Web User Interface Developer's Guide for Oracle Application Development Framework
11g Release 2 (11.1.2.1.0)
E16181-02
September 2011
Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework 11g Release 2 (11.1.2.1.0)
E16181-02
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Authors: Robin Whitmore (lead), Walter Egan, Ralph Gordon, Peter Jew, Himanshu Marathe, Kathryn Munn, Michele Whittaker
Contributing Author: Poh Lee Tan and Odile Sullivan-Tarazi
Contributors: ADF Faces development team, Frank Nimphius, Laura Akel, Katia Obradovic-Sarkic
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Web User Interface Developer's Guide for Oracle Application Development Framework!
This document is intended for developers who need to create the view layer of a web application using the rich functionality of ADF Faces components.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following related documents:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
For Release 11.1.2.1.0, this guide has been updated in several ways. The following table lists the sections that have been added or changed.	
For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html	
.	
Sections	Changes Made
---	---
Chapter 10 Creating and Reusing Fragments, Page Templates, and Components	
Section 10.4, "Using Page Templates"	Section revised to describe ability to nest templates.
Chapter 23 Using Gauge Components	
Section 23.3.3, "How to Customize Gauge Indicators and Tick Marks"	Section revised to add a missing link to content for formatting numerical values.
Chapter 29 Internationalizing and Localizing Pages	
Section 29.3.6, "What You May Need to Know About Overriding a Resource Bundle in a Customizable Application"	Section added to describe how you can configure your resource bundles to be customizable.
Chapter 20 Developing Accessible ADF Faces Pages	
Section 30.2, "Configuring Accessibility Support In ADF Faces"	Section revised to correct content.
This chapter introduces ADF Faces, providing an overview of the framework functionality and each of the different component types found in the library.	
This chapter includes the following sections:	
Oracle ADF Faces is a set of over 150 Ajax-enabled JavaServer Faces (JSF) components as well as a complete framework, all built on top of the JSF 2.0 standard. In its beginnings, ADF Faces was a first-generation set of JSF components, and has since been donated to the Apache Software Foundation. That set is now known as Apache MyFaces Trinidad (currently available through the Apache Software Foundation), and remains as the foundation of today's ADF Faces.	
With ADF Faces and JSF 2.0, you can implement Ajax-based applications relatively easily with a minimal amount of hand-coded JavaScript. For example, you can easily build a stock trader's dashboard application that allows a stock analyst to use drag and drop to add new stock symbols to a table view, which then gets updated by the server model using an advanced push technology. To close new deals, the stock trader could navigate through the process of purchasing new stocks for a client, without having to leave the actual page. Much of this functionality can be implemented declaratively using Oracle JDeveloper, a full-featured development environment with built-in support for ADF Faces components, allowing you to quickly and easily build the view layer of your web application.	
Note: Because ADF Faces adheres to the standards of the JSF technology, this guide is mostly concerned with content that is in addition to, or different from, JSF standards. Therefore, it is recommended that you have a basic understanding of how JSF works before beginning to develop with ADF Faces. To learn more about JSF, seehttp://www.oracle.com/technetwork/java/javaee/javaserverfaces-139869.html .	
ADF Faces framework offers complete rich functionality, including the following;	
ADF Faces supports JSF 2.0, including Facelets. Several of the new JavaServer Faces 2.0 features have parallel functionality in ADF Faces. To understand the new functionality introduced in JSF 2.0 and the functional overlap that exists between ADF Faces and JSF 2.0, see the JavaServer Faces 2.0 Overview and Adoption Roadmap in Oracle ADF Faces and Oracle JDeveloper 11g whitepaper on OTN.	
The library provides over 150 Rich Internet Application (RIA) components, including geometry-managed layout components, text and selection components, sortable and hierarchical data tables and trees, menus, in-page dialogs, and general controls. For more information, see Section 1.3, "ADF Faces Components."	
Many ADF Faces components have ajax-style functionality implemented natively. For example, the ADF Faces table component lets you scroll through the table, sort the table by clicking a column header, mark a row or several rows for selection, and even expand specific rows in the table, all without requiring the page to be submitted to the server, and with no coding needed. In ADF Faces, this functionality is implemented as partial page rendering (PPR). For more information, see Chapter 8, "Rerendering Partial Page Content."	
ADF Faces hides much of the complex JavaScript from you. Instead, you declaratively control how components function. You can implement a rich, functional, attractive Web UI using ADF Faces in a declarative way that does not require the use of any JavaScript at all.	
That said, there may be cases when you do want to add your own functionality to ADF Faces, and you can easily do that using the client-side component and event framework. For more information, see Chapter 4, "Using ADF Faces Client-Side Architecture."	
ADF Faces extends the standard JSF 2.0 page request lifecycle. Examples include a client-side value lifecycle, a subform component that allows you to create independent submittable regions on a page without needing multiple forms, and an optimized lifecycle that can limit the parts of the page submitted for processing. For more information, see Chapter 5, "Using the JSF Lifecycle with ADF Faces."	
ADF Faces adheres to standard JSF event handling techniques, as well as offering complete a client-side event model. For more information about events, see Chapter 6, "Handling Events."	
ADF Faces applications can use PPR for navigation, which eliminates the need to repeatedly load JavaScript libraries and stylesheets when navigating between pages. For more information, see Section 8.4, "Using Partial Page Navigation."	
ADF Faces validators can operate on both the client and server side. Client-side validators are in written JavaScript and validation errors caught on the client-side can be processed without a round-trip to the server. For more information, see Chapter 7, "Validating and Converting Input."	
The ADF Faces framework includes server-side push that allows you to provide real-time data updates for ADF Faces components. For more information, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."	
ADF Faces provides a client-side geometry management facility that allows components to determine how best to make use of available screen real-estate. The framework notifies layout components of browser resize activity, and they in turn are able to resize their children. This allows certain components to stretch or shrink, filling up any available browser space. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."	
You can create page templates, as well as page fragments and composite components made up of multiple components, which can be used throughout your application. For more information, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components."	
ADF Faces includes data visualization components, which are Flash- and PNG-enabled components capable of rendering dynamic charts, graphs, gauges, and other graphics that provide a real-time view of underlying data. For more information, see Part V, "Using ADF Data Visualization Components".	
You can create your own look and feel by implementing skins for ADF Faces components. Oracle provides a stand-alone skin editor, where you can declaratively create and modify your skins. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."	
You can configure your JSF page or application to use different locales so that it displays the correct language based on the language setting of a user's browser. For more information, see Chapter 29, "Internationalizing and Localizing Pages."	
ADF Faces components have built-in accessibility that work with a range of assistive technologies, including screen readers.ADF Faces accessibility audit rules provide direction to create accessible images, tables, frames, forms, error messages, and popup windows using accessible HTML markup. For more information, see Chapter 30, "Developing Accessible ADF Faces Pages."	
Many ADF Faces components allow users to change the display of the component at runtime. By default, these changes live only as long as the page request. However, you can configure your application so that the changes can be persisted through the length of the user's session. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."	
The ADF Faces framework allows the user to move data from one location to another by dragging and dropping one component onto another. For more information, see Chapter 33, "Adding Drag and Drop Functionality."	
You can use ADF Faces in conjunction with the other Oracle ADF technologies, including ADF Business Components, ADF Controller, and ADF Databinding. For more information about using ADF Faces with the ADF technology stack, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework	
JDeveloper is a full-featured development environment with built-in declarative support for ADF Faces components, including a visual layout editor, a Component Palette that allows you to drag and drop an ADF Faces component onto a page, and a Property Inspector where you declaratively configure component functionality. For more information about using JDeveloper, see Chapter 3, "Getting Started with ADF Faces and JDeveloper."	
ADF Faces components generally fall into the following categories:	
Layout components act as containers to determine the layout of the page, ADF Faces layout components also include interactive container components that can show or hide content, or that provide sections, lists, or empty spaces. JDeveloper provides prebuilt quick-start layouts that declaratively add layout components to your page based on how you want the page to look. For more information about layout components and geometry management, see Chapter 9, "Organizing Content on Web Pages."	
In addition to standard layout components, ADF Faces also provides the following specialty layout components:	
These components allow you to display text, from a simple output text component to input components, including selection components, to a complex list of value component.	
ADF Faces provides a number of different ways to display complex data.	
General controls include the components used to navigate, as well as to display images and icons,	
While not components, these tags work with components to provide additional functionality, such as drag and drop, validation, and a variety of event listeners. These operational tags are discussed with the components that use them.	
This chapter describes the ADF Faces demo application that can be used in conjunction with this developers guide.	
This chapter contains the following sections:	
ADF Faces includes a demonstration application that allows you both to experiment with running samples of the components and architecture features, and view the source code.	
The demo application contains the following:	
selectManyCheckbox	
component. Each demo provides a link to the associated tag documentation. inputNumberSpinbox	
component. Other pages demonstrate the main architectural features of ADF Faces, such as layout components, Ajax postback functionality, and drag and drop. Figure 2-4 shows the demonstration on using the AutoSubmit	
attribute and partial page rendering.	
panelBox	
component. Because the File Explorer is a complete working application, many sections in this guide use that application to illustrate key points, or to provide code samples. The source for the File Explorer application can be found in the fileExplorer	
directory.	
The File Explorer application uses the fileExplorerTemplate	
page template. This template contains a number of layout components that provide the basic look and feel for the application. For more information about layout components, see Chapter 9, "Organizing Content on Web Pages." For more information about using templates, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components."	
The left-hand side of the application contains a panelAccordion	
component that holds two areas: the directory structure and a search field with a results table, as shown in Figure 2-8.	
You can expand and collapse both these areas. The directory structure is created using a tree	
component. The search area is created using input components, a command button, and a table	
component. For more information about using panelAccordion	
components, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels." For more information about using input components, see Chapter 11, "Using Input Components and Defining Forms." For more information about using command buttons, see Chapter 20, "Working with Navigation Components." For more information about using tables and trees, see Chapter 12, "Using Tables and Trees."	
The right-hand side of the File Explorer application uses tabbed panes to display the contents of a directory in either a table, a tree table or a list, as shown in Figure 2-9.	
The table and tree table have built-in toolbars that allow you to manipulate how the contents are displayed. In the table an list, you can drag a file or subdirectory from one directory and drop it into another. In all tabs, you can right-click a file, and from the context menu, you can view the properties of the file in a popup window. For more information about using tabbed panes, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels." For more information about table and tree table toolbars, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars." For more information about enabling drag and drop, see Chapter 33, "Adding Drag and Drop Functionality." For more information about using context menus and popup windows, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."	
The top of the File Explorer application contains a menu and a toolbar, as shown in Figure 2-10.	
The menu options allow you to create and delete files and directories and change how the contents are displayed. The Help menu opens a help system that allows users to provide feedback in dialogs, as shown in Figure 2-11.	
The help system consists of a number of forms created with various input components, including a rich text editor. For more information about menus, see Section 16.2, "Using Menus in a Menu Bar." For more information about creating help systems, see Section 19.5, "Displaying Help for Components." For more information about input components, see Chapter 11, "Using Input Components and Defining Forms."	
Within the toolbar of the File Explorer are controls that allow you navigate within the directory structure, as well as controls that allow you to change the look and feel of the application by changing its skin. Figure 2-12 shows the File Explorer application using the simple skin.	
For more information about toolbars, see Section 16.3, "Using Toolbars." For more information about using skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."	
In order to view the demo application (both the code and at runtime), install JDeveloper, and then download and open the application within JDeveloper.	
You can download the ADF Faces demo application from the Oracle Technology Network (OTN) web site. Navigate to	
and click the ADF Faces Rich Client Components Demo link in the Download section of the page. The resulting page provides detailed instructions for downloading the WAR file that contains the application, along with instructions for deploying the application to a standalone server, or for running the application using the Integrated WebLogic Server included with JDeveloper.	
http://www.oracle.com/technetwork/developer-tools/adf/overview/index-092391.html	
If you do not want to install the application, you can run the application directly from OTN by clicking the ADF Faces Rich Client Components Hosted Demo link.	
This chapter describes how to use JDeveloper to declaratively create ADF Faces applications.	
This chapter includes the following sections:	
Using JDeveloper 11g with ADF Faces and JSF provides a number of areas where page and managed bean code is generated for you declaratively, including creating EL expressions and automatic component binding. Additionally, there are a number of areas where XML metadata is generated for you declaratively, including metadata that controls navigation and configuration.	
At a high level, the development process for an ADF Faces view project usually involves the following:	
Ongoing tasks throughout the development cycle will likely include the following:	
JDeveloper also includes debugging and testing capabilities. For more information, see the "Testing and Debugging ADF Components" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The first steps in building a new application are to assign it a name and to specify the directory where its source files will be saved. You can either create an application that just contains the view layer, or you can add an ADF Faces project to an existing application.	
Note: This document covers only how to create the ADF Faces project in an application, without regard to the business services used or the binding to those services. For information about how to use ADF Faces with the ADF Model layer, the ADF Controller, and ADF Business Components, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about using ADF Faces with the ADF Model layer and EJBs and JPA, see Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.	
You create an application workspace using the Create Application wizard.	
To create an application:	
The New Gallery opens, where you can select different application components to create.	
Tip: You can also add ADF Faces to an existing project (for example, a view project in a JEE Web Application). To do so:	
When you create an application workspace using the Custom template, and the select ADF Faces for your project, JDeveloper creates a project that contains all the source and configuration files needed for an ADF Faces application. Additionally, JDeveloper adds the following libraries to your project:	
Once the projects are created for you, you can rename them. Figure 3-1 shows the workspace for a new ADF Faces application.	
JDeveloper also sets configuration parameters in the configuration files based on the options chosen when you created the application. In the web.xml	
file, these are configurations needed to run a JSF application (settings specific to ADF Faces are added when you create a JSF page with ADF Faces components). Example 3-1 shows the web.xml	
file generated by JDeveloper when you create a new Java EE application.	
Example 3-1 Generated web.xml File	
Configurations required for specific ADF Faces features are covered in the respective chapters of this guide. For example, any configuration needed in order to use the Change Persistence framework is covered in Chapter 32, "Allowing User Customization on JSF Pages." For comprehensive information about configuring an ADF Faces application, see Appendix A, " ADF Faces Configuration."	
Once you create your application workspace, often the next step is to design the flow of your UI. As with standard JSF applications, ADF Faces applications use navigation cases and rules to define the page flow. These definitions are stored in the faces-config.xml	
file. JDeveloper provides a diagrammer through which you can declaratively define your page flow using icons.	
Figure 3-2 shows the navigation diagram created for a simple page flow that contains two pages: a DisplayCustomer	
page that shows data for a specific customer, and an EditCustomer	
page that allows a user to edit the customer information. There is one navigation rule that goes from the display page to the edit page and one navigation rule that returns to the display page from the edit page.	
Note: If you plan on using Oracle ADF Model data binding and the ADF Controller, then you use ADF task flows to define your navigation rules. For more information, see the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Best Practice: The ADF Controller extends the JSF default controller. While you can technically use the JSF controller and ADF Controller in your application, you should use only one or the other.	
With the advent of JSF 2.0, you no longer need to create a navigation case for simple navigation between two pages. If no matching navigation case is found after checking all available rules, the navigation handler checks to see whether the action outcome corresponds to a view ID. If a view matching the action outcome is found, an implicit navigation to the matching view occurs. For more information on how navigation works in a JSF application, see the Java EE 6 tutorial (http://download.oracle.com/javaee/index.html	
).	
You use the navigation diagrammer to declaratively create a page flow using Facelets or JSPX pages. When you use the diagrammer, JDeveloper creates the XML metadata needed for navigation to work in your application in the faces-config.xml	
file.	
Before you begin:	
It may be helpful to have an understanding of page flows. For more information, see Section 3.3, "Defining Page Flows."	
To create a page flow:	
faces-config.xml	
file for your application. By default, this is in the Web Content/WEB-INF node of your project. The components are contained in two accordion panels: Components and Diagram Annotations. Figure 3-3 shows the Component Palette displaying JSF navigation components.	
JDeveloper redraws the diagram with the newly added component.	
Tip: You can also use the overview editor to create navigation rules and navigation cases by clicking the Overview tab. Press F1 for details on using the overview editor to create navigation.Additionally, you can manually add elements to the	
Once the navigation for your application is defined, you can create the pages and add the components that will execute the navigation. For more information about using navigation components on a page, see Chapter 20, "Working with Navigation Components."	
When you use the diagrammer to create a page flow, JDeveloper creates the associated XML entries in the faces-config.xml	
file. Example 3-2 shows the XML generated for the navigation rules displayed in Figure 3-2.	
Example 3-2 Navigation Rules in faces-config.xml	
From the page flows you created during the planning stages, you can double-click the page icons to create the actual JSF page files. You can choose to create either a Facelets page or a JSP page. Facelet pages use the extension *.jsf	
. Facelets is a JSF-centric declarative XML view definition technology that provides an alternative to using the JSP engine.	
If instead you create a JSP page for an ADF Faces application, you create an XML-based JSP document, which uses the extension *.jspx	
. Using an XML-based document has the following advantages:	
Best Practice: Use Facelets to take advantage of the following:	
ADF Faces provides a number of components that you can use to define the overall layout of a page. JDeveloper contains predefined quick start layouts that use these components to provide you with a quick and easy way to correctly build the layout. You can choose from one, two, or three column layouts, and then determine how you want the columns to behave. For example, you may want one column's width to be locked, while another column stretches to fill available browser space. Figure 3-4 shows the quick start layouts available for a two-column layout with the second column split between two panes. For more information about the layout components, see Chapter 9, "Organizing Content on Web Pages."	
Best Practice: Creating a layout that works correctly in all browsers can be time consuming. Use a predefined quick layout to avoid any potential issues.	
Along with adding layout components, you can also choose to apply a theme to the chosen quick layout. These themes add color styling to some of the components used in the quick start layout. To see the color and where it is added, see Appendix D, "Quick Start Layout Themes." For more information about themes, see Chapter 28, "Customizing the Appearance Using Styles and Skins"	
When you know you want to use the same layout on many pages in your application, ADF Faces allows you to create and use predefined page templates. When creating templates, the template developer can not only determine the layout of any page that will use the template, but can also provide static content that must appear on all pages, as well as create placeholder attributes that can be replaced with valid values for each individual page.	
For example, ADF Faces ships with the Oracle Three-Column-Layout template. This template provides areas for specific content, such as branding, a header, and copyright information, and also displays a static logo and busy icon, as shown in Figure 3-5.	
Whenever a template is changed, for example if the layout changes, any page that uses the template will also be automatically updated. For more information about creating and using templates, see Section 10.4, "Using Page Templates."	
Best Practice: Use templates to ensure consistency and so that in the future, you can easily update multiple pages in an application.	
At the time you create a JSF page, you can also choose to create an associated backing bean for the page. Backing beans allow you to access the components on the page programmatically. For more information about using backing beans with JSF pages, see Section 3.4.4, "What You May Need to Know About Automatic Component Binding."	
Best Practice: Create backing beans only for pages that contain components that must be accessed and manipulated programmatically. Use managed beans instead if you need only to provide additional functionality accessed through EL expressions on component attributes (such as listeners).	
You can also choose to have your page available for display in mobile devices. Once your page files are created, you can add UI components and work with the page source.	
You create JSF pages (either JSP or Facelets) using the Create JSF Page dialog.	
Before you begin:	
It may be helpful to have an understanding of the different options when creating a page. For more information, see Section 3.4, "Creating a View Page."	
To create a JSF page:	
OR	
From a navigation diagram, double-click a page icon for a page that has not yet been created.	
Note: While a Facelets page can use any extension you'd like, a Facelets page must use the.jsf extension to be customizable. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."	
When you use the Create JSF Page dialog to create a JSF page, JDeveloper creates the physical file and adds the code necessary to import the component libraries and display a page. The code created depends on whether or not you chose to create a JSPX or Facelets page.	
Example 3-3 shows a Facelets page when it is first created by JDeveloper.	
Example 3-3 Declarative Facelets Page Source Created by JDeveloper	
Example 3-4 shows a .jspx	
page when it is first created by JDeveloper.	
Example 3-4 Declarative JSPX Page Source Created by JDeveloper	
If you chose to use one of the quick layouts, then JDeveloper also adds the components necessary to display the layout. Example 3-5 shows the generated code when you choose a two-column layout, where the first column is locked and the second column stretches to fill up available browser space, and you also choose to apply themes.	
Example 3-5 Two-Column Layout	
If you chose to automatically create a backing bean using the Managed Bean tab of the dialog, JDeveloper also creates and registers a backing bean for the page, and binds any existing components to the bean. Example 3-6 shows the code created for a backing bean for a page.	
Example 3-6 Declarative Backing Bean Source Created by JDeveloper	
Tip: You can access the backing bean source from the JSF page by right-clicking the page in the editor, and choosing Go to and then selecting the bean from the list.	
Additionally, JDeveloper adds the following libraries to the view project:	
JDeveloper also adds entries to the web.xml	
file. Example 3-7 shows the web.xml	
file created once you create a JSPX page.	
Example 3-7 Code in the web.xml File After a JSF Page is Created	
Note: The Facelets context parameters are only created if you create a Facelets page.	
In the faces-config.xml	
file, when you create a JSF page, JDeveloper creates an entry that defines the default render kit (used to display the components in an HTML client) for ADF Faces, as shown in Example 3-8.	
Example 3-8 Generated faces-config.xml File	
An entry in the trinidad-config.xml	
file defines the default skin used by the user interface (UI) components in the application, as shown in Example 3-9.	
Example 3-9 Generated trinidad-config.xml File	
When the page is first displayed in JDeveloper, it is displayed in the visual editor (accessed by clicking the Design tab), which allows you to view the page in a WYSIWYG environment. You can also preview your page in a browser window by clicking the Preview tab, or view the source for the page in the source editor by clicking the Source tab. The Structure window located in the lower left-hand corner of JDeveloper, provides a hierarchical view of the page.	
JSF 2.0 web applications can run using either the Facelets engine or JSP servlet engine. By default, documents with the *.jsf	
and *.xhtml	
extensions are handled by the Facelets engine, while documents with the *.jsp	
and *.jspx	
extensions are handled by the JSP engine. However, this behavior may be changed by setting the javax.faces.FACELETS_VIEW_MAPPINGS	
context parameter in the web.xml	
file. Because ADF Faces allows JSP pages to be run with the Facelets engine, you may decide that you want an existing application of JSP pages to use the Facelets engine. To do that, insert the code shown in Example 3-10 into your web.xml	
page.	
Example 3-10 web.xml Code for Running Both JSP and Facelets Pages Using the Facelets Engine	
You then must redeploy your ADF Faces libraries.	
Note that if you do change your application to use the Facelets engine, then your application will use JSF partial state saving, which is not currently compatible with ADF Faces. You will need to explicitly add the entry shown in Example 3-11.	
Once this incompatibility is resolved (as we expect to happen in future releases), you should re-enable partial state saving by removing the entry. Check your current release notes at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html	
for the latest information on partial state saving support.	
Example 3-11 Add this web.xml Code When Using Facelets Engine	
Note: When you switch from the servlet engine to the Facelets engine, you may find certain parts of your application do not function as expected. For example, if you have any custom JSP tags, these tags will need to be reimplemented to work with the Facelets engine. For more information, refer to the ADF Faces release notes.	
Backing beans are managed beans that contain logic and properties for UI components on a JSF page (for more information about managed beans, see Section 3.6, "Creating and Using Managed Beans"). If when you create your JSF page you choose to automatically expose UI components by selecting one of the choices in the Page Implementation option of the Create JSF Page dialog, JDeveloper automatically creates a backing bean (or uses a managed bean of your choice) for the page. For each component you add to the page, JDeveloper then inserts a bean property for that component, and uses the binding	
attribute to bind component instances to those properties, allowing the bean to accept and return component instances.	
Specifically, JDeveloper does the following when you use automatic component binding:	
view.backing	
package (if you elect to have JDeveloper create a backing bean). faces-config.xml	
file for the backing bean. By default, the managed bean name is backing_<page_name>	
and the bean uses the request	
scope (for more information about scopes, see Section 5.6, "Object Scope Lifecycles"). Note: JDeveloper does not create managed bean property entries in thefaces-config.xml file. If you wish the bean to be instantiated with certain property values, you must perform this configuration in the faces-config.xml file manually. For more information, see Section A.3.1, "How to Configure for ADF Faces in faces-config.xml."	
Once the page is created and components added, you can then declaratively add method binding expressions to components that use them by double-clicking the component in the visual editor, which launches an editor that allows you to select the managed bean and method to which you want to bind the attribute. When automatic component binding is used on a page and you double-click the component, skeleton methods to which the component may be bound are automatically created for you in the page's backing bean. For example, if you add a command button component and then double-click it in the visual editor, the Bind Action Property dialog displays the page's backing bean along with a new skeleton action method, as shown in Figure 3-6.	
You can select from one these methods, or if you enter a new method name, JDeveloper automatically creates the new skeleton method in the page's backing bean. You must then add the logic to the method.	
Note: When automatic component binding is not used on a page, you must select an existing managed bean or create a new backing bean to create the binding.	
For example, suppose you created a JSF page with the file name myfile.jspx	
. If you chose to let JDeveloper automatically create a default backing bean, then JDeveloper creates the backing bean as view.backing.MyFile.java	
, and places it in the \src	
directory of the ViewController	
project. The backing bean is configured as a managed bean in the faces-config.xml	
file, and the default managed bean name is backing_myfile	
.	
Example 3-12 shows the code on a JSP that uses automatic component binding, and contains form	
, inputText	
, and commandButton	
components.	
Example 3-12 JSF Page Code with Automatic Component Binding	
Example 3-13 shows the corresponding code on the backing bean.	
Example 3-13 Backing Bean Code Using Automatic Component Binding	
Example 3-14 shows the code added to the faces-config.xml	
file to register the page's backing bean as a managed bean.	
Example 3-14 Registration for a Backing Bean	
Note: Instead of registering the managed bean in thefaces-config.xml file, if you are using Facelets, you can elect to use annotations in the backing bean for registration. For more information about using annotations in managed and backing beans, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/java/index.html .	
In addition, when you edit a Java file that is a backing bean for a JSF page, a method binding toolbar appears in the source editor for you to bind appropriate methods quickly and easily to selected components in the page. When you select an event, JDeveloper creates the skeleton method for the event, as shown in Figure 3-7.	
Once you create a page, you can turn automatic component binding off or on, and you can also change the backing bean to a different Java class. Open the JSP in the visual Editor and from the JDeveloper menu, choose Design > Page Properties. Here you can select or deselect the Auto Bind option, and change the managed bean class. Click Help for more information about using the dialog.	
Note: If you turn automatic binding off, nothing changes in the binding attributes of existing bound components in the page. If you turn automatic binding on, all existing bound components and any new components that you insert are bound to the selected backing bean. If automatic binding is on and you change the bean selection, all existing bindings and new bindings are switched to the new bean.	
You can always access the backing bean for a JSF page from the page editor by right-clicking the page, choosing Go to, and then choosing the bean from the list of beans associated with the JSP.	
Once you have created a page, you can use the Component Palette to drag and drop components onto the page. JDeveloper then declaratively adds the necessary page code and sets certain values for component attributes.	
Tip: For detailed procedures and information about adding and using specific ADF Faces components, see Part IV, "Using Common ADF Faces Components".	
Note: You cannot use ADF Faces components on the same page as MyFaces Trinidad components (tr: tags) or other Ajax-enabled library components. You can use Trinidad HTML tags (trh:) on the same page as ADF Faces components, however you may experience some browser layout issues. You should always attempt to use only ADF Faces components to achieve your layout. Note that your application may contain a mix of pages built using either ADF Faces or other components.	
To add ADF Faces components to a page:	
Note: If you have chosen to create a Facelets page, then only a subset of ADF Faces components are available to use. You may need to use standard JSF components instead. These are available by selecting JSF from the dropdown menu.	
Tip: If the ADF Faces page is not available in the Component Palette, then you need to add the ADF Faces tag library to the project.For a JSPX file:	
For a Facelets file:	
The components are contained in five accordion panels: General Controls (which contains components like buttons, icons, and menus), Text and Selection, Data Views (which contains components like tables and trees), Menus and Toolbars, Layout, and Operations.	
Figure 3-8 shows the Component Palette displaying the general controls for ADF Faces.	
JDeveloper redraws the page in the visual editor with the newly added component. In the visual editor, you can directly select components on the page and use the resulting context menu to add more components.	
Tip: You can also drag and drop components from the palette into the Structure window or directly into the code in the source editor.You can always add components by directly editing the page in the source editor. To view the page in the source editor, click the Source tab at the bottom of the window.	
When you drag and drop components from the Component Palette onto a JSF page, JDeveloper adds the corresponding code to the JSF page. This code includes the tag necessary to render the component, as well as values for some of the component attributes. Example 3-15 shows the code when you drop an Input Text and a Button component from the palette.	
Example 3-15 JDeveloper Declaratively Adds Tags to a JSF Page	
Note: If you chose to use automatic component binding, then JDeveloper also adds thebinding attribute with its value bound to the corresponding property on the page's backing bean. For more information, see Section 3.4.4, "What You May Need to Know About Automatic Component Binding."	
When you drop a component that contains mandatory child components (for example a table or a list), JDeveloper launches a wizard where you define the parent and also each of the child components. Figure 3-9 shows the Table wizard used to create a table component and the table's child column components.	
Example 3-16 shows the code created when you use the wizard to create a table with three columns, each of which uses an outputText	
component to display data.	
Example 3-16 Declarative Code for a Table Component	
Once you drop components onto a page you can use the Property Inspector (displayed by default at the bottom right of JDeveloper) to set attribute values for each component.	
Tip: If the Property Inspector is not displayed, choose View > Property Inspector from the main menu.	
Figure 3-10 shows the Property Inspector displaying the attributes for an inputText	
component.	
The Property Inspector has sections that group similar properties together. For example, the Property Inspector groups commonly used attributes for the inputText	
component in the Common section, while properties that affect how the component behaves are grouped together in the Behavior section. Figure 3-11 shows the Behavior section of the Property Inspector for an inputText	
component.	
To set component attributes:	
Tip: Some attributes are displayed in more than one section. Entering or changing the value in one section will also change it in any other sections. You can search for an attribute by entering the attribute name in the search field at the top of the inspector.	
When you use the Property Inspector to set or change attribute values, JDeveloper automatically changes the page source for the attribute to match the entered value.	
Tip: You can always change attribute values by directly editing the page in the source editor. To view the page in the source editor, click the Source tab at the bottom of the window.	
You use EL expressions throughout an ADF Faces application to bind attributes to object values determined at runtime. For example, #{UserList.selectedUsers}	
might reference a set of selected users, #{user.name}	
might reference a particular user's name, while #{user.role == 'manager'}	
would evaluate whether a user is a manager or not. At runtime, a generic expression evaluator returns the List	
, String	
, and boolean	
values of these respective expressions, automating access to the individual objects and their properties without requiring code.	
At runtime, the value of certain JSF UI components (such as an inputText	
component or an outputText	
component) is determined by its value	
attribute. While a component can have static text as its value, typically the value	
attribute will contain an EL expression that the runtime infrastructure evaluates to determine what data to display. For example, an outputText	
component that displays the name of the currently logged-in user might have its value	
attribute set to the expression #{UserInfo.name}	
. Since any attribute of a component (and not just the value	
attribute) can be assigned a value using an EL expression, it's easy to build dynamic, data-driven user interfaces. For example, you could hide a component when a set of objects you need to display is empty by using a boolean-valued expression like #{not empty UserList.selectedUsers}	
in the UI component's rendered	
attribute. If the list of selected users in the object named UserList	
is empty, the rendered	
attribute evaluates to false	
and the component disappears from the page.	
In a typical JSF application, you would create objects like UserList	
as a managed bean. The JSF runtime manages instantiating these beans on demand when any EL expression references them for the first time. When displaying a value, the runtime evaluates the EL expression and pulls the value from the managed bean to populate the component with data when the page is displayed. If the user updates data in the UI component, the JSF runtime pushes the value back into the corresponding managed bean based on the same EL expression. For more information about creating and using managed beans, see Section 3.6, "Creating and Using Managed Beans." For more information about EL expressions, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/java/index.html	
.	
Note: When using an EL expression for thevalue attribute of an editable component, you must have a corresponding set method for the that component, or else the EL expression will evaluate to read-only, and no updates to the value will be allowed. For example, say you have an public void setIt1(RichInputText inputText1) { this.inputText1 = inputText1; } public RichInputText getInputText1() { return inputText1; }	
Along with standard EL reachable objects and operands, ADF Faces provides EL function tags. These are tags that provide certain functionality that you can use within an EL expression. The format tags can be used to add parameters to String messages, and the time zone tags can be used to return time zones. For information about the format tags, see Section 3.5.2, "How to Use the EL Format Tags." For information about the time zone tags, see Section 11.5.3, "What You May Need to Know About Selecting Time Zones Without the inputDate Component."	
You can create EL expressions declaratively using the JDeveloper Expression Builder. You can access the builder from the Property Inspector.	
Before you begin	
It may be helpful to have an understanding of EL expressions. For more information, see Section 3.5, "Creating EL Expressions."	
To use the Expression Builder:	
To narrow down the tree, you can either use the dropdown filter or enter search criteria in the search field. The EL accessible objects exposed by ADF Faces are located under the adfFacesContext node, which is under the JSF Managed Beans node, as shown in Figure 3-13.	
Selecting an item in the tree causes it to be moved to the Expression box within an EL expression. You can also type the expression directly in the Expression box.	
Figure 3-14 shows the Expression Builder dialog being used to create an expression that binds to the value of a label for a component to the label	
property of the explorer	
managed bean.	
Tip: For information about using proper syntax to create EL expressions, see the Java EE 6 tutorial athttp://download.oracle.com/javaee/index.html .	
ADF EL format tags allow you to create text that uses placeholder parameters, which can then be used as the value for any component attribute that accepts a String	
. At runtime, the placeholders are replaced with the parameter values.	
For example, say the current user's name is stored on a managed bean, and you want to display that name within a message as the value of an outputText	
component. You could use the formatString	
tag as shown in Example 3-17.	
Example 3-17 Using the formatString Tag to Display a Message with a Parameter	
In this example, the formatString tag takes one parameter whose key "0	
," resolves to the value someBean.currentUser	
.	
There are two different types of format tags available, formatString	
tags and formatNamed	
tags. The formatString	
tags use indexed parameters, while the formatNamed	
tags use named parameters. There are four tags for each type, each one taking a different number of parameters (up to 4). For example, the formatString2	
tag takes two indexed parameters, and the formatNamed4	
tag takes four named parameters.	
When you use a formatNamed	
tag, you set both the key and the value. Example 3-18 shows a message that uses the formatNamed2	
tag to display the number of files on a specific disk. This message contains two parameters.	
While JDeveloper creates many needed EL expressions for you, and you can use the Expression Builder to create those not built for you, there may be times when you need to access, set, or invoke EL expressions within a managed bean.	
Example 3-19 shows how you can get a reference to an EL expression and return (or create) the matching object.	
Example 3-19 Resolving an EL Expression from a Managed Bean	
Example 3-20 shows how you can resolve a method expression.	
Example 3-20 Resolving a Method Expression from a Managed Bean	
Example 3-21 shows how you can set a new object on a managed bean.	
Example 3-21 Setting a New Object on a Managed Bean	
Managed beans are Java classes that you register with the application using various configuration files. When the JSF application starts up, it parses these configuration files and the beans are made available and can be referenced in an EL expression, allowing access to the beans' properties and methods. Whenever a managed bean is referenced for the first time and it does not already exist, the Managed Bean Creation Facility instantiates the bean by calling the default constructor method on the bean. If any properties are also declared, they are populated with the declared default values.	
Often, managed beans handle events or some manipulation of data that is best handled at the front end. For a more complete description of how managed beans are used in a standard JSF application, see the Java EE 6 tutorial at http://www.oracle.com/technetwork/java/index.html	
.	
Best Practice: Use managed beans to store only bookkeeping information, for example the current user. All application data and processing should be handled by logic in the business layer of the application.	
In a standard JSF application, managed beans are registered in the faces-config.xml	
configuration file.	
Note: If you plan on using Oracle ADF Model data binding and ADF Controller, then instead of registering managed beans in thefaces-config.xml file, you may need to register them within ADF task flows. For more information, refer to the "Using a Managed Bean in a Fusion Web Application" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
You can create a managed bean and register it with the JSF application at the same time using the overview editor for the faces-config.xml	
file.	
Before you begin	
It may be helpful to have an understanding of managed beans. For more information, see Section 3.6, "Creating and Using Managed Beans."	
To create and register a managed bean:	
faces-config.xml	
file. Figure 3-15 shows the editor for the faces-config.xml	
file used by the ADF Faces demo that contains the File Explorer application.	
Note: When determining what scope to register a managed bean with or to store a value in, keep the following in mind:	
For more information about the different object scopes, see Section 5.6, "Object Scope Lifecycles."	
Note: While you can declare managed properties using this editor, the corresponding code is not generated on the Java class. You must add that code by creating private member fields of the appropriate type, and then by choosing the Generate Accessors menu item on the context menu of the code editor to generate the correspondingget and set methods for these bean properties.	
When you create a managed bean and elect to generate the Java file, JDeveloper creates a stub class with the given name and a default constructor. Example 3-22 shows the code added to the MyBean	
class stored in the view package.	
Example 3-22 Generated Code for a Managed Bean	
You now must add the logic required by your page. You can then refer to that logic using an EL expression that refers to the managed-bean-name	
given to the managed bean. For example, to access the myInfo	
property on the my_bean	
managed bean, the EL expression would be:	
JDeveloper also adds a managed-bean	
element to the faces-config.xml	
file. Example 3-23 shows the managed-bean	
element created for the MyBean	
class.	
To avoid issues with managed beans, if your bean needs to use component binding (through the binding	
attribute on the component), you must store the bean in request	
scope. (If your application uses the Fusion technology stack, then you must store it in backingBean	
scope. For more information, see the "Using a Managed Bean in a Fusion Web Application" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.) However, there may be circumstances where you can't store the bean in request	
or backingBean	
scope. For example, there may be managed beans that are stored in session	
scope so that they can be deployed in a clustered environment, and therefore must implement the Serializable interface. When they are serializable, managed beans that change during a request can be distributed to other servers for fail-over. However, ADF Faces components (and JSF components in general) are not serializable. So if a serialized managed bean attempts to access a component using component binding, the bean will fail serialization because the referenced component cannot be serialized. There are also thread safety issues with components bound to serialized managed beans because ADF Faces components are not thread safe.	
When you need to store a component reference to a UI component instance in a backing bean that is not using request	
or backingBean	
scope, you should store a reference to the component instance using the Trinidad ComponentReference	
API. The UIComponentReference.newUIComponentReference()	
method creates a serializable reference object that can be used to retrieve a UIComponent	
instance on the current page. Example 3-24 shows how a managed bean might use the UIComponentReference	
API to get and set values for a search field.	
Example 3-24 Session Scoped Managed Bean Uses the UIComponentReference API	
Keep the following in mind when using the UIComponentReference	
API:	
For more information about the UIComponentReference	
API, see the Trinidad JavaDoc.	
Often, when you are working with ADF Faces, you will need to view the Javadoc for ADF Faces classes. You can view Javadoc from within JDeveloper.	
You can view the ADF Faces Javadoc directly from JDeveloper.	
To view Javadoc for a class:	
oracle.adf.view.rich	
package. Tip: When in a Java class file, you can go directly to the Javadoc for a class name reference or for a JavaScript function call by placing your cursor on the name or function and pressing Ctrl+D.	
This chapter outlines the ADF Faces client-side architecture.	
This chapter includes the following sections:	
ADF Faces extends the JavaServer Faces architecture, adding a client-side framework on top of the standard server-centric model. The majority of ADF Faces components are rendered in HTML that is generated on the server-side for a request. In addition, ADF Faces allows component implementations to extend their reach to the client using a client-side component and event model.	
The ADF Faces framework already contains much of the functionality for which you would ordinarily need to use JavaScript. In many cases, you can achieve rich component functionality declaratively, without the use of JavaScript. However, there may be times when you do need to add your own JavaScript, for example custom processing in response to a client-side event. In these cases, you can use the client-side framework.	
The JavaScript class that you will interact with most is AdfUIComponent	
and its subclasses. An instance of this class is the client-side representation of a server-side component. You can think of a client-side component as a simple property container with support for event handling. Client-side components primarily exist to add behavior to the page by exposing an API contract for both application developers as well as for the framework itself. It is this contract that allows, among other things, toggling the enabled state of a button on the client.	
Each client component has a set of properties (key/value pairs) and a list of listeners for each supported event type. All ADF Faces JavaScript classes are prefixed with Adf	
to avoid naming conflicts with other JavaScript libraries. For example, RichCommandButton	
has AdfRichCommandButton	
, RichDocument	
has AdfRichDocument	
, and so on.	
In the client-side JavaScript layer, client components exist mostly to provide an API contract for the framework and for developers. Because client components exist only to store state and provide an API, they have no direct interaction with the document object model (DOM) whatsoever. All DOM interaction goes through an intermediary called the peer. Peers interact with the DOM generated by the Java renderer and handle updating that state and responding to user interactions.	
Peers have a number of other responsibilities, including:	
Geometry management	
This separation isolates the component and application developer from changes in the DOM implementation of the component and also isolates the need for the application to know whether a component is implemented in HTML DOM at all (for example the Flash components).	
In JSF, as in most component-based frameworks, an intrinsic property of the component model is that components can be nested to form a hierarchy, typically known as the component tree. This simply means that parent components keep track of their children, making it possible to walk over the component tree to find all descendents of any given component. While the full component tree exists on the server, the ADF Faces client-side component tree is sparsely populated.	
For performance optimization, client components exist only when they are required, either due to having a clientListener	
handler registered on them, or because the page developer needs to interact with a component on the client side and has specifically configured the client component to be available. You don't need to understand the client framework as except for exceptional cases, you use most of the architectural features declaratively, without having to create any code.	
For example, because the framework does not create client components for every server-side component, there may be cases where you need a client version of a component instance. Section 4.4, "Instantiating Client-Side Components," explains how to do this declaratively. You use the Property Inspector in JDeveloper to set properties that determine whether a component should be rendered at all, or simply be made not visible, as described in Section 4.8, "Understanding Rendering and Visibility."	
Note: It is also possible for JavaScript components to be present that do not correspond to any existing server-side component. For example, some ADF Faces components have client-side behavior that requires popup content. These components may createAdfRichPopup JavaScript components, even though no server-side Java RichPopup component may exist.	
Other functionality may require you to use the ADF Faces JavaScript API. For example, Section 4.5, "Locating a Client Component on a Page," explains how to use the API to locate a specific client-side component, and Section 4.6, "Accessing Component Properties on the Client," documents how to access specific properties.	
A common issue with JavaScript-heavy frameworks is determining how best to deliver a large JavaScript code base to the client. If all the code is in a single JavaScript library, there will be a long download time, while splitting the JavaScript into too many libraries will result in a large number of roundtrips. To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A JavaScript library partition contains code for components and/or features that are commonly used together. For more information, see Section 4.9, "JavaScript Library Partitioning."	
In a traditional JSF application, if you want to process events on the client, you must listen to DOM-level events. However, these events are not delivered in a portable manner. The ADF Faces client-side event model is similar to the JSF events model, but implemented on the client. The client-side event model abstracts from the DOM, providing a component-level event model and lifecycle, which executes independently of the server. Consequently, you do not need to listen for click	
events on buttons. You can instead listen for AdfActionEvent	
events, which can be caused by key or mouse events.	
Events sent by clients are all subclasses of the AdfBaseEvent	
class. Each client event has a source, which is the component that triggered the event. Events also have a type (for example, action	
or dialog	
), used to determine which listeners are interested in the event. You register a client listener on the component declaratively using the af:clientListener	
tag.	
You use the af:clientListener	
tag to call corresponding Javascript in response to a client event. For example, suppose you have a button that, in response to a click, should display a "Hello World" alert. You need to first create the JavaScript function that will respond to the event by displaying the alert. You then add the client listener to the component that will invoke that function.	
Before you begin	
It may be helpful to have an understanding of client event processing. For more information, see Section 4.2, "Listening for Client Events."	
To listen for a client event:	
Enter the function created in Step 1, as well as the type of action that the listener should respond to. Example 4-2 shows the code that would be created for the listener for the sayHello	
function.	
Tip: Because the button has a registered client listener, the framework will automatically create a client version of the component.	
When the button is clicked, because there is a client version of the component, the Adf	
Action	
client event is invoked. Because a clientListener	
tag is configured to listen for the AdfAction	
event, it causes the sayHello	
function to execute. For more information about client-side events, see Section 6.3, "Using JavaScript for ADF Faces Client Events."	
You can either add inline JavaScript directly to a page or you can import JavaScript libraries into a page. When you import libraries, you reduce the page content size, the libraries can be shared across pages, and they can be cached by the browser. You should import JavaScript libraries whenever possible. Use inline JavaScript only for cases where a small, page-specific script is needed.	
Performance Tip: Including JavaScript only in the pages that need it will result in better performance because those pages that do not need it will not have to load it, as they would if the JavaScript were included in a template. However, if you find that most of your pages use the same JavaScript code, you may want to consider including the script or the tag to import the library in a template.Note, however, that if a JavaScript code library becomes too big, you should consider splitting it into meaningful pieces and include only the pieces needed by the page (and not in a template). This approach will provide improved performance, because the browser cache will be used and the HTML content of the page will be smaller.	
Create the JavaScript on the page and then use a clientListener	
tag to invoke it.	
Before you begin	
It may be helpful to have an understanding of adding JavaScript to a page. For more information, see Section 4.3, "Adding JavaScript to a Page."	
To use inline JavaScript:	
Note: Do not use thef:verbatim tag in a page or template to specify the JavaScript.	
For example, the sayHello	
function shown in Example 4-1 might be included in a JSF page as shown in Example 4-4.	
Use the af:resource	
tag to access a JavaScript library from a page. This tag should appear inside the document	
tag's metaContainer	
facet.	
Before you begin	
It may be helpful to have an understanding of adding JavaScript to a page. For more information, see Section 4.3, "Adding JavaScript to a Page."	
To access a JavaScript library from a page:	
document	
tag, add the code shown in bold in Example 4-5 and replace /mySourceDirectory	
with the relative path to the directory that holds the JavaScript library. sayHello	
function was in the MyScripts	
library, you would enter MyScripts.sayHello	
. In the Type field, select the event type that should invoke the function. Often when your JavaScript needs to access a client component, it is within the context of a listener and must access the event's source component. Use the getSource()	
method to get the client component. Example 4-6 shows the sayHello	
function accessing the source client component in order to display its name.	
Example 4-6 Accessing a Client Event Source	
For more information about accessing client event sources, see Section 6.3, "Using JavaScript for ADF Faces Client Events." For more information about accessing client-side properties, see Section 4.6, "Accessing Component Properties on the Client." For a complete description of how client events are handled at runtime, see Section 6.3.7, "What Happens at Runtime: How Client-Side Events Work."	
By default, the framework does not make any guarantees about which components will have corresponding client-side component instances. To interact with a component on the client, you will usually register a clientListener	
handler. When a component has a registered clientListener	
handler, it will automatically have client-side representation. You can also explicitly configure a component to be available on the client by setting the clientComponent	
attribute to true	
.	
You can manually configure a component to have a client side instance using the clientComponent	
attribute.	
Performance Tip: Only setclientComponent to true if you plan on interacting with the component programmatically on the client.	
Note: When the framework creates a client component for its own uses, that client component may only contain information the framework needs at that time. For example, not all of the attributes may be available.	
Before you begin	
It may be helpful to have an understanding of client-side instances. For more information, see Section 4.4, "Instantiating Client-Side Components."	
To configure a component for a client-side instance:	
true	
. When you set the clientComponent	
attribute to true	
, the framework creates an instance of an AdfUIComponent	
class for the component. This class provides the API that you can work with on the client side and also provides basic property accessor methods (for example, getProperty()	
and setProperty()	
), event listener registration, and event delivery-related APIs. The framework also provides renderer-specific subclasses (for example, AdfRichOutputText	
) which expose property-specific accessor methods (for example, getText()	
and setText()	
). These accessor methods are simply wrappers around the AdfUIComponent	
class's getProperty()	
and setProperty()	
methods and are provided for coding convenience.	
For example, suppose you have an outputText	
component on the page that will get its value (and therefore the text to display) from the sayHello	
function. That function must be able to access the outputText	
component in order to set its value. For this to work, there must be a client-side version of the outputText	
component. Example 4-7 shows the JSF page code. Note that the outputText	
component has an id	
value and the clientComponent	
attribute is set to true	
. Also, note there is no value in the example, because that value will be set by the JavaScript.	
Example 4-7 Adding a Component	
Because the outputText	
component will now have client-side representation, the JavaScript will be able to locate and work with it.	
When you need to find a client component that is not the source of an event, you can use the AdfUIComponent.findComponent(expr)	
method. This method is similar to the JSF UIComponent.findComponent()	
method, which searches for and returns the UIComponent	
object with an ID that matches the specified search expression. The AdfUIComponent.findComponent(expr)	
method simply works on the client instead of the server.	
Example 4-8 shows the sayHello	
function finding the outputText	
component using the component's ID.	
Example 4-8 Finding a Client Component Using findComponent()	
ADF Faces also has the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr)	
method. Use this method when you want to hard-code the String for the ID. Use AdfUIComponent.findComponent(expr)	
when the client ID is being retrieved from the component.	
Note: There is also a confusingly namedAdfPage.PAGE.findComponent(clientId) method, however this function uses implementation-specific identifiers that can change between releases and should not be used by page authors.	
If the component you need to find is within a component that is a naming container (such as pageTemplate	
, subform	
, table	
, and tree	
), then instead of using the AdfPage.PAGE.findComponentByAbsoluteId(absolute expr)	
method, use the AdfUIComponent.findComponent(expr)	
method. The expression can be either absolute or relative.	
Tip: You can determine whether or not a component is a naming container by reviewing the component tag documentation. The tag documentation states whether a component is a naming container.	
Absolute expressions use the fully qualified JSF client ID (meaning, prefixed with the IDs of all NamingContainer	
components that contain the component) with a leading NamingContainer.SEPARATOR_CHAR	
character, for example:	
For example, to find a table whose ID is t1	
that is within a panel collection component whose ID is pc1	
contained in a region whose ID is r1	
on page that uses the myTemplate	
template, you might use the following:	
Alternatively, if both the components (the one doing the search and the one being searched for) share the same NamingContainer	
component somewhere in the hierarchy, you can use a relative path to perform a search relative to the component doing the search. A relative path has multiple leading NamingContainer.SEPARATOR_CHAR	
characters, for example:	
In the preceding example, if the component doing the searching is also in the same region as the table, you might use the following:	
Tip: Think of a naming container as a folder and theclientId as a file path. In terms of folders and files, you use two sequential periods and a slash (../) to move up in the hierarchy to another folder. This is the same thing that the multiple colon (:) characters do in the findComponent() expression. A single leading colon (:) means that the file path is absolute from the root of the file structure. If there are multiple leading colon (:) characters at the beginning of the expression, then the first one is ignored and the others are counted, one set of periods and a slash (../) per colon (:) character. Note that if you were to use the	
When deciding whether to use an absolute or relative path, keep the following in mind:	
There are no getChildren()	
or getFacet()	
functions on the client. Instead, the AdfUIComponent.visitChildren()	
function is provided to visit all children components or facets (that is all descendents). Because ADF Faces uses a sparse component tree (that is, client components are created on an as-needed basis, the component that the getParent()	
method might return on the client may not be the actual parent on the server (it could be any ancestor). Likewise, the components that appear to be immediate children on the client could be any descendants. For more information, see the ADF Faces JavaScript documentation.	
For each built-in property on a component, convenience accessor methods are available on the component class. For example, you can call the getValue()	
method on a client component and receive the same value that was used on the server.	
Note: All client properties in ADF Faces use thegetXyz function naming convention including boolean properties. The isXyz naming convention for boolean properties is not used.	
Constants are also available for the property names on the class object. For instance, you can use AdfRichDialog.STYLE_CLASS	
constant instead of using "styleClass	
".	
Note: In JavaScript, it is more efficient to refer to a constant than to code the string, as in some JavaScript execution environments, the latter requires an object allocation on each invocation.	
When a component's property changes, the end result should be that the component's DOM is updated to reflect its new state, in some cases without a roundtrip to the server. The component's role in this process is fairly limited: it simply stores away the new property value and then notifies the peer of the change. The peer contains the logic for updating the DOM to reflect the new component state.	
Note: Not all property changes are handled through the peer on the client side. Some property changes are propagated back to the server and the component is rerendered using PPR.	
Most property values that are set on the client result in automatic synchronization with the server (although some complex Java objects are not sent to the client at all). There are however, two types of properties that act differently: secured properties and disconnected properties.	
Secured properties are those that cannot be set on the client at all. For example, say a malicious client used JavaScript to set the immediate	
flag on a commandLink	
component to true	
. That change would then be propagated to the server, resulting in server-side validation being skipped, causing a possible security hole (for more information about using the immediate	
property, see Section 5.2, "Using the Immediate Attribute"). Consequently, the immediate	
property is a secured property.	
Attempts to set secured property from JavaScript will fail. For more information, see Section 4.6.3, "How to Unsecure the disabled Property." Table 4-1 shows the secure properties on the client components.	
Table 4-1 Secure Client Properties	
Component	Secure Property
---	---
ADF Faces does allow you to configure the disabled	
property so that it can be made unsecure. This can be useful when you need to use JavaScript to enable and disable buttons.	
Disconnected properties are those that can be set on the client, but that do not propagate back to the server. These properties have a lifecycle on the client that is independent of the lifecycle on the server. For example, client form input components (like AdfRichInputText	
) have a submittedValue	
property, just as the Java EditableValueHolder	
components do. However, setting this property does not directly affect the server. In this case, standard form submission techniques handle updating the submitted value on the server.	
A property can be both disconnected and secured. In practice, such properties act like disconnected properties on the client: they can be set on the client, but will not be sent to the server. But they act like secured properties on the server, in that they will refuse any client attempts to set them.	
The ADF Faces framework provides setXYZ	
convenience functions that call through to the underlying ADFUIComponent.setProperty	
function, passing the appropriate property name (for more information, see the ADF Faces JavaScript JavaDoc). Example 4-9 shows how you might use the setProperty	
function to set the backgroundcolor	
property on an inputText	
component to red when the value changes.	
Example 4-9	
By using these functions, you can change the value of a property, and as long as it is not a disconnected property or a secure property, the value will also be changed on the server.	
There may be cases when you do not want the value of the property to always be delivered and synchronized to the server. For example, say you have inputText	
components in a form, and as soon as a user changes a value in one of the components, you want the changed indicator to display. To do this, you might use JavaScript to set the changed	
attribute to true	
on the client component when the valueChangeEvent	
event is delivered. Say also, you do not want the changed indicator to display once the user submits the page, because at that time, the values are saved.	
Say you use JavaScript to set the changed attribute to true when the valueChangeEvent	
is delivered, as shown in	
Example 4-10 Using JavaScript to Set the changed Property	
Using this example, the value of the changed	
attribute, which is true	
, will also be sent to the server, because all the properties on the component are normally synchronized to the server. So the changed indicator will continue to display.	
To make it so the indicator does not display when the values are saved to the server, you might use one of the following alternatives:	
valueChangeEvent	
event. Example 4-11 shows example JSP code. Example 4-11 JSP Code for Setting Property Values on the Server	
Example 4-12 shows the corresponding managed bean code.	
Example 4-12 Using a Managed Bean to Set a Property Value	
serverListener	
tag. Use this when there is no event being delivered. Example 4-13 shows the JSP code. Example 4-13 JSP Code for Setting Property Values Using JavaScript and a Server Listener	
Example 4-14 shows the managed bean code.	
Example 4-14 Using a Custom Event to Set a Property Value	
changed	
attribute to true	
, which will propagate to the server, but then use an actionListener	
on the command component to set the changed	
attribute back to false	
. Example 4-15 shows the JSP code. Example 4-15 JSP Code for Using a Listener on a Command Component to Set a Property Value	
Example 4-16 shows the corresponding managed bean code.	
Example 4-16 Using an ActionLIstener to Set a Property Value	
You use the unsecured	
property to set the disabled	
property to be unsecure. You need to manually add this property and the value of disabled	
to the code for the component whose disabled	
property should be unsecure. For example, the code for a button whose disabled	
property should be unsecured would be:	
Once you set the unsecure	
attribute to disabled	
, a malicious JavaScript could change the disabled	
attribute unwittingly. For example, say you have an expense approval page, and on that page, you want certain managers to be able to only approve invoices that are under $200. For this reason, you want the approval button to be disabled unless the current user is allowed to approve the invoice.	
If you did not set the unsecured	
attribute to disabled	
, the approval button would remain disabled until a round-trip to the server occurs, where logic determines if the current user can approve the expense. But because you want the button to display correctly as the page loads the expense, say you set the unsecure	
attribute to disabled	
. Now you can use JavaScript on the client to determine if the button should be disabled. But now, any JavaScript (including malicious JavaScript that you have no control over) can do the same thing.	
To avoid the malicious JavaScript, the application has to always assume that the button may have been enabled by malicious client side Javascript and therefore needs to always recheck that the current manager has the appropriate spending authority before performing the approval. In the expense report approval screen, you might have JavaScript that checks that the amount is under $200, but you still need to have the action for the approval button perform the logic on the server. Adding the logic to the server ensures that the disabled attribute does not get changed when it should not.	
Similarly, if you allow your application to be modified at runtime, and you allow users to potentially edit the unsecure	
and/or the disabled	
attributes, you must ensure that your application still performs the same logic as if the round-trip to the server had occurred.	
Calling the setProperty()	
function on the client sets the property to the new value, and synchronously fires a PropertyChangeEvent	
event with the old and new values (as long as the value is different). Also, setting a property may cause the component to rerender itself.	
In some cases you may want to send additional information to the client beyond the built-in properties. This can be accomplished using bonus attributes. Bonus attributes are extra attributes that you can add to a component using the clientAttribute	
tag. For performance reasons, the only bonus attributes sent to the client are those specified by clientAttribute	
.	
The clientAttribute	
tag specifies a name/value pair that is added to the server-side component's attribute map. In addition to populating the server-side attribute map, using the clientAttribute	
tag results in the bonus attribute being sent to the client, where it can be accessed through the AdfUIComponent.getProperty("	
bonusAttributeName	
")	
method.	
The framework takes care of marshalling the attribute value to the client. The marshalling layer supports marshalling of a range of object types, including strings, booleans, numbers, dates, arrays, maps, and so on. For more information on marshalling, see Section 6.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data."	
Performance Tip: In order to avoid excessive marshalling overhead, use client-side bonus attributes sparingly.	
Note: TheclientAttribute tag should be used only for bonus (application-defined) attributes. If you need access to standard component attributes on the client, instead of using the clientAttribute tag, simply set the clientComponent attribute to true . For more information, see Section 4.4, "Instantiating Client-Side Components."	
You can use the Component Palette to add a bonus attribute to a component.	
Before you begin	
It may be helpful to have an understanding of bonus attributes. For more information, see Section 4.7, "Using Bonus Attributes for Client-Side Components."	
To create bonus attributes:	
Although client-side bonus attributes are automatically delivered from the server to the client, the reverse is not true. That is, changing or setting a bonus attribute on the client will have no effect on the server. Only known (nonbonus) attributes are synchronized from the client to the server. If you want to send application-defined data back to the server, you should create a custom event. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server."	
All ADF Faces display components have two attributes that relate to whether or not the component is displayed on the page for the user to see: rendered	
and visible	
.	
The rendered	
attribute has very strict semantics. When rendered	
is set to false	
, there is no way to show a component on the client without a roundtrip to the server. To support dynamically hiding and showing page contents, the framework adds the visible	
attribute. When set to false	
, the component's markup is available on the client but the component is not displayed. Therefore calls to the setVisible(true)	
or setVisible(false)	
method will, respectively, show and hide the component within the browser (as long as rendered	
is set to true	
), whether those calls happen from Java or from JavaScript. However, because visible	
simply shows and hides the content in the DOM, it doesn't always provide the same visual changes as using the rendered	
would.	
Performance Tip: You should set thevisible attribute to false only when you absolutely need to be able to toggle visibility without a roundtrip to the server, for example in JavaScript. Nonvisible components still go through the component lifecycle, including validation. If you do not need to toggle visibility only on the client, then you should instead set the	
Example 4-17 shows two outputText	
components, only one of which is rendered at a time. The first outputText	
component is rendered when no value has been entered into the inputText	
component. The second outputText	
component is rendered when a value is entered.	
Example 4-17 Rendered and Not Rendered Components	
Provided a component is rendered in the client, you can either display or hide the component on the page using the visible	
property.	
Example 4-18 shows how you might achieve the same functionality as shown in Example 4-17, but in this example, the visible	
attribute is used to determine which component is displayed (the rendered	
attribute is true	
by default, it does not need to be explicitly set).	
Example 4-18 Visible and Not Visible Components	
However, because using the rendered	
attribute instead of the visible	
attribute improves performance on the server side, you may instead decide to have JavaScript handle the visibility.	
Example 4-19 shows the page code for JavaScript that handles the visiblity of the components.	
Example 4-19 Using JavaScript to Turn On Visibility	
You can create a conditional JavaScript function that can toggle the visible	
attribute of components.	
Before you begin	
It may be helpful to have an understanding of how components are displayed. For more information, see Section 4.8, "Understanding Rendering and Visibility."	
To set visibility:	
outputText	
component if there is no value; otherwise, the script turns visibility on for the other outputText	
component. ClientComponent	
attribute to true	
. This creates a client component that will be used by the JavaScript. visible	
attribute to false	
. Example 4-20 shows the full page code used to toggle visibility with JavaScript.	
Example 4-20 JavaScript Toggles Visibility	
If the parent of a component has its visible	
attribute set to false	
, when the isVisible	
function is run against a child component whose visible	
attribute is set to true	
, it will return true	
, even though that child is not displayed. For example, say you have a panelGroupLayout	
component that contains an outputText	
component as a child, and the panelGroupLayout	
component's visible	
attribute is set to false	
, while the outputText	
component's visible	
attribute is left as the default (true	
). On the client, neither the panelGroupLayout	
nor the outputText	
component will be displayed, but if the isVisible	
function is run against the outputText	
component, it will return true	
.	
For this reason, the framework provides the isShowing()	
function. This function will return false	
if the component's visible	
attribute is set to false	
, or if any parent of that component has visible	
set to false	
.	
A common issue with JavaScript-heavy frameworks is determining how best to deliver a large JavaScript code base to the client. On one extreme, bundling all code into a single JavaScript library can result in a long download time. On the other extreme, breaking up JavaScript code into many small JavaScript libraries can result in a large number of roundtrips. Both approaches can result in the end user waiting unnecessarily long for the initial page to load.	
To help mitigate this issue, ADF Faces aggregates its JavaScript code into partitions. A JavaScript library partition contains code for components and/or features that are commonly used together. By default, ADF Faces provides a partitioning that is intended to provide a balance between total download size and total number of roundtrips.	
One benefit of ADF Faces's library partitioning strategy is that it is configurable. Because different applications make use of different components and features, the default partitioning provided by ADF Faces may not be ideal for all applications. As such, ADF Faces allows the JavaScript library partitioning to be customized on a per-application basis. This partitioning allows application developers to tune the JavaScript library footprint to meet the needs of their application.	
ADF Faces groups its components' JavaScript files into JavaScript features. A JavaScript feature is a collection of JavaScript files associated with a logical identifier that describes the feature. For example, the panelStretchLayout	
client component is comprised of the following two JavaScript files	
oracle/adf/view/js/component/rich/layout/	
AdfRichPanelStretchLayout.js	
oracle/adfinternal/view/js/laf/dhtml/rich/	
AdfDhtmlPanelStretchLayoutPeer.js	
These two files are grouped into the AdfRichPanelStretchLayout	
feature.	
JavaScript features are further grouped into JavaScript partitions. JavaScript partitions allow you to group JavaScript features into larger collections with the goal of influencing the download size and number of round trips. For example, since the panelStretchLayout	
component is often used with the panelSplitter	
component, the features for these two components are grouped together in the stretch partition, along with the other ADF Faces layout components that can stretch their children. At runtime, when a page is loaded, the framework determines the components used on the page, and then from that, determines which features are needed (feature names are the same as the components' constructor name). Only the partitions that contain those features are downloaded.	
Features and partitions are defined using configuration files. ADF Faces ships with a default features and partitions configuration file. You can overwrite the default partitions file by creating your own implementation. When you create custom ADF Faces components, you can create your own features and partition configuration files for those components.	
By default, JavaScript partitioning is turned on. Whether or not your application uses JavaScript partitioning is determined by a context parameter in the web.xml	
file. For more information, see Section A.2.3.17, "JavaScript Partitioning."	
You create a JavaScript feature by creating an adf-js-features.xml file	
, and then adding entries for the features.	
Note: You create JavaScript features when you create custom ADF Faces components. All existing ADF Faces components already have features created for them, and these cannot be changed.	
Before you begin	
It may be helpful to have an understanding of JavaScript partitioning works. For more information, see Section 4.9, "JavaScript Library Partitioning."	
To create a JavaScript feature:	
META-INF	
directory for your component. META-INF	
directory, and choose New from the context menu. Tip: If you don't see the General node, click the All Technologies tab at the top of the Gallery.	
adf-js-features.xml	
as the file name and save it in the META-INF	
directory. features	
: The root element of the configuration file. feature	
: Create as a child to the features	
element. This element must contain one feature-name	
child element and can also contain any number of feature-class	
, as well as any number of feature-dependency	
elements. feature-name	
: Create as a child to the feature	
element. Specifies the name of the feature. You must use the client component's constructor name for this value. feature-class	
: Create as a child to the feature	
element. Specifies the location of the single JavaScript file or class to be included in this feature. There can be multiple feature-class	
elements. feature-dependency	
: Create as a child to the feature	
element. Specifies the name of another feature that this feature depends on. For example, if one component B extends component A, then the feature that represents component A must be listed as a dependency for component B. By noting dependencies, the framework can ensure that any dependent classes are available, even if the two features are not in the same partition. Example 4-22 shows the feature	
element for a fictitious custom component that uses popup components (and therefore has a dependency to the popup feature).	
Example 4-22 JavaScript Features Configuration	
You create a JavaScript partition by creating an adf-js-partitions.xml file	
, and then adding entries for the features.	
Note: ADF Faces provides a defaultadf-js-partitions.xml file (see Section E.1.1, "The adf-js-partitions.xml File"). If you want to change the partition configuration, you need to create your own complete adf-js-partitions.xml file. At runtime, the framework will search the WEB-INF directory for that file. If one is not found, it will load the default partition file.	
Before you begin	
It may be helpful to have an understanding of JavaScript partitioning works. For more information, see Section 4.9, "JavaScript Library Partitioning."	
To create JavaScript partitions:	
WEB-INF	
directory, and choose New from the context menu. Tip: If you don't see the General node, click the All Technologies tab at the top of the Gallery.	
adf-js-partitions.xml	
as the file name and save it in the WEB-INF	
directory. partitions	
: The root element of the configuration file. partition	
: Create as a child to the partitions	
element. This element must contain one partition-name	
child element and one or more feature	
elements. partition-name	
: Create as a child to the partition	
element. Specifies the name of the partition. This value will be used to produce a unique URL for this partition's JavaScript library. feature	
: Create as a child to the partition	
element. Specifies the feature to be included in this partition. There can be multiple feature	
elements. Tip: Any feature configured in theadf-js-features.xml file that does not appear in a partition is treated as if it were in its own partition.	
Example 4-24 shows the partition	
element for the tree	
partition that contains the AdfRichTree	
and AdfRichTreeTable	
features.	
ADF Faces loads the library partitioning configuration files at application initialization time. First, ADF Faces searches for all adf-js-features.xml	
files in the META-INF	
directory and loads all that are found (including the ADF Faces default feature configuration file).	
For the partition configuration file, ADF Faces looks for a single file named adf-js-partitions.xml	
in the WEB-INF	
directory. If no such file is found, the ADF Faces default partition configuration is used.	
During the render traversal, ADF Faces collects information about which JavaScript features are required by the page. At the end of the traversal, the complete set of JavaScript features required by the (rendered) page contents is known. Once the set of required JavaScript features is known, ADF Faces uses the partition configuration file to map this set of features to the set of required partitions. Given the set of required partitions, the HTML <script>	
references to these partitions are rendered just before the end of the HTML document.	
This chapter describes the JSF page request lifecycle and the additions to the lifecycle from ADF Faces, and how to use the lifecycle properly in your application.	
This chapter includes the following sections:	
Because the ADF Faces framework extends the JSF framework, any application built using the ADF Faces framework uses the standard JSF page request lifecycle. However, the ADF Faces framework extends that lifecycle, providing additional functionality, such as a client-side value lifecycle, a subform component that allows you to create independent submittable sections on a page without the drawbacks (for example, lost user edits) of using multiple forms on a single page, and additional scopes.	
To better understand the lifecycle enhancements that the framework delivers, it is important that you understand the standard JSF lifecycle. This section provides only an overview. For a more detailed explanation, refer to the JSF specification at http://www.jcp.org/en/jsr/detail?id=314	
.	
