuntime>print images ['diagnostic_image_myserver_2009_06_15_14_58_36.zip']

saveDiagnosticImageCaptureFile

Command Category: Diagnostics Commands

Use with WLST: Online

Description

Downloads the specified diagnostic image capture from the server to which WLST is currently connected.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

saveDiagnosticImageCaptureFile(imageName, [outputFile])

	Argument	Definition
	

imageName

	
The name of the diagnostic image capture to download.

	

outputFile

	
Optional. Local path and file name in which the retrieved diagnostic image capture is to be stored. If not specified, this argument defaults to the value of imageName and the current working directory.

Example

The following example retrieves the list of the diagnostic image captures that are stored in the image destination directory on the server. It then shows two uses of the saveDiagnosticImageCaptureFile command. In the first use, the first diagnostic image capture in the list is downloaded to the local machine using the default output file name. In the second use, the first diagnostic image capture in the list is downloaded to the local machine in the file mylocalimg.zip.

wls:/mydomain/serverRuntime>images=getAvailableCapturedImages()
Connecting to http://localhost:7001 with userid weblogic ...
wls:/mydomain/serverConfig> saveDiagnosticImageCaptureFile(images[0])
Retrieving diagnostic_image_myserver_2009_06_25_12_12_50.zip to local
path diagnostic_image_myserver_2009_06_25_12_12_50.zip
Connecting to http://localhost:7001 with userid weblogic ...
wls:/mydomain/serverConfig> saveDiagnosticImageCaptureFile(images[0], 'mylocalimg.zip')
Retrieving diagnostic_image_myserver_2009_06_25_12_12_50.zip to local
path mylocalimg.zip
Connecting to http://localhost:7001 with userid weblogic ...

saveDiagnosticImageCaptureEntryFile

Command Category: Diagnostics Commands

Use with WLST: Online

Description

Downloads a specific entry from the diagnostic image capture that is located on the server to which WLST is currently connected.

For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

saveDiagnosticImageCaptureEntryFile(imageName, imageEntryName, [outputFile])

	Argument	Definition
	

imageName

	
Name of the diagnostic image capture containing the desired entry.

	

imageEntryName

	
Name of the specific entry to be retrieved from the diagnostic image capture. This can be one of the following:

image.summary
JTA.img
JRockitFlightRecorder.jfr
FlightRecording.jfr
WatchSource.img
configuration.img
WORK_MANAGER.img
JNDI_IMAGE_SOURCE.img
APPLICATION.img
InstrumentationImageSource.img
SAF.img
Logging.img
PERSISTENT_STORE.img
JDBC.img
PathService.img
JMS.img
Deployment.img
JVM.img
CONNECTOR.img

	

outputFile

	
Optional. Local path and file name in which the entry retrieved from the diagnostic image capture is to be stored. If not specified, this argument defaults to the value of imageEntryName and the current working directory.

Example

The following example gets the list of diagnostic image captures, then uses the saveDiagnosticImageCaptureEntryFile twice. In the first use, this example retrieves the image summary to the local machine using the default output file name. In the second use, it retrieves the image summary to the local machine in the file myimage.summary.

wls:/mydomain/serverRuntime>images=getAvailableCapturedImages()
Connecting to http://localhost:7001 with userid weblogic ...
wls:/mydomain/serverConfig> saveDiagnosticImageCaptureEntryFile(images[0], 'image.summary')
Retrieving entry image.summary from diagnostic_image_myserver_2009_06_25_12_12_50.zip to local path image.summary
Connecting to http://localhost:7001 with userid weblogic ...
wls:/mydomain/serverConfig> saveDiagnosticImageCaptureEntryFile(images[0], 'image.summary', 'myimage.summary')
Retrieving entry image.summary from diagnostic_image_myserver_2009_06_25_12_12_50.zip to local path myimage.summary
Connecting to http://localhost:7001 with userid weblogic ...

Editing Commands

Use the WLST editing commands, listed in Table 3-7, to interrogate and edit configuration beans.

	
Note:

To edit configuration beans, you must be connected to an Administration Server, and you must navigate to the edit tree and start an edit session, as described in edit and startEdit, respectively.

If you connect to a Managed Server, WLST functionality is limited to browsing the configuration bean hierarchy. While you cannot use WLST to change the values of MBeans on Managed Servers, it is possible to use the Management APIs to do so. Oracle recommends that you change only the values of configuration MBeans on the Administration Server. Changing the values of MBeans on Managed Servers can lead to an inconsistent domain configuration.

For more information about editing configuration beans, see "Using WLST Online to Update an Existing Domain" in Oracle WebLogic Scripting Tool.

Table 3-7 Editing Commands for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
activate

	
Activate changes saved during the current editing session but not yet deployed.

	
Online or Offline

	
assign

	
Assign resources to one or more destinations.

	
Offline

	
cancelEdit

	
Cancel an edit session, release the edit lock, and discard all unsaved changes. This operation can be called by any user with administrator privileges, even if the user did not start the edit session.

	
Online

	
create

	
Create a configuration bean of the specified type for the current bean.

	
Online or Offline

	
delete

	
Delete an instance of a configuration for the current configuration bean.

	
Online or Offline

	
encrypt

	
Encrypt the specified string.

	
Online

	
get

	
Return the value of the specified attribute.

	
Online or Offline

	
getActivationTask

	
Return the latest ActivationTask MBean on which a user can get status.

	
Online

	
invoke

	
Invokes a management operation on the current configuration bean.

	
Online

	
isRestartRequired

	
Determine whether a server restart is required.

	
Online

	
loadDB

	
Load SQL files into a database.

	
Offline

	
loadProperties

	
Load property values from a file.

	
Online or Offline

	
save

	
Save the edits that have been made but have not yet been saved.

	
Online

	
set

	
Set the specified attribute value for the current configuration bean.

	
Online or Offline

	
setOption

	
Set options related to a WebLogic domain creation or update.

	
Offline

	
showChanges

	
Show the changes made to the configuration by the current user during the current edit session.

	
Online

	
startEdit

	
Starts a configuration edit session on behalf of the currently connected user.

	
Online

	
stopEdit

	
Stop the current edit session, release the edit lock, and discard unsaved changes.

	
Online

	
unassign

	
Unassign applications or resources from one or more destinations.

	
Offline

	
undo

	
Revert all unsaved or unactivated edits.

	
Online

	
validate

	
Validate the changes that have been made but have not yet been saved.

	
Online

activate

Command Category: Editing Commands

Use with WLST: Online

Description

Activates changes saved during the current editing session but not yet deployed. This command prints a message if a server restart is required for the changes that are being activated.

The activate command returns the latest ActivationTask MBean which reflects the state of changes that a user is currently making or has made recently. You can then invoke methods to get information about the latest Configuration Manager activate task in progress or just completed. In the event of an error, the command returns a WLSTException.

Syntax

activate([timeout], [block])

	Argument	Definition
	

timeout

	
Optional. Time (in milliseconds) that WLST waits for the activation of configuration changes to complete before canceling the operation. A value of -1 indicates that the operation will not time out. This argument defaults to 300,000 ms (or 5 minutes).

	

block

	
Optional. Boolean value specifying whether WLST should block user interaction until the command completes. This argument defaults to false, indicating that user interaction is not blocked. In this case, WLST returns control to the user after issuing the command and assigns the task MBean associated with the current task to a variable that you can use to check its status.If you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

Example

The following example activates the changes made during the current edit session that have been saved to disk, but that have not yet been activated. WLST waits for 100,000 ms for the activation to complete, and 200,000 ms before the activation is stopped.

wls:/mydomain/edit !> activate(200000, block='true')
Activating all your changes, this may take a while ...
The edit lock associated with this edit session is released once the activation is completed.
Action completed.
wls:/mydomain/edit>

assign

Command Category: Editing Commands

Use with WLST: Offline

Description

Assigns resources to one or more destinations.

In the event of an error, the command returns a WLSTException.

Syntax

assign(sourceType, sourceName, destinationType, destinationName)

	Argument	Definition
	

sourceType

	
Type of configuration bean to be assigned. This value can be set to one of the following values:

	
AppDeployment

	
Library

	
securityType (such as User)

	
Server

	
service (such as JDBCSystemResource)

	
service.SubDeployment, where service specifies the service type of the SubDeployment (such as JMSSystemResource.SubDeployment); you can also specify nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment)

Guidelines for setting this value are provided below.

	

sourceName

	
Name of the resource to be assigned. Multiple names can be specified, separated by commas, or you can use the wildcard (*) character to specify all resources of the specified type.

Specify subdeployments using the following format: service.subDeployment, where service specifies the parent service and subDeployment specifies the name of the subdeployment. For example, myJMSResource.myQueueSubDeployment. You can also specify nested subdeployments, such as MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer.

Note: A given subdeployment name cannot contain a dot (.), as the assign command will interpret it as a nested subdeployment.

	

destinationType

	
Type of destination. Guidelines for setting this value are provided below.

	

destinationName

	
Name of the destination. Multiple names can be specified, separated by commas.

Use the following guidelines for setting the sourceType and destinationType:

	
When assigning application deployments, set the values as follows:

	
sourceType: AppDeployment

	
destinationType: Target

	
When assigning libraries, set the values as follows:

	
sourceType: Library

	
destinationType: Target

	
When assigning services, set the values as follows:

	
sourceType: Name of the specific server, such as JDBCSystemResource

	
destinationType: Target

	
When assigning servers to clusters, set the values as follows:

	
sourceType: Server

	
destinationType: Cluster

	
When assigning subdeployments, set the values as follows:

	
sourceType: service.SubDeployment, where service specifies the parent of the SubDeployment, such as JMSSystemResource.SubDeployment; you can also specify nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment)

	
destinationType: Target

	
When assigning security types, set the values as follows:

	
sourceType: Name of the security type, such as User

	
destinationType: Name of the destination security type, such as Group

Example

The following examples:

	
Assign the servers myServer and myServer2 to the cluster myCluster.

wls:/offline/mydomain> assign("Server", "myServer,myServer2", "Cluster", "myCluster")

	
Assign all servers to the cluster myCluster.

wls:/offline/mydomain> assign("Server", "*", "Cluster", "myCluster")

	
Assign the application deployment myAppDeployment to the target server newServer.

wls:/offline/mydomain> assign("AppDeployment", "myAppDeployment", "Target", "newServer")

	
Assign the user newUser to the group Monitors.

wls:/offline/mydomain> assign("User", "newUser", "Group", "Monitors")

	
Assign the SubDeployment myQueueSubDeployment, which is a child of the JMS resource myJMSResource, to the target server newServer.

wls:/offline/mydomain> assign('JMSSystemResource.SubDeployment',
'myJMSResource.myQueueSubDeployment', 'Target', 'newServer')

	
Assign the nested SubDeployment MedRecAppScopedJMS.MedRecJMSServer, which is a child of the AppDeployment AppDeployment, to the target server AdminServer.

wls:/offline/mydomain>assign('AppDeployment.SubDeployment.SubDeployment
','MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer','Target','AdminServer')

cancelEdit

Command Category: Editing Commands

Use with WLST: Online

Description

Cancels an edit session, releases the edit lock, and discards all unsaved changes.

The user issuing this command does not have to be the current editor; this allows an administrator to cancel an edit session, if necessary, to enable other users to start an edit session.

In the event of an error, the command returns a WLSTException.

Syntax

cancelEdit([defaultAnswer])

	Argument	Definition
	

defaultAnswer

	
Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are y and n. This argument defaults to null, and WLST prompts you for a response.

Example

The following example cancels the current editing session. WLST prompts for verification before canceling.

wls:/mydomain/edit !> cancelEdit()
Sure you would like to cancel the edit session? (y/n)y
Edit session is cancelled successfully
wls:/mydomain/edit>

create

Command Category: Editing Commands

Use with WLST: Online or Offline

Description

Creates a configuration bean of the specified type for the current bean.

The create command returns a stub for the newly created configuration bean. In the event of an error, the command returns a WLSTException.

	
Note:

Child types must be created under an instance of their parent type. You can only create configuration beans that are children of the current Configuration Management Object (cmo) type. For more information about the cmo variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.

Please note the following when using the create command with WLST online:

	
You must be connected to an Administration Server. You cannot use the create command for runtime MBeans or when WLST is connected to a Managed Server instance.

	
You must navigate to the edit configuration MBean hierarchy using the edit command before issuing this command. See edit.

	
You can use the create command to create a WebLogic Server configuration MBean that is a child of the current MBean type.

Please note the following when using the create command with WLST offline:

	
When using WLST offline, the following characters are not valid in object names: period (.), forward slash (/), or backward slash (\).

For more information about:

	
Creating MBeans, see "Understanding WebLogic Server MBeans" in Developing Custom Management Utilities with JMX.

	
Examples of creating specific types of MBean resources, for example, a JMS or JDBC system resource, refer to the WLST sample scripts installed with your product, as described in "WLST Sample Scripts" in Oracle WebLogic Scripting Tool.

	
MBeans, their child types, attributes, and operations, see Oracle WebLogic Server MBean Reference.

Syntax

create(name, childMBeanType, [baseProviderType])

	Argument	Definition
	

name

	
Name of the configuration bean that you are creating.

	

childMBeanType

	
Type of configuration bean that you are creating. You can create instances of any type defined in the config.xml file except custom security types. For more information about valid configuration beans, see Oracle WebLogic Server MBean Reference.

	

baseProviderType

	
When creating a security provider, specifies the base security provider type, for example, AuthenticationProvider. This argument defaults to None.

Example

The following example creates a child configuration bean of type Server named newServer for the current configuration bean, storing the stub as server1:

wls:/mydomain/edit !> server1=create('newServer','Server')
Server with name 'newServer' has been created successfully.
wls:/mydomain/edit !> server1.getName()
'newServer'
wls:/mydomain/edit !>

The following example creates an authentication provider security provider called myProvider:

wls:/mydomain/edit !> cd('SecurityConfiguration/mydomain/Realms/myrealm')
wls:/mydomain/edit !> create('myProvider','weblogic.security.providers.authentication.SQLAuthenticator'
,'AuthenticationProvider')
wls:/mydomain/edit ! cd('AuthenticationProviders/myProvider')
wls:/mydomain/edit ! set('ControlFlag', 'REQUIRED')

The following example creates a machine named highsec_nm and sets attributes for the associated Node Manager.

wls:/mydomain/edit !> create('highsec_nm', 'Machine')
wls:/mydomain/edit !> cd('Machine/highsec_nm/NodeManager/highsec_nm')
wls:/mydomain/edit !> set('DebugEnabled', 'true')
wls:/mydomain/edit !> set('ListenAddress', 'innes')
wls:/mydomain/edit !> set('NMType', 'SSL')
wls:/mydomain/edit !> set('ShellCommand', '')

delete

Command Category: Editing Commands

Use with WLST: Online or Offline

Description

Deletes an instance of a configuration bean of the specified type for the current configuration bean.

In the event of an error, the command returns a WLSTException.

	
Note:

You can only delete configuration beans that are children of current Configuration Management Object (cmo) type. For more information about the cmo variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.

Syntax

delete(name, childMBeanType)

	Argument	Definition
	

name

	
Name of the child configuration bean to delete.

	

childMBeanType

	
Type of the configuration bean to be deleted. You can delete instances of any type defined in the config.xml file. For more information about valid configuration beans, see Oracle WebLogic Server MBean Reference.

Example

The following example deletes the configuration bean of type Server named newServer:

wls:/mydomain/edit !> delete('newServer','Server')
Server with name 'newServer' has been deleted successfully.
wls:/mydomain/edit !>

encrypt

Command Category: Editing Commands

Use with WLST: Online

Description

Encrypts the specified string. You can then use the encrypted string in your configuration file or as an argument to a command.

You must invoke this command once for each WebLogic domain in which you want to use the encrypted string. The string can be used only in the WebLogic domain for which it was originally encrypted.

In the event of an error, the command returns a WLSTException.

Syntax

encrypt(obj, [domainDir])

	Argument	Definition
	

obj

	
String that you want to encrypt.

	

domainDir

	
Optional. Absolute path name of a WebLogic domain directory. The encrypted string can be used only by the WebLogic domain that is contained within the specified directory.

If you do not specify this argument, the command encrypts the string for use in the WebLogic domain to which WLST is currently connected.

Example

The following example encrypts the specified string using the security/SerializedSystemIni.dat file in the specified WebLogic domain directory.

wls:/mydomain/serverConfig> es=encrypt('myPassword','c:/Oracle/Middleware/domains/mydomain')

get

Command Category: Editing Commands

Use with WLST: Online or Offline

Description

Returns the value of the specified attribute. For more information about the MBean attributes that can be viewed, see Oracle WebLogic Server MBean Reference. In the event of an error, the command returns a WLSTException.

	
Note:

You can list all attributes and their current values by entering ls('a'). For more information, see ls.

Alternatively, you can use the cmo variable to perform any get method on the current configuration bean. For example:

cmo.getListenPort()

For more information about the cmo variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.

Syntax

get(attrName)

	Argument	Definition
	

attrName

	
Name of the attribute to be displayed. You can specify the full pathname of the attribute. If no pathname is specified, the attribute is displayed for the current configuration object.

Example

The following example returns the value of the AdministrationPort for the current configuration bean.

wls:/mydomain/serverConfig> get('AdministrationPort')
9002

Alternatively, you can use the cmo variable:

cmo.getAdministrationPort()

getActivationTask

Command Category: Editing Commands

Use with WLST: Online

Description

Return the latest ActivationTask MBean on which a user can get status. The ActivationTask MBean reflects the state of changes that a user has made recently in WLST. You can then invoke methods to get information about the latest Configuration Manager activate task in progress or just completed. In the event of an error, the command returns a WLSTException.

	
Note:

If you have activated changes outside of WLST, use the ConfigurationManagerMBean getActivationTasks() method to get access to Activation Tasks created in other tools.

Syntax

getActivationTask()

Example

The following example returns the latest ActivationTask MBean on which a user can get status and stores it within the task variable.

wls:/mydomain/edit> task=getActivationTask()
wls:/mydomain/edit> if task!=None:
... task.getState()
...
4

invoke

Command Category: Editing Commands

Use with WLST: Online

Description

Invokes a management operation on the current configuration bean. Typically, you use this command to invoke operations other than the get and set operations that most WebLogic Server configuration beans provide. The class objects are loaded through the same class loader that is used for loading the configuration bean on which the action is invoked.

You cannot use the invoke command when WLST is connected to a Managed Server instance.

If successful, the invoke command returns the object that is returned by the operation invoked. In the event of an error, the command returns a WLSTException.

Syntax

invoke(methodName, parameters, signatures)

	Argument	Definition
	

methodName

	
Name of the method to be invoked.

	

parameters

	
An array of parameters to be passed to the method call.

	

signatures

	
An array containing the signature of the action.

Example

The following example invokes the lookupServer method on the current configuration bean.

wls:/mydomain/config> objs = jarray.array([java.lang.String("oamserver")],java.lang.Object)
wls:/mydomain/edit> strs = jarray.array(["java.lang.String"],java.lang.String)
wls:/mydomain/edit> invoke('lookupServer',objs,strs)
true
wls:/mydomain/edit>

isRestartRequired

Command Category: Editing Commands

Use with WLST: Online

Description

Determines whether a server restart is required.

If you invoke this command while an edit session is in progress, the response is based on the edits that are currently in progress. If you specify the name of an attribute, WLST indicates whether a server restart is required for that attribute only.

In the event of an error, the command returns a WLSTException.

Syntax

isRestartRequired([attributeName])

	Argument	Definition
	

attributeName

	
Optional. Name of a specific attribute for which you want to check if a server restart is required.

Example

The following example specifies whether a server restart is required for all changes made during the current WLST session.

wls:/mydomain/edit !> isRestartRequired()
Server re-start is REQUIRED for the set of changes in progress.

The following attribute(s) have been changed on MBeans that require server re-start.
MBean Changed : mydomain:Name=mydomain,Type=Domain
Attributes changed : AutoConfigurationSaveEnabled

The following example specifies whether a server restart is required if you edit the ConsoleEnabled attribute.

wls:/mydomain/edit !> isRestartRequired("ConsoleEnabled")
Server re-start is REQUIRED if you change the attribute ConsoleEnabled wls:/mydomain/edit !>

loadDB

Command Category: Editing Commands

Use with WLST: Offline

Description

Loads SQL files into a database.

