

22 Managing Clusters

In this chapter:

	
About Clusters

	
Guidelines for Managing Clusters

	
Creating Clusters

	
Altering Clusters

	
Dropping Clusters

	
Clusters Data Dictionary Views

Using Shared Database Links

Every application that references a remote server using a standard database link establishes a connection between the local database and the remote database. Many users running applications simultaneously can cause a high number of connections between the local and remote databases.

Shared database links enable you to limit the number of network connections required between the local server and the remote server.

This section contains the following topics:

	
Determining Whether to Use Shared Database Links

	
Creating Shared Database Links

	
Configuring Shared Database Links

	
See Also:

"What Are Shared Database Links?" for a conceptual overview of shared database links

Determining Whether to Use Shared Database Links

Look carefully at your application and shared server configuration to determine whether to use shared links. A simple guideline is to use shared database links when the number of users accessing a database link is expected to be much larger than the number of server processes in the local database.

The following table illustrates three possible configurations involving database links:

	Link Type	Server Mode	Consequences
	Nonshared	Dedicated/shared server	If your application uses a standard public database link, and 100 users simultaneously require a connection, then 100 direct network connections to the remote database are required.
	Shared	Shared server	If 10 shared server processes exist in the local shared server mode database, then 100 users that use the same database link require 10 or fewer network connections to the remote server. Each local shared server process may only need one connection to the remote server.
	Shared	Dedicated	If 10 clients connect to a local dedicated server, and each client has 10 sessions on the same connection (thus establishing 100 sessions overall), and each session references the same remote database, then only 10 connections are needed. With a nonshared database link, 100 connections are needed.

Shared database links are not useful in all situations. Assume that only one user accesses the remote server. If this user defines a shared database link and 10 shared server processes exist in the local database, then this user can require up to 10 network connections to the remote server. Because the user can use each shared server process, each process can establish a connection to the remote server.

Clearly, a nonshared database link is preferable in this situation because it requires only one network connection. Shared database links lead to more network connections in single-user scenarios, so use shared links only when many users need to use the same link. Typically, shared links are used for public database links, but can also be used for private database links when many clients access the same local schema (and therefore the same private database link).

	
Note:

In a multitiered environment, there is a restriction that if you use a shared database link to connect to a remote database, then that remote database cannot link to another database with a database link that cannot be migrated. That link must use a shared server, or it must be another shared database link.

Creating Shared Database Links

To create a shared database link, use the keyword SHARED in the CREATE DATABASE LINK statement:

CREATE SHARED DATABASE LINK dblink_name
[CONNECT TO username IDENTIFIED BY password]|[CONNECT TO CURRENT_USER]
AUTHENTICATED BY schema_name IDENTIFIED BY password
[USING 'service_name'];

Whenever you use the keyword SHARED, the clause AUTHENTICATED BY is required. The schema specified in the AUTHENTICATED BY clause must exist in the remote database and must be granted at least the CREATE SESSION privilege. The credentials of this schema can be considered the authentication method between the local database and the remote database. These credentials are required to protect the remote shared server processes from clients that masquerade as a database link user and attempt to gain unauthorized access to information.

After a connection is made with a shared database link, operations on the remote database proceed with the privileges of the CONNECT TO user or CURRENT_USER, not the AUTHENTICATED BY schema.

The following example creates a fixed user, shared link to database sales, connecting as scott and authenticated as linkuser:

CREATE SHARED DATABASE LINK link2sales
CONNECT TO scott IDENTIFIED BY password
AUTHENTICATED BY linkuser IDENTIFIED BY ostrich
USING 'sales';

	
See Also:

Oracle Database SQL Language Reference for information about the CREATE DATABASE LINK statement

Configuring Shared Database Links

You can configure shared database links in the following ways:

	
Creating Shared Links to Dedicated Servers

	
Creating Shared Links to Shared Servers

Creating Shared Links to Dedicated Servers

In the configuration illustrated in Figure 32-1, a shared server process in the local server owns a dedicated remote server process. The advantage is that a direct network transport exists between the local shared server and the remote dedicated server. A disadvantage is that extra back-end server processes are needed.

	
Note:

The remote server can either be a shared server or dedicated server. There is a dedicated connection between the local and remote servers. When the remote server is a shared server, you can force a dedicated server connection by using the (SERVER=DEDICATED) clause in the definition of the service name.

Figure 32-1 A Shared Database Link to Dedicated Server Processes

[image: Description of Figure 32-1 follows]

Creating Shared Links to Shared Servers

The configuration illustrated in Figure 32-2 uses shared server processes on the remote server. This configuration eliminates the need for more dedicated servers, but requires the connection to go through the dispatcher on the remote server. Note that both the local and the remote server must be configured as shared servers.

Figure 32-2 Shared Database Link to Shared Server

[image: Description of Figure 32-2 follows]

	
See Also:

"Shared Server Processes" for information about the shared server option

Renaming Schema Objects

To rename an object, it must be in your schema. You can rename schema objects in either of the following ways:

	
Drop and re-create the object

	
Rename the object using the RENAME statement

	
Rename the object using the ALTER ... RENAME statement (for indexes and triggers)

If you drop and re-create an object, all privileges granted for that object are lost. Privileges must be regranted when the object is re-created.

A table, view, sequence, or a private synonym of a table, view, or sequence can be renamed using the RENAME statement. When using the RENAME statement, integrity constraints, indexes, and grants made for the object are carried forward for the new name. For example, the following statement renames the sales_staff view:

RENAME sales_staff TO dept_30;

	
Note:

You cannot use RENAME for a stored PL/SQL program unit, public synonym, or cluster. To rename such an object, you must drop and re-create it.

