Java EE Developer's Guide for Oracle Application Development Framework
11g Release 2 (11.1.2.1.0)
E17272-02
September 2011
Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework 11g Release 2 (11.1.2.1.0)
E17272-02
Copyright © 2011 Oracle and/or its affiliates. All rights reserved.
Primary Author: Robin Whitmore, Peter Jew, Patrick Keegan
Contributing Author: Lynn Munsinger, Jeff Falk, Jim Pham
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to the Java EE Developer's Guide for Oracle Application Development Framework.
This document is intended for enterprise developers who need to create and deploy database-centric Java EE applications using the Oracle Application Development Framework (Oracle ADF). This guide explains how to build web applications using the Enterprise JavaBeans (EJB), ADF Model, ADF Controller, and ADF Faces technologies.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
For Release 11.1.2.1.0, this guide has been updated in several ways. The following table lists the sections that have been added or changed.	
For changes made to Oracle JDeveloper and Oracle Application Development Framework (Oracle ADF) for this release, see the What's New page on the Oracle Technology Network at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html	
.	
This chapter describes the architecture and key functionality of the Oracle Application Development Framework (Oracle ADF) when used to build a web application with session and entity beans that use EJB 3.0 annotations and the Java Persistence API (JPA), along with ADF Model, ADF Controller, and ADF Faces rich client. This chapter also discusses high-level development practices.	
This chapter includes the following sections:	
The Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies to simplify and accelerate implementing enterprise applications. If you develop enterprise solutions that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces, Oracle ADF can simplify your job. Used in tandem, Oracle JDeveloper and Oracle ADF give you an environment that covers the full development lifecycle from design to deployment, with drag and drop data binding, visual UI design, and team development features built in.	
Figure 1-1 illustrates where each Oracle ADF module fits in the web application architecture. The core module in the framework is ADF Model, which is a declarative data binding facility. The ADF Model layer enables a unified approach to bind any user interface to any business service, without the need to write code. The other modules that make up the application technology stack aside from EJBs, are:	
Note: In addition to ADF Faces, Oracle ADF also supports using the Swing, JSP, and standard JSF view technologies. For more information about these technologies, refer to the Oracle Fusion Middleware User's Guide for Oracle JDeveloper. Oracle ADF also provides support for using Microsoft Excel as a view layer for your application. For more information, see the Oracle Fusion Middleware Desktop Integration Developer's Guide for Oracle Application Development Framework.	
Oracle ADF emphasizes the use of the declarative programming paradigm throughout the development process to allow users to focus on the logic of application creation without having to get into implementation details. Using JDeveloper with Oracle ADF, you benefit from a high-productivity environment that automatically manages your application's declarative metadata for data access, validation, page control and navigation, user interface design, and data binding.	
At a high level, the declarative development process for a Java EE web application usually involves the following core steps:	
For information about creating specific types of web pages, see the following in this guide:	
Note: The process of developing a Java EE application with Oracle ADF modules is very similar to developing a Fusion web application. The main difference is that a Fusion web application uses ADF Business Components for the back-end services. When the development process and procedures are the same for both application types, this guide refers you to the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for that information.Please disregard any information in the Fusion Developer's guide regarding ADF Business Components (such as entity objects and view objects). For similar information for EJB/JPA, refer to the "Developing with EJB and JPA Components" section of the Oracle Fusion Middleware User's Guide for Oracle JDeveloper.	
In addition to the above core steps for developing Java EE applications with Oracle ADF, JDeveloper provides tools for the tasks in the list below. These tasks are not covered in detail in this guide.	
As a companion to this guide, the Summit demo application was created to demonstrate the use of the Java EE and Oracle ADF web application technology stack to create transaction-based web applications. The demonstration application is used to illustrate points and provide code samples.	
The Summit application requires an existing Oracle database. You run the Summit application using Oracle JDeveloper 11g Release 2.	
Do the following before installing the Summit application:	
Summit_JPA.zip	
). You can download the ZIP file from: Summit_Schema.zip	
). You can download the ZIP file from: The SQL scripts were written for an Oracle database, so you will need some version of an Oracle RDBMS, such as 11g, or XE. The scripts will not install into Oracle Lite. If you wish to use Oracle Lite or some other database, then you will need to modify the database scripts accordingly. You can download an Oracle database from:	
Specifically, the small footprint of the Oracle Express Edition (XE) is ideally suited for setting up the database on your local machine. You can download it from:	
To install and run the summit demo application, follow the instructions that are posted in the following document:	
The Summit application consists of a business services project named Model	
and a web user interface project named ViewController	
. You run the Summit application by running the ViewController	
project. The ViewController	
project uses JavaServer Faces (JSF) as the view technology, and relies on the ADF Model layer to interact with the EJBs in the Model	
project.	
Figure 1-2 shows the Application Navigator after you open the file for the application workspace.	
Once you have opened the demo application's projects in Oracle JDeveloper, you can then begin to review the artifacts within each project. The Model	
project contains the Java classes and metadata files that allow the data to be displayed in the web application. The model	
package contains Java classes and the DataControls.dcx	
file. The persdef.model	
package contains data control structure files that contain declarative metadata for some of the beans in the model	
package. Figure 1-3 shows the Model	
project and its associated directories.	
The ViewController	
project contains the files for the web interface, including the backing beans, deployment files, and JSPX files. The Application Sources node contains the code used by the web client, including a managed bean and the metadata used by Oracle ADF to display bound data. The Web Content node contains web files, including the JSP files, images, skin files, deployment descriptors, and libraries. Figure 1-4 shows the ViewController	
project and its associated directories.	
ADF Model is a declarative data binding facility that enables a unified approach to binding user interfaces to business services without requiring code.	
This chapter provides a brief overview of ADF Model data binding in Java EE applications. For information on configuring the business services that you will bind to UI components, see Chapter 3, "Adding Business Logic to Data Controls." For more comprehensive information about using ADF Model data binding, refer to the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
This chapter includes the following sections:	
ADF Model implements two concepts that enable the decoupling of the user interface technology from the business service implementation: data controls and declarative bindings.	
Data controls abstract the implementation technology of a business service by using standard metadata interfaces to describe the service's operations and data collections, including information about the properties, methods, and types involved. In an application that uses an EJB session facade, developers can create data controls for the facade. Developers can then use the representation of the data control displayed in JDeveloper's Data Controls panel (as shown in Figure 2-1) to create UI components that are automatically bound to the session facade. At runtime, the ADF Model layer reads the information describing the data controls and bindings from the appropriate XML files and then implements the two-way connection between the user interface and the business service.	
Declarative bindings abstract the details of accessing data from data collections in a data control and of invoking its operations. The following are the basic categories of binding objects:	
Figure 2-2 shows how bindings connect UI components to data control collections and methods.	
The group of bindings supporting the UI components on a page are described in a page-specific XML file called the page definition file. The ADF Model layer uses this file at runtime to instantiate the page's bindings. These bindings are held in a request-scoped map called the binding container. In a JSF application, the binding container is accessible during each page request using the EL expression #{bindings}	
. Example 2-1 shows the code used for binding a checkbox in a form to the orderFilled	
attribute of the OrdersSessionEJBLocal	
data control.	
Example 2-1 Binding Code for a Checkbox in a JSF Web Page	
Tip: For more information about ADF EL expressions, see the "Creating ADF Data Binding EL Expressions" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.	
To use the ADF Model layer to bind data, you need to use JDeveloper to create a data control for your services. The data control will then appear as a tree hierarchy in the Data Controls panel where each subnode in the tree represents a collection, operation, method or attribute. You can then create databound components by dragging and dropping those subnodes onto the visual editor for a web page or other user interface component. For example, you can create databound HTML elements for JSP pages, databound UI components for JSF pages, and databound Swing UI components for ADF Swing panels. When you drag a subnode from a data control to a page, JDeveloper automatically creates the metadata that describes the bindings from the page to the services. At runtime, the ADF Model layer reads the metadata information from the appropriate XML files for both the data controls and the bindings, and then implements the two-way connection between your user interface and your business services.	
Once you have your application's services in place, you can use JDeveloper to create data controls that provide the information needed to declaratively bind UI components to those services. In a Java EE application, you normally create entity beans that represent tables in a database and then create a session facade over all the EJBs. This facade provides a unified interface to the underlying entities. In an Oracle ADF application, you can create a data control for the session bean, and that data control will contain representation of all the EJBs under the session bean.	
You generate data controls with the Create Data Control command. Data controls consist of one or more XML metadata files that define the capabilities of the services that the bindings can work with at runtime. The data controls work in conjunction with the underlying beans without changing the implementation of the beans.	
For example, the Summit demo application uses the summit	
database schema, which contains a number of relational database tables. The application's Model project has a number of entity beans that represent the tables in the schema used by the Summit demo application. There is a Customer	
bean, a Product	
bean, an Order	
bean, and so on. The module also contains a session bean, OrdersSessionEJBBean	
, which is used to access the beans created from tables. There is a data control for the session bean, which allows developers to declaratively create UI pages using the data and logic contained in the session bean and in the entity beans that the session bean encapsulates.	
You create data controls from within the Application Navigator of JDeveloper.	
Before you begin:	
It may be helpful to have a general understanding of using data controls. For more information, see Section 2.2, "Exposing Business Services with ADF Data Controls.".	
You will need to complete this task:	
Note: You can also base a data control on a Java Service Facade class. With a Java Service Facade, you can expose business methods either from within an EJB container or without using an EJB container. A Java Service Facade template is available in the New Gallery. Also note that any class on which you base a data control must meet the JavaBeans specification. In particular, the class must have a public default constructor.	
To create a data control:	
Note: If you later rename the bean on which a data control is based, you must again use the Create Data Control command in order to regenerate the data control's metadata.If you merely make changes to a bean after the data control is created, you do not have to regenerate the data control. The data control incorporates any changes made to the bean. However, you might need to close and reopen the project in order for the data control to incorporate the changes to the underlying beans.	
When you create a data control based on an EJB session bean, JDeveloper creates the data control definition file (DataControls.dcx	
), opens the file in the overview editor, and displays the file's hierarchy in the Data Controls panel. This file enables the data control to work directly with the services and the bindings. Figure 2-3 shows the DataControls.dcx	
file in the overview editor.	
Example 2-2 shows the code from the corresponding XML file, which you can view by clicking on the Source tab in the editor window.	
Example 2-2 DataControls.dcx File	
The overview editor for the DataControls.dcx	
file provides a view of the master-detail hierarchies of your data model as well as methods from the session facade. When you select a node, you can view the fields that can be mapped to database columns in the corresponding entity class in the Attributes tab. In the Accessors tab, you can view fields for the corresponding entity class that have entity relationships defined (such as OneToMany	
and ManyToOne	
). In the Operations tab, you can view methods that operate on the entities, such as the add and remove methods of the collection accessors.	
See Table 2–1 for a description of the icons that are used in the overview editor and Data Controls panel.	
You can change the settings for a data control by selecting an element and clicking the Edit icon. For more information about editing a data control, see Section 3.2, "Configuring Data Controls."	
The Data Controls panel appears in the Application Navigator once you have created a data control. The Data Controls panel serves as a palette, from which you can create databound UI components by dragging nodes from the Data Controls panel to the design editor for a web page.	
Similar to the DataControls.dcx	
overview editor, the Data Controls panel reflects the master-detail hierarchies in your data model by displaying detail data collections nested under their master data collection. For example, Figure 2-4 shows the Data Controls panel with the data control for the Summit demo application. The Customer	
, Emp	
, Item	
, Ord	
, and Product	
beans are all represented by accessor returned collections in the figure, which in turn correspond to named queries defined in the beans.	
The Data Controls panel also displays each service method on the session bean as a method icon whose name matches the method name. If a method accepts arguments, those arguments appear in a Parameters node as parameters nested inside the method's node. Objects that are returned by the methods appear as well, as shown in Figure 2-4.	
In addition to the nodes that are displayed in the overview editor for the DataControls.dcx	
file, the Data Controls panel displays nodes for other objects that are available for binding, such as entity bean attributes, built-in operations, and method parameters.	
Tip: If the Data Controls panel is not visible, see the "How to Open the Data Controls Panel" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework for instructions on opening the panel.	
Each returned collection or object displays any attributes and custom methods that were defined on the associated bean. Figure 2-5 shows the attributes and methods defined on the Item	
bean that is returned by the itemFindAll	
accessor method.	
By default, implicit named criteria are created for each attribute that is able to be queried on a bean. They appear in the Data Controls panel as the All Queriable Attributes node under the Named Criteria node, as shown in Figure 2-5. This node is used to create quick search forms, as detailed in Chapter 8, "Creating Databound Search Forms."	
As shown in Figure 2-5, the Operations node under a returned collection in the Data Controls panel displays all its available built-in operations that are provided by the data control. If an operation accepts one or more parameters, then those parameters appear in a nested Parameters node. At runtime, when one of these data collection operations is invoked by name by the data binding layer, the data control delegates the call to an appropriate method on the bean interface to handle the built-in functionality. Most of the built-in operations affect the current row. However, the execute	
operation refreshes the data control itself, and the commit	
and rollback	
operations affect all changes made within the boundaries of a transaction. Following are the built-in operations:	
Create	
: Creates a new row that becomes the current row, but does not insert it. Delete	
: Deletes the current row. Execute	
: Refreshes the data collection by executing or reexecuting the accessor method. First	
: Sets the first row in the row set to be the current row. Last	
: Sets the last row in the row set to be the current row. Next	
: Sets the next row in the row set to be the current row. Next Set	
: Navigates forward one full set of rows. Previous	
: Sets the previous row in the row set to be the current row. Previous Set	
: Navigates backward one full set of rows. removeRowWithKey	
: Tries to find a row using the serialized string representation of the row key passed as a parameter. If found, the row is removed. setCurrentRowWithKey	
: Tries to find a row using the serialized string representation of the row key passed as a parameter. If found, that row becomes the current row. setCurrentRowWithKeyValue	
: Tries to find a row using the primary key attribute value passed as a parameter. If found, that row becomes the current row. commit	
: Persists to the database all changes that are made in the current transaction. (Only available for stateful bean-managed session facades that contain transactional methods) rollback	
: Reverts all changes made within the context of the current transaction. (Only available for stateful bean-managed session facades that contain transactional methods) Note: By default, JavaBeans components assume therowIndex as the key. If you do not explicitly define a key, the index will be used.	
The Data Controls panel is a direct representation of the DataControls.dcx	
file and any data control structure files that are associated with the data control. By editing the files, you can change the elements displayed in the panel. Whenever changes are made to the services on which a data control is based, the data control incorporates those changes.	
You can design a databound user interface by dragging an item from the Data Controls panel and dropping it on a page as a specific UI component. When you use a data control to create a UI component, JDeveloper automatically creates the various code and objects needed to bind the component to the data control you selected.	
In the Data Controls panel, each object is represented by a specific icon. Table 2-1 describes what each icon represents, where it appears in the Data Controls panel hierarchy, and what components it can be used to create.	
Table 2-1 Data Control Icons and Object Hierarchy	
Icon	Name
---	---
Data Control	Represents a data control. You cannot use the data control itself to create UI components, but you can use any of the child objects listed under it. Depending on how your business services were defined, there may be more than one data control.
Accessor Returned Collection	Represents an object returned by a bean-style accessor method on the business service. For example, if when you created a session bean, you chose to also create accessor methods for each of the Java entities under the session bean, then an accessor returned collection is displayed for each of those entities. If an entity contains a relationship to another entity (for example, a foreign key), then a child accessor returned collection is shown for that entity. In Oracle ADF, the relationship between parent and child entities is called a master-detail relationship. The children under a collection may be attributes of the elements that make up the collection, operations on the entire collection, or operations on the row for each element in the collection.
Attribute	Represents a discrete data element in an object (for example, an attribute in a row). Attributes appear as children under the collections or method returns to which they belong. This icon is used in the Data Controls panel, but not in the overview editor for the
Method	Represents a method that may accept parameters, perform some business logic, and optionally return a single value, a structure, or a collection of a single value and a structure.
Method Return	Represents an object that is returned by a method. The returned object can be a single value or a collection. A method return appears as a child under the method that returns it. The objects that appear as children under a method return can be attributes of the collection, other methods that perform actions related to the parent collection, or operations that can be performed on the parent collection.
Operation	Represents a built-in data control operation that performs actions on the parent object. Data control operations are located in an Operations node under collections or method returns. The operations that are children of a particular collection or method return operate on those objects only. If an operation requires one or more parameters, they are listed in a Parameters node under the operation. This icon is used in the Data Controls panel, but not in the overview editor for the
Parameter	Represents a parameter value that is declared by the method or operation under which it appears. Parameters appear in the Parameters node under a method or operation. This icon is used in the Data Controls panel, but not in the overview editor for the
Named criteria	Represents a query from which you can create a user search form. An All Queriable Attributes criteria is generated automatically for each accessor collection. This criteria can be used to create a search form where it is possible for the user to query based on any queriable attribute in the collection. You can create custom view criteria and add them to the Data Controls panel. See Section 3.6, "Filtering Result Sets with Named Criteria". This icon is used in the Data Controls panel, but not in the overview editor for the
JDeveloper provides you with a predefined set of UI components from which to choose for each data control item you drop.
To use the Data Controls panel to create UI components:
When you drag an item from the Data Controls panel and drop it on a page, JDeveloper displays a context menu of all the default UI components available for the item you dropped.
Figure 2-6 shows the context menu displayed when an accessor returned collection from the Data Controls panel is dropped on a page.
Depending on the component you select from the context menu, JDeveloper may display a dialog that enables you to define how you want the component to look.
The resulting UI component appears in the JDeveloper visual editor, as shown in Figure 2-7.
Tip: Instead of creating automatically bound UI components using the Data Controls panel, you can create your UI first and then bind the components to the ADF Model layer. For more information, see the "Using Simple UI First Development" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
When a web application is built using the Data Controls panel, JDeveloper does the following:
DataBindings.cpx
file in the default package for the project (if one does not already exist), and adds an entry for the page. DataBindings.cpx
files define the binding context (a container object that holds a list of available data controls and data binding objects) for the application. Each DataBindings.cpx
file maps individual pages to the binding definitions in the page definition file and registers the data controls used by those pages. Figure 2-8 shows a DataBindings.cpx
file in the overview editor of JDeveloper.
Example 2-3 shows the code from the corresponding XML file.
Example 2-3 DataBindings.cpx File
For more information about the .cpx
file, see the "Working with the DataBindings.cpx File" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
adfm.xml
file in the META-INF
directory. This file creates a registry for the DataBindings.cpx
file, and is used by the applications metadata layer to allow customization and personalization of the application. Example 2-4 shows an example of an adfm.xml
file. web.xml
file. The ADF binding filter preprocesses any HTTP requests that may require access to the binding context. For more information about the filter, see the "Configuring the ADF Binding Filter" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
view.pageDefs
. The page definition file (pageName
PageDef.xml
) defines the ADF binding container for each page in an application's view layer. The binding container provides runtime access to all the ADF binding objects. Figure 2-9 shows a page definition file in the overview editor of JDeveloper.
Example 2-5 Page Definition File
For more information about the page definition file, see the "Working with Page Definition Files" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
These prebuilt components include ADF data bindings that reference the binding objects in the page definition file. Example 2-6 shows JSF page code for components that have been bound using ADF Model data binding.
Example 2-6 JSF Page Code Fragment with ADF Model Data Binding
When a page contains ADF bindings, at runtime the interaction with the business services initiated from the client or controller is managed by the application through the binding context. The binding context is a runtime map (named data
and accessible through the EL expression #{data}
) of all data controls and page definitions within the application.
The ADF lifecycle creates the ADF binding context from the DataControls.dcx
, DataBindings.cpx
, and page definition files, as shown in Figure 2-10. The DataControls.dcx
file defines the data controls available to the application at design time, while the DataBindings.cpx
files define what data controls are available to the application at runtime. A DataBindings.cpx
file lists all the data controls that are being used by pages in the application and maps the binding containers, which contain the binding objects defined in the page definition files, to web page URLs, or in the case of a Java Swing application, the Java class. The page definition files define the binding objects used by the application pages. There is one page definition file for each page.
The binding context does not contain real live instances of these objects. Instead, the map first contains references that become data control or binding container objects on demand. When the object (such as the page definition) is released from the application (such as when a task flow ends or when the binding container or data control is released at the end of the request), data controls and binding containers turn back into reference objects. For more information, see the "Understanding the Fusion Page Lifecycle" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When a data control modifies a collection, the data control must instantiate a new instance of the collection in order for the ADF Model layer to understand that it has been modified. In other words, although some action in the client may change the collection, that change will not be reflected in the UI unless a new instance of the collection is created. However, for performance reasons, accessor and method iterators cache their results set (by default, the cacheResults
attribute on the iterator is set to true
). This setting means that the iterator is refreshed and a new instance of the collection is created only when the page is first rendered. The iterator is not refreshed when the page is revisited, for example, if the page is refreshed using partial page rendering, or if the user navigates back to the page.
For example, say you want to allow sorting on a table on your page. Because you want the page to refresh after the sort, you add code to the listener for the sort event that will refresh the table using partial page rendering (for more information, see the "Rerendering Partial Page Content" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework). Because the instance of the collection for the table has already been instantiated and is cached, the accessor iterator will not reexecute, which means that a new instance of the collection with the new sort order will not be created, so the sort order on the page will remain the same.
To work around this issue, you can either configure the iterator so that it does not cache the results, or you can place a button on the page that can be used to reexecute the iterator when the page is refreshed. If your page does not have a button whose action attribute can be bound to a method, then you can use an invokeAction
executable that will be invoked whenever the page is refreshed.
Note: If your page uses the navigation operations to navigate through the collection, do not setCacheResults to false, as that navigation will no longer work. You must use a button to reexecute the iterator. For more information about the navigation operations, see Section 4.4, "Incorporating Range Navigation into Forms." |
Performance Tip: If you set an iterator to not cache its result set, and that result set is a collection that may return a large number of rows, performance will be negatively affected. For large result sets, you should use aninvokeAction . |
To set an iterator to not cache its result set:
To use a button to reexecute the iterator:
To use an invokeAction to reexecute the iterator:
This setting will cause the accessor method to be invoked during the Prepare Model phase. This refreshes the binding container.
invokeAction
will be called twice. For more information about the page lifecycle phases and using the refresh
and refreshCondition
attributes, see "About the JSF and ADF Page Lifecycles" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
In addition to being able to set validation on attributes at the data control level, you can also set validation on the attribute bindings in a page definition file. When a user edits or enters data in a field for an attribute for which validation has been defined, and submits the form, the bound data is validated against the configured rules and conditions. If validation fails, the application displays an error message.
In most cases, setting validation at the data control level is preferable to setting validation at the page level. Any validation rules that you set on a data control are applied in all of the UI components that are created from the data control.
For information and procedures on setting validation on data controls, see Section 3.5, "Defining Validation Rules on Attributes Declaratively".
For information and procedures on setting validation on individual UI components, see the "Using Validation in the ADF Model Layer" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When you set validation, you can define the error message that will be displayed. By default, these messages are displayed in a client dialog. You can configure these messages to display inline instead. For more information, see the "Displaying Hints and Error Messages for Validation and Conversion" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
You can also change the way messages are handled by creating your own error handling class. For more information, see the "Customizing Error Handling" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
By default, when you drag an accessor returned collection from a session bean data control onto a page, the result is a paginated collection. In this case, the built-in session bean's queryByRange()
method will be referenced from the bindings (instead of the corresponding get
Bean
FindAll()
method in the session bean). If you have custom code for a get
Bean
FindAll()
, get
Bean
FindAllSize()
, or get
Bean
FindAll(x,y)
method on a bean that you want to make sure is used at runtime, you need to remove the data control's DataControlHandler
attribute. You can remove the DataControlHandler attribute in the source editor for the DataControls.dcx
file. However, when you remove that attribute, the built-in support for named queries and pagination is also disabled.