The loadDB command loads the SQL files from a template file. This command can only be issued after a domain template or extension template has been loaded into memory (see readDomain and readTemplate).

Before executing this command, ensure that the following conditions are true:

	
The appropriate database is running.

	
SQL files exist for the specified database and version.

To verify that the appropriate SQL files exist, open the domain template and locate the relevant SQL file list, jdbc.index, in the _jdbc_ directory. For example, for Oracle 9i, the SQL file list is located at _jdbc_\Oracle\9i\jdbc.index.

The command fails if the above conditions are not met.

In the event of an error, the command returns a WLSTException.

Syntax

loadDB(dbVersion, datasourceName, dbCategory)

	Argument	Definition
	

dbVersion

	
Version of the database for which the SQL files are intended to be used.

	

datasourceName

	
Name of the JDBC data source to be used to load SQL files.

	

dbCategory

	
Optional. Database category associated with the specified data source.

For more information about the jdbc.index file and database categories, see "Files Typically Included in a Template" in the Oracle WebLogic Server Domain Template Reference.

Example

The following example loads SQL files related to Drop/Create P13N Database Objects intended for version 5.1 of the database, using the p13nDataSource JDBC data source.

wls:/offline/mydomain> loadDB('5.1', 'p13nDataSource', 'Drop/Create P13N Database Objects')

loadProperties

Command Category: Editing Commands

Use with WLST: Online and Offline

Description

Loads property values from a file and makes them available in the WLST session.

This command cannot be used when you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

Syntax

loadProperties(fileName)

	Argument	Definition
	

fileName

	
Properties file pathname.

Example

This example gets and sets the properties file values.

wls:/mydomain/serverConfig> loadProperties('c:/temp/myLoad.properties')

save

Command Category: Editing Commands

Use with WLST: Online

Description

Saves the edits that have been made but have not yet been saved. This command is only valid when an edit session is in progress. For information about starting an edit session, see startEdit.

In the event of an error, the command returns a WLSTException.

Syntax

save()

Example

The following example saves the edits that have not yet been saved to disk.

wls:/mydomain/edit !> save()
Saving all your changes ...
Saved all your changes successfully.
wls:/mydomain/edit !>

set

Command Category: Editing Commands

Use with WLST: Online or Offline

Description

Sets the value of a specified attribute in the current management object. When using WLST offline, this command writes the attribute value to the domain configuration files. When using WLST online, this command sets the value of an MBean attribute. Online changes are written to the domain configuration file when you activate your edits.

In the event of an error, the command returns a WLSTException.

For information about setting encrypted attributes (all encrypted attributes have names that end with Encrypted), see "Writing and Reading Encrypted Configuration Values" in Oracle WebLogic Scripting Tool.

Note the following when using WLST online:

	
You must be in an edit session to use this command. See startEdit.

	
You cannot use this command when WLST is connected to a Managed Server.

	
As an alternative to this command, you can use the cmo variable with the following syntax:

cmo.setattrName(value)

For example, instead of using set('ListenPort', 7011), you can use:

cmo.setListenPort(7011)

For more information about the cmo variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.

Syntax

set(attrName, value)

	Argument	Definition
	

attrName

	
Name of the attribute to be set.

	

value

	
Value of the attribute to be set.

Note: This value should not be enclosed in single or double quotes. See the examples.

Example

The following example sets the ArchiveConfigurationCount attribute of DomainMBean to 10:

wls:/mydomain/serverConfig> set('ArchiveConfigurationCount', 10)

The following example sets the long value of the T1TimerInterval attribute of a custom Mbean to 123:

wls:/mydomain/serverConfig> set('T1TimerInterval', Long(123))

The following example sets the boolean value of the MyBooleanAttribute attribute of a custom Mbean to true:

wls:/mydomain/serverConfig> set('MyBooleanAttribute', Boolean(true))

setOption

Command Category: Editing Commands

Use with WLST: Offline

Description

Sets options related to a WebLogic domain creation or update. In the event of an error, the command returns a WLSTException.

Syntax

setOption(optionName, optionValue)

	Argument	Definition
	

optionName

	
Name of the option to set.

Available options for domain creation include:

	
CreateStartMenu—Boolean value specifying whether to create a Start Menu shortcut on a Windows platform. This option defaults to true.

Note: If a user with Administrator privileges installed the software and chose to create the Start menu entries in the All Users folder, only users with Administrator privileges can create Start menu entries in the same folder when creating a WebLogic domain using the Configuration Wizard or WLST. That is, if a user without Administrator privileges uses the Configuration Wizard or WLST from this installation to create domains, Start menu shortcuts to the domains are not created. In this case, the users can manually create shortcuts in their local Start menu folder, if desired.

	
DomainName—Name of the WebLogic domain. By default, the name of the WebLogic domain is derived from the name of the domain directory. For example, for a WebLogic domain saved to c:/Oracle/Middleware/user_projects/domains/myMedrec, the domain name is myMedrec. By setting DomainName, the name of the created domain will be independent of the domain directory name.

	
JavaHome—Home directory for the JVM to be used when starting the server. The default for this option depends on the platform on which you install WebLogic Server.

	
OverwriteDomain—Boolean value specifying whether to allow an existing WebLogic domain to be overwritten. This option defaults to false.

	
ServerStartMode—Mode to use when starting the server for the newly created WebLogic domain. This value can be dev (development) or prod (production). This option defaults to dev.

Available options for domain updates include:

	
AllowCasualUpdate—Boolean value specifying whether to allow a WebLogic domain to be updated without adding an extension template. This option defaults to true.

	
ReplaceDuplicates—Boolean value specifying whether to keep original configuration elements in the WebLogic domain or replace the elements with corresponding ones from an extension template when there is a conflict. This option defaults to true.

Available options for both domain creation and domain updates include:

	
AppDir—Application directory to be used when a separate directory is desired for applications, as specified by the template. This option defaults to WL_HOME/user_projects/applications/domainname, where WL_HOME specifies the WebLogic Server home directory and domainname specifies the name of the WebLogic domain.

	
AutoAdjustSubDeploymentTarget—Boolean value specifying whether WLST automatically adjusts targets for the subdeployments of AppDeployments. This option defaults to true. To deactivate this feature, set the option to false and explicitly set the targeting for AppDeployment subdeployments before writing or updating the WebLogic domain or domain template.

	
AutoDeploy—Boolean value specifying whether to activate auto deployment when a cluster or multiple Managed Servers are created. This option defaults to true. To deactivate this feature, set the option to false on the first line of your script.

	

optionValue

	
Value for the option.

Note: Boolean values can be specified as a String (true, false) or integer (0, 1).

Example

The following example sets the CreateStartMenu option to false:

wls:/offline> setOption('CreateStartMenu', 'false')

showChanges

Command Category: Editing Commands

Use with WLST: Online

Description

Shows the changes made to the configuration by the current user during the current edit session. In the event of an error, the command returns a WLSTException.

Syntax

showChanges([onlyInMemory])

	Argument	Definition
	

onlyInMemory

	
Optional. Boolean value specifying whether to display only the changes that have not yet been saved. This argument defaults to false, indicating that all changes that have been made from the start of the session are displayed.

Example

The following example shows all of the changes made by the current user to the configuration since the start of the current edit session.

wls:/mydomain/edit !> showChanges()
Changes that are in memory and saved to disc but not yet activated are:

MBean Changed : com.bea:Name=basicWLSDomain,Type=Domain
Operation Invoked : add
Attribute Modified : Machines
Attributes Old Value : null
Attributes New Value : Mach1
Server Restart Required : false

MBean Changed : com.bea:Name=basicWLSDomain,Type=Domain
Operation Invoked : add
Attribute Modified : Servers
Attributes Old Value : null
Attributes New Value : myserver
Server Restart Required : false

startEdit

Command Category: Editing Commands

Use with WLST: Online

Description

Starts a configuration edit session on behalf of the currently connected user. You must navigate to the edit configuration MBean hierarchy using the edit command before issuing this command. For more information, see edit.

This command must be called prior to invoking any command to modify the WebLogic domain configuration.

In the event of an error, the command returns a WLSTException.

	
Note:

WLST automatically starts an edit session if it detects that there is an edit session that is already in progress by the same user, which may have been started via the Administration Console or another WLST session.

Syntax

startEdit([waitTimeInMillis], [timeoutInMillis], [exclusive])

	Argument	Definition
	

waitTimeInMillis

	
Optional. Time (in milliseconds) that WLST waits until it gets a lock, in the event that another user has a lock. This argument defaults to 0 ms.

	

timeOutInMillis

	
Optional. Timeout (in milliseconds) that WLST waits to release the edit lock. This argument defaults to -1 ms, indicating that this edit session never expires.

	

exclusive

	
Optional. Specifies whether the edit session should be an exclusive session. If set to true, if the same owner enters the startEdit command, WLST waits until the current edit session lock is released before starting the new edit session. The exclusive lock times out according to the time specified in timeoutInMillis. This argument defaults to false.

Example

The following example saves the edits that have not yet been saved to disk.

wls:/mydomain/edit> startEdit(60000, 120000)
Starting an edit session ...
Started edit session, please be sure to save and activate your changes once you are done.
wls:/mydomain/edit !>

stopEdit

Command Category: Editing Commands

Use with WLST: Online

Description

Stops the current edit session, releases the edit lock, and discards unsaved changes.

In the event of an error, the command returns a WLSTException.

Syntax

stopEdit([defaultAnswer])

	Argument	Definition
	

defaultAnswer

	
Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are y and n. This argument defaults to null, and WLST prompts you for a response.

Example

The following example stops the current editing session. WLST prompts for verification before canceling.

wls:/mydomain/edit !> stopEdit()
Sure you would like to stop your edit session? (y/n)
y
Edit session has been stopped successfully.
wls:/mydomain/edit>

unassign

Command Category: Editing Commands

Use with WLST: Offline

Description

Unassign applications or resources from one or more destinations.

In the event of an error, the command returns a WLSTException.

Syntax

unassign(sourceType, sourceName, destinationType, destinationName)

	Argument	Definition
	

sourceType

	
Type of configuration bean to be unassigned. This value can be set to one of the following values:

	
AppDeployment

	
Library

	
securityType (such as User)

	
Server

	
service (such as JDBCSystemResource)

	
service.SubDeployment, where service specifies the service type of the SubDeployment (such as JMSSystemResource.SubDeployment); you can also specify nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment)

	

sourceName

	
Name of the application or resource to be unassigned. Multiple names can be specified, separated by commas, or you can use the wildcard (*) character to specify all resources of the specified type.

Specify subdeployments using the following format: service.subDeployment, where service specifies the parent service and subDeployment specifies the name of the subdeployment. For example, myJMSResource.myQueueSubDeployment. You can also specify nested subdeployments, such as MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer.

	

destinationType

	
Type of destination. Guidelines for setting this value are provided below.

	

destinationName

	
Name of the destination. Multiple names can be specified, separated by commas.

Use the following guidelines for setting the sourceType and destinationType:

	
When unassigning application deployments, set the values as follows:

	
sourceType: AppDeployment

	
destinationType: Target

	
When unassigning libraries, set the values as follows:

	
sourceType: Library

	
destinationType: Target

	
When unassigning security types, set the values as follows:

	
sourceType: Name of the security type, such as User

	
destinationType: Name of the destination security type, such as Group

	
When unassigning servers from clusters, set the values as follows:

	
sourceType: Server

	
destinationType: Cluster

	
When unassigning services, set the values as follows:

	
sourceType: Name of the specific server, such as JDBCSystemResource

	
destinationType: Target

	
When unassigning subdeployments, set the values as follows:

	
sourceType: service.SubDeployment, where service specifies the parent of the SubDeployment, such as JMSSystemResource.SubDeployment; you can also specify nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment)

	
destinationType: Target

Example

The following examples:

	
Unassign the servers myServer and myServer2 from the cluster myCluster.

wls:/offline/medrec> unassign("Server", "myServer,myServer2", "Cluster", "myCluster")

	
Unassign all servers from the cluster myCluster.

wls:/offline/mydomain> unassign("Server", "*", "Cluster", "myCluster")

	
Unassign the user newUser from the group Monitors.

wls:/offline/medrec> unassign("User", "newUser", "Group", "Monitors")

	
Unassign the application deployment myAppDeployment from the target server newServer.

wls:/offline/mydomain> unassign("AppDeployment", "myAppDeployment", "Target", "newServer")

	
Unassign the nested SubDeployment MedRecAppScopedJMS.MedRecJMSServer, which is a child of the AppDeployment AppDeployment, from the target server AdminServer.

wls:/offline/mydomain> assign('AppDeployment.SubDeployment.SubDeployment',
'MedRecEAR.MedRecAppScopedJMS.MedRecJMSServer', 'Target','AdminServer')

undo

Command Category: Editing Commands

Use with WLST: Online

Description

Reverts all unsaved or unactivated edits.

You specify whether to revert all unactivated edits (including those that have been saved to disk), or all edits made since the last save operation. This command does not release the edit session.

In the event of an error, the command returns a WLSTException.

Syntax

undo([unactivatedChanges], [defaultAnswer])

	Argument	Definition
	

unactivatedChanges

	
Optional. Boolean value specifying whether to undo all unactivated changes, including edits that have been saved to disk. This argument defaults to false, indicating that all edits since the last save operation are reverted.

	

defaultAnswer

	
Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are y and n. This argument defaults to null, and WLST prompts you for a response.

Example

The following example reverts all changes since the last save operation. WLST prompts for verification before reverting.

wls:/mydomain/edit !> undo()
Sure you would like to undo your changes? (y/n)
y
Discarded your in-memory changes successfully.
wls:/mydomain/edit>

The following example reverts all unactivated changes. WLST prompts for verification before reverting.

wls:/mydomain/edit !> undo('true')
Sure you would like to undo your changes? (y/n)
y
Discarded all your changes successfully.
wls:/mydomain/edit>

validate

Command Category: Editing Commands

Use with WLST: Online

Description

Validates the changes that have been made but have not yet been saved. This command enables you to verify that all changes are valid before saving them.

In the event of an error, the command returns a WLSTException.

Syntax

validate()

Example

The following example validates all changes that have been made but have not yet been saved.

wls:/mydomain/edit !> validate()
Validating changes ...
Validated the changes successfully

Information Commands

Use the WLST information commands, listed in Table 3-8, to interrogate domains, servers, and variables, and provide configuration bean, runtime bean, and WLST-related information.

Table 3-8 Information Commands for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
addListener

	
Add a JMX listener to the specified MBean.

	
Online

	
configToScript

	
Convert an existing server configuration (config directory) to an executable WLST script

	
Online or Offline

	
dumpStack

	
Display stack trace from the last exception that occurred while performing a WLST action, and reset the stack trace.

	
Online or Offline

	
dumpVariables

	
Display all variables used by WLST, including their name and value.

	
Online or Offline

	
find

	
Find MBeans and attributes in the current hierarchy.

	
Online

	
getConfigManager

	
Return the latest ConfigurationManagerBean MBean which manages the change process.

	
Online

	
getMBean

	
Return the MBean by browsing to the specified path.

	
Online

	
getMBI

	
Return the MBeanInfo for the specified MBeanType or the cmo variable.

	
Online

	
getPath

	
Return the MBean path for the specified MBean instance.

	
Online

	
listChildTypes

	
List all the children MBeans that can be created or deleted for the cmo type.

	
Online

	
lookup

	
Look up the specified MBean.

	
Online

	
ls

	
List all child beans and/or attributes for the current configuration or runtime bean.

	
Online or Offline

	
man

	
Display help from MBeanInfo for the current MBean or its specified attribute.

	
Online

	
redirect

	
Redirect WLST output to the specified filename.

	
Online

	
removeListener

	
Remove a listener that was previously defined.

	
Online

	
showListeners

	
Show all listeners that are currently defined.

	
Online

	
startRecording

	
Record all user interactions with WLST; useful for capturing commands to replay.

	
Online or Offline

	
state

	
Returns a map of servers or clusters and their state using Node Manager.

	
Online

	
stopRecording

	
Stop recording WLST commands.

	
Online or Offline

	
stopRedirect

	
Stop redirection of WLST output to a file.

	
Online or Offline

	
storeUserConfig

	
Create a user configuration file and an associated key file.

	
Online

	
threadDump

	
Display a thread dump for the specified server.

	
Online or Offline

	
viewMBean

	
Display information about an MBean, such as the attribute names and values, and operations.

	
Online

	
writeIniFile

	
Convert WLST definitions and method declarations to a Python (.py) file.

	
Online or Offline

addListener

Command Category: Information Commands

Use with WLST: Online

Description

Adds a JMX listener to the specified MBean. Any changes made to the MBean are reported to standard out and/or are saved to the specified configuration file.

In the event of an error, the command returns a WLSTException.

Syntax

addListener(mbean, [attributeNames], [logFile], [listenerName])

	Argument	Definition
	

mbean

	
Name of the MBean or MBean object to listen on.

	

attributeNames

	
Optional. Comma-separated list of all attribute names on which you would like to add a JMX listener. This argument defaults to null, and adds a JMX listener for all attributes.

	

logFile

	
Optional. Name and location of the log file to which you want to write listener information.This argument defaults to standard out.

	

listenerName

	
Optional. Name of the JMX listener. This argument defaults to a WLST-generated name.

Example

The following example defines a JMX listener on the cmo MBean for the Notes and ArchiveConfigurationCount attributes. The listener is named domain-listener and is stored in ./listeners/domain.log.

wls:/mydomain/serverConfig> addListener(cmo, "Notes,ArchiveConfigurationCount",
"./listeners/domain.log","domain-listener")

configToScript

Command Category: Information Commands

Use with WLST: Online or Offline

Converts an existing server configuration (config directory) to an executable WLST script. You can use the resulting script to re-create the resources on other servers.

The configToScript command creates the following files:

	
A WLST script that contains the commands needed to recreate the configuration.

	
A properties file that contains domain-specific values. You can update the values in this file to create new domains that are similar to the original configuration.

	
A user configuration file and an associated key file to store encrypted attributes. The user configuration file contains the encrypted information. The key file contains a secret key that is used to encrypt and decrypt the encrypted information.

When you run the generated script:

	
If a server is currently running, WLST will try to connect using the values in the properties file and then run the script commands to create the server resources.

	
If no server is currently running, WLST will start a server with the values in the properties file, run the script commands to create the server resources, and shutdown the server. This may cause WLST to exit from the command shell.

In the event of an error, the command returns a WLSTException.

Syntax

configToScript([configPath], [pyPath], [overwrite], [propertiesFile], [createDeploymentScript])

	Argument	Definition
	

configPath

	
Optional. Path to the domain directory that contains the configuration that you want to convert. This argument defaults to the directory from which you start WLST(./).

	

pyPath

	
Optional. Path and filename to which you want to write the converted WLST script. This argument defaults to ./config/config.py.

	

overwrite

	
Optional. Boolean value specifying whether the script file should be overwritten if it already exists. This argument defaults to true, indicating that the script file is overwritten.

	

propertiesFile

	
Optional. Path to the directory in which you want WLST to write the properties files. This argument defaults to the pathname specified for the scriptPath argument.

	

createDeploymentScript

	
Optional. Boolean value specifying whether WLST creates a script that performs deployments only. This argument defaults to false, indicating that a deployment script is not created.