When a JSF page is submitted and a new page is requested, the JSF page request lifecycle is invoked. This lifecycle handles the submission of values on the page, validation for components on the current page, navigation to and display of the components on the resulting page, as well as saving and restoring state. The JSF lifecycle phases use a UI component tree to manage the display of the faces components. This tree is a runtime representation of a JSF page: each UI component tag in a page corresponds to a UI component instance in the tree. The FacesServlet	
object manages the page request lifecycle in JSF applications. The FacesServlet	
object creates an object called FacesContext	
, which contains the information necessary for request processing, and invokes an object that executes the lifecycle.	
Figure 5-1 shows the JSF lifecycle of a page request. As shown, events are processed before and after each phase.	
In a JSF application, the page request lifecycle is as follows:	
immediate	
attribute set to true	
, then the validation, the conversion, and the events associated with the component are processed during this phase. For more information, see Section 5.2, "Using the Immediate Attribute." If there are no failures, the required	
attribute on the component is checked. If the value is true	
, and the associated field contains a value, then any associated validators are run. If the value is true	
and there is no field value, this phase completes (all remaining validators are executed), but the lifecycle jumps to the Render Response phase. If the value is false	
, the phase completes, unless no value is entered, in which case no validation is run. For more information about conversion and validation, see Chapter 7, "Validating and Converting Input."	
At the end of this phase, converted versions of the local values are set, any validation or conversion error messages and events are queued on the FacesContext	
object, and any value change events are delivered.	
Tip: In short, for an input component that can be edited, the steps for the Process Validations phase is as follows:	
To help illustrate the lifecycle, consider a page that has a simple input text component where a user can enter a date and then click a command button to submit the entered value. A valueChangeListener	
method is also registered on the component. Example 5-1 shows the code for the example.	
Example 5-1 Sample Code to Illustrate the JSF Lifecycle	
Suppose a user enters the string "June 25, 2005" and clicks the submit button. Figure 5-2 shows how the values pass through the lifecycle and where the different events are processed.	
You can use the immediate	
attribute to allow processing of components to move up to the Apply Request Values phase of the lifecycle. When actionSource	
components (such as a commandButton	
) are set to immediate	
, events are delivered in the Apply Request Values phase instead of in the Invoke Application phase. The actionListener	
handler then calls the Render Response phase.	
For example, you might want to configure a Cancel button to be immediate	
, and have the action return a string used to navigate back to the previous page (for more information about navigation, see Chapter 20, "Working with Navigation Components"). Because the Cancel button is set to immediate	
, when the user clicks the Cancel button, all validation is skipped, any entered data is not updated to the model, and the user navigates as expected, as shown in Figure 5-3.	
Note: A command button that does not provide any navigation and is set toimmediate will also go directly to the Render Response phase: the Validation, Update Model, and Invoke Application phases are skipped, so any new values will not be pushed to the server.	
As with command components, for components that invoke disclosure events, (such as a showDetail	
component), and for editableValueHolder	
components (components that hold values that can change, such as an inputText	
component) the events are delivered to the Apply Request Values phase. However, for editableValueHolder	
components, instead of skipping phases, conversion, validation, and delivery of valueChangeEvents	
events are done earlier in the lifecycle, during the Apply Request Values phase, instead of after the Process Validations phase. No lifecycle phases are skipped.	
Figure 5-4 shows the lifecycle for an input component whose immediate	
attribute is set to true	
. The input component takes a date entered as a string and stores it as a date object when the command button is clicked.	
Setting immediate	
to true	
for an input component can be useful when one or more input components must be validated before other components. Then, if one of those components is found to have invalid data, validation is skipped for the other input components in the same page, thereby reducing the number of error messages shown for the page.	
Performance Tip: There are some cases where setting theimmediate attribute to true can lead to better performance:	
As another example, suppose you have a form with an input component used to search for a string with a command button configured to invoke the search execution, and another input text component used to input a date with an associated command button used to submit the date. In this example, we want to set the search input component and its button both to be immediate	
. This will allow the user to execute a search, even if an invalid string is entered into the date field, because the date input component's converter is never fired. Also, because the search input text is set to immediate	
and the date input field is not, only the search input text will be processed. And because both fields are within the same form, if the user enters a valid date in the date field, but then performs a search and does not click the Save button, the entered value will still be displayed when the search results are displayed. Example 5-2 shows the code used for the two fields and two buttons.	
Example 5-2 Input Component and Command Components Using Immediate	
Figure 5-5 shows the lifecycle for this page when a user does the following:	
apple	
into the Date input field (which is not a valid entry) orange	
into the Search field orange	
When using the immediate	
attribute for editableValueHolder	
and actionSource	
components on the same page, note the following issues:	
editableValueHolder	
component is marked as immediate	
, it will execute before the Update Model Values phase. This could be an issue when an immediate actionSource	
component requires data from an editableValueHolder	
component, as data entered into an editableValueHolder	
component is not available to the model until after the Update Model Values phase. If you have an immediate actionSource	
component, and that component needs data, then set immediate	
on the editableValueHolder	
fields as well. Then, you can call the getValue	
method on the editableValueHolder	
component and the local value will be returned. It will not have been pushed into the model yet, but it will be available on the component. editableValueHolder	
component fails validation, any immediate actionSource	
component will still execute. Before you begin	
It may be helpful to have an understanding of the immediate	
attribute. For more information, see Section 5.2, "Using the Immediate Attribute."	
To use the immediate attribute:	
immediate	
attribute to true	
. ADF Faces provides an optimized lifecycle that you can use when you want the JSF page request lifecycle (including conversion and validation) to be run only for certain components on a page. For example, suppose you have an inputText	
component on a page whose required attribute is set to true	
. On the same page are radio buttons that when selected cause the page to either show or hide text in an outputText	
component, as shown in Figure 5-6.	
Also assume that you want the user to be able to select a radio button before entering the required text into the field. While you could set the radio button components to automatically trigger a submit action and also set their immediate	
attribute to true	
so that they are processed before the inputText	
component, you would also have to add a valueChangeEvent	
listener, and in it call the Render Response phase so that validation is not run on the input text component when the radio buttons are processed.	
Instead of having to write this code in a listener, ADF Faces allows you to set boundaries on the page that allow the lifecycle to run just on components within the boundary. Event root components determine these boundaries on the page, and so allow the lifecycle to run just on components within that boundary. The event root component can be determined in two ways:	
showDetail	
component (see Section 9.8, "Displaying and Hiding Contents Dynamically") indicates that the showDetail	
component is a root, and so the lifecycle is run only on the showDetail	
component and any child components. Aside from the lifecycle running on the event root and it's child components, the lifecycle may also be run on any components configured to listen for that event. Configuring a component to listen for events on root components in order to be processed is called cross-component refresh.	
Cross-component refresh allows you to set up dependencies so that the events from one component act as triggers for another component, known as the target. When any event occurs on the trigger component, the lifecycle is run on any target components, as well as on any child components of both the trigger and the target, causing only those components to be rerendered. This is considered a partial page rendering (PPR).	
In the radio button example, to have the lifecycle run just on the radio buttons and the output text component, you would set the radio buttons to be triggers and the panelGroupLayout	
component that contains the output text to be the target, as shown in Example 5-3.	
Tip: Because the output text won't be rendered when it's configured to hide, it cannot be a target. Therefore it is placed in apanelGroupLayout component, which is then configured to be the target.	
Example 5-3 Example of Cross-Component Rendering	
Because the autoSubmit	
attribute is set to true	
on the radio buttons, when they are selected, a SelectionEvent	
is fired, for which the radio button is considered the root. Because the panelGroupLayout	
component is set to be a target to both radio components, when that event is fired, only the selectOneRadio	
(the root), the panelGroupLayout	
component (the root's target), and its child component (the outputText	
component) are processed through the lifecycle. Because the outputText	
component is configured to render only when the Show radio button is selected, the user is able to select that radio button and see the output text, without having to enter text into the required input field above the radio buttons.	
For more information about how the ADF Faces framework uses PPR, and how you can use PPR throughout your application, see Chapter 8, "Rerendering Partial Page Content."	
There may be cases where PPR will not be able to keep certain components from being validated. For example, suppose instead of using an outputText	
component, you want to use an inputText	
component whose required	
attribute is set to true	
, inside the panelGroupLayout	
component, as shown in Example 5-4.	
Example 5-4 inputText Component Within a panelGroup Component Will Be Validated with Cross-Component PPR	
In this example, the inputText	
component will be validated because the lifecycle runs on the root (the selectBooleanRadio	
component), the target (the panelGroupLayout	
component), and the target's child (the inputText	
component). Validation will fail because the inputText	
component is marked as required and there is no value, so an error will be thrown. Because of the error, the lifecycle will skip to the Render Response phase and the model will not be updated. Therefore, the panelGroupLayout	
component will not be able to show or hide because the value of the radio button will not be updated.	
For cases like these, you can skip validation using the immediate	
attribute on the radio buttons. Doing so causes the valueChangeEvent	
on the buttons to run before the Process Validation phase of the inputText	
component. Then you need to add a valueChangeListener	
handler method that would call the Render Response phase (thereby skipping validation of the input component), and set the values on the radio buttons and input component. Example 5-5 shows the JSF code to do this.	
Example 5-5 Using the immediate Attribute and a valueChangeListener	
Example 5-6 shows the valueChangeListener	
code.	
For the inputListOfValues	
and inputComboBoxListOfValues	
components, the procedures described in Section 5.3.1, "What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle," will not work. Consider the following example.	
Suppose you have an inputListOfValues	
component from which a user selects an employee name, and an inputText	
component whose required attribute is set to true	
, which is updated with the employee's ID number once the employee is selected, as shown in Figure 5-7.	
To achieve this, you might set the Empno field to have the Ename field as a partial trigger, as shown in Example 5-7.	
Example 5-7	
As with the radio button and input component example in Section 5.3.1, "What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle," once the user clicks the search icon, the inputText	
component will be validated because the lifecycle runs on both the root (the inputListOfValues	
component) and the target (the inputText	
component). Validation will fail because the inputText	
component is marked as required and there is no value, so an error will be thrown, as shown in Figure 5-8.	
However, the solution recommended in Section 5.3.1, "What You May Need to Know About Using the Immediate Attribute and the Optimized Lifecycle," of setting the LOV component's immediate attribute to true	
and using a ValueChange	
Listener on the LOV will not fix the validation error. For LOV components, the ValueChangeEvent	
is queued only when the value of the LOV component changes. For this reason, setting the immediate	
attribute to true	
has no effect when the user clicks the search icon, because at that point the ADF LaunchPopupEvent	
is queued for the Invoke Application phase always, regardless of the value of the immediate	
attribute. In other words, the optimized lifecycle is run as normal on both the root and target components and therefore the input component throws a validation error.	
When the user selects a new value from the LOV popup, the LOV component queues two events. One is a ValueChangeEvent	
to signal a change in value for the component. The second is a ReturnPopupEvent	
queued for the Invoke Application phase, which gives application methods a chance to handle the selection. Both these events need to occur in order for the LOV to behave as expected.	
As mentioned, the LOV component queues a ValueChangeEvent	
only when the user selects a new value. If you were to set the immediate	
attribute to true	
on the LOV component, this event would be queued for the Apply Request Values phase and the new value would be validated. In addition if you were to create a ValueChangeListener	
method for the LOV component, and in its implementation jump to the Render Response phase to avoid validation of the input component, the selected value would never get pushed to the model, the ReturnPopupListener	
would never get called during the Invoke Application phase, and the target input component would not get updated with new value, as shown in Figure 5-9.	
To resolve this issue of needing both the ValueChangeEvent	
and the ReturnPopupEvent	
to be queued as part of the same request and to have any target fields refreshed with newly selected values, instead of declaratively setting the LOV component as a partial trigger for the input component and creating a method for the ValueChangeListener	
, you need to create a listener for the ReturnPopupEvent	
. This listener must programmatically set the input components as partial targets for the LOV. You do not need to set the LOV's immediate	
attribute to true	
because the input component is no longer a target for the LOV until the ReturnPopupListener	
method is executed, and so it will not fail validation because the lifecycle will not be run on it. And because a listener method is used for the ReturnPopupEvent	
instead of for the ValueChangeEvent	
, both events can be queued and the model updated appropriately.	
Example 5-8 shows the needed page code for the LOV and input components.	
Example 5-8	
The input component uses its binding	
attribute to store the instance on a backing bean, allowing the instance to be accessed by the listener method. The listener method then accesses the input component and sets it as a partial target for the LOV, as shown in Example 5-9.	
For more information about programmatically setting partial page rendering, see Section 8.3, "Enabling Partial Page Rendering Programmatically."	
The ADF Faces framework provides client-side conversion and validation. You can create your own JavaScript-based converters and validators that run on the page without a trip to the server.	
You can use client-side validation so that when a specific client event is queued, it triggers client validation of the appropriate form or subform (for more information about subforms, see Section 5.5, "Using Subforms to Create Sections on a Page"). If this client validation fails, meaning there are known errors, then the events that typically propagate to the server (for example, a command button's actionEvent	
when a form is submitted) do not go to the server. Having the event not delivered also means that nothing is submitted and therefore, none of the client listeners is called. This is similar to server-side validation in that when validation fails on the server, the lifecycle jumps to the Render Response phase; the action event, though queued, will never be delivered; and the actionListener	
handler method will never be called.	
For example, ADF Faces provides the required	
attribute for input components, and this validation runs on the client. When you set this attribute to true	
, the framework will show an error on the page if the value of the component is null	
, without requiring a trip to the server. Example 5-10 shows code that has an inputText	
component's required	
attribute set to true	
, and a command button whose actionListener	
attribute is bound to a method on a managed bean.	
Example 5-10 Simple Client-Side Validation Example	
When this page is run, if you clear the field of the value of the inputText	
component and tab out of the field, the field will redisplay with a red outline. If you then click into the field, an error message will state that a value is required, as shown in Figure 5-10. There will be no trip to the server; this error detection and message generation is all done on the client.	
In this same example, if you were to clear the field of the value and click the Search button, the page would not be submitted because the required field is empty and therefore an error occurs; the action event would not be delivered, and the method bound to the action listener would not be executed. This process is what you want, because there is no reason to submit the page if the client can tell that validation will fail on the server.	
For more information about using client-side validation and conversion, see Chapter 7, "Validating and Converting Input."	
In the JSF reference implementation, if you want to independently submit a section of the page, you have to use multiple forms. However multiple forms require multiple copies of page state, which can result in the loss of user edits in forms that aren't submitted.	
ADF Faces adds support for a subform component, which represents an independently submittable section of a page. The contents of a subform will be validated (or otherwise processed) only if a component inside of the subform is responsible for submitting the page, allowing for comparatively fine-grained control of the set of components that will be validated and pushed into the model without the compromises of using entirely separate form elements. When a page using subforms is submitted, the page state is written only once, and all user edits are preserved.	
Best Practice: Always use only a singleform tag per page. Use the subform tag where you might otherwise be tempted to use multiple form tags.	
A subform will always allow the Apply Request Values phase to execute for its child components, even when the page was submitted by a component outside of the subform. However, the Process Validations and Update Model Values phases will be skipped (this differs from an ordinary form component, which, when not submitted, cannot run the Apply Request Values phase). To allow components in subforms to be processed through the Process Validations and Update Model Value phases when a component outside the subform causes a submit action, use the default	
attribute. When a subform's default	
attribute is set to true	
, it acts like any other subform in most respects, but if no subform on the page has an appropriate event come from its child components, then any subform with default	
set to	
true	
will behave as if one of its child components caused the submit. For more information about subforms, see Section 11.2, "Defining Forms."	
At runtime, you pass data to pages by storing the needed data in an object scope where the page can access it. The scope determines the lifespan of an object. Once you place an object in a scope, it can be accessed from the scope using an EL expression. For example, you might create a managed bean named foo	
, and define the bean to live in the Request scope. To access that bean, you would use the expression #{requestScope.foo}	
.	
There are five types of scopes in a standard JSF application:	
application	
Scope	
: The object is available for the duration of the application. session	
Scope	
: The object is available for the duration of the session. viewScope	
: The object is available until the user finishes interaction with the current view. The object is stored in a map on the UIViewRoot	
object. Note that this object is emptied upon page refresh or a redirect to the view. Tip: If you need the object to survive a page refresh or redirect tot he same view, then use the ADF Faces version ofviewScope .	
flashScope	
and it will be available to the resulting page, surviving redirects. request	
Scope	
: The object is available for the duration between the time an HTTP request is sent until a response is sent back to the client. In addition to the standard JSF scopes, ADF Faces provides the following scopes:	
pageFlow	
Scope	
: The object is available as long as the user continues navigating from one page to another. If the user opens a new browser window and begins navigating, that series of windows will have its own pageFlowScope	
scope. backingBean	
Scope	
: Used for managed beans for page fragments and declarative components only. The object is available for the duration between the time an HTTP request is sent until a response is sent back to the client. This scope is needed because there may be more than one page fragment or declarative component on a page, and to avoid collisions between values, any values must be kept in separate scope instances. Use backingBeanScope	
scope for any managed bean created for a page fragment or declarative component. view	
Scope	
: The object is available until the ID for the current view changes. Use viewScope	
scope to hold values for a given page. Unlike the JSF viewScope	
, objects stored in the ADF Faces viewScope	
will survive page refreshes and redirects to the same view ID. Note: Because these are not standard JSF scopes, EL expressions must explicitly include the scope to reference the bean. For example, to reference theMyBean managed bean from the pageFlowScope scope, your expression would be #{pageFlowScope.MyBean} .	
Object scopes are analogous to global and local variable scopes in programming languages. The wider the scope, the higher the availability of an object. During their lifespan, these objects may expose certain interfaces, hold information, or pass variables and parameters to other objects. For example, a managed bean defined in sessionScope	
scope will be available for use during multiple page requests. However, a managed bean defined in requestScope	
scope will be available only for the duration of one page request.	
Figure 5-11 shows the time period in which each type of scope is valid, and its relationship with the page flow.	
When determining what scope to register a managed bean with or to store a value in, always try to use the narrowest scope possible. Use the sessionScope	
scope only for information that is relevant to the whole session, such as user or context information. Avoid using the sessionScope	
scope to pass values from one page to another.	
Note: If you are using the full Fusion technology stack, then you have the option to register your managed beans in various configuration files. For more information, see the "Using a Managed Bean in a Fusion Web Application" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
Note: If you are using the full Fusion technology stack and you need information about passing values between pages in an ADF bounded task flow, or between ADF regions and pages, refer to the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
The ADF Faces pageFlowScope	
scope makes it easier to pass values from one page to another, thus enabling you to develop master-detail pages more easily. Values added to the pageFlowScope	
scope automatically continue to be available as the user navigates from one page to another, even if you use a redirect	
directive. But unlike session	
scope, these values are visible only in the current page flow or process. If the user opens a new window and starts navigating, that series of windows will have its own process. Values stored in each window remain independent.	
Like objects stored in any standard JSF scope, objects stored in the pageFlow	
scope can be accessed through EL expressions. The only difference with the pageFlow	
scope is that the object names must use the pageFlow	
Scope	
prefix. For example, to have a button's label provided by a managed bean stored in the pageFlow	
scope, and to have a method on the bean called when the button is selected, you might use the following code on your page:	
The pageFlowScope	
is a java.util.Map	
object that may be accessed from Java code. The setPropertyListener	
tag allows you to set property values onto a scope, and also allows you to define the event the tag should listen for. For example, when you use the setPropertyListener	
tag with the type	
attribute set to action	
, it provides a declarative way to cause an action source (for example, commandButton	
) to set a value before navigation. You can use the pageFlowScope	
scope with the setPropertyListener	
tag to pass values from one page to another, without writing any Java code in a backing bean. For example, you might have one page that uses the setPropertyListener	
tag and a command component to set a value in the pageFlowScope	
scope, and another page whose text components use the pageFlowScope	
scope to retrieve their values.	
You can also use the pageFlowScope	
scope to set values between secondary windows such as dialogs. When you launch secondary windows from, for example, a commandButton	
component, you can use a launchEvent	
event and the pageFlowScope	
scope to pass values into and out of the secondary windows without overriding values in the parent process.	
You can access pageFlow	
scope from within any Java code in your application. Remember to clear the scope once you are finished.	
Note: If your application uses Oracle ADF Controller, then you do not have to manually clear the scope.	
Before you begin	
It may be helpful to have an understanding of object scopes. For more information, see Section 5.6, "Object Scope Lifecycles." You may also want to understand how pageFlow scope is used to pass values. For more information, see Section 5.7, "Passing Values Between Pages."	
To use pageFlowScope in Java code:	
pageFlowScope	
scope, use the org.apache.myfaces.trinidad.context.RequestContext.	
getPageFlowScope()	
method. For example, to retrieve an object from the pageFlowScope	
scope, you might use the following Java code:	
pageFlowScope	
scope, access it and then manually clear it. For example, you might use the following Java code to clear the scope:	
To use the pageFlowScope	
scope without writing Java code, use a setPropertyListener	
tag in conjunction with a command component to set a value in the scope. The setPropertyListener	
tag uses the type	
attribute that defines the event type it should listen for. It ignores all events that do not match its type. Once set, you then can access that value from another page within the page flow.	
Tip: Instead of using thesetActionListener tag (which may have been used in previous versions of ADF Faces), use the setPropertyListener tag and set the event type to action .	
To set a value in the pageFlowScope scope:	
Or right-click the component and choose Insert inside Button > ADF Faces > setPropertyListener.	
For example, say you have a managed bean named MyBean	
that stores the name value for an employee, and you want to pass that value to the next page. You would enter #{myBean.empName}	
in the From field.	
Set the To field to be a value on the pageFlowScope	
scope.	
For example, you might enter #{pageFlowScope.empName}	
in the To field.	
This allows the listener to listen for the action event associated with the command component.	
To access a value from the pageFlowScope scope:	
To	
value set on the setPropertyListener	
tag. For example, to have an outputText	
component access the employee name, you would set the value of that component to be #{pageFlowScope.empName}	
.	
When a user clicks a command button that contains a setPropertyListener	
tag, the listener executes and the To	
value is resolved and retrieved, and then stored as a property on the pageFlowScope	
scope. On any subsequent pages that access that property through an EL expression, the expression is resolved to the value set by the original page.	
This chapter describes how to handle events on the server as well as on the client.	
This chapter includes the following sections:	
In traditional JSF applications, event handling typically takes place on the server. JSF event handling is based on the JavaBeans event model, where event classes and event listener interfaces are used by the JSF application to handle events generated by components.	
Examples of events in an application include clicking a button or link, selecting an item from a menu or list, and changing a value in an input field. When a user activity occurs such as clicking a button, the component creates an event object that stores information about the event and identifies the component that generated the event. The event is also added to an event queue. At the appropriate time in the JSF lifecycle, JSF tells the component to broadcast the event to the corresponding registered listener, which invokes the listener method that processes the event. The listener method may trigger a change in the user interface, invoke backend application code, or both.	
Like standard JSF components, ADF Faces command components deliver ActionEvent	
events when the components are activated, and ADF Faces input and select components deliver ValueChangeEvent	
events when the component local values change.	
For example, in the File Explorer application, the File Menu contains a submenu whose commandMenuItem	
components allow a user to create a new file or folder. When users click the Folder commandMenuItem	
, an ActionEvent	
is invoked. Because the EL expression set as the value for the component's actionListener	
attribute resolves to the createNewDirectory	
method on the headerManager	
managed bean, that method is invoked and a new directory is created.	
Note: Any ADF Faces component that has built-in event functionality must be enclosed in theform tag.	
While ADF Faces adheres to standard JSF event handling techniques, it also enhances event handling in two key ways by providing:	
Unlike standard JSF events, ADF Faces events support Ajax-style partial postbacks to enable partial page rendering (PPR). Instead of full page rendering, ADF Faces events and components can trigger partial page rendering, that is, only portions of a page refresh upon request.	
Certain components are considered event root components. Event root components determine boundaries on the page, and so allow the lifecycle to run just on components within that boundary (for more information about this aspect of the lifecycle, see Section 5.3, "Using the Optimized Lifecycle"). When an event occurs within an event root, only those components that are children to the root are refreshed on the page. An example of an event root component is a popup. When an event happens within a popup, only the popup and its children are rerenderd, and not the whole page.	
Additionally, certain events indicate a specific component as an event root component. For example, the disclosure event sent when a expanding or collapsing a showDetail	
component (see Section 9.8, "Displaying and Hiding Contents Dynamically"), indicates that the showDetail	
component is a root. The lifecycle is run only on the showDetail	
component (and any child components or other components that point to this as a trigger), and only they are rerendered when it is expanded or collapsed.	
Table 6-1 shows the all event types in ADF Faces, and whether or not the source component is an event root.	
Table 6-1 Events and Event Root Components	
Event Type	Component Trigger
---	---
All command components	
All command components	NA
NA	
NA	
NA	
NA	
All components	NA
NA	
NA	
All command components	
All input and select components (components that implement	
Tip: If components outside of the event root need to be processed when the event root is processed, then you must set thepartialTrigger attribute on those components to the ID of the event root component. For more information, see Section 8.2, "Enabling Partial Page Rendering Declaratively."	
In addition to server-side action and value change events, ADF Faces components also invoke client-side action and value change events, and other kinds of server and client events. Some events are generated by both server and client components (for example, selection events); some events are generated by server components only (for example, launch events); and some events are generated by client components only (for example, load events).	
By default, most client events are propagated to the server. Changes to the component state are automatically synchronized back to the server to ensure consistency of state, and events are delivered, when necessary, to the server for further processing. However, you can configure your event so that it does not propagate.	
In addition, any time you register a client-side event listener on the server-side Java component, the ADF Faces framework assumes that you require a JavaScript component, so a client-side component is created.	
Client-side JavaScript events can come from several sources: they can be derived automatically from DOM events, from property change events, or they can be manually created during the processing of other events.	
ADF Faces provides a number of server-side events. Table 6-2 lists the events generated by ADF Faces components on the server, and the components that trigger them.	
Table 6-2 ADF Faces Server Events	
Event	Triggered by Component...
---	---
All command components. For more information, see Chapter 20, "Working with Navigation Components."	
Used to update components based on events. For more information see Chapter 35, "Using the Active Data Service with an Asynchronous Backend."	
All input and select components (components that implement	
The Calendar component. For more information, see Chapter 17, "Using a Calendar Component."	
The	
The	
The	
The	
Components that support drag and drop. For more information, see Chapter 33, "Adding Drag and Drop Functionality."	
The tree and	
The	
All command components. For more information, see Chapter 20, "Working with Navigation Components."	
The	
The	
The	
The popup component. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."	
The	
The	
All command components. For more information, see Chapter 20, "Working with Navigation Components."	
The	
The popup component. For more information, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."	
The tree and	
The	
The	
All input and select components (components that implement	
Delivered when the	
Delivered when the current window is unloaded in order to navigate to a new location. For more information, see the ADF Faces JavaDoc.	
* This focus event is generated when focusing in on a specific subtree, which is not the same as a client-side keyboard focus event.
** The LoadEvent
event is fired after the initial page is displayed (data streaming results may arrive later).
All server events have event listeners on the associated component(s). You need to create a handler that processes the event and then associate that handler code with the listener on the component.
For example, in the File Explorer application, a selection event is fired when a user selects a row in the table. Because the table's selectionListener
attribute is bound to the tableSelectFileItem
handler method on the TableContentView.java
managed bean, that method is invoked in response to the event.
Before you begin
It may be helpful to have an understanding of server-side events. For more information, see Section 6.2, "Using ADF Faces Server Events."
To handle server-side events:
In a managed bean (or the backing bean for the page that will use the event listener), create a public method that accepts the event (as the event type) as the only parameter and returns void
. Example 6-1 shows the code for the tableSelectFileItem
handler. (For information about creating and using managed beans, see Section 3.6, "Creating and Using Managed Beans.")
Example 6-1 Event Listener Method
Tip: If the event listener code is likely to be used by more than one page in your application, consider creating an event listener implementation class that all pages can access. All server event listener class implementations must override aprocessEvent() method, where Event is the event type. For example, the public void processLaunch (LaunchEvent evt) { // your code here } |
Example 6-2 shows sample code for registering a selection event listener method on a table
component.
Most components can also work with client-side events. Handling events on the client saves a roundtrip to the server. When you use client-side events, instead of having managed beans contain the event handler code, you use JavaScript, which can be contained either on the calling page or in a JavaScript library.
By default, client events are processed only on the client. However, some event types are also delivered to the server, for example, AdfActionEvent
events, which indicate a button has been clicked. Other events may be delivered to the server depending on the component state. For example, AdfValueChangeEvent
events will be delivered to the server when the autoSubmit
attribute is set to true
. You can cancel an event from being delivered to the server if no additional processing is needed. However, some client events cannot be canceled. For example, because the popupOpened
event type is delivered after the popup window has opened, this event delivery to the server cannot be canceled.
Performance Tip: If no server processing is needed for an event, consider canceling the event at the end of processing so that the event does not propagate to the server. For more information, see Section 6.3.5, "How to Prevent Events from Propagating to the Server." |
Table 6-3 lists the events generated by ADF Faces client components, whether or not events are sent to the sever, whether or not the events are cancelable, and the components that trigger the events.
Table 6-3 ADF Faces Client Events
Event Class | Event Type | Propagates to Server | Can Be Canceled | Triggered by Component |
---|---|---|---|---|
| action | Yes | Yes | All command components |
|
| No | No | Triggered by the page |
|
| Yes | No |
|
|
| Yes | Yes |
|
| load | Yes | Yes |
After the document's contents have been displayed on the client, even when PPR navigation is used. It does not always correspond to the onLoad DOM event. |
| No | Yes | Any component that can receive focus | |
| event | Yes | Yes |
When user selects the OK or Cancel button in a dialog |
| event | Yes | Yes |
When the disclosure state is toggled by the user |
| inlineFrameLoad | Yes | Yes |
When the internal |
|
| Yes | No | Any component that supports drag and drop |
|
| Yes | Yes |
|
|
| Yes | Yes |
|
|
| Yes | Yes |
|
|
| Yes | Yes |
|
|
| Yes | Yes |
After a popup is unexpectedly closed or the cancel method is invoked |
| popupClosed | No | No |
After a popup window or dialog is closed |
| popupOpened | No | No |
After a popup window or dialog is opened |
| popupOpening | No | Yes |
Prior to opening a popup window or dialog |
| propertyChange | No | No | All components |
| event | Yes | Yes |
Upon a query action (that is, when the user clicks the search icon or search button) |
| event | Yes | Yes |
|
|
| Yes | Yes | All command components |
|
| Yes | Yes |
|
|
| Yes | Yes |
|
| rowDisclosure | Yes | Yes |
When the row disclosure state is toggled |
|
| Always for disclosure event on a table. Yes, if there is a selection listener or a disclosure listener on the server. | Yes |
|
| selection | Yes | Yes |
When the selection state changes |
| sort | Yes | Yes |
When the user sorts the table data |
| valueChange | Yes | Yes | All input and select components (components that implement When the value of an input or select component is changed |
ADF Faces also supports client keyboard and mouse events, as shown in Table 6-4.
Table 6-4 Keyboard and Mouse Event Types Supported
Event Type | Event Fires When... |
---|---|
| User clicks a component |
| User double-clicks a component |
| User moves mouse down on a component |
| User moves mouse up on a component |
| User moves mouse while over a component |
| Mouse enters a component |
| Mouse leaves a component |
| User presses key down while focused on a component |
| User releases key while focused on a component |
| When a successful keypress occurs while focused on a component |
| Component gains keyboard focus |
| Component loses keyboard focus |
Best Practice: Keyboard and mouse events wrap native DOM events using theAdfUIInputEvent subclass of the AdfBaseEvent class, which provides access to the original DOM event and also offers a range of convenience functions for retrieval of key codes, mouse coordinates, and so on. The AdfBaseEvent class also accounts for browser differences in how these events are implemented. Consequently, you must avoid invoking the getNativeEvent() method on the directly, and instead use the AdfUIInputEvent API. |
The clientListener
tag provides a declarative way to register a client-side event handler script on a component. The script will be invoked when a supported client event type is fired. Example 6-3 shows an example of a JavaScript function associated with an action event.
Example 6-3 clientListener Tag
Tip: Use theclientListener tag instead of the component's JavaScript event properties. |
All ADF Faces components support the JSF 2.0 client behavior API. Client events on ADF Faces components are also exposed as client behaviors. Client behaviors tags (like f:ajax
) allow you to declaratively attach JavaScript to a component, which will then execute in response to a client behavior. For example, Example 6-4 shows the f:ajax
tag attached to an inputText
component. This tag will cause the outputText
component to render when the change
client event occurs on the inputText
component.
Example 6-4 Using the f:ajax Client Behavior Tag
To use client-side events, you need to first create the JavaScript that will handle the event. You then use a clientListener
tag.
Before you begin
It may be helpful to have an understanding of client-side events. For more information, see Section 6.3, "Using JavaScript for ADF Faces Client Events."
To use client-side events:
If you want your event handler to operate on another component, you must locate that component on the page. For example, in the File Explorer application, when users choose the Give Feedback menu item in the Help menu, the associated JavaScript function has to locate the help popup dialog in order to open it. For more information about locating client components, see Section 4.5, "Locating a Client Component on a Page."
If you have more than one of the same component on the page, your JavaScript function may need to determine which component issued the event. For example, say more than one component can open the same popup dialog, and you want that dialog aligned with the component that called it. You must know the source of the AdfLaunchPopupEvent
in order to determine where to align the popup dialog. For more information, see Section 6.3.2, "How to Return the Original Source of the Event."
It may be that your client event handler will need to work with certain attributes of a component. For example, in the File Explorer application, when users choose the About menu item in the Help menu, a dialog launches that allows users to provide feedback. The function used to open and display this dialog is also used by other dialogs, which may need to be displayed differently. Therefore, the function needs to know which dialog to display along with information about how to align the dialog. This information is carried in client attributes. Client attributes can also be used to marshall custom server-side attributes to the client. For more information, see Section 6.3.3, "How to Use Client-Side Attributes for an Event."
Some of the components propagate client-side events to the server, as shown in Table 6-3. If you do not need this extra processing, then you can cancel that propagation. For more information, see Section 6.3.5, "How to Prevent Events from Propagating to the Server."
Note: Alternatively, you can use a JSF 2.0 client behavior tag (such asf:ajax) to respond to the client event, as all client events on ADF Faces components are also exposed as client behaviors. For more information, see the Java EE 6 tutorial (http://download.oracle.com/javaee/index.html) |
The method
attribute of the clientListener
tag specifies the JavaScript function to call when the corresponding event is fired. The JavaScript function must take a single parameter, which is the event object.
The type
attribute of the clientListener
tag specifies the client event type that the tag will listen for, such as action
or valueChange
. Table 6-3 lists the ADF Faces client events.
The type
attribute of the clientListener
tag also supports client event types related to keyboard and mouse events. Table 6-4 lists the keyboard and mouse event types.
Example 6-5 shows the code used to invoke the showHelpFileExplorerPopup
function from the Explorer.js
JavaScript file.
showAboutFileExplorerPopup
function. Example 6-6 Adding Attributes
Best Practice: Keyboard and mouse events wrap native DOM events using theAdfUIInputEvent subclass of the AdfBaseEvent class, which provides access to the original DOM event and also offers a range of convenience functions for retrieval of key codes, mouse coordinates, and so on. The AdfBaseEvent class also accounts for browser differences in how these events are implemented. Consequently, you must avoid invoking the getNativeEvent() method on the directly, and instead use the AdfUIInputEvent API. |
The JavaScript method getSource()
returns the original source of a client event. For example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in Example 6-7, that could be used by multiple events to set the alignment on a given popup dialog or window, using client attributes to pass in the values. Because each event that uses the function may have different values for the attributes, the function must know which source fired the event so that it can access the corresponding attribute values (for more about using client attributes, see Section 6.3.3, "How to Use Client-Side Attributes for an Event").
Example 6-7 Finding the Source Component of a Client Event
The getSource()
method is called to determine the client component that fired the current focus event, which in this case is the popup component.
There may be cases when you want the script logic to cause some sort of change on a component. To do this, you may need attribute values passed in by the event. For example, the File Explorer application contains the showAboutFileExplorerPopup
function shown in Example 6-8, that can be used to set the alignment on a given popup component, using client attributes to pass in the values. The attribute values are accessed by calling the getProperty
method on the source component.
Example 6-8 Attribute Values Are Accessed from JavaScript
The values are set on the source component, as shown in Example 6-9.
Example 6-9 Setting Attributes on a Component
Using attributes in this way allows you to reuse the script across different components, as long as they all trigger the same event.
There may be times when you do not want the user to be able to interact with the UI while a long-running event is processing. For example, suppose your application uses a button to submit an order, and part of the processing includes creating a charge to the user's account. If the user were to inadvertently press the button twice, the account would be charged twice. By blocking user interaction until server processing is complete, you ensure no erroneous client activity can take place.
The ADF Faces JavaScript API includes the AdfBaseEvent.preventUserInput
function. To prevent all user input while the event is processing, you can call the preventUserInput
function, and a glass pane will cover the entire browser window, preventing further input until the event has completed a roundtrip to the server.
You can use the preventUserInput
function only with custom events, events raised in a custom client script, or events raised in a custom client component's peer. Additionally, the event must propagate to the server. Example 6-10 shows how you can use preventUserInput
in your JavaScript.
Example 6-10 Blocking UI Input
By default, some client events propagate to the server once processing has completed on the client. In some circumstances, it is desirable to block this propagation. For instance, if you are using a commandButton
component to execute JavaScript code when the button is clicked, and there is no actionListener
event listener on the server, propagation of the event is a waste of resources. To block propagation to the server, you call the cancel()
function on the event in your listener. Once the cancel()
function has been called, the isCanceled()
function will return true
.
Example 6-11 shows the showAboutFileExplorerPopup
function, which cancels its propagation.
Example 6-11 Canceling a Client Event from Propagating to the Server
Canceling an event may also block some default processing. For example, canceling an AdfUIInputEvent
event for a context menu will block the browser from showing a context menu in response to that event.
The cancel()
function call will be ignored if the event cannot be canceled, which an event indicates by returning false
from the isCancelable()
function (events that cannot be canceled show "no" in the Is Cancelable column in Table 6-3). This generally means that the event is a notification that an outcome has already completed, and cannot be blocked. There is also no way to uncancel an event once it has been canceled.
There may be times when you do not expect the framework to handle the response for an event. For example, when exporting table content to a spreadsheet, you don't need to wait for r the call to return To let the framework know that no response is expected, you use the AdfBaseEvent.noResponseExpected()
method.
Event processing in general is taken from the browser's native event loop. The page receives all DOM events that bubble up to the document, and hands them to the peer associated with that piece of DOM. The peer is responsible for creating a JavaScript event object that wraps that DOM event, returning it to the page, which queues the event (for more information about peers and the ADF Faces architecture, see Chapter 4, "Using ADF Faces Client-Side Architecture").
The event queue on the page most commonly empties at the end of the browser's event loop once each DOM event has been processed by the page (typically, resulting in a component event being queued). However, because it is possible for events to be queued independently of any user input (for example, poll components firing their poll event when a timer is invoked), queueing an event also starts a timer that will force the event queue to empty even if no user input occurs.
The event queue is a First-In-First-Out queue. For the event queue to empty, the page takes each event object and delivers it to a broadcast()
function on the event source. This loop continues until the queue is empty. It is completely legitimate (and common) for broadcasting an event to indirectly lead to queueing a new, derived event. That derived event will be broadcast in the same loop.
When an event is broadcast to a component, the component does the following:
DispatchComponentEvent
method. While an event is bubbling, it is delivered to the AdfUIComponent
HandleBubbledEvent
function, which offers up the event to the peer's DispatchComponentEvent
function. Note that client event listeners do not receive the event, only the peers do.
Event bubbling can be blocked by calling an event's stopBubbling()
function, after which the isBubblingStopped()
function will return true
, and bubbling will not continue. As with cancelling, you cannot undo this call.
Note: Canceling an event does not stop bubbling. If you want to both cancel an event and stop it from bubbling, you must call both functions. |
AdfUIComponent.HandleEvent
method, which adds the event to the server event queue, if the event requests it. Several components in ADF Faces are NamingContainer
components, such as pageTemplate
, subform
, table
, and tree
. When working with client-side API and events in pages that contain NamingContainer
components, you should use the findComponent()
method on the source component.
For example, because all components in any page within the File Explorer application eventually reside inside a pageTemplate
component, any JavaScript function must use the getSource()
and findComponent()
methods, as shown in Example 6-12. The getSource()
method accesses the AdfUIComponent
class, which can then be used to find the component.
Example 6-12 JavaScript Using the findComponent() Method
When you use the findComponent()
method, the search starts locally at the component where the method is invoked. For more information about working with naming containers, see Section 4.5, "Locating a Client Component on a Page."
While the clientAttribute
tag supports sending bonus attributes from the server to the client, those attributes are not synchronized back to the server. To send any custom data back to the server, use a custom event sent through the AdfCustomEvent
class and the serverListener
tag.
The AdfCustomEvent.queue()
JavaScript method enables you to fire a custom event from any component whose clientComponent
attribute is set to true
. The custom event object contains information about the client event source and a map of parameters to include on the event. The custom event can be set for immediate delivery (that is, during the Apply Request Values phase), or non-immediate delivery (that is, during the Invoke Application phase).
For example, in the File Explorer application, after entering a file name in the search field on the left, users can press the Enter key to invoke the search. As Example 6-13 shows, this happens because the inputText
field contains a clientListener
that invokes a JavaScript function when the Enter key is pressed.
Example 6-13 clientListener Invokes JavaScript Function and Causes ServerLIstener to Be Invoked
The JavaScript contains the AdfCustomEvent.queue
method that takes the event source, the string enterPressedOnSearch
as the custom event type, a null parameter map, and False
for the immediate parameter.
The inputText
component on the page also contains the following serverListener
tag:
Because the type value enterPressedOnSearch
is the same as the value of the parameter in the AdfCustomEvent.queue
method in the JavaScript, the method that resolves to the method expression #{explorer.navigatorManager.searchNavigator.searchOnEnter}
will be invoked.
To send a custom event from the client to the server, fire the client event using a custom event type, write the server listener method on a backing bean, and have this method process the custom event. Next, register the server listener with the component.
Before you begin
It may be helpful to have an understanding of sending custom events to the server. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server."
To send custom events:
AdfCustomEvent.queue()
method to provide the event source, custom event type, and the parameters to send to the server. For example, the JavaScript used to cause the pressing of the Enter key to invoke the search functionality uses the AdfCustomEvent.queue
method that takes the event source, the string enterPressedOnSearch
as the custom event type, a null parameter map, and False
for the immediate parameter, as shown in Example 6-14.
Create the server listener method on a managed bean. This method must be public and take an oracle.adf.view.rich.render.ClientEvent
object and return a void
type. Example 6-15 shows the code used in the SearchNavigatorView
managed bean that simply calls another method to execute the search and then refreshes the navigator.
Example 6-15 Server Listener Method for a Custom Client Event
Note: The Java-to-JavaScript transformation can lose type information forNumbers , chars , Java Objects , arrays , and nonstring CharSequences . Therefore, if an object being sent to the server was initially on the server, you may want to add logic to ensure the correct conversion. See Section 6.4.3, "What You May Need to Know About Marshalling and Unmarshalling Data." |
clientListener
by dragging a Client Listener from the Operations panel of the Component Palette, and dropping it as a child to the component that raises the event. Note: On the component that will fire the custom client event, theclientComponent attribute must be set to true to ensure that a client-side generated component is available. |
enterPressedOnSearch
was used in the File Explorer. clientListener
tag. enterPressedOnSearch
. In the Property Inspector, for the method
attribute, enter an expression that resolves to the method created in Step 2.
At runtime, when the user initiates the event, for example, pressing the Enter key, the client listener script executes. This script calls the AdfCustomEvent.queue()
method, and a custom event of the specified event type is queued on the input component. The server listener registered on the input component receives the custom event, and the associated bean method executes.
Marshalling and unmarshalling is the process of converting data objects of a programming language into a byte stream and back into data objects that are native to the same or a different programming language. In ADF Faces, marshalling and unmarshalling refer to transformation of data into a suitable format so that it can be optimally exchanged between JavaScript on the client end and Java on the server end. When the client is browser-based, the two common strategies for marshalling are JavaScript Object Notation (JSON) and XML. ADF Faces uses a mix of both of these strategies, with the information sent from the server to the client mostly as JSON and information sent from the client to the server as XML (for more information about JSON, see http://www.json.org
).
When you send information from JavaScript to Java, the JavaScript data objects are converted (marshalled) into XML, which is then parsed back or unmarshalled into Java objects at the server-side. For example, consider a JSF page that has a commandButton
component whose ID is cmd
. When a user clicks the commandButton
component, the client must communicate to the server that an actionEvent
has been fired by this specific commandButton
. In the requestParameter
map, the information is mapped with the key using the format event + . + id
where id
is the ID of the component. So the requestParameter
map key for the commandComponent
would be the XML string stored as the value of the key event.cmd
.
The XML fragment after marshalling in this example would be:
The m
in the example means that this should be unmarshalled into a map. The k
denotes the key and the value is of type String
. On the server side, this XML fragment is parsed into a java.util.Map
of one entry having type
(java.lang.String
) as the key and action
(java.lang.String
) as the value.
The unmarshalled information is grouped per client ID, stored in the request map, and used when the components are being decoded. So in this example, when the commandButton
is decoded, it will check for the presence of any client events using its client ID (event.cmd
) and then queue an action event if one is found (the decode behavior is implemented in the renderer hierarchy for commandButton
component).
Table 6-5 shows the mapping between corresponding JavaScript and Java types.
Table 6-5 JavaScript to Java Type Map
JavaScript Type | Java Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
Marshalling from Java to JavaScript happens mostly through JSON. This type of marshalling is straightforward as JSON is the object literal notation in JavaScript. The client-components usually have their properties encoded in JSON. Consider the following example:
The second argument ({'partialSubmit':true,'useWindow':false}) is a JSON object. There is no additional unmarshalling step required at the browser end as JSON can directly be parsed into the JavaScript environment as an object.
Encoding for a table also uses JSON to pass push messages to the client. The following is an example of an envelope containing a single encoded push message:
The envelope is a JavaScript Array
with only one object, which describes the message. This message contains information about the type of change, the actual value of the data, and so on, that is then used by the client-side table peer to update the table itself.
Table 6-6 shows the mapping between corresponding Java and JavaScript types.
Table 6-6 Java to JavaScript Type Map
Java Type | JavaScript Type |
---|---|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
Note that there could be some loss of information during the conversion process. For example, say you are using the following custom event to send the number 1
and the String test
, as shown in the following example:
In the server-side listener, the type of the first
parameter would become a java.lang.Double
because numbers are converted to Doubles
when going from JavaScript to Java. However, it might be that the parameter started on the server side as an int
, and was converted to a number when conversion from Java to JavaScript took place. Now on its return trip to the server, it will be converted to a Double
.
Using the ExtendedRenderKitService
class, you can add JavaScript to an event response, for example, after invoking an action method binding. It can be a simple message like sending an alert informing the user that the database connection could not be established, or a call to a function like hide()
on a popup window to programatically dismiss a popup dialog.
For example, in the File Explorer application, when the user clicks the UpOneFolder
navigation button to move up in the folder structure, the folder pane is repainted to display the parent folder as selected. The HandleUpOneFolder()
method is called in response to clicking the UpOneFolder
button event. It uses the ExtendedRenderKitService
class to add JavaScript to the response.
Example 6-16 shows the UpOneFolder
code in the page with the actionListener
attribute bound to the HandleUpOneFolder()
handler method which will process the action event when the button is clicked.
Example 6-16 Invoking a Method to Add JavaScript to a Response
Example 6-17 shows the handleUpOneFolder
method that uses the ExtendedRenderKitService
class.
Example 6-17 Adding JavaScript to a Response
ADF Faces client behavior tags provide declarative solutions to common client operations that you would otherwise have to write yourself using JavaScript, and register on components as client listeners. By using these tags instead of writing your own JavaScript code to implement the same operations, you reduce the amount of JavaScript code that needs to be downloaded to the browser.
ADF Faces provides these client behavior tags that you can use in place of client listeners:
panelDashboardBehavior
: Enables the runtime insertion of a child component into a panelDasboard
component to appear more responsive. For details, see Section 9.7.1, "How to Use the panelDashboard Component." insertTextBehavior
: Enables a command component to insert text at the cursor in an inputText
component. For details, see Section 11.3.2, "How to Add the Ability to Insert Text into an inputText Component." richTextEditorInsertBehavior
: Enables a command component to insert text (including preformatted text) at the cursor in a richTextEditor
component. For details, see Section 11.8.2, "How to Add the Ability to Insert Text into a richTextEditor Component." autoSuggestBehavior
: Enables list of values components to show items in a dropdown list that match what the user is typing. For more information, see Section 13.1, "About List-of-Values Components." showPopupBehavior
: Enables a command component to launch a popup component. For details, see Section 15.3, "Declaratively Invoking a Popup." showPrintablePageBehavior
: Enables a command component to generate and display a printable version of the page. For details, see Section 34.2, "Displaying a Page for Print." checkUncommittedDataBehavior
: Enables a command component to display a warning when the immediate attribute is set to true and a user attempts to navigate away from the page. For details see Chapter 20, "Working with Navigation Components." scrollComponentIntoViewBehavior
: Enables a command component to jump to a named component when clicked. For details, see Section 6.6.1, "How to Use the scrollComponentIntoViewBehavior Tag." Tip: ADF Faces also provides a server-sidescrollComponentIntoView API that can be used when the component that is to be scrolled to may not yet be rendered on the page. For example, if you have a table and you want to be able to scroll to a specific row, that row may be out of view when the table is first rendered. You can use the |
Client behavior tags cancel server-side event delivery automatically. Therefore, any actionListener
or action
attributes on the parent component will be ignored. This cannot be disabled. If you want to also trigger server-side functionality, you should use either a client-side event (see Section 6.3, "Using JavaScript for ADF Faces Client Events"), or add an additional client listener that uses AdfCustomEvent
and af:serverListener
to deliver a server-side event (see Section 6.4, "Sending Custom Events from the Client to the Server").
Use the scrollComponentIntoViewBehavior
tag when you want the user to be able to jump to a particular component on a page. This action is similar to an anchor in HTML. For example, you may want to allow users to jump to a particular part of a page using a commandLink
component. For the richTextEditor
and inlineFrame
components, you can jump to a subcomponent. For example, Figure 6-1 shows a richTextEditor
component with a number of sections in its text. The command links below the editor allow the user to jump to specific parts of the text.
You can also configure the tag to have focus switched to the component to which the user has scrolled.
Before you begin:
It may be helpful to have an understanding of behavior tags. For more information, see Section 6.6, "Using ADF Faces Client Behavior Tags."
To use the scrollComponentIntoViewBehavior tag:
focus
attribute to true
if you want the component to have focus after the jump. richTextEditor
or inlineFrame
component, optionally enter a value for the subTargetId
attribute. This ID is defined in the value of the richTextEditor
or inlineFrame
component. For example, the value of the subTargetId
attribute for the scrollComponentIntoViewBehavior
tag shown in Figure 6-1 is Introduction
. The value of the richTextEditor
is bound to the property shown in Example 6-18. Note that Introduction
is the ID for the first header.
Example 6-18 subTargetId Value Defined in a Property
ADF Faces provides the poll component whose pollEvent
can be used to communicate with the server at specified intervals. For example, you might use the poll component to update an outputText
component, or to deliver a heartbeat to the server to prevent a user from being timed out of their session.
You need to create a listener for the pollEvent
that will be used to do the processing required at poll time. For example, if you want to use the poll component to update the value of an outputText
component, you would implement a pollEventListener
method that would check the value in the data source and then update the component.
You can configure the interval time to determine how often the poll component will deliver its poll event. You also configure the amount of time after which the page will be allowed to time out. This can be useful, as the polling on a page causes the session to never time out. Each time a request is sent to the server, a session time out value is written to the page to determine when to cause a session time out. Because the poll component will continually send a request to the server (based on the interval time), the session will never time out. This is expensive both in network usage and in memory.
To avoid this issue, the web.xml
configuration file contains the oracle.adf.view.rich.poll.TIMEOUT
context-parameter, which specifies how long a page should run before it times out. A page is considered eligible to time out if there is no keyboard or mouse activity. The default timeout period is set at ten minutes. So if user is inactive for 10 minutes, that is, does not use the keyboard or mouse, then the framework stops polling, and from that point on, the page participates in the standard server-side session timeout (for more information, see Section A.2.3.22, "Session Timeout Warning").
If the application does time out, when the user moves the mouse or uses the keyboard again, a new session timeout value is written to the page, and polling starts again.
You can override this time for a specific page using the poll component's timeout
attribute.
When you use the poll component, you normally also create a handler method to handle the functionality for the polling event.
Before You Begin
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 6.7, "Using Polling Events to Update Pages."
To use a poll component:
In a managed bean, create a handler for the poll event. For more information about managed beans, see Section 3.6, "Creating and Using Managed Beans."
web.xml
file, set Timeout to the amount of time in milliseconds after which the page will stop polling and the session will time out. This chapter describes how to add conversion and validation capabilities to ADF Faces input components in your application. It also describes how to handle and display any errors, including those not caused by validation.
This chapter includes the following sections:
ADF Faces input components support conversion capabilities. A web application can store data of many types, such as int
, long
, and date
in the model layer. When viewed in a client browser, however, the user interface has to present the data in a manner that can be read or modified by the user. For example, a date field in a form might represent a java.util.Date
object as a text string in the format mm/dd/yyyy
. When a user edits a date field and submits the form, the string must be converted back to the type that is required by the application. Then the data is validated against any rules and conditions. Conversely, data stored as something other than a String
type can be converted to a String
for display and updating. Many components, such as af:inputDate,
automatically provide a conversion capability.
ADF Faces input components also support validation capabilities. You can add one or more validator tags to the component. In addition, you can create your own custom validators to suit your business needs.
Validators and converters have a default hint message that is displayed to users when they click in the associated field. For converters, the hint usually tells the user the correct format to use for input values, based on the given pattern. For validators, the hint is used to convey what values are valid, based on the validation configured for the component. If conversion or validation fails, associated error messages are displayed to the user. These messages can be displayed in dialogs, or they can be displayed on the page itself next to the component whose conversion or validation failed. For more information about displaying messages in an ADF Faces application, see Chapter 19, "Displaying Tips, Messages, and Help."
ADF Faces converters is a set of converters that extends the standard JSF converters. Since ADF Faces Converters for input components operate on the client-side, errors in conversion can be caught at the client and thus avoid a round trip to the server. You can easily drag and drop ADF Faces converters into an input component.
ADF Faces validators also augment the standard JSF validators. ADF Faces validators can operate on both the client and server side. The client-side validators are in written JavaScript and validation errors caught on the client-side can be processed without a round-trip to the server.
You use ADF Faces converters to convert input from an input component into the format the model expects. A typical use case is using an input component for entering numbers and including a converter to convert the string entered by the user into a number for the model to process. For example, an af:inputText
component is used for a product Id attribute. You add the af:convertNumber
converter to the af:inputText
component to convert from String
to Number
. Another example is when you have an inputText component for an attribute for the cost of a product. You can use af:convertNumber
to convert the input string into the proper currency format.
You add validator to input components in the same way to validate the input string. For instance, you can add a validator to the af:inputText
component to check that the number of digits for the product Id are within the proper range. You add af:validateLength
to af:inputText
and set the minimum
and maximum
attributes to define the valid digit length.
You may find it helpful to understand other ADF Faces features before you implement your converters and validators. Following are links to other sections that may be useful.
When a form with data is submitted, the browser sends a request value to the server for each UI component whose editable value
attribute is bound. Request values are decoded during the JSF Apply Request Values phase and the decoded value is saved locally on the component in the submittedValue
attribute. If the value requires conversion (for example, if it is displayed as a String
type but stored as a java.util.Date
object), the data is converted to the correct type during the Process Validation phase on a per-UI-component basis.
If validation or conversion fails, the lifecycle proceeds to the Render Response phase and a corresponding error message is displayed on the page. If conversion and validation are successful, then the Update Model phase starts and the converted and validated values are used to update the model.
When a validation or conversion error occurs, the component whose validation or conversion failed places an associated error message in the queue and invalidates itself. The current page is then redisplayed with an error message. ADF Faces components provide a way of declaratively setting these messages.
For detailed information about how conversion and validation works in the JSF Lifecycle, see Chapter 5, "Using the JSF Lifecycle with ADF Faces."
A web application can store data of many types (such as int
, long
, date
) in the model layer. When viewed in a client browser, however, the user interface has to present the data in a manner that can be read or modified by the user. For example, a date field in a form might represent a java.util.Date
object as a text string in the format mm/dd/yyyy
. When a user edits a date field and submits the form, the string must be converted back to the type that is required by the application. You can set only one converter on a UI component.
When you create an af:inputText
component and set an attribute that is of a type for which there is a converter, JDeveloper automatically adds that converter's tag as a child of the input component. This tag invokes the converter, which will convert the String
type entered by the user back into the type expected by the object.
The JSF standard converters, which handle conversion between String
types and simple data types, implement the javax.faces.convert.Converter
interface. The supplied JSF standard converter classes are:
BigDecimalConverter
BigIntegerConverter
BooleanConverter
ByteConverter
CharacterConverter
DateTimeConverter
DoubleConverter
EnumConverter
FloatConverter
IntegerConverter
LongConverter
NumberConverter
ShortConverter
Table 7-1 shows the converters provided by ADF Faces.
Table 7-1 ADF Faces Converters
Converter | Tag Name | Description |
---|---|---|
|
| Converts |
|
| Converts |
|
| Converts |
As with validators, the ADF Faces converters are also run on the client side.
If no converter is explicitly added, ADF Faces will attempt to create a converter based on the data type. Therefore, if the value is bound to any of the following types, you do not need to explicitly add a converter:
java.util.Date
java.util.Color
java.awt.Color
java.lang.Number
java.lang.Integer
java.lang.Long
java.lang.Short
java.lang.Byte
java.lang.Float
java.lang.Double
Unlike the converters listed in Table 7-1, the JavaScript-enabled converters are applied by type
and used instead of the standard ones, overriding the class
and id
attributes. They do not have associated tags that can be nested in the component.
You can also manually insert a converter into a UI component.
Before you begin:
It may be helpful to have an understanding of converters. For more information, see Section 7.3, "Adding Conversion."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 7.1.2, "Additional Functionality for ADF Faces Converters and Validators."
To add ADF Faces converters that have tags:
You can set multiple patterns for some ADF Faces converters. For more information, see Section 7.3.2, "How to Set Attributes on a Converter".
ADF Faces lets you customize the detail portion of a conversion error message. By setting a value for a MessageDetailxyz attribute, where xyz is the conversion error type (for example, MessageDetailconvertDate
), ADF Faces displays the custom message instead of a default message, if conversion fails. For more information about creating messages, see Chapter 19, "Displaying Tips, Messages, and Help."
Patterns specify the format of data accepted for conversion. Multiple patterns allow for more than one format. For example, a user could enter dates using a slash (/) or hyphen (-) as a separator. Not all converters support multiple patterns, although pattern matching is flexible and multiple patterns may not be needed.
Example 7-1 illustrates the use of a multiple pattern for the af:convertColor
tag in which "255-255-000" and "FFFF00" are both acceptable values.
Example 7-1 af:convertColor Multiple Patterns
Example 7-2 illustrates the use of an af:convertDateTime
tag in which "6/9/2007" and "2007/9/6" are both acceptable values.
Example 7-2 af:convertDateTime Multiple Patterns
Example 7-3 illustrates an af:convertNumber
tag with the type
attribute set to currency
to accepts "$78.57" and "$078.57" as values for conversion.
When the user submits the page containing converters, the ADF Faces validate()
method calls the converter's getAsObject()
method to convert the String
value to the required object type. When there is not an attached converter and if the component is bound to a bean property in the model, then ADF checks the model's data type and attempts to find the appropriate converter. If conversion fails, the component's valid
attribute is set to false
and JSF adds an error message to a queue that is maintained by FacesContext
. If conversion is successful and there are validators attached to the component, the converted value is passed to the validators. If no validators are attached to the component, the converted value is stored as a local value that is later used to update the model.
You can create your own converters to meet your specific business needs. You can create custom JSF converters that run on the server-side using Java, and then also create a JavaScript version that can run on the client-side. However, unlike custom validators, you can only attach one converter to a component. You cannot add a method to a backing bean to provide conversion.
Creating a custom converter requires writing the business logic for the conversion by creating an implementation of the Converter
interface that contains the getAsObject()
and getAsString()
methods, and then registering the custom converter with the application. You then use the f:converter
tag and set the custom converter as a property of that tag, or you can use the converter
attribute on the input component to bind to that converter.
You can also create a client-side version of the converter. ADF Faces client-side converters work in the same way standard JSF conversion works on the server, except that JavaScript is used on the client. JavaScript converter objects can throw ConverterException
exceptions and they support the getAsObject()
and getAsString()
methods.
Before you begin:
It may be helpful to have an understanding of custom JSF converters. For more information, see Section 7.4, "Creating Custom JSF Converters."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 7.1.2, "Additional Functionality for ADF Faces Converters and Validators."
To create a custom JSF converter:
javax.faces.converter.Converter
interface. The implementation must contain a public no-args
constructor, a set of accessor methods for any attributes, and getAsObject
and getAsString
methods to implement the Converter
interface. The getAsObject()
method takes the FacesContext
instance, the UI component, and the String
value to be converted to a specified object, for example:
The getAsString()
method takes the FacesContext
instance, the UI component, and the object to be converted to a String
value. For example:
For more information about these classes, refer to the Javadoc or visit http://java.sun.com/
.
javax.faces.convert.ConverterException
to throw the appropriate exceptions and javax.faces.application.FacesMessage
to generate the corresponding error messages. For more information about the Converter
interface and the FacesMessage
error handlers, see the Javadoc for javax.faces.convert.ConverterException
and javax.faces.application.FacesMessage
, or visit http://java.sun.com/
. Serializable
interface or the StateHolder
interface, and the saveState(FacesContext)
and restoreState(FacesContext, Object)
methods of the StateHolder
interface. For more information, see the Javadoc for the StateHolder
interface of javax.faces.component
package. faces-config.xml
file. faces-config.xml
file and select the Overview tab in the editor window. The faces-config.xml
file is located in the <View_Project>/WEB-INF
directory in the JDeveloper Application Navigator. To create a client-side version of the converter:
org.apache.myfaces.trinidad.convert.ClientConverter
, which has two methods. The first method is getClientScript()
, which returns an implementation of the JavaScript Converter
object. The second method is getClientConversion()
, which returns a JavaScript constructor that is used to instantiate an instance of the converter. Example 7-4 Interface Converter
The TrConverter
interface can throw a TrConverterException
exception, which should contain a TrFacesMessage
error message. Example 7-5 shows the signature for TrFacesMessage
and Example 7-6 shows the signature for TrFacesException
.
Example 7-5 TrFacesMessage Signature
Example 7-6 TrFacesException Signature
Example 7-7 shows an example of a customer converter, SimpleNumberConverter, written in Java that will run on the server. The custom converter has to implement the ClientConverter
interface.
Example 7-7 Custom Converter SimpleNumberConverter in Java
You must also create a JavaScript implementation of the custom converter for the client, as shown in Example 7-8.
Example 7-8 Client-side Implementation of SimpleNumberConverter in JavaScript
To use a custom converter on a JSF page:
converter
attribute of the input component. Note: If a custom converter is registered in an application under a class for a specific data type, whenever a component's value references a value binding that has the same type as the custom converter object, JSF will automatically use the converter of that class to convert the data. In that case, you do not need to use theconverter attribute to register the custom converter on a component, as shown in the following code: <af:inputText value="#{myBean.myProperty}"/> The |
When you use a custom converter, the application accesses the converter class referenced in the converter
attribute, and executes the getAsObject
or getAsString
method as appropriate. These methods access the data from the component and execute the conversion logic.
You can add validation so that when a user edits or enters data in a field and submits the form, the data is validated against any set rules and conditions. If validation fails, the application displays an error message. For example, in Figure 7-1 a specific date range for user input with a message hint is set by the af:validateDateTimeRange
component and an error message is displayed in the message popup window when an invalid value is entered.
On the view layer use ADF Faces validation when you want client-side validation. All validators provided by ADF Faces have a client-side peer. Many components have attributes that provide validation. For information, see Section 7.5.1.2, "Using Validation Attributes." In addition, ADF Faces provides separate validation classes that can be run on both the client and the server. For details, see Section 7.5.1.3, "Using ADF Faces Validators." You can also create your own validators. For information about custom validators, see Section 7.6.3, "How to Create a Custom JSF Validator."
Set ADF Faces validation on the input component and an error message is displayed inline or in a popup window on the page. For more information about displaying messages created by validation errors, see Chapter 19, "Displaying Tips, Messages, and Help."
Before you begin:
It may be helpful to have an understanding of ADF validation. For more information, see Section 7.5, "Adding Validation."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 7.1.2, "Additional Functionality for ADF Faces Converters and Validators."
By default, ADF Faces syntactic and semantic validation occurs on both the client and server side. Client-side validation allows validators to catch and display data without requiring a round-trip to the server.
ADF Faces provides the following types of validation:
required
attribute on ADF Faces input components to specify whether or not a value must be supplied. When the required
attribute is set to true
, the component must have a value. Otherwise the application displays an error message. For more information, see Section 7.5.1.2, "Using Validation Attributes." Many ADF Faces UI components have attributes that provide simple validation. For example, the af:inputDate
component has maxValue
and minValue
attributes to specify the maximum and minimum number allowed for the Date value.
For additional help with UI component attributes, in the Property Inspector, right-click the attribute name and choose Help.
ADF Faces Validators are separate classes that can be run on the server or client. Table 7-2 describes the validators and their logic.
Table 7-2 ADF Faces Validators
Validator | Tag Name | Description |
---|---|---|
|
| Validates the byte length of strings when encoded. The |
|
| Validates that the entered date is valid with some given restrictions. |
|
| Validates that the entered date is within a given range. You specify the range as attributes of the validator. |
|
| Validates that a component value is within a specified range. The value must be convertible to a floating-point type. |
|
| Validates that the length of a component value is within a specified range. The value must be of type |
|
| Validates that a component value is within a specified range. The value must be any numeric type or |
|
| Validates the data using Java regular expression syntax. |
Note: To register a custom validator on a component, use a standard JSFf:validator tag. For information about using custom validators, see Section 7.6, "Creating Custom JSF Validation." |
To add ADF Faces validators:
ADF Faces lets you customize the detail portion of a validation error message. By setting a value for a MessageDetailxyz attribute, where xyz is the validation error type (for example, MessageDetailmaximum
), ADF Faces displays the custom message instead of a default message, if validation fails.
When the user submits the page, ADF Faces checks the submitted value and runs conversion on any non-null value. The converted value is then passed to the validate()
method. If the value is empty, the required
attribute of the component is checked and an error message is generated if indicated. If the submitted value is non-null, the validation process continues and all validators on the component are called in order of their declaration.
Note: ADF Faces provides extensions to the standard JSF validators, which have client-side support. |
ADF Faces validation is performed during the Process Validations phase. If any errors are encountered, the components are invalidated and the associated messages are added to the queue in the FacesContext
instance. The Update Model phase only happens when if there are no errors converting or validating. Once all validation is run on the components, control passes to the model layer, which runs the Validate Model Updates phase. As with the Process Validations phase, if any errors are encountered, the components are invalidated and the associated messages are added to the queue in the FacesContext
instance.
The lifecycle then goes to the Render Response phase and redisplays the current page. If the component generates an error, ADF Faces automatically highlights the error. For instance, ADF Faces renders a red box around an inputText component when there is a validation error, as shown in Figure 7-2.
For more information about adding error messages when a validation or conversion error occurs, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."
You can set zero or more validators on a UI component. You can set the required
attribute and use validators on a component. However, if you set the required
attribute to true
and the value is null
or a zero-length string, the component is invalidated and any other validators registered on the component are not called.
This combination might be an issue if there is a valid case for the component to be empty. For example, if the page contains a Cancel button, the user should be able to click that button and navigate off the page without entering any data. To handle this case, you set the immediate
attribute on the Cancel button's component to true
. This attribute allows the action to be executed during the Apply Request Values phase. Then the default JSF action listener calls FacesContext.renderResponse()
, thus bypassing the validation whenever the action is executed. For more information see Chapter 5, "Using the JSF Lifecycle with ADF Faces."
You can add your own validation logic to meet your specific business needs. If you want custom validation logic for a component on a single page, you can create a validation method on the page's backing bean.
If you want to create logic that will be reused by various pages within the application, or if you want the validation to be able to run on the client side, you should create a JSF validator class. You can then create an ADF Faces version, which will allow the validator to run on the client.
When you want custom validation for a component on a single page, create a method that provides the required validation on a backing bean.
Before you begin:
It may be helpful to have an understanding of custom JSF validation. For more information, see Section 7.6, "Creating Custom JSF Validation."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 7.1.2, "Additional Functionality for ADF Faces Converters and Validators."
To add a backing bean validation method:
When you click OK in the dialog, JDeveloper adds a skeleton method to the code and opens the bean in the source editor.
javax.faces.validator.ValidatorException
exception to throw the appropriate exceptions and the javax.faces.application.FacesMessage
error message to generate the corresponding error messages. For more information about the Validator
interface and FacesMessage
, see the Javadoc for javax.faces.validator.ValidatorException
and javax.faces.application.FacesMessage
, or visit http://java.sun.com/
. When you create a validation method, JDeveloper adds a skeleton method to the managed bean you selected. Example 7-9 shows the code JDeveloper generates.