This chapter describes how to configure your data controls with custom business logic. By configuring your data controls, you can define business logic that is then used whenever UI components are created from those data controls.
This chapter includes the following sections:
When you generate data controls, you can use them without further modification to create bindings between your data model and the UI components in your application. In addition, you can configure the data controls to add business logic and other features to your data model so that those features are applied when you use the Data Controls panel to create UI components. For example, you can configure data controls to do the following things:
When you create a data control for an EJB session bean, a standard set of values and behaviors are assumed for the data control. For example, the data control determines how the label for an attribute will display in a client. You can configure these values and behaviors by creating and modifying data control structure files that corresponds to your entity beans. You first generate a data control structure file using the overview editor for the .dcx
file.
You can make a data control configurable by using the overview editor for the DataControls.dcx
file to create data control structure files that correspond to the entity beans. You can then edit the individual data control structure files.
Before you begin:
It may be helpful to have a general understanding of data control configuration. For more information, see Section 3.2, "Configuring Data Controls."
You will need to complete this task:
To edit a data control:
When you edit a data control based on an EJB session bean, JDeveloper creates a data control structure file that contains metadata for the affected bean and opens that file in the overview editor. This file stores configuration data for the data control that is specific to that bean, such as any UI hints or validators that you have specified for the bean.
A data control structure file has the same base name as the entity bean with which it corresponds. For example, if you click the Edit icon when you have an accessor returned collection node selected that corresponds with the Customer.java
entity bean, the data control structure file is named Customer.xml
. The data control structure file is generated in a package that corresponds to the package of the bean class, but with persdef
prepended to the package name. For example, in the Summit application, the Customer.java
bean is in the model
package, and the Customer.xml
data control definition file is in the persdef.model
package. Once a data control structure file has been generated, you can use the overview editor for that file to make further configurations.
A data control structure file contains the following information:
Note: View objects are ADF Business Components used to encapsulate SQL queries and to simplify working with the results. When reading this section, simply substitute "bean" for "view object." |
You can also set validation for an attribute and create custom properties. For more information on validation, see Section 3.5, "Defining Validation Rules on Attributes Declaratively." For more information on custom properties, see the "How to Implement Generic Functionality Driven by Custom Properties" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For more information, see Section 3.6, "Filtering Result Sets with Named Criteria."
add
and remove
methods, which are used by the Create and Delete built-in operations, respectively. Figure 3-1 shows the data control structure file for the Item
bean in the Summit demo application.
Note: The overview editor of a data control structure file shows all of the attributes, accessors, and operations that are associated with the bean. However, the data control structure file's XML source only contains definitions for elements that you have edited. The base elements are introspected from the bean. Also, when you make changes to the underlying bean, the data control inherits those changes. |
When you create a data control for your EJBs, you can create a data control structure file for the bean in which you can declaratively augment the functionality of the bean's persistent attributes. For example, you can create validation rules and set UI hints to control the default presentation of attributes in UI components. In addition, you can create transient attributes.
In all cases, you set these properties on the Attributes page of the overview editor of the data control structure file. For information on creating a data control structure file, see Section 3.2.1, "How to Edit a Data Control."
The Updatable
property controls whether the value of a given attribute can be updated. You can select the following values for the Updatable
property:
Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 3.3, "Working with Attributes."
You will need to complete this task:
To set the updatability of an attribute:
The Value field in the Details section allows you to specify a static default value for the attribute when the value type is set to Literal. For example, you might set the default value of a ServiceRequest
entity bean's Status
attribute to Open
, or set the default value of a User
bean's UserRole
attribute to user
.
Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 3.3, "Working with Attributes."
To define a static default value for an attribute:
You can use a Groovy expression to define a default value for an attribute. This approach is useful if you want to be able to change default values at runtime. However, if the default value is always the same, the value is easier to see and maintain using value field with the Literal type (on the Details tab). For general information about using Groovy, see Section 3.8, "Groovy Language Support."
Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 3.3, "Working with Attributes."
You will need to complete this task:
To define a default value using a Groovy expression:
Attributes that you reference can include any attribute that is defined for the bean.
If you select Always (default), the expression is evaluated each time any attribute in the row changes. If you select Never, the expression is evaluated only when the row is created.
For example, the following expression in the Based on the following expression field causes the attribute to be recalculated when either the Quantity
attribute or the UnitPrice
attribute are changed:
When you define a default value using a Groovy expression, a <TransientExpression>
tag is added within the tag for the corresponding attribute in the data control structure file. Example 3-1 shows sample XML code for a Groovy expression that returns the current date for a default value.
You can set UI hints on attributes so that those attributes are displayed and labeled in a consistent and localizable way by any UI components that use those attributes. To create UI hints for attributes, use the overview editor for the bean's data control structure file, which is accessible from the Application Navigator.
Before you begin:
It may be helpful to have an understanding of how you set attribute properties. For more information, see Section 3.3, "Working with Attributes."
You will need to complete this task:
To set a UI hint:
For information about the various UI hints, see the "Defining Attribute UI Hints for View Objects" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: View objects are ADF Business Components used to encapsulate SQL queries and to simplify working with the results. When reading this section, simply substitute "bean" for "view object." |
When you set UI hints on an attribute, JDeveloper treats those hints as properties. Tags for the properties are added to the bean's data control structure file and the values for the properties are stored in a resource bundle file. If the resource bundle file does not already exist, it is generated in the data control's package and named according to the project name when you first set a UI hint. For example, in the Summit demo application, the resource bundle is called ModelBundle.properties
Example 3-2 shows the code for the price
attribute in the Summit demo application's Item.xml
data control structure file, including tags for the Label and Format Type hints which have been set for the attribute.
Example 3-2 XML Code for UI Hints
Example 3-3 shows the corresponding entries for the Label and Format Type hints in the ModelBundle.properties
resource bundle file, which contains the values for all of the project's localizable properties.
In addition to having attributes that map to columns in an underlying table, your bean data control structure files can include transient attributes that display calculated values.
For example, a transient attribute you create, such as FullName
, could be calculated based on the concatenated values of FirstName
and LastName
attributes.
Once you create the transient attribute, you can use a Groovy expression in the attribute definition to specify a default value.
Use the Attributes page of the overview editor to create a transient attribute.
Before you begin:
It may be helpful to have an understanding of transient and calculated attributes. For more information, see Section 3.4, "Adding Transient Attributes to a Bean."
You will need to complete this task:
To add a transient attribute to a bean's data control structure file:
For information on setting an expression to calculate the default value, see Section 3.3.3, "How to Define a Default Value Using a Groovy Expression."
When you add a transient attribute, JDeveloper adds a <ViewAttribute>
tag to the bean's data control structure file to reflect the new attribute. Example 3-4 shows the XML code for a transient attribute named LineItemTotal
that is based on an expression that multiplies the values of the price
and quantity
attributes.
Example 3-4 XML Code for a Transient Attribute
The easiest way to create and manage validation rules is through declarative validation rules. Declarative validation rules are defined using the overview editor, and once created, are stored in the bean's data control structure file. Encapsulating the business logic this way ensures that your business information is validated consistently in every client that accesses it, and it simplifies maintenance by centralizing where the validation is stored.
Oracle ADF provides built-in declarative validation rules that satisfy many of your business needs. You can also base validation on a Groovy expression, as described in Section 3.5.4, "How to Use Groovy Expressions For Validation and Business Rules."
When you add a validation rule, you supply an appropriate error message and can later translate it easily into other languages if needed. You can also set the severity level.
Many of the declarative validation features available for beans are also available at the page level, should your application warrant the use of page-level validation in addition to business-layer validation. For more information, see the "Using Validation in the ADF Model Layer" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: You can also add validation rules by implementing a custom validation class. This approach is particularly useful if you need to define complex parameterized validation rules (such as for checking credit card numbers) that you will need to use multiple times in your application. For more information, see the "Implementing Custom Validation Rules" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
The process for adding a validation rule to a bean is similar for most of the validation rules, and is done using the Add Validation Rule dialog. You can open this dialog by opening the bean's data control structure file, selecting an attribute on Attributes page, clicking the Validation Rules tab, and then clicking the Add icon
It is important to note that when you define a rule declaratively using the Add Validation Rule dialog, the rule definition you provide specifies the valid condition for the attribute. At runtime, the entry provided by the user is evaluated against the rule definition, and an error or warning is raised if the entry fails to satisfy the specified criteria. For example, if you specify a Length validator on an attribute that requires it to be Less Than or Equal To 12
, the validation fails if the entry is more than 12 characters, and the error or warning is raised.
To add a declarative validation rule to a data control structure file, use the Attributes page of the bean's overview editor.
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To add a validation rule:
The controls will change depending on the kind of validation rule you select. For more information about the different validation rules, see Section 3.5.3, "How to Use the Built-in Declarative Validation Rules."
When you add a validation rule to a bean, JDeveloper updates the bean's data control structure file to include an entry describing what rule you've used and what rule properties you've entered.
For example, if you add a compare validation rule to the dateShipped
attribute to ensure that the shipping date does not precede the date in the dateOrdered
attribute, this results in a <validation:CompareValidationBean>
entry in the XML file, as shown in Example 3-5.
Example 3-5 Compare Validator
The built-in declarative validation rules can satisfy many, if not all, of your business needs. These rules are easy to implement because you don't write any code. You use the user-interface tools to choose the type of validation and how it is used.
Built-in declarative validation rules can be used to:
The Compare validator performs a logical comparison between an entity attribute and a value. When you add a Compare validator, you specify an operator and something to compare with. You can compare the following:
When you use a Compare validator with a literal value, the value in the attribute is compared against the specified literal value. When using this kind of comparison, it is important to consider data types and formats. The literal value must conform to the format specified by the data type of the entity attribute to which you are applying the rule. In all cases, the type corresponds to the type mapping for the entity attribute.
For example, an attribute of column type DATE maps to the oracle.jbo.domain.Date
class, which accepts dates and times in the same format accepted by java.sql.TimeStamp
and java.sql.Date
. You can use format masks to ensure that the format of the value in the attribute matches that of the specified literal.
For information on the expression option, see Section 3.5.4, "How to Use Groovy Expressions For Validation and Business Rules."
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To validate based on a comparison:
When you create a Compare validator, a <validation:CompareValidationBean>
tag is added to the bean's data control structure file.
Example 3-5 shows the XML code for the validator on the dateShipped
attribute in the Ord
data control structure file.
The List validator compares an attribute against a list of values. The validator ensures that the value of the bean attribute is in (or not in, if specified) the list of values.
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To validate using a list of values:
When you validate using a list of values, a <validation:ListValidationBean>
tag is added to the bean's data control structure file.
The Range validator performs a logical comparison between an entity attribute and a range of values. When you add a Range validator, you specify minimum and maximum literal values. The Range validator verifies that the value of the entity attribute falls within the range (or outside the range, if specified).
If you need to dynamically calculate the minimum and maximum values, or need to reference other attributes on the entity, use the Script Expression validator and provide a Groovy expression. For more information, see Section 3.8.1, "How to Reference ADF Objects in Groovy Expressions."
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To validate within a certain range:
When you validate against a range, a <validation:RangeValidationBean>
tag is added to the data control structure file.
Example 3-6 shows the quantity
attribute with a minimum of zero and a maximum of 10.
The Length validator validates whether the string length (in characters or bytes) of an attribute's value is less than, equal to, or greater than a specified number, or whether it lies between a pair of numbers.
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To validate against a number of bytes or characters:
When you validate using length, a <validation:LengthValidationBean>
tag is added to the data control structure file, as shown in Example 3-7. For example, you might have a field where the user enters a password or PIN and the application wants to validate that it is at least 6 characters long, but not longer than 10. You would use the Length validator with the Between operator and set the minimum and maximum values accordingly.
The Regular Expression validator compares attribute values against a mask specified by a Java regular expression.
If you want to create expressions that can be personalized in metadata, you can use the Script Expression validator. For more information, see Section 3.5.4, "How to Use Groovy Expressions For Validation and Business Rules."
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To validate using a regular expression:
Figure 3-3 shows what the dialog looks like when you select a Regular Expression validator and validate that the Email
attribute matches a predefined Email Address expression.
When you validate using a regular expression, a <RegExpValidationBean>
tag is added to the data control structure file. Example 3-8 shows an Email
attribute that must match a regular expression.
Groovy expressions are Java-like scripting code stored in the data control structure file. You can even change or specify values at runtime.
For more information about creating validation rules, see Chapter 3, "Defining Validation Rules on Attributes Declaratively."
For more information about using Groovy expressions in your business logic, see Section 3.8, "Groovy Language Support."
You can call methods on the bean using the adf.source.dataProvider
property of the current object. The adf.source.dataProvider
property allows you to access the bean that is being validated.
If the method is a non-boolean type and the method name is getXyzAbc()
with no arguments, then you access its value as if it were a property named XyzAbc
. For example, the Groovy expression in Example 3-9 would call the getXyzAbc()
method.
For a Boolean property, the same holds true but the JavaBeans component naming pattern for the getter method changes to recognize isXyzAbc()
instead of getXyzAbc()
. If the method on your bean does not match the JavaBeans getter method naming pattern, or if it takes one or more arguments, then you must call it like a method using its complete name.
You can use a Groovy expression to return a true/false statement. The Script Expression validator requires that the expression either return true
or false
, or that it calls the adf.error.raise
/warn()
method. A common use of this feature would be to validate an attribute value, for example, to make sure that an account number is valid.
Note: Using theadf.error.raise() and adf.error.warn() methods (rather than simply returning true or false) allows you to define the message text to show to the user, and to associate a validator with a specific attribute. For more information, see Section 3.5.5, "How to Create Validation Error Messages." |
Before you begin:
It may be helpful to have an understanding of validation in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You may also find it helpful to understand the use of Groovy in validation rules. For more information, see Section 3.5.4, "How to Use Groovy Expressions For Validation and Business Rules."
You will need to complete this task:
To validate using a true/false expression:
When you create a Groovy expression, it is saved in the bean's data control structure file. The Groovy expression is wrapped by a <TransientExpression>
tag. For some Groovy expressions, the <TransientExpression>
tag is wrapped by an <validation:ExpressionValidationBean>
tag as well.
Validation error messages provide important information for the user: the message should convey what went wrong and how to fix it.
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To create validation error messages:
You can also define error messages in a message bundle file. To select a previously defined error message or to define a new one in a message bundle file, click the Select Message icon to open the Select Text Resource dialog.
Note: The Script Expression validator allows you to enter more than one error message. This is useful if the validation script conditionally returns different error or warning messages. For more information, see Section 3.5.5.3, "Raising Error Message Conditionally Using Groovy." |
Figure 3-4 shows a failure message that contains a message token for a validation rule in the data control structure file. For more information on this feature, see Section 3.5.5.4, "Embedding a Groovy Expression in an Error Message."
The error message is a translatable string and is managed in the same way as translatable UI control hints in a message bundle file. To view the error message for the defined rule in the message bundle class, locate the String
key in the message bundle that corresponds to the ResId
property in the data control structure file entry for the validator.
You can use the adf.error.raise()
and adf.error.warn()
methods to conditionally raise one error message or another depending upon branching in the Groovy expression. For example, if an attribute value is x, then validate as follows, and if the validation fails, raise error messageA
; whereas if the attribute value is y, then instead validate a different way and if validation fails, raise error messageB
.
If the expression returns false
(versus raising a specific error message using the raise()
method), the validator calls the first error message associated with the validator.
The syntax of the raise()
method takes one required parameter (the msgId
to use from the message bundle), and optionally can take the attrName
parameter.
You can use either adf.error.raise()
or adf.error.warn()
methods, depending on whether you want to throw an exception, or whether you want processing to continue, as described in Section 3.5.6, "How to Set the Severity Level for Validation Exceptions."
A validator's error message can contain embedded expressions that are resolved by the server at runtime. To access this feature, simply enter a named token delimited by curly braces (for example, {2}
or {errorParam}
) in the error message text where you want the result of the Groovy expression to appear.
After entering the token into the text of the error message (on the Failure Handling tab of the Edit Validation Rule dialog), the Token Message Expressions table at the bottom of the dialog displays a row that allows you to enter a Groovy expression for the token. Figure 3-4 shows the failure message that contains a message token for a validation rule in the Item.xml
data control structure file.
The expression shown in Figure 3-4 is a Groovy expression that returns the value of the quantity
attribute. You can also use Groovy expressions to access attribute UI hints and other objects that are defined in the data control structure file.
You can use the Groovy expression newValue
to return the entered value.
For more information about accessing ADF objects using Groovy, see Section 3.8, "Groovy Language Support."
You can set the severity level for validation exceptions to either Informational Warning or Error. If you set the severity level to Informational Warning, an error message will display, but processing will continue. If you set the validation level to Error, the user will not be able to proceed until you have fixed the error.
Under most circumstances you will use the Error level for validation exceptions, so this is the default setting. However, you might want to implement a Informational Warning message if the user has a certain security clearance. For example, a store manager may want to be able to make changes that would surface as an error if a clerk tried to do the same thing.
To set the severity level for validation exceptions, use the Failure Handling tab of the Add Validation Rule dialog.
Before you begin:
It may be helpful to have an understanding of the use of validation rules in data control structure files. For more information, see Section 3.5, "Defining Validation Rules on Attributes Declaratively."
You will need to complete this task:
To set the severity level of a validation exception:
JDeveloper enables you to create named criteria for data control structure files. Named criteria can be used in the application's data model and can be exposed to users as seeded queries in search forms.
You can specify named criteria on an entity bean in order to filter results to display. The named criteria object is a row set of one or more named criteria rows, whose attributes mirror those in the entity bean. The named criteria definition comprises query conditions that function like the WHERE
clause of an SQL query.
In the result set of a named criteria, the data type of each attribute is String
, which enables the use of Query-by-Example operators. For example, this allows the user to enter conditions such as "OrderId > 304
".
You use the Named Criteria page of the overview editor to define named criteria for specific data control structure files.
Note: In addition to named criteria, there are also implicit criteria that are generated automatically for entity beans when you create a data control. Implicit criteria are based on the "FindAll" service methods that return all data for given tables.Both named and implicit criteria are available under the Named Criteria node in the Data Controls panel. Implicit criteria appear as All Queriable Attributes. |
You create named criteria definitions when you need to filter individual accessor results. Named criteria that you define at design time can be used for easy creation of Query-by-Example search forms that allow the end user to supply values for attributes of the target data control structure file.
For example, the end user might input the value of a customer name and the date to filter the results in a web page that displays the rows of a CustomerOrders
collection. The web page designer will see the named criteria in the JDeveloper Data Controls panel and, from them, easily create a search form. For more information about the utilizing the named criteria in the Data Controls panel, see Section 8.1.1, "Query Search Forms."
To define named criteria for the data control structure file that you wish to filter, you open the data control structure file in the overview editor and use the Named Criteria section of the View Criteria page. A dedicated editor that you open from the Named Criteria section helps you to build the equivalent of a WHERE
clause using attribute names (as opposed to SQL column names). You may define multiple named criteria for each bean.
Each named criteria definition consists of the following elements:
Expressions are based on the Groovy scripting language, as described in Section 3.8, "Groovy Language Support."
When you define a named criteria, you control the source of the filtered results. You can limit the results to:
Filtering on both database tables and the accessor's in-memory results allows you to filter rows that were created in the transaction but not yet committed to the database.
Named criteria expressions you construct in the Edit View Criteria dialog use logical conjunctions to specify how to join the selected criteria item or criteria group with the previous item or group in the expression:
AND
conjunctions specify that the query results meet both joined conditions. This is the default for each named criteria item you add. OR
conjunctions specify that the query results meet either or both joined conditions. This is the default for named criteria groups. Additionally, you may create nested named criteria to have more control over the logical conjunctions among the various named criteria items. A nested named criteria group consists of an arbitrary number of nested named criteria items. The nested criteria place restrictions on the rows that satisfy the criteria under the nested criteria's parent named criteria group. For example, you might want to query both a list of employees with Salary > 3000
and belonging to DeptNo = 10
or DeptNo = 20
. You can define a named criteria with the first group with one item (Salary > 3000
) and a nested named criteria with the second group with two items (DeptNo = 10
and DeptNo =20
).
Before you begin:
It may be helpful to have an understanding of named criteria. For more information, see Section 3.6, "Filtering Result Sets with Named Criteria."
You will need to complete these tasks:
To define a named criteria:
You can limit the named criteria to filter the database table specified by the accessor query, the in- memory row set produced by the query, or both the database table and the in-memory results.
Choosing Both may be appropriate for situations where you want to include rows created as a result of enforced association consistency. In this case, in-memory filtering is performed after the initial fetch.
OR
conjunction into the hierarchy. You can change the conjunction as desired. AND
conjunction into the hierarchy. You can change the conjunction as desired. Each time you add another named criteria, the editor nests the new named criteria beneath the current named criteria selection in the hierarchy. The root node of the hierarchy defines the named criteria that you are currently editing. Note: Search forms that the UI designer will create from named criteria are not able to use named criteria that contain other named criteria. |
The list displays only the operators that are appropriate for the selected attribute. In the case of String and Date type attributes, the Between and Not between operators require you to supply two operand values to define the range. In the case of Date type attributes, you can select operators that test for a date or date range (with date values entered in the format YYYY-MM-DD). For example, for December 16th, 2010, enter 2010-12-16.
*
or %
. The criteria item can be a literal value that you define or a runtime parameter that the end user supplies. This option is supported for attributes of type String only. The default disables case sensitive searches.
WHERE
clause. WHERE
clause will ignore the named criteria item at runtime if no value is supplied and there exists at least one criteria item at the same level that has a criteria value. Otherwise, an exception is thrown. WHERE
clause only if the value is non-NULL
. The default Optional for each new named criteria item means no exception will be generated for null values. WHERE
clause will fail to execute and an exception will be thrown when no value is supplied for the criteria item. IS NULL
condition is generated in the WHERE
clause. This field is enabled only if you have selected Optional for the validation of the bind variable. For example, leaving this option selected for a bind variable that is used in a user search form would enable a user to see results from a search without having to fill in a value for the field with that bind variable.
Note that the validation settings Required or Optionally Required also remove the null value condition but support a different use case. They should be used in combination with Ignore Null Values feature to achieve the desired runtime behavior.
When you create a named criteria, the named criteria definition is added to the data control structure file and appears by name on the Named Criteria page of the overview editor.
To view XML code for the named criteria, open the source editor for the data control structure file. Each named criteria definition contains one or more <ViewCriteriaRow>
elements corresponding to the number of groups that you define in the Create View Criteria dialog.
Bind variables provide you with the means to supply attribute values that are calculated at runtime to the named criteria.
If the named criteria is to be used in a seeded search, you have the option of making the bind variable updatable by the end user. With this updatable option, end users will be expected to enter the value in the search form.
Named criteria execution need not require the bind variable value if the named criteria item for which the bind variable is assigned is not required. To enforce this desired behavior, the Bind Variable dialog lets you can specify whether a bind variable is required or not.
You can define a default value for the bind variable or write scripting expressions for the bind variable that includes dot notation access to attribute property values. Expressions are based on the Groovy scripting language, as described in Section 3.8, "Groovy Language Support."
To add a named bind variable to a named criteria, use the Named Criteria page of the overview editor for the data control structure file. You can define as many bind variables as you need.
Before you begin:
It may be helpful to have an understanding of named criteria. For more information, see Section 3.6, "Filtering Result Sets with Named Criteria."
You will need to complete this task:
To create a named bind variable
Because the bind variables share the same namespace as data control structure file attributes, specify names that don't conflict with existing attribute names.
The view layer will use bind variable control hints when you build user interfaces like search pages that allow the user to enter values for the named bind variables. The Updatable option controls whether the end user will be allowed to change the bind variable value through the user interface. If a bind variable is not updatable, then its value can only be changed programmatically by the developer.