Example

The following example converts the configuration to a WLST script config.py. By default, the configuration file is loaded from ./config, the script file is saved to .config/config.py, and the properties files is saved to .config/config.py.properties.

wls:/offline> configToScript()
configToScript is loading configuration from c:\Oracle\Middleware
\user_projects\domains\wls\config\config.xml ...
Completed configuration load, now converting resources to wlst script...
configToScript completed successfully
The WLST script is written to c:\Oracle\Middleware
\user_projects\domains\wls\config\config.py
and the properties file associated with this script is written to c:\Oracle\
Middleware\user_projects\domains\wls\config\config.py.properties
wls:/offline>

The following example converts server resources configured in the file c:\Oracle\Middleware\user_projects\domains\mydomain\config directory to a WLST script c:\Oracle\Middleware\myscripts\config.py.

wls:/offline> configToScript('c:/Oracle/Middleware/user_projects/domains
/mydomain','c:/Oracle/Middleware/myscripts')
configToScript is loading configuration from c:\Oracle\Middleware
\user_projects\domains\mydomain\config\config.xml ...
Completed configuration load, now converting resources to wlst script...
configToScript completed successfully
The WLST script is written to c:\Oracle\Middleware\myscripts\config.py
and the properties file associated with this script is written to
c:\Oracle\Middlware\mydomain\config.py.properties
wls:/offline>

dumpStack

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Displays the stack trace from the last exception that occurred while performing a WLST action, and resets the stack trace.

If successful, the dumpstack command returns the Throwable object. In the event of an error, the command returns a WLSTException.

Syntax

dumpStack()

Example

This example displays the stack trace.

wls:/myserver/serverConfig> dumpStack()
com.bea.plateng.domain.script.jython.WLSTException: java.lang.reflect.Invocation TargetException
...

dumpVariables

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Displays all the variables used by WLST, including their name and value. In the event of an error, the command returns a WLSTException.

Syntax

dumpVariables()

Example

This example displays all the current variables and their values.

wls:/mydomain/serverConfig> dumpVariables()
adminHome weblogic.rmi.internal.BasicRemoteRef - hostID:
 '-1 108080150904263937S:localhost:[7001,8001,-1,-1,-1,-1,-1]:
 mydomain:AdminServer', oid: '259', channel: 'null'
cmgr [MBeanServerInvocationHandler]com.bea:Name=ConfigurationManager,
 Type=weblogic.management.mbeanservers.edit.ConfigurationManagerMBean
cmo [MBeanServerInvocationHandler]com.bea:Name=mydomain,Type=Domain
connected true
domainName mydomain
...
wls:/mydomain/serverConfig>

find

Command Category: Information Commands

Use with WLST: Online

Description

Finds MBeans and attributes in the current hierarchy.

WLST returns the pathname to the MBean that stores the attribute and/or attribute type, and its value. If searchInstancesOnly is set to false, this command also searches the MBeanType paths that are not instantiated in the server, but that can be created. In the event of an error, the command returns a WLSTException.

Syntax

find([name], [type], [searchInstancesOnly])

	Argument	Definition
	

name

	
Optional. Name of the attribute to find.

	

type

	
Optional. Type of the attribute to find.

	

searchInstancesOnly

	
Optional. Boolean value specifying whether to search registered instances only or to also search MBeanTypes paths that are not instantiated in the server, but that can be created. This argument defaults to true, indicating only the registered instances will be searched.

Example

The following example searches for an attribute named javaCompiler in the current configuration hierarchy.

wls:/mydomain/serverConfig> find(name = 'JavaCompiler')
Finding 'JavaCompiler' in all registered MBean instances ...
/Servers/AdminServer JavaCompilerPreClassPath null
/Servers/AdminServer JavaCompiler java
/Servers/AdminServer JavaCompilerPostClassPath null
wls:/mydomain/serverConfig>

The following example searches for an attribute of type JMSRuntime in the current configuration hierarchy.

wls:/mydomain/serverRuntime> find(type='JMSRuntime')
Finding MBean of type 'JMSRuntime' in all the instances ...
/JMSRuntime/AdminServer.jms
wls:/mydomain/serverRuntime>

The following example searches for an attribute named execute in the current configuration hierarchy. The searchInstancesOnly argument is set to false, indicating to also search MBeanTypes that are not instantiated in the server.

wls:/mydomain/serverConfig> find(name='execute', searchInstancesOnly='false')
Finding 'execute' in all registered MBean instances ...
/Servers/AdminServer ExecuteQueues [Ljavax.management.ObjectName;@1aa7dbc
/Servers/AdminSever Use81StyleExecuteQueues false
Now finding 'execute' in all MBean Types that can be instantiated ...
/Servers ExecuteQueues
/Servers Use81StyleExecuteQueues
wls:/mydomain/serverConfig>

getConfigManager

Command Category: Information Commands

Use with WLST: Online

Description

Returns the latest ConfigurationManager MBean which manages the change process. You can then invoke methods to manage configuration changes across a WebLogic domain. In the event of an error, the command returns a WLSTException.

Syntax

getConfigManager()

Example

The following example returns the latest ConfigurationManagerBean MBean and stores it in a cm variable.

wls:/mydomain/serverConfig> cm=getConfigManager()
wls:/mydomain/serverConfig> cm.getType()
'weblogic.management.mbeanservers.edit.ConfigurationManagerMBean'

getMBean

Command Category: Information Commands

Use with WLST: Online

Description

Returns the MBean by browsing to the specified path. In the event of an error, the command returns a WLSTException.

	
Note:

No exception is thrown if the MBean is not found.

Syntax

getMBean(mbeanPath)

	Argument	Definition
	

mbeanPath

	
Path name to the MBean in the current hierarchy.

Example

The following example returns the MBean specified by the path.

wls:/mydomain/edit !> com=getMBean('Servers/myserver/COM/myserver')
wls:/mydomain/edit !> com.getType()
'Server'

getMBI

Command Category: Information Commands

Use with WLST: Online

Description

Returns the MBeanInfo for the specified MBeanType or the cmo variable. In the event of an error, the command returns a WLSTException.

Syntax

getMBI([mbeanType])

	Argument	Definition
	

mbeanType

	
Optional. MBeanType for which the MBeanInfo is displayed.

Example

The following example gets the MBeanInfo for the specified MBeanType and stores it in the variable svrMbi.

wls:/mydomain/serverConfig> svrMbi=getMBI('weblogic.management.configuration.ServerMBean')

getPath

Command Category: Information Commands

Use with WLST: Online

Description

Returns the MBean path for the specified MBean instance or ObjectName for the MBean in the current tree. In the event of an error, the command returns a WLSTException.

Syntax

getPath(mbean)

	Argument	Definition
	

mbean

	
MBean instance or ObjectName for the MBean in the current tree for which you want to return the MBean path.

Example

The following example returns the MBean specified by the path.

wls:/mydomain/edit !> path=getPath('com.bea:Name=myserver,Type=Server')
wls:/mydomain/edit !> print path
'Servers/myserver'

listChildTypes

Command Category: Information Commands

Use with WLST: Online

Description

Lists all the child MBeans that can be created or deleted for the cmo. The cmo variable specifies the configuration bean instance to which you last navigated using WLST. For more information about the cmo variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

Syntax

listChildTypes([parent])

	Argument	Definition
	

parent

	
Optional. Parent type for which you want the children types listed.

Example

The following example lists the children MBeans that can be created or deleted for the cmo type.

wls:/mydomain/serverConfig> listChildTypes()
AppDeployments
BridgeDestinations
CachingRealms
Clusters
...
wls:/mydomain/serverConfig>

lookup

Command Category: Information Commands

Use with WLST: Online

Description

Looks up the specified MBean. The MBean must be a child of the current MBean. In the event of an error, the command returns a WLSTException.

Syntax

lookup(name, [childMBeanType])

	Argument	Definition
	

name

	
Name of the MBean that you want to lookup.

	

childMBeanType

	
Optional. The type of the MBean that you want to lookup.

Example

The following example looks up the specified server, myserver, and stores the returned stub in the sbean variable.

wls:/mydomain/serverConfig> sbean=lookup('myserver','Server')
wls:/mydomain/serverConfig> sbean.getType()
'Server'
wls:/mydomain/serverConfig>

ls

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Lists the attributes, operations, and child management objects of the specified management object.

In the event of an error, the command returns a WLSTException.

By default, the output is returned as a string and is arranged in three columns:

	
The first column displays a set of codes that describe the listed item. See Table 3-9.

	
The second column displays the item name.

	
When the item is an attribute, the third column displays the attribute value. If an attribute is encrypted, the third column displays asterisks instead of the value. (See "Writing and Reading Encrypted Configuration Values" in Oracle WebLogic Scripting Tool.)

	
When the item is an operation, the third column uses the following pattern to display the operation's return type and input parameters: returnType: parameterType(parameterName)

Table 3-9 ls Command Output Information

	Code	Description
	
d

	
Indicates that the item is a child management object.

Like a directory in a UNIX or Windows file system, you can use the cd command to make the child object the current management object.

	
r

	
Indicates that the item is a child management object or an attribute that is readable, assuming that current user has been given read permission by the security realm's policies. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.)

	
w

	
Indicates that the item is an attribute that is writable, assuming that current user has been given write permission by the security realm's policies. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.)

	
x

	
Indicates that the item is an operation that can be executed, assuming that current user has been given execute permission by the security realm's policies. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.)

By default, the output lists all attributes, operations, and child management objects of the current management object. To filter the output or to see a list for a different management object, you can specify a command argument.

	
Note:

As a performance optimization, when using WLST offline, WebLogic Server does not store most of its default values in the configuration files for the WebLogic domain. In some cases, this optimization prevents entire management objects from being displayed by WLST offline (because WebLogic Server has never written the corresponding XML elements to the domain configuration files). For example, if you never modify the default logging severity level for a WebLogic domain while the domain is active, WLST offline will not display the Log management object for the domain.

If you want to change the default value of attributes whose management object is not displayed by WLST offline, you must first use the create command to create the management object. Then you can cd to the management object and change the attribute value. See create.

Syntax

ls([a | c | o] [moPath])

ls([moPath] returnMap [returnType])

	Argument	Definition
	

a

	
Optional. Displays only the attributes of the specified management object (suppresses the display of other items).

	

c

	
Optional. Displays only the child management objects of the specified management object (suppresses the display of other items).

	

o

	
Optional. Displays only the operations that can be invoked on the specified management object (suppresses the display of other items).

This argument is only applicable for WLST online.

	

moPath

	
Optional. Path name to the management object for which you want to list attributes, operations, and child management objects.

You can specify a pathname that is relative to your current location in the hierarchy or an absolute pathname.

With WLST offline, use the forward-slash character (/) to specify the root of the configuration document.

With WLST online, you can list the contents of MBeans in any management hierarchy (see Tree Commands). Use the following syntax to specify the root of a hierarchy:

root-name:/

For example, to list the root of the server runtime hierarchy:

ls('serverRuntime:/')

If you do not specify this argument, the command lists items for the current management object.

	

returnMap

	
Optional. Boolean value that determines whether the command returns values as a map. This argument defaults to false, which causes this command to return a String.

	

returnType

	
Optional. Controls the output returned in the map. Specify a, c, or o, which filter the output as described at the top of this table.

This argument is valid only if returnMap is set to true. This argument defaults to c.

Example

The following example displays all the child configuration beans, and attribute names and values for the examples domain, which has been loaded into memory, in WLST offline mode:

wls:/offline/mydomain > ls()
dr-- AppDeployments
dr-- BridgeDestinations
dr-- Clusters
dr-- CustomResources
dr-- DeploymentConfiguration
dr-- Deployments
dr-- EmbeddedLDAP
dr-- ErrorHandlings
dr-- FileStores
dr-- InternalAppDeployments
dr-- InternalLibraries
dr-- JDBCDataSourceFactories
dr-- JDBCStores
dr-- JDBCSystemResources
dr-- JMSBridgeDestinations
dr-- JMSInteropModules
dr-- JMSServers
dr-- JMSSystemResources
dr-- JMX
...
wls:/offline/examples>

The following example displays all the attribute names and values in DomainMBean:

wls:/mydomain/serverConfig> ls('a')
-r-- AdminServerName AdminServer
-r-- AdministrationMBeanAuditingEnabled false
-r-- AdministrationPort 9002
-r-- AdministrationPortEnabled false
-r-- AdministrationProtocol t3s
-r-- ArchiveConfigurationCount 0
-r-- ClusterConstraintsEnabled false
-r-- ConfigBackupEnabled false
-r-- ConfigurationAuditType none
-r-- ConfigurationVersion 9.0.0.0
-r-- ConsoleContextPath console
-r-- ConsoleEnabled true
-r-- ConsoleExtensionDirectory console-ext
-r-- DomainVersion 9.0.0.0
-r-- LastModificationTime 0
-r-- Name basicWLSDomain
-r-- Notes null
-r-- Parent null
-r-- ProductionModeEnabled false
-r-- RootDirectory .
-r-- Type Domain
wls:/mydomain/serverConfig>

The following example displays all the child beans and attribute names and values in Servers MBean:

wls:/mydomain/serverConfig> ls('Servers')
dr-- AdminServer

The following example displays the attribute names and values for the specified MBean path and returns the information in a map:

wls:/mydomain/serverConfig> svrAttrList = ls('edit:/Servers/myserver', 'true', 'a')
-rw- AcceptBacklog 50
-rw- AdminReconnectIntervalSeconds 10
-rw- AdministrationPort 9002
-rw- AdministrationProtocol t3s
-rw- AutoKillIfFailed false
-rw- AutoMigrationEnabled false
-rw- AutoRestart true
-rw- COMEnabled false
-rw- ClasspathServletDisabled false
-rw- ClientCertProxyEnabled false
-rw- Cluster null
-rw- ClusterRuntime null
-rw- ClusterWeight 100
wls:/mydomain/serverConfig>

man

Command Category: Information Commands

Use with WLST: Online

Description

Displays help from MBeanInfo for the current MBean or its specified attribute. In the event of an error, the command returns a WLSTException.

Syntax

man([attrName])

	Argument	Definition
	

attrName

	
Optional. MBean attribute name for which you would like to display help. If not specified, WLST displays helps for the current MBean.

Example

The following example displays help from MBeanInfo for the ServerMBean bean.

wls:/mydomain/serverConfig> man('Servers')
dynamic : true
creator : createServer
destroyer : destroyServer
description : <p>Returns the ServerMBeans representing the servers that have been
configured to be part of this domain.</p>
descriptorType : Attribute
Name : Servers
interfaceClassName : [Lweblogic.management.configuration.ServerMBean;
displayName : Servers
relationship : containment

redirect

Command Category: Information Commands

Use with WLST: Online

Description

Redirects WLST information, error, and debug messages to the specified filename. Also redirects the output of the dumpStack() and dumpVariables() commands to the specified filename.

In the event of an error, the command returns a WLSTException.

Syntax

redirect(outputFile, [toStdOut])

	Argument	Definition
	

outputFile

	
Name of the file to which you want to record the WLST commands. The filename can be absolute or relative to the directory from which you started WLST.

	

toStdOut

	
Optional. Boolean value specifying whether the output should be sent to stdout. This argument defaults to true, indicating that the output will be sent to stdout.

Example

The following example begins redirecting WLST output to the logs/wlst.log file:

wls:/mydomain/serverConfig> redirect('./logs/wlst.log')

removeListener

Command Category: Information Commands

Use with WLST: Online

Description

Removes a listener that was previously defined. If you do not specify an argument, WLST removes all listeners defined for all MBeans. For information about setting a listener, see addListener.

In the event of an error, the command returns a WLSTException.

Syntax

removeListener([mbean], [listenerName])

	Argument	Definition
	

mbean

	
Optional. Name of the MBean or MBean object for which you want to remove the previously defined listeners.

	

listenerName

	
Optional. Name of the listener to be removed.

Example

The following example removes the listener named mylistener.

wls:/mydomain/serverConfig> removeListener(listenerName="mylistener")

showListeners

Command Category: Information Commands

Use with WLST: Online

Description

Shows all listeners that are currently defined. For information about setting a listener, see addListener.

In the event of an error, the command returns a WLSTException.

Syntax

showListeners()

Example

The following example shows all listeners that are currently defined.

wls:/mydomain/serverConfig> showListeners()

startRecording

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Records all user interactions with WLST. This command is useful for capturing commands for replay.

In the event of an error, the command returns a WLSTException.

This command cannot be used when you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool.

Syntax

startRecording(recordFile, [recordAll])

	Argument	Definition
	

recordFile

	
Name of the file to which you want to record the WLST commands. The filename can be absolute or relative to the directory from which you invoked WLST.

	

recordAll

	
Optional. Boolean value specifying whether to capture all user interactions in the file. This argument defaults to false, indicating that only WLST commands are captured, and not WLST command output.

Example

The following example begins recording WLST commands in the record.py file:

wls:/mydomain/serverConfig> startRecording('c:/myScripts/record.py')
Starting recording to c:/myScripts/record.py
wls:/mydomain/serverConfig>

state

Command Category: Information Commands

Use with WLST: Online

Description

Using Node Manager, returns a map of servers or clusters and their state. Node Manager must be running.

For more information about server states, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

state(name, [type])

	Argument	Definition
	

name

	
Name of the server or cluster for which you want to retrieve the current state.

	

type

	
Optional. Type, Server or Cluster. This argument defaults to Server. When returning the state of a cluster, you must set this argument explicitly to Cluster, or the command will fail.

Example

The following example returns the state of the Managed Server, managed1.

wls:/mydomain/serverConfig> state('managed1','Server')
Current state of "managed1": SUSPENDED
wls:/mydomain/serverConfig>

The following example returns the state of the cluster, mycluster.

wls:/mydomain/serverConfig> state('mycluster','Cluster')
There are 3 server(s) in cluster: mycluster

States of the servers are
MServer1---SHUTDOWN
MServer2---SHUTDOWN
MServer3---SHUTDOWN
wls:/mydomain/serverConfig>

stopRecording

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Stops recording WLST commands. For information about starting a recording, see startRecording.

In the event of an error, the command returns a WLSTException.

Syntax

stopRecording()

Example

The following example stops recording WLST commands.

wls:/mydomain/serverConfig> stopRecording()
Stopping recording to c:\myScripts\record.py
wls:/mydomain/serverConfig>

stopRedirect

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Stops the redirection of WLST output to a file, if redirection is in progress.

In the event of an error, the command returns a WLSTException.

Syntax

stopRedirect()

Example

The following example stops the redirection of WLST output to a file:

wls:/mydomain/serverConfig> stopRedirect()
WLST output will not be redirected to myfile.txt any more

storeUserConfig

Command Category: Information Commands

Use with WLST: Online

Description

Creates a user configuration file and an associated key file. The user configuration file contains an encrypted username and password. The key file contains a secret key that is used to encrypt and decrypt the username and password.

Only the key file that originally encrypted the username and password can be used to decrypt the values. If you lose the key file, you must create a new user configuration and key file pair.

In the event of an error, the command returns a WLSTException.

Syntax

storeUserConfig([userConfigFile], [userKeyFile], [nm])

	Argument	Definition
	

userConfigFile

	
Optional. Name of the file to store the user configuration. The pathname can be absolute or relative to the file-system directory from which you started WLST.

If you do not specify this argument, the command stores the file in your home directory as determined by your JVM. The location of the home directory depends on the SDK and type of operating system on which WLST is running.The default filename is based on the following pattern:

username-WebLogicConfig.properties

where username is the user name that you used to log in to the operating system.

The command also prints to standard out the location in which it created the file.

	

userKeyFile

	
Optional. Name of the file to store the key information that is associated with the user configuration file that you specify. The pathname can be absolute or relative to the file-system directory from which you started WLST.

If you do not specify this argument, the command stores the file in your home directory as determined by your JVM. The location of the home directory depends on the SDK and type of operating system on which WLST is running. The default filename is based on the following pattern:

username-WebLogicKey.properties

where username is the user name that you used to log in to the operating system.

The command also prints to standard out the location in which it created the file.

	

nm

	
Optional. Boolean value specifying whether to store the username and password for Node Manager or WebLogic Server. If set to true, the Node Manager username and password is stored. This argument default to false.

Example

The following example creates and stores a user configuration file and key file in the default location.

wls:/mydomain/serverConfig> storeUserConfig()
Creating the key file can reduce the security of your system if it is not kept in
a secured location after it is created. Do you want to create the key file? y or n
y
The username and password that were used for this current WLS connection are
stored in C:\Documents and Settings\pat\pat-WebLogicConfig.properties
and C:\Documents and Settings\pat\pat-WebLogicKey.properties.