Before renaming a schema object, consider the following effects:

	
All views and PL/SQL program units dependent on a renamed object become invalid, and must be recompiled before next use.

	
All synonyms for a renamed object return an error when used.

	
See Also:

Oracle Database SQL Language Reference for syntax of the RENAME statement

Redo Log Data Dictionary Views

The following views provide information on redo logs.

	View	Description
	V$LOG	Displays the redo log file information from the control file
	V$LOGFILE	Identifies redo log groups and members and member status
	V$LOG_HISTORY	Contains log history information

The following query returns the control file information about the redo log for a database.

SELECT * FROM V$LOG;

GROUP# THREAD# SEQ BYTES MEMBERS ARC STATUS FIRST_CHANGE# FIRST_TIM
------ ------- ----- ------- ------- --- --------- ------------- ---------
 1 1 10605 1048576 1 YES ACTIVE 11515628 16-APR-00
 2 1 10606 1048576 1 NO CURRENT 11517595 16-APR-00
 3 1 10603 1048576 1 YES INACTIVE 11511666 16-APR-00
 4 1 10604 1048576 1 YES INACTIVE 11513647 16-APR-00

To see the names of all of the member of a group, use a query similar to the following:

SELECT * FROM V$LOGFILE;

GROUP# STATUS MEMBER
------ ------- ----------------------------------
 1 D:\ORANT\ORADATA\IDDB2\REDO04.LOG
 2 D:\ORANT\ORADATA\IDDB2\REDO03.LOG
 3 D:\ORANT\ORADATA\IDDB2\REDO02.LOG
 4 D:\ORANT\ORADATA\IDDB2\REDO01.LOG

If STATUS is blank for a member, then the file is in use.

	
See Also:

Oracle Database Reference for detailed information about these views

Session Trees for Distributed Transactions

As the statements in a distributed transaction are issued, the database defines a session tree of all nodes participating in the transaction. A session tree is a hierarchical model that describes the relationships among sessions and their roles. Figure 34-2 illustrates a session tree:

Figure 34-2 Example of a Session Tree

[image: Description of Figure 34-2 follows]

All nodes participating in the session tree of a distributed transaction assume one or more of the following roles:

	Role	Description
	Client	A node that references information in a database belonging to a different node.
	Database server	A node that receives a request for information from another node.
	Global coordinator	The node that originates the distributed transaction.
	Local coordinator	A node that is forced to reference data on other nodes to complete its part of the transaction.
	Commit point site	The node that commits or rolls back the transaction as instructed by the global coordinator.

The role a node plays in a distributed transaction is determined by:

	
Whether the transaction is local or remote

	
The commit point strength of the node ("Commit Point Site")

	
Whether all requested data is available at a node, or whether other nodes need to be referenced to complete the transaction

	
Whether the node is read-only

Clients

A node acts as a client when it references information from a database on another node. The referenced node is a database server. In Figure 34-2, the node sales is a client of the nodes that host the warehouse and finance databases.

Database Servers

A database server is a node that hosts a database from which a client requests data.

In Figure 34-2, an application at the sales node initiates a distributed transaction that accesses data from the warehouse and finance nodes. Therefore, sales.example.com has the role of client node, and warehouse and finance are both database servers. In this example, sales is a database server and a client because the application also modifies data in the sales database.

Local Coordinators

A node that must reference data on other nodes to complete its part in the distributed transaction is called a local coordinator. In Figure 34-2, sales is a local coordinator because it coordinates the nodes it directly references: warehouse and finance. The node sales also happens to be the global coordinator because it coordinates all the nodes involved in the transaction.

A local coordinator is responsible for coordinating the transaction among the nodes it communicates directly with by:

	
Receiving and relaying transaction status information to and from those nodes

	
Passing queries to those nodes

	
Receiving queries from those nodes and passing them on to other nodes

	
Returning the results of queries to the nodes that initiated them

Global Coordinator

The node where the distributed transaction originates is called the global coordinator. The database application issuing the distributed transaction is directly connected to the node acting as the global coordinator. For example, in Figure 34-2, the transaction issued at the node sales references information from the database servers warehouse and finance. Therefore, sales.example.com is the global coordinator of this distributed transaction.

The global coordinator becomes the parent or root of the session tree. The global coordinator performs the following operations during a distributed transaction:

	
Sends all of the distributed transaction SQL statements, remote procedure calls, and so forth to the directly referenced nodes, thus forming the session tree

	
Instructs all directly referenced nodes other than the commit point site to prepare the transaction

	
Instructs the commit point site to initiate the global commit of the transaction if all nodes prepare successfully

	
Instructs all nodes to initiate a global rollback of the transaction if there is an abort response

Commit Point Site

The job of the commit point site is to initiate a commit or roll back operation as instructed by the global coordinator. The system administrator always designates one node to be the commit point site in the session tree by assigning all nodes a commit point strength. The node selected as commit point site should be the node that stores the most critical data.

Figure 34-3 illustrates an example of distributed system, with sales serving as the commit point site:

Figure 34-3 Commit Point Site

[image: Description of Figure 34-3 follows]

The commit point site is distinct from all other nodes involved in a distributed transaction in these ways:

	
The commit point site never enters the prepared state. Consequently, if the commit point site stores the most critical data, this data never remains in-doubt, even if a failure occurs. In failure situations, failed nodes remain in a prepared state, holding necessary locks on data until in-doubt transactions are resolved.

	
The commit point site commits before the other nodes involved in the transaction. In effect, the outcome of a distributed transaction at the commit point site determines whether the transaction at all nodes is committed or rolled back: the other nodes follow the lead of the commit point site. The global coordinator ensures that all nodes complete the transaction in the same manner as the commit point site.

