Online Help
Release 12.1.0.2
E26585-05
July 3, 2012
Oracle Business Transaction Management Online Help , Release 12.1.0.2
E26585-05
Copyright © 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Joanna Bujes
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Oracle Business Transaction Management Online Help explains how you use Business Transaction Management Release 12.1.0.2 to discover services, define and track transactions, monitor performance, define service level agreements, monitor failures and perform root-cause analysis to locate errors and improve performance.
This document is intended for developers and system administrators interested in developing and managing distributed applications.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter introduces Business Transaction Management. It describes the following:	
If you are upgrading from an earlier version, please see Functional Upgrade Issues, for more information.	
Using Business Transaction Management, a component of the Oracle Management packs, you can do the following:	
You access the Business Transaction Management feature set by way of the Management Console. For information about using the console, read Chapter 2, "Using the Management Console."	
You can also use a command line interface (CLI) to execute scripts and individual commands. For information about using the CLI, see Chapter 9, "Commands and Scripts."	
At the highest level, Business Transaction Management consists of three types of components:	
Business Transaction Management also requires access to an Oracle RDBMS for storing performance measurements, logging messages, and maintaining the environment model and Business Transaction Management configuration.	
The diagram below shows a typical distributed application environment, and the relationship of the Business Transaction Management components to that environment.	
Figure 1-1 Deployment of Business Transaction Management components in a typical application environment	
Business Transaction Management is designed for use in a distributed application environment in which the various Business Transaction Management components are deployed onto multiple machines and application servers.	
Technically, you can install all the central servers into a single application server, but such a deployment scenario is not recommended for production environments. Installation in a single application server can be useful for demonstrations and for learning how to use the product, but this scenario might not scale successfully with a large number of business services or high volume of message traffic, just to name a few factors.	
We recommend that you deploy each of the central servers to separate application servers. The Performance and Transaction components, in particular, typically perform a large amount of performance analysis computations. Dividing processes across application servers allows you to control memory and processor resources.	
You should also deploy the monitor to an application server separate from the central servers. Depending on your monitoring requirements, you might need to deploy multiple monitors. You can deploy monitors either as singletons or as replicates behind a load balancer. For information about replicating the monitor, refer to the Business Transaction Management Installation Guide.	
Observers must always be installed outside the application server hosting the central servers or monitors.	
This section describes a basic workflow for working with Business Transaction Management. It serves as an introduction to the major sections of the online help. The workflow includes the following steps:	
The Business Transaction Management discovery process is entirely traffic-based. If messages are not flowing through the observed endpoints, the system cannot discover any application components nor can it discover the dependencies between these components. So, the first step in working with Business Transaction Management is to run traffic and allow a little time to elapse to give the system a chance to observe message traffic and to build a picture of your deployed system.	
If this is the first time you are using Business Transaction Management, the next thing you will want to do is to look at the Management Console and get a sense of its basic parts and how it is organized. If you have run some traffic, you will be able to see services and their dependencies when you open the Management Console. Take a few minutes to get acquainted with the basic workings of the console:	
After you run traffic, Business Transaction Management immediately starts gathering data to give you a complete picture of your environment and to help you understand the flow of work through it. Identifying the components that make up a distributed application and understanding how these components relate to one another allows you to answer two questions: "What do I have?" and "What is it doing?	
Business Transaction Management uses tabular and graphical views to display topological and performance information. The following screen shot illustrates how endpoint dependencies, status, and performance data are represented in one graphical view.	
When you first look at your environment, you might want to know about the location and status of the containers running the observed components. Next, you might want to view services to see that all the services you are interested in observing have been discovered. You can then look at how services are interacting with one another and how traffic is distributed among them in the case of replicated services.	
It might now be necessary for you to make adjustments to the picture the system has constructed by registering services that could not be found, by resolving replication or duplication issues, by addressing versioning problems, and so on.	
Having formed an accurate and complete picture of the services operating in your environment, you can now turn to look at operational data. By default, the system displays data for throughput, traffic, faults, average response time, maximum response time, and uptime. This should allow you to identify bottlenecks, faulty components, slow components, and unusually light or heavy traffic.	
You can narrow the number of services displayed by using filters. You might also want to customize your view by adding instruments to the core measurements displayed in tabular views.	
Using this information, you could decide to change the topology of your deployment: replicating some services, adjusting the processing capacity of others, and taking a closer look at faulty components.	
A transaction is a sequence of operations that you want to monitor as a single unit. Business Transaction Management focuses on the monitoring of transactions to help you identify and resolve issues related to performance, to profiling usage, and to identifying the cause of failing components in a business process.	
Based on the dependencies revealed by discovery, you can define a transaction to include services whose interactions interest you. You might exclude services that are not under your control, or you might decide to include ancillary services that you believe have an appreciable effect on performance. Defining a transaction is simple: you identify the beginning and end operation of a sequence of operations. You can then enable additional features that allow you to look at your transaction from different perspectives.	
By default Business Transaction Management simply monitors the basic performance of a transaction. You can modify the default transaction definition to enable monitoring features that provide exactly the level of detail you need about performance and usage. For example you can add features that allow you to do the following:	
In addition to the performance information that is routinely gathered and that you can view at all times, you can have Business Transaction Management alert you in the following special cases:	
As you can see, Business Transaction Management offers a variety of options in monitoring your transactions. Which of these monitoring techniques you use depends on the questions you want to answer and on the issues you're trying to resolve. These questions might change as you proceed from development, to testing, to production. By creating a system that allows you to selectively enable and disable monitoring features, you can be sure to get exactly the information you need while minimizing the management system's performance costs.	
Finally, as you learn to work with Business Transaction Management and identify processes that you want to archive and execute at will, particularly administrative tasks, you might want to create a script using the command line interface. You might use such scripts to do the following:	
Business Transaction Management aims to provide the simplest process possible for upgrading from the 11.1 and the 12.1.0.0 release of Business Transaction Management to the 12.1.0.2 release. You need to read the material in this section only if you are upgrading from the 11.1 version.	
The upgrade process seeks to minimize downtime while preserving management configurations, object definitions, and existing operational data. It warns you of incompatibilities discovered during upgrade, and it allows you to resolve compatibility issues following the upgrade.	
This section examines the issues that you must address in accessing older data and in resolving any compatibility issues that arise from the upgrade.	
For a detailed description of the process used to back up and upgrade your system, please consult the Business Transaction Management Installation Guide. The issues discussed in this section become visible after the upgrade, when you restart the Business Transaction Management components: the sphere, the transaction server, and the performance server.	
To make sure that no data was lost during the upgrade, you might want to follow the instructions in the next two sections to make sure that historical data is still available. Barring unforseen problems, no historical data should be lost during an upgrade.	
To view historic measurements for an object that was monitored before the upgrade, do the following:	
To view historic data for service usage that was monitored before the upgrade, do the following:	
Please read the following sections to familiarize yourself with changes that might require you to redefine policies, transactions, and conditions.	
The current version of Business Transaction Management no longer allows segmentation to be defined for a service, only for a transaction. To continue monitoring usage SLAs, you must define these for a transaction that includes the service of interest.	
Business Transaction Management seeks to upgrade existing transactions. If it encounters features that are not compatible with the current release, it disables these transactions and adds a system alert that describes the problem. If it encounters a condition that is not compatible with the current release, it disables the condition and adds a system alert that describes the problem. To view system alerts, select Alerts in the Last Hour > System Alerts.	
After taking corrective action, remember to check the status of the transaction or condition. If it is disabled, you will also need to re-enable it.	
Invalid Transactions	
Business Transaction Management no longer allows you to define conditions for a service, only for a transaction. If a service condition is encountered during upgrade, Business Transaction Management turns it into a one-service transaction, disables it, and issues a system alert.	
To resolve this situation, you should incorporate the service into a larger transaction. You can also choose to leave it as a one-service transaction and re-enable it.	
Invalid Conditions	
To improve its ability to monitor a large number of services, Business Transaction Management places certain restrictions on condition definitions. These restrictions might cause existing conditions to be evaluated as invalid during the upgrade. Business Transaction Management disables such conditions and issues a system alert for each. Here are the actions you can take to resolve these situations. Note that some conditions might be invalid for more than one reason.	
Upon upgrade, all existing transactions will be set to gather performance measurements even if they were not configured to do this.	
This chapter describes the process of working with the Business Transaction Management console; it includes the following sections:	
The Business Transaction Management console displays information about the objects known to the sphere and allows you to access tools for monitoring and managing these objects. The information is presented using different types of views; these include dashboards, charts, maps, graphs, and tables. This section introduces the main areas of the console: the Navigator, the main area, the tabs area, and the main menu.	
When you first install Business Transaction Management, the console offers you a set of default views of the objects in the sphere. You can create additional views and save these views to make it easier to access the objects and instruments that interest you. In addition, you can use the custom data explorer to view any object in the system in relationship to any other object.	
After you have read through this section, continue reading through the rest of this chapter to learn about the following:	
In addition to using the console, you can also use the Business Transaction Management Command Line Interface (CLI) to issue management commands from the command line or through the use of scripts. You use CLI commands to configure the system, manage DNS aliases, resolve replication issues, register services, manage metadata, control monitoring, apply policies, migrate data, or generate data needed for reporting.	
The figure below shows the main areas of the mangement console.	
The following sections describe each area in some detail. Here is a brief summary:	
The navigator is a facilitator that allows you to quickly get to the objects and relationships that interest you. The default navigator sections are the following (they are normally displayed in their expanded form):	
The navigator includes two kinds of controls:	
Note that each item in the Explorer view contains a numeric value in parenthesis; this indicates the number of such objects known to the sphere. If you were to filter the corresponding main view to show fewer items, the number shown in the Navigator would remain unchanged.	
The table below summarizes the contents of the default Navigator categories.	
Category	Description
---	---
My Views	A list of any views you have modified or created that you have saved.
Dashboards	A dashboard is a heterogenous view comprised of smaller views, typically used to summarize information of interest. It provides a summary view of the state of the system and monitored objects. By default, the console provides three dashboards: one that summarizes the operational health of the system, and two that provide summary information for the top ten services and transactions.
Maps	Graphical views of services and their dependencies, and of containers.
Explorer	Tabular views of monitored and non-monitored objects and their relationships. Also includes the custom data explorer, which allows you to view any object in the sphere in relation to other objects.
Alerts in the last hour	Tabular views of all alert types: SLA, condition, and system.
Administration	Tabular views of system service containers, system services, system policies, monitors, and unassigned endpoints.
For any item selected in the Navigator, except those in the Dashboards and Maps categories, the main area displays a tabular view and, just above the table, a series of controls that you can use to filter the columns and the number of items shown. Here is an example of what is shown in the main view when Containers is selected in the Navigator.	
Description of the illustration main_view_example_audi.gif	
Use the up/down control in the lower right hand corner of the main area to open and close the tabs area. You can control the size of the main area by moving the slider control bordering the main area and the tabs area.	
Menu items relate directly to the item currently selected in the main area or the tabs area. You might think of the items in the main or tabs area as the nouns and of the menu items as the verbs. Thus, selecting a menu item will result in taking some action that affects the item selected in the main or tabs view.	
Although menu items are never hidden, they might be disabled if the operation cannot be applied to the current selection, if the currently selected object is not in an appropriate state, or if the user is not authorized to operate on the target. Look here for additional information about user roles.	
The tabs area is organized into tabbed panels. The tabs shown vary with the item selected in the summary area.	
Use the arrow control in the lower right hand corner of the main area to collapse the tabs area. You can expand it again either by double clicking an item of interest in the main area or by clicking the up arrow at the bottom right hand corner of the summary pane.	
The console provides access to an inspector window or a separate window that includes the tabs area for the selected object. This view is available for any object or area that shows a tear off control (magnifying glass). Clicking the control opens a separate window with additional detail information about the selected item. The information shown varies with the selected object.	
All data known to the sphere about the services, endpoints, and operations that make up your application are presented using different types of views: graphical views, charts, tabular views, and dashboards. You can view this information using the format that makes it easiest for you to find and interpret data. In addition, you can use a variety of controls to filter and sort the data to highlight selected aspects of application performance.	
This section describes the controls and views used to display data. It begins by describing controls that are available for all types of views and continues to describe the characteristics of each type. It covers the following topics:	
Data is displayed in the console using graphs, tables, charts, and dashboards. This section describes the controls that are available no matter how you view data. Controls specific to a single type of view are described in the section for that type.	
For all types of views, you can use controls to filter the information displayed, to add or delete columns in a table or to change time intervals when data is reported; you can also use controls to display additional information or to display information in a separate window.	
You can use filtering controls to filter service maps and tabular data. Business Transaction Management provides two kinds of filters: deep and shallow. Not all views provide both types. The figure below illustrates these controls.	
Deep filters modify a view by re-fetching data from the sphere according to the constraints you specify using the filter control. Shallow filters simply limit what is currently shown in the console. So, for example if you used a shallow (Look for) filter to show only items that have "order" in their name, the current view would be refreshed to show you only those items.	
You can define deep filters in two ways:	
The filter tool allows you to filter objects according to their salient characteristics (attributes); these will differ depending on the object selected in the Navigator: services, containers, policies, devices, consumers, and so on. If the Filter tool does not list an attribute, that means you cannot filter a view based on that attribute.	
For more information about the Filter tool, see Using the Filter Tool.	
Controls for modifying tabular displays (by adding or deleting columns) and for resizing columns are shown just above table views. The figure below shows the column chooser and its drop down list. It also shows the sizing control, which allows you to resize columns so that all columns are visible in the table.	
Choose No Columns to display no columns. If you select Choose Columns.... Business Transaction Management displays a tool you can use to add or delete columns.	
The time interval control allows you to specify the interval during which instrument data is fetched and displayed. This control is shown in different locations and has a different effect depending on where it is set. It is displayed either as a clock icon or a drop-down list labeled Time Period.	
Note that for day and week intervals, the interval is expanded so that you get at least as much data as you ask for. For example, if today is 11:20 a.m. on 12/22/10, and you pick last 1 day, data is returned from 12/21/10 11:00 until now. Similarly, if you pick last week, data is returned from 12/15/10 00:00 till now.	
Some items in tables are underlined to indicate that they are links you can click to open an inspector. For example, in the Operational Health Summary dashboard, the number specifying up containers is such a link.	
Description of the illustration link_to_container_popup.gif	
Click the link to open an inspector window that displays additional information about containers that are currently up.	
A map is a good way to represent relationships; maps provide a visual representation of how services, endpoints, or operations are related.	
The following figure shows a map that presents endpoint dependencies.	
Description of the illustration endpoint_dependency_graph.gif	
Because map views focus on relationships, Business Transaction Management attempts to present as clean a picture as possible so as not to obscure these relationships. Additional information is usually available if you move the cursor over the links that connect objects or if you hover over the object itself. In this case, hovering over an endpoint icon pops up information about the endpoint's container, service, and core instrument values.	
All map views also provide specialized controls that you can use to get additional information or to filter available information. These are described in the following sections.	
If you click the table icon in any map view, Business Transaction Management displays the corresponding inventory in a table to the left of the map.	
The tabular tree view allows you to see one or more layers above or below the objects shown in the graphic. Note the shallow filter at the top of the display; you can use this to further filter the contents of the table.	
To close the tabular tree view, click the table icon again.	
If you click the wrench icon in any map view, Business Transaction Management offers several controls.	
The scaling icon allows you to expand and shrink the currently displayed map.	
Slide the scaling bar up and down to resize the map to the desired size. If scaling does not produce the desired results, you can try using the region control, described next.	
If a map cannot fit in the current window, Business Transaction Management displays a thumb view control in the lower right hand corner of the map window. You use this control to reposition the map so that you can view all its branches.	
To use this control, click on the white rectangle and drag it to position the map as desired. Use the triangle icon in the lower right hand corner to collapse or open the thumb-view control.	
Charts provide a graphic presentation of how instrument values change over time. The following chart displays the response time for a transaction. The chart is accompanied by a table that serves both as a key and as a tabular presentation of the charted data. As is the case with maps, you can get more information from charts by passing the cursor over the graphed instrument values. In this case, as you pass the cursor over the nodes in the chart, Business Transaction Management displays instrument values for the point in time associated with that node.	
Tables are shown in the main area of the console .	
Controls situated above the table allow you to filter the contents of the table, to change the columns shown, or to re-size columns to fit data. You can also sort columns, change column widths, and move columns.	
Any changes you make to a table will be lost when you close or refresh your browser. To save a modified view, you must choose View > Save current view from the menu. After naming and saving the view, it will be listed under My Views in the navigator.	
Dashboards are containers that include graphical and tabular elements. They are used to give you a snapshot of some aspect of your system: transaction performance, top ten services, and operational health. You can display dashboards by selecting one from the Dashboards in the Navigator.	
You can create new temporary or permanent views in the following ways:	
The views you create are available only for the current session. But you can save a view for future use. Once saved, your custom views are shown in the My Views category of the Navigator.	
Controls for modifying tabular displays (by adding or deleting columns) and for resizing columns are shown just above table views. The figure below shows the column chooser and its drop-down list. It also shows the sizing control, which allows you to resize columns so that all columns are visible in the table.	
Choose No Columns to display no columns. If you select Choose Columns.... Business Transaction Management displays a tool you can use to add or delete columns.	
The Choose Columns tool shows the attributes that are currently chosen from any of the three tabs: Profile Attributes, User Attributes, and Instruments.	
The top box lists all columns that are currently chosen from any of the three tabs: Profile Attributes, User Attributes, and Instruments.	
You can select columns to add or subtract in three tabbed categories. To start, click a tab, and use the Look for filter to narrow the options shown if needed.	
User attributes are used only in graphic displays. They dictate whether clients are shown for endpoints or services.	
The time control displayed for the Instruments tab applies to all instruments chosen, you can select more than one interval for instruments.	
When you are satisfied with your changes, click OK. Look over the resulting view to make sure you have the information you need. You might still want to move or resize columns before saving this as a permanent view.	
Any changes you make to a table will be lost when you close or refresh your browser. But you always have the option to save a view you have created.	
By default, the console displays objects and relationships thought to be most useful to most users. If the default views do not include the objects or relationships that interest you, use the custom data explorer to display any object known to the system and its relationships to other associated objects. Using this information, you can create your own custom views.	
To use the Custom Data Explorer, choose Explorer > Custom Data Explorer from the Navigator.	
The custom data explorer uses the main area with which you are already familiar. At the top of the main area it includes some new controls: Two drop down lists allow you to select an object and one or more associated objects to include in a tree view.	
Once you have chosen an item from both lists, the main view will display a tree view with the primary object at the top and one or more subordinate objects underneath. For the sample view, Transactions is chosen as the primary object, and to Logical Operation to Physical Operation is chosen for the associated objects. The tree view below shows the result of these choices.	
You could now use the Column Chooser tool to display attributes and instruments for these primary and associated objects.	
When you are done, you can save the view to make it permanent. This process is described in the next section.	
To save a view that you have created by modifying an existing view, do the following:	
The view you saved will be displayed in the Navigator in the category My Views. To set the view as a default view, select Set current view as default from the View menu.	
This section provides reference information about using controls and tools that are common to many views. It describes the following controls and tools:	
The Analysis tab displays detailed current performance and usage information for the selected object, either a transaction, service, endpoint, operation, or consumer. Because some types of information are relevant to only certain types of objects, the layout of the Analysis tab can vary from object to object.	
The Analysis tab is composed of a number of panes that you display one at a time. Each pane displays a different type of information. The set of available panes changes depending on the object you select (in other words, not all panes are available for every type of object). The panes are described in this section.	
When you select a transaction, this pane provides started transactions, completed transactions, condition alerts, average response time, and maximum response time instruments. These instruments are displayed in a Count chart, Count table, Response Time chart, and Response Time table.	
When you select a service, endpoint, operation, or consumer, this pane provides traffic, throughput, faults, fault percentage, average response time, and maximum response time instruments. These instruments are displayed in a Messages chart, Messages table, Response Time chart, and Response Time table.	
The blue line in the Count chart indicates the number of transactions that started; the green line, the number of transactions that completed; and the red line, the number of condition alerts that occurred during the associated time segment, for example:	
The Count table displays these measurements numerically.	
The total height of the bars in the Messages chart indicates the traffic observed during the associated time segment. The green portion of the bar indicates the throughput, and the red portion indicates the fault count, for example:	
The Messages table displays these measurements numerically, with the addition of the fault percentage measurement. Clicking a hyperlinked value in the table opens the Message Log Search tool and runs a predefined query to return the messages associated with the measurement value. For example, if you want to examine the messages responsible for the Traffic value, click the value:	
The green line in the Response Time chart indicates the average response time for the associated time segment; the orange line indicates the maximum response time, for example:	
The Response Time table displays these measurements numerically.	
Displays transaction performance measurements associated with the selected consumer. See the description of the Performance pane for details concerning the charts and tables.	
Displays service performance measurements associated with the selected consumer. See the description of the Performance pane for details concerning the charts and tables.	
Displays throughput, faults, fault percentage, average response time, and maximum response time measurements for the selected object, segmented by consumer. The table lists all consumers of the selected object and the aggregated performance measurements associated with each consumer's use of the object.	
Displays started transactions, completed transactions, average respone time, and maximum response time measurements associated with the selected consumer. These measurements are segmented by transaction.	
Displays throughput, faults, and fault percentage associated with the selected consumer. These measurements are segmented by service and endpoint.	
Lists information about the condition alerts that have been triggered in a given time period: the name of the condition that was met, the endpoint where the condition alert was triggered, and the number of condition alerts triggered.	
Displays throughput, faults, and fault percentage for the selected object, segmented by the client address, which is the machine host name from which the request was sent. The table lists all client addresses that sent requests to the selected object and the aggregated performance measurements associated with each client address's use of the object.	
Lists each operation (qualified by endpoint) to which the selected object made an outbound call. The Operation column identifies the operation that made the outbound call. Aggregated link throughput, link faults, and link average response time is displayed for each type of outbound call.	
Lets you set up a customized chart and table similar to the Performance pane, but with instruments of your choosing.	
Click Choose Instruments and select the instruments you want displayed in the chart and table. You can select multiple instruments. When you set up a custom chart/table for a transaction, it is available for any selected transaction, likewise for consumers, and for services/endpoints/operations.	
Lets you set up a custom table of numeric instruments segmented in various ways.	
Click Choose Instruments and select the instruments you want displayed in the table. You can select multiple instruments. Click Choose Segments and select how you want to segment the measurements. You can select multiple segments.	
For example, you might set up a table that displays the number of started and completed transactions per consumer, where your instruments are started transactions and completed transactions and your segment is Consumer Name:	
The Admin Health Summary dashboard enables you to quickly assess the health of your Business Transaction Management system components. The Operational Health Summary dashboard provides that same information plus information about the health of your business components.	
To display the Health Summary dashboards	
These dashboards are composed of multiple tables. Each table provides summary information about a particular type of object, such as transactions, services, SLA alerts, and so forth. The rows in each table generally indicate a status that the object can be in, and the numerical value indicates how many instances of the object is in that state. For example, in the following case, 5 services are in a state of failure and 5 are in a state of warning.	
The clock icon at the far left indicates that the numeric value is relative to the Time Period selected at the top of dashboard. Click the magnifying glass next to a value to pop up a list of the individual objects in that state.	
The Filter tool allows you to filter objects according to their salient characteristics, which varies according to the item chosen in the Navigator. Although the basic structure of the Filter tool does not change as the target object changes, the criteria you can select does change depending on whether the filter is used to modify the view of services, containers, policies, consumers, and so on.	
In addition to the predefined filters, which are shown in a drop list next to the Filter link, you can also click on the link to open the Filter tool and obtain a richer choice of filtering criteria.	
Note: You cannot filter condition alerts, observers, or schedules.	
To open the filter tool, click on the Filter link in any view where it is displayed.	
Business Transaction Management displays a dialog like the following:	
Description of the illustration filter_link.gif	
The tool initially presents a short form that allows you to define a filter that references the most common criteria for the object of interest. The domain of objects for which you are creating a filter is displayed in the text box. For example, in the figure above, the text box informs you that you are creating a filter for all user services. To display additional criteria, click the Show More button.	
As you select criteria for a query, either from the short form or from the longer form (Show More), Business Transaction Management translates your choices into an AQL expression that it uses to search the database. You can see that AQL query statement in the text box at the top of the tool by clicking the Show AQL check box.	
You can use this feature to define AQL expressions that you can pass to CLI commands that use the -filterQuery	
flag. Simply use the filter tool controls to define your criteria, then copy and paste the AQL expression into the CLI command. Remember to enclose the query in quotation marks if it includes spaces.	
When you are done selecting the criteria of interest, click the OK button to use this filter to modify the current view. See Saving a View for instructions on saving your view.	
You can add a custom attribute for any object in the sphere (service, endpoint, container, and so on). This enables you to use the filter tool to find objects that have specific attribute values. For example, you might want to assign priority levels to services and then filter services based on their priority.	
Note that unlike default attribute labels, user-defined attribute labels are not automatically translated.	
The basic process for adding and using custom attributes for filtering objects is as follows:	
To add a custom attribute, do the following:	
Name: Specify the name of the attribute.	
Type: Select the type of the attribute.	
Form Label: This is the name that will be used to identify the attribute in the Profile tab and in the Filter tool. You only need to specify a value if you want the label to be different from the name of the attribute.	
Query Label: This is the name that will be used to identify the attribute in the Query text box in the filter tool. You only need to specify a value if you want the label to be different from the name of the attribute.	
Value: Click the add value link to provide a suggested value for the attribute. This value is then displayed in the Profile tab for the selected object. (Optional)	
Description: Add a description to remind of the use or purpose of this attribute. (Optional)	
To assign values to the custom attribute, do the following:	
To filter objects based on a custom attribute, do the following:	
You can use keyboard shortcuts to navigate the Business Transaction Management management console. These shortcuts are supported for Microsoft Internet Explorer 8.	
For general information on using shortcuts with Internet Explorer, see the information provided for viewing and exploring web pages at the following site:	
This section provides additional detail on how to use keyboard shortcuts in the various areas of the management console.	
As noted in General Console Design, the management console is divided into four sections: the menu bar, the navigator, the main area, and the tabs area. In addition, it is possible to access and use different tools while working with the console. Because these areas are created using different underlying technologies, keyboard shortcuts are not necessarily consistent. Please note the differences and limitations for each area; these are described in the following subsections.	
General Tab Order	
The Tab key is the basic means of navigating through the console. (Tab to go forward; Shift-Tab to go back.) The general tab order is the following: top explorer controls, console menu, log out and refresh controls, console Navigator items, main area controls (filters and column chooser), main area items, tabs area.	
Menus	
Use the following guidelines to work with management console menus:	
The Navigator	
Use the following guidelines to work with Navigator items:	
The Main Area	
To access the main area, move the focus to the last item in the navigator and press the Tab key. This should move the focus to the Filter control in the main area.	
To access items in the grid view in the main area, tab until the focus moves through the main area controls (Filters, column chooser ... and highlights the top line of the grid view.) When the top line of the grid view has the focus, use CTRL-down arrow to move the focus to the first item listed in the grid view.	
The Tabs Area	
To work in the tabs area you must display the area and then be able to navigate across tabs and into the content of a specific tab.	
To display the tab area you can do one of the following:	
To access tab contents.	
Caution: Tabbing beyond the last item in a tab might cause you to lose focus. To be safe, back tab through the tab items (shift-tab) to the main area.	
Tools and Controls	
You can access tools either from the menu or by using the controls displayed in the main area or in the tabs area. Within the tools:	
Caution: Tabbing beyond the last item in a tool might cause you to lose focus. To be safe, back tab through the tab items (Shift-Tab) to move the focus out of the current tab.	
This chapter explains how you use Business Transaction Management to discover containers, services, and dependencies. Using this information you can get an exact picture of how your distributed application works, what components have performance issues, and what components require closer monitoring. It includes the following sections:	
Discovery is the process that allows you to identify the business components that make up a composite application and to understand how they relate to one another (their dependencies.) This section explains the concepts and processes you must understand to get exactly the information you need during the discovery process. It explains	
For information about resolving discovery problems, see Resolving Discovery Issues.	
Business Transaction Management can discover the following elements:	
Business Transaction Management can discover a wide variety of component types and the containers in which they reside. The same model is used to represent interconnected components no matter what the component type: the model consists of services that interact by sending request and response XML messages. The model also assumes that each of the services is described by a WSDL specifying the service's location and its interface. If such a WSDL does not exist because the component is not a web service, Business Transaction Management constructs an artificial WSDL that it uses to enable the system to process the component consistently. The model is illustrated by the following figure.	
Description of the illustration svcs_and_msgs.gif	
For example, if you have a composite application consisting of a web service that calls an EJB that accesses a database via JDBC, it will be modeled as three services that communicate using XML messages. When you use the Business Transaction Management console to view discovered components, these are listed as services, and the messages they exchange are listed as operations belonging to these services. A message corresponds to either the request or response phase of an operation.	
In some cases, the observed traffic type suits this model perfectly; for example, a JAX-WS service or a JAX-RPC service. In other cases, Business Transaction Management must map the component type in a way that is compatible with its basic model. The detail of this mapping might be important if you plan to discover and monitor components that are not web services.	
Business Transaction Management discovers components by observing the message traffic that flows from one component to another. Based on the data derived from observing this traffic, Business Transaction Management can also discover how these components are related to one another and draw a map of their dependencies. Dependency information provides an accurate picture of how your composite application is really behaving. It might alert you to the fact that certain components are never called, and it provides a basis for defining business transactions.	
The most important fact to understand about discovery is that it is entirely traffic-based. If messages are not flowing through the observed endpoints, Business Transaction Management cannot discover any application components nor can it discover the dependencies between these components. When in doubt, send traffic. This section outlines the steps involved in discovering distributed application components in your observed environment. To learn more, read the sections that are linked to from the following steps.	
Before discovery can happen, you must install the observers in the environment you want to observe, and you must configure the observer communication policy to define communication between the observers and the monitor or monitor groups responsible for the further processing of the data discovered by the observers.	
Discovery happens in two stages: during the priming stage, observed traffic causes the observer to start communicating with the monitor; during the observation stage, a measurement policy is applied to the data that flows from observer to monitor. This is to say that it might take a little while to build a complete picture of your working system. One symptom of this is that if you send 100 messages and Business Transaction Management reports seeing only 98, the messages that are not accounted for are the messages that served to prime the discovery process.	
Discovery involves the following steps:	
Depending on the technology, some messages flow directly from a client to a service; others flow through a host of intermediate endpoints before they reach their actual destination. Such intermediate endpoints might comprise the implementation of a messaging system, a job scheduling system, a distributed system, and so on. When installing probes for technologies that use intermediate endpoints, Business Transaction Management allows you to specify whether you want to monitor all endpoints or just the endpoints at the edge of such systems; often these are the endpoints that directly represent the business services of interest. Turning off the monitoring of intermediary endpoints can improve monitoring performance and eliminate data that is not essential to monitoring your distributed applications.	
Figure 3-1 shows a number of observers monitoring endpoints conveying messages from a client to a service (EP5). Note endpoint EP1 and endpoint EP4 at the edge of the message flow. Note also the dotted line which indicates the relaying of context information. If you choose to monitor all endpoints, all the endpoints shown in the figure will be discovered and monitored by Business Transaction Management.	
