WebLogic Scripting Tool Command Reference
11g Release 1 (10.3.6)
E13813-12
June 2012
This document describes all of the commands that are available to use with the WebLogic Scripting Tool (WLST). This document includes WLST commands for WebLogic Server, as well as custom WLST commands that can be used to manage installed Oracle Fusion Middleware components.
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference, 11g Release 1 (10.3.6)
E13813-12
Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This preface describes the document accessibility features and conversions used in this guide—WebLogic Scripting Tool Command Reference.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
This section describes the contents and organization of this guide—WebLogic Scripting Tool Command Reference.	
This document describes all of the commands that are available to use with the WebLogic Scripting Tool (WLST). This document includes WLST commands for WebLogic Server, as well as custom WLST commands that can be used to manage installed Oracle Fusion Middleware components.	
Note: Custom WLST commands for a given Oracle Fusion Middleware component are available for use only if the component is installed in the ORACLE_HOME directory.	
This document is written for WebLogic Server administrators and operators who deploy Java EE applications using the Java Platform, Enterprise Edition (Java EE) from Oracle. It is assumed that readers are familiar with Web technologies and the operating system and platform where WebLogic Server is installed.	
This document is organized as follows:	
For information about how to use the WebLogic Scripting Tool, refer to Oracle WebLogic Scripting Tool.	
WLST is one of several interfaces for managing and monitoring WebLogic Server. For information about the other management interfaces, see:	
For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.	
The following sections summarize the WebLogic Server WLST commands, as follows:	
Note: You can list a summary of all online and offline commands from the command-line using the following commands, respectively: help("online") help("offline")	
For information about custom WLST commands for Fusion Middleware (FMW) components, refer to the appropriate chapter in this document. For information on how to run FMW custom commands, see "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide.	
The following tables summarizes each of the WebLogic Server WLST commands, alphabetically by command. This table does not include custom WLST commands for FMW components. For a list of custom commands for a given FMW component, refer to the appropriate chapter in this document.	
Table 2-1 WebLogic Server WLST Command Summary	
This command...	Enables you to...
---	---
Activate changes saved during the current editing session but not yet deployed.	Online
Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the	Online or Offline
Adds a new help command group to those shown by the WLST	Online or Offline
Add a JMX listener to the specified MBean.	Online
Extend the current WebLogic domain using an application or service extension template.	Offline
Assign resources to one or more destinations.	Offline
Cancel an edit session, release the edit lock, and discard all unsaved changes. This operation can be called by any user with administrator privileges, even if the user did not start the edit session.	Online
Navigate the hierarchy of configuration or runtime beans.	Online or Offline
Close the current WebLogic domain.	Offline
Close the current domain template.	Offline
Convert an existing server configuration (Online or Offline
Connect WLST to a WebLogic Server instance.	Online or Offline
Create a configuration bean of the specified type for the current bean.	Online or Offline
Return the current location in the hierarchy.	Online
Navigate to the root of custom MBeans that are registered in the Runtime MBean Server.	Online
Delete an instance of a configuration bean of the specified type for the current configuration bean.	Online or Offline
Deploy an application to a WebLogic Server instance.	Online
Disconnect WLST from a WebLogic Server instance.	Online
Copy the deployment bundle to the specified targets.	Online
Navigate to the last MBean to which you navigated in the domain configuration hierarchy or to the root of the hierarchy,	Online
Navigate to the tree of custom MBeans that are registered in the Domain Runtime MBean Server.	Online
Navigate to the last MBean to which you navigated in the domain runtime hierarchy or to the root of the hierarchy,	Online
Display stack trace from the last exception that occurred while performing a WLST action, and reset the stack trace.	Online or Offline
Display all variables used by WLST, including their name and value.	Online or Offline
Navigate to the last MBean to which you navigated in the configuration edit MBean hierarchy or to the root of the hierarchy,	Online
Encrypt the specified string.	Online
Exit WLST from the user session and close the scripting shell.	Online or Offline
Execute a query against the specified log file.	Offline
exportDiagnosticDataFromServer	Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework (WLDF) data.
Find MBeans and attributes in the current hierarchy.	Online
Return the value of the specified attribute.	Online or Offline
Return the latest	Online
Returns a list of the previously captured diagnostic images.	Online
Return the latest	Online
Return the MBean by browsing to the specified path.	Online
Return the	Online
Return the MBean path for the specified MBean instance.	Online
Return the WebLogic	Online
Invoke a management operation on the current configuration bean.	Online
Determine whether a server restart is required.	Online
Navigates to the JNDI tree for the server to which WLST is currently connected.	Online
List all applications that are currently deployed in the domain.	Online
List all the children MBeans that can be created or deleted for the	Online
Load an application and deployment plan into memory.	Online or Offline
Load SQL files into a database.	Offline
Load property values from a file.	Online and Offline
Look up the specified MBean.	Online
List all child beans and/or attributes for the current configuration or runtime bean.	Online or Offline
Display help from	Online
Migrate services to a target server within a cluster.	Online
Determine whether WLST is connected to Node Manager.	Online
Connect WLST to Node Manager to establish a session.	Online or Offline
Disconnect WLST from a Node Manager session.	Online or Offline
Enroll the machine on which WLST is currently running.	Online
Generates the Node Manager property files,	Online
Kill the specified server instance that was started with Node Manager.	Online or Offline
Return the Node Manager log.	Online or Offline
Return the server output log of the server that was started with Node Manager.	Online or Offline
Return the status of the server that was started with Node Manager.	Online or Offline
Start a server in the current domain using Node Manager.	Online or Offline
Return the Node Manager server version.	Online or Offline
Toggle the display of path information at the prompt.	Online or Offline
Display the current location in the configuration or runtime bean hierarchy.	Online or Offline
Open an existing WebLogic domain for updating.	Offline
Open an existing domain template for WebLogic domain creation.	Offline
Reload classes and redeploy a previously deployed application.	Online
Redirect WLST output to the specified filename.	Online or Offline
Remove a listener that was previously defined.	Online
Resume a server instance that is suspended or in	Online
Save the edits that have been made but have not yet been saved.	Online
saveDiagnosticImageCaptureFile	Downloads the specified diagnostic image capture.
saveDiagnosticImageCaptureEntryFile	Downloads a specific entry from the diagnostic image capture.
Navigate to the last MBean to which you navigated in the runtime MBean hierarchy or to the root of the hierarchy,	Online
Set the specified attribute value for the current configuration bean.	Online or Offline
Set options related to a WebLogic domain creation or update	Offline
Show the changes made by the current user during the current edit session.	Online
Show all listeners that are currently defined.	Online
Gracefully shut down a running server instance or cluster.	Online
Start a Managed Server instance or a cluster using Node Manager.	Online
Start an application, making it available to users.	Online
Start a configuration edit session on behalf of the currently connected user.	Online
Start Node Manager at default port (5556).	Online or Offline
Record all user interactions with WLST; useful for capturing commands to replay.	Online or Offline
Start the Administration Server.	Online or Offline
Returns a map of servers or clusters and their state using Node Manager.	Online
Stop an application, making it un available to users.	Online
Stop the current edit session, release the edit lock, and discard unsaved changes.	Online
Stop Node Manager.	Online or Offline
Stop recording WLST commands.	Online or Offline
Stop the redirection of WLST output to a file.	Online or Offline
Create a user configuration file and an associated key file.	Online
Suspend a running server.	Online
Display a thread dump for the specified server.	Online or Offline
Undeploy an application from the specified servers.	Online
Update an application configuration using a new deployment plan.	Online
Update and save the current domain.	Offline
Unassign applications or services from one or more destinations.	Offline
Revert all unsaved or unactivated edits.	Online
Validate the changes that have been made but have not yet been saved.	Online
Display information about an MBean, such as the attribute names and values, and operations.	Online
Write the domain configuration information to the specified directory.	Offline
Convert WLST definitions and method declarations to a Python (Online or Offline
Writes the domain configuration information to the specified domain template.	Offline
The following table summarizes the WebLogic Server WLST online commands, alphabetically by command. This table does not include custom WLST commands for FMW components. For a list of custom commands for a given FMW component, refer to the appropriate chapter in this document.	
Table 2-2 WebLogic Server WLST Online Command Summary	
This command...	Enables you to...
---	---
Activate changes saved during the current editing session but not yet deployed.	
Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the	
Adds a new help command group to those shown by the WLST	
Add a JMX listener to the specified MBean.	
Cancel an edit session, release the edit lock, and discard all unsaved changes. This operation can be called by any user with administrator privileges, even if the user did not start the edit session.	
Navigate the hierarchy of configuration or runtime beans.	
Convert an existing server configuration (
Connect WLST to a WebLogic Server instance.	
Create a configuration bean of the specified type for the current bean.	
Return the current tree location.	
Navigate to the root of custom MBeans that are registered in the Runtime MBean Server.	
Delete an instance of a configuration bean of the specified type for the current configuration bean.	
Deploy an application to a WebLogic Server instance.	
Disconnect WLST from a WebLogic Server instance.	
Copy the deployment bundle to the specified targets.	
Navigate to the last MBean to which you navigated in the domain configuration hierarchy or to the root of the hierarchy,	
Navigate to the tree of custom MBeans that are registered in the Domain Runtime MBean Server.	
Navigate to the last MBean to which you navigated in the domain runtime hierarchy or to the root of the hierarchy,	
Display stack trace from the last exception that occurred, and reset the trace.	
Display all variables used by WLST, including their name and value.	
Navigate to the last MBean to which you navigated in the configuration edit MBean hierarchy or to the root of the hierarchy,	
Encrypt the specified string.	
Exit WLST from the interactive session and close the scripting shell.	
exportDiagnosticDataFromServer	Execute a query on the server side and retrieves the exported WebLogic Diagnostic Framework (WLDF) data.
Find MBeans and attributes in the current hierarchy.	
Return the value of the specified attribute.	
Return the latest	
Returns a list of the previously captured diagnostic images.	
Return the latest	
Return the MBean by browsing to the specified path.	
Return the	
Return the MBean path for the specified MBean instance.	
Return the WebLogic	
Invoke a management operation on the current configuration bean.	
Determine whether a server restart is required.	
Navigates to the JNDI tree for the server to which WLST is currently connected.	
List all applications that are currently deployed in the domain.	
List all the children MBeans that can be created or deleted for the	
Load an application and deployment plan into memory.	
Load property values from a file.	
Look up the specified MBean.	
List all child beans and/or attributes for the current configuration or runtime bean.	
Display help from	
Migrate services to a target server within a cluster.	
Determine whether WLST is connected to Node Manager.	
Connect WLST to Node Manager to establish a session.	
Disconnect WLST from a Node Manager session.	
Enroll the machine on which WLST is currently running.	
Generates the Node Manager property files,	
Kill the specified server instance that was started with Node Manager.	
Return the Node Manager log.	
Return the server output log of the server that was started with Node Manager.	
Return the status of the server that was started with Node Manager.	
Start a server in the current domain using Node Manager.	
Return the Node Manager server version.	
Toggle the display of path information at the prompt.	
Display the current location in the configuration or runtime bean hierarchy.	
Reload classes and redeploy a previously deployed application.	
Redirect WLST output to the specified filename.	
Remove a listener that was previously defined.	
Resume a server instance that is suspended or in	
Save the edits that have been made but have not yet been saved.	
saveDiagnosticImageCaptureFile	Downloads the specified diagnostic image capture.
saveDiagnosticImageCaptureEntryFile	Downloads a specific entry from the diagnostic image capture.
Navigate to the last MBean to which you navigated in the configuration MBean hierarchy or to the root of the hierarchy,	
Navigate to the last MBean to which you navigated in the runtime MBean hierarchy or to the root of the hierarchy,	
Set the specified attribute value for the current configuration bean.	
Show the changes made by the current user during the current edit session.	
Show all listeners that are currently defined.	
Gracefully shut down a running server instance or cluster.	
Start a Managed Server instance or a cluster using Node Manager.	
Start an application, making it available to users.	
Start a configuration edit session on behalf of the currently connected user.	
Start Node Manager at default port (5556).	
Record all user interactions with WLST; useful for capturing commands to replay.	
Start the Administration Server.	
Returns a map of servers or clusters and their state using Node Manager	
Stop an application, making it un available to users.	
Stop the current edit session, release the edit lock, and discard unsaved changes.	
Stop Node Manager.	
Stop the redirection of WLST output to a file.	
Create a user configuration file and an associated key file.	
Suspend a running server.	
Display a thread dump for the specified server.	
Undeploy an application from the specified servers.	
Revert all unsaved or unactivated edits.	
Update an application configuration using a new deployment plan.	
Validate the changes that have been made but have not yet been saved.	
Display information about an MBean, such as the attribute names and values, and operations.	
Convert WLST definitions and method declarations to a Python (
The following table summarizes the WebLogic Server WLST offline commands, alphabetically by command.	
Table 2-3 WebLogic Server WLST Offline Command Summary	
This command...	Enables you to...
---	---
Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the	
Adds a new help command group to those shown by the WLST	
Extend the current domain using an application or service extension template.	
Assign resources to one or more destinations.	
Navigate the hierarchy of configuration or runtime beans.	
Close the current domain.	
Close the current domain template.	
Convert an existing server configuration (
Connect WLST to a WebLogic Server instance.	
Create a configuration bean of the specified type for the current bean.	
Delete an instance of a configuration bean of the specified type for the current configuration bean.	
Display stack trace from the last exception that occurred while performing a WLST action, and reset the stack trace.	
Display all variables used by WLST, including their name and value.	
Exit WLST from the interactive session and close the scripting shell.	
Execute a query against the specified log file.	
Return the value of the specified attribute.	
Load an application and deployment plan into memory.	
Load SQL files into a database.	
Load property values from a file.	
List all child beans and/or attributes for the current configuration or runtime bean.	
Connect WLST to Node Manager to establish a session.	
Toggle the display of path information at the prompt.	
Display the current location in the configuration or runtime bean hierarchy.	
Open an existing WebLogic domain for updating.	
Open an existing domain template for domain creation.	
Redirect WLST output to the specified filename.	
Set the specified attribute value for the current configuration bean.	
Set options related to a WebLogic domain creation or update.	
Start Node Manager at default port (5556).	
Record all user interactions with WLST; useful for capturing commands to replay.	
Start the Administration Server.	
Stop Node Manager.	
Stop the redirection of WLST output to a file.	
Display a thread dump for the specified server.	
Unassign applications or services from one or more destinations.	
Update and save the current domain.	
Write the domain configuration information to the specified directory.	
Convert WLST definitions and method declarations to a Python (
Writes the domain configuration information to the specified domain template.	
The following sections describe the WLST commands and variables in detail. Topics include:	
Note: It is recommended that you review "Syntax for WLST Commands" in Oracle WebLogic Scripting Tool for command syntax requirements.	
WLST commands are divided into the following categories.	
Table 3-1 WLST Command Categories	
Command Category	Description
---	---
Navigate the hierarchy of configuration or runtime beans and control the prompt display.	
Add the command group help and command help that is displayed by the WLST	
Export diagnostic data.	
Interrogate and edit configuration beans.	
Interrogate WebLogic domains, servers, and variables, and provide configuration bean, runtime bean, and WLST-related information.	
Manage the life cycle of a server instance.	
Start, shut down, restart, and monitor WebLogic Server instances using Node Manager.	
Navigate among MBean hierarchies.	
Use the WLST browse commands, listed in Table 3-2, to navigate the hierarchy of configuration or runtime beans and control the prompt display.	
Table 3-2 Browse Commands for WLST Configuration	
Use this command...	To...
---	---
Navigate the hierarchy of configuration or runtime beans.	Online or Offline
Return the current location in the hierarchy.	Online
Toggle the display of path information at the prompt.	Online or Offline
Display the current location in the hierarchy.	Online or Offline
Command Category: Browse Commands	
Use with WLST: Online or Offline	
Navigates the hierarchy of configuration or runtime beans. This command uses a model that is similar to navigating a file system in a Windows or UNIX command shell. For example, to navigate back to a parent configuration or runtime bean, enter cd('..')	
. The character string ..	
(dot-dot), refers to the directory immediately above the current directory. To get back to the root bean after navigating to a bean that is deep in the hierarchy, enter cd('/')	
.	
You can navigate to beans in the current hierarchy and to any child or instance.	
The cd	
command returns a stub of the configuration or runtime bean instance, if one exists. If you navigate to a type, this command returns a stub of the configuration or runtime bean instance from which you navigated. In the event of an error, the command returns a WLSTException	
.	
Note: The	
Argument	Definition
---	---
mbeanName	Path to the bean in the namespace.
The following example navigates the hierarchy of configuration beans. The first command navigates to the Servers	
configuration bean type, the second, to the myserver	
configuration bean instance, and the last back up two levels to the original directory location.	
Command Category: Browse Commands	
Use with WLST: Online	
Returns the current location in the hierarchy. This command enables you to store the current location in the hierarchy and easily return to it after browsing. In the event of an error, the command returns a WLSTException	
.	
The following example stores the current location in the hierarchy in myTree	
and uses it to navigate back to the Edit MBean hierarchy from the runtime MBean hierarchy on an Administration Server instance.	
Command Category: Browse Commands	
Use with WLST: Online or Offline	
Toggles the display of path information at the prompt, when entered without an argument. This command is useful when the prompt becomes too long due to the length of the path.	
You can also explicitly specify on	
or off	
as an argument to the command. When you specify off	
, WLST hides the WLST prompt and defaults to the Jython prompt. By default, the WLST prompt displays the configuration or runtime navigation path information.	
When you disable the prompt details, to determine your current location in the hierarchy, you can use the pwd	
command, as described in pwd.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
myPrompt	Optional. Hides or displays WLST prompt. Valid values include
The following example hides and then redisplays the path information at the prompt.	
The following example hides the prompt and defaults to the Jython prompt (since the command is run using WLST online), changes the Jython prompt, and then redisplays the WLST prompt. This example also demonstrates the use of the pwd	
command.	
Command Category: Browse Commands	
Use with WLST: Online or Offline	
Displays the current location in the configuration or runtime bean hierarchy.	
This command is useful when you have turned off the prompt display of the path information using the prompt	
command, as described in prompt.	
In the event of an error, the command returns a WLSTException	
.	
The following example displays the current location in the configuration bean hierarchy.	
Use the WLST control commands, listed in Table 3-3, to perform the following tasks:	
connect	
and disconnect	
commands) createDomain	
, readTemplate	
, writeDomain	
, and closeTemplate	
commands) readDomain	
, addTemplate	
, updateDomain	
, and closeDomain	
commands) writeTemplate	
command) Table 3-3 lists the control commands for WLST configuration.	
Table 3-3 Control Commands for WLST Configuration	
Use this command...	To...
---	---
Connect WLST to a WebLogic Server instance.	Online or Offline
Disconnect WLST from a WebLogic Server instance.	Online
Create a new WebLogic domain using the specified template.	Offline
Open an existing domain template for domain creation.	Offline
Write the domain configuration information to the specified directory.	Offline
Close the current domain template.	Offline
Open an existing WebLogic domain for updating.	Offline
Extend the current WebLogic domain using an application or service extension template.	Offline
Update and save the current domain.	Offline
Close the current domain.	Offline
Writes the configuration information to the specified domain template file.	Offline
Exit WLST from the interactive session and close the scripting shell.	Online or Offline
Command Category: Control Commands	
Use with WLST: Offline	
Extends the current WebLogic domain using an application or service extension template. Use the Template Builder to create an application or service extension template. See Oracle WebLogic Server Creating Templates Using the Domain Template Builder.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
templateFileName	Name of the application or service extension template.
The following example opens a WebLogic domain and extends it using the specified extension template, DefaultWebApp.jar	
.	
Command Category: Control Commands	
Use with WLST: Offline	
Closes the current domain. The domain is no longer available for editing once it is closed. In the event of an error, the command returns a WLSTException	
.	
The following example closes the current domain:	
Command Category: Control Commands	
Use with WLST: Offline	
Closes the current domain template. The domain template is no longer available once it is closed. In the event of an error, the command returns a WLSTException	
.	
The following example opens an existing domain template, performs some operations, and then closes the current domain template.	
Command Category: Control Commands	
Use with WLST: Online or Offline	
Connects WLST to a WebLogic Server instance.	
Requires you to provide the credentials (user name and password) of a user who has been defined in the active WebLogic security realm. Once you are connected, a collection of security policies determine which configuration attributes you are permitted to view or modify. (See "Default Security Policies for MBeans" in the WebLogic Server MBean Reference.)	
You can supply user credentials by doing any of the following:	
storeUserConfig	
command to create a user configuration file that contains your credentials in an encrypted form and a key file that WebLogic Server uses to unencrypt the credentials. On subsequent WLST sessions (or in WLST scripts), supply the name of the user configuration file and key file instead of entering the credentials on the command line. This option is recommended if you use WLST in script mode because it prevents you from storing unencrypted user credentials in your scripts. boot.properties	
file. By default, when you create an Administration Server in development mode, WebLogic Server encrypts the credentials that were used to create the server and stores them in a boot.properties	
file. When you create an Administration Server in production mode, no boot.properties	
file is created. If your production domain does not contain a boot.properties	
file, you can create one manually; see "Creating a Boot Identify File for an Administration Server" in Managing Server Startup and Shutdown for Oracle WebLogic Server. When you run the connect	
command, if there is a boot.properties	
file containing the encrypted username and password for the domain, you do not have to enter the username and password to connect to the Administration Server. You do, however, have to specify the name of the Administration Server in the connect	
command.	
Please note:	
connect	
command in a script without specifying the username and password or user configuration file and key file, a WSLTException	
occurs. In interactive mode, you are prompted for the username and password. For more information about invoking WLST, see "Main Steps for Using WLST in Interactive or Script Mode" in Oracle WebLogic Scripting Tool.	
TunnelingEnabled	
attribute is set to true	
for the WebLogic Server instance. For more information, see "TunnelingEnabled" in Oracle WebLogic Server MBean Reference. You can use either of the following workarounds for this issue:	
After successfully connecting to a WebLogic Server instance, all the local variables are initialized.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
username	Optional. Username of the operator who is connecting WLST to the server. If not specified, WLST processes the command as described above.
password	Optional. Password of the operator who is connecting WLST to the server. If not specified, WLST processes the command as described above.
url	Optional. Listen address and listen port of the server instance, specified using the following format:
timeout	Optional. The number of milliseconds that WLST waits for online commands to complete (return). When you invoke a WLST online command, WLST connects to an MBean Server, invokes an MBean server method, and returns the results of the invocation. If the MBean server method does not return within the timeout period, WLST abandons its invocation attempt. Use the following syntax for this argument:
A value of	
userConfigFile	Optional. Name and location of a user configuration file which contains an encrypted username and password. Use the following syntax for this argument:
If not specified, WLST processes the command as described above. When you create a user configuration file, the	
userKeyFile	Optional. Name and location of the key file that is associated with the specified user configuration file and is used to decrypt it. Use the following syntax for this argument:
If not specified, WLST processes the command as described above. See storeUserConfig.	
adminServerName	Optional. Name of the Administration Server for the domain. Causes the connect command to use the credentials that are stored in the Administration Server's
This argument is valid only when you start WLST from a domain directory. If the If not specified, WLST processes the command as described above.	
The following example connects WLST to a WebLogic Server instance. In this example, the Administration Server name defaults to AdminServer	
. Note that a warning is displayed if the SSL or administration port is not used to connect to the server.	
The following example connects WLST to a WebLogic Server instance at the specified URL. In this example, the username and password are passed as variables. This example uses a secure protocol.	
The following example connects WLST to a WebLogic Server instance using a user configuration and key file to provide user credentials.	
The following example shows the prompts that are displayed in interactive mode if you run the command without parameters:	
Command Category: Control Commands	
Use with WLST: Offline	
Creates a WebLogic domain using the specified template.	
Note: If you wish to modify the domain configuration settings when creating a WebLogic domain, see Option 2 in "Editing a Domain (Offline)" in Oracle WebLogic Scripting Tool. The	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
domainTemplate	Name and location of the domain template from which you want to create a domain.
domainDir	Name of the directory to which you want to write the domain configuration information. Oracle recommends that you create all domains for your environment outside of the Middleware home directory. This makes it easier for you to remove an existing installation or install a new version of WebLogic Server without having to recreate your domains and applications.
user	Name of the default user.
password	Password of the default user.
The following example creates a new WebLogic domain using the Avitek MedRec template and sets the default username to weblogic	
and the password to welome1	
. The domain is saved to the following directory: c:/Oracle/Middleware/wlserver_10.3/user_projects/domains/medrec	
.	
Command Category: Control Commands	
Use with WLST: Online	
Disconnects WLST from a WebLogic Server instance. The disconnect	
command does not cause WLST to exit the interactive scripting shell; it closes the current WebLogic Server instance connection and resets all the variables while keeping the interactive shell alive.	
In the event of an error, the command returns a WLSTException	
.	
You can connect to another WebLogic Server instance using the connect	
command, as described in connect.	
Argument	Definition
---	---
force	Optional. Boolean value specifying whether WLST should disconnect without waiting for the active sessions to complete. This argument defaults to
The following example disconnects from a running server:	
Command Category: Control Commands	
Use with WLST: Online or Offline	
Exits WLST from the user session and closes the scripting shell.	
If there is an edit session in progress, WLST prompts you for confirmation. To skip the prompt, set the defaultAnswer	
argument to y	
.	
By default, WLST calls System.exit(0)	
for the current WLST JVM when exiting WLST. If you would like the JVM to exit with a different exit code, you can specify a value using the exitCode	
argument.	
Note: When the WLST exit command is issued within an Ant script, it may also exit the execution of the Ant script. It is recommended that when invoking WLST within an Ant script, you fork a new JVM by specifying	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
defaultAnswer	Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are
exitcode	Optional. Exit code to set when exiting WLST.
The following example disconnects from the user session and closes the scripting shell.	
The following example disconnects from the user session, closes the scripting shell, and sets the error code to 101.	
Command Category: Control Commands	
Use with WLST: Offline	
Opens an existing WebLogic domain for updating.	
WLST offline provides read and write access to the configuration data that is persisted in the config	
directory for the WebLogic domain, or in a domain template JAR created using Template Builder. This data is a collection of XML documents and expresses a hierarchy of management objects.	
When you open a template or WebLogic domain, WLST is placed at the root of the configuration hierarchy for that domain, and the prompt is updated to reflect the current location in the configuration hierarchy. For example:	
For more information, see "Navigating and Interrogating MBeans" in Oracle WebLogic Scripting Tool.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
domainDirName	Name of the WebLogic domain directory that you want to open.
The following example opens the medrec	
domain for editing.	
Command Category: Control Commands	
Use with WLST: Offline	
Opens an existing domain template for domain creation.	
When you open a domain template, WLST is placed into the configuration bean hierarchy for that domain template, and the prompt is updated to reflect the current location in the configuration hierarchy. For example:	
WebLogic Server configuration beans exist within a hierarchical structure. In the WLST file system, the hierarchies correspond to drives; types and instances are directories; attributes and operations are files. WLST traverses the hierarchical structure of configuration beans using commands such as cd	
, ls	
, and pwd	
in a similar way that you would navigate a file system in a UNIX or Windows command shell. After navigating to a configuration bean instance, you interact with the bean using WLST commands. For more information, see "Navigating and Interrogating MBeans" in Oracle WebLogic Scripting Tool.	
Note: Using WLST and a domain template, you can only create and access security information when you are creating a new WebLogic domain. When you are updating a WebLogic domain, you cannot access security information through WLST.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
templateFileName	Name of the JAR file corresponding to the domain template.
The following example opens the medrec.jar	
domain template for WebLogic domain creation.	
Command Category: Control Commands	
Use with WLST: Offline	
Updates and saves the current WebLogic domain. The domain continues to be editable after you update and save it.	
In the event of an error, the command returns a WLSTException	
.	
The following examples opens the medrec domain, performs some operations, and updates and saves the current domain:	
Command Category: Control Commands	
Use with WLST: Offline	
Writes the domain configuration information to the specified directory.	
Once you write the WebLogic domain to file system, you can continue to update the domain template object that exists in memory, and reissue the writeDomain	
command to store the domain configuration to a new or existing file.	
By default, when you write a WebLogic domain, the associated applications are written to WL_HOME	
/user_projects/applications/	
domainname	
, where WL_HOME	
specifies the WebLogic Server home directory and domainname	
specifies the name of the WebLogic domain. This directory must be empty; otherwise, WLST displays an error.	
When you have finished using the domain template object in memory, close it using the closeTemplate	
command. If you want to edit the WebLogic domain that has been saved to disk, you can open it using the readDomain	
command.	
Note: The name of the WebLogic domain is derived from the name of the domain directory. For example, for a domain saved to	
Before writing the domain, you must define a password for the default user, if it is not already defined. For example:	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
domainDir	Name of the directory to which you want to write the domain configuration information.
The following example reads the medrec.jar domain templates, performs some operations, and writes the domain configuration information to the c:/Oracle/Middleware/user_projects/domains/medrec	
directory.	
Command Category: Control Commands	
Use with WLST: Offline	
Writes the domain configuration information to the specified domain template. You can use the domain configuration template to recreate the WebLogic domain.	
Once your write the configuration information to the domain configuration template, you can continue to update the WebLogic domain or domain template object that exists in memory, and reissue the writeDomain	
or writeTemplate	
command to store the domain configuration to a new or existing WebLogic domain or domain template file. For more information, see writeDomain or writeTemplate, respectively.	
In the event of an error, the command returns a WLSTException	
.	
Note: The	
Argument	Definition
---	---
templateName	Name of the domain template to store the domain configuration information.
The following example writes the current domain configuration to the domain template named c:/Oracle/Middleware/user_projects/templates/myTemplate.jar	
.	
Use the WLST customization commands, listed in Table 3-4, to add the command group help and command help that is listed by the WLST help()	
and help('	
commandGroup	
')	
commands. For more information about adding command help to WLST, see "Adding Integrated Help for Custom Commands" in Oracle WebLogic Scripting Tool.	
Table 3-4 Customization Commands for WLST Configuration	
This command...	Enables you to...
---	---
Adds a new help command group to those shown by the WLST	Online or Offline
Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the	Online or Offline
Command Category: Customization Commands	
Use with WLST: Online or Offline	
Adds a new command help group to those shown by the WLST help()	
command, and specifies the resource bundle in which the help information is defined for the group.	
Argument	Definition
---	---
commandGroup	Use a unique name for the command group. Do not use a command group name that is already shown by the WLST
resourceBundleName	Represents either a class name or property resource file name. The resource bundle contains help text for entries for the command group using a standard pattern. The resource bundle name will be passed to The resource bundle must be present in the classpath. See "Adding Integrated Help for Custom Commands" in Oracle WebLogic Scripting Tool for information on how to define the help text for each command group and command. For more information on resourceBundles and localization, refer to
The following example adds the boot	
command group to the list of groups shown by the help()	
command, and specifies that the help text is located in the property resource file 'myhelp':	
The following example adds the boot	
command group to the list of groups shown by the help()	
command, and specifies that the help text is located in the class foo.bar.MyResourceBundleClass	
:	
Command Category: Customization Commands	
Use with WLST: Online or Offline	
Adds new command help for a command to an existing command group. Once added to the group, the command (along with a brief description) is displayed in the command list for the group when you enter the help('commandGroup')	
command. You can also specify whether or not the command is listed by the help('online')	
and help('offline')	
commands.	
Argument	Definition
---	---
commandName	The name of the command as defined in the command group specified by commandGroup.
commandGroup	The commandGroup to which the command belongs.
online	Optional. Boolean value that determines whether or not the command shows up in the
offline	Optional. Boolean value that determines whether or not the command shows up in the
The following example shows how to add the online command bootDB	
to the listing output by the help('boot')	
and help('online')	
commands:	
Use the WLST deployment commands, listed in Table 3-5, to:	
For more information about deploying applications, see Deploying Applications to Oracle WebLogic Server.	
Table 3-5 Deployment Commands for WLST Configuration	
This command...	Enables you to...
---	---
Deploy an application to a WebLogic Server instance.	Online
Copy the deployment bundle to the specified targets.	Online
Return the WebLogic	Online
List all applications that are currently deployed in the WebLogic domain.	Online
Load an application and deployment plan into memory.	Online and Offline
Redeploy a previously deployed application.	Online
Start an application, making it available to users.	Online
Stop an application, making it unavailable to users.	Online
Undeploy an application from the specified servers.	Online
Update an application configuration using a new deployment plan.	Online
Command Category: Deployment Commands	
Use with WLST: Online	
Deploys an application to a WebLogic Server instance.	
The deploy	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException	
.	
Note: If there is an edit session in progress, the	
Argument	Definition
---	---
appName	Name of the application or standalone Java EE module to be deployed.
path	Name of the application directory, archive file, or root of the exploded archive directory to be deployed.
targets	Optional. Comma-separated list of the targets. Each target may be qualified with a Java EE module name (for example,
stageMode	Optional. Staging mode for the application you are deploying. Valid values are
planPath	Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. Valid options include:
options (Continued)	
The following example deploys the businessApp	
application located at c:/myapps/business	
, A default deployment plan is created.	
The deploy	
command returns a WLSTProgress	
object that you can access to check the status of the command. The WLSTProgress	
object is captured in a user-defined variable, in this case, progress	
.	
The previous example stores the WLSTProgress	
object returned in a user-defined variable, in this case, progress	
. You can then use the progress	
variable to print the status of the deploy	
command. For example:	
For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
The following example deploys the demoApp	
application in the archive file located at c:/myapps/demos/app/demoApp.ear	
, targeting the application modules to myserver	
, and using the deployment plan file located in c:/myapps/demos/app/plan/plan.xml.	
WLST waits 120,000 ms for the process to complete.	
The following example deploys the jmsApp	
application located at c:/myapps/demos/jmsApp/demo-jms.xml	
, targeting the application module to a specific target.	
The following example shows how to set the application version (appVersion	
) to a unique identifier to support production (side-by-side) redeployment. This example deploys the demoApp	
application in the archive file located at c:/myapps/demos/app/demoApp.ear	
, and sets the application and archive version numbers to the specified values.	
For more information about production redeployment strategies, see "Redeploying Applications in a Production Environment" in Deploying Applications to Oracle WebLogic Server.	
Command Category: Deployment Commands	
Use with WLST: Online	
Copies the deployment bundle to the specified targets. The deployment bundle includes module, configuration data, and any additional generated code. The distributeApplication	
command does not start deployment.	
The distributeApplication	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
appPath	Name of the archive file or root of the exploded archive directory to be deployed.
planPath	Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the
targets	Optional. Comma-separated list of targets. Each target may be qualified with a Java EE module name (for example,
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see the
The following example loads the BigApp	
application located in the c:/myapps	
directory, and stores the WLSTProgress	
object in a user-defined variable, in this case, progress	
.	
The following example distributes the c:/myapps/BigApp	
application to the myserver	
, oamserver1	
, and oamcluster	
servers, using the deployment plan defined at c:/deployment/BigApp/plan.xml	
.	
The previous example stores the WLSTProgress	
object in a user-defined variable, in this case, progress	
. You can then use the progress	
variable to determine if the distributeApplication	
command has completed. For example:	
For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
Command Category: Deployment Commands	
Use with WLST: Online	
Returns the WebLogic DeploymentManager	
object. You can use the object methods to configure and deploy applications. WLST must be connected to an Administration Server to run this command. In the event of an error, the command returns a WLSTException	
.	
The following example gets the WebLogicDeploymentManager	
object and stores it in the wldm	
variable.	
Command Category: Deployment Commands	
Use with WLST: Online	
Lists all applications that are currently deployed in the WebLogic domain.	
In the event of an error, the command returns a WLSTException	
.	
The following example lists all the applications currently deployed in mydomain	
.	
Command Category: Deployment Commands	
Use with WLST: Online and Offline	
Loads an application and deployment plan into memory. When used in online mode, you can connect only to the Administration Server; you cannot connect to a Managed Server.	
The loadApplication	
command returns a WLSTPlan	
object that you can access to make changes to the deployment plan. For more information about the WLSTPlan	
object, see "WLSTPlan Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
appPath	Name of the top-level parent application directory, archive file, or root of the exploded archive directory containing the application to be loaded.
planPath	Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the
createPlan	Optional. Boolean value specifying whether WLST should create a plan in the application directory if the specified plan does not exist. This argument defaults to
The following example loads the c:/myapps/myejb.jar	
application using the plan file at c:/myplans/myejb/plan.xml	
.	
The previous example stores the WLSTPlan	
object returned in the myPlan	
variable. You can then use myPlan	
variable to display information about the plan, such as the variables. For example:	
For more information about the WLSTPlan	
object, see "WLSTPlan Object" in Oracle WebLogic Scripting Tool.	
Command Category: Deployment Commands	
Use with WLST: Online	
Reloads classes and redeploys a previously deployed application.	
The redeploy	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
In the event of an error, the command returns a WLSTException	
.	
For more information about redeploying applications, see "Overview of Common Deployment Scenarios" in Deploying Applications to Oracle WebLogic Server.	
Argument	Definition
---	---
appName	Name of the application to be redeployed.
planPath	Optional. Name of the deployment plan file. The filename can be absolute or relative to the application directory. This argument defaults to the
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see In addition, the following deployment option can be specified for the
The following example redeploys myApp	
application using the plan.xml	
file located in the c:/myapps	
directory.	
The previous example stores the WLSTProgress	
object returned in a user-defined variable, in this case, progress	
. You can then use the progress	
variable to access the state of the redeploy	
command. For example:	
For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
Command Category: Deployment Commands	
Use with WLST: Online	
Starts an application, making it available to users. The application must be fully configured and available in the WebLogic domain.	
The startApplication	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
appName	Name of the application to start, as specified in the
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see
The following example starts the BigApp	
application with the specified deployment options.	
The previous example stores the WLSTProgress	
object returned in a user-defined variable, in this case, progress	
. You can then use the progress	
variable to access the state of the startApplication	
command. For example:	
For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
Command Category: Deployment Commands	
Use with WLST: Online	
Stops an application, making it unavailable to users. The application must be fully configured and available in the WebLogic domain.	
The stopApplication	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
appName	Name of the application to stop, as specified in the
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see
The following example stops the BigApp	
application.	
The previous example stores the WLSTProgress	
object returned in a user-defined variable, in this case, progress	
. You can then use the progress	
variable to check whether stopApplication	
command is running. For example:	
For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
Command Category: Deployment Commands	
Use with WLST: Online	
Undeploys an application from the specified servers.	
The undeploy	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException	
.	
For more information about deploying and undeploying applications, see "Overview of Common Deployment Scenarios" in Deploying Applications to Oracle WebLogic Server.	
Argument	Definition
---	---
appName	Deployment name for the deployed application.
targets	Optional. List of the target servers from which the application will be removed. If not specified, defaults to all current targets.
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see
The following example removes the businessApp application from all target servers. WLST waits 60,000 ms for the process to complete.	
Command Category: Deployment Commands	
Use with WLST: Online	
Updates an application configuration using a new deployment plan. The application must be fully configured and available in the WebLogic domain.	
The updateApplication	
command returns a WLSTProgress	
object that you can access to check the status of the command. For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
appName	Name of the application, as specified in the current
planPath	Optional. Name of the new deployment plan file. The filename can be absolute or relative to the application directory.
options	Optional. Comma-separated list of deployment options, specified as name-value pairs. For a list of valid deployment options, see
The following example updates the application configuration for BigApp	
using the plan.xml	
file located in c:/myapps/BigApp/newPlan	
.	
The previous example stores the WLSTProgress	
object returned in a user-defined variable, in this case, progress	
. You can then use the progress	
variable to access the state of the updateApplication	
command. For example:	
For more information about the WLSTProgress	
object, see "WLSTProgress Object" in Oracle WebLogic Scripting Tool.	
Use the WLST diagnostics commands, listed in Table 3-6, to retrieve diagnostics data by executing queries against the WebLogic Diagnostics Framework (WLDF) data stores. For more information about WLDF, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
Table 3-6 Diagnostic Command for WLST Configuration	
This command...	Enables you to...
---	---
Execute a query against the specified log file.	Offline
exportDiagnosticDataFromServer	Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework (WLDF) data.
Returns a list of the previously captured diagnostic images.	Online
saveDiagnosticImageCaptureFile	Downloads the specified diagnostic image capture.
saveDiagnosticImageCaptureEntryFile	Downloads a specific entry from the diagnostic image capture.