Once you've added one or more named bind variables to a structure definition file, you gain the ability to easily see and set the values of these variables at runtime. Information about the name, type, and default value of each bind variable is saved in the bean's data control structure file. If you have defined UI hints for the bind variables, this information is saved in the model project's message bundle file along with other UI hints for the data control structure file.
Search forms that the UI designer will create from named criteria are not able to work with all types of nested expressions. Specifically, search forms do not support expressions with directly nested named criteria. This type of nested expression defines one named criteria as a direct child of another named criteria. Query search forms do support nested expressions where you nest the named criteria as a child of a criteria item which is itself a child of a named criteria. For more information about using named criteria to create search forms, see Section 8.1.1, "Query Search Forms."
Named criteria that you create for data control structure file collections can be used by the web page designer to create Query-by-Example search forms. Web page designers select your named criteria from the JDeveloper Data Controls panel to create search forms for the web application. In the web page, the search form utilizes an ADF Faces query search component that will be bound initially to the named criteria selected in the Data Controls panel. At runtime, the end user may select among all other named criteria that appear in the Data Controls panel. Named criteria that the end user can select in a search form are known as developer-seeded searches. The query component automatically displays these seeded searches in its Saved Search dropdown list. For more information about creating search forms and using the ADF query search component, see Section 8.2, "Creating Query Search Forms."
Because developer-seeded searches are created in the data model project, the UI Hints page of the Edit View Criteria dialog lets you specify the default properties for the query component's runtime usage of individual named criteria. At runtime, the query component's behavior will conform to the selections you make for the following seeded search properties:
To create a seeded search for use by the ADF query search component, you select Show In List on the UI Hints page of the Edit View Criteria dialog. You deselect Show In List when you do not want the end user to see the named criteria in their search form.
Before you begin:
It may be helpful to have an understanding of named criteria. For more information, see Section 3.6, "Filtering Result Sets with Named Criteria."
You will need to complete these tasks:
To configure a named criteria for the user interface:
This selection determines whether or not the query component will display the seeded search in its Saved Search dropdown list.
When left empty, the named criteria name displayed in the Edit View Criteria dialog will be used by the query component.
By default, no search results will be displayed.
Note: When your named criteria includes an item that should not be exposed to the user, use the Rendered Mode setting Never to prevent it from appearing in the search form. For example, a named criteria may be created to search for products in the logged-in customer's cart; however, you may want to prevent the user from changing the customer ID to display another customer's cart contents. In this scenario, the named criteria item corresponding to the customer ID would be set to the current customer ID using a named bind variable. Although the bind variable definition might specify the variable as not required and not updatable, with the UI hint property Display set to Hide, only the Rendered Mode setting determines whether or not the search form displays the value. |
By default, all named criteria items defined by the seeded search will be displayed in either mode.
If a rendered criteria item is of type Date
, you must also define UI hints for the corresponding bean attribute. Set the bean attribute's Format Type hint to Simple Date and set the Format Mask to an appropriate value, as described in the "Defining Attribute Control Hints for View Objects" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework guide. This will allow the search form to accept date values.
Before you start designing the views for your application, you can use the Oracle ADF Model Tester to test various aspects of your model. For example, if you have added validation rules or UI control hints to your model, you can test them before binding those objects to a page. Even after you have your UI pages constructed, the Oracle ADF Model Tester can assist you in diagnosing problems when they arise. You can reproduce the issues in the Oracle ADF Model Tester to discover whether the problem lies in the view or controller layers of the application, or whether there is instead a problem in the business service layer application module itself.
To test the metadata that you have defined in your data control, use the Oracle ADF Model Tester, which is accessible from the Application Navigator.
Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester."
Note: For EJB data controls, the tester only works on data controls for the remote session bean interface. If you created the data control based on the local bean interface, you need to add metadata for the remote bean interface to theDataControls.dcx file in order to use the tester. You can add metadata for the remote bean interface by right-clicking the session bean, choosing Create Data Control, and then selecting the Remote radio button in the Choose EJB Interface dialog. When you later use the Data Controls panel to add bindings to pages, you will see high-level nodes for both the local and remote interfaces. Each node will contain identical hierarchies of data control collections that reference the same data control structure files. The only difference between the two hierarchies is in which session bean interface is referenced. |
To test the bean metadata in your application:
Wait for the application server to start and for the bean to be loaded on the server.
The Configure Default Domain dialog displays the first time your run your application and start a new domain in Integrated WebLogic Server. Use the dialog to define an administrator password for the new domain. Passwords you enter can be eight characters or more and must have a numeric character.
Alternatively, choose Debug when you want to run the application in the Oracle ADF Model Tester with debugging enabled. JDeveloper opens the debugger process panel in the Log window and the various debugger windows. For example, when debugging using the Oracle ADF Model Tester, you can view status message and exceptions, step in and out of source code, and manage breakpoints.
The Oracle ADF Model Tester opens, as shown in Figure 3-5
Table 3-1 gives an overview of the operations that the Oracle ADF Model Tester toolbar buttons perform when you display an entity bean.
Table 3-1 Oracle ADF Model Tester Toolbar Buttons
Button	Operation	Usage
Move to ... row	Changes the current row displayed by the Oracle ADF Model Tester. Moves to the first, previous, next, or last row.	
Insert a new row	Creates and inserts a new row.	
Delete the current row	Deletes the current row.	
Save changes to the database	Runs the commit operation on any pending transactions. However, for EJB data controls, the changes are not actually committed to the database. This button is only available when transactional methods are implemented on the session facade.	
Discard all changes since last save	Discards any pending transactions and restores the original values. This button is only available when transactional methods are implemented on the session facade.	
Specify view criteria	Displays the View Criteria dialog that you can use to create and apply view criteria to the result set.	
Validate row	Validates the current row by applying validation rules defined in the data control structure file. Disabled unless at least one field is editable.	
When you are testing your data control, you can iteratively modify the data control and retest it without redeploying your whole model project. You can merely close and reopen the Oracle ADF Model Tester in order to reload changes that you have made to the data control structure files.
If you change Java code or any other files that are packaged in the model project JAR file, you also need to rebuild and redeploy that JAR to the internal application server.
Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester."
To reload the data model metadata in the running Oracle ADF Model Tester:
If you have only made changes to data control structure files, you do not need to rebuild the project.
When you launch the Oracle ADF Model Tester, JDeveloper starts the tester in a separate process and the Oracle ADF Model Tester window appears. The tree at the left of the window displays all of the accessor returned collections in your data model. If the data model defines master-detail view instance relationships, the tree will display them as parent and child nodes. After you double-click the desired collection, the Oracle ADF Model Tester will display a data view page to inspect the query results. For example, Figure 3-6 shows the customerFindAll accessor returned collection that has been double-clicked to display the first record for this collection in the data view page on the right.
The following are some of the features of the Oracle ADF Model Tester:
For example, you can select a view criteria like CustomerInfoCriteria
and enter a query criteria like "H%
" for a LastName
attribute and click Find to narrow the search to only those users with a last name that begins with the letter H
.
Depending on the validation rules you have defined, you can try entering invalid values to trigger and verify validation exceptions.
Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester."
You will need to complete this task:
To test business layer validation:
For example, if you have defined a range validation rule for an attribute, enter a value outside that range, and click the Validate Row icon. You should see an error similar to following:
When your application defines alternative languages in your resource message bundles, you can configure the Oracle ADF Model Tester to recognize these languages. In the Oracle ADF Model Tester, you can then display the Locale menu and select among the available language choices.
Testing the language message bundles in the Oracle ADF Model Tester lets you verify that the translations of the data control UI hints are correctly located. Or, if the message bundle defines date formats for specific attributes, the tool lets you verify that date formats change (like 04/12/2007
to 12/04/2007
).
Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester."
To specify a default language for the Oracle ADF Model Tester:
You can use the Oracle ADF Model Tester to verify that any default values for attributes are properly generated when you create a new row.
Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester."
You may also find it helpful to understand attributes in data control structure files. For more information, see Section 3.3, "Working with Attributes."
You will need to complete this task:
To test row creation and default value generation:
Any fields that have a declarative default value will appear with that value in the blank row.
The Oracle ADF Model Tester enables you to test your data model using existing named criteria and by querying with ad hoc criteria.
Before you begin:
It may be helpful to have an understanding of the Oracle ADF Model Tester. For more information, see Section 3.7, "Testing Bean Metadata Using the Oracle ADF Model Tester."
You may also find it helpful to understand named criteria. For more information, see Section 3.6, "Filtering Result Sets with Named Criteria."
To test named criteria and ad hoc query criteria using the Oracle ADF Model Tester:
For example, Figure 3-7 shows the filter to return all customers who possess a credit rating of POOR
.
Groovy is a scripting language with Java-like syntax for the Java platform. The Groovy scripting language simplifies the authoring of code by employing dot-separated notation, yet still supporting syntax to manipulate collections, Strings, and JavaBeans. Groovy language expressions are dynamically compiled and are executed at runtime. Any Groovy expressions that you create for an ADF application are stored in the data control structure files of the beans for which they are defined.
Oracle ADF supports the use of the Groovy scripting language in places where access to data control objects is useful, including attribute validators, attribute default values, transient attribute value calculations, bind variable default values (in named criteria filters), and placeholders for error messages (in validation rules). Additionally, Oracle ADF provides a limited set of built-in keywords that can be used in Groovy expressions.
Specifically, Oracle ADF provides support for the use of Groovy language expressions to perform the following tasks:
To perform these tasks in JDeveloper, you use expression editor dialogs that are specific to the task. For example, when you want to create a default value for a transient attribute, you use the attribute's Edit Expression Editor dialog to enter an expression that determines a runtime value for the attribute. The same dialog also lets you specify when the value should be calculated (known as a recalculate condition). Although expressions cannot be verified at design time, all expression editors let you test the syntax of the expression before you save it.
For more information about the Groovy language, refer to the following web site:
There is one top-level object named adf
that allows you access to objects that the framework makes available to the Groovy script. The accessible Oracle ADF objects consist of the following:
adf.context
- to reference the ADFContext
object. adf.object.dataProvider
- to reference the bean object on which the expression is being applied. Other accessible member names come from the context in which the Groovy script is applied. JboValidatorContext
) merged with the entity bean on which the validator is applied. For details about keywords that you can use in this context, see Section 3.8.2, "How to Reference ADF Methods and Attributes in Groovy Expressions." adf.error
- in validation rules, to access the error handler that allows the validation expression to generate exceptions or warnings You can reference the current date (time truncated) or current date and time using the following expressions:
adf.currentDate
adf.currentDateTime
You can use the following built-in aggregate functions on rows of data:
rowSetAttr
.sum(
GroovyExpr
)
rowSetAttr
.count(
GroovyExpr
)
rowSetAttr
.avg(
GroovyExpr
)
rowSetAttr
.min(
GroovyExpr
)
rowSetAttr
.max(
GroovyExpr
)
These aggregate functions accept a string-value argument that is interpreted as a Groovy expression that is evaluated in the context of each row in the row set as the aggregate is being computed. The Groovy expression must return a numeric value (or number domain).
The simplest example of referencing data control members, including methods and attributes that the bean and the bean's data control structure file define, is to reference attributes that exist in the same bean as the attribute that you apply the expression.
For example, you could define a Groovy expression to calculate the value of a transient attribute AnnualSalary
on a bean with an attribute Sal
that specifies the employee's monthly salary:
Or, with Groovy you can write a simple validation rule to compare the attributes of a single data control structure file using syntax like:
Using Java, this same comparison would look like:
Note that the current object is passed in to the script as the this
object, so you can reference an attribute in the current object by simply using the attribute name. For example, in an attribute-level or entity-level Script Expression validator, to refer to an attribute named "HireDate", the script can simply reference HireDate
.
Similar to referencing attributes, you can invoke methods as part of your expression. For example, to define an attribute default value:
A method reference requires the prefix adf.object.dataProvider
, which allows you to reference the same entity that defines the attribute on which the expression is applied.
Note that when you want to reference the method of an entity bean in a validation rule, you use source
instead of object
.
Use of the source
prefix is necessary in validators because the object
keyword implies the validation rule object instead of the entity bean where the method is defined.
To allow you to reference members of the validator object (JboValidatorContext
), you can use these keywords in your validation rule expression:
newValue
: in an attribute-level validator, to access the attribute value being set oldValue
: in an attribute-level validator, to access the current value of the attribute being set For example, you might use the following expression to specify a dynamic validation rule check of the salary for a salesman.
This chapter describes how to use the Data Controls panel to create databound forms using ADF Faces components.
This chapter includes the following sections:
You can create UI pages that allow you to display and collect information using data controls created for your business services. For example, using the Data Controls panel, you can drag an attribute for an item, and then choose to display the value either as read-only text or as an input text field with a label. JDeveloper creates all the necessary JSF tag and binding code needed to display and update the associated data. For more information about the Data Controls panel and the declarative binding experience, see Chapter 2, "Using ADF Model Data Binding in a Java EE Web Application."
Instead of having to drop individual attributes, JDeveloper allows you to drop all attributes for an object at once as a form. The actual UI components that make up the form depend on the type of form dropped. You can create forms that display values, forms that allow users to edit values, and forms that collect values (input forms).
For example, the Summit demo application contains a page that allows users to view and edit information about an order, as shown in Figure 4-1. This form was created by dragging and dropping the SOrdList
accessor collection from the Data Controls panel. (The SOrdList
node is nested within the customerFindAll
node.)
Once you create the UI components, you can then drop built-in operations as command UI components that allow you to navigate through the records in a collection or that allow users to operate on the data. For example, you can create a button that allows users to delete data objects displayed in the form. You can also modify the default components to suit your needs.
JDeveloper allows you to create text fields declaratively in a WYSIWYG development environment for your JSF pages, meaning you can design most aspects of your pages without needing to look at the code. When you drag and drop items from the Data Controls panel, JDeveloper declaratively binds ADF Faces text UI components to attributes on a data control using an attribute binding.
To create a text field that can display or update an attribute, you drag and drop an attribute of a collection from the Data Controls panel.
Before you begin:
It may be helpful to have a general understanding of using data control attributes to create text fields. For more information, see Section 4.2, "Using Attributes to Create Text Fields."
You will need to complete this task:
To create a bound text field:
For example, Figure 4-2 shows the address
attribute under the customerFindAll
accessor collection of the OrdersSessionEJBLocal
data control in the Summit demo application. This is the attribute to drop to display or enter the first part of an address.
inputText
component with a nested validator
component. The label
attribute is populated. Tip: For more information about validators and other attributes of theinputText component, see the "Using Input Components and Defining Forms" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
inputText
component with a nested validator
component. The label
attribute is not populated. panelLabelAndMessage
component that holds an ADF Faces outputText
component. The label
attribute on the panelLabelAndMessage
component is populated. outputText
component. No label is created. outputFormatted
component instead of an outputText
component. The outputFormatted
component allows you to add a limited amount of HTML formatting. For more information, see the "Displaying Output Text and Formatted Output Text" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework outputLabel
component. For the purposes of this chapter, only the text components (and not the lists) will be discussed.
When you drag an attribute onto a JSF page and drop it as a UI component, among other things, a page definition file is created for the page (if one does not already exist). For a complete account of what happens when you drag an attribute onto a page, see Section 2.3.2, "What Happens When You Use the Data Controls Panel to Create UI Components." Bindings for the iterator and attributes are created and added to the page definition file. Additionally, the necessary JSPX page code for the UI component is added to the JSF page.
Whenever you create UI components on a page by dropping an item that is part of a collection from the Data Controls panel (or you drop the whole collection as a form or table), JDeveloper creates an iterator binding if it does not already exist. An iterator binding references an iterator for the data collection, which facilitates iterating over its data objects. It also manages currency and state for the data objects in the collection. An iterator binding does not actually access the data. Instead, it simply exposes the object that can access the data and it specifies the current data object in the collection. Other bindings then refer to the iterator binding in order to return data for the current object or to perform an action on the object's data. Note that the iterator binding is not an iterator. It is a binding to an iterator.
For example, if you drop the address
attribute from the customerFindAll
collection, JDeveloper creates an iterator binding for the OrdersSessionEJBLocal
data control and accessorIterator
binding for the customerFindAll
collection, which in turn has the OrdersSessionEJBLocal
iterator as its master binding.
Tip: There is one accessor iterator binding created for each collection returned from an accessor. This means that when you individually drop two attributes from the same accessor (or drop the attribute twice), they use the same binding. This is fine, unless you need the binding to behave differently for the different components. In that case, you will need to manually create separate iterator bindings. |
The iterator binding's rangeSize
attribute determines how many rows of data are fetched from a data control each time the iterator binding is accessed. This attribute gives you a relative set of 1-n rows positioned at some absolute starting location in the overall row set. By default, the attribute is set to 25
.
Example 4-1 shows the iterator bindings created when you drop an attribute from the customerFindAll
accessor collection.
Example 4-1 Page Definition Code for an Iterator Accessor Binding
This metadata allows the ADF binding container to access the attribute values. Because the iterator binding is an executable, by default it is invoked when the page is loaded, thereby allowing the iterator to access and iterate over the collection returned by the customerFindAll
accessor. This means that the iterator will manage all the objects in the collection, including determining the current row in the collection or determining a range of address objects.
When you drop an attribute from the Data Controls panel, JDeveloper creates an attribute binding that is used to bind the UI component to the attribute's value. This type of binding presents the value of an attribute for a single object in the current row in the collection. Value bindings can be used both to display and to collect attribute values.
For example, if you drop the address
attribute under the customerFindAll
accessor as an ADF Output Text w/Label widget onto a page, JDeveloper creates an attribute binding for the address
attribute. This allows the binding to access the attribute value of the current record. Example 4-2 shows the attribute binding for address
created when you drop the attribute from the customerFindAll
accessor. Note that the attribute value references the iterator named customerFindAllIterator
.
Example 4-2 Page Definition Code for an Attribute Binding
For information regarding the attribute binding element properties, see the "Oracle ADF Binding Properties" appendix of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When you create a text field by dropping an attribute from the Data Controls panel, JDeveloper creates the UI component associated with the widget dropped by writing the corresponding tag to the JSF page.
For example, when you drop the address
attribute as an Output Text w/Label widget, JDeveloper inserts the tags for a panelLabelAndMessage
component and an outputText
component. It creates an EL expression that binds the label
attribute of the panelLabelAndMessage
component to the label
property of hints created for the address
's binding. This expression evaluates to the label UI hint set in the data control for the bean. It creates another expression that binds the outputText
component's value
attribute to the inputValue
property of the address
binding, which evaluates to the value of the address
attribute for the current row. An ID is also automatically generated for both components.
Tip: JDeveloper automatically generates IDs for all ADF Faces components. You can override these values as needed. |
Example 4-3 shows the code generated on the JSF page when you drop the address
attribute as an Output Text w/Label widget.
Example 4-3 JSF Page Code for an Attribute Dropped as an Output Text w/Label
If instead you drop the address
attribute as an Input Text w/Label widget, JDeveloper creates an inputText
component. As Example 4-4 shows, similar to the output text component, the value is bound to the inputValue
property of the address
binding. Additionally, the following properties are also set:
label
: Bound to the attribute's label
UI hint. required
: Bound to the mandatory
property, which in turn references the attribute's isNotNull
property (which is represented by the Mandatory option in the Details section for the attribute in the overview editor for the bean's data control structure file). columns
: Bound to the attribute's displayWidth
UII hint, which determines how wide the text box will be. maximumLength
: Bound to the attribute's Precision option. This property determines the maximum number of characters per line that can be entered into the field. shortDesc
: Bound to the tooltip UI hint. In addition, JDeveloper adds a validator component.
Example 4-4 JSF Page Code for an Attribute Dropped as an Input Text w/Label
You can change any of these values to suit your needs. For example, the isNotNull
property for the attribute in the data control is set to false
by default, which means that the required
attribute on the component will evaluate to false
as well. You can override this value by setting the required
attribute on the component to true
. If you decide that all instances of the attribute should be mandatory, then you can change the Mandatory option for the attribute in the data control structure file, and all instances will be required. For more information about editing attributes in a data control, see Section 3.3, "Working with Attributes."
Instead of dropping each of the individual attributes of a collection to create a form, you can create a complete form that displays or collects data for all the attributes on an object. For example, in the Summit demo application, the form on the EditOrder.jspx
page was created by dropping the ordFindAll
accessor collection from the Data Controls panel.
You can also create forms that provide more functionality than simply displaying data from a collection. For information about creating a form that allows a user to update data, see Section 4.6, "Creating a Form to Edit an Existing Record." For information about creating forms that allow users to create a new object for the collection, see Section 4.7, "Creating an Input Form." You can also create search forms. For more information, see Chapter 8, "Creating Databound Search Forms."
To create a form using a data control, you bind the UI components to the attributes on the corresponding object in the data control. JDeveloper allows you to do this declaratively by dragging and dropping a returned collection from the Data Controls panel.
Before you begin:
It may be helpful to have a general understanding of creating forms from data controls. For more information, see Section 4.3, "Creating a Basic Form."
You will need to complete this task:
To create a basic form:
ordFindAll
accessor returned collection. inputText
components are used for most attributes. Each inputText
component has the label
attribute populated. Attributes that are dates use the InputDate
component. Additionally, if a UI hint has been created for an attribute, or if the attribute has been configured to be a list, then the component set by the hint is used instead. InputText
components contain a validator tag that allows you to set up validation for the attribute, and if the attribute is a number or a date, a converter is also included.
Tip: For more information about validators, converters, and other attributes of theinputText component, see the "Using Input Components and Defining Forms" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
outputText
components are used. Since the form is meant to display data, no validator
tags are added (converters are included). Attributes of type Date
use the outputText
component when in a read-only form. All components are placed inside panelLabelAndMessage
components, which have the label
attribute populated. The panelLabelAndMessage
components are placed inside a panelFormLayout
component. You can add, remove, and reorder form fields.
You can also include navigational controls that allow users to navigate through all the data objects in the collection. For more information, see Section 4.4, "Incorporating Range Navigation into Forms." You can also include a Submit button used to submit the form. This button submits the HTML form and applies the data in the form to the bindings as part of the JSF/ADF page lifecycle. For additional help in using the dialog, click Help. All UI components are placed inside a panelFormLayout
component.
Dropping an object as a form from the Data Controls panel has the same effect as dropping a single attribute, except that multiple attribute bindings and associated UI components are created. The attributes on the UI components (such as value
) are bound to properties on that attribute's binding object (such as inputValue
) or to the values of control hints set on the corresponding service. Example 4-5 shows some of the code generated on the JSF page when you drop the SOrdList
accessor collection as a default ADF form to create the Edit Order form.
Note: If an attribute is marked as hidden on the associated data control structure file, then no corresponding UI is created for it. |
Example 4-5 Code on a JSF Page for an Input Form
Note: For information regarding the validator and converter tags, see the "Validating and Converting Input" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
When you create an ADF Form, if you elect to include navigational controls, JDeveloper includes ADF Faces command components bound to existing navigational logic on the data control. This built-in logic allows the user to navigate through all the data objects in the collection. For example, Figure 4-4 shows a form that would be created if you dragged the ordFindAll
accessor and dropped it as an ADF Form that uses navigation.
By default, when you choose to include navigation when creating a form using the Data Controls panel, JDeveloper creates First, Last, Previous, and Next buttons that allow the user to navigate within the collection.
You can also add navigation buttons to an existing form manually.
Before you begin:
It may be helpful to have a general understanding of navigation controls. For more information, see Section 4.4, "Incorporating Range Navigation into Forms."
You will need to complete this task:
To manually add navigation buttons:
For example, if you want to navigate through a collection of orders, you would drag the Next operation associated with the OrdFindAll
accessor. Figure 4-5 shows the operations associated with the OrdFindAll
accessor.