Figure 3-2 shows you how message flow is modeled if you choose to restrict the number of endpoints monitored. In this case, only the client, EP, and EP5 are discovered and monitored. Context information is still conveyed from the client to the final recipient, EP5.	
The observer communication policy gives you the option of controlling the monitoring of intermediate endpoints for SOA and EJB probes. Options for monitoring different technologies vary slightly. For example, in monitoring EJBs, you have the following options: you can choose to model the edge of flow, which models only the first local EJB in a local request flow; you can choose to model all, which models all local EJBs; and you have the option to model none (no local EJBs). How you model local EJBs has no effect on the modeling and monitoring of remote EJBs, which are always monitored. For additional information, see Business Transaction Management Installation Guide.	
There are cases where Business Transaction Management cannot discover SOA-type components directly: for example, the service resides in a container that cannot be observed or the service resides in a container where no observer has been installed. In such cases, it might still be able to discover the object if you manually register the service.	
While it is possible to discover services in this way, it is not usually possible to monitor their performance without the services being directly observed. For more information, see Manually Registering a Service.	
Discovery displays information about containers hosting Business Transaction Management system services and hosting observed components. This section describes the information available about a container. It also explains how you edit container profile information and how you unregister a container.	
You can view container information from the Explorer > Container view or from the Maps> Container Map view.	
To view a container map:	
To view summary information about discovered containers and their contents:	
To view detail information about a discovered container:	
Field	Description
---	---
Notes	User-defined field. Specify any information that helps you understand the use or contents of the container
Base address	The http-based address (entry point) for this container
Aliases	All the IP addresses by which the container might be known to the Sphere. This might include VPN adapter address, user-defined aliases, or other addresses Business Transaction Management discovers by observing message traffic to the container. This information is useful in investigating improper setup of the container.
Container Type	The container type and version number.
OS	The operating system and version
Host	The host name where the server is running.
Identifier	Unique identifier for this object in Business Transaction Management.
Administration UI Console	User-defined field: URL of administrative console for the container. You can use this link to launch the console Although Business Transaction Management supplies a value for this address, it might not be accurate and should certainly be changed if the console is moved. You can change this value by editing the container profile.
Monitoring Details	Information about the observer deployed in the specified container and dates for last discovery, registration, synchronization with the Sphere, and version.
Contact information	User-defined field to provide contact information for the server administrator or other support personnel.
Routing details	Information about any load balancers observed routing messages to the container
Unregistering a container removes the container and all discovered serves deployed in the container from the sphere registry. You might need to do this after completing one of the following tasks:	
You should unregister the container only after you have completed one of these tasks. Otherwise, an unregistered container will register itself upon startup if nothing has changed.	
Business Transaction Management displays information about discovered services, service endpoints, routers that distribute message traffic to endpoints, and service operations.	
When you start Business Transaction Management, no services are shown. For services to be discovered:	
Once services are discovered, you can access information about them from the Services To Endpoints and Services To Operations Navigator views. You can view services dependencies in the Maps > Service Map view.	
Business Transaction Management assigns a type to a service based on the type of the first endpoint discovered for the service. Service types include Web Application, Web Service, and Database. (A web application is a component that interacts with the user via HTML pages (screens)). Note that a service might have multiple endpoints of different types and be discovered by different observers. For example a web service might have multiple endpoints on different containers implemented using different technologies: JAX-RPC, JAX-WS, WCF, and so on.	
The service information displayed varies with the topology of your deployment. If you have only one instance of a service running, one endpoint for that service is shown. If you have several instances of a service running, several endpoints are shown for that service.	
There are a variety of reasons why you might discover and have to monitor several instances of a service:	
Router	
. It might take a while to determine that a router is being used to re-direct traffic. Business Transaction Management uses the Host headers in HTTP traffic to detect when messages were originally sent to a different address than the container where they were observed, and connects the caller to the recipient in the dependency graph.	
When the Host header contains a different host name but the same port, Business Transaction Management will initially add aliases for the container and its endpoints. When the Host header contains a different port than the container is actually listening on, or the same Host header is observed in traffic sent to two or more containers, Business Transaction Management infers the existence of a hardware load balancer between the caller and the service, and will add router endpoints to the sphere model as needed to connect the caller and its target endpoints in the dependency graph.	
You can view service using either the Services To Endpoints view or the Services to Operations view from the Navigator.	
To view Services To Endpoints, select the view from the Navigator. Business Transaction Management displays information in the main area of the console. The following table describes the contents of this view.	
The Services To Endpoints view is useful in that it shows endpoint replicates. Replicates are distinguished by their address, shown in the main area. They also have distinct definitional and performance information, as shown in the Tab section of this view.	
Column name	Description
---	---
Name	The Name of the service. Expand the top logical service name to show the endpoints it contains. Expand an endpoint to view its operations.
Up/Down Arrow	Green arrow specifies that the service, endpoint, or operation is running; Red arrow specifies that it's down. Yellow indicates that a service contains endpoints; some of which are running and some of which are down.
Address	Address of the service's container. Replicate endpoints will have different addresses.
Type	The type of the service. This is based on the type of the first service endpoint discovered.
Container type	The type and version of the service container.
To view detailed information about each service, endpoint, or operation double click the desired element to display detailed information in the Tab area, which includes the following data:	
Tab	Description
Summary	Shows a summary of performance measurements for the object selected in the main pane.
Analysis	Shows performance information across a specified period of time.
Alerts	Shows alerts for the selected object.
Message Log	Shows available messages if message logging is enabled for a given operation.
SLA Compliance	Shows the compliance of the selected object with service level agreements defined for the given object.
Profile	Shows definition of selected object. You can edit some of this information by selecting Modify > Edit Profile for object name.
Dependency	Shows the dependencies between the selected object and related objects.
Policies	Lists the policies applied to the currently selected object.
Downtimes	Specifies the scheduled downtimes for the selected object.
Properties	Specifies the properties defined for the selected object. Use the Edit button to modify, duplicate, or delete these properties.
To view Services-To-Operations, select it from the Navigator. Business Transaction Management. The type of information displayed is the same as for the Services-to-Endpoints view. Tab information is also the same.	
In addition to discovering business components, Business Transaction Management can discover how components relate or depend on one another by observing message traffic as it flows from one component to the next. Dependency information provides an accurate picture of how your composite application is really behaving. It might alert you to the fact that certain components are not being called, and it provides a basis for defining business transactions.	
You can view dependencies between services, endpoints, (service instances), or operations. Each dependency map provides information appropriate to the element selected.	
You can also delete dependencies if dependency graphs show out-of-date dependencies.	
No matter what type of dependency it is showing, a dependency diagram is rooted in the selected object and displays all the links that lead out from and into that starting point. Anything that is not directly upstream or downstream of the root object is not shown. To display these additional elements, click on the wrench icon to display the Layout and Show-Related controls.	
The default value for Show Related is None, meaning that only elements directly linked to the root object are shown.	
To view service dependencies	
You can also display service dependencies by choosing the Maps > Service Map view from the Navigator.	
To view endpoint dependencies:	
Means of discovery	Meaning
---	---
observer	The endpoint was discovered by an observer
router	The endpoint was discovered by a router. (The existence of a hardware router was inferred based on discrepancies between the HTTP Host header and the physical address of the observed container(s).)
registered	The endpoint was manually registered
DTA	The existence of the endpoint was inferred based on outbound traffic addressed to it from an observed endpoint.
As you pass the cursor over individual endpoints, Business Transaction Management displays the endpoint name, the container's host and port, and the service and component type of which the endpoint is an instance. Core measurements are also given.	
To view dependencies between operations:	
endpointName on containerName	
For example: checkCredit.CreditServiceSOAP on uitest20:7011	
You might need to delete all dependencies if your application has changed and the dependency graph does not reflect these changes. Dependency data does not age out, so in those cases where the graph includes obsolete data, you might want to clear all dependencies and regenerate the graph by running more traffic.	
To delete dependencies:	
Normally, if a service is not under direct observation, it cannot be discovered or monitored. But you can manually register a service, display it, and obtain measurements for calls going out to it.	
You should register a service if you will have outgoing calls to the service but cannot install an observer on the service's container. Once you register the service, the system will be able to record measurements and log messages that are observed on the client side of the message exchange.	
After registering the service, you might want to use the registerExternalContainer	
command to group its endpoints into an external container. Otherwise, by default, manually registered endpoints are allocated to the System container, and are displayed under the Unassigned Endpoints node.	
To register a service	
The service should now be listed in the summary area of the Services to Endpoints or Services to Operations view.	
A transaction is a sequence of operations that you want to monitor as a single unit. This chapter discusses the advantages of using transactions, how you define and monitor transactions, how you access JVM diagnostics, and how you troubleshoot transactions. It includes the following sections:	
You define transactions on the logical level by specifying which operations participate in the transaction. Business Transaction Management monitors transactions by looking at individual endpoints, and it displays the level of information you require. The level of detail it provides ranges from the minimum of aggregate performance information to the maximum of message content logging. Using Business Transaction Management to monitor transactions is an iterative process: initially you want to look at the greatest possible number of endpoints to get an overall feel for service usage and for potential trouble spots. As you identify these, you want to look at a narrower set of elements but in greater detail. By using this approach, you can get exactly the information you need without straining system resources.	
You might want to define and monitor transactions in order to do the following:	
Users playing different roles might use information about transaction performance as follows:	
You define transactions by using the discovery process to identify operation flows. Based on the dependencies revealed by discovery, you can define a transaction to include services whose interactions interest you. You can then modify the default transaction definition to enable monitoring features that provide exactly the level of detail needed about performance and usage. Features include segmenting information by user or host address, instance and property logging, and message content logging.	
This section describes this iterative process of defining transactions and the level of detail that is made available as you enable each feature. It includes the following sections:	
A transaction is defined by the following:	
You can alter the transaction's view of the operation flows by deleting one or more operations from a flow.	
Business Transaction Management allows you to include the same operation in multiple transactions; the only limitation is that the same operation cannot be the starting operation of more than one transaction. If you do include an operation in multiple transactions, Business Transaction Management is able to keep accurate aggregate measurements for each transaction's overall response time, counting the invocation of the shared operation appropriately as it is called by each of its owning transactions. Business Transaction Management is also able to handle situations where services are replicated, accurately collecting performance information as one replicate or another is used in a failover or load balancing architecture.	
A transaction executes many times in a given period; Business Transaction Management tracks the flow of messages included in the transaction and can map these to particular transaction instances.	
In addition to the operation flows it contains, a transaction is also defined by settings that specify the following information:	
In order to allow the user to extract as much information from a message without logging the content of every message, Business Transaction Management offers the use of properties, which are associated with transaction operations. Properties can be associated with parts of the message header or message payload. You can use them in the following ways:	
Once you define the start and end operation of a transaction, by default Business Transaction Management determines the intervening operations based on traffic flow, and it creates message fingerprints to link together (correlate) the operations of a transaction instance. You can also define manual keys as an alternate means of correlating transaction messages.	
You will need to manually correlate operations in the following cases:	
Look here for additional information on what you need to correlate in each of these cases.	
A single transaction definition can contain operations that are correlated automatically and other operations that are correlated manually.	
When you select an operation and choose to create a transaction, Business Transaction Management displays a Create Transaction Definition tool with default values already filled in. According to this default definition:	
The default configuration is sufficient to give you a first broad look at your transaction. It can help you identify slow links, faulty services, and unexpected traffic spikes. It can also show you if overall transaction performance is degrading or not completing on time. You can also create fixed value and baselines service level agreements (SLA's) based on the measurements collected for the transaction.	
You can customize the default transaction definition in the following ways:	
The following subsections describe the features you can add to your transaction definition.	
The following are the features you can add to provide a more detailed picture of transaction performance and message content.	
You can segment transaction measurements based on host address and by individual consumer. Consumer segmentation might be useful if you have usage contracts with specific customers or if you want to identify customers that make especially heavy or light use of your services.	
Segmentation by host address can help you understand the distribution of requests in your network. You can discover whether some network segments or hosts are bearing a disproportionate load of the traffic, or that problematic transactions are all executing on a particular host.	
Enabling instance logging allows you to see a list of transaction instances captured in a given time period. You can assemble and inspect a given instance, view any property values for that instance, and create conditions based on these property values.	
You can also search on the logged properties and find the related transaction instance.	
The features you enable for a transaction record information for the entire transaction and for select operations. In addition to this continual monitoring, whose results you must analyze to discover performance issues, you can also configure Business Transaction Management to alert you about special situations by using conditions and service level agreements.	
Properties are variables that hold values associated with the request or response phase of an operation. A property value can correspond to a message element, a fragment of an element, the combined value of several elements from the same message, or an expression that uses a message element. You can use a message element from either the message header or body to define a property.	
Properties are commonly used to facilitate searches, to surface message elements without having to log message content, to define conditions, and so on.	
This section explains the different ways you can define and use properties.	
Property definitions are shown in the Properties tab for any transaction that includes the service operation for which a property has been defined. Property definitions are also shown in the Properties tab for the service operation, endpoint operation, service, and endpoint. However, you can modify or delete a property only from the Properties tab for a transaction.	
Using properties helps you do the following:	
For example, imagine you have a service element containing a customer ID. If you wanted to know which customers experience exceptions on a transaction that includes the operation, you could create a property to hold the value of the customer ID element. Then, when you inspect performance results, the ID of customers experiencing exceptions on that transaction would be prominently displayed.	
A property can be based on any XPath expression defined on a request or response message, including message content or message headers (for example, SOAP headers, HTTP headers, or JMS message properties).	
The simplest type of property holds the value of a single message element. For example, you might have the following message element:	
You could create a property named Order_ID	
whose value is the value of this element.	
You can also create a property that stores the result of a computation involving one or more message elements. For example, you might multiply an element that holds a price times a constant to compute tax:	
You could store the result in a property named Tax_Due	
.	
In some cases, you might not be able to extract the data you need from messages directly. In these cases, you can create a property based on an XPath expression to extract data from your message and perform computations.	
For example, if your message contains an indeterminate number of <item>	
elements, you could create a property to count the number of <item>	
elements in the message and store that value.	
You might also use an XPath expression to extract data from an XML element that itself contains an encoded XML document.	
Finally, you might have a service that is missing a WSDL. Using Business Transaction Management you can log a message from this service and then use the XML view to obtain the element you need to define the desired property.	
The following subsections provide additional information about creating, modifying, duplicating, and deleting properties.	
Properties are variables that hold values associated with the request or response phase of an operation (message). This section explains how you use Business Transaction Management to work with properties. It includes the following sections:	
The process you use to define a message property varies depending on whether the property corresponds to a single message element, a fragment of an element, a combination of elements, or an expression that includes an element.	
You can access the Create Message Property tool by selecting a service, operation, or endpoint in any view; then select Create Message PropertyonName from the Create menu.	
Independently of the kind of property you create, you will need to specify the following information (in addition to specifying the message element that supplies the property value):	
If you define a new property after messages have been collected, the logged messages will not include the newly defined properties.	
The following procedures describe how you can create properties based on a single element, based on an element fragment, or based on more than one message element.	
Defining a property based on a single element	
If you select Header, Business Transaction Management displays a small dialog you must use to specify the Header Name, the phase (request, response, fault), and the data type. Then skip to Step 8. Steps 5-8 apply if you selected Message Content.	
Defining a property based on an arithmetic expression	
Price	
element and define it to compute a tax of 10% ; for example:	
Defining a property based on the partial contents of an element	
This might be useful if you have nested xml documents and want the property's value to contain a nested element.	
Defining a property based on the combined contents of multiple elements of the same message	
This might be useful if you need to provide manual keys to correlate messages but no single message element is unique to a service. You can create a property for the unique value that results from combining two message elements; for example, Customer ID and zip code.	
The following procedure assumes you are combining two elements. You can extend this case for additional elements.	
Business Transaction Management uses the same model to represent interconnected components no matter what the component type: the model shows services that interact by sending request and response XML messages. The model also assumes that each of the services is described by a WSDL specifying the service's location and its interface. However, not all discovered components can be precisely rendered by this model. If the component is not an actual web service, the corresponding WSDL might be missing or incomplete. In such a case, you will need to take some additional action to create properties for the message elements of this component. Basically, you will log a message containing the element of interest, and then copy the XML into the property definition.	
The process is the following:	
You can view partial property definitions on the Properties tab of an operation, endpoint, service, or transaction. The property name, phase, type, and description are displayed. The property's sensitivity and consumer mapped attribute is also displayed.	
To see the full definition, click the Edit button and select Modify.	
You can view property values in the following views:	
You can change the definition of a property. Note that if you change the XPath definition of an existing property, the runtime will start calculating the new XPath definition based on incoming messages. Previously recorded messages will continue to hold the value calculated based on the old XPath definition.	
To change the name of a property, you must create a duplicate, assign it a new name, and then delete the original.	
Properties play an important role in transaction definitions, segmentation, conditions, and logging; for this reason, modifying a property definition might have the following consequences:	
To modify any user-created property	
There are a couple of reasons why you might be interested in duplicating a property definition:	
To duplicate any user-created property	
Properties play a key role in transaction definitions, segmentation, condition definitions, and logging; for this reason deleting a property might have significant consequences:	
To delete any user-created property	
A transaction is a sequence of service operations that you want to monitor and manage as one unit. This section explains how you use Business Transaction Management to define transactions, to modify transaction definitions, and to delete transactions.	
Keep in mind that the more features you turn on for your transactions, the greater the impact on Business Transaction Management performance, especially with high volume. For example, it is best to restrict message logging to narrow areas of interest rather than to enable it for all operations in a transaction. The following guidelines indicate the relative performance cost of transaction monitoring options:	
Defining a transaction involves specifying the following information:	
The following subsections explain how you specify each aspect of the transaction definition.	
Once you have defined the operations that participate in a transaction and enabled transaction monitoring, you will be able to view transactions and related services in the Transaction view, create fixed-value and baseline Service Level Agreements (SLA), view summary of link measurements on the Summary tab and other measurements in the appropriate views. For measurements, you will be able to see the number of started and completed transactions, throughput, average response time, maximum response time, and faults.	
In the upper pane, the tool displays all the operations that are dependent upon the operation you selected. By default, the request message of the left-most operation in the dependency chain is designated to be the start operation and the response message of the left-most operation is designated to be the end message. The tool displays the specified starting operation along with all the service operations in the consequent dependency chain. By default message fingerprints are used to correlate messages in a transaction. These are represented in the transaction map with a fingerprint icon. You can choose to have Business Transaction Management correlate messages using manual keys if you like.	
If the start and end message are not the request/response messages of the same operation, you will need to specify keys with common content for Business Transaction Management to measure performance. You will be prompted for the required information.	
To disable a transaction, click the Enable Transaction Monitoring check box. This will turn off measurement collection (segmented and non-segmented), condition evaluation, instance logging and content logging. However, SLA's applied to the transaction will continue to evaluate and potentially fire unless you explicitly disable them. Disabling a transaction is a way of quiescing transaction monitoring without losing the transaction definition.	
Business Transaction Management allows you to segment transaction measurements based on ip address and by individual consumer. You use the Segmentation tab of the Transaction tool to enable segmentation. Enabling segmentation allows you to create usage SLAs for the transaction, to see transaction usage by client IP address, and to see transaction measurements by consumer. You can see on the Profile tab which segments are enabled and which property is being used as the consumer property.	
You can choose to enable either or both of the segmentation options. The image below show what the tab looks like after segmentation has been enabled and a particular property has been mapped to a consumer. Note the consumer icon.	
To enable segmentation:	
Consumer segmentation depends upon defining a property for the transaction's starting message. This property refers to the message element that you want to map to the consumer business object. If you have not already defined this property before you define the transaction, you can do so as shown in steps 4 through 9. If you have defined the property, select it now.	
Enabling instance logging allows you to see a list of transaction instances captured in a given time period. These are displayed in the Instances tab of the Transaction view. You can inspect a given instance, view any property values for that instance, and create conditions based on property values. You can also assemble any of these instances.	
To enable instance logging:	
Enabling message content logging allows you to view message content for the operations you specify. (In this case, Business Transaction Management logs all messages for the specified operations, not just those belonging to this particular transaction flow.) You can get to the message content in different ways: use the Message Log Search tool to find an operation based on free text search and then open the related transaction instance, or you can drill through to the message log from the Analysis tab and alerts.	
To enable message content logging:	
The example above shows that message content is enabled for the operation checkCredit	
of the service CreditService	
.	
By default Business Transaction Management correlates messages in a transaction by computing fingerprints (hash values) based on the content of each message and by pairing incoming messages with outgoing messages all the way to the end of the call chain. Defining manual keys provides an alternate means of correlating messages. Manual correlation is used to add a secondary operation flow to a transaction, to define a transaction whose end message and start message do not belong to the same operation, and to define a missing message condition.	
Transaction messages do not have to be correlated by a single method: some messages can be auto-correlated; others can be correlated using manual keys. In order to define a manual key, you must map it to a message property and that property must satisfy certain requirements as explained next.	
A manual key is mapped to a message property.	
The property can correspond to a single element in a message, to a combination of elements, or to a fragment of an element. You can define the property before you define the manual key	
The property you define for the manual key must satisfy two requirements:	
For example, in a shopping type application, the order ID is often an excellent choice for a manual key.	
You will need to manually correlate operations in the following cases:	
In this case, you will need to figure out which two operations you want to link, and to find a common element for those two operations that you can map to a message property. The process would be as follows: add the operation to the transaction; connect it to an existing operation in your transaction, and indicate the direction in which the request is going. The two operations will then be shown in the Message Keys tab, where you can connect them using a manual key.	
In this case, you will need to find a common element in the starting message and the desired end message that you can map to a message property. When you specify the end message, the system will prompt you for the manual key that will connect the start and end message.	
In a missing message condition, an alert is generated if the target message you specify does not arrive within a given period of time after the start message occurs. In this case, you must define a key for some element that is common to the start and target message. When you define the missing message condition, the system will prompt you for the key that will connect the start and target message.	
You use the Message Keys tab of the Create Transaction tool to define the means by which Business Transaction Management correlates operations when you are adding a secondary flow. Note that if a given operation correlates to more than one operation in a dependency flow, you have the option of creating manual keys for each correlation. For example, in the tab shown below, the start operation of OrderService.submit	
correlates to one of three possible operations. You do not have to use the same key to correlate to the three different operations nor do you have to use the same means of correlation.	
To create a manual key to correlate messages:	
As mentioned above, the start key and end key of a correlation must be mapped to the same property and the value of the property must be unique to the transaction. You can define the properties you need before you define the correlations or you can access the property tool from the Message Keys tab and define the property at the same time that you are defining the correlation.	
The final step in defining a transaction is to define archival settings and to enable the indexing of message content.	
Use the Storage Settings tab to define these values. The table below shows the default settings and explains the meaning of the settings.	
Modifying a transaction definition changes the definition of the transaction in the environment. You can modify any part of a transaction definition, but keep in mind that Business Transaction Management does not track definition versions. For this reason changing some aspects of the definition might confuse things. For example, if you add or delete operations to a transaction definition or if you change the keys used to correlate operations, and then you try to assemble a transaction instance that preceded the modified definition, you might get odd results. On the other hand, enabling or disabling the transaction, or changing storage options should not be a problem.	
To modify a transaction definition:	
Business Transaction Management offers you a short cut you can use to enable or disable a transaction without having to edit its definition.	
To enable or disable a transaction:	
After a transaction is defined and if monitoring is enabled for the transaction, Business Transaction Management applies the default transaction measurement policy. In addition, if instance logging or message content logging is enabled for the transaction, it starts logging the appropriate information.	
As traffic flows through the services that participate in a transaction, Business Transaction Management displays core measurements for the selected transaction in the Main area. This includes the number of started and completed transactions, the throughput, and the average response time. In the Tabs area it displays more detailed information about transaction performance and its definition. This includes the following:	
This section explains how you use transactions attributes to filter your transaction view, how you view summary and analysis performance information for a transaction, and how you view and respond to alerts.	
See About Instruments for a detailed discussion of the instruments used to measure transaction performance.	
By default all transactions are shown in the Main area when you select Transactions from the Navigator. You can have Business Transaction Management display a subset of currently defined transactions by using the Filter link or drop-down list. Using filters allows you to customize your view and to focus on the characteristics of interest.	
Business Transaction Management uses the Summary and Analysis tabs of the Transaction view to present summary and detailed analysis of transaction performance. This section describes these views.	
The Summary tab uses four panes and a grid view to present performance information in a Transaction Summary Dashboard. These are mostly self-explanatory, except for the Delay Analysis pane, which is described in greater detail below.	
The Transaction Summary Dashboard includes the following:	
Each colored area of the grid corresponds to a transaction link. Clicking in a colored region highlights its corresponding link in the map and displays the percentage of the response time taken up by that hop.	
At the bottom of this pane, a graph shows the average and maximum response times and the started transactions. Clicking in the pane displays a vertical red line that shows how the colored proportions correspond to message traffic flows.	
The Analysis tab of the Transaction view allows you to see the measurements in the Summary tab graphically rendered as trends across time. The Analysis tab offers six views of transaction performance data. These are described in the table below.	
View	Description
---	---
Performance	Provides two color-coded charts: one that tracks started transactions, completed transactions, and conditions; the other tracks average response time versus maximum response time.
Conditions	Lists information about the conditions that have been triggered in a given time period: the name of the condition that was met, the endpoint where the condition alert was triggered, and the number of condition alerts triggered.
Consumer usage	If you have chosen to segment by consumer: Lists service consumers and the number of started and completed transactions in which they were involved and the average and maximum response time for each consumer.
Breakdown by Client Address	If you have chosen to segment by ip address: Lists the hosts for the services involved in the transaction, the number of transactions started and completed on each, and the average and maximum response time for each host.
Custom charting	Displays performance results for custom charts. Lets you set up a customized chart and table with instruments of your choosing. Click Choose Instruments and select the instruments you want displayed in the chart and table. You can select multiple instruments.
Custom breakdown	Defines the custom performance information to measure and the segment on behalf of which measurement is done. Click Choose Instruments and select the instruments you want displayed in the table. You can select multiple instruments. Click Choose Segments and select how you want to segment the measurements. You can select multiple segments.
Alerts are shown on the Alerts tab for the selected transaction. You can use the Filter button in that tab to determine the range of time for which alerts should be displayed.	
The system automatically generates alerts when one of the following happens:	
You can respond to alerts triggered by a condition by examining the assembled transaction instance and taking appropriate action.	
The Top 10 Transactions dashboard enables you to quickly identify and assess the health of the most stressed components in your system.	
To display the dashboard, choose Dashboards > Top 10 Transactions	
The dashboard provides four tables. Each table is based on a particular instrument and lists the transactions with the ten highest measurements for that instrument (except for uptime, which is lowest).	
The default evaluation period for the data displayed for transactions is seven days. To change the evaluation period, click the Time Period control at the top of the display. You can change the period to the last day, hour, or 10 minutes.	
The Top 10 Transactions dashboard provides tables that list the 10 transaction types with the following characteristics:	
Each table provides numeric instrument values as well as charts. Hover the cursor over a chart to view detailed information for a particular time segment.	
For in-depth information and analysis, double-click a transaction or service to display the Tabs area, and select the Analysis tab.	
A transaction usually executes many times in a given period. If you have enabled transaction instance logging or if you have enabled fault monitoring, Business Transaction Management tracks the flow of messages included in the transaction and maps these to particular transaction instances. It assembles the messages for a transaction instance in the following cases:	
Once a transaction instance is assembled, you can use the Instances tab to view detailed performance information for that instance. You can also use the Message Log tab to search for messages containing particular property values. To view the content of a message, you must also enable message content logging.	
This section explains how you do the following:	
The Instances tab in the Transactions Tabs area allows you to view captured transaction instances.	
The ID column of the table displays both instances that have been assembled (these have an ID value assigned) and instances that have not been assembled (these have an Assemble button).	
Information for each instance shows when it was captured, what the overall response time for the transaction instance was, and values for properties if you have created these.	
The Show instances filtering control allows you to list instances that have occurred in a set time period or to show only assembled instances.	
Which instances you choose to assemble depends on what interests you. For example, you might want to assemble an instance with an unusually slow response time; or you might want to assemble an instance with an unexpected property value.	
If you are capturing a very large set of messages, you might want to use the Message Log tab to search for a smaller set of messages, based on property values, and then assemble one or more of these.	
You can assemble an instance by clicking the Instance Inspector icon (magnifying glass) in the Instances tab:	
Business Transaction Management brings up a Transaction Instance Inspector. This view consists of three parts: identifying information for the transaction instance at the top, a map view in the middle, and a grid view at the bottom showing all the operations included in the transaction instance.	
The top part of the inspector shows the name of the transaction, the time the assembled instance started executing, its ID, the number of message exchanges, the total messages exchanged, and the response time between the starting and ending message. Any warnings or faults will also be displayed in this area.	
In the instance map that follows, you can view the entire transaction instance, with the response time given for each request/response link. Move the cursor over the operation name to display the service type, the endpoint name, and the host name and port.	
At the bottom of the inspector window, a grid view shows you detailed information for each message included in the transaction instance. The view includes columns to show property values if you have defined these.	
Clicking on the magnifying glass (tear-off control) for any operation, opens a Message Content inspector window and displays the contents of the selected message if you have enabled message content logging for that operation.	
You can use the Message Log tab for a transaction to view the following information:	
Business Transaction Management logs message content or instance and property values only if you have done the following:	
Logged information is stored according to storage settings that you define when you create the transaction.	
This section explains how you view information about messages, search message logs for messages, and enable or disable logging.	
The Message Log tab for a given transaction displays information using a grid view that displays a list of messages, showing the arrival time of the request message, the service that includes the selected operation, the location of the endpoint that implements the service, the operation (message), and the type of operation. If there are any properties associated with the operation, their values are shown in additional columns whose title is the property name.	
If you have message content logging enabled, double clicking on any message shows you the contents of the message.	
The set of messages shown in the grid varies depending on the setting of the filters shown at the top of the tab. These allow you to see	
You can use these controls to narrow the selection of messages shown in the grid. After you change filter settings, click Search again to repopulate the grid.	
You can further narrow your search by using the Message Search tool accessed from the Choose Content... link. This allows you to search for messages based on their property values or, if message content is enabled, based on message content. This tool is described in the next section.	
The Message Log Search tool enables you to further refine the scope of your search (in addition to the strictures defined by the view filters). You can access this tool in one of two ways:	
The tool has two main areas you can use to define search criteria: an area labeled Message property search and one labeled Free text search. You use controls in these areas to search for a set of messages based on a property value and/or on text content. As you enter property and free-text values, a search expression is constructed in the text box. To clear the box and start over, press the Clear button.	
For additional information about using Oracle query language to formulate your query, look at the following:	
When you are done defining the expression to be used in the search, click the OK button. Then click the Search button to repopulate the grid according to your newly defined search criteria.	
The properties that have been defined for the transactions in question are shown in the Message property search area. Use the drop-down lists to specify your property-based search criteria.	