Example 7-9 Managed Bean Code for a Validation Method
When the form containing the input component is submitted, the method to which the validator
attribute is bound is executed.
Creating a custom validator requires writing the business logic for the validation by creating a Validator
implementation of the interface, and then registering the custom validator with the application. You can also create a tag for the validator, or you can use the f:validator
tag and the custom validator as an attribute for that tag.
You can then create a client-side version of the validator. ADF Faces client-side validation works in the same way that standard validation works on the server, except that JavaScript is used on the client. JavaScript validator objects can throw ValidatorExceptions
exceptions and they support the validate()
method.
Before you begin:
It may be helpful to have an understanding of custom JSF validation. For more information, see Section 7.6, "Creating Custom JSF Validation."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 7.1.2, "Additional Functionality for ADF Faces Converters and Validators."
To create a custom JSF validator:
javax.faces.validator.Validator
interface. The implementation must contain a public no-args
constructor, a set of accessor methods for any attributes, and a validate
method to implement the Validator
interface. For more information about these classes, refer to the Javadoc or visit http://java.sun.com/
.
javax.faces.validate.ValidatorException
exception to throw the appropriate exceptions and the javax.faces.application.FacesMessage
error message to generate the corresponding error messages. For more information about the Validator
interface and FacesMessage
, see the Javadoc for javax.faces.validate.ValidatorException
and javax.faces.application.FacesMessage
, or visit http://java.sun.com/
. Serializable
interface, or the StateHolder
interface, and the saveState(FacesContext)
and restoreState(FacesContext, Object)
methods of the StateHolder
interface. For more information, see the Javadoc for the StateHolder
interface of the javax.faces.component
package. faces-config.xml
file. faces-config.xml
file and select the Overview tab in the editor window. The faces-config.xml
file is located in the <View_Project>/WEB-INF
directory. F1
for additional help in registering the validator. To create a client-side version of the validator:
org.apache.myfaces.trinidad.validator.ClientValidator
, which has two methods. The first method is getClientScript()
, which returns an implementation of the JavaScript Validator
object. The second method is getClientValidation()
, which returns a JavaScript constructor that is used to instantiate an instance of the validator. Example 7-10 shows a validator in Java.
Example 7-10 Java Validator
The Java validator calls the JavaScript validator shown in Example 7-11.
To use a custom validator on a JSF page:
Example 7-12 shows a custom validator tag nested inside an inputText
component. Note that the tag attributes are used to provide the values for the validator's properties that were declared in the faces-config.xml
file.
Example 7-12 A Custom Validator Tag on a JSF Page
To use a custom validator without a custom tag:
To use a custom validator without a custom tag, nest the validator's ID (as configured in faces-config.xml
file) inside the f:validator
tag. The validator's ID attribute supports EL expression such that the application can dynamically determine the validator to use.
JDeveloper inserts code on the JSF page that makes the validator ID a property of the f:validator
tag.
Example 7-13 shows the code on a JSF page for a validator using the f:validator
tag.
When you use a custom JSF validator, the application accesses the validator class referenced in either the custom tag or the f:validator
tag and executes the validate()
method. This method executes logic against the value that is to be validated to determine if it is valid. If the validator has attributes, those attributes are also accessed and used in the validation routine. Like standard validators, if the custom validation fails, associated messages are placed in the message queue in the FacesContext
instance.
This chapter describes how to use the partial page render features provided with ADF Faces components to rerender areas of a page without rerendering the whole page.
This chapter includes the following sections:
Ajax (Asynchronous JavaScript and XML) is a web development technique for creating interactive web applications, where web pages appear more responsive by exchanging small amounts of data with the server behind the scenes, without the whole web page being rerendered. The effect is to improve a web page's interactivity, speed, and usability.
With ADF Faces, the feature that delivers the Ajax partial page render behavior is called partial page rendering (PPR). PPR allows certain components on a page to be rerendered without the need to rerender the entire page. For example, an output component can display what a user has chosen or entered in an input component, or a command link or button can cause another component on the page to be rerendered, without the whole page rerendering.
In order for PPR to work, boundaries must be set on the page that allow the lifecycle to run just on components within the boundary. In order to determine the boundary, the framework must be notified of the root component to process. The root component can be identified in two ways:
showDetail
component (see Section 9.8, "Displaying and Hiding Contents Dynamically"), indicates that the showDetail
component is a root. When the showDetail
component is expanded or collapsed, only that component goes through the lifecycle. Other examples of events identifying a root component are the disclosure event when expanding nodes on a tree, or the sort event on a table. For a complete list of events that have corresponding event root components, see Table 6-1 in Section 6.1.1, "Events and Partial Page Rendering." In addition to built-in PPR functionality, you can configure components to use cross-component rendering, which allows you to set up dependencies so that one component acts as a trigger and another as the listener. When an event occurs on the trigger component, the lifecycle is run only on listener components and child components to the listener, and only the listener components and their children are rerendered. Cross-component rendering can be implemented declaratively. However, by default, all events from a trigger component will cause PPR (note that some components, such as table, trigger partial targets on only a subset of their events). For these cases where you need strict control over the event that launches PPR, or for cases where you want to use some logic to determine the target, you can implement PPR programatically.
Tip: If your application uses the Fusion technology stack, you can enable the automatic partial page rendering feature on any page. This causes any components whose values change as a result of backend business logic to be automatically rerendered. For more information, see the "What You May Need to Know About Automatic Partial Page Rendering" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Additionally, ADF Faces applications can use PPR for navigation. In standard JSF applications, the navigation from one page to the next requires the new page to be rendered. When using Ajax-like components, this can cause overhead because of the time needed to download the different JavaScript libraries and style sheets. To avoid this costly overhead, the ADF Faces architecture can optionally simulate full-page transitions while actually remaining on a single page, thereby avoiding the need to reload JavaScript code and skin styles.
Note: The browser must have JavaScript enabled for PPR to work. |
Using the simplest form of cross-component rendering, one component, referred to as the target component, is rerendered when any event occurs on another component, referred to as the trigger component.
For example, as shown in Figure 8-1, the File Explorer application contains a table that shows the search results in the Search panel. This table (and only this table) is rerendered when the search button is activated. The search button is configured to be the trigger and the table is configured to be the target.
Note: In some cases, you may want a component to be rerendered only when a particular event is fired, not for every event associated with the trigger component, or you may want some logic to determine whether a component is to be rerendered. In these cases, you can programatically enable PPR. For more information, see Section 8.3, "Enabling Partial Page Rendering Programmatically." |
Trigger components must inform the framework that a PPR request has occurred. On command components, this is achieved by setting the partialSubmit
attribute to true
. Doing this causes the command component to fire a partial page request each time it is clicked.
For example, say a page includes an inputText
component, a commandButton
component, and an outputText
component. When the user enters a value for the inputText
component, and then clicks the commandButton
component, the input value is reflected in the outputText
component. You would set the partialSubmit
attribute to true
on the commandButton
component.
However, components other than command components can trigger PPR. ADF Faces input and select components have the ability to trigger partial page requests automatically whenever their values change. To make use of this functionality, use the autoSubmit
attribute of the input or select component so that as soon as a value is entered, a submit occurs, which in turn causes a valueChangeEvent
event to occur. It is this event that notifies the framework to execute a PPR, as long as a target component is set. In the previous example, you could delete the commandButton
component and instead set the inputText
component's autoSubmit
attribute to true
. Each time the value changes, a PPR request will be fired.
Tip: TheautoSubmit attribute on an input component and the partialSubmit attribute on a command component are not the same thing. When partialSubmit is set to true , then only the components that have values for their partialTriggers attribute will be processed through the lifecycle. The autoSubmit attribute is used by input and select components to tell the framework to automatically do a form submit whenever the value changes. However, when a form is submitted and the autoSubmit attribute is set to true , a valueChangeEvent event is invoked, and the lifecycle runs only on the components marked as root components for that event, and their children. For more information, see Section 5.3, "Using the Optimized Lifecycle." |
Once PPR is triggered, any component configured to be a target will be rerendered. You configure a component to be a target by setting the partialTriggers
attribute to the relative ID of the trigger component. For information about relative IDs, see Section 4.5, "Locating a Client Component on a Page."
In the example, to update the outputText
in response to changes to the inputText
component, you would set its partialTriggers
attribute to the inputText
component's relative ID.
Note: Certain events on components trigger PPR by default, for example thedisclosure event on the showDetail component and the sort event on a table. This means that any component configured to be a target by having its partialTriggers attribute set to that component's ID will rerender when these types of events occur. |
Note: If your trigger component is aninputLov or an inputComboBoxLov , and the target component is an input component set to required , then a validation error will be thrown for the input component when the LOV popup is displayed. To avoid this, you must use programmatic partial page rendering. For more information, see Section 8.3, "Enabling Partial Page Rendering Programmatically." |
For a component to be rerendered based on an event caused by another component, it must declare which other components are the triggers.
Before you begin:
It may be helpful to have an understanding of declarative partial page rendering. For more information, see Section 8.2, "Enabling Partial Page Rendering Declaratively."
To enable a component to rerender another component:
id
attribute if it is not already set. Note that the value must be unique within that component's naming container. If the component is not within a naming container, then the ID must be unique to the page. For more information about naming containers, see Section 4.5, "Locating a Client Component on a Page." Tip: JDeveloper automatically assigns component IDs. You can safely change this value. A component's ID must be a valid XML name, that is, you cannot use leading numeric values or spaces in the ID. JSF also does not permit colons (:) in the ID. |
partialSubmit
attribute to true
. autoSubmit
attribute of the component to true
. Note: Set theautoSubmit attribute to true only if you want the component to submit its value. If you do not want to submit the value, then some other logic must cause the component to issue a ValueChangeEvent event. That event will cause PPR by default and any component that has the trigger component as its value for the partialTriggers attribute will be rerendered. |
partialTriggers
attribute and choose Edit. Tip: TheselectBooleanRadio components behave like a single component with partial page rendering;, however, they are in fact multiple components. Therefore, if you want other components (such as inputText components) to change based on selecting a different selectBooleanRadio component in a group, you must group them within a parent component, and set the partialTriggers attribute of the parent component to point to all of the SelectBooleanRadio components. |
Example 8-1 shows a commandLink
component configured to execute PPR.
Example 8-1 Code for Enabling Partial Page Rendering Through a Partial Submit
Example 8-2 shows an outputText
component that will be rerendered when the command link with ID deleteFromCart
in Example 8-1 is clicked.
Example 8-2 Code for Partial Page Rendering Triggered by Another Component
Tip: You can use PPR to prevent components from being validated on a page. For more information, see Section 5.3, "Using the Optimized Lifecycle." |
In an ADF Faces application, because some components use PPR (either implicitly or because they have been configured to listen for a partial trigger), what happens when a user clicks the browser's back button is slightly different than in an application that uses simple JSF components.
In an application that uses simple JSF components, when the user clicks the browser's back button, the browser returns the page to the state of the DOM (document object model) as it was when last rendered, but the state of the JavaScript is as it was when the user first entered the page.
For example, suppose a user visited PageA. After the user interacts with components on the page, say a PPR event took place using JavaScript. Let's call this new version of the page PageA1. Next, say the user navigates to PageB, then clicks the browser back button to return to PageA. The user will be shown the DOM as it was on PageA1, but the JavaScript will not have run, and therefore parts of the page will be as they were for PageA. This might mean that changes to the page will be lost. Refreshing the page will run the JavaScript and so return the user to the state it was in PageA1. In an application that uses ADF Faces, the refresh is not needed; the framework provides built-in support so that the JavaScript is run when the back button is clicked.
Screen readers do not reread the full page in a partial page request. PPR causes the screen reader to read the page starting from the component that fired the partial page request. You should place the target components after the component that triggers the partial request; otherwise, the screen reader would not read the updated target components.
For components such as tables that have many associated events, PPR will happen any time any event is triggered, causing any component with the table as a partial trigger to be rerendered each time. If you want the target to be rerendered only for certain events, or if you want a target to be rerendered based on some other logic, you can enable partial page rendering programmatically.
You use the addPartialTarget
method to enable partial page rendering.
Before you begin:
It may be helpful to have an understanding of programmatic partial page rendering. For more information, see Section 8.3, "Enabling Partial Page Rendering Programmatically."
How to enable PPR programatically:
Create a listener method for the event that should cause the target component to be rerendered.
Use the addPartialTarget()
method to add the component (using its ID) as a partial target for an event, so that when that event is triggered, the partial target component is rerendered. Using this method associates the component you want to have rerendered with the event that is to trigger the rerendering.
For example, the File Explorer application contains the NavigatorManager.refresh()
method. When invoked, the navigator accordion is rerendered.
Example 8-3 Rerendering Using Partial Targets
Note: You must set theclientComponent attribute to true to ensure that a client ID will be generated. |
Instead of performing a full page transition in the traditional way, you can configure an ADF Faces application to have navigation triggered through a PPR request. The new page is sent to the client using PPR. Partial page navigation is disabled by default.
When partial page navigation is used, in order to keep track of location (for example, for bookmarking purposes, or when a refresh occurs), the framework makes use of the hash portion of the URL. This portion of the URL contains the actual page being displayed in the browser.
Additionally, JavaScript and CSS will not be loaded for each page. You must use the resource
tag to include JavaScript and CSS content specific to the current page. Using the <f:verbatim>
or <trh:stylesheet>
tags will not work. For more information, see Section 4.3, "Adding JavaScript to a Page."
When partial page navigation is enabled in an application, get
requests are supported for the following ADF Faces components:
goButton
goLink
goImageLink
goMenuItem
commandNavigationItem
Note: PPRget requests are not supported in Internet Explorer. When using that browser, URLs will be loaded using a standard get request. For other browsers, |
You can turn partial page navigation on by setting the oracle.adf.view.rich.pprNavigation.OPTIONS
context parameter in the web.xml
file to on
.
Before you begin:
It may be helpful to have an understanding of partial page navigation. For more information, see Section 8.4, "Using Partial Page Navigation."
To use partial page navigation:
web.xml
file. oracle.adf.view.rich.pprNavigation.OPTIONS
parameter to one of the following: on
: Enables partial page navigation. Note: If you set the parameter toon , then you need to set the partialSubmit attribute to true for any command components involved in navigation. |
onWithForcePPR
: Enables partial page navigation and notifies the framework to use the PPR channel for all action events, even those that do not result in navigation. Since partial page navigation requires that the action event be sent over PPR channel, use this option to easily enable partial page navigation. When partial page navigation is used, normally only the visual contents of the page are rerendered (the header content remains constant for all pages). However, the entire document will be rerendered when an action on the page is defined to use full page submit and also when an action does not result in navigation.
Before using PPR navigation, you should be aware of the following:
resource
tag to include JavaScript and CSS content specific to the current page. AdfPage.getPageProperty()
and AdfPage.setPageProperty()
methods to store these objects. This chapter describes how to use several of the ADF Faces layout components to organize content on web pages.
This chapter includes the following sections:
ADF Faces provides a number of layout components that can be used to arrange other components on a page. Usually, you begin building your page with these components. You then add components that provide other functionality (for example rendering data or rendering buttons) either inside facets or as child components to these layout components.
Tip: You can create page templates that allow you to design the layout of pages in your application. The templates can then be used by all pages in your application. For more information, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components." |
In addition to layout components that simply act as containers, ADF Faces also provides interactive layout components that can display or hide their content, or that provide sections, lists, or empty space. Some layout components also provide geometry management functionality, such as stretching their contents to fit the browser windows as the window is resized, or the capability to be stretched when placed inside a component that stretches. For more information about stretching and other geometry management functionality of layout components, see Section 9.2.1, "Geometry Management and Component Stretching."
Table 9-1 briefly describes each of the ADF Faces layout components.
Table 9-1 ADF Faces Layout Components
Component | Description | Can Stretch Children | Can Be Stretched | |
---|---|---|---|---|
Page Management Components | ||||
| Creates each of the standard root elements of an HTML page: | X | ||
| Creates an HTML | |||
Page Layout Containers | ||||
| Contains | X | X (when the | |
| Divides a region into two parts (| X | X (when the | |
| Provides a columnar display of child components (usually | X | X (when the | |
| Can have child components, which are placed in its center, and also contains 12 facets along the border where additional components can be placed. These will surround the center. For more information, see Section 9.5, "Arranging Page Contents in Predefined Fixed Areas." | |||
| Positions input form controls, such as | |||
Components with Show/Hide Capabilities | ||||
| Can hide or display contents below the header. Often used as a child to the | X (if the | X (if the | |
| Used to hold the content for the different panes of the | X (if it contains a single child component and its | ||
| Titled box that can contain child components. Has a toolbar facet. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically." | X (if it is being stretched or if the | X | |
| Used in conjunction with | X (when the | ||
| Used in conjunction with If you want the tabs to be used in conjunction with navigational hierarchy, for example each tab is a different page or region that contains another set of navigation items, you may instead want to use a | X (when the | ||
| Hides or displays content through a toggle icon. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically." | |||
Miscellaneous Containers | ||||
| Contains child components and provides a header that can include messages, toolbars, and help topics. For more information, see Section 9.10, "Displaying Items in a Static Box." | X (if the | X (if the | |
| Used in conjunction with collection components such as | X (only a single table, tree, or tree table) | X | |
| Creates a container component whose facets use style themes to apply a bordered look to its children. This component is typically used as a container for the | X (in the Center facet) | X (when the | |
| Creates an inline | X | ||
| Creates a series of navigation items representing one level in a navigation hierarchy. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy." | X (if configured to display tabs) | ||
| Renders each child component as a list item and renders a bullet next to it. Can be nested to create hierarchical lists. For more information, see Section 9.11, "Displaying a Bulleted List in One or More Columns." | |||
| Displays child components inside a popup window. For more information, see Section 15.2, "Declaratively Creating Popups." | |||
| Displays child toolbar and menu components together. For more information, see Section 16.3, "Using Toolbars." | |||
Grouping Containers | ||||
| Groups child components either vertically or horizontally. Used in facets when more than one component is to be contained in a facet. For more information, see Section 9.12, "Grouping Related Items." | X (only if set to scroll or vertical layout) | ||
| Groups child components without regard to layout unless handled by the parent component of the group. Used in facets when more than one component is to be contained in a facet. For more information, see Section 9.12, "Grouping Related Items." | |||
Spacing Components | ||||
| Creates a horizontal line between items. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines." | |||
| Creates an area of blank space. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines." |
Once you have added a layout component to your page, you may find that you need to add functionality such as responding to events. Following are links to other functionality that layout components can use.
panelBox
component. For more information about themes, see Appendix 28, "Customizing the Appearance Using Styles and Skins" showDetailHeader
component. You can configure your application so that the state of the component (expanded or collapsed) can be saved when the user leaves the page. For more information, see Chapter 32, "Allowing User Customization on JSF Pages." JSF pages that use ADF Faces components must have the document
tag enclosed within a view
tag. All other components that make up the page then go in between <af:document>
and </af:document>
. The document
tag is responsible for rendering the browser title text, as well as the invisible page infrastructure that allows other components in the page to be displayed. For example, at runtime, the document
tag creates the root elements for the client page. In HTML output, the standard root elements of an HTML page, namely, <html>
, <head>
, and <body>
, are generated.
By default, the document
tag is configured to allow capable components to stretch to fill available browser space. You can further configure the tag to allow a specific component to have focus when the page is rendered, or to provide messages for failed connections or warnings about navigating before data is submitted. For more information, see Section 9.2.5, "How to Configure the document Tag."
Typically, the next component used is the ADF Faces form
component. This component creates an HTML form
element that can contain controls that allow a user to interact with the data on the page.
Note: Even though you can have multiple HTML forms on a page, you should have only a single ADF Facesform tag per page. For more information, see Section 11.2, "Defining Forms." |
JDeveloper automatically inserts the view
, document,
and form
tags for you, as shown in Example 9-1. For more information, see Section 3.4, "Creating a View Page."
Example 9-1 Initial JSF Page Created by JDeveloper Wizard
Once those tags are placed in the page, you can use the layout components to control how and where other components on the page will render. The component that will hold all other components is considered the root component. Which component you choose to use as the root component depends on whether you want the contained components to display their contents so that they stretch to fit the browser window, or whether you want the contents to flow, using a scrollbar to access any content that may not fit in the window. For more information about stretching and flowing, see Chapter 9, "Geometry Management and Component Stretching."
Tip: Instead of creating your layout yourself, you can use JDeveloper's quick layout templates, which provide correctly configured components that will display your page with the layout you want. For more information, see Section 9.2.3, "Using Quick Start Layouts." |
Geometry management is the process by which the user, parent components, and child components negotiate the actual sizes and locations of the components in an application. For example, a component might be resized when it's first loaded into a browser, when the browser is resized, or when a user explicitly resizes it.
By default, if there is only a single effective visual root component, that root component will stretch automatically to consume the browser's viewable area, provided that component supports geometry management. Examples of geometry management components are panelStretchLayout
and panelSplitter
. If the root component supports stretching its child components (and they in turn support being stretched), the size of the child components will also recompute, and so on down the component hierarchy until a flowing layout area is reached; that is, an area that does not support stretching of its child components. You do not have to write any code to enable the stretching.
Note: The framework does not consider popup dialogs, popup windows, or non-inline messages as root components. If aform component is the direct child component of the document component, the framework will look inside the form tag for the visual root. For information on sizing a popup, see Chapter 15, "Using Popup Dialogs, Menus, and Windows." |
As shown in Table 9-1, the panelStretchLayout
, panelSplitter
, and panelDashboard
components are components that can be stretched and can also stretch their child components. Additionally, when the showDetailItem
component is used as a direct child of the panelAccordion
or panelTabbed
component, the contents in the showDetail
Item
component can be stretched. Therefore, the panelStretchLayout
, panelSplitter
, panelDashboard, panelAccordion
with a showDetailItem
component, and a panelTabbed
with a showDetailItem
component, are the components you should use as root components when you want to make the contents of the page fill the browser window.
For example, Figure 9-1 shows a table placed in the center
facet of the panelStretchLayout
component. The table stretches to fill the browser space. When the entire table does not fit in the browser window, scrollbars are added in the data body section of the table.
Figure 9-2 shows the same table, but nested inside a panelGroupLayout
component, which cannot stretch its child components (for clarity, a dotted red outline has been placed around the panelGroupLayout
component). The table component displays only a certain number of columns and rows, determined by properties on the table.
Performance Tip: The cost of geometry management is directly related to the complexity of child components. Therefore, try minimizing the number of child components that are under a parent geometry-managed component. |
Even though you choose a component that can stretch its child components, only the following components will actually stretch:
decorativeBox
(when configured to stretch) inputText
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
(when configured to stretch) panelCollection
panelDashboard
(when configured to stretch) panelGroupLayout
(with the layout
attribute set to scroll
or vertical
) panelHeader
(when configured to stretch) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
showDetailHeader
(when configured to stretch) table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following layout components cannot be stretched when placed inside a facet of a component that stretches its child components:
panelBorderLayout
panelFormLayout
panelGroupLayout
(with the layout
attribute set to default
or horizontal
) panelLabelAndMessage
panelList
showDetail
tableLayout
(MyFaces Trinidad component) One interesting way to think about geometry management and resizing is to think of components as being one of four types of puzzle pieces, as shown in
Figure 9-3 Four Categories of Components for Geometry Management
You can only place components that can be stretched inside components that stretch their children. If you want to use a component that does not stretch within the facet of component that stretches its child components, you must wrap it in a transition component. Transition components can be stretched but do not stretch their children. Transition components must always be used between a component that stretches its children and a component that does not stretch. If you do not, you may see unexpected results when the component renders.
For example, suppose you want to have a form appear in one side of a panelSplitter
component. Say your root component is the panelStretchLayout
, and so is the first component on your page. You add a panelSplitter
component (configured to default settings) as a child to the panelStretchLayout
component, and to the first facet of that component, you add a panelForm
Layout component. Figure 9-4 shows how those components would fit together. Notice that the panelFormLayout
component cannot "fit" into the panelSplitter
component because the panelSplitter
can stretch its children and so will attempt to stretch the panelFormLayout
, but the panelFormLayout
cannot be stretched.
When a component does not "fit" into a component that stretches children, you may get unexpected results when the browser attempts to render the component.
To have a valid layout, when you want to use a component that does not stretch in a component that stretches its children, you must use a transition component. To fix the panelFormLayout
example, you could surround the panelFormLayout
component with a panelGroupLayout
component set to scroll
. This component stretches, but does not stretch its children, as shown in Figure 9-5.
In this case, all the components fit together. The panelGroupLayout
component will not attempt to stretch the panelFormLayout
, and so it will correctly render. And because the panelGroupLayout
component can be stretched, the layout will not break between the components that can and cannot stretch.
Tip: Do not attempt to stretch any of the components in the list of components that cannot stretch by setting their width to 100%. You may get unexpected results. Instead, surround the component to be stretched with a component that can be stretched.The |
When you use the New Gallery Wizard to create a JSF page (or a page fragment), you can choose from a variety of predefined quick start layouts. When you choose one of these layouts, JDeveloper adds the necessary components and sets their attributes to achieve the look and behavior you want. In addition to saving time, when you use the quick layouts, you can be sure that layout components are used together correctly to achieve the desired geometry management.
You can choose from one-, two-, and three-column formats. Within those formats, you can choose how many separate panes will be displayed in each column, and if those panes can stretch or remain a fixed size. Figure 9-6 shows the different layouts available in the two-column format.
Along with adding layout components, you can also choose to apply a theme to the chosen quick layout. These themes add color styling to some of the components used in the quick start layout. To see the color and where it is added, see Appendix D, "Quick Start Layout Themes." For more information about themes, see Chapter 28, "Customizing the Appearance Using Styles and Skins"
For more information about creating pages using the quick layouts, see Section 3.4, "Creating a View Page."
To ensure your page is displayed as expected in all browsers, use one of the quick layouts provided by JDeveloper when you create a page. These layouts ensure that the correct components are used and configured properly. For more information, see Section 9.2.3, "Using Quick Start Layouts."
Best Practice: Use quick start layouts to avoid layout display issues. |
However, if you wish to create your layout yourself, follow these tips for creating a layout that includes both stretched and flowing components:
panelStretchLayout
, panelSplitter
, panelAccordion
with a showDetailItem
, or panelTabbed
with a showDetailItem
. panelGroupLayout
component with the layout
attribute set to scroll
. This component will provide the transition between stretched and flowing components because it supports being stretched but will not stretch its child components. styleClass
attribute on the component to be stretched to AFStretchWidth
. This style will stretch the component to what appears to be 100% of the parent container, taking into account different browsers and any padding or borders on the parent. styleClass
attribute on the component to be stretched to AFAuxiliaryStretchWidth
. This style will stretch the component to what appears to be 100% of the parent container, taking into account different browsers and any padding or borders on the parent. Note: The two different styles are needed due to how Microsoft Internet Explorer 7 computes widths inside scrolling containers (this has been resolved in Internet Explorer 8). Unless you can control the version of browser used to access your application, you should use these styles as described. |
position
style. maximized
attribute on the document
tag is set to true
(this is the default). For more information about setting the attribute, see Section 9.2.5, "How to Configure the document Tag." The remainder of this chapter describes the ADF Faces layout components and how they can be used to design a page. You can find information about how each component handles stretching in the respective "What You May Need to Know About Geometry Management" sections.
The document
tag contains a number of attributes that you can configure to control behavior for the page. For example, you can configure the icon that the browser may insert into the address bar (commonly known as a favicon). Figure 9-7 shows the Oracle icon in the address bar of the Firefox browser.
You can also configure the tag for the following functionality:
web.xml
file for an individual page, so that the state of the page should be saved on the client or on the server. To configure the document tag:
Because this focus happens on the client, the component you select must have a corresponding client component. For more information, see Section 4.4, "Instantiating Client-Side Components."
true
if you want the root component to expand to fit all available browser space. When the document
tag's maximized
attribute is set to true
, the framework searches for a single visual root component, and stretches that component to consume the browser's viewable area, provided that the component can be stretched. Examples of components that support this are panelStretchLayout
and panelSplitter
. The document
tag's maximized
attribute is set to true
by default. For more information, see Section 9.2.1, "Geometry Management and Component Stretching." You can enter a space-delimited list of icons and a browser will typically display the first value it supports. For example, Microsoft Internet Explorer only supports .ico
for favicons. So given the following value:
Internet Explorer will display small-icon.ico
, while Firefox would display small-icon.png
.
Use one forward slash (/) in the address if the file is located inside of the web application's root folder. Use two forward slashes (//) if the file located in the server's root folder.
Figure 9-8 Mobile Device Displaying Large Icon
If no value is specified, each browser may do or display something different.
You can enter a space-delimited list of icons and a browser will typically display the first value it supports.
Use one forward slash (/) in the address if the file is located inside of the web application's root folder. Use two forward slashes (//) if the file located in the server's root folder.
Tip: Different versions of the iPhone and iPad use different sized images. You can use the largest size (129 pixels by 129 pixels) and the image will be scaled to the needed size. |
on
if you want a warning message displayed to the user when the application detects that data has not been committed. This can happen because either the user attempts to leave the page without committing data or there is uncommitted data on the server. By default, this is set to off
Note: If your application does not use ADF Controller, the data is considered to be committed when it is posted to the middle tier. For example, when a user clicks acommandButton , no warning will be displayed when navigation occurs in the middle tier regardless of whether the data was actually written to the back end. |
For ADF Faces applications, it is recommended to have the application use client state saving with tokens, which saves page state to the session and persists a token to the client. This setting affects the application globally, such that all pages have state saved to the session and persist tokens with information regarding state.
However, there may be a page for which you which you want the state saved differently. For example, when a user posts back to a login page after an extended period of time, you do not want the session time out error to be displayed. By changing the stateSaving
attribute on the page to client
, then when the user posts back to the login page, the time out error will not display.
You can override the global setting in web.xml
to one of the following for the page:
web.xml
. For more information about state saving, see Appendix A, "Configuration in web.xml."
Use the panelStretchLayout
component to arrange content in defined areas on a page and when you want the content to be able to stretch when the browser is resized. The panelStretchLayout
component is one of the components that can stretch components placed in its facets. Figure 9-9 shows the component's facets.
Note: Figure 9-9 shows the facets when the language reading direction of the application is configured to be left-to-right. If instead the language direction is right-to-left, thestart and end facets are switched. |
When you set the height of the top
and bottom
facets, any contained components are stretched up to fit the height. Similarly, when you set the width of the start
and end
facets, any components contained in those facets are stretched to that width. If no components are placed in the facets, then that facet does not render. That is, that facet will not take up any space. If you want that facet to take up the set space but remain blank, insert a spacer component. See Section 9.13, "Separating Content Using Blank Space or Lines." Child Components components in the center
facet are then stretched to fill up any remaining space. For more information about component stretching, see Section 9.2.1, "Geometry Management and Component Stretching."
Instead of setting the height of the top or bottom facet, or width of the start or end facet to a dimension, you can set the height or width to auto
. This allows the facet to size itself to use exactly the space required by the child components of the facet. Space will be allocated based on what the web browser determines is the required amount of space to display the facet content.
Performance Tip: Usingauto as a value will degrade performance of your page. You should first attempt to set a height or width and use the auto attribute sparingly. |
The File Explorer application uses a panelStretchLayout
component as the root component in the template. Child components are placed only in the center
and bottom
facets. Therefore, whatever is in the center
facet stretches the full width of the window, and from the top of the window to the top of the bottom
facet, whose height is determined by the bottomHeight
attribute. Example 9-2 shows abbreviated code from the fileExplorerTemplate
file.
Example 9-2 panelStretchLayout in the File Explorer's Template File
The template uses an EL expression to determine the value of the bottomHeight
attribute. This expression resolves to the value of the footerGlobalSize
attribute defined in the template, which by default is 0
. Any page that uses the template can override this value. For example, the index.jspx
page uses this template and sets the value to 30
. Therefore, when the File Explorer application renders, the contents in the panelStretchLayout
component begin 30 pixels from the bottom of the page.
The panelStretchLayout
component cannot have any direct child components. Instead, you place components within its facets. The panelStretchLayout
is one of the components that can be configured to stretch any components in its facets to fit the browser. You can nest panelStretchLayout
components. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.3, "Arranging Contents to Stretch Across a Page."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelStretchLayout component:
When there are child components in the top
, bottom
, start
, and end
facets, these components occupy space that is defined by the topHeight
, bottomHeight
, startWidth
, and endWidth
attributes. For example, topHeight
attribute specifies the height of the top
facet, and startWidth
attribute specifies the width of the start
facet. Child components in top
and bottom
facets are stretched up to the height set by topHeight
and bottomHeight
attributes, respectively, and child components in start
and end
facets are stretched up to the width set by startWidth
and endWidth
attributes, respectively. Instead of setting a numeric dimension, you can set the topHeight
, bottomHeight
, startWidth
and endWidth
attributes to auto
and the browser will determine the amount of space required to display the content in the facets.
Note: If you set a facet to useauto as a value for the width or height of that facet, the child component does not have to be able to stretch. In fact, it must use a stable, standalone width that is not dependent upon the width of the facet. For example, you should not use Additionally, you should not use |
If you do not explicitly specify a value, by default, the value for the topHeight
, bottomHeight
, startWidth
, and endWidth
attributes is 50 pixels each. The widths of the top
and bottom
facets, and the heights of the start
and end
facets are derived from the width and height of the parent component of panelStretchLayout
.
Tip: If a facet does not contain a child component, it is not rendered and therefore does not take up any space. You must place a child component into a facet in order for that facet to occupy the configured space. |
panelStretchLayout
component stretches to fill available browser space. If you want to place the panelStretchLayout
component inside a component that does not stretch its children, then you need to configure the panelStretchLayout
component to not stretch. Set DimensionsFrom to one of the following:
children
: Instead of stretching, the panelStretchLayout
component will get its dimensions from its child component. Note: If you use this setting, you cannot use a percentage to set the height of thetop and bottom facets. If you do, those facets will try to get their dimensions from the size of this panelStretchLayout component, which will not be possible, as the panelStretchLayout component will be getting its height from its contents, resulting in a circular dependency If a percentage is used for either facet, it will be disregarded and the default 50px will be used instead. Additionally, you cannot set the height of the |
parent
: the size of the panelStretchLayout
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container (that is, the panelStretchLayout
component will stretch). auto
: If the parent component to the panelStretchLayout
component allows stretching of its child, then the panelStretchLayout
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelStretchLayout
component will be based on the size of its child component. Because facets accept one child only, if you want to add more than one child component, wrap the child components inside a container component, for example, a panelGroupLayout
component. This component must also be able to be stretched in order for all contained components to stretch.
Tip: If any facet is not visible in the visual editor:
|
The panelStretchLayout
component can stretch its child components and it can also be stretched. The following components can be stretched inside the facets of the panelStretchLayout
component:
decorativeBox
(when configured to stretch) inputText
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
(when configured to stretch) panelCollection
panelDashboard
(when configured to stretch) panelGroupLayout
(only with the layout
attribute set to scroll
or vertical
) panelHeader
(when configured to stretch) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
showDetailHeader
(when configured to stretch) table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a facet of the panelStretchLayout
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only with the layout
attribute set to default
or horizontal
) panelLabelAndMessage
panelList
showDetail
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place a component that cannot be stretched into a facet of the panelStretchLayout
component, wrap that component in a transition component that can stretch.
For example, if you want to place content in a panelBox
component (which does not stretch) within a facet of the panelStretchLayout
component, you could place a panelGroupLayout
component with its layout
attribute set to scroll
in a facet of the panelStretchLayout
component, and then place the panelBox
component in that panelGroupLayout
component. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."
When you have groups of unique content to present to users, consider using the panelSplitter
component to provide multiple panes separated by adjustable splitters. The ADF Faces demo application uses a panelSplitter
to separate the component demo area from the editor area, as shown in Figure 9-10. Users can change the size of the panes by dragging the splitter, and can also collapse and restore the panel that displays the editor. When a panel is collapsed, the panel contents are hidden; when a panel is restored, the contents are displayed.
The panelSplitter
component lets you organize contents into two panes separated by an adjustable splitter. The panes can either line up on a horizontal line (as does the splitter shown in Figure 9-10) or on a vertical line. The ADF Faces demo application uses another panelSplitter
component to separate the application's global menu from the main body of the page. Figure 9-11 shows the panelSplitter
component expanded to show the menu, which includes access to the documentation and source.
Clicking the arrow button on a splitter collapses the panel that holds the global menu, and the menu items are no longer shown, as shown in Figure 9-12.
You place components inside the facets of the panelSplitter
component. The panelSplitter
component uses geometry management to stretch its child components at runtime. This means when the user collapses one panel, the contents in the other panel are explicitly resized to fill up available space.
Note: While the user can change the values of thesplitterPosition and collapsed attributes by resizing or collapsing the panes, those values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages." |
The panelSplitter
component lets you create two panes separated by a splitter. Each splitter component has two facets, namely, first
and second
, which correspond to the first panel and second panel, respectively. Child components can reside inside the facets only. To create more than two panes, you nest the panelSplitter
components.
Before You Begin
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.4, "Using Splitters to Create Resizable Panes."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelSplitter component:
vertical
to create two vertical panes (one on top of the other). By default, the value is horizontal
, which means horizontal panes are placed left-to-right (or right-to-left, depending on the language reading direction). splitterPosition
attribute is 200 pixels, and the positionedFromEnd
attribute is false
. This setting means that ADF Faces measures the initial position of the adjustable splitter from the start or top panel (depending on the orientation
attribute value). For example, if the orientation
attribute is set to horizontal
, the splitterPosition
attribute is 200
and the positionedFromEnd
attribute is false
(all default values), then ADF Faces places the splitter 200 pixels from the start panel, as shown in Figure 9-13. If the positionedFromEnd
attribute is set to true
, then ADF Faces measures the initial position of the splitter from the end (or bottom panel, depending on the orientation
value). Figure 9-14 shows the position of the splitter measured 200 pixels from the end panel.
collapsed
attribute is false
, which means both panes are displayed. When the user clicks the arrow button on the splitter, the collapsed
attribute is set to true
and one of the panes is hidden. ADF Faces uses the collapsed
and positionedFromEnd
attributes to determine which panel (that is, the first or second panel) to hide (collapse) when the user clicks the arrow button on the splitter. When the collapsed
attribute is set to true
and the positionedFromEnd
attribute is false
, the first panel is hidden and the second panel stretches to fill up the available space. When the collapsed
attribute is true
and the positionedFromEnd
attribute is true
, the second panel is hidden instead. Visually, the user can know which panel will be collapsed by looking at the direction of the arrow on the button: when the user clicks the arrow button on the splitter, the panel collapses in the direction of the arrow.
panelSplitter
component stretches to fill available browser space. If you want to place the panelSplitter
into a component that does not stretch its children, then you need to change how the panelSplitter
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. In the Property Inspector, set DimensionsFrom to one of the following:
children
: Instead of stretching, the panelSplitter
component will get its dimensions from its child component. Note: If you use this setting and you set theorientation attribute to vertical , then the contents of the collapsible panel will not be determined by its child component, but instead will be determined by the value of splitterPosition attribute. The size of the other pane will be determined by its child component. Additionally, you cannot set the height of the |
parent
: The size of the panelSplitter
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the panelSplitter
component allows stretching of its child, then the panelSplitter
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelSplitter
component will be based on the size of its child component. first
and second
facets. When you have the orientation set to horizontal, the first
facet is the left facet. When you have the orientation set to vertical, the first
facet is the top facet. If you want the child component to stretch, it must be a component that supports stretching. For more details, see Section 9.4.2, "What You May Need to Know About Geometry Management and the panelSplitter Component." Because facets accept one child component only, if you want to add more than one child component, wrap the child components inside a container component. This component must also be able to be stretched in order for all contained components to stretch.
Tip: If any facet is not visible in the visual editor:
|
Example 9-3 shows the code generated by JDeveloper when you nest splitter components.
Example 9-3 Nested panelSplitter Components
clientListener
tag for the collapsed
attribute and a propertyChange
event type. For more information about client-side events, see Chapter 6, "Handling Events." The panelSplitter
component can stretch its child components and it can also be stretched. The following components can be stretched inside the first
or second
facet of the panelSplitter
component:
decorativeBox
(when configured to stretch) calendar
inputText
(when configured to stretch) panelAccordion (when configured to stretch)
panelBox
(when configured to stretch) panelCollection
(when configured to stretch) panelDashboard
(when configured to stretch) panelGroupLayout
(only with the layout
attribute set to scroll
or vertical
) panelHeader
(when configured to stretch) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
showDetailHeader
(when configured to stretch) table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a facet of the panelSplitter
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only with the layout
attribute set to default
or horizontal
) panelLabelAndMessage
panelList
showDetail
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched into a facet of the panelSplitter
component, wrap that component in a transition component that does not stretch its child components.
For example, if you want to place content in a panelBox
component and have it flow within a facet of the panelSplitter
component, you could place a panelGroupLayout
component with its layout attribute set to scroll
in a facet of the panelSplitter
component, and then place the panelBox
component in that panelGroupLayout
component. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."
The panelBorderLayout
component uses facets to contain components in predefined areas of a page. Instead of a center
facet, the panelBorder
layout component takes 0
to n
direct child components (also known as indexed children), which are rendered consecutively in the center. The facets then surround the child components.
Figure 9-16 shows the facets of the panelBorderLayout
component.
The 12 supported facets of the panelBorderLayout
component are:
top
: Renders child components above the center area. bottom
: Renders child components below the center area. start
: Supports multiple reading directions. This facet renders child components on the left of the center area between top
and bottom
facet child components, if the reading direction of the client browser is left-to-right. If the reading direction is right-to-left, it renders child components on the right of the center area. When your application must support both reading directions, this facet ensures that the content will be displayed on the proper side when the direction changes. If you do not need to support both directions, then you should use either the left
or right
facet. end
: Supports multiple reading directions. This facet renders child components on the right of the center area between top
and bottom
facet child components, if the reading direction of the client browser is left-to-right. If the reading direction is right-to-left, it renders child components on the left of the center area. When your application must support both reading directions, this facet ensures that the content will be displayed on the proper side when the direction changes. If you do not need to support both directions, then you should use either the left
or right
facet. left
: Supports only one reading direction. This facet renders child components on the left of the center area between top
and bottom
facet child components. When the reading direction is left-to-right, the left
facet has precedence over the start
facet if both the left
and start
facets are used (that is, contents in the start
facet will not be displayed). If the reading direction is right-to-left, the left
facet also has precedence over the end
facet if both left
and end
facets are used. right
: Supports only one reading direction. This facet renders child components on the right of the center area between top
and bottom
facet child components. If the reading direction is left-to-right, the right
facet has precedence over the end
facet if both right
and end
facets are used. If the reading direction is right-to-left, the right
facet also has precedence over the start
facet, if both right
and start
facets are used. innerTop
: Renders child components above the center area but below the top
facet child components. innerBottom
: Renders child components below the center area but above the bottom
facet child components. innerLeft
: Renders child components similar to the left
facet, but renders between the innerTop
and innerBottom
facets, and between the left
facet and the center area. innerRight
: Renders child components similar to the right
facet, but renders between the innerTop
facet and the innerBottom
facet, and between the right
facet and the center area. innerStart
: Renders child components similar to the innerLeft
facet, if the reading direction is left-to-right. Renders child components similar to the innerRight
facet, if the reading direction is right-to-left. innerEnd
: Renders child components similar to the innerRight
facet, if the reading direction is left-to-right. Renders child components similar to the innerLeft
facet, if the reading direction is right-to-left. The panelBorderLayout
component does not support stretching its child components, nor does it stretch when placed in a component that stretches its child components. Therefore, the size of each facet is determined by the size of the component it contains. If instead you want the contents to stretch to fill the browser window, consider using the panelStretchLayout
component instead. For more information, see Section 9.3, "Arranging Contents to Stretch Across a Page."
There is no restriction to the number of panelBorderLayout
components you can have on a JSF page.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.5, "Arranging Page Contents in Predefined Fixed Areas."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelBorderLayout component:
panelBorderLayout
component. Child components are displayed consecutively in the order in which you inserted them. If you want some other type of layout for the child components, wrap the components inside the panelGroupLayout
component. For more information, see Section 9.12, "Grouping Related Items."
Because facets accept one child component only, if you want to add more than one child component, wrap the child components inside a container.
Tip: If any facet is not visible in the visual editor:
|
The panelFormLayout
component lets you lay out multiple components such as input fields and selection list fields in one or more columns. The File Explorer application uses a panelFormLayout
component to display file properties. The component is configured to have the labels right-aligned, as shown in Figure 9-17.
Figure 9-18 shows the same page with the component configured to display the labels above the fields.
You can configure the panelFormLayout
component to display the fields with their labels in one or more columns. Each field in the form is a child component of the panelFormLayout
component. You set the desired number of rows, and if there are more child components than rows, the remaining child components are placed in a new column. Example 9-4 shows a panelFormLayout
component with 10 inputText
child components.
Example 9-4
Because the panelFormLayout
's row
attribute is set to 10
, all 10 inputText
components appear in one column, as shown in Figure 9-19.
However, if the row
attribute were to be set to 8
, then the first 8 inputText
components display in the first column and the last two appear in the second column, as shown in Figure 9-20.
However, the number of rows displayed in each is not solely determined by the configured number of rows. By default, the panelFormLayout
component's maxColumns
attribute is set to render no more than three columns (two for PDA applications). This value is what actually determines the number of rows. For example, if you have 25 child components and you set the component to display 5 rows and you leave the default maximum number of columns set to 3
, then the component will actually display 9 rows, even though you have it set to display 5. This is because the maximum number of columns can override the set number of rows. Because it is set to allow only up to 3 columns, the component must use 9 rows in order to display all child components. You would need to set the maximum number of columns to 5 in order to have the component display just 5 rows.
ADF Faces uses default label and field widths, as determined by the standard HTML flow in the browser. You can also specify explicit widths to use for the labels and fields. Regardless of the number of columns in the form layout, the widths you specify apply to all labels and fields. You specify the widths using either absolute numbers in pixels or percentage values. If the length of a label does not fit, the text is wrapped.
Tip: If your page will be displayed in languages other than English, you should leave extra space in the labels to account for different languages and characters. |
You can use one or more panelFormLayout
components on a page to create the desired form layout.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.6, "Arranging Content in Forms."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use panelFormLayout:
By default, field labels on the child input components are displayed beside the fields. To place the labels above the fields, set the labelAlignment
attribute to top
.
Note: When you nest apanelFormLayout component inside another panelFormLayout component, the label alignment in the nested layout is top . |
panelFormLayout
component. The rows
attribute value is the number that ADF Faces uses as the number of rows after which a new column will start. By default, it is set to 2147483647
(Integer.MAX_VALUE
). This means all the child components that are set to rendered="true"
and visible="true"
will render in one, single column.
If you want the form to contain more than one column, set the rows
attribute to a multiple of the number of rendered child components, and then set the maxColumns
attribute to the maximum amount of columns that the form should display. The default value of maxColumns
is 3
. (On PDAs, the default is 2
).
Note: If thepanelFormLayout component is inside another panelFormLayout component, the inner panelFormLayout component's maxColumns value is always 1 . |
For example, if the rows
attribute is set to 6
and there are 1 to 6 rendered child components, the list will be displayed in 1 column. If there are 7 to 12 rendered child components, the list will be displayed in 2 columns. If there are 13 or more child components, the list will be displayed in 3 columns. To display all rendered child components in 1 column, set the rows
attribute back to the default value.
If the number of rendered child components would require more columns than allowed by the maxColumn
attribute, then the value of the rows
attribute is overridden. For example, if there are 100 rendered child components, and the rows
attribute is set to 30
and the maxColumns
attribute is 3
(default), the list will be displayed in 3 columns and 34 rows. If the maxColumns
attribute is set to 2
, the list will be displayed in 2 columns and 51 rows.
Tip: Rendered child components refers only to direct child components of thepanelFormLayout component. Therefore, when a component that renders multiple rows (for example selectManyCheckbox) is a child, all its rows will be treated as a single rendered child and cannot be split across separate columns. |
ADF Faces uses default label and field widths, as determined by standard HTML flow in the browser. You can also specify explicit widths to use for the labels and fields.
The labelWidth
attribute on the panelFormLayout
component lets you set the preferred width for labels; the fieldWidth
attribute lets you set the preferred width for fields.
Note: Any value you specify for thelabelWidth component is ignored in layouts where the labelAlignment attribute is set to top , that is, in layouts where the labels are displayed above the fields. |
Regardless of the number of columns in the form layout, the widths you specify apply to all labels and fields, that is, you cannot set different widths for different columns. You specify the widths using any CSS unit such as em, px, or %. The unit used must be the same for both the labelWidth
and fieldWidth
attribute.
When using percentage values:
panelFormLayout
component, regardless of the number of columns to be displayed. labelWidth
and fieldWidth
percentages must add up to 100%. If the sum is less than 100%, the widths will be normalized to equal 100%. For example, if you set the labelWidth
to 10% and the fieldWidth
to 30%, at runtime the labelWidth
would be 33% and the fieldWidth
would be 67%. labelWidth
but not fieldWidth
), ADF Faces automatically calculates the percentage width that is not specified. Note: If yourpanelFormLayout component contains multiple columns and a footer, you may see a slight offset between the positioning of the main form items and the footer items in web browsers that do not honor fractional divisions of percentages. To minimize this effect, ensure that the percentage labelWidth is evenly divisible by the number of columns. |
Suppose the width of the panelFormLayout
component takes up 600 pixels of space, and the labelWidth
attribute is set at 50
%. In a one-column display, the label width will be 300 pixels and the field width will be 300 pixels. In a two-column display, each column is 300 pixels, so each label width in a column will be 150 pixels, and each field width in a column will be 150 pixels.
If the length of the label text does not fit on a single line with the given label width, ADF Faces automatically wraps the label text. If the given field width is less than the minimum size of the child content you have placed inside the panelFormLayout
component, ADF Faces automatically uses the minimum size of the child content as the field width.
Note: If the field is wider than the space allocated, the browser will not truncate the field but instead will take space from the label columns. This potentially could cause the labels to wrap more than you would like. In this case, you may want to consider reducing the width of the field contents (for example, use a smallercontentStyle width on an inputText component). |
Usually you insert labeled form input components, such as Input Text, Select Many Checkbox, and other similar components that enable users to provide input.
Tip: ThepanelFormLayout component also allows you to use the iterator , switcher , and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panelFormLayout component. |
Example 9-5 shows the panelFormLayout
component as it is used on the properties.jspx
page of the File Explorer application, shown in Figure 9-17.
Example 9-5 panelFormLayout Component
Tip: If you use non-input components (which do not havelabel attributes) or if you want to group several input components with one single label inside a panelFormLayout component, first wrap the components inside a panelLabelAndMessage component. For information about using the panelLabelAndMessage component, see Section 19.4, "Grouping Components with a Single Label and Message." |
group
component to wrap those components that belong in a group. Components placed within a group will cause the panelFormLayout
component to draw a separator line above and below the group. For more information about using the group
component, see Section 9.6.2, "What You May Need to Know About Using the group Component with the panelFormLayout Component."
footer
facet. Facets accept only one child component. If you have to insert more than one component in the footer
facet, use the panelGroupLayout
component or the group
component to wrap the footer
child components. Example 9-6 shows sample code that uses the panelGroupLayout
component to arrange footer
child components in a panelFormLayout
component.
Example 9-6 Footer Child Components in panelFormLayout Arranged Horizontally
While the group
component itself does not render anything, when it used as a child in the panelFormLayout
component, visible separators are displayed around the child components of each group
component. For example, you might want to group some of the input fields in a form layout created by the panelFormLayout
component. Example 9-16 shows sample code that groups two sets of child components inside a panelFormLayout
component.
Example 9-7 Grouping Child Components in panelFormLayout
Following along with the sample code in Example 9-16, at runtime the panelFormLayout
component renders dotted, separator lines before and after the first group
of child components, as shown in Figure 9-21.
As described in Section 9.6, "Arranging Content in Forms," the panelFormLayout
component uses certain component attributes to determine how to display its child components (grouped and ungrouped) in columns and rows. When using the group
component to group related components in a panelFormLayout
component that will display its child components in more than one column, the child components of any group
component will always be displayed in the same column, that is, child components inside a group
component will never be split across a column.
While the group
component does not provide any layout for its child components, the underlying HTML elements can provide the desired layout for the child components inside the group
component. For example, if you want child button components in a group
component to flow horizontally in a form layout, use the panelGroupLayout
component to wrap the buttons, and set the layout
attribute on panelGroupLayout
component to horizontal
. Then insert the panelGroupLayout
component into group
component, as shown in Example 9-8.
Example 9-8 panelGroupLayout Inside a Group Component
When you use the group
component to group child components in the footer
facet of the panelFormLayout
component, you must place all the group
components and other ungrouped child components in one root group
component, as shown in Example 9-9.
Example 9-9 footer Facet in panelFormLayout with One Root group Component
Like grouped child components in a panelFormLayout
component, at runtime the panelFormLayout
component renders dotted, separator lines around the child components of each group
component in the footer
facet, as shown in Figure 9-22.
Note: Thefooter facet in the panelFormLayout component supports only two levels of grouped components, that is, you cannot have three or more levels of nested group components in the footer facet. For example, the following code is not valid: <f:facet name="footer"> <!-- Only one root group --> <af:group> <af:outputText value="Footer item 1"/> <!-- Any number of groups at this level --> <af:group> <af:outputText value="Group 1 item 1"/> <af:outputText value="Group 1 item 2"/> <!-- But not another nested group. This is illegal. --> <af:group> <af:outputText value="Nested Group 1 item 1"/> <af:outputText value="Nested Group 1 item 2"/> </af:group> </af:group> <af:outputText value="Another footer item"/> </af:group> </f:facet> |
Whether you are grouping components in the footer
facet or in the main body of the panelFormLayout
component, if the first or last child inside the panelFormLayout
component or inside the footer
facet is a group
component, no separator lines will be displayed around the child components in that group. For example, both sets of code examples in Example 9-10 would produce the same visual effect at runtime.
Example 9-10 Code Producing Same Visual Effect
The panelDashboard
component allows you to arrange its child components in rows and columns, similar to the panelForm
component. However, instead of text components, the panelDashboard
children are panelBox
components that contain content, as shown in Figure 9-23.
When you add a panelDashboard
component, you configure the number of columns it will contain, along with the height of each row. The dashboard stretches its children to fill up the configured space. If all the child components do not fit within the specified number of columns and row height, then the panelDashboard
component displays a scroll bar.
When placed in a component that stretches it children, by default, the panelDashboard
stretches to fill its parent container, no matter the number of children. This could mean that you may have blank space in the dashboard when the browser is resized to be much larger than the dashboard needs.
For example, say you have set the panelDashboard
to inherit its size from its parent by setting the dimensionsFrom
attribute to parent
. You set columns to 1 and the rowHeight
to 50px
. You then add two panelBox
components. Because columns
is set to 1, you will have 2 rows. Because the parent component is a panelStretchLayout
, the panelDashboard
will stretch to fill the panelStretchLayout
, no matter the height of the boxes, and you end up with extra space, as shown in Figure 9-24 (the color of the dashboard has been changed to fuchsia to make it more easy to see its boundaries).
If instead you don't want the dashboard to stretch, you can place it in a component that does not stretch its children, and you can configure the panelDashboard
to determine its size based on its children (by setting the dimensionsFrom
attribute to children
). It will then be as tall as the number of rows required to display the children, multiplied by the rowHeight
attribute.
In the previous example, if instead you place the dashboard in a panelGroupLayout
set to scroll
, because the rowHeight
is set to 50
, your panelDashboard
will always be just over 100px tall, no matter the size of the browser window, as shown in Figure 9-25.
The panelDashboard
component also supports declarative drag and drop behavior, so that the user can rearrange the child components. As shown in Figure 9-26, the user can for example, move panelBox 10
between panelBox 4
and panelBox
5
. A shadow is displayed where the box can be dropped.
Note: You can also configure drag and drop functionality that allows users to drag components into and out of thepanelDashboard component. For more information, see Section 33.6, "Adding Drag and Drop Functionality Into and Out of a panelDashboard Component." |
Along with the ability to move child components, the panelDashboard
component also provides an API that you can access to allow users to switch child components from being rendered to not rendered, giving the appearance of panelBoxes
being inserted or deleted. The dashboard uses partial page rendering to redraw the new set of child components without needing to redraw the entire page.
You can use the panelDashboardBehavior
tag to make the rendering of components appear more responsive. This tag allows the activation of a command component to apply visual changes to the dashboard before the application code modifies the component tree on the server. Because this opening up of space happens before the action event is sent to the server, the user will see immediate feedback while the action listener for the command component modifies the component tree and prepares the dashboard for the optimized encoding of the insert.
For example, Figure 9-27 shows a panelDashboard
component used in the right panel of a panelSplitter
component. In the left panel, list items displayed as links represent each panelBox
component in the panelDashboard
. When all panelBox
components are displayed, the links are all inactive. However, if a user deletes one of the panelBox
components, the corresponding link becomes active. The user can click the link to reinsert the panelBox
. By using the panelDashboardBehavior
tag with the commandLink
component, the user sees the inserted box drawing.
If you decide not to use this tag, there will be a slight delay while your action listener is processing before the user sees any change to the dashboard structure.
Figure 9-28 shows a practical example using a panelDashboard
component. Selecting one of the links at the top of the page changes the panelBoxes
displayed in the dashboard. The user can also add panelBoxes
by clicking the associated link on the left-hand side of the page.
After you add a panelDashboard
to a page, you can configure the dashboard to determine whether or not it will stretch. Then, add child components, and if you want to allow rearrangement the components, also add a componentDragSource
tag to the child component. If you want to allow insertion and deletion of components, implement a listener to handle the action. You can also use the panelDashboardBehavior
tag to make the panelDashboard
component appear more responsive to the insertion.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.7, "Arranging Contents in a Dashboard."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To use the panelDashboard component:
panelDashboard
component stretches to fill available browser space. If instead, you want to use the panelDashboard
component as a child to a component that does not stretch its children, then you need to change how the panelDashboard
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, expand the Appearance section, and set DimensionsFrom to one of the following:
children
: the panelDashboard
component will get its dimensions from its child components. Note: If you use this setting, you cannot set the height of thepanelDashboard component (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the panelDashboard height and the child component height. |
parent
: the size of the panelDashboard
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the panelDashboard
component allows stretching of its child, then the panelDashboard
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelDashboard
component will be based on the size of its child component. panelBox
components. Tip: ThepanelDashboard component also supports the region component as a child component. |
If you want users to be able to reorder the child components, in the Component Palette, from the Operations panel, in the Drag and Drop group, drag and drop a Component Drag Source as a child to each of the child components.
To use the optimized lifecycle, have the handler call the panelDashboard
component's prepareOptimizedEncodingOfInsertedChild()
method, which causes the dashboard to send just the inserted child component to be rendered.
Note: If you plan on using thepanelDashboardBehavior tag, then this API should be called from the associated command component's actionListener handler. |
componentDragSource
tag in Step 7, then you must also implement a DropEvent
handler for the panelDashboard
. With the panelDashboard
component selected, expand the Behavior section and bind the DropListener
attribute to that handler method. If you wish to use a panelDashboardBehavior
tag, drag and drop a command component that will be used to initiate the insertion.
panelDashboard
component's prepareOptimizedEncodingOfInsertedChild()
method, which causes the dashboard to send just the inserted child component to be rendered. Example 9-11 shows code on a managed bean that handles the insertion of child components. Example 9-11 Action Listener Code for Insert Button
panelDashboard
component panelDashboardBehavior
tag, a placeholder element is inserted into the DOM tree where the actual component will be rendered once it is returned from the server. Because the insertion placeholder gets added before the insertion occurs on the server, you must specify the location where you are planning to insert the child component so that if the user reloads the page, the children will continue to remain displayed in the same order. This component organizes its children into a grid based on the number of columns and the rowHeight
attribute. The child components that can be stretched inside of the panelDashboard
include:
inputText
(when the rows
attribute is set to greater than one, and the simple
attribute is set to true
) panelBox
region
(when configured to stretch) table
(when configured to stretch) If you try to put any other component as a child component to the panelDashboard
component, then the component hierarchy is not valid.
Sometimes you want users to have the choice of displaying or hiding content. When you do not need to show all the functionality of the user interface at once, you can save a lot of space by using components that enable users to show and hide parts of the interface at will.
The showDetail
component creates a label with a toggle icon that allows users to disclose (show) or undisclose (hide) contents under the label. When the contents are undisclosed (hidden), the default label is Show and the expand icon is displayed. When the contents are disclosed (shown), the default label is Hide, and the collapse icon is displayed.
For example, the newFileItem
page of the File Explorer application uses a showDetail
component to hide and display file properties. The component is configured to hide the properties when the page is displayed, as shown in Figure 9-29.
When the user clicks the toggle icon, the properties are displayed, as shown in Figure 9-30.
If you want to use something more complex than an outputText
component to display the disclosed and undisclosed text, you can add components to the showDetail
component's prompt
facet. When set to be visible, any contents in the prompt facet will replace the disclosed and undisclosed text values. To use the showDetail
component, see Section 9.8.1, "How to Use the showDetail Component."
Like the showDetail
component, the showDetailHeader
component also toggles the display of contents, but the showDetailHeader
component provides the label and toggle icon in a header, and also provides facets for a menu bar, toolbar, and text.
Tip: TheshowDetailHeader component is the same as a panelHeader component, except that it handles disclosure events. For more information about the panelHeader component, see Section 9.10, "Displaying Items in a Static Box." |
When there is not enough space to display everything in all the facets of the title line, the showDetailHeader
text is truncated and displays an ellipsis. When the user hovers over the truncated text, the full text is displayed in a tooltip, as shown in Figure 9-31.
When there is more than enough room to display the contents, the extra space is placed between the context
facet and the toolbar, as shown in Figure 9-32.
Additionally, you can configure the showDetailHeader
component to be used as a message for errors, warnings, information, or confirmations. The contents are undisclosed or disclosed below the header. For example, the newFileItem
page of the File Explorer application uses a showDetailHeader
component to display help for creating a new file. By default, the help is undisclosed, as shown in Figure 9-30. When the user clicks the toggle icon in the header, the contents are disclosed, as shown in Figure 9-33.
You can also use the showDetailHeader
component in conjunction with the panelHeader
component to divide a page into sections and subsections, where some contents can be hidden. The showDetailHeader
component contains a number of facets, such as a toolbar and menu bar facet. These facets are the same as for the panelHeader
component. For more information about the panelHeader
component, see Section 9.10, "Displaying Items in a Static Box."
You can nest showDetailHeader
components to create a hierarchy of content. Each nested component takes on a different heading style to denote the hierarchy. Figure 9-34 shows three nested showDetailHeader
components, and their different styles.
You can change the styles used by each header level by applying a skin to the showDetailHeader
component. For details about skinning ADF Faces components, see Chapter 28, "Customizing the Appearance Using Styles and Skins."
Note: While you can force the style of the text using thesize attribute, (where 0 is the largest text), the value of the size attribute will not affect the hierarchy. It only affects the style of the text. Hierarchy is determined by the nesting of the components. |
Use the panelBox
component when you want information to be able to be displayed or hidden below the header, and you want the box to be offset from other information on the page. The File Explorer application uses two panelBox
components on the properties.jspx
page to display the attributes and history of a file, as shown in Figure 9-35.
Figure 9-36 shows the same page, but with the History panelBox
component in an undisclosed state.
You can set the background color on a panelBox
component so that the contents are further delineated from the rest of the page. Two color combinations (called ramps) are offered, and each combination contains four levels of color: none, light, medium, and dark. Figure 9-37 shows the same panel boxes as in Figure 9-35, but with the bottom panelBox
component configured to show the medium tone of the core ramp.
You can set the size of a panelBox
component either explicitly by assigning a pixel size, or as a percentage of its parent. You can also set the alignment of the title, and add an icon. In addition, the panelBox
component includes the toolbar
facet that allows you to add a toolbar and toolbar buttons to the box.
The showDetail
, showDetailHeader
, and panelBox
components all handle disclosure events on the server. Disclosure events are sent whenever the user toggles the component between disclosed and undisclosed. This means that a roundtrip to the server is required, even though no data may be being sent or received. You can configure these components to so that they handle the disclosure event on the client instead, which improves performance. The event will not be sent to the server until another event is sent, or if the component detects that any data has changed.
If you want to show and hide multiple large areas of content, consider using the panelAccordion
and panelTabbed
components. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."
Use the showDetail
component to show and hide a single set of content.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the showDetail component:
Set Disclosed to true
if you want the component to show its child components.
Note: While the user can change the value of thedisclosed attribute by displaying and hiding the contents, the value will not be retained once the user leaves the page unless you configure your application to allow user customizations. For information, see Chapter 32, "Allowing User Customization on JSF Pages." |
Set DisclosedText to the label you want to display next to the toggle icon when the contents are disclosed (shown). By default, the label is Hide if no value is specified.
Set UndisclosedText to the label you want to display next to the toggle icon when the contents are undisclosed (hidden). By default, the label is Show if no value is specified.
Note: If you specify a value fordisclosedText but not for undisclosedText , then ADF Faces automatically uses the disclosedText value for both the disclosed state and undisclosed state. Similarly, if you specify a value for undisclosedText but not for disclosedText , the undisclosedText value is used when the contents are hidden or displayed. Instead of using text specified in |
DisclosureListener
method in a backing bean that you want to execute when the user displays or hides the component's contents. For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
client
if you want the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated. For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
Note: If you have bound thedisclosureListener to a listener method that handles the disclosure event, then the handleDisclosure value is ignored, and the event is handled on the server. |
Performance Tip: If you do not expect the component to handle data changes, you should set thehandleDisclosure attribute to client . |
showDetail
component. Use the showDetailHeader
component when you want to display a single set of content under a header, or when you want the content to be used as messages that can be displayed or hidden. You can also use the showDetailHeader
component to create a hierarchy of headings and content when you want the content to be able to be hidden.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the showDetailHeader component:
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
confirmation
: The confirmation icon (represented by a note page overlaid with a green checkmark) replaces any specified icon image. error
: The error icon (represented by a red circle with an x inside) replaces any specified icon image. The header label also changes to red. info
: The info icon (represented by a blue circle with an I inside) replaces any specified icon image. warning
: The warning icon (represented by a yellow triangle with an exclamation mark inside) replaces any specified icon image. none
: Default. No icon is displayed, unless one is specified for the icon
attribute. Figure 9-38 shows each of the icons used for message types.
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
true
if you want the component to show its child components. Note: While the user can change the value of thedisclosed attribute by displaying and hiding the contents, the value will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages." |
disclosureListener
method in a backing bean that you want to execute when the user displays or hides the component's contents. For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
client
if you want the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated. For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
Note: If you have bound thedisclosureListener to a listener method that handles the disclosure event, then the handleDisclosure value is ignored, and the event is handled on the server. |
Performance Tip: If you do not expect the component to handle data changes, you should set thehandleDisclosure attribute to client . |
showDetailHeader
component handles geometry management, expand the Appearance section and set Type. Set it to flow
if you do not want the component to stretch or to stretch its children. The height of the showDetailHeader
component will be determined solely by its children. Set it to stretch
if you want it to stretch and stretch its child (will only stretch a single child component). Leave it set to the default if you want the parent component of the showDetailHeader
component to determine geometry management. For more information about geometry management, see Section 9.2.1, "Geometry Management and Component Stretching." toolbar
component into the toolbar
facet. Then add any number of commandToolbarButton
or commandButton
components into the newly inserted toolbar
component. For more information about using the toolbar
component, see Section 16.3, "Using Toolbars." Note: Toolbar overflow is not supported inpanelHeader components. |
menuBar
facet. For more information about creating menus, see Section 16.2, "Using Menus in a Menu Bar." Tip: You can place menus in thetoolbar facet and toolbars (and toolboxes) in the menu facet. The main difference between these facets is location. The toolbar facet is before the menu facet. |
showDetailHeader
component inside an existing showDetailHeader
component. The size
attribute specifies the number to use for the header level. The largest number is 0
, and it corresponds to an H1 header level; the smallest is 5
, and it corresponds to an H6 header.
By default, the size
attribute is -1
. This means ADF Faces automatically calculates the header number (and thus the header level style to use) from the topmost, parent component. When you use nested components, you do not have to set the size
attribute explicitly to get the proper header style to be displayed.
Note: While you can force the style of the text using thesize attribute, (where 0 is the largest text), the value of the size attribute will not affect the hierarchy. It only affects the style of the text. Hierarchy is determined by the nesting of the components. |
In the default skin used by ADF Faces, the style used for sizes above 2 will be displayed the same as size 2. That is, there is no difference in styles for sizes 3, 4, or 5–they all show the same style as size 2. You can change this by creating a custom skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins."
showDetailHeader
component. You can insert any number of panelBox
components on a page.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.8, "Displaying and Hiding Contents Dynamically."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use a panelBox component:
The core
ramp uses variations of blue, while the highlight
ramp uses variations of yellow. You can change the colors used by creating a custom skin. For details, see Chapter 28, "Customizing the Appearance Using Styles and Skins."
light
, medium
, dark
, or default
. The default background color is transparent. Note: If both thetext and icon attributes are not set, ADF Faces does not display the header portion of the panelBox component. |
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
center
, start
, end
, left
, or right
. The value determines the horizontal alignment of the title (including any icon image) in the header portion of the container. disclosureListener
method in a backing bean that you want to execute when the user shows or hides the component's contents. For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
client
if you want the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated. For information about disclosure events and listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
Note: If you have bound thedisclosureListener to a listener method that handles the disclosure event, then the handleDisclosure value is ignored, and the event is handled on the server. |
Performance Tip: If you do not expect the component to handle data changes, you should set thehandleDisclosure attribute to client . |
toolbar
facet. Then insert the desired number of commandToolbarButton
components into the toolbar
component. For information about using toolbar
and commandToolbarButton
components, see Section 16.3, "Using Toolbars." Tip: If any facet is not visible in the visual editor:
|
panelBox
component. Typically, you would insert one child component into the panelBox
component, and then insert the contents for display into the child component. The child component controls how the contents will be displayed, not the parent panelBox
component.
panelBox
component, set the inlineStyle
attribute to the exact pixel size you want. Alternatively, you can set the inlineStyle
attribute to a percentage of the outer element that contains the panelBox
component. Example 9-12 shows the code you might use for changing the width. The disclosed
attribute specifies whether to show (disclose) or hide (undisclose) the contents under its header. By default, the disclosed
attribute is true
, that is, the contents are shown. When the attribute is set to false
, the contents are hidden. You do not have to write any code to enable the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces handles the toggling automatically.
