

Contents

Title and Copyright Information

Preface

	Documentation Accessibility
	Audience
	Related Documents
	Conventions

1 Overview of Oracle ADF Mobile Browser

	1.1 About ADF Mobile Browser
	1.1.1 About Java Server Faces and the Application Development Framework
	1.1.2 Developing Mobile Applications Using ADF Mobile Browser

	1.2 Supported Mobile Browsers

2 Configuring the ADF Mobile Browser Environment

	2.1 About the ADF Mobile Browser Development Environment
	2.2 Configuring the ADF Mobile Browser Development Environment
	2.2.1 How to Create a Mobile Application and Project
	2.2.2 What Happens When You Create a Mobile Application and Project

	2.3 Developing an ADF Mobile Browser Application
	2.3.1 How to Develop a Mobile JSF Page
	2.3.2 What Happens When You Create a Mobile JSF Page

	2.4 Testing an ADF Mobile Browser Application
	2.4.1 How to Test ADF Mobile Browser Applications on Emulators
	2.4.2 What You May Need to Know About Browser Settings

3 Component Support

	3.1 About Apache My Faces Trinidad Components
	3.1.1 Supported Features
	3.1.2 Partial Page Rendering
	3.1.3 Dialogs
	3.1.4 Rendering Specific to the BlackBerry Browser 4.5 and Earlier Versions

	3.2 Input Components
	3.2.1 Creating Input Text Fields
	3.2.2 Creating Lists

	3.3 Output Components
	3.3.1 Displaying Text
	3.3.2 Displaying Images
	3.3.3 Showing (or Hiding) Components

	3.4 Layout Components
	3.4.1 Managing the Page
	3.4.2 Laying Out Sections of the Page
	3.4.3 Inserting Spaces

	3.5 Navigation Components
	3.5.1 Creating Buttons
	3.5.2 Creating Links
	3.5.3 Navigation Components

	3.6 Data Visualization (Graphs and Gauges)
	3.7 Tables and Trees
	3.7.1 Creating Tables
	3.7.2 Creating Trees

	3.8 Generating HTML <meta> Tags
	3.8.1 Using <trh:meta> to Generate HTML <meta> Tags
	3.8.1.1 About Default Viewport Size on Mobile Devices

	3.9 Unsupported Components and Attributes
	3.9.1 Unsupported Components
	3.9.2 Unsupported Attributes

4 Skinning

	4.1 About ADF Mobile Browser Skinning
	4.2 Implementing ADF Mobile Browser Skinning
	4.2.1 How to Implement Skinning in an ADF Mobile Browser Application
	4.2.1.1 How to Define the <skin-family> in trinidad-config.xml
	4.2.1.2 How to Enable Switching Between Skins

	4.2.2 How to Specify the Renderkit and Style Sheet Name in trinidad-skins.xml
	4.2.3 How to Add the CSS Files to the ADF Mobile Browser Application Project
	4.2.4 What Happens at Runtime

	4.3 Applying ADF Mobile Browser Skinning
	4.3.1 Headers
	4.3.1.1 Creating a Title-Only Header
	4.3.1.2 Creating Headers with Titles and Links

	4.3.2 Table Components
	4.3.2.1 Multi-Column Tables
	4.3.2.2 Adding Images and Primary Details with Links
	4.3.2.3 Creating Primary Details with Links
	4.3.2.4 Creating Primary Details Without Links

	4.3.3 Panel List Components
	4.3.4 PanelFormLayout
	4.3.5 Panel Accordion

5 Supporting Basic HTML Mobile Browsers

	5.1 About Basic HTML Mobile Browser Support
	5.1.1 Requirements for Basic HTML Mobile Browser Support

	5.2 Developing Applications for Basic HTML Mobile Browsers
	5.3 Styling Basic HTML Mobile Browsers

6 Design Guidelines for BlackBerry 4.2 to 4.5

	6.1 About BlackBerry Browser Display Behavior
	6.2 Formatting Tables to Prevent Wrapping
	6.2.1 How to Prevent Fields from Wrapping in Tables

	6.3 Formatting Label and Message Panels
	6.4 Formatting Column Width
	6.5 What You May Need to Know About Display Variations on BlackBerry Smartphones
	6.5.1 Changing the Minimum Font Size
	6.5.2 Form Factor Variations