Do the following to enable or disable message logging and instance logging:	
JVM Diagnostics (JVMD) is a diagnostic tool that allows you to view the details of an executing Java Virtual Machine (JVM) process. You can see stack frames for executing threads, thread state information, aggregate information about the frequency and cost of method execution, information regarding the holding of Java and DB locks, and details about the objects in the Java heap. JVMD also stores historical data for each JVM it monitors so you can view data relating to things that have happened in the past and get a sense for historical trends.	
Using JVMD to access additional information can be useful in situations like the following:	
This section explains how you configure Business Transaction Management to connect to the Enterprise Manager (EM) Console, and how you access the information described above.	
The following procedure specifies the information Business Transaction Management needs to be able to invoke the JVMD UI.	
https://adc2101158:4473/em	
, you would enter https://adc2101158:4473	
, and the edited entry would look like this: <pfx6:emgcURL>https://adc2101158:4473</pfx6:emgcURL>.	
Note that the namespace prefix might be other than pfx6	
; use whatever value appears in the XML text.	
You will have to supply login information for the JVMD console when you access it. Single sign on is not supported.	
You can access the JVMD console from the following entry points:	
In each of these cases, a new window is displayed showing the JVMD screen. In the multi-VM case, JVMD shows a VM group target and aggregate information for that group.	
Once you have defined a transaction, you can use detail area tabs to get information about policies, conditions, and properties applied to a transaction. You can also display the transaction's profile. In some cases, you can modify the definition or status of elements shown in a tab.	
Use the Profile tab of the Transaction view to see a map of the transaction and to see its definition.	
The Profile tab provides essentially the same information you would see if you displayed the transaction definition by choosing Edit TxName from the Modify menu. Selecting the Profile tab instead, makes it easy to switch to other tabs or views, prevents your making unintentional changes, and provides three additional pieces of information:	
Use the Policies tab to view information about policies associated with a transaction.	
By default, the tab shows information about applied policies. You can use the filter control to view changed policies, disabled policies, pending policies, rejected policies and unapplied policies.	
The name of the applied policy is shown in a tree view in the Name column. Expanding the policy node shows the following information:	
Double clicking the policy name in the Policy tab, opens a new window that you can use to view alert, profile, and target information for the selected policy.	
Use the Condition tab for the Transaction view, to display the conditions you have defined for a transaction. This tab allows you to do the following:	
Use the Properties tab for the Transaction view, to display a list of all the properties defined for messages included in a given transaction. In addition to listing the properties, the tab shows information about the following:	
An Edit drop down list for each property listed allows you to modify, duplicate, or delete the property definition.	
This section offers information to help you resolve problems in working with transactions.	
If performance monitoring is not working as expected for transactions, the two most common issues to consider are the following:	
If monitoring is enabled for the transaction, if traffic is flowing during the period for which you seek results, and if the required features are activated, you should be seeing complete and correct data. If not, read through the following discussion for possible issues and resolutions.	
Note: Remember to check Alerts in the last hour > System Alerts for information that might pertain to your problem.	
You cannot create a transaction	
Business Transaction Management is unable to validate your transaction definition and cannot create the defined transaction. Possible causes include the following:	
Your transaction has been disabled	
You have not explicitly disabled monitoring for the transaction, but no measurements are gathered, and logging and condition processing are disabled. When you check the status shown in the Profile tab, you find that the status for a transaction is disabled or system disabled.	
This can happen for a number of reasons:	
Performance measurements are incomplete or inaccurate	
This can happen for a number of reasons:	
Segmented information is missing	
Consumer segmentation is enabled but information for the consumer is not collected.	
Logged instances or messages do not contain the expected information	
For logged instances, check to see whether the property that is associated with the expected information has been deleted.	
It is a requirement that all messages for one transaction be logged to the same database. Sometimes, it is not possible to satisfy this requirement because the transaction crosses a firewall. In this case, you might need the assistance of Business Transaction Management support.	
For logged message problems, you might need to check log policy settings and report what you find to Business Transaction Management support.	
A condition has been disabled	
Check to see whether a property used in the condition definition has been modified or deleted.	
You disable instance logging and there is at least one enabled condition for the transaction that depends on it.	
A condition has not triggered an alert	
The Transaction server was down when a condition needed to be evaluated; check the status of your servers.	
A missing message condition is erroneously triggered	
A missing message condition is triggered, but the message exists and has been collected. This can happen when monitor processing is especially slow and the missing message condition is evaluated after the transaction's time to live interval has expired. A rare situation.	
Based on the storage settings for the transaction, Business Transaction Management creates a log policy for each transaction and refers to this policy when monitoring the transaction and storing logged messages. Log policy settings are partly derived from the information you provide when you define a transaction. The following table shows the correspondence between log policy settings and transaction definition runtime settings.	
Log policy fields	Transaction definition runtime settings
---	---
Guaranteed storage time	Retain individual messages Default: 24 hours
Rotation interval (minutes)	Rotate message log Default: 720 minutes
Text index message content	Text index message content
The log policy is named System Generated Log Policy for TransactionName. The only time you might need to view this policy is when troubleshooting logging problems.	
To view log policy settings for a transaction	
This chapter describes how you can use Business Transaction Management to monitor services. It explains the meaning of the instruments used for monitoring, and it describes the Top 10 Services dashboard. It includes the following sections:	
This section lists the ways you can monitor services. The list orders these monitoring tasks from high-level to low-level (top to bottom), and explains, for each task, how you navigate to the view where you can perform the monitoring.	
To monitor:	
Navigate to Dashboards > Operational Health Summary > Services	
Navigate to Dashboards > Top 10 Services	
Services To Endpoints provides a physical view, letting you drill down from services to endpoints and then physical operations. Services To Operations provides a logical view, letting you drill down from services to logical operations.	
Navigate to specific service, endpoint, or operation > Analysis tab	
Navigate to specific service, endpoint, or operation and click the Compliance tab	
Navigate to specific service, endpoint, or operation and click the Alerts tab	
Navigate to specific service, endpoint, or operation and click the Message Log tab. Message logging is available only if a service endpoint is part of a transaction and if message logging is enabled for the transaction.	
The Top 10 Services dashboard enables you to quickly identify and assess the health of the most stressed services in your system.	
To display the top ten services, Choose Dashboards > Top 10 Services.	
The dashboard provides four tables. Each table is based on a particular instrument and lists the services with the ten highest measurements for that instrument (except for uptime, which is lowest).	
The default evaluation period for the data displayed for services is seven days. To change the evaluation period, click the Time Period control at the top of the display. You can change the period to the last day, hour, or 10 minutes.	
The Top 10 Services dashboard provides tables that list the 10 services with the following characteristics:	
Each table provides numeric instrument values as well as charts. Hover the cursor over a chart to view detailed information for a particular time segment.	
For in-depth information and analysis, double-click a transaction or service to display the Tabs area, and select the Analysis tab.	
Business Transaction Management uses a variety of instruments to measure the performance and usage characteristics of your business transactions and underlying services and operations. These instruments are displayed in various parts of the Management Console for interactive monitoring. You can also use most of these instruments as a basis for defining service-level agreements (SLA).	
The period over which these instruments operate is either the evaluation period, in the case of an SLA, or the display period, in the case of interactive monitoring in the Management Console. The following descriptions use the term period to mean the evaluation period and/or display period, depending on the context in which the instrument is used. Some instruments, for example current compliance status, provide a current value only.	
The following instruments are available for monitoring transactions.	
Average Response Time	
The average amount of time a transaction requires to complete. For each instance of the transaction, the instrument measures the time from when the instance's start message is observed until its end message is observed. The instrument keeps a running average of the response time across all instances observed during the period. All completed instances are counted in the response time, regardless of whether condition alerts occurred.	
If no transactions are observed during the period, the value of the instrument is set to -. Response time is measured in milliseconds.	
Maximum Response Time	
The maximum amount of time a transaction requires to complete. The instrument records the single highest response time from all instances of the transaction observed during the period.	
Completed Transactions	
The number of instances of a transaction that complete during the period. An instance is considered to have completed when both its start and end messages have been observed, regardless of whether condition alerts occurred. However, if the end message is defined as being in the response phase (for example, submit.response) and the end operation faults, the end message will not exist and the instance will, therefore, not be counted.	
Completed Transaction Rate	
The number of instances of a transaction that complete per hour during the period. This instrument derives its measurements from the completed transactions instrument.	
Started Transactions	
The number of instances of a transaction that start during the period. An instance is considered to have started when its start message is observed.	
Started Transaction Rate	
The number of instances of a transaction that start per hour during the period. This instrument derives its measurements from the started transactions instrument.	
Condition Alerts	
The number of condition alerts generated on the transaction during the period.	
Condition Alert Rate	
The number of condition alerts generated on the transaction per hour during the period. This instrument derives its measurements from the transaction condition alerts instrument.	
Current Compliance Status	
The current compliance status for the transaction.	
Violation Alerts	
The number of SLA violations or warnings caused by a transaction during the period.	
The following instruments are available for monitoring services, endpoints, and operations.	
Average Response Time (services, endpoints, and operations)	
The average amount of time a service or operation requires to respond to a request. For each request, the instrument measures the time from when the service receives the request until it sends a corresponding response to the client. The instrument keeps a running average of the response time across all messages received during the period.	
Only successfully processed requests are counted in the response time; the response times for faults are not figured into this measurement. The response time is measured individually for each operation. The response time for a service is the average response time of all of its operations. This average is weighted according to the number of messages processed by each operation.	
If no requests are observed during the period, the value of the instrument is set to -. Response time is measured in milliseconds.	
Maximum Response Time (services, endpoints, and operations)	
The maximum amount of time a service or operation requires to respond to a request. The instrument records the single highest response time for all requests received during the period.	
Link Average Response Time	
The average response time to outbound requests. For example, imagine a hypothetical orderService	
that receives a request from some client, and as a result sends a request to a creditCheckService	
. In this case, orderService	
is acting as a client to creditCheckService	
. The response time is measured from the point of view of the service that is acting as a client. In other words, it measures the time from when the client service sends the request until it receives the response, meaning that network latency, if it exists, is included in the response time.	
Only successfully processed requests are counted in the response time; the response times for faults are not figured into this measurement. If no requests are observed during the period, the value of the instrument is set to -. Response time is measured in milliseconds.	
Traffic	
The number of requests that a service or operation receives during the period. The traffic count equals the throughput plus the fault count. Traffic count is measured individually for each operation. Traffic count for a service is the total traffic count of all of its operations.	
Throughput	
The number of requests that a service or operation successfully receives, processes, and responds to during the period (in other words, the number of responses). A message that generates a fault is not counted by the throughput instrument. Throughput is measured individually for each operation. Throughput for a service is the total throughput of all of its operations.	
Throughput Rate	
The number of successfully handled requests per hour during the period. This instrument derives its measurements from the throughput instrument.	
Link Throughput	
The number of outbound requests to another service that are successfully received, processed, and responded to during the period (in other words, the number of inbound responses; see the link average response time instrument for an explanation of service-to-service calls).	
Faults	
The number of faults generated by a service or operation during the period. Fault count is measured individually for each operation. The overall fault count for a service is the total fault count of all its operations.	
Fault Rate	
The average number of faults generated per hour over the period. This instrument derives its measurements from the faults instrument.	
Fault Percentage	
The percentage of messages that cause faults during the period. This instrument derives its measurements from the faults and traffic instruments.	
Link Faults	
The number of faults generated by outbound requests to another service during the period (see the link average response time instrument for an explanation of service-to-service calls).	
Current Compliance Status	
The current compliance health for the selected object.	
Violation Alerts	
The number of SLA violations or warnings caused by a service or operation during the period.	
Violation Alerts Percentage	
The percentage of time that a service or operation is in a state of SLA violation or warning during the period.	
Failure Alerts	
Count of failure violations for the specified period.	
Warning Alerts	
Count of warning violations for the specified period.	
Uptime	
The percentage of time that an endpoint's container responds successfully to a periodic ping message. See the configureAlivenessCheck	
command for details on how you can specify the method to be used for aliveness checking.	
This chapter explains how you can present performance results to reflect consumers' use of your services. It explains how you set up consumer segmentation, how you create consumers, how you map messages to consumers, and how you view and manage consumer-based performance information. It includes the following sections:	
In addition to presenting performance results based on the performance of individual transactions, services, and endpoints, Business Transaction Management allows you to view performance results in terms that are meaningful to your business. You can see transaction performance segmented by business criteria: your suppliers, your users, your re-sellers, or your customers. And you can see this information even in those cases when the object of interest participates in a series of different transactions. To this end, Business Transaction Management provides a consumer business object that you can define to segment performance data using the criteria that is important to you. You can then monitor your business objects to make sure that your objectives are being met. For example,	
Consumers refer to Business Transaction Management consumer business objects; a consumer is an instance of the Consumer business object you have defined for your environment. The default name "Consumer" implies that this business object could be the initial client of a transaction; but it could also be the country or city where an order originates, a company name, and so on. Throughout this section, we will use the default name "consumer," with the understanding that this can refer to the wider range of criteria just mentioned.	
To make the actual segmentation criteria more clear, the Business Transaction Management administrator can customize the consumer label that appears on fields, buttons, and links in the Management Console. For example, your administrator could change the label from "Consumer" to "Department", "Supplier", or any other descriptive term.	
The following sections explain how you set up consumers:	
In the simplest case, to obtain performance segmentation by consumer, you must do the following:	
The figure below shows a simple mapping between a property called email	
(associated with the request.submit.order.customerEmail	
element of the starting message of a transaction) and the default attribute of the business object, Consumer Name	
.	
Description of the illustration simple_bus_obj.gif	
If consumer segmentation is enabled for the transaction, once traffic starts to flow, Business Transaction Management inspects the value of the email	
property of this transaction as part of its measurement gathering. For this example, let's assume the property value is 123hop@gmail.com	
:	
The business object that Business Transaction Management provides by default is adequate for the simple case where you are monitoring one specific kind of consumer and you are satisfied to use the value of the property as the consumer name. In reality, you might need to handle more complicated situations. To do that, you can customize the definition of the consumer business object by adding custom attributes. Using these attributes, you can teach Business Transaction Management to recognize the same consumer though the consumer is identified by different properties.	
For example, what happens if we want to monitor several transactions, and in each transaction the consumer of interest is identified in a different way? In one transaction, the consumer is identified by email address, and in the other, by a social security number.	
The following figure shows two transactions, Tx1 and Tx2. Tx1 has a customerEmail	
element mapped to the email	
property; Tx2 has a custID element mapped to a SSNumber	
property. You want Business Transaction Management to monitor both transactions and to recognize that the same consumer is involved whether that consumer is identified by the email	
property or by the SSNumber	
property. To do this, you must add two custom attributes to the Consumer business object and map each property to its corresponding attribute.	
Description of the illustration complex_bus_obj.gif	
For the sake of this example, let us assume that all consumers involved in these transactions have already been created. Once traffic starts to flow, Business Transaction Management inspects the value of each of the properties shown as it observes messages. If it encounters either an email address or social security number associated with an existing consumer, it records measurements for that consumer. This makes it possible to see performance information for a given consumer that is an aggregate of performance across all the transactions in which the consumer participates.	
In this more complicated case, setting up consumer segmentation would involve the following:	
(You can do steps 2-4 all at once when you define consumer segmentation for a transaction.)	
Business Transaction Management creates consumers in one or more of the following ways:	
importBusinessObject	
command. If you create consumers manually, as with the last two options, consumer monitoring will only start after you set up consumer segmentation.	
By default, discovered consumers are named according to the value of the message property to which you map them. For example, if you use a property that holds an email address, the name of the consumer displayed in the Management Console is the email address of the consumer. If the value of the property is the user's full name, that name is displayed in the Management Console. You can edit the name that will be displayed for a consumer by editing the consumer profile. If you see a combination of formats used to display user names, this might result from the fact that some were created manually (and assigned an actual name) and others were added automatically and assigned the value of the property used to map messages to consumers.	
If you decide that you want to change the default consumer name, please note that you must add an attribute to the business object that corresponds to the property used for segmentation and that you must then map the property to that attribute. In the following illustration, an Email	
custom attribute is mapped to the email	
property. If you then change the default consumer name to an actual name (by editing the consumer profile), Business Transaction Management will continue to gather measurements for this consumer when it sees the message and evaluates the email	
property, but it will display the name you supply in the main pane of the Consumers view and in the Name	
field of the Profile tab for the consumer.	
Consumers are the default Business Transaction Management business objects that allow you to segment transaction performance based on some desired criteria. Mapping messages to consumers is the means by which you teach the system what criteria to use to segment performance information. The mapping process involves your creating a property that identifies the consumer and then mapping that property to a consumer business object. Please read About Consumers for a detailed discussion before you proceed.	
Before you map messages to consumers take a moment and decide the following:	
The consumer you choose must be uniquely identified by information contained in the starting message of a transaction: for example, an ID number or an email address. This information can be contained within a message element or header.	
The basic steps to map messages to consumers are as follows:	
After you complete this mapping, enable segmentation, and send traffic, you can then view transaction performance information segmented by consumers from the Explorer > Consumers view, or from the Analysis tab of the Transactions view.	
The consumer business object is seen throughout your environment. Each consumer created manually or automatically is an instance of the consumer business object. You can see the structure of this object in the Consumer's Profile tab. Setting up Consumer Segmentation explains why you might need to add attributes to the consumer business object.	
To add attributes to the consumer business object:	
The default display name is the value of the Name field.	
You can map a message to a consumer either when you create a property or when you create a transaction.	
Do the following to create a message property to hold the value of Consumer_ID and map the property to an attribute on the consumer object.	
The Message Property dialog box opens.	
This topic lists the ways you can monitor consumers. The list orders these monitoring tasks from least to most detailed. Each listed task directs you to where you can perform the monitoring and provides a link to more detailed information.	
In general, there are two views that offer transaction performance information segmented by consumer:	
If you have defined a consumer that participates in different transactions, the Analysis tab and the information presented in the main view for that consumer will display values that aggregate performance measurements for all transactions that involve the consumer.	
Before you can monitor consumers, you must map messages to consumers and enable segmentation by consumer. See Mapping Messages to Consumers for more information.	
To get information about a consumer definition, select the consumer in the Explorer > Consumers view, and select the Profile tab. The tab shows the name of the consumer, its ID (useful in some CLI commands), any description you entered when you created the consumer, and any attributes you have created for the consumer business object.	
To monitor consumers:	
Navigate to Dashboards > Operational Health Summary and look for Consumers information.	
Navigate to the Analysis tab, Consumer Usage panel in the Transactions view, and select a transaction.	
Business Transaction Management creates consumers in one or more of the following ways:	
importBusinessObjects	
command. This section explains this last option: how you use the management console to create consumers. It also explains how you delete consumers.	
To add consumers using the management console	
The Create Consumer dialog box opens. The contents shown depend on how you have defined the consumer business object. Any custom attributes you have defined are shown in the Attributes area.	
The value of the Name field is used as the display name for the consumer in the Management Console.	
You can set up filtering on the value of the Notes field.	
To delete consumers using the management console:	
The Delete Consumer dialog box opens.	
As consumers are discovered and added to the Business Transaction Management sphere, they are named according to the value of the message property to which you mapped them. For example, if you mapped them to a message property that holds an email address, the name of the consumer displayed in the Management Console is the email address of the consumer.	
You can edit the name of a consumer by editing the consumer profile.	
You should do this only if you created a custom attribute on the Consumer object and mapped the message property to that custom attribute. Otherwise, message traffic will no longer be segmented for that consumer. See Mapping Messages to Consumers for more information.	
For example, in the following consumer profile, you could edit the Name field to provide the name of the consumer whose email address is listed. Whatever you enter in the name field becomes the format and content used to display the consumer in the console. But make sure that the property used for segmentation is mapped to the User ID attribute, which remains the email address.	
Another reason you might edit the consumer profile is to add notes. You can use the value of the Notes field to set filtering.	
To edit a consumer profile:	
The Edit Profile for consumer_name dialog box opens. Make your edits.	
RequiredBusiness Transaction Management application role: btmadmin.	
You can customize the text of labels in the Management Console that by default use the terms "Consumer" or "Consumers". For example, you might want to monitor service levels and usage per department, rather than per individual. In this case, it might make sense to change the labels in the Management Console to use the term Department instead of Consumer. You should specify both the singular and plural forms of your term.	
Your modified label will be used in the Navigator, in the Analysis pane names, in the Filter tool, and so on.	
To modify the Consumer label:	
The Edit Data Model Attributes dialog box opens.	
Business Transaction Management alerts you when defined performance standards are violated or when conditions you specify are satisfied. This chapter explains how you define and work with service level agreements and conditions. These are powerful tools that enable you to evaluate performance at critical junctures.	
This chapter contains the following sections:	
In addition to ongoing monitoring of the performance of services, endpoints, and transactions, you can have Business Transaction Management alert you when specific events occur.	
Business Transaction Management issues several types of alerts:	
You define standards of performance using one or more service level agreement policies that you then apply to an endpoint, service operation, or transaction.	
SLA violation alerts can be queried, filtered, and viewed on the Alerts tab of the related service, endpoint, operation, or transaction instance. SLA alerts in the last hour are displayed using the Alerts in the Last Hour > SLA Alerts view (from the Navigator). Alerts are also displayed on the operational summary dashboard.	
In this case, when performance deviates from the Warning Value threshold set in an SLA policy, a warning alert is issued, and when it deviates from the Failure Value threshold set in an SLA policy, a failure alert is issued. The Warning Value is optional.	
A condition is created on a transaction and is based on evaluating messages and message content per transaction instance.	
Condition alerts can be queried, filtered, and viewed on the Alerts tab of the related transaction instance. Alerts issued in the last 24 hours can also be filtered and viewed using the Alerts in the Last Hour > Condition Alerts view (from the Navigator). The dashboards include various condition alert counts.	
You might define conditions to enable fault monitoring on transactions, to test for specific property values, or to report a missing message.	
To check for system alerts, do one of the following:	
A service level agreement (SLA) policy lets you set standards of performance for your business applications and then monitor deviations from those standards. When deviations occur, an alert is issued and displayed in the Management Console.	
Using SLA's you can get information about events like the following:	
You can apply SLA policies to many different objects: transactions, services, endpoints, individual operations, and consumers. You can also apply one SLA policy to any number of objects in your system, for example, to all transactions, or to any subset of the objects mentioned. Not all SLA policies are appropriate to all objects.	
When you define an SLA you must specify the following information	
If you need to shut down an endpoint without affecting the state of your SLAs, you can schedule a downtime for the endpoint before shutting it down. Instrument measurements continue to be collected and displayed during scheduled downtimes, but these measurements are not used for SLA evaluations.	
When you create an SLA policy, you specify some number of performance objectives, where each objective is based on one of the monitoring instruments. For example, you might specify a performance objective based on the average response time instrument. You also specify a valid range, what would trigger a warning value, and what would trigger a failure value. The Warning Value is optional.	
Business Transaction Management evaluates the performance of your system against your SLAs on a periodic basis. When you create an SLA, you specify:	
Fixed periods begin and end at defined times and the evaluation occurs only once, at the end of the period. You set the evaluation timing by specifying an exact time for the evaluation to occur, which is also the end of the period. For example, you can set the fixed period to be one month, and start the evaluation on the second day of the month at noon.	
Consecutive fixed periods do not overlap.	
Rolling periods begin and end relative to the evaluation timing. You set the evaluation timing by specifying an evaluation frequency. At each evaluation, the end of the period is the time of evaluation, and the beginning is the length-of-the-period earlier. For example, you can define a rolling ten minute period with evaluation occurring every two minutes.	
Consecutive rolling periods do overlap.	
You define a service level agreement (SLA) by creating an SLA policy. Depending on the type of SLA policy you choose, you might have to perform a set of tasks before applying the policy. The three types include the following:	
To create an SLA for services, choose Create > SLAPolicy > Service SLA, and then choose the fixed value type from the submenu.	
To create an SLA for transactions, choose Create > SLAPolicy > Transaction SLA, and then choose the fixed value type from the submenu.	
The SLA policy tool opens.	
The SLA policy tool should now display one performance objective for each instrument that you picked.	
(In order to choose operations, you must open the tool by first selecting an object and then choosing Create > SLAPolicy for selected_object.)	
If the objective is for an operation, the values pertain to only that operation. If the objective is for a service or endpoint, the values pertain to the total or average for all operations on the service or endpoint (total if the instrument is a counter, such as Traffic; average if the instrument is an averaging instrument, such as Average Response Time).	
Before setting your baselines, you can delete previously set baselines by running retrieveObjectData	
with the -delete	
option set.	
Before you can define a baseline SLA, you must do the following to set the baseline:	
retrieveObjectData	
CLI command to retrieve the performance history that you want to use as a baseline for your SLA. retrieveObjectData	
CLI command as an input file, run the setBaseLines	
CLI command to set the baselines for your SLA. To define a baseline SLA	
To create an SLA for transactions, choose Create > SLAPolicy > Transaction SLA, and then choose the baseline type from the submenu.	
To create an SLA for services, choose Create > SLAPolicy > Service SLA, and then choose the baseline type from the submenu.	
The SLA policy tool opens.	
The SLA policy tool should now display one performance objective for each instrument that you picked.	
If the objective is for an operation, the values pertain to only that operation. If the objective is for a service or endpoint, the values pertain to the total or average for all operations on the service or endpoint (total if the instrument is a counter, such as Traffic; average if the instrument is an averaging instrument, such as Average Response Time).	
Before you can define a usage SLA you must map messages to consumers and enable segmentation for the given transaction.	
The SLA policy tool opens.	
The SLA policy tool should now display one performance objective for each instrument that you picked.	
In order to choose operations, you must open the tool by first selecting an object and then choosing Create > SLAPolicy for selected_object.	
If the objective is for an operation, the values pertain to only that operation. If the objective is for a service or endpoint, the values pertain to the total or average for all operations on the service or endpoint (total if the instrument is a counter, such as Traffic; average if the instrument is an averaging instrument, such as Average Response Time).	
After you define an SLA policy, you might need to view it, modify it, disable it, duplicate it, or delete it. This section explains how you accomplish these tasks.	
To View an SLA Policy Definition	
To View which Policies Are Applied to an Endpoint, Service, or Transaction	
To View All the Objects to which a Policy Is Applied	
To View the Status of a Policy	
The status of a policy is either displayed in the upper right hand corner of its Profile tab, or it is displayed in the Policy Status column of the Policies tab if you select to view an individual target. Status values include applied	
, pending	
, rejected	
, disabled	
, or deleted	
.	
To Modify an SLA Policy	
To Disable a Policy	
You can disable policies in one of two ways; the second method is an abbreviated version of the first.	
To Duplicate a Policy	
Duplicating policies might be useful in those cases where you have defined criteria or settings that are complex and do not want to recreate the work to define a policy that is very similar to the one you have already defined.	
To Delete a Policy	
To delete a policy, select the policy in the main pane and choose Delete<Policy> from the Modify menu.	
This section lists the ways you can monitor compliance of SLAs. Monitoring tasks are ordered from high-level to low-level (top to bottom). Navigation directions are given for each task.	
To monitor:	
Navigate to Dashboards > Operational Health Summary	
Navigate to Alerts in the Last Hour > SLA Alerts.	
PlaceOrder	
) Navigate to object type > the Compliance Status icon for the specific object in the main area.	
For example, select Transactions in the Navigator and look at the Compliance Status icon for a transaction in the main area. The green circles indicate that the object is currently in compliance.	
PlaceOrder	
) Navigate to specific object > SLA Compliance tab.	
For example, select Transactions in the Navigator, select the transaction of interest in the main area, and click the SLA Compliance tab.	
Navigate to specific object > Alerts tab.	
You can also use the Analysis tab for a particular object and look at the Violation Alerts panel to see violations triggered during a particular period.	
The SLA Compliance tab displays the current state of SLA compliance for the selected object, either a transaction, service, endpoint, operation, or consumer. Because some types of information are relevant to only certain types of objects, the layout of the Compliance tab can vary from object to object.	
The SLA Compliance tab has two subtabs, Threshold Compliance and Baselines.	
There are no baselines for consumers. The information that is displayed on the Threshold Compliance subtab for other object types is displayed directly on the SLA Compliance tab for consumers. This information is described below.	
The Threshold Compliance subtab uses a grid view. Each row represents one performance objective.	
The columns provide various types of static information that identify and define the objectives. Also provided are two dynamic columns with real-time monitoring values. These are the Value and the Current Status columns.	
The Current Status column can have three possible values:	
The Value column displays the current value of the instrument on which the objective is based	
Click the magnifying glass next to a value to pop up a chart showing the instrument's recent history, for example:	
The chart displays a time period equal to the SLA's evaluation period. The right-hand edge is the current time. In this example, values above the yellow line have crossed the warning threshold. Those above the red line have crossed the failure threshold. (If you set up an objective whose value must remain above a specified threshold, then colored warning and failures areas are displayed below the threshold lines.)	
Objectives are listed per consumer only if the objective is part of a usage SLA. For objectives that are not part of a usage SLA, the Consumer column is empty.	
If you need to shut down a service without affecting the state of your SLAs, you should schedule a downtime for the service before shutting it down. Instrument measurements continue to be collected and displayed during scheduled downtimes, but these measurements are not used for SLA evaluations.	
In order to schedule downtime of a service, you must first create a downtime schedule and then add the schedule to each of the service's endpoints.	
This section also explains how to view a schedule, how to remove a schedule from and endpoint, and how to delete a downtime schedule from all endpoints.	
To Create a Downtime Schedule	
The pick a day of month options let you schedule by a numeric day of the month, for example, on the 1st day of each month.	
The pick a day of week options let you schedule by the name of a day, for example, on the 1st Monday of each month.	
To Add a Downtime Schedule to an Endpoint	
The Set Endpoint Downtime Schedule tool opens.	
To View Scheduled Downtimes for an Endpoint	
The name of the schedule is shown, followed by a list of all events specified for that schedule.	
To View All Schedules	
To Remove a Downtime Schedule from one Endpoint	
The Set Endpoint Downtime Schedule tool opens.	
To Delete a Downtime Schedule from All Endpoints	
You can associate one or more conditions with a transaction. A condition is an expression that Business Transaction Management evaluates against a transaction instance. You might use conditions to have Business Transaction Management let you know about the following kinds of events:	
You can define three types of conditions for a transaction:	
When a condition evaluates to true, Business Transaction Management does the following:	
Conditions are evaluated on a per-instance basis; therefore, instance logging must be enabled. If you define a condition for a transaction and you have not enabled instance logging, Business Transaction Management automatically turns it on for that transaction.	
When you define a condition, you also assign a severity level to the alert that will be issued when the condition evaluates to true. Severity levels include info, warning, and failure.	
Working with Conditions explains how you define conditions, view condition information, modify a condition, and delete a condition.	
You must observe the following limitations when defining content-based conditions.	
operation.request	
, operation.reply	
or operation.fault	
). The system evaluates a content-based condition when the message for which it is defined is seen. If the condition evaluates to true, Business Transaction Management will correlate back to the transaction's start message to make sure that the instance that has satisfied the condition has been called from within the transaction. If so, the resulting instance is assembled and saved for the time duration specified on the transaction's storage settings Retain archived condition instances.	