How a Distributed Transaction Commits

A distributed transaction is considered committed after all non-commit-point sites are prepared, and the transaction has been actually committed at the commit point site. The redo log at the commit point site is updated as soon as the distributed transaction is committed at this node.

Because the commit point log contains a record of the commit, the transaction is considered committed even though some participating nodes may still be only in the prepared state and the transaction not yet actually committed at these nodes. In the same way, a distributed transaction is considered not committed if the commit has not been logged at the commit point site.

Commit Point Strength

Every database server must be assigned a commit point strength. If a database server is referenced in a distributed transaction, the value of its commit point strength determines which role it plays in the two-phase commit. Specifically, the commit point strength determines whether a given node is the commit point site in the distributed transaction and thus commits before all of the other nodes. This value is specified using the initialization parameter COMMIT_POINT_STRENGTH. This section explains how the database determines the commit point site.

The commit point site, which is determined at the beginning of the prepare phase, is selected only from the nodes participating in the transaction. The following sequence of events occurs:

	
Of the nodes directly referenced by the global coordinator, the database selects the node with the highest commit point strength as the commit point site.

	
The initially-selected node determines if any of the nodes from which it has to obtain information for this transaction has a higher commit point strength.

	
Either the node with the highest commit point strength directly referenced in the transaction or one of its servers with a higher commit point strength becomes the commit point site.

	
After the final commit point site has been determined, the global coordinator sends prepare responses to all nodes participating in the transaction.

Figure 34-4 shows in a sample session tree the commit point strengths of each node (in parentheses) and shows the node chosen as the commit point site:

Figure 34-4 Commit Point Strengths and Determination of the Commit Point Site

[image: Description of Figure 34-4 follows]

The following conditions apply when determining the commit point site:

	
A read-only node cannot be the commit point site.

	
If multiple nodes directly referenced by the global coordinator have the same commit point strength, then the database designates one of these as the commit point site.

	
If a distributed transaction ends with a rollback, then the prepare and commit phases are not needed. Consequently, the database never determines a commit point site. Instead, the global coordinator sends a ROLLBACK statement to all nodes and ends the processing of the distributed transaction.

As Figure 34-4 illustrates, the commit point site and the global coordinator can be different nodes of the session tree. The commit point strength of each node is communicated to the coordinators when the initial connections are made. The coordinators retain the commit point strengths of each node they are in direct communication with so that commit point sites can be efficiently selected during two-phase commits. Therefore, it is not necessary for the commit point strength to be exchanged between a coordinator and a node each time a commit occurs.

	
See Also:

	
"Specifying the Commit Point Strength of a Node" to learn how to set the commit point strength of a node

	
Oracle Database Reference for more information about the initialization parameter COMMIT_POINT_STRENGTH

Managing Global Names in a Distributed System

In a distributed database system, each database should have a unique global database name. Global database names uniquely identify a database in the system. A primary administration task in a distributed system is managing the creation and alteration of global database names.

This section contains the following topics:

	
Understanding How Global Database Names Are Formed

	
Determining Whether Global Naming Is Enforced

	
Viewing a Global Database Name

	
Changing the Domain in a Global Database Name

	
Changing a Global Database Name: Scenario

Understanding How Global Database Names Are Formed

A global database name is formed from two components: a database name and a domain. The database name and the domain name are determined by the following initialization parameters at database creation:

	Component	Parameter	Requirements	Example
	Database name	DB_NAME	Must be eight characters or less.	sales
	Domain containing the database	DB_DOMAIN	Must follow standard Internet conventions. Levels in domain names must be separated by dots and the order of domain names is from leaf to root, left to right.	us.example.com

These are examples of valid global database names:

	DB_NAME	DB_DOMAIN	Global Database Name
	sales	example.com	sales.example.com
	sales	us.example.com	sales.us.example.com
	mktg	us.example.com	mktg.us.example.com
	payroll	example.org	payroll.example.org

The DB_DOMAIN initialization parameter is only important at database creation time when it is used, together with the DB_NAME parameter, to form the database global name. At this point, the database global name is stored in the data dictionary. You must change the global name using an ALTER DATABASE statement, not by altering the DB_DOMAIN parameter in the initialization parameter file. It is good practice, however, to change the DB_DOMAIN parameter to reflect the change in the domain name before the next database startup.

Determining Whether Global Naming Is Enforced

The name that you give to a link on the local database depends on whether the remote database that you want to access enforces global naming. If the remote database enforces global naming, then you must use the remote database global database name as the name of the link. For example, if you are connected to the local hq server and want to create a link to the remote mfg database, and mfg enforces global naming, then you must use the mfg global database name as the link name.

You can also use service names as part of the database link name. For example, if you use the service names sn1 and sn2 to connect to database hq.example.com, and hq enforces global naming, then you can create the following link names to hq:

	
HQ.EXAMPLE.COM@SN1

	
HQ.EXAMPLE.COM@SN2

	
See Also:

"Using Connection Qualifiers to Specify Service Names Within Link Names" for more information about using services names in link names

To determine whether global naming on a database is enforced on a database, either examine the database initialization parameter file or query the V$PARAMETER view. For example, to see whether global naming is enforced on mfg, you could start a session on mfg and then create and execute the following globalnames.sql script (sample output included):

COL NAME FORMAT A12
COL VALUE FORMAT A6
SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'global_names'
/

SQL> @globalnames

NAME VALUE
------------ ------
global_names FALSE

Viewing a Global Database Name

Use the data dictionary view GLOBAL_NAME to view the database global name. For example, issue the following:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME

SALES.EXAMPLE.COM

Changing the Domain in a Global Database Name

Use the ALTER DATABASE statement to change the domain in a database global name. Note that after the database is created, changing the initialization parameter DB_DOMAIN has no effect on the global database name or on the resolution of database link names.