7 Narrow Screen Support and User-Agent Details Support

	7.1 Determining Narrow Screen Support
	7.1.1 How Trinidad Determines Narrow-Screen Optimization

	7.2 Determining User-Agent Capabilities Using EL Expressions
	7.2.1 How To Determine User-Agent Details
	7.2.2 How to Determine Browser Capabilities

8 Extending ADF Mobile Browser Applications

	8.1 Introduction to Extending Applications for E-Mail, Telephony, and Google Maps
	8.2 Integrating an E-Mail Client
	8.2.1 Adding Mail Properties

	8.3 Integrating Telephony
	8.4 Integrating Google Maps
	8.4.1 Programming Driving Directions
	8.4.2 Supporting Google Maps on iPhone

	8.5 What You May Need to Know About Page Display Dimensions
	8.5.1 Setting the Viewports for iPhone

6 Design Guidelines for BlackBerry 4.2 to 4.5

This chapter describes how to accommodate the behavior of BlackBerry browsers 4.2 to 4.5.

This chapter includes the following sections:

	
Section 6.1, "About BlackBerry Browser Display Behavior"

	
Section 6.2, "Formatting Tables to Prevent Wrapping"

	
Section 6.3, "Formatting Label and Message Panels"

	
Section 6.4, "Formatting Column Width"

	
Section 6.5, "What You May Need to Know About Display Variations on BlackBerry Smartphones"

6.1 About BlackBerry Browser Display Behavior

The BlackBerry browser behaves differently than many other browsers in that it does not display pages using horizontal scrolling. Instead, it fits a page to the width of the screen. This chapter presents guidelines to help you format pages to display properly on BlackBerry smartphones.

6.2 Formatting Tables to Prevent Wrapping

Because browsers wrap long words between fields, avoid long words on lines that contain multiple fields when formatting tables.

	
Note:

Within this chapter, a word refers to a series of characters. In this context, a word does not include white space.

Because the default mode of the BlackBerry browser limits the browser width to that of the physical screen, any field that does not fit in a line is displayed on the next line. If the intent of an application is to display multiple elements in one line, then you must ensure that the total width of the fields are within the width of the browser. Like other browsers, the BlackBerry browser wraps multiple lines when needed. The column width cannot be reduced beyond the size of the longest word in the field.

6.2.1 How to Prevent Fields from Wrapping in Tables

To prevent fields from wrapping, ensure that the total of the size attribute values in a table's row satisfies the following formula when all of the fields in a row are input fields.

3*Number of columns + the Sum of the size attributes in all columns <=X, when X=48

In general, field sizes in table columns should satisfy the following formula:

3 * Number of Columns +
Sum of size attributes in all input field columns +
Sum of number of characters in longest words in all output field columns <= X, when X=48

If the fields still wraps, decrease the value of X until it fits.

6.3 Formatting Label and Message Panels

To preserve the intended programming flexibility, nowrap attributes are supported and inserted when they are explicitly programmed for the Trinidad component. You may encounter problems if you add nowrap to a component definition when you program pages.

6.4 Formatting Column Width

When formatting columns, set the percentage width specification for both the label and the field in the tr:panelFormLayout component so that the total width is at 100%.

6.5 What You May Need to Know About Display Variations on BlackBerry Smartphones

This section describes how the same application can display differently on different devices. This section includes the following topics:

	
Changing the Minimum Font Size

	
Form Factor Variations

6.5.1 Changing the Minimum Font Size

Changing the minimum font size through user preferences affects the formatting ability of the ADF Mobile browser renderer. For example, input fields and their corresponding labels align properly when the font is set to its default size of 6 pt., as shown in Figure 6-1.

Figure 6-1 Application Display Using the Default Font Size of 6 pt.

[image: Properly alligned fields and labels]

However, increasing the font size to 10 pt. disrupts the display by shifting the input fields beneath their corresponding labels. As a result, the page is difficult to read.

Figure 6-2 shows a page that is too large for the display screen.

Figure 6-2 Increasing the Font Size

[image: Effect of increased font size]

6.5.2 Form Factor Variations

Differing screen sizes can affect display. Even if the font size is at the default of 6 pt. (illustrated in Figure 6-1), the same application appears differently on different devices. In Figure 6-3, the input fields barely fit the device's screen, even though they are easily accommodated on other devices running the same application as shown in Figure 6-1.

Figure 6-3 Difficulty Displaying Input Fields and Labels with Font Size at 6 pt.