The following example creates and stores a user configuration file and key file in the specified locations.

wls:/mydomain/serverConfig> storeUserConfig('c:/myFiles/myuserconfigfile.secure', 'c:/myFiles/myuserkeyfile.secure')
Creating the key file can reduce the security of your system if it is not kept in
a secured location after it is created. Do you want to create the key file? y or n
y
The username and password that were used for this current WLS connection are
stored in c:/myFiles/mysuserconfigfile.secure and c:/myFiles/myuserkeyfile.secure
wls:/mydomain/serverConfig>

threadDump

Command Category: Information Commands

Use with WLST: Online or Offline

Description

Displays a thread dump for the specified server. In the event of an error, the command returns a WLSTException.

Syntax

threadDump([writeToFile], [fileName], [serverName])

	Argument	Definition
	

writeToFile

	
Optional. Boolean value specifying whether to save the output to a file. This argument defaults to true, indicating that output is saved to a file.

	

fileName

	
Optional. Name of the file to which the output is written. The filename can be absolute or relative to the directory where WLST is running. This argument defaults to Thread_Dump_serverName file, where serverName indicates the name of the server. This argument is valid only if writeToFile is set to true.

	

serverName

	
Optional. Server name for which the thread dump is requested. This argument defaults to the server to which WLST is connected.

If you are connected to an Administration Server, you can display a thread dump for the Administration Server and any Managed Server that is running in the WebLogic domain. If you are connected to a Managed Server, you can only display a thread dump for that Managed Server.

Example

The following example displays the thread dump for the current server and saves the output to the Thread_Dump_serverName file.

wls:/mydomain/serverConfig> threadDump()

The following example displays the thread dump for the server managedServer. The information is not saved to a file.

wls:/mydomain/serverConfig> threadDump(writeToFile='false', serverName='managedServer')

viewMBean

Command Category: Information Commands

Use with WLST: Online

Description

Displays information about an MBean, such as the attribute names and values, and operations. In the event of an error, the command returns a WLSTException.

Syntax

viewMBean(mbean)

	Argument	Definition
	

mbean

	
MBean for which you want to display information.

Example

The following example displays information about the current MBean, cmo.

wls:/mydomain/serverConfig> cmo.getType()
'Domain'
wls:/mydomain/serverConfig> viewMBean(cmo)
Attribute Names and Values

XMLEntityCaches null
Targets javax.management.ObjectName[com.bea
:Name=MedRecJMSServer,Type=JMSServer,
 com.bea:Name=WSStoreForwardInternalJMSServerMedRecServer,Type=JMSServer,
 com.bea:Name=MedRecWseeJMSServer,Type=JMSServer,
 com.bea:Name=PhysWSEEJMSServer,Type=JMSServer,
 com.bea:Name=MedRecSAFAgent,Type=SAFAgent,
 com.bea:Name=AdminServer,Type=Server]
RootDirectory .
EmbeddedLDAP com.bea:Name=OOTB_medrec,Type=EmbeddedLDAP
RemoteSAFContexts null
Libraries javax.management.ObjectName[com.bea
...
wls:/mydomain/serverConfig>

writeIniFile

Command Category: Information Commands

Use with WLST: Online

Description

Converts WLST definitions and method declarations to a Python (.py) file to enable advanced users to import them as a Jython module. After importing, the definitions and method declarations are available to other Jython modules and can be accessed directly using Jython syntax. For more information, see "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

Syntax

writeIniFile(filePath)

	Argument	Definition
	

filePath

	
Full pathname to the file that you want to save the converted information.

Example

The following example converts WLST to a Python file named wl.py.

wls:/offline> writeIniFile("wl.py")
The Ini file is successfully written to wl.py
wls:/offline>

Life Cycle Commands

Use the WLST life cycle commands, listed in Table 3-10, to manage the life cycle of a server instance.

For more information about the life cycle of a server instance, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

Table 3-10 Life Cycle Commands for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
migrate

	
Migrate services to a target server within a cluster.

	
Online

	
resume

	
Resume a server instance that is suspended or in ADMIN state.

	
Online

	
shutdown

	
Gracefully shut down a running server instance or cluster.

	
Online

	
start

	
Start a Managed Server instance or a cluster using Node Manager.

	
Online

	
startServer

	
Start the Administration Server.

	
Online or Offline

	
suspend

	
Suspend a running server.

	
Online

migrate

Command Category: Life Cycle Commands

Use with WLST: Online

Description

Migrates the specified services (JTA, JMS, or Server) to a targeted server within a cluster. In the event of an error, the command returns a WLSTException.

For information about migrating services, see "Service Migration" in Using Clusters for Oracle WebLogic Server.

Syntax

migrate(sname, destinationName, [sourceDown], [destinationDown], [migrationType])

	Argument	Definition
	

sname

	
Name of the server from which the services should be migrated.

	

destinationName

	
Name of the machine or server to which you want to migrate the services.

	

sourceDown

	
Optional. Boolean value specifying whether the source server is down. This argument defaults to true, indicating that the source server is not running.

When migrating JTA services, the sourceDown argument is ignored, if specified, and defaults to true. The source server must be down in order for the migration of JTA services to succeed.

	

destinationDown

	
Optional. Boolean value specifying whether the destination server is down. This argument defaults to false, indicating that the destination server is running.

If the destination is not running, and you do not set this argument to true, WLST returns a MigrationException.

When migrating JMS-related services to a non-running server instance, the server instance will activate the JMS services upon the next startup. When migrating the JTA Transaction Recovery Service to a non-running server instance, the target server instance will assume recovery services when it is started.

	

migrationType

	
Optional. Type of service(s) that you want to migrate. Valid values include:

	
jms—Migrate JMS-related services (JMS server, SAF agent, path service, and the WebLogic persistent store) only.

	
jta—Migrate JTA services only.

	
server—Migrate Server services only.

	
all—Migrate all JTA and JMS services.

This argument defaults to all.

Example

The following example migrates all JMS and JTA services on server1 to the server server2. The boolean arguments specify that the source server is down and the destination server is running.

wls:/mydomain/edit !> migrate('server1','server2', 'true', 'false', 'all')
Migrating all JMS and JTA services from 'server1' to destination 'server2' ...
wls:/mydomain/edit !>

The following example migrates all Server services on server1 to the server server2. The boolean arguments specify that the source server is down and the destination server is running.

wls:/mydomain/edit !> migrate('server1','server2', 'true', 'false', 'Server')
Migrating singleton server services from 'server1' to machine 'server2'...
wls:/mydomain/edit !>

resume

Command Category: Life Cycle Commands

Use with WLST: Online

Description

Resumes a server instance that is suspended or in ADMIN state. This command moves a server to the RUNNING state. For more information about server states, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

resume([sname], [block])

	Argument	Definition
	

sname

	
Name of the server to resume. This argument defaults to the server to which WLST is currently connected.

	

block

	
Optional. Boolean value specifying whether WLST should block user interaction until the server is resumed. This argument defaults to false, indicating that user interaction is not blocked. In this case, WLST returns control to the user after issuing the command and assigns the task MBean associated with the current task to a variable that you can use to check its status. If you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

Example

The following example resumes a Managed Server instance.

wls:/mydomain/serverConfig> resume('managed1', block='true')
Server 'managed1' resumed successfully.
wls:/mydomain/serverConfig>

shutdown

Command Category: Life Cycle Commands

Use with WLST: Online

Description

Gracefully shuts down a running server instance or a cluster. The shutdown command waits for all the in-process work to be completed before shutting down the server or cluster.

You shut down a server to which WLST is connected by entering the shutdown command without any arguments.

When connected to a Managed Server instance, you only use the shutdown command to shut down the Managed Server instance to which WLST is connected; you cannot shut down another server while connected to a Managed Server instance.

WLST uses Node Manager to shut down a Managed Server. When shutting down a Managed Server, Node Manager must be running.

In the event of an error, the command returns a WLSTException.

Syntax

shutdown([name], [entityType], [ignoreSessions], [timeOut], [force], [block])

	Argument	Definition
	

name

	
Optional. Name of the server or cluster to shutdown. This argument defaults to the server to which WLST is currently connected.

	

entityType

	
Optional. Type, Server or Cluster. This argument defaults to Server. When shutting down a cluster, you must set this argument explicitly to Cluster, or the command will fail.

	

ignoreSessions

	
Optional. Boolean value specifying whether WLST should drop all HTTP sessions immediately or wait for HTTP sessions to complete or timeout while shutting down. This argument defaults to false, indicating that all HTTP sessions must complete or timeout.

	

timeOut

	
Optional. Time (in seconds) that WLST waits for subsystems to complete in-process work and suspend themselves before shutting down the server. This argument defaults to 0 seconds, indicating that there is no timeout.

	

force

	
Optional. Boolean value specifying whether WLST should terminate a server instance or a cluster without waiting for the active sessions to complete. This argument defaults to false, indicating that all active sessions must complete before shutdown.

	

block

	
Optional. Boolean value specifying whether WLST should block user interaction until the server is shutdown. This argument defaults to false, indicating that user interaction is not blocked. In this case, WLST returns control to the user after issuing the command and assigns the task MBean associated with the current task to a variable that you can use to check its status. If you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

Example

The following example instructs WLST to shutdown the server to which you are connected:

wls:/mydomain/serverConfig> shutdown()
Shutting down the admin server that you are currently connected to
Disconnected from weblogic server: AdminServer

The following example instructs WLST to wait 1000 seconds for HTTP sessions to complete or timeout (at 1000 seconds) before shutting down myserver:

wls:/mydomain/serverConfig> shutdown('myserver','Server','false',1000, block='false')

The following example instructs WLST to drop all HTTP sessions immediately while connected to a Managed Server instance:

wls:/mydomain/serverConfig> shutdown('MServer1','Server','true',1200)
Shutting down a managed server that you are connected to ...
Disconnected from weblogic server: MServer1

The following example instructs WLST to shutdown the cluster mycluster:

wls:/mydomain/serverConfig> shutdown('mycluster','Cluster')
Shutting down the cluster with name mycluster
Shutdown of cluster mycluster has been issued, please
refer to the logs to check if the cluster shutdown is successful.
Use the state(<server-name>) or state(<cluster-name>,"Cluster")
to check the status of the server or cluster
wls:/mydomain/serverConfig> state('mycluster','Cluster')
There are 3 server(s) in cluster: mycluster

States of the servers are
MServer1---SHUTDOWN
MServer2---SHUTDOWN
MServer3---SHUTDOWN
wls:/mydomain/serverConfig>

start

Command Category: Life Cycle Commands

Use with WLST: Online

Description

Starts a Managed Server instance or a cluster using Node Manager. WLST must be connected to the Administration Server and Node Manager must be running.

For more information about WLST commands used to connect to and use Node Manager, see Node Manager Commands.

In the event of an error, the command returns a WLSTException.

Syntax

start(name, [type], [url], [block])

	Argument	Definition
	

name

	
Name of the Managed Server or cluster to start.

	

type

	
Optional. Type, Server or Cluster. This argument defaults to Server. When starting a cluster, you must set this argument explicitly to Cluster, or the command will fail.

	

url

	
Optional. Listen address and listen port of the server instance, specified using the following format: [protocol://]listen-address:listen-port. If not specified, this argument defaults to t3://localhost:7001.

	

block

	
Optional. Boolean value specifying whether WLST should block user interaction until the server or cluster is started. This argument defaults to false, indicating that user interaction is not blocked. In this case, WLST returns control to the user after issuing the command and assigns the task MBean associated with the current task to a variable that you can use to check its status. If you are importing WLST as a Jython module, as described "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

Example

The following example instructs Node Manager to start a Managed Server instance; the listen address is localhost and listen port is 8801. WLST returns control to the user after issuing this command, as block is set to false.

wls:/mydomain/serverConfig> start('myserver', 'Server', block='false')
Starting server myserver ...
Server with name myserver started successfully.
wls:/mydomain/serverConfig>

The following example instructs Node Manager to start a cluster. WLST block user interaction until the cluster is started, as block defaults to true.

wls:/mydomain/serverConfig> start('mycluster', 'Cluster')
Starting the following servers in Cluster, mycluster: MS1, MS2, MS3...
..
All servers in the cluster mycluster are started successfully.
wls:/mydomain/serverConfig>

startServer

Command Category: Life Cycle Commands

Use with WLST: Online or Offline

Description

Starts the Administration Server. In the event of an error, the command returns a WLSTException.

	
Note:

You can use startServer only to start a WebLogic Administration Server, by running WLST from the WL_HOME/common/bin directory. You cannot use startServer to start an integrated WebLogic Administration Server (that is, an Administration Server for a Fusion Middleware Suite product installed in an ORACLE_HOME directory).

To start the Administration server for a Fusion Middleware Suite product other than WebLogic Server, use either of the following methods:

	
Execute the server startup script for the associated WebLogic domain.

	
Start the server using Node Manager. If you use this method, make sure that the startScriptEnabled property is set to true in Node Manager.

Syntax

startServer([adminServerName], [domainName], [url], [username], [password],
[domainDir], [block], [timeout], [serverLog], [systemProperties], [jvmArgs] [spaceAsJvmArgsDelimiter])

	Argument	Definition
	

adminServerName

	
Optional. Name of the Administration Server to start. This argument defaults to myserver.

	

domainName

	
Optional. Name of the WebLogic domain to which the Administration Server belongs. This argument defaults to mydomain.

	

url

	
Optional. URL of the Administration Server. The URL supplied with the startServer command will override the listen address and port specified in the config.xml file. If not specified on the command line or in the config.xml file, this argument defaults to t3://localhost:7001.

	

username

	
Optional. Username use to connect WLST to the server. This argument defaults to weblogic.

	

password

	
Optional. Password used to connect WLST to the server. This argument defaults to welcome1.

	

domainDir

	
Optional. Domain directory in which the Administration Server is being started. This argument defaults to the directory from which you started WLST.

	

block

	
Optional. Boolean value specifying whether WLST blocks user interaction until the server is started. When block is set to false, WLST returns control to the user after issuing the command. This argument defaults to true, indicating that user interaction is blocked. If you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

	

timeout

	
Optional. Time (in milliseconds) that WLST waits for the server to start before canceling the operation. The default value is 60000 milliseconds. This argument is only applicable when block is set to true.

	

serverLog

	
Optional. Location of the server log file. This argument defaults to stdout.

	

systemProperties

	
Optional. System properties to pass to the server process. System properties should be specified as comma-separated name-value pairs, and the name-value pairs should be separated by equals sign (=).

	

jvmArgs

	
Optional. JVM arguments to pass to the server process. Multiple arguments can be specified, separated by commas.

	

spaceAsJvmArgsDelimiter

	
Optional. Boolean value specifying whether JVM arguments are space delimited. The default value is false.

Example

The following example starts the Administration Server named demoServer in the demoDomain.

wls:/offline> startServer('demoServer','demoDomain','t3://localhost:8001',
'myweblogic','wlstdomain','c:/mydomains/wlst','false', 60000,
jvmArgs='-XX:MaxPermSize=75m, -Xmx512m, -XX:+UseParallelGC')
wls:/offline>

suspend

Command Category: Life Cycle Commands

Use with WLST: Online

Description

Suspends a running server. This command moves a server from the RUNNING state to the ADMIN state. For more information about server states, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

suspend([sname], [ignoreSessions], [timeOut], [force], [block])

	Argument	Definition
	

sname

	
Optional. Name of the server to suspend. The argument defaults to the server to which WLST is currently connected.

	

ignoreSessions

	
Optional. Boolean value specifying whether WLST should drop all HTTP sessions immediately or wait for HTTP sessions to complete or time out while suspending. This argument defaults to false, indicating that HTTP sessions must complete or time out.

	

timeOut

	
Optional. Time (in seconds) the WLST waits for the server to complete in-process work before suspending the server. This argument defaults to 0 seconds, indicating that there is no timeout.

	

force

	
Optional. Boolean value specifying whether WLST should suspend the server without waiting for active sessions to complete. This argument defaults to false, indicating that all active sessions must complete before suspending the server.

	

block

	
Optional. Boolean value specifying whether WLST blocks user interaction until the server is started. This argument defaults to false, indicating that user interaction is not blocked. In this case, WLST returns control to the user after issuing the command and assigns the task MBean associated with the current task to a variable that you can use to check its status. If you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool, block is always set to true.

Example

The following example suspends a Managed Server instance:

wls:/mydomain/serverConfig> suspend('managed1')
Server 'managed1' suspended successfully.
wls:/mydomain/serverConfig>

Node Manager Commands

Use the WLST Node Managers commands, listed in Table 3-11, to start, shut down, restart, and monitor WebLogic Server instances.

	
Note:

Node Manager must be running before you can execute the commands within this category.

For more information about Node Manager, see "Using Node Manager" in the Node Manager Administrator's Guide for Oracle WebLogic Server.

Table 3-11 Node Manager Commands for WLST Configuration

	This command...	Enables you to...	Use with WLST...
	
nm

	
Determine whether WLST is connected to Node Manager.

	
Online

	
nmConnect

	
Connect WLST to Node Manager to establish a session.

	
Online or Offline

	
nmDisconnect

	
Disconnect WLST from a Node Manager session.

	
Online or Offline

	
nmEnroll

	
Enables the Node Manager on the current computer to manage servers in a specified WebLogic domain.

	
Online

	
nmGenBootStartupProps

	
Generates the Node Manager property files, boot.properties and startup.properties, for the specified server.

	
Online

	
nmKill

	
Kill the specified server instance that was started with Node Manager.

	
Online or Offline

	
nmLog

	
Return the Node Manager log.

	
Online or Offline

	
nmServerLog

	
Return the server output log of the server that was started with Node Manager.

	
Online or Offline

	
nmServerStatus

	
Return the status of the server that was started with Node Manager.

	
Online or Offline

	
nmStart

	
Start a server in the current WebLogic domain using Node Manager.

	
Online or Offline

	
nmVersion

	
Return the Node Manager version.

	
Online or Offline

	
startNodeManager

	
Starts Node Manager on the same computer that is running WLST.

	
Online or Offline

	
stopNodeManager

	
Stops Node Manager.

	
Online or Offline

nm

Command Category: Node Manager Commands

Use with WLST: Online or Offline

Description

Determines whether WLST is connected to Node Manager. Returns true or false and prints a descriptive message. Node Manager must be running before you can execute this command.

In the event of an error, the command returns a WLSTException.

Syntax

nm()

Example

The following example indicates that WLST is currently connected to Node Manager that is monitoring mydomain.

wls:/mydomain/serverConfig> nm()
Currently connected to Node Manager that is monitoring the domain "mydomain"
wls:/mydomain/serverConfig>

The following example indicates that WLST is not currently connected to Node Manager.

wls:/mydomain/serverConfig> nm()
Not connected to any Node Manager
wls:/mydomain/serverConfig>

nmConnect

Command Category: Node Manager Commands

Use with WLST: Online or Offline

Description

Connects WLST to Node Manager to establish a session. After connecting to Node Manager, you can invoke any Node Manager commands via WLST. Node Manager must be running before you can execute this command.

	
Note:

If you have previously used the connect command in the current WLST session, nmconnect uses the same user credentials as were used for the connect command, unless you specify otherwise.

Once connected, the WLST prompt displays as follows, where domainName indicates the name of the WebLogic domain that is being managed: wls:/nm/domainName>. If you then connect WLST to a WebLogic Server instance, the prompt is changed to reflect the WebLogic Server instance. You can use the nm command to determine whether WLST is connected to Node Manager, as described in nm.

In the event of an error, the command returns a WLSTException.

Syntax

nmConnect([username, password], [host], [port], [domainName], [domainDir] [nmType], [verbose])

nmConnect([userConfigFile, userKeyFile], [host], [port], [domainName], [domainDir] [nmType], [verbose])

	Argument	Definition
	

username

	
Username of the operator who is connecting WLST to Node Manager. The username defaults to weblogic.

Note: When running a server in production mode, you must specify the username and password explicitly on the command line to ensure that the appropriate username and password are used when connecting to Node Manager.

	

password

	
Password of the operator who is connecting WLST to Node Manager. The password defaults to welcome1.

Note: When running a server in production mode, you must specify the username and password explicitly on the command line to ensure that the appropriate username and password are used when connecting to Node Manager.