The following example shows the syntax for the renaming statement, where database is a database name and domain is the network domain:

ALTER DATABASE RENAME GLOBAL_NAME TO database.domain;

Use the following procedure to change the domain in a global database name:

	
Determine the current global database name. For example, issue:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.EXAMPLE.COM

	
Rename the global database name using an ALTER DATABASE statement. For example, enter:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.us.example.com;

	
Query the GLOBAL_NAME table to check the new name. For example, enter:

SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.US.EXAMPLE.COM

Changing a Global Database Name: Scenario

In this scenario, you change the domain part of the global database name of the local database. You also create database links using partially specified global names to test how Oracle Database resolves the names. You discover that the database resolves the partial names using the domain part of the current global database name of the local database, not the value for the initialization parameter DB_DOMAIN.

	
You connect to SALES.US.EXAMPLE.COM and query the GLOBAL_NAME data dictionary view to determine the current database global name:

CONNECT SYSTEM@sales.us.example.com
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.US.EXAMPLE.COM

	
You query the V$PARAMETER view to determine the current setting for the DB_DOMAIN initialization parameter:

SELECT NAME, VALUE FROM V$PARAMETER WHERE NAME = 'db_domain';

NAME VALUE
--------- -----------
db_domain US.EXAMPLE.COM

	
You then create a database link to a database called hq, using only a partially-specified global name:

CREATE DATABASE LINK hq USING 'sales';

The database expands the global database name for this link by appending the domain part of the global database name of the local database to the name of the database specified in the link.

	
You query USER_DB_LINKS to determine which domain name the database uses to resolve the partially specified global database name:

SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.EXAMPLE.COM

This result indicates that the domain part of the global database name of the local database is us.example.com. The database uses this domain in resolving partial database link names when the database link is created.

	
Because you have received word that the sales database will move to Japan, you rename the sales database to sales.jp.example.com:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.jp.example.com;
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.JP.EXAMPLE.COM

	
You query V$PARAMETER again and discover that the value of DB_DOMAIN is not changed, although you renamed the domain part of the global database name:

SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'db_domain';

NAME VALUE
--------- -----------
db_domain US.EXAMPLE.COM

This result indicates that the value of the DB_DOMAIN initialization parameter is independent of the ALTER DATABASE RENAME GLOBAL_NAME statement. The ALTER DATABASE statement determines the domain of the global database name, not the DB_DOMAIN initialization parameter (although it is good practice to alter DB_DOMAIN to reflect the new domain name).

	
You create another database link to database supply, and then query USER_DB_LINKS to see how the database resolves the domain part of the global database name of supply:

CREATE DATABASE LINK supply USING 'supply';
SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.EXAMPLE.COM
SUPPLY.JP.EXAMPLE.COM

This result indicates that the database resolves the partially specified link name by using the domain jp.example.com. This domain is used when the link is created because it is the domain part of the global database name of the local database. The database does not use the DB_DOMAIN initialization parameter setting when resolving the partial link name.

	
You then receive word that your previous information was faulty: sales will be in the ASIA.JP.EXAMPLE.COM domain, not the JP.EXAMPLE.COM domain. Consequently, you rename the global database name as follows:

ALTER DATABASE RENAME GLOBAL_NAME TO sales.asia.jp.example.com;
SELECT * FROM GLOBAL_NAME;

GLOBAL_NAME
--
SALES.ASIA.JP.EXAMPLE.COM

	
You query V$PARAMETER to again check the setting for the parameter DB_DOMAIN:

SELECT NAME, VALUE FROM V$PARAMETER
 WHERE NAME = 'db_domain';

NAME VALUE
---------- -----------
db_domain US.EXAMPLE.COM

The result indicates that the domain setting in the parameter file is the same as it was before you issued either of the ALTER DATABASE RENAME statements.

	
Finally, you create a link to the warehouse database and again query USER_DB_LINKS to determine how the database resolves the partially-specified global name:

CREATE DATABASE LINK warehouse USING 'warehouse';
SELECT DB_LINK FROM USER_DB_LINKS;

DB_LINK

HQ.US.EXAMPLE.COM
SUPPLY.JP.EXAMPLE.COM
WAREHOUSE.ASIA.JP.EXAMPLE.COM

Again, you see that the database uses the domain part of the global database name of the local database to expand the partial link name during link creation.

	
Note:

In order to correct the supply database link, it must be dropped and re-created.

	
See Also:

Oracle Database Reference for more information about specifying the DB_NAME and DB_DOMAIN initialization parameters

Backing Up Control Files

Use the ALTER DATABASE BACKUP CONTROLFILE statement to back up your control files. You have two options:

	
Back up the control file to a binary file (duplicate of existing control file) using the following statement:

ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/backup/control.bkp';

	
Produce SQL statements that can later be used to re-create your control file:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

This command writes a SQL script to a trace file where it can be captured and edited to reproduce the control file. View the alert log to determine the name and location of the trace file.

	
See Also:

	
Oracle Database Backup and Recovery User's Guide for more information on backing up your control files

	
"Viewing the Alert Log"

11 Managing Control Files

In this chapter:

	
What Is a Control File?