Tip: You can also drop the First, Previous, Next, and Last buttons at once. To do so, drag the corresponding collection, and from the context menu, choose Navigation > ADF Navigation Buttons. |
When you drop any operation as a command component, JDeveloper:
Action bindings execute business logic. For example, they can invoke built-in methods on the action binding object. These built-in methods operate on the iterator or on the data control itself, and are represented as operations in the Data Controls panel. JDeveloper provides navigation operations that allow users to navigate forward, backwards, to the first object in the collection, and to the last object.
Like value bindings, action bindings for operations contain a reference to the iterator binding when the action binding is bound to one of the iterator-level actions, such as Next
or Previous
. These types of actions are performed by the iterator, which determines the current object and can therefore determine the correct object to display when a navigation button is clicked.
Action bindings use the RequiresUpdateModel
property, which determines whether or not the model needs to be updated before the action is executed. In the case of navigation operations, by default this property is set to true
, which means that any changes made at the view layer must be moved to the model before navigation can occur. Example 4-6 shows the action bindings for the navigation operations.
Example 4-6 Page Definition Code for an Operation Action Binding
Iterator bindings have a rangeSize
attribute that the binding uses to determine the number of data objects to make available for the page for each iteration. This attribute helps in situations when the number of objects in the data source is quite large. Instead of returning all objects, the iterator binding returns only a set number, which then become accessible to the other bindings. Once the iterator reaches the end of the range, it accesses the next set. Example 4-7 shows the default range size for the ordFindAll
iterator.
Example 4-7 RangeSize Attribute for an Iterator
Note: ThisrangeSize attribute is not the same as the rows attribute on a table component. |
By default, the rangeSize
attribute is set to 25
. This means that a user can view 25 objects, navigating back and forth between them, without needing to access the data source. The iterator keeps track of the current object. Once a user clicks a button that requires a new range (for example, clicking the Next button on object number 25), the binding object executes its associated method against the iterator, and the iterator retrieves another set of 25 records. The bindings then work with that set. You can change this setting as needed. You can set it to -1
to have the full record set returned.
Note: When you create a navigable form using the Data Controls panel, theCacheResults property on the associated iterator is set to true . This ensures that the iterator's state, including currency information, is cached between requests, allowing it to determine the current object. If this property is set to false , navigation will not work. |
Table 4-1 shows the built-in navigation operations provided on data controls and the result of invoking the operation or executing an event bound to the operation.
Table 4-1 Built-in Navigation Operations
Operation | When invoked, the associated iterator binding will... |
---|---|
First | Move its current pointer to the beginning of the result set. |
Last | Move its current pointer to the end of the result set. |
Previous | Move its current pointer to the preceding object in the result set. If this object is outside the current range, the range is scrolled backward a number of objects equal to the range size. |
Next | Move its current pointer to the next object in the result set. If this object is outside the current range, the range is scrolled forward a number of objects equal to the range size. |
Previous Set | Move the range backward a number of objects equal to the range size attribute. |
Next Set | Move the range forward a number of objects equal to the range size attribute. |
When you create command components using navigation operations, the command components are placed in a panelGroupLayout
component. JDeveloper creates an EL expression that binds a navigational command button's actionListener
attribute to the execute
property of the action binding for the given operation.
At runtime an action binding will be an instance of the FacesCtrlActionBinding
class, which extends the core JUCtrlActionBinding
implementation class. The FacesCtrlActionBinding
class adds the following methods:
public void execute(ActionEvent event)
: This is the method that is referenced in the actionListener
property, for example #{bindings.First.execute}
. This expression causes the binding's operation to be invoked on the iterator when a user clicks the button. For example, the First command button's actionListener
attribute is bound to the execute
method on the First
action binding.
public String outcome()
: This can be referenced in an Action
property, for example #{bindings.Next.outcome}
. This can be used for the result of a method action binding (once converted to a String
) as a JSF navigation outcome to determine the next page to navigate to.
Note: Using the outcome method on the action binding implies tying the view-controller layer too tightly to the model, so it should rarely be used. |
Every action binding for an operation has an enabled
boolean property that Oracle ADF sets to false
when the operation should not be invoked. By default, JDeveloper binds the UI component's disabled
attribute to this value to determine whether or not the component should be enabled. For example, the UI component for the First button has the following as the value for its disabled
attribute:
This expression evaluates to true
whenever the binding is not enabled, that is, when the operation should not be invoked, thereby disabling the button. In this example, because the framework will set the enabled
property on the binding to false
whenever the first record is being shown, the First button will automatically be disabled because its disabled
attribute is set to be true
whenever enabled
is False
. For more information about the enabled
property, see the "Oracle ADF Binding Properties" appendix of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Example 4-8 shows the code generated on the JSF page for navigation operation buttons. For more information about the partialSubmit
attribute on the button, see the "Enabling Partial Page Rendering Declaratively" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Example 4-8 JSF Code for Navigation Buttons Bound to ADF Operations
There may be cases where a page needs information before it can display content. For these types of pages, you create the form using a returned collection from a method that takes parameters. The requesting page needs to supply the value of the parameters in order for the method to execute.
To create forms that require parameters, you must be able to access the values for the parameters in order to determine the record(s) to return. You access those values by adding logic to a command button on another page that will set the parameter value on some object that the method can then access.
Before you begin:
It may be helpful to have a general understanding of parameter forms. For more information, see Section 4.5, "Creating a Form Using a Method That Takes Parameters."
You will need to complete these tasks:
OrderSessionEJBBean.java
class contains the mergeOrd(Ord)
method. Tip: If you add a service method to your session bean after you have generated the data control, you need to refresh the Data Controls panel in order to display the new method in the panel. To refresh the panel, click the Refresh icon. |
To create a form or table that uses parameters:
For example, to create a form that displays when you click a button to edit an order, you would drag and drop the Ord
return, as shown in Figure 4-6.
For help in using the dialogs, click Help.
Because the method takes parameters, the Edit Action Binding dialog opens, asking you to set the value of the parameters.
This editor uses the value to create the NamedData
element that will represent the parameter when the method is executed. Since you are dropping a collection that is a return of the method (unlike a method bound to a command button), this method will be run when the associated iterator is executed as the page is loaded. You want the parameter value to be set before the page is rendered. This means the NamedData
element needs to get this value from wherever the sending page has set it.
Tip: If you are creating a form that displays based on input from the same page, you can use an ADF Parameter Form to create the action bindings. First drag the method from the Data Controls panel and drop it as an ADF Parameter Form. Then drag the method return and drop it as any kind of form. |
When you use a return of a method that takes parameters to create a form, JDeveloper:
NamedData
elements for each parameter needed by the method. Example 4-9 shows the action method binding created when you drop the Ord
return of the mergeOrd(Ord)
method, where the value for the parameter was set to the current row data provider of the SOrdListIterator
.
Example 4-9 Method Action Binding for a Method Return
Unlike a method executed when a user clicks a command button, a method used to create a form is executed as the page is loaded. When the method is executed in order to return the data for the page, the method evaluates the EL expression for the NamedData
element and uses that value as its parameter. It is then able to return the correct data. If the method takes more than one parameter, each is evaluated in turn to set the parameters for the method.
For example, when the EditOrder
page loads, it takes the value of the currentRow.dataProvider
parameter on the SOrdListIterator
and sets it as the value of the parameter needed by the mergeOrd(Ord)
method. Once that method executes, it returns only the record that matches the value of the parameter. Because you dropped the return of the method to create the form, that return is the product that is displayed.
There may be cases where an action on one page needs to set parameters that will be used to determine application functionality. For example, you can create a command button on one page that will navigate to another page, but a component on the resulting page will display only if the parameter value is false
.
You can use a managed bean to pass this parameter between the pages, and to contain the method that is used to check the value of this parameter. A setPropertyListener
component with the type
property set to action
, which is nested in the command button, is then used to set parameter. For more information about setting parameters using methods, see the "Setting Parameter Values Using a Command Component" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Note: If you are using task flows, you can use the task flow parameter passing mechanism. For more information, see the "Using Parameters in Task Flows" chapter of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Often a page or a region within a page needs information from somewhere else on the page or from a different region (for more information about regions, see the "Using Task Flows as Regions" sections of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework). While you can pass parameters to obtain that information, doing so makes sense only when the parameters are well known and the inputs are EL-accessible to the page. Parameters are also useful when a task flow may need to be restarted if the parameter value changes.
However, suppose you have a task flow with multiple page fragments that contain various interesting values that could be used as input on one of the pages in the flow. If you were to use parameters to pass the value, the task flow would need to surface output parameters for the union of each of the interesting values on each and every fragment. Instead, for each fragment that contains the needed information, you can define a contextual event that will be raised when the page is submitted. The page or fragment that requires the information can then subscribe to the various events and receive the information through the event.
You can create and configure contextual events using a page definition file. For more information, see the "Using Contextual Events" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can create a form that allows a user to edit the current data, and then commit those changes to the data source. To do this, you use methods that can modify data records associated with the collection to create command buttons. For example, you can use the default mergeOrd(Ord)
method to create a button that allows a user to update an order.
If the page is not part of a bounded task flow, you need to use the merge or persist method associated with the collection to merge the changes back into the collection. For more information about the difference between the two, see Section 4.6.3, "What You May Need to Know About the Difference Between the Merge and Persist Methods." If the page is part of a transaction within a bounded task flow, you use the commit
and rollback
operations to resolve the transaction in a task flow return activity. For more information, see the "Using Task Flow Return Activities" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To use methods on a form, you follow the same procedures as with the operations.
Before you begin:
It may be helpful to have a general understanding of editable forms. For more information, see Section 4.6, "Creating a Form to Edit an Existing Record."
You will need to complete these tasks:
OrderSessionEJBBean.java
class contains the mergeOrd(Ord)
method. To create an edit form:
This creates a form using inputText
components, which will allow the user to edit the data in the fields.
For example, if you want to be able to update an order record and will not be working with that instance again, you would drag the mergeOrd(Ord)
method.
This will create an EL expression that evaluates to the data for the current row in the accessor's iterator.
For example, if you created a form using the ordFindAll
accessor collection, then JDeveloper would have created an accessorIterator
binding named ordFindAllIterator
. You would need to select the dataProvider
for the current row under that iterator, as shown in Figure 4-7. This reference means that the parameter value will resolve to the value of the row currently being shown in the form.
Note: If the page is part of a transaction within a bounded task flow, then instead of creating a button from the merge method (or other default method), you would set that method as the value for the transaction resolution when creating the task flow return activity. For more information, see the "Using Task Flow Return Activities" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
When you drop a method as a command button, JDeveloper:
NamedData
elements that hold the parameter values. For more information about NamedData
elements, see Section 4.5.3, "What Happens at Runtime: Setting Parameters for a Method." execute
method of an action binding for an operation, the buttons are bound to the execute
method of the action binding for the method that was dropped. Similar to when you create a button from a built-in operation, when you create a button from a method, JDeveloper creates an action binding for the method. Example 4-10 shows the action binding created when you drop the mergeOrd(Ord)
method.
Example 4-10 Page Definition Code for an Action Binding Used by the Iterator
In this example, when the binding is accessed, the method is invoked because the action property value is invokeMethod
.
When you drop a method that takes parameters onto a JSF page, JDeveloper also creates NamedData
elements for each parameter. These elements represent the parameters of the method. For example, the mergeOrd(Ord)
method action binding contains a NamedData
element for the Ord
parameter.
Like creating command buttons using navigation operations, when you create a command button using a method, JDeveloper binds the button to the method using the actionListener
attribute. The button is bound to the execute
property of the action binding for the given method. This binding causes the binding's method to be invoked on the business service. For more information about the actionListener
attribute, see the "What Happens at Runtime: How Action Events and Action Listeners Work" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Tip: Instead of binding a button to theexecute method on the action binding, you can bind the button to a method in a backing bean that overrides the execute method. Doing so allows you to add logic before or after the original method runs. For more information, see Section 4.6.4, "What You May Need to Know About Overriding Declarative Methods." |
Like navigation operations, the disabled
property on the button uses an EL expression to determine whether or not to display the button. Example 4-11 shows the EL expression used to bind the command button to the mergeOrd(Ord)
method.
Example 4-11 JSF Code to Bind a Command Button to a Method
Tip: When you drop a UI component onto a page, JDeveloper automatically gives it an ID based on the number of the same type of component previously dropped, for example,cb1 , cb2 . You may want to change the ID to something more descriptive, especially if you will need to refer to it in a backing bean that contains methods for multiple UI components on the page. |
If when you created your session bean, you chose to expose the merge and persist methods for a structured object, then those methods appear in the Data Controls panel and you can use them to create buttons that allow the user to merge and persist the current instance of the object. Which you use depends on whether the page will need to interact with the instance once updates are made. If you want to be able to continue to work with the instance, then you need to use the persist method.
The merge methods are implementations of the JPA EntityManager.merge
method. This method takes the current instance, copies it, and passes the copy to the PersistenceContext
. It then returns a reference to that persisted entity and not to the original object. This means that any subsequent changes made to that instance will not be persisted unless the merge method is called again.
The persist methods are implementations of the JPA EntityManager.persist
method. Like the merge method, this method passes the current instance to the PersistenceContext
. However, the context continues to manage that instance so that any subsequent updates will be made to the instance in the context.
When you drop an operation or method as a command button, JDeveloper binds the button to the execute method for the operation or method. However, there may be occasions when you need to add logic before or after the existing logic. JDeveloper allows you to add logic to a declarative operation by creating a new method and property on a managed bean that provides access to the binding container. By default, this generated code executes the operation or method. You can then add logic before or after this code. JDeveloper automatically binds the command component to this new method, instead of to the execute property on the original operation or method. Now when the user clicks the button, the new method is executed. For more information, see the "Overriding Declarative Methods" section in the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
You can create a form that allows a user to enter information for a new record and then commit that record to the data source. You need to use a task flow that contains a method activity that will call the Create
operation before the page with the input form is displayed. This method activity causes a blank row to be inserted into the row set which the user can then populate using a form.
Tip: For more information about task flows, see the "Creating ADF Task Flows" part of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
For example, if you have an Address
bean, you could create a new form that allows the user to create an address. You might create a create-address-task-flow
task flow that contains a createAddress
method activity, which calls the Create
operation on the AddressFindAll
accessor. Control is then passed to the createAddress
view activity, which displays a form where the user can enter a new address, as shown in Figure 4-8.
Note: If your application does not use task flows, then the calling page should invoke thecreate operation similar to the way in which a task flow's method activity would. For example, you could provide application logic within an event handler associated with a command button on the calling page. |
You create an input form within a bounded task flow to ensure proper transaction handling.
Before you begin:
It may be helpful to have a general understanding of input forms. For more information, see Section 4.7, "Creating an Input Form."
You will need to complete these tasks:
Create
operation. The task flow should start a new transaction. For procedures, see the "Creating a Task Flow" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. To create an input form:
Create
operation associated with the accessor for which you are creating the form. For these procedures on using method activities, see the "Using Method Call Activities" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. For example, to create the form that would allow users to create addresses, you would have the method activity execute the Create
operation associated with the AddressFindAll
accessor.
In the Property Inspector, enter a string for the fixed-outcome property. For example, you might enter create
as the fixed-outcome
value.
from-outcome
of the control flow case. For example, for the form to create addresses, you would drag the AddressFindAll
accessor collection from the Data Controls panel.
Tip: If you want the user to be able to create multiple entries before committing to the database, do the following:
|
commit
operation on the data control. For these procedures, see the "Using Task Flow Return Activities" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Tip: If when you set the return activity to execute thecommit operation the activity shows an error, it is probably because the task flow itself is not set up to start a transaction. You need to set it to do so. For more information, see the "Managing Transactions in Task Flows" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. |
Add a control flow case from the view activity to the return activity. Set the fixed-outcome
attribute to a text string. For example, you might set it to return
.
action
attribute to the text string set as the fixed-outcome
created in Step 4. When you use an ADF Form to create an input form, JDeveloper:
Create
operation in the page definition for the method activity. The Create
operation is responsible for creating a row in the row set and populating the data source with the entered data. In the page definition for the page, JDeveloper creates an iterator binding for the returned collection and attribute bindings for each of the attributes of the object in the collection, as for any other form. inputText
components, and in the case of the operations, commandButton
components. For example, the form shown in Figure 4-8 might be displayed by clicking a "Create Address" link on the main page. This link then navigates to the form where you can input data for a new address. Once the address is created, and you click the Save button, you return to the main page. Figure 4-9 shows a create-address-task-flow
task flow with the newAddress
method activity.
Example 4-12 shows the code in the page definition file for the method activity.
Example 4-12 Page Definition Code for a Creation Method Activity
In the example above, when the newAddress
method activity is accessed, the Create
action binding is invoked, which executes the createRow
operation, and a new blank instance for the collection is created. Note that during routing from the method activity to the view activity, the method activity's binding container skips validation for required attributes, allowing the blank instance to be displayed in the form on the page.
Once you use the Data Controls panel to create any type of form, you can then delete attributes, change the order in which they are displayed, change the component used to display data, and change the attribute to which the components are bound.
For more information about modifying existing UI components and bindings, see the "Modifying the UI Components and Bindings on a Form" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter describes how to use the Data Controls panel to create databound tables using ADF Faces components.
This chapter includes the following sections:
Unlike forms, tables allow you to display more than one record from a collection returned by an accessor at a time. Figure 5-1 shows a table that was created by dragging the Summit demo application's CustomerFindAll
collection and then selecting four columns for display.
You can create tables that simply display data, or you can create tables that allow you to edit or create data. Once you drop an accessor as a table, you can add command buttons bound to actions that execute some logic on a selected row. You can also modify the default components to suit your needs.
Unlike with forms where you bind the individual UI components that make up a form to the individual attributes on the collection, with a table you bind the ADF Faces table
component to the complete collection or to a range of n data objects at a time from the collection. The individual components used to display the data in the columns are then bound to the attributes. The iterator binding handles displaying the correct data for each object, while the table
component handles displaying each object in a row. JDeveloper allows you to do this declaratively, so that you don't need to write any code.
To create a table using a data control, you bind the table
component to a returned collection. JDeveloper allows you to do this declaratively by dragging and dropping a collection from the Data Controls panel.
Tip: You can also create a table by dragging a table component from the Component Palette and completing the Create ADF Faces Table wizard. For more information, see the "How to Display a Table on a Page" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. |
Before you begin:
It may be helpful to have a general understanding of using data control attributes to create tables. For more information, see Section 5.2, "Creating a Basic Table."
You will need to complete this task:
To create a databound table:
For example, to create a simple table in the Summit demo application that displays orders in the system, you would select the ordFindAll
accessor collection.
When you drag the collection, you can choose from the following types of tables:
inputText
components are used for most attributes, thus enabling the table to be editable. Attributes that are dates use the inputDate
component. Additionally, if a UI hint has been created for an attribute, or if the attribute has been configured to be a list, then the component set by the hint is used instead. For more information about setting UI hints, see the Section 3.3.5, "How to Set UI Hints on Attributes." outputText
component. Note: If the collection contains a structured attribute (an attribute that is neither a Java primitive type nor a collection), the attributes of the structured attributes will also appear in the dialog. |
Using this dialog, you can do the following:
label
property for any UI hint defined for the attribute on the table binding. This binding allows you to change the value of a label text one time in the data control structure file, and have the change propagate to all pages that display the label. inputDate
components are used for attributes that are dates), and on whether or not default components were set as UI hints in the bean's data control structure file. Tip: If one of the attributes for your table is also a primary key, you may want to choose a UI component that will not allow a user to change the value. |
Tip: If you want to use a component that is not listed in the dropdown menu, use this dialog to select theoutputText component, and then manually add the other tag to the page. |
Tip: When you set the table width to 100%, the table will not include borders, so the actual width of the table will be larger. To have the table set to 100% of the container width, expand the Style section of the Property Inspector, select the Box tab, and set theBorder Width attribute to 0 pixels. |
Dropping a table from the Data Controls panel has the same effect as dropping a text field or form. Briefly, JDeveloper does the following:
For more information, see Section 4.2.2, "What Happens When You Create a Text Field."
When you drop a table from the Data Controls panel, a tree value binding is created. A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher level node. In the case of a table, it is a flattened hierarchy, where each attribute (column) is a subnode off the table. Like an attribute binding used in forms, the tree value binding references the accessor iterator binding, while the accessor iterator binding references the iterator for the data control, which facilitates iterating over the data objects in the collection. Instead of creating a separate binding for each attribute, only the tree binding to the table node is created. In the tree binding, the AttrNames
element within the nodeDefinition
element contains a child element for each attribute that you want to be available for display or reference in each row of the table.
The tree value binding is an instance of the FacesCtrlHierBinding
class that extends the core JUCtrlHierBinding
class to add two JSF specific properties:
collectionModel
: Returns the data wrapped by an object that extends the javax.faces.model.DataModel
object that JSF and ADF Faces use for collection-valued components like tables. treeModel
: Extends collectionModel
to return data that is hierarchical in nature. For more information, see Chapter 6, "Displaying Master-Detail Data." Example 5-1 shows the value binding for the table created when you drop the SOrdList
accessor collection.
Example 5-1 Value Binding Entries for a Table in the Page Definition File
Only the table component needs to be bound to the model (as opposed to the columns or the text components within the individual cells), because only the table needs access to the data. The tree binding for the table drills down to the individual structure attributes in the table, and the table columns can then derive their information from the table component.
When you use the Data Controls panel to drop a table onto a JSF page, JDeveloper inserts an ADF Faces table
component, which contains an ADF Faces column
component for each attribute named in the table binding. Each column then contains another component (such as an inputText
or outputText
component) bound to the attribute's value. Each column's heading is bound to the labels
property for the control hint of the attribute.
Tip: If an attribute is marked as hidden in the associated structure file, no corresponding UI is created for it. |
Example 5-2 shows a code excerpt from a table created by dropping the ordFindAll
accessor collection as a read-only table.
Example 5-2 JSF Code for an ADF Faces Read-Only Table
The tree binding iterates over the data exposed by the iterator binding. Note that the table's value is bound to the collectionModel
property, which accesses the collectionModel
object. The table wraps the result set from the iterator binding in a collectionModel
object. The collectionModel
allows each item in the collection to be available within the table component using the var
attribute.
In the example, the table iterates over the rows in the current range of the ordFindAll
accessor binding. This binding binds to a row set iterator that keeps track of the current row. When you set the var
attribute on the table to row
, each column then accesses the current data object for the current row presented to the table tag using the row
variable, as shown for the value of the af:outputText
tag:
When you drop an ADF Table (as opposed to an ADF Read-Only Table), instead of being bound to the row variable, the value of the input component is implicitly bound to a specific row in the binding container through the bindings
property, as shown in Example 5-3. Additionally, JDeveloper adds validator and converter components for each input component. By using the bindings property, any raised exception can be linked to the corresponding binding object or objects. The controller iterates through all exceptions in the binding container and retrieves the binding object to get the client ID when creating FacesMessage
objects. This retrieval allows the table to display errors for specific cells. This strategy is used for all input components, including selection components such as lists.
Example 5-3 Using Input Components Adds Validators and Converters
For more information about using ADF Faces validators and converters, see the "Validating and Converting Input" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Table 5-1 shows the other attributes defined by default for ADF Faces tables created using the Data Controls panel.
Table 5-1 ADF Faces Table Attributes and Populated Values
Attribute | Description | Default Value |
---|---|---|
| Determines how many rows to display at one time. | An EL expression that, by default, evaluates to the |
| Text to display when there are no rows to return. | An EL expression that evaluates to the viewable property on the iterator. If the table is viewable, the attribute displays No data to display when no objects are returned. If the table is not viewable (for example, if there are authorization restrictions set against the table), it displays Access Denied. |
| Number of rows of data fetched from the data source. | An EL expression that, by default, evaluates to the |
| The selection state for the table. | An EL expression that, by default, evaluates to the selected row on the collection model. |
| Reference to a method that listens for a selection event. | An EL expression that, by default, evaluates to the |
| Determines whether rows are selectable. | Set to |
Column Attributes | ||
| Determines the property by which to sort the column. | Set to the column's corresponding attribute binding value. |
| Determines whether a column can be sorted. | Set to |
| Determines the text displayed at the top of the column. | An EL expression that, by default, evaluates to the |
When you use tables in an application and you allow the ADF Model layer to manage row selection, the current row is determined by the iterator. When a user selects a row in an ADF Faces table, the row in the table is shaded, and the component notifies the iterator of the selected row. To do this, the selectedRowKeys
attribute of the table is bound to the collection model's selected row, as shown in Example 5-4.