	

host

	
Optional. Host name of Node Manager. This argument defaults to localhost.

	

port

	
Optional. Port number of Node Manager. This argument defaults to a value that is based on the Node Manager type, as follows:

	
For plain type, defaults to 5556

	
For rsh type, defaults to 514

	
For ssh type, defaults to 22

	
For ssl type, defaults to 5556

	

domainName

	
Optional. Name of the WebLogic domain that you want to manage. This argument defaults to mydomain.

	

domainDir

	
Optional. Path of the domain directory to which you want to save the Node Manager secret file (nm_password.properties) and SerializedSystemIni.dat file. This argument defaults to the directory in which WLST was started.

	

nmType

	
The Node Manager type. Valid values are:

	
plain for plain socket Java-based implementation

Note: If you specify plain for nmType, you must manually set the SecureListener parameter in WL_HOME/common/nodemanager/nodemanager.properties to false. Otherwise, the nmConnect command will fail.

	
rsh for RSH implementation

	
ssh for script-based SSH implementation

	
ssl for Java-based SSL implementation

This argument defaults to ssl.

	

verbose

	
Optional. Boolean value specifying whether WLST connects to Node Manager in verbose mode. This argument defaults to false, disabling verbose mode.

	

userConfigFile

	
Optional. Name and location of a user configuration file which contains an encrypted username and password.

When you create a user configuration file, the storeUserConfig command uses a key file to encrypt the username and password. Only the key file that encrypts a user configuration file can decrypt the username and password. (See storeUserConfig.)

	

userKeyFile

	
Optional. Name and location of the key file that is associated with the specified user configuration file and is used to decrypt it. (See storeUserConfig.)

Example

The following example connects WLST to Node Manager to monitor the oamdomain domain using the default host and port numbers and plain Node Manager type.

wls:/myserver/serverConfig> nmConnect('weblogic', 'welcome1', 'localhost',
'5555', 'oamdomain', 'c:/Oracle/Middleware/user_projects/domains/oamdomain','ssl')
Connecting to Node Manager Server ...
Successfully connected to Node Manager.
wls:/nm/oamdomain>

The following example connects WLST to a Node Manager Server instance using a user configuration and key file to provide user credentials.

wls:/myserver/serverConfig> nmConnect(userConfigFile='
c:/myfiles/myuserconfigfile.secure',
userKeyFile='c:/myfiles/myuserkeyfile.secure',
host='172.18.137.82', port=26106, domainName='mydomain',
domainDir='c:/myfiles/mydomain', mType='ssl')
Connecting to Node Manager Server ...
Successfully connected to Node Manager.
wls:/nm/mydomain>

nmDisconnect

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Disconnects WLST from a Node Manager session.

In the event of an error, the command returns a WLSTException.

Syntax

nmDisconnect()

Example

The following example disconnects WLST from a Node Manager session.

wls:/nm/oamdomain> nmDisconnect()
Successfully disconnected from Node Manager
wls:/myserver/serverConfig>

nmEnroll

Command Category: Node Manager Commands

Use with WLST: Online

Description

Enrolls the machine on which WLST is currently running. WLST must be connected to an Administration Server to run this command; WLST does not need to be connected to Node Manager.

This command downloads the following files from the Administration Server:

	
Node Manager secret file (nm_password.properties), which contains the encrypted username and password that is used for server authentication

	
SerializedSystemIni.dat file

This command also updates the nodemanager.domains file under the WL_HOME/common/nodemanager directory with the domain information, where WL_HOME refers to the top-level installation directory for WebLogic Server.

You must run this command once per WebLogic domain per machine unless that domain shares the root directory of the Administration Server.

If the machine is already enrolled when you run this command, the Node Manager secret file (nm_password.properties) is refreshed with the latest information from the Administration Server.

In the event of an error, the command returns a WLSTException.

Syntax

nmEnroll([domainDir], [nmHome])

	Argument	Definition
	

domainDir

	
Optional. Path of the domain directory to which you want to save the Node Manager secret file (nm_password.properties) and SerializedSystemIni.dat file. This argument defaults to the directory in which WLST was started.

	

nmHome

	
Optional. Path to the Node Manager home. The nodemanager.domains file, containing the domain information, is written to this directory. This argument defaults to WL_HOME/common/nodemanager, where WL_HOME refers to the top-level installation directory for WebLogic Server.

Example

The following example enrolls the current machine with Node Manager and saves the Node Manager secret file (nm_password properties) and SerializedSystemIni.dat file to c:/Oracle/Middleware/mydomain/common/nodemanager/nm_password.properties. The nodemanager.domains file is written to WL_HOME/common/nodemanager by default.

wls:/mydomain/serverConfig> nmEnroll('c:/Oracle/Middleware/mydomain/common/nodemanager')
Enrolling this machine with the domain directory at c:\Oracle\Middleware\mydomain\common\nodemanager....
Successfully enrolled this machine with the domain directory at C:\Oracle\Middleware\mydomain\common\nodemanager
wls:/mydomain/serverConfig>

nmGenBootStartupProps

Command Category: Node Manager Commands

Use with WLST: Online

Description

Generates the Node Manager property files, boot.properties and startup.properties, for the specified server. The Node Manager property files are stored relative to the root directory of the specified server. The target root directory must be on the same machine on which you are running the command.

You must specify the name of a server; otherwise, the command will fail.

In the event of an error, the command returns a WLSTException.

Syntax

nmGenBootStartupProps(serverName)

	Argument	Definition
	

serverName

	
Name of the server for which Node Manager property files are generated.

Example

The following example generates boot.properties and startup.properties in the root directory of the specified server, ms1.

wls:/mydomain/serverConfig> nmGenBootStartupProps('ms1')
Successfully generated boot.properties at
c:\Oracle\Middleware\mydomain\servers\ms1\data\nodemanager\boot.properties
Successfully generated startup.properties at
c:\Oracle\Middleware\mydomain\servers\ms1\data\nodemanager\startup.properties
wls:/mydomain/serverConfig>

nmKill

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Kills the specified server instance that was started with Node Manager.

If you do not specify a server name using the serverName argument, the argument defaults to myServer, which must match your server name or the command will fail.

If you attempt to kill a server instance that was not started using Node Manager, the command displays an error.

In the event of an error, the command returns a WLSTException.

Syntax

nmKill([serverName], [serverType])

	Argument	Definition
	

serverName

	
Optional. Name of the server to be killed. This argument defaults to myserver.

	

serverType

	
Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence.

Example

The following example kills the server named oamserver.

wls:/nm/oamdomain> nmKill('oamserver')
Killing server 'oamserver' ...
Server oamServer killed successfully.
wls:/nm/oamdomain>

nmLog

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Returns the Node Manager log.

In the event of an error, the command returns a WLSTException.

Syntax

nmLog([writer])

	Argument	Definition
	

writer

	
Optional. java.io.Writer object to which you want to stream the log output. This argument defaults to the WLST writer stream.

Example

The following example displays the Node Manager log.

wls:/nm/oamdomain> nmLog()
Successfully retrieved the Node Manager log and written.
wls:/nm/oamdomain>

nmServerLog

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Returns the server output log of the server that was started with Node Manager.

In the event of an error, the command returns a WLSTException.

Syntax

nmServerLog([serverName], [writer], [serverType])

	Argument	Definition
	

serverName

	
Optional. Name of the server for which you want to display the server output log. This argument defaults to myserver.

	

writer

	
Optional. java.io.Writer object to which you want to stream the log output. This argument defaults to the WLSTInterpreter standard out, if not specified.

	

serverType

	
Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence.

Example

The following example displays the server output log for the oamserver server and writes the log output to myWriter.

wls:/nm/oamdomain> nmServerLog('oamserver',myWriter)
Successfully retrieved the server log and written.
wls:/nm/oamdomain>

nmServerStatus

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Returns the status of the server that was started with Node Manager.

In the event of an error, the command returns a WLSTException.

Syntax

nmServerStatus([serverName], [serverType])

	Argument	Definition
	

serverName

	
Optional. Name of the server for which you want to display the status. This argument defaults to myserver.

	

serverType

	
Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence.

Example

The following example displays the status of the server named oamserver, which was started with Node Manager.

wls:/nm/oamdomain> nmServerStatus('oamserver')
RUNNING
wls:/nm/oamdomain>

nmStart

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Starts a server in the current WebLogic domain using Node Manager.

In the event of an error, the command returns a WLSTException.

	
Note:

boot.properties must exist in order to start a server with nmStart. If this is the first time you are starting a server, you must manually create it in order to use nmStart.

Alternatively, you can use the nmStartprops argument to provide user credentials (after connecting to Node Manager):

prps = makePropertiesObject("username=weblogic, password=welcome1")
nmStart("AdminServer",props=prps)

Syntax

nmStart([serverName], [domainDir], [props], [writer], [serverType])

	Argument	Definition
	

serverName

	
Optional. Name of the server to be started.

	

domainDir

	
Optional. Domain directory of the server to be started. This argument defaults to the directory from which you started WLST.

	

props

	
Optional. System properties to apply to the new server.

	

writer

	
Optional. java.io.Writer object to which the server output is written. This argument defaults to the WLST writer.

	

serverType

	
Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence.

Example

The following example starts the managed1 server in the current WebLogic domain using Node Manager.

wls:/nm/mydomain> nmStart("managed1")
Starting server managed1 ...
Server managed1 started successfully
wls:/nm/mydomain>

The following example starts the Administration Server in the specified WebLogic domain using Node Manager. In this example, the prps variable stores the system property settings and is passed to the command using the props argument.

wls:/nm/mydomain> prps = makePropertiesObject("weblogic.ListenPort=8001")
wls:/nm/mydomain> nmStart("AdminServer",props=prps)
Starting server AdminServer...
Server AdminServer started successfully
wls:/nm/mydomain>

nmVersion

Command Category: Node Manager Commands

Use with WLST: Online or Offline

WLST must be connected to Node Manager to run this command.

Description

Returns the Node Manager version.

In the event of an error, the command returns a WLSTException.

Syntax

nmVersion()

Example

The following example displays the Node Manager version.

wls:/nm/oamdomain> nmVersion()
The Node Manager version that you are currently connected to is 9.0.0.0
wls:/nm/oamdomain>

startNodeManager

Command Category: Node Manager Commands

Use with WLST: Online or Offline

Description

Starts Node Manager on the same computer that is running WLST.

	
Notes:

The WebLogic Server custom installation process optionally installs and starts Node Manager as a Windows service on Windows systems. For more information, see "About Installing Node Manager as a Windows Service" in the Installation Guide for Oracle WebLogic Server. In this case, you do not need to start the Node Manager manually.

In production environments, Oracle recommends that you do not use the startNodeManager command to start Node Manager. The recommended approach is to install Node Manager as a service or daemon, or to use the startNodeManager script (startNodeManager.sh or startNodeManger.cmd).

If Node Manager is already running when you invoke the startNodeManager command, the following message is displayed:

A Node Manager has already been started.
Cannot start another Node Manager process via WLST

In the event of an error, the command returns a WLSTException.

Syntax

startNodeManager([verbose], [nmProperties])

	Argument	Definition
	

verbose

	
Optional. Boolean value specifying whether WLST starts Node Manager in verbose mode. This argument defaults to false, disabling verbose mode.

	

nmProperties

	
Optional. Comma-separated list of Node Manager properties, specified as name-value pairs. Node Manager properties include, but are not limited to, the following: NodeManagerHome, ListenAddress, ListenPort, and PropertiesFile.

Example

The following example displays the Node Manager server version.

wls:/mydomain/serverConfig> startNodeManager(verbose='true',
NodeManagerHome='c:/Oracle/Middleware/wlserver_10.3/common/nodemanager', ListenPort='6666', ListenAddress='myhost'))
Launching Node Manager ...
Successfully launched the Node Manager.
The Node Manager process is running independent of the WLST process
Exiting WLST will not stop the Node Manager process. Please refer
to the Node Manager logs for more information.
The Node Manager logs will be under c:\Oracle\Middleware\wlserver_10.3\common\nodemanager.
wls:/mydomain/serverConfig>

stopNodeManager

Command Category: Node Manager Commands

Use with WLST: Online or Offline

Description

Stops the Node Manager process.

	
Note:

In order to stop the Node Manager process, you must have either started Node Manager with startNodeManager, or Node Manager must have been started with the property QuitEnabled=true. You can configure this property in $WLS_HOME/common/nodemanager.properties. This allows you to connect to the Node Manager to shut it down.

If the Node Manager is not running when you invoke the stopNodeManager command, the following message is displayed:

Cannot stop the Node Manager unless you are connected to it.

Syntax

stopNodeManager()

Example

The following example stops the Node Manager process for the base_domain domain.

wls:/nm/base_domain> stopNodeManager()
Stopped Node Manager Process successfully
wls:/offline>

Tree Commands

Use the WLST tree commands, listed in Table 3-12, to navigate among MBean hierarchies.

Table 3-12 Tree Commands for WLST Configuration

	Use this command...	To...	Use with WLST...
	
custom

	
Navigate to the root of custom MBeans that are registered in the server.

	
Online

	
domainConfig

	
Navigate to the last MBean to which you navigated in the domain configuration hierarchy or to the root of the hierarchy, DomainMBean.

	
Online

	
domainCustom

	
Navigate to the root of custom MBeans that are registered in the Domain Runtime MBean Server

	
Online

	
domainRuntime

	
Navigate to the last MBean to which you navigated in the domain runtime hierarchy or to the root of the hierarchy, DomainRuntimeMBean.

	
Online

	
edit

	
Navigate to the last MBean to which you navigated in the edit configuration MBean hierarchy or to the root of the hierarchy, DomainMBean.

	
Online

	
jndi

	
Navigates to the JNDI tree for the server to which WLST is currently connected.

	
Online

	
serverConfig

	
Navigate to the last MBean to which you navigated in the configuration MBean hierarchy or to the root of the hierarchy, DomainMBean.

	
Online

	
serverRuntime

	
Navigate to the last MBean to which you navigated in the runtime MBean hierarchy or to the root of the hierarchy, ServerRuntimeMBean.

	
Online

custom

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the root of custom MBeans that are registered in the Runtime MBean Server. WLST navigates, interrogates, and edits custom MBeans as it does domain MBeans; however, custom MBeans cannot use the cmo variable because a stub is not available.

	
Note:

When navigating to the custom tree, WLST queries all MBeans in the compatibility MBean server, the runtime MBean server, and potentially the JVM platform MBean server to locate the custom MBeans. Depending on the number of MBeans in the current WebLogic domain, this process make take a few minutes, and WLST may not return a prompt right away.

The custom command is available when WLST is connected to an Administration Server instance or a Managed Server instance. When connected to a WebLogic Integration or WebLogic Portal server, WLST can interact with all the WebLogic Integration or WebLogic Portal server MBeans.

For more information about custom MBeans, see Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

	
Note:

You can also navigate to custom MBeans on the Domain Runtime MBean Server using the domainCustom() command. See domainCustom, for more information.

Syntax

custom()

Example

The following example navigates from the configuration MBean hierarchy to the custom MBean hierarchy on a Administration Server instance.

wls:/mydomain/serverConfig> custom()
Location changed to custom tree. This is a writeable tree with No root. For more help, use help('custom')
wls:/mydomain/custom>

domainConfig

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the domain Configuration hierarchy or to the root of the hierarchy, DomainMBean. This read-only hierarchy stores the configuration MBeans that represent your current WebLogic domain.

In the event of an error, the command returns a WLSTException.

Syntax

domainConfig()

Example

The following example navigates from the configuration MBean hierarchy to the WebLogic domain Configuration hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> domainConfig()
Location changed to domainConfig tree. This is a read-only tree with DomainMBean as the root.
For more help, use help('domainConfig')
wls:/mydomain/domainConfig> ls()
dr-- AppDeployments
dr-- BridgeDestinations
dr-- Clusters
dr-- CustomResources
dr-- DeploymentConfiguration
dr-- Deployments
dr-- EmbeddedLDAP
dr-- ErrorHandlings
dr-- FileStores
dr-- InternalAppDeployments
dr-- InternalLibraries
dr-- JDBCDataSourceFactories
dr-- JDBCStores
dr-- JDBCSystemResources
dr-- JMSBridgeDestinations
dr-- JMSInteropModules
dr-- JMSServers
dr-- JMSSystemResources
...
wls:/mydomain/domainConfig>

domainCustom

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the domain custom tree of custom MBeans that are registered in the Domain Runtime MBean Server. WLST navigates, interrogates, and edits domain custom MBeans as it does domain MBeans; however, domain custom MBeans cannot use the cmo variable because a stub is not available.

	
Note:

When navigating to the domainCustom tree, WLST queries all MBeans in the Domain Runtime MBean Server, the Runtime MBean Servers on each server, and potentially the JVM platform MBean server to locate the custom MBeans. Depending on the number of MBeans in the current WebLogic domain, this process make take a few minutes, and WLST may not return a prompt right away. It is recommended that a JMX query Object Name Pattern be specified to limit the amount of searching performed.

The domainCustom command is available only when WLST is connected to an Administration Server instance.

For more information about the Domain Runtime MBean Server, see "Understanding WebLogic Server MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.

In the event of an error, the command returns a WLSTException.

Syntax

domainCustom(ObjectNamePattern)

	Argument	Definition
	

ObjectNamePattern

	
A JMX query pattern, such as sip:*. The default value is null or *:*.

Example

The following example navigates from the configuration MBean hierarchy to the domain custom MBean hierarchy on an Administration Server instance:

wls:/mydomain/serverConfig> domainCustom()
Location changed to domain custom tree. This is a writeable tree with No root. For more help, use help('domainCustom').

wls:/mydomain/domainCustom

domainRuntime

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the domain Runtime hierarchy or to the root of the hierarchy, DomainRuntimeMBean. This read-only hierarchy stores the runtime MBeans that represent your current WebLogic domain.

In the event of an error, the command returns a WLSTException.

Syntax

domainRuntime()

Example

The following example navigates from the configuration MBean hierarchy to the domain Runtime hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> domainRuntime()
wls:/mydomain/domainRuntime> ls()
dr-- AppRuntimeStateRuntime
dr-- DeployerRuntime
dr-- DomainServices
dr-- LogRuntime
dr-- MessageDrivenControlEJBRuntime
dr-- MigratableServiceCoordinatorRuntime
dr-- MigrationDataRuntimes
dr-- SNMPAgentRuntime
dr-- ServerLifeCycleRuntimes
dr-- ServerRuntimes
dr-- ServerServices

-r-- ActivationTime Mon Aug 01 11:41:25 EDT 2005
-r-- Clusters null
-r-- MigrationDataRuntimes null
-r-- Name sampleMedRecDomain
-rw- Parent null
-r-- SNMPAgentRuntime null
-r-- Type DomainRuntime
-r-x restartSystemResource Void :
 WebLogicMBean(weblogic.management.configuration.SystemResourceMBean)
wls:/mydomain/domainRuntime>

edit

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the edit configuration MBean hierarchy or to the root of the hierarchy, DomainMBean. This writable hierarchy stores all of the configuration MBeans that represent your current WebLogic domain.

	
Note:

To edit configuration beans, you must be connected to an Administration Server. If you connect to a Managed Server, WLST functionality is limited to browsing the configuration bean hierarchy. While you cannot use WLST to change the values of MBeans on Managed Servers, it is possible to use the Management APIs to do so. Oracle recommends that you change only the values of configuration MBeans on the Administration Server. Changing the values of MBeans on Managed Servers can lead to an inconsistent domain configuration.

For more information about editing configuration beans, see "Using WLST Online to Update an Existing Domain" in Oracle WebLogic Scripting Tool.

In the event of an error, the command returns a WLSTException.

Syntax

edit()

Example

The following example illustrates how to navigate from the server configuration MBean hierarchy to the editable copy of the domain configuration MBean hierarchy, in an Administration Server instance.

wls:/myserver/serverConfig> edit()
Location changed to edit tree. This is a writeable tree with DomainMBean as the root.
For more help, use help('edit')
wls:/myserver/edit !> ls()
dr-- AppDeployments
dr-- BridgeDestinations
dr-- Clusters
dr-- DeploymentConfiguration
dr-- Deployments
dr-- EmbeddedLDAP
...
wls:/myserver/edit !>

jndi

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the JNDI tree for the server to which WLST is currently connected. This read-only tree holds all the elements that are currently bound in JNDI.

