Securing Resources Using Roles and Policies for Oracle WebLogic Server
12c Release 1 (12.1.1)
E24421-02
January 2012
Documentation for security architects and administrators that describes how to use security roles and policies to determine who can access resources in a domain.
Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server, 12c Release 1 (12.1.1)
E24421-02
Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This preface describes the document accessibility features and conventions used in this guide—Securing Resources Using Roles and Policies for Oracle WebLogic Server.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
The WebLogic Security Service combines several layers of security features to prevent unauthorized access to your WebLogic Server domains. This document describes using roles and policies to determine who can access resources in a domain. The roles and policies feature fulfills the same function as the familiar Access Control List (ACL), but offers an improvement over ACLs: an ACL is static while roles and policies specify conditions under which users can access resources, and these conditions are evaluated at runtime.	
The following sections describe the content and organization of this document:	
This document contains information that is useful for security architects and security administrators who are designing a security strategy for resources within a WebLogic Server domain. It includes information about resource types, options for securing Web applications and EJBs, different types of security roles and policies, and the components of a role and policy.	
It is assumed that the reader is familiar with Java EE security and the other features of the WebLogic Security Service.	
The information in this document is relevant during the design and development phases of a software project. This document does not address production phase administration topics. For links to WebLogic Server documentation and resources related to these topics, see Related Information.	
The document is organized as follows:	
Other WebLogic Server documents that may be of interest to security administrators wanting to secure WebLogic resources are:	
These documents provide additional information about specific resource types:	
Additional security documents are listed in "Code Examples and Sample Applications" in Understanding Oracle WebLogic Server.	
For a comprehensive listing of the new WebLogic Server features introduced in this release, see What's New in Oracle WebLogic Server.	
This chapter describes terms and concepts, provides a workflow summary, and outlines the main steps for securing WebLogic resources.	
This chapter includes the following sections:	
To secure a resource in a WebLogic Server domain, you create a policy and an optional role. A resource is an entity (such as a Web Service or a server instance) or an action (such as a method in a Web Service or the act of shutting down a server instance). A policy specifies which users, groups, or roles can access the resource under a set of conditions. A security role, like a security group, grants an identity to a user. Unlike a group, however, membership in a role can be based on a set of conditions that are evaluated at runtime.	
Figure 2-1 describes how you create roles and policies and how the Security Service uses them to determine whether a client can access a resource. A brief explanation follows the figure.	
Oracle recommends assigning users to groups because doing so increases efficiency for administrators who work with many users.	
Individual users can also be granted a security role, but this is a less typical practice.	
WebLogic Server provides two techniques for using a single policy to protect a collection of resources:	
You can create a policy that protects all resources of a specific type. Such policies are called root-level policies. For example, you can create a root-level policy for the Web Service type. All Web Services that you deploy in the domain for which you have defined this root-level policy will be protected by the root-level policy.	
If you define a policy for a specific Web Service, then the Web Service will be protected by its own policy and will ignore the root-level policy.	
All of the resources within a Java EE application or module that you deploy exist within a hierarchy, and policies on resources higher in the hierarchy act as default policies for resources lower in the same hierarchy. Policies lower in a hierarchy always override policies higher in the hierarchy.	
For example, EnterpriseApp1contains EJB ModuleA along with a Web application and a JDBC module (see Figure 2-2). You create a policy for EnterpriseApp1 and for method Y within EJB ModuleA. When an EJB client attempts to invoke method Y, the WebLogic Security Service enforces the specific policy and ignores the policy for the enterprise application.	
When a client requests access to EJB method X (which is not protected by its own policy), the WebLogic Security Service asks:	
You can see a visual representation of resource and policy hierarchies in the Administration Console on the security realm's Roles and Policies: Policies page. For information about accessing this page, see "Create policies for resource instances" in the Oracle WebLogic Server Administration Console Online Help.	
To design a set of roles and policies that can secure the resources in your domain:	
To see a list of all the types of resources that could be in any given domain, see Chapter 3, "Resource Types You Can Secure with Policies."	
For planning purposes, organize the resources into the following categories:	
For these tasks, WebLogic Server already provides a detailed, layered security scheme that grants different types of access to eight security roles (Admin, Deployer, Operator, Monitor, Anonymous, AppTester, CrossDomainConnector, AdminChannelUser). For most environments, this security scheme is adequate and only requires you to assign users to the eight default security roles appropriately (see step 3).	
While it is possible to modify some parts of this layered security scheme, such modifications are usually not needed and require careful planning to maintain consistency between the different layers. See Administrative Resources, Server Resources, and JMX Resources.	
The Java EE platform already provides a standard model for securing Web applications and EJBs. In this standard model, developers define role mappings and policies in the Web application or EJB deployment descriptors.	
You can use the standard model or you can use the Administration Console to define polices and roles, which offers unified and dynamic security management. See Chapter 4, "Options for Securing Web Application and EJB Resources."	
By default, these resources are not protected by policies; you must define policies to determine who can access them.	
A root-level policy applies to all instances of a resource type. For example, if you define a root-level policy for the Web Services resource type, then the policy will apply to all Web Services in your domain.	
A scoped policy applies to a specific resource instance and overrides a root-level policy.	
You can create global roles, which can be used in any policy, or scoped roles, which can be used only in a policy for a specific resource instance.	
Because both roles and policies can evaluate a set of conditions at runtime, you should consider which parts of your security data should be static and which should be dynamic. For example, you might want some policies to always allow one specific role to access a resource, and then you use conditions in the role's definition to move users in and out of the roles as needed. In other cases, you might want a static role definition and create a policy that allows access to different roles at different times of the day.	
As a general guideline, if you base the authorization decision on the resource instead of the entities (roles) who can access the resource, you would add conditions to the security policy. If you base authorization on who can access the resource, then you would add conditions to the security role.	
For an example of authorization based on who can access the resource, consider a manager who is going on vacation. You can temporarily place a user in a Manager	
security role. Dynamically granting this security role means that you do not need to change or redeploy your application to allow for such a temporary arrangement. You simply specify the hours between which the temporary manager should have special privileges. Further, you do not need to remember to revoke these special privileges when the actual manager returns as you would if you temporarily added the user to a management group.	
The WebLogic Authorization provider (DefaultAuthorizer	
) and the WebLogic Role Mapping provider (DefaultRoleMapper	
) improve performance by caching the roles, predicates, and resource data that they look up. If you modify your realm to use these WebLogic providers, you can configure the maximum number of items that they store in the caches.	
Note: By default, security realms in newly created domains include the XACML Authorization and Role Mapping providers. The XACML providers use their own cache, but this cache is not configurable. WebLogic Server also includes the WebLogic Authorization provider (
By default, the Weblogic Authorization and Role Mapping providers store the following number of items in each cache:	
This cache contains the name of each role that has been looked up and the policy that protects it.	
This cache contains each predicate that the WebLogic entitlements engine has looked up.	
This cache contains the name of each resource that has been looked up and the policy that protects it.	
If a cache exceeds its maximum size, the WebLogic entitlements engine removes the least recently used (LRU) item from the cache.	
If the applications on a WebLogic Server instance use more than 2000 roles or 5000 resources, consider increasing the cache sizes. (The WebLogic providers include less than 50 predicates, so there is no need to increase the size of this cache.)	
To change the maximum number of items that a cache contains, pass one of the following system properties in the java	
startup command for a WebLogic Server instance:	
-Dweblogic.entitlement.engine.cache.max_role_count=max-roles	
where max-roles	
is the maximum number of roles that you want to cache.	
-Dweblogic.entitlement.engine.cache.max_predicate_count=	
max-predicates	
where max-predicates	
is the maximum number of predicates that you want to cache.	
-Dweblogic.entitlement.engine.cache.max_resource_count=	
max-resources	
where max_resource_count	
is the maximum number of resources that you want to cache.	
By default, the WebLogic providers add items to the cache as they use them. With this configuration, the initial lookup of entitlement data takes longer than subsequent lookups. You can, however, decrease the amount of time needed for an initial lookup by configuring a WebLogic Server instance to load the caches during its startup cycle. To do so, pass the following system property to the server's java	
startup command:	
For example:	
This chapter describes the types of resources that you can secure using policies in WebLogic Server.	
This chapter includes the following sections:	
Policies for administrative resources determine who can complete such tasks as uploading files (used during deployment), viewing the domain and server logs, and unlocking users who have been locked out of their accounts.	
For the most security-sensitive of these tasks, users must first be authorized by additional policies on a JMX resource (see Figure 3-1). For information about JMX resources and how to design roles and policies for activities that are protected by multiple resources, see JMX Resources.	
Table 3-1 describes the administrative activities that administrative resources protect and which of these activities are also protected by additional JMX resources. For activities that are protected by multiple resources, the default policy in the JMX resource duplicates the protections in the Administrative resource.	
Table 3-1 Activities And Default Policies For Administrative Resources	
Administrative Activities	Default Policy Allows These Roles
---	---
Upload files for deployment.	
No	
Control access to these methods in the file download servlet:	
Note: The file download servlet is used internally by WebLogic Server. Oracle recommends that you do not modify the default policies for any of its methods. They are listed here only for completeness.	
No	
Enable applications to use identity assertion. The default policy for this activity specifies that an application must supply credentials for a user who is in the See	Admin
View domain and server logs through the Administration Console.	
Yes	
Unlock users who have been locked out of their accounts.	Admin
An application resource is an enterprise application, Web application, or other Java EE module that you deploy as a stand-alone application (for example, you can deploy Web Services and JDBC modules as stand-alone applications). You secure an application resource when you want to protect all resources that constitute the application. For example, securing an enterprise application protects access to all WebLogic resources within that application (see Figure 3-2).	