Command Category: Diagnostics Commands	
Use with WLST: Offline	
Executes a query against the specified log file. The results are saved to an XML file.	
For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
options	Optional. Comma-separated list of export diagnostic options, specified as name-value pairs. Valid options include:
The following example executes a query against the ServerLog	
named myserver.log	
and stores the results in the file named myExport.xml	
.	
Command Category: Diagnostics Commands	
Use with WLST: Online	
Executes a query on the server side and retrieves the exported WebLogic Diagnostic Framework (WLDF) data. The results are saved to an XML file.	
For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
options	Optional. Comma-separated list of export diagnostic options, specified as name-value pairs. Valid options include:
The following example executes a query against the HTTPAccessLog	
and stores the results in the file named myExport.xml	
.	
Command Category: Diagnostics Commands	
Use with WLST: Online	
Returns, as an array of strings, a list of the previously captured diagnostic images that are stored in the image destination directory configured on the server. The default directory is SERVER	
\logs\diagnostic_images	
.	
This command is useful for identifying a diagnostic image capture that you want to download, or for identifying a diagnostic image capture from which you want to download a specific entry.	
For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
The following example returns an array of strings named images	
, which contains a list of the diagnostic image capture files available in the image destination directory, and prints the entries contained in the diagnostic image named diagnostic_image_myserver_2009_06_15_14_58_36.zip	
.	
Command Category: Diagnostics Commands	
Use with WLST: Online	
Downloads the specified diagnostic image capture from the server to which WLST is currently connected.	
For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
imageName	The name of the diagnostic image capture to download.
outputFile	Optional. Local path and file name in which the retrieved diagnostic image capture is to be stored. If not specified, this argument defaults to the value of
The following example retrieves the list of the diagnostic image captures that are stored in the image destination directory on the server. It then shows two uses of the saveDiagnosticImageCaptureFile	
command. In the first use, the first diagnostic image capture in the list is downloaded to the local machine using the default output file name. In the second use, the first diagnostic image capture in the list is downloaded to the local machine in the file mylocalimg.zip	
.	
Command Category: Diagnostics Commands	
Use with WLST: Online	
Downloads a specific entry from the diagnostic image capture that is located on the server to which WLST is currently connected.	
For more information about the WebLogic Server Diagnostic Service, see Configuring and Using the Diagnostics Framework for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
imageName	Name of the diagnostic image capture containing the desired entry.
imageEntryName	Name of the specific entry to be retrieved from the diagnostic image capture. This can be one of the following: image.summary JTA.img JRockitFlightRecorder.jfr FlightRecording.jfr WatchSource.img configuration.img WORK_MANAGER.img JNDI_IMAGE_SOURCE.img APPLICATION.img InstrumentationImageSource.img SAF.img Logging.img PERSISTENT_STORE.img JDBC.img PathService.img JMS.img Deployment.img JVM.img CONNECTOR.img
outputFile	Optional. Local path and file name in which the entry retrieved from the diagnostic image capture is to be stored. If not specified, this argument defaults to the value of
The following example gets the list of diagnostic image captures, then uses the saveDiagnosticImageCaptureEntryFile	
twice. In the first use, this example retrieves the image summary to the local machine using the default output file name. In the second use, it retrieves the image summary to the local machine in the file myimage.summary	
.	
Use the WLST editing commands, listed in Table 3-7, to interrogate and edit configuration beans.	
Note: To edit configuration beans, you must be connected to an Administration Server, and you must navigate to the edit tree and start an edit session, as described in edit and startEdit, respectively. If you connect to a Managed Server, WLST functionality is limited to browsing the configuration bean hierarchy. While you cannot use WLST to change the values of MBeans on Managed Servers, it is possible to use the Management APIs to do so. Oracle recommends that you change only the values of configuration MBeans on the Administration Server. Changing the values of MBeans on Managed Servers can lead to an inconsistent domain configuration. For more information about editing configuration beans, see "Using WLST Online to Update an Existing Domain" in Oracle WebLogic Scripting Tool.	
Table 3-7 Editing Commands for WLST Configuration	
This command...	Enables you to...
---	---
Activate changes saved during the current editing session but not yet deployed.	Online or Offline
Assign resources to one or more destinations.	Offline
Cancel an edit session, release the edit lock, and discard all unsaved changes. This operation can be called by any user with administrator privileges, even if the user did not start the edit session.	Online
Create a configuration bean of the specified type for the current bean.	Online or Offline
Delete an instance of a configuration for the current configuration bean.	Online or Offline
Encrypt the specified string.	Online
Return the value of the specified attribute.	Online or Offline
Return the latest	Online
Invokes a management operation on the current configuration bean.	Online
Determine whether a server restart is required.	Online
Load SQL files into a database.	Offline
Load property values from a file.	Online or Offline
Save the edits that have been made but have not yet been saved.	Online
Set the specified attribute value for the current configuration bean.	Online or Offline
Set options related to a WebLogic domain creation or update.	Offline
Show the changes made to the configuration by the current user during the current edit session.	Online
Starts a configuration edit session on behalf of the currently connected user.	Online
Stop the current edit session, release the edit lock, and discard unsaved changes.	Online
Unassign applications or resources from one or more destinations.	Offline
Revert all unsaved or unactivated edits.	Online
Validate the changes that have been made but have not yet been saved.	Online
Command Category: Editing Commands	
Use with WLST: Online	
Activates changes saved during the current editing session but not yet deployed. This command prints a message if a server restart is required for the changes that are being activated.	
The activate	
command returns the latest ActivationTask	
MBean which reflects the state of changes that a user is currently making or has made recently. You can then invoke methods to get information about the latest Configuration Manager activate task in progress or just completed. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
timeout	Optional. Time (in milliseconds) that WLST waits for the activation of configuration changes to complete before canceling the operation. A value of -1 indicates that the operation will not time out. This argument defaults to 300,000 ms (or 5 minutes).
block	Optional. Boolean value specifying whether WLST should block user interaction until the command completes. This argument defaults to
The following example activates the changes made during the current edit session that have been saved to disk, but that have not yet been activated. WLST waits for 100,000 ms for the activation to complete, and 200,000 ms before the activation is stopped.	
Command Category: Editing Commands	
Use with WLST: Offline	
Assigns resources to one or more destinations.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
sourceType	Type of configuration bean to be assigned. This value can be set to one of the following values:
Guidelines for setting this value are provided below.	
sourceName	Name of the resource to be assigned. Multiple names can be specified, separated by commas, or you can use the wildcard (*) character to specify all resources of the specified type. Specify subdeployments using the following format: Note: A given subdeployment name cannot contain a dot (.), as the
destinationType	Type of destination. Guidelines for setting this value are provided below.
destinationName	Name of the destination. Multiple names can be specified, separated by commas.
Use the following guidelines for setting the sourceType	
and destinationType	
:	
sourceType	
: AppDeployment	
destinationType	
: Target	
sourceType	
: Library	
destinationType	
: Target	
sourceType	
: Name of the specific server, such as JDBCSystemResource	
destinationType	
: Target	
sourceType	
: Server	
destinationType	
: Cluster	
sourceType	
: service	
.SubDeployment	
, where service	
specifies the parent of the SubDeployment	
, such as JMSSystemResource.SubDeployment	
; you can also specify nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment	
) destinationType	
: Target	
sourceType	
: Name of the security type, such as User	
destinationType	
: Name of the destination security type, such as Group	
The following examples:	
myServer	
and myServer2	
to the cluster myCluster	
. myCluster	
. myAppDeployment	
to the target server newServer	
. newUser	
to the group Monitors	
. myQueueSubDeployment	
, which is a child of the JMS resource myJMSResource	
, to the target server newServer	
. MedRecAppScopedJMS.MedRecJMSServer	
, which is a child of the AppDeployment AppDeployment	
, to the target server AdminServer	
. Command Category: Editing Commands	
Use with WLST: Online	
Cancels an edit session, releases the edit lock, and discards all unsaved changes.	
The user issuing this command does not have to be the current editor; this allows an administrator to cancel an edit session, if necessary, to enable other users to start an edit session.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
defaultAnswer	Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are
The following example cancels the current editing session. WLST prompts for verification before canceling.	
Command Category: Editing Commands	
Use with WLST: Online or Offline	
Creates a configuration bean of the specified type for the current bean.	
The create	
command returns a stub for the newly created configuration bean. In the event of an error, the command returns a WLSTException	
.	
Note: Child types must be created under an instance of their parent type. You can only create configuration beans that are children of the current Configuration Management Object (
Please note the following when using the create	
command with WLST online:	
create	
command for runtime MBeans or when WLST is connected to a Managed Server instance. edit	
command before issuing this command. See edit. Please note the following when using the create	
command with WLST offline:	
.	
), forward slash (/	
), or backward slash (\	
). For more information about:	
Argument	Definition
---	---
name	Name of the configuration bean that you are creating.
childMBeanType	Type of configuration bean that you are creating. You can create instances of any type defined in the
baseProviderType	When creating a security provider, specifies the base security provider type, for example,
The following example creates a child configuration bean of type Server	
named newServer for the current configuration bean, storing the stub as server1	
:	
The following example creates an authentication provider security provider called myProvider	
:	
The following example creates a machine named highsec_nm	
and sets attributes for the associated Node Manager.	
Command Category: Editing Commands	
Use with WLST: Online or Offline	
Deletes an instance of a configuration bean of the specified type for the current configuration bean.	
In the event of an error, the command returns a WLSTException	
.	
Note: You can only delete configuration beans that are children of current Configuration Management Object (
Argument	Definition
---	---
name	Name of the child configuration bean to delete.
childMBeanType	Type of the configuration bean to be deleted. You can delete instances of any type defined in the
The following example deletes the configuration bean of type Server	
named newServer:	
Command Category: Editing Commands	
Use with WLST: Online	
Encrypts the specified string. You can then use the encrypted string in your configuration file or as an argument to a command.	
You must invoke this command once for each WebLogic domain in which you want to use the encrypted string. The string can be used only in the WebLogic domain for which it was originally encrypted.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
obj	String that you want to encrypt.
domainDir	Optional. Absolute path name of a WebLogic domain directory. The encrypted string can be used only by the WebLogic domain that is contained within the specified directory. If you do not specify this argument, the command encrypts the string for use in the WebLogic domain to which WLST is currently connected.
The following example encrypts the specified string using the security/SerializedSystemIni.dat	
file in the specified WebLogic domain directory.	
Command Category: Editing Commands	
Use with WLST: Online or Offline	
Returns the value of the specified attribute. For more information about the MBean attributes that can be viewed, see Oracle WebLogic Server MBean Reference. In the event of an error, the command returns a WLSTException	
.	
Note: You can list all attributes and their current values by entering	
Alternatively, you can use the cmo	
variable to perform any get method on the current configuration bean. For example:	
For more information about the cmo	
variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.	
Argument	Definition
---	---
attrName	Name of the attribute to be displayed. You can specify the full pathname of the attribute. If no pathname is specified, the attribute is displayed for the current configuration object.
The following example returns the value of the AdministrationPort	
for the current configuration bean.	
Alternatively, you can use the cmo	
variable:	
Command Category: Editing Commands	
Use with WLST: Online	
Return the latest ActivationTask	
MBean on which a user can get status. The ActivationTask	
MBean reflects the state of changes that a user has made recently in WLST. You can then invoke methods to get information about the latest Configuration Manager activate task in progress or just completed. In the event of an error, the command returns a WLSTException	
.	
Note: If you have activated changes outside of WLST, use the ConfigurationManagerMBean getActivationTasks() method to get access to Activation Tasks created in other tools.	
The following example returns the latest ActivationTask	
MBean on which a user can get status and stores it within the task variable.	
Command Category: Editing Commands	
Use with WLST: Online	
Invokes a management operation on the current configuration bean. Typically, you use this command to invoke operations other than the get	
and set	
operations that most WebLogic Server configuration beans provide. The class objects are loaded through the same class loader that is used for loading the configuration bean on which the action is invoked.	
You cannot use the invoke	
command when WLST is connected to a Managed Server instance.	
If successful, the invoke	
command returns the object that is returned by the operation invoked. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
methodName	Name of the method to be invoked.
parameters	An array of parameters to be passed to the method call.
signatures	An array containing the signature of the action.
The following example invokes the lookupServer	
method on the current configuration bean.	
Command Category: Editing Commands	
Use with WLST: Online	
Determines whether a server restart is required.	
If you invoke this command while an edit session is in progress, the response is based on the edits that are currently in progress. If you specify the name of an attribute, WLST indicates whether a server restart is required for that attribute only.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
attributeName	Optional. Name of a specific attribute for which you want to check if a server restart is required.
The following example specifies whether a server restart is required for all changes made during the current WLST session.	
The following example specifies whether a server restart is required if you edit the ConsoleEnabled	
attribute.	
Command Category: Editing Commands	
Use with WLST: Offline	
Loads SQL files into a database.	
The loadDB	
command loads the SQL files from a template file. This command can only be issued after a domain template or extension template has been loaded into memory (see readDomain and readTemplate).	
Before executing this command, ensure that the following conditions are true:	
To verify that the appropriate SQL files exist, open the domain template and locate the relevant SQL file list, jdbc.index	
, in the _jdbc_	
directory. For example, for Oracle 9i, the SQL file list is located at _jdbc_\Oracle\9i\jdbc.index	
.	
The command fails if the above conditions are not met.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
dbVersion	Version of the database for which the SQL files are intended to be used.
datasourceName	Name of the JDBC data source to be used to load SQL files.
dbCategory	Optional. Database category associated with the specified data source. For more information about the
The following example loads SQL files related to Drop/Create P13N Database Objects	
intended for version 5.1	
of the database, using the p13nDataSource	
JDBC data source.	
Command Category: Editing Commands	
Use with WLST: Online and Offline	
Loads property values from a file and makes them available in the WLST session.	
This command cannot be used when you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
fileName	Properties file pathname.
This example gets and sets the properties file values.	
Command Category: Editing Commands	
Use with WLST: Online	
Saves the edits that have been made but have not yet been saved. This command is only valid when an edit session is in progress. For information about starting an edit session, see startEdit.	
In the event of an error, the command returns a WLSTException	
.	
The following example saves the edits that have not yet been saved to disk.	
Command Category: Editing Commands	
Use with WLST: Online or Offline	
Sets the value of a specified attribute in the current management object. When using WLST offline, this command writes the attribute value to the domain configuration files. When using WLST online, this command sets the value of an MBean attribute. Online changes are written to the domain configuration file when you activate your edits.	
In the event of an error, the command returns a WLSTException	
.	
For information about setting encrypted attributes (all encrypted attributes have names that end with Encrypted	
), see "Writing and Reading Encrypted Configuration Values" in Oracle WebLogic Scripting Tool.	
Note the following when using WLST online:	
cmo	
variable with the following syntax: cmo.set	
attrName	
(
value	
)	
For example, instead of using set('ListenPort', 7011)	
, you can use:	
cmo.setListenPort(7011)	
For more information about the cmo	
variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.	
Argument	Definition
---	---
attrName	Name of the attribute to be set.
value	Value of the attribute to be set. Note: This value should not be enclosed in single or double quotes. See the examples.
The following example sets the ArchiveConfigurationCount	
attribute of DomainMBean	
to 10	
:	
The following example sets the long value of the T1TimerInterval	
attribute of a custom Mbean to 123	
:	
The following example sets the boolean value of the MyBooleanAttribute	
attribute of a custom Mbean t	
o true	
:	
Command Category: Editing Commands	
Use with WLST: Offline	
Sets options related to a WebLogic domain creation or update. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
optionName	Name of the option to set. Available options for domain creation include:
Available options for domain updates include:	
Available options for both domain creation and domain updates include:	
optionValue	Value for the option. Note: Boolean values can be specified as a String (
The following example sets the CreateStartMenu	
option to false	
:	
Command Category: Editing Commands	
Use with WLST: Online	
Shows the changes made to the configuration by the current user during the current edit session. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
onlyInMemory	Optional. Boolean value specifying whether to display only the changes that have not yet been saved. This argument defaults to
The following example shows all of the changes made by the current user to the configuration since the start of the current edit session.	
Command Category: Editing Commands	
Use with WLST: Online	
Starts a configuration edit session on behalf of the currently connected user. You must navigate to the edit configuration MBean hierarchy using the edit	
command before issuing this command. For more information, see edit.	
This command must be called prior to invoking any command to modify the WebLogic domain configuration.	
In the event of an error, the command returns a WLSTException	
.	
Note: WLST automatically starts an edit session if it detects that there is an edit session that is already in progress by the same user, which may have been started via the Administration Console or another WLST session.	
Argument	Definition
---	---
waitTimeInMillis	Optional. Time (in milliseconds) that WLST waits until it gets a lock, in the event that another user has a lock. This argument defaults to 0 ms.
timeOutInMillis	Optional. Timeout (in milliseconds) that WLST waits to release the edit lock. This argument defaults to -1 ms, indicating that this edit session never expires.
exclusive	Optional. Specifies whether the edit session should be an exclusive session. If set to
The following example saves the edits that have not yet been saved to disk.	
Command Category: Editing Commands	
Use with WLST: Online	
Stops the current edit session, releases the edit lock, and discards unsaved changes.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
defaultAnswer	Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are
The following example stops the current editing session. WLST prompts for verification before canceling.	
Command Category: Editing Commands	
Use with WLST: Offline	
Unassign applications or resources from one or more destinations.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
sourceType	Type of configuration bean to be unassigned. This value can be set to one of the following values:
sourceName	Name of the application or resource to be unassigned. Multiple names can be specified, separated by commas, or you can use the wildcard (*) character to specify all resources of the specified type. Specify subdeployments using the following format:
destinationType	Type of destination. Guidelines for setting this value are provided below.
destinationName	Name of the destination. Multiple names can be specified, separated by commas.
Use the following guidelines for setting the sourceType	
and destinationType	
:	
sourceType	
: AppDeployment	
destinationType	
: Target	
sourceType	
: Library	
destinationType	
: Target	
sourceType	
: Name of the security type, such as User	
destinationType	
: Name of the destination security type, such as Group	
sourceType	
: Server	
destinationType	
: Cluster	
sourceType	
: Name of the specific server, such as JDBCSystemResource	
destinationType	
: Target	
sourceType	
: service	
.SubDeployment	
, where service	
specifies the parent of the SubDeployment	
, such as JMSSystemResource.SubDeployment	
; you can also specify nested subdeployments (such as AppDeployment.SubDeployment.SubDeployment	
) destinationType	
: Target	
The following examples:	
myServer	
and myServer2	
from the cluster myCluster	
. myCluster	
. newUser	
from the group Monitors	
. myAppDeployment	
from the target server newServer	
. MedRecAppScopedJMS.MedRecJMSServer	
, which is a child of the AppDeployment AppDeployment	
, from the target server AdminServer	
. Command Category: Editing Commands	
Use with WLST: Online	
Reverts all unsaved or unactivated edits.	
You specify whether to revert all unactivated edits (including those that have been saved to disk), or all edits made since the last save	
operation. This command does not release the edit session.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
unactivatedChanges	Optional. Boolean value specifying whether to undo all unactivated changes, including edits that have been saved to disk. This argument defaults to
defaultAnswer	Optional. Default response, if you would prefer not to be prompted at the command line. Valid values are
The following example reverts all changes since the last save	
operation. WLST prompts for verification before reverting.	
The following example reverts all unactivated changes. WLST prompts for verification before reverting.	
Command Category: Editing Commands	
Use with WLST: Online	
Validates the changes that have been made but have not yet been saved. This command enables you to verify that all changes are valid before saving them.	
In the event of an error, the command returns a WLSTException	
.	
The following example validates all changes that have been made but have not yet been saved.	
Use the WLST information commands, listed in Table 3-8, to interrogate domains, servers, and variables, and provide configuration bean, runtime bean, and WLST-related information.	
Table 3-8 Information Commands for WLST Configuration	
This command...	Enables you to...
---	---
Add a JMX listener to the specified MBean.	Online
Convert an existing server configuration (Online or Offline
Display stack trace from the last exception that occurred while performing a WLST action, and reset the stack trace.	Online or Offline
Display all variables used by WLST, including their name and value.	Online or Offline
Find MBeans and attributes in the current hierarchy.	Online
Return the latest	Online
Return the MBean by browsing to the specified path.	Online
Return the	Online
Return the MBean path for the specified MBean instance.	Online
List all the children MBeans that can be created or deleted for the cmo type.	Online
Look up the specified MBean.	Online
List all child beans and/or attributes for the current configuration or runtime bean.	Online or Offline
Display help from	Online
Redirect WLST output to the specified filename.	Online
Remove a listener that was previously defined.	Online
Show all listeners that are currently defined.	Online
Record all user interactions with WLST; useful for capturing commands to replay.	Online or Offline
Returns a map of servers or clusters and their state using Node Manager.	Online
Stop recording WLST commands.	Online or Offline
Stop redirection of WLST output to a file.	Online or Offline
Create a user configuration file and an associated key file.	Online
Display a thread dump for the specified server.	Online or Offline
Display information about an MBean, such as the attribute names and values, and operations.	Online
Convert WLST definitions and method declarations to a Python (Online or Offline
Command Category: Information Commands	
Use with WLST: Online	
Adds a JMX listener to the specified MBean. Any changes made to the MBean are reported to standard out and/or are saved to the specified configuration file.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
mbean	Name of the MBean or MBean object to listen on.
attributeNames	Optional. Comma-separated list of all attribute names on which you would like to add a JMX listener. This argument defaults to null, and adds a JMX listener for all attributes.
logFile	Optional. Name and location of the log file to which you want to write listener information.This argument defaults to standard out.
listenerName	Optional. Name of the JMX listener. This argument defaults to a WLST-generated name.
The following example defines a JMX listener on the cmo	
MBean for the Notes	
and ArchiveConfigurationCount	
attributes. The listener is named domain-listener	
and is stored in ./listeners/domain.log.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Converts an existing server configuration (config	
directory) to an executable WLST script. You can use the resulting script to re-create the resources on other servers.	
The configToScript command creates the following files:	
When you run the generated script:	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
configPath	Optional. Path to the
pyPath	Optional. Path and filename to which you want to write the converted WLST script. This argument defaults to
overwrite	Optional. Boolean value specifying whether the script file should be overwritten if it already exists. This argument defaults to
propertiesFile	Optional. Path to the directory in which you want WLST to write the properties files. This argument defaults to the pathname specified for the
createDeploymentScript	Optional. Boolean value specifying whether WLST creates a script that performs deployments only. This argument defaults to
The following example converts the configuration to a WLST script config.py	
. By default, the configuration file is loaded from ./config	
, the script file is saved to .config/config.py	
, and the properties files is saved to .config/config.py.properties	
.	
The following example converts server resources configured in the file c:\Oracle\Middleware\user_projects\domains\mydomain\config	
directory to a WLST script c:\Oracle\Middleware\myscripts\config.py	
.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Displays the stack trace from the last exception that occurred while performing a WLST action, and resets the stack trace.	
If successful, the dumpstack	
command returns the Throwable object. In the event of an error, the command returns a WLSTException	
.	
This example displays the stack trace.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Displays all the variables used by WLST, including their name and value. In the event of an error, the command returns a WLSTException	
.	
This example displays all the current variables and their values.	
Command Category: Information Commands	
Use with WLST: Online	
Finds MBeans and attributes in the current hierarchy.	
WLST returns the pathname to the MBean that stores the attribute and/or attribute type, and its value. If searchInstancesOnly	
is set to false	
, this command also searches the MBeanType paths that are not instantiated in the server, but that can be created. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
name	Optional. Name of the attribute to find.
type	Optional. Type of the attribute to find.
searchInstancesOnly	Optional. Boolean value specifying whether to search registered instances only or to also search
The following example searches for an attribute named javaCompiler	
in the current configuration hierarchy.	
The following example searches for an attribute of type JMSRuntime	
in the current configuration hierarchy.	
The following example searches for an attribute named execute	
in the current configuration hierarchy. The searchInstancesOnly	
argument is set to false	
, indicating to also search MBeanTypes that are not instantiated in the server.	
Command Category: Information Commands	
Use with WLST: Online	
Returns the latest ConfigurationManager	
MBean which manages the change process. You can then invoke methods to manage configuration changes across a WebLogic domain. In the event of an error, the command returns a WLSTException	
.	
The following example returns the latest ConfigurationManagerBean	
MBean and stores it in a cm	
variable.	
Command Category: Information Commands	
Use with WLST: Online	
Returns the MBean by browsing to the specified path. In the event of an error, the command returns a WLSTException	
.	
Note: No exception is thrown if the MBean is not found.	
Argument	Definition
---	---
mbeanPath	Path name to the MBean in the current hierarchy.
The following example returns the MBean specified by the path.	
Command Category: Information Commands	
Use with WLST: Online	
Returns the MBeanInfo	
for the specified MBeanType	
or the cmo	
variable. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
mbeanType	Optional.
The following example gets the MBeanInfo	
for the specified MBeanType	
and stores it in the variable svrMbi	
.	
Command Category: Information Commands	
Use with WLST: Online	
Returns the MBean path for the specified MBean instance or ObjectName for the MBean in the current tree. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
mbean	MBean instance or ObjectName for the MBean in the current tree for which you want to return the MBean path.
The following example returns the MBean specified by the path.	
Command Category: Information Commands	
Use with WLST: Online	
Lists all the child MBeans that can be created or deleted for the cmo	
. The cmo	
variable specifies the configuration bean instance to which you last navigated using WLST. For more information about the cmo	
variable, see "Changing the Current Management Object" in Oracle WebLogic Scripting Tool.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
parent	Optional. Parent type for which you want the children types listed.
The following example lists the children MBeans that can be created or deleted for the cmo	
type.	
Command Category: Information Commands	
Use with WLST: Online	
Looks up the specified MBean. The MBean must be a child of the current MBean. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
name	Name of the MBean that you want to lookup.
childMBeanType	Optional. The type of the MBean that you want to lookup.
The following example looks up the specified server, myserver	
, and stores the returned stub in the sbean	
variable.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Lists the attributes, operations, and child management objects of the specified management object.	
In the event of an error, the command returns a WLSTException	
.	
By default, the output is returned as a string and is arranged in three columns:	
returnType	
:	
parameterType	
(
parameterName	
)	
Table 3-9 ls Command Output Information	
Code	Description
---	---
Indicates that the item is a child management object. Like a directory in a UNIX or Windows file system, you can use the	
Indicates that the item is a child management object or an attribute that is readable, assuming that current user has been given read permission by the security realm's policies. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.)	
Indicates that the item is an attribute that is writable, assuming that current user has been given write permission by the security realm's policies. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.)	
Indicates that the item is an operation that can be executed, assuming that current user has been given execute permission by the security realm's policies. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.)	
By default, the output lists all attributes, operations, and child management objects of the current management object. To filter the output or to see a list for a different management object, you can specify a command argument.	
Note: As a performance optimization, when using WLST offline, WebLogic Server does not store most of its default values in the configuration files for the WebLogic domain. In some cases, this optimization prevents entire management objects from being displayed by WLST offline (because WebLogic Server has never written the corresponding XML elements to the domain configuration files). For example, if you never modify the default logging severity level for a WebLogic domain while the domain is active, WLST offline will not display the If you want to change the default value of attributes whose management object is not displayed by WLST offline, you must first use the	
Argument	Definition
---	---
a	Optional. Displays only the attributes of the specified management object (suppresses the display of other items).
c	Optional. Displays only the child management objects of the specified management object (suppresses the display of other items).
o	Optional. Displays only the operations that can be invoked on the specified management object (suppresses the display of other items). This argument is only applicable for WLST online.
moPath	Optional. Path name to the management object for which you want to list attributes, operations, and child management objects. You can specify a pathname that is relative to your current location in the hierarchy or an absolute pathname. With WLST offline, use the forward-slash character (With WLST online, you can list the contents of MBeans in any management hierarchy (see Tree Commands). Use the following syntax to specify the root of a hierarchy:
For example, to list the root of the server runtime hierarchy:	
If you do not specify this argument, the command lists items for the current management object.	
returnMap	Optional. Boolean value that determines whether the command returns values as a map. This argument defaults to
returnType	Optional. Controls the output returned in the map. Specify This argument is valid only if
The following example displays all the child configuration beans, and attribute names and values for the examples	
domain, which has been loaded into memory, in WLST offline mode:	
The following example displays all the attribute names and values in DomainMBean	
:	
The following example displays all the child beans and attribute names and values in Servers	
MBean:	
The following example displays the attribute names and values for the specified MBean path and returns the information in a map:	
Command Category: Information Commands	
Use with WLST: Online	
Displays help from MBeanInfo	
for the current MBean or its specified attribute. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
attrName	Optional. MBean attribute name for which you would like to display help. If not specified, WLST displays helps for the current MBean.
The following example displays help from MBeanInfo	
for the ServerMBean	
bean.	
Command Category: Information Commands	
Use with WLST: Online	
Redirects WLST information, error, and debug messages to the specified filename. Also redirects the output of the dumpStack()	
and dumpVariables()	
commands to the specified filename.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
outputFile	Name of the file to which you want to record the WLST commands. The filename can be absolute or relative to the directory from which you started WLST.
toStdOut	Optional. Boolean value specifying whether the output should be sent to
The following example begins redirecting WLST output to the logs/wlst.log	
file:	
Command Category: Information Commands	
Use with WLST: Online	
Removes a listener that was previously defined. If you do not specify an argument, WLST removes all listeners defined for all MBeans. For information about setting a listener, see addListener.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
mbean	Optional. Name of the MBean or MBean object for which you want to remove the previously defined listeners.
listenerName	Optional. Name of the listener to be removed.
The following example removes the listener named mylistener	
.	
Command Category: Information Commands	
Use with WLST: Online	
Shows all listeners that are currently defined. For information about setting a listener, see addListener.	
In the event of an error, the command returns a WLSTException	
.	
The following example shows all listeners that are currently defined.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Records all user interactions with WLST. This command is useful for capturing commands for replay.	
In the event of an error, the command returns a WLSTException	
.	
This command cannot be used when you are importing WLST as a Jython module, as described in "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool.	
Argument	Definition
---	---
recordFile	Name of the file to which you want to record the WLST commands. The filename can be absolute or relative to the directory from which you invoked WLST.
recordAll	Optional. Boolean value specifying whether to capture all user interactions in the file. This argument defaults to
The following example begins recording WLST commands in the record.py	
file:	
Command Category: Information Commands	
Use with WLST: Online	
Using Node Manager, returns a map of servers or clusters and their state. Node Manager must be running.	
For more information about server states, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
name	Name of the server or cluster for which you want to retrieve the current state.
type	Optional. Type,
The following example returns the state of the Managed Server, managed1	
.	
The following example returns the state of the cluster, mycluster	
.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Stops recording WLST commands. For information about starting a recording, see startRecording.	
In the event of an error, the command returns a WLSTException	
.	
The following example stops recording WLST commands.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Stops the redirection of WLST output to a file, if redirection is in progress.	
In the event of an error, the command returns a WLSTException	
.	
The following example stops the redirection of WLST output to a file:	
Command Category: Information Commands	
Use with WLST: Online	
Creates a user configuration file and an associated key file. The user configuration file contains an encrypted username and password. The key file contains a secret key that is used to encrypt and decrypt the username and password.	
Only the key file that originally encrypted the username and password can be used to decrypt the values. If you lose the key file, you must create a new user configuration and key file pair.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
userConfigFile	Optional. Name of the file to store the user configuration. The pathname can be absolute or relative to the file-system directory from which you started WLST. If you do not specify this argument, the command stores the file in your home directory as determined by your JVM. The location of the home directory depends on the SDK and type of operating system on which WLST is running.The default filename is based on the following pattern:
where The command also prints to standard out the location in which it created the file.	
userKeyFile	Optional. Name of the file to store the key information that is associated with the user configuration file that you specify. The pathname can be absolute or relative to the file-system directory from which you started WLST. If you do not specify this argument, the command stores the file in your home directory as determined by your JVM. The location of the home directory depends on the SDK and type of operating system on which WLST is running. The default filename is based on the following pattern:
where The command also prints to standard out the location in which it created the file.	
nm	Optional. Boolean value specifying whether to store the username and password for Node Manager or WebLogic Server. If set to true, the Node Manager username and password is stored. This argument default to
The following example creates and stores a user configuration file and key file in the default location.	
The following example creates and stores a user configuration file and key file in the specified locations.	
Command Category: Information Commands	
Use with WLST: Online or Offline	
Displays a thread dump for the specified server. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
writeToFile	Optional. Boolean value specifying whether to save the output to a file. This argument defaults to
fileName	Optional. Name of the file to which the output is written. The filename can be absolute or relative to the directory where WLST is running. This argument defaults to
serverName	Optional. Server name for which the thread dump is requested. This argument defaults to the server to which WLST is connected. If you are connected to an Administration Server, you can display a thread dump for the Administration Server and any Managed Server that is running in the WebLogic domain. If you are connected to a Managed Server, you can only display a thread dump for that Managed Server.
The following example displays the thread dump for the current server and saves the output to the Thread_Dump_	
serverName	
file.	
The following example displays the thread dump for the server managedServer	
. The information is not saved to a file.	
Command Category: Information Commands	
Use with WLST: Online	
Displays information about an MBean, such as the attribute names and values, and operations. In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
mbean	MBean for which you want to display information.
The following example displays information about the current MBean, cmo	
.	
Command Category: Information Commands	
Use with WLST: Online	
Converts WLST definitions and method declarations to a Python (.py	
) file to enable advanced users to import them as a Jython module. After importing, the definitions and method declarations are available to other Jython modules and can be accessed directly using Jython syntax. For more information, see "Importing WLST as a Jython Module" in Oracle WebLogic Scripting Tool.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
filePath	Full pathname to the file that you want to save the converted information.
The following example converts WLST to a Python file named wl.py	
.	
wls:/offline>	
writeIniFile("wl.py") The Ini file is successfully written to wl.py	
wls:/offline>	
Use the WLST life cycle commands, listed in Table 3-10, to manage the life cycle of a server instance.	
For more information about the life cycle of a server instance, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.	
Table 3-10 Life Cycle Commands for WLST Configuration	
This command...	Enables you to...
---	---
Migrate services to a target server within a cluster.	Online
Resume a server instance that is suspended or in	Online
Gracefully shut down a running server instance or cluster.	Online
Start a Managed Server instance or a cluster using Node Manager.	Online
Start the Administration Server.	Online or Offline
Suspend a running server.	Online
Command Category: Life Cycle Commands	
Use with WLST: Online	
Migrates the specified services (JTA, JMS, or Server) to a targeted server within a cluster. In the event of an error, the command returns a WLSTException	
.	
For information about migrating services, see "Service Migration" in Using Clusters for Oracle WebLogic Server.	
Argument	Definition
---	---
sname	Name of the server from which the services should be migrated.
destinationName	Name of the machine or server to which you want to migrate the services.
sourceDown	Optional. Boolean value specifying whether the source server is down. This argument defaults to When migrating JTA services, the
destinationDown	Optional. Boolean value specifying whether the destination server is down. This argument defaults to If the destination is not running, and you do not set this argument to When migrating JMS-related services to a non-running server instance, the server instance will activate the JMS services upon the next startup. When migrating the JTA Transaction Recovery Service to a non-running server instance, the target server instance will assume recovery services when it is started.
migrationType	Optional. Type of service(s) that you want to migrate. Valid values include:
This argument defaults to	
The following example migrates all JMS and JTA services on server1	
to the server server2	
. The boolean arguments specify that the source server is down and the destination server is running.	
The following example migrates all Server services on server1	
to the server server2	
. The boolean arguments specify that the source server is down and the destination server is running.	
Command Category: Life Cycle Commands	
Use with WLST: Online	
Resumes a server instance that is suspended or in ADMIN	
state. This command moves a server to the RUNNING	
state. For more information about server states, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
sname	Name of the server to resume. This argument defaults to the server to which WLST is currently connected.
block	Optional. Boolean value specifying whether WLST should block user interaction until the server is resumed. This argument defaults to
The following example resumes a Managed Server instance.	
Command Category: Life Cycle Commands	
Use with WLST: Online	
Gracefully shuts down a running server instance or a cluster. The shutdown	
command waits for all the in-process work to be completed before shutting down the server or cluster.	
You shut down a server to which WLST is connected by entering the shutdown	
command without any arguments.	
When connected to a Managed Server instance, you only use the shutdown	
command to shut down the Managed Server instance to which WLST is connected; you cannot shut down another server while connected to a Managed Server instance.	
WLST uses Node Manager to shut down a Managed Server. When shutting down a Managed Server, Node Manager must be running.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
name	Optional. Name of the server or cluster to shutdown. This argument defaults to the server to which WLST is currently connected.
entityType	Optional. Type,
ignoreSessions	Optional. Boolean value specifying whether WLST should drop all HTTP sessions immediately or wait for HTTP sessions to complete or timeout while shutting down. This argument defaults to
timeOut	Optional. Time (in seconds) that WLST waits for subsystems to complete in-process work and suspend themselves before shutting down the server. This argument defaults to 0 seconds, indicating that there is no timeout.
force	Optional. Boolean value specifying whether WLST should terminate a server instance or a cluster without waiting for the active sessions to complete. This argument defaults to
block	Optional. Boolean value specifying whether WLST should block user interaction until the server is shutdown. This argument defaults to
The following example instructs WLST to shutdown the server to which you are connected:	
The following example instructs WLST to wait 1000 seconds for HTTP sessions to complete or timeout (at 1000 seconds) before shutting down myserver	
:	
The following example instructs WLST to drop all HTTP sessions immediately while connected to a Managed Server instance:	
The following example instructs WLST to shutdown the cluster mycluster	
:	
Command Category: Life Cycle Commands	
Use with WLST: Online	
Starts a Managed Server instance or a cluster using Node Manager. WLST must be connected to the Administration Server and Node Manager must be running.	
For more information about WLST commands used to connect to and use Node Manager, see Node Manager Commands.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
name	Name of the Managed Server or cluster to start.
type	Optional. Type,
url	Optional. Listen address and listen port of the server instance, specified using the following format:
block	Optional. Boolean value specifying whether WLST should block user interaction until the server or cluster is started. This argument defaults to
The following example instructs Node Manager to start a Managed Server instance; the listen address is localhost	
and listen port is 8801	
. WLST returns control to the user after issuing this command, as block	
is set to false	
.	
The following example instructs Node Manager to start a cluster. WLST block user interaction until the cluster is started, as block	
defaults to true	
.	
Command Category: Life Cycle Commands	
Use with WLST: Online or Offline	
Starts the Administration Server. In the event of an error, the command returns a WLSTException	
.	
Note: You can use To start the Administration server for a Fusion Middleware Suite product other than WebLogic Server, use either of the following methods:	
Argument	Definition
---	---
adminServerName	Optional. Name of the Administration Server to start. This argument defaults to
domainName	Optional. Name of the WebLogic domain to which the Administration Server belongs. This argument defaults to
url	Optional. URL of the Administration Server. The URL supplied with the startServer command will override the listen address and port specified in the
username	Optional. Username use to connect WLST to the server. This argument defaults to
password	Optional. Password used to connect WLST to the server. This argument defaults to
domainDir	Optional. Domain directory in which the Administration Server is being started. This argument defaults to the directory from which you started WLST.
block	Optional. Boolean value specifying whether WLST blocks user interaction until the server is started. When
timeout	Optional. Time (in milliseconds) that WLST waits for the server to start before canceling the operation. The default value is 60000 milliseconds. This argument is only applicable when
serverLog	Optional. Location of the server log file. This argument defaults to
systemProperties	Optional. System properties to pass to the server process. System properties should be specified as comma-separated name-value pairs, and the name-value pairs should be separated by equals sign (
jvmArgs	Optional. JVM arguments to pass to the server process. Multiple arguments can be specified, separated by commas.
spaceAsJvmArgsDelimiter	Optional. Boolean value specifying whether JVM arguments are space delimited. The default value is false.
The following example starts the Administration Server named demoServer	
in the demoDomain	
.	
Command Category: Life Cycle Commands	
Use with WLST: Online	
Suspends a running server. This command moves a server from the RUNNING	
state to the ADMIN	
state. For more information about server states, see "Understanding Server Life Cycle" in Managing Server Startup and Shutdown for Oracle WebLogic Server.	
In the event of an error, the command returns a WLSTException	
.	