In the event of an error, the command returns a WLSTException.

Syntax

jndi()

Example

The following example navigates from the runtime MBean hierarchy to the Domain JNDI tree on an Administration Server instance.

wls:/myserver/runtime> jndi()
Location changed to jndi tree. This is a read-only tree with No root. For more help, use help('jndi')
wls:/myserver/jndi> ls()
dr-- ejb
dr-- javax
dr-- jms
dr-- weblogic
...

serverConfig

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the configuration MBean hierarchy or to the root of the hierarchy, DomainMBean.

This read-only hierarchy stores the configuration MBeans that represent the server to which WLST is currently connected. The MBean attribute values include any command-line overrides that a user specified while starting the server.

In the event of an error, the command returns a WLSTException.

For more information, see "Navigating Among MBean Hierarchies" in Oracle WebLogic Scripting Tool.

Syntax

serverConfig()

Example

The following example navigates from the domain runtime MBean hierarchy to the configuration MBean hierarchy on an Administration Server instance.

wls:/mydomain/domainRuntime> serverConfig()
wls:/mydomain/serverConfig>

serverRuntime

Command Category: Tree Commands

Use with WLST: Online

Description

Navigates to the last MBean to which you navigated in the runtime MBean hierarchy or to the root of the hierarchy, ServerRuntimeMBean. This read-only hierarchy stores the runtime MBeans that represent the server to which WLST is currently connected.

In the event of an error, the command returns a WLSTException.

Syntax

serverRuntime()

Example

The following example navigates from the configuration MBean hierarchy to the runtime MBean hierarchy on an Administration Server instance.

wls:/mydomain/serverConfig> serverRuntime()
Location changed to serverRuntime tree. This is a read-only tree with ServerRuntimeMBean as the root.
For more help, use help('serverRuntime')
wls:/mydomain/serverRuntime>

WLST Variable Reference

Table 3-13 describes WLST variables and their common usage. All variables are initialized to default values at the start of a user session and are changed according to the user interaction with WLST.

Table 3-13 WLST Variables

	Variable	Description	Example
	

cmgr

	
The cmgr variable is set to the ConfigurationManagerMBean. You can use this variable to get the current value of any ConfigurationManagerMBean attribute.

	

wls:/mydomain/edit> cmgr.getCurrentEditor()
'weblogic'

	

cmo

	
Current Management Object. The cmo variable is set to the bean instance to which you navigate using WLST. You can use this variable to perform any get, set, or invoke method on the current bean instance.

WLST sets the variable to the current WLST path. For example, when you change to the serverConfig hierarchy, cmo is set to DomainMBean. When you change to the serverRuntime hierarchy, cmo is set to ServerRuntimeMBean.

The variable is available in all WLST hierarchies except custom and jndi.

	

wls:/mydomain/edit> cmo.setAdministrationPort(9092)

	

connected

	
Boolean value specifying whether WLST is connected to a running server. WLST sets this variable to true when connected to a running server; otherwise, WLST sets it to false.

	

wls:/mydomain/serverConfig> print connected
false

	

domainName

	
Name of the WebLogic domain to which WLST is connected.

	

wls:/mydomain/serverConfig> print domainName
mydomain

	

domainRuntimeService

	
DomainRuntimeServiceMBean MBean. This variable is available only when WLST is connected to the Administration Server.

	

wls:/mydomain/serverConfig> domainService.getServerName()
'myserver'

	

editService

	
EditServiceMBean MBean. This variable is available only when WLST is connected to the Administration Server.

	

wls:/mydomain/edit> dc = editService.getDomainConfiguration()

	

exitonerror

	
Boolean value specifying whether WLST terminates script execution when it encounters an exception. This variable defaults to true, indicating that script execution is terminated when WLST encounters an error. This variable is not applicable when running WLST in interactive mode.

	

wls:/mydomain/serverConfig> print exitonerror
true

	

home

	
Represents the local MBeanHome.

	

wls:/mydomain/serverConfig> print home
weblogic.rmi.internal.BasicRemoteRef - hostID: '-hostID:[7001,7001,-1,-1,-1,-1,-1]:mydomain:AdminServer', oid: '260', channel: 'null'

	

isAdminServer

	
Boolean value specifying whether WLST is connected to a WebLogic Administration Server instance. WLST sets this variable to true if WLST is connected to a WebLogic Administration Server; otherwise, WLST sets it to false.

	

wls:/mydomain/serverConfig> print isAdminServer
true

	

mbs

	
MBeanServerConnection object that corresponds to the current location in the hierarchy.

	

wls:/mydomain/serverConfig> mbs.isRegistered(ObjectName('mydomain:
Name=mydomain,Type=Domain'))

	

recording

	
Boolean value specifying whether WLST is recording commands. WLST sets this variable to true when the startRecording command is entered; otherwise, WLST sets this variable to false.

	

wls:/mydomain/serverConfig> print recording
true

	

runtimeService

	
RuntimeServiceMBean MBean.

	

wls:/mydomain/serverConfig> sr=runtimeService.getServerRuntime()

	

serverName

	
Name of the server to which WLST is connected.

	

wls:/mydomain/serverConfig> print serverName
myserver

	

typeService

	
TypeServiceMBean MBean.

	

wls:/mydomain/serverConfig> mi=typeService.getMBeanInfo('weblogic.
management.configuration.ServerMBean')

	

username

	
Name of user currently connected to WLST.

	

wls:/mydomain/serverConfig> print username
weblogic

	

version

	
Current version of the running server to which WLST is connected.

	

wls:/mydomain/serverConfig> print version
WebLogic Server 9.0 Thu Aug 31 12:15:50 PST 2005 778899

[image: Oracle Corporation]

10 WebCenter Portal Custom WLST Commands

This chapter describes WebLogic Scripting Tool (WLST) commands for Oracle WebCenter Portal. These commands enable you to configure WebCenter Portal applications and components from the command-line. For additional details about WebCenter Portal configuration, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

	
Notes:

To use these commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide.

Most configuration changes made using WebCenter Portal WLST commands are only effective after you restart the Managed Server on which the WebCenter Portal application is deployed. The only exceptions are WLST commands for External Applications, Portlet Producers, and WebCenter Portal Import and Export.

WebCenter Portal WLST commands are described in the following sections:

	
WebCenter Portal WLST Command Categories

	
General

	
Analytics

	
Activity Graph

	
Activity Stream

	
Content Repository

	
Discussions and Announcements

	
External Applications

	
Instant Messaging and Presence

	
Mail

	
Notifications

	
Personal Events

	
Personalization

	
Portlet Producers

	
RSS News Feeds

	
Search - Oracle SES Search

	
Search - Oracle SES Search Crawlers

	
Search - WebCenter Portal Search

	
Worklists

	
Spaces Application

	
WebCenter Portal Identity Store

	
WebCenter Portal Import and Export

	
WebCenter Portal Upgrade

WebCenter Portal WLST Command Categories

WebCenter Portal WLST commands are grouped into the following categories (Table 10-1).

Most configuration changes made using WebCenter Portal WLST commands are only effective after you restart the Managed Server on which the WebCenter Portal application is deployed. The only exceptions are the External Applications, Portlet Producers, and WebCenter Portal Import and Export WLST commands.

Table 10-1 WLST Command Categories

	Command Category	Description
	
General

	
Manage WebCenter Portal connections.

	
Analytics

	
Manage Analytics Collector connections and configure the Analytics Collector (on WC_Utilities).

	
Activity Graph

	
Manage Activity Graph metadata and provider configuration (on WC_Utilities).

	
Activity Stream

	
Archive and restore activity stream data generated for a WebCenter Portal application.

	
Content Repository

	
Manage content repository connections and configure the Documents service.

	
Discussions and Announcements

	
Manage discussions server connections and configure the Discussion and Announcement services.

	
External Applications

	
Manage external application connections.

	
Instant Messaging and Presence

	
Manage instant messaging and presence server connections and configure the Instant Messaging and Presence service.

	
Mail

	
Manage mail server connections and configure the Mail service.

	
Notifications

	
Manage settings for the Notifications service.

	
Personal Events

	
Manage personal event server connections.

	
Personalization

	
Manage personalization server connections.

	
Portlet Producers

	
Manage portlet producers.

	
RSS News Feeds

	
Manage proxy settings for the RSS service.

	
Search - Oracle SES Search

	
Manage Oracle Secure Enterprise Search (SES) connections and other search-related properties.

	
Search - Oracle SES Search Crawlers

	
Manage Oracle Secure Enterprise Search (SES) crawlers.

	
Search - WebCenter Portal Search

	
Manage search crawlers for the Spaces application.

	
Worklists

	
Manage BPEL server connections.

	
Spaces Application

	
Manage Spaces workflow settings and space metadata.

	
WebCenter Portal Identity Store

	
Configure options for searching a WebCenter Portal application's identity store.

	
WebCenter Portal Import and Export

	
Export and import Spaces applications, individual spaces and space templates, as well as producer metadata.

General

Use the General commands, listed in Table 10-2, to manage WebCenter Portal connections.

Configuration changes made using these WebCenter Portal WLST commands are only effective after restarting the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

Table 10-2 General WLST Commands

	Use This Command...	To...	Use with WLST...
	
deleteConnection

	
Delete any WebCenter Portal connection.

	
Online

	
setWebCenterServiceFrameworkConfig

	
Set WebCenter Portal Service Framework configuration properties.

	
Online

	
getWebCenterServiceFrameworkConfig

	
Return WebCenter Portal Framework configuration properties.

	
Online

	
webcenterErrorOccurred

	
Return status information for the last WebCenter Portal command executed.

	
Online

	
getWebCenterConnectionTypes

	
List all the WebCenter Portal connection types.

	
Online

	
cloneWebCenterManagedServer

	
Clone a WebCenter Portal Managed Server.

	
Online

deleteConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes a named WebCenter Portal connection.

If you use deleteConnection to delete a WSRP or PDK-Java producer connection (instead of using deregisterWSRPProducer or deregisterPDKJavaProducer), unused secondary connections will remain, which you might want to remove. For example, when you delete a WSRP producer connection, its associated Web Service connection remains; when you delete a PDK-Java producer connection, its associated URL connection remains.

deleteConnection cannot be used to delete WebCenter Portal connections for the Personalization service. Instead, use deleteWCPSCMISConnection, deleteWCPSActivityGraphConnection, deleteWCPSPeopleConnection, or deleteWCPSCustomConnection.

Syntax

deleteConnection(appName, name, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

name

	
Connection name.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example deletes a WebCenter Portal connection.

wls:/weblogic/serverConfig> deleteConnection(appName='webcenter', name='MyConnection')

setWebCenterServiceFrameworkConfig

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Sets WebCenter Portal Service Framework configuration properties, such as the Resource Action Handler class and display as popup properties.

Syntax

setWebCenterServiceFrameworkConfig(appName, [resourceActionHandlerClassName],
[resourceActionHandlerDisplayInPopup], [server], [applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always webcenter.

	

resourceActionHandlerClassName

	
Optional. Class used by the Service Framework Resource Action Handler.

	
resourceActionHandlerDisplayInPopup

	
Optional. Indicates whether the Resource Action Handler displays resources in a popup or inline. Valid options are 1 (true) and 0 (false).

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example sets the WebCenter Portal Service Framework Resource Action Handler class to my.company.ResourceActionHandler:

wls:/wc_domain/domainRuntime> setWebCenterServiceFrameworkConfig(appName='webcenter',
 resourceActionHandlerClassName='my.company.ResourceActionHandler')
Successfully set the WebCenter Portal service framework configuration.
Resource Action Handler class: my.company.ResourceActionHandler
To effect connection changes, you must restart the managed server on which the
WebCenter Portal application is deployed.

The following example sets only the WebCenter Portal Service Framework Resource Action Handler display as popup value to 1 (true):

wls:/wc_domain/domainRuntime>
setWebCenterServiceFrameworkConfig(appName='webcenter', resourceActionHandlerDisplayInPopup=1)
Successfully set the WebCenter Portal service framework configuration.
Resource Action Handler Display In Popup: true
To effect connection changes, you must restart the managed server on which the WebCenter Portal application is deployed.

getWebCenterServiceFrameworkConfig

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Returns WebCenter Portal Service Framework configuration property settings, such as:

	
resourceActionHandlerClassName: Class currently used by the WebCenter Portal Service Framework Resource Action Handler

	
resourceActionHandlerDisplayInPopup: Indicates whether the Resource Action Handler displays resources in a popup or inline. Valid options are 1 (true) and 0 (false).

Syntax

getWebCenterServiceFrameworkConfig(appName, [server], [applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always webcenter.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example returns the service framework resource action handler class and display as popup properties, for the named application.

 wls:/weblogic/serverConfig>getWebCenterServiceFrameworkConfig(appName='webcenter')
Resource Action Handler Class: my.company.ResourceActionHandler
Resource Action Handler Display In Popup: true

webcenterErrorOccurred

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Returns the status of last WebCenter Portal command executed.

Use the webcenterErrorOccurred command to determine the status of the last WebCenter Portal command executed. The command returns 1 if an error occurred or 0 otherwise.

Syntax

webcenterErrorOccurred ()

Example

The following example returns 1 if an error occurred:

wls:/mydomain/serverConfig> webcenterErrorOccurred()

getWebCenterConnectionTypes

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Lists all the WebCenter Portal connection types.

Syntax

getWebCenterConnectionTypes (appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always webcenter.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example returns WebCenter Portal connection types for an application named webcenter:

wls:/mydomain/serverConfig> getWebCenterConnectionTypes(appName='webcenter')

cloneWebCenterManagedServer

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Creates a new managed server with the same resources as a specified, base managed server.

Syntax

cloneWebCenterManagedServer(baseManagedServer, newManagedServer, newManagedServerPort, [verbose])

	Argument	Definition
	

baseManagedServer

	
Name of the base managed server.

	

newManagedServer

	
Name for the new, clone managed server.

	

newManagedServerPort

	
Port number for the new managed server.

	
verbose

	
Optional. Creates the managed server in verbose mode. Valid values are 1 and 0.

When set to 1, additional progress information displays during the creation process which is useful for diagnostic purposes.

The default is 0.

Example

The following example creates a clone of the WC_CustomPortal managed server. The new managed server is named WC_CustomPortal2:

wls:/weblogic/serverConfig> cloneWebCenterManagedServer(baseManagedServer='WC_CustomPortal', newManagedServer='WC_CustomPortal2', newManagedServerPort=1234)

Analytics

Analytics Collector Connections

Use the commands listed in Table 10-3 to manage Analytics Collector connections for a WebCenter Portal application. Events raised in WebCenter Portal applications using OpenUsage APIs can be sent to an Analytics Collector for use by Analytics and Activity Graph services.

Connection configuration changes made using these WebCenter Portal WLST commands are only effective after your restart the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

Table 10-3 Analytics Collector Connection WLST Commands

	Use this command...	To...	Use with WLST...
	
createAnalyticsCollectorConnection

	
Create a connection to an Analytics Collector for a WebCenter Portal application.

	
Online

	
setAnalyticsCollectorConnection

	
Edit an existing Analytics Collector connection.

	
Online

	
listAnalyticsCollectorConnections

	
List all of the Analytics Collector connections that are configured for a WebCenter Portal application.

	
Online

	
setDefaultAnalyticsCollectorConnection

	
Specify the default (or active) Analytics Collector connection for a WebCenter Portal application.

	
Online

	
listDefaultAnalyticsCollectorConnection

	
Return connection details for the Analytics Collector being used by a WebCenter Portal application.

	
Online

Analytics Collector and Cluster Configuration

Use the commands listed in Table 10-4 to configure event collection properties for the Analytics Collector that is deployed on the WC_Utilities managed server.

If you reconfigure the Analytics Collector or set up clustering, you must restart the managed server on which the Analytic Collector is deployed (WC_Utilities).

Table 10-4 Analytics Collector Configuration WLST Commands

	Use this command...	To...	Use with WLST...
	
setAnalyticsCollectorConfig

	
Set Analytics Collector options, and cluster options if operating a clustered environment.

	
Online

	
listAnalyticsCollectorConfig

	
Return Analytics Collector settings.

	
Online

	
listAnalyticsEventTypes

	
List events currently registered with the Analytics Collector.

	
Online

createAnalyticsCollectorConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Creates a connection to an Analytics Collector for a named WebCenter Portal application.

Events raised in WebCenter Portal applications using OpenUsage APIs can be sent to an Analytics Collector for use by the Analytics and Activity Graph services.

While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used - the default (or active) connection where default=1.

Syntax

createAnalyticsCollectorConnection(appName, connectionName, [isUnicast, collectorhost,
clusterName, collectorPort, isEnabled, timeout, default, server,
applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always webcenter.

	

connectionName

	
Connection name. The name must be unique across all connection types within the WebCenter Portal application.

	

isUnicast

	
Optional. Specifies whether events are sent to a clustered Analytics Collector in multicast mode or whether a single Analytics Collector using unicast communication is required. Valid values are 1 (true) and 0 (false). The default value is 1 (unicast).

	

collectorHost

	
Optional. Host name where the Analytics Collector is running. The default value is localhost.

Only required for unicast communication, that is, where isUnicast='1'.

	

clusterName

	
Optional. Name of the cluster where a clustered Analytics Collector is running.

Only required for multicast communication, that is, where isUnicast=0.

	

collectorPort

	
Optional. Port on which the Analytics Collector listens for events. The default value is 31314.

	

isEnabled

	
Optional. Specifies whether to send analytics events raised using OpenUsage APIs to the Analytics Collector. Valid values 1 (true) and 0 (false). The default value is 0.

Analytics events are sent to the Analytics Collector when isEnabled=1 and default=1.

	

timeout

	
Optional. Length of time (in seconds) to wait for a response from the Analytics Collector. Default value is 30.

Only required for multicast communication, that is, where isUnicast=0.

	

default

	
Optional. Indicates whether this connection is the default (or active) Analytics Collector connection for the WebCenter Portal application. Valid values are 1 (true) and 0 (false). When set to 1, the WebCenter Portal application sends events on this connection. When set to 0, the connection is not used. The default for this argument is 0.

While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one connection is used by Analytics and Activity Graph services—the default (or active) connection.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example creates a connection named MyAnalyticsCollector for a WebCenter Portal application named webcenter. Events are sent to a single Analytics Collector using unicast communication:

wls:/weblogic/serverConfig>createAnalyticsCollectorConnection(appName='webcenter', connectionName='MyAnalyticsCollector', isUnicast=1,
collectorHost='myhost.com', collectorPort=31314, isEnabled=1, timeout=30, default=1)

The following example creates a connection named MyAnalyticsCollector for a WebCenter Portal application named webcenter. Events are sent to a clustered Analytics Collector in multicast mode

wls:/weblogic/serverConfig>createAnalyticsCollectorConnection(appName='webcenter',
connectionName='MyAnalyticsCollector', isUnicast=0, clusterName='collector-cluster',
ccollectorPort=31314, isEnabled=1, timeout=30, default=1)

setAnalyticsCollectorConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Edits an existing Analytics Collector connection for a named WebCenter Portal application.

Events raised in WebCenter Portal applications using OpenUsage APIs can be sent to an Analytics Collector for use by the Analytics and Activity Graph services.

While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used - the default (or active) connection.

Syntax

setAnalyticsCollectorConnection(appName, connectionName, [isUnicast, collectorHost, clusterName, collectorPort, isEnabled, timeout, default, server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always webcenter.

	

connectionName

	
Connection name. The name must be unique (across all connection types within the WebCenter Portal application).

	

isUnicast

	
Optional. Specifies whether events are sent to a clustered Analytics Collector in multicast mode or whether a single Analytics Collector using unicast communication is required.

	

collectorHost

	
Optional. Host name where the Analytics Collector is running. The default value is localhost.

Only required for unicast communication, that is, where isUnicast=1.

	

clusterName

	
Optional. Name of the cluster where a clustered Analytics Collector is running.