Example 5-4 Selection Attributes on a Table
This binding binds the selected keys in the table to the selected row of the collection model. The selectionListener
attribute is then bound to the collection model's makeCurrent
property. This binding makes the selected row of the collection the current row of the iterator.
Note: If you create a custom selection listener, you must create a method binding to themakeCurrent property on the collection model (for example, #{binding.Ord.collectionModel.makeCurrent}) and invoke this method binding in the custom selection listener before any custom logic. |
Although a table can handle selection automatically, there may be cases where you need to programmatically set the current row for an object on an iterator.
You can call the getKey()
method on any view row to get a Key
object that encapsulates the one or more key attributes that identify the row. You can also use a Key
object to find a view row in a row set using the findByKey()
. At runtime, when either the setCurrentRowWithKey
or the setCurrentRowWithKeyValue
built-in operation is invoked by name by the data binding layer, the findByKey()
method is used to find the row based on the value passed in as a parameter before the found row is set as the current row.
The setCurrentRowWithKey
and setCurrentRowWithKeyValue
operations both expect a parameter named rowKey
, but they differ precisely by what each expects that rowKey
parameter value to be at runtime:
setCurrentRowWithKey
expects the rowKey
parameter value to be the serialized string representation of a view row key. This is a hexadecimal-encoded string that looks similar to the following string:
The serialized string representation of a key encodes all of the key attributes that might comprise a view row's key in a way that can be conveniently passed as a single value in a browser URL string or form parameter. At runtime, if you inadvertently pass a parameter value that is not a legal serialized string key, you may receive exceptions like oracle.jbo.InvalidParamException
or java.io.EOFException
as a result. In your web page, you can access the value of the serialized string key of a row by referencing the rowKeyStr
property of an ADF control binding (for example. #{bindings.SomeAttrName.rowKeyStr}
) or the row variable of an ADF Faces table (for example, #{row.rowKeyStr}
).
The setCurrentRowWithKeyValue
operation expects the rowKey
parameter value to be the literal value representing the key of the view row. For example, its value would be simply "201
" to find order number 201
.
You can create a table that allows the user to edit information within the table, and then commit those changes to the data source. To do this, you use operations that can modify data records associated with the returned collection (or the data control itself) to create command buttons, and place those buttons in a toolbar in the table. For example, the table in the browse.jspx
page has a button that allows the user to remove a product. While this button currently causes a dialog to display that allows the user to confirm the removal, the button could be bound to a method that directly removes the product.
Tip: To create a table that allows you to insert a new record into the data store, see Section 5.4, "Creating an Input Table." |
As with editable forms, it is important to note that the ADF Model layer is not aware that any row has been changed until a new instance of the collection is presented. Therefore, you need to invoke the execute operation on the accessor iterator in order for any changes to be committed. For more information, see Section 2.3.4, "What You May Need to Know About Iterator Result Caching."
When you decide to use editable components to display your data, you have the option of having the table displaying all rows as editable at once, or having it display all rows as read-only until the user double-clicks within the row. Figure 5-3 shows a table whose rows all have editable fields. The page is rendered using the components that were added to the page (for example, inputText
, inputDate
, and inputNumberSpinbox
components).
Figure 5-4 shows the same table, but configured so that the user must double-click (or single-click if the row is already selected) a row in order to edit or enter data. Note that outputText
components are used to display the data in the nonselected rows, even though the same input components as in Figure 5-3 were used to build the page. The only row that actually renders those components is the row selected for editing.
For more information about how ADF Faces table components handle editing, see the "Editing Data in Tables, Trees, and Tree Tables" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
To create an editable table, you follow procedures similar to those for creating a basic table, and then you add command buttons bound to operations. However, in order for the table to contain a toolbar, you need to add an ADF Faces component that associates the toolbar with the items in the collection used to build the table.
Before you begin:
It may be helpful to have a general understanding of editable tables. For more information, see Section 5.3, "Creating an Editable Table."
You will need to complete this task:
To create an editable table:
For example, to create a simple table in the Summit demo application that will allow you to edit customers in the system, you would select the customerFindAll
accessor collection.
For more information about using this dialog to configure the table, see Section 5.2, "Creating a Basic Table."
The panelCollection
component's toolbar facet will hold the toolbar which, in turn, will hold the command components used to update the data.
panelCollection
's toolbar facet folder, and from the context menu, choose Insert inside toolbar > Toolbar. This creates a toolbar that already contains a default menu which allows users to change how the table is displayed, and a Detach link that detaches the entire table and displays it such that it occupies the majority of the space in the browser window. For more information about the panelCollection
component, see the "Displaying Table Menus, Toolbars, and Status Bars" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
From the Data Controls panel, select the method or operation associated with the collection of objects on which you wish to execute the logic, and drag it onto the toolbar
component in the Structure window. This will place the databound command component inside the toolbar.
For example, if you want to be able to remove a customer record, you would drag the removeCustomer(Customer)
method. Figure 5-5 shows the remove methods in the Summit demo application.
Because the method takes parameters, the Action Binding Editor opens, asking you to set the value of the parameters.
In the Edit Action Binding dialog, you need to populate the value for the method's parameter. For the remove methods (and the other default methods), this is the selected object.
This will create an EL expression that evaluates to the data for the current row in the accessor's iterator.
For example, if you created a table using the ordFindAll
accessor, then JDeveloper would have created an accessorIterator
binding named ordFindAllIterator
. You would need to select the dataProvider
object for the current row under that iterator, as shown in Figure 5-6. This reference means that the parameter value will resolve to the value of the currently selected row.
JDeveloper creates an action binding for the execute
operation of the iterator. You now need to have your command button call this operation.
When the command component is clicked, the binding to the action
attribute is evaluated after the binding for the actionListener
attribute. This order ensures that the iterator refreshes and/or executes after the deletion of entity.
Creating an editable table is similar to creating a form used to edit records. Action bindings are created for the operations dropped from the Data Controls panel. For more information, see Section 4.6.2, "What Happens When You Use Methods to Change Data."
You can create a table that allows users to insert a new blank row into a table and then add values for each column (any default values set on the corresponding data control structure file will be automatically populated).
When you create an input table, you want the user to see the new blank row in the context of the other rows within the current row set. To allow this insertion, you need to use the create
operation associated with the accessor for the collection that you used to create the table.
Because the create
operation only creates a row in the cache, you also need to add a button that actually merges the newly created row into the collection. Figure 5-7 shows how this table might look with a new row created.
ADF Faces components can be set so that one component refreshes based on an interaction with another component, without the whole page needing to be refreshed. This is known as partial page rendering. When the user clicks the button to create the new row, you want the table to refresh to display that new row. To have that happen, you need to configure the table to respond to that user action.
Before you begin:
It may be helpful to have a general understanding of input tables. For more information, see Section 5.4, "Creating an Input Table."
You will need to complete these tasks:
To create an input table:
Tip: You may want to change the ID to something more recognizable, such asCreate . This will make it easier to identify when you need to select it as the partial trigger. |
panelCollection
component and then expand the toolbar that contains the Create command component. Select that component and shuttle it to the Selected panel. Click OK. This sets that component to be the trigger that will cause the table to refresh. Tip: If you will want the user to be able to continue updating the row after it is persisted, then you should create the button using the persist method instead. For more information, see Section 4.6.3, "What You May Need to Know About the Difference Between the Merge and Persist Methods." |
Figure 5-8 shows the merge method for the Ord
collection.
When you use the create
operation to create an input table, JDeveloper:
create
operation, and attribute bindings for the table. The create
operation is responsible for creating the new row in the row set. If you created command buttons or links using the merge method, JDeveloper also creates an action binding for that method. Example 5-5 shows the page definition file for an input table.
Example 5-5 Page Definition Code for an Input Table
Example 5-6 shows the code added to the JSF page that provides partial page rendering, using command toolbar buttons as the triggers to refresh the table.
Example 5-6 Partial Page Trigger Set on a Command Button for a Table
When the button bound to the create
operation is invoked, the action executes, and a new instance for the collection is created as the page is rerendered. Because the button was configured to be a trigger that causes the table to refresh, the table redraws with the new empty row shown at the top. When the user clicks the button bound to the merge method, the newly created rows in the row set are inserted into the database. For more information about partial page refresh, see the "Rerendering Partial Page Content" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
If your table columns allow sorting, and the user has sorted on a column before inserting a new row, then that new row will not be sorted. To have the column sort with the new row, the user must first sort the column opposite to the desired sort, and then re-sort. This is because the table assumes the column is already sorted, so clicking on the desired sort order first will have no effect on the column.
For example, say a user had sorted a column in ascending order, and then added a new row. Initially, that row appears at the top. If the user first clicks to sort the column again in ascending order, the table will not re-sort, as it assumes the column is already in ascending order. The user must first sort on descending order and then ascending order.
If you want the data to automatically sort on a specific column in a specific order after inserting a row, then programmatically queue a SortEvent
after the commit, and implement a handler to execute the sort.
Once you use the Data Controls panel to create a table, you can then delete attributes, change the order in which they are displayed, change the component used to display them, and change the attribute binding for the component. You can also add new attributes, or rebind the table to a new data control.
For more information about modifying existing UI components and bindings, see the "Modifying the Attributes Displayed in the Table" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
This chapter describes how to create various types of pages that display master-detail related data.
This chapter includes the following sections:
For information about using a selection list to populate a collection with a key value from a related master or detail collection, see Chapter 7, "Creating Databound Selection Lists."
When objects have a master-detail relationship, you can declaratively create pages that display the data from both objects simultaneously. For example, the page shown in Figure 6-1 displays a country code in a form at the top of the page and its related states and provinces in a table at the bottom of the page. This is possible because the objects have a master-detail relationship. In this example, the Country Code
is the master object and States
is the detail object. ADF iterators automatically manage the synchronization of the detail data objects displayed for a selected master data object. Iterator bindings simplify building user interfaces that allow scrolling and paging through collections of data and drilling-down from summary to detail information.
You display master and detail objects in forms and tables. The master-detail form can display these objects on separate pages. For example, you can display the master object in a table on one page and detail objects in a read-only form on another page.
Note: There are some cases when the master-detail UI components that JDeveloper provides cannot provide the functionality you require. For example, you may need to bind components programatically instead of using the master-detail UI components.A master object can have many detail objects, and each detail object can in turn have its own detail objects, down to many levels of depth. If one of the detail objects in this hierarchy is dropped from the Application Navigator as a master-detail form on a page, only its immediate parent master object displays on the page. The hierarchy will not display all the way up to the topmost parent object. If you display the detail object as a tree or tree table object, it is possible to display the entire hierarchy with multiple levels of depth, starting with the topmost master object, and traversing detail children objects at each node. |
You can declaratively create pages that display master-detail data using the Data Controls panel. The Data Controls panel displays master-detail related objects in a hierarchy that mirrors the data model where the detail objects are children of the master objects.
To display master-detail objects as form or table objects, drag the detail object from the Data Controls panel and drop it on the page. Its master object is automatically created on the page.
Figure 6-2 shows two master-detail related accessor returned collections in the Data Controls panel. ProductImageList
appears as a child of ProductFindAll
.
Note: The master-detail hierarchy displayed in the Data Controls panel does not reflect the cardinality of the relationship (that is, one-to-many, one-to-one, many-to-many). The hierarchy simply shows which accessor returned collection (the master) is being used to retrieve one or more objects from another accessor returned collection (the detail). |
In this example, the relationship between ProductFindAll
and ProductImageList
is a one-way relationship.
You can create a master-detail browse page in a single declarative action using the Data Controls panel. All you have to do is drop the detail accessor returned collection on the page and choose the type of widget you want to use.
The prebuilt master-detail widgets available from the Data Controls panel include range navigation that enables the end user to scroll through the data objects in collections. You can delete unwanted attributes by removing the text field or column from the page.
Figure 6-3 shows an example of a prebuilt master-detail widget, which displays products information in a form at the top of the page and stock levels in a table at the bottom of the page. When the user clicks the Next button to scroll through the records in the master data at the top of the page, the page automatically displays the related detail data.
If you do not want to use the prebuilt master-detail widgets, you can drag and drop the master and detail objects individually from the Data Controls panel as tables and forms on a single page or on separate pages.
The Data Controls panel enables you to create both the master and detail widgets on one page with a single declarative action using prebuilt master-detail forms and tables.
To create a master-detail page using the prebuilt ADF master-detail forms and tables:
Note: If you want to create an editable master-detail form, drop the master object and the detail object separately on the page. |
When a specific data object is selected in the master table, the first related detail data object is displayed in the form below it. The user must use the form navigation to scroll through each subsequent detail data object.
When a specific master data object is displayed in the form, the related detail data objects are displayed in a table below it.
When a specific master data object is displayed in the top form, the first related detail data object is displayed in the form below it. The user must use the form navigation to scroll through each subsequent detail data object.
When a specific master data object is selected in the top table, the first set of related detail data objects is displayed in the table below it.
When you drag and drop an accessor returned collection from the Data Controls panel, JDeveloper does many things for you, including adding code to the JSF page and the corresponding entries in the page definition file.
The JSF code generated for a prebuilt master-detail widget is similar to the JSF code generated when you use the Data Controls panel to create a read-only form or table. If you are building your own master-detail widgets, you might want to consider including similar components that are automatically included in the prebuilt master-detail tables and forms.
The tables and forms in the prebuilt master-detail widgets include a panelHeader
tag that contains the fully qualified name of the data object populating the form or table. You can change this label as needed using a string or an EL expression that binds to a resource bundle.
If there is more than one data object in a collection, a form in a prebuilt master-detail widget includes four commandButton
tags for range navigation: First
, Previous
, Next
, and Last
. These range navigation buttons enable the user to scroll through the data objects in the collection. The actionListener
attribute of each button is bound to a data control operation, which performs the navigation. The execute
property used in the actionListener
binding invokes the operation when the button is clicked. (If the form displays a single data object, JDeveloper automatically omits the range navigation components.)
Tip: If you drop an ADF Master Table, Detail Form or ADF Master Table, Detail Table widget on the page, the parent tag of the detail component (for example,panelHeader tag or table tag) automatically has the partialTriggers attribute set to the id of the master component. At runtime, the partialTriggers attribute causes only the detail component to be rerendered when the user makes a selection in the master component, which is called partial rendering. When the master component is a table, ADF uses partial rendering, because the table does not need to be rerendered when the user simply makes a selection in the facet. Only the detail component needs to be rerendered to display the new data. |
Example 6-1 shows the page definition file created for a master-detail page that was created by dropping WarehouseStockLevelList
, which is a detail object under the ProductFindAll
object, on the page as an ADF Master Form, Detail Table.
The executables
element defines two accessorIterators
: one for the product (the master object) and one for WarehouseStockLevels
(the detail object). At runtime, the UI-aware data model and the row set iterator keep the row set of the detail collection refreshed to the correct set of rows for the current master row as that current row changes.
The bindings
element defines the value bindings. The attribute bindings that populate the text fields in the form are defined in the attributeValues
elements. The id
attribute of the attributeValues
element contains the name of each data attribute, and the IterBinding
attribute references an iterator binding to display data from the master object in the text fields.
The attribute bindings that populate the text fields in the form are defined in the attributeValues
elements. The id
attribute of the attributeValues
element contains the name of each data attribute, and the IterBinding
attribute references an iterator binding to display data from the master object in the text fields.
The range navigation buttons in the form are bound to the action bindings defined in the action
elements. As in the attribute bindings, the IterBinding
attribute of the action binding references the iterator binding for the master object.
The table, which displays the detail data, is bound to the table binding object defined in the table
element. The IterBinding
attribute references the iterator binding for the detail object.
Example 6-1 Binding Objects Defined in the Page Definition for a Master-Detail Page
At runtime, an ADF iterator determines which row from the master table object to display in the master-detail form. When the form first displays, the first master table object row appears highlighted in the master section of the form. Detail table rows that are associated with the master row display in the detail section of the form.
As described in Section 6.3.2.2, "Binding Objects Defined in the Page Definition File," ADF iterators are associated with underlying rowsetIterator
objects. These iterators manage which data objects, or rows, currently display on a page. At runtime, the row set iterators manage the data displayed in the master and detail components.
Both the master and detail row set iterators listen to row set navigation events, such as the user clicking the range navigation buttons, and display the appropriate row in the UI. In the case of the default master-detail components, the row set navigation events are the command buttons on a form (First, Previous, Next, Last).
The row set iterator for the detail collection manages the synchronization of the detail data with the master data. The detail row set iterator listens for row navigation events in both the master and detail collections. If a row set navigation event occurs in the master collection, the detail row set iterator automatically executes and returns the detail rows related to the current master row.
The default master-detail components display the master-detail data on a single page. However, using the master and detail objects on the Data Controls panel, you can also display the collections on separate pages, and still have the binding iterators manage the synchronization of the master and detail objects.
To display master-detail objects on separate pages, create two pages, one for the master object and one for the detail object, using the individual tables or forms available from the Data Controls panel. Remember that the detail object iterator manages the synchronization of the master and detail data. Be sure to drag the appropriate detail object from the Data Controls panel when you create the page to display the detail data. For more information, see Section 6.2, "Identifying Master-Detail Objects on the Data Controls Panel."
To handle the page navigation, create an ADF task flow, and then add two view activities to it, one for the master page and one for the detail page. Add command buttons or links to each page, or use the default Submit button available when you create a form or table using the Data Controls panel. Each button must specify a navigation rule outcome value in the action
attribute. In the task-flow-defintion.xml
file, add a navigation rule from the master data page to the detail data page, and another rule to return from the detail data page to the master data page. The from-outcome
value in the navigation rules must match the outcome value specified in the action attribute of the buttons.
In addition to tables and forms, you can also display master-detail data in hierarchical trees. The ADF Faces tree
component is used to display hierarchical data. It can display multiple root nodes that are populated by a binding on a master object. Each root node in the tree may have any number of branches, which are populated by bindings on detail objects. A tree can have multiple levels of nodes, each representing a detail object of the parent node. Each node in the tree is indented to show its level in the hierarchy.
The tree
component includes mechanisms for expanding and collapsing the tree nodes; however, it does not have focusing capability. If you need to use focusing, consider using the ADF Faces treeTable
component (for more information, see Section 6.5, "Using Tree Tables to Display Master-Detail Objects"). By default, the icon for each node in the tree is a folder; however, you can use your own icons for each level of nodes in the hierarchy.
Figure 6-4 shows an example of a tree that displays two levels of nodes: root and branch. The root node displays parent product categories such as Media, Office, and Electronics. The branch nodes display and subcategories under each parent category, such as Hardware, Supplies, and Software under the Office parent category.
A tree consists of a hierarchy of nodes, where each subnode is a branch off a higher level node. Each node level in a databound ADF Faces tree
component is populated by a different data collection. In JDeveloper, you define a databound tree using the Edit Tree Binding dialog, which enables you to define the rules for populating each node level in the tree. There must be one rule for each node level in the hierarchy. Each rule defines the following node-level properties:
To display master-detail objects in a tree:
JDeveloper displays the Edit Tree Binding dialog, as shown in Figure 6-5. You use the binding editor to define a rule for each level that you want to appear in the tree.
This will be the master data collection. By default, this is the same collection that you dragged from the Data Controls panel to create the tree, which was a master collection.
Tip: If you don't see the accessor returned collection you want in the Root Data Source list, click the Add button. In the Add Data Source dialog, select a data control and an iterator name to create a new data source. |
The attribute will be used to display nodes at the master level.
After defining a rule for the master level, you must next define a second rule for the detail level that will appear under the master level in the tree.
A detail data source should appear automatically under the master data source, as shown in Figure 6-6.
For example, if you specified ProductFindAll
as the master root data source, WarehouseStockLevelList
will automatically appear underneath in the Tree Level Rules list, because the two data sources share a master-detail relationship.
If you are creating a tree with a recursive master-detail hierarchy, then you only need to define a rule that specifies a data source with a self-accessor. A recursive tree displays root nodes based on a single collection and displays the child nodes from the attributes of a self-accessor that recursively fetches data from that collection. The recursive tree differs from a typical master-detail tree because it requires only a single rule to define the branches of the tree. A recursive data source should display the data source followed by the name of the self-accessor in brackets, as shown in Figure 6-7.
For example, in a collection defined by EmployeesView
, the root node of each branch could be specified by the ManagerId
for the employee, and the child nodes of the same branch would then be the employees who are related to the ManagerId
, as specified by the self-accessor DirectReports
.
When you drag and drop from the Data Controls panel, JDeveloper does many things for you.
When you create a databound tree using the Data Controls panel, JDeveloper adds binding objects to the page definition file, and it also adds the tree tag to the JSF page. The resulting UI component is fully functional and does not require any further modification.
Example 6-2 shows the code generated in a JSF page when you use the Data Controls panel to create a tree. This sample tree displays the order numbers as the root nodes and the product names as the leaf nodes.
Example 6-2 Code Generated in the JSF Page for a Databound Tree
By default, the af:tree
tag is created inside a form. The value
attribute of the tree
tag contains an EL expression that binds the tree
component to the orderItemFindAll
tree binding object in the page definition file. The treeModel
property in the binding expression refers to an ADF class that defines how the tree
hierarchy is displayed, based on the underlying data model. The var
attribute provides access to the current node.
In the f:facet
tag, the nodeStamp
facet is used to display the data for each node. Instead of having a component for each node, the tree
repeatedly renders the nodeStamp
facet, similar to the way rows are rendered for the ADF Faces table component.
The ADF Faces tree
component uses an instance of the oracle.adf.view.faces.model.PathSet
class to display expanded nodes. This instance is stored as the treeState
attribute on the component. You may use this instance to programmatically control the expanded or collapsed state of an element in the hierarchy. Any element contained by the PathSet
instance is deemed expanded. All other elements are collapsed.
Example 6-3 shows the binding objects defined in the page definition file for the ADF databound tree.
Example 6-3 Binding Objects Defined in the Page Definition File for a Databound Tree
The tree
element is the value binding for all the attributes displayed in the tree. The iterBinding
attribute of the tree
element references the iterator binding that populates the data in the tree. The AttrNames
element within the tree
element defines binding objects for all the attributes in the master collection. However, the attributes that you select to appear in the tree are defined in the AttrNames
elements within the nodeDefinition
elements.
The nodeDefinition
elements define the rules for populating the nodes of the tree. There is one nodeDefinition
element for each node, and each one contains the following attributes and subelements:
DefName
: An attribute that contains the fully qualified name of the data collection that will be used to populate the node id
: An attribute that defines the name of the node AttrNames
: A subelement that defines the attributes that will be displayed in the node at runtime Accessors
: A subelement that defines the accessor attribute that returns the next branch of the tree The order of the nodeDefintion
elements within the page definition file defines the order or level of the nodes in the tree, where the first nodeDefinition
element defines the root node. Each subsequent nodeDefinition
element defines a subnode of the one before it.
Tree
components use org.apache.myfaces.trinidad.model.TreeModel
to access data. This class extends CollectionModel
, which is used by the ADF Faces table
component to access data. For more information about the TreeModel
class, refer to the ADF Faces Javadoc.
When a page with a tree
is displayed, the iterator binding on the tree populates the root nodes. When a user expands or collapses a node to display or hide its branches, a DisclosureEvent
event is sent. The isExpanded
method on this event determines whether the user is expanding or collapsing the node. The DisclosureEvent
event has an associated listener.