	
Guidelines for Control Files

	
Creating Control Files

	
Troubleshooting After Creating Control Files

	
Backing Up Control Files

	
Recovering a Control File Using a Current Copy

	
Dropping Control Files

	
Control Files Data Dictionary Views

	
See Also:

	
Oracle Database Concepts for an overview of control files

	
Chapter 17, "Using Oracle Managed Files" for information about creating control files that are both created and managed by the Oracle Database server

Process and Session Data Dictionary Views

The following are the data dictionary views that can help you manage processes and sessions.

	View	Description
	V$PROCESS	Contains information about the currently active processes
	V$SESSION	Lists session information for each current session
	V$SESS_IO	Contains I/O statistics for each user session
	V$SESSION_LONGOPS	Displays the status of various operations that run for longer than 6 seconds (in absolute time). These operations currently include many backup and recovery functions, statistics gathering, and query execution. More operations are added for every Oracle Database release.
	V$SESSION_WAIT	Displays the current or last wait for each session
	V$SESSION_WAIT_HISTORY	Lists the last ten wait events for each active session
	V$WAIT_CHAINS	Displays information about blocked sessions
	V$SYSSTAT	Contains session statistics
	V$RESOURCE_LIMIT	Provides information about current and maximum global resource utilization for some system resources
	V$SQLAREA	Contains statistics about shared SQL areas. Contains one row for each SQL string. Provides statistics about SQL statements that are in memory, parsed, and ready for execution

Index

A B C D E F G H I J K L M N O P Q R S T U V W X

Symbols

	?, 2.3.11
	@, 2.3.11

A

	abort response, 34.3.1.1.3
	
	two-phase commit, 34.3.1.1.3

	accounts
	
	DBA operating system account, 1.5.1
	users SYS and SYSTEM, 1.5.2

	ADD LOGFILE clause
	
	ALTER DATABASE statement, 12.3.1

	ADD LOGFILE MEMBER clause
	
	ALTER DATABASE statement, 12.3.2

	adding
	
	columns, 20.6.6
	columns in compressed tables, 20.6.6.1

	ADMIN_TABLES procedure
	
	creating admin table, 25.3.1.1
	DBMS_REPAIR package, 25.2.1
	example, 25.4.1.1, 25.4.1.2

	ADMINISTER_RESOURCE_MANAGER system privilege, 27.1.3
	administering
	
	the Scheduler, 30

	administration
	
	distributed databases, 32

	administrator passwords, synchronizing password file and data dictionary, 1.7.2
	ADR
	
	See automatic diagnostic repository

	ADR base, 9.1.4
	ADR home, 9.1.4
	ADRCI utility, 9.1.3.6
	Advisor
	
	Data Repair, 9.1.1
	Undo, 16.4

	AFTER SUSPEND system event, 19.2.4.1
	AFTER SUSPEND trigger, 19.2.4.1
	
	example of registering, 19.2.6

	agent
	
	Heterogeneous Services, definition of, 31.1.2

	aggregate functions
	
	statement transparency in distributed databases, 32.7

	alert log, 9.1.3.2
	
	about, 8.1.1
	size of, 8.1.1.1
	using, 8.1.1
	viewing, 9.5
	when written, 8.1.1.2

	alert thresholds
	
	setting for locally managed tablespaces, 19.1.1

	alerts
	
	server-generated, 8.1.2
	threshold-based, 8.1.2
	viewing, 19.1.2

	ALL_DB_LINKS view, 32.5.1, 32.5.1
	allocation
	
	extents, 20.6.4

	ALTER CLUSTER statement
	
	ALLOCATE EXTENT clause, 22.4
	using for hash clusters, 23.4
	using for index clusters, 22.4

	ALTER DATABASE ADD LOGFILE statement
	
	using Oracle Managed Files, 17.3.6.1

	ALTER DATABASE statement
	
	ADD LOGFILE clause, 12.3.1
	ADD LOGFILE MEMBER clause, 12.3.2
	ARCHIVELOG clause, 13.3.2
	CLEAR LOGFILE clause, 12.8
	CLEAR UNARCHIVED LOGFILE clause, 12.2.1.1
	database partially available to users, 3.2.1
	DATAFILE...OFFLINE DROP clause, 15.4.2
	datafiles online or offline, 15.4.3
	DROP LOGFILE clause, 12.5.1
	DROP LOGFILE MEMBER clause, 12.5.2
	MOUNT clause, 3.2.1
	NOARCHIVELOG clause, 13.3.2
	OPEN clause, 3.2.2
	READ ONLY clause, 3.2.3
	RENAME FILE clause, 15.5.2
	tempfiles online or offline, 15.4.3
	UNRECOVERABLE DATAFILE clause, 12.8

	ALTER INDEX statement
	
	COALESCE clause, 21.2.12
	MONITORING USAGE clause, 21.4.6

	ALTER SEQUENCE statement, 24.2.3
	ALTER SESSION
	
	Enabling resumable space allocation, 19.2.2.2

	ALTER SESSION statement
	
	ADVISE clause, 35.4.3.3
	CLOSE DATABASE LINK clause, 33.2
	SET SQL_TRACE initialization parameter, 8.1.1.2
	setting time zone, 2.4.9.1

	ALTER SYSTEM statement
	
	ARCHIVE LOG ALL clause, 13.3.3
	DISABLE DISTRIBUTED RECOVERY clause, 35.9.2
	ENABLE DISTRIBUTED RECOVERY clause, 35.9.2
	ENABLE RESTRICTED SESSION clause, 3.2.4
	enabling Database Resource Manager, 27.6
	QUIESCE RESTRICTED, 3.4.1
	RESUME clause, 3.5
	SCOPE clause for SET, 2.6.5.1
	SET RESOURCE_MANAGER_PLAN, 27.6
	SET SHARED_SERVERS initialization parameter, 5.3.3.2
	setting initialization parameters, 2.6.5
	SUSPEND clause, 3.5
	SWITCH LOGFILE clause, 12.6
	UNQUIESCE, 3.4.2