[image: Improper field and label display]

In addition, input fields may display properly on the screen of one device, but may appear crowded on the screen of another type of device.

Figure 6-4 shows an application whose table cells are not wide enough to accommodate the text, causing it to wrap.

Figure 6-4 Wrapping Text

[image: A table with wrapping contents]

[image: Oracle Corporation]

4 Skinning

This chapter describes skinning for ADF Mobile browser applications.

This chapter includes the following sections:

	
Section 4.1, "About ADF Mobile Browser Skinning"

	
Section 4.2, "Implementing ADF Mobile Browser Skinning"

	
Section 4.3, "Applying ADF Mobile Browser Skinning"

4.1 About ADF Mobile Browser Skinning

Skinning enables a page to display consistently on a variety of devices through the automatic delivery of device-dependent style sheets. These style sheets enable the optimal display of pages that share the same page definitions on various mobile browsers. Within these style sheets, which enable you to set the look and feel of an application, you not only tailor a component to a specific browser by setting its size, location, and appearance, but you also specify the types of browsers on which components can be displayed or hidden. For more information, see Section 4.2, "Implementing ADF Mobile Browser Skinning." For examples of how to use skinning, see Section 4.3, "Applying ADF Mobile Browser Skinning," which includes an example of an iPhone skin.

	
Note:

Browsers must support the Cascading Style Sheet (CSS) syntax.

Since Trinidad uses a desktop renderkit for Webkit-based mobile browsers and a PDA renderkit for all other mobile browsers, you can handle all mobile browsers by creating two skin families, each with its own CSS file and renderkit. You must also apply such specific rules as @agent or @platform within these CSS files to selectively render styles based on the browser's name, version, or platform. Skin families in Trinidad are always associated with a renderkit and a unique CSS file. For more information, see Apache Trinidad Skinning in the Development Guidelines for Apache MyFaces Trinidad available at:

http://myfaces.apache.org/trinidad/devguide/skinning.html

Features supported on specific browsers require methods other than customizing style sheets.

4.2 Implementing ADF Mobile Browser Skinning

For a mobile project, JDeveloper creates two skin families: mobile and richmobile. The mobile skin family is associated with a PDA renderkit and the mobile.css and the richmobile skin is associated with a desktop renderkit and the richmobile.css.

If you add mobile features to an non-mobile project, you must create a skin family by referring to Apache Trinidad Skinning in the Development Guidelines for Apache MyFaces Trinidad (http://myfaces.apache.org/trinidad/devguide/skinning.html) which includes descriptions on how to:

	
Create a skin (trinidad-skins.xml, located in the either the WEB-INF or META-INF directories).

	
Create a style sheet.

	
Set the skin family in trinidad-config.xml (located in the WEB-INF directory).

4.2.1 How to Implement Skinning in an ADF Mobile Browser Application

For ADF Mobile browser, you implement skinning by performing the following tasks:

	
Specifying the renderkit and style sheet in trinidad-skins.xml

	
Including the CSS files within the ADF Mobile browser project

4.2.1.1 How to Define the <skin-family> in trinidad-config.xml

As illustrated in Example 4-1, add the <skin-family> tag within the <trinidad-config> element and specify an EL expression that evaluates to the string that returns the skin family type of the browser.

Example 4-1 Defining the Skin Family

<skin-family>#{requestContext.agent.type == 'desktop'? 'richmobile': 'mobile'}</skin-family>
 ...
</trinidad-config>

4.2.1.2 How to Enable Switching Between Skins

After you create the skin, you can switch between the mobile skin and another skin, such as the richmobile skin as illustrated in Example 4-2, using the <skin-family> element in Trinidad-config.xml. As shown in Figure 4-1, this component, which is located within WEB-INF, enables you to set the mobile skins for an application. Use Expression Language (EL) to switch between the mobile skin and the richmobile skin.

To enable switching between skins:

	
Open the Trinidad-config.xml file.

	
Define the EL expression in the <skin-family> element as illustrated in Example 4-2, which shows switching between the mobile and richmobile skins.

Example 4-2 Setting an Alternative Skin

<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>
 {requestContext.agent.type == 'desktop'? 'richmobile': 'mobile'}
 </skin-family>
</trinidad-config>

	
Save the file.