When the user clicks the toggle icon to show or hide contents, by default, the components deliver a org.apache.myfaces.trinidad.event.DisclosureEvent
event to the server. The DisclosureEvent
event contains information about the source component and its state: whether it is disclosed (expanded) or undisclosed (collapsed). The isExpanded()
method returns a boolean
value that determines whether to expand (disclose) or collapse (undisclose) the node. If you only want the component to disclose and undisclose its contents, then you do not need to write any code.
However, if you want to perform special handling of a DisclosureEvent
event, you can bind the component's disclosureListener
attribute to a disclosureListener
method in a backing bean. The disclosureListener
method will then be invoked in response to a DisclosureEvent
event, that is, whenever the user clicks the disclosed or undisclosed icon.
The disclosureListener
method must be a public method with a single disclosureEvent
event object and a void return type, shown in Example 9-13.
Example 9-13 disclosureListener Method
By default, DisclosureEvent
events are usually delivered in the Invoke Application phase, unless the component's immediate
attribute is set to true
. When the immediate
attribute is set to true
, the event is delivered in the earliest possible phase, usually the Apply Request Values phase.
If you do not need to use a listener method to react to the disclosure event, then consider setting the handleDisclosure
attribute to client
. This setting causes the disclosure event to be handled on the client. The event will not be sent to the server until another event is sent, or if the component detects that the data has changed and needs to be updated. The event will also be automatically sent to the server if the disclosureListener
attribute is bound to a listener method, even when the handleDisclosure
attribute is set to client
.
If you do want to have a disclosureListener
method and you also want to react to the event on the client, you can use the AdfDisclosureEvent
client-side event. The event root for the client AdfDisclosureEvent
event is set to the event source component: only the event for the panel whose disclosed
attribute is true
gets sent to the server. For more information about client-side events and event roots, see Chapter 6, "Handling Events."
The value of the disclosed
attribute can be persisted at runtime, that is, when the user shows or hides contents, ADF Faces can change and then persist the attribute value so that it remains in that state for the length of the user's session. For more information, see Chapter 32, "Allowing User Customization on JSF Pages."
Note: Any ADF Faces component that has built-in event functionality, as theshowDetail , showDetail Header , and panelBox components do, must be enclosed in the form component. |
When you need to display multiple areas of content that can be hidden and displayed, you can use the panelAccordion
or the panelTabbed
components. Both of these components use the showDetailItem
component to display the actual contents.
The panelAccordion
component creates a series of expandable panes. You can allow users to expand more than one panel at any time, or to expand only one panel at a time. When more than one panel is expanded, the user can adjust the height of the panel by dragging the header of the showDetailItem
component.
When a panel is collapsed, only the panel header is displayed; when a panel is expanded, the panel contents are displayed beneath the panel header (users can expand the panes by clicking either the panelAccordion
component's header or the expand icon). The File Explorer application uses the panelAccordion
component to display the Folders and Search panes, as shown in Figure 9-39.
At runtime, when available browser space is less than the space needed to display expanded panel contents, ADF Faces automatically displays overflow icons that enable users to select and navigate to those panes that are out of view. Figure 9-40 shows the overflow icon (circled in the lower right-hand corner) displayed in the Folders panel of the File Explorer application when there is not enough room to display the Search panel.
When the user clicks the overflow icon, ADF Faces displays the overflow popup menu (as shown in Figure 9-41) for the user to select and navigate to.
You can also configure the panelAccordion
so that the panes can be rearranged by dragging and dropping, as shown in Figure 9-42.
When the order is changed, the displayIndex
attribute on the showDetailItem
components also changes to reflect the new order.
Note: Items in the overflow cannot be reordered. |
To use the panelAccordion
component, see Section 9.9.1, "How to Use the panelAccordion Component."
The panelTabbed
component creates a series of tabbed panes. Unlike the panelAccordion
panes, the panelTabbed
panes are not collapsible or expandable. Instead, when users select a tab, the contents of the selected tab are displayed. The tabs may be positioned above the display area, below the display area, or both. You can configure a panelTabbed
component so that the individual tabs can be closed. You can have it so that all tabs can be closed, all but the last tab can be closed, or no tabs can be closed. When tabs are configured to be removed, an X is displayed at the end of the tab. You can also configure tabs so that they display a disabled X, meaning it can be removed, but is currently disabled.
You can configure when the showDetailItem
components that contain the contents for each of the tabs will be created. When you have a small number of tabs, you can have all the showDetailItem
components created when the panelTabbed
component is first created, regardless of which tab is currently displayed. However, if the panelTabbed
component contains a large number of showDetailItem
components, the page might be slow to render. To enhance performance, you can instead configure the panelTabbed
component to create a showDetailItem
component only when its corresponding tab is selected. You can further configure the delivery method to either destroy a showDetailItem
once the user selects a different tab, or to keep any selected showDetailItem
components in the component tree so that they do not need to be recreated each time they are accessed.
The File Explorer application uses the panelTabbed
component to display the contents in the main panel, as shown in Figure 9-43.
To use the panelTabbed
component, see Section 9.9.2, "How to Use the panelTabbed Component."
Tip: If you want the tabs to be used in conjunction with navigational hierarchy, for example, each tab is a different page or region that contains another set of navigation items, you may want to use a navigation panel component to create a navigational menu. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy." |
For both the panelAccordion
and panelTabbed
components, use one showDetailItem
component to provide the contents for each panel. For example, if you want to use four panes, insert four showDetailItem
components inside the panelAccordion
or panelTabbed
components, respectively. To use the showDetailItem
component, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components." You can add a toolbar to the toolbar
facet of the showDetailItem
component, and the toolbar will be shown whenever the panel or tab is disclosed. Figure 9-43 shows the toolbar used by the showDetailItem
component in the File Explorer application.
The panelTabbed
component also supports an overflow icon if all tabs cannot be displayed. Figure 9-44 shows the overflow icon in the File Explorer application.
Performance Tip: The number of child components within apanelAccordion or panelTabbed component, and the complexity of the child components, will affect the performance of the overflow. Set the size of the panelAccordion or panelTabbed component to avoid overflow when possible. |
The panelAccordion
and panelTabbed
components can be configured to be stretched, or they can be configured to instead take their dimensions from the currently disclosed showDetailItem
child.
When you configure the panelAccordion
or panelTabbed
component to stretch, then you can also configure the showDetailItem
component to stretch a single child as long as it is the only child of the showDetailItem
component.
You can use more than one panelAccordion
component in a page, typically in different areas of the page, or nested. After adding the panelAccordion
component, insert a series of showDetailItem
components to provide the panes, using one showDetailItem
for one panel. Then insert components into each showDetailItem
to provide the panel contents. For procedures on using the showDetailItem
component, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelAccordion component:
true
if you want users to be able to expand and see the contents of more than one panel at the same time. By default, the value is false
. This means only one panel can be expanded at any one time. For example, suppose there is one expanded panel A and one collapsed panel B when the page first loads. If the user expands panel B, panel A will be collapsed, because only one panel can be expanded at any time.
true
if you want users to be able to collapse all panes. By default, the value is false
. This means one panel must remain expanded at any time.
panelAccordion
component stretches to fill available browser space. If instead, you want to use the panelAccordion
component as a child to a component that does not stretch its children, then you need to change how the panelAccordion
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. Set DimensionsFrom to one of the following:
children
: the panelAccordion
component will get its dimensions from the currently disclosed showDetailItem
component. Note: If you use this setting, you cannot set the height of thepanelAccordion component (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the panelAccordion height and the child component height. Similarly, you cannot set the |
parent
: the size of the panelAccordion
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the panelAccordion
component allows stretching of its child, then the panelAccordion
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelAccordion
component will be based on the size of its child component. Note: If you want thepanelAccordion to stretch, and you also want the showDetailItem to stretch its contents, then you must configure the showDetailItem in a certain way. For details, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components." |
enabled
. The default is disabled
. Note: If thepanelAccordion has components other than showDetailItem components (see the tip in Step 7), those components can be reordered on the client only. Therefore, any new order will not be preserved. |
By default, one panel is added for you using a showDetailItem
component as a child component to the panelAccordion
component. To add more panes, insert the showDetailItem
component inside the panelAccordion
component. You can add as many panes as you wish.
Tip: Accordion panels also allow you to use theiterator , switcher , and group components as direct child components, providing these components wrap child components that would typically be direct child components of the accordion panel. |
To add contents for display in a panel, insert the desired child components into each showDetailItem
component. For procedures, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."
Using the panelTabbed
component to create tabbed panes is similar to using the panelAccordion
component to create accordion panes. After adding a panelTabbed
component, you insert a series of showDetailItem
components to provide the tabbed panel contents for display.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelTabbed component:
below
if you want the tabs to be rendered below the contents in the display area. By default, the value is above
. This means the tabs are rendered above the contents in the display area. The other acceptable value is both
, where tabs are rendered above and below the display area.
panelTabbed
component stretches to fill available browser space. If instead, you want to use the panelTabbed
component as a child to a component that does not stretch its children, then you need to change how the panelTabbed
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. To do so, set DimensionsFrom to one of the following:
disclosedChild
: the panelTabbed
component will get its dimensions from the currently disclosed showDetailItem
component. Note: If you use this setting, you cannot set the height of thepanelTabbed component (for example through the inlineStyle or styleClass attributes). Doing so would cause conflict between the panelTabbed height and the child component height. |
parent
: the size of the panelTabbed
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the PanelTabbed
component allows stretching of its child, then the panelTabbed
component will stretch to fill the parent. If the parent does not stretch its children then the size of the panelTabbed
component will be based on the size of its child component. showDetailItem
components. You can override this on an individual showDetail Item component, so that an individual tab cannot be removed (a close icon does not display), or so that the closed icon is disabled. For more information, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components." showDetailItem
components are created when the panelTabbed
component is created. If there will be a large number of children, to improve runtime performance you can configure the panelTabbed
either so that it creates the child showDetailItem
component only when the tab is selected, or so that it creates the child showDetailItem
component only when it's selected the first time, and from that point on it remains created. You configure when the child components will be created using the childCreation
attribute. To do so, set ChildCreation to one of the following:
immediate
: All showDetailItem
components are created when the panelTabbed
component is created. lazy
: The showDetailItem
component is created only when the associated tab is selected. Once a tab is selected, the showDetailItem
component remains created in the component tree. lazyUncached
: The showDetailItem
component is created only when the associated tab is selected. Once another tab is selected, the showDetailItem
component is destroyed. showDetailItem
component as a child to the panelTabbed
component. To add more panes, insert the showDetailItem
component inside the panelTabbed
component. You can add as many tabbed panes as you wish. Tip: ThepanelTabbed component also allow you to use the iterator , switcher , and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panelTabbed component. |
To add contents for display in a panel, insert the desired child components into each showDetailItem
component. For information about using showDetailItem
, see Section 9.9.3, "How to Use the showDetailItem Component to Display Content in panelAccordion or panelTabbed Components."
Insert showDetailItem
components into a panelAccordion
or panelTabbed
component only. Each showDetailItem
component corresponds to one accordion panel or tabbed panel. Typically, you insert two or more showDetailItem
components into the parent component. Insert the child components for display into the showDetailItem
components.
The disclosed
attribute on a showDetailItem
component specifies whether to show (disclose) or hide (undisclose) the corresponding accordion panel or tab contents. By default, the disclosed
attribute is false
, that is, the contents are hidden (undisclosed). When the attribute is set to true
, the contents are shown (disclosed). You do not have to write any code to enable the toggling of contents from disclosed to undisclosed, and vice versa. ADF Faces handles the toggling automatically.
The following procedure assumes you have already added a panelAccordion
or panelTabbed
component to the JSF page, as described in Section 9.9.1, "How to Use the panelAccordion Component," and Section 9.9.2, "How to Use the panelTabbed Component," respectively.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To add accordion panel or tabbed panel contents using a showDetailItem component:
showDetailItem
components inside the parent component, such as panelAccordion
or panelTabbed
, by dragging and dropping a Show Detail Item component from Layout panel of the Component Palette. Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
showDetailItem
component is being used inside a panelAccordion
component configured to stretch, you can configure the showDetailItem
to stretch and in turn stretch its contents, however, the showDetailItem
component must contain only one child component. You need to set Flex and the StretchChildren for each showDetailItem
component. Use the following attributes on each showDetailItem
component to control the flexibility of panel contents:
showDetailItem
components of one panelAccordion
component. By default, the value of the flex
attribute is 0
(zero), that is, the panel contents of each showDetailItem
component are inflexible. To enable flexible contents in a panel, specify a flex
number larger than 0
, for example, 1
or 2
. A larger flex
value means that the contents will be made larger than components with lower flex
values. For two flexible components, their height sizes are exactly proportionate to the flex
values assigned. If component A has flex
set to 2
and component B has flex
set to 1,
then the height of component A is two times the height of component B. flex
value of 0
(zero), ADF Faces will use 100 pixels for that panel, and then distribute the remaining space among the nonzero panes. If the contents of a panel cannot fit within the panelAccordion
container given the specified inflexibleHeight
value, ADF Faces automatically moves nearby contents into overflow menus (as shown in Figure 9-41). Also, if a panel has a nonzero flex
value, this will be the minimum height that the panel will shrink to before causing other panes to be moved into the overflow menus. first
, stretches a single child component. However, the child component must allow stretching. For more information, see Section 9.9.4, "What You May Need to Know About Geometry Management and the showDetailItem Component." For example, the File Explorer application uses showDetailItem
components to display contents in the navigator panel. Because the Search Navigator requires more space when both navigators are expanded, its flex
attribute is set to 2 and the showDetailItem
component for the Folders Navigator uses the default flex
value of 1. This setting causes the Search Navigator to be larger than the Folders Navigator when it is expanded.
Note: Instead of directly setting the value for theflex attribute, the File Explorer application uses an EL expression that resolves to a method used to determine the value. Using an EL expression allows you to programmatically change the value if you decide at a later point to use metadata to provide model information. |
The user can change the panel heights at runtime, thereby changing the value of the flex
and inflexibleHeight
attributes. Those values can be persisted so that they remain for the duration of the user's session. For information, see Chapter 32, "Allowing User Customization on JSF Pages."
Note the following additional information about flexible accordion panel contents:
showDetailItem
components) with flex
values larger than 0
before ADF Faces can enable flexible contents. This is because ADF Faces uses the flex
ratio between two components to determine how much space to allocate among the panel contents. At runtime, two or more panes must be expanded before the effect of flexible contents can be seen. showDetailItem
component has only one child component and the flex
value is nonzero, and the stretchChildren
attribute is set to first
, ADF Faces will stretch that child component regardless of the discloseMany
attribute value on the panelAccordion
component. showDetailItem
components have flex
values of 0
(zero) and their panel contents are disclosed, even though the disclosed contents are set to be inflexible, ADF Faces will stretch the contents of the last disclosed showDetailItem
component as if the component had a flex
value of 1
, but only when that showDetailItem
component has one child only, and the stretchChildren
attribute is set to first
. If the last disclosed panel has more than one child component or the stretchChildren
attribute is set to none
, the contents will not be stretched. Even with the flex
attribute set, there are some limitations regarding geometry management. For more information, see Section 9.9.4, "What You May Need to Know About Geometry Management and the showDetailItem Component."
disclosureListener
method in a backing bean you want to execute when this panel or tab is selected by the user. For information about server disclosure events and event listeners, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
true
if you want to disable this panel or tab (that is, the user will not be able to select the panel or tab). true
if you want this panel or tab to show its child components. By default, the disclosed
attribute is set to false
. This means the contents for this panel or tab are hidden.
Note: Note the difference between thedisclosed and rendered attributes. If the rendered attribute value is false , it means that this accordion header bar or tab link and its corresponding contents are not available at all to the user. However, if the disclosed attribute is set to false , it means that the contents of the item are not currently visible, but may be made visible by the user because the accordion header bar or tab link are still visible. |
If none of the showDetailItem
components has the disclosed
attribute set to true
, ADF Faces automatically shows the contents of the first enabled showDetailItem
component (except when it is a child of a panelAccordion
component, which has a setting for zero disclosed panes).
Note: While the user can change the value of thedisclosed attribute by displaying or hiding the contents, the value will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages." |
showDetailItem
components used in a panelAccordion
component, expand the Behavior section, and set DisplayIndex to reflect the order in which the showDetailItem
components should appear. If you simply want them to appear in the order in which they are in the page's code, then leave the default, -1
. Tip: If someshowDetailItem components have -1 as the value for displayIndex , and others have a positive number, those with the -1 value will display after those with a positive number, in the order they appear in the page's code. |
Tip: This value can be changed at runtime if the parentpanelAccordion component is configured to allow reordering. |
panelTabbed
component, expand the Behavior section and set Remove to one of the following: panelTabbed
component is configured to allow it. This is the default. Set ItemListener to an EL expression that resolves to a handler method that will handle the actual removal of a component.
panelAccordion
component only), in the Component Palette, from the Layout panel, in the Menus and Toolbar Containers group, insert a Toolbar into the toolbar
facet of the showDetailItem
component that defines that panel. Then, insert the desired number of commandToolbarButton
components into the toolbar
component. Although the toolbar
facet is on the showDetailItem
component, it is the panelAccordion
component that renders the toolbar and its buttons. For information about using toolbar
and commandToolbarButton
, see Section 16.3, "Using Toolbars." Note: When an accordion panel is collapsed, ADF Faces does not display the toolbar and its buttons. The toolbar and its buttons are displayed in the panel header only when the panel is expanded. |
showDetailItem
component. Both the panelAccordion
or panelTabbed
components can be configured to stretch when they are placed inside a component that uses geometry management to stretch its child components. However, for the panelAccordion
component, the showDetailItem
component will stretch only if the discloseMany
attribute on the panelAccordion
component is set to true
(that is, when multiple panes may be expanded to show their inflexible or flexible contents), the showDetailItem
component contains only one child component, and the showDetailItem
component's stretchChildren
attribute is set to first
. By default, panel contents will not stretch. The showDetailItem
component will allow stretching if:
stretchChildren
attribute is set to first
When all of the preceding bullet points are true, the showDetailItem
component can stretch its child component. The following components can be stretched inside the showDetailItem
component:
decorativeBox (when configured to stretch)
calendar
inputText
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
(when configured to stretch) panelDashboard
(when configured to stretch) panelGroupLayout
(only when the layout
attribute is set to scroll
or vertical
) panelLabelAndMessage
(when configured to stretch) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a showDetailItem
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only when the layout
attribute is set to default
or horizontal
) panelHeader
panelList
tableLayout
(MyFaces Trinidad component) You cannot place components that cannot stretch as a child to a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched as a child of a showDetailItem
component, you need to wrap that component in different component that does not stretch its child components.
For example, if you want to place content in a panelList
component and have it be displayed in a showDetailItem
component, you might place a panelGroupLayout
component with its layout
attribute set to scroll
as the chid of the showDetailItem
component, and then place the panelList
component in that component. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."
The showDetailItem
component inside of panelAccordion
and panelTabbed
components supports queuing of disclosure events so that validation is properly handled on the server and on the client.
In general, for any component with the disclosed
attribute, by default, the event root for the client AdfDisclosureEvent
is set to the event source component: only the event for the panel whose disclosed
attribute is true
gets sent to the server. However, for the showDetailItem
component that is used inside of panelTabbed
or panelAccordion
component, the event root is the panelTabbed
or panelAccordion
component (that is, the event source parent component, not the event source component). This ensures that values from the previously disclosed panel will not get sent to the server.
For example, suppose you have two showDetailItem
components inside a panelTabbed
or panelAccordion
component with the discloseMany
attribute set to false
and the discloseNone
attribute set to false
. Suppose the showDetailItem
1 component is disclosed but not showDetailItem
2. Given this scenario, the following occurs:
showDetailItem
2, a client-only disclosure event gets fired to set the disclosed
attribute to false
for the showDetailItem
1 component. If this first event is not canceled, another client disclosure event gets fired to set the disclosed
attribute to true
for the showDetailItem
2 component. If this second event is not canceled, the event gets sent to the server; otherwise, there are no more disclosure changes. disclosed
attribute to true
on the showDetailItem
2 component. If this first server event is not canceled, another server disclosure event gets fired to set the disclosed
attribute to false
for the showDetailItem
1 component. If neither server event is canceled, the new states get rendered, and the user will see the newly disclosed states on the client; otherwise, the client looks the same as it did before. For the panelAccordion
component with the discloseMany
attribute set to false
and the discloseNone
attribute set to true
, the preceding information is the same only when the disclosure change forces a paired change (that is, when two disclosed states are involved). If only one disclosure change is involved, there will just be one client and one server disclosure event.
For the panelAccordion
component with the discloseMany
attribute set to true
(and any discloseNone
setting), only one disclosure change is involved; there will just be one client and one server disclosure event.
For additional information about disclosure events, see Section 9.8.4, "What You May Need to Know About Disclosure Events."
You can use the panelHeader
component when you want header type functionality, such as message display or associated help topics, but you do not have to provide the capability to show and hide content.
You can use the decorativeBox
component when you need to transition to a different look and feel on the page. The decorativeBox
component uses themes and skinning keys to control the borders and colors of its different facets. For example, depending on the skin you are using, if you use the default theme, the decorativeBox
component body is white and the border is blue, and the top-left corner is rounded. If you use the medium theme, the body is a medium blue. For information about using themes and skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins"
The panelHeader
component offers facets for specific types of components and the ability to open a help topic from the header. The following are the facets supported by the panelHeader
component:
context
: Displays information in the header alongside the header text. help
: Displays help information. Use only for backward compatibility. Use the helpTopicId
attribute on the panelHeader
component instead. info
: Displays information beneath the header text, aligned to the right. legend
: If help text is present, displays information to the left of the help content and under the info
facet's content. If help text is not present, the legend content will be rendered directly under the header. toolbar
: Displays a toolbar, before the menu bar. menuBar
: Displays a menu bar, after the toolbar. Figure 9-45 shows the different facets in the panelHeader
component.
When there is not enough space to display everything in all the facets of the title line, the panelHeader
text is truncated and displays an ellipsis. When the user hovers over the truncated text, the full text is displayed in a tooltip, as shown in Figure 9-46.
When there is more than enough room to display the contents, the extra space is placed between the context
facet and the toolbar, as shown in Figure 9-47.
You can configure panelHeader
components so that they represent a hierarchy of sections. For example, as shown in Figure 9-48, you can have a main header with a subheader and then a heading level 1 also with a subheader.
Create subsections by nesting panelHeader
components within each other. When you nest panelHeader
components, the heading text is automatically sized according to the hierarchy, with the outermost panelHeader
component having the largest text.
Note: While you can force the style of the text using thesize attribute (where 0 is the largest text), the value of the size attribute will not affect the hierarchy. It only affects the style of the text. |
For information about using the panelHeader
component, see Section 9.10.1, "How to Use the panelHeader Component."
The decorativeBox
component provides styling capabilities using themes. It has two facets, top and center. The top facet provides a non-colored area, while the center facet is the actual box. The height of the top facet depends on whether or not a component has been put into the top facet. When the facet is set, the topHeight
attribute is used to specify the size the content should occupy.
The color of the box for the center facet depends on the theme and skin used. Figure 9-49 shows the different themes available by default.
By default, the decorativeBox
component stretches to fill its parent component. You can also configure the decorative
Box component to inherit its dimensions from its child components. For example, Figure 9-50 shows the medium-theme decorativeBox
configured to stretch to fill its parent, while the dark-theme decorativeBox
is configured to only be as big as its child outputText
component.
You can further control the style of the decorativeBox
component using skins. Skinning keys can be defined for the following areas of the component:
For more information about skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."
You can use one panelHeader
component to contain specific information, or you can use a series of nested panelHeader
components to create a hierarchical organization of content. If you want to be able to hide and display the content, use the showDetailHeader
component instead. For more information, see Section 9.8.2, "How to Use the showDetailHeader Component."
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.10, "Displaying Items in a Static Box."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use a panelHeader component:
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
Figure 9-51 shows the icons used for the different message types.
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, use this icon only when it is purely decorative. You must provide the meaning of this icon in some accessible manner. |
panelHeader
component handles geometry management, expand the Appearance section and set Type to one of the following. For more information about geometry management, see Section 9.2.1, "Geometry Management and Component Stretching." panelHeader
component will be determined solely by its children. panelHeader
component to determine geometry management. toolbar
component into the toolbar
facet. Then, insert the desired number of commandToolbarButton
components into the toolbar
component. For information about using toolbar
and commandToolbarButton
, see Section 16.3, "Using Toolbars." Note: Toolbar overflow is not supported inpanelHeader components. |
menuBar
facet. For information about creating menus in a menu bar, see Section 16.2, "Using Menus in a Menu Bar." Tip: You can place menus in thetoolbar facet and toolbars (and toolboxes) in the menu facet. The main difference between these facets is location. The toolbar facet is before the menu facet. |
Tip: If any facet is not visible in the visual editor:
|
panelHeader
component. You use the decorativeBox
component to provide a colored area or box in a page. This component is typically used as a container for the navigationPane
component that is configured to display tabs. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."
To create and use a decorativeBox component:
top
facet. decorativeBox
component stretches to fill available browser space. If instead, you want to use the decorativeBox
component as a child to a component that does not stretch its children, then you need to change how the decorativeBox
component handles stretching. You configure whether the component will stretch or not using the dimensionsFrom
attribute. Set DimensionsFrom to one of the following:
children
: the decorativeBox
component will get its dimensions from its child components. Note: If you use this setting, you cannot use a percentage to set the height of thetop facet. If you do, the top facet will try to get its dimensions from the size of this decorativeBox component, which will not be possible, as the decorativeBox component will be getting its height from its contents, resulting in a circular dependency. If a percentage is used, it will be disregarded and the default 50px will be used instead. Similarly, you cannot set the height of the |
parent
: the size of the decorativeBox
component will be determined in the following order: inlineStyle
attribute. inlineStyle
, then the size is determined by the parent container. auto
: If the parent component to the decorativeBox
component allows stretching of its child, then the decorativeBox
component will stretch to fill the parent. If the parent does not stretch its children then the size of the decorativeBox
component will be based on the size of its child component. For more information, see Section 9.10.3, "What You May Need to Know About Geometry Management and the decorativeBox Component."
The decorativeBox
component can stretch child components in its center
facet and it can also be stretched. The following components can be stretched inside the center
facet of the decorativeBox
component:
inputText
(when configured to stretch) decorativeBox
(when configured to stretch) panelAccordion
(when configured to stretch) panelBox
panelCollection
(when configured to stretch) panelDashboard
panelGroupLayout
(only with the layout
attribute set to scroll
or vertical
) panelLabelAndMessage
(when configured to stretch) panelSplitter
(when configured to stretch) panelStretchLayout
(when configured to stretch) panelTabbed
(when configured to stretch) region
table
(when configured to stretch) tableLayout
(when configured to stretch. Note that this is a MyFaces Trinidad component) tree
(when configured to stretch) treeTable
(when configured to stretch) The following components cannot be stretched when placed inside a facet of the decorativeBox
component:
panelBorderLayout
panelFormLayout
panelGroupLayout
(only with the layout
attribute set to default
or horizontal
) panelHeader
panelList
showDetail
showDetailHeader
You cannot place components that cannot stretch into facets of a component that stretches its child components. Therefore, if you need to place one of the components that cannot be stretched into a facet of the decorativeBox
component, wrap that component in a transition component that does not stretch its child components.
For example, if you want to place content in a panelBox
component and have it flow within a facet of the decorativeBox
component, you could place a panelGroupLayout
component with its layout attribute set to scroll
in the facet of the decorativeBox
component, and then place the panelBox
component in that panelGroupLayout
component. For more information, see Section 9.2.2, "Nesting Components Inside Components That Allow Stretching."
The panelList
component is a layout element for displaying a vertical list of child components with a bullet next to each child, as shown in Figure 9-52. Only child components whose rendered
attribute is set to true
and whose visible
attribute is set to true
are considered for display by in the list.
Note: To display dynamic data (for example, a list of data determined at runtime by JSF bindings), use the selection components, as documented in Section 11.6, "Using Selection Components." If you need to create lists that change the model layer, see Chapter 13, "Using List-of-Values Components." |
By default, the disc bullet is used to style the child components. There are other styles you can use, such as square bullets and white circles. You can also split the list into columns when you have a very long list of items to display.
Use one panelList
component to create each list of items.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.11, "Displaying a Bulleted List in One or More Columns."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelList component:
listStyle
attribute to a valid CSS 2.1 list style value, such as one of the following: list-style-type: disc
list-style-type: square
list-style-type: circle
list-style-type: decimal
list-style-type: lower-alpha
list-style-type: upper-alpha
For example, the list-style-type: disc
attribute value corresponds to a disc bullet, and the list-style-type: circle
value corresponds to a circle bullet.
For a complete list of the valid style values to use, refer to the CSS 2.1 Specification for generated lists at
http://www.w3.org/TR/CSS21/generate.html
Tip: Some browsers support more style options than others, for example,upper-roman , lower-roman , and lower-greek . Use of these is cautioned because they will not display consistently across web browsers. |
Example 9-14 shows the code for setting the list style to a circle.
panelList
component. Tip: Panel lists also allow you to use theiterator , switcher , and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panel list. |
For example, you could insert a series of commandLink
components or outputFormatted
components.
Note: By default, ADF Faces displays all rendered child components of apanelList component in a single column. For details on how to split the list into two or more columns and for information about using the rows and maxColumns attributes, see Section 9.6, "Arranging Content in Forms." The concept of using the rows and maxColumns attributes for columnar display in the panelList and panelFormLayout components are the same. |
You can nest panelList
components to create a list hierarchy. A list hierarchy, as shown in Figure 9-53, has outer items and inner items, where the inner items belonging to an outer item are indented under the outer item. Each group of inner items is created by one nested panelList
component.
To achieve the list hierarchy as shown in Figure 9-53, use a group
component to wrap the components that make up each group of outer items and their respective inner items. Example 9-15 shows the code for how to create a list hierarchy that has one outer item with four inner items, and another outer item with two inner items.
Example 9-15 Nested PanelList Components
By default, the outer list items (for example, item 1 and item 2) are displayed with the disc bullet, while the inner list items (for example, item 1.1 and item 2.1) have the white circle bullet.
For more information about the panelGroupLayout
component, see Section 9.12, "Grouping Related Items."
To keep like items together within a parent component, use either the group
or panelGroupLayout
component. The group
component aggregates or groups together child components that are related semantically. Unlike the panelGroupLayout
component, the group
component does not provide any layout for its child components. Used on its own, the group
component does not render anything; only the child components inside of a group
component render at runtime.
You can use any number of group
components to group related components together. For example, you might want to group some of the input fields in a form layout created by the panelFormLayout
component. Example 9-16 shows sample code that groups two sets of child components inside a panelFormLayout
component.
Example 9-16 Grouping Child Components in panelFormLayout
The panelGroupLayout
component lets you arrange a series of child components vertically or horizontally without wrapping, or consecutively with wrapping, as shown in Figure 9-54. The layout
attribute value determines the arrangement of the child components.
In all arrangements, each pair of adjacent child components can be separated by a line or white space using the separator
facet of the panelGroupLayout
component. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."
When using the horizontal layout, the child components can also be vertically or horizontally aligned. For example, you could make a short component beside a tall component align at the top, as shown in Figure 9-55.
Unlike the panelSplitter
or panelStretchLayout
components, the panelGroupLayout
component does not stretch its child components. Suppose you are already using a panelSplitter
or panelStretchLayout
component as the root component for the page, and you have a large number of child components to flow, but are not to be stretched. To provide scrollbars when flowing the child components, wrap the child components in the panelGroupLayout
component with its layout
attribute set to scroll
, and then place the panelGroupLayout
component inside a facet of the panelSplitter
or panelStretchLayout
component.
When the layout
attribute is set to scroll
on a panelGroupLayout
component, ADF Faces automatically provides a scrollbar at runtime when the contents contained by the panelGroupLayout
component are larger than the panelGroupLayout
component itself. You do not have to write any code to enable the scrollbars, or set any inline styles to control the overflow.
For example, when you use layout components such as the panelSplitter
component that let users display and hide child components contents, you do not have to write code to show the scrollbars when the contents are displayed, and to hide the scrollbars when the contents are hidden. Simply wrap the contents the be displayed inside a panelGroupLayout
component, and set the layout
attribute to scroll
.
In the File Explorer application, the Search Navigator contains a panelSplitter
component used to hide and show the search criteria. When the search criteria are hidden, and the search results content does not fit into the area, a scrollbar is rendered, as shown in Figure 9-56.
Any number of panelGroupLayout
components can be nested to achieve the desired layout.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.12, "Grouping Related Items."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the panelGroupLayout component:
panelGroupLayout
component. Tip: ThepanelGroupLayout component also allows you to use the iterator , switcher , and group components as direct child components, providing these components wrap child components that would typically be direct child components of the panelGroupLayout component. |
spacer
or separator
component into the separator
facet. At runtime, when the contents exceed the browser space available (that is, when the child components are larger than the width of the parent container panelGrouplayout
), the browser flows the contents onto the next line so that all child components are displayed.
Note: ADF Faces uses the bidirectional algorithm when making contents flow. Where there is a mix of right-to-left content and left-to-right content, this may result in contents not flowing consecutively. |
In a horizontal layout, the child components can also be aligned vertically and horizontally. By default, horizontal child components are aligned in the center with reference to an imaginary horizontal line, and aligned in the middle with reference to an imaginary vertical line. To change the horizontal and vertical alignments of horizontal components, use the following attributes:
center
. Other acceptable values are: start
, end
, left
, right
. For example, set halign
to start
if you want horizontal child components to always be left-aligned in browsers where the language reading direction is left-to-right, and right-aligned in a right-to-left reading direction.
middle
. Other acceptable values are: top
, bottom
, baseline
. In output text components (such as outputText
) that have varied font sizes in the text, setting valign
to baseline
would align the letters of the text along an imaginary line on which the letters sit, as shown in Figure 9-57. If you set valign
to bottom
for such text components, the resulting effect would not be as pleasant looking, because bottom
vertical alignment causes the bottommost points of all the letters to be on the same imaginary line.
Note: Thehalign and valign attributes are ignored if the layout is not horizontal. |
While the panelGroupLayout
component cannot stretch its child components, it can be stretched when it is the child of a panelSplitter
or panelStretchLayout
component and its layout
attribute is set to either scroll
or vertical
.
You can incorporate some blank space in your pages, to space out the components so that the page appears less cluttered than it would if all the components were presented immediately next to each other, or immediately below each other. The ADF Faces component provided specifically for this purpose is the spacer
component.
You can include either or both vertical and horizontal space in a page using the height
and width
attributes.
The height
attribute determines the amount of vertical space to include in the page. Example 9-17 shows a page set up to space out two lengthy outputText
components with some vertical space.
Example 9-17 Vertical Space
Figure 9-58 shows the effect the spacer
component has on the page output as viewed in a browser.
The width
attribute determines the amount of horizontal space to include between components. Example 9-18 shows part of the source of a page set up to space out two components horizontally.
Example 9-18 Horizontal Space
Figure 9-59 shows the effect of spacing components horizontally as viewed in a browser.
The separator
component creates a horizontal line. Figure 9-60 shows the properties.jspx
file as it would be displayed with a separator
component inserted between the two panelBox
components.
The spacer
and separator
components are often used in facets of other layout components. Doing so ensures that the space or line stays with the components they were meant to separate.
You can use as many spacer
components as needed on a page.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the spacer component:
Note: If the height is specified but not the width, a block-level HTML element is rendered, thereby introducing a new line effect. If the width is specified, then, irrespective of the specified value of height, it may not get shorter than the applicable line-height in user agents that strictly support HTML standards. |
You can use as many separator
components as needed on a page.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 9.13, "Separating Content Using Blank Space or Lines."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 9.1.1, "Additional Functionality for Layout Components."
To create and use the separator component:
This chapter describes how you can create reusable content and then use that content to build portions of your JSF pages or entire pages.
This chapter includes the following sections:
As you build JSF pages for your application, some pages may become complex and long, making editing complicated and tedious. Some pages may always contain a group of components arranged in a very specific layout, while other pages may always use a specific group of components in multiple parts of the page. And at times, you may want to share some parts of a page or entire pages with other developers. Whatever the case is, when something changes in the UI, you have to replicate your changes in many places and pages. Building and maintaining all those pages, and making sure that some sets or all are consistent in structure and layout can become increasingly inefficient.
Instead of using individual UI components to build pages, you can use page building blocks to build parts of a page or entire pages. The building blocks contain the frequently or commonly used UI components that create the reusable content for use in one or more pages of an application. Depending on your application, you can use just one type of building block, or all types in one or more pages. And you can share some building blocks across applications. When you modify the building blocks, the JSF pages that use the reusable content are automatically updated as well. Thus, by creating and using reusable content in your application, you can build web user interfaces that are always consistent in structure and layout, and an application that is scalable and extensible.
ADF Faces provides the following types of reusable building blocks:
The page template and the declarative component share much of the functionality. The main difference is that the page template supports ADF Model and ADF Controller using a page template model. Using the value
attribute, you can specify which object to use as the bindings inside of the page template. If the value
is a page template model binding, ADF Model page bindings may be used, and you may use the ADF page definition to determine which view to include.
For details about creating and using page templates, see Section 10.4, "Using Page Templates," and Section 10.4.3, "How to Create JSF Pages Based on Page Templates."
The declarative component is deployed as part of an ADF library JAR file. It features its own TLD file that allows you to put the component in your own namespace. The declarative component allows you to pass facets into the component and also any attributes and method expressions. Inside of the declarative component, the attributes and facets may be accessed using EL expressions It has a relatively low overhead as it does not involve ADF Model or ADF Controller, which also means that it does not have support for ADF Model transactions or ADF Controller page flows.
Note that you should not reference individual components inside of a declarative component, and individual components within a declarative component should not reference external components. The reason is that changes in the declarative component or in the consuming page could cause the partial triggers to no longer work. For details about creating and using declarative components, see Section 10.5, "Using Declarative Components."
Tip: If your application uses the ADF Controller and the ADF Model layer, then you can also use ADF regions. Regions used in conjunction with ADF bounded task flows, encapsulate business logic, process flow, and UI components all in one package, which can then be reused throughout the application. For complete information about creating and using ADF bounded task flows as regions, see the "Using Task Flows as Regions" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Page templates, page fragments, and declarative components provide consistent structure and layout to the pages in an application. These building blocks can not only be reused in the same application, but also can be shared across applications. When update a building block, all the instances where it is used is automatically updated.
Page templates are data-bound templates that support both static areas that do not change and dynamic areas where they change during runtime. You can use page fragments to build modular pages. For instance, you can create page fragments for the header, footer, and company logo and reuse these fragments throughout the application. You can use declarative components when you have several components that always used in a group. By creating a declarative component, you can add it to the tag library and be able to drag and drop the declarative component from the JDeveloper Component Palette.
Page templates, declarative components, and regions implement the javax.faces.component.NamingContainer
interface. At runtime, in the pages that consume reusable content, the page templates, declarative components, or regions create component subtrees, which are then inserted into the consuming page's single, JSF component tree. Because the consuming page has its own naming container, when you add reusable content to a page, take extra care when using mechanisms such as partialTargets
and findComponent()
, as you will need to take into account the different naming containers for the different components that appear on the page. For more information about naming containers, see Section 4.5, "Locating a Client Component on a Page."
If you plan to include resources such as CSS or JavaScript, you can use the af:resource
tag to add the resources to the page. If this tag is used in page templates and declarative components, the specified resources will be added to the consuming page during JSP execution. For more information, see Section 10.6, "Adding Resources to Pages."
If you are not using an ADF task flow to navigate a portion of the page, you should not be using regions, but instead use one of the other compound components. Among the compound components, you should use a page template if you need to use bindings inside of your compound component and they differ from the bindings of the host page. You should use a declarative component if you do not need bindings for your page and do not need to use a bounded task flow as part of your page.
The File Explorer application uses a fileExploreorTemplate
to provide a consistent look and feel to all the pages in the application. The facets of the file provide working area to place different types of information. The template defines an appCopyright
facet that is used to display copyright information for every page.
The main page of the File Explorer application not only uses the page template, but also uses page fragments to contain the content for the individual facets of the template. The header.jspx
page fragment contains the menu commands for the application.
If you have several components that works as a group and repeats in several places, you can define a declarative component to group these components together. Once you have created the component, you can use this declarative component like any other component. For example, you may use several inputText components to denote first name, last name, and email address. Since this three inputText components will be used repeatedly in your application, you can create a declarative component for them.
You may find it helpful to understand other ADF features before you implement your reusable components. Following are links to other functionality that are related to reusable components.
Page templates and declarative components share several common functionalities.
The view parts of a page (fragments, declarative components, and the main page) all share the same request scope. This may result in a collision when you use the same fragment or declarative component multiple times on a page, and when they share a backing bean. You should use backingBeanScope
for declarative components and page templates. For more information about scopes, see Section 5.6, "Object Scope Lifecycles."
You can control whether child components of a page template or declarative component can be changed by external reference. For example, you can enable or disable the customization of the child components. Both af:pageTemplateDef
and af:componentDef
has a definition
attribute that controls access. When definition
is set to public
, then the direct child components can be customized, while definition
is set to private
, the child components cannot be customized. The default value is private
. You can modify definition
by editing the source file or by using the Property Inspector.
For more information about customization, see the "Customizing Applications with MDS" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
As you build web pages for an application, some pages may quickly become large and unmanageable. One possible way to simplify the process of building and maintaining complex pages is to use page fragments.
Large, complex pages broken down into several smaller page fragments are easier to maintain. Depending on how you design a page, the page fragments created for one page may be reused in other pages. For example, suppose different parts of several pages use the same form, then you might find it beneficial to create page fragments containing those components in the form, and reuse those page fragments in several pages. Deciding on how many page fragments to create for one or more complex pages depends on your application, the degree to which you wish to reuse portions of a page between multiple pages, and the desire to simplify complex pages.
Page fragments are incomplete JSF pages. A complete JSF page that uses ADF Faces must have the document
tag enclosed within an f:view
tag. The contents for the entire page are enclosed within the document
tag. A page fragment, on the other hand, represents a portion of a complete page, and does not contain the f:view
or document
tags. The contents for the page fragment are simply enclosed within a jsp:root
tag.
When you build a JSF page using page fragments, the page can use one or more page fragments that define different portions of the page. The same page fragment can be used more than once in a page, and in multiple pages.
Note: The view parts of a page (fragments, declarative components, and the main page) all share the same request scope. This may result in a collision when you use the same fragment or declarative component multiple times on a page and the fragments or components share a backing bean. For more information about scopes, see Section 5.6, "Object Scope Lifecycles." |
For example, the File Explorer application uses one main page (index.jspx
) that includes the following page fragments:
popups.jspx
: Contains all the popup code used in the application. help.jspx
: Contains the help content. header.jspx
: Contains the toolbars and menus for the application. navigators.jspx
: Contains the tree that displays the folder hierarchy of the application. contentViews.jspx
: Contains the content for the folder selected in the navigator pane. Example 10-1 shows the abbreviated code for the included header.jspx
page fragment. Note that it does not contain an f:view
or document
tag.
Example 10-1 header.jspx Page Fragment
When you consume a page fragment in a JSF page, at the part of the page that will use the page fragment contents, you insert the jsp:include
tag to include the desired page fragment file, as shown in Example 10-2, which is abbreviated code from the index.jspx
page.
Example 10-2 File Explorer Index JSF Page Includes Fragments
When you modify a page fragment, the pages that consume the page fragment are automatically updated with the modifications. With pages built from page fragments, when you make layout changes, it is highly probable that modifying the page fragments alone is not sufficient; you may also have to modify every page that consumes the page fragments.
Note: If the consuming page uses ADF Model data binding, the included page fragment will use the binding container of the consuming page. Only page fragments created as part of ADF bounded task flows can have their own binding container. For information about ADF bounded task flows, see the "Getting Started With ADF Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Like complete JSF pages, page fragments can also be based on a page template, as shown in Example 10-3. For information about creating and applying page templates, see Section 10.4, "Using Page Templates," and Section 10.4.3, "How to Create JSF Pages Based on Page Templates."
Example 10-3 Page Fragment Based on a Template
Page fragments are just like any JSF page, except you do not use the f:view
or document
tags in page fragments. You can use the Create JSF Page Fragment wizard to create page fragments. When you create page fragments using the wizard, JDeveloper uses the extension .jsff
for the page fragment files. If you do not use the wizard, you can use .jspx
as the file extension (as the File Explorer application does); there is no special reason to use .jsff
other than quick differentiation between complete JSF pages and page fragments when you are working in the Application Navigator in JDeveloper.
Before you begin:
It may be helpful to have an understanding of page fragments. For more information, see Section 10.3, "Using Page Fragments."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 10.1.2, "Additional Functionality for Reusable Components."
To create a page fragment:
By default, JDeveloper saves page fragments in the project's /public_html
directory in the file system. For example, you could change the default directory to /public_html/fragments
.
When the page fragment creation is complete, JDeveloper displays the page fragment file in the visual editor.
You can use any ADF Faces or standard JSF component, for example table
, panelHeader
, or f:facet
.
Example 10-4 shows an example of a page fragment that contains a menu component.
Example 10-4 Page Fragment Sample
In JDeveloper, because page fragment files use a different file extension from regular JSF pages, configuration entries are added to the web.xml
file for recognizing and interpreting .jsff
files in the application. Example 10-5 shows the web.xml
configuration entries needed for .jsff
files, which JDeveloper adds for you when you first create a page fragment using the wizard.
Example 10-5 Entries in web.xml for Recognizing and Interpreting .jsff Files
By specifying the url-pattern
subelement to *.jsff
and setting the is-xml
subelement to true
in a jsp-property-group
element, the application will recognize that files with extension .jsff
are actually JSP documents, and thus must be interpreted as XML documents.
To consume a page fragment in a JSF page, add the page using either the Component Palette or the Application Navigator.
You can use the jsp:include
tag to include the desired page fragment file
Before you begin:
It may be helpful to have an understanding of page fragments. For more information, see Section 10.3, "Using Page Fragments."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 10.1.2, "Additional Functionality for Reusable Components."
To add a page fragment using the Component Palette:
jsp:include
tag by dragging and dropping Include from the Component Palette. You can drag and drop the page fragment directly onto the page.
Before you begin:
It may be helpful to have an understanding of page fragments. For more information, see Section 10.3, "Using Page Fragments."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 10.1.2, "Additional Functionality for Reusable Components."
To add a page fragment using the Application Navigator:
When the page that contains the included page(s) is executed, the jsp:include
tag evaluates the view ID during JSF tree component build time and dynamically adds the content to the parent page at the location of the jsp:include tag
. The fragment becomes part of the parent page after the component tree is built.
Page templates let you define entire page layouts, including values for certain attributes of the page. When pages are created using a template, they all inherit the defined layout. When you make layout modifications to the template, all pages that consume the template will automatically reflect the layout changes. You can either create the layout of your template yourself, or you can use one of the many quick layout designs. These predefined layouts automatically insert and configure the correct components required to implement the layout look and behavior you want. For example, you may want one column's width to be locked, while another column stretches to fill available browser space. Figure 10-1 shows the quick layouts available for a two-column layout with the second column split between two panes. For more information about the layout components, see Chapter 9, "Organizing Content on Web Pages."
To use page templates in an application, you first create a page template definition. Page template definitions must be either Facelets or JSP XML documents because page templates embed XML content. In contrast to regular JSF pages where all components on the page must be enclosed within the f:view
tag, page template definitions cannot contain an f:view
tag and must have pageTemplateDef
as the root tag. The page that uses the template must contain the document
tag, (by default, JDeveloper adds the document
tag to the consuming page).
A page template can have fixed content areas and dynamic content areas. For example, if a Help button should always be located at the top right-hand corner of pages, you could define such a button in the template layout, and when page authors use the template to build their pages, they do not have to add and configure a Help button. Dynamic content areas, on the other hand, are areas of the template where page authors can add contents within defined facets of the template or set property values that are specific to the type of pages they are building.
The entire description of a page template is defined within the pageTemplateDef
tag, which has two sections. One section is within the xmlContent
tag, which contains all the page template component metadata that describes the template's supported content areas (defined by facets), and available properties (defined as attributes). The second section (anything outside of the xmlContent
tag) is where all the components that make up the actual page layout of the template are defined. The components in the layout section provide a JSF component subtree that is used to render the contents of the page template.
Facets act as placeholders for content on a page. In a page that consumes a template, page authors can insert content for the template only in named facets that have already been defined. This means that when you design a page template, you must define all possible facets within the xmlContent
tag, using a facet
element for each named facet. In the layout section of a page template definition, as you build the template layout using various components, you use the facetRef
tag to reference the named facets within those components where content can eventually be inserted into the template by page authors.
For example, the fileExplorerTemplate
template contains a facet for copyright information and another facet for application information, as shown in Example 10-6.
Example 10-6 Facet Definition in a Template
Part IV contains the following chapters:
This chapter describes the input components that are used to enter data, select values, edit text, and load files. If you want to create lists that may potentially be very large, or may represent relationships between objects (such as creating a list to represent an attribute that is a foreign key to another object), then you may want to use a list of values component. For more information about those components, see Chapter 13, "Using List-of-Values Components."
This chapter includes the following sections:
Input components accept user input in a variety of formats. The most common formats are text, numbers, date, and selection lists that appear inside a form and are submitted when the form is submitted. The entered values or selections may be validated and converted before they are processed further. Figure 11-1 shows ADF Faces standard input components.
ADF Faces input components also include a number of components that allow users to select one or multiple values, as shown in Figure 11-2.
Input components are often used to build forms for user input. For example, the File Explorer application contains a form that allows users to create a new file. As shown in Figure 11-3, input components allow users to enter the name, the size, select permissions, and add keywords, and a description for a file. The Name field is required, as noted by the asterisk. If a user fails to enter a value, an error message is displayed. That validation and associated error message are configured on the component.
The richTextEditor
component provides rich text input that can span many lines and can be formatted using different fonts, sizes, justification, and other editing features that may be required when you want users to enter more than simple text. For example, the richTextEditor
might be used in a web-based discussion forum, allowing users to format the text that they need to publish, as shown in Figure 11-4.
The inputFile
component allows users to browse for a local file to upload to the application server. For example, an email message might allow users to attach a file to a message, as shown in Figure 11-5.
The ADF Faces selection components allows users to make selections from a list of items instead of typing in values. ADF Faces provides both single choice selection lists and multi-choice selection lists. Single-choice lists are used to select one value from a list, such as the desired drink in an online food order, as shown in Figure 11-6.
ADF single-selection components include a dropdown list (as shown in Figure 11-6), a list box, radio buttons, and checkboxes.
ADF multi-selection components allow users to select more than one value in a list. For example, instead of being able to select just one drink type, the selectManyChoice
component allows a user to select more than one drink, as shown in Figure 11-7.
ADF multiple choice components include a dropdown list, checkboxes, and a shuttle.
Best Practice: You can use either selection lists or list-of-values (LOV) components to display a list. LOV components should be used when the selection list is large. LOV components are model-driven using the ListOfValueModel class and may be configured programmatically using the API. They present their selection list inside a popup window that may also include a query panel. Selection lists simply display a static list of values. For more information about using LOV components, see Chapter 13, "Using List-of-Values Components." |
The form components provide a container for other components. The form
component represents a region where values from embedded input components can be submitted. Form components cannot be nested. ADF Faces also provides the subform
component, which adds flexibility by defining subregions whose component values can be submitted separately within a form. The ADF Faces resetButton
component provides an easy way for the user to reset input values within a form or subform to their previous state.
You may find it helpful to understand other ADF Faces features before you implement your input components. Additionally, once you have added an input component or form to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that input components can use.
scrollComponentIntoViewBehavior
tag with the richTextEditor component to allow users to jump to specific areas in the component. For more information, see Section 6.6.1, "How to Use the scrollComponentIntoViewBehavior Tag."A form is a component that serves as a container for other components. When a submit action occurs within the form, any modified input values are submitted. For example, you can create an input form that consists of input and selection components, and a submit command button, all enclosed within a form. When the user enters values into the various input fields and clicks the Submit button, those new input values will be sent for processing.
By default, when you create a JSF page in JDeveloper, it automatically inserts a form
component into the page. When you add components to the page, they will be inserted inside the form
component.
Tip: If you do not already have an af:form tag on the page, and you drag and drop an ADF Faces component onto the page, JDeveloper will prompt you to enclose the component within a form component. |
Example 11-1 shows two input components and a Submit button that when clicked will submit both input values for processing.
Example 11-1 ADF Faces Form as a Container for Input Components
Because there can be only one form
component on a page, you can use subforms within a form to create separate regions whose input values can be submitted. Within a region, the values in the subform will be validated and processed only if a component inside the subform caused the values to be submitted. You can also nest a subform within another subform to create nested regions whose values can be submitted. For more information about subforms, see Section 5.5, "Using Subforms to Create Sections on a Page."
Example 11-2 shows a form with two subforms, each containing its own input components and Submit button. When a Submit button is clicked, only the input values within that subform will be submitted for processing.
Example 11-2 ADF Faces Subform Within a Form
Aside from the basic Submit button, you can add any other command component within a form and have it operate on any field within the form. ADF Faces provides a specialized command component: the resetButton
component, which when clicked, resets all the input and selection components within a form. That is, it updates all components whose values can be edited with the current values of the model. The resetButton
component is different from HTML reset in that the resetButton
component will reset the input components to their previous state which was partially or fully submitted successfully to the server without any validation or conversion error. For example, if a user enters value A
and clicks the Submit button, and then changes the value from A
to B
and clicks the resetButton
component, the value A
will be restored.
In most cases, JDeveloper will add the form component for you. However, there may be cases where you must manually add a form, or configure the form with certain attribute values.
Before you begin:
It may be helpful to have an understanding of form components. For more information, see Section 11.2, "Defining Forms."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add a form to a page:
False
. For more information about uploading files, see Section 11.9, "Using File Upload."_self
.You should add subform components within a form component when you need a section of the page to be capable of independently submitting values.
Before you begin:
It may be helpful to have an understanding of forms and subforms. For more information, see Section 11.2, "Defining Forms."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
You must add a form component to the page. For procedures, see Section 11.2.1, "How to Add a Form to a Page."
To add subforms to a page:
form
component.false
, this subform
component will consider itself to be submitted only if no other subform
component has been submitted. When set to true
, this subform component assumes it has submitted its values.Tip: A subform is considered submitted if an event is queued by one of its children or facets for a phase later than Apply Request Values (that is, for later than decode()). For more information about lifecycle phases, see Chapter 5, "Using the JSF Lifecycle with ADF Faces." |
You can add the resetButton
component inside a form or a subform. The reset button will act upon only those components within that form or subform.
Before you begin:
It may be helpful to have an understanding of form components and the reset button. For more information, see Section 11.2, "Defining Forms."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add a reset button to a page:
Although input components include many variations, such as pickers, sliders, and a spinbox, the inputText
component is the basic input component for entering values. You can define an inputText
component as a single-row input field or as a text area by setting the rows
attribute to more than 1. However, if you want to create a multiple row text input, consider using the richTextEditor
component as described in Section 11.8, "Using the richTextEditor Component."
You can allow auto-completion for an inputText
component using the autoComplete
attribute. When set to true
, the component remembers previous entries, and then displays those entries when the user types in values that begin to match those entries.
You can hide the input values from being displayed, such as for passwords, by setting the secret
attribute to true
. Like other ADF Faces components, the inputText
component supports label, text, and messages. When you want this component to be displayed without a label, you set the simple
attribute to true
. Figure 11-8 shows a single-row inputText
component.
You can make the inputText
component display more than one row of text using the rows
attribute. If you set the rows
attribute to be greater than one, and you set the simple
attribute to true, then the inputText
component can be configured to stretch to fit its container using the dimensionsFrom
attribute. For more information about how components stretch, see Section 9.2.1, "Geometry Management and Component Stretching." Figure 11-10 shows a multi-row inputText
component.
You can add multiple inputText
components to create an input form. Figure 11-9 shows an input form using three inputText
components and a Submit command button.
You can also configure an insertTextBehavior
tag that works with command components to insert given text into an inputText
component. The text to be entered can be a simple string, or it can be the value of another component, for example the selected list item in a selectOneChoice
component. For example, Figure 11-10 shows an inputText
component with some text already entered by a user.
The user can then select additional text from a dropdown list, click the command button, and that text appears in the inputText
component as shown in Figure 11-11.
You can use an inputText
component inside any of the layout components described in Chapter 9, "Organizing Content on Web Pages."
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.3, "Using the inputText Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add an inputText component:
If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog either to search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."
get
method but no set
method, and this is a component whose value can be edited, then the component will be rendered in read-only mode.Note: If you are using an inputText component to display a Character Large Object (CLOB), then you will need to create a custom converter that converts the CLOB to a String. For more information about conversion, see Chapter 7, "Creating Custom JSF Converters." |
wrap
attribute.inputText
component to handle geometry management. Set this attribute to one of the following:auto
: If the parent component to the inputText
component allows stretching of its child, then the inputText
component will stretch to fill the parent component, as long as the rows
attribute is set to a number greater than one and the simple
attribute is set to true
. If the parent component does not allow stretching, then the inputText
component gets its dimensions from the content.inputText
component gets its dimensions from the component content. This is the default.parent
: The inputText
component gets its dimensions from the inlineStyle
attribute. If no value exists for inlineStyle
, then the size is determined by the parent container.true
, the secret
attribute hides the actual value of the text from the user.soft
, which means multiple-row text wraps visually, but does not include carriage returns in the submitted value. Setting this attribute to off
will disable wrapping: the multiple-row text will scroll horizontally. Setting it to hard
specifies that the value of the text should include any carriage returns needed to wrap the lines.required
attribute to true
will also show the visual indication. You may want to use the showRequired
attribute when a field is required only if another field's value is changed.true
, you may also want to set the changedDesc
attribute.always
. If you want the value to appear as read-only until the user hovers over it, select onAccess
. If you want the value to be inherited from an ancestor component, select inherit
.Note: If you select inherit , and no ancestor components define the editable value, then the value always is used. |
For example, if the label of a field is Description and you want the D to be the access key, you would enter &Description
.
Note: Because the value is being stored in the source of the page in XML, the ampersand (&) character must be escaped, so the value will actually be represented in the source of the page using the characters & to represent the ampersand. |
true
if you do not want the label to be displayed.white-space:nowrap;
for the valuetrue
, a visual indication is displayed to let the user know a value must be entered. If a value is not entered, an exception will occur and the component will fail validation.autoSubmit
attribute, see Section 5.3, "Using the Optimized Lifecycle."on
to allow the component to display previous values when the user begins to enter a matching value. Set to off
if no matches should be displayed. Default is on
.maximumLength
attribute is ignored. Note that in some browsers such as Internet Explorer, a new line is treated as two characters.The insertTextBehavior
tag works with command components to insert given text into an inputText
component. The text to be entered can be a simple string, or it can be the value of another component, for example the selected list item in a selectOneChoice
component. To allow text to be inserted into an inputText
component, add the insertTextBehavior
tag as a child to a command component that will be used to insert the text.
Note: The insertTextBehavior tag cancels server-side event delivery automatically; actionListener or action attributes on the parent command component will be ignored. If you need to also trigger server-side functionality, you must add an custom client listener to deliver the server-side event. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server." |
Before You Begin
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.3, "Using the inputText Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
Before you add an insertTextBehavior
tag, you need to create an inputText
component as described in Section 11.3.1, "How to Add an inputText Component." Set the clientComponent
attribute to true
.
To add text insert behavior:
inputText
component into which the text will be inserted.selectOneChoice
component), then enter an EL expression that resolves to that value. Example 11-3 shows page code for an inputText
component into which either the value of a dropdown list or the value of static text can be inserted.Example 11-3 Using the insertTextBehavior Tag
triggerType
attribute of the insertTextBehavior
component in the Property Inspector.The slider components present the user with a slider with one or two markers whose position on the slider corresponds to a value. The slider values are displayed and include a minus icon at one end and a plus icon at the other. The user selects the marker and moves it along the slider to select a value. The inputNumberSlider
component has one marker and allows the user to select one value from the slider, as shown in Figure 11-12 in horizontal layout, and in Figure 11-13 in vertical layout.
The inputRangeSlider
component has two markers and allows the user to pick the end points of a range, as shown in Figure 11-14.
The inputNumberSpinbox
is an input component that presents the user with an input field for numerical values and a set of up- and down-arrow keys to increment or decrement the current value in the input field, as shown in Figure 11-15.
When you add an inputNumberSlider
or an inputRangeSlider
component, you can determine the range of numbers shown and the increment of the displayed numbers.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.4, "Using the Input Number Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add an inputNumberSlider or inputRangeSlider component:
inputRangeSlider
component, also expand the Data section) and set the following attributes:majorIncrement
value of the inputRangeSlider
component in Figure 11-14 is 5.0
. If set to less than 0
, major increments will not be shown.value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode.The inputNumberSpinbox
component allows the user to scroll through a set of numbers to select a value.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.4, "Using the Input Number Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add an inputNumberSpinbox component:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode.The inputColor
component allows users to pick a color from a a palette. It presents a text input field for entering code for colors. It also displays a button for picking colors from a palette in a popup, as shown in Figure 11-16.
By default, the content delivery for the popup is lazy. When the user clicks the button, the inputColor
component receives a PPR request, and rerenders, displaying a chooseColor
component in a popup
component.
Performance Tip: If the clientComponent attribute on the inputColor component is set to true , then the popup and chooseColor component are delivered immediately. If the color palette is large, this could negatively affect initial page load performance. |
The default color code format is the hexadecimal color format. However, you can override the format using a ColorConverter
class.
The inputDate
component presents a text input field for entering dates and a button for picking dates from a popup calendar, as shown in Figure 11-17. The default date format is the short date format appropriate for the current locale. For example, the default format in American English (ENU) is mm/dd/yy
. However, you can override the format using a date-time converter (for more information about using converters, see Section 7.3, "Adding Conversion").
When you add a date-time converter and configure it to show both the date and the time, the date picker is displayed as a modal dialog with additional controls for the user to enter a time. Additionally, if the converter is configured to show a time zone, a timezone dropdown list is shown in the dialog, as shown in Figure 11-18.
The inputColor
component allows users either to enter a value in an input text field, or to select a color from a color chooser.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.5, "Using Color and Date Choosers."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add an inputColor component:
true
if you do not want to display the input text field, as shown in Figure 11-19.value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode.width
attribute. For example, if you set the colorData
attribute to 49, the width must be 7. If the number does not match the width, extra color elements in the list will be ignored and missing color elements will be displayed as no-color. The color list must be an array of type TrColor
on the client side.TrColor
on the client side. On the server side, it must be a List
of java.awt.Color
objects, or a list of hexadecimal color strings.#000000
.colorData
and customColorData
attributes.true
, the Custom Color button and custom color row will be rendered.true
, the Default button will be rendered. The Default button allows the user to easily select the color set as the value for the defaultColor
attribute.true
the Last Used button will be rendered, which allows the user to select the color that was most recently used.onAccess
if you want the value of the component to appear as read-only until the user hovers over it. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
.Note: If you select inherit , and no ancestor components define the editable value, then the value always is used. |
white-space:nowrap;
for the value.id
of the chooseColor
component which can be used to choose the color value. If not set, the inputColor
component has its own default popup dialog with a chooseColor
component.true
to allow the component to display previous values when the user begins to enter a matching value. Set to false
if no matches should be displayed. Default is true
.The inputDate
component allows the user to either enter or select a date.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.5, "Using Color and Date Choosers."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add an inputDate component:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode.white-space:nowrap;
as the value.java.util.Date
objects.java.util.Date
objects.org.apache.myfaces.trinidad.model.DateListProvider
interface. The getDateList
method should generate a List
of individual java.util.Date
objects which will be rendered as disabled. The dates must be in the context of the given base calendar.Performance Tip: This binding requires periodic roundtrips. If you just want to disable certain weekdays (for example, Saturday and Sunday), use the disableDaysOfWeek attribute. |
sun
, mon
, tue
, wed
, thu
, fri
, sat
. By default, all days are enabled.jan, feb, mar, apr, may, jun, jul, aug, sep, oct, nov, dec
. By default, all months are enabled.id
of the chooseDate
component which can be used to choose the date value. If not set, the inputDate
component has its own default popup dialog with a chooseDate
component.true
to allow the component to display previous values when the user begins to enter a matching value. Set to false
if no matches should be displayed. Default is true
.onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
.Note: If you select inherit , and no ancestor components define the editable value, then the value always is used. |
By default, the inputDate
component displays a drop down list of time zones if the associated converter is configured to do so, for example, if you include the timezone placeholder z
in the converter's pattern. The end user can only modify the timezone using this list. The list is configured to display the most common time zones.
However, there may be times when you need to display the list of time zones outside of the inputDate
component. For example, on a Application Preferences page, you may want to use a selectOneChoice
component that allows the user to select the time zone that will be used to display all inputDates
in the application. A backing bean would handle the conversion between the time zone ID and the java.util.TimeZone object
. Converters for the inputDate
instances in the application would then bind the time zone to that time zone object.
You can access this list using either an API on the DateTimeUtils
class, or using an EL expression on a component.
Following are the methods on DateTimeUtils
class:
getCommonTimeZoneSelectItems ()
: Returns a list of commonly used time zones.getCommonTimeZoneSelectItems (String timeZoneId)
: Returns a list of commonly used time zones, including the given time zone if it is not part of the list.To access this list using EL, use one of the following expressions:
af:getCommonTimeZoneSelectItems
For example:
af:getMergedTimeZoneSelectItems (id)
For example:
If you will be using an inputDate
component and a selection list for its time zone on the same page, you must clear out the local value for the inputDate
's timezone to ensure that the value binding for the selection takes precedence. Otherwise, a non-null local value will take precedence, and the inputDate
component will not appear to be updated.In Example 11-4, the backing bean has a reference using the binding attribute to the inputDate
component. When the user picks a new time zone, the id is set and the code gets the converter for the inputDate
and clears out its time zone. When the page is rendered, since the local value for the converter's time zone is null, it will evaluate #{demoInput.preferredTimeZone}
and obtain the updated time zone.
Example 11-4 Using an inputDate and Time Zone Selection List Together
The selection components allow the user to select single and multiple values from a list or group of items. ADF Faces provides a number of different selection components, ranging from simple boolean radio buttons to list boxes that allow the user to select multiple items. The list of items within a selection component is made up of a number of selectItem
components
All the selection components except the selectItem
component delivers the ValueChangeEvent
and AttributeChangeEvent
events. The selectItem
component only delivers the AttributeChangeEvent
event. You must create a valueChangeListener
handler or an attributeChangeListener
handler, or both for them.
The selectBooleanCheckbox
component value must always be set to a boolean and not an object. It toggles between selected and unselected states, as shown in Figure 11-20.
The selectBooleanRadio
component displays a boolean choice, and must always be set to a boolean. Unlike the selectBooleanCheckbox
component, the selectBooleanRadio
component allows you to group selectBooleanRadio
components together using the same group
attribute.
For example, say you have one boolean that determines whether or not a user is age 10 to 18 and another boolean that determines whether a user is age 19-100. As shown in Figure 11-21, the two selectBooleanRadio
components can be placed anywhere on the page, they do not have to be next to each other. As long as they share the same group
value, they will have mutually exclusive selection, regardless of their physical placement on the page.
Tip: Each selectBooleanRadio component must be bound to a unique boolean. |
You use the selectOneRadio
component to create a list of radio buttons from which the user can select a single value from a list, as shown in Figure 11-22.
You use the selectManyCheckbox
component to create a list of checkboxes from which the user can select one or more values, as shown in Figure 11-23.
The selectOneListbox
component creates a component which allows the user to select a single value from a list of items displayed in a shaded box, as shown in Figure 11-24.
The selectManyListbox
component creates a component which allows the user to select many values from a list of items. This component includes an All checkbox that is displayed at the beginning of the list of checkboxes, as shown in Figure 11-25.
The selectOneChoice
component creates a menu-style component, which allows the user to select a single value from a dropdown list of items. The selectOneChoice
component is intended for a relatively small number of items in the dropdown list.
Best Practice: If a large number of items is desired, use an inputComboboxListOfValues component instead. For more information, see Chapter 13, "Using List-of-Values Components." |
The selectOneChoice
component is shown in Figure 11-26.
You can configure the selectOneChoice
component to display in a compact mode, as shown in Figure 11-27. When in compact mode, the input field is replaced with a smaller icon.