The DisclosureListener
attribute on the tree
is bound to the accessor attribute specified in the node rule defined in the page definition file. This accessor attribute is invoked in response to the DisclosureEvent
event; in other words, whenever a user expands the node the accessor attribute populates the branch nodes.
Use the ADF Faces treeTable
component to display a hierarchy of master-detail collections in a table. The advantage of using a treeTable
component rather than a tree
component is that the treeTable
component provides a mechanism that enables users to focus the view on a particular node in the tree.
For example, you can create a tree table that displays three levels of nodes: countries, states or provinces, and cities. Each root node represents an individual country. The branches off the root nodes display the state or provinces in the country. Each state or province node branches to display the cities contained in it.
As with trees, to create a tree table with multiple nodes, it is necessary to have master-detail relationships between the collections. For example, to create a tree table with three levels of country, state, and city, it was necessary to have a master-detail relationship from the CountryCodes
collection to the StatesandProvinces
collection, and a master-detail relationship from the StatesandProvinces
collection to the Cities
collection.
A databound ADF Faces treeTable
displays one root node at a time, but provides navigation for scrolling through the different root nodes. Each root node can display any number of branch nodes. Every node is displayed in a separate row of the table, and each row provides a focusing mechanism in the leftmost column.
You can edit the following treeTable
component properties in the Property Inspector:
The steps for creating an ADF Faces databound tree table are exactly the same as those for creating an ADF Faces databound tree, except that you drop the accessor returned collection as an ADF Tree Table instead of an ADF Tree.
When you drag and drop from the Data Controls panel, JDeveloper does many things for you.
When you create a databound tree table using the Data Controls panel, JDeveloper adds binding objects to the page definition file, and it also adds the treeTable
tag to the JSF page. The resulting UI component is fully functional and does not require any further modification.
Example 6-4 shows the code generated in a JSF page when you use the Data Controls panel to create a tree table. This sample tree table displays two levels of nodes: products and stock levels.
By default, the treeTable
tag is created inside a form. The value
attribute of the tree
table tag contains an EL expression that binds the tree
component to the binding object that will populate it with data. The treeModel
property refers to an ADF class that defines how the tree hierarchy is displayed, based on the underlying data model. The var
attribute provides access to the current node.
Example 6-4 Code Generated in the JSF Page for a Databound ADF Faces Tree Table
In the facet
tag, the nodeStamp
facet is used to display the data for each node. Instead of having a component for each node, the tree repeatedly renders the nodeStamp
facet, similar to the way rows are rendered for the ADF Faces table
component. The pathStamp
facet renders the column and the path links above the table that enable the user to return to the parent node after focusing on a detail node.
Tree
components use oracle.adf.view.faces.model.TreeModel
to access data. This class extends CollectionModel
, which is used by the ADF Faces table
component to access data. For more information about the TreeModel
class, refer to the ADF Faces Javadoc.
When a page with a tree table is displayed, the iterator binding on the treeTable
component populates the root node and listens for a row navigation event (such as the user clicking the Next or Previous buttons or selecting a row from the range navigator). When the user initiates a row navigation event, the iterator displays the appropriate row.
If the user changes the view focus (by clicking on the component's focus icon), the treeTable
component generates a focus event (FocusEvent
). The node to which the user wants to change focus is made the current node before the event is delivered. The treeTable
component then modifies the focusPath
property accordingly. You can bind the FocusListener
attribute on the tree to a method on a managed bean. This method will then be invoked in response to the focus event.
When a user expands or collapses a node, a disclosure event (DisclosureEvent
) is sent. The isExpanded
method on the disclosure event determines whether the user is expanding or collapsing the node. The disclosure event has an associated listener, DisclosureListener
. The DisclosureListener
attribute on the tree table is bound to the accessor attribute specified in the node rule defined in the page definition file. This accessor attribute is invoked in response to a disclosure event (for example, the user expands a node) and returns the collection that populates that node.
The treeTable
component includes Expand All and Collapse All links. When a user clicks one of these links, the treeTable
sends a DisclosureAllEvent
event. The isExpandAll
method on this event determines whether the user is expanding or collapsing all the nodes. The table then expands or collapses the nodes that are children of the root node currently in focus. In large trees, the expand all command will not expand nodes beyond the immediate children. The ADF Faces treeTable
component uses an instance of the oracle.adf.view.faces.model.PathSet
class to determine expanded nodes. This instance is stored as the treeState
attribute on the component. You can use this instance to programmatically control the expanded or collapsed state of a node in the hierarchy. Any node contained by the PathSet
instance is deemed expanded. All other nodes are collapsed. This class also supports operations like addAll()
and removeAll()
.
Like the ADF Faces table
component, a treeTable
component provides for range navigation. However, instead of using the rows
attribute, the treeTable
component uses a rowsByDepth
attribute whose value is a space-separated list of non-negative numbers. Each number defines the range size for a node level on the tree. The first number is the root node of the tree, and the last number is for the branch nodes. If there are more branches in the tree than numbers in the rowsByDepth
attribute, the tree uses the last number in the list for the remaining branches. Each number defines the limit on the number items displayed at one time in each branch. If you want to display all items in a branch, specify 0
in that position of the list.
For example, if the rowsByDepth
attribute is set to 0 0 3
, all root nodes will be displayed, all direct children of the root nodes will be displayed, but only three nodes will display per branch after that. The treeTable
component includes links to navigate to additional nodes, enabling the user to display the additional nodes.
For more information about the ADF Faces treeTable
component, refer to the oracle.adf.view.faces.component.core.data.CoreTreeTable
class in the ADF Faces Javadoc.
You can expand a node binding in the page definition editor to view the page's node Definition
elements. These are the same tree binding rules that you can configure in the tree binding dialog.
For each node definition (rule), you can specify an optional TargetIterator
property. Its value is an EL expression that is evaluated at runtime when the user selects a row in the tree. The EL expression evaluates an iterator binding in the current binding container. The iterator binding's row key attributes match (in order, number, and data type) the row key of the iterator from which the nodeDefinition
type's rows are retrieved for the tree.
At runtime, when the tree control receives a selectionChanged
event, it passes in the list of keys for each level of the tree. These keys uniquely identify the selected node.
The tree binding starts at the top of the tree. For each tree level whose key is present in the Currently Selected Tree Node Keys
list, if there is a TargetIterator
property configured for that nodeDefinition
, the tree binding performs a setCurrentRowWithKey()
operation on the selected target iterator. It uses the key from the appropriate level of the Currently Selected Tree Node Key
s list.
There may be cases when you need to determine which node in a tree or tree table has been selected in order to handle some processing in your application. For example, when a user selects a category node in a Browse tree, a selection event is fired. The listener associated with this event needs to determine the product category of the node selected, and then to return all products whose category attribute matches that value.
To programmatically use selection events, you need to create a listener in a managed bean that will handle the selection event and perform the needed logic. You then need to bind the selectionListener
attribute of the tree or table to that listener.
To use selection events with trees and tables:
productCategoriesTreeSelectionListener
method on the HomeBean
managed bean accesses the tree that launched the selection event. Example 6-5 Getting the Source of an Event
For more information about finding the event source component, see the "How to Return the Original Source of the Event" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
RowKeySet
object to get the currently selected node, and then set that as the current row on the model, as shown in Example 6-6. For more information about RowKeySet
objects, see Section 6.6.2, "What Happens at Runtime: RowKeySet Objects and SelectionEvent Events." productCategoriesTreeSelectionListener
method uses the value binding of the selected row to determine the category ID, and then uses that value as the parameter for another method that, when executed, returns all products with that category ID, as shown in Example 6-7. Example 6-7 Returning Objects That Match a Given Attribute Value
SelectionListener
attribute to the listener method just created. You can use the Edit option from the dropdown method to declaratively select the bean and the method. Whenever a user selects a node in a tree (or a row in a table), the component triggers selection events. A selectionEvent
event reports which rows were just deselected and which rows were just selected. The current selection, that is, the selected row or rows, is managed by the RowKeySet
object, which keeps track of all currently selected nodes by adding and deleting the associated key for the row into or out of the key set. When a user selects a new node, and the tree or table is configured for single selection, then the previously selected key is discarded and the newly selected key is added. If the tree or table is configured for multiple selection, then the newly selected keys are added to the set, and the previously selected keys may or may not be discarded, based on how the nodes were selected. For example, if the user pressed the CTRL key, then the newly selected nodes would be added to the current set.
This chapter describes how to add selection lists components to pages.
This chapter includes the following sections:
Selection lists work the same way as do standard JSF list components. ADF Faces list components, however, provide extra functionality such as support for label and message display, automatic form submission, and partial page rendering.
When the user selects an item from a navigation list, a corresponding component bound to the list also changes its value in response to the selection. For example, when the user selects a product from a shopping list, the table that is bound to the products list updates to display the details of the selected product.
ADF Faces Core includes components for selecting a single value and multiple values from a list. For example, selectOneChoice
allows the user to select an item from a dropdown list, and selectManyChoice
allow the user to select several items from a list of checkboxes. Selection list components are described in Table 7-1.
Table 7-1 ADF Faces Single and Multiple List Components
ADF Faces component | Description | Example |
---|---|---|
| Select a single value from a list of items. | |
| Select a single value from a set of radio buttons. | |
| Select a single value from a scrollable list of items. | |
| Select multiple values from a scrollable list of checkboxes. Each selection displays at the top of the list. | |
| Select multiple values from a group of checkboxes. | |
| Select multiple values from a scrollable list of checkboxes. | |
You can create selection lists using the SelectOneChoice
ADF Faces component. The steps are similar for creating other single-value selection lists, such as SelectOneRadio
and SelectOneListbox
.
A databound selection list displays values from an accessor returned collection or a static list and updates an attribute in another collection or a method parameter based on the user's selection. When adding a binding to a list, you use an attribute from the data control that will be populated by the selected value in the list.
Note: Using an ADF Model list binding with thevaluePassThru=true on a selectOneChoice component is not supported. The list binding will return indexes, not values. |
To create a selection list, you choose a base data source and a list data source in the Edit List Binding dialog:
You can create two types of selection lists in the Edit List Binding dialog:
You can create a selection list containing selections that you code yourself, rather than retrieving the values from another data source.
Figure 7-1 Selection List Bound to a Fixed List of Values
Before you begin:
Prepare a list of values that you will enter into the component as a fixed list.
To create a list bound to a fixed list of values:
The Edit List Binding dialog displays. The accessor returned collection containing the attribute you dropped on the JSF page is selected by default in the Base Data Source list.
To select a different accessor returned collection, click the Add icon next to the list.
The Fixed List option lets end users choose a value from a static list that you define.
The Base Data Source Attribute list contains all of the attributes in the collection you selected in the Base Data Source list.
ATM
and check
. The order in which you enter the values is the order in which the list items are displayed in the SelectOneChoice
control at runtime.
The SelectOneChoice
component supports a null
value. If the user has not selected an item, the label of the item is shown as blank, and the value of the component defaults to an empty string. Instead of using blank or an empty string, you can specify a string to represent the null
value. By default, the new string appears at the top of the list.
You can populate a selection list component with values dynamically at runtime.
Before you begin:
Define two data sources: one for the list data source that provides the dynamic list of values, and the other for the base data source that is to be updated based on the user's selection.
To create a selection list bound containing dynamically generated values:
The Edit List Binding dialog displays. The accessor returned collection containing the attribute you dropped on the JSF page is selected by default in the Base Data Source list.
To select a different accessor returned collection, click the Add icon next to the list.
The Dynamic List option lets you specify one or more base data source attributes that will be updated from another set of bound values.
Note: The list and base collections do not have to form a master-detail relationship, but the attribute in the list collection must have the same type as the base collection attributes. |
The Data Mapping section of the Edit List Binding dialog updates with a default data value and list attribute. The Data Value control contains the attribute on the accessor returned collection that is updated when the user selects an item in the selection list. The List Attribute Control contains the attribute that populates the values in the selection list.
To add a second mapping, click Add.
When you add a fixed selection list, JDeveloper adds source code to the JSF page and list and iterator binding objects to the page definition file.
Example 7-1 shows the page source code after you add a fixed SelectOneChoice
component to it.
Example 7-1 Fixed SelectOneChoice List in JSF Page Source Code
The f:selectItems
tag, which provides the list of items for selection, is bound to the items
property on the paymentType
list binding object in the binding container
In the page definition file, JDeveloper adds the definitions for the iterator binding objects into the executables
element, and the list binding object into the bindings
element, as shown in Example 7-2.
Example 7-2 List Binding Object for the Fixed Selection List in the Page Definition File
When you add a dynamic selection list to a page, JDeveloper adds source code to the JSF page, and list and iterator binding objects to the page definition file.
Example 7-3 shows the page source code after you add a dynamic SelectOneChoice
component to it.
Example 7-3 Dynamic SelectOneChoice List in JSF Page Source Code
The f:selectItems
tag, which provides the list of items for selection, is bound to the items
property on the salesRepId
list binding object in the binding container.
In the page definition file, JDeveloper adds the definitions for the iterator binding objects into the executables
element, and the list binding object into the bindings
element, as shown in Figure 7-1.
Example 7-4 List Binding Object for the Dynamic Selection List in the Page Definition File
The AttrNames
element specifies the base data source attributes returned by the base iterator. The ListAttrNames
element defines the list data source attributes that are mapped to the base data source attributes. The ListDisplayAttrNames
element specifies the list data source attribute that populates the values users see in the list at runtime.
Navigation list binding lets users navigate through the objects in a collection. As the user changes the current object selection using the navigation list component, any other component that is also bound to the same collection through its attributes will display from the newly selected object.
In addition, if the collection whose current row you change is the master collection in a data model master-detail relationship, the row set in the detail collection is automatically updated to show the appropriate data for the new current master row.
Before you begin:
Create an accessor returned collection in the Data Controls panel.
To create a list that uses navigation list binding:
This should be the collection you dragged from the Data Controls panel. If the collection does not appear in the dropdown menu, click the Add button to select the collection you want.
In the Select Multiple Display Attributes dialog, shuttle the attributes you want to display from the Available Attributes pane to the Attributes to Display pane. Click OK to close the dialog.
This chapter describes how to create search forms to perform complex searches on multiple attributes and search forms to search on a single attribute. It also includes information on using filtered table searches.
This chapter includes the following sections:
You can create search forms that allow users to enter search criteria into input fields for known attributes of an object. The search criteria can be entered via input text fields or selected from a list of values in a popup list picker or dropdown list box. The entered criteria is constructed into a query to be executed. The results of the query can be displayed as a table, a form, or another UI component.
Search forms are region-based components that are reusable and personalizable. They encapsulate and automate many of the actions and iterator management operations required to perform a query. You can create several search forms on the same page without any need to change or create new iterators.
The search forms are based on the model-driven af:query
and af:quickQuery
components. Because these underlying components are model-driven, the search form will change automatically to reflect changes in the model. The view layer does not need to be changed.
The query search form is a full-featured search form. The quick query search form is a simplified form with only one search criteria. Each of these search forms can be combined with a filtered table to display the results, thereby enabling additional search capabilities. You can also create a standalone filtered table to perform searches without the query or quick query search panel.
A filtered table is a table that has additional Query-by-Example (QBE) search criteria fields above each searchable column. When the filtering option of a table is enabled, you can enter QBE-style search criteria for each column to filter the query results.
For more information about individual query and table components, see the "Using Query Components" and the "Using Tables and Trees" chapters of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
The query search form is the standard form for complex transactional searches. You can build complex search forms with multiple search criteria fields each with a dropdown list of built-in operators. You can also add custom operators and customize the list. The query search form supports lists of values, AND
and OR
conjunctions, and saving searches for future use.
A query search form has a basic mode and an advanced mode. The user can toggle between the two modes using the basic/advanced button. At design time, you can declaratively specify form properties (such as setting the default state) to be either basic or advanced. Figure 8-1 shows an advanced mode query search form with three search criteria.
The advanced mode query form features are:
WHERE
clause conjunctions of either AND
or OR
(match all or match any) Typically, the query search form in either mode is used with an associated results table or tree table. For example, the query results for the search form in Figure 8-1 may be displayed in a table, as shown in Figure 8-2.
The basic mode has all the features of the advanced mode except that it does not allow the user to dynamically add search criteria fields. Figure 8-3 shows a basic mode query search form with three search criteria field. Notice the lack of a dropdown list next to the Save button used to add search criteria fields in the advanced mode.
In either mode, each search criteria field can be modified by selecting operators such as Greater Than
and Equal To
from a dropdown list, and the entire search panel can be modified by the Match All/Any radio buttons. Partial page rendering is also supported by the search forms in almost all situations. For example, if a Between
operator is chosen, another input field will be displayed to allow the user to select the upper range.
A Match All
selection implicitly uses AND
conjunctions between the search criteria in the WHERE
clause of the query. A Match Any
selection implicitly uses OR
conjunctions in the WHERE
clause. Example 8-1 shows how a simplified WHERE
clause may appear (the real WHERE
in the view criteria is different) when Match All
is selected for the search criteria shown in Figure 8-1.
Example 8-1 Simplified WHERE Clause Fragment When "Match All" Is Selected
Example 8-2 shows a simplified WHERE
clause if Match Any is selected for the search criteria shown in Figure 8-3.
Example 8-2 Simplified WHERE Clause Fragment When "Match Any" Is selected
Advanced mode query forms allow users to dynamically add search criteria fields to the query panel to perform more complicated queries. These user-created search criteria fields can be deleted, but the user cannot delete existing fields. Figure 8-4 shows how the Add Fields dropdown list is used to add the CategoryId criteria field to the search form.
Figure 8-5 shows a user-added search criteria with the delete icon to its right. Users can click the delete icon to remove the criteria.
If either Match All or Match Any is selected and then the user dynamically adds the second instance of a search criteria, then both Match All and Match Any will be deselected. The user must reselect either Match All or Match Any before clicking the Search button.
If you intend for a query search form to have both a basic and an advanced mode, you can define each search criteria field to appear only for basic, only for advanced, or for both. When the user switches from one mode to the other, only the search criteria fields defined for that mode will appear. For example, suppose three search fields for basic mode (A, B, C) and three search fields for advanced mode (A, B, D) are defined for a query. When the query search form is in basic mode, search criteria fields A, B, and C will appear. When it is in advanced mode, then fields A, B, and D will appear. Any search data that was entered into the search fields will also be preserved when the form returns to that mode. If the user entered 35
into search field C in basic mode, switched to advanced mode, and then switched back to basic, field C would reappear with value 35.
Along with using the basic or advanced mode, you can also determine how much of the search form will display. The default setting displays the whole form. You can also configure the query component to display in compact mode or simple mode. The compact mode has no header or border, and the Saved Search dropdown lists moves next to the expand/collapse icon. Figure 8-6 shows a query component set to compact mode.
The simple mode displays the component without the header and footer, and without the buttons normally displayed in those areas. Figure 8-7 shows the same query component set to simple mode.
Users can also create saved searches at runtime to save the state of a search for future use. The entered search criteria values, the basic/advanced mode state, and the layout of the results table/component can be saved by clicking the Save button to open a Save Search dialog, as shown in Figure 8-8. User-created saved searches persist for the session. If they are intended to be available beyond the session, you must configure a persistent data store to store them. For Oracle ADF, you can use an access-controlled data source such as MDS. For more information about using MDS, see the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
Table 8-1 lists the possible scenarios for creators of saved searches, the method of their creation, and their availability.
Table 8-1 Design Time and Runtime Saved Searches
Creator | Created at Design time as View Criteria | Created at Runtime with the Save Button |
---|---|---|
Developer | Developer-created saved searches (system searches) are created during application development and typically are a part of the software release. They are created at design time as view criteria. They are usually available to all users of the application and appear in the lower part of the Saved Search dropdown list. | |
Administrator | Administrator-created saved searches are created during predeployment by site administrators. They are created before the site is made available to the general end users. Administrators can create saved searches (or view criteria) using the JDeveloper design time when they are logged in with the appropriate role. These saved searches (or view criteria) appear in the lower part of the Saved Search dropdown list. | |
End User | End-user saved searches are created at runtime using the query form Save button. They are available only to the user who created them. End-user saved searches appear in the top part of the Saved Search dropdown list. |
End users can manage their saved searches by using the Personalize function in the Saved Search dropdown list to bring up the Personalize Saved Searches dialog, as shown in Figure 8-9.
End users can use the Personalize function to:
A quick query search form is intended to be used in situations where a single search will suffice or as a starting point to evolve into a full query search. Both the query and quick query search forms are ADF Faces components. A quick query search form has one search criteria field with a dropdown list of the available searchable attributes from the associated data collection. Typically, the searchable attributes are all the attributes in the associated view collection. The user can search against the selected attribute or search against all the displayed attributes. The search criteria field type will automatically match the type of its corresponding attribute. An Advanced link built into the form offers you the option to create a managed bean to control switching from quick query to advanced mode query search form. For more information, see the "Using Query Components" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
You can configure the form to have a horizontal layout, as shown in Figure 8-10.
You can also choose a vertical layout, as shown in Figure 8-11.
A filtered table can be created standalone or as the results table of a query or quick query search form. Filtered table searches are based on Query-by-Example and use the QBE text or date input field formats. The input validators are turned off to allow for entering characters such as >
and <=
to modify the search criteria. For example, you can enter >1500
as the search criteria for a number column. Wildcard characters may also be supported. If a column does not support QBE, the search criteria input field will not render for that column.
The filtered table search criteria input values are used to build the query WHERE
clause with the AND
operator. If the filtered table is associated with a query or quick query search panel, the composite search criteria values are also combined to create the WHERE
clause.
Figure 8-12 shows a query search form with a filtered results table. When the user enters a QBE search criteria, such as >200
for the id
field, the query result is the AND
of the query search criteria and the filtered table search criteria.
Table 8-2 lists the acceptable QBE search operators that can be used to modify the search value.
You create a query search form by dropping a named criteria from the Data Controls panel onto a page. You have a choice of dropping only a search panel, dropping a search panel with a results table, or dropping a search panel with a tree table.
If you choose to drop the search panel with a table, you can select the filtering option in the dialog to turn the table into a filtered table.
Typically, you would drop a query search panel with the results table or tree table. JDeveloper will automatically create and associate a results table or tree table with the query panel.
If you drop a query panel by itself and want a results component or if you already have an existing component for displaying the results, you will need to match the query panel's ResultsComponentId
with the results component's Id
.
You create a search form by dragging and dropping a named criteria from the Data Controls panel onto the page. You have the option of having a results table or only the query panel.
Before you begin:
You should have created a accessor returned collection in the Data Control panel.
To create a query search form with a results table or tree table:
Note: Dropping All Queriable Attributes onto the page creates a search form with a search criteria field for each searchable attribute defined in the underlying collection. If you only want to create search criteria fields for some of those attributes, create a named criteria with the attributes you want. |
After you have created the form, you may want to set some of its properties or add custom functions. For more information on how to do this, see Section 8.3, "Setting Up Search Form Properties."
You create a search form by dragging and dropping a named criteria from the Data Controls panel onto the page. You have the option of having a results table or only the query panel.
Before you begin:
You should have created a accessor returned collection in the Data Control panel.
To create a query search form and add a results component in a separate step:
Note: Dropping All Queriable Attributes onto the page creates a search form with a search criteria field for each searchable attribute defined in the underlying collection. If you only want to create search criteria fields for some of those attributes, create a named criteria for the attributes you want. |
After you have created the search form, you may want to set some of its properties or add custom functions. See Section 8.3, "Setting Up Search Form Properties," for more information.
If you want saved searches to be persisted to MDS, you need to define the /persdef
namespace in the adf-config.xml
file. In addition, you need to perform the regular MDS configuration, such as specifying metadatapath
. Example 8-3 shows an adf-config.xml
file with the /persdef
namespace defined.