4.2.2 How to Specify the Renderkit and Style Sheet Name in trinidad-skins.xml

Under <skins>, define the <skin> tags that specifies the render-kit-id and style-sheet-name (org.apache.myfaces.trinidad.desktop and styles/richmobile.css, respectively in Example 4-3) for browser types identified in <family>. The value of <family> is the result string from the EL expression in <skin-family> tag in trinidad-config.xml (illustrated in Example 4-1).

By default, all skin families extend the default simple skin family in Trinidad. Because the simple skin-family is not supported in the ADF task flow, all skin families in ADF Mobile browser applications using ADF task flows extend the trinidad-simple skin family using the <extends> tag.

Example 4-3 Defining the Skins

<?xml version="1.0" encoding="windows-1252"?>
<!-- To use mobile skin families in your application, update trinidad-config.xml with following tags -->
<!-- <skin-family>#{requestContext.agent.type == 'desktop'?'richmobile': 'mobile'}</skin-family> -->
 <skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>richmobile</id>
 <family>richmobile</family>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>styles/richmobile.css</style-sheet-name>
 </skin>
 <skin>
 <id>mobile</id>
 <family>mobile</family>
 <render-kit-id>org.apache.myfaces.trinidad.pda</render-kit-id>
 <style-sheet-name>styles/mobile.css</style-sheet-name>
 </skin>
 </skins>

4.2.3 How to Add the CSS Files to the ADF Mobile Browser Application Project

Include all of the CSS files (such as mobile.css and richmobile.css in Figure 4-1) in the View-Controller project as specified in trinidad-skins.xml.

Figure 4-1 CSS Files in the ADF Mobile Browser Project

[image: Style sheets in project folder.]

4.2.4 What Happens at Runtime

The EL expressions defined within <skin-family> returns the skin family type of the browser.

4.3 Applying ADF Mobile Browser Skinning

Although CSS styles are applied automatically for many components, some components require you to manually set the style classes to its styleClass attribute.

4.3.1 Headers

Augmenting the <tr:panelHeader> component with the styleClass attribute enables you to display title-only headers and headers with a title and links on various browsers.

4.3.1.1 Creating a Title-Only Header

To create a title-only header, add styleClass="af_m_toolbar" to the <tr:panelHeader> component as illustrated in Example 4-4.

Example 4-4 Adding Attributes to Create a Title-Only Header

<tr:panelHeader styleClass="af_m_toolbar" text="Welcome"/>

Figure 4-2 shows how this ADF Mobile browser attribute creates a title-only header on an Apple iPhone.

Figure 4-2 A Title-Only Header on the Apple iPhone

[image: iPhone title-only label.]

Table 4-1 lists examples of how title-only headers display on Windows Mobile devices, BlackBerry smartphones, and the Nokia Webkit.

Table 4-1 Title-Only Header Displays on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	[image: Title only on BlackBerry 4.6.]

	
Windows Mobile

	[image: Windows Mobile title-only label.]

	
Nokia Webkit

	[image: Nokia Webkit title-only label.]

	
BlackBerry 4.2

	[image: BlackBerry 4.2 title-only label.]

4.3.1.2 Creating Headers with Titles and Links

As illustrated in Figure 4-3, you can add links and a title within a header. Figure 4-3 shows such a header as it displays in on the Apple iPhone.

Figure 4-3 Title and Links Within a Header on Apple iPhone

[image: iPhone header with title and link.]

As described in Section 4.3.1.1, "Creating a Title-Only Header," you define the title for the header (in Figure 4-3, a title called Transfer) by adding styleClass="af_m_toolbar" within the <tr:panelHeader> element. The links are defined as buttons (styleClass="af_m_backButton" and styleClass="af_m_button", respectively) within the child <tr:commandLink> element as illustrated in Example 4-5. In Example 4-5, the <tr:panelHeader> element includes these attributes (in bold).

Example 4-5 Adding Titles and Links to Headers

<tr:panelHeader styleClass="af_m_toolbar" text="Transfer">
 <tr:commandLink styleClass="af_m_backButton" text="Back"
 action="back"/>
 <tr:spacer rendered=
 "#{requestContext.agent.skinFamilyType eq 'blackberryminimal'}"
 height="5" width="105"/>
 <tr:spacer rendered=
 "#{requestContext.agent.skinFamilyType eq 'windowsmobile'}"
 height="" width="28"/>
 <tr:commandLink text="Sign Off" styleClass="af_m_button"
 action="signoff"/>
 </tr:panelHeader>

Table 4-2 lists examples of how the <tr:panelHeader> that includes a title and links display on Windows Mobile devices, BlackBerry smartphones, and the Nokia Webkit.