When the user clicks the icon, the dropdown list is displayed, as shown in Figure 11-28.
The selectManyChoice
component creates a menu-style dropdown component, which allows the user to select multiple values from a dropdown list of items. This component can be configured to include an All selection item that is displayed at the beginning of the list of selection items. If the number of choices is greater than 15, a scrollbar will be presented, as shown in Figure 11-29.
By default, all selectItem
child components are built when the selectManyChoice
component is built, as the page is rendered. However, if the way the list items are accessed is slow, then performance can be hampered. This delay can be especially troublesome when it is likely that the user will select the items once, and then not change them on subsequent visits.
For example, suppose you have a selectManyChoice
component used to filter what a user sees on a page, and that the values for the child selectItem
components are accessed from a web service. Suppose also that the user is not likely to change that selection each time they visit the page. By default, each time the page is rendered, all the selectItems
must be built, regardless of whether or not the user will actually need to view them. Instead, you can change the contentDelivery
attribute on the selectManyChoice
component from immediate
(the default) to lazy
. The lazy
setting causes the selectItem
components to be built only when the user clicks the dropdown.
For both immediate
and lazy
, when the user then makes a selection, the values of the selected selectItem
components are displayed in the field. However when lazy content delivery is used, on subsequent visits, instead of pulling the selected values from the selectItem
components (which would necessitate building these components), the values are pulled from the lazySelectedLabel
attribute. This attribute is normally bound to a method that returns an array of Strings
representing the selected items. The selectItem
components will not be built until the user goes to view or change them, using the dropdown.
Note that there are limitations when using the lazy
delivery method on the selectManyChoice
component. For more information about content delivery for the selectManyChoice
component and its limitations, see Section 11.6.2, "What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component."
For the following components, if you want the label to appear above the control, you can place them in a panelFormLayout
component.
selectOneChoice
selectOneRadio
selectOneListbox
selectManyChoice
selectManyCheckbox
selectManyListbox
For the following components, the attributes disabled
, immediate
, readOnly
, required
, requireMessageDetail
, and value
cannot be set from JavaScript on the client for security reasons (for more information, see Section 4.6.1, "How to Set Property Values on the Client"):
selectOneChoice
selectOneRadio
selectOneListbox
selectBooleanRadio
selectBooleanCheckbox
selectManyChoice
selectManyCheckbox
selectManyListbox
The procedures for adding selection components are the same for each of the components. First, you add the selection component and configure its attributes. Then you add any number of selectItem
components for the individual items in the list, and configure those.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.6, "Using Selection Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To use a selection component:
For all selection components except the selectBooleanCheckbox
and selectBooleanRadio
components, a dialog opens where you choose either to bind to a value in a managed bean, or to create a static list. On the second page of the dialog, you can set the following properties:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode.Note: If you are creating a selectBooleanRadio or selectBooleanCheckbox component, and you enter a value for the value attribute, you cannot also enter a value for the selected attribute, as it is a typesafe alias for the value attribute. You cannot use both. |
Table 11-1 Appearance Attributes for Selection Components
Components | Attribute |
---|---|
| Layout: Set to |
| Size: Set to the number of items that should be displayed in the list. If the number of items in the list is larger than the |
| SelectAllVisible: Set to |
| Mode: Set to |
| UnselectedLabel: Enter text for the option that represents a value of |
Table 11-2 Behavior Attributes for Selection Components
Component | Attribute |
---|---|
All except the boolean selection components | ValuePassThru: Specify whether or not the values are passed through to the client. When Note that if your selection components uses ADF Model binding, this value will be ignored. |
| Group: Enter a group name that will enforce mutual exclusivity for all other |
selectOneChoice
or selectManyChoice
component to appear as read-only until the user hovers over it, expand the Appearance section and set Editable to onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
.Note: If you select inherit , and no ancestor components define the editable value, then the value always is used. |
selectItem
components for the selectManyChoice
to be built each time the page is rendered, do the following:Note that there are limitations to using lazy content delivery. For more information about content delivery for the selectManyChoice
component, see Section 11.6.2, "What You May Need to Know About the contentDelivery Attribute on the SelectManyChoice Component."
selectItem
components as children to the boolean component. These will represent the items in the list (for other selection components, the dialog in Step 2 automatically added these for you).selectItem
component selected, in the Property Inspector, expand the Common section, and if not set, enter a value for the value
attribute. This will be the value that will be submitted.true
if you want the item to appear disabled in the list.When the contentDelivery
attribute on the selectManyChoice
component is set to immediate
(the default), the following happens:
selectManyChoice
and all selectItem
components are built as the page is rendered. This can cause performance issues if there are many items, or if the values for the selectItem
components are accessed for example, from a web service.selectManyChoice
component renders, nothing displays in the field, as there has not yet been a selection.selectItem
components are shown in field.selectManyChoice
and all selectItem
components are built again as the page is rendered. Labels for selected selectItem
components are displayed in field. This will cause the same performance issues as on the first visit to the page.When the contentDelivery
attribute on the selectManyChoice
component is set to lazy
, the following happens:
selectManyChoice
is built as the page is rendered, but the selectItem
components are not.selectManyChoice
component renders, nothing displays in the field, as there has not yet been a selection.selectItem
components are built. While this is happening, the user sees a "busy" spinner. Once the components are built, all items are shown.selectItem
components are shown in field.selectManyChoice
component is built. At this point, the value of the lazySelectedLabel
attribute is used to display the selected items.selectItem
components are built. While this is happening, the user sees a "busy" spinner. Once the components are built, all items are shown.Once the selectItem
components are built, the selectManyChoice
component will act as though its contentDelivery
attribute is set to immediate
, and use the actual value of the selectItem
components to display the selected items.
Following are limitations for using lazy content delivery for the selectManyChoice
component:
selectManyChoice
in Request scope. On postback, the value attribute is accessed from the model, rather than decoding what was returned from the client. If the value is stored in Request scope, that value will be empty. Do not store the value in Request scope.contentDelivery
attribute is ignored when in screen reader mode. The selectItem
components will always be built when the page is rendered.The selectManyShuttle
and selectOrderShuttle
components present the user with two list boxes and buttons to move or shuttle items from one list box to the other. The user can select a single item or multiple items to shuttle between the leading (Available values) list box and the trailing (Selected values) list box. For either component, if you want the label to appear above the control, place them in a panelFormLayout
component.
The selectManyShuttle
component is shown in Figure 11-30.
The selectOrderShuttle
component additionally includes up and down arrow buttons that the user can use to reorder values in the Selected values list box, as shown in Figure 11-31. When the list is reordered, a ValueChangeEvent
event is delivered. If you set the readOnly
attribute to true
, ensure the values to be reordered are selected values that will be displayed in the trailing list (Selected values).
The value
attribute of these components, like any other selectMany
component, must be a List
or an Array
of values that correspond to a value of one of the contained selectItem
components. If a value of one of the selectItems
is in the List
or Array
, that item will appear in the trailing list. You can convert a selectManyListbox
component directly into a selectManyShuttle
; instead of the value
driving which items are selected in the listbox, it affects which items appear in the trailing list of the selectOrderShuttle
component.
Similar to other select components, the List or Array of items are composed of selectItem
components nested within the selectManyShuttle
or selectOrderShuttle
component. Example 11-5 shows a sample selectOrderShuttle
component that allows the user to select the top five file types from a list of file types.
Example 11-5 selectOrderShuttle JSF Page Code
If you set the reorderOnly
attribute of a selectOrdershuttle
component to true
, the shuttle function will be disabled, and only the Selected Values listbox appears. The user can only reorder the items in the listbox, as shown in Figure 11-32.
The procedures for adding shuttle components are the same for both components. First you add the selection component and configure its attributes. Then you add any number of selectItem
components for the individual items in the list, and configure those.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.7, "Using Shuttle Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add a selectManyShuttle or selectOrderShuttle component:
value
points to a bean property with a get
method but no set
method, the component will be rendered in read-only mode.horizontal
, meaning the leading and trailing list boxes are displayed next to each other. When set to vertical
, the leading list box is displayed above the trailing list box.true
to display a description of the selected item at the bottom of the leading list box.true
to display a description of the selected item at the bottom of the trailing list box.valuePassThru
is false
, the value and the options' values are converted to indexes before being sent to the client. Therefore, when valuePassThru
is false
, there is no need to write your own converter when you are using custom objects as your values, options, or both. If you need to know the actual values on the client-side, then you can set valuePassThru
to true
. This will pass the values through to the client, using your custom converter if it is available; a custom converter is needed if you are using custom objects. The default is false.
selectOrderShuttle
component only): Specify whether or not the shuttle component is in reorder-only mode, where the user can reorder the list of values, but cannot add or remove them.selectItem
components, and in the Property Inspector, set any needed attributes.Tip: If you elected to have the leading or trailing list box display a description, you must set a value for the shortDesc attribute for each selectItem component. |
You can provide the user with information about each selected item before the user shuttles it from one list to another list by creating JavaScript code to perform processing in response to the event of selecting an item. For example, your code can obtain additional information about that item, then display it as a popup to help the user make the choice of whether to shuttle the item or not. Figure 11-33 shows a selectManyShuttle
component in which the user selects Meyers and a popup provides additional information about this selection.
You implement this feature by adding a client listener to the selectManyShuttle
or selectOrderShuttle
component and then create a JavaScript method to process this event. The JavaScript code is executed when a user selects an item from the lists. For more information about using client listeners for events, see Section 4.2, "Listening for Client Events."
How to add a client listener to a shuttle component to handle a selection event:
propertyChange
from the Type dropdown.If for example, you entered showDetails as the function, JDeveloper would enter the code shown in bold in Example 11-6.
Example 11-6 Using a clientListener to Register a Selection
This code causes the showDetails
function to be called any time the property value changes.
In Example 11-7, AdfShuttleUtils.getLastSelectionChange
is called to get the value of the last selected item
Example 11-7 Sample JavaScript methods showDetails used to process a selection
var lastChangedValue = AdfShuttleUtils.getLastSelectionChange(shuttleComponent, event.getOldValue());
The richTextEditor
component provides an input field that can accept text with formatting. It also supports label text, and messages. It allows the user to change font name, size, and style, create ordered lists, justify text, and use a variety of other features. The richTextEditor
component also can be used to edit an HTML source file. Two command buttons are used to toggle back and forth between editing standard formatted text and editing the HTML source file. Figure 11-34 shows the rich text editor component in standard rich text editing Mode.
Figure 11-35 shows the editor in source code editing mode.
Other supported features include:
The value (entered text) of the rich text editor is a well-formed XHTML fragment. Parts of the value may be altered for browser-specific requirements to allow the value to be formatted. Also, for security reasons, some features such as script-related tags and attributes will be removed. There are no guarantees that this component records only the minimal changes made by the user. Because the editor is editing an XHTML document, the following elements may be changed:
The editor supports only HTML 4 tags, with the exception of:
The richTextEditor
component also supports tags that pull in content (such as applet
, iframe
, object
, img
, and a
). For the iframe
tag, the content should not be able to interact with the rest of the page because browsers allow interactions only with content from the same domain. However, this portion of the page is not under the control of the application.
While the richTextEditor
component does not support font units such as px
and em
, it does support font size from 1 to 7 as described in the HTML specification. It does not support embed or unknown tags (such as <foo>
).
On the client, the richTextEditor
component does not support getValue
and setValue
methods. There is no guarantee the component's value on the client is the same as the value on the server. Therefore, the richTextEditor
does not support client-side converters and validators. Server-side converters and validators will still work.
The rich text editor delivers ValueChangeEvent
and AttributeChangeEvent
events. Create valueChangeListener
and attributeChangeListener
handlers for these events as required.
You can also configure the richTextEditorInsertBehavior
tag, which works with command components to insert given text into the richTextEditor
component. The text to be entered can be a simple string, or it can be preformatted text held, for example, in a managed bean.
By default, the toolbar in the richTextEditor
component allows the user to change many aspects of the text, such as the font, font size and weight, text alignment, and view mode, as shown in Figure 11-36.
Figure 11-37 shows a toolbar that has been customized. Many of the toolbar buttons have been removed and a toolbar with a custom toolbar button and a menu have been added.
Once you add a richTextEditor
component, you can configure it so that text can be inserted at a specific place, and you can also customize the toolbar. For more information, see Section 11.8.2, "How to Add the Ability to Insert Text into a richTextEditor Component," and Section 11.8.3, "How to Customize the Toolbar."
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.8, "Using the richTextEditor Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add a richTextEditor component:
value
attribute.contentDelivery
attribute value is immediate
, data is fetched and displayed in the component when it is rendered. If the value is set to lazy
, data will be fetched and delivered to the client during a subsequent request. For more information, see Section 12.2.2, "Content Delivery."Tip: You can set the width of a richTextEditor component to full width or 100%. However, this works reliably only if the editor is contained in a geometry-managing parent components. It may not work reliably if it is placed in flowing layout containers such as panelFormLayout or panelGroupLayout . For more information, see Section 9.2.1, "Geometry Management and Component Stretching." |
To allow text to be inserted into a richTextEditor
component, add the richTextEditorInsertBehavior
tag as a child to a command component that will be used to insert the text.
Before you begin
It may be helpful to have an understanding of the rich text editor component. For more information, see Section 11.8, "Using the richTextEditor Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
You need to create a richTextEditor
component as described in Section 11.8.1, "How to Add a richTextEditor Component." Set the clientComponent
attribute to true
.
To add text insert behavior:
richTextEditor
component into which the text will be inserted.selectOneChoice
component), then enter an EL expression that resolves to that value. If you want the user to enter preformatted text, enter an EL expression that resolves to that text. For example Example 11-8 shows preformatted text as the value for an attribute in the demoInput
managed bean.Example 11-8 Preformatted Text in a Managed Bean
Example 11-9 shows how the text is referenced from the richTextEditorInsertBehavior
tag.
Example 11-9 Using the richTextEditorInsertBehavior Tag
triggerType
attribute.Place the toolbar and toolbar buttons you want to add in custom facets that you create. Then, reference the facet (or facets) from an attribute on the toolbar, along with keywords that determine how or where the contained items should be displayed.
To allow text to be inserted into a richTextEditor
component, add the richTextEditorInsertBehavior
tag as a child to a command component that will be used to insert the text.
Before you begin
It may be helpful to have an understanding of the rich text editor component. For more information, see Section 11.8, "Using the richTextEditor Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To customize the toolbar:
<f:facet>
tags. Ensure that each facet has a unique name for the page.Tip: To ensure that there will be no conflicts with future releases of ADF Faces, start all your facet names with customToolbar . |
richTextEditor
component selected, in the Property Inspector, in the Appearance section, click the dropdown icon for the toolboxLayout
attribute and select Edit to open the Edit Property: ToolboxLayout dialog. The value for this attribute should be a list of the custom facet names, in the order in which you want the contents in the custom facets to appear. In addition to those facets, you can also include all, or portions, of the default toolbar, using the following keywords:all
: All the toolbar buttons and text in the default toolbar. If all
is entered, then any keyword for noncustom buttons will be ignored.font
: The font selection and font size buttons.history
: Undo and redo buttons.mode
: Rich text mode and source code mode buttons.color
: Foreground and background color buttons.formatAll
: Bold, italic, underline, superscript, subscript, strikethrough buttons. If formatAll
is specified, formatCommon
and formatUncommon
will be ignored.formatCommon
: Bold, italic, and underline buttons.formatUncommon
: Superscript, subscript, and strikethrough buttons.justify
: Left, center, right and full justify buttons.list
: Bullet and numbered list buttons.indent
: Outdent and indent buttons.link
: Add and remove Link buttons.For example, if you created two facets named customToolbar1
and customToolbar2
, and you wanted the complete default toolbar to appear in between your custom toolbars, you would enter the following list:
customToolbar1
all
customToolbar2
You can also determine the layout of the toolbars using the following keywords:
newline
: Places the toolbar in the next named facet (or the next keyword from the list in the toolboxLayout
attribute) on a new line. For example, if you wanted the toolbar in the customToolbar2
facet to appear on a new line, you would enter the following list:customToolbar1
all
newline
customToolbar2
If instead, you did not want to use all of the default toolbar, but only the font, color, and common formatting buttons, and you wanted those buttons to appear on a new line, you would enter the following list:
customToolbar1
customToolbar2
newline
font
color
formatCommon
stretch
: Adds a spacer component that stretches to fill all available space so that the next named facet (or next keyword from the default toolbar) is displayed as right-aligned in the toolbar.The inputFile
component provides users with file uploading and updating capabilities. This component allows the user to select a local file and upload it to a selectable location on the server (to download a file from the server to the user, see Section 20.5.1, "How to Use a Command Component to Download Files").
The inputFile
component delivers the standard ValueChangeEvent
event as files are being uploaded, and it manages the loading process transparently. The value
property of an inputFile
component is set to an instance of the org.apache.myfaces.trinidad.model.UploadedFile
class when the file is uploaded.
To initiate the upload process you first must configure the page's form to allow uploads. You then create an action component such as a command button, as shown in Figure 11-38, that can be used to upload a file.
Once a file has been uploaded, and so the value of the inputFile
is not null (either after the initial load is successful or it has been specified as an initial value), you can create an Update button that will be displayed instead of the Browse button, as shown in Figure 11-39. This will allow the user to modify the value of the inputFile
component.
Note: When the file is uploaded, the value of the inputFile component becomes the instance of the org.apache.myfaces.trinidad.model.UploadedFile class. Therefore, if you need to access the value (that is, the file itself), you need to access this class. Accessing the component itself through the binding attribute only accesses the component and not the uploaded file. |
You can also specify that the component be able to load only a specific file by setting the readOnly
property to true
, In this mode, only the specified file can be loaded, as shown in Figure 11-40.
The inputFile
component can be placed in either an h:form
tag or an af:form
tag, but in either case, you have to set the form tag to support file upload. If you use the JSF basic HTML h:form
, set the enctype
to multipart/form-data
. This would make the request into a multipart request to support file uploading to the server. If you are using the ADF Faces af:form
tag, set usesUpload
to true
, which performs the same function as setting enctype to multipart/form-data
to support file upload.
The ADF Faces framework performs a generic upload of the file. You should create an actionListener
or action method to process the file after it has been uploaded (for example, processing xml
files, pdf
files, and so on).
The value
of an inputFile
component is an instance of the org.apache.myfaces.trinidad.model.UploadedFile
interface. The API lets you get at the actual byte stream of the file, as well as the file's name, its MIME type, and its size.
Note: The API does not allow you to get path information from the client about from where the file was uploaded. |
The uploaded file may be stored as a file in the file system, but may also be stored in memory; the API hides that difference. The filter ensures that the UploadedFile
content is cleaned up after the request is complete. Because of this, you cannot usefully cache UploadedFile
objects across requests. If you need to keep the file, you must copy it into persistent storage before the request finishes.
For example, instead of storing the file, add a message stating the file upload was successful using a managed bean as a response to the ValueChangeEvent
event, as shown in Example 11-10.
Example 11-10 Using valueChangeListener to Display Upload Message
You can also handle the upload by binding the value directly to a managed bean, as shown in Example 11-11.
Example 11-11 Binding the Value to a Managed Bean
A Java class must be bound to the inputFile
component. This class will be responsible for containing the value of the uploaded file.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 11.9, "Using File Upload."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 11.1.2, "Additional Functionality for Input Components and Forms."
To add an inputFile component:
Create a Java class that will hold the value of the input file. It must be an instance of the org.apache.myfaces.trinidad.model.UploadedFile
interface.
af:form
component and set UsesUpload to true.onAccess
. If you want the component to always appear editable, select always
. If you want the value to be inherited from an ancestor component, select inherit
.Note: If you select inherit , and no ancestor components define the editable value, then the value always is used. |
actionListener
attribute to a listener that will process the file after it has been uploaded.Because ADF Faces will temporarily store files being uploaded (either on disk or in memory), by default it limits the size of acceptable incoming upload requests to avoid denial-of-service attacks that might attempt to fill a hard drive or flood memory with uploaded files. By default, only the first 100 kilobytes in any one request will be stored in memory. Once that has been filled, disk space will be used. Again, by default, that is limited to 2,000 kilobytes of disk storage for any one request for all files combined. Once these limits are exceeded, the filter will throw an EOFException
.
Files are, by default, stored in the temporary directory used by the java.io.File.createTempFile()
method, which is usually defined by the system property java.io.tmpdir
. Obviously, this will be insufficient for some applications, so you can configure these values using three servlet context initialization parameters, as shown in Example 11-12.
Example 11-12 Parameters That Define File Upload Size and Directory
You can customize the file upload process by replacing the entire org.apache.myfaces.trinidad.webapp.UploadedFileProcessor
class with the <uploaded-file-processor>
element in the trinidad-config.xml
configuration file. Replacing the UploadedFileProcessor
class makes the parameters listed in Example 11-12 irrelevant, they are processed only by the default UploadedFileProcessor
class.
The <uploaded-file-processor>
element must be the name of a class that implements the oracle.adf.view.rich.webapp.UploadedFileProcessor
interface. This API is responsible for processing each individual uploaded file as it comes from the incoming request, and then making its contents available for the rest of the request. For most applications, the default UploadedFileProcessor
class is sufficient, but applications that need to support uploading very large files may improve their performance by immediately storing files in their final destination, instead of requiring ADF Faces to handle temporary storage during the request.
This chapter describes how to display tables and trees using the ADF Faces table
, tree
and treeTable
components. If your application uses the Fusion technology stack, then you can use data controls to create tables and trees. For more information see the "Creating ADF Databound Tables" and "Displaying Master-Detail Data" chapters of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
This chapter includes the following sections:
Structured data can be displayed as tables consisting of rows and columns using the ADF Faces table component. Hierarchical data can be displayed either as tree structures using ADF Faces tree component, or in a table format, using ADF Faces tree table component. Figure 12-1 shows the ADF Faces table and tree components.
Tip: When you do not want to use a table, but still need the same stamping capabilities, you can use the iterator tag. For example, say you want to display a list of periodic table elements, and for each element, you want to display the name, atomic number, symbol, and group. You can use the iterator tag as shown in the following example. <af:iterator var="row" first="3" rows="3" varStatus="stat" value="#{periodicTable.tableData}" > <af:outputText value="#{stat.count}.Index:#{stat.index} of #{stat.model.rowCount}"/> <af:inputText label="Element Name" value="#{row.name}"/> <af:inputText label="Atomic Number" value="#{row.number}"/> <af:inputText label="Symbol" value="#{row.symbol}"/> <af:inputText label="Group" value="#{row.group}"/> </af:iterator> Each child is stamped as many times as necessary. Iteration starts at the index specified by the first attribute for as many indexes specified by the |
Tables, tree, and tree tables are used to display structured information. For example, as shown in Figure 12-2, the Table tab in the File Explorer application uses a table to display the contents of the selected directory.
Hierarchical data (that is data that has parent/child relationships), such as the directory in the File Explorer application, can be displayed as expandable trees using the tree component. Items are displayed as nodes that mirror the parent/child structure of the data. Each top-level node can be expanded to display any child nodes, which in turn can also be expanded to display any of their child nodes. Each expanded node can then be collapsed to hide child nodes. Figure 12-3 shows the file directory in the File Explorer application, which is displayed using a tree component.
Hierarchical data can also be displayed using tree table components. The tree table also displays parent/child nodes that are expandable and collapsible, but in a tabular format, which allows the page to display attribute values for the nodes as columns of data. For example, along with displaying a directory's contents using a table component, the File Explorer application has another tab that uses the tree table component to display the contents, as shown in Figure 12-4.
Like the tree component, the tree table component can show the parent/child relationship between items. And like the table component, the tree table component can also show any attribute values for those items in a column. Most of the features available on a table component are also available in tree table component.
You can add a toolbar and a status bar to tables, trees, and tree tables by surrounding them with the panelCollection
component. The top panel contains a standard menu bar as well as a toolbar that holds menu-type components such as menus and menu options, toolbars and toolbar buttons, and status bars. Some buttons and menus are added by default. For example, when you surround a table, tree, or tree table with a panelCollection
component, a toolbar that contains the View menu is added. This menu contains menu items that are specific to the table, tree, or tree table component.
Figure 12-5 shows the tree table from the File Explorer application with the toolbar, menus, and toolbar buttons created using the panelCollection
component.
You may find it helpful to understand other ADF Faces features before you implement your table and tree components. Additionally, once you have added a tree or table component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that table and tree components can use.
Note: If you wish to use active data, and your application uses ADF Business Components, then your tables must conform to the following:
|
Trees and tables share many of the same functionality, such as how data is delivered and how data can be displayed and edited. It is important that you understand this shared functionality and how it is configured before you use these components.
Instead of containing a child component for each record to be displayed, and then binding these components to the individual records, table, tree and tree table components are bound to a complete collection, and they then repeatedly render one component (for example an outputText
component) by stamping the value for each record. For example, say a table contains two child column components. Each column displays a single attribute value for the row using an output component and there are four records to be displayed. Instead of binding four sets of two output components to display the data, the table itself is bound to the collection of all four records and simply stamps one set of the output components four times. As each row is stamped, the data for the current row is copied into the var
attribute on the table, from which the output component can retrieve the correct values for the row. For more information about how stamping works, especially with client components, see Section 12.2.6, "Accessing Client Table, Tree, and Tree Table Components."
Example 12-1 shows the JSF code for a table whose value for the var
attribute is row
. Each outputText
component in a column displays the data for the row because its value is bound to a specific property on the variable.
Example 12-1 JSF Code for a Table Uses the var Attribute to Access Values
The table, tree, and tree table components are virtualized, meaning not all the rows that are there for the component on the server are delivered to and displayed on the client. You configure tables, trees, and tree tables to fetch a certain number of rows at a time from your data source. The data can be delivered to the components immediately upon rendering, when it is available, or lazily fetched after the shell of the component has been rendered (by default, the components fetch data when it is available).
With immediate delivery, the data is fetched during the initial request. With lazy delivery, when a page contains one or more table or tree components, the page initially goes through the standard lifecycle. However, instead of fetching the data during that initial request, a special separate partial page rendering (PPR) request is run, and the number of rows set as the value of the fetch size for the table is then returned. Because the page has just been rendered, only the Render Response phase executes for the components, allowing the corresponding data to be fetched and displayed. When a user's actions cause a subsequent data fetch (for example scrolling in a table for another set of rows), another PPR request is executed.
When content delivery is configured to be delivered when it is available, the framework checks for data availability during the initial request, and if it is available, it sends the data to the table. If it is not available, the data is loaded during the separate PPR request, as it is with lazy delivery.
Note: If your application does not use the Fusion technology stack, then you must explicitly add support for whenAvailable to your CollectionModel implementation. For an example, see the WhenAvailableData.java managed bean in the Faces demo application.If your application does use the Fusion technology stack, then the |
Performance Tip: Lazy delivery should be used when a data fetch is expected to be an expensive (slow) operation, for example, slow, high-latency database connection, or fetching data from slow non-database data sources like web services. Lazy delivery should also be used when the page contains a number of components other than a table, tree, or tree table. Doing so allows the initial page layout and other components to be rendered first before the data is available. Immediate delivery should be used if the table, tree, or tree table is the only context on the page, or if the component is not expected to return a large set of data. In this case, response time will be faster than using lazy delivery (or in some cases, simply perceived as faster), as the second request will not go to the server, providing a faster user response time and better server CPU utilizations. Note however that only the number of rows configured to be the fetch block will be initially returned. As with lazy delivery, when a user's actions cause a subsequent data fetch, the next set of rows are delivered. When available delivery provides the additional flexibility of using immediate when data is available during initial rendering or falling back on lazy when data is not initially available. |
The number of rows that are displayed on the client are just enough to fill the page as it is displayed in the browser. More rows are fetched as the user scrolls the component vertically. The fetchSize
attribute determines the number of rows requested from the client to the server on each attempt to fill the component. The default value is 25. So if the height of the table is small, the fetch size of 25 is sufficient to fill the component. However, if the height of the component is large, there might be multiple requests for the data from the server. Therefore, the fetchSize
attribute should be set to a higher number. For example, if the height of the table is 600 pixels and the height of each row is 18 pixels, you will need at least 45 rows to fill the table. With a fetchSize
of 25, the table has to execute two requests to the server to fill the table. For this example, you would set the fetch size to 50.
However, if you set the fetch size too high, it will impact both server and client. The server will fetch more rows from the data source than needed and this will increase time and memory usage. On the client side, it will take longer to process those rows and attach them to the component.
You can also configure the set of data that will be initially displayed using the displayRow
attribute. By default, the first record in the data source is displayed in the top row or node and the subsequent records are displayed in the following rows or nodes. You can also configure the component to first display the last record in the source instead. In this case, the last record is displayed in the bottom row or node of the component, and the user can scroll up to view the preceding records. Additionally, you can configure the component to display the selected row. This can be useful if the user is navigating to the table, and based on some parameter, a particular row will be programmatically selected. When configured to display the selected row, that row will be displayed at the top of the table and the user can scroll up or down to view other rows.
Note: You cannot use JavaScript to dynamically size a table or tree. The height of tables, trees and treetables is set the first time they are rendered and cannot be changed using JavaScript APIs. |
You can configure selection to be either for no rows, for a single row, or for multiple rows of tables, trees, and tree tables using the rowSelection
attribute. This setting allows you to execute logic against the selected rows. For example, you may want users to be able to select a row in a table or a node in a tree, and then to click a command button that navigates to another page where the data for the selected row is displayed and the user can edit it.
When the selected row (or node) of a table, tree, or tree table changes, the component triggers a selection event. This event reports which rows were just deselected and which rows were just selected. While the components handle selection declaratively, if you want to perform some logic on the selected rows, you need to implement code that can access those rows and then perform the logic. You can do this in a selection listener method on a managed bean. For more information, see Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."
Note: If you configure your component to allow multiple selection, users can select one row and then press the shift key to select another row, and all the rows in between will be selected. This selection will be retained even if the selection is across multiple data fetch blocks. Similarly, you can use the Ctrl key to select rows that are not next to each other. For example, if you configure your table to fetch only 25 rows at a time, but the user selects 100 rows, the framework is able to keep track of the selection. |
You can choose the component used to display the actual data in a table, tree, or tree table. For example, you may want the data to be read-only, and therefore you might use an outputText
component to display the data. Conversely, if you want the data to be able to be edited, you might use an inputText
component, or if choosing from a list, one of the SelectOne
components. All of these components are placed as children to the column component (in the case of a table and tree table) or within the nodeStamp
facet (for a tree).
When you decide to use components whose value can be edited to display your data, you have the option of having the table, tree, or tree table either display all rows as available for editing at once, or display all but the currently active row as read-only using the editingMode
attribute. For example, Figure 12-6 shows a table whose rows can all be edited. The page renders using the components that were added to the page (for example, inputText
, inputDate
, and inputComboBoxListOfValues
components).
Figure 12-7 shows the same table (that is, it uses inputText
, inputDate
, and inputComboBoxListOfValues
components to display the data), but configured so that only the active row displays the editable components. Users can then click on another row to make it editable (only one row is editable at a time). Note that outputText
components are used to display the data in the noneditable rows, even though the same input components as in Figure 12-6 were used to build the page. The only row that actually renders those components is the active row.
The currently active row is determined by the activeRowKey
attribute on the table. By default, the value of this attribute is the first visible row of the table. When the table (or tree or tree table) is refreshed, that component scrolls to bring the active row into view, if it is not already visible. When the user clicks on a row to edit its contents, that row becomes the active row.
When you allow only a single row (or node) to be edited, the table (or tree or tree table) performs PPR when the user moves from one row (or node) to the next, thereby submitting the data (and validating that data) one row at a time. When you allow all rows to be edited, data is submitted whenever there is an event that causes PPR to typically occur, for example scrolling beyond the currently displayed rows or nodes.
Not all editable components make sense to be displayed in a click-to-edit mode. For example, those that display multiple lines of HTML input elements may not be good candidates. These components include:
SelectManyCheckbox
SelectManyListBox
SelectOneListBox
Select
OneRadio
SelectManyShuttle
Performance Tip: For increased performance during both rendering and postback, you should configure your table to allow editing only to a single row. When you elect to allow only a single row to be edited at a time, the page will be displayed more quickly, as output components tend to generate less HTML than input components. Additionally, client components are not created for the read-only rows. Because the table (or tree, or tree table) performs PPR as the user moves from one row to the next, only that row's data is submitted, resulting in better performance than a table that allows all cells to be edited, which submits all the data for all the rows in the table at the same time. Allowing only a singe row to be edited also provides more intuitive validation, because only a single row's data is submitted for validation, and therefore only errors for that row are displayed. |
You can configure your table, tree, or tree table so that popup dialogs will be displayed based on a user's actions. For example, you can configure a popup dialog to display some data from the selected row when the user hovers the mouse over a cell or node. You can also create popup context menus for when a user right-clicks a row in a table or tree table, or a node in a tree. Additionally, for tables and tree tables, you can create a context menu for when a user right-clicks anywhere within the table, but not on a specific row.
Tables, trees, and tree tables all contain the contextMenu
facet. You place your popup context menu within this facet, and the associated menu will be displayed when the user right-clicks a row. When the context menu is being fetched on the server, the components automatically establish the currency to the row for which the context menu is being displayed. Establishing currency means that the current row in the model for the table now points to the row for which the context menu is being displayed. In order for this to happen, the popup
component containing the menu must have its contentDelivery
attribute set to lazyUncached
so that the menu is fetched every time it is displayed.
Tip: If you want the context menu to dynamically display content based on the selected row, set the popup content delivery to lazyUncached and add a setPropertyListener tag to a method on a managed bean that can get the current row and then display data based on the current row:<af:tree value="#{fs.treeModel}" contextMenuSelect="false" var="node" ..> <f:facet name="contextMenu"> <af:popup id="myPopup" contentDelivery="lazyUncached"> <af:setPropertyListener from="#{fs.treeModel.rowData}" to="#{dynamicContextMenuTable.currentTreeRowData}" type="popupFetch" /> <af:menu> <af:menu text="Node Info (Dynamic)"> <af:commandMenuItem actionListener= "#{dynamicContextMenuTable.alertTreeRowData}" text= "Name - #{dynamicContextMenuTable.currentTreeRowData.name}" /> <af:commandMenuItem actionListener= "#{dynamicContextMenuTable.alertTreeRowData}" text= "Path - #{dynamicContextMenuTable.currentTreeRowData.path}" /> <af:commandMenuItem actionListener= "#{dynamicContextMenuTable.alertTreeRowData}" text="Date - #{dynamicContextMenuTable.currentTreeRowData.lastModified}" /> </af:menu> </af:menu> </af:popup> </f:facet> ... </af:tree> The code on the backing bean might look something like this: public class DynamicContextMenuTableBean { ... public void setCurrentTreeRowData(Map currentTreeRowData) { _currentTreeRowData = currentTreeRowData; } public Map getCurrentTreeRowData() { return _currentTreeRowData; } private Map _currentTreeRowData; } |
Tables and tree tables contain the bodyContextMenu
facet. You can add a popup that contains a menu to this facet, and it will be displayed whenever a user clicks on the table, but not within a specific row.
For more information about creating context menus, see Section 15.2, "Declaratively Creating Popups."
With ADF Faces, the contents of the table, tree, or tree table are rendered on the server. There may be cases when the client needs to access that content on the server, including:
inputHidden
component. In order to enable this, the application must be able to retrieve row-specific attribute values from stamped components.AdfDhtmlCommandLinkPeer
class needs a reference to the component instance which will serve as the event source. The component also holds on to relevant state, including client listeners as well as attributes that control event delivery behavior, such as disabled
or partialSubmit
.Because there is no client-side support for EL in the ADF Faces framework, nor is there support for sending entire table models to the client, the client-side code cannot rely on component stamping to access the value. Instead of reusing the same component instance on each row, a new JavaScript client component is created on each row (assuming any component must be created at all for any of the rows).
Therefore, to access row-specific data on the client, you need to use the stamped component itself to access the value. To do this without a client-side data model, you use a client-side selection change listener. For detailed instructions, see Section 12.11, "Accessing Selected Values on the Client from Components That Use Stamping."
By default, when tables, trees, and tree tables are placed in a component that stretches its children (for example, a panelCollection
component inside a panelStretchLayout
component), the table, tree, or tree table will stretch to fill the existing space. However, in order for the columns to stretch to fit the table, you must specify a single column to stretch to fill up any unused space, using the columnStretching
attribute. Otherwise, the table will only stretch vertically to fit as many rows as possible. It will not stretch the columns, as shown in Figure 12-8.
When placed in a component that does not stretch its children (for example, in a panelCollection
component inside a panelGroupLayout
component set to vertical
), by default, a table width is set to 300px (27.27em units which translates to 300px for an 11px font setting) and the default fetch size is set to return 25 rows, as shown in Figure 12-9.
When you place a table in a component that does not stretch its children, you can control the height of the table so that is never more than a specified number of rows, using the autoHeightRows
attribute. When you set this attribute to a positive integer, the table height will be determined by the number of rows set. If that number is higher than the fetchSize
attribute, then only the number of rows in the fetchSize
attribute will be returned. You can set autoHeightRows
to -1 (the default), to turn off auto-sizing.
Auto-sizing can be helpful in cases where you want to use the same table both in components that stretch their children and those that don't. For example, say you have a table that has 6 columns and can potentially display 12 rows. When you use it in a component that stretches its children, you want the table to stretch to fill the available space. When you use that table in a component that doesn't stretch its children, you want to be able to "fix" the height of the table to six rows. However, if you were to set a height on the table, then that table will not stretch when placed in the other component. To solve this issue, you can set the autoHeightRows
attribute. Then, when the table in the example above is placed in a component that stretches, the table will stretch (ignoring the autoHeightRows
attribute), and when it is placed in a component that does not stretch, the table will be 6 rows high, the number of rows set for autoHeightRows
attribute.
The table component uses a Collection
Model
class to access the data in the underlying collection. This class extends the JSF DataModel
class and adds on support for row keys and sorting. In the DataModel
class, rows are identified entirely by index. This can cause problems when the underlying data changes from one request to the next, for example a user request to delete one row may delete a different row when another user adds a row. To work around this, the CollectionModel
class is based on row keys instead of indexes.
You may also use other model classes, such as java.util.List
, array
, and javax.faces.model.DataModel
. If you use one of these other classes, the table component automatically converts the instance into a CollectionModel
class, but without the additional functionality. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
.
Note: If your application uses the Fusion technology stack, then you can use data controls to create tables and the collection model will be created for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
The immediate children of a table component must be column
components. Each visible column component is displayed as a separate column in the table. Column components contain components used to display content, images, or provide further functionality. For more information about the features available with the column component, see Section 12.3.1, "Columns and Column Data."
The child components of each column display the data for each row in that column. The column does not create child components per row; instead, the table uses stamping to render each row. Each child is stamped once per row, repeatedly for all the rows. As each row is stamped, the data for the current row is copied into a property that can be addressed using an EL expression. You specify the name to use for this property using the var
property on the table. Once the table has completed rendering, this property is removed or reverted back to its previous value.
Because of this stamping behavior, some components may not work inside the column. Most components will work without problems, for example any input and output components. If you need to use multiple components inside a cell, you can wrap them inside a panelGroupLayout
component. Components that themselves support stamping are not supported, such as tables within a table. For information about using components whose values are determined dynamically at runtime, see Section 12.3.9, "What You May Need to Know About Dynamically Determining Values for Selection Components in Tables."
You can use the detailStamp
facet in a table to include data that can be optionally displayed or hidden. When you add a component to this facet, the table displays an additional column with an expand and collapse icon for each row. When the user clicks the icon to expand, the component added to the facet is displayed, as shown in Figure 12-10.
When the user clicks on the expanded icon to collapse it, the component is hidden, as shown in Figure 12-11.
For more information about using the detailStamp
facet, see Section 12.4, "Adding Hidden Capabilities to a Table."
Columns contain the components used to display the data. As stated previously, only one child component is needed for each item to be displayed; the values are stamped as the table renders. Columns can be sorted and can also contain a filtering element. Users can enter a value into the filter and the returned data set will match the value entered in the filter. You can set the filter to be either case-sensitive or case-insensitive. If the table is configured to allow it, users can also reorder columns. Columns have both header and footer facets. The header facet can be used instead of using the header text attribute of the column, allowing you to use a component that can be styled. The footer facet is displayed at the bottom of the column. For example, Figure 12-12 uses footer facets to display the total at the bottom of two columns. If the number of rows returned is more than can be displayed, the footer facet is still displayed; the user can scroll to the bottom row.
A table component offers many formatting and visual aids to the user. You can enable these features and specify how they can be displayed. These features include:
rowSelection
attribute. You can configure the table to allow either a single row or multiple rows to be selected. For information about how to then programatically perform some action on the selected rows, see Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."autoHeightRows
attribute. For more information, see Section 12.2.7, "Geometry Management and Table, Tree, and Tree Table Components."Note: When table is placed in a layout-managing container, such as a panelSplitter component, it will be sized by the container and the autoHeightRows is not honored. |
Note: You cannot use JavaScript to dynamically size a table. The height of a table is set the first time is rendered and cannot be changed using JavaScript APIs. |
horizontalGridVisible
and verticalGridVisible
attributes.columnBandingInterval
attribute. This helps to differentiate between adjacent groups of rows or columns. By default, banding is turned off.Performance Tip: When you choose to have cells be available for editing only when the user clicks on them, the table will initially load faster. This may be desirable if you expect the table to display large amounts of data. |
columnStretching
attribute to determine whether or not to stretch columns to fill up the space, and if so, which columns should stretch. You can set the minimum width for columns, so that when there are many columns in a table and you enable stretching, columns will not be made smaller than the set minimum width. You can also set a width percentage for each column you want to stretch to determine the amount of space that column should take up when stretched.Note: If the total sum of the columns' minimum widths equals more than the viewable space in the viewport, the table will expand outside the viewport and a scrollbar will appear to allow access outside the viewport. |
Performance Tip: Column stretching is turned off by default. Turning on this feature may have a performance impact on the client rendering time when used for complex tables (that is, tables with a large amount of data, or with nested columns, and so on). |
Note: Columns configured to be row headers or configured to be frozen will not be stretched because doing so could easily leave the user unable to access the scrollable body of the table. |
columnSelectionListener
to respond to the ColumnSelectionEvent
that is invoked when a new column is selected by the user. This event reports which columns were just deselected and which columns were just selected.panelCollection
component. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."Each column component also offers many formatting and visual aids to the user. You can enable these features and specify how they can be displayed. These features include:
sortable
attribute. A special indicator on a column header lets the user know that the column can be sorted.When the user clicks on the icon to sort a previously unsorted column, the column's content is sorted in ascending order. Subsequent clicks on the same header sort the content in the reverse order. In order for the table to be able to sort, the underlying data model must also support sorting. For more information, see Section 12.3.7, "What You May Need to Know About Programmatically Enabling Sorting for Table Columns."
align
attribute.Tip: Use start and end instead of left and right if your application supports multiple reading directions. |
width
attribute. If you configure a column to allow stretching, then you can also set the width as a percentage.noWrap
attribute. By default, content will not wrap.rowHeader
attribute. When you do so, the left-most column is rendered with the same look as the column headers, and will not scroll off the page. Figure 12-13 shows how a table showing departments appears if the first column is configured to be a row header.If you elect to use a row header column and you configure your table to allow row selection, the row header column displays a selection arrow when a users hovers over the row, as shown in Figure 12-14.
For tables that allow multiple selection, users can mouse down and then drag on the row header to select a contiguous blocks of rows. The table will also autoscroll vertically as the user drags up or down.
Performance Tip: Use of row headers increases the complexity of tables and can have a negative performance impact. |
Tip: While the user can change the way the table displays at runtime (for example the user can reorder columns or change column widths), those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages." |
You use the Create an ADF Faces Table dialog to add a table to a JSF page. You also use this dialog to add column
components for each column you need for the table. You can also bind the table to the underlying model or bean using EL expressions.
Note: If your application uses the Fusion technology stack, then you can use data controls to create tables and the binding will be done for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
Once you complete the dialog, and the table and columns are added to the page, you can use the Property Inspector to configure additional attributes of the table or columns, and add listeners to respond to table events. You must have an implementation of the CollectionModel
class to which your table will be bound.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.3, "Using the Table Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To display a table on a page:
Use the dialog to bind the table to any existing model you have. When you bind the table to a valid model, the dialog automatically shows the columns that will be created. You can then use the dialog to edit the values for the columns' header
and value
attributes, and choose the type of component that will be used to display the data. Alternatively, you can manually configure columns and bind at a later date. For more information about using the dialog, press F1 or click Help.
Note: If you are using an inputText component to display a Character Large Object (CLOB), then you will need to create a custom converter that converts the CLOB to a String. For more information about conversion, see Chapter 7, "Creating Custom JSF Converters." |
none
, single
, and multiple
, and multipleNoSelectAll
.Note: Users can select all rows and all columns in a table by clicking the column header for the row header if the rowSelection attribute is set to multiple and that table also contains a row header. If you do not want users to be able to select all columns and rows, then set rowSelection to multipleNoSelectAll . |
For information about how to then programatically perform some action on the selected rows, see Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."
none
, single
, and multiple
.Tip: If you want to use a component other than those listed, select any component in the Property Inspector, and then manually change it:
|
Tip: If you want more than one component to be displayed in a column, add the other component manually and then wrap them both in a panelGroupLayout component. To do so:
|
columnStretching
attribute), you must set the width to percentages.Tip: If the table is a child to a component that stretches its children, then this width setting will be overridden and the table will automatically stretch to fit its container. For more information about how components stretch, see Section 12.2.7, "Geometry Management and Table, Tree, and Tree Table Components." |
Note: If the table is placed inside a component that can stretch its children, only the table will stretch automatically. You must manually configure column stretching if you want the columns to stretch to fill the table. |
Note: Columns configured to be row headers or configured to be frozen will not be stretched because doing so could easily leave the user unable to access the scrollable body of the table. |
Performance Tip: Column stretching is turned off by default. Turning on this feature may have a performance impact on the client rendering time for complex tables. |
You can set column stretching to one of the following values:
blank
: If you want to have an empty blank column automatically inserted and have it stretch (so the row background colors will span the entire width of the table).last
: If you want the last column to stretch to fill up any unused space inside of the window.none
: The default option where nothing will be stretched. Use this for optimal performance.multiple
: All columns that have a percentage value set for their width
attribute will be stretched to that percent, once other columns have been rendered to their (non-stretched) width. The percentage values will be weighted with the total. For example, if you set the width attribute on three columns to 50%, each column will get 1/3 of the remaining space after all other columns have been rendered.Tip: While the widths of columns can change at runtime, those width values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages." |
columnBandingInterval
=1 would display alternately banded columns in the table.disabled
, the widths of the columns will be set once the page is rendered, and the user will not be able to change those widths.Tip: While the user can change the values of the column width at runtime when columnResizing is set to true , those width values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages." |
panelCollection
component. You can change this so that users will not be able to change the order of columns. (The panelCollection
component provides default menus and toolbar buttons for tables, trees, and tree tables. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars".)Note: While the user can change the order of columns, those values will not be retained once the user leaves the page unless you configure your application to allow user customization. For information, see Chapter 32, "Allowing User Customization on JSF Pages." |
Tip: You should determine the value of the fetchSize attribute by taking the height of the table and dividing it by the height of each row to determine how many rows will be needed to fill the table. If the fetchSize attribute is set too low, it will require multiple trips to the server to fill the table. If it is set too high, the server will need to fetch more rows from the data source than needed, thereby increasing time and memory usage. On the client side, it will take longer to process those rows and attach them to the component. For more information, see Section 12.2.2, "Content Delivery." |
contentDelivery
attribute is set to immediate
, data is fetched at the same time the component is rendered. If the contentDelivery
attribute is set to lazy
, data will be fetched and delivered to the client during a subsequent request. If the attribute is set to whenAvailable
(the default), the renderer checks if the data is available. If it is, the content is delivered immediately. If it is not, then lazy delivery is used. For more information, see Section 12.2.2, "Content Delivery."fetchSize
.Note: Note the following about setting the autoHeightRows attribute:
|
first
to display the first row at the top of the table, last
to display the last row at the bottom of the table (users will need to scroll up to view preceding rows) and selected
to display the first selected row in the table.Note: The total number of rows from the table model must be known in order for this attribute to work successfully. |
displayRow
attribute.Note: The total number of rows must be known from the table model in order for this attribute to work successfully. |
editAll
), or you want the user to click a row to make it editable (clickToEdit
). For more information, see Section 12.2.4, "Editing Data in Tables, Trees, and Tree Tables."Tip: If you choose clickToEdit , then only the active row can be edited. This row is determined by the activeRowKey attribute. By default, when the table is first rendered, the active row is the first visible row. When a user clicks another row, then that row becomes the active row. You can change this behavior by setting a different value for the activeRowKey attribute. |
true
, the row is selected. For more information about context menus, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."filterVisible
. For more information, see Section 12.5, "Enabling Filtering in Tables."outputText
component. If you want to use a component other than outputText
, you should use the column's header
facet instead (for more information, see Step 11). When the header
facet is added, any value for the headerText
attribute will not be rendered in a column header.start
, end
, and center
are used for left-justified, right-justified, and center-justified respectively in left-to-right display. The values left
or right
can be used when left-justified or right-justified cells are needed, irrespective of the left-to-right or right-to-left display. The default value is null
, which implies that it is skin-dependent and may vary for the row header column versus the data in the column. For more information about skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."sortable
attribute must be set to true
and the underlying model must support sorting by this column's property. For more information, see Section 12.3.7, "What You May Need to Know About Programmatically Enabling Sorting for Table Columns."Note: When column selection is enabled, clicking on a column header selects the column instead of sorting the column. In this case, columns can be sorted by clicking the ascending/descending sort indicator. |
true
and the filterModel
attribute must be set on the table. Only leaf columns can be filtered and the filter component is displayed only if the column header is present. This column's sortProperty
attribute must be used as a key for the filterProperty
attribute in the filterModel
class.Note: For a column with filtering turned on (filterable =true), you can specify the input component to be used as the filter criteria input field. To do so, add a filter facet to the column and add the input component. For more information, see Section 12.5, "Enabling Filtering in Tables." |
displayIndex
attribute. Columns without a displayIndex
attribute value are displayed at the end, in the order in which they appear in the data source. The displayIndex
attribute is honored only for top-level columns, because it is not possible to rearrange a child column outside of the parent column.In column stretching, column width percentages are treated as weights. For example, if all columns are given 50% widths, and there are more than three columns, each column will receive an equal amount of space, while still respecting the value set for the minWidth
attribute.
Because the width as a percentage is a weight rather than an actual percentage of space, if column stretching is turned on in the table, and only one column is listed as being stretched by having a percentage width, that column will use up all remaining space in the table not specified by pixel widths in the rest of the columns.
true
if you want this column to be a row header for the table.Performance Tip: Use of row headers increases the complexity of tables and can have a negative performance impact. |
Performance Tip: Use of frozen columns increases the complexity of tables and can have a negative performance impact. |
true
, the column will be selected on initial rendering.Tip: Facets can have only one direct child. If you want the facet to display more than one component, first insert a group component (such as panelGroupLayout) and then insert the multiple components as children to the group component. |
To add facets to a column, right-click the column and from the context menu, choose Facets - Column and choose the type of facet you want to add. You can then add a component directly to the facet.
Tip: Facets can have only one direct child. If you want the facet to display more than one component, first insert a group component (such as panelGroupLayout) and then insert the multiple components as children to the group component. |
The component's value should be bound to the variable value set on the table's var
attribute and the attribute to be displayed. For example, the table in the File Explorer application uses file
as the value for the var
attribute, and the first column displays the name of the file for each row. Therefore, the value of the output component used to display the directory name is #{file.name}
.
Tip: If an input component is the direct child of a column, be sure its width is set to a width that is appropriate for the width of the column. If the width is set too large for its parent column, the browser may extend its text input cursor too wide and cover adjacent columns. For example, if an inputText component has its size set to 80 pixels and its parent column size is set to 20 pixels, the table may have an input cursor that covers the clickable areas of it neighbor columns.To allow the input component to be automatically sized when it is not the direct child of a column, set |
When you use JDeveloper to add a table onto a page, JDeveloper creates a table with a column for each attribute. If you bind the table to a model, the columns will reflect the attributes in the model. If you are not yet binding to model, JDeveloper will create the columns using the default values. You can change the default values (add/delete columns, change column headings, and so on) during in the table creation dialog or later using the Property Inspector.
Example 12-2 shows abbreviated page code for the table in the File Explorer application.
Example 12-2 ADF Faces Table in the File Explorer Application
When a page is requested that contains a table, and the content delivery is set to lazy
, the page initially goes through the standard lifecycle. However, instead of fetching the data during that request, a special separate PPR request is run. Because the page has just rendered, only the Render Response phase executes, and the corresponding data is fetched and displayed. If the user's actions cause a subsequent data fetch (for example scrolling in a table), another PPR request is executed. Figure 12-15 shows a page containing a table during the second PPR request.
When the user clicks a sortable column header, the table
component generates a SortEvent
event. This event has a getSortCriteria
property, which returns the criteria by which the table must be sorted. The table responds to this event by calling the setSortCriteria()
method on the underlying CollectionModel
instance, and calls any registered SortListener
instances.
Sorting can be enabled for a table column only if the underlying model supports sorting. If the model is a CollectionModel
instance, it must implement the following methods:
public boolean isSortable(String
propertyName
)
public List getSortCriteria()
public void setSortCriteria(List
criteria
)
For more information, see the MyFaces Trinidad website at http://myfaces.apache.org/trinidad/index.html
.
If the underlying model is not a CollectionModel
instance, the table
component automatically examines the actual data to determine which properties can be sorted. Any column that has data that implements the java.lang.Comparable
class is able to be sorted. Although this automatic support is not as efficient as coding sorting directly into a CollectionModel
(for instance, by translating the sort into an ORDER BY
SQL clause), it may be sufficient for small data sets.
Note: Automatic support provides sorting for only one column. Multi-column sorting is not supported. |
A table can allow users to select one or more rows and perform some actions on those rows.
When the selection state of a table changes, the table triggers selection events. A selectionEvent
event reports which rows were just deselected and which rows were just selected.
To listen for selection events on a table, you can register a listener on the table either using the selectionListener
attribute or by adding a listener to the table using the addselectionListener()
method. The listener can then access the selected rows and perform some actions on them.
The current selection, that is the selected row or rows, are the RowKeySet
object, which you obtain by calling the getSelectedRowKeys()
method for the table. To change a selection programmatically, you can do either of the following:
rowKey
objects to, or remove rowKey
objects from, the RowKeySet
object.setRowIndex()
or the setRowKey()
method on the table. You can then either add that row to the selection, or remove it from the selection, by calling the add()
or remove()
method on the RowKeySet
object.Example 12-3 shows a portion of a table in which a user can select some rows then click the Delete button to delete those rows. Note that the actions listener is bound to the performDelete
method on the mybean
managed bean.
Example 12-3 Selecting Rows
Example 12-4 shows an actions method, performDelete
, which iterates through all the selected rows and calls the markForDeletion
method on each one.
Example 12-4 Using the rowKey Object
There may be a case when you want to use a selectOne
component in a table, but you need each row to display different choices in a component. Therefore, you need to dynamically determine the list of items at runtime.
While you may think you should use a forEach
component to stamp out the individual items, this will not work because forEach
does not work with the CollectionModel
instance. It also cannot be bound to EL expressions that use component-managed EL variables, as those used in the table. The forEach
component performs its functions in the JSF tag execution step while the table performs in the following component encoding step. Therefore, the forEach
component will execute before the table is ready and will not perform its iteration function.
In the case of a selectOne
component, the direct child must be the items
component. While you could bind the items
component directly to the row variable (for example, <f:items value="#{row.Items}"/>
, doing so would not allow any changes to the underlying model.
Instead, you should create a managed bean that creates a list of items, as shown in Example 12-5.
Example 12-5 Managed Bean Returns a List of Items
You can then access the list from the one component on the page, as shown in Example 12-6.
Example 12-6 Accessing the Items from a JSF Page
You can use the detailStamp
facet in a table to include data that can be displayed or hidden. When you add a component to this facet, the table displays an additional column with a toggle icon. When the user clicks the icon, the component added to the facet is shown. When the user clicks on the toggle icon again, the component is hidden. Figure 12-16 shows the additional column that is displayed when content is added to the detailStamp
facet.
Note: When a table that uses the detailStamp facet is rendered in Screen Reader mode, the contents of the facet appear in a popup window. For more information about accessibility, see Chapter 30, "Developing Accessible ADF Faces Pages." |
Figure 12-17 shows the same table, but with the detailStamp
facet expanded for the first row.
You can use an EL expression for the rendered
attribute on the facet to determine whether or not to display the toggle icon and show details. For example, say on a shopping cart page you want to use the detailStamp
facet to display gift wrapping information. However, not all order items will have gift wrapping information, so you only want the toggle icon to display if the order item has the information to display. You could create a method on managed bean that determines if there is information to display, and then bind the rendered
attribute to that method. Figure 12-18 shows the same table but with icons displayed only for the rows that have information to display.
Note: If you set the table to allow columns to freeze, the freeze will not work when you display the detailStamp facet. That is, a user cannot freeze a column while the details are being displayed. |
To use the detailStamp
facet, you insert a component that is bound to the data to be displayed or hidden into the facet.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.4, "Adding Hidden Capabilities to a Table."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To use the detailStamp facet:
Tip: If the facet folder does not appear in the Structure window, right-click the table and choose Facets - Table > Detail Stamp. |
Example 12-7 shows abbreviated code used to display the detailStamp
facet shown in Figure 12-17, which shows details about the selected row.
Example 12-7 Code for detailStamp Facet
detailStamp
facet to display its icon and components conditionally, set the rendered
attribute on the facet to a method on a managed bean that will determine if the facet should be rendered.Note: If your application uses the Fusion technology stack, then you can drag attributes from a data control and drop them into the detailStamp facet. You don't need to modify the code. |
When the user hides or shows the details of a row, the table generates a rowDisclosureEvent
event. The event tells the table to toggle the details (that is, either expand or collapse).
The rowDisclosureEvent
event has an associated listener. You can bind the rowDisclosureListener
attribute on the table to a method on a managed bean. This method will then be invoked in response to the rowDisclosureEvent
event to execute any needed post-processing.
You can add a filter to a table that can be used so that the table displays only rows whose values match the filter. When enabled and set to visible, a search criteria input field displays above each searchable column.
For example, the table in Figure 12-20 has been filtered to display only rows in which the Location
value is 1700.
Filtered table searches are based on Query-by-Example and use the QBE text or date input field formats. The input validators are turned off to allow for entering characters for operators such as >
and <
to modify the search criteria. For example, you can enter >1500
as the search criteria for a number column. Wildcard characters may also be supported. Searches can be either case-sensitive or case-insensitive. If a column does not support QBE, the search criteria input field will not render for that column.
The filtering feature uses a model for filtering data into the table. The table's filterModel
attribute object must be bound to an instance of the FilterableQueryDescriptor
class.
Note: If your application uses the Fusion technology stack, then you can use data controls to create tables and filtering will be created for you. For more information see the "Creating ADF Databound Tables" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework |
In Example 12-8, the table filterVisible
attribute is set to true
to enable the filter input fields, and the sortProperty
attribute is set on the column to identify the column in the filterModel
instance. Each column element has its filterable
attribute set to true
.
Example 12-8 Table Component with Filtering Enabled
To add filtering to a table, first create a class that can provide the filtering functionality. You then bind the table to that class, and configure the table and columns to use filtering. The columns that will use filtering must either have a value for the headerText
attribute, or must contain a component in the header
facet. This allows the filter component to be displayed. Additionally, the column must be configured to be sortable, because the filterModel
class uses the sortProperty
attribute.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.5, "Enabling Filtering in Tables."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To add filtering to a table:
Create a Java class that is a subclass of the FilterableQueryDescriptor
class. For more information about this class, see the ADF Faces Javadoc
.
true
to display the filter criteria input field above searchable column.FilterableQueryDescriptor
class created in Step 1.Tip: If you want to use a component other than an inputText component for your filter (for example, an inputDate component), then instead of setting filterVisible to true , you can add the needed component to the filter facet. To do so:
|
true
.caseSensitive
or caseInsensitive
. If not specified, the case sensitivity is determined by the model.The ADF Faces tree component displays hierarchical data, such as organization charts or hierarchical directory structures. In data of these types, there may be a series of top-level nodes, and each element in the structure may expand to contain other elements. As an example, in an organization chart, each element, that is, each employee, in the hierarchy may have any number of child elements (direct reports). The tree component supports multiple root elements. It displays the data in a form that represents the structure, with each element indented to the appropriate level to indicate its level in the hierarchy, and connected to its parent. Users can expand and collapse portions of the hierarchy. Figure 12-21 shows a tree used to display directories in the File Explorer application.
The ADF Faces tree component uses a model to access the data in the underlying hierarchy. The specific model class is oracle.adf.view.rich.model.TreeModel
, which extends CollectionModel
, described in Section 12.3, "Using the Table Component."
You must create your own tree model to support your tree. The tree model is a collection of rows. It has an isContainer()
method that returns true
if the current row contains child rows. To access the children of the current row, you call the enterContainer()
method. Calling this method results in the TreeModel
instance changing to become a collection of the child rows. To revert back up to the parent collection, you call the exitContainer()
method.
You may find the org.apache.myfaces.trinidad.model.ChildPropertyTreeModel
class useful when constructing a TreeModel
class, as shown in Example 12-9.
Example 12-9 Constructing a TreeModel
Note: If your application uses the Fusion technology stack, then you can use data controls to create trees and the model will be created for you. For more information see the "Displaying Master-Detail Data" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework |
You can manipulate the tree similar to the way you can manipulate a table. You can do the following:
setRowIndex()
method on the tree with the appropriate index into the list. Alternatively, call the setRowKey()
method with the appropriate rowKey
object.getRowData()
method on the tree.getAddedSet
and getRemovedSet
methods on the RowDisclosureEvent
. For more information, see Section 12.6.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."enterContainer()
method before calling the setRowIndex()
and setRowKey()
methods. Then call the exitContainer()
method to return to the parent node.rowKey
for a node inside the tree (at any level) use the focusRowKey
attribute. The focusRowKey
attribute is set when the user right-clicks on a node and selects the Show as top context menu item (or the Show as top toolbar button in the panelCollection
component).When the focusRowKey
attribute is set, the tree renders the node pointed to by the focusRowKey
attribute as the root node in the Tree and displays a Hierarchical Selector icon next to the root node. Clicking the Hierarchical Selector icon displays a Hierarchical Selector dialog which shows the path to the focusRowKey
object from the root node of the tree. How this displays depends on the components placed in the pathStamp
facet.
Note: You cannot use JavaScript to dynamically size a tree. The height of a tree is set the first time is rendered and cannot be changed using JavaScript APIs. |
As with tables, trees use stamping to display content for the individual nodes. Trees contain a nodeStamp
facet, which is a holder for the component used to display the data for each node. Each node is rendered (stamped) once, repeatedly for all nodes. As each node is stamped, the data for the current node is copied into a property that can be addressed using an EL expression. Specify the name to use for this property using the var
property on the tree. Once the tree has completed rendering, this property is removed or reverted back to its previous value.
Because of this stamping behavior, only certain types of components are supported as children inside an ADF Faces tree. All components that have no behavior are supported, as are most components that implement the ValueHolder
or ActionSource
interfaces.
In Example 12-10, the data for each element is referenced using the variable node
, which identifies the data to be displayed in the tree. The nodeStamp
facet displays the data for each element by getting further properties from the node
variable:
Example 12-10 Displaying Data in a Tree
Trees also contain a pathStamp
facet. This facet determines how the content of the Hierarchical Selector dialog is rendered, just like the nodeStamp
facet determines how the content of the tree is rendered. The component inside the pathStamp
facet can be a combination of simple outputText
, image
, and outputFormatted
tags and cannot not be any input component (that is, any EditableValueHolder
component) because no user input is allowed in the Hierarchical Selector popup. If this facet is not provided, then the Hierarchical Selector icon is not rendered.
For example, including an image and an outputText
component in the pathStamp
facet causes the tree to render an image and an outputText
component for each node level in the Hierarchical Selector dialog. Use the same EL expression to access the value. For example, if you want to show the first name for each node in the path in an outputText
component, the EL expression would be <af:outputText value="#{node.firstname}"/>
.
Tip: The pathStamp facet is also used to determine how default toolbar buttons provided by the panelCollection component will behave. If you want to use the buttons, add a component bound to a node value. For more information about using the panelCollection component, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars." |
To create a tree, you add a tree component to your page and configure the display and behavior properties.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.6, "Displaying Data in Trees."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To add a tree to a page:
Create a Java class that extends the org.apache.myfaces.trinidad.model.TreeModel
class, as shown in Example 12-9.
org.apache.myfaces.trinidad.model.TreeModel
as created in Step 1.varStatus
attribute provides the following information:model
: A reference to the CollectionModel
instanceindex
: The current row indexrowKey
: The unique key for the current nodefirst
to display the first node, last
to display the last node, and selected
to display the first selected node in the tree. The default is first
.displayRow
attribute.true
if you want all nodes expanded when the component first renders.editAll
), or you want the user to click a node to make it editable (clickToEdit
). For more information, see Section 12.2.4, "Editing Data in Tables, Trees, and Tree Tables."true
, the node is selected. For more information about context menus, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."none
, single
, or multiple
. For information about how to then programatically perform some action on the selected nodes, see Section 12.6.5, "What You May Need to Know About Programmatically Selecting Nodes."contentDelivery
attribute is set to immediate
, data is fetched at the same time the component is rendered. If the contentDelivery
attribute is set to lazy
, data will be fetched and delivered to the client during a subsequent request. If the attribute is set to whenAvailable
(the default), the renderer checks if the data is available. If it is, the content is delivered immediately. If it is not, then lazy delivery is used. For more information, see Section 12.2.2, "Content Delivery."fetchSize
value.Note: Note the following about setting the autoHeightRows attribute:
|
The component's value should be bound to the variable value set on the tree's var
attribute and the attribute to be displayed. For example, the tree in the File Explorer application uses folder
as the value for the var
attribute, and displays the name of the directory for each node. Therefore, the value of the output component used to display the directory name is #{folder.name}
.
Tip: Facets can accept only one child component. Therefore, if you want to use more than one component per node, place the components in a group component that can be the facet's direct child, as shown in Figure 12-22. |
When you add a tree to a page, JDeveloper adds a nodeStamp
facet to stamp out the nodes of the tree. Example 12-11 shows the abbreviated code for the tree in the File Explorer application that displays the directory structure.
Example 12-11 ADF Faces Tree Code in a JSF Page
The tree is displayed in a format with nodes indented to indicate their levels in the hierarchy. The user can click nodes to expand them to show children nodes. The user can click expanded nodes to collapse them. When a user clicks one of these icons, the component generates a RowDisclosureEvent
event. You can register a custom rowDisclosureListener
method to handle any processing in response to the event. For more information, see Section 12.6.4, "What You May Need to Know About Programmatically Expanding and Collapsing Nodes."
When a user selects or deselects a node, the tree component invokes a selectionEvent
event. You can register custom selectionListener
instances, which can do post-processing on the tree component based on the selected nodes. For more information, see Section 12.6.5, "What You May Need to Know About Programmatically Selecting Nodes."
The RowDisclosureEvent
event has two RowKeySet
objects: the RemovedSet
object for all the collapsed nodes and the AddedSet
object for all the expanded nodes. The component expands the subtrees under all nodes in the added set and collapses the subtrees under all nodes in the removed set.
Your custom rowDisclosureListener
method can do post-processing, on the tree component, as shown in Example 12-12.
Example 12-12 Tree Table Component with rowDisclosureListener
The backing bean method that handles row disclosure events is shown in Example 12-13. The example illustrates expansion of a tree node. For the contraction of a tree node, you would use getRemovedSet
.
Example 12-13 Backing Bean Method for RowDisclosureEvent
Trees and tree tables use an instance of the oracle.adf.view.rich.model.RowKeySet
class to keep track of which nodes are expanded. This instance is stored as the disclosedRowKeys
attribute on the component. You can use this instance to control the expand or collapse state of an node in the hierarchy programatically, as shown in Example 12-14. Any node contained by the RowKeySet
instance is expanded, and all other nodes are collapsed. The addAll()
method adds all elements to the set, and the and removeAll()
method removes all the nodes from the set.
Example 12-14 Tree Component with disclosedRowKeys Attribute
The backing bean method that handles the disclosed row keys is shown in Example 12-15.
Example 12-15 Backing Bean Method for Handling Row Keys
The tree and tree table components allow nodes to be selected, either a single node only, or multiple nodes. If the component allows multiple selections, users can select multiple nodes using Control+click and Shift+click operations.
When a user selects or deselects a node, the tree component fires a selectionEvent
event. This event has two RowKeySet
objects: the RemovedSet
object for all the deselected nodes and the AddedSet
object for all the selected nodes.
Tree and tree table components keep track of which nodes are selected using an instance of the class oracle.adf.view.rich.model.RowKeySet
. This instance is stored as the selectedRowKeys
attribute on the component. You can use this instance to control the selection state of a node in the hierarchy programatically. Any node contained by the RowKeySet
instance is deemed selected, and all other nodes are not selected. The addAll()
method adds all nodes to the set, and the and removeAll()
method removes all the nodes from the set. Tree and tree table node selection works in the same way as table row selection. You can refer to sample code for table row selection in Section 12.3.8, "What You May Need to Know About Performing an Action on Selected Rows in Tables."