A COM resource represents a package that contains one or more jCOM classes. jCOM is a software bridge that allows bidirectional access between Java/Java EE objects deployed in WebLogic Server and Microsoft ActiveX components available within the Microsoft Office family of products, Visual Basic and C++ objects, and other Component Object Model/Distributed Component Object Model (COM/DCOM) environments.	
A policy on a COM resource protects access to all jCOM objects in a package.	
For related information, see "Configuring Access Control" in Programming JCOM for Oracle WebLogic Server.	
An EJB (Enterprise JavaBean) resource is an EJB deployment module (JAR), individual EJB, or individual method in an EJB. EJB resources exist within a hierarchy of resources, and at the top of the hierarchy is an application resource. See Appendix 2, "Protecting a Hierarchy of Resources."	
Because the Java EE platform standardizes EJB security in deployment descriptors, WebLogic Server integrates this standard mechanism with its Security Service to give you a choice of techniques for securing EJB resources. For more information, see Appendix 4, "Options for Securing Web Application and EJB Resources."	
An EIS resource is a system-level software driver used by an application server, such as WebLogic Server, to connect to an Enterprise Information System. Oracle supports resource adapters developed by EIS vendors and third-party application developers. Resource adapters can be deployed in any application server supporting the applicable Java EE Platform Specification. Resource Adapters contain the Java code, and if necessary, the native components required to interact with the EIS.	
To secure access to an EIS, create security policies and security roles for all resource adapters as a group, or for individual adapters. These resources exist within a hierarchy of resources, and at the top of the hierarchy is an application resource. See Protecting a Hierarchy of Resources.	
For related information, see "Security" in Programming Resource Adapters for Oracle WebLogic Server.	
A Java DataBase Connectivity (JDBC) resource is a JDBC system resource, JDBC module that is part of an application, JDBC data source, or a specific method within a data source. If you deploy a JDBC module as a stand-alone application, the application is represented by an application resource (see Application Resources).	
JDBC resources exist within a hierarchy of resources, and at the top of the hierarchy is an application resource. See Protecting a Hierarchy of Resources.	
When you secure an individual data source, you can choose whether to protect JDBC operations	
using one or more of the following administrator methods:	
admin	
—The following methods on the JDBCDataSourceRuntimeMBean	
are invoked as admin	
operations: clearStatementCache	
, suspend	
, forceSuspend	
, resume	
, shutdown	
, forceShutdown	
, start	
, getProperties	
, and poolExists	
. reserve	
—Applications reserve a connection in the data source by looking up the data source and then calling getConnection	
. Note: Giving a user the	
shrink	
—Shrinks the number of connections in the data source to the maximum of the currently reserved connections or to the initial size. reset	
—Resets the data source connections by shutting down and re-establishing all physical database connections. This also clears the statement cache for each connection. You can only reset data source connections that are running normally. All	
—An individual data source is protected by the union of the Admin	
, reserve	
, shrink	
, and reset	
administrator methods. Notes: Be aware of the following:	
A Java Messaging Service (JMS) resource is a JMS system resource, JMS module that is part of an application, JMS destination, or an operation within a destination. You can create security policies and roles for all destinations (JMS queues and JMS topics) as a group, or an individual destination (JMS queue or JMS topic) on a JMS server.	
These resources exist within a hierarchy of resources, and at the top of the hierarchy is an application resource. See Protecting a Hierarchy of Resources.	
When you secure a specific destination on a JMS server, you can protect operations on the destination. By default, destinations are not protected. This means that any valid user for a WebLogic server instance can send, receive, and browse messages on a destination. Only users defined by the policy condition can access control of the destination. Valid protection operations are:	
send	
—Required to send a message to a queue or a topic. This includes calls to the MessageProducer.send()	
, QueueSender.send()	
, and TopicPublisher.publish()	
methods, as well as the Messaging Bridge. receive	
—Required to create a consumer on a queue or a topic. This includes calls to the Session.createConsumer()	
, Session.createDurableSubscriber()	
, QueueSession.createReceiver()	
, TopicSession.createSubscriber()	
, TopicSession.createDurableSubscriber()	
, Connection.createConnectionConsumer()	
, Connection.createDurableConnectionConsumer()	
, QueueConnection.createConnectionConsumer()	
, TopicConnection.createConnectionConsumer()	
, and TopicConnection.createDurableConnectionConsumer()	
methods, as well as the Messaging Bridge and message-driven beans. browse	
—Required to view the messages on a queue using the QueueBrowser	
interface. ALL	
—Required to send	
, receive	
, and browse	
methods on a destination. A Java Naming and Directory Interface (JNDI) resource is a node in a server's JNDI tree. A policy on a JNDI resource determines who can access WebLogic Server entities and actions through JNDI. You can create a policy on the root node of the JNDI tree or on individual nodes.	
For each JNDI node, you can create a policy for all operations or for one of the following operations:	
modify	
—Whenever an application modifies the JNDI tree in any way (that is, adding, removing, changing) the current user must have permission to make the modification. This includes the bind()	
, rebind()	
, createSubContext()	
, destroySubContext()	
, and unbind()	
methods. lookup	
—Whenever an application looks up an object in the JNDI tree, the current user must have permission to perform the lookup. This includes the lookup()	
and lookupLink()	
methods. list	
—Whenever an application lists the contents of a context in JNDI, the current user must have permission to perform the listing operation. This includes the list()	
and listBindings()	
methods. A JMX resource is an MBean attribute or MBean operation. A policy on a JMX resource controls who can read or write MBean attributes or invoke operations.	
WebLogic Server uses managed beans (MBeans) in the implementation of its management system. Almost all administrative activities require you to invoke an MBean operation or modify an MBean attribute using a Java Management Extensions (JMX) client. For example, the Administration Console is a JMX client. If you use it to change the value of a server's listen port, the Administration Console changes the value of an MBean attribute. The WebLogic Scripting Tool is also a JMX client. For more information, see "Understanding WebLogic Server MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.	
Oracle provides a default set of JMX resources to protect WebLogic Server MBeans. (See "Default Security Policies for MBeans" in the Oracle WebLogic Server MBean Reference.) For MBean attributes and operations that represent particularly sensitive data or actions, WebLogic Server uses additional types of resources to secure access. For example, the ServerLifeCycleRuntimeMBean	
's shutdown()	
operation is protected by a JMX resource and a Server resource.	
When a JMX client attempts to invoke an operation or change an attribute that is secured by a JMX resource and some other resource type, the client must satisfy the policies defined in both resources (see Figure 3-3).	
The default configuration of groups, global roles, and security policies on all resources that are used to protect an entity or action create a consistent security scheme. You can, however, make modifications to that limit access in ways that you do not intend. Make sure that any modifications you make to the default security settings do not prevent a user from being authorized by both the JMX resource and other resource type. When you create or modify a security policy, consider taking the following action:	
Admin	
and Operator	
global roles in policies for Server resources. Failure to use the Operator	
global role or a security role nested within this default global role may result in inconsistent behavior by the WebLogic Security Service.	
Deployer	
global role. Policies for a server resource determine who can control the state of a WebLogic Server server instance.	
When users start server instances by directly invoking the weblogic.Server	
class in a Java command, the policy on the Server resource is the only security check that occurs. All other tasks that change the state of a WebLogic Server instance require the use of the Administration Console, WebLogic Scripting Tool, Node Manager, or some other JMX client, and therefore require users to be authorized first by an additional JMX resource. See JMX Resources.	
You can create security policies that apply to all WebLogic Server instances in a domain or to individual servers. If you define a policy for an individual server, you can protect all of its life cycle operations or define individual policies for each of the following operations:	
boot	
—A user who tries to start a WebLogic Server instance, either an Administration Server or Managed Server, must have permission to do so. This action is typically initiated through a call to the java weblogic.Server	
command on the command line, by a configured start script (which in turn calls the java weblogic.Server	
command), or through the Node Manager capabilities that allow for remote start of WebLogic Server shutdown	
—A user who tries to shut down a running WebLogic Server instance, either an Administration Server or Managed Server, must have permission to do so. This action is typically initiated through the WebLogic Server Administration Console or the WLST SHUTDOWN	
or FORCESHUTDOWN	
commands. suspend	
—A user who tries to prohibit additional logins (logins other than for privileged administrative actions) to a running WebLogic Server instance, either an Administration Server or Managed Server, must have permission to do so. This action is typically initiated through the Administration Console. resume	
—A user who tries to re-enable non-privileged logins to a running WebLogic Server instance, either an Administration Server or Managed Server, must have permission to do so. This action is typically initiated through the Administration Console. All server resources inherit a default security policy that gives permission to the Admin	
and Operator	
global security roles.	
Note: If you enable the domain-wide administration port, then only the	
Caution: Do not remove roles from the default security policies. Eliminating some of the existing security roles might negatively affect the functioning of WebLogic Server. However, if you like, you can make the default security policies more inclusive (for example, by adding new security roles). See Maintaining a Consistent Security Scheme.	
WebLogic Server provides two ways to start and shut down WebLogic Server instances (servers): the weblogic.Server	
command and the Node Manager. Because the underlying components for the weblogic.Server	
command and the Node Manager are different, the two commands use different authorization methods.	
The weblogic.Server	
command, which you can use to start both Administration and Managed Servers, calls methods that are protected by a security policy on the Server resource. To use this command, you must satisfy the requirements of the security policy on the Server resource.	
Some weblogic.Server	
arguments set attributes for MBeans. However, because these arguments modify an MBean before the server is in the RUNNING	
state, the security policy on the Server resource, not the protection on the MBean, is the authorizer. For example, a user in the Operator	
global role can use the -Dweblogic.ListenPort	
argument to change a server's default listen port, but once the WebLogic Server instance is running, this user cannot change the listen port value.	