The system begins to evaluate a missing-message condition when it sees the starting message for the transaction. It then looks for the message for the period specified in the condition definition. If it does not see the message in that period, the missing message condition evaluates to true.	
Once you have defined a condition on a transaction, it is listed in the transaction's Conditions tab.	
Alerts are commonly thought to signal that something bad has happened, for example, that an error has occurred. However Business Transaction Management uses condition alerts to signal the occurrence of any kind of message pattern. So, depending on the condition definition, an alert could signal a positive event: a customer has doubled an order, a process has attained a certain level of efficiency, sales in a particular region have exceeded the norm, and so on. You can use severity settings to signal whether the alert denote a positive event (info level) or a negative one (warning or failure level).	
Once an alert is issued, you have several ways to deal with the situation. You can:	
Condition alerts that have occurred can be queried, filtered, and viewed on the Alerts tab of the related transaction instance. Alerts created in the last 24 hours for all objects can also be filtered and viewed using the Condition Alerts view (from the Navigator bar). The dashboards also include various alert counts.	
This section explains how you complete the following tasks in working with conditions:	
Viewing Condition Alert Information, provides information on viewing alert counts and alerts that are generated when a condition is met.	
When you create a transaction, a fault monitoring condition is automatically created on the transaction and is disabled.	
To Check Fault Monitoring Status	
To Enable Fault Monitoring	
How you define a condition differs, depending on whether it's a content-based condition or a missing message condition. Both options are described below.	
To Define a Content-Based Condition	
Associating a severity level with a condition allows you to filter your views of alerts based on this attribute.	
The Property button is displayed only if you have defined properties for the selected object.) The table below describes the use of the buttons. Once you click a button to select an element, a row is added to the Criteria used to define the condition. For each row, select an operator, and a value to test.	
When you are done, click Apply.	
Buttons	Description
---	---
New Property	If you need to define a property to base the condition on and you have not done so already, you can use the New Property button to create one.
Property	Select an existing property.
Fault	Select the operation whose status interests you, and specify whether you are looking for a particular code or any fault in the Criteria section.
To Define a Missing-Message Condition	
To define a missing message condition, you must specify the message whose arrival time interests you and how much time must elapse before its absence raises an alert. The absent message can be a request, a response, or any fault.	
Drop-down list	Description
---	---
Operation name	Select an operation from the drop down list.
Operation phase	Select request, response, or fault from the drop down list
Evaluation period	Select the period of evaluation: either before the transaction's maximum duration has expired or Use timer. If you select Use timer, you must specify the time period in milliseconds. In either case, Business Transaction Management will start timing on a per instance basis when the transaction's start message arrives.
You can enable and disable conditions individually or multiple conditions at once.	
To Enable or Disable an Individual Condition	
To Enable or Disable Selected Conditions	
When a condition evaluates to true, the system tracks its occurrence and automatically creates a condition alert. This section explains the various ways Business Transaction Management displays count and condition alert information, and it explains how you can modify the amount of time that alerts are stored.	
You cannot manually delete alerts.	
You can view count information condition alerts as follows:	
You can also edit the summary view (for a transaction) to show a count of condition alerts and the current condition alert rate by using the column chooser and selecting the Condition alert and Condition alert rate instruments. The Condition alert instrument specifies the condition occurrences in the specified period. The Condition alert rate instrument specifies the number of condition occurrences per hour in the given period.	
You can view condition alerts in the following ways:	
Condition alert detail includes the following information:	
By default logged information for alerts expires after 1 year (31536000 seconds).	
You can change the alert expiration time as follows:	
This chapter explains how you create reports based on the performance information gathered by Business Transaction Management.	
It contains two sections:	
Business Transaction Management provides the following elements to help you create reports:	
retrieveObjectData	
command, which produces the data that you want to use in your report. You specify the data you are interested in using command parameters. For example, you could extract data about fault count by service, maximum response time by transaction, condition alert rate by transaction, and so on. retrieveObjectData	
commands that you can use for the type of report you want to generate. retrieveObjectData	
output files that you can use to experiment with your reporting tool without having to generate data. Material to help you create reports is found in the following directory:	
BTM_Install_Directory\samples\reports	
The directory includes two sub-directories:	
reports.xls	
file, an Excel spreadsheet that shows, for each template, the appropriate retrieveObjectData	
command that will provide the output data to be combined with the template to generate the report. For example, the retrieveObjectData	
command to be used with the AvgResponseTimeByService	
template is	
Or, the retrieveObjectData	
command to be used with the FaultCountByService	
template is	
retrieveObjectData	
output files that you can use to see what reports might look like without having to generate data. Using the sample templates and command lines for reference, you can learn to create the output data and the templates of your choice to generate reports. You might also need to use the listInstruments	
command to determine what attribute names and segment names to use for the retrieveObjectData	
command.	
For information on how to use Business Transaction Management templates when working with BI Publisher, visit http://www.oracle.com/support/contact.html	
or visit http://www.oracle.com/accessibility/support.html	
if you are hearing impaired.	
This chapter introduces the Business Transaction Management command line interface (CLI), which you can use to execute commands as well as scripts. It explains how you use the CLI, how you get help and version information, how you can execute commands securely, and it describes the system variables you can set to use with commands. It includes the following sections:	
In addition to commands, Business Transaction Management also provides several utilities. These are described in Chapter 10, "Utilities."	
The Business Transaction Management Command Line Interface (CLI) allows you to issue management commands from the command line or through the use of scripts (in bash, perl, ruby, DOS). You can use the CLI from the Unix and DOS command lines, and any other environments that work with your Business Transaction Management installation.	
CLI commands allow you to configure the system, manage DNS aliases, resolve replication issues, register services, manage metadata, control monitoring, apply policies, migrate data, or generate data needed for reporting.	
The CLI executable (btmcli.bat on Windows and btmcli.sh on Unix-like systems) is located in the BTM_Install_Directory/tools directory. On Windows platforms, the CLI uses the JRE bundled with Business Transaction Management. On Unix-like systems, you must specify a JRE to use by doing one of the following:	
There are several command line utilities for performing additional actions. See About Command Line Utilities for more information.	
To get a list of all CLI commands with a brief help summary, enter the following command:	
To get detailed help for an individual command, enter a command like the following:	
To get version information, use the following command:	
You can execute a Business Transaction Management CLI command or script in any command shell using the following syntax:	
btmcli commandName commandFlags	
To execute a single command, specify the command and its parameters at the command prompt. For example:	
To execute a script, specify the name of the script at the command prompt. For example:	
Nearly all CLI commands require that you provide a credential in the form of username:password	
to execute the command.	
You can provide this credential in one of two ways:	
-l	
flag to the command. AP_USER_LOGIN	
environment variable to the value of the credential. In this case, you do not have to specify the -l	
flag. Whether you use the -l flag or the environment variable, you can specify the credential in one of two ways:	
AP_USER_LOGIN	
environment variable to that username:password value. username:password	
credential in a credential store, and passing the credential name to the command or by setting the AP_USER_LOGIN	
environment variable to the value of that credential name. The following examples use the btmcli configure	
command to illustrate each case:	
-l	
flag is specified because the AP_USER_LOGIN	
environment variable has been set to joanna:abracadabra	
. JoannaCred	
has been defined by thecredStoreTool	
command as follows: The configure	
command will then look like this:	
JoannaCred	
has been defined by the credStoreTool	
command as follows: The AP_USER_LOGIN	
environment variable has then been set to JoannaCred=joanna:abracadabra	
. The configure	
command will then look like this:	
The following table lists CLI commands in alphabetical order and provides a summary of the command action.	
Command Name	Description
---	---
addBaseAddressAlias	Add the specified alias for the entry point with the given base address. If another entry point with this alias as its base address is already known to the sphere, the two entry points and their contents are merged, and duplicate WSDLs and endpoints are removed.
addNodeAlias	Add network aliases to an already registered node.
addPathAlias	Use the addPathAlias command to add an alias representing an alternative URL path that can be used to access the specified WSDL or endpoint. Specifying this alias can help prevent duplicate artifacts from being created during discovery.
configure	Read a configuration xml file and use the information to configure the installation associated with the given sphere URL.
configureAlivenessCheck	Specify the preferred method for the sphere to check the aliveness of endpoints, rather than using the default ping.
createOrUpdateGenre	Specifies the name of a new service or endpoint genre, and identifies a custom icon to be used in representing the new genre.
createOrUpdatePolicy	Create or update the specified policy directly in the sphere.
createSettingsDocument	Use the createSettingsDocumentcommand to create a settings document for input to the createOrUpdatePolicy command.
credStoreTool	Creates, obtains, or deletes the specified type of credential from the credential store.
encryptPassword	Convert the specified text string using the Business Transaction Management encryption engine. The resulting cipher text appears in the command output.
exportBusinessObjects	Create a settings document for input to the createOrUpdatePolicy command.
exportMessages	Export messages for an endpoint for a specified period of time. Exporting messages can be useful in testing and debugging. You have the option of exporting messages to a file; whether you do or not, output is always sent to the Console.
exportPolicies	Export the specified policies either to stdout, or to the named output file. Policies can be exported by name, type, or by means of a query that defines a set of policies.
exportPolicyTemplates	Export the specified policy templates either to stdout, or to the named output file. Policies templates can be exported by name, type, or by means of a query that defines a set of policies.
exportProfile	Export the profile values for the specified object(s) either to stdout, or to the named output file. Profiles can be exported by name or id.
btmcli exportSchedules	Export schedules from the target sphere. You can output the schedules to a file or to stdout. Schedules can be exported by name or by means of a query that defines a set of policies.
exportTransactionDefns	Export the specified transaction definitions. If you do not specify an output file, the definition is sent to stdout.
generateMonitoringScript	Generate a batch script that you can use later to recreate the system's current monitoring state.
getSetupData	Write the setup file for the specified service to standard output. You can use this setup file as input for the putSetupData command.
importBusinessObjects	Import one or more of the specified business objects described by the specified XML file into the target sphere. By default, this command replaces all existing objects that are older than the imported objects.
importPolicies	Import the policies contained in a previously created export file. The policies to be imported will be taken from the file specified by the -i parameter, or from stdin, if no such file is specified.
importPolicyTemplates	Import the policy templates contained in a previously created export file. The policy templates to be imported will be taken from the file provided by the -i parameter or from stdin if no such file is specified.
importProfile	Import a previously exported object profile into the system. Note that importing a profile does not cause new objects to be created, it only updates the profile attributes of existing objects.
importSchedules	Import previously exported schedules to the target sphere. By default, this command replaces all existing schedules that are older than imported schedules.
importTransactionDefns	Import previously exported transaction definitions to the specified sphere. By default, this command replaces all existing definitions that are older than imported definitions.
listInstruments	List the instruments defined by the policy templates in the system, as well as the attribute names and segments for each. You can use this information as arguments for the retrieveObjectData command.
listNodeAliases	List all the aliases for a single network node, or for all known network nodes.
mergeServices	Merge two versions of the specified service. This command removes the source version and moves its endpoints to the target version. After the merge, the target version contains all the endpoints from both versions. If the source version has any profile attributes or message properties that you want to retain for the merged versions, you must recreate these on the target version.
monitorEndpoint	Monitor the specified endpoint with the monitor agent where it is registered.
moveEndpoints	Move one or more endpoints from the source version to the target version of the specified service.
moveMeasurements	Move the measurements collected for a service or endpoint that has been deleted from the sphere to another endpoint or service that is its logical successor.
putSetupData	Read the setup file from a named file or from standard input and save it as the setup data for the specified service.
register	Register the services (found within the specified WSDL file) with the sphere and write the location URLs of the WSDL's service endpoints to standard output. This command produces the same output if the WSDL is already registered with the sphere.
registerDevice	Register a management device with the sphere. Currently, hardware and software load balancers are the only supported device type, and the F5 BigIP is the only fully-supported load-balancer. If you register multiple devices, you can use the
registerExternalContainer	Group the endpoints of one or more entry points (not part of an observed container) into their own external container. This is only necessary for manually-registered endpoints.
registerMonitor	Register a monitor agent with Business Transaction Management.
removeBaseAddressAlias	Remove the specified alias to the entry point with the given base address. The alias must be defined locally for this entry point only. Aliases defined at the network node level must be removed using the removeNodeAlias command.
removeDuplicateEndpoint	Remove the specified duplicate endpoint. Typically, you would use this command when the system discovers two endpoints with the same path but different host names due to a DNS alias that was not known to the system. Executing this command also adds the missing alias to make sure that future discoveries do not result in recreating the duplicate endpoint.
removeNode	Remove a network node from the sphere.
removeNodeAlias	Remove aliases from a registered node.
removePathAlias	Remove an alias representing an alternative URL path that can be used to access the specified WSDL or endpoint. Any future registration or discovery will again treat the two paths as distinct.
removePolicy	Remove an applied policy and optionally wait for the removal of the policy to complete.
removePolicyTemplate	Removes the specified policy template from the system.
renameEndpoint	Change the specified endpoint's friendly name in the sphere.
resetSphereUrl	Make sure the sphere URL for container services currently registered with this sphere matches the current sphere URL. You might need to use this command if the base address of the sphere changes.
retrieveObjectData	Retrieve profile and measurement data for one or more objects. You can use this data as input to a reporting tool.
sendEventNotification	Create and send an event notification using the Notifier Service. How the notification is handled is determined by the currently active subscriptions.
sendToNotifier	Send commands to the Notifier Service for processing. The commands are specified in the XML input file. The command returns the response document returned by the Notifier Service.
setBaselines	Set baselines for managed objects. The input document format is the same as the output of the retrieveObjectData command.
setDefaultLoadBalancer	Set the default device used to model routing entry points discovered from observed message traffic. In a simple environment with only one known load-balancer, that device is automatically used as the default. If you register additional devices, use this command to set which device should be used to model routing entry points.
showService	Show the structure of the service specified by the friendly name, qualified name, or URL of any endpoint for this service. You can also specify a single version of the service (-version) or the display of more detailed information (-verbose).
unmonitorEndpoint	Stop monitoring the specified endpoint with the monitor agent where it is registered. Once monitoring stops, no performance measurements are recorded, no messages are logged, and no transactions are traced.
unregister	Unregister the service, WSDL, or endpoint from the sphere.
unregisterContainer	Unregisters the specified container.
unregisterMonitor	Unregister the specified monitor agent from the sphere. Use this command only when the monitor has been taken offline permanently. Monitors must be offline long enough for the system to mark them down before you can unregister them.
updateProfileData	Update profile attribute data for the specified set of objects. This command only updates existing objects; if it cannot find the specified objects, it returns an error.
The following table describes environment variables that you can define for use with the Business Transaction Management commands in the place of commonly used command flags.	
Environment Variable	Flag Name Equivalent
AP_SPHERE_URL	-s
AP_USER_LOGIN	-l
credName=myCredentialName Typically these would be the credentials of a user with administrative privileges. See Authentication and Role Mapping for more information. You can encrypt passwords for use with the CLI using the	
Sample files are included with Business Transaction Management to help you become familiar with the CLI. Sample files related to the CLI can be found in the Business Transaction Management installation directory, and are organized as described below:	
cliCommands.xml	
) that defines macros for use with the CLI that can interact with and modify your Business Transaction Management installation. The macros are defined in such a way that you can use ant properties for common values that you are likely to use across many commands used in the same file (such as the sphere URL or the sphere login) build.xml	
) that imports the command definition file. This file contains examples of using the macro definitions in the command definition file to manage the Bookmart service deployment TomcatConfig.xm	
l,WebLogicConfig.xm	
l,WebSphereConfig.xml	
) containing the necessary parameter declarations that you can edit for your own environment to help you to perform initial configuration of a Business Transaction Management sphere using the configure command. A number of CLI commands require that you pass an attribute name as a flag value. This section lists valid attribute names for different object types.	
Name	Name
---	---
aliases	friendlyName
binding	gateway
businessContact	genericNote
businessNote	genre
contact	interface
container	isAlive
defaultCredentials	lastIsAliveChangeDate
dependsOnEndpoint	lastManagementChangeDate
deployment	lastManagementChangeIdentity
description	lastUpdateIdentity
endpointAppProtocol	lastUpdateMarker
endpointSoftwareType	location
endpointSource	managingIntermediaries
endpointTransportProtocol	note
endpointType	operations
firstRegistryDate	operationsContact
--	--
Name	
dependsOn	
operationName	
operationType	
propertyOverrides	
Name	Name
businessContact	name
businessNote	namespace
classifications	note
contact	operations
description	operationsContact
friendlyName	operationsNote
genericNote	owningEndpoint
lastUpdateIdentity	sourceType
lastUpdateMarker	supportContact
Interface Operation Attributes	
Name	
classification	
documentation	
operationName	
operationType	
properties	
sampleMessageNotes	
Name	Name
alive	lastIsAliveChangeDate
applicationGroup	lastManagementChangeDate
businessContact	lastManagementChangeIdentity
businessNote	lastUpdateIdentity
category	lastUpdateMarker
contact	managedDescriptionURL
deploymentNames	note
description	operations
documentation	operationsContact
endpoints	operationsNote
firstRegistryDate	organization
friendlyName	originalDescriptionURL
lastDeployDate	primaryDeploymentName
lastDeployIdentity	qualifiedName
The only transaction attribute is friendlyName	
.	
Name	Name
administratorUI	lastIsAliveChangeDate
baseAddress	lastDeployIdentity
businessContact	lastDiscoveryDate
businessNote	lastManagementChangeDate
connectionLimit	lastManagementChangeIdentity
contact	lastUpdateIdentity
containerInfo	lastUpdateMarker
firstRegistryDate	note
friendlyName	operationsContact
genericNote	operationsNote
hostName	osName
implementationType	osVersion
ipAddress	owner
isAlive	performanceRating
Name	Name
businessContact	isAlive
businessNote	lastDeploymentDate
contact	lastDeploymentIdentity
container	lastIsAliveChangeDate
deploymentCategory	lastUpdateIdentity
deploymentStatus	lastUpdateMarker
deploymentType	note
description	operationsContact
firstRegistryDate	operationsNote
friendlyName	pluginAgentPossible
genericNote	pluginAgentPossibleText
Name	
emailAddress	
informationURL	
name	
phoneNumber	
usage	
Notes Type Attributes	
Includes two attribute names: theNote	
and usage	
.	
Description Attributes	
Includes two attribute names: contacts	
and notes	
.	
Use the addBaseAddressAlias	
command to add the specified alias for the entry point with the given base address.	
If another entry point with this alias as its base address is already known to the sphere, the two entry points and their contents are merged and duplicate WSDLs and endpoints removed.	
The addBaseAddressAlias	
command accomplishes the same thing as the command removeDuplicateEndpoint	
when that command is given two endpoints that differ only in their base address.	
Using the -force	
option creates an entry point and its alias before any endpoints corresponding to that entry point are discovered or registered, thus preventing duplicates from being (mistakenly) created in the first place.	
Unlike the aliases created by the addNodeAlias	
command, aliases created by the addBaseAddressAlias	
command or the removeDuplicateEndpoint	
command apply to a single entry point. If the same alias is added at the network node level, either automatically by message observation or discovery, or manually by the addNodeAlias	
command, it will supercede the locally-defined alias for the entry point, and it will not be possible to delete that alias using the removeBaseAddressAlias	
command.	
You can preview the results of this command before committing to the changes it defines. After previewing, you must run the command again without the -P	
option to actually make the changes.	
Use the removeBaseAddressAlias	
command to remove an alias created with the addBaseAddressAlias	
command.	
Resolving Discovery Issues describes the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-baseAddress	--
-alias	--
-P	-preview
-f	-force
-s	-sphereUrl
-l	-userLogin
Examples	
The following example shows the addBaseAddressAlias	
command.	
Use the addNodeAlias	
command to add the specified alias to the network node identified by the canonical name. If the node does not exist, the alias is not added unless you also specify the -force	
option, in which case the node is created as well.	
Use the removeNodeAlias	
command to delete an alias created with the addNodeAlias	
command.	
See Resolving Discovery Issues for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-alias	-alias
-f	--
-s	-sphereUrl
-l	-userLogin
Examples	
The following example shows the addNodeAlias	
command.	
Use the addPathAlias	
command to add an alias representing an alternative URL path that can be used to access the specified WSDL or endpoint. Specifying this alias can help prevent duplicate artifacts from being created during discovery.	
Normally, path aliases are added automatically in one of two ways:	
removeDuplicateEndpoint	
command to remove an unwanted duplicate created due to message traffic being observed at a non-canonical URL for an existing endpoint. In the second case, adding the alias when the original endpoint is registered or discovered will prevent the duplicate from ever being created. So, you might add the addPathAlias	
command to a script used to recreate an environment that was observed in testing to have this problem.	
Use the removePathAlias	
command to delete an alias you created with the addPathAlias	
command.	
See also addNodeAlias	
for host name aliases and addBaseAddressAlias	
for other aliases in the authority part of the WSDL's URL.	
Look here for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-w	-wsdlUrl
-e	-endpointUrl
-alias	--
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the addPathAliascommand	
.	
Use the configure	
command to configure Business Transaction Management as an alternative to using the browser-based Configuration Wizard for initial configuration. You use the configure	
command in conjunction with an input file that contains specifications for various Business Transaction Management settings.	
Before executing the configure	
command, you must decide whether you want to store information in an embedded database, or in an Oracle database. If you want to store information in an Oracle database, you will need to install and set up the database before running the configure	
command.	
The sections following the syntax description provide additional information about the configuration process and the input file.	
Command Syntax	
Name	Long Name
---	---
-i	-inputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the configure	
command.	
The configure	
command checks every Business Transaction Management service for its current configuration state. If all services are in a configured state, the command exits and informs you that Business Transaction Management is configured. If there is a mix of configured and unconfigured services, the configure	
command attempts to configure the unconfigured services. If an error or exception occurs, Business Transaction Management logs the error and the configuration continues. When the configure	
command completes, it returns a message that describes all successful and unsuccessful service configurations.	
If all Business Transaction Management services are configured successfully, the command returns a "configured" message.	
You can run the configure	
command again following a configuration attempt where an error occurs, and the system will attempt to configure the service(s) that returned an error during the previous configuration attempt. The configure	
command does not try to reconfigure a service that reports a successful configuration.	
If you would like to reconfigure a service that has been configured successfully, you can run the getSetupData	
and putSetupData commands.	
Any reconfiguration of Business Transaction Management services requires a restart of the server.	
The Business Transaction Management installation directory contains a set of sample configuration files that you can use as a starting point for creating an input file that you can tailor for your environment. These sample files use the same format as the configuration file generated by the browser-based Configuration Wizard. The generated file is called essentialConfiguration.xml	
. See Backing up and Restoring Business Transaction Management, for information on its location on different platforms. As an alternative to using one of the sample files, you can perform initial configuration of Business Transaction Management using the Configuration Wizard, and then use the generated configuration file as the basis for the configure command's input file.	
The preference names in the configuration file, and their values, are both case sensitive. A sample configuration file that you can use to create your own input file is located in: BTM_install_dir/samples/cli/config_files/yourAppServerConfig.xml. There is a sample configuration file for each supported platform.	
Unlike the Configuration Wizard, the configure command does not allow you to stop midway through the configuration and then resume configuration at a later time. The configure	
command requires a complete configuration file -- if required parameters are missing from the file, the configure	
command returns an error.	
Password Encryption	
To supply an encrypted password for the configuration file, run the encryptPassword	
command and then copy and paste the resulting value into the configuration file.	
If you use a clear text password in the configuration file, Business Transaction Management encrypts the password when it stores the configuration information in the setup data of the appropriate system services.	
Configuration File Parameters	
The following table lists the parameters to use in the configure command configuration file.	
Alias Preferences	
You can specify alias values for the nodes running Business Transaction Management central services: sphere, performance, and transaction monitoring. In each case the preference value is a comma-separated list of alternative DNS names/IP addresses that can be used to access services on the respective server.	
For example, if the sphere URL is http://server1:8080/apcentral/sphere/	
, but the machine server1	
also has the DNS alias spherehost	
, you can set sphereAliases	
to spherehost	
to reflect that. If the machine's primary IP address is 10.10.22.44, but the sphere's container is listening on all lP addresses and the machine has a second network interface running on 10.10.22.47, you could set sphereAliases	
to spherehost	
, 10.10.22.47 to reflect both these aliases.	
If all Business Transaction Management central services are running in the same container (the demo case), the performanceAliases	
and transactionAliases	
are ignored. If the servers are running in different containers but on the same machine as the sphere, the aliases are applied to the same node definition. So, in effect, the performance and transaction aliases are added to those for the sphere, rather than tracked separately.	
Note: All parameters are type=string	
, except for the acceptLicenseTerms	
parameter, which is type=boolean	
.	
Parameter Name(s)	Required?
sphereUrl	YES
databaseChoice	YES
If you specify embedded, ignore all subsequent database settings.	
nodeAliases	No
performance.nodeAliases	No
transaction.nodeAliases	No
deploymentUsername, deploymentPassword	YES
agentServiceDB_databaseUrl, agentServiceDB_provider, agentServiceDB_userName, agentServiceDB_password	NO
sphereServiceDB_databaseUrl, sphereServiceDB_provider, sphereServiceDB_userName, sphereServiceDB_password	NO
exmServiceDB_databaseUrl, exmServiceDB_provider, exmServiceDB_userName, exmServiceDB_password	Required if databaseChoice != Embedded
performanceDB_databaseUrl, performanceDB_provider, performanceDB_userName, performanceDB_password	Required if databaseChoice != Embedded
performanceUrl	YES
transactionURL	NO
base_locationType, base_directory, base_maxDuration, base_maxSize, base_numFiles	Optional
Note: If you change the directory location using the above parameters, you are required to also include the base_maxDuration, base_maxSize and base_numFiles parameter settings.	
Use the configureAlivenessCheck	
command to specify whether the sphere checks the aliveness of containers or endpoints and the preferred method for doing so.	
Command Syntax	
Name	Long Name
---	---
-baseAddress	--
-e	-endpointUrl
-method	--
See below for more details.	
-alternateUrl	--
-endpointCreds	--
-pingHostPort	--
-s	-sphereUrl
-l	-userLogin
Choose the method that best suits the endpoint you are monitoring. For example, for WebLogic JAX_RPC or JAX-WS services, fetching the generated WSDL will succeed if the container is up and the service is deployed and running, so it is as good an aliveness check as actually calling the service without the inconvenience of having a sample message to send that is both valid and harmless. The advantage of the getwsdl	
method compared to the arbitrary http fetch (geturl	
) is that you can specify it at the base address level and get the effect of configuring the aliveness check for every endpoint in that base address to fetch its own wsdl without running a separate configureAlivenessCheck	
command for each of them. However, there are possible disadvantages:	
Examples	
The following example shows the configureAlivenessCheck	
command with the getwsdl	
method for performing the aliveness check.	
Use the createOrUpdateGenre	
command to create or update the definition of the indicated service or endpoint genre in the sphere. The genre object provides the information needed to properly display service and endpoint type information such as friendly name and icon.	
In general, this command will be used when an observer is released off-cycle. At such times, explicit instructions will be provided about the createOrUpdateGenre	
command to use to teach your current system how to recognize the new genre and how to display services or endpoints of that type.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-id	--
-t	-type
-iconUrl	--
-overwrite	--
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the createOrUpdateGenre	
command used to create the endpoint type MyGenre	
.	
Use the createOrUpdatePolicy	
command to create or update the specified policy directly in the sphere.	
Creating or updating a policy might involve the following three steps:	
createSettingsDocument	
command. createOrUpdatePolicy	
command, providing the settings document created in Step 2. To create a new policy, you need to supply only a template name, type, and name. If the policy requires settings, you must also provide a settings document. You can provide additional information to more precisely identify the source template to specify the initial state of the policy, but these are not required.	
To update a policy, you must provide a name, type, the -overwrite	
flag, and any arguments for elements you want to update. Any values you do not specify remain unchanged. Because the policy name and version identify the policy, you cannot use this command to change either. Instead, create a new policy with the desired name and/or version.	
Command Syntax	
Name	Long Name
---	---
-templateName	--
-t	-type
-subType	--
-templateVersion	--
-n	-name
-V	-version
-desc	-description
-settings	-settingsDocument
-criteria	--
-enable	--
-disable	--
-overwrite	--
-f	-force
-s	-sphereUrl
-l	-userLogin
Application Criteria	
When creating or modifying a policy, you can specify a set of criteria to be used in determining the monitored objects to which the policy can be applied. The format of each criterion in the set is as follows:	
monitoredObjectType [;query [,{UNION	EXCLUDE}]]+
For detailed information on how to specify criteria visit http://www.oracle.com/support/contact.html	
or visit http://www.oracle.com/accessibility/support.html	
if you are hearing impaired.	
Example	
The following example shows the createOrUpdatePolicy	
command used to enable the enforcement of a pre-existing policy, MyPolicy.	
Use the createSettingsDocument	
command to create a settings document for input to the createOrUpdatePolicy	
command.	
A settings document is an XML file. The source of the settings document can be a policy template or an existing policy.	
To determine the type and subtype of a policy or policy template, select the appropriate object in the Navigator. The type and subtype for each policy or policy template is displayed in the summary pane.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-t	-type
-subType	--
-V	-version
-fromPolicy	--
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the createSettingsDocument	
command used to create the settings document MySettingsDoc	
.	
Use the credStoreTool	
command to create, obtain, or delete a credential from the credential store. This command allows you to create three different types of credentials:	
You use these credentials to access btmcli commands. Nearly all commands require a user name and password.	
Business Transaction Management components use this type of credential to establish trust relationships between them.	
An AES encryption key is used to encrypt sensitive data that is transmitted from one Business Transaction Management component to another or when that sensitive data is stored in a database or on disk.	
Before you can use this command, you must install and configure the Oracle Java Platform Security classes as described in the Business Transaction Management Installation Guide.	
The syntax of the credStoreTool	
command varies depending on the type of credential you are working with. The sections that follow provide syntax and parameter information for each kind of credential.	
In all cases, the commands allow you to create a credential, to obtain a credential if you need to copy it to other servers, and to delete a credential.	
This option is more secure than specifying the user name and password on the command line itself or in a script. For additional information in how you use this credential to access btmcli commands, see Security Options in Accessing CLI Commands.	
Command Syntax	
Name	Description
---	---
-createCred	Specifies the name of the credential to be created.
-getCred	Specifies the name of the credential to be obtained.
-deleteCred	Specifies the name of the credential to be deleted.
-credType	The kind of credential to be created, obtained, or deleted. The default is up.
-credValue	If you do not specify this option, you will be prompted for a user name and password. The password entered will be masked with asterisks.
-showPwd	For the getCred option, asks that the user name and password be displayed.
Business Transaction Management components use this type of credentials to establish a trust relationship. When a component receives a request for a service, before it acts, it checks that it came from one of its trusted cohorts.	
Command Syntax	
Name	Description
-createCred	Specifies the name of the credential to be created.
-getCred	Specifies the name of the credential to be obtained.
-deleteCred	Specifies the name of the credential to be deleted.
-credType	The kind of credential to be created, obtained, or deleted.
-credValue	If you do not specify this option, you will be prompted for an issuer and secret. The secret entered will be masked with asterisks.
-showSecret	For the getCred option, asks that the issuer and secret be displayed.