Example 8-3 Sample adf-config.xml with /persdef Namespace
In order for the added saved searches to be available the next time the user logs in, cust-config
needs to be defined as part of the MDS configuration. For more information about setting cust-config
and MDS, see "How to Create Customization Classes" of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework
If you are also saving the layout of the results component, the application must have the ADF PageFlow Runtime and ADF Controller Runtime libraries installed. Set the project's technology scope to include ADF Page Flow.
When you drop a query search form onto a page, JDeveloper creates an af:query
tag on the page. If you drop a query with table or tree table, then an af:table
tag or af:treeTable
tag will follow the af:query
tag.
Under the af:query
tag are several attributes that define the query properties. They include:
id
attribute, which uniquely identifies the query. resultsComponentId
attribute, which identifies the component that will display the results of the query. Typically, this will be the table or tree table that was dropped onto the page together with the query. You can change this value to be the id
of a different results component. For more information, see Section 8.2.2, "How to Create a Query Search Form and Add a Results Component Later." In the page definition file, JDeveloper creates an iterator, accessorIterators, and a searchRegion
entry in the executables
section. Example 8-4 shows the sample code for a page definition file.
In the page definition file executable
section:
RangeSize
property is set to a default value of 25. If you want a different page size, you must edit this value. id
property is set to the root iterator. In the example, the value is set to OrdersSessionEJBLocalIterator
Binds
property is set to the accessor. In the example, the value is set to itemFindAll.
id
property is set to the accessor iterator. In the example, the value is set to itemFindAllIterator.
searchRegion
Criteria
property is set to ItemCriteria
. searchRegion
Binds
property is set to the search iterator. In the example, the value is set to itemFindAllIterator
searchRegion
id
property is set to ItemCriteriaQuery.
If the query was dropped onto the page with a table or tree, then in the page definition file bindings
section, a tree element is added with the Iterbinding
property set to the search iterator. In this example, the value is set to itemFindAllIterator
.
Example 8-4 Search Form Code in the Page Definition File
At runtime, the search form displays as a search panel on the page. The search panel will display in either basic mode or advanced mode.
After the user enters the search criteria and clicks Search, a query is executed and the results are displayed in the associated table, tree table, or component.
Search form properties that can be set after the query component has been added to the JSF page include:
id
of the results table or results component After you have dropped the query search form onto a page, you can edit other form properties in the Property Inspector, as shown in Figure 8-14. Some of the common properties you may set are:
One common option is to show or hide the basic/advanced button.
To enable or hide the basic/advanced button in the query form:
You can use quick query search forms to let users search on a single attribute of a collection. Quick query search form layout can be either horizontal or vertical. Because they occupy only a small area, quick query search forms can be placed in different areas of a page. You can create a managed bean to enable users to switch from a quick query to a full query search. For more information about switching from quick query to query using a managed bean, see the "Using Query Components" chapter in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
If you drop a quick query panel with a results table or tree, JDeveloper will automatically create the results table, as described in Section 8.4.1, "How to Create a Quick Query Search Form with a Results Table or Tree Table." If you drop a quick query panel by itself and subsequently want a results table or component or if you already have one, you will need to match the quick query Id
with the results component's partialTrigger
value, as described in Section 8.4.2, "How to Create a Quick Query Search Form and Add a Results Component Later."
You can create quick query searches using the full set of searchable attributes and simultaneously add a table or tree table as the results component.
Before you begin:
Create an accessor returned collection in the Data Control panel.
To create a quick query search form with a results table:
You can create quick query searches using the full set of searchable attributes and add a table or tree table as the results component later.
Before you begin:
Create an accessor returned collection in the Data Control panel.
To create a quick query search form and add a results component in a separate step:
The default layout of the form is horizontal. You can change the layout option using the Property Inspector.
To set the layout:
When you drop a quick query search form onto a page, JDeveloper creates an af:quickQuery
tag. If you have dropped a quick query with table or tree table, then an af:table
tag or af:treeTable
tag is also added.
Under the af:quickQuery
tag are several attributes and facets that define the quick query properties. Some of the tags are:
id
attribute, which uniquely identifies the quick query. This value should be set to match the results table or component's partialTriggers
value. JDeveloper will automatically assign these values when you drop a quick query with table or tree table. If you want to change to a different results component, see Section 8.4.2, "How to Create a Quick Query Search Form and Add a Results Component Later." layout
attribute, which specifies the quick query layout to be default, horizontal, or vertical. end
facet, which specifies the component to be used to display the Advanced link (that changes the mode from quick query to the query). For more information about creating this function, see the "Using Query Components" chapter of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework. At runtime, the quick query search form displays a single search criteria field with a dropdown list of selectable search criteria items. If there is only one searchable criteria item, then the dropdown list box will not be rendered. An input component that is compatible with the selected search criteria type will be displayed, as shown in Table 8-3. For example, if the search criteria type is date, then inputDate
will be rendered.
Table 8-3 Quick Query Search Criteria Field Components
Attribute Type | Rendered Component |
---|---|
|
|
|
|
|
|
In addition, a Search button is rendered to the right of the input field. If the end facet is specified, then any components in the end facet are displayed. By default, the end facet contains an Advanced link.
You use query search forms for complex searches, but you can also perform simple QBE searches using the filtered table. You can create a standalone ADF-filtered table without the associated search panel and perform searches using the QBE-style search criteria input fields. For more information about filtered tables, see Section 8.1.3, "Filtered Table and Query-by-Example Searches."
When creating a table, you can make almost any table a filtered table by selecting the filtering option if the option is enabled. There are three ways to create a standalone filtered table:
You can set the QBE search criteria for each filterable column to be a case-sensitive or case-insensitive search using the filterFeature
attribute of af:column
in the af:table
component. For more information, see the "Enable Filtering in Tables" section of the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
Before you begin:
Create an accessor returned collection in the Data Control panel.
To create a filtered table:
This chapter describes how to deploy Oracle ADF Java EE applications to a target application server. It describes how to create deployment profiles, how to create deployment descriptors, and how to load ADF runtime libraries. It also contains information on deploying to Oracle WebLogic Server.
This chapter includes the following sections:
Deployment is the process of packaging application files as an archive file and transferring it to a target application server. You can use JDeveloper to deploy Oracle ADF Java EE web applications directly to the application server (such as Oracle WebLogic Server or IBM WebSphere Application Server), or indirectly to an archive file as the deployment target, and then install this archive file to the target server. For application development, you can also use JDeveloper to run an application in Integrated WebLogic Server. JDeveloper supports deploying to server clusters. You cannot use JDeveloper to deploy to individual Managed Servers within a cluster.
Figure 9-1 shows the flow diagram that describes the overall deployment process. Note that preparing the target application server for deployment by installing the ADF runtime is described in the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework
The following diagram contains clickable links.
Note: Normally, you use JDeveloper to deploy applications for development and testing purposes. If you are deploying Oracle ADF Java EE web applications for production purposes, you can use Enterprise Manager or scripts to deploy to production-level application servers.For more information about deployment to later-stage testing or production environments, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework. |
ADF Java EE applications are based on standardized, modular components and can be deployed to the following application servers:
Oracle WebLogic Server provides a complete set of services for those modules and handles many details of application behavior automatically, without requiring programming. For information about which versions of Oracle WebLogic Server are compatible with JDeveloper, see the certification information website at http://www.oracle.com/technetwork/developer-tools/jdev/documentation/index.html
.
For information about which versions of IBM WebSphere are compatible, see the Oracle Fusion Middleware Third-Party Application Server Guide.
JSF applications that contain ADF Faces components have a few additional deployment requirements:
You can use JDeveloper to:
You can run and debug applications using Integrated WebLogic Server and then deploy to a standalone WebLogic Server or to WebSphere.
Integrated IBM WebSphere Application Server is not supported for this release.
You can deploy applications directly to the standalone application server by creating a connection to the server and choosing the name of that server as the deployment target.
You can deploy applications indirectly by choosing an EAR file as the deployment target. The archive file can subsequently be installed on a target Oracle WebLogic Server instance.
If you are developing an application in JDeveloper and you want to run the application in Integrated WebLogic Server, you do not need to perform the tasks required for deploying directly to Oracle WebLogic Server or to an archive file. JDeveloper has a default connection to Integrated WebLogic Server and does not require any deployment profiles or descriptors. Integrated WebLogic Server has a preconfigured domain that includes the ADF libraries, as well as the -Djps.app.credential.overwrite.allowed=true
setting, that are required to run Oracle ADF applications. You can run an application by choosing Run from the JDeveloper main menu.
Typically, you test and develop your application by running it in Integrated WebLogic Server. You can then test the application further by deploying it to standalone Oracle WebLogic Server in development mode to more closely simulate the production environment.
In general, you use JDeveloper to prepare the application or project for deployment by:
application.xml
and web.xml
to be compatible with Oracle WebLogic Server (if required) web.xml
(if desired) jps-config.xml
file when you intend the web application to run using Oracle SSO You must already have an installed application server. For Oracle WebLogic Server, you can use the Oracle 11g Installer or the Oracle Fusion Middleware 11g Application Developer Installer to install one. For other applications servers, follow the instructions in the applications server documentation to obtain and install the server.
You also must prepare the application server for ADF application deployment. For more information, see the "Preparing the Standalone Application Server for Deployment" section of the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
-Djps.app.credential.overwrite.allowed=true
setting) After the application and the application server have been prepared, you can:
JDeveloper is installed with Integrated WebLogic Server, which you can use to test and develop your application. For most development purposes, Integrated WebLogic Server will suffice. When your application is ready to be tested, you can select the run target and then choose the Run command from the main menu.
Note: The first time you run an application in Integrated WebLogic Server, the Configure Default Domain dialog appears for you to define an administrative password for the new domain. |
When you run the application target, JDeveloper detects the type of Java EE module to deploy based on artifacts in the projects and workspace. JDeveloper then creates an in-memory deployment profile for deploying the application to Integrated WebLogic Server. JDeveloper copies project and application workspace files to an "exploded EAR" directory structure. This file structure closely resembles the EAR file structure that you would have if you were to deploy the application to an EAR file. JDeveloper then follows the standard deployment procedures to register and deploy the "exploded EAR" files into Integrated WebLogic Server. The "exploded EAR" strategy reduces the performance overhead of packaging and unpackaging an actual EAR file.
In summary, when you select the run target and run the application in Integrated WebLogic Server, JDeveloper:
Later on, if you plan to deploy the application to a standalone WebLogic Server instance, you will need to migrate this security information. For more information, see Section 9.3.4, "How to Deploy Applications with ADF Security Enabled."
Note: JDeveloper ignores the deployment profiles that were created for the application when you run the application in Integrated WebLogic Server. |
The application will run in the base domain in Integrated WebLogic Server. This base domain has the same configuration as a base domain in a standalone WebLogic Server instance. In other words, this base domain will be the same as if you had used the Oracle Fusion Middleware Configuration Wizard to create a base domain with the default options in a standalone WebLogic Server instance.
JDeveloper will extend this base domain with the necessary domain extension templates, based on the JDeveloper technology extensions. For example, if you have installed JDeveloper Studio, JDeveloper will automatically configure the Integrated WebLogic Server environment with the ADF runtime template (JRF Fusion Middleware runtime domain extension template).
You can explicitly create a default domain for Integrated WebLogic Server. You can use these domains to run and test your applications. Open the Application Server Navigator, right-click IntegratedWebLogicServer and choose Create Default Domain.
JDeveloper has a default connection to Integrated WebLogic Server. You do not need to create a connection to run an application. If you do want to manually create an application server connection to Integrated WebLogic Server, use the instructions in Section 9.3.1, "How to Create a Connection to the Target Application Server," to create the connection, selecting Integrated Server instead of Standalone Server in Step 2.
You can test an application by running it in Integrated WebLogic Server. You can also set breakpoints and then run the application within the ADF Declarative Debugger.
To run an application in Integrated WebLogic Server:
When an application is running in Integrated WebLogic Server, the metadata archive (MAR) profile itself will not be deployed to a repository, but a simulated Oracle Metadata Services (MDS) repository will be configured for the application that reflects the metadata information contained in the MAR. This metadata information is simulated, and the application runs based on this location in source control.
By default, only the customizations in ADF view and ADF Model are included in the MAR. If the Java EE application has customizations in other directories, you must create a custom MAR profile that includes these directories.
Any customizations or documents created by the application that are not configured to be stored in other MDS repositories are written to this simulated MDS repository directory. For example, if you customize an object, the customization is written to the simulated MDS repository. If you execute code that creates a new metadata object, then this new metadata object is also written to the same location in the simulated MDS repository. You can keep the default location for this directory (ORACLE_HOME\jdeveloper\
systemXX.XX
\o.mds.dt\adrs\
Application
\AutoGeneratedMar\mds_adrs_writedir
), or you can set it to a different directory. You also have the option to preserve this directory across different application runs, or to delete it before each application run.
If your workspace has different working sets, only the metadata from the projects defined in the working set and their dependent projects will be included in the MAR. You can view and change a project's dependencies by right-clicking the project in the Application Navigator, choosing Project Properties, and then selecting Dependencies. For instance, an application may have several projects but workingsetA
is defined to be viewcontroller2
and viewcontroller5
; and viewcontroller5
has a dependency on modelproject1
. When you run or debug workingsetA
, only the metadata for viewcontroller2
, viewcontroller5
, and modelproject1
will be included in the MAR for deployment.
There should already be a MAR profile, either generated automatically by JDeveloper, or manually generated by a user.
To deploy the MAR profile to Integrated WebLogic Server:
Select the MAR profile from the MAR Profile dropdown list. Figure 9-2 shows Demometadata1 selected as the MAR profile.
Before you deploy an ADF application to a standalone Oracle WebLogic Server instance, you must perform prerequisite tasks within JDeveloper to prepare the application for deployment.
Figure 9-3 show the process flow to prepare the application for deployment. After the application has been prepared and the application server has been prepared as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework, you can proceed to deploy the application as described in Section 9.4, "Deploying the Application."
The following diagram contains clickable links.
You can deploy applications to Oracle WebLogic Server via JDeveloper application server connections. If your application involves customization using MDS, you should register your MDS repository with the Oracle WebLogic Server domain.
For more information about registering MDS, see the Oracle Application Server Administrator's Guide.
To create a connection to an application server:
You can:
For WebLogic:
.jar,.war,.ear
) will be deployed. .jar,.war,.ear
) will be deployed. If you don't specify a port, the port number defaults to 7001.
.jar,.war,.ear
) will be deployed. Specifying an SSL port is optional. It is required only if you want to ensure a secure connection for deployment.
If you don't specify an SSL port, the port number defaults to 7002.
For WebSphere:
.jar
, .war
, .ear
) are deployed. If no name is entered, the name defaults to localhost
. machineNode01
, where machine
is the name of the machine the node resides on machineNode01Cell
, where machine
is the name of the machine the node resides on. websphere-home/bin/wsadmin.sh
for Unix/Linux and websphere-home/bin/wsadmin.bat
for Windows. Note: JMX configuration is optional and is not required for connecting to the WebSphere Application Server. JMX is only needed for deploying SOA applications. |
JDeveloper performs several types of connections tests. The JSR-88 test must pass for the application to be deployable. If the test fails, return to the previous pages of the wizard to fix the configuration.
A deployment profile defines the way the application is packaged into the archive that will be deployed to the target environment. The deployment profile:
You need a WAR deployment profile for each web view-controller project that you want to deploy in your application. If you want to package seeded customizations or place base metadata in the MDS repository, you need an application-level metadata archive (MAR) deployment profile as well. For more information about seeded customizations, see the "Customizing Applications with MDS" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. If the application has customization classes, you need a JAR file for those classes and you need to add that JAR when you create the EAR file. If you are using EJB, you need an EJB JAR profile. Finally, you need an application-level EAR deployment profile and you must select the projects you want to include from a list, such as WAR and MAR profiles and customization classes JAR files. When the application is deployed, the EAR file will include all the projects that were selected in the deployment profile.
For Oracle ADF applications, you can deploy the application only as an EAR file. The WAR and MAR files that are part of the application should be included in the EAR file when you create the deployment profile.
You will need to create a WAR deployment profile for each web-based project you want to package into the application. Typically, the WAR profile will include the dependent data model projects it requires.
To create WAR deployment profiles for an application:
You will create a WAR profile for each web project.
If you don't see Deployment Profiles in the Categories tree, click the All Features tab.
By default, customization classes are added to the data model project's WAR class path. So for each WAR, you must exclude the customization classes.
If you created your customization classes in an extension project of the application, be sure to deselect any customization class archive on the Library Dependencies page of the WAR deployment profile for each user interface project.
If you created your customization classes in the data model project of the application, deselect any customization classes on the File Groups > WEB-INF/classes > Filters page of the WAR deployment profile for each user interface project. If you are using a customization.properties
file, it should also be deselected.
By default, when Use Project's Java EE Web Context Root is selected, the associated value is set to the project name, for example, Application1-Project1-context-root
. You need to change this if you want users to use a different name to access the application.
If you are using custom JAAS LoginModule for authentication with JAZN, the context root name also defines the application name that is used to look up the JAAS LoginModule.
If you have seeded customizations or base metadata that you want to place in the MDS repository, you need to create a MAR deployment profile.
The namespace configuration under <mds-config>
for MAR content in the adf-config.xml
file is generated based on your selections in the MAR Deployment Profile Properties dialog.
Although uncommon, an enterprise application (packaged in an EAR) can contain multiple web application projects (packaged in multiple WARs), but the metadata for all these web applications will be packaged into a single metadata archive (MAR). The metadata contributed by each of these individual web applications can be global (available for all the web applications) or local to that particular web application.To avoid name conflicts for metadata with global scope, make sure that all metadata objects and elements have unique names across all the web application projects that form part of the enterprise application.To avoid name conflicts and to ensure that the metadata for a particular web application remains local to that application, you can define a web-app-root
for that web application project.The web-app-root
is an element in the adf-settings.xml
file for a web application project. The adf-settings.xml
file should be kept in the META-INF
directory under the public_html
directory for the web project. Example 9-1 shows the contents of a sample adf-settings.xml
file.
Example 9-1 web-app-root Element in the adf-settings.xml File
In this example, the adf-settings.xml
file has a web-app-root
element that defines rootName
as order
.If your enterprise application has only one web application project, there is no need to define a web-app-root
element. If your enterprise application has multiple web application projects, you should supply a web-app-root
for all the web applications except one, without which the deployment will fail. For example, if you have web-application1
, web-application2
, and web-application3
, two of these web application projects must define a web-app-root
to preclude any name conflicts.
JDeveloper creates an auto-generated MAR when the Enable User Customizations and Across Sessions using MDS options are selected in the ADF View page of the Project Properties dialog or when you explicitly specify the deployment target directory in the adf-config.xml
file.
By default, only the customizations in ADF view and ADF Model are included in the MAR. If the Java EE application has customizations in other directories, you must create a custom MAR profile that includes those directories.
Before you begin:
Create an MDS repository for your customization requirements to deploy metadata using the MAR deployment profile.
To create a MAR deployment profile:
You will create a MAR profile if you want to include customizations.
If you don't see Deployment Profiles in the Categories tree, click the All Features tab.
Figure 9-4 shows a sample User Metadata directory tree.
Note the following important points:
When you select the base document to be included in the MAR, you also select specific packages. When you select one package, all the documents (including subpackages) under that package will be used. When you select a package, you cannot deselect individual items under that package.
If you are using an EJB module in the data model project, you need to create an EJB JAR deployment profile.
Before you begin:
Create a data model project that has an EJB module.
To create an EJB JAR deployment profile for an application:
If you don't see Deployment Profiles in the Categories tree, click the All Features tab.
The EAR file contains all the necessary application artifacts for the application to run in the application server. For more information about the EAR file, see Section 9.4.6, "What You May Need to Know About EAR Files and Packaging."
Before you begin:
To create an EAR deployment profile for an application:
You will create an EAR profile for the application.
If you don't see Deployment Profiles in the Categories tree, click the All Features tab.
Be sure that you:
Note: If you are using a custom JAAS LoginModule for authentication with JAZN, the context root name also defines the application name that is used to look up the JAAS LoginModule. |
lib
in the Path in EAR field at the bottom of the dialog. Note: You should have created this JAR as described in Section 9.3.2.7, "Adding Customization Classes into a JAR." |
The JAR file containing the customization classes is added to the EAR file's lib
directory.
Note: If you have customization classes in your application, you must also make sure they are not loaded from the WAR. By default, customization classes that are added to the data model project's Libraries & Classpath are packaged to the WAR class path.To make sure customization classes from an extension project are not duplicated in the WAR, be sure to deselect any customization class archive on the Library Dependencies page for the WAR. If you created your customization classes in the data model project of the consuming application, deselect any customization classes on the File Groups > WEB-INF/classes > Filters page for the WAR. |
As an alternative to adding your customization classes to the EAR, as described in Section 9.3.2.4, "Creating an Application-Level EAR Deployment Profile," you can also include the customization classes in the consuming application as a shared library.
Before you begin:
With the application containing the customization classes open in JDeveloper in the Studio Developer role, use the procedure described in Section 9.3.2.7, "Adding Customization Classes into a JAR," making sure that you select Shared Library JAR File as the type of archive to create.
Note: This procedure describes how to create and use a shared library if you are deploying to Oracle Weblogic Server. |
To create and use a shared library for your customization classes:
This makes the shared library available on the application server. You must now add a reference to the shared library from the consuming application.
weblogic-application.xml
file to open it. After you have created a deployment profile, you can view and change its properties.
To view, edit, or delete a project's deployment profile:
The Deployment Profiles list displays all profiles currently defined for the project.
If your application has customization classes, create a JAR that contains only these customization classes. When you create your EAR, you can add the JAR to the EAR assembly. And when you create WAR profiles for your web projects, you must make sure they don't include the customization classes JAR.
Before you begin:
Make sure that your project has customization classes. You do not need to perform this procedure if the application does not have customization classes. For more information about customization classes, see the "How to Create Customization Classes" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
To add customization classes into a JAR:
Alternatively, if you want to create a shared library, select Shared Library JAR File from the list of profile types, and click OK.
Note: If you don't see Deployment Profiles in the Categories tree, click the All Features tab. |
CCArchive
) and click OK. customization.properties
file, it needs to be in the same class loader as the JAR file. You can select the customization.properties
file to package it along with the customization classes in the same JAR. Note: If this is the first time you deploy to a JAR from this deployment profile, you choose Deploy > deployment profile and select Deploy to JAR in the wizard. |
Deployment descriptors are server configuration files that define the configuration of an application for deployment and that are deployed with the Java EE application as needed. The deployment descriptors that a project requires depend on the technologies the project uses and on the type of the target application server. Deployment descriptors are XML files that can be created and edited as source files, but for most descriptor types, JDeveloper provides dialogs or an overview editor that you can use to view and set properties. If you cannot edit these files declaratively, JDeveloper opens the XML file in the source editor for you to edit its contents.
You can specify deployment descriptors that are specific to your target Oracle WebLogic application server instance.
In addition to the standard Java EE deployment descriptors (for example, application.xml
and web.xml
), you can also have deployment descriptors that are specific to your target application server. For example, if you are deploying to Oracle WebLogic Server, you can also have weblogic.xml
, weblogic-application.xml
, and weblogic-ejb-jar.xml
.
Make sure that the application EAR file includes a weblogic-application.xml
file that contains a reference to adf.oracle.domain,
and that it includes an ADFApplicationLifecycleListener
to clean up application resources between deployment and undeployment actions. Example 9-2 shows a sample weblogic-application.xml
file.
Example 9-2 Sample weblogic-application.xml
If you are deploying web services, you may need to modify your weblogic-application.xml
and web.xml
files as described in the "How to Deploy Web Services to Oracle WebLogic Server" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If you want to enable the application for Real User Experience Insight (RUEI) monitoring, you must add a parameter to the web.xml
file, as described in Section 9.3.3.5, "Enabling the Application for Real User Experience Insight."
During deployment, the application's security properties are written to the weblogic-application.xml
file to be deployed with the application in the EAR file.