For more information about weblogic.Server	
, see "weblogic.Server Command-Line Reference" in the Command Reference for Oracle WebLogic Server.	
The Node Manager uses both MBeans and the security policy on the Server resource to start a remote server.	
If you configure a Node Manager on the host machine of a remote WebLogic Server instance, by default a user in the Admin	
or Operator	
global role can use the Node Manager to start the remote server.	
For more information, see "Node Manager Overview" in Node Manager Administrator's Guide for Oracle WebLogic Server.	
Shutting down a WebLogic Server instance involves both MBeans and the security policy on the Server resource. When a user issues a shutdown command, the server first determines whether that user is granted the Admin	
or Operator	
global role (per the MBean security layer). Then, after the MBean operations run, the server determines whether the security policy on the Server resource authorizes the user to shut down the server.	
For more information about shutting down a WebLogic Server instance, see "Starting and Stopping Servers: Quick Reference" in Managing Server Startup and Shutdown for Oracle WebLogic Server.	
A URL resource is a specific URL or URL pattern in a Web application. You can create a policy for a URL resource that protects all HTTP methods for a specified URL or URL pattern, or that protects only specific HTTP methods. These resources exist within a hierarchy of resources, and at the top of the hierarchy is an application resource. See Protecting a Hierarchy of Resources.	
Because the Java EE platform standardizes Web application security in deployment descriptors, WebLogic Server integrates this standard mechanism with its Security Service to give you a choice of techniques for securing Web application resources. For more information, see Chapter 4, "Options for Securing Web Application and EJB Resources."	
A Web Service resource is a Web Service module (WAR or JAR) or an operation within a Web Service module. Web Services are protected by the following hierarchy of resources:	
If you implement the Web Service with standard Java objects, any of the above resources protect the Java objects.	
If you implement the Web Service with an EJB any of the above or any of the following resources protect the EJB implementation:	
If you use an EJB to implement your Web Service, Oracle recommends that you create a policy at the application level. Policies on the Web Service module and individual Web Service operations apply only to Web Service clients. EJB clients can use RMI or JNDI to bypass the Web Service module and directly invoke EJB operations (see Figure 3-4).	
For information on using Java annotations to secure Web Services, see "Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server.	
Work Contexts enable Java EE developers to define and pass properties without including them in a remote call. A Work Context resource represents the operations that create, delete, read, or modify a property. You can use one Work Context resource for all operations of a given property, or you can create individual resources for each operation.	
For more information, see "Best Practices for Application Design" in Programming RMI for Oracle WebLogic Server.	
This chapter describes the options that WebLogic Server offers for securing your Web application and EJB resources, including the Java EE standard model.	
In the Java EE standard model, you can secure Web applications and EJBs in either of the following ways:	
For EJB 3.x, EJB security metadata annotations can be specified directly in the EJB bean class to specify the roles that are allowed to invoke all, or a subset, of the EJB's methods.	
WebLogic Server supports the use of the EJBContext.isCallerInRole	
and EJBContext.getCallerPrincipal	
methods, and the use of the security-role-ref	
element in deployment descriptors, to implement programmatic authorization in EJBs.	
Because this Java EE standard may be too inflexible for some environments, WebLogic Server also offers a choice of other, more flexible models in addition to supporting the Java EE standard.	
Note: If you are implementing security using JACC (Java Authorization Contract for Containers as defined in JSR 115), you must use the Java EE standard model. Other WebLogic Server models are not available and the security functions for Web applications and EJBs in the Administration Console are disabled. See "Using the Java Authorization Contract for Containers" in Programming Security for Oracle WebLogic Server.	
This chapter includes the following sections:	
Note: The instructions for EJB resources provided in this section also apply to Message-Driven Beans (MDBs).	
As described in "What Was New and Changed in EJB 3.0", you are no longer required to create the deployment descriptor files (such as ejb-jar.xml). You can now use metadata annotations in the bean file itself to configure metadata. Annotations simplify the EJB development process by allowing a developer to specify within the Java class itself how the bean behaves in the container, requests for dependency injection, and so on. Annotations are an alternative to deployment descriptors that were required by older versions (2.x and earlier) of EJB.	
You can still use XML deployment descriptors in addition to, or instead of, the metadata annotations if you so choose.	
Note: Deployment descriptor elements always override their annotation counterparts. In the case of conflicts, the deployment descriptor value overrides the annotation value.	
For EJBs, the application developer can make the deployer's task easier by using the security-related metadata annotations to specify the security roles that are allowed to invoke the EJB methods. If you use annotations or deployment descriptors, you choose a security model when you deploy each Web application or EJB and your choice is immutable for the lifetime of the deployment. If you want to use a different model, you must delete and redeploy the Web application or EJB.	
Each deployment descriptor-based security model defines two types of behaviors for securing Web applications and EJBs: where roles and policies are defined and which URL patterns and EJB methods trigger the Security Service to perform security checks.	
Table 4-1 compares the models.	
Table 4-1 Security Model Behaviors	
This Model...	Uses Roles and Policies From...
---	---
Metadata Annotations Categorized as Deployment Descriptor Only (Java EE standard) in the Administration Console	Metadata annotations in the EJB bean file itself specify the roles that are allowed to invoke all, or a subset, of the EJB's methods.
Deployment Descriptor Only (Java EE standard)	The web.xml, weblogic.xml and ejb-jar.xml, weblogic-ejb-jar.xml deployment descriptors. If roles have been defined for the application that contains the Web application or EJB, all roles are combined using a logical OR operation.
Custom Roles	This model uses role mappings from a role mapping provider that you configure for the security realm. You can use the Administration Console to configure the provider. Any role mappings in the deployment descriptors or annotations are ignored. The model uses the policies that are defined in the web.xml and ejb-jar.xml deployment descriptors.
Custom Roles and Policies	A role mapping provider and an authorization provider that you configure for the security realm. You can use the Administration Console to configure the providers. Any role mappings or policies in the deployment descriptors or annotations are ignored.
Advanced	Configurable. You can configure this model to use only security data from annotations or deployment descriptors, use only the data from security providers, or import security data from deployment descriptors into the security provider databases to provide a baseline for further modifications.
The following sections describe each model and suggest scenarios under which each is appropriate.	
As described in "Overview of Metadata Annotations and EJB 3.0 Bean Files" in Programming Enterprise JavaBeans for Oracle WebLogic Server, the EJB programming model uses the metadata annotations feature (described at http://java.sun.com/developer/technicalArticles/releases/j2se15	
) in which you create an annotated EJB bean file and then use the WebLogic compile tool weblogic.appc	
(or its Ant equivalent wlappc) to compile the bean file into a Java class file and generate the associated EJB artifacts, such as the required EJB interfaces and deployment descriptors.	
The following security-related annotations are available:	
At deployment time, the deployer must then create these security roles if they do not already exist and map users to these roles using the WebLogic Server Administration Console to update your security realm. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Online Help.	
This model gives the application developer more control without having to implement programmatic authorization in EJBs.	
Table 4-2 Metadata Annotations: Typical Scenario	
Company A, Developer	Company A, Admin/Deployer
---	---
In Company A, a user in the role of developer performs the following tasks:	
In Company A, a user in the role of administrator or deployer performs the following tasks:	
You can use metadata annotations in conjunctions with deployment descriptor- and Administration Console-based mechanisms. If you do so, note the following:	
See Securing Access to the EJB for an example simple stateless session EJB that uses all of the security-related annotations.	
This is part of the standard Java EE model and is therefore a widely known technique for adding declarative security to Web applications and EJBs. It uses only roles and policies defined by a developer in the Java EE deployment descriptor (DD) and the WebLogic Server DD. It requires the security administrator to verify that the security principals (groups or users) in the deployment descriptors exist and are mapped properly in the security realm.	
Note: This model also affects application-scoped roles that apply to an EAR: with this model, the Security Service uses only the application-scoped roles defined in the WebLogic Server DD.	
If a developer changes roles or policies in a deployment descriptor, WebLogic Server recognizes the change as soon as you redeploy the Web application, EJB, or EAR.	
With this model, EJBs and URL patterns are not protected by roles and policies of a broader scope (such as a policy scoped to an entire Web application). If an EJB or URL pattern is not protected by a role or policy in the DD, then it is unprotected: anyone can access it. For example, if you create an application-scoped policy for an EAR and the EAR contains an EJB, the EJB will not be protected by the EAR's application-scoped policy.	
This model is appropriate if developers and security administrators can closely coordinate their work, both upon initial deployment of the Web application or EJB and upon subsequent redeployments. Table 4-3 shows a typical scenario:	
Table 4-3 Deployment Descriptors Only: Typical Scenario	
Company A, Developer	Company A, Admin/Deployer
---	---
In Company A, a user in the role of developer performs the following tasks:	
In Company A, a user in the role of administrator or deployer performs the following tasks:	
This security model uses policies defined in the Java EE DD and ignores any principal mappings in the WebLogic Server DD. The security administrator completes the role mappings using the Administration Console.	
The model enables team members to focus on their areas of expertise. Web application and EJB developers need only to declare which URL patterns or EJB methods should be secured. Then the security administrator creates role mappings that fit within the existing hierarchy of roles and principals for a given realm.	
If a developer changes policies in a deployment descriptor, WebLogic Server recognizes the change as soon as you redeploy the Web application or EJB. If an administrator changes role mappings, the changes take effect immediately without requiring a redeployment.	
This model is appropriate if developers and administrators cannot closely coordinate their work or if role mappings change frequently. Table 4-4 shows a typical scenario:	
Table 4-4 Customize Roles Only: Typical Scenario	
Company A, ISV Developer; or Company B, Developer	Company B, Admin/Deployer
---	---
An ISV developer from Company A, or a developer from Company B, does the following tasks:	
An administrator or a deployer from Company B does the following task:	
This security model offers unified and dynamic security management. It uses roles and policies that a security administrator has created using the Administration Console and ignores any roles and policies defined in deployment descriptors.	