The ADF Faces tree table component displays hierarchical data in the form of a table. The display is more elaborate than the display of a tree component, because the tree table component can display columns of data for each tree node in the hierarchy. The component includes mechanisms for focusing on subtrees within the main tree, as well as expanding and collapsing nodes in the hierarchy. Figure 12-23 shows the tree table used in the File Explorer application. Like the tree component, the tree table can display the hierarchical relationship between the files in the collection. And like the table component, it can also display attribute values for each file.
The immediate children of a tree table component must be column components, in the same way as for table components. Unlike the table, the tree table component has a nodeStamp
facet which holds the column that contains the primary identifier of an node in the hierarchy. The treeTable
component supports the same stamping behavior as the Tree
component (for details, see Section 12.6, "Displaying Data in Trees").
Note: The nodeStamp facet can only contain one column (which becomes the node in the tree). |
For example, in the File Explorer application (as shown in Figure 12-23), the primary identifier is the file name. This column is what is contained in the nodeStamp
facet. The other columns, such as Type and Size, display attribute values on the primary identifier, and these columns are the direct children of the tree table component. This tree table uses node
as the value of the variable that will be used to stamp out the data for each node in the nodeStamp
facet column and each component in the child columns. Example 12-16 shows abbreviated code for the tree table in the File Explorer application.
Example 12-16 Stamping Rows in a TreeTable
The tree table component supports many of the same attributes as both tables and trees. For more information about these attributes see Section 12.3, "Using the Table Component" and Section 12.6, "Displaying Data in Trees."
You use the Insert Tree Table wizard to create a tree table. Once the wizard is complete, you can use the Property Inspector to configure additional attributes on the tree table.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.7, "Displaying Data in Tree Tables."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To add a tree table to a page:
Tip: The attributes of the tree table are the same as those on the table and tree components. Refer to Section 12.3.4, "How to Display a Table on a Page," and Section 12.6.1, "How to Display Data in Trees" for help in configuring the attributes. |
There may be a case where you need to pass an entire row from a collection as a value. To do this, you pass the variable used in the table to represent the row, or used in the tree to represent a node, and pass it as a value to a property in the pageFlow
scope. Another page can then access that value from the scope. The setPropertyListener
tag allows you to do this (for more information about the setPropertyListener
tag, including procedures for using it, see Section 5.7, "Passing Values Between Pages").
For example, suppose you have a master page with a single-selection table showing employees, and you want users to be able to select a row and then click a command button to navigate to a new page to edit the data for that row, as shown in Example 12-17. The EL variable name emp
is used to represent one row (employee) in the table. The action
attribute value of the commandButton
component is a static string outcome showEmpDetail
, which allows the user to navigate to the Employee Detail page. The setPropertyListener
tag takes the from
value (the variable emp
), and stores it with the to
value.
Example 12-17 Using SetPropertyListener and PageFlowScope
When the user clicks the command button on an employee row, the listener executes, and the value of #{emp}
is retrieved, which corresponds to the current row (employee) in the table. The retrieved row object is stored as the empDetail
property of pageFlowScope
with the #{pageFlowScope.empDetail}
EL expression. Then the action event executes with the static outcome, and the user is navigated to a detail page. On the detail page, the outputText
components get their value from pageFlowScope.empDetail
objects, as shown in Example 12-18.
Example 12-18 Retrieving PageFlowScope Objects
You can use the panelCollection
component to add menus, toolbars, and status bars to tables, trees, and tree tables. To use the panelCollection
component, you add the table, tree, or tree table component as a direct child of the panelCollection
component. The panelCollection
component provides default menus and toolbar buttons.
Figure 12-24 shows the panelCollection
component with the tree table component in the File Explorer application. The toolbar contains a menu that provides actions that can be performed on the tree table (such as expanding and collapsing nodes), a button that allows users to detach the tree table, and buttons that allow users to change the rows displayed in the tree table. You can configure the toolbar to not display certain toolbar items. For example, you can turn off the buttons that allow the user to detach the tree or table. For more information about menus, toolbars, and toolbar buttons, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."
Among other facets, the panelCollection
component contains a menu
facet to hold menu components, a toolbar
facet for toolbar components, a secondaryToolbar
facet for another set of toolbar components, and a statusbar
facet for status items.
The default top-level menu and toolbar items vary depending on the component used as the child of the panelCollection
component:
pathStamp
facet is used): The toolbar buttons Go Up, Go To Top, and Show as Top also appear.Example 12-19 shows how the panelCollection
component contains menus and toolbars.
Example 12-19 The panelCollection Component with Table, Menus, and Toolbars
Tip: You can make menus detachable in the panelCollection component. For more information, see Section 16.2, "Using Menus in a Menu Bar." Consider using detached menus when you expect users to do any of the following:
|
You add a panelCollection
component and then add the table, tree, or tree table inside the panelCollection
component. You can then add and modify the menus and toolbars for it.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To create a panelCollection component with an aggregate display component:
Alternatively, if the table, tree, or tree table already exists on the page, you can right-click the component and choose Surround With. Then select Panel Collection to wrap the component with the panelCollection
component.
panelCollection
toolbar by turning off specific toolbar and menu items. To do so, select the panelCollection
component in the Structure window. In the Property Inspector, set the featuresOff
attribute. Table 12-1 shows the valid values and the corresponding effect on the toolbar.Table 12-1 Valid Values for the featuresOff Attribute
Value | Will not display... |
---|---|
statusBar | status bar |
viewMenu | View menu |
formatMenu | Format menu |
columnsMenuItem | Columns menu item in the View menu |
columnsMenuItem:colId For example: | Columns with matching IDs in the Columns menu For example, the value to the left would not display the columns whose IDs are |
freezeMenuItem | Freeze menu item in the View menu |
detachMenuItem | Detach menu item in the View menu |
sortMenuItem | Sort menu item in the View menu |
reorderColumnsMenuItem | Reorder Columns menu item in the View menu |
resizeColumnsMenuItem | Resize Columns menu item in the Format menu |
wrapMenuItem | Wrap menu item in the Format menu |
showAsTopMenuItem | Show As Top menu item in the tree's View menu |
scrollToFirstMenuItem | Scroll To First menu item in the tree's View menu |
scrollToLastMenuItem | Scroll To Last menu item in the tree's View menu |
freezeToolbarItem | Freeze toolbar item |
detachToolbarItem | Detach toolbar item |
wrapToolbarItem | Wrap toolbar item |
showAsTopToolbarItem | Show As Top toolbar item |
wrap | Wrap menu and toolbar items |
freeze | Freeze menu and toolbar items |
detach | Detach menu and toolbar items |
menu
component inside the menu
facet.toolbar
component inside the toolbar
or secondaryToolbar
facet.statusbar
facet.commandMenuItem
components to the viewMenu
facet. For multiple items, use the group
component as a container for the commandMenuItem
components.From the Component Palette, drag and drop the component into the facet. For example, drop Menu into the menu
facet, then drop Menu Items into the same facet to build a menu list. For more instructions about menus and toolbars, see Chapter 16, "Using Menus, Toolbars, and Toolboxes."
You can export the data from a table, tree, or tree table, or from a table region of the DVT project Gantt chart to a Microsoft Excel spreadsheet. To allow users to export a table, you create an action source, such as a command button or command link that will be used to invoke the export, and add an exportCollectionActionListener
component and associate it with the data you wish to export. You can configure the table so that all the rows will be exported, or so that only the rows selected by the user will be exported.
Tip: You can also export data from a DVT pivot table. For more information, see Section 24.8, "How to Export from a Pivot Table." |
For example, Figure 12-25 shows the table from the ADF Faces demo that includes a command button component that allows users to export the data to an Excel spreadsheet.
When the user clicks the command button, the listener processes the exporting of all the rows to Excel. As shown in Figure 12-25, you can also configure the exportCollectionActionListener
component so that only the rows the user selects are exported.
Note: Only the following can be exported:
|
Depending on the browser, and the configuration of the listener, the browser will either open a dialog, allowing the user to either open or save the spreadsheet as shown in Figure 12-26, or the spreadsheet will be displayed in the browser. For example, if the user is viewing the page in Microsoft Internet Explorer, and no file name has been specified on the exportCollectionActionListener
component, the file is displayed in the browser. In Mozilla Firefox, the dialog opens.
If the user chooses to save the file, it can later be opened in Excel, as shown in Figure 12-27. If the user chooses to open the file, what happens depends on the browser. For example, if the user is viewing the page in Microsoft Internet Explorer, the spreadsheet opens in the browser window. If the user is viewing the page in Mozilla Firefox, the spreadsheet opens in Excel.
Note: You may receive a warning from Excel stating that the file is in a different format than specified by the file extension. This warning can be safely ignored. |
You create a command component, such as a button, link, or menu item, and add the exportCollectionActionListener
inside this component. Then you associate the data collection you want to export by setting the exportCollectionActionListener
component's exportedId
attribute to the ID of the collection component whose data you wish to export.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 12.10, "Exporting Data from Table, Tree, or Tree Table."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
You should already have a table, tree, or tree table on your page. If you do not, follow the instructions in this chapter to create a table, tree, or tree table. For example, to add a table, see Section 12.3, "Using the Table Component."
Tip: If you want users to be able to select rows to export, then set your table to allow selection. For more information, see Section 12.3.2, "Formatting Tables." |
To export collection data to an external format:
Tip: If you want your table, tree, or tree table to have a toolbar that will hold command components, you can wrap the collection component in a panelCollection component. This component adds toolbar functionality. For more information, see Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars." |
You may want to change the default label of the command component to a meaningful name such as Export to Excel.
excelHTML
.exportCollectionActionListener
component still selected, in the Property Inspector, set the following:all
if you want all rows to be automatically selected and exported. Set to selected
if you want only the rows the user has selected to be exported.Example 12-20 shows the code for a table and its exportCollectionActionListener
component. Note that the exportedId
value is set to the table id
value.
Example 12-20 Using the exportCollectionActionListener to Export a Table
Exported data is exported in index order, not selected key order. This means that if you allow selected rows to be exported, and the user selects rows (in this order) 8, 4, and 2, then the rows will be exported and displayed in Excel in the order 2, 4, 8.
Since there is no client-side support for EL in the ADF Faces framework, nor is there support for sending entire table models to the client, if you need to access values on the client using JavaScript, the client-side code cannot rely on component stamping to access the value. Instead of reusing the same component instance on each row, a new JavaScript component is created on each row (assuming any component needs to be created at all for any of the rows), using the fully resolved EL expressions.
Therefore, to access row-specific data on the client, you need to use the stamped component itself to access the value. To do this without a client-side data model, you use a client-side selection change listener.
To access values on the client from a stamped component, you first need to make sure the component has a client representation. Then you need to register a selection change listener on the client and then have that listener handle determining the selected row, finding the associated stamped component for that row, use the stamped component to determine the row-specific name, and finally interact with the selected data as needed.
Before you begin:
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 12.1.2, "Additional Functionality for Tables and Trees."
To access selected values from stamped components:
outputText
component to display the stamped rows.Example 12-21 Table Component Uses an outputText Component for Stamped Rows
Set the following on the component:
Id
attribute.True
.selection
from the Type dropdown.If for example, you entered mySelectedRow as the function, JDeveloper would enter the code shown in bold in Example 12-22.
Example 12-22 Using a clientListener to Register a Selection
This code causes the mySelectedRow
function to be called any time the selection changes.
AdfSelectionEvent
. This type provides access to the newly selected row keys via the getAddedSet()
method, which returns a POJSO (plain old JavaScript object) that contains properties for each selected row key. Once you have access to this object, you can iterate over the row keys using a "for in" loop. For example, the code in Example 12-23 extracts the first row key (which in this case, is the only row key).Example 12-23 Iterating Over Row Keys Using a "for" in Loop
AdfUIComponent
exposes a findComponent()
method that takes the ID of the component to find and returns the AdfUIComponent
instance. When using stamped components, you need to find a component not just by its ID, but by the row key as well. In order to support this, the AdfUITable
class provides an overloaded method of findComponent()
, which takes both an ID as well as a row key.In the case of selection events, the component is the source of the event. So you can get the table from the source of the event and then use the table to find the instance using the ID and row key. Example 12-24 shows this, where nameStamp
is the ID of the table.
Example 12-24 Finding a Stamped Component Instance Given a Selected Row
name
attribute (which was the stamped value as shown in Example 12-21)and then display the name in an alert.Example 12-25 Retrieving the Name of the Row in a Stamped Component
Example 12-26 shows the entire code for the JavaScript.
Example 12-26 JavaScript Used to Access Selected Row Value
Row keys are tokenized on the server, which means that the row key on the client may have no resemblance to the row key on the server. As such, only row keys that are served up by the client-side APIs (like AdfSelectionEvent.getAddedSet()
) are valid.
Also note that AdfUITable.findComponent(id, rowKey)
method may return null
if the corresponding row has been scrolled off screen and is no longer available on the client. Always check for null
return values from AdfUITable.findComponent()
method.
This chapter describes how to use a list-of-values component to display a model-driven list of objects from which a user can select a value.
This chapter includes the following sections:
ADF Faces provides two list-of-values (LOV) input components that can display multiple attributes of each list item and can optionally allow the user to search for the needed item. These LOV components are useful when a field used to populate an attribute for one object might actually be contained in a list of other objects, as with a foreign key relationship in a database. For example, suppose you have a form that allows the user to edit employee information. Instead of having a separate page where the user first has to find the employee record to edit, that search and select functionality can be built into the form, as shown in Figure 13-1.
In this form, the employee name field is an LOV that contains a list of employees. When the user clicks the search icon of the inputListOfValues
component, a Search and Select popup dialog displays all employees, along with a search field that allows the user to search for the employee, as shown in Figure 13-2.
When the user returns to the page, the current information for that employee is displayed in the form, as shown in Figure 13-3. The user can then edit and save the data.
As shown in the preceding figures, the inputListOfValues
component provides a popup dialog from which the user can search for and select an item. The list is displayed in a table. In contrast, the inputComboboxListOfValues
component allows the user two different ways to select an item to input: from a simple dropdown list, or by searching as you can in the inputListOfValues
component. Note that the columns of the table will not stretch to the full width of the dialog.
You can also create custom content to be rendered in the Search and Select dialog by using the searchContent
facet. You define the returnPopupDataValue
attribute and programmatically set it with a value when the user selects an item from the Search and Select dialog and then closes the dialog. This value will be the return value from the ReturnPopupEvent
to the returnPopupListener
. When you implement the returnPopupListener
, you can perform functions such as setting the value of the LOV component and its dependent components, and displaying the custom content. In the searchContent
facet you can add components such as tables, trees, and input text to display your custom content.
If you implement both the searchContent
facet and the ListOfValues
model, the searchContent
facet implementation will take precedence in rendering the Search and Select dialog. Example 13-1 shows the code to display custom content using a table component.
Example 13-1 Adding Custom Content to the Search and Select Dialog
Both components support the auto-complete feature, which allows the user to enter a partial value in the input field, tab out, and have the dialog populated with the rows that match the partial criteria. For this to work, you must implement logic so that when the user tabs out after a partial entry, the entered value is posted back to the server. On the server, your model implementation filters the list using the partially entered value and performs a query to retrieve the list of values. ADF Faces provides APIs for this functionality.
If you want to add the auto-complete feature when the user tabs out after entering a partial entry, you will need to disable the custom popup. In your LaunchPopupListener()
code, add launchPopupEvent.setLaunchPopup(false)
to prevent the custom popup from launching when the user tabs out. Clicking on the Search link will still launch the Search and Select dialog. Example 13-2 shows the listener code in a managed bean that is used to disable the custom popup.
Example 13-2 Disabling the Custom Popup
If the readOnly
attribute is set to true
, the input field is disabled. If readOnly
is set to false
, then the editMode
attribute determines which type of input is allowed. If editMode
is set to select
, the value can be entered only by selecting from the list. If editMode
is set to input
, then the value can also be entered by typing.
You can also implement the LOV component to automatically display a list of suggested items when the user types in a partial value. For example, when the user enters Ca
, then a suggested list which partially matches Ca
is displayed as a suggested items list, as shown in Figure 13-4. If there are no matches, a "No results found." message will be displayed.
The user can select an item from this list to enter it into the input field, as shown in Figure 13-5.
You add the auto-suggest behavior by adding the af:autoSuggestBehavior
tag inside the LOV component with the tag's suggestItems
values set to a method that retrieves and displays the list. You can create this method in a managed bean. If you are using ADF Model, the method is implemented by default. You also need to set the component's autoSubmit
property to true
.
In your LOV model implementation, you can implement a smart list that filters the list further. You can implement a smart list for both LOV components. If you are using ADF Model, the inputComboboxListOfValues
allows you declaratively select a smart list filter defined as a view criteria for that LOV. If the smart list is implemented, and auto-suggest behavior is also used, auto-suggest will search from the smart list first. If the user waits for two seconds without a gesture, auto-suggest will also search from the full list and append the results. The maxSuggestedItems
attribute specifies the number of items to return (-1 indicates a complete list). If maxSuggestedItems > 0
, a More link is rendered for the user to click to launch the LOV's Search and Select dialog. Example 13-3 shows the code for an LOV component with both auto-suggest behavior and a smart list.
Example 13-3 Auto-Suggest Behavior and Smart List
Figure 13-6 shows how a list can be displayed by an inputComboboxListOfValues
component. If the popup dialog includes a query panel, then a Search link is displayed at the bottom of the dropdown list. If a query panel is not used, a More link is displayed.
The dropdown list of the inputComboboxListOfValues
component can display the following:
ListOfValuesModel.getItems()
method.ListOfValuesModel.getRecentItems()
method.customActions
facet: A facet for adding additional content. Typically, this contains one or more commandLink
components. You are responsible for implementing any logic for the commandLink
to perform its intended action, for example, launching a popup dialog.The number of columns to be displayed for each row can be retrieved from the model using the getItemDescriptors()
method. The default is to show all the columns.
The popup dialog from within an inputListOfValues
component or the optional search popup dialog in the inputComboboxListOfValues
component also provides the ability to create a new record. For the inputListOfValues
component, when the createPopupId
attribute is set on the component, a toolbar
component with a commandToolbarButton
is displayed with a create icon. At runtime, a commandToolbarButton
component appears in the LOV popup dialog, as shown in Figure 13-7.
When the user clicks the Create button, a popup dialog is displayed that can be used to create a new record. For the inputComboboxListOfValues
, instead of a toolbar, a commandLink
with the label Create is displayed in the customActions
facet, at the bottom of the dialog. This link launches a popup where the user can create a new record. In both cases, you must provide the code to actually create the new record.
Both the inputListOfValues
and the inputComboboxListOfValues
components support the context
facet. This facet allows you to add the af:contextInfo
control, which can be used to show contextual information. When the user clicks in this area, it launches a popup window displaying contextual information.
Tip: Instead of having to build your own create functionality, you can use ADF Business Components and ADF data binding. For more information, see the "Creating an Input Table" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Like the query components, the LOV components rely on a data model to provide the functionality. This data model is the ListOfValuesModel
class. This model uses a table model to display the list of values, and can also access a query model to perform a search against the list. You must implement the provided interfaces for the ListOfValuesModel
in order to use the LOV components.
Tip: Instead of having to build your own ListOfValuesModel class, you can use ADF Business Components to provide the needed functionality. For more information, see the "Creating Databound Selection Lists and Shuttles" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
When the user selects an item in the list, the data is returned as a list of objects for the selected row, where each object is the rowData
for a selected row. The list of objects is available on the ReturnPopupEvent
event, which is queued after a selection is made.
If you choose to also implement a QueryModel
class, then the popup dialog will include a Query
component that the user can use to perform a search and to filter the list. Note the following about using the Query
component in an LOV popup dialog:
Query
component in the popup dialog and its functionality is based on the corresponding QueryDescriptor
class.query
, toolbar
, and table
.When the user clicks the Search button to start a search, the ListOfValuesModel.performQuery()
method is invoked and the search is performed. For more information about the query model, see Chapter 14, "Using Query Components."
You should use the list-of-values components when you have a more complex selection process than can be handled by the simpler select components. With list-of-values components, you can filter the selection list using accessors, smart list, auto-suggest, and other features to fine-tune the list criteria. You can create custom content in the popup window. You can add code to the returnPopupListener
to perform functions when the popup window closes. A customActions
facet can be used to add additional content. A create feature allows the user to create a new record. The list-of-values components offer a rich set of data input features for easier data entry.
You may find it helpful to understand other ADF Faces features before you implement your list-of-values components. Additionally, once you have added a list-of-value component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that input components can use.
selectOneChoice
, also allow users to select from a list, but they do not include a popup dialog and they are intended for smaller lists. For more information about select choice components, list box components, and radio buttons, see Chapter 11, "Using Input Components and Defining Forms."Before you can use the LOV components, you must have a data model that uses the ADF Faces API to access the LOV functionality. Figure 13-8 shows the class diagram for a ListOfValues
model.
Begin you begin:
It may be helpful to have an understanding of the list-of-values data model. For more information, see Section 13.2, "Creating the ListOfValues Data Model."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."
To create a ListOfValues model and associated events:
Table 13-1 ListOfValues Model API
Method | Functionality |
---|---|
| Called when the search icon is clicked or the value is changed and the user tabs out from the input field, as long as |
| Called when the value is selected from the Search and Select dialog and the OK button is clicked. This method gives the model a chance to update the model based on the selected value. |
| Returns a boolean to decide whether or not the auto complete is enabled. |
| Returns the implementation of the |
| Return the |
| Return the list of |
| Return the |
| Called when the search button in the |
For an example of a ListOfValues
model, see the DemoLOVBean
and DemoComboboxLOVBean
classes located in the oracle.adfdemo.view.lov
package, found in the Application Sources directory of the ADF Faces application.
inputListOfValues
component, provide logic in a managed bean (it can be the same managed bean used to create your LOV model) that accesses the attribute used to populate the list. The inputComboboxListOfValues
component uses the getItems()
and getRecentItems()
methods to return the list.InputListOfValues
component, or if you want the InputComboboxListOfValues
component to use the Search and Select popup dialog, implement the ListOfValuesModel.autoCompleteValue()
and ListOfValuesModel.valueSelected()
methods. These methods open the popup dialog and apply the selected values onto the component.The inputListOfValues
component uses the ListOfValues
model you implemented to access the list of items, as documented in Section 13.2, "Creating the ListOfValues Data Model."
Before you begin:
It may be helpful to have an understanding of the inputListOfValues
component. For more information, see Section 13.3, "Using the inputListOfValues Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."
You will need to complete this task:
To add an inputListOfValues component:
ListOfValuesModel
implementation, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."
true
if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto-complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit
to true
.toolbar
component above the table that contains a commandToolbarButton
component bound to the popup dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will be always refreshed.launchPopupListener
that you implement to provide additional functionality when the popup is launched.returnPopupListener
component that you implement to provide additional functionality when the value is returned.The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."
inputListOfValues
component.suggestItems
method.The method should return List<javax.model.SelectItem>
of the suggestItems
. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)
smartList
method. The method should return List<javax.model.SelectItem>
of the smart list items.If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 13-4
Example 13-4 autoSuggestBehavior Tag in an LOV
If the component is being used with a data model such as ADF Model, the suggestItem
method should be provided by the default implementation.
suggestItems
method to process and display the list. The suggestItems
method signature is shown in Example 13-5.Example 13-5 suggestItems Method Signature
The inputComboboxListOfValues
component allows a user to select a value from a dropdown list and populate the LOV field, and possibly other fields, on a page, similar to the inputListOfValues
component. However, it also allows users to view the values in the list either as a complete list, or by most recently viewed. You can also configure the component to perform a search in a popup dialog, as long as you have implemented the query APIs, as documented in Section 13.2, "Creating the ListOfValues Data Model."
Before you begin:
It may be helpful to have an understanding of the inputComboboxListOfValues
component. For more information, see Section 13.4, "Using the InputComboboxListOfValues Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 13.1.1, "Additional Functionality for List-of-Values Components."
To add an inputComboboxListOfValues component:
ListOfValuesModel
implementation, as created in Section 13.2.1, "How to Create the ListOfValues Data Model."The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."
true
if you want the component to automatically submit the enclosing form when an appropriate action takes place (a click, text change, and so on). This will allow the auto complete feature to work. If you are adding the auto-suggest behavior, you must set autoSubmit
to true
.toolbar
component above the table that contains a commandToolbarButton
component bound to the dialog you defined. If you have added a dialog to the popup, then it will intelligently decide when to refresh the table. If you have not added a dialog to the popup, then the table will always be refreshed.launchPopupListener
handler that you implement to provide additional functionality when the popup dialog is opened.returnPopupListener
handler that you implement to provide additional functionality when the value is returned.The rest of the attributes in this section can be populated in the same manner as with any other input component. For more information, see Section 11.3, "Using the inputText Component."
launchPopupListener
, you can use the getPopupType()
method of the LaunchPopupEvent
class to differentiate the source of the event. getPopupType()
returns DROPDOWN_LIST
if the event is a result of the launch of the LOV Search and Select dialog, and SEARCH_DIALOG
if the event is the result of the user clicking the Search button in the dialog.inputComboboxListOfValues
component.suggestItems
method.The method should return List<javax.model.SelectItem>
of the suggestItems
. The method signature should be of the form List<javax.model.SelectItem> suggestItems(javax.faces.context.FacesContext, oracle.adf.view.rich.model.AutoSuggestUIHints)
smartList
method. The method should return List<javax.model.SelectItem>
of the smart list items.If you are implementing this method in a managed bean, the JSF page entry should have the format shown in Example 13-6.
Example 13-6 autoSuggestBehavior Tag in an LOV
If the component is being used with a data model such as ADF Model, the suggestItem
method should be provided by the default implementation.
suggestItems
method to process and display the list. The suggestItems
method signature is shown in Example 13-7.Example 13-7 suggestItems Method Signature
This chapter describes how to use the query
and quickQuery
search panel components.
This chapter includes the following sections:
The query
and quickQuery
components are used to search through data sets. The query
component provides a comprehensive set of search criteria and controls, while the quick
Query
component can be used for searching on a single criterion.
The query
component supports the following functionality:
By default, the advanced mode of the query
component allows the user to add and delete criteria items to the currently displayed search. However you can implement your own QueryModel
class that can hide certain features in basic mode (and expose them only in advanced mode). For example, you might display operators only in advanced mode or display more criteria in advanced mode than in basic mode.
Typically, the results of the query are displayed in a table or tree table, which is identified using the resultComponentId
attribute of the query
component. However, you can display the results in any other output components as well. The component configured to display the results is automatically rerendered when a search is performed.
Figure 14-1 shows an advanced mode query
component with three search criteria.
You can create seeded searches, that is, searches whose criteria are already determined and from which the user can choose, or you can allow the user to add criterion and then save those searches. For example, Figure 14-1 shows a seeded search for an employee. The user can enter values for the criteria on which the search will execute. The user can also choose the operands (greater than, equals, less than) and the conjunction (matches all or matches any, which creates either an "and" or "or" query). The user can click the Add Fields dropdown list to add one or more criteria and then save that search. If the application is configured to use persistence, then those search criteria, along with the chosen operands and conjunctions, can be saved and reaccessed using a given search name (for more information about persistence, see Chapter 32, "Allowing User Customization on JSF Pages").
The quickQuery
component is a simplified version of the query
component. The user can perform a search on any one of the searchable attributes by selecting it from a dropdown list. Figure 14-2 shows a quickQuery
component in horizontal layout.
Both the query
and quickQuery
components use the QueryModel
class to define and execute searches. Create the associated QueryModel
classes for each specific search you want users to be able to execute.
Tip: Instead of having to build your own QueryModel implementation, you can use ADF Business Components, which provide the needed functionality. For more information, see the "Creating ADF Databound Search Forms" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The QueryModel
class manages QueryDescriptor
objects, which define a set of search criteria. The QueryModel
class is responsible for creating, deleting, and updating QueryDescriptor
objects. The QueryModel
class also retrieves saved searches, both those that are seeded and those that the user personalizes. For more information, refer to the ADF Faces Javadoc.
You must create a QueryDescriptor
class for each set of search criteria items. The QueryDescriptor
class is responsible for accessing the criteria and conjunction needed to build each seeded search. It is also responsible for dynamically adding, deleting, or adding and deleting criteria in response to end-user's actions. The QueryDescriptor
class also provides various UI hints such as mode, auto-execute, and so on. For more information, refer to the ADF Faces Javadoc. One QueryModel
class can manage multiple QueryDescriptor
objects.
When a user creates a new saved search, a new QueryDescriptor
object is created for that saved search. The user can perform various operations on the saved search, such as deleting, selecting, resetting, and updating. When a search is executed or changed, in addition to calling the appropriate QueryModel
method to return the correct QueryDescriptor
object, a QueryOperationEvent
event is broadcast during the Apply Request Values phase. This event is consumed by the QueryOperationListener
handlers during the Invoke Application phase of the JSF lifecycle. The QueryOperationEvent
event takes the QueryDescriptor
object as an argument and passes it to the listener. ADF Faces provides a default implementation of the listener. For details of what the listener does, see Table 14-2.
For example, updating a saved search would be accomplished by calling the QueryModel
's update()
method. A QueryOperationEvent
event is queued, and then consumed by the QueryOperationListener
handler, which performs processing to change the model information related to the update operation.
The query operation actions that generate a QueryOperationEvent
event are:
The hasDependentCriterion
method of the AttributeCriterion
class can be called to check to see whether a criterion has dependents. By default, the method returns false
, but it returns true
if the criterion has dependent criteria. When that criterion's value has changed, a QueryOperationEvent
is queued for the Update Model Values JSF lifecycle phase. The model will need a listener to update the values of the dependent criterion based on the value entered in its root criteria.
The query component can be used in several different modes to accommodate the needs of your application. It can be configured with seeded searches and provide customization and personalization functions.The query component is a feature-rich component that can be used to implement enterprise search functions.
You can use query and quick query components to build complex transactional search forms. The query components are model-driven and provide many functional and display options. The quick query component has a small footprint and provide a simple search on one attribute. The query component has a larger footprint but provides multiple criterion searches and other search features.
You may find it helpful to understand other ADF Faces features before you implement your query components. Additionally, once you have added a query or quick query component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that query components can use.
Before you can use the query
components, you must to create your QueryModel
classes.
Tip: You can use the quickQuery component without implementing a QueryModel class. However, you will have to add some additional logic to a managed bean. For more information, see Section 14.3.2, "How to Use a quickQuery Component Without a Model." |
Figure 14-3 shows the class diagram for a QueryModel
class.
Query component has a refresh()
method on the UIXQuery component. This method should be called when the model definition changes and the query component need to be refreshed (i.e., all its children removed and recreated). When a new criterion is added to the QueryDescriptor
or an existing one is removed, if the underlying model returns a different collection of criterion objects than what the component subtree expects, then this method should be called. QueryOperationListener
, QueryListener
, and ActionListener
should all call this method. The query component itself will be flushed at the end of the Invoke Application Phase. This method is a no-op when called during the Render Response Phase.
To better understand what your implementations must accomplish, Table 14-1 and Table 14-2 map the functionality found in the UI component shown in Figure 14-4 with the corresponding interface.
Table 14-1 shows UI artifacts rendered for the query
component, the associated class, class property, and methods used by the artifact.
Table 14-1 Query UI Artifacts and Associated Model Class Operations and Properties
UI Artifact | Class Property/Methods Used | Comments | |
---|---|---|---|
1 | Search panel | The | Based on a saved search. |
2 | Disclosure icon | Opens or closes the search panel | |
3 | Match type radio button | Available through the | Displays the default conjunction to use between search fields, when a query is performed. If a default is set, and it is the same for all search fields, it appears selected. If the search fields are configured such that a mix of different conjunctions must be used between them, then a value may not be selected on the UI. For example, if the The Match Type will be read only if the |
4 | Group of search fields | The collection of search fields for a | Displays one or more search fields associated with the currently selected search. |
5 | Search field | An An The The | Each search field contains a label, an operator, one or more value components (for example, an input text component), and an optional delete icon. The information required to render these can be either specific to an instance of a search field (in a saved search) or it can be generic and unchanging regardless of which saved search it is part of. For example, assume an Employee business object contains the search fields Employee Name and Salary. A user can then configure two different searches: one named Low Salaried Employees and one named High Salaried Employees. Both searches contain two search fields based on the Regardless of the search selected by the user, the search field for Salary always has to render a number component, and the label always has to show Salary. |
6 | Saved Searches dropdown | System- and user-saved searches are available through the methods | Displays a list of available system- and user-saved searches. A Personalize option is also added if the |
Table 14-2 shows the behaviors of the different UI artifacts, and the associated methods invoked to execute the behavior.
Table 14-2 UI Artifact Behaviors and Associated Methods
UI Artifact | Class Method Invoked | Event Generated | Comments | |
---|---|---|---|---|
7 | Delete icon | During the Invoke Application phase, the method |
| Deletes a search field from the current |
8 | Search button | During the Apply Request Values phase of the JSF lifecycle, a During the Update Model Values phase, the selected operator and the values entered in the search fields are automatically updated to the model using the EL expressions added to the operator and value components (for more information, see Section 14.4.1, "How to Add the Query Component"). These expressions should invoke the During the Invoke Application phase, the You must implement this listener. |
| Rendered always on the footer (footer contents are not rendered at all when the Performs a query using the select operator and selected Match radio (if no selection is made the default is used), and the values entered for every search field. |
9 | Reset button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method |
| Resets the search fields to its previous saved state. |
10 | Save button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method |
| Creates a new saved search based on the current saved search settings, including any new search fields added by the user. |
11 | Add Fields dropdown list | During the Invoke Application phase, the method |
| Adds an attribute as a search field to the existing saved search. |
12 | Mode (Basic or Advanced) button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method changeMode()on the |
| Clicking the mode button toggles the mode. |
13 | Delete button | During the Invoke Application phase, the method |
| Deletes the selected saved search, unless it is the one currently in use. |
14 | Apply button | During the Apply Request Values phase of the JSF lifecycle, a During the Invoke Application phase, the method |
| Applies changes made to the selected saved search. |
15 | OK button | Same as the Apply button. |
| Applies changes made to the selected saved search and the dialog is closed afterwards. |
16 | Cancel button | No method defined for this action. |
| Cancels any edits made in the dialog. |
Begin you begin:
It may be helpful to have an understanding of the query data model. For more information, see Section 14.2, "Creating the Query Data Model."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."
To create a query model classes:
QueryModel
class and then a QueryDescriptor
class with appropriate criteria (operators and values) for each system-seeded search. For example implementations of the different model classes for a query, see the classes located in the oracle.adfdemo.view.query.rich
package of the ADF Faces sample application.Note: If your query uses composition (for example, ConjunctionCriterion 1...n with AttributeCriterion/ConjunctionCriterion), this relationship is not enforced by the abstract interfaces. Your implementation must decide whether to use composition over association, and determine how the lifecyle of these objects are managed. |
QueryListener
handler method on a managed bean that listens for the QueryEvent
event (this will be referenced by a button on the query
component). This listener will invoke the proper APIs in the QueryModel
to execute the query. Example 14-1 shows the listener method of a basic QueryListener
implementation that constructs a String
representation of the search criteria. This String
is then displayed as the search result.Example 14-1 A QueryListener Handler Method
The quickQuery
component has one dropdown list that allows a user to select an attribute to search on. The available searchable attributes are drawn from your implementation of the model or from a managed bean. The user can search against the selected attribute or against all attributes.
A quickQuery
component may be used as the starting point of a more complex search using a query
component. For example, the user may perform a quick query search on one attribute, and if successful, may want to continue to a more complex search. The quickQuery
component supports this by allowing you to place command components in the end
facet, which you can bind to a method on a managed bean that allows the user to switch from a quickQuery
to a query
component.
The quickQuery
component renders the searchable criteria in a dropdown list and then, depending on the type of the criteria chosen at runtime, the quickQuery
component renders different criteria fields based on the attribute type. For example, if the attribute type is Number
, it renders an inputNumberSpinbox
component. You do not need to add these components as long as you have implemented the complete model for your query. If instead you have the logic in a managed bean and do not need a complete model, then you create the quickQuery
component artifacts manually. For more information, see Section 14.3.2, "How to Use a quickQuery Component Without a Model."
Before you begin
It may be helpful to have an understanding of forms and subforms. For more information, see Section 14.3, "Using the quickQuery Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."
You will need to complete this task:
QueryModel
class and associated classes. For more information, see Section 14.2, "Creating the Query Data Model."To add a quickQuery component:
QueryModel
class, as created in Section 14.2, "Creating the Query Data Model."QueryDescriptor
class, as created in Section 14.2, "Creating the Query Data Model."false
, the user can set the conjunction. When set to true
, the radio buttons will not be rendered.QueryListener
handler you created in Section 14.2, "Creating the Query Data Model."PartialTriggers
with the ID of the quickQuery
component. The value of this component should resolve to a CollectionModel
object that contains the filtered results.quickQuery
component into a full query
component, add a command component to the End
facet of the quickQuery
component, and implement logic that will hide the quickQuery
component and display the query
component.You can use the quickQuery
component without a model, for example if all your query logic resides in a simple managed bean, including a QueryListener
handler that will execute the search and return the results. You must to manually add and bind the components required to create the complete quickQuery
component.
Before you begin:
It may be helpful to have an understanding of forms and subforms. For more information, see Section 14.3, "Using the quickQuery Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."
To add a quickQuery component:
On a managed bean, create a valueChangeListener
handler for the selectOneChoice
component that will display the attributes on which the user can search. The valueChangeListener
handler should handle the choice for which attribute to search on.
On a managed bean, create the QueryListener
handle to execute the search. This handle will use the ID of the input component used to enter the search criterion value, to retrieve the component and the value to execute the query.
QueryListener
attribute to an EL expression that evaluates to the QueryListener
handler created in Step 2.In the Component Palette, from the Common Components panel, drag a Select One Choice and drop it onto the criteriaItems
facet of the quickQuery
component. In the dialog, choose either to enter an EL expression that evaluates to the list of attributes on which the user can search, or to enter a static list. For help with the dialog, press F1 or click Help.
selectOneChoice
component in the criteriaItems
facet, and set the following attributes:true
so that no label for the component displays.true
.selectOneChoice
and selectItems
components, see Section 11.6, "Using Selection Components."quickQuery
component. Set the following attributes:true
so that the label is not displayed.Tip: If you do not provide an inputText component, then at runtime, a disabled inputText component and a disabled Go icon will be rendered. |
quickQuery
component into a full query
component, add a command component to the End
facet of the quickQuery
component, and implement logic that will hide the quickQuery
component and display the query
component.PartialTriggers
with the ID of the quickQuery
component. The value of this component should resolve to a CollectionModel
object that contains the filtered results.When the quickQuery
component is bound to a QueryDescriptor
object, the selectOneChoice
and inputText
components are automatically added at runtime as the page is rendered. However, you can provide your own components. If you do provide both the component to display the searchable attributes and the inputText
components, then you need the QueryListener
handler to get the name-value pair from your components.
If you provide only your own component to show the searchable attributes (and use the default input text component), the framework will display an input text component. You must have your QueryListener
handler get the attribute name from the dropdown list and the value from the QueryDescriptor.getCurrentCriterion()
method to perform the query.
If you provide only your own component to collect the searchable attribute value (and use the default selectOneChoice
component to provide the attribute name), then the framework will display the selectOneChoice
component. You must have your QueryListener
handler get the attribute name from the QueryDescriptor.getCurrentCriterion()
method and the value from your component.
If you choose not to bind the Quick
Query
component value
attribute to a QueryDescriptor
object, and you provide both components, when the Go button is clicked, the framework queues a QueryEvent
event with a null QueryDescriptor
object. The provided QueryListener
handler then executes the query using the changeValueListener
handler to access the name and the input component to access the value. You will need to implement a QueryListener
handler to retrieve the attribute name from your selectOneChoice
component and the attribute value from your inputText
component, and then perform a query.
The query
component is used for full feature searches. It has a basic and an advanced mode, which the user can toggle between by clicking a button.
The features for a basic mode query include:
WHERE
clause conjunction of either AND
or OR
(match all or match any)The advanced mode query form also includes the ability for the user to dynamically add search criteria by selecting from a list of searchable attributes. The user can subsequently delete any criteria that were added.
The user can select from the dropdown list of operators to create a query for the search. The input fields may be configured to be list-of-values (LOV), number spinners, date choosers, or other input components.
To support selecting multiple items from a list, the model must expose a control hint on viewCriteriaItem
and the underlying attribute must be defined as an LOV in the corresponding view object. The hint is used to enable or disable the multiple selection or "in" operator functionality. When multiple selection is enabled, selecting the Equals
or Does not equal
operator will render the search criteria field as a selectManyChoice
component. The user can choose multiple items from the list.
The component for the search criteria field depends on the underlying attribute data type, the operator that was chosen, and whether multiple selection is enabled. For example, a search field for an attribute of type String
with the Contains
operator chosen would be rendered as an inputText
component, as shown in Table 14-3.
If the operator is Equals
or Does not equal
, but multiple selection is not enabled, the component defaults to the component specified in the Default List Type hint from the model.
Table 14-3 Rendered Component for Search Criteria Field of Type String
Operator | Component | Component When Multiple Select Is Enabled |
---|---|---|
|
|
|
|
|
|
| Default list type hint |
|
| Default list type hint |
|
|
|
|
|
|
|
| None | None |
| None | None |
If the underlying attribute is the Number
data type, the component that will be rendered is shown in Table 14-4.
Table 14-4 Rendered Component for Search Criteria Field of Type Number
Operator | Component | Component When Multiple Select Is Enabled |
---|---|---|
| Default list type hint |
|
| Default list type hint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| None | None |
| None | None |
If the underlying attribute is the Date
data type, the component that will be rendered is shown in Table 14-5.
Table 14-5 Rendered Component for Search Criteria Field of Type Date
Operator | Component | Component When Multiple Select Is Enabled |
---|---|---|
| Default list type hint |
|
Does not equal | Default list type hint |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| None | None |
| None | None |
If a search criterion's underlying attribute was defined as an LOV, in order for the auto-complete feature to work, the ListOfValues
model instance returned by the getModelList
method of the AttributeCriterion
class must return true
for its isAutoCompleteEnabled
method. For more information about LOV, see Chapter 13, "Using List-of-Values Components."
When autoSubmit
is set to true
, any value change on the search criterion will be immediately pushed to the model. The query component will automatically flush its criterion list only when it has dependent criteria. If the criterion instance has no dependent criteria but autoSubmit
is set to true,
then the query component will be only partially refreshed.
A Match All or Match Any radio button group further modifies the query. A Match All selection is essentially an AND
function. The query will return only rows that match all the selected criteria. A Match Any selection is an OR
function. The query will return all rows that match any one of the criteria items.
After the user enters all the search criteria values (including null values) and selects the Match All or Match Any radio button, the user can click the Search button to initiate the query. The query results can be displayed in any output component. Typically, the output component will be a table or tree table, but you can associate other display components such as af:forms
, af:outputText
, and graphics to be the results component by specifying it in the resultComponentId
attribute.
If the Basic or Advanced button is enabled and displayed, the user can toggle between the two modes. Each mode will display only the search criteria that were defined for that mode. A search criteria field can be defined to appear only for basic, only for advanced, or for both modes.
In advanced mode, the control panel also includes an Add Fields button that exposes a popup list of searchable attributes. When the user selects any of these attributes, a dynamically generated search criteria input field and dropdown operator list is displayed. The position of all search criteria input fields, as well as newly added fields, are determined by the model implementation.
This newly created search criteria field will also have a delete icon next to it. The user can subsequently click this icon to delete the added field. The originally defined search criteria fields do not have a delete icon and therefore cannot be deleted by the user. Figure 14-6 shows an advanced mode query
component with a dynamically added search criteria field named Salary. Notice the delete icon (an X) next to the field.
The user can also save the entered search criteria and the mode by clicking the Save button. A popup dialog allows the user to provide a name for the saved search and specify hints by selecting checkboxes. A persistent data store is required if the saved search is to be available beyond the session. For more information about persistence, see Chapter 32, "Allowing User Customization on JSF Pages."
A seeded search is essentially a saved search that was created by the application developer. When the component is initialized, any seeded searches associated with that query
component become available for the user to select.
Any user-created saved searches and seeded system searches appear in the Saved Search dropdown list. The seeded searches and user-saved searches are separated by a divider.
Users can also personalize the saved and seeded searches for future use. Personalization of saved searches requires the availability of a persistent data store. For more information about persistence, see Chapter 32, "Allowing User Customization on JSF Pages."
Along with the default display described previously, you can also configure the query
component to display in a compact mode or simple mode. The compact mode has no header or border, and the Saved Search dropdown list moves next to the expand or collapse icon. Figure 14-7 shows the same query
component as in Figure 14-6, but set to compact mode.
The simple mode displays the component without the header and footer, and without the buttons typically displayed in those areas. Figure 14-8 shows the same query
component set to simple mode.
The query
component supports toolbar
and footer
facets that allow you to add additional components to the query, such as command buttons. For example, you can create command components to toggle between the quickQuery
and query
components and place those in a toolbar in the toolbar
facet.
Because the query
component is responsible for rendering its subcomponents (input fields, selection list, buttons, etc.), you should not use inlineStyle
with the query. If you use inlineStyle
, it may result in unexpected display behavior.
Before you begin:
It may be helpful to have an understanding of forms and subforms. For more information, see Section 14.4, "Using the query Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 14.1.2, "Additional Functionality for the Query Components."
You will need to complete this task:
QueryModel
class and associated classes. For more information, see Section 14.2, "Creating the Query Data Model."To add a query component:
QueryModel
class, as created in Section 14.2, "Creating the Query Data Model."QueryDescriptor
class, as created in Section 14.2, "Creating the Query Data Model."default
if you want the user to be able to view and edit all saved searches. Set to readOnly
if you want the user to only be able to view and select saved searches, but not update them. Set to hidden
if you do not want any saved searches to be displayed.footer
facet.false
if you want to hide the basic or advanced toggle button.false
if you want the user to be able to select a radio button to determine if the search should match all criteria (query will use the AND
function) or any criteria (query will use the OR
function). When set to true
, the radio buttons will not be rendered.QueryListener
handler, as created in Section 14.2, "Creating the Query Data Model."matchCaseDisplayed
will require all string-based search criterion to be case-sensitive. Set to requiredDisplayed
will require all criterion be displayed.CollectionModel
object that contains the filtered results.query
component and set the resultComponentID
to the ID of the table.This chapter describes how to create and use popups in secondary windows including dialogs, menus, and windows on JSF pages.
This chapter includes the following sections:
You can use the popup
component with a number of other ADF Faces components to create a variety of dialogs, menus, and windows that provide information or request input from end users. Using these components, you can configure functionality to allow your end users to show and hide information in secondary windows, input additional data, or invoke functionality. The capabilities offered by these components allow you to render content or functionality that is supplemental to the content rendered on the primary interface and, as a result, develop uncluttered and user friendly interfaces.
The popup
component is an invisible layout control, used in conjunction with other components to display inline (that is, belonging to the same page) dialogs, windows, and menus. The popup
component is invoked from within the primary interface and the application manages the content that renders in the popup
component like content in the primary interface without interference from popup blockers. It is recommended that the content type you render in a popup
component be HTML. Other types of content, such as Flash or PDF files, may not render appropriately in a popup
component.
Figure 15-1 shows examples where the popup
component works with other ADF Faces components to render secondary windows.
To provide support for building pages for a process displayed separate from the parent page, ADF Faces provides a dialog framework. This framework supports multiple dialog pages with a control flow of their own. For example, say a user is checking out of a web site after selecting a purchase and decides to sign up for a new credit card before completing the checkout. The credit card transaction could be launched using the dialog framework in an external browser window. The completion of the credit card transaction does not close the checkout transaction on the original page.
This dialog framework can also be used inline as part of the parent page. This can be useful when you want the pages to have a control flow of their own, but you don't want the external window blocked by popup blockers.
If your application uses the full Fusion technology stack, note that this dialog framework is integrated with ADF Controller for use with ADF task flows. For more information, see the "Running a Bounded Task Flow in a Modal Dialog" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Using a context parameter named LAST_WINDOW_SESSION_TIMEOUT
in your application's web.xml
file, you can specify the maximum inactive period of time before session timeout when an application has only one open window. The maximum inactive period of time that you specify for the context parameter should be less than the value you specify for session timeout. If you enable this feature and there is only one window open in a session, the session timeout is set to the value that you specify for this context parameter. Example 15-1 shows how to set the value of the LAST_WINDOW_SESSION_TIMEOUT
context parameter in a web.xml
file to 1800
seconds.
Example 15-1 Specifying the Session Timeout for the Last Window in an Application
For more information about configuring your application's web.xml
file, Appendix A, "Configuration in web.xml."
You can place a dialog
component as a child to a popup
component and render a dialog in a popup at runtime. The dialog
component must be the only immediate child component of the popup
component. At runtime, end users can view or enter information (for example, search criteria) and use the dialog
component's default command component buttons to invoke a dialogEvent
when clicked. Figure 15-2 shows an example where an end user can dismiss the dialog by clicking the Close button.
You can also use components within a popup to display contextual information related to another component. When so configured, the related component displays a small square. When moused over, the icon grows and also displays a note icon as shown in Figure 15-3.
When the user clicks the note icon, the associated popup displays its enclosed content.
You may find it helpful to understand other ADF Faces features before you use a popup
component to create dialogs, menus, and windows. Additionally, once you have added a popup
component (or related components) to your page, you may find that you need to add functionality such as accessibility and localization. Following are links to other functionality that these components can use.
dialog
component renders ADF Faces command components. You also use a command component in conjunction with the showPopupBehavior
tag to launch a popup. These ADF Faces command components deliver ActionEvent
events when activated. For more information about how to handle events on the server as well as on the client, see Chapter 6, "Handling Events."The dialog
, panelWindow
, menu
, and noteWindow
components can all be used inside the popup
component to display inline popups, as shown in Table 15-1. When no child component exists for the popup
component, a very simple inline popup appears.
Table 15-1 Components Used with the popup Component
Component | Displays at Runtime |
---|---|
| Displays its children inside a dialog and delivers events when the |
| Displays its children in a window that is similar to a dialog, but does not support events. For more information, see Section 15.2.2, "How to Create a Panel Window." |
| Displays a context menu for an associated component. For more information, see Section 15.2.3, "How to Create a Context Menu." |
| Displays read-only information associated with a particular UI component. Note windows are used to display help and messages and are commonly shown on mouseover or on focus gestures. For more information, see Section 15.2.4, "How to Create a Note Window." |
| Displays content inline. |
Both the dialog
and panelWindow
components support definition help, content displayed when a user moves the cursor over a help icon (a blue circle with a question mark). The dialog
and panelWindow
components do not support instruction help. For more information, see Chapter 19, "Displaying Tips, Messages, and Help."
Typically, you use a command component in conjunction with the showPopupBehavior
tag to launch a popup. You associate the showPopupBehavior
tag with the component it should launch. This tag also controls the positioning of the popup (when needed).
In addition to being used with action events on command components, the showPopupBehavior
tag can be used in conjunction with other events, such as the showDetail
event and the selection
event. For more information, see Section 15.3, "Declaratively Invoking a Popup."
As an alternative to using the showPopupBehavior
tag in conjunction with a command component, you can launch, cancel, or hide a popup by writing a backing bean method. The backing bean method you write takes the actionEvent
returned by the command component as an argument. For more information about this alternative, see Section 15.4, "Programmatically Invoking a Popup."
By default, the content of the popup is not sent from the server until the popup is displayed. This represents a trade-off between the speed of showing the popup when it is opened and the speed of rendering the parent page. Once the popup is loaded, by default the content will be cached on the client for rapid display.
You can modify this content delivery strategy by setting the contentDelivery
attribute on the popup
component to one of the following options:
lazy
- The default strategy previously described. The content is not loaded until you show the popup once, after which it is cached.immediate
- The content is loaded onto the page immediately, allowing the content to be displayed as rapidly as possible. Use this strategy for popups that are consistently used by all users every time they use the page.lazyUncached
- The content is not loaded until the popup displays, and then the content reloads every time you show the popup. Use this strategy if the popup shows data that can become stale or outdated.If you choose to set the popup
component's contentDelivery
attribute to lazy
, you can further optimize the performance of the popup
component and the page that hosts it by setting another popup
component attribute (childCreation
) to deferred
. This defers the creation of the popup
component's child components until the application delivers the content. The default value for the childCreation
attribute is immediate
.
Create a dialog when you need the dialog to raise events when dismissed. Once you add the dialog
component as a child to the popup
component, you can add other components to display and collect data.
By default, the dialog
component can have the following combination of buttons:
These buttons launch a dialogEvent
when clicked. You can add other buttons to a dialog using the buttonBar
facet. Any buttons that you add do not invoke the dialogEvent
. Instead, they invoke the standard actionEvent
. It is recommended that any of these buttons that you add have their partialSubmit
attribute set to true
. This makes sure that an actionEvent
invokes only on components within the dialog. However, you can add buttons and set their partialSubmit
attribute to false
if you set the af:popup
component's autoCancel
property's value to disabled
. Choosing this latter option (partialSubmit
set to false
) results in increased wait times for end users because your application reloads the page and reinitializes components on the page before it restores the popup
component's visibility (and by extension, the dialog
component). Note that you must set the command component's partialSubmit
attribute to true
if the af:popup
component's autoCancel
property's value is set to enabled
(the default value). For more information about the use of the af:popup
component's autoCancel
property, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."
Before you begin:
It may be helpful to understand how the dialog
component's attributes and other components affect the functionality of inline dialogs. For more information, see Section 15.2, "Declaratively Creating Popups."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To create an inline dialog:
Tip: It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup . However, the popup component must be within a form component. |
Tip: Values of input components in a dialog are not reset when a user clicks the dialog's Cancel button. If the user opens the dialog a second time, those values will still display. If you want the values to match the current values on the server, then set the contentDelivery attribute to lazyUncached . |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled."). You can override this setting by selecting false
.launcher
.launcher
if the popup is shared by multiple objects, for example if the dialog within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns data only for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."disabled
to prevent the automatic cancellation of an inline popup. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."deferred
to defer the creation of the popup
component's child components until the application delivers the content. The default value for the childCreation
attribute is immediate. For more information, see Section 15.2, "Declaratively Creating Popups."whenCanceled
to reset editable values that an end user entered to null
if the end user cancels the dialog.Alternatively, you can use the resetListener
component. For more information about using the resetListener
component, see Section 15.7, "Resetting Input Fields in a Popup."
popup
component.For example, if you set the type
attribute to yesNoCancel
, the dialog displays Yes, No, and Cancel buttons. When any of these buttons are pressed, the dialog dismisses itself, and the associated outcome (either ok
, yes
, no
, or cancel
) is delivered with an event. The ok
, yes
, and no
outcomes are delivered with the dialogEvent
. Cancel outcomes are sent with the PopupCanceled
event. You can use the appropriate listener property to bind to a method to handle the event, using the outcome to determine the logic.
Tip: A dialog will not dismiss if there are any ADF Faces messages with a severity of error or greater. |
off
.first
, the dialog stretches a single child component. However, the child component must allow stretching. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."Note: If you set Resize to on or set StretchChildren to first , you must also set ContentWidth and ContentHeight (see Step 8). Otherwise, the size will default to 250x250 pixels. |
Instead of specifying separate button text and an access key, you can combine the two, so that the access key is part of the button text. Simply precede the letter to be used as an access key with an ampersand (&).
For example, if you want the text for the affirmative button to be OK, and you want the O in OK to be the access key, enter &OK
.
For example, suppose you create a dialog to confirm the deletion of an item. You might then create a method on a managed bean similar to the deleteItem
method shown in Example 15-2. This method accesses the outcome from the event. If the outcome is anything other than yes
, the dialog is dismissed. If the outcome is yes
(meaning the user wants to delete the item), the method then gets the selected item and deletes it.
Example 15-2 Handler for dialogEvent That Deletes an Item
Example 15-3 shows how the dialogListener
attribute is bound to the deleteItem
method.
Example 15-3
The dialogEvent
is propagated to the server only when the outcome is ok
, yes
, or no
. You can block this if needed. For more information, see Section 6.3.5, "How to Prevent Events from Propagating to the Server.")
If the user instead clicks the Cancel button (or the Close icon), the outcome is cancel
, the popupCancel
client event is raised on the popup
component. Any values entered into input components rendered in the popup
component do not get sent to the server. Any editable components that have changed their values since the popup
component rendered do not send the changed values to the server. The popupCancel
event is delivered to the server.
If you want to set a fixed size for the dialog, or if you have set resize to on
or set stretchChildren to first
, expand the Appearance section and set the following attributes:
Tip: While the user can change the values of these attributes at runtime (if the resize attribute is set to on), the values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages." |
Note: If you use a command component without the showPopupBehavior tag to launch the dialog, and if that command component has values for the windowHeight and windowWidth attributes, the values on the command component override the contentHeight and contentWidth values. The dialog framework allows you to use a command component to launch a dialog without the showPopupBehavior tag. For more information, see the "Running a Bounded Task Flow in a Modal Dialog" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For more information about the showPopupBehavior tag, see Section 15.3, "Declaratively Invoking a Popup." |
buttonBar
facet. It is recommended that you set the partialSubmit
attribute to true
for every added command component. However, you can set the command component's partialSubmit
attribute to false
if the af:popup
component's autoCancel
property is set to disabled
. The values an af:popup
component's autoCancel
property and a command component partialSubmit
property determine how a command component dismisses and reloads a dialog. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."Tip: If the facet is not visible in the visual editor:
|
By default, added command components do not dismiss the dialog. You need to bind the actionListener
on the command component to a handler that manages closing the dialog, as well as any needed processing. For examples on how to do this, see the tag documentation.
panelGroupLayout
to contain the components.Tip: Normally, clicking a dialog's Cancel button or Close icon prevents any data entered into an inputText component from being submitted. However, setting the autoSubmit attribute to true on an inputText component in a dialog overrides the dialog's cancel behavior, as this setting causes a submit. |
The panelWindow
component is similar to the dialog
component, but it does not allow you to configure the buttons or to add buttons to a facet. If you need to invoke logic to handle data in the panelWindow
, you need to create a listener for the popup
component's cancel
event.
The popup
component that contains the panelWindow
component must be contained within a form
component.
Tip: If you are using the panelWindow as an inline popup in an application that uses the Fusion technology stack, and you want to emulate the look of a dialog, place the panelWindow component in the center facet of a panelStretchLayout component, and place command buttons in the bottom facet. |
Before you begin:
It may be helpful to understand how the panelWindow
component's attributes affect the functionality of inline windows. For more information, see Section 15.2, "Declaratively Creating Popups."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To create an inline window:
Tip: It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component. |
Tip: Values of input components are not reset when a user closes the panelWindow component. If the user opens the window a second time, those values will still display. If you want the values to match the current values on the server, then set the contentDelivery attribute to lazyUncached . |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled.").source
) for a variable. Similar to the var
attribute on a table, this variable is used to store reference in the Request scope to the component containing the showPopupBehavior
tag. The variable is reachable only during event delivery on the popup
or its child components, and only if EventContext is set to launcher
.launcher
if the popup is shared by multiple objects, for example if the window within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns data only for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."popup
component.off
.first
, the window stretches a single child component. However, the child component must allow stretching. For more information, see Section 9.2.1, "Geometry Management and Component Stretching."Note: If you set Resize to on or set StretchChildren to first , you must also set ContentWidth and ContentHeight (see Step 6). Otherwise, the size will default to 250x250 pixels. |
If you want to set a fix size for the window, or if you have set resize to on
or set stretchChildren to first
, expand the Appearance section and set the following attributes:
Tip: While the user can change the values of these attributes at runtime (if the resize attribute is set to on), the values will not be retained once the user leaves the page unless you configure your application to use change persistence. For information about enabling and using change persistence, see Chapter 32, "Allowing User Customization on JSF Pages." |
Note: If a command component without the showPopupBehavior tag is used to launch the dialog, and if that command component has values for the windowHeight and windowWidth attributes, the values on the command component will override the contentHeight and contentWidth values. For more information about the showPopupBehavior tag, see Section 15.3, "Declaratively Invoking a Popup." |
panelGroupLayout
to contain the components.You create a context menu by using menu components within the popup component. You can then invoke the context menu popup from another component, based on a given trigger. If instead, you want toolbar buttons in a toolbar to launch popup menus, then see Section 16.3, "Using Toolbars."
Before you begin:
It may be helpful to understand how the popup
component's attributes and other components affect the functionality of context menus. For more information, see Section 15.2, "Declaratively Creating Popups."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To create an inline context menu:
Tip: It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component. |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled."). You can override this setting by selecting false
.source
) to be used to reference the launch component. This variable is reachable only during event delivery on the popup
or its child components, and only if the EventContext is set to launcher
.launcher
if the popup is shared by multiple objects, for example if the menu within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns only data for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."popup
component, and build your menu using commandMenuItem
components, as documented starting with Step 6 in Section 16.2.1, "How to Create and Use Menus in a Menu Bar."Tip: Because this is a context menu, you do not need to create a menu bar or multiple menus, as documented in Steps 1 through 5 in Section 16.2.1, "How to Create and Use Menus in a Menu Bar." |
Use the noteWindow
component to display read-only text. The popup
component that contains the noteWindow
component must be contained within a form
component.
Before you begin:
It may be helpful to understand how the noteWindow
component's attributes and other components affect functionality. For more information, see Section 15.2, "Declaratively Creating Popups."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To create an inline window:
Tip: It does not matter where the popup component appears on the page, as the position is driven by the component used to invoke the popup. However, the popup component must be within a form component. |
true
to enable animation. Animation is determined by configuration in the trinidad-config.xml
file and by its skin properties (for more information, see Section A.6.2.1, "Animation Enabled."). You can override this setting by selecting false
.popup
or its child components, and only if the EventContext is set to launcher
.launcher
if the popup is shared by multiple objects, for example if the window within the popup will display information for the selected row in a table. Setting this attribute to launcher
makes the row clicked current before the event listener is called, and returns only data for that row. For more information, see Section 15.2.5, "What Happens at Runtime: Popup Component Events."popup
component.af:noteWindow
tag.af:noteWindow tag
, enter the text to display, using simple HTML tags, and ending with a closed af:noteWindow tag
.Example 15-4 shows text for a note window.
Example 15-4 Text Within an af:noteWindow Tag
Figure 15-4 shows how the note would display.
Note: The feature enabled by this property is not accessible friendly because a mouse over triggers the timeout cancellation period and there is no keyboard equivalent. |
When content is delivered to the popup, and the contentDelivery
attribute is set to either lazy
or lazyUncached
, the popupFetch
server-side event is invoked. This event has two properties, eventContext
and launcherVar
. The eventContext
property determines the context from which the event is delivered, either from the context of the popup (self
) or from the component that launched the popup (launcher
). Setting the context to launcher
can be very useful if the popup is shared by multiple components, because the framework will behave as though the component that launched the popup had launched the event, and not the popup. The launcherVar
property is used to keep track of the current launcher, similar to the way in which variables are used to stamp out rows in a table.
For example, say you have a column in a table that displays a person's first name using a command link. When the command link is hovered over, a popup noteWindow
is invoked that shows the person's full name. Because this noteWindow
will be used by all rows in the table, but it needs to display the full name only for the row containing the command link that was clicked, you need to use the eventContext
property to ensure that the context is that row, as shown in Example 15-5.
Example 15-5 Using eventContext for Shared Popups
Using the variable source, you can take values from the source and apply them, or you can set values. For example, you could get the full name value of the people
object used in the table, and set it as the value of the testBean's
fullName
property used by the window, using a setPropertyListener
and clientAttribute
tag, as shown in Example 15-6.
Example 15-6 Setting the Value of a Component in a Popup Using the launcherVar Property
In this example, the launcherVar
property source gets the full name for the current row using the popupFetch
event. For more information about using the setPropertyListener
tag, see Section 5.7.2, "How to Use the pageFlowScope Scope Without Writing Java Code." For more information about using client attributes, see Section 4.7, "Using Bonus Attributes for Client-Side Components." For more information about the showPopupBehavior
tag, see Section 15.3, "Declaratively Invoking a Popup."
Popups also invoke the following client-side events:
popupOpening
: Fired when the popup is invoked. If this event is canceled in a client-side listener, the popup will not be shown.popupOpened
: Fired after the popup becomes visible. One example for using this event would be to create custom rules for overriding default focus within the popup.popupCanceled
: Fired when a popup is unexpectedly dismissed by auto-dismissal or by explicitly invoking the popup client component's cancel method. This client-side event also has a server-side counterpart.popupClosed
: Fired when the popup is hidden or when the popup is unexpectedly dismissed. This client-side event also has a server-side counterpart.When a popup is closed by an affirmative condition, for example, when the Yes button is clicked, it is hidden. When a popup is closed by auto-dismissal, for example when either the Close icon or the Cancel button is clicked, it is canceled. Both types of dismissals result in raising a popupClosed
client-side event. Canceling a popup also raises a client-side popupCanceled
event that has an associated server-side counterpart. The event will not be propagated to the server unless there are registered listeners for the event. If it is propagated, it prevents processing of any child components to the popup, meaning any submitted values and validation are ignored. You can create a listener for the popupCanceled
event that contains logic to handle any processing needed when the popup is canceled.
If you want to invoke some logic based on a client-side event, you can create a custom client listener method. For more information, see Section 4.2, "Listening for Client Events." If you want to invoke server-side logic based on a client event, you can add a serverListener
tag that will invoke that logic. For more information, see Section 6.4, "Sending Custom Events from the Client to the Server."
The dialog
component raises a dialogEvent
when the end user clicks the OK, Yes, No or Cancel buttons. A dialog
component automatically hides itself when the end user clicks the OK, Yes or No buttons provided that no message with a severity of error or greater exists on the page. An end user selecting the Cancel button or close icon cancels the parent popup
component and raises a popup canceled event.
You can configure a dialogListener
attribute to intercept the dialogEvent
returned by the OK, Yes, No, and Cancel buttons. Only the dialogEvent
returned by the OK, Yes and No buttons get propagated to the server. The dialogEvent
returned by the Cancel button, the ESC key, and close icon queue a client dialog event and do not get propagated to the server.
If you configure an actionListener
for the command component that invokes a dialog
component to carry out an action (for example, update an inputText
component) after the dialog
component returns, you also need to call resetValue()
on the inputText
component if the command component's immediate
value is set to true
.
For more information about the events raised by the dialog
and popup
components, see the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.
With ADF Faces components, JavaScript is not needed to show or hide popups. The showPopupBehavior
tag provides a declarative solution, so that you do not have to write JavaScript to open a popup
component or register a script with the popup
component. For more information about client behavior tags, see Section 6.6, "Using ADF Faces Client Behavior Tags."
The showPopupBehavior
tag listens for a specified event, for example the actionEvent
on a command component, or the disclosureEvent
on a showDetail
component. However, the showPopupBehavior
tag also cancels delivery of that event to the server. Therefore, if you need to invoke some server-side logic based on the event that the showPopupBehavior
tag is listening for, then you need to use either JavaScript to launch the popup, or programmatically launch the popup
component as documented in Section 15.4, "Programmatically Invoking a Popup."
You use the showPopupBehavior
tag in conjunction with the component that invokes the popup, for example a commandButton
component that invokes a dialog, or an inputText
component that, when right-clicked, will invoke a context menu.
Before you begin:
Create the type of popup that you to invoke declaratively, as described in Section 15.2, "Declaratively Creating Popups" and create the component that invokes the popup.
It may be helpful to have an understanding of the configuration options available to you if you want to invoke a popup component declaratively. For more information, see Section 15.3, "Declaratively Invoking a Popup."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To use the showPopupBehavior tag:
action
which can be used for command components. Use contextMenu
to trigger a popup when the right-mouse is clicked. Use mouseHover
to trigger a popup when the cursor is over the component. The popup closes when the cursor moves off the component. For a detailed list of component and mouse/keyboard events that can trigger the popup, see the documentation for the showPopupBehavior
tag in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces.Note: The event selected for the showPopupBehavior tag's triggerType attribute will not be delivered to the server. If you need to invoke server-side logic based on this event, then you must invoke the popup using either JavaScript or a custom event as documented in Section 6.4, "Sending Custom Events from the Client to the Server" or invoke the popup programmatically as documented in Section 15.4, "Programmatically Invoking a Popup" |
Note: The dialog and panelWindow components do not require alignId or align attributes, as the corresponding popup can be moved by the user. If you set AlignId, the value will be overridden by any manual drag and drop repositioning of the dialog or window. If no value is entered for AlignId or Align, then the dialog or window is opened in the center of the browser.Additionally, if the |
At design time, JDeveloper generates the corresponding values in the source files that you selected in the Property Inspector. Example 15-7 shows sample code that displays some text in the af:popup
component with the id “popup1
" when the button "Click Me" is clicked.
Example 15-7 showPopupBehavior Associated with commandButton component
The code in Example 15-7 tells ADF Faces to align the popup contents with the commandButton
identified by the id
attribute, and to use the alignment position of afterStart
, which aligns the popup underneath the button, as shown in Figure 15-5.
You can programmatically show, hide, or cancel a popup in response to an actionEvent
generated by a command component. Implement this functionality if you want to deliver the actionEvent
to the server immediately so you can invoke server-side logic and show, hide, or cancel the popup in response to the outcome of invoking the server-side logic.
Programmatically invoking a popup as described here differs to the method of invoking a popup described in Section 15.3, "Declaratively Invoking a Popup" where the showPopupBehavior
tag does not deliver the actionEvent
to the server immediately.