	ALTER TABLE statement
	
	ADD (column) clause, 20.6.6
	ALLOCATE EXTENT clause, 20.6.4
	DEALLOCATE UNUSED clause, 20.6.4
	DISABLE ALL TRIGGERS clause, 18.4.2
	DISABLE integrity constraint clause, 18.5.3.1
	DROP COLUMN clause, 20.6.8.1
	DROP integrity constraint clause, 18.5.3.3
	DROP UNUSED COLUMNS clause, 20.6.8.2
	ENABLE ALL TRIGGERS clause, 18.4.1
	ENABLE integrity constraint clause, 18.5.3.1, 18.5.3.1
	external tables, 20.13.3
	MODIFY (column) clause, 20.6.5
	modifying index-organized table attributes, 20.12.3.1
	MOVE clause, 20.6.3, 20.6.3, 20.12.3.2
	reasons for use, 20.6.1
	RENAME COLUMN clause, 20.6.7
	SET UNUSED clause, 20.6.8.2

	ALTER TABLESPACE statement
	
	adding an Oracle managed datafile, example, 17.3.3.3
	adding an Oracle managed tempfile, example, 17.3.4.2
	ONLINE clause, example, 14.5.2
	READ ONLY clause, 14.6.1
	READ WRITE clause, 14.6.2
	RENAME DATAFILE clause, 15.5.1.1
	RENAME TO clause, 14.8
	taking datafiles/tempfiles online/offline, 15.4.3

	ALTER TRIGGER statement
	
	DISABLE clause, 18.4.2
	ENABLE clause, 18.4.1

	altering
	
	(Scheduler) windows, 29.7.3.3
	event schedule, 29.5.2.4
	event-based job, 29.5.2.2
	indexes, 21.4
	job classes, 29.7.1.3
	jobs, 29.2.3
	programs, 29.3.3
	schedules, 29.4.3

	ANALYZE statement
	
	CASCADE clause, 18.2.2
	CASCADE clause, FAST option, 18.2.2
	corruption reporting, 25.3.1.3
	listing chained rows, 18.2.3
	remote tables, 33.4.2.2.2
	validating structure, 18.2.2, 25.3.1

	analyzing schema objects, 18.2
	analyzing tables
	
	distributed processing, 33.4.2.2.2

	APPEND hint, 20.2.6
	application development
	
	distributed databases, 31.5, 33, 33.5

	application development for distributed databases, 33
	
	analyzing execution plan, 33.4.4
	database links, controlling connections, 33.2
	handling errors, 33.3, 33.5
	handling remote procedure errors, 33.5
	managing distribution of data, 33.1
	managing referential integrity constraints, 33.3
	terminating remote connections, 33.2
	tuning distributed queries, 33.4
	tuning using collocated inline views, 33.4.1
	using cost-based optimization, 33.4.2
	using hints to tune queries, 33.4.3

	ARCHIVE_LAG_TARGET initialization parameter, 12.2.6.1
	archived redo logs
	
	alternate destinations, 13.4.3
	archiving modes, 13.3.2
	data dictionary views, 13.8.1
	destination availability state, controlling, 13.4.2
	destination status, 13.4.2
	destinations, specifying, 13.4
	failed destinations and, 13.6
	mandatory destinations, 13.6.1.1
	minimum number of destinations, 13.6.1
	multiplexing, 13.4.1
	normal transmission of, 13.5
	re-archiving to failed destination, 13.6.2
	sample destination scenarios, 13.6.1.2
	standby transmission of, 13.5
	status information, 13.8.1
	transmitting, 13.5

	ARCHIVELOG mode, 13.2.2
	
	advantages, 13.2.2
	archiving, 13.2
	automatic archiving in, 13.2.2
	definition of, 13.2.2
	distributed databases, 13.2.2
	enabling, 13.3.2
	manual archiving in, 13.2.2
	running in, 13.2.2
	switching to, 13.3.2
	taking datafiles offline and online in, 15.4.1

	archiver process
	
	trace output (controlling), 13.7

	archiver process (ARCn), 5.5
	archiving
	
	alternate destinations, 13.4.3
	changing archiving mode, 13.3.2
	controlling number of processes, 13.3.4
	destination availability state, controlling, 13.4.2
	destination failure, 13.6
	destination status, 13.4.2
	manual, 13.3.3, 13.3.3
	NOARCHIVELOG vs. ARCHIVELOG mode, 13.2
	setting initial mode, 13.3.1
	to failed destinations, 13.6.2
	trace output, controlling, 13.7
	viewing information on, 13.8.1

	at-sign, 2.3.11
	auditing
	
	database links, 31.3.3

	authentication
	
	database links, 31.3.2.1
	operating system, 1.6.3.2
	selecting a method, 1.6.2
	using password file, 1.6.4.1