Instead of requiring developers to modify multiple deployment descriptors when organizational security requirements change, administrators can modify all security configurations from a centralized, graphical user interface. Users, groups, security roles, and security policies can all be defined using the Administration Console. As a result, the process of making changes based on updated security requirements becomes more efficient.	
This model is appropriate if you require only that entire Web applications or EJBs be secured, but is less appropriate if you require fine-grained control of a large number of specific URL patterns or EJB methods. Such fine-grained control requires a developer to provide to administrators detailed information about the URL patterns or EJB methods that must be secured. If you require such fine-grained control, consider using the Custom Roles model (see Custom Roles Model).	
The model also introduces a slight performance degradation because it checks permissions regardless of which URL a client requests or EJB method a client attempts to invoke.	
Table 4-5 shows a typical scenario:	
Table 4-5 Customize roles and Policies: Typical Scenario	
Company A, Developer	Company A, Admin/Deployer
---	---
WebLogic Server provides this model primarily for backwards compatibility with releases prior to 9.0.	
You can configure the following behaviors for this model (see Understanding the Combined Role Mapping Enabled Setting):	
Oracle provides the ability to import security data for the following tasks:	
Once the data is imported, you can use the Administration Console to modify the security data.	
Caution: Importing security data introduces risks to the integrity of your security data. Each time you import the data, the Security Service attempts to remove all associated data from the provider databases and re-imports data from the deployment descriptors. If you modified the imported security data, then your modifications could become invalid or could be removed. If you import security data, follow the recommendations in "Manage security for Web applications and EJBs" in the Oracle WebLogic Server Administration Console Online Help.	
If you change the configuration of this model, the change applies to all Web applications and EJBs that use this model. For example, you configure the Advanced model to perform security checks for all URLs and methods, and then you deploy several EJBs and configure them to use the Advanced model. The EJB container will request a security check any time a client tries to invoke any method in any of the several EJBs. If you then modify the Advance model to perform security checks only for the EJB methods that are protected in deployment descriptors, then the EJB container immediately begins to request security checks only for protected methods for the several EJBs.	
Note: This section applies only for those Web applications and EJBs that use the Advanced security model.	
Three settings in the Administration Console configure the Advanced model: Check Roles and Policies, When Deploying Web Applications or EJBs, and Combined Role Mapping Enabled. Failure to understand these settings could result in incorrect or lost security data.	
If you change the configuration of this model, the change applies to all Web applications and EJBs that use this model.	
The following sections describe the settings for the Advanced security model:	
The Check Roles and Policies setting determines whether the Security Service performs security checks for all URLs and EJB methods or only those that are protected in the deployment descriptors and annotations.	
Set the value of Check Roles and Policies as follows:	
Note: This selection is analogous to the Deployment Descriptor Only security model: the Security Service uses only roles and policies defined in a Web application or EJB's deployment descriptors and annotations.	
Note: With this selection, you can also configure the When Deploying Web Applications or EJBs setting.	
The When Deploying Web Applications or EJBs setting determines whether the Security Service ignores role and policy data in deployment descriptors and annotations or imports the data into role mapping and authorization provider databases each time you deploy a Web application or EJB.	
Note: This setting is valid only if you have set Check Roles and Policies to All Web applications and EJBs.	
Set the value of When Deploying Web Applications or EJBs as follows:	
Caution: Importing security data introduces risks to the integrity of your security data. Each time you import security data, the Security Service attempts to remove all associated security data from the provider databases and re-imports data from the deployment descriptors and annotations. If you modified the imported security data, then your modifications could become invalid or could be removed. If you import security data, follow the recommended procedures in "Manage security for Web applications and EJBs" in the Oracle WebLogic Server Administration Console Online Help.	
Table 4-6 shows how to achieve the behavior you want from the WebLogic Security Service using different combinations of the Check Roles and Policies and When Deploying Web Applications and EJBs settings.	
Table 4-6 Interaction Between the Check Roles and Policies Setting and the When Deploying Web Applications or EJBs Setting	
If you want to control security for...	and set security for Web application and EJB resources...
---	---
All Web application and EJB resources	using only the Administration Console
All Web application and EJB resources	by copying or reinitializing security data from the deployment descriptors and annotations into the configured Authorization and Role Mapping providers' databases when the Web application or EJB resource is deployed, then use one of the other techniques to modify security roles and security policies Note: Security data is copied/reinitialized each time the Web application or EJB resource is deployed.
Only on Web applications and EJB methods that are specified in the deployment descriptors and annotations (default configuration)	using only the deployment descriptors and annotations
The Combined Role Mapping Enabled setting determines how the role mappings in the Enterprise Application, Web application, and EJB containers interact.	
WebLogic Server provides this setting for backwards compatibility with 8.x versions. For all applications initially deployed in version 9.x, the default value for this setting is "true" (enabled). For all applications previously deployed in version 8.1 and upgraded to version 9.x, the default value is "false" (disabled). If either of the following is true, consider changing the default value for Combined Role Mapping Enabled:	
Table 4-7 compares how this setting affects security for Web applications and EJBs:	
Table 4-7 How Combined Role Mapping Affects Security for Web Applications and EJBs	
When Combined Role Mapping is Disabled...	When Combined Role Mapping is Enabled...
---	---
Role mappings for each container are exclusive to other containers unless defined by the	Application role mappings are combined with EJB and Web application mappings so that all principal mappings are included. The Security Service combines the role mappings with a logical
If one or more policies in the web.xml file specifies a role for which no role mapping exists in the weblogic.xml file, the Web application container assumes that the undefined role is the name of a principal. It therefore maps the assumed principal to the role name. For example, if the web.xml file contains the following stanza in one of its policies: <auth-constraint> <role-name>PrivilegedUser</role-name> </auth-constraint> but the weblogic.xml file has no role mapping for PrivilegedUser, then the Web application container creates an in-memory mapping that is equivalent to the following stanza: <security-role-assignment> <role-name>PrivilegedUser</role-name> <principal-name>PrivilegedUser </principal-name> </security-role-assignment>	If one or more policies in the web.xml file specifies a role for which no mapping exists in the weblogic.xml file, the Web application container creates an empty map for the undefined role (that is, the role is explicitly defined as containing no principal). Therefore, no one can access URL patterns that are secured by such policies.
Role mappings for EJB methods must be defined in the weblogic-ejb-jar.xml file. Role mappings defined in the other containers are not used unless defined by the	If one or more policies in the ejb-jar.xml file specifies a role for which no mapping exists in the weblogic-ejb-jar.xml file, the EJB container creates an empty map for the undefined role (that is, the role is explicitly defined as containing no principal). Therefore, no one can access methods that are secured by such policies.
The following examples show the differences in role mapping behaviors depending on whether Combined Role Mapping is enabled or disabled.	
MyAppEar contains MyAppWAR which contains MyEJB. Role to Principal mappings (p1 and p2) are as follows:	
When Combined Role Mapping is enabled, the role mappings would be:	
When Combined Role Mapping is disabled, the role mappings would be	
MyAppEar contains MyAppWAR. Role to Principal mappings are as follows:	
When Combined Role Mapping is enabled, the role mappings would be:	
The mapping is the same because of the combined role behavior.	
When Combined Role Mapping is disabled, the role mappings would be:	
The mapping is the same because if there is no mapping defined for the Web application, WebLogic Server copies the EAR mapping to the WAR mapping.	
For metadata annotations, when you code an EJB you add the security-related annotations to specify the roles that are allowed to invoke all, or a subset, of the methods. At deployment time, the deployer must then create these security roles if they do not already exist and map users to these roles using the WebLogic Server Administration Console to update your security realm. For details, see "Manage Security Roles" in the Oracle WebLogic Server Administration Console Online Help.	
For deployment descriptor- and Administration Console-based security, you choose a security model when you deploy each Web application or EJB, and your choice is immutable for the lifetime of the deployment. If you want to use a different model, you must delete and redeploy the Web application or EJB.	
For information on using the Administration Console to deploy applications, choose a security model, modify roles and polices, and complete other related tasks, see "Manage Security for Web Applications and EJBs" in the Oracle WebLogic Server Administration Console Online Help.	
If you plan to use deployment descriptors to secure Web applications or EJBs, see "Using Declarative Security With Web Applications" and "Using Declarative Security With EJBs" in Programming Security for Oracle WebLogic Server.	
This chapter describes the features and functions of security policies, which specify who can access a WebLogic Server resource. You can create simple policies, such as "allow access if user is in Admin role," or more complex policies, such as "between the hours of 8 and 5, allow access if user is in Admin role."	
This chapter includes the following sections:	
For information on using security policies to protect multiple resources, see Using Policies to Protect Multiple Resources.	
Security policies for all resources other than Web Application resources and EJB resources are always stored in the security provider database of the Authorization provider that is configured in the default (active) security realm. The security realm that WebLogic Server provides stores policies in the embedded LDAP server.	
For Web Application resources and EJB resources, the location of policies depends on the following:	
See Chapter 4, "Options for Securing Web Application and EJB Resources."	
Each user or group that you add to a security policy must be defined in the security provider database of the Authentication provider that is configured in the active security realm. Each role that you add must be defined in the security provider database of the Role Mapping provider that is configured in the active security realm. The security realm that WebLogic Server provides is configured to use the WebLogic Authentication and WebLogic XACML Role Mapping providers, which store users, groups, and roles in the embedded LDAP server.	
For more information about the WebLogic Authentication, Authorization, and Role Mapping providers, see "WebLogic Security Providers" in Understanding Security for Oracle WebLogic Server.	