An AES encryption key is used to encrypt sensitive data that is transmitted from one Business Transaction Management component to another or when it stored in a database or on disk.	
Command Syntax	
Name	Description
-createCred	Specifies the name of the credential to be created.
-getCred	Specifies the name of the credential to be obtained.
-deleteCred	Specifies the name of the credential to be deleted.
-credType	The kind of credential to be created, obtained, or deleted.
-credValue	Specify a set of bytes (base-64 encoded). These bytes might or might not represent a valid encryption key.
-genKey	AlgName refers to the JCE (Java Cryptographic Extension) reserved algorithm name. Currently only AES is supported. The KeySize is the size of the key that you want to generate. Different algorithms have different allowable key sizes. For AES, these are 128, 192, and 256, which refer to bits (not bytes). 128 is recommended because this is supported in all of the underlying platform's cryptographic implementations.
-showSecret	For the getCred option, asks that the size (in bytes) of the binary credential be displayed along with the base-64 encoded bytes themselves. For example, 16 bytes long ... Base-64 = [qvw1wEOxprSeJf2TbtuK5w==] If you do not specify this parameter, the bytes will not be displayed.
Use the encryptPassword	
command to convert the specified text string using the Business Transaction Management encryption engine and to write the resulting encrypted password to standard output.	
You can then copy and paste the output string to provide credentials to commands that require them.	
Command Syntax	
Name	Long Name
---	---
-password	--
Example	
The exportBusinessObjects	
command exports one or more of the specified business objects from the target sphere. The command outputs an XML document that you can use to import the business objects into another target sphere.	
You can specify the objects to be exported using the -query	
flag or the -exportAll	
flag.	
Command Syntax	
Name	Long Name
---	---
-exportAll	--
-query	-filterQuery
-o	-outputfile
-s	-sphereUrl
-l	-userLogin
Examples	
The following example shows the exportBusinessObject	
command used to output data to MyConsumers	
.	
Use the exportMessages	
command to export (request and reply) messages for an endpoint for the period during which logging has been turned on. Exporting messages can be useful in testing and debugging.	
You have the option of exporting messages to an XML file. If you do not specify a file, output is sent to the stdout.	
IMPORTANT: Message logging must be turned on for this command to work. See Defining, Modifying, and Deleting Transactions, for information about message logging.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-e	-endpointURL
-bn	-bindingName
-baseDate	--
-baseTime	--
-duration	--
-o	-outputFile
-max	--
-s	-sphereURL
-l	-userLogin
You can specify the endpoint for which messages should be exported in the following ways:	
The -e option is also useful to identify an endpoint that belongs to a replicated service; in this case, the endpoint name would not be unique, but the endpoint URL would.	
Examples	
The following command exports messages for the service MyShippingService	
.	
Use the exportPolicies	
command to export the selected policies either to stdout or to the given output file. You specify the policy to export in one of two ways:	
To determine the type and subtype of a policy, select Policies in the Navigator. The type and subtype for each policy is displayed in the summary pane.	
After exporting policies, you can use the importPolicies	
command to import them to another sphere.	
Not all files can be exported. Data that you cannot migrate between sphere environments includes the following items:	
You cannot migrate information that has been collected and written to either file or database storage through the application of logging policies on your managed services.	
You cannot migrate information that has been collected by the transaction management component of AMS.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-t	-type
-subType	--
-v	-version
-exportAll	--
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following command exports all policies known to the specified sphere to the file MyPolicies	
.	
Use the exportPolicyTemplates	
command to export the selected policy templates either to stdout or to the given output file. You specify the policy template to export in one of two ways:	
To determine the type and subtype of a policy template, select Policy Templates in the Navigator. The type and subtype for each policy template are displayed in the summary pane.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-t	-type
-subType	--
-v	-version
-exportAll	--
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following command exports all the policy templates to the output file MyPolicyTemplates	
Use the exportProfile	
command to export the profile values for the specified object(s). The resulting profile information is either written to the specified file, or to stdout if no file is provided. Specify the object(s) to be exported by specifying their type and then either their name or id.	
You can use the importProfile	
command to import the resulting XML file into another sphere.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-t	-type
-V	-version
-id	--
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following command exports profile information for all containers.	
Use the exportSchedules	
command to export schedules from the target sphere. You can output the schedules to a file or to stdout.	
You can specify all schedules, a specific schedule, or schedules of a certain type.	
After export, you can use the importSchedules	
command to import the schedules to a different sphere.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-query	-filterQuery
-exportAll	--
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following command exports all schedules known to the specified sphere to the file MySchedules	
.	
Use the exportTransactionDefns	
command to export transaction definitions known to the target sphere. If you do not specify an output file, the definition is sent to stdout.	
You can import exported definitions using the importTransactionDefns	
command.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following command exports all transaction definitions to the file MyTransactions	
.	
Use the generateMonitoringScript	
command to generate a batch script that you can use later to recreate the system's current monitoring state.	
The generateMonitoringScript	
command is part of the backup and recovery process. Using this command to capture the system's current monitoring state, allows you to restore that state later if the system is damaged and needs to be recovered.	
Command Syntax	
Name	Long Name
---	---
--	-scriptLanguage
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following example specifies that the script be written to the file MyMonitoringStateFile	
.	
Use the getSetupData	
command to write the setup file for a system service to standard output.	
You can redirect output to a file, modify the file, and then use that file as input to the putSetupData	
command to save the service setup data.	
You can also get the setup data from one service and transfer it to another. This command does not verify that the target service has been initially configured.	
See Backing up and Restoring Business Transaction Management, for a discussion of the use of this command in backing up the system.	
Command Syntax	
Name	Long Name
---	---
-e	-endpointUrl
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the getSetupData	
command.	
The importBusinessObjects	
command imports one or more of the specified business objects described by the specified XML file into the target sphere. Currently, the only business object defined is the consumer business object, which is the means used to segment transaction information by consumer.	
By default, this command replaces all existing objects that are older than the imported objects. You might use this command to migrate data from one environment to another or to populate your environment with a set of consumers.	
You provide the data to import using the -inputFile argument or standard input. The objects you import must have first been exported using the exportBusinessObjects	
command.	
If you are using this command to populate your environment with a set of consumers, the trickiest part is to create a valid input file. Here's a way to do this without having to guess at how to format your input file properly:	
exportBusinessObject	
command, specifying the name of an output file. Data about the consumer you created in Step 2 will be exported to an XML file. See About Consumers, for information on working with consumers.	
Command Syntax	
Name	Long Name
---	---
-i	-inputFile
-replace	-replacementLevel
-v	-verbose
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the importBusinessObject	
command used to import data from the file MyConsumers	
.	
Use the importPolicies	
command to import previously exported policies.	
The imported policies are taken from the file to which they were exported (-inputFile	
parameter), or from stdin if no such file is specified.	
Not all files can be imported. Data that you cannot migrate between sphere environments includes the following:	
You cannot migrate information that has been collected and written to either file or database storage through the application of logging policies on your managed services.	
You cannot migrate information that has been collected by the transaction management component of Business Transaction Management.	
By default, this command replaces all existing policies that are older than the imported policies.	
Command Syntax	
Name	Long Name
---	---
-i	-inputFile
-replace	-replacementLevel
-v	-verbose
-s	-sphereUrl
-l	-userLogin
Examples	
The following example shows the importPolicies	
command used to import data from the file MyPolicies	
.	
Use the importPolicyTemplates	
command to import the policy templates contained in a previously created export file. The policy templates to import are taken from the file provided by the -i parameter, or from stdin if no such file is specified.	
By default, this command replaces all existing templates that are older than the imported templates.	
Command syntax	
Name	Long Name
---	---
-i	-inputFile
-replace	-replacementLevel
-v	-verbose
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the importPolicyTemplates	
command used to import data from MyPolicyTemplates	
.	
Use the importProfile	
command to import a previously object profile into the system. The profile data to import is taken from the specified input file or from stdin if no file is specified.	
Importing a profile does not cause new objects to be created, but only updates the profile attributes of existing objects. For example, importing a service profile does not create the service or register it with the system, it only updates the profile for a service that has already been registered (by virtue of discovery or manual registration).	
Command Syntax	
Name	Long Name
---	---
-i	-inputFile
--	-match
-s	-sphereUrl
-l	-userLogin
Examples	
The following example shows the importProfile	
command used to import data from MyContainers	
.	
Use the importSchedules	
command to import previously exported schedules to the target sphere.	
By default, this command replaces all existing schedules that are older than the imported schedules.	
Command Syntax	
Name	Long Name
---	---
-i	-inputFile
-replace	-replacementLevel
-v	-verbose
-s	-sphereUrl
-l	-userLogin
Example	
The following example imports schedules from the file MySchedules	
and replaces all existing schedules.	
Use the importTransactionDefns	
command to import previously exported transaction definitions to the specified sphere.	
By default, this command replaces all existing definitions that are older than the imported definitions and it recreates any missing properties that are needed to define the transaction.	
Normally if a transaction contains errors, you cannot import it. Setting the -importWithErrors	
flag allows you to import the transaction anyway, but in a disabled state. You can then use console tools to fix the errors. Errors are displayed in the transaction's Profile tab.	
It is possible that a transaction depends on one or more properties (for example, if these properties are used for correlation). In this case, the system will recreate the properties if any have been deleted before the transaction is imported. The system does not recreate the property if the transaction does not need it. You can specify the -failOnMissingProperty	
flag to have the import fail if it cannot recreate all the properties needed by the transaction. To take an example:	
-failOnMissingProperty	
flag, the import operation will fail. exportProfile	
and importProfile	
commands to have the system automatically recreate any such non-definitional properties. Command Syntax	
Name	Long Name
---	---
-i	-inputFile
-replace	-replacementLevel
--	-failOnMissingProperty
--	-importWithErrors
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the importTransactionDefns	
command used to import data from the file MyTxDefns	
.	
Use the listInstruments	
command to list the instruments defined by the policy templates in the system, as well as the attribute names and segments for each. You can use this information as arguments for the retrieveObjectData	
command.	
Command Syntax	
Name	Long Name
---	---
-s	-sphereUrl
-l	-userLogin
Sample Output	
Here is some sample output for the listInstruments	
command.	
Example	
The following example shows the listInstruments	
command.	
Use the listNodeAliases	
command to list the aliases for all known nodes or for the specified node.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the listNodeAlias	
command.	
Use the mergeServices	
command to merge two services (thus removing duplicates). This command removes the source version specified with the -V flag and moves its endpoints to the target version specified with the -T flag. See Resolving Discovery Issues, for a discussion of the discovery issues that might require you merge two endpoints.	
After the merge, the target version contains all the endpoints from both versions. If the source version has any profile attributes or message properties that you want to retain for the merged versions, you must recreate these on the target version.	
Any historical data maintained for the source version is merged into the data maintained for the target version. Once the merge is completed, it is not possible to return to two distinct aggregated data sets for the two service versions.	
You can preview the results of this command before committing to the changes it defines. After previewing, you must run the command again without the -P option to actually make the changes.	
Use the moveEndpoints	
command to move selected endpoints from one service version to another.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-qname	--
-V	-version
-T	-targetVersion
-P	-preview
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the mergeServices	
command:	
Use the monitorEndpoint	
command to enable monitoring of the specified endpoint. The endpoint will be monitored by the monitor agent (or group) that discovered it.	
Once an endpoint is monitored, you can apply policies to it and the system can connect measurements, log messages, or record transaction instances that include the endpoint. In most cases, observer-discovered endpoints are automatically monitored. However, if the type of endpoint you want to monitor is not monitored by default, you might need to use this command to start monitoring.	
The observer communication policy settings determine whether an endpoint is monitored by default. The default settings for this policy always monitor discovered endpoints immediately. But the user can deselect that option for any or all genres.	
Use the unmonitorEndpoint	
command to disable monitoring.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-e	-endpointUrl
-s	-sphereUrl
-l	-userLogin
Examples	
The following example shows the monitorEndpoint	
command used to monitor MyEndpoint	
.	
Use the moveEndpoints	
command to move one or more endpoints from the source version to the target version of the specified service.	
You can only move the entire set of endpoints defined for a service in a given WSDL as a unit, regardless of how you identify the endpoints.	
You can preview the results of this command before committing to the changes it defines. After previewing, you must run the command again without the -P option to actually make the changes.	
The moveEndpoints	
command does not move any measurements. The measurements for the endpoint remain associated with the endpoint and nothing happens to these when the endpoint is moved to a new service. The measurements for the old service version continue to include data previously aggregated from the moved endpoint. The historical measurements for the target service version are unchanged; new measurements for the endpoint are included in the target version of the service.	
You can use this command to split a service in two by specifying the previously undefined version with the -T flag and using the -force flag.	
Use the mergeServices	
command to merge all endpoints from one service version to another.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-qname	--
-w	-wsdlURL
-e	-endpointUrl
-V	-version
-T	-targetVersion
-P	-preview
-f	-force
-newServiceName	If you use the -f option, you can use the -newServiceName flag to specify a friendly name for the target version that is to be created. If a target version already exists, this flag is ignored.
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the moveEndpoints	
command:	
Use the moveMeasurements	
command to move the measurements collected for a service or endpoint that has been deleted from the sphere to another endpoint or service that is its logical successor.	
Caution: Use this command with care. The system does not check to see that the services or endpoints are actually different iterations of the same object. Once merged, the measurements for the two objects cannot be separated.	
When you deploy a new version of a service known to the sphere, and the modified WSDL is registered or discovered, the qualified name of the service defined in the WSDL is expected to match the name of the service found in the WSDL the last time it was read. If there is no match and the service name change option (in the service versioning policy) has a value of "replace the previous endpoints (losing all measurements)," Business Transaction Management deletes the endpoints that were previously read from the WSDL and creates new endpoints belonging to the service currently defined in the WSDL.	
If only the namespace or service name defined in the WSDL has changed, the new endpoints might look the same as the old ones (same URL and binding), but they will have a different unique ID. Business Transaction Management depends on this ID to associate measurements with their respective objects; if the ID changes, it leaves measurements made for the old endpoints orphaned and inaccessible. If the service and endpoints defined in the updated WSDL are logically the same, you should use the moveMeasurements	
command to re-associate the measurements with the new incarnation of the service or endpoint.	
Since the old endpoint and service have already been deleted, the old object to move measurements from must be identified by its unique ID. You can determine what the ID of a deleted service is by checking the sphere system log, as follows:	
Because no metadata about the deleted object is known to the sphere, this command is limited in the validation it can do. The command will refuse to do anything if the target cannot be found or is not specified uniquely. It will also refuse to move any measurements if the ID specified refers to an extant object that has not been deleted from the sphere.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-id	--
-n	-name
-qName	The qualified name of the target service where to move measurements.
-V	-version
-e	-endpointUrl
-bn	-bindingName
-s	-sphereUrl
-l	-userLogin
Example	
The following examples show the use of the moveMeasurements	
command:	
Use the putSetupData	
command to read the setup file from standard input or a supplied input file and to save it as the setup data for the specified system service.	
See Backing up and Restoring Business Transaction Management, for a discussion of the use of this command in backing up the system.	
Command Syntax	
Name	Long Name
---	---
-e	-endpointUrl
-i	-inputFile
-s	-sphereUrl
-l	-userLogin
Example	
The following examples show files written as the setup file for another service at the specified endpoint.	
Use the register	
command to register the services (found within the specified WSDL file) with the sphere and write the location URLs of the WSDL's service endpoints to standard output. This command produces the same output if the WSDL is already registered with the sphere. You might need to explicitly register a service in those cases where Business Transaction Management cannot discover SOA-type components directly. For example, a service in a container that cannot be observed or in a container where no observer has been installed.	
The register command determines whether the specified WSDL has already been processed. If it has, and the -f (force) flag is not used, the system does not register the WSDL again.	
It is possible that Business Transaction Management does not correctly evaluate whether WSDLs are the same, and objects in the sphere might not correspond exactly to those in the WSDL. In this case, you can use the -f flag to reprocess the WSDL. For example, if you want to manually merge services with interfaces that aren't exact matches, you might then also want to reprocess the WSDL.	
You can use this command to register more than one service and to match these with friendly names and version information. (This reflects the capabilities offered by the GUI.)	
You can also specify a version for each service you register. Business Transaction Management does not enforce any specific versioning notation. For a service with existing replicates, there are two possibilities:	
By default, registered services are placed in the System container (in the Console this is shown in the Unassigned endpoints node). If you prefer to group services together in their own container, you can use the registerExternalContainer	
command to register a container and associate that container with the base address of the endpoints of the manually registered services.	
Command Syntax	
Name	Long Name
---	---
-w	-wsdlUrl
-L	-wsdlLogin
-service	--
-fn	-friendlyName
-V	-version
-f	-force
-s	-sphereUrl
-l	-userLogin
Example	
The following example registers the service in the specified wsdl using the "friendly name" AmazonSearch.	
Use the registerDevice	
command to register a management device with the sphere. Although Business Transaction Management is able to infer the existence of load balancing devices by analyzing message traffic, explicitly registering a device enables the display of its friendly name and of other information, and provides access to the device's administrative interface if any.	
Currently, hardware and software load balancers are the only supported device type for this command, and the F5 BigIP is the only fully-supported load-balancer.	
In most cases, Business Transaction Management automatically detects and models routing entry points by observing message traffic and reading destination information from the message header. However, if the observed messages do not carry information about their original recipient (the load balancer) in the HTTP Host headers, you will need to manually assign a routing entry point to the load balancer. You will also need to add target entry points to indicate where the messages are being routed. You need to use the Business Transaction Management management console to do this. See Setting up Load Balancers, (setting up a load balancer) for a full discussion.	
If you register multiple devices, you can use the setDefaultLoadBalancer	
command to set the default device. (Any newly discovered routing entry points will be modeled as part of the default device unless they belong to an F5 load balancer.)	
To unregister a device, you must use the management console.	
Command Syntax	
Name	Long Name
---	---
--	-baseAddress
-fn	-friendlyName
--	-vendor
--	-administratorUI
--	-phaseInLifecycle
--	-deviceLogin
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows how you use the registerDevice	
command to register an F5 load balancer.	
Use the registerExternalContainer	
command to group the endpoints of one or more entry points (not part of an observed container) into their own external container. This is only necessary for manually-registered endpoints. In the console, such endpoints show up under the Unassigned Endpoints node.	
Note that there is no command that allows you to move endpoints between containers individually; you have to use this command to move all endpoints starting with the given base address.	
By default, manually registered endpoints are allocated to the System container. The registerExternalContainer	
command allows you to create an external container for endpoints that you want to treat and examine as a group. For example, this container might allow you to model the fact that two or more base addresses for manually registered endpoints are located in the same application server.	
You cannot use base addresses from a physical container or a device, but you can use base addresses from another external container if you specify the -f flag. That is, you cannot group endpoints that have been discovered into an external container.	
The optional flags for this command allow you to specify information that is then displayed in the container's profile information. To update this information, execute this command again with different option values.	
When updating an existing container, if the first entry in the list of base addresses changes, the container's primary base address also changes. If you omit base addresses that previously belonged to the container, they are excluded from the container and returned to the System container.	
You can run this command before or after services with endpoints in this container have been registered.	
Command Syntax	
Name	Long Name
---	---
--	-baseAddress
-fn	-friendlyName
--	-vendor
--	-containerInfo
--	-osName
--	-osVersion
--	-administratorUI
--	-phaseInLifecycle
--	-caseInsensitive
-f	-force
-s	-sphereUrl
-l	-userLogin
Example	
The following example registers an external container that will contain the endpoints with the specified base addresses.	
Use the registerMonitor	
command to register a monitor agent with the sphere.	
Following installation and configuration of Business Transaction Management central services, you can deploy one or more monitor nodes to additional application servers for processing observed messages. You need to run the reigsterMonitor	
command for each monitor you want to add.	
If the nodes hosting Business Transaction Management monitors use aliases, you can run the addNodeAlias	
command to register the aliases with the sphere.	
Command Syntax	
Name	Long Name
---	---
-e	-endpointUrl
-fn	-friendlyName
-s	-sphereUrl
-l	-userLogin
Example	
Use the removeBaseAddressAlias	
command to remove the specified alias to the entry point with the given base address	
The alias must be defined locally for this entry point only. Aliases defined at the network node level must be removed using the removeNodeAlias	
command.	
The removeBaseAddressAlias	
command allows you to remove incorrect or outdated aliases from the system. Although it does not undo the removal of duplicate artifacts caused by the complementary addBaseAddressAlias	
command, any new discoveries for the base address and the ex-alias will again be treated as separate entities.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
--	-baseAddress
-alias	--
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the removeBaseAddressAlias	
command.	
Use the removeDuplicateEndpoint	
command to remove the specified duplicate endpoint.	
Typically, you would use this command when the system discovers two endpoints with the same path but different host names due to a DNS alias that was not known to the system. Executing this command also adds the missing alias to make sure that future discoveries do not result in recreating the duplicate endpoint.	
If duplicates differ only in their base address, it is assumed that other endpoints found under both base addresses are also duplicates. In addition, the service descriptors (WSDLs) for the duplicate endpoints are also deleted from the model. WSDLs and endpoints under the duplicate entry point that are not actually duplicates are not removed; they are moved under the remaining entry point.	
If the specified endpoint URL refers to a dependency-discovered endpoint and the duplicate URL refers to a discovered or manually-registered endpoint, the command is reversed: the duplicate endpoint is preserved and the base address of the endpoint URL is treated as an alias.	
You can preview the results of this command before committing to the changes it defines. After previewing, you must run the command again without the -P option to actually make the changes.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-e	-endpointUrl
-d	-duplicateUrl
-P	-preview
-s	-sphereUrl
-l	-userLogin
Alternate Means of Removing Duplicates	
In the following situations, the removeDuplicateEndpoint	
command will refuse to make the specified changes to avoid compromising the integrity of the model or destroying information that is not actually duplicated.	
In these cases, you might need to do the following:	
unregister	
command to unregister the service endpoints that cannot be removed with the removeDuplicateEndpoint command. addNodeAlias	
or addBaseAddressAlias	
commands to add aliases that help the system recognize endpoint duplication. Example	
The following example shows the removeDuplicateEndpoint	
command:	
Use the removeNode	
command to delete information about the specified node from the sphere database. Removing a node deletes all information related to that node including its aliases.	
Removing a node is not something you would normally need to do unless aliases for different machines have gotten so mixed up that you face the choice of pruning nodes or reinstalling the system. Under most circumstances (bad hosts file corrected, DNS alias changed to point to a different machine), removing an alias from one node and adding it back to a different node should be all that you need to do.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-f	-force
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the removeNode	
command.	
Use the removeNodeAlias	
command to delete alias information from the sphere database.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-alias	-alias
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the removeNodeAlias	
command.	
Use the removePathAlias	
command to remove an alias representing an alternative URL path that can be used to access the specified WSDL or endpoint. Any future registration or discovery will again treat the two paths as distinct.	
See also removeNodeAlias	
for host name aliases and removeBaseAddressAlias	
for other aliases in the authority part of the WSDL's URL.	
The removePathAlias	
command allows you to remove outdated aliases from the system. For instance, if a service descriptor has an alias added due to an HTTP redirect that is later disabled (WSDL URL A redirected to URL B, but now the two URLs represent different WSDLs), this command removes the alias so that WSDL A can be registered independently.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-w	-wsdlUrl
-e	-endpointUrl
-alias	--
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the removePathAlias	
command using an encrypted password.	
Use the removePolicy	
command to completely remove an applied policy from the Business Transaction Management system.	
Command Syntax	
To determine the type and subtype of a policy, select Policies in the Navigator. The type and subtype for each policy is displayed in the main pane.	
Name	Long Name
---	---
-n	-name
-t	-type
-subType	--
-V	-version
-wait	--
-f	-force
-s	-sphereUrl
-l	-userLogin
Example	
The following example removes the policy myLoggingPolicy	
from the sphere, and waits until the policy is removed before executing any other command.	
The removePolicyTemplate	
command removes the specified policy template from the system.	
Command Syntax	
To determine the type and subtype of a policy template, select Policy Templates in the Navigator. The type and subtype for each policy is displayed in the main pane.	
Name	Long Name
---	---
-name	--
-type	--
-subType	--
-version	--
-f	-force
-s	-sphereUrl
-l	-userLogin
Example	
The following example removes the policy template myPolicyTemplate	
from the sphere.	
Use the renameEndpint	
command to change the specified endpoint's friendly name in the sphere.	
When multiple endpoints at the same URL are given the same name in their respective WSDL definitions, giving them unique friendly names can make it easier to distinguish between them in future commands and in command output. You must provide the endpoint URL and a new friendly name. All other parameters are optional and are included only to help you distinguish the desired endpoint from others with the same URL.	
See Resolving Discovery Issues, for a discussion of the use of this command in resolving discovery issues.	
Command Syntax	
Name	Long Name
---	---
-e	--
-bn	-bindingName
-w	-wsdlUrl
-n	-name
-service	--
-qname	--
-V	-version
--	-interfaceQName
-fn	-friendlyName
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the renameEndpoint	
command used to rename CreditService	
to MyCreditService	
.	
Use the resetSphereUrl	
command to make sure that the sphere URL for container services currently registered with this sphere matches the current sphere URL. You might need to use this command if the base address of the sphere changes.	
Command Syntax	
Name	Long Name
---	---
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the resetSphereUrl	
command.	
The retrieveObjectData	
command retrieves profile and measurement data for one or more objects. You can use this command's output file in the following ways:	
Business Transaction Management provides Oracle BI Publisher templates that you can use with the command's output file to produce formatted reports. See Chapter 8, "Creating Reports," for more information on using these templates.	
setBaseLines	
command. In this case, you set performance baseline values for a set of objects by using the output file of retrieveObjectData	
as an input file to setBaselines	
. Setting baselines enables you to then create a baseline SLA policy. (Do not set the retrieveObjectData	
command's attribute if you are using the output file to set baselines.)	
Command syntax	
You can use the listInstruments	
command to get the information about attributes, segments, and instruments that you must pass as arguments to the retrieveObjectData	
command. If you specify a list of attributes and a list of segments, the command parser applies each segment to any instrument in the attribute list that has that segment.	
If no time values are specified, the last hour's data is retrieved in a single segment.	
Name	Long Name
---	---
-t	-type
-query	-filterQuery
--	-attributeNames
-segments	--
-inTheLast	--
-startTime	--
-endTime	--
--	-intervalSize
-format	--
-o	-outputFile
-metadata	--
-tablename	--
-s	-sphereUrl
-l	-userLogin
Example 1: Retrieving data for containers.	
Example 2: Retrieving the average response time for each service for purposes of reporting (note that -intervalSize	
is specified).	
Example 3: Retrieving the average response time for each service, endpoint, and operation for purposes of setting baselines (note that -intervalSize	
is not specified).	
Use the sendEventNotification	
command to create and send an event notification using the Notifier Service. How the notification is handled is determined by the currently active subscriptions.	
The system automatically generates alerts when one of the following happens:	
In addition to these cases, an administrator might also want to issue an alert to notify users that the system needs to come down for maintenance or upgrade, or to let users know that some administrative action will regenerate the data used to create reports. The sendEventNotification	
command is provided to enable this kind of notification. (It would also be possible to send an event notification using the sendToNotifier	
command, but it would be a lot more work.)	
Command Syntax	
Name	Long Name
---	---
-source	--
-n	-name
-topic	--
-subtopic	--
--	-severity
-message	--
--	-attributes
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the sendEventNotification	
command used to notify current subscribers that the system is about to be backed up.	
You can use the sendToNotifier	
command to manage email and web service subscriptions.	
The sendToNotifier	
command sends a command (specified in an XML input file) to the Notifier Service for processing. You can create an email subscription, list existing subscriptions, delete subscriptions, and so forth. The command returns the response document returned by the Notifier Service. To issue additional commands, you must call sendToNotifier	
again, specifying an input file that contains a different command.	
Command syntax for sendToNotifier	
is fairly simple, but creating the input command document can be complicated.	
Business Transaction Management currently supports email and web service subscriptions only through the command line interface.	
The command document, described at the end of this section, can contain an xml message (command) that accomplishes one of the following tasks:	
Command Syntax	
Name	Long Name
---	---
-i	-inputFile
-o	-outputFile
-s	-sphereUrl
-l	-userLogin
The use of sendToNotifier	
is one step in setting up email notification. The overall procedure also includes the following steps:	
sendToNotifier	
command to register a subscription to SLA alerts, condition alerts, and so on. (The input command document will contain a command that specifies which alerts you are interested in.) For example, the following document registers a subscription for condition alerts: You can also use sendToNotifier	
to list subscriptions and delete subscriptions. Here are sample command documents that illustrate how you would do this.	
To list subscriptions	
To cancel subscriptions	
Examples	
The following example shows the sendToNotifier	
command.	
A Notifier Service command (xml message) can be included in a command document that is input to the sendToNotifier	
command. Notifier service commands are described in the following subsections; they allow you to do the following:	
You may include only one command per document. To execute several commands, you must create a document for each command and invoke the sendToNotifier	
command for each document.	
The following subsections describe the commands you can include in a Notifier Document.	
Create an Email Subscription	
This command supports the following variations:	
In addition to the sample commands below, you also need to be familiar with the metadata used to specify alert types. This is described in the next subsection.	
Here is a more detailed example with comments:	
Create a Web Service Description	
This command supports the following variations:	
Get Subscriptions	
This command supports the following variations:	
Here are some examples for these actions:	
Get all subscriptions	
Get subscriptions by subscription name	
Get subscriptions by user name	
Cancel Subscription	
This command supports the following variations:	
For example,	
Get Format Information	
This command returns available formats such as "long HTML", "short text." The following is sample output for the command:	
Get Notification Interest	
Use a command like the following:	
Get Template	
Use a command like the following:	
You will need to be familiar with metadata for SLA, Exception, and system alerts. You use this information to properly format a subscription for a particular type of information. Metadata information is shown in the following tables.	
Metadata for SLA Alerts	
The following table specifies metadata for SLA alerts.	
Metadata	Available values
---	---
(header) source	ASLM
(header) event	enforcement_condition
(header) severity	WARNING FAILURE SUCCESS INFO
(header) templateSet	ASLM-Template
(info) com.amberpoint.notification.enforcementValue	(value of SLA enforcement that triggered the alert)
(info) com.amberpoint.notification.instrument Name	(qualified name of instrument)
(info) com.amberpoint.notification.objectType	Service, Endpoint, Transaction
(info) com.amberpoint.notification.objectId	(UUID of the object that SLA policy is applied on)
(info) com.amberpoint.notification.policyId	(UUID of the SLA policy)
(info) com.amberpoint.notification.senderId	(UUID of the AP_Enforcer_Service)
(info) com.amberpoint.notification.senderUrl	(Location of AP_Enforcer_Service)
(info) com.amberpoint.notification.transaction Id	UUID of transaction (only if the SLA is applied on a Transaction)
(info) endpointId	(UUID of AP_Enforcer_Service system endpoint)
(info) serviceID	(UUID of AP_Enforcer_Service)
Sample subscription for (info) com.amberpoint.notification.instrumentName	
is as follows:	
Metadata for Condition Alerts	
The following table specifies metadata for condition alerts.	