	AUTO_TASK_CONSUMER_GROUP
	
	of Resource Manager, 26.5

	AUTOEXTEND, 15.3.1
	AUTOEXTEND clause
	
	for bigfile tablespaces, 14.7.3

	automatic diagnostic repository, 9.1.1, 9.1.3.1
	
	in Oracle Client, 9.1.4
	in Oracle Real Application Clusters, 9.1.4
	structure, contents and location of, 9.1.4

	automatic file extension, 15.3.1
	automatic maintenance tasks
	
	assigning to maintenance windows, 26.3.2
	definition, 26.1
	enabling and disabling, 26.3.1
	predefined, 26.1
	resource allocation, 26.5.1
	Scheduler job names, 26.2

	automatic memory management, 6.1
	
	about, 6.3.1
	enabling, 6.3.2
	supported platforms, 6.6.1

	automatic segment space management, 14.2.1.2
	automatic undo management, 2.4.4, 16.2, 16.2
	
	migrating to, 16.6

B

	background processes, 5.5
	
	FMON, 15.9.2.1.1

	BACKGROUND_DUMP_DEST initialization parameter, 9.1.3.1
	backups
	
	after creating new databases, 2.3.13
	effects of archiving on, 13.2.1

	batch jobs, authenticating users in, 2.8.3
	bigfile tablespaces
	
	creating, 14.2.2.1
	creating temporary, 14.2.5.2
	description, 14.2.2
	setting database default, 2.4.8.1

	BLANK_TRIMMING initialization parameter, 20.6.5
	BLOB data type, 20.3.1
	block size, redo log files, 12.2.4
	BLOCKSIZE clause
	
	of CREATE TABLESPACE, 14.3

	buffer caches
	
	extended buffer cache (32-bit), 6.4.2.8.3
	multiple buffer pools, 6.4.2.2.2

	buffer pools, 6.4.2.2.2
	BUFFER_POOL_KEEP initialization parameter, 6.4.2.2.2
	BUFFER_POOL_RECYCLE initialization parameter, 6.4.2.2.2
	buffers
	
	buffer cache in SGA, 6.4.2.2

C

	CACHE option
	
	CREATE SEQUENCE statement, 24.2.4.2.2

	caches
	
	buffer
	
	multiple buffer pools, 6.4.2.2.2

	sequence numbers, 24.2.4.2

	calendaring expressions, 29.4.5.1
	calendaring syntax, 29.4.5.1
	calls
	
	remote procedure, 31.5.2

	capacity planning
	
	space management
	
	capacity planning, 19.7

	CASCADE clause
	
	when dropping unique or primary keys, 18.5.3.1

	CATBLOCK.SQL script, 8.2.1
	centralized user management
	
	distributed systems, 31.3.2.4

	chain condition syntax, 29.6.4
	chain rules, 29.6.4
	chain steps
	
	defining, 29.6.3

	chained rows
	
	eliminating from table, procedure, 18.2.3.2

	CHAINED_ROWS table
	
	used by ANALYZE statement, 18.2.3.1

	chains
	
	creating, 29.6.2
	creating and managing job, 29.6
	creating jobs for, 29.6.6
	disabling, 29.6.10
	dropping, 29.6.7
	dropping rules from, 29.6.9
	enabling, 29.6.5
	handling stalled, 29.6.18
	monitoring running, 29.6.17
	overview, 28.2.7
	pausing, 29.6.14
	running, 29.6.8
	setting privileges, 30.1.1
	steps
	
	pausing, 29.6.14
	skipping, 29.6.15

	stopping, 29.6.12
	stopping individual steps, 29.6.13

	change vectors, 12.1.2
	CHAR data type
	
	increasing column length, 20.6.5

	character set
	
	choosing, 2.1.1.1

	CHECK_OBJECT procedure
	
	DBMS_REPAIR package, 25.2.1
	example, 25.4.2
	finding extent of corruption, 25.3.2

	checkpoint process (CKPT), 5.5
	checksums
	
	for data blocks, 15.7
	redo log blocks, 12.7, 12.7

	CLEAR LOGFILE clause
	
	ALTER DATABASE statement, 12.8, 12.8

	clearing redo log files, 12.2.1.1, 12.8
	client/server architectures
	
	distributed databases, 31.1.3, 31.1.3
	globalization support, 31.6.1

	cloning
	
	a database, 1.2.11
	an Oracle home, 1.2.11

	CLOSE DATABASE LINK clause
	
	ALTER SESSION statement, 33.2

	closing database links, 32.4.1
	closing windows, 29.7.3.5
	clusters
	
	about, 22.1
	allocating extents, 22.4
	altering, 22.4
	analyzing, 18.2
	cluster indexes, 22.5
	cluster keys, 22.1, 22.2.2, 22.2.3
	clustered tables, 22.1, 22.2.1, 22.3.1, 22.4.1, 22.5.1
	columns for cluster key, 22.2.2
	creating, 22.3
	data dictionary views reference, 22.6
	deallocating extents, 22.4
	dropping, 22.5
	estimating space, 22.2.3, 22.2.5
	guidelines for managing, 22.2
	hash clusters, 23
	location, 22.2.4
	privileges, 22.3, 22.4, 22.5.1
	selecting tables, 22.2.1
	single-table hash clusters, 23.3.2
	truncating, 18.3
	validating structure, 18.2.2

	coalescing indexes
	
	costs, 21.2.12

	cold backup
	
	performing with a detached Oracle Scheduler job, 29.2.2.7

	collocated inline views
	
	tuning distributed queries, 33.4.1

	column encryption, 2.8.2
	columns
	
	adding, 20.6.6
	adding to compressed table, 20.6.6.1
	displaying information about, 20.14
	dropping, 20.6.8, 20.6.8.3
	dropping in compressed tables, 20.6.8.4
	encrypted, 20.2.7, 20.6.3
	increasing length, 20.6.5
	modifying definition, 20.6.5
	renaming, 20.6.7
	virtual, 20.1
	virtual, indexing, 21.2.2

	commands
	
	submitting, 1.3

	COMMENT statement, 20.14
	comments
	
	adding to problem activity log, 9.2.7

	COMMIT COMMENT statement
	
	used with distributed transactions, 35.2, 35.4.3.2

	commit phase, 34.3.1, 34.5.4
	
	in two-phase commit, 34.3.2, 34.3.2.2

	commit point site, 34.2.5
	
	commit point strength, 34.2.5.2, 35.1
	determining, 34.2.5.2
	distributed transactions, 34.2.5, 34.2.5.2
	how the database determines, 34.2.5.2

	commit point strength
	
	definition, 34.2.5.2
	specifying, 35.1

	COMMIT statement
	
	FORCE clause, 35.5, 35.5.1.1, 35.5.2
	forcing, 35.4.2
	two-phase commit and, 31.4.6