You create the type of popup that you want by placing one of the components (dialog
, panelWindow
, menu
, or noteWindow
) inside the popup
component as described in Section 15.2, "Declaratively Creating Popups." Make sure that the popup
component is in the right context when you invoke it. One of the easier ways to do this is to bind it to the backing bean for the page, as in Example 15-8.
Example 15-8 Binding a popup Component to a Backing Bean
Once you have done this, you configure a command component's actionListener
attribute to reference the popup
component by calling an accessor for the popup binding.
Write code for the backing bean method that invokes, cancels, or hides the popup. Example 15-9 shows a showPopup
backing bean method that uses the HINT_LAUNCH_ID
hint to identify the command component that passes the actionEvent
to it and p1
to reference the popup on which we invoke the show
method.
Example 15-9 Backing Bean Method Invoking a Popup
Example 15-10 shows a backing bean method that cancels a popup in response to an actionEvent
:
Example 15-10 Backing Bean Method Canceling a Popup
Example 15-11 shows a backing bean method that hides a popup in response to an actionEvent
:
Example 15-11 Backing Bean Method Hiding a Popup
The p1
object in the previous examples refers to an instance of the RichPopup
class from the following package:
oracle.adf.view.rich.component.rich.RichPopup
For more information about RichPopup
, see the Oracle Fusion Middleware Java API Reference for Oracle ADF Faces.
You configure the command component's actionListener
attribute to reference the backing bean method that shows, cancels or hides the popup.
Before you begin:
Create the type of popup that you want the server-side method to invoke, as described in Section 15.2, "Declaratively Creating Popups."
It may be helpful to have an understanding of the configuration options available to you if you want to invoke a popup component programmatically. For more information, see Section 15.4, "Programmatically Invoking a Popup."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To programmatically invoke a popup:
For example, a Button component.
In the Property Inspector, expand the Behavior section and set the following attributes:
true
if you do not want the Fusion web application to render the entire page after an end user clicks the command component. The default value (false
) causes the application to render the whole page after an end user invokes the command component. For more information about page rendering, see Chapter 8, "Rerendering Partial Page Content."actionEvent
.For more information, see Example 15-9, "Backing Bean Method Invoking a Popup", Example 15-10, "Backing Bean Method Canceling a Popup", or Example 15-11, "Backing Bean Method Hiding a Popup".
At runtime, end users can invoke the command components you configure to invoke the server-side methods to show, cancel, or hide a popup. For example, Figure 15-6 shows a panelWindow
component that renders inside a popup
component. It exposes two command buttons (Cancel and Hide) that invoke the cancel
and hide
methods respectively. End users invoke a commandLink
component rendered in the SupplierName column of the table
component in the underlying page to show the popup.
There may be cases when you think the user may need more information to complete a task on a page, but you don't want to clutter the page with information that may not be needed each time the page is accessed, or with multiple buttons that might launch dialogs to display information. While you could put the information in a popup that was launched with a right-click on a component, the user would have no way of knowing the information was available in a popup.
The contextInfo
component allows you to display additional information in a popup and also notifies users that additional information is available. When you place the contextInfo
component into the context facet of a component that supports contextual information, a small orange square is shown in the upper left-hand corner of the component, as shown in Figure 15-7.
When the user places the cursor over the square, a larger triangle with a note icon and tooltip is displayed, indicating that additional information is available, as shown in Figure 15-8.
Because a showPopupBehavior
tag is a child to the contextInfo
component, the referenced popup will display when the user clicks the information icon, as shown in Figure 15-9.
You use the showPopupBehavior
component as a child to the contextInfo
component, which allows the popup component to align with the component that contains the contextInfo
component.
Before you begin:
contextInfo
component. The following components support the contextInfo
component:column
commandLink
inputComboboxListOfValues
inputListOfValues
inputText
outputFormatted
outputText
selectOneChoice
To use a contextInfo component:
Context
facet of the component that is to display the additional information icons.Tip: If the facet is not visible in the visual editor:
|
contextInfo
component displays, bind the contextInfoListener
attribute to a handler that can handle the event.Note: If you use the showPopupBehavior tag to launch the popup, then delivery of the contextInfoEvent to the server is cancelled. If you need to invoke server-side logic based on this event, then you must launch the popup by using either JavaScript or a custom event as documented in Section 6.4, "Sending Custom Events from the Client to the Server." |
contextInfo
component.showPopupBehavior
tag selected in the editor, in the Property Inspector, set the attributes as described in Section 15.3.1, "How to Declaratively Invoke a Popup Using the af:showPopupBehavior Tag." For the triggerType value, be sure to enter contextInfo
.You can use the af:popup
component with a number of other components to create inline popups. That is, inline windows, dialogs, and context menus. These other components include the:
For more information, see Section 15.2.1, "How to Create a Dialog."
panelWindow
component to create an inline windowFor more information, see Section 15.2.2, "How to Create a Panel Window."
For more information, see Section 15.2.3, "How to Create a Context Menu."
noteWindow
component to create a note windowFor more information, see Section 15.2.4, "How to Create a Note Window."
By default, a Fusion web application automatically cancels an inline popup if the metadata that defines the inline popup is replaced. Scenarios where this happens include the following:
partialSubmit
property set to false
. The Fusion web application renders the entire page after it invokes such a command component. In contrast, a command component that has its partialSubmit
property set to true
causes the Fusion web application to render partial content. For more information about page rendering, see Chapter 8, "Rerendering Partial Page Content."popup
component. Examples include the showDetailItem
and panelTabbed
components. For more information about the use of components that render toggle icons, see Section 9.8, "Displaying and Hiding Contents Dynamically."You can change the default behavior described in the previous list by disabling the automatic cancellation of an inline popup component. This means that the Fusion web application does not automatically cancel the inline popup if any of the above events occur. Instead, the Fusion web applications restores the inline popup.
You disable the automatic cancellation of an inline popup by setting the popup
component's autoCancel
property to disabled
.
Before you begin:
It may be helpful to understand how other components can affect functionality. For more information, see Section 15.6, "Controlling the Automatic Cancellation of Inline Popups."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To control the automatic cancellation of inline popups:
af:popup
component for which you want to configure the automatic cancellation behavior and choose Go to Properties.JDeveloper sets the af:popup
component autoCancel
property's value to disabled
, as shown in Example 15-12:
Example 15-12 Metadata to Prevent the Automatic Cancellation of an Inline Popup
At runtime, the Fusion web application restores an inline popup after it rerenders a page if the inline popup displayed before invocation of the command to rerender the page.
You can use the resetListener
component in conjunction with a popup
component to allow end users to reset input values in an input field. Example use cases where you may want to implement this functionality for input components that render in a popup
component include:
popup
component invokes a popupCanceledEvent
before the application submits the values to the server that an end user entered.End user gestures that invoke a popupCancelEvent
include clicking a command button (for example, a button labelled Close), the cancel icon in the title bar of a popup dialog or pressing the Esc key.
Depending on how you configure the popup
component, data may be cached on the client. For example, if you set the popup
component's contentDelivery
attribute to immediate
, the application always caches data on the client.
For more information about how the setting that you choose for the contentDelivery
attribute determines the content delivery strategy for your popup
component, see Section 15.2, "Declaratively Creating Popups" and Section 15.2.5, "What Happens at Runtime: Popup Component Events."
Example 15-13 shows the metadata for a popup component where the contentDelivery
attribute is set to immediate
and the user's popup renders a dialog
component with preconfigured controls that raise dialogEvents
, as described in Section 15.2.1, "How to Create a Dialog." In this scenario, data that the end user entered is cached on the client. The application does not submit data that you want to reset to the server. Also, the preconfigured controls rendered by the dialog
component may prevent the popup from closing if they encounter validation errors.
Example 15-13 The resetListener Tag on the Popup Component
For more information about using the resetListener
component independently of a popup
component, see Section 20.5.2, "How to Use a Command Component to Reset Input Fields."
Note: Setting the resetListener component's type attribute to popupCanceled provides the same functionality as setting the popup component's resetEditableValues attribute to whenCanceled . For more information about setting the resetEditableValues attribute of the popup component, see Section 15.2.1, "How to Create a Dialog." |
You enable end users to reset the data in a popup's input fields to null
by setting the resetListener
component's type
attribute to popupCanceled
.
Before you begin:
It may be helpful to understand the use cases for which you can configure this functionality in a popup
component. For more information, see Section 15.7, "Resetting Input Fields in a Popup."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 15.1.2, "Additional Functionality for Popup Dialogs, Menus, and Windows."
To reset the input fields in a popup:
popup
component.popupCanceled
as the type of event that the resetListener
component responds to.Click Help in the Insert Reset Listener dialog to view a complete list of supported values.
JDeveloper writes entries similar to those shown in Example 15-14 when you configure a popup
component and a resetListener
component to allow end users to reset the input field(s) in the popup
component to null
.
Example 15-14 Popup Component Configured to Reset Input Fields Using Reset Listener
At runtime, an end user gesture that raises a popupCanceled
event results in the resetListener
component resetting values in the input fields of the popup
component to null
, as illustrated in Figure 15-10.
This chapter describes how to create menu bars and toolbars that contain tool buttons.
For information about creating navigation menus, that is, menus that allow you to navigate through a hierarchy of pages, see Section 20.6, "Using Navigation Items for a Page Hierarchy."
This chapter includes the following sections:
Menu bars and toolbars allow you to organize menus, buttons, and other simple components in a horizontal bar. When a user clicks a menu in the bar, the menu drops down and the user can select from the menu items, which cause some action to happen in the application. Icons in the toolbar also cause some action to happen in the application. Figure 16-1 shows the different components used to create menus and toolbars.
Menu components are used to create menus that allow users to add or edit items, search data, change the view, or launch help. For example, the ADF Faces demo application contains both a menu bar and a toolbar, as shown in Figure 16-2.
When a user chooses a menu item in the menu bar, the menu
component displays a list of menu items, as shown in Figure 16-3.
As shown in Figure 16-4, menus can be nested.
Buttons in a toolbar also allow a user to invoke some sort of action on an application or to open a popup menu that behaves the same as a standard menu.
You can organize toolbars and menu bars using a toolbox. The toolbox gives you the ability to define relative sizes for the toolbars on the same line and to define several layers of toolbars and menu bars vertically.
Note: If you want to create menus and toolbars in a table, then follow the procedures in Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars." If you want to create a context menu for a component (that is a menu that launches when a user right-clicks the component), follow the procedures in Section 15.2.3, "How to Create a Context Menu." |
You may find it helpful to understand other ADF Faces features before you implement your menu and toolbar components. Additionally, once you have added these components to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that menu and toolbar components can use.
Use the menuBar
component to render a bar that contains the menu bar items (such as File in the File Explorer application). These items can be menu
components, which hold a vertical menu, as well as commandMenuItem
components that invoke some operation on the application, and goMenu
items that invoke a URL, as shown in Figure 16-5.
Menu components can also contain commandMenuItems
, goMenu
items, or you can nest menu components inside menu components to create submenus. The different components used to create a menu are shown in Figure 16-6.
You can use more than one menu bar by enclosing them in a toolbox. Enclosing them in a toolbox stacks the menu bars so that the first menu bar in the toolbox is displayed at the top, and the last menu bar is displayed at the bottom. When you use more than one menu bar in a single toolbox row (by having them grouped inside the toolbox), then the flex
attribute will determine which menu bar will take up the most space.
If you wish menu bars to be displayed next to each other (rather than being stacked), you can enclose them in a group
component.
Tip: You can also use the toolbox component to group menu bars with toolbars, or to group multiple menu bars. Use the group component to group menu bars and toolbars on the same row. |
Within a menu bar, you can set one component to stretch so that the menu bar will always be the same size as its parent container. For example, in Figure 16-7, the menu bar is set to stretch a spacer component that is placed between the Disabled GMI menu and the Component Guide button. When the window is resized, that spacer component either stretches or shrinks so that the menu bar will always be the same width as the parent. Using a spacer component like this also ensures that any components to the right of the spacer will remain right-justified in the menu bar.
When a window is resized such that all the components within the menu bar can no longer be displayed, the menu bar displays an overflow icon, identified by the arrow cursor as shown in Figure 16-8.
Clicking that overflow icon displays the remaining components in a popup window, as shown in Figure 16-9.
Menus and submenus can be made to be detachable and to float on the browser window. Figure 16-10 shows the Menu 1 submenu in the Detachables menu configured to be detachable. The top of the menu is rendered with a bar to denote that it can be detached.
The user can drag the detachable menu to anywhere within the browser. When the mouse button is released, the menu stays on top of the application until the user closes it, as shown in Figure 16-11.
Tip: Consider using detachable menus when you expect users to:
|
The menu
and commandMenuItem
components can each include an icon image. Figure 16-12 shows the Open File menu item configured to display a copy icon.
Aside from always displaying graphics, you can configure commandMenuItem
components display a graphic when the menu item is chosen. For example, you can configure a commandMenuItem
component to display a checkmark when chosen, or you can group menu items together and configure them to behave like a group of radio buttons, so that an icon displays next to the label when one of items in the group is chosen. Figure 16-13 shows the Special menu with the Check 1 menu item configured to use a checkmark when chosen. The Radio 1, Radio 2, and Radio 3 menu items are configured to be radio buttons, and allow the user to choose only one of the group.
You can also configure a commandMenuItem
component to have an antonym. Antonyms display different text when the user chooses a menu item. Figure 16-14 shows an Open menu item in the Special menu.
By configuring the commandMenuItem
component for the Open menu item to be an antonym and to have alternate text to display, when a user chooses Open, the next time the user returns to the menu, the menu item will display the antonym Close, as shown in Figure 16-15.
Because an action is expected when a user chooses a menu item, you must bind the action
or actionListener
attribute of the commandMenuItem
component to some method that will execute the needed functionality.
Along with commandMenuItem
components, a menu can also include one or more goMenuItem
components. These are navigation components similar to the goLink
component, in that they perform direct page navigation, without delivering an ActionEvent
event. Figure 16-16 shows three goMenuItem
components used to navigate to external web sites.
Aside from menus that are invoked from menu bars, you can also create context menus that are invoked when a user right-clicks a UI component, and popup menus that are invoked when a user clicks a command component. For more information, see Section 15.2.3, "How to Create a Context Menu."
Note: ADF Faces provides a button with built-in functionality that allows a user to view a printable version of the current page. Menus and menu bars do not render on these pages. For more information, see Section 6.6, "Using ADF Faces Client Behavior Tags.". |
By default, the contents of the menu are delivered immediately, as the page is rendered. If you plan on having a large number of children in a menu (multiple menu
and commandMenuItem
components), you can choose to configure the menu to use lazy content delivery. This means that the child components are not retrieved from the server until the menu is accessed.
Note: Content delivery for menus used as popup context menus is determined by the parent popup dialog, and not the menu itself. |
You can also create menus that mainly provide navigation throughout the application, and are not used to cause any change on a selected item in an application. To create this type of menu, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."
To create a menu, you first have to create a menu bar to hold the menus. You then add and configure menu
and commandMenuItem
components as needed.
Note: If you want to create menus in a table, follow the procedures outlined in Section 12.9, "Displaying Table Menus, Toolbars, and Status Bars." |
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 16.2, "Using Menus in a Menu Bar."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 16.1.2, "Additional Functionality for Menu and Toolbar Components."
To create and use menus in a menu bar:
toolbox
component by dragging and dropping a Toolbox component from the Menus and Toolbars panel of the Component Palette.Tip: The panelHeader , showDetailHeader , and showDetailItem components support a toolbar facet for adding toolboxes and toolbars to section headers and accordion panel headers. |
toolbox
component, the Menu Bar should be dropped as a direct child of the toolbox
component.Tip: Toolboxes also allow you to use the iterator, switcher, and group components as direct children, providing these components wrap child components that would usually be direct children of the toolbox. For more information about toolboxes, see Section 16.3, "Using Toolbars." |
flex
attribute to determine the relative sizes of each of the menu bars. The higher the number given for the flex
attribute, the longer the toolbox will be. For the set of menu bars shown in Example 16-5, menubar2
will be the longest, menubar4
will be the next longest, and because their flex
attributes are not set, the remaining menu bars will be the same size and shorter than menubar4
.Example 16-1 Flex Attribute Determines Length of Toolbars
Performance Tip: At runtime, when available browser space is less than the space needed to display the contents of the toolbox, ADF Faces automatically displays overflow icons that enable users to select and navigate to those items that are out of view. The number of child components within a toolbox component, and the complexity of the children, will affect the performance of the overflow. You should set the size of the toolbox component to avoid overflow when possible. For more information, see Section 16.3.2, "What Happens at Runtime: How the Size of Menu Bars and Toolbars are Determined." |
Tip: You can use the group component to group menu bars (or menu bars and toolbars) that you want to appear on the same row. If you do not use the group component, the menu bars will appear on subsequent rows. |
For information about how the flex
attribute works, see Section 16.3.2, "What Happens at Runtime: How the Size of Menu Bars and Toolbars are Determined."
menu
components into the menu bar by dragging a Menu from the Component Palette, and dropping it as a child to the menuBar
component.You can also insert commandMenuItem
components directly into a menu bar by dragging and dropping a Menu Item from the Menus and Toolbars panel of the Component Palette. Doing so creates a commandMenuItem
component that renders similar to a toolbar button.
Tip: Menu bars also allow you to use the iterator , switcher , and group components as direct children, providing these components wrap child components that would usually be direct children of the menu bar. |
menu
component, expand the Appearance section in the Property Inspector and set the following attributes:textAndAccessKey
instead.&File
sets the menu label to File, and at the same time sets the menu access key to the letter F. For more information about access keys and the ampersand notation, see Section 30.3, "Specifying Component-Level Accessibility Properties."true
. At runtime, the user can drag the menu to detach it, and drop it anywhere on the screen (as shown in Figure 16-11).lazy
.Note: If you use lazy content delivery, any accelerators set on the child commandMenuItem components will not work because the contents of the menu are not known until the menu is accessed. If your menu must support accelerators, then ContentDelivery must be set to immediate . |
Note: If the menu will be used inside a popup dialog or window, leave ContentDelivery set to immediate , because the popup dialog or window will determine the content delivery for the menu. |
menu
component to create a commandMenuItem
component. Create a number of commandMenuItem
components to define the items in the vertical menu.If necessary, you can wrap the commandMenuItem
components within a group
component to display the items as a group. Example 16-2 shows simplified code for grouping the Folders and Search menu items in one group, the Table, Tree Table and List menu items in a second group, and the Refresh menu item by itself at the end.
Example 16-2 Grouping Menu Items
Figure 16-17 shows how the menu is displayed.
Tip: By default, only up to 14 items are displayed in the menu. If more than 14 items are added to a menu, the first 14 are displayed along with a scrollbar, which can be used to access the remaining items. If you wish to change the number of visible items, edit the af|menu {-tr-visible-items } skinning key. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins." |
You can also insert another menu
component into an existing menu
component to create a submenu (as shown in Figure 16-4).
Tip: Menus also allow you to use the iterator and switcher components as direct children, providing these components wrap child components that would usually be direct children of the menu. |
commandMenuItem
component, expand the Common section in the Property Inspector and set the following attributes:type
values:text
or textAndAccessKey
attribute (which is what is displayed when the menu item is not chosen). If you select this type, you must set a value for SelectedText.accessKey
attribute.true
to have this menu item appear to be chosen. The selected
attribute is supported for check-, radio-, and antonym-type menu items only.antonym
.Example 16-3 shows the Special menu with one group of menu items configured to use radio buttons and another group of menu items configured to show blue squares when chosen. The last group contains a menu item configured to be the antonym Open when it is first displayed, and then it toggles to Closed.
Example 16-3 Using the Type Attribute in a commandMenuItem Component
Figure 16-18 shows how the menu will be displayed when it is first accessed.
Note: By default, ADF Faces components use the FusionFX skin, which displays the check type as a square. You can change this by creating your own skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins." |
Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, this icon must only be used when the use is purely decorative. You must provide the meaning of this icon using another accessible manner. |
Control O
. ADF Faces converts the keystroke and displays a text version of the keystroke (for example, Ctrl+O) next to the menu item label, as shown in Figure 16-4.Note: If you choose to use lazy content delivery, any accelerators set on the child commandMenuItem components will not work because the contents of the menu are not known until it is accessed. If your menu must support accelerator keys, then the contentDelivery attribute must be set to immediate . |
&Save
sets the menu item label to Save, and at the same time sets the menu item access key to the letter S
. For more information about access keys and the ampersand notation, see Section 30.3, "Specifying Component-Level Accessibility Properties."java.lang.Object
object.If you want to cause navigation in response to the action generated by commandMenuItem
component, instead of entering an EL expression, enter a static action outcome value as the value for the action
attribute. You then must either set the partialSubmit
attribute to false
, or use a redirect. For more information about configuring navigation in your application, see Section 3.3, "Defining Page Flows."
action
attribute, allowing the action
attribute to handle navigation only. The expression must evaluate to a public method that takes an ActionEvent
parameter, with a return type of void
._blank
: The link opens the document in a new window._parent
: The link opens the document in the window of the parent. For example, if the link appeared in a dialog, the resulting page would render in the parent window._self
: The link opens the document in the same page or region._top
: The link opens the document in a full window, replacing the entire page.Tip: Instead, you can use the textAndAccessKey attribute to provide a single value that defines the label and the access key to use for the link. For information about how to define access keys, see Section 30.3.4, "How to Define Access Keys for an ADF Faces Component." |
menuBar
component in the Structure window, then set stretchId to be the ID of the component within the menu bar that should be stretched so that the menu bar is the same size as the parent. This one component will stretch, while the rest of the components in the menu bar remain a static size.You can also use the stretchId
attribute to justify components to the left and right by inserting a spacer
component, and setting that component ID as the stretchId
for the menu bar, as shown in Example 16-7.
Example 16-4 Using a Spacer to Justify menuBar Components
Along with menus, you can create toolbars in your application that contain toolbar buttons used to initiate some operation in the application. The buttons can display text, an icon, or a combination of both. Toolbar buttons can also open menus in a popup window. Along with toolbar buttons, other UI components, such as dropdown lists, can be displayed in toolbars. Figure 16-19 shows the toolbar from the File Explorer application.
Tip: Toolbars can also include command buttons and command links (including the commandImageLink component) instead of toolbar buttons. However, toolbar buttons provide additional functionality, such as opening popup menus. Toolbar buttons can also be used outside of a toolbar component |
The toolbar component can contain many different types of components, such as inputText
components, LOV components, selection list components, and command components. ADF Faces also includes a commandToolbarButton
component that has a popup
facet, allowing you to provide popup menus from a toolbar button. You can configure your toolbar button so that it only opens the popup dialog and does not fire an action event. As with menus, you can group related toolbar buttons on the toolbar using the group
component.
You can use more than one toolbar by enclosing them in a toolbox. Enclosing toolbars in a toolbox stacks them so that the first toolbar on the page is displayed at the top, and the last toolbar is displayed on the bottom. For example, in the File Explorer application, the currently selected folder name is displayed in the Current Location toolbar, as shown in Figure 16-19. When you use more than one toolbar, you can set the flex
attribute on the toolbars to determine which toolbar should take up the most space. In this case, the Current Location toolbar is set to be the longest.
If you wish toolbars to be displayed next to each other (rather than stacked), you can enclose them in a group
component.
Tip: You can also use the toolbox component to group menu bars with toolbars, or to group multiple menu bars. As with grouping toolbars, use the group component to group menu bars and toolbars on the same row. |
Within a toolbar, you can set one component to stretch so that the toolbar will always be the same size as its parent container. For example, in the File Explorer application, the lower toolbar that displays the current location contains the component that shows the selected folder. This component is set to stretch so that when the window is resized, that component and the toolbar will always be the same width as the parent. However, because no component in the top toolbar is set to stretch, it does not change size when the window is resized. When a window is resized such that all the components within the toolbar can no longer be displayed, the toolbar displays an overflow icon, identified by an arrow cursor in the upper right-hand corner, as shown in Figure 16-20.
Clicking that overflow icon displays the remaining components in a popup window, as shown in Figure 16-21.
When you expect overflow to occur in your toolbar, it is best to wrap it in a toolbox that has special layout logic to help in the overflow.
If you are going to use more than one toolbar
component on a page, or if you plan to use menu bars with toolbars, you first create the toolbox
component to hold them. You then create the toolbars, and last, you create the toolbar buttons.
Tip: If you encounter layout issues with single toolbars or menu bars, consider wrapping them in a toolbox component, because this component can handle overflow and layout issues. |
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 16.3, "Using Toolbars."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 16.1.2, "Additional Functionality for Menu and Toolbar Components."
To create and use toolbars:
toolbox
component by dragging and dropping a Toolbox component from the Menus and Toolbars panel of the Component Palette.Tip: The panelHeader , showDetailHeader , and showDetailItem components support a toolbar facet for adding toolboxes and toolbars to section headers and accordion panel headers. |
toolbox
component, the Toolbar should be dropped as a direct child of the toolbox
component.Tip: Toolboxes also allow you to use the iterator, switcher, and group components as direct children, providing these components wrap child components that would usually be direct children of the toolbox. |
flex
attributes to determine the relative sizes of each of the toolbars. The higher the number given for the flex
attribute, the longer the toolbox will be. For the set of toolbars shown in Example 16-5, toolbar2
will be the longest, toolbar4
will be the next longest, and because their flex
attributes are not set, the remaining toolbars will be the same size and shorter than toolbar4
.Example 16-5 Flex Attribute Determines Length of Toolbars
Performance Tip: At runtime, when available browser space is less than the space needed to display the contents of the toolbox, ADF Faces automatically displays overflow icons that enable users to select and navigate to those items that are out of view. The number of child components within a toolbox component, and the complexity of the children, will affect the performance of the overflow. You should set the size of the toolbox component to avoid overflow when possible. For more information, see Section 16.3.2, "What Happens at Runtime: How the Size of Menu Bars and Toolbars are Determined." |
Tip: You can use the group component to group toolbars (or menu bars and toolbars) that you want to appear on the same row. If you do not use the group component, the toolbars will appear on subsequent rows. |
For information about how the flex
attribute works, see Section 16.3.2, "What Happens at Runtime: How the Size of Menu Bars and Toolbars are Determined."
commandToolbarButton
drag a Toolbar Button from the Component Palette and drop it as a direct child of the toolbar
component.Tip: You can use the group component to wrap related buttons on the bar. Doing so inserts a separator between the groups, as shown surrounding the group for the Select Skin dropdown list and Refresh button in Figure 16-19.Toolbars also allow you to use the iterator and switcher components as direct children, providing these components wrap child components that would usually be direct children of the toolbar. |
Tip: You can place other components, such as command buttons and links, input components, and select components in a toolbar. However, they may not have the capability to stretch. For details about stretching the toolbar, see Step 9. |
Tip: If you plan to support changing the visible attribute of the button through active data (for example, data being pushed from the data source will determine whether nor not the toolbar is displayed), then you should use the activeCommandToolbarButton component instead of the commandToolbarButton component. Create an activeCommandToolbarButton component by dragging a ToolbarButton (Active) from the Component Palette. |
commandToolbarButton
component, expand the Common section of the Property Inspector and set the following attributes:type
values:depressedIcon
value if selected or to the default icon
value if not selected.Note: When setting the type to radio , you must wrap the toolbar button in a group tag that includes other toolbar buttons whose types are set to radio as well. |
true
to have this toolbar button appear as selected. The selected
attribute is supported for checkmark- and radio-type toolbar buttons only.Note: Because alternative text cannot be provided for this icon, in order to create an accessible product, this icon must only be used when the use is purely decorative. You must provide the meaning of this icon using another accessible manner. |
java.lang.Object
object.If you want to cause navigation in response to the action generated by the button, instead of entering an EL expression, enter a static action outcome value as the value for the action
attribute. You then must set either partialSubmit
to false
, or use a redirect. For more information about configuring navigation, see Section 3.3, "Defining Page Flows."
action
attribute, allowing the action
attribute to handle navigation only. The expression must evaluate to a public method that takes an ActionEvent
parameter, with a return type of void
.none
if you do not want to fire an action event when the button is clicked. This is useful if you want the button to simply open a popup window. If set to none
, you must have a popup
component in the popup
facet of the toolbar button (see Step 8), and you cannot have any value set for the action
or actionListener
attributes. Set to clientServer
attribute if you want the button to fire an action event as a standard command componentTo have a toolbar button invoke a popup menu, insert a menu
component into the popup
facet of the commandToolbarButton
component. For information, see Section 16.2.1, "How to Create and Use Menus in a Menu Bar."
If you want a toolbar to stretch so that it equals the width of the containing parent component, set stretchId to be the ID of the component within the toolbar that should be stretched. This one component will stretch, while the rest of the components in the toolbar remain a static size.
For example, in the File Explorer application, the inputText
component that displays the selected folder's name is the one that should stretch, while the outputText
component that displays the words "Current Folder" remains a static size, as shown in Example 16-6.
Example 16-6 Using the stretchId Attribute
You can also use the stretchId
attribute to justify components to the left and right by inserting a spacer
component, and setting that component ID as the stretchId
for the toolbar, as shown in Example 16-7.
Example 16-7 Using a Spacer to Justify Toolbar Components
When a page with a menu bar or toolbar is first displayed or resized, the space needed for each bar is based on the value of the bar's flex
attribute. The percentage of size allocated to each bar is determined by dividing its flex
attribute value by the sum of all the flex
attribute values. For example, say you have three toolbars in a toolbox, and those toolbars are grouped together to display on the same line. The first toolbar is given a flex
attribute value of 1
, the second toolbar also has a flex
attribute value of 1,
and the third has a flex
attribute value of 2
, giving a total of 4
for all flex
attribute values. In this example, the toolbars would have the following allocation percentages:
Once the allocation for the bars is determined, and the size set accordingly, each element within the toolbars are placed left to right. Any components that do not fit are placed into the overflow list for the bar, keeping the same order as they would have if displayed, but from top to bottom instead of left to right.
Note: If the application is configured to read right to left, the toolbars will be placed right to left. For more information, see Section A.6.2.6, "Language Reading Direction." |
Toolbars are supported and rendered by parent components such as panelHeader
, showDetailHeader
, and showDetailItem
, which have a toolbar
facet for adding toolbars and toolbar buttons to section headers and accordion panel headers.
Note the following points about toolbars at runtime:
This chapter describes how to use the ADF Faces calendar
component to create a calendar application.
This chapter includes the following sections:
ADF Faces includes a calendar component that by default displays created activities in daily, weekly, monthly, or list views for a given provider or providers (a provider is the owner of an activity). Figure 17-1 shows an ADF Faces calendar in weekly view mode with some sample activities.
You can configure the calendar so that it only displays a subset of those views. For example, you may not want your calendar to use the month
and list
views. You can configure it so that only the day and week views are available, as shown in Figure 17-2. Because only day and week views are available, those are the only buttons displayed in the toolbar.
By default, the calendar displays dates and times based on the locale set in the trinidad-config.xml
file using the formatting-locale
parameter. For more information, see Section A.6, "Configuration in trinidad-config.xml." If a locale is not set in that file, then it is based on the locale sent by the browser. For example, in the United States, by default, the start day of the week is Sunday, and 2 p.m. is shown as 2:00 PM. In France, the default start day is Monday, and 2 p.m. is shown as 14:00. The time zone for the calendar is also based on the time-zone
parameter setting in trinidad-config.xml
. You can override the default when you configure the calendar. For more information, see Section 17.3, "Configuring the Calendar Component."
The calendar includes a toolbar with built-in functionality that allows a user to change the view (between daily, weekly, monthly, or list), go to the previous or next day, week, or month, and return to today. The toolbar is fully customizable. You can choose which buttons and text to display, and you can also add buttons or other components. For more information, see Section 17.5, "Customizing the Toolbar."
Tip: When these toolbar buttons are used, attribute values on the calendar are changed. You can configure these values to be persisted so that they remain for the user during the duration of the session. For more information, see Chapter 32, "Allowing User Customization on JSF Pages." You can also configure your application so that the values will be persisted and used each time the user logs into the system. For this persistence to take place, your application must use the Fusion technology stack. For more information, see the "Allowing User Customizations at Runtime" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The calendar component displays activities based on those activities and the provider returned by the CalendarModel
class. By default, the calendar component is read-only. That is, it can display only those activities that are returned. You can add functionality within supported facets of the calendar so that users can edit, create, and delete activities. When certain events are invoked, popup components placed in these corresponding facets are opened, which can allow the user to act on activities or the calendar.
For example, when a user clicks on an activity in the calendar, the CalendarActivityEvent
is invoked and the popup component in the ActivityDetail
facet is opened. You might use a dialog component that contains a form where users can view and edit the activity, as shown in Figure 17-3.
For more information about implementing additional functionality using events, facets, and popup components, see Section 17.4, "Adding Functionality Using Popup Components."
The calendar component supports the ADF Faces drag and drop architectural feature. Users can drag activities to different areas of the calendar, executing either a copy or a move operation, and can also drag handles on the activity to change the duration of the activity. For more information about adding drag and drop functionality, see Section 33.7, "Adding Drag and Drop Functionality to a Calendar."
By default, the calendar displays activities using a blue ramp. Color ramps are groups of colors all based on the same hue, for example, blue. In the default calendar, for a short-duration activity shown in the daily view, the time of an activity is shown with a dark blue background, while the title of the activity is shown with a light blue background, as shown in Figure 17-1. You can customize how the activities are displayed by changing the color ramp.
Each activity is associated with a provider, that is, an owner. If you implement your calendar so that it can display activities from more than one provider, you can also style those activities so that each provider's activity shows in a different color, as shown in Figure 17-4.
The calendar component provides the features you need to implement calendar-related functions such as creating activities in daily, weekly, monthly or list view. It features a customizable toolbar that can be used for switching views. It has configurable start of the week and start of the day functions. Like other ADF Faces components, it supports skinning in order to customize its style and appearance.
You can create popups by inserting them into the calendar facets to add more functionality. You can also implement the calendar so the user can drag and drop activities from one area to another within the calendar.
The calendar uses the CalendarModel
class to display the activities for a given time period. You must create your own implementation of the model class for your calendar. If your application uses the Fusion technology stack, then you can create ADF Business Components over your data source that represents the activities, and the model will be created for you. You can then declaratively create the calendar, and it will automatically be bound to that model. For more information, see the "Using the ADF Faces Calendar Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If your application does not use the Fusion technology stack, then you create your own implementation of the CalendarModel
class and the associated CalendarActivity
and CalendarProvider
classes. The classes are abstract classes with abstract methods. You must provide the functionality behind the methods, suitable for your implementation of the calendar. For more information, see Section 17.2, "Creating the Calendar."
You may find it helpful to understand other ADF Faces features before you implement your calendar component. Additionally, once you have added a calendar component to your page, you may find that you need to add functionality such as validation and accessibility. Following are links to other functionality that calendar components can use.
Before you can add a calendar component to a page, you must implement the logic required by the calendar in Java classes that extend ADF Faces calendar abstract classes. For an ADF Faces application, create the classes as managed beans. After you create the classes, you can add the calendar to a page.
Note: If your application uses the Fusion technology stack, implement the calendar classes using ADF Business Components. This will allow you to declaratively create and bind your calendar component. For more information, see the "Using the ADF Faces Calendar Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Before you implement your logic, it helps to have an understanding of the CalendarModel
and CalendarActivity
classes, as described in the following section.
The calendar component must be bound to an implementation of the CalendarModel
class. The CalendarModel
class contains the data for the calendar. This class is responsible for returning a collection of calendar activities, given the following set of parameters:
CalendarModel
class such that the calendar can return just the activities associated with the owner currently in session, or it can also return other owners' activities.A calendar activity represents an object on the calendar, and usually spans a certain period of time. The CalendarActivity
class is an abstract class whose methods you can implement to return information about the specific activities.
Activities can be recurring, have associated reminders, and be of a specific time type (for example, TIME
(with a start and end time) or ALLDAY
). Activities can also have start and end dates, a location, a title, and a tag.
The CalendarProvider
class represents the owner of an activity. A provider can be either enabled or disabled for a calendar.
Create your own implementations of the CalendarModel
and CalendarActivity
classes and implement the abstract methods to provide the logic.
Before you begin:
It may be helpful to have an understanding of the CalendarModel
and CalendarActivity
classes. For more information, see Section 17.2.1, "Calendar Classes."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 17.1.2, "Additional Functionality for the Calendar."
To create the calendar model classes:
oracle.adf.view.rich.model.CalendarModel
class.For more information about the CalendarModel
class, see the ADF Faces Javadoc
.
oracle.adfdemo.view.calendar.rich.model.DemoCalendarBean
managed bean in the ADF Faces demo application (for more information about the demo application, see Chapter 2, "ADF Faces Demo Application").For more information about creating managed beans, see Section 3.6, "Creating and Using Managed Beans."
oracle.adf.view.rich.model.CalendarActivity
class.oracle.adfdemo.view.calendar.rich.model.DemoCalendarActivity
managed bean in the ADF Faces demo application.Tip: If you want to style individual instances of an activity (for example, if you want each provider's activities to be displayed in a different color), then the getTags method must return a string that represents the activity instance. For more information, see Section 17.6.1, "How to Style Activities." |
oracle.adf.view.rich.model.CalendarProvider
class.To create the calendar component:
Tip: The calendar component can be stretched by any parent component that can stretch its children. If the calendar is a child component to a component that cannot be stretched, it will use a default width and height, which cannot be stretched by the user at runtime. However, you can override the default width and height using inline style attributes. For more information about the default height and width, see Section 17.3, "Configuring the Calendar Component." For more information about stretching components, see Section 9.2.1, "Geometry Management and Component Stretching." |
CalendarModel
class.Configure the many display attributes for the calendar, for example, the time displayed at the beginning of a day.
You configure the calendar using the Property Inspector.
Before you begin:
It may be helpful to have an understanding of the calendar component. For more information, see Section 17.3, "Configuring the Calendar Component."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 17.1.2, "Additional Functionality for the Calendar."
To configure a calendar:
calendar
component selected, expand the Common section of the Property Inspector, and set the following:day
list
month
week
sun
mon
tue
wed
thu
fri
sat
day
or week
view) starts the day at 12:01 a.m., the calendar will automatically scroll to the startHour
value, so that it is displayed at the top of the view. The user can always scroll above that time to view activities that start before the startHour
value.list
view to display activities. Valid values are:day
: Shows activities only for the active day.dayCount
: Shows a number of days including the active day and after, based on the value of the listCount
attribute.month
: Shows all the activities for the month to which the active day belongs.week
: Shows all the activities for the week to which the active day belongslistType
attribute is set to dayCount
).Figure 17-5 shows a calendar in list view for the active date May 2 with the listType
set to dayCount
and the listCount
value set to 14
.
Note that when the user selects another day, this becomes the value for the activeDay
attribute. For example, when the user first accesses the calendar, the current date, May 2, 2011 is the active day. The user can select another day to be the active day by clicking on the day link in the month view. The active day also changes when the user selects a different month or year.
AdfFacesContext
. The valid value is a java.util.TimeZone
object. By default, time is displayed based on the formatting-locale
parameter in the trinidad-config.xml
file. For more information, see Section A.6, "Configuration in trinidad-config.xml."month
week
day
list
all
If you want to enter more than one value, enter the values with a space between. For example, if you want the calendar to use day and week views, you would enter the following:
Note: If all is entered, then all views are available, regardless if one is left out of the list. |
The corresponding buttons will automatically be displayed in the toolbar, in the order they appear in the list.
If you do not enter day
as an available view, then activities in the list
and week
views will not appear as links to the day
view (provided you do not also enter all
).
Note: In order to handle an overflow of tasks for a given day in the month view, if you enter month and do not also enter all , then you must also enter day . |
CalendarActivityDurationChangeListener
. This handler should include functionality that changes the end time of the activity. If you want the user to be able to move the activity (and, therefore, change the start time as well as the end time), then implement drag and drop functionality. For more information, see Section 33.7, "Adding Drag and Drop Functionality to a Calendar."You can now add the following functionality:
The calendar has two events that are used in conjunction with facets to provide a way to easily implement additional functionality needed in a calendar, such as editing or adding activities. These two events are CalendarActivityEvent
(invoked when an action occurs on an activity) and CalendarEvent
(invoked when an action occurs on the calendar, itself). For more information about using these events to provide additional functionality, see Section 17.4, "Adding Functionality Using Popup Components."
The calendar also supports events that are fired when certain changes occur. The CalendarActivityDurationChangeEvent
is fired when the user changes the duration of an activity by dragging the end time or by drag and drop to change the start time. The CalendarDisplayChangeEvent
is fired whenever the component changes the value of a display attribute, for example when the view
attribute changes from month
to day
.
When a CalendarDisplayChangeEvent
is fired, the calendar component adds itself as a partial page rendering (PPR) target, allowing the calendar to be immediately refreshed. This is because the calendar assumes that if the display changed programatically, then the calendar must need to be rerendered. For example, if a user changes the view
attribute from day
to month
, then the calendar is rerendered automatically.
When a user acts upon an activity, a CalendarActivityEvent
is fired. This event causes the popup component contained in a facet to be displayed, based on the user's action. For example, if the user right-clicks an activity, the CalendarActivityEvent
causes the popup component in the activityContextMenu
to be displayed. The event is also delivered to the server, where a configured listener can act upon the event. You create the popup components for the facets (or if you do not want to use a popup component, implement the server-side listener). It is in these popup components and facets where you can implement functionality that will allow users to create, delete, and edit activities, as well as to configure their instances of the calendar.
Table 17-1 shows the different user actions that invoke events, the event that is invoked, and the associated facet that will display its contents when the event is invoked. The table also shows the component you must use within the popup component. You create the popup and the associated component within the facet, along with any functionality implemented in the handler for the associated listener. If you do not insert a popup component into any of the facets in the table, then the associated event will be delivered to the server, where you can act on it accordingly by implementing handlers for the events.
Table 17-1 Calendar Faces Events and Associated Facets
User Action | Event | Associated Facet | Component to Use in Popup |
---|---|---|---|
Right-click an activity. |
|
|
|
Select an activity and press the Delete key. |
|
|
|
Click or double-click an activity, or select an activity and press the Enter key. |
|
|
|
Hover over an activity. |
|
|
|
Right-click the calendar (not an activity or the toolbar). |
|
|
|
Click or double-click any free space in the calendar (not an activity). |
|
|
|
To add functionality, create the popups and associated components in the associated facets.
Before you begin:
It may be helpful to have an understanding of popup components. For more information, see Section 17.4, "Adding Functionality Using Popup Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 17.1.2, "Additional Functionality for the Calendar."
To add functionality using popup components:
activityDelete
facet.To add a popup component, right-click the facet in the Structure window and choose Insert inside facetName > ComponentName.
For more information about creating popup components, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."
Example 17-1 shows the JSF code for a dialog popup component used in the activityDelete
facet.
Example 17-1 JSF Code for an Activity Delete Dialog
Figure 17-7 shows how the dialog is displayed when a user clicks an activity and presses the Delete key.
calendarActivityListener
. For example, if you are implementing a dialog for the activityDeleteFacet
, then implement logic in the calendarActivityListener
that can save-off the current activity so that when you implement the logic in the dialog listener (in the next step), you will know which activity to delete. Example 17-2 shows the calendarActivityListener
for the calendar.jspx page in the ADF Faces demo application.Example 17-2 calendarActivityLIstener Handler
dialogListener
that actually deletes the activity when the dialog is dismissed. For more information about creating dialogs and other popup components, see Chapter 15, "Using Popup Dialogs, Menus, and Windows."By default, the toolbar in the calendar allows the user to change the view between day, week, month, and list, go to the next or previous item in the view, go to the present day, or display a text description of the current view. For example in the day view, it displays the active date, as shown in Figure 17-8.
Figure 17-9 shows a toolbar that has been customized. It has added toolbar buttons, including buttons that are right-aligned on the top toolbar, and buttons in a second toolbar.
Place the toolbar and toolbar buttons you want to add in custom facets that you create. Then, reference the facet (or facets) from an attribute on the calendar, along with keywords that determine how or where the contained items should be displayed.
Before you begin:
It may be helpful to have an understanding of calendar toolbar customization. For more information, see Section 17.5, "Customizing the Toolbar."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 17.1.2, "Additional Functionality for the Calendar."
To customize the toolbar:
facet
tags. Ensure that each facet has a unique name for the page.Tip: To ensure that there will be no conflicts with future releases of ADF Faces, start all your facet names with customToolbar . For example, the section of the toolbar that contains the alignment buttons shown in Figure 17-9 are in the customToolbarAlign facet. |
toolboxLayout
attribute, choose Edit.all
: Displays all the toolbar buttons and text in the default toolbardates
: Displays only the previous, next, and today buttonsrange
: Displays only the string showing the current date rangeviews
: Displays only the buttons that allows the user to change the viewNote: If you use the all keyword, then the dates , range , and views keywords are ignored. |
For example, if you created two facets named customToolbar1
and customToolbar2
, and you wanted the complete default toolbar to appear in between your custom toolbars, the value of the toolboxLayout
attribute would be the following list items:
You can also determine the layout of the toolbars using the following keywords:
newline
: Places the toolbar in the next named facet (or the next keyword from the list in the toolboxLayout
attribute) on a new line. For example, if you wanted the toolbar in the customToolbar2
facet to appear on a new line, the list would be:If instead, you did not want to use all of the default toolbar, but only the views and dates sections, and you wanted those to each appear on a new line, the list would be:
stretch
: Adds a spacer component that stretches to fill up all available space so that the next named facet (or next keyword from the default toolbar) is displayed as right-aligned in the toolbar. Example 17-3 shows the value of the toolboxLayout
attribute for the toolbar displayed in Figure 17-9, along with the toolbar placed in the customToolbarAlign
facet. Note that the toolbar buttons displayed in the customToolbarBold
facet are right-aligned in the toolbar because the keyword stretch
is named before the facet.Example 17-3 Value for Custom Toolbar
Like other ADF Faces components, the calendar component can be styled as described in Chapter 28, "Customizing the Appearance Using Styles and Skins." However, along with standard styling procedures, the calendar component has specific attributes that make styling instances of a calendar easier. These attributes are:
activityStyles
: Allows you to individually style each activity instance. For example, you may want to show activities belonging to different providers in different colors.dateCustomizer
: Allows you to display strings other than the calendar date for the day in the month view. For example, you may want to display countdown or countup type numbers, as shown in Figure 17-10. This attribute also allows you to add strings to the blank portion of the header for a day.The activityStyles
attribute uses InstanceStyles
objects to style specific instances of an activity. The InstanceStyles
class is a way to provide per-instance inline styles based on skinning keys.
The most common usage of the activityStyles
attribute is to display activities belonging to a specific provider using a specific color. For example, the calendar shown in Figure 17-11 shows activities belonging to three different providers. The user can change that color used to represent a provider's activities in the left panel. The activityStyles
attribute is used to determine the color displayed for each activity, based on the provider with which it is associated.
Note that instead of using a single color, a range of a color is used in the calendar. This is called a color ramp. A color ramp is a set of colors in a color family to represent the different states of activities. For example, Ted's activities use the Blue ramp. Activities whose time span is within one day are displayed in medium blue text. Activities that span across multiple days are shown in a medium blue box with white text. Darker blue is the background for the start time, while lighter blue is the background for the title. These three different blues are all part of the Blue color ramp.
The CalendarActivityRamp
class is a subclass (of InstanceStyles)
that supports some built-in color ramps and can take a representative color (for example, the blue chosen for Ted's activities) and return the correct color ramp to be used to display each activity in the calendar.
The activityStyles
attribute must be bound to a map
object. The map key is the set returned from the getTags
method on an activity. The map value is an InstanceStyles
object, most likely an instance of CalendarActivityRamp
. This InstanceStyles
object will take in skinning keys, and for each activity, styles will be returned.
Before you begin:
It may be helpful to have an understanding of calendar styles. For more information, see Section 17.6, "Styling the Calendar."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 17.1.2, "Additional Functionality for the Calendar."
To style activities:
CalendarActivity
class, have the getTags
method return a string set that will be used by the activityStyles
attribute to map the returned string to a specific style. For example, to use the different color ramps for the different providers shown in Figure 17-11, you must return a string for each provider. In this case, an activity belonging to the current user might return Me
, an activity belonging to Mary might return MJ
, and an activity belonging to Ted might return TC
. For more information about implementing the CalendarActivity
class, see Section 17.2.2, "How to Create a Calendar."getTags
method, and whose value is an InstanceStyles
object (for example, a CalendarActivityRamp
instance).For example, to use the different color ramps shown in Figure 17-11, you would create a map using the values shown in Table 17-2.
Table 17-2 Map for activityStyles Attribute
Key (String Set) | Value (InstanceStyles Object) |
---|---|
|
|
|
|
|
|
activityStyles
attribute to the map.During calendar rendering for each activity, the renderer calls the CalendarActivity.getTags
method to get a string set. The string set is then passed to the map bound to the activityStyles
attribute, and an InstanceStyles
object is returned (which may be a CalendarActivityRamp
).
Using the example:
{"Me"}
is passed in, the red CalendarActivityRamp
is returned.{"LE"}
is passed in, the orange CalendarActivityRamp
is returned.{"TF"}
is passed in, the blue CalendarActivityRamp
is returned.If you want to display something other than the date number string in the day header of the monthly view, you can bind the dateCustomizer
attribute to an implementation of a DateCustomizer
class that determines what should be displayed for the date.
Before you begin:
It may be helpful to have an understanding of calendar styling. For more information, see Section 17.6, "Styling the Calendar."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 17.1.2, "Additional Functionality for the Calendar."
To customize the date string:
oracle.adf.view.rich.util.DateCustomizer
class. This subclass should determine what to display using the following skinning keys:af|calendar::day-header-row
: In day view, customize the day of the week in the header. For example, replace "Thursday" with "Thu".af|calendar::list-day-of-month-link
: In list view, customize the text for the day of the month link. For example, replace "Jan 1" with "New Year's Day".af|calendar::list-day-of-week-column
: In list view, customize the day of the week in the left list column. For example, replace "Thursday" with "Thu".af|calendar::week-header-day-link
: In week view, customize the date link for each date in the header. For example, replace "Sun 1/1" with "New Year's Day".af|calendar::month-grid-cell-header-misc
: In month view, add miscellaneous text to the empty area of the cell header. For example, on Jan 1, add the text "New Year's Day".af|calendar::month-grid-cell-header-day-link
: In month view, customize the date link labels in the cell header. For example, replace "5" with "-34".Example 17-4 shows the DemoDateCustomizer
class that displays the week number in the first day of the week, and instead of the day of the month, a countdown number to a specific date, as shown in Figure 17-10.
Example 17-4 Date Customizer Class
DateCustomizer
class, for example:dateCustomizer
attribute to the DateCustomizer
instance created in the managed bean.This chapter describes how to display output text, images, and icons using ADF Faces components, and how to use components that allow users to play video and audio clips.
This chapter includes the following sections:
ADF Faces provides components for displaying text, icons, and images, and for playing audio and video clips on JSF pages.
Figure 18-1 ADF Faces Output Components
The outputText
component can be used as child to many other components to display read-only text. When you need the text to be formatted, you can use the outputFormatted
component. For example, you may want to use bold formatted text within instruction text, as shown in Figure 18-2.
Many ADF Faces components can have icons associated with them. For example, in a menu, each of the menu items can have an associated icon. You identify the image to use for each one as the value of an icon
attribute for the menu item component itself. Information and instructions for adding icons to components that support them are covered in those components' chapters. In addition to providing icons within components, ADF Faces also provides icons used when displaying messages. You can use these icons outside of messages as well.
To display an image on a page, you use the image
component. Images can also be used as links (including image maps) or used to depict the status of the server.
The carousel component manages a group of objects that users can scroll through. It can display objects that rotate in a circular, simulated 3D space, or it can display one object at a time. The objects can be displayed either horizontally or vertically. Users can browse through carousel objects using the slider or using the next and previous buttons. Some use cases for the carousel might include printed collateral, catalogues, and pictures.
The carousel component may be used alone or may be used in conjunction with other components, which you can configure to control the image. For example, you might add components below the carousel that can be used as a drop zone for objects in the carousel; the user can drag an object from the carousel and drop it into a specific area, as shown in Figure 18-3. For more information about implementing drag and drop, see Chapter 33, "Adding Drag and Drop Functionality."
Another example might be adding a menu bar that allows users to perform some action on the current object, such as deleting it, adding it to a favorites list, or preview the image, as shown in Figure 18-4.
Best Practice: Including more than one carousel per page may be visually confusing for the user by making it unclear which slider controls a given carousel, or which drop zone belongs to a given carousel. |
The media component is used to display audio-visual content, such as advertisements or directions to complete a task. The media component can be configured to display all controls, typical controls, minimal controls, no visible controls (for example, controls are available only from a context menu), or no controls at all. Typically, you would not display controls when the clip is very short and control is not needed.
When the media component is the primary component on the page, then typically all controls are displayed, as shown in Figure 18-5.
You may find it helpful to understand other ADF Faces features before you implement your output components. Additionally, once you have added these components to your page, you may find that you need to add functionality such as drag and drop and accessibility. Following are links to other functionality that output components can use.
There are two ADF Faces components specifically for displaying output text on pages: outputText
, which displays unformatted text, and outputFormatted
, which displays text and can include a limited range of formatting options.
To display simple text specified either explicitly or from a resource bundle or bean, you use the outputText
component. You define the text to be displayed as the value of the value
property. For example:
Example 18-1 shows two outputText
components: the first specifies the text to be displayed explicitly, and the second takes the text from a managed bean and converts the value to a text value ready to be displayed (for more information about conversion, see Section 7.3, "Adding Conversion").
Example 18-1 Output Text
You can use the escape
attribute to specify whether or not special HTML and XML characters are escaped for the current markup language. By default, characters are escaped.
Example 18-2 illustrates two outputText
components, the first of which uses the default value of true
for the escape
attribute, and the second of which has the attribute set to false
.
Example 18-2 Output Text With and Without the escape Property Set
Figure 18-6 shows the different effects seen in a browser of the two different settings of the escape
attribute.
You should avoid setting the escape
attribute to false
unless absolutely necessary. A better choice is to use the outputFormatted
component, which allows a limited number of HTML tags.
As with the outputText
component, the outputFormatted
component also displays the text specified for the value
property, but the value can contain HTML tags. Use the formatting features of the outputFormatted
component specifically when you want to format only parts of the value in a certain way. If you want to use the same styling for the whole component value, instead of using HTML within the value, apply a style to the whole component. If you want all instances of a component to be formatted a certain way, then you should create a custom skin. For more information about using inline styles and creating skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."
Example 18-3 shows an outputFormatted
component displaying only a few words of its value in bold (note that you need to use entities such as <
on JSPX pages).
Example 18-3 Using outputFormatted to Bold Some Text for a JSPX file
Example 18-4 Using outputFormatted to Bold Some Text for a JSP file
Figure 18-7 shows how the component displays the text.
Before displaying any output text, decide whether or not any parts of the value must be formatted in a special way. If they do, then use an outputFormatted
component.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 18.2, "Displaying Output Text and Formatted Output Text."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To display output text:
outputFormatted
component, drag and drop an Output Text (Formatted) from the Component Palette.Tip: If parts of the value require special formatting, use an outputFormatted component. |
Tip: If you plan to support changing the text of the component through active data (for example, data being pushed from the data source will determine the text that is displayed), then you should use the activeOutputText component instead of the outputText component. Create an activeOutputText component by dragging an Output Text (Active) from the Component Palette. |
outputFormatted
component, use HTML formatting codes to format the text as needed, as described in Table 18-1 and Table 18-2.The outputFormatted
component also supports the styleUsage
attribute whose values are the following predefined styles for the text:
inContextBranding
instruction
pageStamp
Figure 18-8 shows how the styleUsage
values apply styles to the component.
Note: If the styleUsage and styleClass attributes are both set, the styleClass attribute takes precedence. |
Only certain formatting and character codes can be used. Table 18-1 lists the formatting codes allowed for formatting values in the outputFormatted
component.
Table 18-1 Formatting Codes for Use in af:outputFormatted Values
Formatting Code | Effect |
---|---|
| Line break |
| Horizontal rule |
| Lists: ordered list, unordered list, and list item |
| Paragraph |
| Bold |
| Italic |
| Teletype or monospaced |
| Larger font |
| Smaller font |
| Preformatted: layout defined by whitespace and line break characters preserved |
| Span the enclosed text |
| Anchor |
Table 18-2 lists the character codes for displaying special characters in the values.
Table 18-2 Character Codes for Use in af:outputFormatted Values
Character Code | Character |
---|---|
| Less than |
| Greater than |
| Ampersand |
| Registered |
| Copyright |
| Nonbreaking space |
| Double quotation marks |
The attributes class
, style
, and size
can also be used in the value
attribute of the outputFormatted
component, as can href
constructions. All other HTML tags are ignored.
Note: For security reasons, JavaScript is not supported in output values. |
ADF Faces provides a set of icons used with message components, shown in Figure 18-9.
If you want to display icons outside of a message component, you use the icon
component and provide the name of the icon type you want to display.
Note: The images used for the icons are determined by the skin the application uses. If you want to change the image, create a custom skin. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins." |
When you use messages in an ADF Faces application, the icons are automatically added for you. You do not have to add them to the message component. However, you can use the icons outside of a message component. To display one of the standard icons defined in the skin for your application, you use the icon
component.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 18.3, "Displaying Icons."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To display a standard icon:
error
.To display an image on a page, you use the image
component and set the source
attribute to the URI where the file is located. The image
component also supports accessibility description text by providing a way to link to a long description of the image.
The image
component can also be used as a link and can include an image map, however, it must be placed inside a goLink
component. For more information, see Section 18.5, "Using Images as Links."
You use the image
component to display images.
Before you begin:
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To display an image:
Tip: If you plan to support changing the source attribute of the image through active data (for example, data being pushed from the data source will determine the image that is displayed), then you should use the activeImage component instead of the image component. Create an activeImage component by dragging an Image (Active) from the Component Palette. |
ADF Faces provides the commandImageLink
component that renders an image as a link, along with optional text. You can set different icons for when the user hovers the mouse over the icon, and for when the icon is depressed or disabled. For more information about the commandImageLink
component, see Section 20.3, "Using Buttons and Links for Navigation."
If you simply want an image to be used to navigate to a given URI, you can enclose an image in the goLink
component and then, if needed, link to an image map.
You can use an image as a goLink
component to one or more destinations. If you want to use an image as a simple link to a single destination, use a goLink
component to enclose your image, and set the destination
attribute of the goLink
component to the URI of the destination for the link.
If your image is being used as a graphical navigation menu, with different areas of the graphic navigating to different URIs, enclose the image
component in a goLink
component and create a server-side image map for the image.
You use the commandImageLink
component to render an image as a link.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 18.5, "Using Images as Links."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To use an image as one or more goLink components:
goLink
component.You can display images in a revolving carousel, as shown in Figure 18-10. Users can change the image at the front either by using the slider at the bottom or by clicking one of the auxiliary images to bring that specific image to the front.
By default, the carousel displays horizontally. The objects within the horizontal orientation of the carousel are vertically-aligned to the middle and the carousel itself is horizontally-aligned to the center of its container.
You can configure the carousel so that it can be displayed vertically, as you might want for a reference rolodex. By default, the objects within the vertical orientation of the carousel are horizontally-aligned to the center and the carousel itself is vertically aligned middle, as shown in Example 18-4. You can change the alignments using the carousel's alignment attributes.
Best Practice: Generally the carousel should be placed in a parent component that stretches its children (such as a panelSplitter or panelStretchLayout). If you do not place the carousel in a component that stretches its children, your carousel will display at the default dimension of 500px wide and 300px tall. You can change these dimensions. |
Instead of partially displaying the previous and next images, you can configure your carousel so that it only displays the current image, as shown in Figure 18-12.
You can also configure the controls used to browse through the images. You can display a slider with next and previous arrows that spans more than one image, as shown in Figure 18-10, display only next and previous buttons, as shown in Figure 18-12, or display next and previous buttons, along with the slide counter, as shown in Figure 18-12.
Figure 18-13 Next and Previous Buttons Without a Slider
A child carouselItem
component displays the objects in the carousel, along with a title for the object. Instead of creating a carouselItem
component for each object to be displayed, and then binding these components to the individual object, you bind the carousel
component to a complete collection. The component then repeatedly renders one carouselItem
component by stamping the value for each item, similar to the way a tree stamps out each row of data. As each item is stamped, the data for the current item is copied into a property that can be addressed using an EL expression using the carousel
component's var
attribute. Once the carousel has completed rendering, this property is removed or reverted back to its previous value. Carousels contain a nodeStamp
facet, which is both a holder for the carouselItem
component used to display the text and short description for each item, and also the parent component to the image displayed for each item.
For example, the carouselItem
JSF page in the ADF Faces demo shown in Figure 18-10 contains a carousel
component that displays an image of each of the ADF Faces components. The demoCarouselItem
(CarouselBean.java
) managed bean contains a list of each of these components. The value attribute of the carousel
component is bound to the items
property on that bean, which represents that list. The carousel component's var
attribute is used to hold the value for each item to display, and is used by both the carouselItem
component and image
component to retrieve the correct values for each item. Example 18-5 shows the JSF page code for the carousel. For more information about stamping behavior in a carousel, see Section 12.6, "Displaying Data in Trees."
Example 18-5 Carousel Component JSF Page Code
A carouselItem
component stretches its sole child component. If you place a single image
component inside of the carouselItem
, the image stretches to fit within the square allocated for the item (as the user spins the carousel, these dimensions shrink or grow).
Best Practice: The image component does not provide any geometry management controls for altering how it behaves when stretched. You should use images that have equal width and height dimensions in order for the image to retain its proper aspect ratio when it is being stretched. |
The carousel
component uses a Collection
Model
class to access the data in the underlying collection. This class extends the JSF DataModel
class and adds on support for row keys. In the DataModel
class, rows are identified entirely by index. However, to avoid issues if the underlying data changes, the CollectionModel
class is based on row keys instead of indexes.
You may also use other model classes, such as java.util.List
, array
, and javax.faces.model.DataModel
. If you use one of these other classes, the carousel
component automatically converts the instance into a CollectionModel
class, but without any additional functionality. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
.
Note: If your application uses the Fusion technology stack, you can create ADF Business Components over your data source that represent the items, and the model will be created for you. You can then declaratively create the carousel, and it will automatically be bound to that model. For more information, see the "Using the ADF Faces Carousel Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework |
The carousel components are virtualized, meaning not all the items that are there for the component on the server are delivered to and displayed on the client. You configure the carousel to fetch a certain number of rows at a time from your data source. The data can be delivered to the component either immediately upon rendering, or lazily fetched after the shell of the component has been rendered. By default, the carousel lazily fetches data for the initial request. When a page contains one or more of these components, the page initially goes through the standard lifecycle. However, instead of the carousel fetching the data during that initial request, a special separate partial page rendering (PPR) request is run on the component, and the number of items set as the value of the fetch size for the carousel is then returned. Because the page has just been rendered, only the Render Response phase executes for the carousel, allowing the corresponding data to be fetched and displayed. When a user does something to cause a subsequent data fetch (for example spinning the carousel for another set of images), another PPR request is executed.
Performance Tip: You should use lazy delivery when the page contains a number of components other than a carousel. Using lazy delivery allows the initial page layout and other components to be rendered first before the data is available. Use immediate delivery if the carousel is the only context on the page, or if the carousel is not expected to return a large set of items. In this case, response time will be faster than using lazy delivery (or in some cases, simply perceived as faster), as the second request will not go to the server, providing a faster user response time and better server CPU utilizations. Note however that only the number of items configured to be the fetch block will be initially returned. As with lazy delivery, when a user's actions cause a subsequent data fetch, the next set of items are delivered. |
A slider control allows users to navigate through the collection. Normally the thumb on the slider displays the current object number out of the total number of objects, for example 6 of 20. When the total number of objects is too high to calculate, the thumb on the slider will show only the current object number. For example, say a carousel is used for a company' s employee directory. By default the directory might show faces for every employee, but it may not know without an expensive database call that there are exactly 94,409 employees in the system that day.
You can use other components in conjunction with the carousel. For example, you can add a toolbar or menu bar, and to that, add buttons or menu items that allow users to perform actions on the current object.
To create a carousel, you must first create the data model that contains the images to display. You then bind a carousel
component to that model and insert a carouselItem
component into the nodeStamp
facet of the carousel. Lastly, you insert an image
component (or other components that contain an image
component) as a child to the carouselItem
component.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 18.6, "Displaying Images in a Carousel."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To Create a Carousel:
List
, Array
, DataModel
or CollectionModel
. If the collection is anything other than a CollectionModel
, the framework will automatically convert it to a CollectionModel
. For more information about the CollectionModel
class, see the MyFaces Trinidad Javadoc at http://myfaces.apache.org/trinidad/trinidad-1_2/trinidad-api/apidocs/index.html
.The data model should provide the following information for each of the images to be displayed in the carousel:
For examples, see the CarouselBean.java
and the CarouselMediaBean.java
classes in the ADF Faces demo application.
Best Practice: Place the carousel in a parent container that stretches its children. |
vertical
if you want it to display vertically, as shown in Figure 18-11. If you set it to horizontal
, you must configure how the items line up using the halign
attribute. If you set it to vertical
, set how the items line up using the valign
attribute.varStatus
include:model
: Returns the CollectionModel
for the component.index
: Returns the zero-based item index.contentDelivery
attribute is set to immediate
, items are fetched at the same time the carousel is rendered. If the contentDelivery
attribute is set to lazy
, items will be fetched and delivered to the client during a subsequent request.CarouselBean
which redraws the detail panel when the spin happens.Example 18-6 Handler for the CarouselSpinEvent
CollectionModel
:nodeStamp
facet of the Carousel
component.Bind the CarouselItem
component's attributes to the properties in the data model using the variable value set on the carousel's var
attribute. For example, the carousel in Example 18-5 uses item
as the value for the var
attribute. So the value of the carouselItem
's text
attribute would be item.title
(given that title
is the property used to access the text used for the carousel items on the data model).
carouselItem
.Bind the image
component's attributes to the properties in the data model using the variable value set on the carousel's var
attribute. For example, the carousel in Example 18-5 uses item
as the value for the var
attribute. So the value of the image
's source
attribute would be item.url
(given that url
is the property used to access the image).
You can surround the image component with other components if you want more functionality. For example, Figure 18-14 shows a carousel whose images are surrounded by a panelGroupLayout
component and that also uses a clientListener
to call a JavaScript function to show a menu and a navigation bar.
Example 18-7 shows the corresponding page code.
Example 18-7 A More Complex Layout for a Carousel
Example 18-8 shows the corresponding JavaScript.
Example 18-8 JavaScript Code to Handle Mouse Over and Mouse Down
Performance Tip: The simpler the structure for the carousel is, the faster it will perform. |
In some browsers, the visual decoration of the carousel's items will be richer. For example, Safari and Google Chrome display subtle shadows around the carousel's items, and the noncurrent items have a brightness overlay to help make clear that the auxiliary items are not the current item, as shown in Figure 18-15.
Figure 18-16 shows the same component in Internet Explorer.
ADF Faces provides the statusIndicator
component that you can use to indicate server activity. What displays depends both on the skin your application uses and on how your server is configured. By default, the following are displayed:
When the server is not busy, a static icon is displayed:
Note: ADS allows you to bind your application to an active data source. You must use the Fusion technology stack in order to use ADS. For more information, see Chapter 35, "Using the Active Data Service with an Asynchronous Backend." |
ADS can be configured to either have data pushed to the model, or it can be configured to have the application poll for the data at specified intervals. Table 18-3 shows the icons that are used to display server states for push and poll modes (note that the icons are actually animated).
Table 18-3 Icons Used in Status Indicator for ADS
Icon | Push Mode | Pull Mode |
---|---|---|
At the first attempt at connecting to the server. | At the first attempt at connecting to server. | |
When the first connection is successfully established. | When the first connection is successfully established and when a connection is reestablished. | |
When subsequent attempts are made to reconnect to the server. | Before every poll request. | |
When a connection cannot be established or reestablished. | When the configured number of poll attempts are unsuccessful. |
After you drop a status indicator component onto the page, you can use skins to change the actual image files used in the component. For more information about using skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins."
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 18.7, "Displaying Application Status Using Icons."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To use the status indicator icon:
Tip: For help in setting attributes, use the field's dropdown menu to view a description of the attribute. |
The ADF Faces media
component allows you to include video and audio clips on your application pages.
The media control handles two complex aspects of cross-platform media display: determining the best player to display the media, and sizing the media player.
You can specify which media player is preferred for each clip, along with the size of the player to be displayed for the user. By default, ADF Faces uses the MIME type of the media resource to determine the best media player and the default inner player size to use, although you can specify the type of content yourself, using the contentType
attribute.
You can specify which controls are to be available to the user, and other player features such as whether or not the clip should play automatically, and whether or not it should play continuously or a specified number of times.
Once you add a media component to your page, you can configure the media player to use by default, the size of the player and screen, the controls, and whether or not the clip should replay.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 18.8, "Playing Video and Audio Clips."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 18.1.2, "Additional Functionality for Output Components."
To include an audio or video clip in your application page:
Alternatively, you can create a link in the page that starts the playing of the media resource based on the user agent's built-in content type mapping. The media control attempts to pick the appropriate media player using the following steps:
player
attribute, and that player is available on the user agent and can display the media resource, that player is used.Because the set of controls available varies between players, you define what set of controls to display in a general way, rather than listing actual controls. For example, you can have the player display all controls available, the most commonly used controls, or no controls.