Argument	Definition
---	---
sname	Optional. Name of the server to suspend. The argument defaults to the server to which WLST is currently connected.
ignoreSessions	Optional. Boolean value specifying whether WLST should drop all HTTP sessions immediately or wait for HTTP sessions to complete or time out while suspending. This argument defaults to
timeOut	Optional. Time (in seconds) the WLST waits for the server to complete in-process work before suspending the server. This argument defaults to 0 seconds, indicating that there is no timeout.
force	Optional. Boolean value specifying whether WLST should suspend the server without waiting for active sessions to complete. This argument defaults to
block	Optional. Boolean value specifying whether WLST blocks user interaction until the server is started. This argument defaults to
The following example suspends a Managed Server instance:	
Use the WLST Node Managers commands, listed in Table 3-11, to start, shut down, restart, and monitor WebLogic Server instances.	
Note: Node Manager must be running before you can execute the commands within this category.	
For more information about Node Manager, see "Using Node Manager" in the Node Manager Administrator's Guide for Oracle WebLogic Server.	
Table 3-11 Node Manager Commands for WLST Configuration	
This command...	Enables you to...
---	---
Determine whether WLST is connected to Node Manager.	Online
Connect WLST to Node Manager to establish a session.	Online or Offline
Disconnect WLST from a Node Manager session.	Online or Offline
Enables the Node Manager on the current computer to manage servers in a specified WebLogic domain.	Online
Generates the Node Manager property files,	Online
Kill the specified server instance that was started with Node Manager.	Online or Offline
Return the Node Manager log.	Online or Offline
Return the server output log of the server that was started with Node Manager.	Online or Offline
Return the status of the server that was started with Node Manager.	Online or Offline
Start a server in the current WebLogic domain using Node Manager.	Online or Offline
Return the Node Manager version.	Online or Offline
Starts Node Manager on the same computer that is running WLST.	Online or Offline
Stops Node Manager.	Online or Offline
Command Category: Node Manager Commands
Use with WLST: Online or Offline
Determines whether WLST is connected to Node Manager. Returns true
or false
and prints a descriptive message. Node Manager must be running before you can execute this command.
In the event of an error, the command returns a WLSTException
.
The following example indicates that WLST is currently connected to Node Manager that is monitoring mydomain
.
The following example indicates that WLST is not currently connected to Node Manager.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
Connects WLST to Node Manager to establish a session. After connecting to Node Manager, you can invoke any Node Manager commands via WLST. Node Manager must be running before you can execute this command.
Note: If you have previously used the |
Once connected, the WLST prompt displays as follows, where domainName
indicates the name of the WebLogic domain that is being managed: wls:/nm/
domainName
>. If you then connect WLST to a WebLogic Server instance, the prompt is changed to reflect the WebLogic Server instance. You can use the nm
command to determine whether WLST is connected to Node Manager, as described in nm.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
username | Username of the operator who is connecting WLST to Node Manager. The username defaults to Note: When running a server in production mode, you must specify the username and password explicitly on the command line to ensure that the appropriate username and password are used when connecting to Node Manager. |
password | Password of the operator who is connecting WLST to Node Manager. The password defaults to Note: When running a server in production mode, you must specify the username and password explicitly on the command line to ensure that the appropriate username and password are used when connecting to Node Manager. |
host | Optional. Host name of Node Manager. This argument defaults to |
port | Optional. Port number of Node Manager. This argument defaults to a value that is based on the Node Manager type, as follows:
|
domainName | Optional. Name of the WebLogic domain that you want to manage. This argument defaults to |
domainDir | Optional. Path of the domain directory to which you want to save the Node Manager secret file (|
nmType | The Node Manager type. Valid values are:
This argument defaults to |
verbose | Optional. Boolean value specifying whether WLST connects to Node Manager in verbose mode. This argument defaults to |
userConfigFile | Optional. Name and location of a user configuration file which contains an encrypted username and password. When you create a user configuration file, the |
userKeyFile | Optional. Name and location of the key file that is associated with the specified user configuration file and is used to decrypt it. (See storeUserConfig.) |
The following example connects WLST to Node Manager to monitor the oamdomain
domain using the default host and port numbers and plain
Node Manager type.
The following example connects WLST to a Node Manager Server instance using a user configuration and key file to provide user credentials.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Disconnects WLST from a Node Manager session.
In the event of an error, the command returns a WLSTException
.
The following example disconnects WLST from a Node Manager session.
Command Category: Node Manager Commands
Use with WLST: Online
Enrolls the machine on which WLST is currently running. WLST must be connected to an Administration Server to run this command; WLST does not need to be connected to Node Manager.
This command downloads the following files from the Administration Server:
nm_password.properties
), which contains the encrypted username and password that is used for server authentication SerializedSystemIni.dat
file This command also updates the nodemanager.domains
file under the WL_HOME
/common/nodemanager
directory with the domain information, where WL_HOME
refers to the top-level installation directory for WebLogic Server.
You must run this command once per WebLogic domain per machine unless that domain shares the root directory of the Administration Server.
If the machine is already enrolled when you run this command, the Node Manager secret file (nm_password.properties
) is refreshed with the latest information from the Administration Server.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
domainDir | Optional. Path of the domain directory to which you want to save the Node Manager secret file (|
nmHome | Optional. Path to the Node Manager home. The |
The following example enrolls the current machine with Node Manager and saves the Node Manager secret file (nm_password properties
) and SerializedSystemIni.dat
file to c:/Oracle/Middleware/mydomain/common/nodemanager/nm_password.properties
. The nodemanager.domains
file is written to WL_HOME
/common/nodemanager
by default.
c:\Oracle\Middleware\mydomain\common\nodemanager
....Command Category: Node Manager Commands
Use with WLST: Online
Generates the Node Manager property files, boot.properties
and startup.properties
, for the specified server. The Node Manager property files are stored relative to the root directory of the specified server. The target root directory must be on the same machine on which you are running the command.
You must specify the name of a server; otherwise, the command will fail.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
serverName | Name of the server for which Node Manager property files are generated. |
The following example generates boot.properties
and startup.properties
in the root directory of the specified server, ms1
.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Kills the specified server instance that was started with Node Manager.
If you do not specify a server name using the serverName
argument, the argument defaults to myServer
, which must match your server name or the command will fail.
If you attempt to kill a server instance that was not started using Node Manager, the command displays an error.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
serverName | Optional. Name of the server to be killed. This argument defaults to |
serverType | Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence. |
The following example kills the server named oamserver
.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Returns the Node Manager log.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
writer | Optional. |
The following example displays the Node Manager log.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Returns the server output log of the server that was started with Node Manager.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
serverName | Optional. Name of the server for which you want to display the server output log. This argument defaults to |
writer | Optional. |
serverType | Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence. |
The following example displays the server output log for the oamserver
server and writes the log output to myWriter
.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Returns the status of the server that was started with Node Manager.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
serverName | Optional. Name of the server for which you want to display the status. This argument defaults to |
serverType | Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence. |
The following example displays the status of the server named oamserver
, which was started with Node Manager.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Starts a server in the current WebLogic domain using Node Manager.
In the event of an error, the command returns a WLSTException
.
Note:
Alternatively, you can use the prps = makePropertiesObject("username=weblogic, password=welcome1") nmStart("AdminServer",props=prps) |
Argument | Definition |
---|---|
serverName | Optional. Name of the server to be started. |
domainDir | Optional. Domain directory of the server to be started. This argument defaults to the directory from which you started WLST. |
props | Optional. System properties to apply to the new server. |
writer | Optional. |
serverType | Optional. The type of server to start. This argument defaults to WebLogic. Another valid option is Coherence. |
The following example starts the managed1
server in the current WebLogic domain using Node Manager.
The following example starts the Administration Server in the specified WebLogic domain using Node Manager. In this example, the prps
variable stores the system property settings and is passed to the command using the props
argument.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
WLST must be connected to Node Manager to run this command.
Returns the Node Manager version.
In the event of an error, the command returns a WLSTException
.
The following example displays the Node Manager version.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
Starts Node Manager on the same computer that is running WLST.
Notes: The WebLogic Server custom installation process optionally installs and starts Node Manager as a Windows service on Windows systems. For more information, see "About Installing Node Manager as a Windows Service" in the Installation Guide for Oracle WebLogic Server. In this case, you do not need to start the Node Manager manually. In production environments, Oracle recommends that you do not use the |
If Node Manager is already running when you invoke the startNodeManager
command, the following message is displayed:
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
verbose | Optional. Boolean value specifying whether WLST starts Node Manager in verbose mode. This argument defaults to |
nmProperties | Optional. Comma-separated list of Node Manager properties, specified as name-value pairs. Node Manager properties include, but are not limited to, the following: |
The following example displays the Node Manager server version.
Command Category: Node Manager Commands
Use with WLST: Online or Offline
Stops the Node Manager process.
Note: In order to stop the Node Manager process, you must have either started Node Manager with |
If the Node Manager is not running when you invoke the stopNodeManager
command, the following message is displayed:
The following example stops the Node Manager process for the base_domain
domain.
Use the WLST tree commands, listed in Table 3-12, to navigate among MBean hierarchies.
Table 3-12 Tree Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Navigate to the root of custom MBeans that are registered in the server. | Online |
| Navigate to the last MBean to which you navigated in the domain configuration hierarchy or to the root of the hierarchy, | Online |
| Navigate to the root of custom MBeans that are registered in the Domain Runtime MBean Server | Online |
| Navigate to the last MBean to which you navigated in the domain runtime hierarchy or to the root of the hierarchy, | Online |
| Navigate to the last MBean to which you navigated in the edit configuration MBean hierarchy or to the root of the hierarchy, | Online |
| Navigates to the JNDI tree for the server to which WLST is currently connected. | Online |
| Navigate to the last MBean to which you navigated in the configuration MBean hierarchy or to the root of the hierarchy, | Online |
| Navigate to the last MBean to which you navigated in the runtime MBean hierarchy or to the root of the hierarchy, | Online |
Command Category: Tree Commands
Use with WLST: Online
Navigates to the root of custom MBeans that are registered in the Runtime MBean Server. WLST navigates, interrogates, and edits custom MBeans as it does domain MBeans; however, custom MBeans cannot use the cmo
variable because a stub is not available.
Note: When navigating to the |
The custom
command is available when WLST is connected to an Administration Server instance or a Managed Server instance. When connected to a WebLogic Integration or WebLogic Portal server, WLST can interact with all the WebLogic Integration or WebLogic Portal server MBeans.
For more information about custom MBeans, see Developing Custom Management Utilities With JMX for Oracle WebLogic Server.
In the event of an error, the command returns a WLSTException
.
Note: You can also navigate to custom MBeans on the Domain Runtime MBean Server using the |
The following example navigates from the configuration MBean hierarchy to the custom MBean hierarchy on a Administration Server instance.
Command Category: Tree Commands
Use with WLST: Online
Navigates to the last MBean to which you navigated in the domain Configuration hierarchy or to the root of the hierarchy, DomainMBean
. This read-only hierarchy stores the configuration MBeans that represent your current WebLogic domain.
In the event of an error, the command returns a WLSTException
.
The following example navigates from the configuration MBean hierarchy to the WebLogic domain Configuration hierarchy on an Administration Server instance.
Command Category: Tree Commands
Use with WLST: Online
Navigates to the domain custom tree of custom MBeans that are registered in the Domain Runtime MBean Server. WLST navigates, interrogates, and edits domain custom MBeans as it does domain MBeans; however, domain custom MBeans cannot use the cmo
variable because a stub is not available.
Note: When navigating to the domainCustom tree, WLST queries all MBeans in the Domain Runtime MBean Server, the Runtime MBean Servers on each server, and potentially the JVM platform MBean server to locate the custom MBeans. Depending on the number of MBeans in the current WebLogic domain, this process make take a few minutes, and WLST may not return a prompt right away. It is recommended that a JMX query Object Name Pattern be specified to limit the amount of searching performed. |
The domainCustom
command is available only when WLST is connected to an Administration Server instance.
For more information about the Domain Runtime MBean Server, see "Understanding WebLogic Server MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.
In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
ObjectNamePattern | A JMX query pattern, such as |
The following example navigates from the configuration MBean hierarchy to the domain custom MBean hierarchy on an Administration Server instance:
Command Category: Tree Commands
Use with WLST: Online
Navigates to the last MBean to which you navigated in the domain Runtime hierarchy or to the root of the hierarchy, DomainRuntimeMBean
. This read-only hierarchy stores the runtime MBeans that represent your current WebLogic domain.
In the event of an error, the command returns a WLSTException
.
The following example navigates from the configuration MBean hierarchy to the domain Runtime hierarchy on an Administration Server instance.
Command Category: Tree Commands
Use with WLST: Online
Navigates to the last MBean to which you navigated in the edit configuration MBean hierarchy or to the root of the hierarchy, DomainMBean
. This writable hierarchy stores all of the configuration MBeans that represent your current WebLogic domain.
Note: To edit configuration beans, you must be connected to an Administration Server. If you connect to a Managed Server, WLST functionality is limited to browsing the configuration bean hierarchy. While you cannot use WLST to change the values of MBeans on Managed Servers, it is possible to use the Management APIs to do so. Oracle recommends that you change only the values of configuration MBeans on the Administration Server. Changing the values of MBeans on Managed Servers can lead to an inconsistent domain configuration. For more information about editing configuration beans, see "Using WLST Online to Update an Existing Domain" in Oracle WebLogic Scripting Tool. |
In the event of an error, the command returns a WLSTException
.
The following example illustrates how to navigate from the server configuration MBean hierarchy to the editable copy of the domain configuration MBean hierarchy, in an Administration Server instance.
Command Category: Tree Commands
Use with WLST: Online
Navigates to the JNDI tree for the server to which WLST is currently connected. This read-only tree holds all the elements that are currently bound in JNDI.
In the event of an error, the command returns a WLSTException.
The following example navigates from the runtime MBean hierarchy to the Domain JNDI tree on an Administration Server instance.
Command Category: Tree Commands
Use with WLST: Online
Navigates to the last MBean to which you navigated in the configuration MBean hierarchy or to the root of the hierarchy, DomainMBean
.
This read-only hierarchy stores the configuration MBeans that represent the server to which WLST is currently connected. The MBean attribute values include any command-line overrides that a user specified while starting the server.
In the event of an error, the command returns a WLSTException
.
For more information, see "Navigating Among MBean Hierarchies" in Oracle WebLogic Scripting Tool.
The following example navigates from the domain runtime MBean hierarchy to the configuration MBean hierarchy on an Administration Server instance.
Command Category: Tree Commands
Use with WLST: Online
Navigates to the last MBean to which you navigated in the runtime MBean hierarchy or to the root of the hierarchy, ServerRuntimeMBean
. This read-only hierarchy stores the runtime MBeans that represent the server to which WLST is currently connected.
In the event of an error, the command returns a WLSTException
.
The following example navigates from the configuration MBean hierarchy to the runtime MBean hierarchy on an Administration Server instance.
Table 3-13 describes WLST variables and their common usage. All variables are initialized to default values at the start of a user session and are changed according to the user interaction with WLST.
Table 3-13 WLST Variables
Variable | Description | Example |
---|---|---|
cmgr | The | wls:/mydomain/edit> cmgr.getCurrentEditor() 'weblogic' |
cmo | Current Management Object. The WLST sets the variable to the current WLST path. For example, when you change to the serverConfig hierarchy, The variable is available in all WLST hierarchies except custom and jndi. | wls:/mydomain/edit> cmo.setAdministrationPort(9092) |
connected | Boolean value specifying whether WLST is connected to a running server. WLST sets this variable to | wls:/mydomain/serverConfig> print connected false |
domainName | Name of the WebLogic domain to which WLST is connected. | wls:/mydomain/serverConfig> print domainName mydomain |
domainRuntimeService |
| wls:/mydomain/serverConfig> domainService.getServerName() 'myserver' |
editService |
| wls:/mydomain/edit> dc = editService.getDomainConfiguration() |
exitonerror | Boolean value specifying whether WLST terminates script execution when it encounters an exception. This variable defaults to | wls:/mydomain/serverConfig> print exitonerror true |
home | Represents the local MBeanHome. | wls:/mydomain/serverConfig> print home weblogic.rmi.internal.BasicRemoteRef - hostID: '-hostID:[7001,7001,-1,-1,-1,-1,-1]:mydomain:AdminServer', oid: '260', channel: 'null' |
isAdminServer | Boolean value specifying whether WLST is connected to a WebLogic Administration Server instance. WLST sets this variable to | wls:/mydomain/serverConfig> print isAdminServer true |
mbs |
| wls:/mydomain/serverConfig> mbs.isRegistered(ObjectName('mydomain: Name=mydomain,Type=Domain')) |
recording | Boolean value specifying whether WLST is recording commands. WLST sets this variable to | wls:/mydomain/serverConfig> print recording true |
runtimeService |
| wls:/mydomain/serverConfig> sr=runtimeService.getServerRuntime() |
serverName | Name of the server to which WLST is connected. | wls:/mydomain/serverConfig> print serverName myserver |
typeService |
| wls:/mydomain/serverConfig> mi=typeService.getMBeanInfo('weblogic.management.configuration.ServerMBean') |
username | Name of user currently connected to WLST. | wls:/mydomain/serverConfig> print username weblogic |
version | Current version of the running server to which WLST is connected. | wls:/mydomain/serverConfig> print version WebLogic Server 9.0 Thu Aug 31 12:15:50 PST 2005 778899 |
The following sections describe the Oracle Fusion Middleware Infrastructure Security custom WLST commands in detail. Topics include:
For additional information about Oracle Platform Security Services, see Oracle Fusion Middleware Security Guide.
Note: To use the Infrastructure Security custom WLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. |
WLST security commands are divided into the following categories:
Table 4-1 WLST Command Categories
Command Category | Description |
---|---|
| View and manage audit policies and the audit repository configuration |
| View and manage wallets, JKS keystores, and SSL configuration for Oracle HTTP Server, Oracle WebCache, Oracle Internet Directory, and Oracle Virtual Directory components. |
Oracle Identity Federation Commands | View and manage configuration for Oracle Identity Federation |
Directory Integration Platform Commands | For information on DIP tools, see "Directory Integration Platform Tools" in the Oracle Fusion Middleware User Reference for Oracle Identity Management |
| Manage domain and credential domain stores and migrate domain policy store. |
Oracle Access Manager Commands | Manage OAM-related components, such as authorization providers, identity asserters, and SSO providers. |
Use the WLST commands listed in Table 4-2 to view and manage audit policies and the audit repository configuration.
Table 4-2 WLST Audit Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Display the mBean name for a non-Java EE component. | Online |
| Display audit policy settings. | Online |
| Update audit policy settings. | Online |
| Display audit repository settings. | Online |
| Update audit repository settings. | Online |
| List audit events for one or all components. | Online |
| Export a component's audit configuration. | Online |
| Import a component's audit configuration. | Online |
For more information, see the Oracle Fusion Middleware Security Guide.
Online command that displays the mbean name for non-Java EE components.
This command displays the mbean name for non-Java EE components given the instance name, component name, component type, and the name of the Oracle WebLogic Server on which the component's audit mbean is running. The mbean name is a required parameter to other audit WLST commands when managing a non-Java EE component.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are ohs, oid, ovd, and WebCache. |
| Specifies the name of the Oracle WebLogic Server. |
The following interactive command displays the mBean name for an Oracle Internet Directory:
Online command that displays the audit policy settings.
This command displays audit policy settings including the filter preset, special users, custom events, maximum log file size, and maximum log directory size. The component mbean name is required for non-Java EE components like Oracle Internet Directory and Oracle Virtual Directory.
Note: You can obtain a non-Java EE component's MBean name using the getNonJavaEEAuditMBeanName command. |
Argument | Definition |
---|---|
| Specifies the name of the component audit MBean for non-Java EE components. |
| Requests the audit policy for a specific component registered in the audit store. If not specified, the audit policy in |
The following command displays the audit settings for a Java EE component:
The following command displays the audit settings for MBean CSAuditProxyMBean
:
Online command that updates an audit policy.
Online command that configures the audit policy settings. You can set the filter preset, add or remove users, and add or remove custom events. The component mbean name is required for non-Java EE components like Oracle Internet Directory and Oracle Virtual Directory.
Note: You can obtain a non-Java EE component's MBean name using the getNonJavaEEAuditMBeanName command. |
Argument | Definition |
---|---|
| Specifies the name of the component audit MBean for non-Java EE components. |
| Specifies the filter preset to be changed. |
| Specifies the special users to be added. |
| Specifies the special users to be removed. |
| Specifies the custom events to be added. |
| Specifies the custom events to be removed. |
| Specifies the component definition type to be updated. If not specified, the audit configuration defined in jps-config.xml is modified. |
| Specifies the maximum size of the log directory. |
| Specifies the maximum size of the log file. |
| Specifies the |
| Specifies the |
| Specifies a component definition file under the 11g Release 1 (11.1.1.6) metadata model. This parameter is required if you wish to create/update an audit policy in the audit store for an 11g Release 1 (11.1.1.6) metadata model component, and the filter preset level is set to “Custom”. |
The following interactive command sets audit policy to None
level, and adds users user2
and user3
while removing user1
from the policy:
The following interactive command adds login events while removing logout events from the policy:
The following interactive command sets audit policy to a Low
level:
The following command sets a custom filter to audit the CheckAuthorization
event:
Online command that displays audit repository settings.
This command displays audit repository settings for Java EE components and applications (for other components like Oracle Internet Directory, the repository configuration resides in opmn.xml). Also displays database configuration if the repository is a database type.
The following command displays audit repository configuration:
Online command that updates audit repository settings.
This command sets the audit repository settings for Java EE components and applications (for other components like Oracle Internet Directory, the repository is configured by editing opmn.xml
).
Argument | Definition |
---|---|
| If |
| Specifies the name of the data source. |
| Specifies intervals at which the audit loader kicks off. |
The following command switches from a file repository to a database repository:
The following interactive command changes audit repository to a specific database and sets the audit loader interval to 14 seconds:
Online command that displays a component's audit events.
This command displays a component's audit events and attributes. For non-Java EE components, pass the component mbean name as a parameter. Java EE applications and services like Oracle Platform Security Services (OPSS) do not need the mbean parameter. Without a component type, all generic attributes applicable to all components are displayed.
Note: You can obtain a non-Java EE component's MBean name using the getNonJavaEEAuditMBeanName command. |
Argument | Definition |
---|---|
| Specifies the name of the component MBean. |
| Specifies the component type to limit the list to all events of the component type. |
The following command displays audit events for the Oracle Platform Security Services component:
The following command displays audit events for Oracle HTTP Server:
The following command displays all audit events:
Online command that exports a component's audit configuration.
This command exports the audit configuration to a file. For non-Java EE components, pass the component mbean name as a parameter. Java EE applications and services like Oracle Platform Security Services (OPSS) do not need the mbean parameter.
Note: You can obtain a non-Java EE component's MBean name using the getNonJavaEEAuditMBeanName command. |
Argument | Definition |
---|---|
| Specifies the name of the non-Java EE component MBean. |
| Specifies the path and file name to which the audit configuration should be exported. |
| Specifies that only events of the given component be exported to the file. If not specified, the audit configuration in |
The following interactive command exports the audit configuration for a component:
The following interactive command exports the audit configuration for a Java EE component; no mBean is specified:
Online command that imports a component's audit configuration.
This command imports the audit configuration from an external file. For non-Java EE components, pass the component mbean name as a parameter. Java EE applications and services like Oracle Platform Security Services (OPSS) do not need the mbean parameter.
Note: You can obtain a non-Java EE component's MBean name using the getNonJavaEEAuditMBeanName command. |
Argument | Definition |
---|---|
| Specifies the name of the non-Java EE component MBean. |
| Specifies the path and file name from which the audit configuration should be imported. |
| Specifies that only events of the given component be imported from the file. If not specified, the audit configuration in |
The following interactive command imports the audit configuration for a component:
The following interactive command imports the audit configuration from a file; no mBean is specified:
Use the WLST commands listed in Table 4-3 to view and manage SSL configuration for Oracle Fusion Middleware components.
Table 4-3 WLST Commands for SSL Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Generate a certificate signing request in an Oracle wallet. | Online |
| Add a self-signed certificate to an Oracle wallet. | Online |
| Change the password to a JKS keystore. | Online |
| Change the password to an Oracle wallet. | Online |
| Set the SSL attributes for a component listener. | Online |
| Create a JKS keystore. | Online |
| Create an Oracle wallet. | Online |
| Delete a JKS keystore. | Online |
| Delete an Oracle wallet. | Online |
| Export a JKS keystore to a file. | Online |
| Export an object from a JKS keystore to a file. | Online |
| Export an Oracle wallet to a file. | Online |
| Export an object from an Oracle wallet to a file. | Online |
| Generate a key pair in a JKS keystore. | Online |
| Display a certificate or other object present in a JKS keystore. | Online |
| Display the SSL attributes for a component listener. | Online |
| Display a certificate or other object present in an Oracle wallet. | Online |
| Import a JKS keystore from a file. | Online |
| Import a certificate or other object from a file to a JKS keystore. | Online |
| Import an Oracle wallet from a file. | Online |
| Import a certificate or other object from a file to an Oracle wallet. | Online |
| List all objects present in a JKS keystore. | Online |
| List all JKS keystores configured for a component instance. | Online |
| List all objects present in an Oracle wallet. | Online |
| List all Oracle wallets configured for a component instance. | Online |
| Remove a certificate or other object from a component instance's JKS keystore. | Online |
| Remove a certificate or other object from a component instance's Oracle wallet. | Online |
For more information, see the Oracle Fusion Middleware Administrator's Guide.
Online command that generates a certificate signing request in an Oracle wallet.
This command generates a certificate signing request in Base64 encoded PKCS#10 format in an Oracle wallet for a component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). To get a certificate signed by a certificate authority (CA), send the certificate signing request to your CA.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the Distinguished Name of the key pair entry. |
| Specifies the key size in bits. |
The following command generates a certificate signing request with DN cn=www.acme.com
and key size 1024
in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
Online command that adds a self-signed certificate.
This command creates a key pair and wraps it in a self-signed certificate in an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). Only keys based on the RSA algorithm are generated.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the Distinguished Name of the key pair entry. |
| Specifies the key size in bits. |
The following command adds a self-signed certificate with DN cn=www.acme.com
, key size 1024
to wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1:
Online command that changes the keystore password.
This command changes the password of a Java Keystore (JKS) file for an Oracle Virtual Directory instance.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the filename of the keystore. |
| Specifies the current keystore password. |
| Specifies the new keystore password. |
The following command changes the password of file keys.jks
for Oracle Virtual Directory instance ovd1
in application server instance inst1
:
Online command that changes the password of an Oracle wallet.
This command changes the password of an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). This command is only applicable to password-protected wallets.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'oid', 'ohs', and 'webcache'. |
| Specifies the filename of the wallet. |
| Specifies the current wallet password. |
| Specifies the new wallet password. |
The following command changes the password for wallet1
from currpassword
to newpassword
for Oracle HTTP Server instance ohs1
in application server instance inst1
:
Online command that sets SSL attributes.
This command sets the SSL attributes for a component listener. The attributes are specified in a properties file format (name=value). If a properties file is not provided, or it does not contain any SSL attributes, default attribute values are used. For component-specific SSL attribute value defaults, see the chapter "SSL Configuration in Oracle Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'oid', 'ovd', ohs', and 'webcache'. |
| Specifies the name of the component listener to be configured for SSL. |
| Specifies the absolute path of the properties file containing the SSL attributes to set. |
The following command configures SSL attributes specified in the properties file /tmp/ssl.properties
for Oracle Virtual Directory instance ovd1
in application server instance inst1
, for listener listener1
:
The following command configures SSL attributes without specifying a properties file. Since no file is provided, the default SSL attribute values are used:
Online command that creates a JKS keystore.
This command creates a Java keystore (JKS) for the specified Oracle Virtual Directory instance. For keystore file location and other information, see the chapter "Managing Keystores, Wallets, and Certificates" in the Oracle Fusion Middleware Administrator's Guide.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the filename of the keystore file to be created. |
| Specifies the keystore password. |
The following command creates JKS file keys.jks
with password password
for Oracle Virtual Directory instance ovd1
in application server instance inst1
:
Online command that creates an Oracle wallet.
This command creates an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). Wallets can be of password-protected or auto-login type. For wallet details, see the chapter "Managing Keystores, Wallets, and Certificates" in the Oracle Fusion Middleware Administrator's Guide.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'oid', 'ohs', and 'webcache'. |
| Specifies the name of the wallet file to be created. |
| Specifies the wallet password. |
The following command creates a wallet named wallet1
with password password
, for Oracle HTTP Server instance ohs1
in application server instance inst1
:
The following command creates an auto-login wallet named wallet2
for Oracle WebCache instance wc1
, in application server instance inst1
:
Online command that deletes a keystore.
This command deletes a keystore for a specified Oracle Virtual Directory instance.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore file to delete. |
The following command deletes JKS file keys.jks
for Oracle Virtual Directory instance ovd1
in application server instance inst1
:
Online command that deletes an Oracle wallet.
This command deletes an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory).
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'oid', 'ohs', and 'webcache'. |
| Specifies the name of the wallet file to be deleted. |
The following command deletes a wallet named wallet1
for Oracle HTTP Server instance ohs1
in application server instance inst1
:
Online command that exports the keystore to a file.
This command exports a keystore, configured for the specified Oracle Virtual Directory instance, to a file under the given directory. The exported filename is the same as the keystore name.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore file. |
| Specifies the password of the keystore. |
| Specifies the absolute path of the directory under which the keystore is exported. |
The following command exports the keystore keys.jks
for Oracle Virtual Directory instance ovd1
to file keys.jks
under /tmp
:
Online command that exports an object from a keystore to a file.
This command exports a certificate signing request, certificate/certificate chain, or trusted certificate present in a Java keystore (JKS) to a file for the specified Oracle Virtual Directory instance. The certificate signing request is generated before exporting the object. The alias specifies the object to be exported.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore file. |
| Specifies the password of the keystore. |
| Specifies the type of the keystore object to be exported. Valid values are 'CertificateRequest', 'Certificate', 'TrustedCertificate' and 'TrustedChain'. |
| Specifies the absolute path of the directory under which the object is exported as a file named base64.txt. |
| Specifies the alias of the keystore object to be exported. |
The following command generates and exports a certificate signing request from the key-pair indicated by alias mykey
in keys.jks
, for Oracle Virtual Directory instance ovd1
in application server instance inst1
. The certificate signing request is exported under the directory /tmp
:
The following command exports a certificate or certificate chain indicated by alias mykey
in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
. The certificate or certificate chain is exported under the directory /tmp
:
The following command exports a trusted certificate indicated by alias mykey
in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
. The trusted certificate is exported under the directory /tmp
:
Online command that exports an Oracle wallet.
This command exports an Oracle wallet, configured for a specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory), to file(s) under the given directory. If the exported file is an auto-login only wallet, the file name is 'cwallet.sso'. If it is password-protected wallet, two files are created: 'ewallet.p12' and 'cwallet.sso'.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'oid', 'ohs', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the absolute path of the directory under which the object is exported. |
The following command exports auto-login wallet wallet1
for Oracle Internet Directory instance oid1
to file cwallet.sso
under /tmp
:
The following command exports password-protected wallet wallet2
for Oracle Internet Directory instance oid1
to two files, ewallet.p12
and cwallet.sso
, under /tmp
:
Online command that exports a certificate or other wallet object to a file.
This command exports a certificate signing request, certificate, certificate chain or trusted certificate present in an Oracle wallet to a file for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). DN is used to indicate the object to be exported.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the type of wallet object to be exported. Valid values are 'CertificateRequest', 'Certificate', 'TrustedCertificate' or 'TrustedChain'. |
| Specifies the absolute path of the directory under which the object is exported as a file base64.txt. |
| Specifies the Distinguished Name of the wallet object being exported. |
The following command exports a certificate signing request with DN cn=www.acme.com
in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
. The certificate signing request is exported under the directory /tmp
:
The following command exports a certificate with DN cn=www.acme.com
in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
. The certificate or certificate chain is exported under the directory /tmp
:
The following command exports a trusted certificate with DN cn=www.acme.com
in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
. The trusted certificate is exported under the directory /tmp
:
The following command exports a certificate chain with DN cn=www.acme.com
in wallet1
, for Oracle Internet Directory instance oid1,
in application server instance inst1
. The certificate or certificate chain is exported under the directory /tmp
:
Online command that generates a key pair in a Java keystore.
This command generates a key pair in a Java keystore (JKS) for Oracle Virtual Directory. It also wraps the key pair in a self-signed certificate. Only keys based on the RSA algorithm are generated.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore. |
| Specifies the password of the keystore. |
| Specifies the Distinguished Name of the key pair entry. |
| Specifies the key size in bits. |
| Specifies the alias of the key pair entry in the keystore. |
| Specifies the key algorithm. Valid value is 'RSA'. |
The following command generates a key pair with DN cn=www.acme.com
, key size 1024
, algorithm RSA
and alias mykey
in keys.jks
, for Oracle Virtual Directory instance ovd1
in application server instance inst1
:
The following command is the same as above, except it does not explicitly specify the key algorithm:
Online command that shows details about a keystore object.
This command displays a specific certificate or trusted certificate present in a Java keystore (JKS) for Oracle Virtual Directory. The keystore object is indicated by its index number, as given by the listKeyStoreObjects
command. It shows the certificate details including DN, key size, algorithm, and other information.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore file. |
| Specifies the password of the keystore. |
| Specifies the type of the keystore object to be listed. Valid values are 'Certificate' and 'TrustedCertificate'. |
| Specifies the index number of the keystore object as returned by the |
The following command shows a trusted certificate with index 1
present in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
:
The following command shows a certificate with index 1
present in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
:
Online command that lists the configured SSL attributes.
This command lists the configured SSL attributes for the specified component listener. For Oracle Internet Directory, the listener name is always sslport1
.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ovd', 'oid', 'ohs', and 'webcache'. |
| Specifies the name of the component listener. |
The following command shows the SSL attributes configured for Oracle Internet Directory instance oid1
, in application server instance inst1
, for listener sslport1
:
Online command that displays information about a certificate or other object in an Oracle wallet.
This command displays a specific certificate signing request, certificate or trusted certificate present in an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). The wallet object is indicated by its index number, as given by the listWalletObjects
command. For certificates or trusted certificates, it shows the certificate details including DN, key size, algorithm and other data. For certificate signing requests, it shows the subject DN, key size and algorithm.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the type of wallet object to be exported. Valid values are 'CertificateRequest', 'Certificate', and 'TrustedCertificate'. |
| Specifies the index number of the wallet object as returned by the |
The following command shows certificate signing request details for the object with index 0
present in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command shows certificate details for the object with index 0
present in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command shows trusted certificate details for the object with index 0
, present in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
Online command that imports a keystore from a file.
This command imports a Java keystore (JKS) from a file to the specified Oracle Virtual Directory instance for manageability. The component instance name must be unique.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore being imported. This name must be unique for this component instance. |
| Specifies the password of the keystore. |
| Specifies the absolute path of the keystore file to be imported. |
The following command imports the keystore /tmp/keys.jks
as file.jks
into Oracle Virtual Directory instance ovd1
. Subsequently, the keystore is managed through the name file.jks
:
Online command that imports an object from a file to a keystore.
This command imports a certificate, certificate chain, or trusted certificate into a Java keystore (JKS) for Oracle Virtual Directory, assigning it the specified alias which must be unique in the keystore. If a certificate or certificate chain is being imported, the alias must match that of the corresponding key-pair.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore. |
| Specifies the password of the keystore. |
| Specifies the type of the keystore object to be imported. Valid values are 'Certificate' and 'TrustedCertificate'. |
| Specifies the absolute path of the file containing the keystore object. |
| Specifies the alias to assign to the keystore object to be imported. |
The following command imports a certificate or certificate chain from file cert.txt
into keys.jks
, using alias mykey
for Oracle Virtual Directory instance ovd1,
in application server instance inst1
. The file keys.jks
must already have an alias mykey
for a key-pair whose public key matches that in the certificate being imported:
The following command imports a trusted certificate from file trust.txt
into keys.jks
using alias mykey1
, for Oracle Virtual Directory instance ovd1
in application server instance inst1
:
Online command that imports an Oracle wallet from a file.
This command imports an Oracle wallet from a file to the specified component instance (Oracle HTTP Server, Oracle WebCache, or Oracle Internet Directory) for manageability. If the wallet being imported is an auto-login wallet, the file path must point to cwallet.sso
; if the wallet is password-protected, it must point to ewallet.p12
. The wallet name must be unique for the component instance.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet being imported. The name must be unique for the component instance. |
| Specifies the password of the wallet. |
| Specifies the absolute path of the wallet file being imported. |
The following command imports auto-login wallet file /tmp/cwallet.sso
as wallet1
into Oracle Internet Directory instance oid1
. Subsequently, the wallet is managed with the name wallet1
. No password is passed since it is an auto-login wallet:
The following command imports password-protected wallet /tmp/ewallet.p12
as wallet2
into Oracle Internet Directory instance oid1
. Subsequently, the wallet is managed with the name wallet2
. The wallet password is passed as a parameter:
Online command that imports a certificate or other object into an Oracle wallet.
This command imports a certificate, trusted certificate or certificate chain into an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache component or Oracle Internet Directory).When importing a certificate, use the same wallet file from which the certificate signing request was generated.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the type of wallet object to be imported. Valid values are 'Certificate', 'TrustedCertificate' and 'TrustedChain'. |
| Specifies the absolute path of the file containing the wallet object. |
The following command imports a certificate chain in PKCS#7 format from file chain.txt
into wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command imports a certificate from file cert.txt
into wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command imports a trusted certificate from file trust.txt
into wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
Online command that lists the contents of a keystore.
This command lists all the certificates or trusted certificates present in a Java keystore (JKS) for Oracle Virtual Directory.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore file. |
| Specifies the password of the keystore. |
| Specifies the type of keystore object to be listed. Valid values are 'Certificate' and 'TrustedCertificate'. |
The following command lists all trusted certificates present in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
:
The following command lists all certificates present in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
:
Online command that lists all the keystores for a component.
This command lists all the Java keystores (JKS) configured for the specified Oracle Virtual Directory instance.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance |
| Specifies the type of component. Valid value is 'ovd'. |
The following command lists all keystores for Oracle Virtual Directory instance ovd1
in application server instance inst1
:
Online command that lists all objects in an Oracle wallet.
This command lists all certificate signing requests, certificates, or trusted certificates present in an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory).
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the type of wallet object to be listed. Valid values are 'CertificateRequest', 'Certificate', and 'TrustedCertificate'. |
The following command lists all certificate signing requests in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command lists all certificates in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command lists all trusted certificates in wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
Online command that lists all wallets configured for a component instance.
This command displays all the wallets configured for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory), and identifies the auto-login wallets.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
The following command lists all wallets for Oracle Internet Directory instance oid1
in application server instance inst1
:
Online command that removes an object from a keystore.
This command removes a certificate request, certificate, trusted certificate, or all trusted certificates from a Java keystore (JKS) for Oracle Virtual Directory. Use an alias to remove a specific object; no alias is needed if all trusted certificates are being removed.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid value is 'ovd'. |
| Specifies the name of the keystore file. |
| Specifies the password of the keystore. |
| Specifies the type of the keystore object to be removed. Valid values are 'Certificate', 'TrustedCertificate' or 'TrustedAll'. |
| Specifies the alias of the keystore object to be removed. |
The following command removes a certificate or certificate chain denoted by alias mykey
in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
:
The following command removes a trusted certificate denoted by alias mykey
in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
:
The following command removes all trusted certificates in keys.jks
, for Oracle Virtual Directory instance ovd1
, in application server instance inst1
. Since no alias is required, the value None
is passed for that parameter:
Online command that removes a certificate or other object from an Oracle wallet.
This command removes a certificate signing request, certificate, trusted certificate or all trusted certificates from an Oracle wallet for the specified component instance (Oracle HTTP Server, Oracle WebCache or Oracle Internet Directory). DN is used to indicate the object to be removed.