Metadata	Available values
(header) source	ExM
(header) event	Exception Detected
(header) severity	FAILURE, WARNING, INFO
(header) templateSet	Exm-Template
(info) com.amberpoint.notification.objectType	Transaction
(info) com.amberpoint.notification.objectId	(UUID of Transaction)
(info) com.amberpoint.notification.transactionId	(UUID of Transaction)
(info) correlationName	(Friendly name of function)
(info) detectionTime	(Human readable time stamp. E.g. Thu Jul 22 12:25:49 PDT 2010)
(info) exceptionPriority	failure, warning, informational
(info) exceptionTemplate	(friendly name of condition)
(info) exceptionType	(name of transaction + name of condition Or name of service + name of condition)
(info) exceptionsURL	(URL that links back to the exception instance UI page)
(info) instanceID	(UUID of exception instance)
Metadata for System Alerts	
The following table specifies metadata for system alerts.	
Metadata	Possible values
(header) source	System
(header) event	business_object_creation
(header) severity	INFO
(header) templateSet	System-Template
(info) com.amberpoint.notification.senderId	(UUID of service that sends out this alert.)
(info) com.amberpoint.notification.senderUrl	(Location of service that sends out this alert.)
The setBaselines	
command sets baselines for the specified objects. Setting baselines enables you to then create a baseline SLA policy.	
You can use the retrieveObjectData	
command to retrieve and output historical performance data to a file; then you can use that file as input to the setBaselines command. If you create the input file by hand, use the same format as the output of the retrieveObjectData	
command.	
You can also use this command to delete existing baselines for the specified object or for all managed objects.	
Command Syntax	
Name	Long Name
---	---
-i	--
-delete	--
-all	--
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the setBaselines	
command.	
Use the setDefaultLoadBalancer	
command to set the default device used to model routing entry points discovered from observed message traffic.	
In a simple environment with only one known load-balancer, that device is automatically used as the default. If you register additional devices, use this command to set which device should be used to model routing entry points.	
See Setting up Load Balancers, for a complete discussion of load balancers and how the default is set.	
Command Syntax	
Name	Long Name
---	---
--	-baseAddress
-fn	--
-s	-sphereUrl
-l	-userLogin
Example	
The following example specifies the default routing device:	
Use the showService	
command to show the structure of the service specified by the friendly name, qualified name, or URL of any endpoint for this service. You can also specify a single version of the service (-version) or the display of more detailed information (-verbose).	
The non-verbose output includes: the version number, the qualified name of the service, its friendly name, its binding, who it is managed by and its full URL.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-qname	--
-e	-endpointUrl
-w	-wsdlUrl
-V	-version
-v	-verbose
-s	-sphereUrl
-l	-userLogin
The following shows the output to some sample commands.	
Example	
The following example uses the showService	
command to display information for the service defined by the specified wsdl:	
Use the unmonitorEndpoint	
command to stop monitoring the specified endpoint with the monitor agent where it is registered.	
Once monitoring stops, no performance measurements are recorded, no messages are logged, and no transactions are traced.	
Use the monitorEndpoint	
command to re-enable monitoring.	
Command Syntax	
Name	Long Name
---	---
-n	-name
-e	-endpointUrl
-s	-sphereUrl
-l	-userLogin
Example	
The following example shows the unmonitorEndpoint	
command used to stop monitoring MyEndpoint	
.	
Use the unregister	
command to unregister the service, WSDL, or endpoint from the sphere.	
WSDL_URL:serviceFriendlyName	
-e	
and -interfaceQName	
options, the command outputs information about the item unregistered in the following format: endpointUrl:endpointBinding	
This command produces no output if the items to be removed are not registered with the sphere.	
To unregister a specific endpoint, specify the service the endpoint belongs to using -n	
or -qname	
flags, and the endpoint to be removed using the endpointUrl	
and -interfaceQName	
flags. This option is generally useful if a dependency-discovered endpoint was created incorrectly. If you do not specify the -interfaceQName	
flag, only dependency-discovered endpoints are removed.	
When unregistering replicated services composed of endpoints from one WSDL file, specifying the service name or the WSDL URL, results in the same behavior. Unregistering replicated services composed of endpoints from multiple WSDL files, results in different behaviors, depending on how the service is identified:	
-wsdlUrl	
flag, only the endpoints from that WSDL are unregistered. Endpoints discovered from other WSDLs are not affected. Once you unregister a service or endpoint, you will no longer be able to access its history. If you think you might want to re-register the service or endpoint and access its history, you will need to save its UUID (shown in the Profile tab).	
Command Syntax	
Name	Long Name
---	---
-n	-name
-qname	--
-w	-wsdlUrl
-V	-version
-e	--
-interfaceQName	The qualified name of the interface for a specific endpoint to unregister.
-f	-force
-s	-sphereUrl
-l	-userLogin
Example	
The following example unregisters the service in the specified wsdl.	
Use the unregisterContainer	
command to unregister a container previously registered with Business Transaction Management. Use this command after the container has been taken offline permanently. It is faster to use this command to unregister the container than to unregister each endpoint in it.	
Physical containers must be offline long enough for the system to mark them down before you can unregister them.	
This command also unregisters all the system services, service descriptors, and endpoints in the container. Any monitored endpoints in the container are no longer monitored, and measurements for these endpoints are deleted.	
Command Syntax	
Name	Long Name
---	---
-i	-baseAddress
-fn	-friendlyName
-s	-sphereUrl
-l	-userLogin
Example	
The following command unregisters the container with the friendly name MyApps	
.	
Use the unregisterMonitor	
command to unregister the specified monitor from the sphere.	
Use this command only when the monitor has been taken offline permanently. Monitors must be offline long enough for the system to mark them down before you can unregister them.	
Unregistering a monitor agent has the following consequences:	
Command Syntax	
Name	Long Name
---	---
--	-baseAddress
-fn	-friendlyName
-s	-sphereUrl
-l	-userLogin
Example	
The following example unregisters the monitor with the specified base address.	
Use the updateProfileData	
command to update profile attribute data for the specified set of objects. This command only updates existing objects; if it cannot find the specified objects, it returns an error.	
This command is useful in two distinct cases:	
See the discussion below for additional information.	
Command Syntax	
Name	Long Name
---	---
-t	-type
-query	-filterQuery
-val	-attributeValues
--	-profileData
-s	-sphereUrl
-l	-userLogin
Discussion	
This command has essentially three forms of use:	
updateProfileData -t myType -query myQuery -val attr1=valueattr2=value ...	
or the form	
updateProfileData -t myType -query myQuery -profileData javaPropFile	
updateProfileData -t myType -profileData CSVFile_with_1_row_per_Object_to_update	
Example	
The following example shows the updateProfile	
command.	
This chapter describes the Business Transaction Management utilities. You use these utilities to connect to and manage a database, to manage system service deployment log files, and to display information about the Business Transaction Management product. This chapter includes the following sections:	
Business Transaction Management includes a set of command line utilities that allow you to perform certain tasks from the command line.	
For Java platforms, the utilities are located in: [install_dir]/tools	
On Windows platforms, utilities use the JRE bundled with Business Transaction Management.	
On Unix-like systems, you must specify a JRE to use by doing one of the following:	
BTM_install_dir/server/jre directory	
The following table lists Business Transaction Management utilities.	
Name	Description
---	---
datastoreUtil	Allows you to connect to a database. Once connected, you can do the following:
logMerger | Merges Business Transaction Management system service deployment log files (logdir) to consolidate analysis or archiving. |
showProductInfo | Outputs information about the Business Transaction Management product. |
The most common use of the datastoreUtil utility is to assist in the installation of the Business Transaction Management product. During configuration, the system automatically creates the appropriate database tables for database users for the sphere, performance, and transaction databases unless you choose to create them beforehand with the datastoreUtil
utility.
By using the generateSchema
command, you can create DDL for the targeted database environment. The output of the generateSchema
command can be used as input (with the appropriate database utility) to create the necessary tables and views for the Business Transaction Management product.
Use the datastoreUtil
utility to connect to a database. Once connected, you can do the following:
Invoking the datastoreUtil Utility
To invoke the datastoreUtil
utility, navigate to the tools directory and use the following from the command line:
After starting the utility, you can call the commands described in the next subsection. For commands that have multiple arguments, you must call the arguments in the order described.
Use the exit
command to exit the utility.
datastoreUtil
commands include the following:
Command | Command | Command |
---|---|---|
help | generateSchema | checkOwner |
connect | createSchema | resetOwner |
saveConnection | checkSchema | dumpDataBase |
close | upgradeSchema | -- |
exit | dropSchema | -- |
help Command
Use the following syntax to get help:
Use the help
command to view help for all commands, or enter a command name to receive help for a single command
connect Command
Connect to a database using the user-specified connection information
databaseType - specify oracle
. This is the only supported value.
filename - name of a file as specified by the saveConnection
command
Use the connect
command to enter database connection information and connect to the database. You must have the following information for the database to which you want to connect:
Once connected, you might issue the saveConnection
command to save the connection information within a file. The next time you want to connect to the same database, you can provide the file name with the connect
command. If you provide the database type, the utility automatically selects the corresponding default driver.
close Command
Close a connection previously opened with the connect
command. This command takes no parameters.
generateSchema Command
Generate the DDL of the specified schema definition. You do not have to be connected to a database to call this command.
Alternatively, you can use generate
for this command.
schemaType - one of the known schema types:
sphere
- schema for the sphere database (the sphereDB user) exm
- schema for the transaction database (the transactionDB user) performance
- schema for the performance database (the measurementDB user) monitorgroup
- schema for a monitor group msglog
- schema for the system message log databaseType - one of the supported database types:
oracle
directory - location to generate the DDL file (defaults to the local directory)
targetSchema -target the generated schema for a specific user, for example sphereDB, transactionDB, or measurementDB.
For example, you have a high-level administrative permissions on the database, but you want to create the schema for someone with much lower-level permissions. You would use something like the following example:
-partition
| -nopartition
This flag is required if your specified schemaType is performance
or monitorgroup
. If your specified schemaType is any other value, this flag is not required and is ignored if you use it.
If you are using Oracle Enterprise Edition, you can create a performance
or monitorgroup
schema that takes advantage of Oracle's partitioning feature by specifying the -partition
flag. If you do not want to take advantage of this feature or if your Oracle edition does not provide the partitioning feature, you must specify -nopartition
(if you are creating a performance
or monitorgroup
schema).
checkSchema Command
Check the status of the specified schema within the connected database
Alternatively, you can use check
for this command as the syntax diagram shows.
schemaType - one of the known schema types:
sphere
- schema for the sphere database (the sphereDB user) exm
- schema for the transaction database (the transactionDB user) performance
- schema for the performance database (the measurementDB user) monitorgroup
- schema for a monitor group msglog
- schema for the system message log Use the checkSchema
command to check for the specified schema type within a connected database. You must successfully execute the connect command before executing the checkSchema
command. The checkSchema
command displays the status of the schema as found in the database. If the status of the database schema is not up-to-date, this command displays the differences found, and the DDL you must apply to upgrade the database schema.
This command does not change the database schema. If you wish to automatically upgrade the database schema from this command line utility, use the command upgradeSchema
.
createSchema Command
Create the specified schema within the connected database. You must successfully execute the connect
command before executing the createSchema
command.
Alternatively, you can use create
for this command.
schemaType - one of the known schema types:
sphere
- schema for the sphere database (the sphereDB user) exm
- schema for the transaction database (the transactionDB user) performance
- schema for the performance database (the measurementDB user) monitorgroup
- schema for a monitor group msglog
- schema for the system message log This flag is required if your specified schemaType is performance
or monitorgroup
. If your specified schemaType is any other value, this flag is not required and is ignored if you use it.
If you are using Oracle Enterprise Edition, you can create a performance
or monitorgroup
schema that takes advantage of Oracle's partitioning feature by specifying the -partition
flag. If you do not want to take advantage of this feature or if your Oracle edition does not provide the partitioning feature, you must specify -nopartition
(if you are creating a performance or monitorgroup schema).
You may want to use the commands checkSchema
and upgradeSchema
before or instead of the createSchema
command.
upgradeSchema Command
upgrade the specified schema within the connected database
Alternatively, you can use upgrade for this command.
upgradeSchema schemaType
upgrade schemaType
schemaType - one of the known schema types:
sphere
- schema for the sphere database (the sphereDB user) exm
- schema for the transaction database (the transactionDB user) performance
- schema for the performance database (the measurementDB user) monitorgroup
- schema for a monitor group msglog
- schema for the system message log Use the upgradeSchema
command to upgrade the specified schema of the connected database. You must successfully execute the connect
command before executing the upgradeSchema
command. The upgradeSchema
command will add any missing table, column, or index to the database.
You may want to execute the checkSchema
command before executing the upgradeSchema
command.
Note that the upgradeSchema
command only adds missing elements; it does not remove anything. You cannot roll back the upgradeSchema
command.
dropSchema Command
Drop the entire specified schema from the connected database
Alternatively, you can use drop
for this command.
schemaType - one of the known schema types:
sphere
- schema for the sphere database (the sphereDB user) exm
- schema for the transaction database (the transactionDB user) performance
- schema for the performance database (the measurementDB user) monitorgroup
- schema for a monitor group msglog
- schema for the system message log Use the dropSchema
command to drop the entire schema from the connected database. You must successfully execute the connect command before executing the dropSchema
command.
Warning: the dropSchema
command removes all tables and any data stored within these tables. If you have any unsaved data you want to keep from the connected database, export or save the data before executing this command. You cannot roll back the dropSchema
command.
saveConnection Command
Save the database connection information to a file
Alternatively, you can use save
for this command.
filename - name of the file where you want to save user, password, url, and driver values.
Use the saveConnection
command to save user, password, url, and driver values to a file.
Once connected to a database, you might issue the saveConnection
command to save the connection information to a file. You can later reconnect to the same database by providing the file name with the connect command. Make sure to remove any unused files as they contain connection information.
checkOwner Command
Displays the owner of the database instance (service name and UUID)
Alternatively, you can use owner
for this command.
Once connected to a database, you might issue the checkOwner
command to display the service UUID and name that owns the database instance. Only a service owner can connect to a specific database instance. To reset ownership, use the resetOwner
command.
resetOwner Command
Reset ownership of the database instance by removing knowledge of its current owner
Alternatively, you can use reset
for this command.
Use the resetOwner
command to remove the service ownership information associated with a specific database. You must successfully execute the connect
command before executing the resetOwner
command. Once reset, the next service that accesses the database takes ownership of the database instance.
dumpDatabase
Export the contents of the given database to a text file containing SQL dml statements in the given database format
Alternatively, you can use dump
for this command.
A command to connect must have been successfully executed before this command can be issued.
Use the dumpDatabase
command to export the data contained in the specified schema to a text file containing SQL dml statements that you can use to import into another database. You specify the database type and the text file is formatted into SQL statements supported by that database type.
Note: If your database contains clob fields, they are truncated to 4000 characters in the resulting text file.
schemaType - one of the known schema types:
sphere
- schema for the sphere database (the sphereDB user) exm
- schema for the transaction database (the transactionDB user) performance
- schema for the performance database (the measurementDB user) monitorgroup
- schema for a monitor group msglog
- schema for the system message log databaseType - one of the supported database types:
directory - where the SQL file is generated. The default location is the local directory.
exit Command
Use the following command to exit the datastoreUtil
utility.
Use the logMerger
utility to merge Business Transaction Management system service log files (logdir) for analysis or archiving. You can use the -config
flag to load the utility options from a named log merger configuration file. Command line options will override options defined in a configuration file.
The log merger configuration file is described after the discussion of the logMerger
utility.
Command Syntax
Name | Description |
---|---|
-config | Load options from the named configuration file. Command line options override options defined in the configuration file. For an example of a logMerger configuration file, click here. |
-dir | Directory that contains Business Transaction Management logdir directory you want to merge. The logMerger utility searches all subdirectories of the specified directory for logdir directories. You can provide multiple -dir directory options. Each directory must be a separate entry. |
-url | URL of the running Business Transaction Management service whose logdir you want to merge, with the inclusion of the user credentials required to access the service. The logMerger utility will communicate with the service on this URL using the Business Transaction Management user credentials specified by the -username and -password options. You can provide multiple -url service URL options, but all services must have the same username and password credentials. Each URL must be a separate entry. Note: If you want to merge logging from multiple service URLs that require different username and password credentials for access to each service, you must use a logMerger configuration file. |
-username | The username credential for access to the Business Transaction Management service associated with the url option. Note: The -username flag is different from the -userName flag described below; the two flag names are case-sensitive. |
-password | The password credential for access to the Business Transaction Management service associated with the url option. |
-output | Specifies where to save the merged result. The logMerger utility will exit without overwriting if the output file already exists, unless the -overwrite option has a value of "true". If no output option is specified, the resulting output file with be written to the directory from which the logMerger utility was called, with a default value of "logmerger_<date>_<time>.log". |
-overwrite | Specify true to overwrite existing output file. Default is false . |
-format | Specify the output format of each log entry in the merged result. Possible format tokens include log entry properties:
and four more special tokens:
Each format token is separated by a plus sign '+'. There is always an End of Line character after each log entry is output. Default format pattern is: |
-from | Merge log entries with timestamp later than start_time. Absence of this option means no start time limit unless -last option is specified. Use time format of "MM/dd/yy HH:mm:ss". For example: "10/05/06 00:00:01" |
-to | Merge log entries with timestamp earlier than end_time. Absence of this option means no end time limit. Use time format of "MM/dd/yy HH:mm:ss". For example: "10/05/06 17:21:57" |
-last | Merge log entries from last number of hours. This option is ignored if -from or -to is specified. |
-loggerName | Merge only log entries generated by the logger with logger_name. |
-loggerLevel | If only level is specified, then merge log entries with the specified logger level. If the level+ is specified, then merge log entries with any level equal to or higher than the specified level. The following SEVERE WARNING INFO CONFIG FINE FINER FINEST |
-className | Merge only log entries generated by the class with class_name. |
-methodName | Merge only log entries generated by the method with method_name. |
-userName | Merge only log entries generated by the user with user_name. Note: The |
-V | Display version information for the utility and exit. |
Examples
\BTM_INSTALL_DIR\btmstorage
directory (and all sub-directories below it), sends them to an output file named BTMLoggingOutputTo10_05_06
, the overwrite option is set to true
, all entries with a loggerLevel of INFO
or higher (WARNING
, SEVERE
) will be collected, with multiple format options, and a date and time range over two-and-one-half days: \BTM_INSTALL_DIR\btmstorage\btmui
and BTM_INSTALL_DIR
\btmstorage\btmtransaction, sends the entries to an output file named BTMuiNtransactionLoggingOutLast24
, the overwrite option is set to true, all entries with a loggerLevel of INFO
will be collected, with multiple format options, the utility collects all logging entries generated by the action of a user with the name SalesOpsManager
that have occurred over the last 24 hours. http://remoteServer1:8080/btmcentral/sphere http://remoteServer1:8080/btmcentral/sphere http://remoteServer1:8080/btmcentral/sphere
The user and password credentials to access these service URLs is the same (otherwise, you must use a configuration file). The log entries are sent to an output file named remoteServiceOutputFrom10_13_06
, all entries with a loggerLevel of INFO
or higher (WARNING
,SEVERE
) are collected, with multiple format options, and a date range from one second after midnight on 10/13/06.
myLogMergerConfigFile.xml
. Use this option when you frequently use logMerger
to collect the same type of information. You can add options to the command line to overwrite the options defined in the configuration file. The following text contains the formatting and content for a sample log merger configuration file. Options specified in the file will be overridden by command line options.
If you want to encrypt the passwords for accessing remote service URLs via the configuration file, you can use the encryptPassword
command.
The attributes defined in the configuration file, which are described in the following subsections, are enclosed in the following:
Sources Attribute Example and Discussion
You can provide multiple source dir
entries. Each source directory must be a separate entry.
dir
: Directory that contains the Business Transaction Management logdir directory you want to merge. The logMerger
utility searches all subdirectories of the specified directory for logdir directories.
You can provide multiple source URL entries. Each source URL must be a separate entry.
url
: URL of running Business Transaction Management service. This utility will communicate with the service on this URL using the user credentials specified by the -username
and -password
options.
username
: username to access the Business Transaction Management service
password
: password to access the Business Transaction Management service
Filter Attribute Example and Discussion
The filter attributes are used to query the log history for messages that contain an exact match of all attributes.
For example, filter attributes of last="24" loggerLevel="INFO" will merge INFO messages logged within the last 24 hours.
If no filter options are specified, then all log messages will be included.
from
: log entries with a timestamp later than "from" will be included. Absence of this attribute means no start time limit unless "last" attribute is specified.
Use time format of "MM/dd/yy HH:mm:ss". E.g. from="12/25/05 10:34:25"
to
: log entries with a timestamp earlier than "to" will be included. Absence of this attribute means no end time limit.
Use time format of "MM/dd/yy HH:mm:ss". E.g. to="12/25/05 10:34:25"
last
: last number of hours of log entries will be included. this attribute is ignored if "from" or "to" is specified.
loggerName
: only log entries generated by the named logger attribute will be included.
loggerLevel
: this attribute accepts values in two formats: level or level+.
If level is specified, only log entries with the specified logger level will be included.
If level+ is specified, log entries with a level equal to or higher than the specified level will be included.
The following loggerLevel attribute values are listed in order from highest to lowest:
SEVERE
WARNING
INFO
CONFIG
FINE
FINER
FINEST
className
: only log entries generated by the specified class will be included.
methodName
: only log entries generated by the specified method will be included.
userName
: only log entries generated by the specified user will be included.
-->
Output File Example and Discussion
file
: where the merged log file will be saved.
The LogMerger utility will stop processing if the output file already exists, unless the overwrite attribute has a value of "true".
Absence of the file
attribute will save the merged log file to a new file named logmerger_<date>_<time>.log
.
overwrite
: allows the utility to overwrite the file specified by the "file" attribute if it already exists. The default value of overwrite is "false".
format
: defines the output format of each log entry in the merged result.
Possible format tokens include all log entry properties (attributes on logEntry node in log file).
Examples of log entry properties with values are below:
There are four additional special tokens:
message
: the actual log message logName
: name of the log file that is stored in <logHeader>. The logHeader is used to identify the service that generates the log message. eol
: end of line character to separate text tab
: tab character to separate text Each format token must be separated by a plus sign.
The LogMerger utility inserts an End of Line character after each log entry that is written to the output file.
Use the showProductInfo
utility to collect information about the Business Transaction Management release you have installed on each machine. You should also check this information and report it when dispatching support requests.
The showProductInfo
utility reports the following information about the installed product:
This chapter provides information to help you administer Business Transaction Management ; it includes the following subsections:
This section provides information to help you administer Business Transaction Management observers and includes the following subsections:
Observers are Business Transaction Management components that you install into the application server of business applications you want to monitor. The observers monitor messages and calls between the components of your business applications.
Observers contain one or more subcomponents called probes. Each probe provides the observer with the capability of monitoring a particular type of business component. The monitoring capabilities of an observer are, therefore, dependent on the collection of probes that it contains.
The following table lists the types of observers provided by Business Transaction Management, the probes contained within each observer, and the monitoring capabilities conferred on the observer by each of the probes.
Table 11-1 Available observers, the probes they contain, and the types of components they monitor.
Observer | Probe | Component Monitored |
---|---|---|
JavaEE | EJB | Enterprise JavaBean (EJB) |
- | JAVA | Java (monitors local Java method calls) |
- | JAXRPC | JAX-RPC (includes monitoring of JMS traffic that uses the JAX-RPC API) |
- | JAXWS | JAX-WS (includes monitoring of JMS traffic that uses the JAX-WS API) |
- | JDBC | JDBC (monitors Java database calls) |
- | JMS | JMS (monitors traffic that uses the JMS API) |
- | RMI | Remote method invocation (RMI) |
- | WEB_APP | Java servlet application |
OSB | OSB | OSB Proxy Service and OSB Business Service |
Oracle SOA Suite | SOA_BIZRULE | Oracle SOA Suite Business Rule |
- | SOA_BPEL | Oracle SOA Suite Business Process Execution language (BPEL) |
- | SOA_BPMN | Oracle SOA Suite Business Process Modelling Notation (BPMN) |
SOA_EDN | Oracle SOA Suite Event Delivery Network | |
- | SOA_MEDIATOR | Oracle SOA Suite Mediator |
- | SOA_SPRING | Oracle SOA Suite Spring bean |
- | SOA_WS | Oracle SOA Suite web service |
- | SOA_WSA | Oracle SOA Suite web service adapter |
- | WEB_APP | Java servlet application |
Oracle Fusion Applications | ESS | Oracle Enterprise Scheduling Service |
All probes in the JavaEE observer except JDBC | Refer to the JavaEE observer | |
- | All probes in the SOA Suite observer (including the WEB_APP probe) | Refer to the SOA Suite observer |
WCF | WCF | Microsoft WCF services |
ASP.NET | ASP.NET | Microsoft ASP.NET services |
A single observer installation can monitor any number of components that are running in the application server, as long as the observer contains the appropriate probes.
Observers communicate with the Business Transaction Management sphere by way of another Business Transaction Management component called the monitor. One of the jobs of the monitor is to distribute configurations to the observers. When an observer starts, it contacts the monitor and obtains a configuration. The observer periodically polls the monitor for updates to its configuration.
The observer configuration is generated from an observer communication policy. By default, an observer communication policy is applied to all monitors. This policy both configures the monitors and provides them with an observer configuration to distribute to their associated observers. You can edit this default policy and/or apply your own.
Once running, the observers measure various aspects of your business applications' message and/or call flow, such as throughput, fault count, and response time (for a complete list of measurements, see Chapter 5, "About Instruments"). The observers periodically send these measurements to the monitor for analysis and eventual storage in a database, as shown in the following diagram:
Figure 11-1 Example of deployed observer showing probes
If configured to do so, the observers convert the various types of messages and calls into standardized XML-formatted messages for the purposes of message logging and further analysis. The observers forward these messages to the monitor. Note that these messages are copies, and that the original messages/calls are never altered or redirected.
Observers are installed into your business component's application server, and clients continue to access the business component in the same way as before the observer was installed. You can install any number of monitors, with any number of observers communicating with each monitor, but observers are never installed in the application server hosting the Business Transaction Management central servers or monitors.
For an overview of the entire Business Transaction Management system, see Architectural Overview. For information about scaling up your monitoring system by replicating the monitors, refer to the Business Transaction Management Installation Guide.
The Observer Communication policy sets up communication between observers and a monitor or monitor group. This policy configures both monitors and observers by:
Business Transaction Management is preconfigured with a default Observer Communication policy already applied. This default policy applies to all monitors registered in the system. If necessary, you can edit this default policy and/or create a new policy.
To edit the default Observer Communication policy instance:
To create a new instance of an Observer Communication policy:
Choose Admin > Create System Policy > Observer Communication.
The following are common configuration tasks you can perform using this policy:
A field reference for the policy's advanced settings is provided in Advanced Settings Field Reference.
Observers contain different types of probes for monitoring the various types of components that make up your business applications. You can use this policy to individually activate or deactivate probes contained within the observers installed on your system.
The Active Probes section of the policy provides an Enable Discovery and Monitor Upon Discovery checkbox for each type of probe.
Select the Enable Discovery checkbox to activate the discovery mechanism for the associated component type. Components of that type are then discovered and displayed in the Management Console the next time they receive a message or call.
Select the Monitor Upon Discovery checkbox for a component type if you want to immediately begin monitoring components of that type as they are discovered.
Note: If you enable discovery but not monitoring and then later edit the policy and enable monitoring, the system will not begin monitoring previously discovered components. The system will begin monitoring only the components discovered after you enable monitoring. For information on enabling monitoring for previously discovered components, see the topic Start and Stop Monitoring. |
The default policy sets up direct communication between the observer and monitor. Direct communication allows you to use multiple singleton monitors, with each monitor collecting observations from multiple observers.
If you intend to replicate the monitor by placing a load balancer in between the observers and a group of replicated monitors, you must set the values of the following fields in the Communication Channel section as indicated:
Field Name | Value |
---|---|
Communication path | If your observers will communicate through a load balancer to a monitor group, choose Through router to monitor group. This choice displays the following fields in the policy |
Router IP address | Specify the IP address of the load balancer that will receive the observation messages. |
Router port number | Specify the port number on which the load balancer will receive the observation messages. Note: You must also configure this port on your router. |
Monitor port number | Specify the port number on which the monitors will receive the forwarded observation messages. |
For more information on this topic, refer to the Business Transaction Management Installation Guide.
The default Observer Communication policy sets up an unsecured socket connection that is used for sending observation messages from the observer to the monitor. If you prefer to use a secure socket (SSL) for this connection, enable the policy's Enable SSL checkbox and then use the following fields to specify the information needed for enabling the SSL connection:
Field Name (boldface denotes a section name) | Description |
---|---|
Protocol | Required if displayed. Select the SSL protocol. Choices are TLSv1, SSLv3, or Any. SSLv3 is not supported by the .NET observers. This field configures both monitors and observers. |
Use Default Stores | This checkbox is enabled by default. Leave this checkbox enabled if you want to use the built-in, preconfigured security stores. In this case, you are finished if you are using Java-based observers only. If you are using .NET-based observers, you must also deploy a preconfigured certificate to the machines hosting the observers. You can find the preconfigured certificate at nanoagent\config\ssl\server.cer in the observer installation directory. Refer to the Business Transaction Management Installation Guide for more information on deploying the preconfigured certificate. Disabling this checkbox displays additional fields and permits you to specify your own security stores. |
Monitor | ---------- This is a section label---------- The following five fields pertain to the monitor's key store. All of the following fields are displayed only if the Use Default Stores checkbox is disabled. |
Key Store Location | Required if displayed. Specify the location of the monitor's SSL key store. You can specify this location as either an absolute path, if the key store file is local to your monitor, or as an HTTP(S) URL, if the file is accessible by HTTP GET. The initial value when you open a new policy is AP-MONITOR-SSL:DefaultKeyStore.ks. This value points to the built-in, preconfigured key store located at WEB-INF/ssl/DefaultKeyStore.ks in the btmmonitor.war deployment. |
Key Store Password | Required if displayed. Specify the password for accessing the SSL key store. |
Key Store Type | Required if displayed. Specify the type of JCE (Java Cryptographic Extensions) key store for the monitor to use, for example, JKS, JCEKS, or PKCS12. The initial value is JKS. |
Key Name | Required if displayed. Specify the certificate and private key. You can enter a key alias or a certificate attribute of the form CN=value, UID=value, etc. |
Key Password | Required if displayed. Specify the password for accessing the certificate and private key. If unspecified, the password for the key store is used. |
Auto-Dispatch Trust Store to Java Observers | If this checkbox is enabled, the monitor will serialize the trust store, and automatically send it to all associated Java observers. This option is ignored for .NET observers. This checkbox is disabled by default. |
Auto-Dispatch Java Trust Store | ---------- This is a section label ---------- The following three fields pertain to the auto-dispatched trust store and are displayed only if the Auto-Dispatch Trust Store to Java Observers checkbox is enabled. |
Trust Store Location | Required if displayed. Specify the location of the SSL trust store that the monitor will dispatch to Java observers. You can specify this location as either an absolute path, if the trust store file is local to your monitor, or as an HTTP(S) URL, if the file is accessible by HTTP GET The initial value when you open a new policy is AP-MONITOR-SSL:DefaultTrustStore.ks. This value points to the built-in, preconfigured trust store located at WEB-INF/ssl/DefaultTrustStore.ks in the btmmonitor.war deployment. |
Trust Store Password | Required if displayed. Specify the password for accessing the SSL trust store that the monitor will dispatch to Java observers. |
Trust Store Type | Required if displayed. Specify the type of JCE (Java Cryptographic Extensions) trust store that the monitor will dispatch to Java observers, for example, JKS, JCEKS, or PKCS12. The initial value is JKS. |
Java Observer | ---------- This is a section label ---------- The following three fields pertain to manually installed trust stores and are displayed only if the Auto-Dispatch Trust Store to Java Observers checkbox is disabled. |
Trust Store Location | Required if displayed. Specify the location of the SSL trust store to be used by observers deployed to Java execution environments. You can specify this location as either an absolute path, if the trust store file is local to your observer, or as an HTTP(S) URL, if the file is accessible by HTTP GET. The initial value when you open a new policy is AP-OBSERVER-SSL:DefaultTrustStore.ks. This value points to the built-in, preconfigured trust store located at nanoagent\config\ssl\DefaultTrustStore.ks in the observer installation directory. |
Trust Store Password | Required if displayed. Specify the password for accessing the SSL trust store. |
Trust Store Type | Required if displayed. Specify the type of JCE (Java Cryptographic Extensions) trust store that the monitor will dispatch to Java observers, for example, JKS, JCEKS, or PKCS12. The initial value is JKS. |
You can control the ability of users to perform user-interface drilldowns from Oracle Enterprise Manager Real User Experience Insight into Business Transaction Management. By default, drilldown capability is enabled. To disable or re-enable drilldown capability, set the WEB_APP probe's rueiPresent attribute as described in Request Monitoring and Operation Modeling for the WEB_APP Probe.