Because Oracle WebLogic Server runs on Java EE 1.5, you may need to modify the application.xml
and web.xml
files to be compatible with the server.
JDeveloper automatically creates many of the required deployment descriptors for you. If they are not present, or if you need to create additional descriptors, you can explicitly create them.
Before you begin:
Check to see whether JDeveloper has already generated deployment descriptors.
To create a deployment descriptor:
If you can't find the item you want, make sure that you chose the correct project, and then choose the All Features tab or use the Search field to find the descriptor. If the item is not enabled, check to make sure that the project does not already have a descriptor of that type. A project is allowed only one instance of a descriptor.
JDeveloper starts the Create Deployment Descriptor wizard and then opens the file in the overview or source editor, depending on the type of deployment descriptor you choose.
Note: For EAR files, do not create more than one deployment descriptor per application or workspace. These files are assigned to projects, but have application workspace scope. If multiple projects in an application have the same deployment descriptor, the one belonging to the launched project will supersede the others. This restriction applies toapplication.xml , weblogic-jdbc.xml , jazn-data.xml , and weblogic.xml . The best place to create an application-level descriptor is in the Descriptors node of the Application Resources panel in the Application Navigator. This ensures that the application is created with the correct descriptors. |
After you have created a deployment descriptor, you can change its properties by using JDeveloper dialogs or by editing the file in the source editor. The deployment descriptor is an XML file (for example, application.xml
) typically located under the Application Sources node.
To view or change deployment descriptor properties:
If the overview editor is not available, JDeveloper opens the file in the source editor.
You may need to configure your application.xml
file to be compliant with Java EE 1.5.
Note: Typically, your project has anapplication.xml file that is compatible and you would not need to perform this procedure. |
To configure the application.xml file:
application.xml
file with the appropriate values. You may need to configure your web.xml
file to be compliant with Java EE 1.5 (which corresponds to servlet 2.5 and JSP 1.2).
Note: Typically, your project has aweb.xml file that is compatible and you would not need to perform this procedure. JDeveloper creates a starter web.xml file when you create a project. |
To configure the web.xml file:
Real User Experience Insight (RUEI) is a web-based utility to report on real-user traffic requested by, and generated from, your network. It measures the response times of pages and transactions at the most critical points in the network infrastructure. Session diagnostics allow you to perform root-cause analysis.
RUEI enables you to view server and network times based on the real-user experience, to monitor your Key Performance Indicators (KPIs) and Service Level Agreements (SLAs), and to trigger alert notifications on incidents that violate their defined targets. You can implement checks on page content, site errors, and the functional requirements of transactions. Using this information, you can verify your business and technical operations. You can also set custom alerts on the availability, throughput, and traffic of all items identified in RUEI.
For more information about RUEI, see the Oracle Real User Experience Insight User's Guide at http://download.oracle.com/docs/cd/E16339_01/doc.60/e16359/toc.htm
.
You must enable an application for RUEI by adding the context-param
tag to the web.xml
file shown in Example 9-3.
Example 9-3 Enabling RUEI Monitoring for an Application in web.xml
If you are developing an application in JDeveloper using Integrated WebLogic Server, application security deployment properties are configured by default, which means that the application and security credentials and policies will be overwritten each time you redeploy for development purposes. However, the application security deployment properties are the same for Integrated WebLogic Server and the standalone WebLogic Server.
Before you can deploy and run the web application with Oracle ADF Security enabled on Oracle WebLogic Server, the administrator of the target server must configure the domain-level jps-config.xml
file for the Oracle Access Manager (OAM) security provider. To assist with this configuration task, an Oracle WebLogic Scripting Tool (WLST) script has been provided with the JDeveloper install. For details about running this configuration script (with command addOAMSSOProvider(loginuri, logouturi, autologinuri)
), see the procedure for configuring Oracle WebLogic Server for a web application using ADF Security, OAM SSO, and OPSS SSO in the Oracle Fusion Middleware Security Guide.
Running the configuration script ensures that the ADF Security framework defers to the OAM service provider to clear the ObSSOCookie
token. OAM uses this token to save the identity of authenticated users and, unless it is cleared during logout, the user will be unable to log out.
After the system administrator runs the script on the target server, the domain jps-config.xml
file will contain the following security provider definition that is specific for ADF Security:
Additionally, the authentication type required by SSO is CLIENT-CERT
. The web.xml
authentication configuration for the deployed application must specify the <auth-method>
element as one of the following CLIENT-CERT
types.
WebLogic supports two types of authentication methods:
FORM
-type authentication method, specify the elements like this: BASIC
-type authentication method, specify the elements like this: WebSphere supports a single authentication method. Specify the elements like this:
You can configure the web.xml
file either before or after deploying the web application. For further details about setting up the authentication method for Single Sign-On, see the Oracle Fusion Middleware Security Guide.
In a development environment, JDeveloper will automatically migrate application-level credentials, identities, and policies to the remote WebLogic Server instance only if the server is set up to be in development mode. Integrated WebLogic Server is set up in development mode by default. You can set up a remote WebLogic Server to be in development mode during Oracle WebLogic Server domain creation using the Oracle Fusion Middleware Configuration Wizard. For more information about configuring Oracle WebLogic Server domains, see Oracle Fusion Middleware Creating Domains Using the Configuration Wizard.
JDeveloper will not migrate application-level security credentials to WebLogic Server setup in production mode. Typically, in a production environment, administrators will use Enterprise Manager or WLST scripts to deploy an application, including its security requirements.
When you deploy an application to WebLogic Server, credentials (in the cwallet.sso
and jazn-data.xml
files) will either overwrite or merge with the WebLogic Server domain-level credential store, depending on whether a property in weblogic-application.xml
is set to OVERWRITE
or MERGE
. In production-mode WebLogic Server, to avoid security risks, only MERGE
is allowed. For development-mode WebLogic Server, you can set to OVERWRITE
to test user names and passwords. You can also set the property by running setDomainEnv.cmd
or setDomainEnv.sh
with the following option added to the command (usually located in ORACLE_HOME/user_projects/domains/
MyDomain
/bin).
For setDomainEnv.cmd
:
For setDomainEnv.sh
:
If the Administration Server is already running, you must restart it for this setting to take effect.
You can check to see whether WebLogic Server is in production mode by using the Oracle WebLogic Server Administration Console or by verifying the following line in the WebLogic Server config.xml
file:
By default, JDeveloper sets the application's credentials, identities, and policies to OVERWRITE
mode. That is, the Application Policies, Credentials, and Users and Groups options are selected by default in the Application Properties dialog Deployment page. However, an application's credentials will be migrated only if the target WebLogic Server instance is set to development mode with -Djps.app.credential.overwrite.allowed=true
.
Policy migration only works in development-mode. Identity migration only works when using JDeveloper to directly deploy to WebLogic Server regardless of whether it is in development or production-mode.
When your application is ready for deployment to a production environment, you should remove the identities from the jazn-data.xml
file or disable the migration of identities by deselecting Users and Groups from the Application Properties dialog. Application credentials must be manually migrated outside of JDeveloper.
Note: Before you migrate thejazn-data.xml file to a production environment, check that the policy store does not contain duplicate permissions for a grant. If a duplicate permission (one that has the same name and class) appears in the file, the administrator migrating the policy store will receive an error and the migration of the policies will be halted. You should manually edit the jazn-data.xml file to remove any duplicate permissions from a grant definition. |
For more information about migrating application credentials and other jazn-data
user credentials, see the Oracle Containers for J2EE Security Guide.
If your application uses application-level JDBC data sources with password indirection for database connections, you may need to create credential maps in WebLogic Server to enable the database connection. For more information, see Section 9.3.7, "What You May Need to Know About JDBC Data Source for Oracle WebLogic Server."
Applications with credentials and policies in the jazn-data.xml
and cwallet.sso
files can be migrated to WebSphere. You will need to perform additional tasks in WebSphere Be aware that the opss-application.xml
file is not included in the application EAR file if it is intended for WebSphere.
Note: Before you migrate thejazn-data.xml file to a production environment, check that the policy store does not contain duplicate permissions for a grant. If a duplicate permission (one that has the same name and class) appears in the file, the administrator migrating the policy store will receive an error and the migration of the policies will be halted. You should manually edit the jazn-data.xml file to remove any duplicate permissions from a grant definition. |
For more information about setting up WebSphere to accept credentials and policies, see the Oracle Fusion Middleware Third-Party Application Server Guide.
If your application uses application-level JDBC data sources with password indirection for database connections, you will need to create a JDBC data source in WebSphere. For more information, see the IBM WebSphere documentation.
When you enable ADF Security for your web application, the web.xml
file includes the Java EE security constraint allPages
to protect the Java EE application root. By default, to support deploying to Oracle WebLogic Server, JDeveloper specifies the URL pattern for the security constraint as /
(backslash). If you intend to deploy the application to IBM WebSphere, the correct URL pattern is /*
(backslash-asterisk). Before you deploy the application to WebSphere, manually edit the web.xml
file for your application to change the allPages
security constraint as follows:
If you are deploying an application that is intended to run in a clustered environment, you need to ensure that all managed beans with a lifespan longer than one request are serializable, and that the ADF framework is aware of changes to managed beans stored in ADF scopes (view scope and page flow scope).
For more information, see the "How to Set Managed Bean Memory Scopes in a Server-Cluster Environment" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
An ADF application uses many XML files for setting configuration information. Some of these configuration files have ADF MBean counterparts that are deployed with the application. After the application has been deployed, you can change configuration properties by accessing the ADF MBeans using the Enterprise Manager Fusion Middleware Control MBean browser.
To enable ADF MBeans, you must register them in the web.xml
file. Example 9-4 shows a web.xml
file with listener entries for connections and configuration.
Example 9-4 Enabling ADF MBeans in the web.xml File
Additionally, the ADFConnection
and ADFConfig
MBeans require the application to be configured with an MDS repository. MDS configuration entries in the adf-config.xml
file for a file-based MDS are shown in Example 9-5. For more information about configuring MDS, see the Oracle Application Server Administrator's Guide.
Example 9-5 MDS Configuration Entries in the adf-config.xml File
In a production environment, an MDS repository that uses a database is required. You can use JDeveloper, Enterprise Manager Fusion Middleware Control, or WLST commands to switch from a file-based repository to a database MDS repository.
Additionally, if several applications are sharing the same MDS configuration, you can ensure that each application has distinct customization layers by defining a adf:adf-properties-child
property in the adf-config.xml
file. JDeveloper automatically generates this entry when creating applications. If your adf-config.xml
file does not have this entry, add it to the file with code similar to that of Example 9-6.
Example 9-6 Adding MDS Partition Code to the adf-config.xml File
The value
attribute is either generated by JDeveloper or you can set it to any unique identifier within the server farm where the application is deployed. This value can be set to the value
attribute of the adfAppUID
property.
When adf-property name
is set to adfAppUid
, then the corresponding value
property should be set to the name of the application. By default, JDeveloper generates the value
property using the application's package name. If the package name is not specified, JDeveloper generates the value
property by using the workspace name and a four-digit random number.
For more information about configuring Oracle ADF applications using ADF MBeans, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
An Oracle ADF Java EE application can use a JDBC data source to connect to the database. You use the Oracle WebLogic Server Administration Console to configure a JDBC data source. A JDBC data source has three types: global, application level, and application level with password indirection. You generally set up a global JDBC data source in WebLogic Server. Any application that requires access to that database can use that JDBC data source. An application can also include application-level JDBC data sources. When the application is packaged for deployment, if the Auto Generate and Synchronize weblogic-jdbc.xml Descriptor During Deployment option is selected, JDeveloper creates a connection_name
-jdbc.xml
file for each connection that was defined. Each connection's information is written to the corresponding connection_name
-jdbc.xml
file (entries are also changed in weblogic-application.xml
and web.xml
). When the application is deployed to WebLogic Server, the server looks for application-level data source information before it looks for the global data source.
If the application is deployed with password indirection set to true
, WebLogic Server will look for the connection_name
-jdbc.xml
file for user name information and it will then attempt to locate application-level credential maps for these user names to obtain the password. If you are using JDeveloper to directly deploy the application to WebLogic Server, JDeveloper automatically creates the credential map and populates the map to the server using an MBean call.
However, if you are deploying to an EAR file, JDeveloper will not be able to make the MBean call to WebLogic Server. You must set up the credential maps using the Oracle WebLogic Administration Console. Even if you have a global JDBC data source set up, if you do not also have credential mapping set up, WebLogic Server will not be able to map the credentials with passwords and the connection will fail. For more information about JDBC data sources, password indirection, and how to set up application credential mappings, see "JDBC Data Sources" in the "Deploying Applications" section of the JDeveloper online help.
For more information, see the "Preparing the Standalone Application Server for Deployment" section of the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
You can use JDeveloper to deploy applications directly to the standalone application server or create an archive file and use other tools to deploy to the application server.
Figure 9-5 show the process flow for deploying an application and also for deploying customizations to the target standalone application server.
The following diagram contains clickable links.
Note: Before you begin to deploy applications that use Oracle ADF to the standalone application server, you need to prepare the application server environment by performing tasks such as installing the ADF runtime and creating and extending domains or cells. For more information, see the "Preparing the Standalone Application Server for Deployment" section of the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework. |
Table 9-1 describes some common deployment techniques that you can use during the application development and deployment cycle. The deployment techniques are listed in order from deploying on development environments to deploying on production environments. It is likely that in the production environment, the system administrators deploy applications by using Enterprise Manager or the WLST scripting tool.
Table 9-1 Deployment Techniques for Development or Production Environments
Deployment Technique | Environment | When to Use |
---|---|---|
Run directly from JDeveloper | Test or Development | When you are developing your application. You want deployment to be quick because you will be repeating the editing and deploying process many times. JDeveloper contains Integrated WebLogic Server, on which you can run and test your application. |
Use JDeveloper to directly deploy to the target application server | Test or Development | When you are ready to deploy and test your application on an application server in a test environment. On the test server, you can test features (such as LDAP and Oracle Single Sign-On) that are not available on the development server. You can also use the test environment to develop your deployment scripts, for example, using Ant. |
Use JDeveloper to deploy to an EAR file, then use the target application server's tools for deployment | Test or Development | When you are ready to deploy and test your application on an application server in a test environment. As an alternative to deploying directly from JDeveloper, you can deploy to an EAR file and then use other tools to deploy to the application server. On the test server, you can test features (such as LDAP and Oracle Single Sign-On) that are not available on the development server. You can also use the test environment to develop your deployment scripts, for example, using Ant. |
Use Enterprise Manager or WLST scripts to deploy applications | Production | When your application is in a test and production environment. In production environments, system administrators usually use Enterprise Manager or run WLST scripts to deploy applications. |
Any necessary MDS repositories must be registered with the application server. If the MDS repository is a database, the repository maps to a data source with MDS-specific requirements.
If you are deploying the application to Oracle WebLogic Server, make sure to target this data source to the WebLogic Administration Server and to all Managed Servers to which you are deploying the application. For more information about registering MDS, see the Oracle Application Server Administrator's Guide.
If you are using the application server's administrative consoles or scripts to deploy an application packaged as an EAR file that requires MDS repository configuration in adf-config.xml
, you must run the getMDSArchiveConfig
command to configure MDS before deploying the EAR file. MDS configuration is required if the EAR file contains a MAR file or if the application is enabled for DT@RT (Design Time At Run Time).
For more information about WLST commands, see the Oracle Fusion Middleware WebLogic Scripting Tool Command Reference. For more information about wsadmin commands, see the Oracle Fusion Middleware Third-Party Application Server Guide and the Oracle Fusion Middleware Configuration Guide for WebSphere.
If you plan to configure ADF connection information or adf-config.xml
using ADF MBeans after the application has been deployed, make sure that the application is configured with MDS and that you have the MBean listeners enabled in the web.xml
file. For more information, see Section 9.3.6, "How to Enable the Application for ADF MBeans."
Before you begin:
Create an application-level deployment profile that deploys to an EAR file.
Note: When you are deploying to Oracle WebLogic Server from JDeveloper, ensure that the HTTP Tunneling property is enabled in the Oracle WebLogic Server Administration Console. This property is located under Servers > ServerName > Protocols. ServerName refers to the name of Oracle WebLogic Server. |
Note: JDeveloper does not support deploying applications to individual Managed Servers that are members of a cluster. You may be able to target one or more Managed Servers within a cluster using the Oracle WebLogic Server Administration Console or other Oracle WebLogic tools; however, the cluster can be negatively affected. For more information about deploying to Oracle WebLogic Server clusters, see the Oracle Application Server Administrator's Guide. |
To deploy to the target application server from JDeveloper:
Note: If you are deploying an ADF application, do not use the Deploy to all instances in the domain option. |
During deployment, you can see the process steps displayed in the deployment Log window. You can inspect the contents of the modules (archives or exploded EAR) being created by clicking on the links that are provided in the log window. The archive or exploded EAR file will open in the appropriate editor or directory window for inspection.
If the adf-config.xml
file in the EAR file requires MDS repository configuration, the Deployment Configuration dialog appears for you to choose the target metadata repository or shared metadata repositories, as shown in Figure 9-6. The Repository Name dropdown list allows you to choose a target metadata repository from a list of metadata repositories registered with the Administration Server. The Partition Name dropdown list allows you to choose the metadata repository partition to which the application's metadata will be imported during deployment. You can use WLST/wsadmin scripts, Oracle WebLogic Server Administration Tool, or WebSphere Administrative Tool, respectively, to configure and register MDS. For more information about managing the MDS repository, see the Oracle Application Server Administrator's Guide.
Note: If you are deploying a Java EE application, click the application menu next to the Java EE application in the Application Navigator. |
For more information on creating application server connections, see Section 9.3.1, "How to Create a Connection to the Target Application Server."
Tip: You may get an exception in JDeveloper when trying to deploy large EAR files. The workaround is to deploy the application using the Oracle WebLogic Server Administration Console. |
You can also use the deployment profile to create an archive file (EAR file). You can then deploy the archive file using Enterprise Manager, WLST scripts, or Oracle WebLogic Server Administration Console.
Although an Oracle ADF Java EE application is encapsulated in an EAR file (which usually includes WAR, MAR, and JAR components), it may have parts that are not deployed with the EAR.
To create an EAR archive file:
If an EAR file is deployed at the application level, and it has dependencies on a JAR file in the data model project and dependencies on a WAR file in the view-controller project, then the files will be located in the following directories by default:
ApplicationDirectory
/deploy
/EARdeploymentprofile
.EAR
ApplicationDirectory
/ModelProject
/deploy
/JARdeploymentprofile
.JAR
ApplicationDirectory
/ViewControllerProject
/deploy/WARdeploymentprofile
.WAR
Tip: Choose View >Log and select the Deployment tab to see messages generated during the creation of the archive file. |
An ADF Library is a JAR file that contains JAR services registered for ADF components such as ADF task flows, pages, or application modules. If you want the ADF components in a project to be reusable, you create an ADF Library deployment profile for the project and then create an ADF Library JAR based on that profile.
An application or project can consume the ADF Library JAR when you add it using the Resource Palette or manually by adding it to the library classpath. When the ADF Library JAR is added to a project, it will be included in the project's WAR file if the Deployed by Default option is selected.
For more information, see the "Reusing Application Components" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
If you have created new customizations for an ADF Library, you can use the MAR profile to deploy these customizations to any deployed application that consumes that ADF Library. For instance, applicationA
, which consumes ADFLibraryB
, was deployed to a remote application server. Later on, when new customizations are added to ADFLibraryB
, you only need to deploy the updated customizations into applicationA
. You do not need to repackage and redeploy the whole application, nor do you need to manually patch the MDS repository.
Note: This procedure is for applying ADF Library customization changes to an application that has already been deployed to a remote application server. It is not for the initial packaging of customizations into a MAR that will eventually be a part of an EAR. For information about the initial packaging of the customization using a MAR, see Section 9.3.2.2, "Creating a MAR Deployment Profile." |
To deploy ADF Library customizations, create a new MAR profile that includes only the customizations to be deployed and then use JDeveloper to:
You can export the customizations directly from JDeveloper into the MDS repository for the deployed application on the remote application server.
Before you begin:
Create new customizations to the ADF Library using JDeveloper.
To export the customizations directly into the application server:
If the MAR profile is included in any of the application's EAR profiles, Export to a Deployed Application will be dimmed and disabled.
When you deploy the ADF Library customizations to a JAR, you are packaging the contents as defined by the MAR profile.
Before you begin:
Create new customizations to the ADF Library using JDeveloper.
To deploy the customizations as a JAR
An ADF Library is a JAR file that contains JAR services registered for ADF components such as ADF task flows or pages. If you want the ADF components in a project to be reusable, you create an ADF Library deployment profile for the project and then create an ADF Library JAR based on that profile.
An application or project can consume the ADF Library JAR when you add it using the Resource Palette or manually by adding it to the library classpath. When the ADF Library JAR is added to a project, it will be included in the project's WAR file if the Deployed by Default option is selected.
For more information, see the "Reusing Application Components" section of the Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
When you package an Oracle ADF application into an EAR file, it can contain the following:
You can deploy the application using commands and automate the process by putting those commands in scripts. The ojdeploy
command can be used to deploy an application without JDeveloper. You can also use Ant scripts to deploy the application. JDeveloper has a feature to help you build Ant scripts. Depending on your requirements, you may be able to integrate regular scripts with Ant scripts.
For more information about commands, scripts, and Ant, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
When an application is deployed, it includes some of its required libraries with the application. The application may also require shared libraries that have already been loaded to WebLogic Server as JDeveloper runtime libraries. It may be useful to know which JDeveloper libraries are packaged within which WebLogic Server shared library. For a listing of the contents of the JDeveloper runtime libraries, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
After you have deployed your application to WebLogic Server, you can perform configuration tasks.
If you want to migrate an Oracle ADF Java EE application from one WebLogic Server to another WebLogic Server, you may need to perform some of the same steps you did for a first time deployment.
In general, to migrate an application, you would:
If ADF MBeans were enabled and packaged with the deployed application, you can configure ADF properties using the Enterprise Manager Fusion Middleware Control MBean Browser. For instructions to enable an application for MBeans, see Section 9.3.6, "How to Enable the Application for ADF MBeans."
For information on how to configure ADF applications using ADF MBeans, see the Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.
After you deploy the application, you can test it from Oracle WebLogic Server. To test-run your ADF application, open a browser window and enter a URL:
http://<host>:port/<context root>/<page>
http://<host>:port/<context root>/faces/<view_id
> where <view_id>
is the view ID of the ADF task flow view activity.
Tip: The context root for an application is specified in the view-controller project settings by default asApplicationName /ProjectName /context-root . You can shorten this name by specifying a name that is unique across the target application server. Right-click the view-controller project, and choose Project Properties. In the Project Properties dialog, select Java EE Application and enter a unique name for the context root. |
Note: /faces has to be in the URL for Faces pages. This is because JDeveloper configures your web.xml file to use the URL pattern of /faces in order to be associated with the Faces Servlet. The Faces Servlet does its per-request processing, strips out /faces part in the URL, then forwards the URL to the JSP. If you do not include the /faces in the URL, then the Faces Servlet is not engaged (since the URL pattern doesn't match). Your JSP is run without the necessary JSF per-request processing. |
Copyright © 1994-2014, Oracle and/or its affiliates. All rights reserved.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT END USERS: Oracle programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, delivered to U.S. Government end users are "commercial computer software" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, use, duplication, disclosure, modification, and adaptation of the programs, including any operating system, integrated software, any programs installed on the hardware, and/or documentation, shall be subject to license terms and license restrictions applicable to the programs. No other rights are granted to the U.S. Government.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
If this document is in preproduction status:
This documentation is in preproduction status and is intended for demonstration and preliminary use only. It may not be specific to the hardware on which you are using the software. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to this documentation and will not be responsible for any loss, costs, or damages incurred due to the use of this documentation.