Argument | Definition |
---|---|
| Specifies the name of the application server instance. |
| Specifies the name of the component instance. |
| Specifies the type of component. Valid values are 'ohs', 'oid', and 'webcache'. |
| Specifies the name of the wallet file. |
| Specifies the password of the wallet. |
| Specifies the type of the keystore object to be removed. Valid values are 'CertificateRequest', 'Certificate', 'TrustedCertificate' or 'TrustedAll'. |
| Specifies the Distinguished Name of the wallet object to be removed. |
The following command removes all trusted certificates from wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
. It is not necessary to provide a DN, so we pass null (denoted by None
) for the DN parameter:
The following command removes a certificate signing request indicated by DN cn=www.acme.com
from wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command removes a certificate indicated by DN cn=www.acme.com
from wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
The following command removes a trusted certificate indicated by DN cn=www.acme.com
from wallet1
, for Oracle Internet Directory instance oid1
, in application server instance inst1
:
Use the WLST commands listed in Table 4-4 to view and manage configuration for Oracle Identity Federation.
Table 4-4 WLST Commands for Oracle Identity Federation
Use this command... | To... | Use with WLST... |
---|---|---|
| Add a configuration list entry to a map. | Online |
| Add a configuration map entry to a map. | Online |
| Add a configuration property list entry. | Online |
| Add a configuration property map entry to the map. | Online |
| Add a custom authentication engine. | Online |
| Add a custom SP engine. | Online |
| Add a federations list entry to the map. | Online |
| Add a federation map entry to the map. | Online |
addFederationPropertyListEntry | Add a federation property list entry. | Online |
| Add a federation property map entry. | Online |
| Delete a custom authentication engine. | Online |
| Delete a custom SP engine. | Online |
| Delete a provider from the federation. | Online |
| Delete a user from the federation. | Online |
| Change the message store to memory or RDBMS. | Online |
| Change a peer provider's description. | Online |
| Change the session store to memory or RDBMS. | Online |
| Create a configuration property list. | Online |
| Create a configuration property list in the map. | Online |
| Create a configuration property map. | Online |
| Create a nested configuration property map in a map. | Online |
| Create a federation property list. | Online |
createFederationPropertyListInMap | Create a federation property list in the map. | Online |
| Create a federation property map. | Online |
createFederationPropertyMapInMap | Create a nested federation property map in a map. | Online |
| Create a peer provider entry. | Online |
| Retrieve a configuration list value from the map. | Online |
| Retrieve a configuration map value from the map. | Online |
| Retrieve a configuration property entry. | Online |
| Retrieve a configuration property list. | Online |
| Retrieve a configuration property map entry. | Online |
| Retrieve a federation list value from the map. | Online |
| Retrieve a federation map entry from a nested map. | Online |
| Retrieve a federation property. | Online |
| Retrieve the federation property list. | Online |
| Export all provider configuration properties to a text file. | Script |
| Set a provider's properties based on an input text file. | Script |
| Retrieve a federation property map entry. | Online |
| Display the list of custom authentication engines. | Online |
| Display the list of custom SP engines. | Online |
| Load metadata from a file. | Online |
| Display the current status of Oracle Identity Federation on the managed server. | Online |
| Delete a configuration list in the map. | Online |
| Delete a configuration map entry in the map. | Online |
| Delete a nested configuration map. | Online |
| Delete a configuration property. | Online |
| Delete a property list. | Online |
| Delete a property map. | Online |
| Delete an entry in the property map. | Online |
| Delete a federation list in the map. | Online |
| Delete a nested federation map. | Online |
| Delete a nested federation map entry. | Online |
| Delete a federation property. | Online |
| Delete a federation property list. | Online |
| Delete a federation property map. | Online |
removeFederationPropertyMapEntry | Delete a federation property map entry. | Online |
| Delete a peer provider entry. | Online |
| Set a configuration property. | Online |
| Define a custom authentication engine. | Online |
| Define a custom SP engine. | Online |
| Set a federation property. | Online |
For more information, see the Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation.
Online command that adds a property value to a map.
This command adds a property value to a nested list inside a map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property to map to be changed in config.xml. |
| Specifies the name of the list. |
| Specifies the property value. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds valueA
to a map list in server configuration:
Online command that adds a nested map property entry in a map.
This command that adds a property name/value pair to a map nested inside a map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property map to be changed in config.xml. |
| name of the nested property map to be changed. |
| Specifies the name of the list. |
| Specifies the property value. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds a boolean name/value pair to nestedmapB
inside the map mymap
.
Online command that adds a list property entry to config.xml.
This command adds a property value to a list in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property list to be added in config.xml. |
| Specifies the new property list value. The entered value is appended to the list. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds a string value to mylistA
.
Online command that adds a property name/value entry in a map in config.xml.
This command adds a property name/value entry in a map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property map in config.xml. |
| Specifies the name of the property map. |
| Specifies the property map value to be added. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds valueA
of string type to a map.
Online command that adds a custom authentication integration engine.
This command adds a custom authentication integration engine to config.xml.
Argument | Definition |
---|---|
| Specifies the name of the custom engine. |
| This flag specifies whether the engine is enabled (true) or not (false, default). |
| Specifies the web context for the engine. |
| Specifies the authentication relative path URL for the engine. |
| Specifies the logout relative path URL for the engine. |
| This flag is set true to enable logout for the engine, else false. |
The following command defines an engine named test
and enables it.
Online command that adds a custom service provider (SP) engine.
This command adds a custom SP integration engine to config.xml.
Argument | Definition |
---|---|
| Specifies the name of the custom engine. |
| This flag specifies whether the engine is enabled (true) or not (false). |
| Specifies the authentication mechanism for the engine. |
| Specifies the web context for the engine. |
| Specifies the authentication relative path URL for the engine. |
| Specifies the logout relative path URL for the engine. |
| This flag is set true to enable logout for the engine, else false. |
The following command adds an engine and gives it a disabled status.
Online command that adds a list property entry in a map.
This command adds a property value to a nested list inside a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of the property map to be changed in cot.xml. |
| Specifies the name of the property list to be added to the map. |
| Specifies the property list value to be added. The entered value is appended to the list. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds a boolean property list to mymap
.
Online command that adds a nested map property entry in a map.
This command adds a property name/value pair to a map nested inside a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of the property map to be changed in cot.xml. |
| Specifies the name of the nested property map to be changed. |
| Specifies the name of the property to be updated in the map. |
| Specifies the property value to be added. The entered value is appended to the list. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds a value of type string to the myvarA
property in a nested map.
Online command that adds a list property entry.
This command adds a property value to a list in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of the property list to be updated. |
| Specifies the property list value to be added. The entered value is appended to the list. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds a value in string format to a specified property list.
Online command that a property name/value entry in a map.
This command adds a property name/value pair to a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of the property map to be changed in cot.xml. |
| Specifies the name of the property to be added in the map. |
| Specifies the property value to be added. The entered value is appended to the list. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command adds boolean property myvarB
to a map.
Online command that deletes a custom authentication integration engine from the configuration.
This command deletes a custom authentication integration engine in config.xml. You must provide the engine ID for an existing custom authentication engine in config.xml.
Argument | Definition |
---|---|
| Specifies the engine ID of an existing engine to be deleted. |
The following command deletes the authentication engine with ID id1234
.
Online command that deletes a custom service provider (SP) integration engine from the configuration.
This command deletes a custom SP integration engine in config.xml. The EngineID for an existing custom SP engine in config.xml must be provided.
Argument | Definition |
---|---|
| Specifies the engine ID of an existing engine to be deleted. |
The following command deletes the engine with ID id1234
.
Online command that deletes federations for given provider.
This command deletes federations for given provider ID.
Argument | Definition |
---|---|
| Specifies the ProviderID for the peer provider for which federation is to be deleted. |
The following command deletes providerA
:
Online command that deletes federations for given users.
This command deletes federations for the given list of users.
Argument | Definition |
---|---|
| Specifies a comma-separated list of users whose federations are to be deleted. At least one user must be specified. |
The following command deletes federations for three users:
Online command that changes the message store between memory and RDBMS.
This command changes the message store to memory or RDBMS.
Argument | Definition |
---|---|
| Specifies the type of store, RDBMS or Memory. Default is Memory. |
| Specifies the |
The following command changes the message store to RDBMS:
Online command that changes the peer provider description.
This command updates a peer provider description in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the provider description. |
The following command updates the description of a provider:
Online command that changes the session store between memory and RDBMS.
This command changes the session store to memory or RDBMS.
Argument | Definition |
---|---|
| Specifies the type of store, RDBMS or Memory. Default is Memory. |
| Specifies the jndi name to set for the store. Required if type is RDBMS. |
The following command changes the session store to RDBMS.
Online command that creates a property list.
This command creates a property list in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the property list name. |
The following command creates property list mylistA
.
Online command that creates a property list nested in the property map.
This command creates a property list, nested in the property map, in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies an existing property map to contain the nested list. |
| Specifies the property list name. |
The following command creates property list mylistA
nested in a property map.
Online command that creates a property map.
This command that creates a property map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the property map to create. |
The following command creates property map mymapA
:
Online command that creates a property map.
This command that creates a property map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of an existing property map. |
| Specifies the name of the property map to create nested inside mapName. |
The following command creates nested property map nestedmymapA
:
Online command that creates a property list.
This command creates a property list in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of the property list. |
The following command creates property list mylistA
:
Online command that creates a property list nested in a property map.
This command creates a property list, nested in a property map, in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies an existing property map to contain the nested list. |
| Specifies the name of the property list. |
The following command creates nested property list mylistA:
Online command that creates a property map.
This command that creates a property map in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of the property map to be added to cot.xml. |
The following command creates property map mymapA
:
Online command that creates a nested property map.
This command that creates a property map, nested in another property map, in cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID. |
| Specifies the name of an existing property map. |
| Specifies the name of the property map to be nested inside mapName in cot.xml. |
The following command creates nested property map nestedmapA
:
Online command that creates a peer provider property map entry.
This command creates a peer provider as a Map property entry to cot.xml.
Argument | Definition |
---|---|
| Specifies the provider ID to be created. |
| This is the description of the provider ID. |
| Specifies the provider type of the peer provider to be created. |
| Specifies the version of the peer provider to be created. |
The following command creates a SAML 2.0 service provider:
Online command that returns a list nested in a map.
This command returns a list, nested in a map, from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the list to be fetched from the map. |
The following command returns mylistA
:
Online command that returns a map property entry nested in a map.
This command returns a map property entry, nested in a map, from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the nested property map. |
| Specifies the name of the property to be fetched from the nested map. |
The following command returns property entry myvarA
:
Online command that returns a property value.
This command returns a property value from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be accessed. |
| Specifies the name of the property to be fetched from the nested map. |
The following command returns property myvarA
:
Online command that returns a property list.
This command returns a property list from config.xml.
Argument | Definition |
---|---|
| Specifies the configuration name. |
| Specifies the name of the property list to be fetched from config.xml. |
The following command returns mylistA:
Online command that returns a property value from a map.
This command returns a property value from a map in config.xml.
Argument | Definition |
---|---|
| Specifies the configuration name (for example, idpsaml20, serverconfig, spsaml20, ...). |
| Specifies the name of the property map. |
| Specifies the name of the property to be fetched from the map in config.xml. |
The following command returns property propA
:
Online command that returns a list value nested in a map.
This command returns a list value nested in a map from cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the list to be fetched from the map. |
The following command returns nested list mylistA:
Online command that returns a map property entry nested in a map.
This command returns a map property entry, nested in a map, from cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the nested property map. |
| Specifies the name of the property to be fetched from the nested map. |
The following command returns property entry myvarA
:
Online command that returns a property value.
This command returns a property value from cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property to be fetched from cot.xml. |
The following command returns property myvarA
:
Online command that returns a property list.
This command returns a property list from cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the list to be fetched from the map. |
The following command returns list mylistA
:
A WLST script that exports the properties of a provider.
A WLST script that extracts all the configuration properties of the specified provider and exports them to a text file. You can later use this file to set the same properties on another provider. Execute this command from a UNIX or Windows command shell prompt and not from the WLST command shell. This script is stored in ORACLE_HOME
/fed/scripts
.
Argument | Definition |
---|---|
| Specifies the name of the provider whose properties are to be extracted. |
| Specifies the name of the text file to which the provider properties are extracted. |
When you execute the script, you are prompted for the WebLogic administrator credentials and the connection URL; for the latter, specify the Managed Server port, not the Administration Server port.
File Format
The format of the extract file is:
TYPE:NAME:PROPNAME:PROPVALUE:PROPTYPE
For example:
A WLST script that sets the properties of a provider using values from a text file.
A WLST script that sets the properties of a provider using values from a text file. Execute this command from a UNIX or Windows command shell prompt and not from the WLST command shell. This script is stored in ORACLE_HOME
/fed/scripts
.
The text file is generated by the extractproviderprops command.
Argument | Definition |
---|---|
| Specifies the name of the provider whose properties are to be updated. |
| Specifies the name of the input file from which to read the properties. |
When you execute the script, you are prompted for the WebLogic administrator credentials and the connection URL; for the latter, specify the Managed Server port, not the Administration Server port.
Online command that returns a property value from a map.
This command returns a property value from a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the property to be fetched from the nested map. |
The following command returns property propA
from a map:
Online command that returns a list of custom authentication integration engines.
This command returns a list of custom authentication integration engines from config.xml.
The following command returns the list of all SP engines:
Online command that returns a list of custom SP integration engines.
This command returns a list of custom service provider (SP) integration engines from config.xml
.
The following command returns the list of all SP integration engines:
Online command that loads metadata from an input file.
This command loads metadata from an input file into cot.xml.
Argument | Definition |
---|---|
| Specifies the metadata file of the peer provider to be added or updated. |
| This is a brief description of the peer provider to be loaded. |
The following command loads metadata from the file metadatafile.xml
:
Online command that reports the current status of the Oracle Identity Federation application in the managed server to which WLST is connected.
This command displays the current status of Oracle Identity Federation on the managed server.
Argument | Definition |
---|---|
| Specifies the URL of the managed server. |
| This is a pre-defined user configuration file created with the WLST storeUserConfig command. |
| This is a pre-defined key file created with the WLST storeUserConfig command |
The following command provides no arguments; WLST prompts you for the Oracle WebLogic Server username, password, and the managed server URL, then displays the federation server status:
The following command provides only the managed server URL; WLST prompts you for the Oracle WebLogic Server username and password:
The following command provides all arguments needed for WLST to display the federation server status:
Online command that removes a list property nested in a map.
This command removes a list property nested in a map from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the list to be removed from the map. |
The following command removes the list property mylistA:
Online command that removes a map property nested in a map.
This command removes a map property entry nested in a map from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the nested property map. |
| Specifies the name of the property to be removed from the nested map. |
The following command removes the nested property myvarA
:
Online command that removes a map property nested in a map.
This command removes a map property entry nested in a map from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property map. |
| Specifies the name of the nested property map. |
| Specifies the name of the property to be removed from the nested map. |
The following command removes the nested property myvarA:
Online command that removes a configuration property.
This command removes a property from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property to be removed. |
The following command removes the property myvarA
:
Online command that removes a configuration property list.
This command removes a property list from config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property list to be removed. |
The following command removes the property list mylistA
:
Online command that removes a property map.
This command removes a property map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property map to be removed. |
The following command removes mapA:
Online command that removes a property value from a map.
This command removes a property value from a map in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property map to be updated. |
| Specifies the name of the property to be removed from the map. |
The following command removes property propA:
Online command that removes a property list in a map.
This command removes a property list in a map, in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map. |
| Specifies the name of the property list to be removed. |
The following command removes mylistA in mymapA:
Online command that removes a nested map in a map.
This command removes a property map nested inside a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map containing the nested map. |
| Specifies the name of the nested property map to be removed. |
The following command removes nestedmapA
in mymap
:
Online command that removes a nested map property entry in a map.
This command removes a property name/value pair to a map nested inside a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map containing the nested map. |
| Specifies the name of the nested property map. |
| Specifies the name of the property to be removed from the nested map. |
The following command removes map property entry myvarA:
Online command that removes a property value.
This command removes a property entry in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be updated. |
| Specifies the name of the property to be removed. |
The following command removes the provider property myvarA:
Online command that removes a property list entry.
This command removes a property list entry in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property list to be removed. |
The following command removes mylistA
:
Online command that removes a property map.
This command removes a property map in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map to be removed. |
The following command removes a map:
Online command that removes a property value from a map.
This command removes a property value from a map in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be accessed. |
| Specifies the name of the property map to be updated. |
| Specifies the name of the property to be removed from the map. |
The following command removes property propA
from a map:
Online command that removes a peer provider entry.
This command removes a peer provider entry from cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be removed. |
The following command removes providerA:
Online command that sets a property value in config.xml.
This command adds or updates a property value in config.xml.
Argument | Definition |
---|---|
| Specifies the name of the configuration (for example, idpsaml20, serverconfig, spsaml20, ...) to be updated. |
| Specifies the name of the property to be added/updated in config.xml. |
| Specifies the property value. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command sets the property myvarA
and its value in the server configuration:
Online command that updates a custom authentication integration engine.
This command updates a custom authentication integration engine in config.xml.
Argument | Definition |
---|---|
| Specifies the engine ID of an existing engine. |
| Specifies the name of the custom engine. |
| This flag specifies whether the engine is enabled (true) or not (false). |
| Specifies the web context for the engine. |
| Specifies the authentication relative path URL for the engine. |
| Specifies the logout relative path URL for the engine. |
| This flag is set true to enable logout for the engine, else false. |
The following command updates the configuration of custom authentication engine abcdef
:
Online command that updates a custom SP integration engine.
This command updates an existing custom SP integration engine in config.xml.
Argument | Definition |
---|---|
| Specifies the engine ID of an existing custom engine. |
| Specifies the name of the custom engine. |
| This flag specifies whether the engine is enabled (true) or not (false). |
| Specifies the authentication mechanism for the engine. |
| Specifies the web context for the engine. |
| Specifies the authentication relative path URL for the engine. |
| Specifies the logout relative path URL for the engine. |
| This flag is set true to enable logout for the engine, else false. |
The following command sets the name and the enabled flag for the engine with ID engineID2
:
Online command that adds or updates a property value.
This command adds a property entry or updates an existing entry in cot.xml.
Argument | Definition |
---|---|
| Specifies the name of the peer provider to be updated. |
| Specifies the name of the property to be added/updated in cot.xml. |
| Specifies the property value. |
| Specifies the type of property, BOOLEAN or STRING or LONG. |
The following command creates the property myvarA
and sets its value:
Some of the Directory Integration Platform (DIP) tools use WLST internally, and therefore, there are no custom WLST commands available to run from the WLST command prompt or to use within scripts. For information on DIP tools, see "Directory Integration Platform Tools" in the Oracle Fusion Middleware User Reference for Oracle Identity Management.
Use the WLST security commands listed in Table 4-5 to operate on a domain policy or credential store, to migrate policies and credentials from a source repository to a target repository, and to import and export (credential) encryption keys.
Table 4-5 WLST Security Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| List application stripes in policy store. | Online |
| Create a new application role. | Online |
| Remove an application role. | Online |
| Add a principal to a role. | Online |
| Remove a principal from a role. | Online |
| List all roles in an application. | Online |
| List all members in an application role. | Online |
| Create a new permission. | Online |
| Remove a permission. | Online |
| List all permissions granted to a principal. | Online |
| Remove all policies in an application. | Online |
| Migrate policies or credentials from a source repository to a target repository. | Offline |
| Obtain the list of attribute values of a credential. | Online |
| Modify the attribute values of a credential. | Online |
| Create a new credential. | Online |
| Remove a credential. | Online |
| Update bootstrap credential store | Offline |
| Add a credential to the bootstrap credential store | Offline |
| Export the domain encryption key to the file | Offline |
| Import the encryption key in file | Offline |
| Restore the domain encryption key as it was before the last importing. | Offline |
| Reassociate policies and credentials to an LDAP repository | Online |
| Upgrade security data from data used with release 10.1.x to data used with release 11. | Offline |
| Create a new resource type. | Online |
| Fetch an existing resource type. | Online |
| Remove an existing resource type. | Online |
| Create a resource. | Online |
| Remove a resource. | Online |
| List resources in an application stripe. | Online |
| List actions in a resource. | Online |
| Create an entitlement. | Online |
| List an entitlement. | Online |
| Remove an entitlement. | Online |
| Add a resource to an entitlement. | Online |
| Remove a resource from an entitlement | Online |
| List entitlements in an application stripe. | Online |
| Create an entitlement. | Online |
| Remove an entitlement. | Online |
| List an entitlement. | Online |
| List resource types in an application stripe. | Online |
Online command that creates a new application role.
Creates a new application role in the domain policy store with a given application and role name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. |
appRoleName | Specifies a role name. |
The following invocation creates a new application role with application stripe myApp and role name myRole:
Online command that removes an application role.
Removes an application role in the domain policy store with a given application and role name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. |
appRoleName | Specifies a role name. |
The following invocation removes the role with application stripe myApp and role name myRole:
Online command that adds a principal to a role.
Adds a principal (class or name) to a role with a given application stripe and name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. |
appRoleName | Specifies a role name. |
principalClass | Specifies the fully qualified name of a class. |
principalName | Specifies the principal name. |
The following invocation adds a principal to the role with application stripe myApp
and role name myRole
:
Online command that removes a principal from a role.
Removes a principal (class or name) from a role with a given application stripe and name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. |
appRoleName | Specifies a role name. |
principalClass | Specifies the fully qualified name of a class. |
principalName | Specifies the principal name. |
The following invocation removes a principal to the role with application stripe myApp
and role name myRole
:
Online command that lists all roles in an application.
Lists all roles within a given application stripe. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. |
The following invocation returns all roles with application stripe myApp
:
Online command that lists all members in a role.
Lists all members in a role with a given application stripe and role name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. |
appRoleName | Specifies a role name. |
The following invocation returns all members in the role with application stripe myApp
and role name myRole
:
Online command that creates a new permission.
Creates a new permission for a given code base or URL. In the event of an error, the command returns a WLSTException
.
Optional arguments are enclosed in between square brackets.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. If not specified, the command works on system policies. |
codeBaseURL | Specifies the URL of the code granted the permission. |
principalClass | Specifies the fully qualified name of a class (grantee). |
principalName | Specifies the name of the grantee principal. |
permClass | Specifies the fully qualified name of the permission class. |
permTarget | Specifies, when available, the name of the permission target. Some permissions may not include this attribute. |
permActions | Specifies a comma-separated list of actions granted. Some permissions may not include this attribute and the actions available depend on the permission class. |
The following invocation creates a new application permission (for the application with application stripe myApp
) with the specified data:
The following invocation creates a new system permission with the specified data:
Online command that removes a permission.
Removes a permission for a given code base or URL. In the event of an error, the command returns a WLSTException
.
Optional arguments are enclosed in between square brackets.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. If not specified, the command works on system policies. |
codeBaseURL | Specifies the URL of the code granted the permission. |
principalClass | Specifies the fully qualified name of a class (grantee). |
principalName | Specifies the name of the grantee principal. |
permClass | Specifies the fully qualified name of the permission class. |
permTarget | Specifies, when available, the name of the permission target. Some permissions may not include this attribute. |
permActions | Specifies a comma-separated list of actions granted. Some permissions may not include this attribute and the actions available depend on the permission class. |
The following invocation removes the application permission (for the application with application stripe myApp
) with the specified data:
The following invocation removes the system permission with the specified data:
Online command that lists all permissions granted to a given principal.
Lists all permissions granted to a given principal. In the event of an error, the command returns a WLSTException
.
Optional arguments are enclosed in between square brackets.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. If not specified, the command works on system policies. |
principalClass | Specifies the fully qualified name of a class (grantee). |
principalName | Specifies the name of the grantee principal. |
The following invocation lists all permissions granted to a principal by the policies of application myApp
:
The following invocation lists all permissions granted to a principal by system policies:
Online command that removes all policies with a given application stripe.
Removes all policies with a given application stripe. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies an application stripe. If not specified, the command works on system policies. |
The following invocation removes all policies of application myApp
:
Offline command that migrates identities, application-specific, system policies, a specific credential folder, or all credentials.
Migrates identities, application-specific, or system policies from a source repository to a target repository. Migrates a specific credential folder or all credentials.
The kinds of the repositories where the source and target data is stored is transparent to the command, and any combination of file-based and LDAP-based repositories is allowed (LDAP-repositories must use an OVD or an OID LDAP server only). In the event of an error, the command returns a WLSTException
.
The command syntax varies depending on the scope (system or application-specific or both) of the policies being migrated.
Optional arguments are enclosed in square brackets.
To migrate identities, use the following syntax:
To migrate all policies (system and application-specific, for all applications) use the following syntax
To migrate just system policies, use the following syntax:
To migrate just application-specific policies, for one application, use the following syntax:
To migrate all credentials, use the following syntax:
To migrate just one credential folder, use the following syntax:
Argument | Definition |
---|---|
type | Specifies the type of policies migrates. To migrate identities, set it to To migrate all policies (system and application-specific, for all applications), set to To migrate just system policies, set to To migrate just application-specific policies, set to To migrate all credentials, set to To migrate just one credential folder, set to |
configFile | Specifies the location of a configuration file |
src | Specifies the name of a jps-context in the configuration file passed to the argument |
dst | Specifies the name of another jps-context in the configuration file passed to the argument |
srcApp | Specifies the name of the source application, that is, the application whose policies are being migrated. |
dstApp | Specifies the name of the target application, that is, the application whose policies are being written. If unspecified, it defaults to the name of the source application. |
srcFolder | Specifies the name of the folder from where credentials are migrated. This argument is optional. If unspecified, the credential store is assumed to have only one folder and the value of this argument defaults to the name of that folder. |
dstFolder | Specifies the folder to where the source credentials are migrated. This argument is optional and, if unspecified, defaults to the folder passed to |
srcConfigFile | Specifies the location of an alternate configuration file, and it is used in the special case in which credentials are not configured in the file passed to |
overWrite | Specifies whether data in the target matching data being migrated should be overwritten by or merged with the source data. Optional and false by default. Set to true to overwrite matching data; set to false to merge matching data. |
migrateIdStoreMapping | Specifies whether the migration of application policies should include or exclude the migration of enterprise policies. Optional and true by default. Set it to False to exclude enterprise policies from the migration of application policies. |
dstLdifFile | Specifies the location where the LDIF file will be created. Required only if destination is an LDAP-based identity store. Notice that the LDIF file is not imported into the LDAP server; the importing of the file LDIF should be done manually, after the file has been edited to account for the appropriate attributes required in your LDAP server. |
preserveAppRoleGuid | Specifies whether the migration of policies should preserve or recreate GUIDs. Optional and false, by default. Set to true to preserve GUIDs; set to false to recreated GUIDs. |
mode | Specifies whether the migration should stop and signal an error upon encountering a duplicate principal or a duplicate permission in an application policy. Set to lax to allow the migration to continue upon encountering duplicate items, to migrate just one of the duplicated items, and to log a warning to this effect; set to strict to force the migration to stop upon encountering duplicate items. If unspecified, it defaults to strict. |
Note the following requirements about the passed arguments:
jps-config.xml
is found in the passed location. jps-config.xml
includes the passed jps-contexts. The following invocation illustrates the migration of the file-based policies of application PolicyServlet1
to file-based policies of application PolicyServlet2
, that does not stop on encountering duplicate principals or permissions, that migrates just one of duplicate items, and that logs a warning when duplicates are found:
The above invocation assumes that:
jps-config.xml
is located in the directory where the command is run (current directory). The file-based policies for the two applications involved in the migration are defined in the files jazn-data1.xml
and jazn-data2.xml
, which are not shown but assumed located in the current directory.
The following invocation illustrates the migration of file-based credentials from one location to another:
The above invocation assumes that:
jps-config.xml
is located in the directory where the command is run (current directory). For detailed configuration examples to use with this command, see Oracle Fusion Middleware Security Guide.
Online command that returns the list of attribute values of a credential in the domain credential store.
Returns the list of attribute values of a credential in the domain credential store with given map name and key name. This command lists the data encapsulated in credentials of type password only. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
map | Specifies a map name (folder). |
key | Specifies a key name. |
The following invocation returns all the information (such as user name, password, URL, port, and description) in the credential with map name myMap
and key name myKey
:
Online command that modifies the type, user name, and password of a credential.
Modifies the type, user name, password, URL, and port number of a credential in the domain credential store with given map name and key name. This command can update the data encapsulated in credentials of type password only. In the event of an error, the command returns a WLSTException
. This command runs in interactive mode only.
Optional arguments are enclosed in square brackets.
Argument | Definition |
---|---|
map | Specifies a map name (folder). |
key | Specifies a key name. |
user | Specifies the credential user name. |
password | Specifies the credential password. |
desc | Specifies a string describing the credential. |
The following invocation updates a password credential with the specified data:
Online command that creates a new credential in the domain credential store.
Creates a new credential in the domain credential store with a given map name, key name, type, user name and password, URL and port number. In the event of an error, the command returns a WLSTException
. This command runs in interactive mode only.
Optional arguments are enclosed in square brackets.
Argument | Definition |
---|---|
map | Specifies a map name (folder). |
key | Specifies a key name. |
user | Specifies the credential user name. |
password | Specifies the credential password. |
desc | Specifies a string describing the credential. |
The following invocation creates a new password credential with the specified data:
Online command that removes a credential in the domain credential store.
Removes a credential with given map name and key name from the domain credential store. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
map | Specifies a map name (folder). |
key | Specifies a key name. |
The following invocation removes the credential with map name myMap
and key name myKey
:
Offline command that updates a bootstrap credential store.
Updates a bootstrap credential store with given user name and password. In the event of an error, the command returns a WLSTException
.
Typically used in the following scenario: suppose that the domain policy and credential stores are LDAP-based, and the credentials to access the LDAP store (stored in the LDAP server) are changed. Then this command can be used to seed those changes into the bootstrap credential store.
Argument | Definition |
---|---|
jpsConfigFile | Specifies the location of the file |
username | Specifies the distinguished name of the user in the LDAP store. |
password | Specifies the password of the user. |
Suppose that in the LDAP store, the password of the user with distinguished name cn=orcladmin
has been changed to welcome1
, and that the configuration file jps-config.xml
is located in the current directory.Then the following invocation changes the password in the bootstrap credential store to welcome1
:
Any output regarding the audit service can be disregarded.
Offline command that adds a credential to the bootstrap credential store.
Adds a password credential with the given map, key, user name, and user password to the bootstrap credentials configured in the default JPS context of a JPS configuration file. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
jpsConfigFile | Specifies the location of the file |
map | Specifies the map of the credential to add. |
key | Specifies the key of the credential to add. |
username | Specifies the name of the user in the credential to add. |
| Specifies the password of the user in the credential to add. |
The following invocation adds a credential to the bootstrap credential store:
Offline command that extracts the encryption key from a domain's bootstrap wallet to the file ewallet.p12
.
Writes the domain's credential encryption key to the file ewallet.p12
. The password passed must be used to import data from that file with the command importEncryptionKey
.
Argument | Definition |
---|---|
jpsConfigFile | Specifies the location of the file |
keyFilePath | Specifies the directory where the file |
keyFilePassword | Specifies the password to secure the file |
The following invocation writes the file ewallet.p12
in the directory myDir:
Offline command that imports keys from the specified ewallet.p12 file into the domain.
Imports encryption keys from the file ewallet.p12
into the domain. The password passed must be the same as that used to create the file with the command exportEncryptionKey
.
Argument | Definition |
---|---|
jpsConfigFile | Specifies the location of the file |
keyFilePath | Specifies the directory where the |
keyFilePassword | Specifies the password used when the file |
Offline command to restore the domain credential encryption key.
Restores the state of the domain bootstrap keys as it was before running importEncryptionKey.
Argument | Definition |
---|---|
jpsConfigFile | Specifies the location of the file |
Online command that migrates the policy and credential stores to an LDAP repository.
Migrates, within a give domain, both the policy store and the credential store to a target LDAP server repository. The only kinds of LDAP servers allowed are OID or OVD. This command also allows setting up a policy store shared by different domains (see optional argument join
below). In the event of an error, the command returns a WLSTException
. This command runs in interactive mode only.
Argument | Definition |
---|---|
domain | Specifies the domain name where the reassociating takes place. |
admin | Specifies the administrator's user name on the LDAP server. The format is |
password | Specifies the password associated with the user specified for the argument |
ldapurl | Specifies the URI of the LDAP server. The format is |
servertype | Specifies the kind of the target LDAP server. The only valid types are OID or OVD. |
jpsroot | Specifies the root node in the target LDAP repository under which all data is migrated. The format is |
join | Specifies whether the domain is to share a policy store specified in some other domain. Optional. Set to true to share an existing policy store in another domain; set to false otherwise. If unspecified, it defaults to false. The use of this argument allows multiple WebLogic domains to point to the same logical policy store. |
keyFilePath | Specifies the directory where the |
keyFilePassword | Specifies the password used when the file |
The following invocation reassociates the domain policies and credentials to an LDAP Oracle Internet Directory server:
Suppose that you want some other domain (distinct from myDomain
, say otherDomain
) to share the policy store in myDomain
. Then you would invoke the command as follows:
Offline command that migrates release 10.1.x security data to release 11 security data.
Migrates identity, policy, and credential data used in release 10.1.x to security data that can be used with release 11. The migration of each kind of data is performed with separate invocations of this command. In the event of an error, the command returns a WLSTException
.
The syntax varies according to the type of data being updated.
To upgrade 10.1.x XML identity data to 11 XML identity data, use the following syntax:
To upgrade a 10.1.x XML policy data to 11 XML policy data, use the following syntax:
To upgrade a 10.1.x OID LDAP-based policy data to 11 XML policy data, use the following syntax:
To upgrade a 10.1.x XML credential data to 11 XML credential data, use the following syntax:
Argument | Definition |
---|---|
type | Specifies the kind of security data being upgraded. The only valid values are xmlIdStore, xmlPolicyStore, oidPolicyStore, and xmlCredStore. |
jpsConfigFile | Specifies the location of a configuration file |
srcJaznDataFile | Specifies the location of a 10.1.x jazn data file relative to the directory where the command is run. This argument is required if the specified |
srcJaznConfigFile | Specifies the location of a 10.1.x jazn configuration file relative to the directory where the command is run. This argument is required if the specified |
srcRealm | Specifies the name of the realm from which identities need be migrated. This argument is required if the specified |
users | Specifies a comma-separated list of users each formatted as realmName/userName. This argument is required if the specified |
dst | Specifies the name of the jpsContext in the file passed to the argument jpsConfigFile where the destination store is configured. Optional. If unspecified, it defaults to the default context in the file passed in the argument jpsConfigFile. |
The following invocation migrates 10.1.3 file-based identities to an 11 file-based identity store:
The following invocation migrates a 10.1.3 OID-based policy store to an 11 file-based policy store:
Online command that creates a new resource type in the domain policy store within a given application stripe.
Creates a new resource type element in the domain policy store within a given application stripe and with specified name, display name, description, and actions. Optional arguments are enclosed in between square brackets; all other arguments are required. In the event of an error, the command returns a WLSTException
.
Optional arguments are enclosed in square brackets.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where to insert the resource type. |
resourceTypeName | Specifies the name of the resource type to insert. |
displayName | Specifies the name for the resource type used in UI gadgets. |
description | Specifies a brief description of the resource type. |
provider | Specifies the provider for the resource type. |
matchere | Specifies the class of the resource type. If unspecified, it defaults to |
actions | Specifies the actions allowed on instances of the resource type. |
delimeter | Specifies the character used to delimit the list of actions. If unspecified, it defaults to comma ','. |
The following invocation creates a resource type in the stripe myApplication with actions BWPrint and ColorPrint delimited by a semicolon:
Online command that fetches a resource type from the domain policy store within a given application stripe.
Gets the relevant parameters of a <resource-type> entry in the domain policy store within a given application stripe and with specified name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe from where to fetch the resource type. |
resourceTypeName | Specifies the name of the resource type to fetch. |
The following invocation fetches the resource type myResType from the stripe myApplication:
Online command that removes a resource type from the domain policy store within a given application stripe.
Removes a <resource-type> entry in the domain policy store within a given application stripe and with specified name. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe from where to remove the resource type. |
resourceTypeName | Specifies the name of the resource type to remove. |
The following invocation removes the resource type myResType from the stripe myApplication:
Online or offline command that lists the application stripes in the policy store.
This script can be run in offline or online mode. When run in offline mode, a configuration file must be passed, and it lists the application stripes in the policy store referred to by the configuration in the default context of the passed configuration file; the default configuration must not have a service instance reference to an identity store. When run in online mode, a configuration file must not be passed, and it lists stripes in the policy store of the domain to which you connect. In any mode, if a regular expression is passed, it lists the application stripes with names that match the regular expression; otherwise, it lists all application stripes.
If this command is used in offline mode after reassociating to a DB-based store, the configuration file produced by the reassociation must be manually edited as described in "Running listAppStripes after Reassociating to a DB-Based Store" in Oracle Fusion Middleware Security Guide.
Argument | Definition |
---|---|
configFile | Specifies the path to the OPSS configuration file. Optional. If specified, the script runs offline; the default context in the specified configuration file must not have a service instance reference to an identity store. If unspecified, the script runs online and it lists application stripes in the policy store. |
regularExpression | Specifies the regular expression that returned stripe names should match. Optional. If unspecified, it matches all names. To match substrings, use the character *. |
The following (online) invocation returns the list of application stripes in the policy store:
The following (offline) invocation returns the list of application stripes in the policy store referenced in the default context of the specified configuration file:
The following (online) invocation returns the list of application stripes that contain the prefix App:
Online command that creates a new resource.
Creates a resource of a specified type in a specified application stripe. The passed resource type must exist in the passed application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the resource is created. |
name | Specifies the name of the resource created. |
type | Specifies the type of resource created. The passed resource type must be present in the application stripe at the time this script is invoked. |
displayName | Specifies the display name of the resource created. Optional. |
description | Specifies the description of the resource created. Optional. |
The following invocation creates the resource myResource in the stripe myApplication:
Online command that deletes a resource.
Deletes a resource and all its references from entitlements in an application stripe. It performs a cascading deletion: if the entitlement refers to one resource only, it removes the entitlement; otherwise, it removes from the entitlement the resource actions for the passed type.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the resource is deleted. |
name | Specifies the name of the resource deleted. |
type | Specifies the type of resource deleted. The passed resource type must be present in the application stripe at the time this script is invoked. |
The following invocation deletes the resource myResource in the stripe myApplication:
Online command that lists resources in a specified application stripe.
If a resource type is specified, it lists all the resources of the specified resource type; otherwise, it lists all the resources of all types.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the resources are listed. |
type | Specifies the type of resource listed. The passed resource type must be present in the application stripe at the time this script is invoked. |
The following invocation lists all resources of type myResType in the stripe myApplication:
Online command that lists the resources and actions in an entitlement.
Lists the resources and actions in an entitlement within an application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement resides. |
permSetName | Specifies the name of the entitlement whose resources and actions to list. |
The following invocation lists the resources and actions of the entitlement myEntitlement in the stripe myApplication:
Online command that creates a new entitlement.
Creates a new entitlement with just one resource and a list of actions in a specified application stripe. Use addResourceToEntitlement
to add additional resources to an existing entitlement; use revokeResourceFromEntitlement
to delete resources from an existing entitlement.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is created. |
name | Specifies the name of the entitlement created. |
resourceName | Specifies the name of the one resource member of the entitlement created. |
actions | Specifies a comma-separated the list of actions for the resource resourceName. |
displayName | Specifies the display name of the resource created. Optional. |
description | Specifies the description of the entitlement created. Optional. |
The following invocation creates the entitlement myEntitlement with just the resource myResource in the stripe myApplication:
Online command that gets an entitlement.
Returns the name, display name, and all the resources (with their actions) of an entitlement in an application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is located. |
name | Specifies the name of the entitlement to access. |
The following invocation returns the information of the entitlement myEntitlement in the stripe myApplication:
Online command that deletes an entitlement.
Deletes an entitlement in a specified application stripe. It performs a cascading deletion by removing all references to the specified entitlement in the application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is deleted. |
name | Specifies the name of the entitlement to delete. |
The following invocation deletes the entitlement myEntitlement in the stripe myApplication:
Online command that adds a resource with specified actions to an entitlement.