The WEB_APP probe lets you monitor web applications that are implemented as Java servlets. This probe provides a generic form of processing that can be used with all types of Java servlets and a specialized form of processing optimized for use with Oracle Application Development Framework (ADF) applications. This section refers to these different types of processing as rulesets. The generic type of processing is referred to as the URL ruleset, and the type of processing used for ADF applications is referred to as the ADF ruleset. The URL ruleset is used by default.
Unless configured otherwise, the WEB_APP probe monitors all requests to the web applications in the monitored application server. In many cases, however, you might not want to monitor all requests. For example, you might not want to monitor requests for static resources such as image and HTML files. For this reason, the default Observer Communication policy is configured not to monitor requests for resources that have the following file extensions: jpg, jpeg, html, htm, css, gif, png, ico, js, swf, cur. This selective monitoring is specified by way of a snippet of XML configuration code that appears in the default policy's WEB_APP probe configuration field.
You can edit this default XML configuration code in order to control the types of requests that are monitored. You can also add XML elements to control how your application's operation names are abbreviated for display in the Management Console (operation names are derived from request URLs). The following table describes the XML elements and attributes that you can use in your configuration code. Usage examples are provided after the table.
Note: Ordering of the XML elements is critical. The required ordering of the elements is described in the table. Incorrect ordering will cause the policy to be rejected.
Element | Attribute | Description | Supported rulesets |
---|---|---|---|
servletObserver | - | Encompassing tag containing configuration information for all applications monitored by the WEB_APP probe. There is only one <servletObserver> element. | ADF URL |
- | rueiPresent | Indicates that Oracle Enterprise Manager Real User Experience Insight is installed in front of the monitored applications. This attribute controls the ability of users to perform user-interface drilldowns from Real User Experience Insight into Business Transaction Management. Valid values are true and false. The default setting is true. When this attribute is set to true, Business Transaction Management adds headers to the HttpResponse, thereby enabling drilldown capability. To disable drilldown capability, set this attribute to false. | ADF URL |
- | rueiMatches | Indicates that the Real User Experience Insight naming scheme matches the Business Transaction Management naming scheme. Valid values are true and false. | ADF URL |
globalExcludeList | - | This element is a list of file extensions and/or web module context roots to exclude from monitoring. Element ordering: If used, you must place this element as the first child of the <servletObserver> element. There can be only one per <servletObserver>. | ADF URL |
- | ext | The comma delimited list of file extensions to exclude from monitoring, for example, "html, htm, jpg, css". | ADF URL |
- | contextRoot | The comma delimited list of context roots to exclude from monitoring, for example, "console, medrec, bookmart". | ADF URL |
application | - | Denotes an application to be monitored. Element ordering: This element is a child of the <servletObserver> element. It must not precede the <globalExcludeList> element. There can be any number per <servletObserver> element. | ADF URL |
- | contextRoot | The context root of the monitored application. The value of this attribute is used as the service name. | ADF URL |
framework | - | This element is used to specify which URLs should be handled by which ruleset by way of the <include> child element. Element ordering: If used, you must place this element as the first child of the <application> element. There can be one for each ruleset type per <application> element. | ADF URL |
- | type | Specifies the ruleset that should handle the <include> URL patterns. Valid values are ADF and URL. For ADF web applications, set this attribute to ADF. For other web applications, set this attribute to URL. The requests processed by each ruleset are mutually exclusive. If no <framework> tag is specified, the URL ruleset is used by default. If any <framework> tag is specified, no default will be used. | ADF URL |
include | - | This element allows you to include only requests matching the given wild card expression when mapping a request to a ruleset. Element ordering: This element is a child of the <framework> element. There can be many per <framework> element. | ADF URL |
- | pattern | The URL pattern to match. Wild cards are allowed and denoted using "*". | ADF URL |
excludeList | - | This element is a list of file extensions to exclude from monitoring. Element ordering: This element is a child of the <application> element. It must follow all <framework> elements and precede all <operationRule> elements. There can be only one per <application> element. | ADF URL |
- | ext | The comma delimited list of file extensions to exclude from monitoring, for example, "html, htm, jpg, css". | ADF URL |
operationRule | - | This element specifies the parts of the URL for which a unique combination of values will constitute an operation. Use this element to abbreviate the operation name that is derived from the URL. Element ordering: This element is a child of the <application> element. It must not precede any <excludeList> or <framework> elements. There can be only one per <application> element. | ADF URL |
- | excludeDirectories | Comma separated list of directory levels to exclude from the operation name. For example, you could exclude "/faces" or the session ID. Note that the context-root is not considered a directory level. Also, the excludeDirectories count starts with "1", not "0". | ADF URL |
partitionByParam | - | This element partitions an operation based on the value of the specified request parameter. Each unique parameter value is modeled as a separate operation. The parameter can be either a URL parameter or a POST parameter. For example, assume we have an orderApplication.jsp that takes a parameter named action. Normally, requests to orderApplication.jsp would be modeled as requests to a single operation named orderApplication.jsp. However, if we use <partitionByParam> and partition by the action parameter, all requests to orderApplication.jsp that contain an action parameter will be modeled as requests to an operation named orderApplication.jsp_action_paramValue, where paramValue is the value of the action parameter. And, importantly, requests containing an action parameter will not be counted as requests to the operation orderApplication.jsp. (See also, "Example 2 – Adding a parameter name/value pair to an operation name".) Note: Using this element to partition an operation that is used in an existing transaction definition will change the semantics of the transaction. For example, requests that contain the specified parameter will no longer be counted as requests for the original operation and, therefore, will not belong to the transaction. You might need to update the definition of your transaction accordingly. Element ordering: If used, you must place this element as the first child of the <operationRule> element. There can be only one per <operationRule>. Note: This element does not support ADF page input parameters. | ADF URL |
- | name | The name of the parameter upon which to partition requests. Each distinct value of the given parameter corresponds to its own operation. The parameter is post-fixed onto the operation name as "_name_value", where name is the name of the parameter and value is its value. | ADF URL |
secureParam | - | This element represents a URL or POST parameter whose value should be kept hidden or not get stored at all (for example, a password), both in operation names and in Business Transaction Management messages. Element ordering: This element is a child of the <operationRule> element. It must not precede the <partitionByParam> element. There can be any number per <operationRule> element. | ADF URL |
- | name | The name of the parameter whose value should be hidden or not stored at all. | ADF URL |
Note: Service and operation names are derived from the request URL. In order to conform to XML standards, the probe substitutes an underscore symbol ("_") in place of special characters such as slashes, question marks, and equal signs ("/", "?", "="). |
Example 1 – Abbreviating an operation name
The preceding configuration code applied to this request URL:
produces the following objects in Business Transaction Management:
Object | Value | Explanation |
---|---|---|
Service | mywebshop | The service name is the value of the contextRoot attribute. |
Endpoint | http://secure.banking.de:7001/mywebshop | The endpoint is the physical location of the monitored web application plus the service name (the value of the contextRoot attribute). |
Operation | basket_checkout.jsp | By default, the operation name consists of the directories and filename from the request URL. In this case, the default operation name would be shopping/s28373/basket/checkout.jsp. However, because the <operationRule> element's excludeDirectories attribute is set to "1, 2", the first and second directories (shopping/s28373/) are excluded. |
Example 2 – Adding a parameter name/value pair to an operation name
The preceding configuration code applied to this request URL:
with a POST parameter of lastName=Einstein, produces the following objects in Business Transaction Management:
Object | Value | Explanation |
---|---|---|
Service | physician | The service name is the value of the contextRoot attribute. |
Endpoint | http://stbdm02:7011/physician | The endpoint is the physical location of the monitored web application plus the service name (the value of the contextRoot attribute). |
Operation | physicianSection_viewRecordSummary.action_lastName_Einstein | The name and value of the parameter specified by the <partitionByParam> element is appended to the default operation name. |
Example 3 – Filtering requests and applying rulesets
The preceding configuration code applied to these request URLs:
produces the following objects in Business Transaction Management:
Object | Value | Explanation |
---|---|---|
Service | em | The service name is the value of the contextRoot attribute. |
Endpoint | http://myhost:17861/em | The endpoint is the physical location of the monitored web application plus the service name (the value of the contextRoot attribute). |
Operation | ocammHome | (This pertains to the first example URL) Because the <framework> element's type is set to ADF, the ADF ruleset is used. Therefore, by default, the operation name consists of the directories and filename from the request URL. In this case, the default operation name would be console/all/targets/search. However, because the <operationRule> element's excludeDirectories attribute is set to "1, 2", the first and second directories (console/all/) are excluded. Under the ADF ruleset, the operation name is the view ID of the page, which is ocammHome. |
Operation | targets_search | (This pertains to the second example URL) Because the <framework> element's type is set to URL, the URL ruleset is used. Therefore, by default, the operation name consists of the directories and filename from the request URL. In this case, the default operation name would be console/all/targets/search. However, because the <operationRule> element's excludeDirectories attribute is set to "1, 2", the first and second directories (console/all/) are excluded. |
N/A | N/A | (This pertains to the third example URL) A <framework> element of type URL was specified with only the pattern "*/console*". This request does not fit that pattern. It also does not fit the pattern specified in the ADF <framework> element. Thus it is excluded from monitoring. |
Field Name | Description |
---|---|
Name | Required. The name of your policy. You can set this field to any unique string. |
Version | Optional. This field is descriptive only and is provided for you to enter any pertinent information about the policy. |
Notes | Optional. This field is descriptive only and is provided for you to enter any pertinent information about the policy. |
Field Name (boldface denotes a section name) | Description |
---|---|
Edit advanced options | Enable this checkbox to display advanced settings. The advanced settings are described below. |
Observer Behavior | All of the following settings are displayed only if you enable the Edit advanced options setting. |
Configuration polling interval | Required. Use this field to specify, in seconds, how often the observer checks for a new configuration. |
Instrument update interval | Required. Use this field to specify, in seconds, how often the observer sends measurement data to the monitor. |
Number of connections | Use this field to specify the number of socket connections that the observer opens. Using multiple connections improves throughput of observations. |
Mapping Algorithm | Specifies the algorithm used to modify the host name-port number portion of the request and WSDL URLs. Choose from these values: As sent - The observer does not rewrite the URL and forwards it unchanged to the monitor. Use hostname - The observer replaces the host name portion of the URL with the fully qualified name of the server's host. It replaces the port number portion of the URL with the port number on which the server is listening. The host name and port number are obtained from the deployment environment. This algorithm is useful for clustered servers fronted by a load balancer. In this scenario, the original request URL is that of the load balancer, with the load balancer's host name and port number. If the observer passes the original request URL to the monitor, the entire cluster of servers is modelled as a single server. With the algorithm set to useHostname, each server is modelled separately. Use IP address - The observer converts the URL's host name into an IP address and leaves the port number unchanged. The IP address is obtained from the deployment environment. This algorithm can be useful if the monitor cannot resolve hostnames to valid IP addresses. You should not use this algorithm if the server has multiple IP addresses. Use fully qualified name (FQN) - The observer converts the URL's host name into a fully qualified name and leaves the port number unchanged. This algorithm can be useful for a server that has multiple IP addresses. Use alternate - This algorithm lets you provide specific values for the host name, port number, and protocol. Use the following three fields to input the values. If you do not specify a value in any one of the fields, the corresponding portion of the URL is left unchanged. Note: In the case of the OSB observer, the target service URL is always set to FQN in the observer configuration, but this setting is not visible in this policy. |
Alternate host | The value to use as the host portion of the URL. |
Alternate port | The value to use as the port number portion of the URL. |
Alternate protocol | The value to use as the protocol portion of the URL. |
Observer Troubleshooting | - |
Enable trace logging | Trace logging is always enabled and is set to Info by default. Use this checkbox to enable the Trace logging level field so that you can edit the setting. For information on other types of observer error logging, location of error log files, and configuring the location of error logs, see the topic, Logging observer errors and debugging information. |
Trace logging level | Use this field to specify the level of information you want written to the log file. The possible values, in order from least to most information, are: Info, Fine, Finer, Finest |
Trace file size | This field specifies, in kilobytes, the size of the trace log files. |
Trace files count (rotation) | This field specifies the maximum number of trace log files. When the maximum number of trace log files are full, rotation occurs, whereby the oldest file is overwritten with a new file. In general, you will change this setting only when asked to do so by the Oracle support team. |
Log observed messages to file | Enable this checkbox if you want observed messages written to a file. |
Observation log directory | The path to the directory containing the observation log files. You can specify an absolute path or a relative path. If you specify a relative path, the path is relative to the default location. The default location is:
Note: The default log location for WCF and ASP.NET is not a true default. It is simply the default setting of the AmberPoint:NanoLogBaseDir key. If you set this key to null, log files will not be created. |
Observer Message Queue | The fields in this section affect the behavior of the observer's observation queue. The observer copies observed, service-bound messages to this outgoing queue. These observations are then pulled off the queue and sent to the monitor. |
Queue size | Required. This field specifies the maximum number of messages the observer's observation queue can hold. A larger number allocates more memory for the queue. |
Maximum message size | Optional. This field specifies, in kilobytes, the maximum size of a message that can be placed on the observer's observation queue. Messages larger than the specified size are first truncated and then placed on the queue. You can use this field to reduce the load on the network and monitor. The truncation applies only to the body of the message. The message envelope is left intact. Note: If your service is a client to other services, you must set this setting to the same value for the observers monitoring those services. Failure to do so will disrupt the dependency tracking mechanism and cause the appearance of nonexistent clients in dependency diagrams. |
If queue is full | Caution: Leave this field at its default setting unless you are instructed by the Oracle support team to edit it. The default setting for this field is Forward service-bound messages without copying them onto queue. The If queue is full field specifies the behavior of the observer's observation queue if it fills up. Choose between these options: Delay service-bound messages until there is room to copy them onto queue - If the queue is full, the observer waits until the queue frees up enough space to hold the observation before forwarding the original message on to the service. This setting ensures that copies of all messages are forwarded to the monitor. Choosing this option together with the Delay receipt of observed messages over socket until queue has room option in the Monitor Configuration section of the policy ensures that all observations are logged. However, in high-traffic situations, such a setting might result in the slowing down of message processing by the monitored application. Forward service-bound messages without copying them onto queue - If the queue is full, the observer forwards the original message on to the service without copying it to the queue. Choosing this option ensures that the observer does not slow down the monitored application's message processing in order to log observations. However, in high-traffic situations, this setting might result in a loss of observations. Note: In no case, does the observer discard the original service-bound messages. |
Monitor Message Queue | The fields in this section affect the behavior of the monitor's observation queue. As observations arrive at the monitor, they are placed on this incoming queue. The monitor then pulls the observations off the queue and processes them in order to gather data on performance, transactions, and so forth. |
Queue size | Required. This field specifies the maximum number of messages the monitor's observation queue can hold. A larger number allocates more memory for the queue. |
Maximum message size | Optional. This field specifies, in kilobytes, the maximum size of messages that are accepted on the monitor's observation queue. You can use this field to reduce the load on the monitor by constraining the processing of large messages. By specifying a value in this field, you instruct Business Transaction Management to drop both the request and response message (or fault message, in case of a fault) if either message in the pair is larger than the specified value. Oversized messages are dropped without being processed and are not used in calculating performance measurements such as throughput or average response time. |
Idle socket timeout | Required. This field specifies the maximum number of milliseconds that the socket on which the monitor receives observations remains open in the absence of traffic. |
Retain request messages for a maximum of | Optional. This setting specifies the number of seconds the monitor holds on to a request message before assuming that no response will arrive. Once this time has been exceeded, the request is processed as if the response message timed out. The default value of 60 seconds is used if you leave this field blank or set it to 0. |
Number processing threads handling messages | Optional. This field specifies the number of threads the monitor allocates for processing observation messages. The default value of 5 is used if you leave the field blank or set it to 0. |
Number processing threads handling endpoint discovery | Optional. This field specifies the number of threads the monitor allocates for processing endpoint discovery messages. The default value of 2 is used if you leave the field blank or set it to 0. |
If queue is full | Required. This field specifies the behavior of the monitor's observation queue if it fills up. Choose between these options: Delay receipt of observed messages over socket until queue has room - If full, the queue rejects incoming observations (message copies) until it has freed up space for them. In this case, the observer resends observations until they are successfully placed on the queue. Choosing this option together with the Delay service-bound messages until there is room to copy them onto queue option in the Observer Configuration section of the policy ensures that all observations are logged. However, in high-traffic situations, such a setting might result in the slowing down of message processing by the monitored application. Discard incoming observed messages - If full, the queue discards incoming observations. Choosing this option together with the Forward service-bound messages without copying them onto queue option in the Observer Configuration section of the policy ensures that the observer does not slow down the monitored application's message processing. However, in high-traffic situations, this setting might result in a loss of observations. Note: In no case, does the monitor discard the original application messages. |
Servlet Observer Configuration | - |
Specify WEB_APP probe configuration | This checkbox pertains to the WEB_APP probe and allows you to configure the selective monitoring of requests and modeling of operations. Enable this checkbox to display the WEB_APP probe configuration field, where you can input configuration code for these options. This field is enabled by default. Note: If you provide a custom observer configuration in the Custom observer configuration field, do not enable this checkbox. Instead, you must add your filtering/modeling code to your custom observer configuration in the Custom observer configuration field. This code must be contained in a <servletObserver> element and added as the last child of the custom configuration's <nanoAgentConfigurations> element (the root element in the custom configuration.) |
WEB_APP probe configuration | This field is displayed only if the Specify WEB_APP probe configuration checkbox is enabled. Use this field to input a <servletObserver> element into the configuration for the WEB_APP probe. This element provides control over the selective monitoring of requests and the modeling of operations. By default, this field contains the following code, which instructs the probe not to monitor requests for files with the specified extensions. <ap:servletObserver rueiPresent="true" rueiMatches="false" xmlns:ap="http://namespace.amberpoint.com/amf"> <ap:globalExcludeList ext="jpg, jpeg, html, htm, css, gif, png, ico, js, swf, cur"/> </ap:servletObserver> For information on coding the <servletObserver> element, see Request Monitoring and Operation Modeling for the WEB_APP Probe. |
Custom Observer Configuration | - |
Use custom configuration | If you require observer configuration options that are not available in this policy, enable this checkbox and input your observer configuration in the following field. With this checkbox enabled, your custom configuration overrides all other fields in this policy. |
Custom observer configuration | Use this field to input a custom observer configuration. This field is displayed only if the Use custom configuration checkbox is enabled. |
Model Configuration | The fields in this section control how Business Transaction Management models particular types of components. Note: These fields should be adjusted to the proper setting before the observer is installed. You should not edit these settings for components that have already been discovered, except under the guidance of Oracle technical support. |
SOA | This field controls how SOA components are modeled. Choose between these options: Model All - Model all SOA components. This is the default setting. Model Edge of Flow - Model only the first component of each SOA composite application, for example, a web service interface. |
Local EJB | This field controls how local EJB components are modeled. It does not affect the modeling of remote EJB components. Choose between these options: Model All - Model all local EJB components. This is the default setting. Model None - Do not model local EJB components. Model Edge of Flow - Model only the first local EJB component of each local request flow. |
OSB | This field is not operational for observers up to and including the release 12.1.0.2.4 observer. |
The observer writes error and debugging information to the following log files:
NanoAgentStartupErrors.log – contains configuration-related errors. This file is recreated on each restart of the server. The file will be empty if no errors were encountered. It's maximum size is 5 MB.
NanoAgent.log – contains runtime error and debugging information (you can adjust this logger's settings using the Enable trace logging option in the Observer Communication policy.)
NanoAgentPreprocessTrace.log – contains information about bytecode instrumentation errors and debugging, class-loading, and preprocessing. This file is regenerated on each restart of the server. The maximum size of this log file is 10 MB. Because the JAX-RPC probe is not aspect-based, it does not write to this log.
This file was renamed for release 12.1.0.2.4. For observers of previous releases, the file was named AWTrace.log.
Note: You can also configure the observer to log observed messages. For information on this topic, refer to the "Log observed messages to file" field in the Observer Communication policy. |
The default location of the log files is:
Note: The default log location for WCF and ASP.NET is not a true default. It is simply the default setting of the AmberPoint:NanoLogBaseDir key. If you set this key to null, log files will not be created. |
If you want the log files generated in a different directory, set the AP_NANO_LOG_BASEDIR Java property or AmberPoint:NanoLogBaseDir Windows key. For Java application servers, you can set the property to either an absolute path or a path that is relative to the default log directory. For WCF and ASP.NET, you must set the key to an absolute path. The following examples illustrate how to set this property or key:
If you configure you WebLogic server using the Node Manager, open the WebLogic Administration Console, select your server, and display the Configuration / Server Start tab. Then add -DAP_NANO_LOG_BASEDIR=my_log_dir to the Arguments field. This relative path would generate the log files in the directory my_log_dir under your domain directory.
In order for the observer to generate the log files, ensure that the user under which the observer is running has permission to write to the log directory. For Java observers, the user is the user that is running the application server. For IIS observers (WCF and ASP.NET), the user is as follows:
By default, the directory specified by the AP_NANO_LOG_BASEDIR property is automatically created if it does not exist. If you do not want this directory to be automatically created, set the property AP_NANO_CREATE_LOG_BASEDIR to false. In this case, you must create the directory yourself. Set this property in the same way you set AP_NANO_LOG_BASEDIR.
Notes: For Java application servers – If the log directory does not exist and AP_NANO_CREATE_LOG_BASEDIR is set to false, runtime errors might occur and the observer might not initialize.For IIS – If the NanoAgentLogBaseDir Windows key set to null, log files are not created. |
This section provides information to help you administer Business Transaction Management persistent data and includes the following subsections:
When you installed Business Transaction Management, you configured it to use an Oracle database. If the credentials used for accessing the database change, you must modify the associated setting in Business Transaction Management accordingly.
To modify the database credentials setting:
The Edit Database Settings tool opens. This tool lets you set the user name and password used by the Business Transaction Management central services to access the Business Transaction Management databases.
Note: Do not select the Embedded Database option. All three databases should have the External Database option selected. |
If you enable message logging on a transaction, then you must ensure that a database is set up for the monitors to log messages to. During installation and initial configuration of Business Transaction Management, you should have created a message log database (messageLogDB) and provided connection settings for this database. These connection settings were automatically stored in the Default Message Log Database policy and applied to all monitors.
However, you are not restricted to using a single database for message logging. You can create additional databases and configure some monitors to use one database and other monitors another database. You do this by first editing the Criteria section of the default policy so that the policy no longer applies to the monitors that will log to a different database. You then create a new policy for each new database, and use each policy's Criteria section to apply the policy to the appropriate monitors. You must take care that each monitor has only one policy applied to it. For information about creating a message log database, refer to the Business Transaction Management Installation Guide.
If you change the location or the logon credentials of any of your message log databases, then you must reconfigure the settings your monitors use to connect to it. You do this by editing the appropriate message log database policy.
To view the monitors to which an existing message log policy is applied:
To edit or apply a new message log database:
If you want to edit the default message log database policy:
If you want to apply a new message log database policy, choose Admin > Create System Policy > Message Log Database.
The Create Message Log Database policy opens.
If this option is disabled, the central services can access the message log database only by way of the monitor.
Some central services (such as the transaction monitoring component) require access to message content stored in the message log database. These central services can access the database either by way of the monitor or by a direct connection. Using a direct connection improves the performance of message log queries. You should enable this communication channel whenever possible.
In some deployment scenarios, you might not want the central services querying the database directly and would prefer that the monitor do so on their behalf. One such case is when the monitor and database are firewalled off from the central services. In such a scenario, the central services could communicate with the monitor, but presumably not with the database.
The user whose credentials you provide must have privileges to create and drop tables and indexes.
In the beginning, you should probably leave this at the default setting.
This field specifies the maximum number of rows recorded in the temporary tables used for tracking individual transaction start and end messages prior to the computation of aggregated transaction measurements. Increasing the value allows the performance server to process transaction measurements more efficiently at the expense of more disk usage by the message log database.
The following table describes the advanced options:
Advanced Options | UI Default Setting | Description |
---|---|---|
Indexer Tuning Parameters | - | - |
Use Auto Statistics | enabled | Boolean If this parameter is enabled, the monitor gathers database statistics from the database on a regular basis. It is essential that up-to-date database statistics are maintained to allow message log queries to run efficiently. The statistics are gathered based on the number of inserts to the database that have occurred. |
Log Bundle Read Batch Size | 300 | Integer Determines how many messages are processed by the indexer in a single database transaction. |
Indexer Wakeup Interval | 10 | Integer - time (in seconds) Determines how often the indexer should wake up to check for any impending work. |
Clean Database Check Interval | 120 | Integer - time (in seconds) Determines the interval at which the indexer performs various maintenance tasks. When performing maintenance, the indexer:
|
Clean Cursors Check Interval | 3600 | Integer - time (in seconds) Determines the interval at which the indexer will remove expired query results from the database. Although this task is part of the indexer's normal maintenance, this may need to be done more often than other tasks. |
Stop Indexing | disabled | Boolean If set to true, this option tells the indexer to suspend all activity. Content to be indexed will still be captured by active logging policies, but will not be transferred from on-disk storage into the database until indexing is resumed. This option is especially useful during times of heavy message traffic, when optimization of resources and a steady flow of traffic is more important than being able to inspect indexed messages. You can later set the Stop Indexing value to false to allow Business Transaction Management to index the messages and enter them into your database. Note: Be aware that during the time the indexer is suspended, Business Transaction Management does nothing to manage the disk space being used. It is up to you to make sure that there is enough empty disk space to capture messages being logged by logging policies. |
Database Error Min Delay | 10 | Integer - time (in seconds) Specifies the minimum amount of time the indexer will wait before retrying logging-related database operations when a database error occurs. On each successive failure, the delay will be adjusted upward by multiplying the current delay by the value of the Database Error Delay Expansion Factor parameter. The maximum wait time between retries is bounded by Database Error Max Delay. An example of a database error that this parameter applies to would be the monitor being unable to contact the database. For example, at the default settings, if the monitor loses its connection to the database, it will attempt to reconnect after 10 seconds. If it cannot reconnect, it will wait 20 seconds and try again, and so on. The longest it will wait between attempts is 3600 seconds (1 hour). |
Database Error Max Delay | 3600 | Integer - time (in seconds) See description for Database Error Min Delay. |
Database Error Delay Expansion Factor | 2.0 | See description for Database Error Min Delay. |
Max Messages Indexed per Bundle Run | 5000 | Integer Limits the maximum number of messages indexed for a particular endpoint on each indexer run. All endpoints in a single monitor are indexed by a single worker. |
Maximum Indexer Query Execution Time | 300 | Long - time (in seconds) Specifies an upper-bound time limit on the run time of any indexer-initiated query. |
Maximum Query Execution Time | 30 | Long - time (in seconds) Specifies an upper-bound time limit on the run time of any user-initiated query. Users may initiate long-running queries against the message log. Once submitted, users do not have a way to cancel the query and must wait for it to complete. The default value for this parameter is 30 seconds. Setting this value to 0 allows all queries to run to their completion regardless of their complexity. For this reason, this setting (0) is not recommended. |
Num Indexer Worker Threads | 3 | Long Specifies the number of worker threads used by the log policy indexer. The indexer cycles through the endpoints with applied logging policies and indexes each endpoint in turn. Adding threads allows for more endpoints to be indexed concurrently. |
Metadata Insert Batch Size | 300 | Long Controls metadata insert statements. This parameter specifies the number of rows of a particular type to batch together before running a SQL statement. The actual batch size is also influenced by the Log Bundle Read Batch Size parameter because it sets the maximum transaction size. |
Message Insert Batch Size | 30 | Long Controls message insert statements. This parameter specifies the number of rows of a particular type to batch together before running a SQL statement. The actual batch size is also influenced by the Log Bundle Read Batch Size parameter because it sets the maximum transaction size. |
Num User Query Connections | 5 | Long Specifies the number of connections to the message log database that should be created for the purpose of user queries. The pool is a shared pool and consists of connections created for system processing (controlled by Num Indexer Worker Threads) and connections for user queries (controlled by Num User Query Connections). |
Reuse Tables | disabled | Boolean The Rotation Interval setting in the Message History policy controls how long messages are retained in the database. By default, messages are deleted by deleting tables and added by adding tables. Enable this setting if you want to reuse tables rather than delete and create new tables. The tables are cleared before being reused. In most scenarios, it is more efficient to leave this setting disabled. |
Min Entries per Fragment | 0 | Long Messages are stored in sets of tables, called fragments. This setting specifies a minimum number of messages a fragment must have before being rotated. This constraint is in addition to that of the Rotation Interval setting in the Message History policy. Note: a request/response pair is considered to be two messages. |
Indexer Setup Data Version | - | - |
label.IndexerSetupData.generateEndpointStatistics | disabled | In general, you should enable this field only if requested to do so by the Oracle support team. If a monitor is managing an endpoint that participates in a transaction, then the monitor will be running the message indexer (the out-of-band indexer) for the purpose logging. When the message indexer is running in a monitor, the monitor's Status tab includes information about the performance of the message indexer. By default, the tab displays summary indexer statistics for all the endpoints for which message indexing is active. If you enable this setting, the tab's indexer statistics include detailed performance information for each endpoint participating in message indexing. |
Note: Take care that you do not apply more than one message log database policy to any single monitor. This means that if you are applying a new message log database policy, you must first edit the Criteria section of your existing policies so that they don't apply to the same monitors as your new policy. If you apply more than one message log database policy to a single monitor, Business Transaction Management generates a system alert.All monitors in a monitor group must log to the same message log database. |
At initial startup, Business Transaction Management creates a set of persistent storage directories to collect system output log entries and store user preferences for the system deployments. By default, the persistent storage directories are created within the application server's installation directory at the following location:
Your company's in-house procedures and rules for persistent storage might require you to place the persistent storage directories in a different location. In such a case, you can reconfigure the location of the persistent storage directories.