Table 4-2 Title and Link Headers on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	[image: title with links on BlackBerry 4.6.]

	
Windows Mobile

	
[image: Title and lnks on Windows Mobile.]

	
Nokia Webkit

	[image: Title and links on Windows on Nokia Webkit.]

	
BlackBerry 4.2

	[image: Title and Link on BlackBerry 4.2]

4.3.2 Table Components

Using the styleClass attribute enables table components within ADF Mobile browser application to render appropriately on various browsers.

4.3.2.1 Multi-Column Tables

Unlike panel headers, which require that you include the styleClass attribute to apply the style appropriately on the target platform, the table column headers do not require any attributes. Instead, you use the <tr:columns> component described in Section 3.7.1, "Creating Tables." Figure 4-4 illustrates how column headers render on the Apple iPhone.

Figure 4-4 Column Headers and Cells on Apple iPhone

[image: Columns, headers on iPhone.]

Example 4-6 illustrates how to define the <tr:columns> element (in bold).

Example 4-6 Creating Column Headers

<tr:table var="row" …./>
 <tr:column headerText="LastName">
 <tr:outputText value="#{row.bindings.LastName.inputValue}"/>
 </tr:column>
 <tr:column headerText="FirstName">
 <tr:outputText value="#{row.bindings.FirstName.inputValue} "/>
 </tr:column>
 <tr:column headerText="Phone">
 <tr:outputText value="#{row.bindings.Phone.inputValue}"/>
 </tr:column>
</tr:table>

Table 4-3 shows examples of how column headers display on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-3 Column Headers on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	
[image: Column headers on BlackBerry 4.6.]

	
Windows Mobile

	
[image: Column headers on Windows Mobile.]

	
Nokia Webkit

	
[image: Column headers on Nokia Webkit.]

	
BlackBerry 4.2

	
[image: Column headers on BlackBerry 4.2.]

4.3.2.2 Adding Images and Primary Details with Links

Figure 4-5 demonstrates creating the links and details within a table using the styleClass values af_m_listingLink and af_m_listingDetails.

Figure 4-5 Images, Links and Details as Rendered on the Apple iPhone

[image: Images, details on iPhone.]

As illustrated in Example 4-7, you create these features by adding a <tr:panelGroupLayout> component as a child of a <tr:column> component. You then add the styleClass="af_m_listingLink" and styleClass="af_m_listingDetails" attributes to the panelGroupLayout's <tr:commandLink> and <tr:outputText> subcomponents. See Chapter 3, "Component Support" for information on the tr:panelGroupLayout, tr:commandLink, and tr:outputText.

Example 4-7 Adding Links with Details

<tr:table horizontalGridVisible="false" var="row" width="100%" …>
 <tr:column>
 <tr:image source="#{row.bindings.TypeIconUrl.inputValue}"/>1
 </tr:column>
 <tr:column inlineStyle="width:100%;">
 <tr:panelGroupLayout layout="vertical">
 <tr:commandLink text="#{row.bindings.DescShort.inputValue}"
 action="detail" styleClass="af_m_listingLink">
 </tr:commandLink>
 <tr:outputText value="#{row.bindings.Balance.inputValue}"
 styleClass="af_m_listingDetails">
 </tr:outputText>
 </tr:panelGroupLayout>
 </tr:column>
 </tr:table>

Table 4-4 shows examples of how images, links, and details display on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-4 Images, Links, and Details on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	[image: Images and links in BlackBerry 4.6]

	
Windows Mobile

	
[image: Links and details on Windows Mobile.]

	
Nokia Webkit

	
[image: Images and links in Nokia Webkit.]

	
BlackBerry 4.2

	
[image: Images and links on BlackBerry 4.2.]

4.3.2.3 Creating Primary Details with Links

Figure 4-6 illustrates how to create primary details and links within a table.

Figure 4-6 Primary Details with Links as Rendered on Apple iPhone

[image: Details and links on iPhone.]