Adds a resource with specified actions to an entitlement in a specified application stripe. The passed resource type must exist in the passed application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is located. |
name | Specifies the name of the entitlement to modify. |
resourceName | Specifies the name of the resource to add. |
resourceType | Specifies the type of the resource to add. The passed resource type must be present in the application stripe at the time this script is invoked. |
actions | Specifies the comma-separated list of actions for the added resource. |
The following invocation adds the resource myResource to the entitlement myEntitlement in the application stripe myApplication:
Online command that removes a resource from an entitlement.
Removes a resource from an entitlement in a specified application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is located. |
name | Specifies the name of the entitlement to modify. |
resourceName | Specifies the name of the resource to remove. |
resourceType | Specifies the type of the resource to remove. |
actions | Specifies the comma-separated list of actions to remove. |
The following invocation removes the resource myResource from the entitlement myEntitlement in the stripe myApplication:
Online command that lists the entitlements in an application stripe.
Lists all the entitlements in an application stripe. If a resource name and a resource type are specified, it lists the entitlements that have a resource of the specified type matching the specified resource name; otherwise, it lists all the entitlements in the application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe from where to list entitlements. |
resourceTypeName | Specifies the name of the type of the resources to list. Optional. |
resourceName | Specifies the name of resource to match. Optional. |
The following invocation lists all the entitlements in the stripe myApplication:
The following invocation lists all the entitlements in the stripe myApplication that contain a resource type myResType and a resource whose name match the resource name myResName:
Online command that creates a new entitlement.
Creates a new entitlement with a specified principal in a specified application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is created. |
principalClass | Specifies the class associated with the principal. |
principalName | Specifies the name of the principal to which the entitlement is granted. |
permSetName | Specifies the name of the entitlement created. |
The following invocation creates the entitlement myEntitlement in the stripe myApplication:
Online command that deletes an entitlement.
Deletes an entitlement and revokes the entitlement from the principal in a specified application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is deleted. |
principalClass | Specifies the class associated with the principal. |
principalName | Specifies the name of the principal to which the entitlement is revoked. |
permSetName | Specifies the name of the entitlement deleted. |
The following invocation deleted the entitlement myEntitlement in the stripe myApplication:
Online command that lists an entitlement in a specified application stripe.
If a principal name and a class are specified, it lists the entitlements that match the specified principal; otherwise, it lists all the entitlements.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the entitlement is deleted. |
principalName | Specifies the name of the principal to match. Optional. |
principalClass | Specifies the class of the principal to match. Optional. |
The following invocation lists all entitlements in the stripe myApplication:
Online command that lists resource types.
Lists all the resource types in a specified application stripe.
Argument | Definition |
---|---|
appStripe | Specifies the application stripe where the resource types are located. |
The following invocation lists all resource types in the stripe myApplication:
Use the WLST commands listed in Table 4-6 to manage Oracle Access Manager (OAM)-related components, such as authorization providers, identity asserters, and SSO providers, as well as to display metrics and deployment topology, manage Oracle Access Manager server and agent configuration and logger settings.
Table 4-6 WLST Oracle Access Manager Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| List the parameters set for an Oracle Access Manager authentication or identity assertion provider. | Online |
| Create a new identity asserter. | Online |
| Update an existing identity asserter. | Online |
| Create a new authenticator. | Online |
| Delete an existing authentication provider. | Online |
| Update an existing authenticator. | Online |
| Add a new SSO provider. | Online |
| List the details of deployed Oracle Access Manager Servers. | Online Offline |
| Display the performance metrics of an Oracle Access Manager Server and domain | Online |
| Display Oracle Access Manager Server configuration details. | Online Offline |
| Create an entry for an Oracle Access Manager Server configuration. | Online Offline |
| Edit the entry for an Oracle Access Manager Server configuration. | Online Offline |
| Delete the named Oracle Access Manager Server configuration. | Online Offline |
| Display OSSO Agent configuration details. | Online Offline |
| Edit OSSO Agent configuration details. | Online Offline |
| Delete the named OSSO Agent configuration. | Online Offline |
| Display WebGate Agent configuration details. | Online Offline |
| Edit 10g WebGate Agent registration details. | Online Offline |
| Delete the named 10g WebGate Agent configuration. | Online Offline |
| Change Logger Settings. | Online Offline |
| Regenerate the configuration data encryption key and re-encrypt data. | Online Offline |
| Display a user identity store registration. | Online Offline |
| Edit a user identity store registration. | Online Offline |
| Create a user identity store registration. | Online Offline |
| Delete a user identity store registration. | Online Offline |
| Configure the SSO server request cache type. | Online Offline |
| Display the SSO server request cache type entry. | Online Offline |
| Export Oracle Access Manager policy data from a test (source) to an intermediate Oracle Access Manager file. | Online |
| Import Oracle Access Manager policy data from the Oracle Access Manager file specified. | Online |
| Import Oracle Access Manager policy changes from the Oracle Access Manager file specified. | Online |
| Migrate partners from the source Oracle Access Manager Server to the specified target Oracle Access Manager Server. | Online |
| Export the Oracle Access Manager partners from the source to the intermediate Oracle Access Manager file specified. | Online |
| Import the Oracle Access Manager partners from the intermediate Oracle Access Manager file specified. | Online |
| Configure the Oracle Access Manager-Oracle Adaptive Access Manager basic integration. | Online |
| Register Oracle Identity Federation as Delegated Authentication Protocol (DAP) Partner. | Online Offline |
| Enable the Coexist Mode. | Online |
| Disable the Coexist Mode. | Online |
| Edit GITO configuration parameters. | Online Offline |
| Edit an 11g WebGate registration. | Online Offline |
| Remove an 11g WebGate Agent registration. | Online Offline |
| Display an 11g WebGate Agent registration. | Online Offline |
| Display metrics of OAM Servers. | Online Offline |
| Update the Oracle Identity Manager configuration when integrated with Oracle Access Manager. | Online Offline |
| Creates an Agent registration specific to Oracle Identity Manager when integrated with Oracle Access Manager. | Online |
updateOSSOResponseCookieConfig | Updates OSSO Proxy response cookie settings. | Online Offline |
deleteOSSOResponseCookieConfig | Deletes OSSO Proxy response cookie settings. | Online Offline |
displaySimpleModeGlobalPassphrase | Displays the simple mode global passphrase in plain text from the system configuration. | Online |
| Exports selected OAM Partners to the intermediate OAM file specified. | Online |
| Migrates artifacts based on the input artifact file. | Online |
| Registers any third party as a Trusted Authentication Protocol (TAP) Partner. | Online |
Online command that lists the values of the parameters in effect in a domain authenticator or identity asserter.
Lists the values of the parameters set for a given Oracle Access Manager authenticator or identity asserter. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
name | Specifies the name of the authenticator or identity asserter. |
The following invocation lists the parameters and values set for the asserter named myIdAsserter
:
Online command that creates an Oracle Access Manager identity asserter in the current domain.
Creates an identity asserter with a given name in the current domain. Before executing this command, make sure that no Oracle Access Manager identity asserter is already configured in the current domain. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
name | Specifies the name of the new identity asserter. If no name is specified, it defaults to "OAMIdentityAsserter". |
The following invocation creates a new identity asserter named OAMIdentityAsserter
:
Online command that updates the values of parameters of the Oracle Access Manager identity asserter in the current domain.
Updates the value of given parameters of the domain Oracle Access Manager identity asserter. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
name | Specifies the name of the Oracle Access Manager identity asserter whose parameter values to update. |
paramNameValueList | Specifies the comma-separated list of pairs of parameter name-value to be updated. The format of each pair is: paramName="paramValue" The parameter names that can be updated are the following only:
|
The following invocation updates the parameters accessGateName, accessGatePwd,
pAccessServer
, and ssoHeaderName
in the Oracle Access Manager identity asserter named myIdAsserter
:
Online command that creates an Oracle Access Manager authenticator in the current domain.
Creates an Oracle Access Manager authenticator with a given name in the current domain. Before executing this command, make sure that no Oracle Access Manager authenticator is already configured in the default security domain. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
name | Specifies the name of the new authentication provider in the default domain. If no name is specified, it defaults to "OAMAuthenticator". |
The following invocation creates a new authentication provider named OAMAuthenticator
:
Online command that deletes the OAM authenticator from the current domain.
Deletes the OAM authenticator with a given name from the current domain. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
name | Specifies the name of the authentication provider to delete. |
The following invocation deletes the authenticator myAuthenticator
:
Online command that updates the values of parameters of the Oracle Access Manager authenticator in the current domain.
Updates the value of given parameters of the domain Oracle Access Manager authenticator. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
name | Specifies the name of the Oracle Access Manager authenticator whose parameter values to update. |
paramNameValueList | Specifies the comma-separated list of pairs of parameter name-value to be updated. The format of each pair is paramName='paramValue' The only parameter names that can be updated are the following:
|
The following invocation updates the parameters accessGateName, accessGatePwd,
and pAccessServer
in the Oracle Access Manager authenticator named myAuthenticator
:
Online command that adds an Oracle Access Manager SSO provider with the given login URI, logout URI, and auto-login URI.
Adds an SSO provider with the given login URI, logout URI, and auto-login URI. This command modifies the domain jps-config.xml
by adding an Oracle Access Manager SSO service instance with the required properties. In the event of an error, the command returns a WLSTException
.
Argument | Definition |
---|---|
loginuri | Required. Specifies the URI of the login page and triggers SSO authentication. |
| Optional. Specifies the URI of the logout page and logs the signed-on user out. If unspecified, defaults to Set to "" to ensure that ADF security calls the OPSS logout service, which uses the implementation of the class More generally, an ADF-secured web application that would like to clear cookies without logging out the user should use this setting. |
| Required. Specifies the URI of the autologin page. Optional. If unspecified, it defaults to |
| Optional. Specifies the URI that triggers the impersonation SSO session. |
| Optional. Specifies the URI that terminates the impersonation SSO session. |
The following invocation adds an SSO provider with the passed URIs; note the special behavior implied by the setting logouturi=""
and the impersonation parameters, as explained in the above table:
beginimpuri="https://login.acme.com/impersonationInit.html"
endimpuri="https://login.acme.com/impersonationTerm.html")
autologin="/fooBar.cgi"
)Online and offline command that displays the information about all the OAM Servers in a deployment.
Lists the topology of deployed OAM Servers. There are no arguments for this command.
The following invocation lists the details of all deployed OAM Servers, as described above:
Online command that displays the performance metrics of an OAM Server and domain.
Displays the performance metrics of an OAM Server and domain specific to collectors, including host, process, and server names. There are no arguments for this command.
If none of the arguments are specified all the details of all the servers and collectors are displayed.
The following invocation lists all metrics specific to named collectors, as described above:
Online and offline command that displays OAM Server registration details.
Displays OAM Server registration details, including the host, port, registration name, OAM Proxy port and server ID, and, optionally, the OAM Proxy shared secret.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
host | Mandatory. Specifies the name of the OAM Server host. |
port | Mandatory. Specifies the listening port of the OAM Server host. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation lists all metrics specific to named collectors, as described above:
Online and offline command that creates an OAM Server entry in the system configuration.
Creates an OAM Server registration, including the host, port, registration name, OAM Proxy port and server ID, and, optionally, the OAM Proxy shared secret.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
host | Mandatory. Specifies the name of the OAM Server host. |
port | Mandatory. Specifies the listening port of the OAM Server host. |
domainHome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Mandatory:
|
The following invocation creates a configuration for your_host
with listening port 15000
. The configuration entry in the Administration Console will be oam_server1
. The OAM Proxy port is 3004 and the OAM Proxy Server ID is AccessServerConfigProxy
:
oam_server1"
, oamProxyPort=
"3004
", oamProxyServerID=
"ProxyID", Online and offline command that enables you to edit OAM Server registration details.
Edits the registration for an OAM Server, which can include the host, port, registration name, OAM Proxy port and server ID, and, optionally, the OAM Proxy shared secret.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
name | Mandatory. Specifies the name of the OAM Server host. |
port | Mandatory. Specifies the port number of the OAM Server host. |
domainHome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Mandatory:
|
You can use any of the optional attributes to change current settings. The following invocation enables you to add the OAM Proxy shared secret to the configuration entry oam_server1
.
"oam_server1
", oamProxyPort=
"3004
",oamProxyServerID=
"Proxy1", Online and offline command that enables you to delete the named OAM Server registration.
Deletes an entire OAM Server configuration.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
host | Mandatory. Specifies the name of the OAM Server host. |
port | Mandatory. Specifies the listening port of the OAM Server host. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation enables you to delete the OAM Server registration for oam_server1
with listening port 15000
.
Online and offline command that displays OSSO Agent configuration details.
Displays OSSO Agent registration details, which also appear in the OAM Administration Console.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the OSSO Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation displays the OSSO Agent's registration information:
Online and offline command that enables you to edit an OSSO Agent registration.
Changes OSSO Agent configuration details, including the Site Token, Success URL, Failure URL, Home URL, Logout URL, Start Date, End Date, Administrator ID, and Administrator Info.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the OSSO Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs to be updated. The format of each pair is: paramName='paramValue' Optional:
|
The following invocation changes the Administrator ID and information in the registration entry for OSSOAgent1
:
Online and offline command that enables you to delete an OSSO Agent registration.
Removes an OSSO Agent configuration.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the OSSO Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation removes the OSSO Agent named OSSOAgent1
:
Online and offline command that displays a 10g WebGate registration.
Displays all 10g WebGate registration details, which can also be seen in the OAM Administration Console.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the WebGate Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation displays registration information for my_WebGate
:
Online and offline command that enables you to edit a 10g WebGate registration.
Enables you to change 10g WebGate Agent registration details.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the WebGate Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs to be updated. The format of each pair is: paramName='paramValue' Mandatory:
Optional:
|
You can alter any or all of the settings. Use the following invocation to change specific information in the WebGate Agent registration, including the Agent ID, state, maximum connections, OAM Server timeout, primary cookie domain, cache time out, cookie session timeout, maximum session timeout, idle session timeout, and failover threshold, as follows:
Online and offline command that enables you to delete a 10g WebGate Agent registration.
Removes an 10g WebGate Agent registration.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the WebGate Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation removes the WebGate Agent named my_WebGate
:
Online and offline command that changes the logger level.
Changes the level of one or more, or all, loggers.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
loggerName | Optional. Specifies the OAM logger name. Multiple OAM logger names can be specified, separated by commas, or you can use the wildcard (*) character to specify all OAM collectors, which is the default. |
loggerLevel | SEVERE, WARNING, INFO, CONFIG, FINE. |
The following invocation changes the logger level to SEVERE:
Offline command that regenerates the configuration data encryption key.
Regenerates the configuration data encryption key, re-encrypts the configuration data using the new key, and outputs attribute information of the identity store.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
oldPassword | Mandatory. Specifies the password that retrieves the current encryption key. |
newPassword | Mandatory. Defines a new password that protects the newly generated encryption key. |
The following invocation changes the old and new password, regenerates the key, and re-encrypts the configuration data:
Online and offline command that displays user identity store registration information.
Displays information of the user identity store registered with Oracle Access Manager.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
name | Mandatory. Specifies the name of the LDAP user identity store. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation displays registration details of the user identity store:
Online and offline command that changes attributes of the user identity store for Oracle Access Manager.
Changes one or more attributes of the user identity store registered with Oracle Access Manager.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
name | Mandatory. Specifies the unique name of the LDAP user identity store (only upper and lower case alpha characters and numbers). |
domainhome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Include one or more of the following parameter name-value pairs, in addition to those in createUserIdentityStore, to change the OAM user identity store configuration:
|
The following invocation changes the LDAP URL of the user identity store for OAM:
"ldap://localhost:7003
", domainHome="domaonHome1")
Online and offline command that creates a user identity store registration for Oracle Access Manager.
Creates an entry for a new user identity store to be registered with Oracle Access Manager.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
name | Mandatory. Specifies the unique name of the LDAP user identity store (only upper and lower case alpha characters and numbers). |
domainhome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Mandatory:
Optional:
|
The following invocation creates a new Oracle Internet Directory user identity store definition for use with Oracle Access Manager:
Online and offline command that removes a Oracle Access Manager user identity store registration.
Deletes the user identity store registered with Oracle Access Manager.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
name | Mandatory. Specifies the name of the LDAP user identity store to be removed. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation deletes the registration of the user identity store:
Online and offline command that configures the SSO server request cache type.
Configures the SSO server request cache type.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
type | Mandatory. Specifies
|
The following invocation identifies the request cache type as Cookie:
Online and offline command that displays the SSO server request cache type.
Displays the SSO server request cache type entry.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
type | Mandatory. Specifies requestCacheType.
|
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation displays the request cache type.
Online only command that exports OAM policy data from a test (source) environment to the intermediate Oracle Access Manager file specified.
Exports OAM policy data from a test (source) environment to the intermediate Oracle Access Manager file.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
pathTempOAMPolicyFile | Mandatory. Specifies the path to the temporary Oracle Access Manager file. |
The following invocation specifies the path to the temporary file used when exporting policy data from a test (source) environment.
Online only command that imports the OAM policy data from the intermediate Oracle Access Manager file specified.
Imports the OAM policy data from the intermediate Oracle Access Manager file specified.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Mandatory. Specifies the path to the temporary OAM file. |
The following invocation specifies the path to the temporary file used when importing policy data to a production (target).
Online only command that imports the OAM policy changes from the intermediate Oracle Access Manager file specified.
Imports the OAM policy changes from the intermediate Oracle Access Manager file specified.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Mandatory. Specifies the path to the temporary Oracle Access Manager file. |
The following invocation specifies the path to the temporary file used when importing only changed policy data to a production (target).
Online only command that migrates partners from the current (source) OAM Server to the specified (target) OAM Server.
Migrates partners from the current (source) OAM Server to the specified (target) OAM Server.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Host name of the target OAM Server to which partners are to be migrated. |
| Port of the target OAM Server to which partners are to be migrated. |
| Administrator of the target OAM Server to which partners are to be migrated. |
| Target OAM Server administrator's password. |
The following invocation specifies the required information.
Online only command that exports Oracle Access Manager partners from the source to the intermediate Oracle Access Manager file specified.
Exports the Oracle Access Manager partners from the source to the intermediate Oracle Access Manager file specified.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Mandatory. Specifies the path to the temporary Oracle Access Manager partner file. |
The following invocation specifies the path to the intermediate OAM partners file.
Online only command that imports Oracle Access Manager partners from the intermediate Oracle Access Manager file specified.
Imports the OAM partners from the intermediate Oracle Access Manager file specified.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Mandatory. Specifies the path to the temporary OAM partner file. |
The following invocation specifies the path to the intermediate OAM partners file.
Online only command that configures the Oracle Access Manager-Oracle Adaptive Access Manager basic integration.
Configures the OAM-OAAM basic integration.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Name of the data source to be created |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Mandatory:
Optional:
|
The following invocation configures the Oracle Access Manager-Oracle Adaptive Access Manager basic integration.
Online and offline command that registers Oracle Identity Federation as a Delegated Authentication Protocol (DAP) Partner.
Registers Oracle Identity Federation as Delegated Authentication Protocol (DAP) Partner.
The scope of this command is an instance only. The scope is not an argument.
Argument | Definition |
---|---|
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Mandatory: Include the following parameter name-value pairs to create a new OAM user identity store configuration:
Optional:
|
The following invocation illustrates use of all parameters.
Online command that enables the Coexist Mode.
Enables the Coexist Mode.
The scope of this command is an instance, only. The scope is not an argument.
The following invocation enables the Coexist Mode.
Online command that disables the Coexist Mode.
Disables the Coexist Mode.
The scope of this command is an instance, only. The scope is not an argument.
The following invocation enables the Coexist Mode.
Online and offline command that edits GITO configuration parameters.
Edits GITO configuration parameters.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| True (or false). Allows (or denies) user to set GITO enabled property. |
domainhome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Mandatory: Include the following parameter name-value pairs to create a new OAM user identity store configuration:
Optional:
|
The following invocation edits GITO configuration parameters.
Online and offline command that edits an 11g WebGate registration.
Edits an 11g WebGate registration.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Name of the registered OAM 11g WebGate agent to be edited. |
domainhome | Offline mode: Mandatory Online mode: Optional |
paramNameValueList | Specifies the comma-separated list of parameter name-value pairs. The format of each pair is: paramName='paramValue' Optional:
|
The following invocation lists all mandatory and optional parameters.
state = "Enabled", preferredHost="141.144.168.148:2001", aaaTimeoutThreshold="10",
"logoutRedirectUrl", failoverThreshold = "1", tokenValidityPeriod="aPeriod"
Online and offline command that enables you to delete an 11g WebGate Agent registration.
Removes an 11g WebGate Agent registration.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the 11g WebGate Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation removes the 11g WebGate Agent named my_11gWebGate
:
Online and offline command that enables you to display an 11g WebGate Agent registration.
Displays an 11g WebGate Agent registration.
The scope of this command is an instance, only. The scope is not an argument
Argument | Definition |
---|---|
agentName | Mandatory. Specifies the name of the WebGate Agent. |
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation displays the WebGate Agent named my_11gWebGate
:
Online and offline command that enables the display of metrics of OAM Servers.
Enables the display of metrics of OAM Servers.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
domainhome | Offline mode: Mandatory Online mode: Optional |
The following invocation enables the display of metrics of OAM Servers.
Online only command that updates the Oracle Identity Manager configuration when integrated with Oracle Access Manager.
Updates the Oracle Identity manager configuration in system configuration.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Name of the Oracle Identity Manager host. |
| Port of the Oracle Identity Manager host. |
| True or false. |
The following invocation illustrates this command.
Online only command that creates an agent registration specific to Oracle Identity Manager when integrated with Oracle Access Manager.
Creates an Agent registration specific to Oracle Identity Manager when integrated with Oracle Access Manager.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
| Name of the Oracle Identity Manager host. |
| Port of the Oracle Identity Manager Managed Server. |
| True or false (depending on HTTP or HTTPS). |
| If provided will be the agent password for Open mode |
| Domain to which the cookie is to be set |
| Agent registration name. |
| Possible values 10g or 11g. If not provided, default is 10g. |
The following invocation illustrates this command.
Online and offline command that updates OSSO Proxy response cookie settings.
Updates OSSO Proxy response cookie settings.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
domainhome | Offline mode: Mandatory Online mode: Optional |
| Optional. Name of the cookie for which settings are updated. If not specified, the global setting is updated. |
| Maximum age of a cookie in minutes. A negative value sets a session cookie. |
| Boolean flag specifies if cookie should be secure (sent only over SSL channel). |
| The domain of the cookie. |
The following invocation illustrates this command.
Online and offline command that deletes OSSO Proxy response cookie settings.
Deletes OSSO Proxy response cookie settings.
The scope of this command is an instance, only. The scope is not an argument.
Argument | Definition |
---|---|
domainhome | Offline mode: Mandatory Online mode: Optional |
| Mandatory. Name of the cookie for which settings are deleted. |
The following invocation illustrates this command.
Displays the simple mode global passphrase in plain text from the system configuration.
Online only command that displays the simple mode global passphrase in plain text from the system configuration.
There are no arguments for this command.
The following invocation illustrates this command.
Exports selected OAM Partners.
Exports selected OAM Partners to the intermediate OAM file specified.
Argument | Definition |
---|---|
| The temporary file containing partners to be migrated. |
| comma separated list of partner ids to be migrated |
The following invocation illustrates this command.
Migrates artifacts.
Migrates artifacts based on the input artifact file.
Argument | Definition |
---|---|
path | Location of the artifacts file is present |
password | Password used while generating original artifacts. |
type | InPlace or OutOfPlace |
| true or false. If true, an incremental upgrade is done. |
The following invocation illustrates this command.
Registers any third party as a Trusted Authentication Protocol (TAP) Partner.
Registers any third party as a Trusted Authentication Protocol (TAP) Partner.
Argument | Definition |
---|---|
path | Location of the artifacts file is present |
password | Password used while generating original artifacts. |
partnerName | Name of partner. Can be any name used for identifying the third party partner. |
keystoreLocation | The jceks file location. |
password | password |
| Version of the Trusted Authentication Protocol. |
| Trusted Authentication Protocol Authn Scheme (TAPScheme, out of the box.) |
| Third party access URL. |
registerThirdPartyTAPPartner (partnerName="ThirdPartyTAPPartner",keystoreLocation=
Table 4-7 describes the various types of WLST commands available for the Oracle Security Token Service.
Table 4-7 WLST Oracle Security Token Service Command Groups
OSTS Command Type | Description |
---|---|
Partner Commands | WLST commands related to tasks involving partners. |
Relying Party Partner Mapping Commands | The WS Prefix to Relying Party Partner mappings are used to map a service URL, specified in the AppliesTo field of a WS-Trust RST request, to a partner of type Relying Party. The WS prefix string can be an exact service URL, or a URL with a parent path to the service URL. For example, if a mapping is defined to map a WS Prefix (http://test.com/service) to a Relying Party (RelyingPartyPartnerTest), then the following service URLs would be mapped to the Relying Party: http://test.com/service, http://test.com/service/calculatorService, http://test.com/service/shop/cart... |
Partner Profiles Commands | WLST commands related to tasks involving partner profiles. |
Issuance Templates Commands | WLST commands related to tasks involving issuance templates. |
Validation Templates Commands | WLST commands related to tasks involving validation templates. |
Use the WLST commands listed in Table 4-8 to manage Oracle Security Token Service
Table 4-8 WLST Commands Oracle Security Token Service
Use this command... | To... | Use with WLST... |
---|---|---|
Partner Commands | ||
| Retrieve a partner and print result. | Online |
| Retrieve the names of Requester partners. | Online |
| Retrieve the names of all Relying Party partners. | Online |
getAllIssuingAuthorityPartners | Retrieve the names of all Issuing Authority partners. | Online |
| Query OSTS to determine whether or not the partner exists in the Partner store. | Online |
| Create a new Partner entry. | Online |
| Update an existing Partner entry based on the provided information. | Online |
| Delete a partner entry. | Online |
getPartnerUsernameTokenUsername | Retrieve the partner's username value. | Online |
getPartnerUsernameTokenPassword | Retrieve the partner's password value. | Online |
setPartnerUsernameTokenCredential | Set the username and password values of a partner entry. | Online |
deletePartnerUsernameTokenCredential | Remove the username and password values from a partner entry. | Online |
| Retrieve the Base64 encoded signing certificate for the partner. | Online |
| Retrieve the Base64 encoded encryption certificate for the partner. | Online |
| Upload the signing certificate to the partner entry. | Online |
| Upload the encryption certificate to the partner entry. | Online |
| Remove the signing certificate from the partner entry. | Online Offline |
| Remove the encryption certificate from the partner entry. | Online Offline |
getPartnerAllIdentityAttributes | Retrieve and display all Identity mapping attributes used to map a token to a requester partner. | Online Offline |
| Retrieve and display the identity mapping attribute. | Online Offline |
| Set the identity mapping attribute for a requester partner. | Online Offline |
deletePartnerIdentityAttribute | Delete the identity mapping attribute for a requester partner. | Online Offline |
Relying Party Partner Mapping Commands | ||
getAllWSPrefixAndPartnerMappings | Retrieve and display all WS Prefixes. | Online Offline |
| Retrieve and display the Relying Party Partner mapped to the specified wsprefix parameter. | Online Offline |
createWSPrefixAndPartnerMapping | Create a new WS Prefix mapping to a Relying Partner. | Online Offline |
deleteWSPrefixAndPartnerMapping | Delete an existing WS Prefix mapping to a Relying Partner. | Online Offline |
Partner Profiles Commands | ||
| Retrieve the names of all the existing partner profiles. | Online |
| Retrieve partner profile configuration data. | Online |
| Create a new Requester Partner profile with default configuration data. | Online |
createRelyingPartyPartnerProfile | Create a new Relying Party Partner profile with default configuration data. | Online |
createIssuingAuthorityPartnerProfile | Create a new Issuing Authority Partner profile with default configuration data. | Online |
| Delete an existing partner profile. | Online |
Issuance Template Commands | ||
| Retrieve the names of all the existing Issuance Templates. | Online Offline |
| Retrieve configuration data of a specific Issuance Template. | Online |
| Create a new Issuance Template with default configuration data. | Online |
| Delete an existing Issuance Template. | Online Offline |
Validation Template Commands | ||
| Retrieve the names of all the existing Validation Templates. | Online Offline |
| Retrieve configuration data of a specific Validation Template. | Online Offline |
| Create a new WS Security Validation Template with default configuration data. | Online Offline |
createWSTrustValidationTemplate | Create a new WS Trust Validation Template with default configuration data. | Online Offline |
| Delete an existing Issuance Template. | Online Offline |
Online command that retrieves the Partner entry and prints out the configuration for this partner.
Retrieves the Partner entry and prints out the configuration for this partner.
Argument | Definition |
---|---|
partnerId | Specifies the partnerId: the ID of the partner. |
The following invocation retrieves the Partner entry and prints out the configuration for customPartner
:
Online command that retrieves Requester type partners.
Retrieves Requester type partners.
The following invocation retrieves Requester type partners:
Online command that retrieves Relying Party partners.
Retrieves the Relying Party partners.
The following invocation retrieves Relying Party partners:
Online command that retrieves Issuing Authority partners and prints out the result.
Retrieves the Issuing Authority partners and prints out the result.
The following invocation retrieves Issuing Authority partners and prints out the result:
Online command that queries OSTS to determine whether or not the specified partner exists in the Partner store.
Queries OSTS to determine whether or not the specified partner exists in the Partner store, and prints out the result.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation queries OSTS to determine whether or not customPartner
exists in the Partner store, and prints out the result:
Online command that creates a new Partner entry.
Creates a new Partner entry based on provided information. Displays a message indicating the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the new partner to be created. |
partnerType | Specifies the type of partner. Values can be one of the following:
|
partnerProfileId | Specifies the profile ID to be attached to this partner. It must reference an existing partner profile, and the type of the partner profile must be compliant with the type of the new partner entry. |
description | Specifies the optional description of this new partner entry. |
bIsTrusted | A value that indicates whether or not this new partner is trusted. Value can be either:
|
The following invocation creates STS_Requestor partner, customPartner, custom-partnerprofile
with a description (custom requester
), with a trust value of true
, displays a message indicating the result of the operation:
Online command that updates an existing Partner entry.
Updates an existing Partner entry based on the provided information. Displays a message indicating the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the new partner to be updated. |
partnerProfileId | Specifies the partner profile ID. It must reference an existing partner profile, and the type of the partner profile must be compliant with the type of the new partner entry. |
description | Specifies the optional description f this new partner entry. |
bIsTrusted | A value that indicates whether or not this new partner is trusted. Value can be either:
|
The following invocation updates customPartner
with a new profile ID, (x509-wss-validtemp
), description (custom requester with new profile id
), and a trust value of false
. A message indicates the result of the operation:
Online command that deletes a partner entry from OSTS.
Deletes an existing Partner entry referenced by the partnerId
parameter from OSTS, and prints out the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner to be deleted. |
The following invocation deletes the customPartner
partner entry referenced by the partnerId parameter from OSTS, and prints out the result of the operation:
Online command that retrieves a partner's username value that will be used for UNT credentials partner validation or mapping operation.
Retrieves a partner's username value that will be used for UNT credentials partner validation or mapping operation, and displays the value.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation retrieves the customPartner
partner username value that will be used for UNT credentials partner validation or mapping operation, and displays the value:
Online command that retrieves a partner's password value that will be used for UNT credentials partner validation or mapping operation.
Retrieves a partner password value that will be used for UNT credentials partner validation or mapping operation, and displays the value.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation retrieves customPartner
partner password value that will be used for UNT credentials partner validation or mapping operation, and displays the value:
Online command that sets the username and password values of a partner entry, that will be used for UNT credentials partner validation or mapping operation.
Sets the username and password values of a partner entry, that will be used for UNT credentials partner validation or mapping operation. Displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
UTUsername | Specifies the username value used for UNT credentials validation or mapping operations. |
UTPassword | Specifies the username value used for UNT credentials validation or mapping operations. |
The following invocation sets the username and password values of the customPartner
partner entry, and displays the result of the operation:
Online command that removes the username and password values from a partner entry that are used for UNT credentials partner validation or mapping operation, and displays the result of the operation.
Removes the username and password values from a partner entry that are used for UNT credentials partner validation or mapping operation, and displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner to be deleted. |
The following invocation removes the username and password values from a partner entry that are used for UNT credentials partner validation or mapping operation, and displays the result of the operation:
Online command that retrieves the Base64 encoded signing certificate for the partner referenced by the partnerId parameter, and displays its value, as a Base64 encoded string.
Retrieves the Base64 encoded signing certificate for the partner referenced by the partnerId parameter, and displays its value, as a Base64 encoded string.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation retrieves Base64 encoded signing certificate for the partner referenced by the partnerId parameter, and displays its value, as a Base64 encoded string:
Online command that retrieves the Base64 encoded encryption certificate, and displays its value as a Base64 encoded string.
Retrieves the Base64 encoded encryption certificate for the partner referenced by the partnerId parameter, and displays its value as a Base64 encoded string.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation retrieves the Base64 encoded encryption certificate for the partner referenced by the partnerId parameter, and displays its value, as a Base64 encoded string:
Online command that Uploads the provided certificate to the partner entry as the signing certificate. Displays the result of the operation.
Uploads the provided certificate to the partner entry (referenced by the partnerId parameter) as the signing certificate. The supported formats of the certificate are DER and PEM. Displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
certFile | Specifies the location of the certificate on the local filesystem. Supported formats of the certificate are DER and PEM. |
The following invocation uploads the provided certificate to the partner entry customPartner
as the signing certificate. Displays the result of the operation:
Online command that Uploads the provided certificate to the partner entry as the encryption certificate. Displays the result of the operation.
Uploads the provided certificate to the partner entry (referenced by the partnerId parameter) as the encryption certificate. Displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
certFile | Specifies the location of the certificate on the local filesystem. Supported formats of the certificate are DER and PEM. |
The following invocation uploads the provided certificate to the partner entry customPartner
as the signing certificate. Displays the result of the operation:
Online command that removes the encryption certificate from the partner entry and displays the result of the operation.
Removes the encryption certificate from the partner entry, referenced by the partnerId parameter, and displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation removes the encryption certificate from the partner entry, customPartner
, and displays the result of the operation:
Online command that removes the signing certificate from the partner entry and displays the result of the operation.
Removes the signing certificate from the partner entry, referenced by the partnerId parameter, and displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
The following invocation removes the signing certificate from the partner entry, customPartner
, and displays the result of the operation:
Online command that retrieves and displays all the identity mapping attributes used to map a token to a requester partner, or to map binding data (SSL Client certificate or HTTP Basic Username) to a requester partner.
Retrieves and displays all the identity mapping attributes used to map a token to a requester partner, or to map binding data (SSL Client certificate or HTTP Basic Username) to a requester partner.
The identity mapping attributes only exist for partners of type Requester.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the Requester partner. Identity mapping attributes only exist for partners of type Requester |
The following invocation retrieves and displays all the identity mapping attributes used to map a token to a requester partner, or to map binding data (SSL Client certificate or HTTP Basic Username) to a requester partner: customPartner
.
Online command that retrieves and displays identity mapping attributes used to map a token or to map binding data to a requester partner.
Retrieves and displays an identity mapping attribute used to map a token to a requester partner, or to map binding data (SSL Client certificate or HTTP Basic Username) to a requester partner.
The identity mapping attributes only exist for partners of type Requester.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the Requester partner. |
IdentityAttributeName | Specifies the name of the identity mapping attribute to retrieve and display. For example: |
The following invocation retrieves and displays one identityAttribute
and its value as specified by identityAttributeName
.
Online command that sets the identity mapping attribute for the Requester partner.
Set the identity mapping attribute specified by identityAttributeName
for the partner of type requester specified by the partnerId parameter. These identity mapping attributes only exist for Requester partners. Displays the result of the operation.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner of type Requester. |
identityAttributeName | Specifies the name of the identity mapping attribute to retrieve and display. |
identityAttributeValue | Specifies the value of the identity mapping attribute to set. |
The following invocation sets the identity mapping attribute specified by identityAttributeName
for the Requester partner of type requester specified by the partnerId parameter. Displays the result of the operation.
Online command that deletes the identity mapping attribute.
Deletes the identity mapping attribute specified by identityAttributeName
.
The identity mapping attributes used to map a token to a requester partner, or to map binding data (SSL Client certificate or HTTP Basic Username) to a requester partner, and they only exist for Requester partners.
Argument | Definition |
---|---|
partnerId | Specifies the ID of the partner. |
identityAttributeName | Specifies the name of the identity mapping attribute to delete. |
The following invocation deletes the identity mapping attribute specified by identityAttributeName
for Requester partner customPartner
.
Online command that retrieves and displays all WS Prefixes to Relying Party Partner mappings.
Retrieves and displays all WS Prefixes to Relying Party Partner mappings.
The following invocation retrieves and displays theWS Prefixes.
Online command that retrieves and displays the Relying Party Partner mapped to the specified wsprefix parameter, if a mapping for that WS Prefix exists.
Retrieves and displays the Relying Party Partner mapped to the specified wsprefix parameter, if a mapping for that WS Prefix exists.
Argument | Definition |
---|---|
wsprefix | Specifies the WS Prefix entry to retrieve and display. The path is optional. If specified, it should take the following form: http_protocol://hostname_ip/path |
The following invocation retrieves nd displays the Relying Party Partner mapped to the specified wsprefix parameter, if a mapping for that WS Prefix exists.
Online command that creates a new WS Prefix mapping to a Relying Partner.
Creates a new WS Prefix mapping to a Relying Partner referenced by the partnerid parameter, and displays the result of the operation.
Argument | Definition |
---|---|
wsprefix | Specifies the WS Prefix entry to retrieve and display. The path is optional. If specified, it should take the following form: http_protocol://hostname_ip/path |
partnerId | Specifies the ID of the partner. |
description | Specifies an optional description. |
The following invocation creates a new WS Prefix mapping to a Relying Partner Partner referenced by the partnerid parameter, and displays the result of the operation.
Online command that deletes an existing mapping of WS Prefix to a Relying Partner Partner.
Deletes an existing mapping of WS Prefix to a Relying Partner, and displays the result of the operation.
Argument | Definition |
---|---|
wsprefix | Specifies the WS Prefix entry to retrieve and display. The path is optional. If specified, it should take the following form: http_protocol://hostname_ip/path |
The following invocation deletes the existing mapping of WS Prefix to a Relying Partner, and displays the result of the operation.
Online command that retrieves the names of all the existing partner profiles and displays them.
Retrieves the names of all the existing partner profiles and displays them.
The following invocation retrieves the names of all the existing partner profiles and displays them.
Online command that retrieves the configuration data of a specific partner profile, and displays the content of the profile.
Retrieves the configuration data of the partner profile referenced by the partnerProfileId parameter, and displays the content of the profile.
Argument | Definition |
---|---|
partnerProfileId | Specifies the name of the partner profile. |
The following invocation retrieves the configuration data of the partner profile referenced by the partnerProfileId parameter, and displays the content of the profile.
Online command that creates a new requester partner profile with default configuration data.
Creates a new requester partner profile with default configuration data, and displays the result of the operation.
Table 4-9 describes the default configuration created with this command.
Table 4-9 Default Configuration: createRequesterPartnerProfile
Element | Description |
---|---|
Return Error for Missing Claims | Default: false |
Allow Unmapped Claims | Default: false |
Token Type Configuration | The Token Type Configuration table includes the following entries. There are no mappings of token type to WS-Trust Validation Template:
Note: Token Type Configuration and token type to Validation Template mapping are both empty |
Attribute Name Mapping | Default: The Attribute Name Mapping table is empty by default. |
Argument | Definition |
---|---|
partnerProfileId | Specifies the name of the partner profile. |
defaultRelyingPartyPPID | Specifies the relying party partner profile to use, if the AppliesTo field is missing from the RST or if it could not be mapped to a Relying Party Partner. |
description | Specifies the optional description for this partner profile |
The following invocation creates a new requester partner profile with default configuration data, and displays the result of the operation. For default data descriptions, see Table 4-9.
Online command that creates a new relying party partner profile with default configuration data.
Creates a new relying party partner profile with default configuration data, and displays the result of the operation.
Table 4-10 describes the default configuration created with this command.