Only required for multicast communication, that is, where isUnicast=0.

	

collectorPort

	
Optional. Port on which the Analytics Collector listens for events. The default value is 31314.

	

isEnabled

	
Optional. Specifies whether to send analytics events raised using OpenUsage APIs to the Analytics Collector. Valid values 1 (true) and 0 (false). The default value is false.

Analytics events are sent to the Analytics Collector when isEnabled=1 and default=1.

	

timeout

	
Optional. Length of time (in seconds) to wait for a response from the Analytics Collector. Default value is 30.

Only required for multicast communication, that is, where isUnicast=0.

	

default

	
Optional. Indicates whether this connection is the default (or active) Analytics Collector connection for the WebCenter Portal application. Valid values 1 (true) and 0 (false). When set to 1, the WebCenter Portal application sends events on this connection. When set to 0, the connection is not used. The default for this argument is 0.

While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one connection is used by the Analytics and Activity Graph services— the default (or active) connection.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example updates host and port details for an existing Analytics Collector connection named MyAnalyticsCollector. On this connection, events are sent to a single Analytics Collector in unicast mode:

wls:/weblogic/serverConfig>setAnalyticsCollectorConnection(appName='webcenter', connectionName='MyAnalyticsCollector', collectorHost='myhost.com', collectorPort=31314)

The following example updates cluster, port, and timeout details for an existing Analytics Collector connection named MyAnalyticsCollector. On this connection, events are sent to a clustered Analytics Collector in multicast mode:

wls:/weblogic/serverConfig>setAnalyticsCollectorConnection(appName='webcenter',
connectionName='MyAnalyticsCollector', clusterName='collector-cluster', collectorPort=31314, timeout=60)

listAnalyticsCollectorConnections

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Lists connection names and details for all Analytics Collector connections that are configured for a named WebCenter Portal application.

Syntax

listAnalyticsCollectorConnections(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Examples

The following example lists connection names and details for all the Analytics Collector connections that are currently configured for an application named webcenter.

wls:/weblogic/serverConfig>listAnalyticsCollectorConnections(appName='webcenter')

setDefaultAnalyticsCollectorConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Specifies the default Analytics Collector connection for a named WebCenter Portal application.

The default Analytics Collector connection is used to send events raised in WebCenter Portal applications using OpenUsage APIs to an Analytics Collector for use by Analytics and Activity Graph services.

While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used - the default (or active) connection.

Syntax

setDefaultAnalyticsCollectorConnection(appName, name, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

name

	
Name of an existing Analytics Collector connection.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example configures the connection MyAnalyticsCollector for events raised in an application named webcenter:

wls:/weblogic/serverConfig> setDefaultAnalyticsCollectorConnection
(appName='webcenter', name='myAnalyticsCollector')

listDefaultAnalyticsCollectorConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Return details about the Analytics Collector connection that is currently configured for a WebCenter Portal application.

While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used—the default (or active) connection.

Syntax

listDefaultAnalyticsCollectorConnection(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Examples

The following example returns details about the Analytics Collector connection that is currently configured for a WebCenter Portal application named webcenter:

wls:/weblogic/serverConfig>listDefaultAnalyticsCollectorConnection(appName='webcenter')

setAnalyticsCollectorConfig

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Configure the Analytics Collector deployed on the WC_Utilities managed server. Additionally, in a clustered environment, use this commands to set cluster settings.

Syntax

setAnalyticsCollectorConfig(appName, [collectorHost, defaultPort, maxPort, broadcastType, clusterEnabled, clusterName, clusterBroadcastFrequency, server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Analytics Collector application.

	

collectorHost

	
Optional. Name of the host on which the Analytics Collector is running. The default value is localhost.

	

defaultPort

	
Optional. Default port number on which the Analytics Collector listens. The default value is 31314.

	

maxPort

	
Optional. Highest port number that the Analytics Collector can use when allocating a listener.

This property is mostly used in a clustered environment where more than one collector is running in the same box. Each collector listens for incoming UDP messages on a free port within a given port range. The range is from the default port number to the maxPort number.

	

broadcastType

	
Optional. Indicates the network channel on which the Analytics Collector broadcasts a 'heartbeat' to advertise its location to event producers. Valid values are Broadcast and Multicast.

	
Broadcast - use the standard network broadcast channel.

	
Multicast - use a special fixed multicast address.

	

clusterEnabled

	
Optional. Indicates whether the Analytics Collector is deployed in a cluster. Valid values are 1 (true) and 0 (false).

If set to 1, clusterName must also be defined.

	

clusterName

	
Optional. Name of the Analytics Collector cluster.

Only required when clusterEnabled=1

	

clusterBroadcastFrequency

	
Optional. Broadcast Analytics Collector listening information every 'n' seconds. The default frequency is 10 seconds.

The Analytics Collector periodically broadcasts a 'heartbeat' to advertise its location (hostName). In a clustered environment, WebCenter Portal applications use the heartbeat to determine which Analytics Collectors are available.

	

server

	
Optional. Name of the managed server where the Analytics Collector is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the application is deployed.

Example

The following example changes the default port to 31315:

wls:/weblogic/serverConfig>setAnalyticsCollectorConnection(appName='analytics-collector', defaultPort=31315)

listAnalyticsCollectorConfig

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Returns Analytics Collector settings.

Syntax

listAnalyticsCollectorConfig(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Analytics Collector application.

	

server

	
Optional. Name of the managed server where the Analytics Collector is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the application is deployed.

Examples

The following command lists current settings for the Analytics Collector that is configured for an application named webcenter:

wls:/weblogic/serverConfig>listAnalyticsCollectorConfig(appName='analytics-collector')

This is sample output for an Analytics Collector in a clustered environment:

CollectorHost = localhost
CollectorDefaultPort = 31314
CollectorMaximumPort = 31318
BroadcastType = Multicast
ClusterEnabled = 1
ClusterName = myCluster
ClusterBroadcastFrequency = 55

This is sample output for a standalone Analytics Collector:

CollectorHost = localhost
CollectorDefaultPort = 31314
CollectorMaximumPort = 31314
BroadcastType = Multicast
ClusterEnabled =
ClusterName =
ClusterBroadcastFrequency = 55

listAnalyticsEventTypes

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Lists all the events currently registered with the Analytics Collector.

Syntax

listAnalyticsEventTypes(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Analytics Collector application.

	

server

	
Optional. Name of the managed server where the Analytics Collector is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the application is deployed.

Examples

The following command lists all the events currently registered with the Analytics Collector for use by a WebCenter Portal application named webcenter:

wls:/weblogic/serverConfig>listAnalyticsEventTypes(appName='webcenter')

Sample output:

{HTTP://WWW.ORACLE.COM/ANALYTICS/WC}DISCUSSION_ANNOUNCEMENTEDIT
{HTTP://WWW.ORACLE.COM/ANALYTICS/WC}DISCUSSION_TOPICDELETE
{HTTP://WWW.ORACLE.COM/ANALYTICS/WC}PAGEEDIT
{HTTP://WWW.ORACLE.COM/ANALYTICS/WC}DOCLIB_DOCUMENTCREATE
{HTTP://WWW.ORACLE.COM/ANALYTICS/WC}LOGINS
...

Activity Graph

Use the commands listed in Table 10-5 to manage Activity Graph system properties and metadata.

Configuration changes made using the setAGProperty WLST command are only effective after your restart the managed server on which the Activity Graph application is deployed (WC_Utilities). For all other commands, configuration changes are effective immediately.

See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

Table 10-5 Activity Graph WLST Commands

	Use this command...	To...	Use with WLST...
	
exportAGMetadata

	
Export Activity Graph metadata definitions to an XML file.

	
Online

	
importAGMetadata

	
Import Activity Graph metadata definitions from an XML file.

	
Online

	
exportAGProviderConfiguration

	
Export provider configuration, for a given provider, to an Activity Graph metadata definition file.

	
Online

	
deleteAllAGMetadata

	
Delete all the Activity Graph metadata that is defined for a WebCenter application.

	
Online

	
deleteAGAction

	
Delete the metadata for an action registered with Activity Graph.

	
Online

	
deleteAGNodeClass

	
Delete the metadata for a node class registered with Activity Graph.

	
Online

	
deleteAGSimilarityCalculation

	
Delete the metadata for a similarity calculation registered with Activity Graph.

	
Online

	
deleteAGRankCalculation

	
Delete the metadata for a rank calculation registered with Activity Graph.

	
Online

	
deleteAGProviderAssignment

	
Delete the metadata for a provider assignment registered with Activity Graph.

	
Online

	
deleteAGQRPPRegistration

	
Delete the metadata for a QRPP registered with Activity Graph.

	
Online

	
deleteAGProviderConfiguration

	
Delete the metadata for a provider configuration registered with Activity Graph.

	
Online

	
renameAGAction

	
Change the URN of an action registered with Activity Graph.

	
Online

	
renameAGNodeClass

	
Change the URN of a node class registered with Activity Graph.

	
Online

	
setAGProperty

	
Set a system property for Activity Graph.

	
Online

	
getAGProperty

	
Return the current setting for a given Activity Graph property.

	
Online

	
setAGPasswordCredential

	
Set credentials (user name and password) for an Activity Graph property.

	
Online

exportAGMetadata

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Exports Activity Graph metadata definitions to an XML file.

Syntax

exportAGMetadata(appName, directoryPath, definitionFileName,
includeProviderConfigurations,[server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

directoryPath

	
Destination directory for the XML file that will be generated. If you specify a directory that does not exist then it will be created.

	

definitionFileName

	
Name for the XML file that will be generated. If a file with the same name exists in the destination directory then it will be overwritten.

	

includeProviderConfigurations

	
Determines whether the export includes provider configuration metadata. Valid values are 1 (true) and 0 (false).

Provider configurations are a subset of Activity Graph metadata that you may want to manage separately from the other metadata.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example exports Activity Graph metadata definitions to an XML file named ag-metadata.xml, at the specified location:

wls:/weblogic/serverConfig> exportAGMetadata(appName='activitygraph-engines',
directoryPath='/scratch/myAGmetadata', definitionFileName='ag-metadata.xml',
includeProviderConfigurations='1')

importAGMetadata

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Imports Activity Graph metadata definitions from an XML file.

On import, new Activity Graph metadata definitions are created on the target and existing definitions are overwritten.

Syntax

importAGMetadata(appName, definitionFilePath, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

definitionFilePath

	
Relative path to the XML file containing metadata definitions. For example, metadata/import-metadata.xml.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example imports Activity Graph metadata definitions from a file name import-metadata.xml:

wls:/weblogic/serverConfig> importAGMetadata(appName='activitygraph-engines', definitionFilePath='metadata/import-metadata.xml')

exportAGProviderConfiguration

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Exports provider configuration, for a given provider, to an Activity Graph metadata definition file.

Syntax

exportAGProviderConfiguration(appName, directoryPath, definitionFileName, urn, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

directoryPath

	
Destination directory for the XML file that will be generated. If you specify a directory that does not exist, then it will be created.

	

definitionFilePath

	
Name for the XML file that will be generated. If a file with the same name exists in the destination directory then it will be overwritten. Example

	

urn

	
URN for the Activity Graph provider to export.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example exports configuration information for the Activity Graph provider oracle.webcenter.activitygraph.analytics to an XML file named 'ag-provider-config.xml, at the specified location:

wls:/weblogic/serverConfig> exportAGProviderConfiguration(appName='activitygraph-engines',
directoryPath='/scratch/myAGmetadata',
definitionFileName='ag-provider-config.xml',
urn='oracle.webcenter.activitygraph.analytics')

deleteAllAGMetadata

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes all the Activity Graph metadata that is defined for a WebCenter Portal application. The delete operation is immediate and non-reversible.

You can use this command in conjunction with the WLST command importAGMetadata to completely re-install Activity Graph metadata.

Note: Any data in the relation store, similarity store, and rank store will be deleted the next time the Activity Graph engines run.

Syntax

deleteAllAGMetadata(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes all existing Activity Graph metadata:

wls:/weblogic/serverConfig> deleteAllAGMetadata(appName='activitygraph-engines')

deleteAGAction

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for an action that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.

	
Note:

Any data in the relation store that is associated with the action will be deleted the next time the Activity Graph engines run.

Syntax

deleteAGAction(appName, urn, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

urn

	
URN for the Activity Graph action to delete.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes Activity Graph metadata for the connect action:

wls:/weblogic/serverConfig> deleteAGAction(appName='activitygraph-engines', urn='connect')

deleteAGNodeClass

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for a node class that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.

	
Note:

Any data in the relation store that is associated with the node class will be deleted the next time the Activity Graph engines run.

Syntax

deleteAGNodeClass(appName, urn, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

urn

	
URN for the Activity Graph node class to delete.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes Activity Graph metadata for the node class WC.wiki-page action:

wls:/weblogic/serverConfig> deleteAGNodeClass(appName='activitygraph-engines', urn='WC.wiki-page')

deleteAGSimilarityCalculation

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for a similarity calculation that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.

Syntax

deleteAGSimilarityCalculation(appName, urn, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

urn

	
URN for the Activity Graph similarity calculation to delete.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes Activity Graph metadata for the similarity calculation item-edit:

wls:/weblogic/serverConfig> deleteAGSimilarityCalculation(appName='activitygraph-engines', urn='item-edit')

deleteAGRankCalculation

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for a rank calculation that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.

Syntax

deleteAGRankCalculation(appName, urn, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

urn

	
URN for the Activity Graph rank calculation to delete.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes Activity Graph metadata for the activity-rank calculation:

wls:/weblogic/serverConfig> deleteAGRankCalculation(appName='activitygraph-engines', urn='activity-rank')

deleteAGProviderAssignment

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for a provider assignment that is currently registered with Activity Graph, that is, a provider assignment defined by the unique triple combination (action, sourceClass, trgClass). The delete operation is immediate and non-reversible.

Syntax

deleteAGProviderAssignment(appName, actionURN, srcClasURN, trgClassURN [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

actionURN

	
URN for the action.

	

srcClassURN

	
URN for the source node class.

	

trgClassURN

	
URN for the target node class.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes Activity Graph metadata for the provider assignment specified:

wls:/weblogic/serverConfig> deleteAGRProviderAssignment(appName='activitygraph-engines', actionURN='connect',
srcClassURN='WC.user', trgClassURN='WC.user')

deleteAGQRPPRegistration

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for a QRPP (Query Result Post Processor) that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.

Syntax

deleteAGQRPPRegistration(appName, urn [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

urn

	
URN for the QRPP to delete.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes Activity Graph metadata for a QRPP named Event store metadata QRPP:

wls:/weblogic/serverConfig> deleteAGQRPPRegistration(appName='activitygraph-engines', urn='Event store metadata QRPP')

deleteAGProviderConfiguration

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Deletes the metadata for a provider configuration. The delete operation is immediate and non-reversible.

Syntax

deleteAGProviderConfiguration(appName, urn [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

urn

	
URN for the Activity Graph provider to delete.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example deletes configuration information for the Activity Graph provider oracle.webcenter.activitygraph.analytics:

wls:/weblogic/serverConfig> deleteAGProviderConfiguration(appName='activitygraph-engines', urn='oracle.webcenter.activitygraph.analytics')

renameAGAction

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Changes the URN of an action that is currently registered with Activity Graph. Any data in the relation store that is associated with the action is preserved.

	
Note:

This command does not delete the action and create an action with a different name as this causes data associated with the original action to be deleted.

Syntax

renameAGAction(appName, currentURN, newURN,[server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

currentURN

	
Current action URN.

	

newURN

	
New action URN.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example changes the connect action URN to people-connect:

wls:/weblogic/serverConfig> renameAGAction(appName='activitygraph-engines', currentURN='connect', newURN='connect')

renameAGNodeClass

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Changes the URN of a node class that is currently registered with Activity Graph. Any data in the relation store that is associated with the node class is preserved.

	
Note:

This command does not delete the node class and create a node class with a different name as this would cause data associated with the original node class to be deleted.

Syntax

renameAGNodeClass(appName, currentURN, newURN,[server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

currentURN

	
Current node class URN.

	

newURN

	
New node class URN.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example changes the WC.user node class URN to WC.people:

wls:/weblogic/serverConfig> renameAGNodeClass(appName='activitygraph-engines', currentURN='WC.user', newURN='WC.people')

setAGProperty

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Sets a system property for Activity Graph. This command sets a value based on the property's datatype (String, Integer, Float, Boolean).

Activity Graph system properties include settings for:

	
Oracle Secure Enterprise Search (SES) Admin API Web service connection (oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.url and oracle.webcenter.activitygraph.providers.datasources.ses.soap.query.url)

	
Engine configuration (oracle.webcenter.activitygraph.rankengine.enabled)

See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for a list of system properties and their datatypes.

Configuration changes made using the setAGProperty WLST command are only effective after your restart the managed server on which the Activity Graph application is deployed (WC_Utilities).

Syntax

setAGProperty(appName, propertyName, propertyValue, propertyType,[server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

propertyName

	
Name of the Activity Graph property.

	

propertyValue

	
Value for the Activity Graph property.

	

propertyType

	
Datatype of the property. Valid values are: String, Int, Float or Boolean.

Values are case sensitive.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example enables the Rank Engine:

wls:/weblogic/serverConfig> setAGProperty(appName='activitygraph-engines',
propertyName='oracle.webcenter.activitygraph.rankengine.enabled',
propertyValue='true', propertyType='boolean')

getAGProperty

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Returns the current setting for a given Activity Graph property.

See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for a list of valid system properties.

Syntax

getAGProperty(appName, propertyName, propertyType [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

propertyName

	
Name of the Activity Graph property.

	

propertyType

	
Datatype of the property. Valid values are: String, Int, Float or Boolean.

Values are case sensitive.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example returns the current value of the system property oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.url:

wls:/weblogic/serverConfig> getAGProperty(appName='activitygraph-engines',
propertyName='oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.url', propertyType='String')

setAGPasswordCredential

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Sets credentials (user name and password) for an Activity Graph credential property.

See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for a list of properties with the PasswordCredential datatype, for example, oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.credential.

Syntax

setAGPasswordCredentialProperty(appName, propertyName, userName, password,[server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the Activity Graph application in which to perform this operation—always activitygraph-engines.

	

propertyName

	
Name of the Activity Graph property that specifies credentials (and has PasswordCredential datatype).

	

userName

	
User name associated with the credential property.

	

password

	
Password associated with the user name specified.

	

server

	
Optional. Name of the managed server where the application is deployed. For example, WC_Utilities.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed.

Example

The following example sets user name and password credentials for the Oracle SES Admin tool:

wls:/weblogic/serverConfig> setAGProperty(appName='activitygraph-engines',
propertyName='oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.credential',
userName='myname', password='GuessWhat')

Activity Stream

Use the commands listed in Table 10-6 to archive and restore activity stream data generated for a WebCenter Portal application.

Configuration changes made using these WebCenter Portal WLST commands are only effective after your restart the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

Table 10-6 Activity Stream WLST Commands

	Use this command...	To...	Use with WLST...
	
archiveASByDate

	
Archive activity stream data that is older than a specified date.

	
Online

	
archiveASByDeletedObjects

	
Archive activity stream data associated with deleted objects.

	
Online

	
archiveASByClosedSpaces

	
Archive activity stream data associated with Spaces that are currently closed.

	
Online

	
archiveASByInactiveSpaces

	
Archive activity stream data associated with Spaces that have been inactive since a specified date.

	
Online

	
restoreASByDate

	
Restore archived activity stream data from a specified date into production tables.

	
Online

	
truncateASArchive

	
Truncates activity stream archive data.

	
Online

archiveASByDate

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Archives activity stream data that is older than a specified date.

This command moves data from production tables to archive tables. Exceptions include WC_ACTOR_DETAIL and WC_OBJECT_DETAIL—data in these tables is copied to archive tables rather than moved.

Rows in WC_OBJECT_DETAIL that are not used by any activity element are deleted.

Syntax

archiveASByDate(appName, year, month, day, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

year

	
Year before which to archive activity stream data. For example, 2009.

	

month

	
Month before which to archive activity stream data. For example, enter 1 for January, 2 for February, and so on.