Similar to adding the primary links and details with images described in Section 4.3.2.2, "Adding Images and Primary Details with Links," you create these features by adding a <tr:panelGroupLayout> component as a child of a <tr:column> component. As illustrated in Example 4-8, you then add the styleClass="af_m_listingLink" and styleClass="af_m_listingDetails" attributes to the panelGroupLayout's <tr:commandLink> and <tr:outputText> subcomponents. See Chapter 3, "Component Support" for information on the tr:panelGroupLayout, tr:commandLink, and tr:outputText.

Example 4-8 Primary Details and Links

<tr:table horizontalGridVisible="false" var="row" width="100%" ….>
 <tr:column>
 <tr:panelGroupLayout layout="vertical">
 <tr:commandLink text="#{row.bindings.Email.inputValue}"
 styleClass=" af_m_listingLink">
 </tr:commandLink>
 <tr:outputText value="#{row.bindings.FirstName.inputValue}”
 styleClass="af_m_listingDetails"/>
 </tr:panelGroupLayout>
 </tr:column>
</tr:table>

Table 4-5 shows examples of how links and details display on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-5 Images and Links on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	
[image: Links, details on BlackBerry 4.6.]

	
Windows Mobile

	
[image: Links, details on Windows Mobile.]

	
Nokia Webkit

	
[image: Images, links on Nokia Webkit]

	
BlackBerry 4.2

	
[image: Links, details on BlackBerry 4.2.]

4.3.2.4 Creating Primary Details Without Links

As illustrated in Figure 4-7, af_m_listingPrimaryDetails and af_m_listingDetails style classes enable you to create details that do not function as links; their behavior is different from the primary details described in Section 4.3.2.2, "Adding Images and Primary Details with Links."

Figure 4-7 Primary Details without Links on Apple iPhone

[image: iPhone with no details.]

As illustrated in Example 4-9, you create non-linking primary details by adding styleClass=af_m_listingPrimaryDetails and styleClass="af_m_listingDetails" to the <tr:outputText> element. This element is a child of the <tr:panelGroupLayout> element (which is itself a child of the <tr:column> element).

Example 4-9 Adding Non-Linking Primary Details

tr:table horizontalGridVisible="false" var="row" width="100%" …>
 <tr:column>
 <tr:panelGroupLayout layout="vertical">
 <tr:outputText value="#{row.bindings.Amount.inputValue}
 styleClass="af_m_listingPrimaryDetails">
 </tr:outputText>
 <tr:outputText value=" #{row.bindings.FromAccountName.inputValue} “
 styleClass="af_m_listingDetails"/>
 </tr:panelGroupLayout>
 </tr:column>
</tr:table>

Table 4-6 shows examples of how non-linking details display on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-6 Non-Linking Details on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	
[image: Non-link details on BlackBerry 4.6.]

	
Window Mobile

	[image: Non-links on Windows Mobile.]

	
Nokia Webkit

	
[image: Non-links on Nokia Webkit.]

	
BlackBerry 4.2

	
[image: Non-links on BlackBerry 4.2]

4.3.3 Panel List Components

Defining the value of the styleClass as af_m_panelBase within the <tr:panelGroupLayout> component applies padding to the <tr:panelList> components, as shown in Figure 4-8.

Figure 4-8 Rendering Padding on an Apple iPhone

[image: iPhone with PanelList components.]

As illustrated in Example 4-10, you do not have to include a styleClass attribute in the child <tr:panelList> component. For more information on using <tr:panelList> and <tr:panelGroupLayout>, see Section 3.2.2, "Creating Lists" and Section 3.4, "Layout Components," respectively.

Example 4-10 Adding Padding to panelList Components

<tr:panelGroupLayout styleClass="af_m_panelBase">
 <tr:panelList>
 <tr:commandLink text="Welcome" action="welcome"/>
 <tr:commandLink text="Branch" action="branch"/>
 </tr:panelList>
</tr:panelGroupLayout>

Table 4-7 shows examples of padding in the <tr:panelList> component on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-7 Padding Applied to <tr:panelList> on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	
[image: Padding on BlackBerry 4.6.]

	
Windows Mobile

	
[image: Padding on Windows Mobile.]

	
Nokia Webkit

	
[image: Padding on Nokia Webkit.]

	
BlackBerry 4.2

	
[image: Padding on BlackBerry 4.2]

4.3.4 PanelFormLayout

Defining the value of the styleClass attribute as af_m_panelBase within the <tr:panelGroupLayout> component applies padding to the child <tr:panelFormLayout> components, as shown in Figure 4-9.