Table 4-10 Default Configuration: createRelyingPartyPartnerProfile
Element | Description |
---|---|
Download Policy | Default: false |
Allow Unmapped Claims | Default: false |
Token Type Configuration | The Token Type Configuration will contain a single entry, with:
Note: For the token type of the issuance template referenced by defaultIssuanceTemplateID, it will be linked to the issuance template, while the other token types will not be linked to any issuance template. If the issuance template referenced by defaultIssuanceTemplateID is of custom token type, the table will only contain one entry, with the custom token type, mapped to the custom token type as the external URI, and mapped to the issuance template referenced by defaultIssuanceTemplateID |
Attribute Name Mapping | The Attribute Name Mapping table is empty be default. |
Argument | Definition |
---|---|
partnerProfileId | Specifies the name of the partner profile. |
defaultIssuanceTemplateID | Specifies the default issuance template and token type to issue if no token type was specified in the RST. |
description | Specifies the optional description for this partner profile |
The following invocation creates a new relying party partner profile with default configuration data, and displays the result of the operation.
Online command that creates a new issuing authority partner profile with default configuration data.
Creates a new issuing authority partner profile with the default configuration data in Table 4-11, and displays the result of the operation.
Table 4-11 Default Configuration: createIssuingAuthorityPartnerProfile
Element | Description |
---|---|
Server Clockdrift | Default: 600 seconds |
Token Mapping | The Token Mapping Section will be configured as follows:
Empty fields
|
Partner NameID Mapping | The Partner NameID Mapping table will be provisioned with the following entries as NameID format. However, without any data in the datastore column the issuance template referenced by defaultIssuanceTemplateID is of token type SAML 1.1, SAML 2.0, or Username. The table will contain the following entries:
|
User NameID Mapping | The User NameID Mapping table will be provisioned with the following entries as NameID format:
|
Attribute Mapping | The Attribute Value Mapping and Attribute Name Mapping table is empty be default. |
Argument | Definition |
---|---|
partnerProfileId | Specifies the name of the partner profile. |
description | Specifies the optional description for this partner profile |
The following invocation a new issuing authority partner profile with default configuration data, and displays the result of the operation.
Online command that deletes an partner profile referenced by the partnerProfileId parameter.
Deletes an partner profile referenced by the partnerProfileId parameter, and displays the result of the operation.
Argument | Definition |
---|---|
partnerProfileId | Specifies the name of the partner profile to be removed. |
The following invocation deletes an partner profile referenced by the partnerProfileId parameter, and displays the result of the operation.
Online command that retrieves the names of all the existing issuance templates.
Retrieves the names of all the existing issuance templates and displays them.
The following invocation retrieves the names of all the existing issuance templates and displays them.
Online command that retrieves the configuration data of a specific issuance template.
Retrieves the configuration data of the issuance template referenced by the issuanceTemplateId parameter, and displays the content of the template.
Argument | Definition |
---|---|
issuanceTemplateId | Specifies the name of the issuance template. |
The following invocation retrieves the configuration data of the issuance template referenced by the issuanceTemplateId parameter, and displays the content of the template.
Online command that creates a new issuance template with default configuration data.
Creates a new issuance template with default configuration data, and displays the result of the operation.
Table 4-12 describes the default configuration for this command.
Table 4-12 Default Configuration: createIssuanceTemplate
Token Type | Description |
---|---|
Username | The issuance template will be created with the following default values:
|
SAML 1.1 or SAML 2.0 | The issuance template will be created with the following default values:
Empty tables: Attribute Name Mapping, Attribute Value Mapping and Attribute Value Filter |
Custom Type | The issuance template will be created with the following default values:
|
Argument | Definition |
---|---|
issuanceTemplateId | Specifies the name of the issuance template to be created. |
tokenType | Possible values can be:
|
signingKeyId | Specifies the keyID referencing the key entry (defined in the STS General Settings UI section) that will be used to sign outgoing SAML Assertions. Only required when token type is saml11 or saml20. |
description | An optional description. |
The following invocation creates a new issuance template with default configuration data, and displays the result of the operation.
Online command that deletes an issuance template referenced by the issuanceTemplateId parameter, and displays the result of the operation.
Deletes an issuance template referenced by the issuanceTemplateId parameter, and displays the result of the operation.
Argument | Definition |
---|---|
issuanceTemplateId | Specifies the name of the existing issuance template to be removed. |
The following invocation deletes an issuance template referenced by the issuanceTemplateId parameter, and displays the result of the operation.
Online command that retrieves the names of all the existing validation templates.
Retrieves the names of all the existing validation templates and displays them.
The following invocation retrieves the names of all the existing validation templates and displays them.
Online command that retrieves the configuration data of a specific validation template, and displays the content of the template.
Retrieves the configuration data of the validation template referenced by the validationTemplateId parameter, and displays the content of the template.
Argument | Definition |
---|---|
validationTemplateId | Specifies the name of the existing validation template. |
The following invocation retrieves the configuration data of a specific validation template, and displays the content of the template.
Online command that creates a new validation template with default configuration data.
Creates a new validation template with default configuration data, and displays the result of the operation.
The WSS validation template is created with the values in Table 4-13, depending on the token type.
Table 4-13 Default Configuration: createWSSValidationTemplate
Token Type | Description |
---|---|
Username | The validation template will be created with the following default values:
|
SAML 1.1 or SAML 2.0 | The validation template will be created with the following default values:
The Token Mapping section will be created with the following default values:
Empty fields: User Token Attribute, User Datastore Attribute and Attribute Based User Mapping Also:
Partner NameID Mapping table will be provisioned with the following entries as NameID format, but without any data in the datastore column:
User NameID Mapping table will be provisioned with the following entries as NameID format:
|
X.509 | The Token Mapping section will be created with the following default values:
Empty fields: User Token Attribute, User Datastore Attribute and Attribute Based User Mapping Also:
|
Kerberos | The Token Mapping section will be created with the following default values:
Empty fields: Partner Token Attribute, Partner Datastore Attribute and Attribute Based User Mapping Also:
|
Argument | Definition |
---|---|
templateId | Specifies the name of the name of the validation template to be created. |
tokenType | Specifies the token type of the validation template. Possible values can be:
|
defaultRequesterPPID | Specifies the Requester partner profile to use if OSTS is configured not to map the incoming message to a requester. |
description | Specifies an optional description. |
The following invocation creates a new validation template with default configuration data, and displays the result of the operation.
Online command that creates a new WS-Trust validation template with default configuration data.
Creates a new WS-Trust validation template with default configuration data, and displays the result of the operation.
The WS-Trust validation template is created with the values in Table 4-14, depending on the token type.
Table 4-14 Default Configuration: createWSTrustValidationTemplate
Token Type | Description |
---|---|
Username | The WS-Trust validation template will be created with the following default values:
|
SAML 1.1 or SAML 2.0 | The WS-Trust validation template will be created with the following default values:
The Token Mapping section will be created with the following default values:
Empty fields: User Datastore Attribute, Attribute Based User Mapping User NameID Mapping table will be provisioned with the following entries as NameID format:
|
X.509 | The WS-Trust Token Mapping section will be created with the following default values:
|
Kerberos | The WS-Trust Token Mapping section will be created with the following default values:
|
OAM | The WS-Trust Token Mapping section will be created with the following default values:
|
custom | The WS-Trust Token Mapping section will be created with the following default values:
|
Argument | Definition |
---|---|
templateId | Specifies the name of the name of the WS-Trust validation template to be created. |
tokenType | Specifies the token type of the WS-Trust validation template. Possible values can be:
|
description | Specifies an optional description. |
The following invocation creates a new WS-Trust validation template with default configuration data, and displays the result of the operation.
Online command that deletes a validation template.
Deletes a validation template referenced by the validationTemplateId parameter, and displays the result of the operation.
Argument | Definition |
---|---|
validationTemplateId | Specifies the name of the validation template to be removed. |
The following invocation deletes a validation template referenced by the validationTemplateId parameter, and displays the result of the operation.
This section contains commands used with the OPSS keystore service.
Note: You need to acquire an OPSS handle to use keystore service commands. For details, see Managing Keys and Certificates with the Keystore Service in the Oracle Fusion Middleware Security Guide. |
Table 4-15 lists the WLST commands used to manage the keystore service.
Table 4-15 OPSS Keystore Service Commands
Use this Command... | to... |
---|---|
| Change the password for a key. |
| Change the password on a keystore. |
| Create a keystore. |
| Delete a keystore. |
| Delete an entry in a keystore. |
| Export a keystore to file. |
| Export a certificate to a file. |
exportKeyStoreCertificateRequest | Export a certificate request to a file. |
| Generate a keypair. |
| Generate a secret key. |
| Get information about a certificate or trusted certificate. |
getKeyStoreSecretKeyProperties | Get the secret key properties. |
| Import a keystore from file. |
| Import a certificate or other object. |
| List certificates expiring in a specified period. |
| List aliases in a keystore. |
| List all the keystores in a stripe. |
Changes a key password.
Changes the password for a key.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe containing the keystore |
name | Specifies the name of the keystore |
password | Specifies the keystore password |
alias | Specifies the alias of the key entry whose password is changed |
currentkeypassword | Specifies the current key password |
newkeypassword | Specifies the new key password |
This example changes the password on the key entry orakey
:
Changes the password of a keystore.
Changes the password of the specified keystore.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe containing the keystore |
name | Specifies the name of the keystore |
currentpassword | Specifies the current keystore password |
newpassword | Specifies the new keystore password |
This example changes the password for keystore2
.
This keystore service command creates a new keystore.
Creates a new keystore on the given application stripe.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore is created. |
name | Specifies the name of the new keystore. |
password | Specifies the keystore password. |
permission | This parameter is true if the keystore is protected by permission only, false if protected by both permission and password. |
This example creates a keystore named keystore1
.
Deletes the named keystore.
This keystore service command deletes a specified keystore.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore to be deleted. |
password | Specifies the keystore password. |
This example deletes the keystore named keystore1
.
Deletes a keystore entry.
This command deletes the specified entry in a keystore.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
alias | Specifies the alias of the entry to be deleted |
keypassword | Specifies the key password of the entry to be deleted |
This example deletes a keystore entry denoted by alias orakey
.
Exports a keystore to a file.
Exports a keystore to the specified file.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
aliases | Comma separated list of aliases to be exported. |
keypasswords | Comma separated list of the key passwords correspo nding to aliases. |
type | Exported keystore type. Valid values are 'JKS' or 'JCEKS'. |
filepath | Absolute path of the file where keystore is exported. |
This example exports two aliases from the specified keystore.
Exports a certificate.
Exports a certificate, trusted certificate or certificate chain.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
alias | Specifies the alias of the entry to be exported |
keypassword | Specifies the key password. |
type | Specifies the type of keystore entry to be exported. Valid values are 'Certificate', 'TrustedCertificate' or 'CertificateChain'. |
filepath | Specifies the absolute path of the file where certificate, trusted certificate or certificate chain is exported. |
This example exports a certificate corresponding to the orakey
alias:
Exports a certificate request.
Generates and exports a certificate request from a keystore.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
alias | Specifies the entry's alias name. |
keypassword | Specifies the key password. |
filepath | Specifies the absolute path of the file where certificate request is exported. |
This example exports a certificate request corresponding to the orakey
alias.
Generates a key pair in a keystore.
Generates a key pair in a keystore and wraps it in a demo CA-signed certificate.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
dn | Specifies the distinguished name of the certificate wrapping the key pair. |
keysize | Specifies the key size. |
alias | Specifies the alias of the key pair entry. |
keypassword | Specifies the key password. |
This example generates a keypair in keystore2
.
Generates a secret key.
Generates a symmetric key in a keystore.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
algorithm | Specifies the symmetric key algorithm. |
keysize | Specifies the key size. |
alias | Specifies the alias of the key entry. |
keypassword | Specifies the key password. |
This example generates a keypair with keysize 128 in keystore2
.
Gets a certificate from the keystore.
Retrieves information about a certificate or trusted certificate.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
alias | Specifies the alias of the certificate, trusted certificate or certificate chain to be displayed. |
keypassword | Specifies the key password. |
This example gets certificates associated with keystore3
.
Retrieves secret key properties.
Retrieves secret key properties like the algorithm.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
alias | Specifies the alias of the secret key whose properties are displayed. |
keypassword | Specifies the secret key password. |
This example gets properties for secret key seckey
:
Imports a keystore from file.
Imports a keystore from a system file.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
aliases | Specifies the comma-separated aliases of the entries to be imported from file. |
keypasswords | Specifies the comma-separated passwords of the keys in file. |
type | Specifies the imported keystore type. Valid values are 'JKS' or 'JCEKS'. |
filepath | Specifies the absolute path of the keystore file to be imported. |
permission | Specifies true if keystore is protected by permission only, false if protected by both permission and password. |
This example imports a file to keystore2
:
Imports a certificate or other specified object.
Imports a certificate, trusted certificate or certificate chain.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
alias | Specifies the alias of the entry to be imported. |
keypassword | Specifies the key password of the newly imported entry. |
type | Specifies the type of keystore entry to be imported. Valid values are 'Certificate', 'TrustedCertificate' or 'CertificateChain'. |
filepath | Specifies the absolute path of the file from where certificate, trusted certificate or certificate chain is imported. |
This example imports a certificate into keystore2
.
Lists expiring certificates.
Lists expiring certificates and optionally renews them.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
days | Specifies that the list should only include certificates within this many days from expiration. |
autorenew | Specifies true for automatically renewing expiring certificates, false for only listing them. |
This example lists certificates expiring within one year, and requests that they be renewed:
Lists the aliases in a keystore.
Lists the aliases in a keystore for a given type of entry.
The syntax is as follows:
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe where the keystore resides. |
name | Specifies the name of the keystore. |
password | Specifies the keystore password. |
type | Specifies the type of entry for which aliases are listed. Valid values are 'Certificate', 'TrustedCertificate', 'SecretKey' or '*'. |
This example lists secret keys in keystore2
:
Lists all the keystores in a stripe.
Lists all the keystores in the specified stripe.
Argument | Definition |
---|---|
svc | Specifies the service command object obtained through a call to getOpssService(). |
appStripe | Specifies the name of the stripe whose keystores are listed. |
This example lists all keystores on all stripes.
Use the User Messaging Service commands, listed in Table 5-1, to download user messaging preferences from your backend database.
Note: To use these commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. |
Table 5-1 User Messaging Service for WLST Configuration
Command category | Description |
---|---|
| Manage Oracle Unified Messaging Service commands. |
The UMS WLST commands are listed under the command group "ums".
Command Category: UMS
Use with WLST: Offline
manageUserMessagingPrefs
is used to download the user messaging preferences from a backend database to the specified XML file, or to upload the user messaging preferences from an XML file into the backend database.
Argument | Definition |
---|---|
| specifies the upload or download operation to be performed. |
| For download, a unique file name (path) to download the user preferences to. For example, /tmp/download.xml (Linux) or C:\\temp\\download.xml (Windows). For upload, the file name (path) from which to upload the user preferences. |
| The JNDI URL to access the User Messaging Server. For example: |
| The username with login permission to access the User Messaging Server. |
| The password of the username. |
| Character encoding to use to download the user preferences. |
| The globally unique identifier (guid) of a list of users to use to download their preferences. If no guid is specified, the preferences for all users are downloaded. |
| This option is for upload only. Valid values are:
|
To download the user messaging preferences of all users to the specified file.
To download the user messaging preferences of all users to the specified file using UTF-8 character encoding.
To download the user messaging preferences of the user with guid 'john.doe' to the specified file.
To download the user messaging preferences of the users with guid 'john.doe' and 'jane.doe' to the specified file using UTF-8 character encoding.
To upload the user messaging preferences from the specified file to the backend database.
To upload the user messaging preferences from the specified file to the backend database and overwrite existing preferences.
Command Category: UMS
Use with WLST: Online
deployUserMessagingDriver
is used to deploy additional instances of user messaging drivers.Specify a base driver type (for example: email, xmpp, voicexml, and others) and a short name for the new driver deployment. The string usermessagingdriver- will be prepended to the specified application name. Any valid parameters for the deploy command can be specified, and will be passed through when the driver is deployed.
Argument | Definition |
---|---|
| Specifies the base messaging driver type. Must be a known driver type, such as 'email', 'proxy', 'smpp', 'voicexml', or 'xmpp'. |
| A short descriptive name for the new deployment. The specified value will be prepended with the string usermessagingdriver- |
| Optional. Additional arguments that are valid for the deploy command can be specified and will be passed through when the new driver is deployed. |
To deploy a second instance of an email driver with name myEmail.
To deploy a second instance of an email driver, specifying deployment targets.
Use the Dynamic Monitoring Service (DMS) commands in the categories in Table 6-1 to view performance metrics and to configure Event Tracing.
Note: To use these DMS custom WLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. |
Table 6-1 DMS Command Categories
Command category | Description |
---|---|
| View information about performance metrics. |
| Configure Event Tracing |
Use the commands in Table 6-2 to view information about a specific performance metric, a set of performance metrics, or all performance metrics for a particular server or component.
For additional details about metrics, see the chapter "Monitoring Oracle Fusion Middleware" in the Oracle Fusion Middleware Administrator's Guide and the appendix "Instrumenting Applications with DMS" in the Oracle Fusion Middleware Performance Guide.
Table 6-2 DMS Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Displays the names of the available DMS metric tables. | Online |
| Displays the content of the DMS metric tables. | Online |
| Displays available metrics. | Online |
| Reloads the metric rules. | Online |
Command Category: DMS Metrics
Use with WLST: Online
Displays the names of the available DMS metric tables. The returned value is a list of metric table names.
Argument | Definition |
---|---|
servers | Optional. Specifies the servers from which to retrieve metrics. Valid values are a list of WebLogic Server instance names and system component names. To specify one server, use the following syntax: servers='servername' To specify multiple servers, use one of the following syntax options: servers=['servername1', 'servername2', ...] servers=('servername1', 'servername2', ...) If this argument is not specified, the command returns the list of metric table names for all WebLogic servers and system components. |
The following example displays metric table names for all WebLogic servers and system components:
The following example displays metric table names for the WebLogic Managed Server soa_server1:
The following example displays metric table names for two WebLogic Managed Servers:
Command Category: DMS Metrics
Use with WLST: Online
Displays the content of the DMS metric tables.
The returned value is list of DMS metric tables, with the following information about each table:
The metric table schema information contains the following:
Argument | Definition |
---|---|
metricTable_n | Optional. Specifies a list of metric tables. By default, this argument displays all available metrics. The metric table name can contain special characters for simple pattern matching. The character '?' matches any single character. The character '*' matches zero or more characters. You specify the metric table name. You can specify multiple metric table names in a comma-separated list. These are the same names output by the WLST command displayMetricTableNames. |
servers | Optional. Specifies the servers from which to retrieve metrics. Valid values are a list of WebLogic Server instance names and system component names. To specify one server, use the following syntax: servers='servername' To specify multiple servers, use one of the following syntax options: servers=['servername1', 'servername2', ...] servers=('servername1', 'servername2', ...) If this argument is not specified, the command returns the list of metric tables for all WebLogic servers and system components. |
variables | Optional. Defines the metric aggregation parameters. Valid values are a set of name-value pairs. It uses the following syntax: variables={name1:value1, name2:value2, ...} The specific name-value pairs depend on the aggregated metric tables. Each aggregated metric table has its specific set of variable names. |
The following example displays the data from the JVM and the weblogic.management.runtime.WebAppComponentRuntimeMBean metric tables, and limits it to data retrieved from soa_server1 and bam_server1:
The following example displays the aggregated metric tables with the specified metric aggregation parameters:
The following example displays the metric tables which names match the specified patterns:
Command Category: DMS Metrics
Use with WLST: Online
Displays available metrics in the internal format or in XML. The returned value is a text document.
Argument | Definition |
---|---|
servers | Optional. Specifies the servers from which to retrieve metrics. Valid values are a list of WebLogic Server instance names and system component names. To specify one server, use the following syntax: servers='servername' To specify multiple servers, use one of the following syntax options: servers=['servername1', 'servername2', ...] servers=('servername1', 'servername2', ...) If this argument is not specified, the command returns the list of metric tables for all WebLogic servers and system components. |
format | Optional. Specifies the command output format. Valid values are 'raw' (the default), 'xml, and 'pdml'. For example: format='raw' format='xml' format='pdml' DMS raw format is a simple metric display format; it displays one metric per line. |
The following example outputs all available metrics, including native WebLogic Server metrics and internal DMS metrics, in the XML format:
The following example outputs metrics from Server-0 in the default raw format:
The following example outputs metrics from soa_server1 and bam_server1 in XML format:
Command Category: DMS Metrics
Use with WLST: Online
Reloads the metric rules. You must run this command after you deploy system components or after you modify metric rules. Generally, Oracle does not recommend that you modify metric rules.
The following example reloads metric rules for all servers running in the domain:
Use the commands in Table 6-3 to configure Event Tracing. Event Tracing configures live tracing with no restarts. DMS metrics that were updated using Oracle Fusion Middleware products may be traced using the DMS Event Tracing feature.
For information about using DMS Event Tracing, see "DMS Tracing and Events" in the Oracle Fusion Middleware Performance Guide.
Table 6-3 DMS Tracing Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Add a new destination to the Event Tracing configuration. | Online |
| Add a filter to the Event Tracing configuration. | Online |
| Adds the specified event route to the Event Tracing configuration | Online |
| Enable an event trace and create a filter with a specified condition and destination and an enabled event-route. | Online |
| Display an overview of the event tracing configuration. | Online |
| Display the full configuration for a destination or a list of all destinations. | Online |
| Displays the configuration of a filter or a list of all filters. | Online |
| Displays event routes and their status (enabled or disabled). | Online |
| Removes the specified destination. | Online |
| Removes the specified filter. | Online |
| Removes the specified event route. | Online |
| Updates configuration of an event destination. | Online |
| Updates the configuration of an event filter. | Online |
| Updates the configuration of an event route. | Online |
Command Category: DMS Event Tracing
Use with WLST: Online
Adds a new destination to the Event Tracing configuration. If a destination with the same ID already exists, the command reports this and does not add the destination. You must be connected to the Administration Server to add a destination. If you are not, an error is returned.
Argument | Definition |
---|---|
id | The unique identifier for the specified destination. |
name | Optional. A name for the destination. |
class | The full class name of the destination. See Table 6-4 for a list of available classes. |
props | Optional. The name/value properties to use for the destination. Some destinations require properties. For example, the LoggerDestination class requires the property loggerName. See addDMSEventFilter for information about the syntax and allowed values. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
Table 6-4 shows the built-in destinations, with the full runtime class name.
Table 6-4 Built-In Destinations
Runtime Destination Class Name | Description |
---|---|
oracle.dms.trace2.runtime.LoggerDestination | Uses ODL to send the log messages to a file. |
oracle.dms.event.HTTPRequestTrackerDestination | Dumps the set of active HTTP requests, allowing an administrator to get a snapshot of activity. |
oracle.dms.jrockit.jfr.JFRDestination | Passes events to the JRockit Flight Recorder so that they can be viewed in the context of other data coming from the JRockit JVM and WLDF using JRockit Mission Control. |
oracle.dms.jmx.MetricMBeanFactory | Exposes Nouns as MBeans. |
oracle.dms.util.StackTraceCollatorDestination | Collates the stack traces that are in play whenever the events of interest occur. This is primarily a debugging tool. The collated data is written out on shutdown, and also when an event being handled has not been reported for a certain period of time (defaults to one minute). |
The following example adds a destination with the ID jfr, the name Flight-Recorder, and the class oracle.dms.event.JRockitFlightRecorder:
The following example adds a destination with the ID destination1, the name File-system, the class oracle.dms.trace2.runtime.LoggerDestination. Because the LoggerDestination requires the property loggerName, it sets the value to trace2-logger:
The following example attempts to add a destination with an ID that already exists:
Command Category: DMS Event Tracing
Use with WLST: Online
Adds a filter to the Event Tracing configuration. If a filter with the same ID already exists, the command returns an error and does not add the filter.
You must be connected to the Administration Server to add an event filter. If you are not, an error message is reported.
Argument | Definition |
---|---|
id | The unique identifier for specified filter. |
name | Optional. The name of the filter. |
etypes | Optional. A string containing a comma-separated list of event/action pairs. This argument allows you to create a filter with a broader granularity when used with a condition. It also allows you to create a filter with a broader range of metrics. For example, all nouns or all nouns with the action create. |
props | prop-name: The name of the filter property.
|
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following shows the syntax for etypes
:
The following lists the valid etypes:
The following shows an etype with two event/action pairs, separated by a comma:
The following shows the syntax for the <condition>
property of the argument props
. The arguments are described in the tables following the syntax:
The following table describes the arguments for <type>:
Value | Description |
---|---|
<nountype> | Each Sensor, with its associated metric, is organized in a hierarchy according to Nouns. A Noun type is a name that reflects the set of metrics being collected. For example, JDBC could be a Noun type. For information about Sensors and Nouns, see "Understanding DMS Terminology (Nouns and Sensors)" in the Oracle Fusion Middleware Performance Guide |
<context> | An Execution Context is an association of the Execution Context ID (ECID), Relationship ID (RID), and Maps of Values. This argument allows the data stored in the map of values to be inspected and used by the filter. For example, if the map contains the key "user", you can create a filter that returns requests with "user" equal to "bruce". |
The following table describes the arguments for <nountype>:
Value | Description |
---|---|
NOUNTYPE | A keyword. |
<nountype-operator> | The following are valid operators:
|
value | The name of the Noun type on which to operate. The name can be any object for which you want to measure performance. |
The following table describes <context>
Value | Description |
---|---|
CONTEXT | A keyword. |
name | The name of the context to filter. |
value | The name of the context on which to operate. |
<context-operator> | The following are valid operators:
|
IGNORECASE | Optional. If specified, the case of the value is ignored. |
DATATYPE | Optional. The valid values are string, long, or double. The default is string. |
The following example adds a filter with the name MyFilter, specifying a Noun type and context:
The following example attempts to add a filter with the same id. The command returns an error:
The following example adds a filter with two event/action pairs:
Command Category: DMS Event Tracing
Use with WLST: Online
Adds the specified event route to the Event Tracing configuration. If an event route with the same ID already exists, the command returns an error and does not add the event route.
You must be connected to the Administration Server to add an event route. If you are not, an error is returned.
Argument | Definition |
---|---|
filterid | Optional. The unique identifier for the filter. |
destinationid | The unique identifier for the specific destination. The destination must exist. |
enable | Optional. Enables the filter. Valid values are |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example adds an event route with the filter id of mds1 and the destination id of jrf:
The following example attempts to add an event route that already exists:
Command Category: DMS Event Tracing
Use with WLST: Online
Enables an event trace and creates a filter with a specified condition and destination and an enabled event-route. This is a simple way to start filtering, without having to explicitly create a filter, destination and event-route, but with less configuration options. The specified destination must exist.
You must be connected to the Administration Server to enable a DMS event trace. If you are not, an error is returned.
If you require a more complex configuration, use the addDMSEventDestination, addDMSEventFilter, and addDMSEventRoute.
Argument | Definition |
---|---|
destinationid | The unique identifier for the specific destination. Any existing destination is valid. |
etypes | Optional. A string containing a comma-separated list of event/action pairs. See addDMSEventFilter for a list of available etypes. |
condition | Optional. A condition on which to filter. See addDMSEventFilter for the syntax for a condition. If no condition is specified, all DMS events will be passed |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example enables an event trace with a specified condition:
Command Category: DMS Event Tracing
Use with WLST: Online
Displays an overview of the Event Tracing configuration.
Argument | Definition |
---|---|
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example lists the configuration for the Managed Server to which you are connected:
Command Category: DMS Event Tracing
Use with WLST: Online
For a specific destination, display the full configuration. If no destination ID is specified, list the destination ID and name for all the destinations in the Event Tracing configuration.
Argument | Definition |
---|---|
id | Optional. The unique identifier for the specific destination. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example displays information about the destinations for the Managed Server to which you are connected:
The following example displays information about the destinations for the Managed Server, MS1:
The following example displays information about the destination destination1:
Command Category: DMS Event Tracing
Use with WLST: Online
For a specific filter, displays the full configuration. If you do not specify a filter ID, the command displays the filter ID and name for all the filters in the Event Tracing configuration.
Argument | Definition |
---|---|
id | Optional. The unique identifier for specified filter. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example displays the list of all the filters in the Event Tracing configuration:
The following example displays the configuration of the filter mds1:
Command Category: DMS Event Tracing
Use with WLST: Online
List the events routes and their status (enabled or disabled) that are associated with the specified filter or destination. If you do not specify a filterid or destinationid, this command lists all the event routes in the Event Tracing configuration.
Argument | Definition |
---|---|
filterid | Optional. The unique identifier for the filter. |
destinationid | Optional. The unique identifier for the specific destination. The destination must exist. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example lists all event routes:
The following example lists the event routes with the filter id of filter1:
The following example lists the event routes with the destination id of destination1:
Command Category: DMS Event Tracing
Use with WLST: Online
Removes an existing destination from the Event Tracing configuration. You can remove a destination only if no event route depends on the destination. If an event route that depends on the destination exists, a warning is returned.
You must be connected to the Administration Server to remove a destination. If you are not, an error is returned.
Argument | Definition |
---|---|
id | The unique identifier for the destination to be removed. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example removes the destination jfr:
The following example attempts to remove the destination styx.inpass.db1. However, because an event route exists for the destination, the command returns an error.
Command Category: DMS Event Tracing
Use with WLST: Online
Removes an existing filter from the Event Tracing configuration. You can remove a filter only if no event route depends on the filter. If an event route that depends on the filter exists, a warning is returned.
You must be connected to the Administration Server to remove an event filter. If you are not, an error is returned.
Argument | Definition |
---|---|
id | The unique identifier for the filter to be removed. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example removes the filter mds1:
The following example attempts to remove a filter for which and event-route currently exists:
Command Category: DMS Event Tracing
Use with WLST: Online
Removes the specified event route. You must be connected to the Administration Server to add an event route. If you are not, an error is returned.
Argument | Definition |
---|---|
filterid | Optional. The unique identifier for the filter. |
destinationid | Optional. The unique identifier for the specific destination. The destination must exist. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example removes the event route with the filterid mds1 and the destination jfr:
The following example removes the event route with the destination destination1:
Command Category: DMS Event Tracing
Use with WLST: Online
Updates an existing destination, allowing a specified argument to be updated. You must be connected to the Administration Server to update a destination. If you are not, an error is returned.
Argument | Definition |
---|---|
id | The unique identifier for the destination to be updated. |
name | Optional. A name for the destination. |
class | The full classname of the destination. See Table 6-4 for a list of available destinations. |
props | Optional. The name/value properties to use for the destination. You can add a new property, or update or remove an existing one. If you update properties, you must specify all properties. If you omit a property, it is removed. For example, if a destination contains the properties LoggerName and severity, and you omit severity, it will be removed from the destination. See addDMSEventFilter for information about the syntax and allowed values. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example updates the name of the destination jfr:
The following example attempts to update a destination that does not exist. The command returns an error:
Command Category: DMS Event Tracing
Use with WLST: Online
Updates an existing filter in the Event Tracing configuration.
You must be connected to the Administration Server to update an event filter. If you are not, an error is returned.
Argument | Definition |
---|---|
id | The unique identifier for the filter to be updated. |
name | Optional. The name of the filter to be updated. |
etypes | Optional. A string containing a comma-separated list of event/action pairs. See addDMSEventFilter for a list of valid values. |
props | prop-name: The name of the filter property. value: The value of the property of the filter. |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example updates the filter properties for the filter with the id mds1:
The following example attempts to update a filter that does not exist:
Command Category: DMS Event Tracing
Use with WLST: Online
Enables or disables the specified event route. You must be connected to the Administration Server to update an event route. If you are not, an error is returned.
Argument | Definition |
---|---|
filterid | Optional. The unique identifier for the filter. |
destinationid | Optional. The unique identifier for the specific destination. The destination must exist. |
enable | Optional. Enables the filter. Valid values are |
server | Optional. The server on which to perform this operation. The default is the server to which you are connected. |
The following example disables the event route with the filterid mds1 and the destinationid jfr:
Use the logging commands to configure settings for log files and to view and search log files. Table 7-1 describes the different categories of logging commands.
For additional details about configuring and searching log files, see "Managing Log Files and Diagnostic Data" in the Oracle Fusion Middleware Administrator's Guide.
Note: To use these logging custom WLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. |
Table 7-1 Logging Command Categories
Command category | Description |
---|---|
| Configure settings for log files, such as the level of information written to the file or the maximum file size. |
| View Oracle Fusion Middleware log files and search log files for particular messages. |
| Configure and use selective tracing, which specifies that messages are traced for specific server, loggers, or users. |
Use the commands in Table 7-2 to configure settings for log files, such as the level of information written to the file or the maximum file size. In the Use with WLST column, online means the command can only be used when connected to a running server. Offline means the command can only be used when not connected to a running server. Online or offline means the command can be used in both situations.
Table 7-2 Logging Configuration Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Configure an existing log handler, add a new handler, or remove existing handlers. | Online |
| Get the level for a given logger. | Online |
| Get the list of loggers and the level of each logger. | Online |
| List the configuration of one of more log handlers. | Online |
| Set the level for a given logger. | Online |
Command Category: Log Configuration
Use with WLST: Online
Configures an existing Java logging handler, adds a new handler, or removes an existing handler. It returns a java.util.List with one entry for each handler. Each entry is a javax.management.openmbean.CompositeData object describing the handler.
With this command, you can change the location of the log files, the frequency of the rotation of log files, and other log file properties.
Argument | Definition |
---|---|
options | Comma-separated list of options, specified as name-value pairs. Valid options include:
|
options (continued) |
|
The following table lists the properties for the quicktrace-handler. This handler allows you to trace messages from specific loggers and store the messages in memory. For more information, see "Configuring QuickTrace" in the Oracle Fusion Middleware Administrator's Guide.
QuickTrace Property | Description |
---|---|
bufferSize | The approximate size of the circular QuickTrace buffer, in which log records are stored in memory. Note that actual memory consumption may be less than, but not more than this value. |
enableDMSMetrics | If specified as true, DMS metrics are enabled for the quicktrace-handler. The default is true. |
enableUserBuffer | If specified as true, the handler maintains an individual buffer for each user specified in the reserveBufferUserID property. If the user is not defined in the reserveBufferUserID property, the messages are cached in the COMMON buffer. If specified as false, the handler maintains only one buffer, COMMON. The default is false. |
flushOnDump | If specified as true, the buffer is flushed when you execute the executeDump command. The default is true. |
includeMessageArguments | If specified as true, message arguments are included with the formatted log messages that have a message ID. The default is false. |
maxFieldLength | The maximum length, in bytes, for each field in a message. The fields can include the message text, supplemental attributes, thread name, source class name, source method name, and message arguments. The default is 240 bytes. A small number can restrict the amount of information returned for a message. An excessively number can reduce the amount of log records in the buffer because each message uses more bytes. |
reserveBufferUserID | A list of user IDs, separated by a comma. If enableUserBuffer is specified as true, any log messages related to the user are written to a separate buffer. |
supplementalAttributes | A list of supplemental attribute names. The attributes are listed in the logging.xml file. Setting supplemental attributes requires additional memory or CPU time. |
useDefaultAttributes | If specified as true, default attribute values are added to each log message. The default attributes are HOST_ID, HOST_NWADDR, and USER_ID. |
useLoggingContext | If specified as true, the log message includes DMS logging context attributes. The default is false. If you enable this option, the trace requires additional CPU time. |
useRealThreadID | If specified as true, the handler attempts to use the real thread ID instead of the thread ID that is provided by the jave.util.logging.logRecord. The default is false. If you enable this option, the trace requires additional CPU time. |
useThreadName | If specified as true, the log message includes the thread name instead of the thread ID. The default is false. |
The following example specifies the maximum file size for the odl-handler:
The following example specifies the rotation frequency for the odl-handler:
The following example specifies the rotation frequency and the retention period for the odl-handler. It also removes the properties maxFileSize and maxLogSize:
The following example configures the quicktrace-handler, adding the logger oracle.adf.faces, and enabling user buffers for user1 and user2:
The oracle.adf logger is associated with the handlers odl-handler, wls-domain, and console-handler. When you set the level of the logger, these handlers will use the same level (TRACE:1) for the logger oracle.adf. As a result, much information will be written to the log files, consuming resources. To avoid consuming resources, set the level of the handlers to a lower level, such as WARNING or INFORMATION. For example:
Command Category: Log Configuration
Use with WLST: Online
Returns the level of a given Java logger.
The returned value is a string with the logger's level, or None if the logger does not exist. An empty string indicates that the logger level is null.
Argument | Definition |
---|---|
options | Comma-separated list of options, specified as name-value pairs. Valid options include:
|
The following example returns the level for the logger oracle:
The following example returns the level for the logger oracle, specifying only config loggers, not runtime loggers:
The following example returns the level for the logger oracle on the Oracle WebLogic Server server2:
Command Category: Log Configuration
Use with WLST: Online
Lists Java loggers and their levels. The command returns a PyDictionary object where the keys are logger names and the associated values are the logger levels. An empty level is used to indicate that the logger does not have the level set.
Argument | Definition |
---|---|
options | An optional comma-separated list of options, specified as name-value pairs. Valid options include:
|
The following example lists all of the loggers:
The following example lists all of the loggers that start with the name oracle.*.
The following example list all config loggers:
The following example list all loggers for the WebLogic Server server1:
Command Category: Log Configuration
Use with WLST: Online
Lists Java log handlers configuration. This command returns a java.util.List with one entry for each handler. Each entry is a javax.management.openmbean.CompositeData object describing the handler.
Argument | Definition |
---|---|
options | An optional comma-separated list of options, specified as name-value pairs. Valid options include:
|
The following example lists all log handlers:
The following example lists all log handlers named odl-handler:
The following example lists all log handlers for the WebLogic Server server1:
Command Category: Log Configuration
Use with WLST: Online
Sets the level of information written by a given Java logger to a log file.
Argument | Definition |
---|---|
options | Comma-separated list of options, specified as name-value pairs. Valid options include:
|
The following example sets the log level to NOTIFICATION:1 for the logger oracle.my.logger:
The following example sets the log level to TRACE:1 for the logger oracle.my.logger and specifies that the level should be saved to the configuration file:
The following example sets the log level to WARNING for the config logger oracle.my.logger on the WebLogic Server server1:
Use the commands in Table 7-3 to view Oracle Fusion Middleware log files and to search log files for particular messages.
Table 7-3 Search and Display Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| List the logs for one or more components. | Online or Offline |
| Search and display the contents of log files. | Online or Offline |
Command Category: Search and Display
Use with WLST: Online or Offline
Search and display the contents of diagnostic log files. The command returns a value only when the returnData option is set to true. By default it will not return any data. The return value depends on the option used.
Argument | Definition |
---|---|
searchString | An optional search string. Only messages that contain the given string (case-insensitive) will be returned. Note that the displayLogs command can read logs in multiple formats and it converts the messages to ODL format. The search will be performed in the native format, if possible. Otherwise, it may be performed in the message contents, and it may exclude mark-up. Therefore you should avoid using mark-up characters in the search string. |
options | An optional comma-separated list of options, specified as name-value pairs. Valid options include:
|
options (continued) |
|
options (continued) |
|
The following example displays the last 100 messages from all log files in the domain:.
The following example displays all messages logged in the last 15 minutes:
The following example displays log messages that contain a given string:
The following example displays log messages that contain a given ECID:
The following example displays log messages of type ERROR or INCIDENT_ERROR:
The following example displays log messages for a given Java EE application:
The following example displays messages for a system component, ohs1:
The following example displays a message summary by component and type:
The following example displays messages for a particular time interval:
The following example shows an advanced query:
A similar query could be written as:
Command Category: Search and Display
Use with WLST: Online or Offline
Lists log files for Oracle Fusion Middleware components. This command returns a PyArray with one element for each log. The elements of the array are javax.management.openmbean.CompositeData objects describing each log.
Argument | Definition |
---|---|
options | An optional comma-separated list of options, specified as name-value pairs. Valid options include:
|
The following example lists all of the log files for the WebLogic domain:
The following example lists the log files for the WebLogic Server server1:
The following example lists the log files for the Oracle HTTP Server ohs1:
The following example, used in disconnected mode, lists the log files for the WebLogic Server server1:
Use the commands in Table 7-4 to configure and use selective tracing. Selective tracing provides fine-grained logging for specified users or other properties of a request. In the Use with WLST column, online means the command can only be used when connected to a running server.