	

day

	
Day of the month before which to archive activity stream data.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example archives activity stream data that is older than October 1, 2009:

wls:/weblogic/serverConfig> archiveASByDate(appName='webcenter', year=2009, month=10, day=1)

archiveASByDeletedObjects

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Archives activity stream data associated with deleted objects.This command moves data from production tables to archive tables, except for WC_ACTOR_DETAIL—data in this table is copied to the archive table rather than moved.

Rows in WC_OBJECT_DETAIL that satisfy the criteria (in this case, deleted objects) are deleted.

Syntax

archiveASByDeletedObjects(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example archives activity stream data associated with deleted objects:

wls:/weblogic/serverConfig> archiveASByDeletedObjects(appName='webcenter')

archiveASByClosedSpaces

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Archives activity stream data associated with Spaces that are currently closed.

This command moves data from production tables to archive tables, except for WC_ACTOR_DETAIL—data in this table is copied to the archive table rather than moved. Rows in WC_OBJECT_DETAIL that satisfy the criteria (in this case, objects involved in activities of Spaces that are closed) are deleted.

Syntax

archiveASByClosedSpaces(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example archives activity stream data associated with Spaces that are currently closed:

wls:/weblogic/serverConfig> archiveASByClosedSpaces(appName='webcenter')

archiveASByInactiveSpaces

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Archives activity stream data associated with spaces that have been inactive since a specified date. An inactive space is an open or closed space in which there has been no activity since the specified date.

This command moves data from production tables to archive tables, except for WC_ACTOR_DETAIL—data in this table is copied to the archive table rather than moved.Rows in WC_OBJECT_DETAIL that satisfy the criteria (in this case, objects involved in activities of spaces that have been inactive since the specified date) are deleted.

Syntax

archiveASByInactiveSpaces(appName, year, month, day, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

year

	
Year the space became inactive. For example, 2009.

	

month

	
Month the space became inactive. For example, enter 1 for January, 2 for February, and so on.

	

day

	
Day of the month the space became inactive.

	

server

	
Optional. Name of the managed server where the Spaces application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the Spaces application is deployed.

Example

The following example archives activity stream data associated with spaces that have been inactive (no activities have occurred, regardless of open or closed status) since October 1, 2009:

wls:/weblogic/serverConfig> archiveASByInactiveSpaces(appName='webcenter', year=2009, month=10, day=1)

restoreASByDate

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Restores archived activity stream data from a specified date into production tables.

This command moves data from archive tables to production tables, except for WC_ACTOR_DETAIL—data in this table is not restored because data is not deleted from this table during the archive process.

Rows that already exist in the production tables are not changed during the restore process.

Syntax

restoreASByDate(appName, year, month, day, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

year

	
Year from which to restore activity stream data. For example, 2009.

	

month

	
Month from which to restore activity stream data. For example, enter 1 for January, 2 for February, and so on.

	

day

	
Day of the month from which to restore activity stream data.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example restores activity stream data archived since October 1, 2009:

wls:/weblogic/serverConfig>restoreASByDate(appName='webcenter', year=2009, month=10, day=1)

truncateASArchive

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Truncates activity stream archive data.

Syntax

truncateASArchive(appName, [server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Example

The following example truncates activity stream archive data:

wls:/weblogic/serverConfig>truncateASArchive(appName='webcenter')

Content Repository

Use the commands listed in Table 10-7 to manage content repository connections and configure the Documents service for a WebCenter Portal application.

Configuration changes made using these WebCenter Portal WLST commands are only effective after your restart the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

Table 10-7 Content Repository WLST Commands

	Use this command...	To...	Use with WLST...
	
createJCRContentServerConnection

	
Create a connection to an Oracle WebCenter Content repository.

	
Online

	
setJCRContentServerConnection

	
Edit an existing Oracle WebCenter Content repository connection.

	
Online

	
listJCRContentServerConnections

	
List individual or all Oracle WebCenter Content repository connections that are configured for a WebCenter Portal application.

	
Online

	
createJCRPortalConnection

	
Create an Oracle Portal repository connection.

	
Online

	
setJCRPortalConnection

	
Edit an existing Oracle Portal repository connection.

	
Online

	
listJCRPortalConnections

	
List all Oracle Portal connections that are configured for a WebCenter Portal application.

	
Online

	
createJCRFileSystemConnection

	
Create a connection to a file system.

	
Online

	
setJCRFileSystemConnection

	
Edit an existing file system repository connection.

	
Online

	
listJCRFileSystemConnections

	
List individual or all file system connections configured for a WebCenter Portal application.

	
Online

	
createJCRSharePointConnection

	
Create a Microsoft SharePoint 2007 repository connection.

	
Online

	
setJCRSharePointConnection

	
Edit a Microsoft SharePoint 2007 repository connection.

	
Online

	
listJCRSharePointConnections

	
List all Microsoft SharePoint 2007 connections that are configured for a WebCenter Portal application.

	
Online

	
listDocumentsSpacesProperties

	
List properties for the back-end Content Server that is being used by the Spaces application.

	
Online

	
setDocumentsSpacesProperties

	
Modify properties for the back-end Content Server used by the Spaces application.

	
Online

	
deleteDocumentsSpacesProperties

	
Delete properties for the back-end Content Server used by the Spaces application.

	
Online

createJCRContentServerConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Creates a connection to an Oracle WebCenter Content repository for a named WebCenter Portal application.

Syntax

createJCRContentServerConnection(appName, name, socketType, [url, serverHost,
serverPort, keystoreLocation, keystorePassword, privateKeyAlias,
privateKeyPassword, webContextRoot, clientSecurityPolicy, cacheInvalidationInterval, binaryCacheMaxEntrySize,
adminUsername, adminPassword, extAppId, timeout, isPrimary, server,
applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

name

	
Connection name. The name must be unique (across all connection types) within the WebCenter Portal application.

	

socketType

	
Specifies whether Oracle WebCenter Content's Content Server connects on the content server listener port or the Web server filter, and whether the listener port is SSL enabled. Valid values are socket, web, and socketssl. This option has no default.

Choose from:

	
socket—Use an intradoc socket connection to connect to the Content Server. The client IP address must be added to the list of authorized addresses in the Content Server. In this case, the client is the machine on which Oracle WebCenter Portal is running.

	
socketssl—Use an intradoc socket connection to connect to the Content Server. that is secured using the SSL protocol. The client's certificates must be imported in the server's trust store for the connection to be allowed. Because this is the most secure option, this is the recommended option whenever identity propagation is required (for example, in the Spaces application).

	
web—Use an HTTP(S) connection to connect to the Content Server. Note that for the Spaces application, this option is not suitable for the active connection, that is, the back-end Content Server. repository that is being used to store space-specific documents and Home space documents, because it does not allow identity propagation.

	
jaxws—Use a Java API for XML Web Services connection to connect to the Content Server.

	

url

	
Optional. Content Server URL. Required only if socketType is set to web or jaxws. URL should be in the format: http://<hostname>:<port>/<web root>/<plugin root>

For example, http://mycontentserver/cms/idcplg.

	

serverHost

	
Optional. Host name of the machine where the Content Server is running. Required if socketType is set to socket or socketssl.

	

serverPort

	
Optional. Port on which the Content Server listens. Required if socketType is set to socket or socketssl:

	
Socket—Port specified for the incoming provider in the server.

	
Socket SSL—Port specified for the sslincoming provider in the server.

This property corresponds to the IntradocServerPort setting in the Content Server configuration file, which defaults to port 4444.

	

keystoreLocation

	
Optional. Location of key store that contains the private key used to sign the security assertions. Required only if socketType is set to socketssl.

The key store location must be an absolute path.

	

keystorePassword

	
Optional. Password required to access the key store. Required only if socketType is set to socketssl.

	

privateKeyAlias

	
Optional. Client private key alias in the key store. The key is used to sign messages to the server. The public key corresponding to this private key must be imported in the server keystore.

Required only if socketType is set to socketssl. The value for this argument must be a string that contains neither special characters nor white space.

	

privateKeyPassword

	
Optional. Password to be used with the private key alias in the key store. Required only if socketType is set to socketssl.

	

webContextRoot

	
Optional. Web server context root for the Content Server. Use the format /<context_root>. For example, /cs.

When specified, several Oracle WebCenter Content features based on iFrame are available in the WebCenter Portal application. This includes:

	
Associating a content profile with files when uploading new or updated files to Content Server.

For more information, see "Uploading New Files" and "Uploading a New Version of an Existing File" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

	
Using the document review functionality available in Oracle AutoVue.

For more information, see "Reviewing and Collaborating on Documents Using AutoVue" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

	
Editing advanced document properties.

For more information, see "Working with File Properties" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

	
Viewing folder and file workflow details.

For more information, see "Viewing Workflow Information" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

	
Previewing files in a slide viewer.

For more information, see "Opening a File" in Oracle Fusion Middleware User's Guide for Oracle WebCenter.

	
Site Studio integration

For more information, see Oracle Fusion Middleware User's Guide for Oracle WebCenter.

webContextRoot is only applicable when IDENTITY_PROPAGATION is used for authentication, that is, when extAppId is set to an empty string.

Note: To fully enable these Oracle WebCenter Content features you must access the WebCenter Portal application through Oracle HTTPS Server (OHS) to expose Content Server and the WebCenter Portal application under the same host and port. Both the WebCenter Portal application and Content Server must also use single sign on. For information about setting up OHS to front-end WebCenter Portal applications, see "Content Server - Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

If your WebCenter Portal application is connected to multiple Content Servers, Oracle recommends that each Content Server has a unique Web Server Context Root so that OHS re-direction works correctly.

	

clientSecurityPolicy

	
Optional. Client security policy to be used when the socketType is jaxws. For example: oracle/wss11_saml_token_with_message_protection_service_policy

	

cacheInvalidationInterval

	
Optional. Frequency between checks for external Content Server content changes (in minutes). WebCenter Portal automatically clears items that have changed from the cache. Defaults to 0 which means that cache invalidation is disabled. The minimum interval is 2 minutes.

	

binaryCacheMaxEntrySize

	
Optional. Maximum cacheable size (in bytes) for Content Server binary documents. Documents larger than this size are not cached by WebCenter Portal. Defaults is 102400 bytes (100K).

Tune this value based on your machine's memory configuration and the types of binary documents that you expect to cache.

	

adminUsername

	
Optional. User name with administrative rights for this Content Server instance. This user will be used to fetch content type information based on profiles and track document changes for cache invalidation purpose. Defaults to sysadmin.

	

adminPassword

	
Optional. Password for the Content Server administrator specified in adminUsername. Required when socketType is set to web.

	

extAppId

	
Optional. External application used to authenticate users against the Content Server. This value should match the name of an existing external application connection. See also listExtAppConnections. If extAppId is not set, no change is made to the authentication method or external application ID.

If extAppId is set to an empty string, the authentication method used is IDENTITY_PROPAGATION. With this method, the WebCenter Portal application and Content Server use the same identity store to authenticate users. Note that extAppID is mandatory when socketType is set to web.

	

timeout

	
Optional. Length of time allowed to log in to Content Server (in ms) before issuing a connection timeout message. If no timeout is set, there is no time limit for the login operation.

	

isPrimary

	
Optional. Valid string values are 1 (true) and 0 (false). 1 specifies that this connection is the primary connection used by the Documents service. This argument defaults to 0.

In the Spaces application, the primary connection is used to store space-specific content and Home space content.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Examples

The following example creates a socket-based connection to an Oracle WebCenter Content repository running on myhost.com at port 4444. For authentication purposes, an existing external application named myExtApp is used. See also, createExtAppConnection.

wls:/weblogic/serverConfig> createJCRContentServerConnection(appName='webcenter',
name='myContentServerConnection', socketType='socket',
serverHost='myhost.com', serverPort='4444', extAppId='myExtApp',
isPrimary=1)

The following example creates an SSL socket-based connection to an Oracle WebCenter Content repository.

wls:/weblogic/serverConfig> createJCRContentServerConnection(appName='webcenter',
name='myContentServerConnection', socketType='socketssl',
serverHost='myhost.com', serverPort='4444', keystoreLocation='d:/keys/here', keystorePassword='AlphaSquad7',
privateKeyAlias='enigma', privateKeyPassword='S0larPl3x1s',
extAppId='myExtApp')

The following example creates a JAX-WS (Java API for XML Web Services) connection to an Oracle WebCenter Content repository:

wls:/weblogic/serverConfig> createJCRContentServerConnection(appName='webcenter',
name='myContentServerConnection', socketType='jaxws', url='http://myhost.com:9044/idcnativews', clientSecurityPolicy='oracle/wss10_saml_token_client_policy')

setJCRContentServerConnection

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Edits an existing Oracle WebCenter Content repository connection. This command requires that you specify values for appName and name, plus one additional argument.

Syntax

setJCRContentServerConnection(appName, name, [socketType, url, serverHost,
serverPort, keystoreLocation, keystorePassword, privateKeyAlias,
privateKeyPassword, webContextRoot, clientSecurityPolicy,
cacheInvalidationInterval, binaryCacheMaxEntrySize, adminUsername, adminPassword,
extAppId, timeout, isPrimary, server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

name

	
Name of an existing Oracle WebCenter Content repository connection.

	

socketType

	
Optional. Specifies whether the Oracle WebCenter Content's Content Server connects on the content server listener port or the Web server filter, and whether the listener port is SSL enabled. Valid values are socket, web, and socketssl. This option has no default.

Choose from:

	
socket—Use an intradoc socket connection to connect to the Content Server. The client IP address must be added to the list of authorized addresses in the Content Server. In this case, the client is the machine on which Oracle WebCenter Portal is running.

	
socketssl—Use an intradoc socket connection to connect to the Content Server that is secured using the SSL protocol. The client's certificates must be imported in the server's trust store for the connection to be allowed. Because this is the most secure option, this is the recommended option whenever identity propagation is required (for example, in the Spaces application).

	
web—Use an HTTP(S) connection to connect to the Content Server. Note that for the Spaces application, this option is not suitable for the back-end Content Server repository that is being used to store space-specific documents and Home space documents, because it does not allow identity propagation.

	
jaxws—Use a Java API for XML Web Services connection to connect to the Content Server.

	

url

	
Optional. Content Server URL. Required only if socketType is set to web or jaxws. URL should be in the format: http://<hostname>:<port>/<web root>/<plugin root>

For example, http://mycontentserver/cms/idcplg.

	

serverHost

	
Optional. Host name of the machine where the Content Server is running. Required if socketType is set to socket or socketssl.

	

serverPort

	
Optional. Port on which the Content Server listens. Required if socketType is set to socket or socketssl:

	
Socket—Port specified for the incoming provider in the server.

	
Socket SSL—Port specified for the sslincoming provider in the server.

For example, 4444

	

keystoreLocation

	
Optional. Location of key store that contains the private key used to sign the security assertions. Required only if socketType is set to socketssl.

The key store location must be an absolute path.

	

keystorePassword

	
Optional. Password required to access the key store. Required only if socketType is set to socketssl.

	

privateKeyAlias

	
Optional. Client private key alias in the key store. Required only if socketType is set to socketssl. The value for this argument must be a string that contains neither special characters nor white space.

	

privateKeyPassword

	
Optional. Password to be used with the private key alias in the key store. Required only if socketType is set to socketssl.

	

webContextRoot

	
Optional. Web server context root for the Content Server. Use the format /<context_root>. For example, /cs.

When specified, several Oracle WebCenter Content features based on iFrame, such as previewing files in a slide viewer, are available in the WebCenter Portal application.

Note: To fully enable these features you must access the WebCenter Portal application through Oracle HTTPS Server (OHS) to expose Content Server and the WebCenter Portal application under the same host and port. In addition, both the WebCenter Portal application and the Content Server must use single sign on. For information about setting up OHS to front-end WebCenter Portal applications, see "Content Server - Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.

webContextRoot is only applicable when IDENTITY_PROPAGATION is used for authentication, that is, when extAppId is set to an empty string.

	

clientSecurityPolicy

	
Optional. Client security policy to be used when the socketType is jaxws. For example: oracle/wss11_saml_token_with_message_protection_service_policy

	

cacheInvalidationInterval

	
Optional. Frequency between checks for external Content Server content changes (in minutes). WebCenter Portal automatically clears items that have changed from the cache. Defaults to 0 which means that cache invalidation is disabled. The minimum interval is 2 minutes.

	

binaryCacheMaxEntrySize

	
Optional. Maximum cacheable size (in bytes) for Content Server binary documents. Documents larger than this size are not cached by WebCenter Portal. Defaults is 102400 bytes (100K).

Tune this value based on your machine's memory configuration and the types of binary documents that you expect to cache.

	

adminUsername

	
Optional. User name with administrative rights for this Content Server instance. This user will be used to fetch content type information based on profiles and track document changes for cache invalidation purpose. Defaults to sysadmin.

	

adminPassword

	
Optional. Password for the Content Server administrator specified in adminUsername. Required when socketType is set to web.

	

extAppId

	
Optional. External application used to authenticate users against the Content Server. This value should match the name of an existing external application connection. See also listExtAppConnections. If extAppId is not set, no change is made to the authentication method or external application ID.

If extAppId is set to an empty string, the authentication method used is IDENTITY_PROPAGATION. With this method, the WebCenter Portal application and Content Server use the same identity store to authenticate users.

	

timeout

	
Optional. Length of time allowed to log in to Content Server (in ms) before issuing a connection timeout message. If no timeout is set, there is no time limit for the login operation.

	

isPrimary

	
Optional. Valid string values are 1 (true) and 0 (false). 1 specifies that this connection is the primary connection used by the Documents service. This argument defaults to 0.

In the Spaces application, the primary connection is used to store space-specific content and Home space content.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Examples

The following example edits a socket-based connection to an Oracle WebCenter Content repository.

wls:/weblogic/serverConfig>setJCRContentServerConnection(appName='webcenter',
name='myContentServerConnection', socketType='socket',
serverHost='myhost.com', serverPort='4444',
extAppId='myExtApp', isPrimary=1)

The following example edits an SSL socket-based connection to an Oracle WebCenter Content repository.

wls:/weblogic/serverConfig>setJCRContentServerConnection(appName='webcenter',
name='myContentServerConnection', socketType='socketssl',
serverHost='myhost.com', serverPort='8443',
keystoreLocation='d:/keys/here', keystorePassword='T0PS3CR3T',
privateKeyAlias='TekJansen', privateKeyPassword='LadyNocturne',
extAppId='myExtApp', isPrimary=1)

The following example edits a JAX-WS (Java API for XML Web Services) connection to an Oracle WebCenter Content repository:

wls:/weblogic/serverConfig> setJCRContentServerConnection(appName='webcenter',
socketType='jaxws', url='http://myhost.com:9044/idcnativews',
clientSecurityPolicy='oracle/wss10_saml_token_client_policy')

listJCRContentServerConnections

Module: Oracle WebCenter Portal

Use with WLST: Online

Description

Without any arguments, this command lists all of the Oracle WebCenter Content repository connections that are configured for a named WebCenter Portal application.

Syntax

listJCRContentServerConnections(appName, [verbose],
[name, server, applicationVersion])

	Argument	Definition
	

appName

	
Name of the WebCenter Portal application in which to perform this operation.

	

verbose

	
Optional. Displays content repository connection details in verbose mode. Valid options are 1 (true) and 0(false). When set to 1, listJCRContentServerConnections lists all Oracle WebCenter Content repository connections that are configured for a WebCenter Portal application, along with their details. When set to 0, only connection names are listed. This argument defaults to 0.

	

name

	
Optional. Name of an existing Oracle WebCenter Content repository connection. When specified you can view connection details for a specific Oracle WebCenter Content repository connection. If you supply a value for name, you must supply a value for verbose.

	

server

	
Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, WC_Spaces.

Required when applications with the same name are deployed to different servers and also when you have a cluster.

	

applicationVersion

	
Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed.

Examples

The following example lists Oracle WebCenter Content repository connections configured for an application named webcenter.

wls:/weblogic/serverConfig> listJCRContentServerConnections(appName='webcenter')

The following example lists all properties of the Oracle WebCenter Content repository connection named myContentServerConnecti