Figure 4-9 Padding Rendered in panelFormLayout on Apple iPhone

[image: Padding in panelFormLayout on iPhone.]

As illustrated in Example 4-11, you do not need to add styleClass to the <tr:panelFormLayout> component.

Example 4-11 Applying Padding to the PanelFormLayout Component

<tr:panelGroupLayout styleClass="af_m_panelBase">
 <tr:panelFormLayout labelWidth="35%" fieldWidth="65%">
 <tr:selectOneChoice value="#{transferBean.transferFromAccount}"
 label="From:" showRequired="false">
 <f:selectItems value="#{bindings.AccountView1.items}"/>
 </tr:selectOneChoice>
 <tr:selectOneChoice value="#{transferBean.transferToAccount}"
 showRequired="false" unselectedLabel="- select -"
 label="To:">
 <f:selectItems value="#{bindings.AccountView1.items}"/>
 </tr:selectOneChoice>
 <tr:inputText id="amount"
 columns="#{requestContext.agent.capabilities.narrowScreen ? '8' : '12'}"
 required="false" showRequired="false"
 value="#{transferBean.transferAmount}"
 label="Amount:">
 <f:converter converterId="Bank10.amountConverter"/>
 </tr:inputText>
 <tr:panelLabelAndMessage label="Date: ">
 <tr:outputText value="#{transferBean.transferDate}"/>
 </tr:panelLabelAndMessage>
 <f:facet name="footer">
 <tr:panelGroupLayout>
 <tr:spacer
 rendered=
 "#{requestContext.agent.skinFamilyType eq 'blackberryminimal'}"
 height="5" width="75"/>
 <tr:commandButton text="Submit"
 action="#{transferBean.validateTransferRequest}"/>
 </tr:panelGroupLayout>
 </f:facet>
 </tr:panelFormLayout>
</tr:panelGroupLayout>

Table 4-8 shows examples of padding in the <tr:panelList> component on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-8 Padding Applied to <tr:panelFormLayout> Component on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	
[image: Padding on BlackBerry 4.6]

	
Windows Mobile

	
[image: Padding on Windows Mobile.]

	
Nokia Webkit

	
[image: Padding on Nokia Webkit.]

	
BlackBerry 4.2

	
[image: Padding on BlackBerry 4.2.]

4.3.5 Panel Accordion

Defining the value of the styleClass component as af_m_panelBase within the <tr:panelGroupLayout> component applies padding to its <tr:panelAccordion> component, as shown in Figure 4-10.

Figure 4-10 Padding Applied to the Panel Accordion on Apple iPhone

[image: Padding in accordian on iPhone.]

As illustrated in Example 4-12, you do not need to add the styleClass attribute to the <tr:panelAccordion> component.

Example 4-12 Applying Padding to the <tr:panelAccordion> Component

<tr:panelGroupLayout styleClass="af_m_panelBase">
 <tr:panelAccordion discloseMany="true">
 <tr:showDetailItem text="Name" disclosed="true">
 <tr:panelFormLayout fieldWidth="70%" labelWidth="30%">
 …..
 </tr:panelFormLayout>
 </tr:showDetailItem>
 <tr:showDetailItem text="Contact" disclosed="true">
 <tr:panelFormLayout fieldWidth="70%" labelWidth="30%">
 ……
 </tr:panelFormLayout>
 </tr:showDetailItem>
 <tr:showDetailItem text="Address">
 <tr:panelFormLayout fieldWidth="70%" labelWidth="30%">
 ….
 </tr:panelFormLayout>
 </tr:showDetailItem>
 </tr:panelAccordion>
</tr:panelGroupLayout>

Example 4-12 shows examples of padding in the <tr:panelAccordion> component on Windows Mobile devices, the Nokia Webkit, and BlackBerry smartphones.

Table 4-9 <tr:panelAccordion> on Various Platforms

	Platform	Example
	
BlackBerry 4.6

	
[image: Padding on BlackBerry 4.6.]

	
Windows Mobile

	
[image: Padding on Windows Mobile.]

	
Nokia Webkit

	
[image: Padding in Nokia Webkit.]

	
BlackBerry 4.2

	
[image: Padding on BlackBerry 4.2.]

7 Narrow Screen Support and User-Agent Details Support

This chapter describes how the Trinidad infrastructure determines narrow screen support and how it uses EL expressions to expose user-agent details.