As an example, Example 18-9 uses the all
setting for a media
component.
Figure 18-17 shows how the player is displayed to the user.
Following values are valid:
Using this setting can cause a large amount of additional space to be required, depending on the media player used.
This value gives users control over the most important media playing controls, while occupying the least amount of additional space on the user agent.
You would typically use this setting only for kiosk-type applications, where no user control over the playing of the media is allowed. This setting is typically used in conjunction with settings that automatically start the playback, and to play back continuously.
You would typically use this value only in applications where user control over the playing of the media is allowed, but not encouraged. As with the none
setting, this setting is typically used in conjunction with settings that automatically start the playback, and to play back continuously.
This value, the default, gives users control over the most common media playing controls, without occupying an inordinate amount of extra space on the user agent.
Tip: Using the width and height attributes can lead to unexpected results because it is difficult to define a suitable width and height to use across different players and different player control configurations. Instead of defining the size of the complete display, you can instead define just the size of the media content area using the innerWidth and innerHeight attributes. |
Tip: If you do not specify a size for the media control, a default inner size, determined by the content type of the media resource, is used. While this works well for audio content, it can cause video content to be clipped or to occupy too much space. If you specify dimensions from both schemes, such as a |
autostart
attribute to true
.Set PlayCount to the number of times you want the media to play. Once started, by default, the clip with play through once only. If the users have controls available, they can replay the clip. However, you can specify that the clip is to play back a fixed number of times, or loop continuously, by setting a value for the playCount
attribute. Setting the playCount
attribute to 0 replays the clip continuously. Setting the attribute to some other number plays the clip the specified number of times.
Example 18-10 shows an af:media
component in the source of a page. The component will play a video clip starting as soon as it is loaded and will continue to play the clip until stopped by the user. The player will display all the available controls.
Example 18-10 Media Component to Play a Video Clip Continuously
This chapter describes how to define and display tips and messages for ADF Faces components, and how to provide different levels of help information for users.
This chapter includes the following sections:
ADF Faces provides many different ways for displaying informational text in an application. You can create simple tip text, validation and conversion tip text, validation and conversion failure messages, as well as elaborate help systems.
Figure 19-1 ADF Messaging Components
Many ADF Faces components support the shortDesc
attribute, which for most components, displays tip information when a user hovers the cursor over the component. Figure 19-2 shows a tip configured for a toolbar button. For more information about creating tips, see Section 19.2, "Displaying Tips for Components."
Along with tips, EditableValueHolder
components (such as the inputText
component, or the selection components) can display hints used for validation and conversion. When you configure validation or conversion, a default hint automatically displays in a note window (for more information, see Chapter 7, "Validating and Converting Input").
ADF Faces uses the standard JSF messaging API. JSF supports a built-in framework for messaging by allowing FacesMessage
instances to be added to the FacesContext
object using the addMessage(java.lang.String clientId, FacesMessage message)
method. In general there are two types of messages that can be created: component-level messages, which are associated with a specific component based on any client ID that was passed to the addMessage
method, and global-level messages, which are not associated with a component because no client ID was passed to the addMessage
method.
When conversion or validation fails on an EditableValueHolder
ADF Faces component, FacesMessages
objects are automatically added to the message queue on the FacesContext
instance, passing in that component's ID. These messages are then displayed in the note window for the component. ADF Faces components are able to display their own messages. You do not need to add any tags.
Similarly, the document
tag handles and displays all global FacesMessages
objects (those that do not contain an associated component ID), as well as component FacesMessages
. Like component messages, you do not need to add any tags for messages to be displayed. Whenever a global message is created (or more than one component message), all messages in the queue will be displayed in a popup window, as shown in Figure 19-3.
Alternatively, you can use the ADF Faces messages
component if you want messages to display on the page rather than in a popup window. For more information about displaying hints and messages for components, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."
Tip: While ADF Faces provides messages for validation and conversion, you can add your own FacesMessages objects to the queue using the standard JSF messaging API. When you do so, ADF Faces will display icons with the message based on the message level, as follows: |
Instead of having each component display its own messages, you can use the panelLabelAndMessage
component to group components and display a message in one area. This can be very useful when you have to group components together. For example, the File Explorer application uses a panelLabelAndMessage
component where users enter a telephone number. The telephone number input field is actually three separate inputText
components. The panelLabelAndMessage
component wraps three inputText
components. Instead of each having its own label and message, the three have just one label and one message, as shown in Figure 19-8. For more information, see Section 19.4, "Grouping Components with a Single Label and Message."
Along with configuring messages for individual component instances, you can create a separate help system that provides information that can be reused throughout the application.You create help information using different types of providers, and then reference the help text from the UI components. The following are the three types of help supported by ADF Faces:
panelHeader
components), or displays text in the note window that is opened when the user clicks in the component, as shown in Figure 19-5. The text can be any length.selectOneChoice
component configured to open a help topic about skins. When a user clicks the help icon, the help topic opens.For more information about creating help systems, see Section 19.5, "Displaying Help for Components."
Messages can typically be divided into to types: error messages that display when an error occurs in the application, for example when a user enters incompatible information, and informational messages that provide for example, hints for using a component or for completing a task on a page.
Error messages use the JSF messaging API. There are two types of error messages: component messages where the message applies to the specific component only, and global messages, where the message applies to more than one component or the whole page.
By default, the noteWindow
component is used for component error messages. When you configure conversion or validation on any input component, validation and conversion hints and errors are automatically displayed in the noteWindow
component. You do not need to add the component to the page.
For example, when users click Help > Give Feedback in the File Explorer application, a dialog displays where they can enter a time and date for a customer service representative to call. Because the inputDate
component contains a converter, when the user clicks in the field, a note window displays a hint that shows the expected pattern, as shown in Figure 19-7. If the inputDate
component was also configured with a minimum or maximum value, the hint would display that information as well. These hints are provided by the converters and validators automatically.
If a user enters a date incorrectly in the field shown in Figure 19-7, an error message is displayed, as shown in Figure 19-8. Note that the error message appears in the note window along with the hint.
If you want to display an error message for a non-ADF Faces component, or if you want the message to be displayed inline instead of the note window, use the ADF Faces message
component. When you use this component, messages are displayed next to the component, as shown in Figure 19-9.
Global messages are by default displayed in a dialog, as shown in Figure 19-10. You do not need to add the popup component to the page.
If instead you want the error messages to display directly on the page, use the messages
component. When you use this component, the messages are displayed in a list at the top of the page, as shown in Figure 19-11.
For more information about error messages, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."
Informational messages can range from simple tooltips to comprehensive help systems. Tooltips should be used when the component for which you want to display hints or information does not support help text. However, tooltip text must be very brief. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text instead.
You create tooltips by configuring the shortDesc
attribute on a component. The value of that attribute then displays in a note window when the user hovers over the component, as shown in Figure 19-12.
For more information about tooltips, see Section 19.2, "Displaying Tips for Components."
Use definition help when you need to display more information than can fit in a tooltip. When you configure definition help for most components, a help icon is displayed next to the component. The help text is displayed when the mouse hovers over the component, as shown in Figure 19-13.
For more information about definition help, see Section 19.5, "Displaying Help for Components."
When you want to display field-level help, configure an input component to use instruction text. When the user clicks in the component, the help text is displayed in a note window, as shown in Figure 19-14.
When you want to display instructions for a task, configure instruction help for a container component. The text will appear in the header of the component, as shown in Figure 19-15.
Best Practice: Instruction text for input components should be used only when the typical user may fail to perform a task without assistance. Excessive use of instruction text clutters the page with directions or distracts users with note windows that may also obscure related page elements. |
When you need to provide comprehensive help, you can use the help icon to link to an external help system available through a URL.
For more information about instruction and external help, see Section 19.5, "Displaying Help for Components."
You may find it helpful to understand other ADF Faces features before you implement your message components and help functionality. Additionally, once you have added these components to your page, you may find that you need to add functionality such as skinning to change icons and accessibility and using resource bundles to store message text. Following are links to other functionality that message components can use.
ADF Faces components use the shortDesc
attribute to display a tip when the user hovers the mouse over the component. Input components display the tips in their note window. Other component types display the tip in a standard tip box. This text should be kept short. If you have to display more detailed information, or if the text can be reused among many component instances, consider using help text, as described in Section 19.5, "Displaying Help for Components."
Figure 19-16 shows the effect when the cursor hovers over an inputText
component.
Figure 19-17 shows a tip as displayed for a showDetailItem
component.
You use the shortDesc
attribute on a component to display a tip.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.2, "Displaying Tips for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To define a tip for a component:
shortDesc
attribute.Tip: The value should be less than 80 characters, as some browsers will truncate the tip if it exceeds that length. |
If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."
Validators and converters have a default hint that is displayed to users when they click in the associated field. For converters, the hint usually tells the user the correct format to use. For validators, the hint is used to convey what values are valid.
For example, in the File Explorer application, when a user clicks in the input date field on the Speak with Customer Service page, a tip is displayed showing the correct format to use, as shown in Figure 19-18.
When the value of an ADF Faces component fails validation, or cannot be converted by a converter, the component displays the resulting FacesMessage
instance.
For example, entering a date that does not match the dateStyle
attribute of the converter results in an error message, as shown in Figure 19-19.
You can override the default validator and converter hint and error messages for either a component instance, or globally for all instances. To define a custom message for a component instance you set attributes to the detail messages to be displayed. The actual attributes vary according to the validator or converter. Figure 19-20 shows the attributes that you can populate to override the messages for the convertDateTime
converter, as displayed in the Property Inspector.
To define an error message that will be used by all instances of the component, you need to create an entry in a resource bundle that will override the default message.
If you do not want messages to be displayed in the note window, you can use the message
component, and messages will be displayed inline with the component. Figure 19-21 shows how messages are displayed using the message
component.
JSF pages in an ADF Faces application use the document
tag, which among other things, handles displaying all global messages (those not associated with a component) in a popup window. However, if you want to display global messages on the page instead, use the messages
component.
To override the default validator and converter messages for a single component instance, set values for the different message attributes.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To define a validator or converter message:
Note: You can override messages only for ADF Faces components. If you want to create a message for a non-ADF Faces component (for example for the f:validator component), then use the message component. For more information, see Section 19.3.3, "How to Display Component Messages Inline." |
The values can include dynamic content by using parameter placeholders such as {0}, {1}, {2}, and so on. For example, the messageDetailConvertDate
attribute on the convertDateTime
converter uses the following parameters:
Tip: your application uses bidirectional or right-to-left display, do not start the message with the expected format parameter (2), as it may not display correctly in Internet Explorer. |
Using these parameters, you could create this message:
{1} is not using the correct date format. Please enter the date as follows: {2}
. The error message would then be displayed as shown in Figure 19-22.
Tip: Use the dropdown menu to view the property help, which includes the parameters accepted by the message. |
If the text to be used is stored in a resource bundle, use the dropdown list to select Select Text Resource. Use the Select Text Resource dialog to either search for appropriate text in an existing bundle, or to create a new entry in an existing bundle. For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages."
Note: The message text is for the detail message of the FacesMessage object. If you want to override the summary (the text shown at the top of the message), you can only do this globally. For more information, see Section 19.3.2, "How to Define Custom Validator and Converter Messages for All Instances of a Component." |
Instead of changing the message string per component instance with the messageDetail[XYZ]
attributes, you can override the string globally so that the custom string will be displayed for all instances. The global messages are handled by key/value pairs in a message bundle. You can override summary, detail, and hint messages.
To globally override a default validator or converter message:
org.apache.myfaces.trinidad.validator.LengthValidator.
MAXIMUM_detail
, as shown in Section B.3.8, "af:validateLength."Note: If you are creating a new bundle, you will need to register it with the application. |
Instead of having a component display its messages in the note window, use the message
component to display the messages inline on the page. In order for the message
component to display the correct messages, associate it with a specific component.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To display component messages inline:
message
component. If not already set, enter an ID for the component.for
attribute to select Edit.message
component will display messages. Only components that have their ID set are valid selections.Note: The message icon and message content that will be displayed are based on what was given when the FacesMessage object was created. Setting the messageType or message attributes on the message component causes the messageType or message attribute values to be displayed at runtime, regardless of whether or not an error has occurred. Only populate these attributes if you want the content to always be displayed when the page is rendered. |
Instead of displaying global messages in a popup window for the page, display them inline using the messages
component.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.3, "Displaying Hints and Error Messages for Validation and Conversion."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To display global messages inline:
globalOnly
: By default, ADF Faces displays global messages (messages that are not associated with components) followed by individual component messages. If you want to display only global messages in the box, set this attribute to true
. Component messages will continue to be displayed with the associated component.inline
: Set to true
to show messages at the top of the page. Otherwise, messages will be displayed in a dialog.By default, ADF Faces input and select components have built-in support for label and message display. If you want to group components and use a single label, wrap the components using the panelLabelAndMessage
component.
For example, the File Explorer application collects telephone numbers using four separate inputText
components; one for the area code, one for the exchange, one for the last four digits, and one for the extension. Because a single label is needed, the four inputText
components are wrapped in a panelLabelAndMessage
component, and the label value is set on that component. However, the input component for the extension requires an additional label, so an outputText
component is used. Example 19-1 shows the JSF code for the panelLabelAndMessage
component.
Example 19-1 panelLabelAndMessage Can Display a Single Label and Help Topic
Figure 19-23 shows how the panelLabelAndMessage
and nested components are displayed in a browser.
The panelLabelAndMessage
component also includes an End
facet that can be used to display additional components at the end of the group. Figure 19-24 shows how the telephone number fields would be displayed if the End
facet was populated with an outputText
component.
Use a panelGroupLayout
component within a panelLabelAndMessage
component to group the components for the required layout. For information about using the panelGrouplayout
component, see Section 9.12, "Grouping Related Items."
You set the simple
attribute to true
on each of the input components so that their individual labels are not displayed. However, you may want to set a value for the label attribute on each of the components for messaging purposes and for accessibility.
Tip: If you have to use multiple panelLabelAndMessage components one after another, wrap them inside an af:panelFormLayout component, so that the labels line up properly. For information about using the panelFormLayout component, see Section 9.6, "Arranging Content in Forms." |
Group and wrap components using the panelLabelAndMessage
component. The panelLabelAndMessage
component can be used to wrap any components, not just those that typically display messages and labels.
You use the panelLabelAndMessage
component to group components and display a single label for that group.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.4, "Grouping Components with a Single Label and Message."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To arrange form input components with one label and message:
Add input or select components as needed to the page.
For each input and select component:
simple
attribute to true
.label
attribute to a label for the component.panelLabelAndMessage
component selected, in the Property Inspector, set the following:Set the for
attribute to the first inputComponent
to meet accessibility requirements.
If one or more of the nested input components is a required component and you want a marker to be displayed indicating this, set the showRequired
attribute to true
.
End
facet, drag and drop the desired component into the facet.Because facets accept one child component only, if you want to add more than one child component, you must wrap the child components inside a container, such as a panelGroupLayout
or group
component.
Tip: If the facet is not visible in the visual editor:
|
ADF Faces provides a framework that allows you to create and display three different types of help whose content comes from an external source, rather than as text configured on the component. Because it is not configured directly on the component, the content can be used by more than one component, saving time in creating pages and also allowing you to change the content in one place rather than everywhere the content appears.
The first type of external help provided by ADF Faces is Definition help. Like a standard tip, the content appears in a message box. However, instead of appearing when the user mouses over the component, Definition help provides a help icon (a blue circle with a question mark). When the user mouses over the icon, the content is displayed, as shown in Figure 19-25.
Table 19-1 shows the components that support Definition help.
Table 19-1 Components That Support Definition Help
Supported Components | Help Icon Placement | Example |
---|---|---|
All input components, Select components, Choose Color, Choose Date, Query components | Before the label, or if no label exists, at the start of the field | |
Panel Header, PanelBox, Show Detail Header | End of header text | |
Panel Window, Dialog | Next to close icon in header | |
Columns in table and tree | Below header text |
The second type of help is Instruction help. Where Instruction help is displayed depends on the component with which it is associated. The panelHeader
and Search panel components display Instruction help within the header. Figure 19-26 shows how the text that typically is displayed as Definition help as shown in Figure 19-25 would be displayed as Instruction help within the panelHeader
component.
All other components that support Instruction help display the text within a note window, as shown in Figure 19-27. Note that no help icon is displayed.
Table 19-2 shows the components that support Instruction help.
Table 19-2 Components That Support Instruction Help
Supported Components | Help Placement | Example |
---|---|---|
Input components, Choose Color, Choose Date, Quick Query | Note window, on focus only | |
Select components | Note window, on hover and focus | |
Panel Header, Panel Box, Query | Text below header text |
The last type of help is External URL help. You provide a URL to a web page in an external application, and when the help icon is clicked, the web page opens in a separate browser window, as shown in Figure 19-28. Instead of clicking a help icon, you can use JavaScript to open a help window based on any client-based event.
ADF Faces includes a variety of help providers. The ResourceBundleHelpProvider
help provider allows you to create resource bundles that hold the help content. The ELHelpProvider
help provider allows you to create XLIFF files that get converted into maps, or create a managed bean that contains a map of help text strings. You can use a combination of the different help providers. You can also create your own help provider class.
To create help for your application, do the following:
helpTopicId
attribute. A helpTopicId
attribute contains the following.For example, the value of the helpTopicId
attribute on the inputText
component shown in Figure 19-27 might be RBHELP_FILE_NAME
, where RBHELP
is the resource bundle help providers prefix, and FILE_NAME
is the help topic name.
You can store help text within standard resource bundle property files and use the ResourceBundleHelpProvider
class to deliver the content.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To create resource bundle-based help:
RBHELP
.TELEPHONE_NUMBER
.DEFINITION
.For example, a topic ID might be RBHELP_TELEPHONE_NUMBER_DEFINITION
.
Note: All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC , then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC , A , AA , AC , ACB . However, the following are valid: AAD , AB , and so on.UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-2), then both types of help will be displayed by the UI component. |
Example 19-2 shows an example resource bundle with three topics.
Example 19-2 Resource Bundle Help
Note: If you wish to use an external URL help type, create a subclass of the ResourceBundleHelpProvider class. For more information, see Step 3. |
adf-settings.xml
fileTo register the provider, from the META-INF directory, open the adf-settings.xml
file, click the Source tab, and add the following elements:
<help-provider>
: Use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the resource bundle.Note: If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted. |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter oracle.adf.view.rich.help.ResourceBundleHelpProvider
.<property>
: Create as a child element to the <help-provider>
element. The property defines the actual help source.<property-name>
: Create as a child element to the <property>
element, and enter a name for the source, for example, baseName
.<value>
: Create as a child element to the <property>
element and enter the fully qualified class name of the resource bundle. For example, the qualified class name of the resource bundle used in the ADF Faces demo application is oracle.adfdemo.view.resource.DemoResources
.Example 19-3 shows how the resource bundle in Example 19-2 would be registered in the adf-settings.xml
file.
Example 19-3 Registering a Resource Bundle as a Help Provider
If you want to use External URL help, then you also must extend the ResourceBundleHelpProvider
class and implement the getExternalUrl
method. Example 19-4 shows an example method.
Example 19-4 Overriding the getExternalURL Method
In Example 19-4, all the topics in the method return the same URL. You would have to create separate if
statements to return different URLs.
If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 19.5.4, "How to Use JavaScript to Launch an External Help Window."
You can store the help text in XLIFF XML files and use the ELHelpProvider
class to deliver the content. This class translates the XLIFF file to a map of strings that will be used as the text in the help.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To create XLIFF help:
<body>
tag:<trans-unit>
: Enter the topic ID. This must contain the prefix, the topic name, and the help type, for example, XLIFFHELP_CREDIT_CARD_DEFINITION
. In this example, XLIFFHELP
will become the prefix used to access the XLIFF file. CREDIT_CARD
is the topic name, and DEFINITION
is the type of help.Note: All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC , then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC , A , AA , AC , ACB . However, the following are valid: AAD , AB , and so on.UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-5), then both types of help will be displayed by the UI component. |
<source>
: Create as a direct child of the <trans-unit>
element and enter the help text.<target>
: Create as a direct child of the <trans-unit>
element and leave it blank. This element is used to hold translated help text.<note>
: Create as a direct child of the <trans-unit>
element and enter a description of the help text.Example 19-5 shows an example of an XLIFF file that contains two topics.
Example 19-5 XLIFF Help
adf-settings.xml
file.To register the provider, from the META-INF directory, open the adf-settings.xml
file and add the following elements:
<help-provider>
: Use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application, and must match the prefix used in the XLIFF file.Note: If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted. |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter oracle.adf.view.rich.help.ELHelpProvider
.<property>
: Create as a child element to the <help-provider>
element. The property values define the actual help source.<property-name>
: Create as a child element to the <property>
element and enter a name for the help, for example, helpSource
.<value>
: Create as a child element to the <property>
element and enter an EL expression that resolves to the XLIFF file, wrapped in the adfBundle
EL function, for example, #{adfBundle['project1xliff.view.Project1XliffBundle']}
.Example 19-6 shows how the XLIFF file in Example 19-5 would be registered in the adf-settings.xml
file.
Example 19-6 Registering an XLIFF File as a Help Provider
To implement managed bean help, create a managed bean that contains a map of strings that will be used as the text in the help. Managed bean help providers use the ELHelpProvider
class to deliver the help.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To create managed bean help:
Example 19-7 Managed Bean that Returns a Map of Help Text Strings
The first string must contain the prefix, the topic name, and the help type, for
example, MAPHELP_CREDIT_CARD_DEFINITION
. In this example, MAPHELP will become the prefix used to access the bean. CREDIT_CARD
is the topic name, and DEFINITION
is the type of help. The second string is the help text.
Note: All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC , then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC , A , AA , AC , ACB . However, the following are valid: AAD , AB , and so on.UI components access the help content based on the topic name. Therefore, if you use the same topic name for two different types of help (as shown in Example 19-7), then both types of help will be displayed by the UI component. |
Note: If you wish to use external URL help, create a subclass of the ELHelpProvider class. For more information, see Step 4. |
faces-config.xml
file. Example 19-8 shows the bean shown in Example 19-7 registered in the faces-config.xml
file.Example 19-8 Managed Bean Registration in the faces-config.xml File.
For more information about using and registering managed beans, see Section 3.6, "Creating and Using Managed Beans."
adf-settings.xml
file.To register the provider, from the META-INF directory, open the adf-settings.xml
file and add the following elements:
<help-provider>
: Create and use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application.Note: If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted. |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1.<property>
: Create as a child element to the <help-provider>
element. The property defines the map of help strings on the managed bean.<property-name>
: Create as a child element to the <property>
element and enter a property name, for example helpSource
.<value>
: Create as a child element to the <property>
element and enter an EL expression that resolves to the help map on the managed bean.Example 19-9 shows how the bean in Example 19-8 would be registered in the adf-settings.xml
file.
Example 19-9 Registering a Managed Bean as a Help Provider
If you want to use External URL help with the managed bean provider, then extend the ELHelpProvider
class and implement the getExternalUrl
method. Example 19-10 shows an example method.
Example 19-10 Overriding the getExternalURL Method
In Example 19-10, all the topics in the method return the same URL. You must create separate if
statements to return different URLs.
If you want the external window to be launched based on a component's client event instead of from a help icon, use a JavaScript function. For more information, see Section 19.5.4, "How to Use JavaScript to Launch an External Help Window."
If you want to use external URL help, by default, the user clicks a help icon to launch the help window. Instead, you can use JavaScript and a client event listener for a specific component's event to launch the help window.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To use JavaScript to launch an external help window:
Create a JavaScript function that uses the launchHelp
API to launch a specific URL or page.
Example 19-11 shows the launchHelp
function used to launch the helpClient.jspx
.
Example 19-11 JavaScript to Launch an External Help Page
Drag and drop a component whose client event will cause the function to be called. You must set the clientId
on this component to true
.
clientListener
to invoke the function created in Step 1. For more information about using the clientListener
tag, see Section 4.2, "Listening for Client Events."Example 19-12 shows the code used to have a click event on a commandToolbarButton
component launch the helpClient.jspx
page.
Example 19-12 Page Code Used to Launch an External Help Window
Instead of using one of the ADF Faces help providers, create your own. Create the actual text in some file that your help provider will be able to access and display. To create a Java class help provider, extend the HelpProvider
class. For more information about this class, refer to the ADF Faces Javadoc.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To create a Java class help provider:
Create a Java class that extends oracle.adf.view.rich.help.HelpProvider
.
This class will be able to access properties and values that are set in the adf-settings.xml
file when you register this provider. For example, the ADF Faces providers all use a property to define the actual source of the help strings. To access a property in the adf-settings.xml
file, create a method that sets a property that is a String
. For example:
adf-settings.xml
file and add the following elements:<help-provider>
: Use the prefix
attribute to define the prefix that UI components will use to access this help provider. This must be unique in the application.Note: If the prefix attribute is missing, or is empty, then the help provider will be registered as a special default help provider. It will be used to produce help for help topic IDs that cannot be matched with any other help provider. Only one default help provider is permitted. All prefixes under which help providers are registered must be unique. It is also not permissible for one prefix to begin with the same characters as another prefix. For example, if help providers have already been registered for the two prefixes AAB and AC , then the following prefixes are all invalid and will cause an exception to be thrown at registration time: AABC , A , AA , AC , ACB . However, the following are valid: AAD , AB , and so on. |
<help-provider-class>
: Create as a child element to the <help-provider>
element and enter the fully qualified class path to the class created in Step 1.<property>
: Create as a child element to the <help-provider>
element and use it to define the property that will be used as the argument for the method created in Step 3.<property-name>
: Create as a child element to the <property>
element and enter the property name.<value>
: Create as a child element to the <property>
element and enter the value for the property.Example 19-13 shows an example of a help provider class registered in the adf-settings.xml
file.
Example 19-13 Registering a Help Provider Class
Use the HelpTopicId
attribute on components to access and display the help.
Before you begin:
It may be helpful to have an understanding of how the attributes can affect functionality. For more information, see Section 19.5, "Displaying Help for Components."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 19.1.2, "Additional Functionality for Message Components."
To access help from a component:
helpTopicId
attribute. This should include the prefix to access the correct help provider and the topic name. It should not include the help type, as all help types registered with that name will be returned and displayed, for example:This example will return both the definition and instruction help defined in the XLIFF file in Example 19-5.
outputText
component to display the help text, and then bind that component to the help provider, for example:This will access the instruction help text.
When you add help messages to input components that may already display messages for validation and conversion, ADF Faces displays the messages in the following order within the note window:
panelHeader
components, Instruction help is always displayed below the header.shortDesc
attribute.Figure 19-29 shows an inputDate
component that contains a converter, instruction help, and a tip message.
This chapter describes how to use ADF Faces navigation components such as commandButton
, navigationPane
, and train
to provide navigation in web user interfaces.
This chapter includes the following sections:
Navigation components allow users to drill down for more information, to navigate to related pages or windows, and to perform specific actions on data and navigate at the same time. The common forms of navigation components are buttons and links, most of which can be used on their own and a few that can only be used in conjunction with other components.
Some components render navigable items such as tabs and breadcrumbs for navigating hierarchical pages and keeping track of the user's current location in the page hierarchy. Two components render links and buttons that you use specifically to guide users through a multistep task. You can also use the command
button or commandLink
components to fire partial page requests, and to implement popup dialogs and secondary windows (in conjunction with other ADF Faces tags and components). Navigation components can provide navigation with or without server-side actions.
Figure 20-1 shows the different ADF Faces components that are used to provide navigation.
Typical uses of navigation components are to create buttons and links for allowing users to navigate to another page or window, to perform actions on data, or to perform actions and navigate at the same time. For example, as shown in Figure 20-2, the main page of the File Explorer application contains a commandButton
component that you click to refresh the page after making a skin selection, a commandLink
component that opens a popup window when clicked, and a goImageLink
component that simply redirects to the current view Id in the component tree.
At the top right corner of the File Explorer application, there are four global application links. While you can use goLink
components to provide the destinations for navigation, the File Explorer application uses the navigationPane
and child commandNavigationItem
components to provide links that either navigate directly to another location or deliver an action that results in navigation.
The navigationPane
component also lets you organize application content in a meaningful structure and provides a navigation method for users to move through different content areas in the application to perform various functions. For example, a simple HR application might have pages that let employees check on company benefits, and pages for administration to view and create employee data, as shown in Figure 20-3. The navigationPane
component provides the structure with tabs, bars, or lists for example, and the child commandNavigationItem
components provide the navigation links.
A built-in overflow indicator appears if the application window is not wide enough to display all the navigation items, as shown in Figure 20-4.
The navigationPane
component can also be used with a menu model, where the component is bound to the menu model managed bean. For complex page hierarchies, using a menu model is more efficient as the framework generates the correct number of navigation items in the structure on each page and also keeps track of which items are to be displayed as "selected".
The menuBar
component can also be bound to a menu model to implement menus and submenus for navigating different levels in a page hierarchy. Most shopping web sites use a system of menus to categorize shopping areas and provide a one-click action to a specific subcategory or item in the hierarchy. As shown in Figure 20-5, the menu bar shows the first level of menu items at a glance. As the mouse cursor hovers over a menu, a submenu of more items display for the user to browse and choose. Typically you would not implement more than three levels of menu items.
Whether you use navigationPane
or menuBar
(bound to a menu model) to create your page hierarchy, you can use the breadCrumbs
component and a series of child commandNavigationItem
components to provide users with a visual indication to their current location in the page hierarchy. As shown in Figure 20-6, the breadCrumbs
component displays a line of text links starting from the root page down to the current page, which is always the last link. If you create your page hierarchy using a menu model, you can also bind the breadCrumbs
component to the same menu model managed bean and let the framework dynamically generate the links for you.
The train
component allows users to quickly see where they are in a multistep process and also navigate through that process. The trainButtonBar
component provides additional navigation for a train process in the form of Back and Next buttons, as shown in Figure 20-7.
You may find it helpful to understand other ADF Faces features before you implement your navigation components. Additionally, once you have added these components to your page, you may find that you need to add functionality such as accessibility and localization. Following are links to other functionality that navigation components can use.
ActionEvent
events when the components are activated. For more information about how to handle events on the server as well as on the client, see Chapter 6, "Handling Events."Like any JSF application, an application that uses ADF Faces components contains a set of rules for choosing the next page to display when a button or link (used on its own or within another navigation component) is clicked. You define the rules by adding JSF navigation rules and cases in the application's configuration resource file (faces-config.xml
).
JSF uses an outcome string to select the navigation rule to use to perform a page navigation. ADF Faces navigation components that implement javax.faces.component.ActionSource
interface generate an ActionEvent
event when users activate the component. The JSF NavigationHandler
and default ActionListener
mechanisms use the outcome string on the activated component to find a match in the set of navigation rules. When JSF locates a match, the corresponding page is selected, and the Render Response phase renders the selected page. For more information about the JSF lifecycle, see Chapter 5, "Using the JSF Lifecycle with ADF Faces". Also note that navigation in an ADF Faces application may use partial page rendering. For more information, see Section 8.4, "Using Partial Page Navigation".
Buttons and links in ADF Faces include the command components commandButton
, commandLink
, and commandImageLink
, as well as the go components goButton
, goImageLink
, and goLink
. The main difference between command components and go components is that while command components submit requests and fire ActionEvent
events, go components navigate directly to another location without delivering an action. Visually, the rendered command and go components look the same, as shown in Figure 20-8.
Tip: ADF Faces also provides specialized command and go components that are used inside menus and toolbars only. For more information, see Chapter 16, "Using Menus, Toolbars, and Toolboxes". |
The commandImageLink
and goImageLink
components render images as links, along with optional text, as shown in Figure 20-9. You can determine the position of the image relative to the optional text by setting a value for the iconPosition
attribute. In addition, you can set different icons for when the user hovers over an icon, or the icon is depressed or disabled.
ADF Faces also includes the commandToolbarButton
component that provides additional functionality, such as a popup
facet that can open popup menus from a toolbar button. For more information, see Section 16.3, "Using Toolbars".
The behavior of command and link components differ when you output your page in simplified mode for printing or email. The following link components appear in print and email modes although they cannot be invoked:
af:commandImageLink
af:commandLink
af:goImageLink
af:goLink
The following command and go button components do not render when you output a page in simplified mode for printing or email:
af:commandButton
af:commandToolbarButton
af:goButton
For more information about email and print output modes, see Chapter 34, "Using Different Output Modes."
You can configure your application to allow end users to invoke a browser's context menu when they right-click a command component that renders a link. End users who right-click the link rendered by a command component may use a browser's context menu to invoke an action that you do not want them to invoke (for example, open the link in a new window). For more information, see Section 20.4, "Configuring a Browser's Context Menu for Command Links."
You can show a warning message to users if the page that they attempt to navigate away from contains uncommitted data. Add the checkUncommittedDataBehavior
component as a child to command components that have their immediate
attribute set to true
. If the user chooses not to navigate, the client event will be cancelled. You can add the checkUncommittedDataBehavior
component as a child to the following components:
af:commandButton
af:commandLink
af:commandImageLink
af:commandToolbarButton
af:activeCommandToolbarButton
For the warning message to appear to end users, the page must contain uncommitted data and you must have also set the document
tag's uncommittedDataWarning
attribute to on
, as described in Section 9.2.5, "How to Configure the document Tag."
Note: A warning message may also appear for uncommitted data if you set the document tag's uncommittedDataWarning tag to on and your page renders an ADF Controller bounded task flow that is configured as critical , as described in the "How to Enable Implicit Save Points" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Typically, you use commandButton
, commandLink
, and commandImageLink
components to perform page navigation and to execute any server-side processing.
Before you begin:
It may help to understand how command component's attributes affect functionality. For more information, see Section 20.3, "Using Buttons and Links for Navigation."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To create and use command components:
Create a commandButton
component by dragging and dropping a Button from the General Controls panel of the Component Palette to the JSF page. Create a commandLink
component by dragging and dropping a Link. Create a commandImageLink
component by dragging and dropping a Link (Image).
text
attribute.Tip: Alternatively, you can use the textAndAccessKey attribute to provide a single value that defines the label along with the access key to use for the button or link. For information about how to define access keys, see Section 30.3.4, "How to Define Access Keys for an ADF Faces Component" |
icon
attribute to the URI of the image file you want to use inside a commandButton
or commandImageLink
component (this is not supported for commandLink
). For a commandImageLink
component, you can also set the hoverIcon
, disabledIcon
, and depressedIcon
attributes.Tip: You can use either the text attribute (or textAndAccessKey attribute) or the icon attribute, or both. |
action
attribute to an outcome string or to a method expression that refers to a backing bean action method that returns a logical outcome String
. For more information about configuring the navigation between pages, see Section 3.3, "Defining Page Flows".The default JSF ActionListener
mechanism uses the outcome string to select the appropriate JSF navigation rule, and tells the JSF NavigationHandler
what page to use for the Render Response phase. For more information about using managed bean methods to open dialogs, see Chapter 15, "Using Popup Dialogs, Menus, and Windows". For more information about outcome strings and navigation in JSF applications, see the Java EE 6 tutorial at http://download.oracle.com/javaee/index.html
.
Tip: The actionListener attribute can also be used for navigation when bound to a handler that returns an outcome. Usually, you should use this attribute only to handle user interface logic and not navigation.For example, in the File Explorer application, the Search button in Search panel does not navigate anywhere. Instead, it is used to perform a search. It has the following value for its actionListener="#{explorer.navigatorManager.searchNavigator. searchForFileItem}" This expression evaluates to a method that actually performs the search. |
disabled
attribute to true
if you want to show the component as a non-interactive button or link.partialSubmit
attribute to true
to fire a partial page request each time the component is activated. For more information, see Section 8.2, "Enabling Partial Page Rendering Declaratively".Set the immediate
attribute to true
if you want to skip the Process Validations and Update Model phases. The component's action listeners (if any), and the default JSF ActionListener
handler are executed at the end of the Apply Request Values phase of the JSF lifecycle. For more information, see Section 5.2, "Using the Immediate Attribute".
immediate
attribute to true
as described in step 7, you can add the af:checkUncommittedDataBehavior
component as a child to the command component to display a warning message to the user if the page contains uncommitted data. Drag Check Uncommitted Data Behavior from the Behavior group in the Operations panel of the Component Palette and drop it as a child of the command component you added in step 1.Note: You must have also set the document tag's uncommittedDataWarning attribute to on , as described in Section 9.2.5, "How to Configure the document Tag." |
Command buttons and links can also be used to open secondary windows through these attributes: useWindow
, windowHeight
, windowWidth
, launchListener
, and returnListener
. For information about opening secondary windows, see the "Using the ADF Faces Dialog Framework" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To use command buttons and links to invoke popups without writing any JavaScript code, see Section 15.3, "Declaratively Invoking a Popup."
You use the goButton
, goImageLink
, and goLink
components to perform direct page navigation, without delivering an ActionEvent
event.
Before you begin:
It may help to understand how the go component's attributes affect functionality. For more information, see Section 20.3, "Using Buttons and Links for Navigation."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To create and use go buttons and go links:
goButton
component by dragging and dropping a Button (Go) from the General Controls panel of the Component Palette to the JSF page. Create a goLink
component by dragging and dropping a Link (Go). Create a goImageLink
component by dragging and dropping an Image (Go).text
attribute.Tip: Instead, you can use the textAndAccessKey attribute to provide a single value that defines the label and the access key to use for the button or link. For information about how to define access keys, see Section 30.3.4, "How to Define Access Keys for an ADF Faces Component" |
icon
attribute to the URI of the image file you want to use inside a goButton
or goImageLink
component (not supported for goLink
). For a goImageLink
component, you can also set the hoverIcon
, disabledIcon
, depressedIcon
, and iconPosition
attributes.The iconPosition
attribute supports two values: leading
(default) and trailing
. Set to leading
to render the icon before the text. Set to trailing
to render the icon after the text.
Tip: You can use either the text attribute (or textAndAccessKey attribute) or the icon attribute, or both. |
destination
attribute to the URI of the page to which the link should navigate.For example, in the File Explorer application, the goLink
component in the popups.jspx
file has the following set for its destination
attribute:
targetFrame
attribute to specify where the new page should display. Acceptable values are:_blank
: The link opens the document in a new window._parent
: The link opens the document in the window of the parent. For example, if the link appeared in a dialog, the resulting page would render in the parent window._self
: The link opens the document in the same page or region._top
: The link opens the document in a full window, replacing the entire page.disabled
attribute to true
if you want to show the component as a non-interactive button or link.As described in Section 8.4, "Using Partial Page Navigation," you can configure an ADF Faces application to have navigation triggered through a partial page rendering request. When partial page navigation is turned on, partial page navigation for GET
requests is automatically supported on the following components:
af:goButton
af:goImageLink
af:goLink
af:goMenuItem
(used within af:menu
and af:menuBar
)af:commandNavigationItem
(used within af:navigationPane
)The only requirement is that the destination
attribute on a supported component contain a relative URL of the application context root and begin with "/
", such as "/faces/myPage.jspx
", where faces
is the URL mapping to the application's servlet defined in web.xml
and myPage.jspx
is the page to navigate. Because partial page navigation makes use of the hash ('#') portion of the URL, you cannot use the hash portion for navigation to anchors within a page.
If the targetFrame
attribute on a supported component is set to open the link in a new window, the framework automatically reverts to full page navigation.
The command components that render links at runtime allow your end users to invoke actions. In addition you can configure your application so that the ADF Faces framework allows the end user´s browser to render a context menu for these command components. The context menu may present menu options that invoke a different action (for example, open a link in a new window) to that specified by the command component. The components for which you can configure this behavior include the following:
af:commandLink
af:commandImageLink
af:commandMenuItem
(used within an af:menuBar
component)af:commandNavigationItem
if no value is specified for the destination
attribute, the ADF Faces framework enables the browser context menu in the following scenarios:af:commandNavigationItem
renders when inside an af:train
componentaf:commandNavigationItem
renders inside an af:breadCrumbs
componentaf:commandNavigationItem
renders inside an af:navigationPane
component (any hint--tabs, bar, buttons, choice, list)af:panelTabbed
: the tabs and overflow indicatorsaf:panelAccordion
: the disclosure link and overflow indicatorsYou cannot configure this behavior for components that specify a destination and do not invoke an action. Examples of these components include the following:
af:goLink
af:goImageLink
af:commandNavigationItem
where you specify a value for the destination
attribute and no value for the action
attributeSet the value of the oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION
context parameter in your application's web.xml
file to no
.
Before you begin:
It may help to understand what command components you can configure this functionality for. For more information, Section 20.4, "Configuring a Browser's Context Menu for Command Links."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To configure a browser's context menu for a command link:
By default, JDeveloper opens the web.xml
file in the Overview editor.
oracle.adf.view.rich.ACTION_LINK_BROWSER_CONTEXT_SUPPRESSION
parameter and set it to no
.web.xml
file.If you followed the procedure outlined in Section 20.4.1, "How to Configure a Browser's Context Menu for Command Links," JDeveloper writes a value to the web.xml
file, as shown in Example 20-1.
Example 20-1 Context Parameter to Configure a Browser's Context Menu
For more information about ADF Faces configuration options in your application's web.xml
file, see Section A.2, "Configuration in web.xml."
At runtime, end users can invoke a browser's context menu by right-clicking on the links rendered by certain components, as described in Section 20.4, "Configuring a Browser's Context Menu for Command Links."
In addition to using command components for navigation, ADF Faces also includes listener tags that you can use in conjunction with command components to have specific functionality execute when the action event fires. Listener tags included with ADF Faces include:
exportCollectionActionListener
: Use to export data from the table
, tree
and treeTable
components to an Excel spreadsheet. For more information, see Section 12.10, "Exporting Data from Table, Tree, or Tree Table".fileDownloadActionListener
: Use to initiate a file download from the server to the local hard drive. For more information, see Section 20.5.1, "How to Use a Command Component to Download Files".resetListener
: Use to reset submitted values. However, no data model states will be altered. For more information, see Section 20.5.2, "How to Use a Command Component to Reset Input Fields". If the input components render in a popup, see Section 15.7, "Resetting Input Fields in a Popup."If you want to reset the input components to their previous state, which was partially or fully submitted successfully to the server, then you can use a reset button. For more information, see Section 11.2.3, "How to Add a Reset Button to a Form".
You can create a way for users to download files by creating an action component such as a command button and associating it with a fileDownloadActionListener
tag. When the user selects or clicks the action component, a popup dialog displays that allows the user to select different download options, as shown in Figure 20-10.
Use the fileDownloadActionListener
tag to allow an action component (for example, a command button, command link, or menu item) to send the contents of a file to an end user. You can also specify the content type or file name when you use this tag. Any value that you set for the action component's partialSubmit
attribute is ignored at render time if you use the fileDownloadActionListener
tag. The fileDownloadActionListener
tag determines what type of submit the action component invokes based on the context. If you use the fileDownloadActionListener
tag within a JSF portlet in your application, the action component invokes a partial submit (partialSubmit="true"
). If you use the fileDownloadActionListener
tag within an application that uses the ADF Faces servlet, the action component invokes a full submit (partialSubmit="false"
).
After the content has been sent to the browser, how that content is displayed or saved depends on the option that the end user selects in the dialog. If the end user selects the Open with option, the application associated with that file type will be invoked to display the content. For example, a text file may result in the Notepad application being started. If the end user selects the Save to Disk option, depending on the browser, a popup dialog may appear to select a file name and a location in which to store the content.
Example 20-2 shows the tags of a command button with the fileDownloadActionListener
tag to download the file named hello.txt
to the user.
Example 20-2 File Download Using Command Button and fileDownloadActionListener Tag
Example 20-3 shows a managed bean method used to process the file download.
Example 20-3 Managed Bean Method Used to Process File Download
If you use the fileDownloadActionListener
tag from within a JSF portlet in your application, you can optionally add the parameters described in Table 20-1 to the web.xml
file of your application to configure the size and temporary location options for the file during download.
Table 20-1 Parameters to Add to web.xml File to Use fileDownloadActionListener in a Portlet
Parameter name | Data type | Description |
---|---|---|
| Integer | Specify the maximum size in kilobytes of the file that the If you do not specify a value for this parameter in the |
| Integer | Specify the maximum size in kilobytes of the file that the If you do not specify a value for this parameter in the |
| String | Specify the temporary location where you store files during download. If you do not specify a value, it defaults to the directory specified by |
For more information about configuring your web.xml
file, Section A.2, "Configuration in web.xml." For information about how to create a JSF portlet, see the Oracle Fusion Middleware Developer's Guide for Oracle WebCenter.
Before you begin:
It may help to understand how command component's attributes affect functionality. For more information, see Section 20.5, "Using Buttons or Links to Invoke Functionality."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To create a file download mechanism:
contentType
: Specify the MIME type of the file, for example text/plain
, text/csv
, application/pdf
, and so on.filename
: Specify the proposed file name for the object. When the file name is specified, a Save File dialog will typically be displayed, though this is ultimately up to the browser. If the name is not specified, the content will typically be displayed inline in the browser, if possible.method
: Specify the method that will be used to download the file contents. The method takes two arguments, a FacesContext
object and an OutputStream
object. The OutputStream
object will be automatically closed, so the sole responsibility of this method is to write all bytes to the OutputStream
object.For example, the code for a command button would be similar to the following:
You can use the resetListener
tag in conjunction with a command component to reset input values. When the end user invokes the command component, it resets all input values to null or empty. If you want to reset the input components to their previous state, which was partially or fully submitted successfully to the server, then you should use a reset button. For more information, see Section 11.2.3, "How to Add a Reset Button to a Form".
If you use the resetListener
tag to reset input components that render in a popup, you also need to set a value for the popup
component's resetEditableValues
property. For more information about this use case, see Section 15.7, "Resetting Input Fields in a Popup."
Before you begin:
It may help to understand how command component's attributes affect functionality. For more information, see Section 20.5, "Using Buttons or Links to Invoke Functionality."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To use the reset listener tag:
Create a command component as documented in Section 20.3, "Using Buttons and Links for Navigation".
JDeveloper displays the Insert Reset Listener dialog.
resetListener
tag activates in response to. For example, enter action
so that the resetListener
tag responds to an actionEvent
returned by the command component's actionListener
attribute.Click Help in the Insert Reset Listener dialog to view a complete list of supported values.
Note: If your application uses the Fusion technology stack with the ADF Controller, then you should use ADF task flows and an XMLMenuModel implementation to create the navigation system for your application page hierarchy. For details, see the "Creating a Page Hierarchy Using Task Flows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
An application may consist of pages that are related and organized in a tree-like hierarchy, where users gain access to specific information on a page by drilling down a path of links. For example, Figure 20-11 shows a simple page hierarchy with three levels of nodes under the top-level node, Home. The top-level node represents the root parent page; the first-level nodes, Benefits and Employee Data, represent parent pages that contain general information for second-level child nodes (such as Insurance and View Employee) that contain more specific information; the Insurance node is also a parent node, which contains general information for third-level child nodes, Health and Dental. Each node in a page hierarchy (except the root Home node) can be a parent and a child node at the same time, and each node in a page hierarchy corresponds to a page.
Navigation in a page hierarchy follows the parent-child links. For example, to view Health information, the user would start drilling from the Benefits page, then move to the Insurance page where two choices are presented, one of which is Health. The path of selected links starting from Home and ending at Health is known as the focus path in the tree.
In addition to direct parent-child navigation, some cross-level or cross-parent navigation is also possible. For example, from the Dental page, users can jump to the Paid Time Off page on the second level, and to the Benefits page or the Employee Data page on the first level.
As shown in Figure 20-11, the Help node, which is not linked to any other node in the hierarchy but is on the same level as the top-level Home node, is a global node. Global nodes represent global pages (such as a Help page) that can be accessed from any page in the hierarchy.
Typical widgets used in a web user interface for navigating a page hierarchy are tabs, bars, lists, and global links, all of which can be created by using the navigationPane
component. Figure 20-12 shows an example of how the hierarchy as illustrated in Figure 20-11 could be rendered using the navigationPane
and other components.
In general, tabs are used as first-level nodes, as shown in Figure 20-12, where there are tabs for the Benefits and Employee Data pages. Second-level nodes, such as Insurance and Paid Time Off are usually rendered as bars, and third-level nodes, such as Health and Dental are usually rendered as lists. However, you may also use tabs for both first- and second-level nodes. Global links (which represent global nodes) are rendered as text links. In Figure 20-12, the Home and Help global links are rendered as text links.
One navigationPane
component corresponds to one level of nodes, whether they are first-, second-, or third-level nodes, or global nodes. Regardless of the type of items the navigationPane
component is configured to render for a level, you always use the commandNavigationItem
component to represent the items within the level.
The navigationPane
component simply renders tabs, bars, lists, and global links for navigation. To achieve the positioning and visual styling of the page background, as shown in Figure 20-17 and Figure 20-18, you use the decorativeBox
component as the parent to the first level navigationPane
component. The decorativeBox
component uses themes and skinning keys to control the borders and colors of its different facets. For example, if you use the default theme, the decorativeBox
component body is white and the border is blue, and the top-left corner is rounded. If you use the medium theme, the body is a medium blue. For information about using themes and skins, see Chapter 28, "Customizing the Appearance Using Styles and Skins".
Tip: Because creating a page hierarchy requires that each page in the hierarchy use the same layout and look and feel, consider using a template to determine where the navigation components should be placed and how they should be styled. For more information, see Section 10.4, "Using Page Templates". |
On each page in simple hierarchies, you first use a series of navigationPane
components to represent each level of the hierarchy. Then you add commandNavigationItem
components as direct children of the navigationPane
components for each of the links at each level. For example, to create the Health insurance page as shown in Figure 20-12, you would first use a navigationPane
component for each level displayed on the page, in this case it would be four: one for the global links, one for the first-level nodes, one for the second-level nodes, and one for the third-level nodes. You would then need to add commandNavigationItem
components as children to each of the navigationPane
components to represent the individual links (for example, you would add two commandNavigationItem
child components to the third-level navigationPane
component to represent the two third-level list items). If instead you were creating the Benefits page, as shown in Figure 20-13, you would add only three navigationPane
components (one each for the global, first, and second levels), and then add just the commandNavigationItem
components for the links seen from this page.
As you can see, with large page hierarchies, this process can be very time consuming and error prone. Instead of creating each of the separate commandNavigationItem
components on each page, for larger hierarchies you can use an XMLMenuModel
implementation and managed beans to dynamically generate the navigation items on the pages. The XMLMenuModel
class, in conjunction with a metadata file, contains all the information for generating the appropriate number of hierarchical levels on each page, and the navigation items that belong to each level.
Then instead of using multiple commandNavigationItem
components within each navigationPane
component and marking the current items as selected on each page, you declaratively bind each navigationPane
component to the same XMLMenuModel
implementation, and use one commandNavigationItem
component in the nodeStamp
facet to provide the navigation items. The commandNavigationItem
component acts as a stamp for navigationPane
component, stamping out navigation items for nodes (at every level) held in the XMLMenuModel
object.
The menuBar
component can also be used with the XMLMenuModel
implementation to stamp out menu items for navigating a page hierarchy.
Note: If you want to create menus that can be used to cause some sort of change in an application (for example, a File menu that contains the commands Open and Delete), then see Chapter 16, "Using Menus, Toolbars, and Toolboxes". |
On any page, to show the user's current position in relation to the entire page hierarchy, you use the breadCrumbs
component with a series of commandNavigationItem
components or one commandNavigationItem
component as a nodeStamp
, to provide a path of links from the current page back to the root page (that is, the current nodes in the focus path).
For more information about creating a navigational hierarchy using the XMLMenuModel
, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy". For more information about manually creating a navigational hierarchy, see Section 20.8, "Creating a Simple Navigational Hierarchy".
Whether you use a menu model to create the navigation items for a page hierarchy or manually create the navigation items yourself, the JSF navigation model, through the default ActionListener
mechanism, is used to choose the page to navigate to when users select a navigation item.
Before you begin:
It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.6, "Using Navigation Items for a Page Hierarchy."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To create navigation cases for a page hierarchy:
For example, the page hierarchy shown in Figure 20-11 has 10 nodes, including the global Help node. Thus, you would create 10 navigation cases within one global navigation rule in the faces-config.xml
file, as shown in Example 20-4.
For each navigation case, specify a unique outcome string, and the path to the JSF page that should be displayed when the navigation system returns an outcome value that matches the specified string.
Example 20-4 Global Navigation Rule for a Page Hierarchy in faces-config.xml
For more information about creating navigation cases in JDeveloper, see Section 3.3, "Defining Page Flows".
Note: If your application uses the Fusion technology stack or the ADF Controller, then you should use ADF task flows and an XMLMenuModel implementation to create the navigation system for your application page hierarchy. For details, see the "Creating a Page Hierarchy Using Task Flows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Section 20.6, "Using Navigation Items for a Page Hierarchy" describes how you can create navigation items for a very simple page hierarchy using navigationPane
components with multiple commandNavigationItem
children components. Using the same method for more complex page hierarchies would be time consuming and error prone. It is inefficient and tedious to manually insert and configure individual commandNavigationItem
components within navigationPane
and breadCrumbs
components on several JSF pages to create all the available items for enabling navigation. It is also difficult to maintain the proper selected status of each item, and to deduce and keep track of the breadcrumb links from the current page back to the root page.
For more complex page hierarchies (and even for simple page hierarchies), a more efficient method of creating a navigation system is to use a menu model. A menu model is a special kind of tree model. A tree model is a collection of rows indexed by row keys. In a tree, the current row can contain child rows (for more information about a tree model, see Section 12.6, "Displaying Data in Trees"). A menu model is a tree model that knows how to retrieve the rowKey
of the node that has the current focus (the focus node). The menu model has no special knowledge of page navigation and places no requirements on the nodes that go into the tree.
The XMLMenuModel
class creates a menu model from a navigation tree model. But XMLMenuModel
class has additional methods that enable you to define the hierarchical tree of navigation in XML metadata. Instead of needing to create Java classes and configuring many managed beans to define and create the menu model (as you would if you used one of the other ADF Faces menu model classes), you create one or more XMLMenuModel
metadata files that contain all the node information needed for the XMLMenuModel
class to create the menu model.
Tip: Do not confuse the navigationPane component with the panelTabbed component. You use the panelTabbed component to display multiple tabbed content areas that can be hidden and displayed (see Section 9.9, "Displaying or Hiding Contents in Accordion Panels and Tabbed Panels"). However, the panelTabbed component cannot bind to any navigational model and the whole content must be available from within the page, so it has limited applicability. |
To create a page hierarchy using a menu model, you do the following:
XMLMenuModel
metadata. See Section 20.7.1, "How to Create the Menu Model Metadata".XMLMenuModel
class. The application uses the managed bean to build the hierarchy. This configuration is automatically done for you when you use the Create ADF Menu Model dialog in JDeveloper to create the XMLMenuModel
metadata file. See Section 20.7.2, "What Happens When You Use the Create ADF Menu Model Wizard".Tip: Typically, you would use a page template that contains a facet for each level of items (including global items and breadcrumbs) to create each JSF page. For example, the navigationPane component representing global items might be wrapped in a facet named navigationGlobal , and the navigationPane component representing first level tabs might be wrapped in a navigation1 facet. For information about creating page templates, see Chapter 10, "Creating and Reusing Fragments, Page Templates, and Components". |
navigationPane
and breadCrumbs
components to the XMLMenuModel
class. See Section 20.7.3, "How to Bind the navigationPane Component to the Menu Model" and Section 20.7.4, "How to Use the breadCrumbs Component with a Menu Model". To bind the menuBar
component, see Section 20.7.5, "How to Use the menuBar Component with a Menu Model".The XMLMenuModel
metadata file is a representation of a navigation menu for a page hierarchy in XML format. You can use one or more XMLMenuModel
metadata files to represent an entire page hierarchy. In an XMLMenuModel
metadata file, the page hierarchy is described within the menu
element, which is the root element of the file. Every XMLMenuModel
metadata file is required to have a menu
element and only one menu
element is allowed in each file.
The other elements in the XMLMenuModel
metadata file or hierarchy can be made up of item nodes, group nodes, and shared nodes. Item nodes represent navigable nodes (or pages) in the hierarchy. For example, say you wanted to build the hierarchy as depicted in Figure 20-14.
If you wanted each node in the hierarchy to have its own page to which a user can navigate, then in the metadata file you would create an item node for each page. You nest children nodes inside a parent node to create the hierarchy. However, say you did not need a page for the Employee Data node, but instead wanted the user to navigate directly to the View Employee page. You would then use a group node to represent the Employee Data page and use the group node's idref
attribute to reference the page that opens (the View Employee page) when an end user clicks the Employee Data tab. The group node allows you to retain the hierarchy without needing to create pages for nodes that are simply aggregates for their children nodes.
Example 20-5 shows an XMLMenuModel
metadata file that uses mostly item nodes and one group node to define the entire page hierarchy illustrated in Figure 20-14.
Example 20-5 XMLMenuModel Metadata File Sample 1
Within the root menu
element, global nodes are any nodes that are direct children of the menu
element. For example, the code in Example 20-5 shows three global nodes, namely, Home, Help, and Preferences.
You can also nest menu models using shared nodes. This approach is recommended where you have sub trees in the hierarchy (for example, the Benefits tree) as it makes the page hierarchy easier to maintain. For example, you might create the entire Benefits tree as its own menu model metadata file (as shown in Example 20-6) so that the menu model could be reused across an application.
Example 20-6 Benefits XMLMenuModel Metadata File
Once you have created the nodes as a separate menu model, then within the different hierarchies that need to use those nodes, you use a shared node to reference the Benefits menu model.
Example 20-7 shows an XMLMenuModel
metadata file that uses item nodes, a shared node and a group node to define the same page hierarchy depicted in Figure 20-14.
Example 20-7 XMLMenuModel Metadata File Sample 2
The sharedNode
element references the managed bean that is configured for the Benefits XMLMenuModel
metadata file. Whenever you use the Create ADF Menu Model wizard to create a metadata file, JDeveloper automatically adds the managed bean configuration for you.
Before you begin:
It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To create the XMLMenuModel metadata:
XMLMenuModel
metadata file. Under the project's Web Content/WEB-INF folder, right-click faces-config.xml and choose Create ADF Menu Model from the context menu.Note: If your application uses ADF Controller, then this menu option will not be available to you. You need to instead use a bounded task flow to create the hierarchy. See the "Creating a Page Hierarchy Using Task Flows" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
XMLMenuModel
metadata file, for example, root_menu
.Tip: If you are using more than one XMLMenuModel metadata file to define your page hierarchy, use the name root_menu only for the topmost (root) metadata file that contains references to the other submenu metadata files. |
XMLMenuModel
metadata file in the WEB-INF
directory of the application.When you click OK, JDeveloper displays a blank XMLMenuModel
metadata file in the source editor, as shown in Example 20-8.
Example 20-8 Blank XMLMenuModel Metadata File
For information about the managed bean configuration that JDeveloper automatically adds for you in faces-config.xml
, see Section 20.7.2, "What Happens When You Use the Create ADF Menu Model Wizard".
Table 20-2 shows the attributes you can specify for the menu
element.
Table 20-2 Menu Element Attributes
Attribute | Description |
---|---|
| Optional. This is the resource bundle to use for the labels (visible text) of the navigation items at runtime. For example, |
| If using a resource bundle, specify an ID to use to reference the bundle in EL expressions for navigation item labels. For example, |
| Required. Set to |
Example 20-9 shows sample XMLMenuModel
metadata code that uses EL expressions to access a resource bundle for the navigation item labels.
Example 20-9 XMLMenuModel Using Resource Bundle
Note: When you use a sharedNode element to create a submenu and you use resource bundles for the navigation item labels, it is quite possible that the shared menu model will use the same value for the var attribute on the root menu element. The XMLMenuModel class handles this possibility during parsing by ensuring that each resource bundle is assigned a unique hash key. |
For more information about using resource bundles, see Chapter 29, "Internationalizing and Localizing Pages".
itemNode
, groupNode
, or sharedNode
as needed. To begin, right-click menu and choose Insert inside menu, and then choose the desired element from the context menu, as shown in Figure 20-15.The elements can be one of the following:
itemNode
: Specifies a node that performs navigation upon user selection.groupNode
: Groups child components; the groupNode
itself does no navigation. Child nodes node can be itemNode
or another groupNode
.For example, say you did not need a page for the Employee Data node, but instead, wanted the user to navigate directly to the View Employee page. You would then use a group node to represent the Employee Data page by specifying the id
attribute of the desired child node as a value for the group node's idref
attribute. The group node allows you to retain the hierarchy without needing to create pages for nodes that are simply aggregates for their children nodes.
sharedNode
: References another XMLMenuModel
instance. A sharedNode
element is not a true node; it does not perform navigation nor does it render anything on its own.You can insert a sharedNode
element anywhere within the hierarchy. For example, in the code shown in Example 20-10, the sharedNode
element adds a submenu on the same level as the first-level Employee Data node.
Example 20-10 SharedNode Sample Code
As you build the XMLMenuModel
metadata file, the tree structure you see in the Structure window exactly mirrors the indentation levels of the menu metadata, as shown in Figure 20-16.
itemNode
elements, Table 20-4 for groupNode
elements, and Table 20-5 for sharedNode
elements.Table 20-3 itemNode Element Attributes
Attribute | Description |
---|---|
| Specify either an outcome string or an EL method binding expression that returns an outcome string. In either case, the outcome string must match the |
| Specify the URI of the page to navigate to when the node is selected, for example, Alternatively, specify an EL method expression that evaluates to the URI. If both |
| Required. The URI of the page that matches the node's navigational result, that is, the For example, if the action outcome of the node navigates to The |
| Required. Specify a unique identifier for the node. As shown in Example 20-5, it is good practice to use "inX" for the ID of each |
| Specify the label text to display for the node. Can be an EL expression to a string in a resource bundle, for example, |
A groupNode
element does not have the action
or destination
attribute that performs navigation directly, but it points to a child node that has the action outcome or destination URI, either directly by pointing to an itemNode
child (which has the action
or destination
attribute), or indirectly by pointing to a groupNode
child that will then point to one of its child nodes, and so on until an itemNode
element is reached. Navigation will then be determined from the action outcome or destination URI of that itemNode
element.
Consider the groupNode
code shown in Example 20-11. At runtime, when users click groupNode id="gn1"
, or groupNode id="gn11"
, or itemNode id="in1"
, the navigation outcome is "goToSubTabOne
", as specified by the first itemNode
reached (that is itemNode id="id1"
). Table 20-4 shows the attributes you must specify when you use a groupNode
element.
Example 20-11 groupNode Elements
Table 20-4 GroupNode Element Attribute
Attribute | Description |
---|---|
| A unique identifier for the group node. As shown in Example 20-11, it is good practice to use |
| Specify the ID of a child node, which can be an The |
| Specify the label text to display for the group node. Can be an EL expression to a string in a resource bundle, for example, |
Table 20-5 sharedNode Element Attribute
Attribute | Description |
---|---|
| Specify the managed bean name of another At runtime, the referenced navigation menu is created, inserted as a submenu into the main (root) menu, and rendered. |
When you use the Create ADF Menu Model wizard to create an XMLMenuModel
metadata file, JDeveloper automatically configures for you a managed bean for the menu metadata file in the faces-config.xml
file, using the metadata file name you provide as the managed bean name.
Example 20-12 shows part of the faces-config.xml
file that contains the configuration of one XMLMenuModel
metadata file. By default, JDeveloper uses the oracle.adf.view.rich.model.MDSMenuModel
class as the managed bean class, and request
as the managed bean scope, which is required and cannot be changed.
Example 20-12 Managed Bean Configuration for XMLMenuModel in faces-config.xml
In addition, the following managed properties are added by JDeveloper for the XMLMenuModel
managed bean:
createHiddenNodes
: When true
, specifies that the hierarchical nodes must be created even if the component's rendered
attribute is false
. The createHiddenNodes
value is obtained and made available when the menu metadata source file is opened and parsed. This allows the entire hierarchy to be created, even when you do not want the actual component to be rendered.source
: Specifies the menu metadata source file to use (for example, /WEB-INF/root_menu.xml
).Note: The createHiddenNodes property must be placed before the source property, which JDeveloper does for you when the managed bean is automatically configured. The XMLMenuModel managed bean must have the createHiddenNodes value already set to properly parse and create the menu's XML metadata from the source managed property. |
For each XMLMenuModel
metadata file that you create in a project using the wizard, JDeveloper configures a managed bean for it in the faces-config.xml
file. For example, if you use a sharedNode
element in an XMLMenuModel
to reference another XMLMenuModel
metadata file (as shown in Example 20-10), you would have created two metadata files. And JDeveloper would have added two managed bean configurations in the faces-config.xml
file, one for the main (root) menu model, and a second managed bean for the shared (referenced) menu model, as shown in Example 20-13.
Example 20-13 Managed Bean for Shared Menu Model in faces-config.xml
This means, if you use shared nodes in your XMLMenuModel
metadata files, the faces-config.xml
file will have a root menu model managed bean, plus menu model managed beans for any menu models referenced through shared nodes.
Each node in the page hierarchy corresponds to one JSF page. On each page, you use one navigationPane
component for each level of navigation items that you have defined in your XMLMenuModel
metadata file, including global items. Levels are defined by a zero-based index number: Starting with global nodes in the metadata file (that is, direct children nodes under the menu element as shown in Example 20-5), the level attribute value is 0 (zero), followed by 1 for the next level (typically tabs), 2 for the next level after that (typically bars), and so on. For example, if you had a page hierarchy like the one shown in Figure 20-14 and Example 20-5, you would use three navigationPane
components on a page such as Home (for the three levels of navigation under the Home node), plus one more navigationPane
component for the global nodes.
Tip: Because the menu model dynamically determines the hierarchy (that is, the links that appear in each navigationPane component) and also sets the current nodes in the focus path as selected, you can practically reuse the same code for each page. You need to change only the page's document title, and add the specific page contents to display on that page.Because of this similar code, you can create a single page fragment that has just the facets containing the |
As described in Section 20.8.1, "How to Create a Simple Page Hierarchy", you use the hint
attribute to specify the type of navigation item you want to use for each hierarchical level (for example, buttons
, tabs
, or bar
). But instead of manually adding multiple commandNavigationItem
components yourself to provide the navigation items, you bind each navigationPane
component to the root XMLMenuModel
managed bean, and insert only one commandNavigationItem
component into the nodeStamp
facet of each navigationPane
component, as shown in Example 20-14.
Example 20-14 navigationPane Component Bound to XMLMenuModel Managed Bean
The nodeStamp
facet and its single commandNavigationItem
component, in conjunction with the XMLMenuModel
managed bean, are responsible for:
#{menuNode.label}
retrieves the correct label text to use for a navigation item, and #{menuNode.doAction}
evaluates to the action outcome defined for the same item.selected
attribute at all for the commandNavigationItem
components.Note: If there is no node information in the XMLMenuModel object for a particular hierarchical level (for example, level 3 lists), ADF Faces does not display those items on the page even though the page contains the navigationPane component code for that level. |
Before you begin:
It may help to understand how the attributes of navigation components affect functionality. For more information, see Section 20.7, "Using a Menu Model to Create a Page Hierarchy."
You may also find it helpful to understand functionality that can be added using other ADF Faces features. For more information, see Section 20.1.2, "Additional Functionality for Navigation Components."
To bind a navigationPane component to the menu model:
decorativeBox
component by dragging and dropping a Decorative Box from the Layout panel of the Component Palette to the JSF page. Set the theme to determine how you want the tabs to appear. Valid values are:default
: Body is white with a blue border. Top-left corner is rounded.light
: Body is light blue. Top-left corner is rounded.medium
: Body is medium blue. Top-left corner is rounded.dark
: Body is dark blue. Top-left corner is rounded.You can change how the themes are displayed. For more information, see Chapter 28, "Customizing the Appearance Using Styles and Skins".
navigationPane
component by dragging and dropping a Navigation Pane from the Component Palette to the JSF page. Add a navigationPane
component for each level of the hierarchy.Tip: The Navigation Pane component can be found in the Interactive Containers and Headers group of the Layout panel in the Component Palette. |
For example, to create any of the pages as shown in the hierarchy in Figure 20-14, you would drag and drop four navigationPane
components.
navigationPane
component, in the Property Inspector, expand the Common section and set the hint
attribute to one of the following types of navigation items to determine how the navigationPane
will display the following:bar
: Displays the navigation items separated by a bar, for example the Insurance and Paid Time Off links in Figure 20-18.buttons
: Displays the navigation items separated by a bar in a global area, for example the Home and Help links in Figure 20-18.choice
: Displays the navigation items in a popup list when the associated dropdown icon is clicked. You must include a value for the navigationPane
component's icon
attribute and you can associate a label to the dropdown list using the title
attribute.list
: Displays the navigation items in a bulleted list, for example the Health and Dental links in Figure 20-18.tabs
: Displays the navigation items as tabs, for example the Benefits and Employee Data tabs in Figure 20-18.level
attribute to point to the appropriate level of metadata in the XMLMenuModel
metadata file. The level
attribute is a zero-based index number: Starting with global nodes in the metadata file (that is, direct children nodes under the menu
element as shown in Example 20-5), the level
attribute value is 0
(zero), followed by 1
for the next level (typically tabs), 2
for the next level after that (typically bars), and so on.The commandNavigationItem
component is able to get its metadata from the metadata file through the level
attribute on the parent navigationPane
component. By default, if you do not specify a level
attribute value, 0
(zero) is used, that means the navigationPane
component will take the metadata from the first-level under the menu
el