An installed Business Transaction Management system is composed of a set of deployments (EAR files), which are themselves composed of subdeployments (WAR files). Each subdeployment has an associated persistent storage directory of the same name, minus the “.war”. The following table lists the names of the deployments, subdeployments, and persistent storage directories.
Table 11-2 Business Transaction Management deployments, subdeployments, and persistent storage directories
Deployments (EARs) | Subdeployments (WARs) | Persistent storage directories |
---|---|---|
btmMain | btmui btmcentral btmcontainer | btmui btmcentral btmcontainer |
btmPerformanceServer | btmcontainer btmperformance | btmcontainer btmperformance |
btmTransactionServer | btmcontainer btmtransaction | btmcontainer btmtransaction |
btmMonitor | btmmonitor | btmmonitor |
This topic explains how to change the default location of the persistent storage directories for Business Transaction Management deployments to a location outside of the container that hosts these deployments.
This topic contains the following subsections to guide you through the steps required to relocate persistent storage directories:
Before following the procedure for relocating persistent storage directory locations, it is very important that you backup any persistent storage directories that already exist in the default location in your container. These default persistent storage directories are created the first time you start up your Business Transaction Management deployments, and are listed in the sections below for each container. You will later need to copy the contents of these directories to the new location you have defined for each deployment's persistent storage directory.
If you do not backup and remove the existing persistent storage directories, the settings in your new persistent storage directories might not be loaded and used the next time you restart Business Transaction Management. By default, Business Transaction Management references the default locations for the deployments' persistent storage directories. If the default directories still exist after you have set their new location, the new location might not be recognized. User preferences are also contained within these storage directories. Business Transaction Management reads these user preference files on each restart.
The default locations of the persistent storage directories are platform dependent and are as follows:
You should document where you relocate your persistent storage directories because you will have to define their location again if you redeploy Business Transaction Management applications (for example, during an upgrade). It is also important to document your new persistent storage directory locations if you want to use the LogMerger tool to collect and merge output of system log messages from these locations. It is easiest to create a configuration file for the LogMerger tool, as that will also act as a documentation source for your new persistent storage directory locations. For more about the LogMerger tool and creating a configuration file for the tool, see logMerger utility.
The following steps outline the general instructions to relocate the persistent storage directories.
Note: If you do not plan to use the information already collected in the persistent storage directory in the new location, you must create an empty persistent storage directory in the new location using the same name as the original storage directory. |
The Business Transaction Management deployments can be found in the following directory locations. You will need to locate these deployments in order to edit the location of the persistent storage directory in each deployment's web.xml file:
For example, the btmcentral deployment is located in this directory:
To relocate persistent storage directories:
storageDirectory
parameter value for that deployment as follows: Edit the AmberPointDefault value in the following lines and set it to the location of the new storage directory:
Note: You must not change the names of the persistent storage directories. You may change only the path to the directories. |
Examples:
C:\btm_data\btmcentral
, change the default entry within your btmcentral web.xml file to the following: Note: When repackaging system deployments, make sure to include the manifest file associated with the deployment, as this file contains important information required for deployment. |
On WebLogic:
Note: You must delete the persistent storage directories from their default locations. If the deployments find persistent storage directories in their default locations, they will ignore the new directory locations. |
On WebSphere:
Note: You must delete the persistent storage directories from their default locations. If the deployments find persistent storage directories in their default locations, they will ignore the new directory locations. |
Data should now be written to the persistent storage directory locations you defined in each deployment's web.xml file. Check to make sure new system service log files (logdir) and other directories have been created in the new location upon container startup.
If you use the logMerger tool to merge system service logs, make sure that you refer to the new persistent storage directory locations when merging log files.
This section provides information to help you administer Business Transaction Management system security and includes the following subsections:
Business Transaction Management relies on the application server in which it is deployed for authentication of users. By default, authentication is enabled for the Management Console. To disable authentication, use whatever tool or procedure is appropriate for the application server you are using.
Note: In order to log into the Management Console, you must use credentials that are mapped to at least one of these Business Transaction Management user roles: btmAdmin, btmUser, or btmObserver. |
If you disable authentication, users of the Management Console must still log in. However, they can log in using any user name and are not required to provide a password. Note that all UI personalizations, such as edits to the Navigator, filters, and column sets are stored as preferences and associated with the user name.
This topic describes how the supported application servers authenticate users and map them to Business Transaction Management application roles.
Note: The role btmInspector is, by default, mapped to a group named btmInspectors, but the application server administrator must create a group named btmInspectors and assign it to the appropriate users. |
Business Transaction Management applications rely on the WebLogic container for authentication and association of roles with users.
If you installed Business Transaction Management into a WebSphere container, the WebSphere server authenticates users and maps roles to groups. Note that the initial mappings assume that WebSphere security is configured to use Local OS Registry. If you are using a different security setup, you may have to remap users/groups based on your authentication domain settings. You can change these mappings in the WebSphere Administrative Console, on the "Mapping Users to Roles" page. If you change the mappings, you should change them for all Business Transaction Management applications. The names of all these applications (EAR files) begin with the string "btm".
Business Transaction Management uses roles to authorize access to various parts of the user interface.
Each user must be assigned at least one primary role. The primary roles are:
btmAdmin – users with this role are granted all privileges. These users can use all tools and facilities provided by the Business Transaction Management Console, including the ability to view and create sensitive properties and to view all message content.
btmUser – users with this role have most privileges needed to configure basic monitoring. For example, they can configure monitors; create, edit, and delete policies (does not include system policies); register services; set registry attributes on services and endpoints; and create and edit transactions and conditions. They also have all the privileges of btmObserver. This role does not grant the privilege to modify the Business Transaction Management environment, access message content, or view or edit sensitive properties.
btmObserver – users with this role have privileges to use most of the basic monitoring facilities. They can view summary, dependency, and administrative information about the monitoring system, but are not allowed to configure any of the policies or settings related to it. They can also view transactions and conditions, but are not allowed to create or edit them. This role does not allow users to modify the Business Transaction Management environment, access message content, or view or edit sensitive properties.
Note: All navigation and views in the Management Console are available to all primary roles. However, some roles cannot access certain menus and menu items and the tools associated with them. |
In addition to the primary roles, Business Transaction Management defines an auxiliary role. The auxiliary role provides additional privileges that you might want to assign certain users. For example, you might want to let a user access message content but not want to give that user full administrative privileges. You could do this by assigning the user a primary role of btmUser and an auxiliary role of btmInspector. The auxiliary role is:
btmInspector – users with this role can view message content and view and create properties, including sensitive properties.
Note: The btmAdmin role has all of the privileges of btmInspector. |
The following sections explain how you back up and restore your system. The topics covered include the following:
Oracle Business Transaction Management stores a large amount of data. This data describes the system's configuration, what the system is monitoring, and the current and past states of monitored applications. All of this data is needed for the operation of the system; if something happens that causes this data to be lost or damaged, the system can no longer perform as you expect. This is why it is important to create a backup of the system's data and to be able to recover this data.
You might need to back up Business Transaction Management for different reasons:
This section offers general guidelines for backup and recovery, and suggests milestones for testing the process you have defined. How often you create a checkpoint by backing up your data depends entirely on the lifecycle stage of your application and on business requirements.
Backing up and restoring Business Transaction Management does not include the backup and recovery of the hosting application server and its configuration settings, some of which Business Transaction Management needs to function properly: JVM settings, Java System parameters, and so on. You should already have processes in place for backing up your application servers and their configurations.
Business Transaction Management operates in a complex environment. For this reason, before backing up, it is important to make sure that you can isolate Business Transaction Management components and that you can identify any other systems that might be affected by the backup and recovery process. Consider issues like the following:
You should test your backup process periodically by attempting a recovery and making sure the system can be brought up to the desired state with no side effects. Identifying and resolving problems with the backup process will ensure successful recovery when recovery matters. Your backup verification checklist should include things like the following:
This section describes how Business Transaction Management data is organized, explains how you back up each type of data, and discusses timing issues related to backups.
The next figure shows the various kinds of Business Transaction Management data and the Business Transaction Management system services that rely on this data.
With reference to the figure, the basic principle of backing up data is as follows:
btmstorage
directory, which can be found on every host where one of the Business Transaction Management system services or monitors is deployed. The location of this directory for your server is specified in Backing up Business Transaction Management Data. The rest of this section provides more information about elements shown in the previous figure. You do not need to know this level of detail just to do backup and recovery. But this detail might be helpful in troubleshooting and in understanding the resources used by Business Transaction Management. If you want, you can skip ahead to Backing up Business Transaction Management Data.
As the figure shows, Business Transaction Management is composed of multiple system services:
Each of these services depends upon data that specifies the system's configuration, describes what it is monitoring, and records the state of monitored applications. This data can be grouped into the three categories shown in the figure.
The Sphere database contains data that describes Business Transaction Management as well as the monitored user systems. It includes a description of the users' applications, the policies used to monitor them, and transaction definitions.
Monitor agent configuration files contain data that describes whether and how each user endpoint is being monitored.
Backing up Business Transaction Management is fairly simple: you back up data contained in databases by backing up the respective database; you back up data contained in files or directories by backing up the btmstorage
directory.
The btmstorage
directory can be found on every host where one of the Business Transaction Management system services or monitors is deployed. The location varies with your server.
For WebLogic, the location is the following:
WebLogic_InstllDir/user_projects/domains/MyDomain/servers/MyServer/btmstorage
For WebSphere, the location is the following:
WAS_InstallDir/profiles/MyProfile/btmstorage/MyNode/MyServer
Once you have backed up the databases and the btmstorage
directory, you are done with the backup process.
In general it is best to back up and recover all data, even if only a subset of your data has been damaged or lost. However, if you would like a more detailed understanding of the individual components used by Business Transaction Management, see Data Storage Reference.
The timing of backups is important: you should back up the databases and the btmstorage
directory as close together in time as possible. If possible, follow these guidelines:
btmstorage
directories. The goal of restoring Business Transaction Management is to bring it back to the desired state with no side effects. Before you start this process, make sure that you have complete and accurate information about the Business Transaction Management system you are trying to restore.
It is assumed that you are restoring Business Transaction Management to the same environment from where it was backed up. If you need to recover to a different environment, for example, in the case of hardware failure; you will need to change the host name of the machine where you restore to (at the operating system level) to the host name of the machine that failed. You will also need to make sure that Business Transaction Management services hosted on the new machine can run on the same ports as on the old machine. It will then be possible to recover services to the new machine without disruption.
The restore procedure recovers the whole system to the last checkpoint created by the backup process.
Note: After the restore, the database schema and the file system must reflect the state they were in at the time of the backup. To make sure this happens, before you restore, check that the existing database and storage directory is completely clean. Because the data in the two storage locations are connected in various ways, problems can arise if either holds data that is newer than the backed up data. Thus, you should never restore a backup on top of an existingbtmstorage directory. Most database restores take care of this issue; be sure yours does. |
The restore procedure consists of two steps:
btmstorage
directory on each server hosting a system service or monitor. In the case where there is some damage to the Business Transaction Management software itself because something has damaged or corrupted the installed instance, we recommend that you do the following.
btmstorage
directory on each server hosting a system service or monitor agent. Note: If the damage affects only the EAR, WAR, or JAR files themselves, a simple re-installation of the Business Transaction Management software is all that is required |
The following table offers some additional detail about the Business Transaction Management components. This detail might be helpful to understand the role of each component or to locate specific information.
Setting up load balancers allows Business Transaction Management to model the flow of traffic correctly and allows you to access the load balancer's administrative console from the Business Transaction Management console.
This section also explains how you set up an F5 device to load balance messages from one observer to multiple monitors. It includes the following sections:
If you deploy a service in more than one container, Business Transaction Management understands these replicated endpoints are part of the same service, and it can infer the existence of a load balancer that routes messages to these replicated endpoints. That is, Business Transaction Management can model the flow of traffic correctly in dependency diagrams even though it does not monitor the flow of traffic through the load balancer itself. However, without your help, Business Transaction Management cannot provide more detailed information about the inferred load balancer. Setting up a load balancer means giving Business Transaction Management information that allows it to do the following:
Setting up a load balancer starts with registering it, which you can do using either the CLI command registerDevice or using the management console. In some cases, you might also need to specify an entry point to the load balancer and define target entry points that correspond to the destinations where messages are being routed.
This section explains some basic terms related to load balancing, describes the devices that Business Transaction Management supports, and explains the following user tasks:
Business Transaction Management supports a variety of load-balancing devices. It provides the greatest support for F5 load balancers, but it can also recognize and model other hardware and software load balancers.
The figure below illustrates the use of a load balancer to route messages A and B to three replicated endpoints (E1, E2, E3). Note the elements marked: routing entry point and target entry point. The load balancer receives messages at the routing entry point and forwards them to the target entry points. There are situations in which you might have to supply entry point information after registering the load balancer, as described in the next section.
Business Transaction Management can work with three kinds of load balancers: F5 devices, other hardware devices, and software load balancers. The work you need to do to help Business Transaction Management model message traffic varies with each case:
registerDevice
or using the management console) allows Business Transaction Management to display information about the device's location and other attributes. If you do not register any device, Business Transaction Management automatically registers a default load balancer and is able to model the flow of messages through this device. In this case, you can still edit the Profile page for the default load balancer to specify a name, the base address, admin UI, and vendor.
If the observed messages do not carry information about their original recipient (the load balancer) in the HTTP Host headers, you will need to register the device and specify routing and target entry points in the same way as you do for software balancers, described next.
The default load balancer is either the first load balancer registered or the one you set to be the default using the setDefaultLoadBalancer
command.
The calling service uses a routing entry point to communicate with the load balancer. Business Transaction Management discovers the routing entry point by observing messages. If no load balancer has yet been registered, Business Transaction Management creates a default load balancer and assigns the discovered routing entry port to it. Any newly discovered routing entry points will be modeled as part of the default device unless they belong to a registered F5 load balancer.
You can edit the profile of the default load balancer that was created for you, to provide additional details or, if you prefer, you can unregister it and register your actual load balancer explicitly.
You can register a hardware or software load balancer using the CLI command registerDevice
or using the console.
After you complete the registration, the device is listed in the summary pane when you select Explorer > Devices in the navigator.
To register a hardware or software load balancer using the console:
Field | Description |
---|---|
Vendor | Not editable for F5; required for other load balancers. If you chose F5 Networks in Step 1, this field is set to the non-editable value of F5. If you chose Other, specify the name of the vendor of your load balancer. This field is purely descriptive. You can specify any value (except F5). The specified value is displayed in the Management Console. |
Device Name | Required. Specify the friendly name for your load balancer. This name is displayed in the Management Console. |
Notes | Optional. Add any notes to remind you of the nature or purpose of this load balancer. |
Lifecycle phase | Select the lifecycle phase from the drop-down list. Available values are deprecated , development , production , staging , and test . These are case insensitive. |
Configuration URL | Required and displayed only if you chose F5. Specify the URL of the F5 console in the following format: https://managementPortIP/iControl/iControlPortal.cgi Replace managementPortIP with the appropriate host name and port number. This URL normally ends with iControl/IControlPortal.cgi. |
Username and Password | This value is required and displayed only if you chose F5 Networks. Specify the user name and password of an account on your F5 load balancer. A user role of Guest provides sufficient privileges. You can encrypt passwords using the
|
Base Address | Required and displayed only if you chose Other. Specify the base address of the URL for your load balancer, for example: https://myLoadBalancer:443/ |
Administrator URL | Optional and displayed only if you chose Other. Specify the URL of your load balancer's HTML administrative console. A link to this URL is displayed in the Business Transaction Management Management Console to provide easy access to your load balancer's console. This flag is not needed for F5 load balancers because Business Transaction Management obtains the URL automatically. |
You can modify information about a device you have already registered or about a default device.
To modify information about a device:
In most cases, Business Transaction Management automatically detects and models routing relationships by observing message traffic and reading destination information from the message headers. However, if the observed messages do not carry information about their original recipient (the load balancer) in the HTTP Host header, you will need to manually create a routing entry point to the load balancer. You will also need to add target entry points to indicate where the messages are being routed.
If you do not specify routing relationships, Business Transaction Management will not be able to draw contiguous dependency flows. In the case of transactions, you could still connect these disjoint flows by linking related services using manual keys.
To add routing entry points and target entry points:
You can only use the management console to unregister a load balancer.
To unregister a load balancer:
Registering an F5 network device allows Business Transaction Management to read F5 configuration information and to model that device (its entry points and the routing policies applied to them) in the management console. You can only register devices that are running iControl v9.x software.
Before you register the device, select Administration > System Services from the navigator, and check the services listed to make sure that the F5 Intermediary Adapter service is up and enabled.
To register an F5 Network Device
for ManagementIP specify the IP address of the management port your BIG-IP Load Balancer is configured to listen on.
You can also use the CLI command registerDevice
to register an F5 network device.
Monitoring in Business Transaction Management relies on the communication that takes place between an observer that monitors message traffic through a given service and a monitor that analyzes and stores the data obtained by the observer.
To scale your system and make it fault tolerant, you can associate several replicated monitors (monitor group) with observers. Replicated monitors require a third-party load balancer that can route messages from observers to the monitors. This section explains how you set up an F5 device to load balance messages from an observer to two or more monitors.
In order to understand F5 setup, it is helpful to review the mechanism that allows an observer to communicate with a single monitor; this is illustrated in the following figure:
As shown in the figure, communication between the observer and the monitor proceeds by means of two paths:
AmberPoint:NanoConfigRL
Windows key, depending on the platform. The sample URL shown in the figure is MyApSvr:8080/apmonitor/agent/agent
. When the observer starts up, it sends a request to this URL to get configuration information, which tells it what it should measure and how often. In this way, the observer can be reconfigured dynamically as your need for different kinds of information changes. When you set up communication between your observers and replicated monitors by way of an F5 device, the device must be configured to include these same two (configuration and data) paths for every replicated monitor you add. The next figure shows how the F5 device connects an observer with the replicated monitors.
Creating a scheme like the one above involves configuring the F5 device, setting the Java system property or Windows key, and defining the observer communication policy for the replicated monitors.
When you set up the F5 device, you must use the admin console for that device to do the following:
Assign a pool to the HTTP virtual server with member port numbers that correspond to the HTTP ports of the monitors to which you are connecting. As illustrated, the pool for the HTTP virtual server includes ports 11080 and 11081.
When you set the AP_NANO_CONFIG_URL Java system property or the AmberPoint:NanoConfigURL Windows key, you must provide a value like the following:
http://10.147.46.152:5060/btmmonitor/agent/agent/
Note the bold portion of the URL: it is the IP address of the F5 device (host) and the virtual sever HTTP port. (Of course, these numbers will be different for your deployment.)
The values you specify for the observer communication policy correspond to the values defined for the F5 device as follows:
Observer communication policy (Through router to monitor group) | F5 device values |
---|---|
Router IP address | The IP address of the F5 device. With reference to the figure, this would be 10.147.46.152. |
Router port number | The virtual server socket number. With reference to the figure, this would be 5061. |
Monitor port number | One of the pool member ports. With reference to the figure, this would be 36630. If, for some reason, the replicated monitors are located on the same machine, the port numbers for each monitor would be different, and you would need a different observer communication policy for each monitor. |
It does not matter whether you define the observer communication policy first and the F5 second. What matters is that the socket ports assigned to the monitors correspond to those defined for the virtual server socket pool in the F5 device.
This section assumes that a certain amount of work has already been done to deploy and register the replicated monitors and to create the monitor group. Consult the Business Transaction Management Installation Guide for information on how to do this, and on how to define the observer communication policy.
The simplest reasons for not being able to observe a service are the following:
More complicated issues arise in determining whether services are replicates. In the process of discovering and representing services and endpoints appropriately, Business Transaction Management needs to figure out whether a copy of a service represents a valid replicate and, conversely, whether services whose WSDL definitions are not identical actually implement the same interface. It makes these decisions by comparing the WSDLs it discovers and by following the criteria defined by the system service versioning policy. In addition, there might be cases where you might want to separate or merge different versions of a service because of ownership or accounting issues. Business Transaction Management provides commands and tools that you can use to resolve replication and duplication problems, and to resolve cases where it cannot guess your needs or intent.
This section summarizes some of these issues and introduces the commands you use to deal with them. You can also resolve some discovery problems by using the Disambiguate endpoints tool, which you access from the management console. This section includes the following topics:
By default, the service versioning policy sets guidelines for how Business Transaction Management should deal with new or changed WSDLs:
It might be possible to forestall discovery problems by editing the default service versioning policy to make these criteria more or less restrictive. If modifying the policy does not suffice, there are a number of CLI commands as well as a tool you can access from the console that you can use to correct discovery results. For additional
To edit the default service versioning policy
If you deploy a service in multiple containers, Business Transaction Management is able to understand that the same service is referenced by all the endpoints and that all endpoints share one interface. Consequently, it is able to aggregate statistics for the replicates at the service level and it allows you to define message properties on operations shared by all endpoints in the service.
For two endpoints to be treated as replicates of the same service, the following is required:
There are cases however where this information is not sufficient to make a determination, and you might have to teach the system whether two endpoints are the same or different. In each of the following cases, you will be alerted to take some action:
mergeServices
command to merge two versions into one. moveEndpoints
command to move upgraded endpoints to a new service version. By the time the upgrade is done, all endpoints will wind up in the new service version. moveEndpoints
). In this case Business Transaction Management will generate an alert if new replicated endpoints are discovered, to allow you to determine which service version they belong to. moveMeasurements
command to move the measurements from the older to the newer version. Business Transaction Management attempts to resolve issues that arise as the result of changes to a machine name or to a container's listening address, or the use of multiple aliases for the same host name, without assistance from you. If the system guesses incorrectly how to handle such conditions, the most common symptom is the discovery of duplicate services or endpoints where in reality only one exists. You can use the commands listed in the following table to help the system avoid or resolve duplication problems.
The parts to be used as WSDL, service, or endpoint identifiers are as follows (with respect to the following example):
The base address is http://jbujes-pc.edge.com
The node is jbujes-pc.edge.com
The path is Bookmart/Credit/CreditService?wsdl
Generally, using the removeDuplicateEndpoint
(or addBaseAddressAlias
) command accomplishes everything you need to do. That is, the duplicate item is removed and the appropriate alias is defined so that duplication does not recur. But note that otherwise, all alias corrections made using the commands listed below are forward looking: they do not delete duplicates that have already been mistakenly created.
Another apparent duplication might result when two endpoints share the same URL and are given the same port name in the WSDL that describes them. By default the port name is used as the friendly name. Although the system does not require friendly names to be unique, you will have to specify the endpoint URL (and possibly other characteristics) instead of its friendly name in any command that requires you to reference a unique endpoint. You can use the renameEndpoint
command (or just pick the desired endpoint and modify its friendly name in its Profile tab) to distinguish the endpoints from one another.
You can use the Disambiguate Endpoints tool (from the console) to do the following:
To use the Disambiguate Endpoints tool:
The source drop list includes all possible sources, based on an internal evaluation of duplication in the system. The service or endpoint shown at the top is the one you selected when you opened the tool. You can choose another if you like.
The target drop list includes all possible targets, given the items you have chosen for source.
Below the drop lists is shown basic information for the selected source and target. Icons (equal/does not equal) indicate whether elements of the source and target are the same. To view differences in the WSDL's listed, click on the link to display WSDL contents.
If you want to create a new service as the target service, click the New Service check box and specify the name and version of the service. You might do this if you want to move the source endpoint to a service that does not yet exist.
Click the enabled action. If the desired action is not enabled, you might have to change your target or select Create New Service. For detailed information about the effect of each of these actions, please look up its command line equivalent: mergeServices
, removeDuplicateEndpoint
, or moveEndpoints
. The use cases that require these actions are described above
This section provides miscellaneous information to help you administer Business Transaction Management and includes the following subsections:
The following list describes the ways you can check the status of your system services. The list orders these tasks from high-level to low-level (top to bottom). Each listed task directs you to where you can perform the monitoring and provides a link to more detailed information:
To check:
Navigate to Dashboards > Operational Health Summary
Navigate to Alerts in the Last Hour > System Alerts
Navigate to the specific system service and display the Status tab.
System alerts provide information about the health of the Business Transaction Management infrastructure. Business Transaction Management issues system alerts in situations such as the occurrence a fatal error, a container going down, the rejection of a policy, deletion of an attribute that is in use, and so forth.
Use the Status tab to check the status of the selected Business Transaction Management system service.
Service Status Table
The table at the top of the Status tab provides the following information about the service:
Resources Status Table
Below the Service Status table is the Resources Status table, which provides status information about other components in the Business Transaction Management environment that are related to the selected service. For example, several system services use databases. The resources section will confirm whether the database is running and working correctly.
The Resources Status table provides the following types of information:
Another important piece of information included in the Resources Status table is the URL of the sphere service with which the selected system service is associated.
Note: Resource URLs are displayed either with a dash "-", or with parentheses "()". URLs displayed with a dash represent a resource that can exist only once within an installation, such as the sphere service, whereas URLs displayed with parentheses represent a resource of which there can exist multiple instances, such as a monitor. |
The sphere is synchronized about every fifteen minutes. You can manually resynchronize the sphere by choosing Admin > Resync System. Resynchronizing ensures that the sphere reflects the current state of your system. Resync System also performs an aliveness check at the same time.
By default, “aliveness” is checked every two minutes to determine whether services are up or down. You can change the time interval for the automatic aliveness check, as described below. (The CLI equivalent for checking aliveness is the configureAlivenessCheck
command.
To change the time interval for the automatic aliveness check:
Business Transaction Management automatically discovers and monitors components, depending on how you have set up the Observer Communication policy. Once a component has been discovered, you can explicitly start and stop the monitoring of its endpoints.
When you start or stop monitoring an endpoint, both the monitor and the observer configurations are updated. Once monitoring stops, no performance measurements are recorded, no messages are logged, and no transactions are traced.
To stop monitoring of an endpoint
The Stop Monitoring tool then opens and lets you select additional endpoints to stop monitoring.
To start monitoring of an endpoint
The Start Monitoring tool then opens and lets you select additional endpoints to start monitoring.
Note: Business Transaction Management can use dependency analysis to discover service endpoints running in unmonitored containers if those endpoints interact with services in monitored containers. You can use theregisterExternalContainer command to define containers for such endpoints. |
You can explore the registered containers by selecting Explorer > Containers in the Navigator. The summary area then lists all registered containers.
Select a container in the main area to display information about the container on the Profile tab. Open the container's administration console by clicking the URL in the Administration UI Console field. You can edit the container's profile by choosing Modify > Edit Profile for the_selected_container.
To view the services running in a container, select the container and display the Services tab. You can also drill down into the service endpoints running in a container by expanding the container in the main area.
The following list describes the ways you can monitor the health of your containers. The list orders these monitoring tasks from high-level to low-level (top to bottom). Each listed task directs you to where you can perform the monitoring and provides a link to more detailed information:
To check:
Navigate to Dashboards > Operational Health Summary
Navigate to Alerts in the Last Hour > System Alerts
Navigate to specific container > the Up/Down Status icon in the summary area
There might be times when you want to unregister a container (in other words, remove it from the sphere and the Management Console). For example, if any of the following statements are true, you can, and probably, should unregister the container:
This situation results if you reconfigure an observer to send observations to a monitor that is registered in a different sphere. In this case, the container in which the observer is running is automatically registered with the other sphere as soon as traffic is observed.
If none of these statements are true, and you unregister a container, the container will be automatically reregistered as soon as message traffic is observed to or from the container.
To unregister a container
The Delete Registration tool opens.
System policies are normally used by administrators. Most system policies are not editable. The ones that you can modify allow you do define custom attributes, to configure the connection to the message logging database, to configure discovery, to specify the interval at which measurements are aggregated and collected, and to tell the system what action to take in response to new or changed WSDLs.
This section describes available system policies and explains how you access them, how you view their definition, how you define them, and how you modify them.
You can view system policies by selecting Administration > System Policies in the navigator. The following table lists and describes these policies.
Name | Description |
---|---|
Baseline storage | Supports the derivation and storage of baseline values for endpoints, services, and transactions. |
Callout Measurement | Supports the measurement and display of average response time, throughput, and fault count for a given link. You cannot edit this policy. |
Condition measurement | Provides condition alert count and condition alert count rate measurements for a given transaction. You cannot edit this policy. |
Core Measurement | Supports the calculation of the following counts for a given endpoint and service: average response time, maximum response time, throughput, fault count, traffic, fault percentage, throughput rate, and fault rate. You cannot edit this policy. |
Data Model Attribute Definitions | Extends custom attributes for services, endpoints, operations, containers, agents, business objects, transactions, and type domains. |
Default Message Logging Database | Configures the connection to a database used for logging messages. |
Default Observer Communication Policy | Determines which genres are to be observed and monitored, and specifies the monitor port number. |
Event Generation Policy | Configures the generation of events based on the occurrence of event notifications. |
Event Notification Measurement Policy | Used by the notifier service. You can only re-define criteria for this policy. |
Measurement Interval Policy | Specifies the interval at which measurements are aggregated and collected throughout Business Transaction Management. |
Service Versioning Policy | Directs the system in what action to take in response to new or changed WSDLs. For more information, see Resolving Discovery Issues. |
Simple Transaction Measurement Policy | Supports measurement of average response time, maximum response time, completed transaction count, started transaction count, completed transaction rate, started transaction rate for a given transaction. Business Transaction Management will use either this policy or the Transaction Measurement policy to measure transaction performance, depending on how the transaction is defined and what features are used. You cannot edit this policy. |
System generated log policy for transaction | Specifies the location for storing transaction messages, the limits on time store, the rotation interval, and defines the scope of logging. You cannot edit this policy. |
Transaction measurement | Supports measurement of average response time, maximum response time, completed transaction count, started transaction count, completed transaction rate, started transaction rate for a given transaction. Business Transaction Management will use either this policy or the Simple Transaction Measurement policy to measure transaction performance, depending on how the transaction is defined and what features are used. You cannot edit this policy. |
Uptime Measurement | Supports the uptime measurement for a given endpoint and service. You cannot edit this policy. |
Monitor Group Policy | Creates and configures a monitor agent group. |
To view a system policy definition:
To define a system policy:
When you define a policy, you must supply identifying information: the policy's name and whether it is enabled. You must also supply settings that determine what the policy will accomplish, and criteria that determine to which endpoints (targets) the policy is applied.
Some system policies can only be modified and must be accessed from Administration > System Policies in the navigator.
To modify a system policy
 Copyright © 2012, Oracle and/or its affiliates. All rights reserved. |