A root level policy is inherited by all instances of a specific resource type. Table 5-1 describes the default root level policies that are defined in the security realm that WebLogic Server installs. For information about the roles and groups that are named in these policies, see Chapter 6, "Users, Groups, And Security Roles."	
Note: You can access root level policies in the Administration Console. See "Create root level policies" in Oracle WebLogic Server Administration Console Online Help.	
Table 5-1 Default Security Policies for WebLogic Resources	
WebLogic Resource	Security Policy
---	---
Administrative resources	Default global role:
Application resources	None
EIS (Resource Adapter) resources	Default group:
EJB resources	Default group:
COM resources	None
JDBC resources	Default group:
JNDI resources	Default group:
JMS resources	Default group:
Server resources	Default global roles:
Work Context	Default group:
URL resources	Default group:
Web Services resources	Default group:
Caution: Do not modify the default root level policies for Administrative and Server resources to make them more restrictive. Eliminating some of the existing security roles might negatively impact the functioning of WebLogic Server. However, if you like, you can make the default security policies more inclusive (for example, by adding new security roles). See Maintaining a Consistent Security Scheme.	
To determine who can access a resource, a policy contains one or more conditions. The most basic policy simply contains the name of a security role or a principal. For example, a basic policy might simply name the "Admin" global role. At runtime, the WebLogic Security Service interprets this policy as "allow access if user is in Admin role." You can create more complex conditions and combine them using the logical operators AND and OR (which is an inclusive OR). You can also negate any condition, which would prohibit access under the specified condition.	
The WebLogic Server Authorization providers display three kinds of built-in policy conditions in the Administration Console:	
Note: These sections describe the conditions that are available in realms that use the WebLogic Authorization provider or the WebLogic XACML Authorization provider. If your security realm uses a third-party Authorization provider, refer to the third-party documentation for information on its capabilities.	
The basic policy conditions that are available in this release of WebLogic Server are:	
User	
—Allows a specific user to access the resource. For example, you might create a condition indicating that only the user John	
can access the Deposit	
EJB. Group	
—Allows all users or groups in the specified group to access the resource unless a User or Role condition contradicts the Group condition. Role	
—Allows all users or groups in the specified role to access the resource unless a User or Group condition contradicts the Role condition. For example, if you create a Role condition that specifies "Admin" and a User condition that negates "joe", then user joe will be denied access even if he is in the Admin role. Server is in Development Mode	
—Allows access if the server that hosts the resource is running in development mode. See "Creating a WebLogic Domain" in Creating Domains Using the Configuration Wizard. Allow access to everyone	
—Allows access for all users, groups, and roles. Deny access to everyone	
—Prohibits access for all users, groups, and roles. Element requires signature by	
—(Used only when securing Web Services resources) Creates a condition for a security policy based on who has digitally signed an element in the SOAP request message that invokes a Web Service operation. For example, you might create a condition that says the getBalance	
operation can only be invoked if the AccountNumber	
element in the incoming SOAP request has been digitally signed by a user who is named joe	
. To create an Element requires signature by	
condition, provide the following information:	
For example, enter user	
to specify that a user must sign the element.	
where LocalPart	
refers to the name of the element in the SOAP message that must be digitally signed and Namespace	
refers to its namespace. Use the WSDL of the Web Service to get these values.	
For example:	
Note: You can specify only those elements that have already been configured to be digitally signed in the WS-Policy of the Web Service. For details, see "Configuring Message-Level Security" in Securing WebLogic Web Services for Oracle WebLogic Server.	
When you use any of the date and time conditions, the security policy grants access to all users for the date or time you specify, unless you further restrict the users by adding one of the other conditions. The date and time policy conditions available in this release of WebLogic Server are:	
Access occurs between specified hours	
—Allows access during a specified time period. For example, you might create a condition granting access to users only during business hours. Access occurs after	
—Allows access after a specified time. For example, you might create a condition that grants access to users after the business opens or after a certain date and time. Access occurs before	
—Allows access before a specified time. For example, you might create a condition that grants access to users before the business closes or before a certain date and time. Access occurs on specified days of the week	
—Allows access on specified days. For example, you might create a condition that grants access to users on week days. Access occurs on the specified day of the month	
—Allows access on an ordinal day of the month. For example, you might create a condition that grants access to users only the first day of each month. Access occurs after the specified day of the month	
—Allows access after an ordinal day in the month. For example, you might create a condition indicating that grants access to users after the 15th day of the month. Access occurs before the specified day of the month	
—Allows access before an ordinal day in the month. For example, you might create a condition that grants access to users before the 15th day of the month. Note: The format for specifying the time in a time policy condition, such as	
You can use the context element conditions to create security policies based on the value of HTTP Servlet Request attributes, HTTP Session attributes, and EJB method parameters. WebLogic Server retrieves this information from the ContextHandler object and allows you to defined policy conditions based on the values. When using any of these conditions, it is your responsibility to ensure that the attribute or parameter/value pairs apply to the context in which you are using them. For more information, see "ContextHandlers and WebLogic Resources" in Developing Security Providers for Oracle WebLogic Server.	
The context element role conditions available in this release of WebLogic Server are:	
Context element defined	
—Allows access based on the existence of a specified attribute or parameter. Context element's value equals a numeric constant	
—Allows access based on a specified attribute or parameter's number value (or string representing a double number) being equal to a specified double	
number. Context element's value is greater than a numeric constant	
—Allows access based on a specified attribute or parameter's number value (or string representing a double number) being greater than a specified double	
number. Context element's value is less than a numeric constant	
—Allows access based on a specified attribute or parameter's number value (or string representing a double number) being less than a specified double	
number. Context element's value equals a string constant	
—Allows access based on a specified attribute or parameter's string value being equal to a specified string. The WebLogic Server Administration Console, the WebLogic Scripting Tool (WLST), and MBean APIs are secured using the default security policies, which are based on the default global roles and default groups described in Table 6-2. Therefore, to use the Administration Console, a user must belong to one of these default groups or be granted one of these global roles. Additionally, administrative operations that require interaction with MBeans are secured using the MBean protections described in Maintaining a Consistent Security Scheme. Therefore, interaction with the following protected public interfaces typically must satisfy both security schemes.	
For information about using this public interface, see the "The WebLogic Server Administration Console" in Oracle WebLogic Server Administration Console Online Help.	
weblogic.management.NoAccessRuntimeException	
, which developers can catch explicitly in their programs. The server sends this exception to its log file, but you can also configure the server to send exceptions to standard out. For information about using this public interface, see Oracle WebLogic Scripting Tool.	
Note: WLST is a convenience utility that abstracts the interaction with the MBean APIs (described next). Therefore, for any administrative task you can perform using WLST, you can also perform using the MBean APIs.	
weblogic.management.NoAccessRuntimeException	
, which developers can catch explicitly in their programs. The server sends this exception to its log file, but you can also configure the server to send exceptions to standard out. For information about using these APIs, see "Understanding WebLogic Server MBeans" in Developing Custom Management Utilities With JMX for Oracle WebLogic Server.	
Note: This section describes the features and functions that are available in security realms that are using the WebLogic Authorization provider or the WebLogic XACML Authorization provider. If your security realm uses a third-party Authorization provider, refer to the third-party documentation for information on how to add polices to the provider database.	
You can use the WebLogic Administration Console to access WebLogic resources for creating and modifying security policies. For more information, see "Manage security policies" in Oracle WebLogic Server Administration Console Online Help.	
This chapter describes the features and functions of users, groups, and security roles within security realms in WebLogic Server.	
This chapter includes the following sections:	
A user is an entity that can be authenticated. A user can be a person or a software entity, such as a Java client. Each user is given a unique identity within a security realm. For efficient security management, Oracle recommends adding users to groups. A group is a collection of users who usually have something in common, such as working in the same department in a company.	
Table 6-1 lists the groups that WebLogic Server defines in the security realm that it installs. By default, if you add a user to one of these groups, you also place the user in one of the default global security roles (see Default Global Roles).	
Table 6-1 Default Groups	
Group Name	Membership
---	---
Administrators	By default, this group contains the user information entered as part of the installation process (that is, the Configuration Wizard), and the
Deployers	By default, this group is empty. Any user assigned to the
Operators	By default, this group is empty. Any user assigned to the
Monitors	By default, this group is empty. Any user assigned to the
AppTesters	By default, this group is empty. Any user assigned to the
CrossDomainConnectors	By default, this group is empty. Any user assigned to the
AdminChannelUsers	By default, this group is empty. Any user assigned to the
By default, this group contains the user	
At runtime, WebLogic Server places all users in the following groups:	
users	
. This group contains all users who have been authenticated. everyone	
. This group contains all anonymous users and, because it contains the users	
group, all users who have been authenticated. Unlike the groups in Table 6-1 (or other groups that you create), you cannot add or remove users directly to these groups; WebLogic Server assigns users to them dynamically. These groups do not appear in the Administration Console's Groups tab and they are not exported with the authentication database.	
Oracle recommends that you add at least one user to the Administrators	
group in addition to the user you defined at installation (using the Configuration wizard). Having at least two administrators at all times helps protect against a single admin user being locked out from a potential security breach. Also, avoid using predictable user names like "system", "admin", or "Administrator".	
A security role is an identity granted to users or groups based on specific conditions. Multiple users or groups can be granted the same security role and a user or group can be in more than one security role. Security roles are used by policies to determine who can access a WebLogic resource. (See Chapter 5, "Security Policies.")	
Like a security group, a role grants an identity to a user. Security roles differ from groups as follows:	
The process of computing and granting roles is referred to as role mapping and occurs just before the WebLogic Security Service renders an access decision for a protected WebLogic resource. An access decision is the component of an Authorization provider that determines whether a subject has permission to perform a given operation on a WebLogic resource. (See "Access Decisions" in Developing Security Providers for Oracle WebLogic Server.)	