This chapter includes the following sections:

	
Section 7.1, "Determining Narrow Screen Support"

	
Section 7.2, "Determining User-Agent Capabilities Using EL Expressions"

7.1 Determining Narrow Screen Support

Mobile devices have a wide range of screen widths. As a result, the UI components of a web application may render properly on a device with a screen width measuring 240 pixels, but not align correctly when the application runs on a device that has a screen width of only 100 pixels. In such a situation, Trinidad optimizes its rendering for narrow-screen devices. Trinidad considers any device with a screen width of less than 240 pixels as a narrow screen and optimizes the rendering for the following components accordingly:

	
tr:breadcrumbs

	
tr:inputText

	
tr:navigationPane

	
tr:panelFormLayout

	
tr:panelLabelAndMessage

	
tr:panelRadio

	
tr:processChoiceBar

	
tr:selectRangeChoiceBar

7.1.1 How Trinidad Determines Narrow-Screen Optimization

Because Trinidad only considers a device with a screen width that measures less than 240 pixels as a narrow screen, it does not consider iPods (Safari browsers) or BlackBerry smartphones (BlackBerry browsers), which usually have screens that are greater than 240 pixels, as such. For a Windows Mobile browser, Trinidad determines the screen width from the UA-pixels request header and only applies narrow screen optimization if the screen-width is less than 240 pixels. For all other user agents, however, Trinidad optimizes its rendering for a narrow screen device.

7.2 Determining User-Agent Capabilities Using EL Expressions

Trinidad exposes a requesting user-agent's details to developers using the EL expression, #{requestContext.agent}, which returns an agent object that describes the requesting user agent. By adding the detail name or capability name properties to this expression, you enable Trinidad to return details that include the user-agent's name, version, platform, the version of the platform, the model (which is applicable only to BlackBerry), and the browser's support for JavaScript and PPR (Partial Page Rendering). For information on exposing user-agent details, see Section 7.2.1, "How To Determine User-Agent Details." For information on determining browser capabilities, see Section 7.2.2, "How to Determine Browser Capabilities."

7.2.1 How To Determine User-Agent Details

When Trinidad receives a request, it parses user-agent strings for a variety of user-agent details (listed in Table 7-1) that include type, the name and version of the agent, and the agent's platform name and platform version. Trinidad uses the EL expression #{requestContext.agent.<detail-name>} to expose these details to developers. For example, to enable developers to retrieve the category appropriate to the user-agent type (that is, desktop for a desktop browser or PDA for mobile browsers), Trinidad uses the type detail in the EL expression as follows:

#{requestContext.agent.type}

	
Note:

Trinidad may return a null value for such details as PlatformName, PlatformVersion if it cannot parse them from the user-agent string.

Table 7-1 Browser Details Exposed through EL Expressions

	Detail Name	Description
	
type

	
Identifies a user-agent type. For desktop and mobile browsers, the values are desktop and PDA, respectively. Because Safari provides all desktop browser features when it runs in a mobile device, the agent object exposes this detail as a desktop type.

	
agentName

	
The name of the agent

	
agentVersion

	
The version of the agent

	
platformName

	
The platform on which the agent runs

	
platformVersion

	
The version of the platform on which the agent runs

	
hardwareMakeModel

	
The model of the mobile device

7.2.2 How to Determine Browser Capabilities

Trinidad sends its response to a user-agent's request based on capabilities it assigns to a user agent. These capabilities include a user-agent's support for JavaScript and PPR. Some of these capabilities (listed in Table 7-2) are exposed to developers through the EL expression #{requestContext.agent.capabilities}.

Use the EL expression #{requestContext.agent.capabilities.<capability-name>} to determine the specific capability assigned to a user-agent by Trinidad. For example, to determine whether Trinidad assigns JavaScript capability to a user agent, use the following EL expression:

{requestContext.agent.capabilities.scriptingSpeed!='none'}

Table 7-2 Browser Capabilities Exposed through EL Expressions

	Capability Name	Detail
	
narrowScreen

	
Indicates whether Trinidad optimizes is rendering for a narrow-screen device. It returns true (a boolean type) if Trinidad optimizes its rendering for a narrow-screen device.

	
scriptingSpeed

	
Indicates JavaScript support for a user-agent. Returns none (a String type) if the user-agent does not support JavaScript.

	
partialRendering

	
Indicates PPR support for a user-agent. Returns true (a boolean type) if the browser supports PPR.