Table 7-4 Tracing Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Configures one or more loggers for selective tracing. | Online |
| Lists the active traces. | Online |
| Lists the loggers that support selective tracing. | Online |
| Starts a selective tracing sessions. | Online |
| Stops one or more selective tracing sessions. | Online |
Command Category: Tracing
Use with WLST: Online
Configures one or more loggers for selective tracing. This command also enables or disables a logger for selective tracing.
Argument | Definition |
---|---|
options | A comma-separated list of options, specified as name-value pairs. Valid options are:
|
The following example configures selective tracing for all loggers beginning with oracle.security
:
The following example disables selective tracing for all loggers:
Command Category: Tracing
Use with WLST: Online
Lists the active traces.
Argument | Definition |
---|---|
options | A comma-separated list of options, specified as name-value pairs. Valid options are:
|
The following example lists the active traces:
Command Category: Tracing
Use with WLST: Online or Offline
Lists the loggers that support selective tracing. This command displays a table of logger names and their tracing status. The status enabled
means that the logger is enabled for tracing on all servers. The status disabled
means that the logger is disabled for tracing on all servers. The status mixed
means that the logger is enabled for tracing on some servers, but disabled on others.
Argument | Definition |
---|---|
options | A comma-separated list of options, specified as name-value pairs. Valid options are:
|
The following example lists all tracing loggers beginning with oracle.security
:
Command Category: Tracing
Use with WLST: Online
Starts a new selective tracing session for a specified user or DMS context attribute at a specified level of tracing.
Argument | Definition |
---|---|
options | A comma-separated list of options, specified as name-value pairs. Valid options are:
|
The following example starts a trace for messages associated with user1 and sets the level of information to FINE:
Command Category: Tracing
Use with WLST: Online
Stops one or more selective tracing sessions.
Argument | Definition |
---|---|
options | A comma-separated list of options, specified as name-value pairs. Valid options are:
|
The following example stops a tracing session with a specified traceId:
The following example stops all tracing sessions:
Use the Oracle Metadata Services (MDS) commands in the categories listed in Table 8-1 to manage MDS.
For additional details about creating and managing an MDS repository, see the chapter "Managing the Oracle Metadata Repository" in the Oracle Fusion Middleware Administrator's Guide. For information about the roles needed to perform each operation, see "Understanding MDS Operations" in the Oracle Fusion Middleware Administrator's Guide.
Note: To use these MDS custom WLST commands, you must invoke the WLST script from the Oracle Common home. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. |
Table 8-1 MDS Command Categories
Command category | Description |
---|---|
Repository Management Commands | Manage the MDS repository. |
Application Metadata Management Commands | Manage the application metadata in the MDS repository. |
Sandbox Metadata Management Commands | Manage the metadata in a sandbox in the MDS repository. |
Application Label Management Commands | Manage the labels for the application. |
Application Management Deployment Commands | Manage the application deployment. |
Multitenancy Management Commands | Manage tenants. |
Use the MDS commands listed in Table 8-2 to manage the MDS repository. In the Use with WLST column, online means the command can only be used when connected to a running Administration Server. Offline means the command can only be used when not connected to a running server. Online or offline means the command can be used in both situations.
Table 8-2 Repository Management Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Create a metadata repository partition. | Online |
| Delete a metadata repository partition. | Online |
deregisterMetadataDBRepository | Deregister a database-based MDS repository. | Online |
| Register a database-based MDS repository. | Online |
Command Category: Repository Management
Use with WLST: Online
A metadata repository is used as a common repository for managing metadata of different applications. Many applications use the MDS repository to manage their metadata. Each deployed application uses a logical partition in metadata repository. This logical partition also helps in maintaining the metadata lifecycle. Before deploying a application, you create a partition for it in MDS repository. This command creates a partition with the given name in the specified repository.
Argument | Definition |
---|---|
repository | The name of the repository where the partition will be created. |
partition | The name of the partition to create in the repository. |
The following example creates the metadata partition partition1
in the repository mds-myrepos
:
Command Category: Repository Management
Use with WLST: Online
Deletes a metadata partition in the specified repository. When you delete a repository partition, all of the metadata in that partition is lost.
Argument | Definition |
---|---|
repository | The name of the repository that contains the partition. |
partition | The name of the partition to delete in the repository. |
The following example deletes the metadata partition partition1
from the repository mds-myrepos
:
Command Category: Repository Management
Use with WLST: Online
Removes the database metadata repository registration as a System JDBC data source in the domain. After this command completes successfully, applications can no longer use this repository.
Argument | Definition |
---|---|
name | The name of the repository to deregister. |
The following example deregisters the metadata repository mds-myrepos
:
Command Category: Repository Management
Use with WLST: Online
A database metadata repository should be registered with WebLogic Server instances before the application can use it. This command registers a System JDBC data source with the domain for use as database-based metadata repository.
Argument | Definition |
---|---|
name | The name of the repository to register. If the name you supply does not begin with mds-, the commands adds the prefix mds-. |
dbVendor | The database vendor. The acceptable values are ORACLE, MSSQL, IBMDB2, and MYSQL. |
host | The host name or the IP address of the database. |
port | The port number used by the database. |
dbName | The service name of the database. For example, orcl.hostname.com |
user | The database user name. |
password | The password for the database user. |
targetServers | Optional. The WebLogic Server instances to which this repository will be registered. If this argument is not specified, then the repository will be registered only to the Administration Server. To specify multiple servers, separate the names with a comma. Register the repository with all Managed Servers to which the application will be deployed. |
The following example registers the metadata repository myrepos
to two servers, and specifies the database parameters:
Use the commands in Table 8-3 to manage application metadata.
Table 8-3 Application Metadata Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Deletes the metadata in the application repository. | Online |
| Exports metadata for an application. | Online |
| Imports metadata for an application. | Online |
| Purge metadata. | Online |
Command Category: Application Metadata
Use with WLST: Online
Deletes the selected documents from the application repository. When this command is run against repositories that support versioning (that is, database-based repositories), delete is logical and marks the tip version (the latest version) of the selected documents as "deleted" in the MDS repository partition.
You may want to delete metadata when the metadata is moved from one repository to another. In such a case, after you have exported the metadata, you can delete the metadata in the original repository.
Argument | Definition |
---|---|
application | The name of the application for which the metadata is to be deleted. |
server | The target server on which this application is deployed. |
docs | A list of comma-separated, fully qualified document names or document name patterns, or both. The patterns can have the following wildcard characters: * and **. The asterisk (*) represents all documents under the current namespace. The double asterisk (**) represents all documents under the current namespace and also recursively includes all documents in subnamespaces. For example, "/oracle/*" will include all documents under "/oracle/" but not include documents under "/oracle/mds/". As another example, "/oracle/**" will include all documents under "/oracle/" and also under "/oracle/mds/" and any other documents further in the namespace chain. |
restrictCustTo | Optional. Valid values are percent (%) or a list of comma-separated customization layer names used to restrict the delete operation to delete only customization documents that match the specified customization layers. Each customization layer name can contain, within a pair of brackets, optional customization layer values and value patterns separated by commas. For example: restrictCustTo="user[scott]" restrictCustTo="site[site1],user[scott]" restrictCustTo="site[site1, %_2],user[scott, m%]" If you do not specify this argument, only customization classes declared in the cust-config element of adf-config.xml are deleted. If there is no cust-config element declared in adf-config.xml, all customization classes are deleted. If you specify percent (%) as the value of this argument, all customizations are deleted, whether or not they are declared in the cust-config element of adf-config.xml. Use this option to delete all customizations or a subset of declared customizations. You can also use this option to delete customizations from customization classes that are not declared in the cust-config element of adf-config.xml. |
excludeAllCust | Optional. A Boolean value (true or false) that specifies whether or not to delete all customization documents. This argument defaults to false. It overrides the restrictCustTo option. |
excludeBaseDocs | Optional. A Boolean value (true or false) that specifies whether or not to delete base documents. This argument defaults to false. |
excludeExtendedMetadata | Optional. A Boolean value (true or false) that specifies whether or not to delete the Extended Metadata documents. This argument defaults to false. |
cancelOnException | Optional. A Boolean value (true or false) that specifies whether or not to abort the delete operation when an exception is encountered. On abort, the delete is rolled back if that is supported by the target store. This argument defaults to true. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example deletes metadata files under the package mypackage
from mdsApp
deployed in the server server1
:
The following example deletes metadata files under the package mypackage
from mdsApp
deployed in the server server1
and excludes extended metadata and all customizations:
The following example deletes metadata files belonging to tenant tenant1
under the package mypackage
from the application app1
deployed in the server server1
:
Command Category: Application Metadata
Use with WLST: Online
Exports application metadata. Use this command and the importMetadata command to transfer application metadata from one server location (for example, testing) to another server location (for example, production).
This command exports application metadata including customizations. However, by default, only those customizations from customization classes that are defined in the cust-config element of adf.config.xml are exported. To export customizations from customization classes not declared, use the restrictCustTo option.
Argument | Definition |
---|---|
application | The name of the application from which the metadata is to be exported. |
server | The target server on which this application is deployed. |
toLocation | The target directory or archive file (.jar, .JAR, .zip or .ZIP) to which documents selected from the source partition will be transferred. If you export to a directory, the directory must be a local or network directory or file where the application is physically deployed. If you export to an archive, the archive can be located on a local or network directory or file where the application is physically deployed, or on the system on which you are executing the command. If the location does not exist in the file system, a directory will be created except that when the names ends with .jar, .JAR, .zip or .ZIP, an archive file will be created. If the archive file already exists, the exportMetadata operation will overwrite the file. This argument can be used as temporary file system for transferring metadata from one server to another. For more information, see "Moving Metadata from a Test System to a Production System" in the Oracle Fusion Middleware Administrator's Guide. |
docs | Optional. A list of comma-separated, fully qualified document names or document name patterns, or both. The patterns can have the following wildcard characters: * and **. This argument defaults to "/**", which exports all the metadata in the repository. The asterisk (*) represents all documents under the current namespace. The double asterisk (**) represents all documents under the current namespace and also recursively includes all documents in subnamespaces. For example, "/oracle/*" will include all documents under "/oracle/" but not include documents under "/oracle/mds/". "/oracle/**" will include all documents under "/oracle/" and also under "/oracle/mds/" and any other documents further in the namespace chain. |
restrictCustTo | Optional. Valid values are percent (%) or a list of comma-separated customization layer names used to restrict the export operation to export only customization documents that match the specified customization layers. Each customization layer name can contain, within a pair of brackets, optional customization layer values and value patterns separated by commas. For example: restrictCustTo="user[scott]" restrictCustTo="site[site1],user[scott]" restrictCustTo="site[site1, %_2],user[scott, m%]" If you do not specify this argument, only customization classes declared in the cust-config element of adf-config.xml are exported. If there is no cust-config element declared in adf-config.xml, all customization classes are exported. If you specify percent (%) as the value of this argument, all customizations are exported, whether or not they are declared in the cust-config element of adf-config.xml. Use this option to export all customizations or a subset of declared customizations. You can also use this option to export customizations from customization classes that are not declared in the cust-config element of adf-config.xml. This argument is ignored if the excludeAllCust argument is also specified. |
excludeCustFor | Optional. A list of comma-separated customization layer names used to restrict the export operation to exclude customization documents that match the specified customization layers from being exported. This argument is ignored if the excludeAllCust argument is also specified. |
excludeAllCust | Optional. A Boolean value (true or false) that specifies whether or not to export all customization documents. This argument defaults to false. This argument overrides the restrictCustTo and excludeCustFor arguments. |
excludeBaseDocs | Optional. A Boolean value (true or false) that specifies whether or not to export base documents. This argument defaults to false. |
excludeExtendedMetadata | Optional. A Boolean value (true or false) that specifies whether or not to export the Extended Metadata documents. This argument defaults to false. |
excludeSeededDocs | Optional. A Boolean value (true or false) that specifies whether all documents or only non-seeded documents are exported. Seeded documents are those documents that are packaged in a MAR. To exclude seeded documents, specify true. The default is false. |
fromLabel | Optional. Transfers the documents from the source partition that is associated with this label. |
toLabel | Optional. Works with the fromLabel argument to transfer the delta between fromLabel to toLabel from the source partition. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
remote | Optional. A Boolean value (true or false) that specifies whether the archive file will be written to a location where the application is deployed (false) or to the system on which you are executing the command (true). The default is false. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example exports all metadata files from the application mdsapp
deployed in the server server1
.
The following example exports only the customization documents under the layer user
without any base documents from label label1
to label label2
:
Command Category: Application Metadata
Use with WLST: Online
Imports application metadata. Use the exportMetadata command and this command to transfer application metadata from one server location (for example, testing) to another server location (for example, production).
Argument | Definition |
---|---|
application | The name of the application for which the metadata is to be imported. |
server | The target server on which this application is deployed. |
fromLocation | The source directory or archive file from which documents will be selected for transfer. If you exported to a directory, the directory must be a local or network directory or file where the application is physically deployed. If you exported to an archive, the archive can be located on a local or network directory or file where the application is physically deployed, or on the system on which you are executing the command. This argument can be used as a temporary file system location for transferring metadata from one server to another. For more information, see "Moving Metadata from a Test System to a Production System" in the Oracle Fusion Middleware Administrator's Guide |
docs | Optional. A list of comma-separated, fully qualified document names or document name patterns, or both. The patterns can have the following wildcard characters: * and **. This argument defaults to "/**", which imports all of the documents in the repository. The asterisk (*) represents all documents under the current namespace. The double asterisk (**) represents all documents under the current namespace and also recursively includes all documents in subnamespaces. For example, "/oracle/*" will include all documents under "/oracle/" but not include documents under "/oracle/mds/". "/oracle/**" will include all documents under "/oracle/" and also under "/oracle/mds/" and any other documents further in the namespace chain. |
restrictCustTo | Optional. Valid values are percent (%) or a list of comma-separated customization layer names used to restrict the import operation to import only customization documents that match the specified customization layers, including customization classes that are not declared in the cust-config element of adf-config.xml. Each customization layer name can contain, within a pair of brackets, optional customization layer values and value patterns separated by commas. For example: restrictCustTo="user[scott]" restrictCustTo="site[site1],user[scott]" restrictCustTo="site[site1, %_2],user[scott, m%]" If you do not specify this argument, only customization classes declared in the cust-config element of adf-config.xml are imported. If there is no cust-config element declared in adf-config.xml, all customization classes are imported. If you specify percent (%) as the value of this argument, all customizations are imported, whether or not they are declared in the cust-config element of adf-config.xml. Use this option to import all customizations or a subset of declared customizations. You can also use this option to export customizations from customization classes that are not declared in the cust-config element of adf-config.xml. This argument is ignored if the excludeAllCust argument is also specified. |
excludeAllCust | Optional. A Boolean value (true or false) that specifies whether or not to import all customization documents. This argument defaults to false. This argument overrides the restrictCustTo argument. |
excludeBaseDocs | Optional. A Boolean value (true or false) that specifies whether or not to import base documents. This argument defaults to false. |
excludeExtendedMetadata | Optional. A Boolean value (true or false) that specifies whether or not to import the Extended Metadata documents. This argument defaults to false. |
excludeUnmodifiedDocs | Optional. A Boolean value (true or false) that specifies whether only changed documents are imported. If you specify true, only changed documents are imported. The default is false. |
cancelOnException | Optional. A Boolean value (true or false) that specifies whether or not to abort the import operation when an exception is encountered. The default is true. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
remote | Optional. A Boolean value (true or false) that specifies whether the archive file is in a location where the application is deployed (false) or on the system on which you are executing the command (true). The default is false. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example imports all metadata available in /tmp/myrepos to the application mdsapp
deployed in the server server1
:
Command Category: Application Metadata
Use with WLST: Online
Purges the older (non-tip) versions of unlabeled documents from the application's repository. All unlabeled documents will be purged if they are expired, based on Time-To-Live (the olderThan argument). This command is applicable only for repositories that support versioning, that is, database-based repositories.
Argument | Definition |
---|---|
application | The name of the application, used to identify the partition in the repository on which the purge operation will be run. |
server | The target server on which this application is deployed. |
olderThan | Document versions that are older than this value (in seconds) will be purged. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
The following example purges the document version history for the application mdsapp
deployed in the server server1
, if the version is older than 10 seconds:
Use the commands in Table 8-4 to manage metadata in a sandbox. A sandbox is a temporary location for testing changes before moving them to a production system. Sandboxes are not visible to most users until they are applied.
Table 8-4 Sandbox Metadata Management Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Exports the metadata from a sandbox. | Online |
| Imports metadata into a sandbox. | Online |
Command Category: Sandbox Metadata Management
Use with WLST: Online
Exports the changes to the metadata from a sandbox on a test system.
You can only use this command with a database-based MDS repository.
Argument | Definition |
---|---|
application | The name of the application from which the metadata is to be exported. |
server | The target server on which this application is deployed. |
toArchive | The target archive file (.jar, .JAR, .zip or .ZIP) to which the sandbox contents will be transferred. The archive can be located on a local or network directory where the application is physically deployed. If you specify the -remote argument, the archive can be located on the system on which you are executing the command. |
sandboxName | The name of the sandbox to export. |
restrictCustTo | Optional. Valid values are percent (%) or a list of comma-separated customization layer names used to restrict the export operation to export only customization documents that match the specified customization layers. Each customization layer name can contain, within a pair of brackets, optional customization layer values and value patterns separated by commas. For example: restrictCustTo="user[scott]" restrictCustTo="site[site1],user[scott]" restrictCustTo="site[site1, %_2],user[scott, m%]" If you do not specify this argument or if you specify percent (%) as the value of this argument, all customizations are exported, whether or not they are declared in the cust-config element of adf-config.xml. Use this option to export all customizations or a subset of declared customizations. You can also use this option to export customizations from customization classes that are not declared in the cust-config element of adf-config.xml. This argument is ignored if the excludeAllCust argument is also specified. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
remote | Optional. A Boolean value (true or false) that specifies whether the archive file will be written to a location where the application is deployed (false) or to the system on which you are executing the command (true). The default is false. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example exports a sandbox from the MDS repository for the application myapp:
Command Category: Sandbox Metadata Management
Use with WLST: Online
Imports the contents of a sandbox archive to another sandbox in the MDS repository partition of the specified application. It can also update the contents of a given archive to a sandbox in the MDS repository partition of a given application. All customizations are imported, whether or not they are declared in the cust-config element of adf-config.xml.
You can only use this command with a database-based MDS repository.
Argument | Definition |
---|---|
application | The name of the application for which the metadata is to be imported. |
server | The target server on which this application is deployed. |
fromArchive | The source archive file from which documents will be selected for transfer. The archive can be located on a local or network directory where the application is physically deployed. If you specify the |
forceSBCreation | Optional. A Boolean value (true or false) that specifies whether the operation will overwrite an existing sandbox with the same name. When the argument is set to The default is |
useExistingSandbox | Optional. When set to true, the contents of the archive are imported to the sandbox specified with the The default is |
sandboxName | Optional. The name of the sandbox to update. This argument is ignored if |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
remote | Optional. A Boolean value (true or false) that specifies whether the archive file is in a location where the application is deployed (false) or on the system on which you are executing the command (true). The default is |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example imports the contents of the sandbox sandbox1.jar:
The following example updates the sandbox sandbox1.jar:
Use the commands in Table 8-5 to manage labels for applications.
Table 8-5 Application Label Management Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Creates a metadata label. | Online |
| Deletes a metadata label from the repository partition. | Online |
| Lists metadata labels in the repository partition. | Online |
| Promotes the metadata associated with a label to tip. | Online |
| Deletes the labels matching the specified criteria. | Online |
Command Category: Application Label Management
Use with WLST: Online
Creates a new label for the documents in the application's repository partition. This command is applicable only for repositories that support versioning.
Argument | Definition |
---|---|
application | The name of the application for which a label will be created in the partition configured for this application. |
server | The target server on which this application is deployed. If the application is deployed to multiple Managed Servers in a cluster, you can use the name of any of the server names. You cannot specify multiple server names. |
name | The name of the label to create in the repository partition. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example creates the label label1
for the application mdsapp
deployed in the server server1
:
Command Category: Application Label Management
Use with WLST: Online
Deletes a label for the documents in the application's repository partition. This command is applicable only for repositories that support versioning.
Argument | Definition |
---|---|
application | The name of the application from whose associated partition the label is to be deleted. |
server | The target server on which this application is deployed. If the application is deployed to multiple Managed Servers in a cluster, you can use the name of any of the server names. You cannot specify multiple server names. |
name | The name of the label to delete in the repository partition. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example deletes the metadata label label1
from the application mdsapp
deployed in the server server1
:
Command Category:
Use with WLST: Online
Lists all of the metadata labels in the application's repository partition. This command is applicable only for repositories that support versioning.
Argument | Definition |
---|---|
application | The name of the application for which all of the labels in the repository partition should be listed. |
server | The target server on which this application is deployed. If the application is deployed to multiple Managed Servers in a cluster, you can use the name of any of the server names. You cannot specify multiple server names. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example lists the metadata labels available for the application mdsapp
deployed in the server server1
:
Command Category: Application Label Management
Use with WLST: Online
Promotes documents associated with a label to the tip version in the repository. This command is useful to achieve rollback capability. This command is applicable only for repositories that support versioning.
Argument | Definition |
---|---|
application | The name of the application in whose associated repository the metadata is to be promoted to tip. |
server | The target server on which this application is deployed. If the application is deployed to multiple Managed Servers in a cluster, you can use the name of any of the server names. You cannot specify multiple server names. |
name | The name of the label to promote in the repository partition. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example promotes the metadata label label1
to tip in the application mdsapp
deployed in the server server1
:
Command Category: Application Label Management
Use with WLST: Online
Purges or lists the metadata labels that match the given pattern or age, but does not delete the metadata documents that were part of the label. You can delete the documents by executing the purgeMetadata command.
Argument | Definition |
---|---|
repository | The name of the MDS repository that contains the partition whose metadata labels will be purged or listed. |
partition | The name of the partition whose metadata labels will be purged or listed. |
namePattern | Optional. A pattern that matches the names of labels. The pattern can contain the following special characters:
|
olderThanInMin | Optional. The age of the labels, in minutes. The default is 525600 (one year). |
infoOnly | Optional. Valid values are true or false. If you set it to The default is |
tenantName | A unique name identifying the tenant to use for this operation. This argument is required for a multitenant application and is not applicable for a non-multitenant application. For a non-multitenant application, any specified value will be ignored. |
The following example lists the labels that match the specified namePattern, but does not delete them:
The following example purges the labels that match the specified namePattern and that are older than a year:
The following example deletes labels that match the specified namePattern and that are older than 30 minutes:
Use the commands in Table 8-6 to manage deployment.
Table 8-6 Application Management Deployment Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Returns an MDSArchiveConfig object. | Offline |
| Imports an MAR. | Online |
Command Category: Application Management Deployment
Use with WLST: Offline
Returns a handle to the MDSArchiveConfig object for the specified archive. The returned MDSArchiveConfig object's methods can be used to change application and shared repository configuration in an archive.
The MDSArchiveConfig object provides the following methods:
If the archive's existing adf-config.xml file does not contain any configuration for the application's metadata repository, then you must provide all necessary arguments to define the target repository. To define a database-based repository, provide the repository, partition, type, and jndi arguments. For a file-based repository, provide the path argument instead of jndi.
If the adf-config.xml file already contains some configuration for the application's metadata repository, you can provide only a subset of arguments that you want to change. You do not need to provide all arguments in such a case. However, if the store type is changed, then the corresponding jndi or path argument is required.
If the archive's existing adf-config.xml file does not contain any configuration for a shared metadata repository mapped to the specified namespace, you must provide all required arguments (in this case, repository, partition, type, and jndi or path). For a database-based repository, provide the jndi argument. For a file-based repository, path is a required argument.
If the adf-config.xml file already contains some configuration for a shared metadata repository mapped to the specified namespace and you want to change some specific arguments, you can provide only a subset of those arguments; all others are not needed.
Argument | Definition |
---|---|
fromLocation | The name of the ear file, including its complete path. |
The syntax for setAppMetadataRepository is:
Argument | Definition |
---|---|
repository | Optional. The name of the application's repository. |
partition | Optional. The name of the partition for the application's metadata. |
type | Optional. The type of connection, file or database, to the repository. Valid values are 'File' or 'DB' (case insensitive). |
jndi | Optional. The JNDI location for the database connection. This argument is required if the type is set to DB. This argument is not considered if the type is set to File. |
path | Optional. The directory for the metadata files. This argument is required if the type is set to File. This argument is not considered if the type is set to DB. |
The syntax for setAppSharedMetadataRepository is:
Argument | Definition |
---|---|
namespace | The namespace used for looking up the shared repository to set connection details. |
repository | Optional. The name of the application's shared repository. |
partition | Optional. The name of the partition for the application's shared metadata. |
type | Optional. The type of connection, file or database, to the repository. Valid values are 'File' or 'DB' (case insensitive). |
jndi | Optional. The JNDI location for the database connection. This argument is required if the type is set to DB. This argument will not be considered if the type is set to File. |
path | Optional. The location of the file metadata store. This argument is required if the type is set to File. This argument will not be considered if the type is set to DB. |
The syntax for save is:
Argument | Definition |
---|---|
toLocation | Optional. The file name, including the absolute path to store the changes. If this option is not provided, the changes are written to the archive represented by this configuration object. |
In the following example, if the adf-config.xml file in the archive does not have the application and shared metadata repositories defined, then you should provide the complete connection information.
In the following example, if the adf-config.xml file in the archive already has the application and shared metadata repositories defined, all arguments are optional. You can set only the arguments you want to change.
Command Category: Application Management Deployment
Use with WLST: Online
Imports the metadata from the MAR that is packaged with the application's EAR file. If the MAR had already been imported into the partition, the command deletes the previous version and imports the new version.
Argument | Definition |
---|---|
application | The name of the application for which the metadata is to be imported. |
server | The target server on which this application is deployed. |
force | Optional. A Boolean value (true or false) that specifies whether only changed documents and MARs are imported. For a database-based repository, if you set this argument to false, only new or changed documents from changed MARs are imported. The command creates a label for each MAR for which documents are imported. The label has the following format: postDeploy_application_name_MAR_name_MAR_checksum For a file-based repository, if you set this argument to false, only changed MARs are imported. The command does not compare individual documents The command creates a file in the repository for each imported MAR. The default is true. |
applicationVersion | Optional. The application version, if multiple versions of the same application are deployed. |
The following example imports metadata from the MAR to the application mdsapp
:
Use the commands in Table 8-7 to manage tenants.
Table 8-7 Multitenancy Management Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Deprovisions a tenant from the metadata store. | Online |
| Lists the tenants. | Online |
Deprovisions a tenant from the metadata store. All metadata associated with the tenant will be removed from the store
Argument | Definition |
---|---|
repository | The name of the repository that contains the tenant. |
partition | The name of the partition that contains the tenant. |
tenantName | A unique name identifying the tenant to use for this operation. |
The following example deprovisions the tenant with tenantName tenant1
:
Lists all tenants in an MDS Repository partition.
Argument | Definition |
---|---|
repository | The name of the repository that contains the tenants. |
partition | The name of the partition that contains the tenants. |
The following example lists all tenants in the specified repository and partition:
This chapter describes WSLT commands for Oracle SOA Suite. These commands enable you to use WLST to configure SOA composite applications.
Note: To use these commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. |
This chapter includes the following sections:
For additional details about deployment, configuration plans, and test suites, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
WLST commands are divided into the categories shown in Table 9-1.
Table 9-1 Oracle SOA Suite Command Categories
Command category | Description |
---|---|
| Deploy and undeploy SOA composite applications. |
SOA Composite Application Management Commands | Start, stop, activate, retire, assign a default revision version, and list deployed SOA composite applications. |
Configuration Plan Management Commands | Attach, extract, generate, and validate configuration plans for SOA composite applications. |
| Validate human workflow tasks. |
SOA Composite Application Compilation Commands | Compile SOA composite applications. |
SOA Composite Application Packaging Commands | Package SOA composite applications into archive files to deploy. |
SOA Composite Application Test Commands | Test SOA composite applications prior to deployment in a production environment. |
SOA Composite Application HTTP Client-Based Export and Import Commands | Export and import SOA composite applications based on the HTTP client. |
SOA Composite Application MBean-Based Export and Import Commands | Export and import SOA composite applications on the server-based composite store MBean (|
SOA Composite Application Partition Management Commands | Logically group different revisions of your SOA composite applications into separate sections. |
Use the deployment commands, listed in Table 9-2, to deploy and undeploy SOA composite applications.
Table 9-2 Deployment Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Deploy a SOA composite application. | Offline |
| Undeploy a SOA composite application. | Offline |
Command Category: Deployment Commands
Use with WLST: Offline
Deploys a SOA composite application to the Oracle WebLogic Server. This command does not package the artifact files of the application for deployment. See SOA Composite Application Packaging Commands for instructions on packaging a SOA composite application.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Absolute path to one the following:
|
| Optional. Indicates whether to overwrite an existing SOA composite application file.
|
| Optional. User name to access the composite deployer servlet when basic authentication is configured. |
| Optional. Password to access the composite deployer servlet when basic authentication is configured. |
| Optional. Indicates whether to set the new composite as the default.
|
| Optional. Absolute path of a configuration plan to be applied to a specified SAR file or to all SAR files included in the ZIP file. |
| Optional. The name of the partition in which to deploy the SOA composite application. The default value is |
Note: Human workflow artifacts such as task mapped attributes (previously known as flex field mappings) and rules (such as vacation rules) are defined based on the namespace of the task definition. Therefore, the following issues are true when the same SOA composite application with a human workflow task is deployed into multiple partitions:
|
The following example deploys the HelloWorld
application.
The following example deploys the HelloWorld
application as the default version.
The following example deploys the HelloWorld
application with a required user name when basic authentication is configured. You are then prompted to provide the password for this user name.
The following example deploys the HelloWorld
application and applies the configuration plan named deployplan.xml
.
The following example deploys the HelloWorld
ZIP file, which can include multiple SARs, MARs, or both.
The following example deploys the HelloWorld
application to the myPartition
partition.
Command Category: Deployment Commands
Use with WLST: Offline
Undeploys a currently deployed SOA composite application.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Name of the SOA composite application. |
| Revision ID of the SOA composite application. |
| Optional. User name to access the composite deployer servlet when basic authentication is configured. |
| Optional. Password to access the composite deployer servlet when basic authentication is configured. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example undeploys the HelloWorld
application.
The following example undeploys the HelloWorld
application with a required user name when basic authentication is configured. You are then prompted to provide the password for this user name.
The following example undeploys the HelloWorld
application in the myPartition
partition.
Use the management commands, listed in Table 9-3, to start, stop, activate, retire, assign a default revision version, and list deployed SOA composite applications.
Table 9-3 SOA Composite Application Management Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Start a previously stopped SOA composite application. | Offline |
| Stop a SOA composite application. | Offline |
| Activate a previously retired SOA composite application. | Offline |
| Retire a SOA composite application. | Offline |
| Assign the default revision version to a SOA composite application. | Offline |
sca_getDefaultCompositeRevision | List the revision of the default composite of the given composite series. | Offline |
| List the deployed SOA composite applications. | Offline |
Command Category: Application Management Commands
Use with WLST: Offline
Starts a previously stopped SOA composite application.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the metadata service (MDS) artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example starts revision 1.0
of the HelloWorld
application.
The following example starts revision 1.0
of the HelloWorld
application in the partition myPartition
.
Command Category: Application Management Commands
Use with WLST: Offline
Stops a currently running SOA composite application.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example stops revision 1.0
of the HelloWorld
application.
The following example stops revision 1.0
of the HelloWorld
application in the partition myPartition
.
Command Category: Application Management Commands
Use with WLST: Offline
Activates a retired SOA composite application and its instances. You can then create new instances.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example activates revision 1.0
of the HelloWorld
application.
The following example activates revision 1.0
of the HelloWorld
application in the partition myPartition
.
Command Category: Application Management Commands
Use with WLST: Offline
Stops and retires a SOA composite application and all its running instances. If the process life cycle is retired, you cannot create a new instance. Existing instances are allowed to complete normally.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. Label of the SOA composite application. The label identifies the MDS artifacts associated with the application. If the label is not specified, the system finds the latest one. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example retires revision 1.0
of the HelloWorld
application.
The following example retires revision 1.0
of the HelloWorld
application in the partition myPartition
.
Command Category: Application Management Commands
Use with WLST: Offline
Sets a SOA composite application revision as the default version. This revision is instantiated when a new request comes in.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Revision of the SOA composite application. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example sets revision 1.0
of the HelloWorld
application as the default version.
The following example sets revision 1.0
of the HelloWorld
application located in the partition myPartition
as the default version.
Command Category: Application Management Commands
Use with WLST: Offline
Lists the revision of the default composite of the given composite series.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
| Name of the SOA composite application. |
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example returns the revision of the default composite of the given composite series.
The following example returns the revision of the default composite of the given composite series in the partition named myPartition
.
Command Category: Application Management Commands
Use with WLST: Offline
Lists all SOA composite applications deployed to the SOA platform.
Argument | Definition |
---|---|
| Hostname of the Oracle WebLogic Server (for example, |
| Port of the Oracle WebLogic Server (for example, |
| User name for connecting to the running server to get MBean information (for example, |
| Password for the user name. |
The following example lists all the deployed SOA composite applications on the server myhost
.
Use the configuration plan management commands, listed in Table 9-4, to attach, extract, generate, and validate configuration plans for SOA composite applications.
Table 9-4 Configuration Plan Management Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Attach the configuration plan file to the SOA composite application JAR file. | Offline |
| Extract a configuration plan packaged with the JAR file for editing. | Offline |
| Generate a configuration plan for editing. | Offline |
| Validate the configuration plan. | Offline |
Command Category: Configuration Plan Management Commands
Use with WLST: Offline
Attaches the configuration plan file to the SOA composite application file. If a plan already exists in the file, it is overwritten with this new plan.
Argument | Definition |
---|---|
| Absolute path of the SAR file. |
| Absolute path of the configuration plan file. |
| Optional. Indicates whether to overwrite an existing configuration plan in the SAR file.
|
| Optional. Indicates whether to print more information about the configuration plan attachment.
|
The following example attaches the configplan.xml
configuration plan file to the HelloWorld
application.
The following example overwrites the existing configuration plan with configplan.xml
file in the HelloWorld
application.
Command Category: Configuration Plan Management Commands
Use with WLST: Offline
Extracts a configuration plan packaged with the SOA composite application file for editing. This is an optional step. If no plan exists, this is the same as creating a new file with sca_generatePlan
.
Argument | Definition |
---|---|
| Absolute path of a SAR file. |
| Absolute path of a configuration plan file to which to be extracted. |
| Optional. Indicates whether to overwrite an existing configuration plan file in the SAR file.
|
| Optional. Indicates whether to print more information about configuration plan extraction.
|
The following example extracts the configplan.xml
file for editing from the HelloWorld
application.
The following example extracts the configplan.xml
file for editing from the HelloWorld
application. This command also overwrites the existing plan.
Command Category: Configuration Plan Management Commands
Use with WLST: Offline
Generates a configuration plan for editing.
Argument | Definition |
---|---|
| Absolute path of the configuration plan file to be generated. |
| Absolute path of the SAR file. |
| Absolute path of the |
| Optional. Indicates whether to overwrite an existing configuration plan file:
|
| Indicates whether to print more information about plan generation:
|
The following example generates the myplan.xml
configuration plan file for the HelloWorld
application.
The following example generates the myplan2.xml
configuration plan file for the HelloWorld
application. The myplan2.xml
file overwrites the existing plan.
Command Category: Configuration Plan Management Commands
Use with WLST: Offline
Validates the configuration plan. This command identifies all search and replacement changes to be made during deployment. Use this option for debugging only.
Argument | Definition |
---|---|
| Absolute path of the report file to be generated. Validation results are written to this file. |
| Absolute path of the configuration plan file. |
| Optional. The absolute path of the SAR file. |
| Optional. The absolute path of the |
| Optional. Indicates whether to overwrite an existing configuration plan file:
|
| Optional. Indicates whether to print more information about configuration plan validation.
|
The following example validates the configplan.xml
configuration plan file for the HelloWorld
application.
The following example validates the configplan.xml
configuration plan file for the HelloWorld
application. The configplan.xml
plan overwrites the existing plan.
Use the task validation command, listed in Table 9-5, to validate human workflow tasks.
Table 9-5 Task Validation Command for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Validate a human workflow task. | Offline |
Command Category: Task Validation Commands
Use with WLST: Offline
Validates a human workflow task contained in the .task
file that you created when designing a human task in the Human Task Editor.
Argument | Definition |
---|---|
| Absolute path to the task definition file (|
| Absolute path to an output XML file. |
| Optional. The level of information to display. The default value is |
The following example validates the WFTaskDefinition
.task
file of the human task.
Use the compilation commands, listed in Table 9-6, to compile SOA composite applications.
Table 9-6 SOA Composite Application Compilation Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Set JVM system properties. | Offline |
| Compile a SOA composite application. | Offline |
Command Category: Application Compilation Commands
Use with WLST: Offline
Sets JVM system properties. This command can also set secure socket layer (SSL) system properties before using sca_deployComposite
and sca_undeployComposite
over SSL.
Argument | Definition |
---|---|
| Property name. |
| Property value. |
The following example sets the property name and property value.
Command Category: Application Compilation Commands
Use with WLST: Offline
Compiles a SOA composite application.
Note: The |
Argument | Definition |
---|---|
| Absolute path of a composite file in the expanded (unzipped) SAR directory. |
| Optional. Absolute path of an output XML file. |
| Optional. Absolute path of an error file. |
| Optional. Absolute path of the application home directory. This property is required if you have shared data. |
| Optional. The level of information to display. The default value is |
| Optional. The |
The following example compiles the FirstComposite
application.
The following example compiles the FirstComposite
application and captures details in the myout.xml
file. The error.out
file captures any errors.
The following example compiles the FirstComposite
application. The oracleHome
property is set to find the ant-sca-compile.xml
script.
Use the packaging command, listed in Table 9-7, to package SOA composite applications into a composite SAR file.
Table 9-7 SOA Composite Application Packaging Command for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Package the SOA composite application files into a composite SAR file. | Offline |
Command Category: Application Packaging Commands
Use with WLST: Offline
Packages the SOA composite application files into a composite SAR file. This command performs the following operations:
sca_compile
to compile the composite artifacts in ${compositeDir}
. javac
to compile any source code under ${compositeDir}/src
. ${compositeDir}/composite.xml
. sca_${compositeName}_rev${revision}.jar
in ${compositeDir}/deploy
. Note: The |
Argument | Definition |
---|---|
| Absolute path of a directory that contains composite artifacts. |
| Name of the composite. |
| Revision ID of the composite. |
| Optional. Absolute path of the application home directory. This property is required if you have shared data. |
| Optional. The |
The following example packages the OrderBookingComposite
application. The appHome
property is set because this application uses shared data.
The following example packages the HelloSOAComposite
application.
The following example packages the HelloSOAComposite
application. The oracleHome
property is set to find the ant-sca-compile.xml
script.
Use the SOA composite application test command, listed in Table 9-8, to test a SOA composite applications.
Table 9-8 SOA Composite Application Test Command for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Test deployed SOA composite applications. | Offline |
Command Category: Application Test Commands
Use with WLST: Offline
Tests deployed SOA composite applications prior to deployment in a production environment. You create suites of tests in Oracle JDeveloper. The sca_test
command calls ant-sca-test.xml
.
Argument | Definition |
---|---|
| Name of the SOA composite application. |
| Revision ID of the SOA composite application. |
| Name of the test suite. |
| Absolute path to the JNDI property file. |
| Optional. The |
| Optional. The |
The following example runs the OrderBookingMainTestsuite
test suite.
Use the SOA composite application commands, listed in Table 9-9, to export and import SOA composite applications based on the HTTP client. The SOA Infrastructure must be running to use these commands.
Table 9-9 SOA Composite Application Export and Import Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Export a SOA composite application into a SAR file. | Offline |
| Export postdeployment changes of a SOA composite application into a JAR file. | Offline |
| Import postdeployment changes of a SOA composite application. | Offline |
| Export shared data of a given pattern into a JAR file. | Offline |
| Removes a top-level shared data folder. | Offline |
Command Category: Application Export and Import Commands
Use with WLST: Offline
Exports a SOA composite application into a SAR file.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Type of postdeployment changes to be exported:
|
| Absolute path of a SAR file to generate (a |
| Name of the composite to export. |
| Revision of the composite to export. |
| Optional. The user name for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The password for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example exports the composite without including any postdeployment changes.