There are two types of security roles in WebLogic Server:	
Note: If you are implementing security using JACC (Java authorization Contract for Containers as defined in JSR 115) global security roles cannot be used.	
Table 6-2 lists the global roles that WebLogic Server defines in the security realm that it installs. The table also summarizes the access that the default security policies grant to each role and indicates which groups are in each role by default.	
Caution: Do not delete these roles. They are used in the default security policies that protect most types of WebLogic resources. In addition, they are used by the MBean security layer. If you delete the Admin role, no one will be able to modify the configuration of a running domain. See Maintaining a Consistent Security Scheme.	
Table 6-2 Default Global Roles, Privileges, and Default Group Assignments	
Global Role	Default Policies Grant Access To...
---	---
Admin	
Administrators	
AdminChannelUser	Access the administrative channel,
Anonymous	All users (the group Note: This global role is provided as a convenience, and can be specified in the weblogic.xml and weblogic-ejb-jar.xml deployment descriptors. See "weblogic.xml Deployment Descriptor Elements" in Developing Web Applications, Servlets, and JSPs for Oracle WebLogic Server and "ejb-jar Deployment Descriptor Reference" in Programming Enterprise JavaBeans, Version 2.1, for Oracle WebLogic Server.
Deployer	
Deployers	
Operator	
Operators	
Monitor	View the server configuration, except for encrypted attributes. This security role effectively provides read-only access to the WebLogic Server Administration Console, WLST, and MBean APIs.
AppTester	Access applications for testing purposes that are running in Administration mode. For more information, see "Administration Mode for Isolating Production Applications" in Deploying Applications to Oracle WebLogic Server.
CrossDomainConnector	Make inter-domain calls from foreign domains. For more information, see "Enabling Trust Between WebLogic Server Domains" in Securing Oracle WebLogic Server.
Assert identity on behalf of users whose WS-Security tokens have been authenticated. Note: This global role is provided for use by Oracle Web Services Manager.	OracleSystemGroup
To determine who is in a security role at runtime, a role contains one or more conditions. For example, a basic role might simply name the "Administrator" group. At runtime, the WebLogic Security Service interprets this policy as "place the Administrator group in this role." You can create more complex conditions and combine them using the logical operators AND and OR (which is an inclusive OR). You can also negate any condition, which would make sure that a user is not in the role. The entire collection of conditions must be true for a user or group to be granted the security role. More restrictive expressions should come later in a role statement.	
The WebLogic Server Role Mapping providers display three kinds of built-in policy conditions in the Administration Console:	
Note: These sections describe the conditions that are available in realms that use the WebLogic Role Mapping provider or the WebLogic XACML Role Mapping provider. If your security realm uses a third-party Role Mapping provider, refer to the third-party documentation for information on its capabilities.	
The basic role conditions available in this release of WebLogic Server are:	
User	
—Adds the specified user to the role. For example, you might create a condition indicating that only the user John	
can be granted the BankTeller	
security role. Group	
—Adds the specified group to the role. For example, you might create a condition indicating that only users in the group FullTimeBankEmployees	
can be granted the BankTeller	
security role. As a minimum requirement, Oracle recommends this role condition for more efficient security management.	
Server is in development mode	
—Adds principals to the role only when the server is running in development mode. See "Creating a WebLogic Domain" in Creating Domains Using the Configuration Wizard. Allow access to everyone	
—Adds all users and groups to the role. Deny access to everyone	
—Prevents any user or group from being in the role. When you use any of the date and time role conditions, the security role is granted to all users for the date or time you specify, unless you further restrict the users by adding one of the other role conditions. The date and time role conditions available in this release of WebLogic Server are:	
Access occurs between specified hours	
—Adds principals to the role only during the specified time period. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users when the bank is open. Access occurs after	
—Adds principals to the role only if the current time is after a specified time. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users after the bank opens or after a certain date and time. Access occurs before	
—Adds principals to the role only if the current time is before a specified time. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users before the bank closes or before a certain date and time. Access occurs on specified days of the week	
—Adds principals to the role only on specified days. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users on week days. Access occurs on the specified day of the month	
—Adds principals to the role only on an ordinal day of the month. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users on the first day of each month. Access occurs after the specified day of the month	
—Creates a condition for a security role based on a time after an ordinal day in the month. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users after the 15th day of the month. Access occurs before the specified day of the month	
—Adds principals to the role only if the current day is before an ordinal day in the month. For example, you might create a condition indicating that the BankTeller	
security role can only be granted to users before the 15th day of the month. You can use the context element conditions to create security roles based on the value of HTTP Servlet Request attributes, HTTP Session attributes, and EJB method parameters. WebLogic Server retrieves this information from the ContextHandler object and allows you to defined role conditions based on the values. When using any of these conditions, it is your responsibility to ensure that the attribute or parameter/value pairs apply to the context in which you are using them. For more information, see "ContextHandlers and WebLogic Resources" in Developing Security Providers for Oracle WebLogic Server.	
The context element role conditions available in this release of WebLogic Server are:	
Context element defined	
—Adds principals to the role based on the existence of a specified attribute or parameter. Context element's value equals a numeric constant	
—Adds principals to the role based on a specified attribute or parameter's number value (or string representing a double number) being equal to a specified double	
number. Context element's value is greater than a numeric constant	
—Adds principals to the role based on a specified attribute or parameter's number value (or string representing a double number) being greater than a specified double	
number. Context element's value is less than a numeric constant	
—Adds principals to the role based on a specified attribute or parameter's number value (or string representing a double number) being less than a specified double	
number Context element's value equals a string constant	
—Adds principals to the role based on a specified attribute or parameter's string value being equal to a specified string. Note: This section describes the features that are available in realms that use the WebLogic Authentication provider and the WebLogic Role Mapping provider or the WebLogic XACML Role Mapping provider. If your security realm uses a third-party Authentication or Role Mapping provider, refer to the third-party documentation for information on its capabilities.	
For information on adding users and groups to a security realm, see "Manage users and groups" in Oracle WebLogic Server Administration Console Online Help.	
For information on creating security roles, see "Manage security roles" in Oracle WebLogic Server Administration Console Online Help.	
This chapter describes how to use the eXtensible Access Control Markup Language (XACML), an XML language for expressing authorization policies and role assignments, to secure WebLogic resources. You can create roles and policies in an XACML document and then use the WebLogic Scripting Tool (WLST) to add them to your security realm. This is useful if you need to create security roles or policies that are more complex than can be created with the Administration Console, or if you are required to use a standard language. You can also export your realm's roles and policies to a XACML document and then import the document in other WebLogic Server realms.	
This chapter includes the following sections:	
Caution: Always create a backup of a domain before you load XACML documents into a security realm. If you make a typographical or other type of error in an attribute description, you can cause the XACML provider to evaluate your realm's roles and polices as indeterminate, which locks all users (including the administrative user) out of the domain. See Caution: Indeterminate Results Can Lock Out All Users.	
The WebLogic Server XACML Authorization Provider and the WebLogic Server XACML Role Mapping Provider implement the XACML 2.0 Core Specification, available at http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf	
.	
Note the following prerequisites for using XACML documents to secure WebLogic resources:	
weblogic.management.security.authorization.PolicyStoreMBean	
interface. weblogic.management.security.authorization.PolicyStoreMBean	
interface. You can create a XACML document that describes roles and policies and then use the WebLogic Scripting Tool to add the policy or role to your security realm.	
The main steps for this process are as follows:	
The XACML specification requires that if the decision engine is unable to process a decision point, the engine returns a result of indeterminate. Depending on the combining algorithms that you use for a decision point and its associated decision points, an indeterminate result can propagate to the top of the decision and cause the provider to deny access to all requests.	
For example, the following attribute specifies MustBePresent='true'	
and contains a spelling mistake (ancester	
instead of ancestor	
). It will evaluate as indeterminate and will cause the security provider to deny access:	
WebLogic Server organizes its resources into a hierarchy. If you use the Administration Console or a Java EE deployment descriptor (instead of a XACML document) to secure WebLogic resources, policies that you create on resources that are higher in the hierarchy act as default policies for resources lower in the same hierarchy. Policies lower in a hierarchy always override policies higher in the hierarchy.	
Your XACML document can encode this hierarchical protection scheme, though XACML's hierarchical model differs slightly from WebLogic Server. See Comparison of WebLogic Server and XACML Security Models.	
WebLogic Server creates an immutable, unique identifier (ID) when you deploy or create a resource, and your XACML document must include a resource identifier that specifies the WebLogic Server ID.	
To find the ID that WebLogic Server has assigned to a resource:	
See in "Configure Auditing providers" the Oracle WebLogic Server Administration Console Online Help. Take note of the location in which the Auditing provider saves its log files (by default, in the server's logs	
directory).	
For example, use a Web Service client to invoke a Web Service method that you want to secure.This will trigger an event that causes the Auditing provider to generate a message for the resource.	
Note: The Web Service client needs to authenticate itself before it can be granted access to the Weblogic resource that is secured by the roles and policies specified in the XACML document.	
For example, if you configure the WebLogic Server Default Auditor to generate messages for severity level INFORMATION	
and higher, when you invoke the sayHello	
method from a Web Service named SimpleSoapPort	
, the audit log contains the following entries, one from the Role Mapping provider and the other from the Authorization provider:	
The resource ID for the sayHello	
method is:	
The IDs in the audit log are for resources that are at the bottom of the WebLogic Server resource hierarchy. Typically, instead of creating policies for a specific operation (such as a Web Service or EJB method or an HTTP method on a specific URL), you design policies for resources higher in the hierarchy, such as for a URL pattern or an entire Web Service.	
You can derive the following resource IDs from the resource ID from the previous step:	
Note that resource ID for an application specifies type=<application>	
.	