The following example exports a composite with all postdeployment updates.
The following example exports a composite with property postdeployment updates.
The following example exports a composite with runtime/metadata postdeployment updates.
The following example exports a composite in the myPartition
partition without including any postdeployment updates:
Command Category: Application Export and Import Commands
Use with WLST: Offline
Exports postdeployment changes of a SOA composite application into a JAR file.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| The type of postdeployment changes to be exported.
|
| Absolute path of a JAR file to generate. |
| Name of the composite to export. |
| Revision of the composite to export. |
| Optional. The user name for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The password for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example exports all postdeployment updates.
The following example exports property postdeployment updates.
The following example exports runtime/metadata postdeployment updates.
The following example exports postdeployment changes of a composite in the partition myPartition
into a JAR file.
Command Category: Application Export and Import Commands
Use with WLST: Offline
Imports postdeployment changes of a SOA composite application.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Absolute path of a JAR file that contains postdeployment changes. |
| Name of the composite to which the postdeployment changes are imported. |
| Revision of the composite to which the postdeployment changes are imported. |
| Optional. The user name for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The password for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The name of the partition in which the SOA composite application is located. The default value is |
The following example imports postdeployment changes of a SOA composite application.
The following example imports postdeployment changes of a composite in the partition myPartition
.
Command Category: Application Export and Import Commands
Use with WLST: Offline
Exports shared data of a given pattern into a JAR file.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| Absolute path of a JAR file to generate. |
| The file pattern supported by MDS transfer APIs. Use the semicolon delimiter (/Project1/**;/Project2/** This example exports all documents under |
| Optional. The user name for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The password for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
The following example exports shared data of a given pattern into a JAR file.
Command Category: Application Export and Import Commands
Use with WLST: Offline
Removes a top-level shared data folder, even if there are composites deployed in the service engine.
Argument | Definition |
---|---|
| URL of the server that hosts the SOA Infrastructure application (for example, |
| The name of a top-level shared data folder to be removed. |
| Optional. The user name for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
| Optional. The password for accessing the server when basic configuration is configured. Use the following syntax for this argument:
|
The following example removes the top-level shared data Project1
folder.
Use the deployment commands, listed in Table 9-10, to export and import SOA composite applications on the server-based composite store MBean (CompositeStoreMXBean
).
Table 9-10 SOA Composite Application Export and Import Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Export a SOA composite application into a SAR file. | Online |
| Export postdeployment changes of a SOA composite application into a JAR file. | Online |
| Import postdeployment changes of a SOA composite application. | Online |
| Export shared data of a given pattern into a JAR file. | Online |
If you use this option, note that the file generated in the export commands and the file read in the import command must be on the host where the server is running (either an Oracle WebLogic Administration Server or a managed SOA server).
The composite store MBean is registered as both a server runtime MBean of the SOA server and as a domain runtime MBean of the Oracle WebLogic Administration Server, which allows the import and export to continue working while SOA servers are down. Only WLST commands are provided for using the composite store MBean; there are no ant
commands.
You must run the connect()
command to connect to either a SOA server or an Oracle WebLogic Administration Server.
If you use the domain runtime MBean while the SOA servers are down, you must run the domainRuntime()
command.
Command Category: Application Export and Import Commands
Use with WLST: Online
Exports a SOA composite application into a SAR file.
Argument | Definition |
---|---|
| Type of postdeployment changes to be exported:
|
| Absolute path of a SAR file to generate. |
| Name of the composite to export. |
| Revision of the composite to export. |
This example exports composite without including any postdeployment changes.
This example exports a composite with all postdeployment updates.
This example exports a composite with property postdeployment updates.
This example exports a composite with runtime/metadata postdeployment updates.
Command Category: Application Export and Import Commands
Use with WLST: Online
Exports postdeployment changes of a SOA composite application into a JAR file.
Argument | Definition |
---|---|
| Type of postdeployment changes to be exported: |
| Absolute path of a JAR file to generate. |
| Name of the composite to export. |
| Revision of the composite to export. |
The following example exports all postdeployment updates.
The following example exports property postdeployment updates.
The following example exports runtime/metadata postdeployment updates.
Command Category: Application Export and Import Commands
Use with WLST: Online
Imports postdeployment changes of a SOA composite application.
Argument | Definition |
---|---|
| Absolute path of a JAR file that contains postdeployment changes. |
| Name of the composite to which the postdeployment changes are imported. |
| Revision of the composite to which the postdeployment changes are imported. |
The following example imports postdeployment changes of a SOA composite application.
Command Category: Application Export and Import Commands
Use with WLST: Online
Exports shared data of a given pattern into a JAR file.
Argument | Definition |
---|---|
| Absolute path of a JAR file to generate. |
| The file pattern supported by MDS transfer APIs. Use the semicolon delimiter (/Project1/**;/Project2/** This example exports all documents under |
This example exports shared data of given pattern into a JAR file.
Use the deployment commands, listed in Table 9-11, to manage partitions. Partitioning enable you to logically group different revisions of your SOA composite applications into separate sections. This is similar to the concept of domains in the 10.1.x releases of Oracle BPEL Process Manager.
Table 9-11 SOA Composite Application Partition Management Commands for WLST Configuration
Use this command... | To... | Use with WLST... |
---|---|---|
| Create a partition. | Online |
| Undeploy all SOA composite applications in a partition before deleting the partition. | Online |
sca_startCompositesInPartition | Start all SOA composite applications in a partition. | Online |
| Stop all SOA composite applications in a partition. | Online |
sca_activateCompositesInPartition | Activate all SOA composite applications in a partition. | Online |
sca_retireCompositesInPartition | Retire all SOA composite applications in a partition. | Online |
| List all partitions in the SOA Infrastructure. | Online |
| List all composites in a specific partition. | Online |
Command Category: Application Partition Management Commands
Use with WLST: Online
Creates a partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example creates a partition named myPartition
.
Command Category: Application Partition Management Commands
Use with WLST: Online
Undeploys all composites in a partition before deleting the partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example undeploys all composites in the myPartition partition before deleting the partition.
Command Category: Application Partition Management Commands
Use with WLST: Online
Starts all composites in a partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example starts all composites in the myPartition partition.
Command Category: Application Partition Management Commands
Use with WLST: Online
Stops all composites in a partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example stops all composites in the myPartition partition.
Command Category: Application Partition Management Commands
Use with WLST: Online
Activates all composites in a partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example activates all composites in the myPartition partition.
Command Category: Application Partition Management Commands
Use with WLST: Online
Retires all composites in a partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example retires all composites in the myPartition partition.
Command Category: Application Partition Management Commands
Use with WLST: Online
Lists all partitions in the SOA Infrastructure.
This example lists all partitions in the SOA Infrastructure.
Command Category: Application Partition Management Commands
Use with WLST: Online
Lists all composites in a partition.
Argument | Definition |
---|---|
| The name of the partition. |
This example lists all composites in the myPartition
partition.
This chapter describes WebLogic Scripting Tool (WLST) commands for Oracle WebCenter Portal. These commands enable you to configure WebCenter Portal applications and components from the command-line. For additional details about WebCenter Portal configuration, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
Notes: To use these commands, you must invoke WLST from the Oracle home in which the component has been installed. See "Using Custom WLST Commands" in the Oracle Fusion Middleware Administrator's Guide. Most configuration changes made using WebCenter Portal WLST commands are only effective after you restart the Managed Server on which the WebCenter Portal application is deployed. The only exceptions are WLST commands for External Applications, Portlet Producers, and WebCenter Portal Import and Export. |
WebCenter Portal WLST commands are described in the following sections:
WebCenter Portal WLST commands are grouped into the following categories (Table 10-1).
Most configuration changes made using WebCenter Portal WLST commands are only effective after you restart the Managed Server on which the WebCenter Portal application is deployed. The only exceptions are the External Applications, Portlet Producers, and WebCenter Portal Import and Export WLST commands.
Table 10-1 WLST Command Categories
Command Category | Description |
---|---|
| Manage WebCenter Portal connections. |
| Manage Analytics Collector connections and configure the Analytics Collector (on |
| Manage Activity Graph metadata and provider configuration (on |
| Archive and restore activity stream data generated for a WebCenter Portal application. |
| Manage content repository connections and configure the Documents service. |
| Manage discussions server connections and configure the Discussion and Announcement services. |
| Manage external application connections. |
Instant Messaging and Presence | Manage instant messaging and presence server connections and configure the Instant Messaging and Presence service. |
| Manage mail server connections and configure the Mail service. |
| Manage settings for the Notifications service. |
| Manage personal event server connections. |
| Manage personalization server connections. |
| Manage portlet producers. |
| Manage proxy settings for the RSS service. |
| Manage Oracle Secure Enterprise Search (SES) connections and other search-related properties. |
Search - Oracle SES Search Crawlers | Manage Oracle Secure Enterprise Search (SES) crawlers. |
Search - WebCenter Portal Search | Manage search crawlers for the Spaces application. |
| Manage BPEL server connections. |
| Manage Spaces workflow settings and space metadata. |
WebCenter Portal Identity Store | Configure options for searching a WebCenter Portal application's identity store. |
WebCenter Portal Import and Export | Export and import Spaces applications, individual spaces and space templates, as well as producer metadata. |
Use the General commands, listed in Table 10-2, to manage WebCenter Portal connections.
Configuration changes made using these WebCenter Portal WLST commands are only effective after restarting the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
Table 10-2 General WLST Commands
Use This Command... | To... | Use with WLST... |
---|---|---|
Delete any WebCenter Portal connection. | Online | |
Set WebCenter Portal Service Framework configuration properties. | Online | |
Return WebCenter Portal Framework configuration properties. | Online | |
Return status information for the last WebCenter Portal command executed. | Online | |
List all the WebCenter Portal connection types. | Online | |
Clone a WebCenter Portal Managed Server. | Online |
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes a named WebCenter Portal connection.
If you use deleteConnection
to delete a WSRP or PDK-Java producer connection (instead of using deregisterWSRPProducer
or deregisterPDKJavaProducer), unused secondary connections will remain, which you might want to remove. For example, when you delete a WSRP producer connection, its associated Web Service connection remains; when you delete a PDK-Java producer connection, its associated URL connection remains.
deleteConnection
cannot be used to delete WebCenter Portal connections for the Personalization service. Instead, use deleteWCPSCMISConnection, deleteWCPSActivityGraphConnection, deleteWCPSPeopleConnection, or deleteWCPSCustomConnection.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
name | Connection name. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example deletes a WebCenter Portal connection.
Module: Oracle WebCenter Portal
Use with WLST: Online
Sets WebCenter Portal Service Framework configuration properties, such as the Resource Action Handler class and display as popup properties.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always |
resourceActionHandlerClassName | Optional. Class used by the Service Framework Resource Action Handler. |
| Optional. Indicates whether the Resource Action Handler displays resources in a popup or inline. Valid options are |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example sets the WebCenter Portal Service Framework Resource Action Handler class to my.company.ResourceActionHandler
:
The following example sets only the WebCenter Portal Service Framework Resource Action Handler display as popup value to 1
(true):
Module: Oracle WebCenter Portal
Use with WLST: Online
Returns WebCenter Portal Service Framework configuration property settings, such as:
resourceActionHandlerClassName
: Class currently used by the WebCenter Portal Service Framework Resource Action Handler esourceActionHandlerDisplayInPopup
: Indicates whether the Resource Action Handler displays resources in a popup or inline. Valid options are 1
(true) and 0
(false). Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example returns the service framework resource action handler class and display as popup properties, for the named application.
Module: Oracle WebCenter Portal
Use with WLST: Online
Returns the status of last WebCenter Portal command executed.
Use the webcenterErrorOccurred
command to determine the status of the last WebCenter Portal command executed. The command returns 1
if an error occurred or 0
otherwise.
The following example returns 1
if an error occurred:
Module: Oracle WebCenter Portal
Use with WLST: Online
Lists all the WebCenter Portal connection types.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example returns WebCenter Portal connection types for an application named webcenter
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Creates a new managed server with the same resources as a specified, base managed server.
Argument | Definition |
---|---|
baseManagedServer | Name of the base managed server. |
newManagedServer | Name for the new, clone managed server. |
newManagedServerPort | Port number for the new managed server. |
| Optional. Creates the managed server in verbose mode. Valid values are When set to The default is |
The following example creates a clone of the WC_CustomPortal
managed server. The new managed server is named WC_CustomPortal2
:
Analytics Collector Connections
Use the commands listed in Table 10-3 to manage Analytics Collector connections for a WebCenter Portal application. Events raised in WebCenter Portal applications using OpenUsage APIs can be sent to an Analytics Collector for use by Analytics and Activity Graph services.
Connection configuration changes made using these WebCenter Portal WLST commands are only effective after your restart the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
Table 10-3 Analytics Collector Connection WLST Commands
Use this command... | To... | Use with WLST... |
---|---|---|
createAnalyticsCollectorConnection | Create a connection to an Analytics Collector for a WebCenter Portal application. | Online |
setAnalyticsCollectorConnection | Edit an existing Analytics Collector connection. | Online |
listAnalyticsCollectorConnections | List all of the Analytics Collector connections that are configured for a WebCenter Portal application. | Online |
setDefaultAnalyticsCollectorConnection | Specify the default (or active) Analytics Collector connection for a WebCenter Portal application. | Online |
listDefaultAnalyticsCollectorConnection | Return connection details for the Analytics Collector being used by a WebCenter Portal application. | Online |
Analytics Collector and Cluster Configuration
Use the commands listed in Table 10-4 to configure event collection properties for the Analytics Collector that is deployed on the WC_Utilities
managed server.
If you reconfigure the Analytics Collector or set up clustering, you must restart the managed server on which the Analytic Collector is deployed (WC_Utilities
).
Table 10-4 Analytics Collector Configuration WLST Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Set Analytics Collector options, and cluster options if operating a clustered environment. | Online |
| Return Analytics Collector settings. | Online |
| List events currently registered with the Analytics Collector. | Online |
Module: Oracle WebCenter Portal
Use with WLST: Online
Creates a connection to an Analytics Collector for a named WebCenter Portal application.
Events raised in WebCenter Portal applications using OpenUsage APIs can be sent to an Analytics Collector for use by the Analytics and Activity Graph services.
While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used - the default (or active) connection where default=1
.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always |
connectionName | Connection name. The name must be unique across all connection types within the WebCenter Portal application. |
isUnicast | Optional. Specifies whether events are sent to a clustered Analytics Collector in multicast mode or whether a single Analytics Collector using unicast communication is required. Valid values are |
collectorHost | Optional. Host name where the Analytics Collector is running. The default value is Only required for unicast communication, that is, where |
clusterName | Optional. Name of the cluster where a clustered Analytics Collector is running. Only required for multicast communication, that is, where |
collectorPort | Optional. Port on which the Analytics Collector listens for events. The default value is |
isEnabled | Optional. Specifies whether to send analytics events raised using OpenUsage APIs to the Analytics Collector. Valid values Analytics events are sent to the Analytics Collector when |
timeout | Optional. Length of time (in seconds) to wait for a response from the Analytics Collector. Default value is Only required for multicast communication, that is, where |
default | Optional. Indicates whether this connection is the default (or active) Analytics Collector connection for the WebCenter Portal application. Valid values are While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one connection is used by Analytics and Activity Graph services—the default (or active) connection. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example creates a connection named MyAnalyticsCollector
for a WebCenter Portal application named webcenter
. Events are sent to a single Analytics Collector using unicast communication:
The following example creates a connection named MyAnalyticsCollector
for a WebCenter Portal application named webcenter
. Events are sent to a clustered Analytics Collector in multicast mode
Module: Oracle WebCenter Portal
Use with WLST: Online
Edits an existing Analytics Collector connection for a named WebCenter Portal application.
Events raised in WebCenter Portal applications using OpenUsage APIs can be sent to an Analytics Collector for use by the Analytics and Activity Graph services.
While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used - the default (or active) connection.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. For the Spaces application, the name is always |
connectionName | Connection name. The name must be unique (across all connection types within the WebCenter Portal application). |
isUnicast | Optional. Specifies whether events are sent to a clustered Analytics Collector in multicast mode or whether a single Analytics Collector using unicast communication is required. |
collectorHost | Optional. Host name where the Analytics Collector is running. The default value is Only required for unicast communication, that is, where |
clusterName | Optional. Name of the cluster where a clustered Analytics Collector is running. Only required for multicast communication, that is, where |
collectorPort | Optional. Port on which the Analytics Collector listens for events. The default value is |
isEnabled | Optional. Specifies whether to send analytics events raised using OpenUsage APIs to the Analytics Collector. Valid values Analytics events are sent to the Analytics Collector when |
timeout | Optional. Length of time (in seconds) to wait for a response from the Analytics Collector. Default value is 30. Only required for multicast communication, that is, where |
default | Optional. Indicates whether this connection is the default (or active) Analytics Collector connection for the WebCenter Portal application. Valid values While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one connection is used by the Analytics and Activity Graph services— the default (or active) connection. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example updates host and port details for an existing Analytics Collector connection named MyAnalyticsCollector
. On this connection, events are sent to a single Analytics Collector in unicast mode:
The following example updates cluster, port, and timeout details for an existing Analytics Collector connection named MyAnalyticsCollector
. On this connection, events are sent to a clustered Analytics Collector in multicast mode:
Module: Oracle WebCenter Portal
Use with WLST: Online
Lists connection names and details for all Analytics Collector connections that are configured for a named WebCenter Portal application.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example lists connection names and details for all the Analytics Collector connections that are currently configured for an application named webcenter
.
Module: Oracle WebCenter Portal
Use with WLST: Online
Specifies the default Analytics Collector connection for a named WebCenter Portal application.
The default Analytics Collector connection is used to send events raised in WebCenter Portal applications using OpenUsage APIs to an Analytics Collector for use by Analytics and Activity Graph services.
While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used - the default (or active) connection.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
name | Name of an existing Analytics Collector connection. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example configures the connection MyAnalyticsCollector
for events raised in an application named webcenter
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Return details about the Analytics Collector connection that is currently configured for a WebCenter Portal application.
While you can register multiple Analytics Collector connections for a WebCenter Portal application, only one Analytics Collector connection is used—the default (or active) connection.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example returns details about the Analytics Collector connection that is currently configured for a WebCenter Portal application named webcenter
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Configure the Analytics Collector deployed on the WC_Utilities
managed server. Additionally, in a clustered environment, use this commands to set cluster settings.
Argument | Definition |
---|---|
appName | Name of the Analytics Collector application. |
collectorHost | Optional. Name of the host on which the Analytics Collector is running. The default value is |
defaultPort | Optional. Default port number on which the Analytics Collector listens. The default value is |
maxPort | Optional. Highest port number that the Analytics Collector can use when allocating a listener. This property is mostly used in a clustered environment where more than one collector is running in the same box. Each collector listens for incoming UDP messages on a free port within a given port range. The range is from the default port number to the maxPort number. |
broadcastType | Optional. Indicates the network channel on which the Analytics Collector broadcasts a 'heartbeat' to advertise its location to event producers. Valid values are
|
clusterEnabled | Optional. Indicates whether the Analytics Collector is deployed in a cluster. Valid values are If set to |
clusterName | Optional. Name of the Analytics Collector cluster. Only required when |
clusterBroadcastFrequency | Optional. Broadcast Analytics Collector listening information every 'n' seconds. The default frequency is 10 seconds. The Analytics Collector periodically broadcasts a 'heartbeat' to advertise its location (|
server | Optional. Name of the managed server where the Analytics Collector is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the application is deployed. |
The following example changes the default port to 31315
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Returns Analytics Collector settings.
Argument | Definition |
---|---|
appName | Name of the Analytics Collector application. |
server | Optional. Name of the managed server where the Analytics Collector is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the application is deployed. |
The following command lists current settings for the Analytics Collector that is configured for an application named webcenter
:
This is sample output for an Analytics Collector in a clustered environment:
This is sample output for a standalone Analytics Collector:
Module: Oracle WebCenter Portal
Use with WLST: Online
Lists all the events currently registered with the Analytics Collector.
Argument | Definition |
---|---|
appName | Name of the Analytics Collector application. |
server | Optional. Name of the managed server where the Analytics Collector is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the application is deployed. |
The following command lists all the events currently registered with the Analytics Collector for use by a WebCenter Portal application named webcenter
:
Sample output:
Use the commands listed in Table 10-5 to manage Activity Graph system properties and metadata.
Configuration changes made using the setAGProperty WLST command are only effective after your restart the managed server on which the Activity Graph application is deployed (WC_Utilities
). For all other commands, configuration changes are effective immediately.
See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
Table 10-5 Activity Graph WLST Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Export Activity Graph metadata definitions to an XML file. | Online |
| Import Activity Graph metadata definitions from an XML file. | Online |
| Export provider configuration, for a given provider, to an Activity Graph metadata definition file. | Online |
| Delete all the Activity Graph metadata that is defined for a WebCenter application. | Online |
| Delete the metadata for an action registered with Activity Graph. | Online |
| Delete the metadata for a node class registered with Activity Graph. | Online |
| Delete the metadata for a similarity calculation registered with Activity Graph. | Online |
| Delete the metadata for a rank calculation registered with Activity Graph. | Online |
| Delete the metadata for a provider assignment registered with Activity Graph. | Online |
| Delete the metadata for a QRPP registered with Activity Graph. | Online |
| Delete the metadata for a provider configuration registered with Activity Graph. | Online |
| Change the URN of an action registered with Activity Graph. | Online |
| Change the URN of a node class registered with Activity Graph. | Online |
| Set a system property for Activity Graph. | Online |
| Return the current setting for a given Activity Graph property. | Online |
| Set credentials (user name and password) for an Activity Graph property. | Online |
Module: Oracle WebCenter Portal
Use with WLST: Online
Exports Activity Graph metadata definitions to an XML file.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
directoryPath | Destination directory for the XML file that will be generated. If you specify a directory that does not exist then it will be created. |
definitionFileName | Name for the XML file that will be generated. If a file with the same name exists in the destination directory then it will be overwritten. |
includeProviderConfigurations | Determines whether the export includes provider configuration metadata. Valid values are Provider configurations are a subset of Activity Graph metadata that you may want to manage separately from the other metadata. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example exports Activity Graph metadata definitions to an XML file named ag-metadata.xml
, at the specified location:
Module: Oracle WebCenter Portal
Use with WLST: Online
Imports Activity Graph metadata definitions from an XML file.
On import, new Activity Graph metadata definitions are created on the target and existing definitions are overwritten.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
definitionFilePath | Relative path to the XML file containing metadata definitions. For example, |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example imports Activity Graph metadata definitions from a file name import-metadata.xml
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Exports provider configuration, for a given provider, to an Activity Graph metadata definition file.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
directoryPath | Destination directory for the XML file that will be generated. If you specify a directory that does not exist, then it will be created. |
definitionFilePath | Name for the XML file that will be generated. If a file with the same name exists in the destination directory then it will be overwritten. Example |
urn | URN for the Activity Graph provider to export. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example exports configuration information for the Activity Graph provider oracle.webcenter.activitygraph.analytics
to an XML file named 'ag-provider-config.xml
, at the specified location:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes all the Activity Graph metadata that is defined for a WebCenter Portal application. The delete operation is immediate and non-reversible.
You can use this command in conjunction with the WLST command importAGMetadata to completely re-install Activity Graph metadata.
Note: Any data in the relation store, similarity store, and rank store will be deleted the next time the Activity Graph engines run.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes all existing Activity Graph metadata:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for an action that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.
Note: Any data in the relation store that is associated with the action will be deleted the next time the Activity Graph engines run. |
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
urn | URN for the Activity Graph action to delete. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes Activity Graph metadata for the connect
action:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for a node class that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.
Note: Any data in the relation store that is associated with the node class will be deleted the next time the Activity Graph engines run. |
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
urn | URN for the Activity Graph node class to delete. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes Activity Graph metadata for the node class WC.wiki-page
action:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for a similarity calculation that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
urn | URN for the Activity Graph similarity calculation to delete. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes Activity Graph metadata for the similarity calculation item-edit
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for a rank calculation that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
urn | URN for the Activity Graph rank calculation to delete. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes Activity Graph metadata for the activity-rank
calculation:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for a provider assignment that is currently registered with Activity Graph, that is, a provider assignment defined by the unique triple combination (action, sourceClass, trgClass)
. The delete operation is immediate and non-reversible.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
actionURN | URN for the action. |
srcClassURN | URN for the source node class. |
trgClassURN | URN for the target node class. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes Activity Graph metadata for the provider assignment specified:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for a QRPP (Query Result Post Processor) that is currently registered with Activity Graph. The delete operation is immediate and non-reversible.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
urn | URN for the QRPP to delete. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes Activity Graph metadata for a QRPP named Event store metadata QRPP
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Deletes the metadata for a provider configuration. The delete operation is immediate and non-reversible.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
urn | URN for the Activity Graph provider to delete. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example deletes configuration information for the Activity Graph provider oracle.webcenter.activitygraph.analytics
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Changes the URN of an action that is currently registered with Activity Graph. Any data in the relation store that is associated with the action is preserved.
Note: This command does not delete the action and create an action with a different name as this causes data associated with the original action to be deleted. |
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
currentURN | Current action URN. |
newURN | New action URN. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example changes the connect
action URN to people-connect
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Changes the URN of a node class that is currently registered with Activity Graph. Any data in the relation store that is associated with the node class is preserved.
Note: This command does not delete the node class and create a node class with a different name as this would cause data associated with the original node class to be deleted. |
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
currentURN | Current node class URN. |
newURN | New node class URN. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example changes the WC.user
node class URN to WC.people
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Sets a system property for Activity Graph. This command sets a value based on the property's datatype (String, Integer, Float, Boolean).
Activity Graph system properties include settings for:
oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.url
and oracle.webcenter.activitygraph.providers.datasources.ses.soap.query.url
) oracle.webcenter.activitygraph.rankengine.enabled
) See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for a list of system properties and their datatypes.
Configuration changes made using the setAGProperty
WLST command are only effective after your restart the managed server on which the Activity Graph application is deployed (WC_Utilities
).
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
propertyName | Name of the Activity Graph property. |
propertyValue | Value for the Activity Graph property. |
propertyType | Datatype of the property. Valid values are: Values are case sensitive. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example enables the Rank Engine:
Module: Oracle WebCenter Portal
Use with WLST: Online
Returns the current setting for a given Activity Graph property.
See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for a list of valid system properties.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
propertyName | Name of the Activity Graph property. |
propertyType | Datatype of the property. Valid values are: Values are case sensitive. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example returns the current value of the system property oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.url
:
Module: Oracle WebCenter Portal
Use with WLST: Online
Sets credentials (user name and password) for an Activity Graph credential property.
See also, "Managing the Activity Graph Service" in the Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter for a list of properties with the PasswordCredential
datatype, for example, oracle.webcenter.activitygraph.providers.datasources.ses.soap.admin.credential
.
Argument | Definition |
---|---|
appName | Name of the Activity Graph application in which to perform this operation—always |
propertyName | Name of the Activity Graph property that specifies credentials (and has |
userName | User name associated with the credential property. |
password | Password associated with the user name specified. |
server | Optional. Name of the managed server where the application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Activity Graph application is deployed. |
The following example sets user name and password credentials for the Oracle SES Admin tool:
Use the commands listed in Table 10-6 to archive and restore activity stream data generated for a WebCenter Portal application.
Configuration changes made using these WebCenter Portal WLST commands are only effective after your restart the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
Table 10-6 Activity Stream WLST Commands
Use this command... | To... | Use with WLST... |
---|---|---|
| Archive activity stream data that is older than a specified date. | Online |
| Archive activity stream data associated with deleted objects. | Online |
| Archive activity stream data associated with Spaces that are currently closed. | Online |
| Archive activity stream data associated with Spaces that have been inactive since a specified date. | Online |
| Restore archived activity stream data from a specified date into production tables. | Online |
| Truncates activity stream archive data. | Online |
Module: Oracle WebCenter Portal
Use with WLST: Online
Archives activity stream data that is older than a specified date.
This command moves data from production tables to archive tables. Exceptions include WC_ACTOR_DETAIL
and WC_OBJECT_DETAIL
—data in these tables is copied to archive tables rather than moved.
Rows in WC_OBJECT_DETAIL
that are not used by any activity element are deleted.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
year | Year before which to archive activity stream data. For example, 2009. |
month | Month before which to archive activity stream data. For example, enter 1 for January, 2 for February, and so on. |
day | Day of the month before which to archive activity stream data. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example archives activity stream data that is older than October 1, 2009:
Module: Oracle WebCenter Portal
Use with WLST: Online
Archives activity stream data associated with deleted objects.This command moves data from production tables to archive tables, except for WC_ACTOR_DETAIL
—data in this table is copied to the archive table rather than moved.
Rows in WC_OBJECT_DETAIL
that satisfy the criteria (in this case, deleted objects) are deleted.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example archives activity stream data associated with deleted objects:
Module: Oracle WebCenter Portal
Use with WLST: Online
Archives activity stream data associated with Spaces that are currently closed.
This command moves data from production tables to archive tables, except for WC_ACTOR_DETAIL
—data in this table is copied to the archive table rather than moved. Rows in WC_OBJECT_DETAIL
that satisfy the criteria (in this case, objects involved in activities of Spaces that are closed) are deleted.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example archives activity stream data associated with Spaces that are currently closed:
Module: Oracle WebCenter Portal
Use with WLST: Online
Archives activity stream data associated with spaces that have been inactive since a specified date. An inactive space is an open or closed space in which there has been no activity since the specified date.
This command moves data from production tables to archive tables, except for WC_ACTOR_DETAIL
—data in this table is copied to the archive table rather than moved.Rows in WC_OBJECT_DETAIL
that satisfy the criteria (in this case, objects involved in activities of spaces that have been inactive since the specified date) are deleted.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
year | Year the space became inactive. For example, 2009. |
month | Month the space became inactive. For example, enter 1 for January, 2 for February, and so on. |
day | Day of the month the space became inactive. |
server | Optional. Name of the managed server where the Spaces application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the Spaces application is deployed. |
The following example archives activity stream data associated with spaces that have been inactive (no activities have occurred, regardless of open or closed status) since October 1, 2009:
Module: Oracle WebCenter Portal
Use with WLST: Online
Restores archived activity stream data from a specified date into production tables.
This command moves data from archive tables to production tables, except for WC_ACTOR_DETAIL
—data in this table is not restored because data is not deleted from this table during the archive process.
Rows that already exist in the production tables are not changed during the restore process.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
year | Year from which to restore activity stream data. For example, 2009. |
month | Month from which to restore activity stream data. For example, enter 1 for January, 2 for February, and so on. |
day | Day of the month from which to restore activity stream data. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example restores activity stream data archived since October 1, 2009:
Module: Oracle WebCenter Portal
Use with WLST: Online
Truncates activity stream archive data.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example truncates activity stream archive data:
Use the commands listed in Table 10-7 to manage content repository connections and configure the Documents service for a WebCenter Portal application.
Configuration changes made using these WebCenter Portal WLST commands are only effective after your restart the Managed Server on which the WebCenter Portal application is deployed. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
Table 10-7 Content Repository WLST Commands
Use this command... | To... | Use with WLST... |
---|---|---|
createJCRContentServerConnection | Create a connection to an Oracle WebCenter Content repository. | Online |
| Edit an existing Oracle WebCenter Content repository connection. | Online |
listJCRContentServerConnections | List individual or all Oracle WebCenter Content repository connections that are configured for a WebCenter Portal application. | Online |
| Create an Oracle Portal repository connection. | Online |
| Edit an existing Oracle Portal repository connection. | Online |
| List all Oracle Portal connections that are configured for a WebCenter Portal application. | Online |
| Create a connection to a file system. | Online |
| Edit an existing file system repository connection. | Online |
| List individual or all file system connections configured for a WebCenter Portal application. | Online |
| Create a Microsoft SharePoint 2007 repository connection. | Online |
| Edit a Microsoft SharePoint 2007 repository connection. | Online |
| List all Microsoft SharePoint 2007 connections that are configured for a WebCenter Portal application. | Online |
| List properties for the back-end Content Server that is being used by the Spaces application. | Online |
| Modify properties for the back-end Content Server used by the Spaces application. | Online |
deleteDocumentsSpacesProperties | Delete properties for the back-end Content Server used by the Spaces application. | Online |
Module: Oracle WebCenter Portal
Use with WLST: Online
Creates a connection to an Oracle WebCenter Content repository for a named WebCenter Portal application.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
name | Connection name. The name must be unique (across all connection types) within the WebCenter Portal application. |
socketType | Specifies whether Oracle WebCenter Content's Content Server connects on the content server listener port or the Web server filter, and whether the listener port is SSL enabled. Valid values are Choose from:
|
url | Optional. Content Server URL. Required only if For example, |
serverHost | Optional. Host name of the machine where the Content Server is running. Required if |
serverPort | Optional. Port on which the Content Server listens. Required if
This property corresponds to the |
keystoreLocation | Optional. Location of key store that contains the private key used to sign the security assertions. Required only if The key store location must be an absolute path. |
keystorePassword | Optional. Password required to access the key store. Required only if |
privateKeyAlias | Optional. Client private key alias in the key store. The key is used to sign messages to the server. The public key corresponding to this private key must be imported in the server keystore. Required only if |
privateKeyPassword | Optional. Password to be used with the private key alias in the key store. Required only if |
webContextRoot | Optional. Web server context root for the Content Server. Use the format When specified, several Oracle WebCenter Content features based on iFrame are available in the WebCenter Portal application. This includes:
Note: To fully enable these Oracle WebCenter Content features you must access the WebCenter Portal application through Oracle HTTPS Server (OHS) to expose Content Server and the WebCenter Portal application under the same host and port. Both the WebCenter Portal application and Content Server must also use single sign on. For information about setting up OHS to front-end WebCenter Portal applications, see "Content Server - Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter. If your WebCenter Portal application is connected to multiple Content Servers, Oracle recommends that each Content Server has a unique Web Server Context Root so that OHS re-direction works correctly. |
clientSecurityPolicy | Optional. Client security policy to be used when the |
cacheInvalidationInterval | Optional. Frequency between checks for external Content Server content changes (in minutes). WebCenter Portal automatically clears items that have changed from the cache. Defaults to 0 which means that cache invalidation is disabled. The minimum interval is 2 minutes. |
binaryCacheMaxEntrySize | Optional. Maximum cacheable size (in bytes) for Content Server binary documents. Documents larger than this size are not cached by WebCenter Portal. Defaults is 102400 bytes (100K). Tune this value based on your machine's memory configuration and the types of binary documents that you expect to cache. |
adminUsername | Optional. User name with administrative rights for this Content Server instance. This user will be used to fetch content type information based on profiles and track document changes for cache invalidation purpose. Defaults to |
adminPassword | Optional. Password for the Content Server administrator specified in |
extAppId | Optional. External application used to authenticate users against the Content Server. This value should match the name of an existing external application connection. See also listExtAppConnections. If If |
timeout | Optional. Length of time allowed to log in to Content Server (in ms) before issuing a connection timeout message. If no timeout is set, there is no time limit for the login operation. |
isPrimary | Optional. Valid string values are In the Spaces application, the primary connection is used to store space-specific content and Home space content. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example creates a socket-based connection to an Oracle WebCenter Content repository running on myhost.com
at port 4444
. For authentication purposes, an existing external application named myExtApp
is used. See also, createExtAppConnection.
The following example creates an SSL socket-based connection to an Oracle WebCenter Content repository.
The following example creates a JAX-WS (Java API for XML Web Services) connection to an Oracle WebCenter Content repository:
Module: Oracle WebCenter Portal
Use with WLST: Online
Edits an existing Oracle WebCenter Content repository connection. This command requires that you specify values for appName
and name
, plus one additional argument.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
name | Name of an existing Oracle WebCenter Content repository connection. |
socketType | Optional. Specifies whether the Oracle WebCenter Content's Content Server connects on the content server listener port or the Web server filter, and whether the listener port is SSL enabled. Valid values are Choose from:
|
url | Optional. Content Server URL. Required only if For example, |
serverHost | Optional. Host name of the machine where the Content Server is running. Required if |
serverPort | Optional. Port on which the Content Server listens. Required if
For example, |
keystoreLocation | Optional. Location of key store that contains the private key used to sign the security assertions. Required only if The key store location must be an absolute path. |
keystorePassword | Optional. Password required to access the key store. Required only if |
privateKeyAlias | Optional. Client private key alias in the key store. Required only if |
privateKeyPassword | Optional. Password to be used with the private key alias in the key store. Required only if |
webContextRoot | Optional. Web server context root for the Content Server. Use the format When specified, several Oracle WebCenter Content features based on iFrame, such as previewing files in a slide viewer, are available in the WebCenter Portal application. Note: To fully enable these features you must access the WebCenter Portal application through Oracle HTTPS Server (OHS) to expose Content Server and the WebCenter Portal application under the same host and port. In addition, both the WebCenter Portal application and the Content Server must use single sign on. For information about setting up OHS to front-end WebCenter Portal applications, see "Content Server - Configuration" in Oracle Fusion Middleware Administrator's Guide for Oracle WebCenter.
|
clientSecurityPolicy | Optional. Client security policy to be used when the |
cacheInvalidationInterval | Optional. Frequency between checks for external Content Server content changes (in minutes). WebCenter Portal automatically clears items that have changed from the cache. Defaults to 0 which means that cache invalidation is disabled. The minimum interval is 2 minutes. |
binaryCacheMaxEntrySize | Optional. Maximum cacheable size (in bytes) for Content Server binary documents. Documents larger than this size are not cached by WebCenter Portal. Defaults is 102400 bytes (100K). Tune this value based on your machine's memory configuration and the types of binary documents that you expect to cache. |
adminUsername | Optional. User name with administrative rights for this Content Server instance. This user will be used to fetch content type information based on profiles and track document changes for cache invalidation purpose. Defaults to |
adminPassword | Optional. Password for the Content Server administrator specified in |
extAppId | Optional. External application used to authenticate users against the Content Server. This value should match the name of an existing external application connection. See also listExtAppConnections. If If |
timeout | Optional. Length of time allowed to log in to Content Server (in ms) before issuing a connection timeout message. If no timeout is set, there is no time limit for the login operation. |
isPrimary | Optional. Valid string values are In the Spaces application, the primary connection is used to store space-specific content and Home space content. |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example edits a socket-based connection to an Oracle WebCenter Content repository.
The following example edits an SSL socket-based connection to an Oracle WebCenter Content repository.
The following example edits a JAX-WS (Java API for XML Web Services) connection to an Oracle WebCenter Content repository:
Module: Oracle WebCenter Portal
Use with WLST: Online
Without any arguments, this command lists all of the Oracle WebCenter Content repository connections that are configured for a named WebCenter Portal application.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
verbose | Optional. Displays content repository connection details in verbose mode. Valid options are |
name | Optional. Name of an existing Oracle WebCenter Content repository connection. When specified you can view connection details for a specific Oracle WebCenter Content repository connection. If you supply a value for |
server | Optional. Name of the managed server where the WebCenter Portal application is deployed. For example, Required when applications with the same name are deployed to different servers and also when you have a cluster. |
applicationVersion | Optional. Version number of the deployed application. Required if more than one version of the WebCenter Portal application is deployed. |
The following example lists Oracle WebCenter Content repository connections configured for an application named webcenter
.
The following example lists all properties of the Oracle WebCenter Content repository connection named myContentServerConnection1
. The connection named myContentServerConnection1
must exist and be an Oracle WebCenter Content repository connection. If, for example, you specify an Oracle Portal connection, the properties are not listed and an error is displayed.
Module: Oracle WebCenter Portal
Use with WLST: Online
Creates an Oracle Portal repository connection.
Argument | Definition |
---|---|
appName | Name of the WebCenter Portal application in which to perform this operation. |
name | Connection name. The name must be unique (across all connection types) within the WebCenter Portal application. |
dataSource | JNDI DataSource location used to connect to the portal. For example: The datasource must be on the server where the WebCenter Portal application is deployed. |
extAppId | Optional. External application used to authenticate users against Oracle Portal. This value should match the name of an existing external application connection. See also listExtAppConnections. If If |