For information about root-level policies and the hierarchy of resources, see Using Policies to Protect Multiple Resources.	
If you want to create role assignments and authorization policies, create two XACML documents: one that describes your roles and another that describes your policies. You load one of the documents into the Role Mapping provider's store and the other into the Authorization provider's store.	
For information about using XACML to describe WebLogic Server resources, see Appendix A, "Reference for XACML on WebLogic Server."	
The syntax for describing role assignments in a XACML document is specified in the OASIS RBAC Profile specification, available at http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf	
. (WebLogic Server supports only a subset of this specification.)	
The syntax requires the following elements:	
Policy	
parent element. Policy	
, a Target	
element. Target	
, at least one Resource	
element that contains the following ResourceMatch	
elements: (Optional) One ResourceMatch	
element to identify the name of the role. If you do not include this ResourceMatch	
element, then the role policy applies to all roles in the realm. The MatchId	
attribute may specify function identifiers and, thus, wildcard role names. The DataType	
attribute must specify the string	
type.	
(Optional) Another ResourceMatch	
element to identify the WebLogic resource to which the role applies. If you do not include this ResourceMatch	
element, the role applies to all WebLogic resources.	
Target	
, an Action	
element that indicates that the policy applies to a role instead of some other type of resource. Policy	
, one or more Rule	
elements that define which users, groups, or roles are in the role. The XACML document in Example 7-1 specifies that a role named MyRole	
role can be used with the SimpleSoapPort	
Web Service. It also specifies that the webServiceGroup	
group is in the role.	
Note: When specifying values in the	
For example: <AttributeValue datatype>value1, value2, value3</AttributeValue>	
Example 7-1 XACML Policy for a Role	
The XACML document in Example 7-2 specifies that only the MyRole	
role can access the SimpleSoapPort	
Web Service.	
Example 7-2 XACML Policy for a Web Service	
The WebLogic Scripting Tool (WLST) is a command-line scripting interface that you can use to load your XACML document into a WebLogic security realm.	
You can use WLST in interactive mode or script mode. You cannot use WLST in offline mode; the Authentication provider and Role Mapping provider can update their policy stores only when the Administration Server is running.	
For information about using script mode, see "Using the WebLogic Scripting Tool" in Oracle WebLogic Scripting Tool.	
The following steps describe using the WLST interactive mode:	
One way to set up the environment is as follows:	
setWLSenv	
script (the Domain Configuration Wizard creates this script for you when you create the domain). localhost:7001	
, enter the following commands: java weblogic.WLST	
This command returns a WLST prompt.	
connect('	
username	
','	
password	
','localhost:7001')	
where username	
and password	
are credentials for an administrative user.	
String	
object, enter the following commands: xacmlFile = open('	
myfile	
','r')	
where myfile	
is the name of your XACML document.	
xacmlDoc = xacmlFile.read()	
String	
, enter: The command prints the value of the xacmlDoc	
variable to standard out.	
cd ('SecurityConfiguration/	
mydomain	
/Realms/	
myrealm	
/RoleMappers/XACMLRoleMapper')	
where	
mydomain	
is the name of your WebLogic Server domain	
myrealm	
is the name of your domain's security realm	
cmo.addPolicy(xacmlDoc)	
or cmo.addPolicySet(xacmlDoc)	
, depending on whether your XACML document contains a Policy	
or PolicySet	
. cd ('SecurityConfiguration/	
mydomain	
/Realms/	
myrealm	
/Authorizers/XACMLAuthorizer')	
where	
mydomain	
is the name of your WebLogic Server domain	
myrealm	
is the name of your domain's security realm	
cmo.addPolicy(xacmlDoc)	
or cmo.addPolicySet(xacmlDoc)	
, depending on whether your XACML document contains a Policy	
or PolicySet	
. To see a full list of operations that you can use to add, modify, or delete policies, see XACMLAuthorizerMBean	
in Oracle WebLogic Server MBean Reference.	
The WebLogic Server Administration Console does not display roles and policies that you add from a XACML document.	
Instead, to verify that your roles and policies were added to the realm, see Exporting Roles and Policies to XACML Documents.	
A Managed Bean (MBean) is a standard for exposing management data and operations for a resource. Your application developers can greatly reduce the cost of operating and maintaining your applications by creating MBeans (custom MBeans) to monitor and manage your applications. See Developing Manageable Applications With JMX for Oracle WebLogic Server.	
If you register custom MBeans in a WebLogic Server MBean server, you can create a XACML document that defines who can access your MBeans. In addition to the prerequisites described in Prerequisites, note that your MBean's object name must include a "Type=	
value	
" key property.	
The main steps for creating roles and policies for custom MBeans are:	
When you register a custom MBean with a WebLogic MBean server, the WebLogic security service creates two resource IDs for each attribute in the MBean: one for the attribute's getter method and another for the setter. It creates one resource ID for each MBean operation.	
The IDs use the following pattern:	
where:	
type-of-access	
specifies the type of access that the policy secures. Use one of the following values: get	
Indicates that the policy controls who can read one or more MBean attributes.	
set	
Indicates that the policy controls who can write one or more MBean attributes.	
invoke	
Indicates that the policy controls who can invoke one or more MBean operations.	
create	
Indicates that the policy controls who can use the MBean-server's create	
method to create an instance of an MBean.	
unregister	
Indicates that the policy controls who can use the MBean-server's unregister	
method to unregister an instance of an MBean.	
type-name	
is the value of the MBean object name's Type	
key property. attribute-or-operation	
is the name of an MBean attribute or operation. For example, if you create an MBean that contains a single attribute named NewUserCount	
and an operation named clearNewUserCount	
, and if you register the MBean under the object name medrec:Name=AdminReportMBean,Type=CustomMBeanType	
, then the security service creates the following resource IDs:	
To see a XACML representation of all roles and policies that are in your security realm, you can export the data from the Authorization and Role Mapping providers.	
Caution: Do not attempt round-trip editing of roles and policies. That is, do not export roles and policies, modify the XACML documents, and then import the modified documents. Editing exported files might result in an unusable WebLogic Server configuration and is not supported.	
For information on how to export security data, see "Export data from a security provider" in the Oracle WebLogic Server Administration Console Online Help.	
The eXtensible Access Control Markup Language (XACML) is an XML language for expressing authorization policies and role assignments. XACML offers extension points so that vendors such as Oracle can express vendor-specific resources, data types, and functions in XACML.	
The WebLogic Server XACML Authorization Provider and XACML Role Mapping Provider:	
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf	
http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-rbac-profile1-spec-os.pdf	
The following sections describe the extensions that you can use when writing XACML 2.0 documents to protect resources on WebLogic Server and the restrictions that WebLogic Server places on XACML:	
This document describes only the WebLogic Server extensions and restrictions for XACML. For a complete reference of the XACML 2.0 language, see the OASIS XACML 2.0 Core Specification and the OASIS RBAC specification.	
The WebLogic Server model for representing resources and policies follows the model of Java EE deployment descriptors. This Java EE model creates a hierarchy of resources in which roles and authorization policies at the top of the hierarchy protect resources that are lower in the hierarchy. (See Protecting a Hierarchy of Resources.) Policies lower in a hierarchy always override policies higher in the hierarchy. The higher levels of the resource hierarchy contain enterprise applications, Web applications, and EJBs. The lowest levels of the resource hierarchy contain EJB methods, HTTP methods on specific URL patterns, and MBean getters and setters.	
The XACML model also recognizes a hierarchy of resources. Unlike the native WebLogic Server model, your XACML policies must specify how to interpret cases in which a resource is protected by its own policy and by a policy on the resource's parent or ancestor.	
In addition, a XACML document typically distinguishes between a resource and the actions of a resource. For example, a XACML document defines a resource such as an EJB, and then defines an action within the EJB resource to represent a method in the EJB. The native WebLogic Server model considers an EJB and each EJB method to be resources. See Figure A-1.	
While it is possible to describe an action such as an EJB method as a XACML resource, a more natural expression in XACML would define an EJB as a resource and an EJB method as an action within the resource.	
The WebLogic Server terminology for describing resources and policies follows the model of Java EE deployment descriptors. This Java EE model uses the following terms to describe key concepts:	
In XACML, a set of rules comprise a policy, and policies can be used to determine who is in a role or who can access a resource. In general, a XACML policy is equivalent to a role statement or policy statement in WebLogic Server.	
Oracle implements support for all of the data types that are required by the XACML core specification. It supports additional, standard XML data types and provides a group of custom data types. This document uses the bea:	
prefix to indicate that a data type is a custom Oracle type.	
For a description of all data types that the WebLogic XACML providers recognize, see com.bea.common.security.xacml.Type	
in Oracle WebLogic Server API Reference.	
XACML uses an Action	
element to identify an operation in a resource or a hierarchy of resources.	
WebLogic Server supports all of the XACML Action	
identifiers, as described in the XACML 2.0 Core Specification, and adds support for an additional one that can appear anywhere that a standard XACML environment identifier can appear.	
To identify operations in WebLogic Server resources (for example, to identify a specific EJB method), use action identifiers as described in Table A-1.	
Note: While it is possible to use a resource identifier to describe an operation such as an EJB method, a more natural expression in XACML would use an action identifier. See Comparison of WebLogic Server and XACML Security Models.	
Table A-1 Action Identifiers	
To Identify...	Use This Identifier...
---	---
An operation	
When the provider performs a security check	
The WebLogic Security SPI contains an optional feature that enables containers to specify when a provider performs a security check on a request:	
You can use this For more information, see Note: Using a Direction object in a decision is optional for Authorization providers. The WebLogic Server XACML Authorization provider supports only the	
Table A-2 describes the value that you specify for the action-id	
identifier.	
Table A-2 Value for the action-id Identifier	
If the operation is in this resource type...	Specify...
---	---
Admin	The name of an administrative activity that is protected by an Admin resource. For example, For a list of valid values, see the action parameter for the
Application	The name of the application as displayed in the Administration Console.
Control	The name of a method in a Java control. Java controls are reusable components that you can create and use anywhere within a WebLogic Platform application.
EJB	The name of an EJB method. For example,
JDBC	The name of an administrative activity that is protected by a JDBC resource. For a list of valid values, see the
JMS	The name of an administrative activity that is protected by a JMS resource. For a list of valid values, see the
JMX	The name of an operation in a WebLogic Server MBean. For example,
JNDI	The name of an administrative activity that is protected by a JNDI resource. For a list of valid values, see the
Server	The name of a server life cycle activity that is protected by a Server resource. For example, For a list of valid values, see Server Resources.
URL	The name of an HTTP method. For example,
Web Service	The name of a Web Service method. For example,
Work Context	The name of an administrative activity that is protected by a Work Context resource. For a list of valid values, see the
All others	The following string:
The following example uses an Action	
element to specify that the target is mymethod	
within the SimpleSoap Web Service.	
Note: When specifying values in the	
For example: <AttributeValue datatype>value1, value2, value3</AttributeValue>	
XACML uses an optional Environment	
element to describe conditions in the operating environment that must be met before providing access to a target. For example, an Environment	
element can specify a time and date range within which access is allowed.	
WebLogic Server supports all of the XACML Environment	
identifiers (see the OASIS XACML 2.0 Core Specification at http://docs.oasis-open.org/xacml/2.0/access_control-xacml-2.0-core-spec-os.pdf	
) and adds support for an additional one that can appear anywhere that a standard XACML environment identifier can appear. Table A-3 lists and provides the values that can be specified for identifiers that can be used to hold values that the container passes to the provider.	
Table A-3 WebLogic Server Environment Identifiers	
Identifier	Value and Description
---	---
Attribute ID:	urn:bea:xacml:2.0:environment:context:key In this identifier,
Data Type:	
Value:	The value of the
The following example uses an Environment	
element to match value of a WebLogic Server listen port. Such an element could create a policy that requires a request to come through listen port 9001:	
XACML uses a Policy	
element to contain one or more rules and a PolicySet	
element to contain one or more policies. Each element must include the PolicySetId	
attribute to provide a unique identification. The XACML specification requires PolicySetId	
identifiers to be legal URI values.	
XACML documents use the PolicySetId	
to include a specific Policy	
or PolicySet	
element within another PolicySet	
element. WebLogic Server uses the PolicySetId	
as the key in the Authorization provider or Role Mapping provider's policy store.	
WebLogic Server reserves URI values beginning with urn:bea:	
for its internal use. While you cannot create your own policies with URIs that begin with urn:bea:	
, you can use these values to include Oracle's policies in your policy sets.	
XACML uses a Resource	
element to represent data, a service, or a system component.	
WebLogic Server supports all of the XACML Resource	
identifiers, as described in the XACML 2.0 Core Specification.	
To identify a WebLogic Server resource, use resource identifiers as described in Table A-4. For information about WebLogic Server resources, see Chapter 3, "Resource Types You Can Secure with Policies."	
Table A-4 WebLogic Server Resource Identifiers	
To identify a...	Use the following identifier...
---	---
Resource	
Resource and its ancestors	
Parent of a resource	
Ancestor of a resource	
The following example Resource	
element matches a Web Service named SimpleSoapPort and all methods within that Web Service:	
XACML uses a Subject	
element to represent an actor whose attributes may be referenced by a predicate.	
WebLogic Server supports all of the XACML Subject identifiers, as described in the XACML 2.0 Core Specification.	
To identify a WebLogic Server user, group, or role as defined in a WebLogic Server realm, use subject identifiers as described Table A-5.	
Table A-5 WebLogic Subject Identifiers	
To identify a...	Use the following identifier...
---	---
User principal	
Group principal	
Role	
Note: WebLogic Server supports only a subset of the RBAC Profile specification, which is the specification that defines this attribute.	
Subject who has signed a SOAP document	
For an example of a XACML document that uses identifiers from Table A-7 to define a security role that can be used to protect access to a Web Service, see Example 7-2.	
The following sections describe the functions that the WebLogic Server XACML providers support in addition to the functions described in the XACML Core Specification:	
The following function identifiers specify functions that are direct ports of standard XACML functions and operate on XML and WebLogic Server data types long	
, float	
, decimal	
and bea:Character	
. For a description of these data types, see com.bea.common.security.xacml.Type	
in Oracle WebLogic Server API Reference.	
In this list, type	
refers to the names of the data types (long	
, float	
, decimal	
or character	
):	
For information on functions that compare bea:Object	
s, see Object Comparisons.	
The following example is a Condition	
that uses urn:bea:xacml:2.0:function:character-equal	
to compare two bea:character	
s:	
Table A-6 lists the miscellaneous functions that WebLogic Server provides in addition to the standard XACML functions.	
Table A-6 Miscellaneous WebLogic Server XACML Functions	
Function	Description
---	---
in-development-mode	
See "Creating a WebLogic Domain" in Creating Domains Using the Configuration Wizard.	
instance-method	
The function takes the following arguments:	
The function returns the return value of the invoked method as a	
instance-method-match	
The function takes the following arguments:	
This function uses the method name and the class types of the parameter The function returns the return value of the invoked method as a	
instance-method-v2	
The function takes the following arguments:	
The function returns the return value of the invoked method as a	
instance-method-match-v2	
The function takes the following arguments:	
The function returns the return value of the invoked method as a	
instance-method-match-v3	
This function invokes uses the Java reflection API to invoke a method on a specified	
The following policy uses the instance-method	
function to invoke the HttpServletRequest.getAuthType()	
method on requests that match a specific URL pattern (see javax.servlet.http.HttpServletRequest.getAuthType()	
in the Java Platform, Enterprise Edition 6 API Specification, available at http://download.oracle.com/javaee/6/api/javax/servlet/http/HttpServletRequest.html#getAuthType	
). The WebLogic Server ContextHandler	
makes this HttpServletRequest	
object available to the Authorization and Role Mapping providers for all requests that come through the servlet container. Any policy for a URL resource can invoke this or other HttpServletRequest	
methods.	
Example A-1 Policy That Invokes HttpServletRequest.getAuthType()	
Table A-7 lists the functions that Oracle provides to convert XACML times and dates to different data types.	
Table A-7 WebLogic Server Time/Date Conversions	
Function	Description
---	---
dateTime-dayOfMonth	
dateTime-dayOfMonthMaximum	
dateTime-dayOfWeek	
dateTime-secondsOfDay	
dayTimeDuration-timeZoneOffset	
string-to-dateTime	
string-to-date	
object-to-dateTime	
object-to-date	
Table A-8 lists the functions that Oracle provides to convert arithmetic values to different Input Types and to extend the basic set of arithmetic functions specified by XACML.	
Table A-8 WebLogic Server Arithmetic Conversions and Functions	
Function	Description
---	---
float-to-double	
long-to-double	
long-to-float	
integer-to-float	
integer-to-long	
string-to-double	
string-to-long	
string-to-integer	
string-to-float	
to-degrees	
to-radians	
acos	
asin	
atan	
atan2	
ceil	
cos	
exp	
ieee-remainder	
log	
maximum	
minimum	
pow	
random-number	
rint	
sqrt	
tan	
WebLogic Server provides a collection of functions for converting XACML data into Java objects. The URI for each function in this collection is as follows:	
where type	
is the name of a XACML data type. Table A-9 lists all data types and the Java object that the corresponding function returns.	
For example, this function returns "test" as a java.lang.String	
object:	
Table A-9 Data to Java Object Conversion	
When type equals...	The urn:bea:xacml:2.0:function:type-to-object function returns...
---	---
character	java.lang.Character
string	java.lang.String
boolean	java.lang.Boolean
integer	java.lang.Integer
double	java.lang.Double
float	java.lang.Float
long	java.lang.Long
decimal	java.lang.Double
base64Binary	java.lang.Byte[]
hexBinary	java.lang.Byte[]
date	java.util.Calendar
time	java.util.Calendar
dateTime	java.util.Calendar
dayTimeDuration	java.lang.Long
yearMonthDuration	java.lang.Integer
rfc822Name	java.lang.String
x500Name	java.lang.String
anyURI	java.net.URI
ipAddress	java.lang.String
dnsAddress	java.lang.String
Table A-10 lists the functions that Oracle provides to convert strings or Java objects to different data or object types. To pass objects that the container makes available to the current context, use the urn:bea:xacml:2.0:environment:context:	
key	
environment identifier to specify the bea:Object	
. See Environment Identifiers.	
Table A-10 WebLogic Server Object Conversions	
Function	Description
---	---
string-to-class	
object-to-string	
object-to-double	
object-to-integer	
Table A-11 lists the functions that Oracle provides to compare Java objects.	
Table A-11 WebLogic Server Object Comparisons	
Function	Description
---	---
object-is-null	
object-equal	
object-greater-than	
object-greater-than-or-equal	
object-less-than	
object-less-than-or-equal	
object-collection-contains	
object-collection-contains-all	
Table A-12 lists the functions that Oracle provides to compare Java objects.	
Table A-12 WebLogic Server String Comparisons and Manipulations	
Function	Description
---	---
string-char-at	
string-compare-to-ignore-case	
This function takes two arguments of type	
Comparisons are preformed without considering case.	
string-contains	
string-starts-with	
string-ends-with	
string-length	
string-replace	
string-substring	
string-normalize-to-upper-case	
If multiple PolicySet
s apply to a decision, their results are combined using the following algorithm:
 Copyright © 2007, 2012, Oracle and/or its affiliates. All rights reserved. |