	COMMIT_POINT_STRENGTH initialization parameter, 34.2.5.2, 35.1
	committing transactions
	
	commit point site for distributed transactions, 34.2.5

	compatibility level, 2.5.9
	COMPATIBLE Initialization Parameter, 2.5.9
	components
	
	srvctl component names and abbreviations, 4.4

	compressed tables
	
	adding a column, 20.6.6.1
	dropping columns in, 20.6.8.4

	compression, table, 20.2.6
	compression, tablespace, 14.2.3
	configuring
	
	an Oracle database, 2
	Oracle Scheduler, 30.1

	CONNECT command
	
	starting an instance, 3.1.4

	CONNECT INTERNAL
	
	desupported, 1.6.2

	CONNECT statement, SQL*Plus, 1.3.2.4
	connected user database links, 32.2.3.2
	
	advantages and disadvantages, 31.2.7.1
	definition, 31.2.7
	example, 31.2.8
	REMOTE_OS_AUTHENT initialization parameter, 31.2.7.1

	connecting
	
	with SQL*Plus, 1.3.2

	connection qualifiers
	
	database links and, 32.2.4

	connections
	
	terminating remote, 33.2

	constraints
	
	See also integrity constraints
	disabling at table creation, 18.5.2.1
	distributed system application development issues, 33.3
	dropping integrity constraints, 18.5.3.3
	enable novalidate state, 18.5.1.3
	enabling example, 18.5.2.2
	enabling when violations exist, 18.5.1.3
	exceptions, 18.5.1.2, 18.5.5
	exceptions to integrity constraints, 18.5.5
	integrity constraint states, 18.5.1
	keeping index when disabling, 18.5.3
	keeping index when dropping, 18.5.3
	ORA-02055 constraint violation, 33.3
	renaming, 18.5.3.2
	setting at table creation, 18.5.2
	when to disable, 18.5.1.1

	control files
	
	adding, 11.3.2
	changing size, 11.3.1
	conflicts with data dictionary, 11.4.1
	creating, 11.1, 11.3, 11.3.3.2
	creating as Oracle Managed Files, 17.3.5
	creating as Oracle Managed Files, examples, 17.5.1
	data dictionary views reference, 11.8
	default name, 2.5.4, 11.3.1
	dropping, 11.7
	errors during creation, 11.4.2
	guidelines for, 11.2
	importance of multiplexed, 11.2.2
	initial creation, 11.3.1
	location of, 11.2.2
	log sequence numbers, 12.1.3.2
	mirroring, 2.5.4, 11.2.2
	moving, 11.3.2
	multiplexed, 11.2.2
	names, 11.2.1
	number of, 11.2.2
	overwriting existing, 2.5.4
	relocating, 11.3.2
	renaming, 11.3.2
	requirement of one, 11.1
	size of, 11.2.4
	specifying names before database creation, 2.5.4
	troubleshooting, 11.4
	unavailable during startup, 3.1.5

	CONTROL_FILES initialization parameter
	
	overwriting existing control files, 2.5.4
	specifying file names, 11.2.1
	when creating a database, 2.5.4, 11.3.1

	CONTROLFILE REUSE clause, 2.5.4
	copying jobs, 29.2.9
	coraenv and oraenv, 1.3.2.2
	core files, 9.1.3.3
	corruption
	
	repairing data block, 25.1

	cost-based optimization, 33.4.2
	
	distributed databases, 31.5.3
	hints, 33.4.3
	using for distributed queries, 33.4.2

	CREATE BIGFILE TABLESPACE statement, 14.2.2.1
	CREATE BIGFILE TEMPORARY TABLESPACE statement, 14.2.5.2
	CREATE CLUSTER statement
	
	creating clusters, 22.3
	example, 22.3
	for hash clusters, 23.3
	HASH IS clause, 23.3, 23.3.3.2
	HASHKEYS clause, 23.3, 23.3.3.4
	SIZE clause, 23.3.3.3

	CREATE CONTROLFILE statement
	
	about, 11.3.3.2
	checking for inconsistencies, 11.4.1
	creating as Oracle Managed Files, examples, 17.3.5, 17.5.1
	NORESETLOGS clause, 11.3.3.3
	Oracle Managed Files, using, 17.3.5
	RESETLOGS clause, 11.3.3.3

	CREATE DATABASE LINK statement, 32.2.2.1
	CREATE DATABASE statement
	
	CONTROLFILE REUSE clause, 11.3.1
	DEFAULT TEMPORARY TABLESPACE clause, 2.3.9, 2.4.6
	example of database creation, 2.3.9
	EXTENT MANAGEMENT LOCAL clause, 2.4.2
	MAXLOGFILES parameter, 12.2.5
	MAXLOGMEMBERS parameter, 12.2.5, 12.2.5
	password for SYS, 2.4.1
	password for SYSTEM, 2.4.1
	setting time zone, 2.4.9.1
	specifying FORCE LOGGING, 2.4.10
	SYSAUX DATAFILE clause, 2.3.9
	UNDO TABLESPACE clause, 2.3.9, 2.4.4
	used to create an undo tablespace, 16.5.1.1
	using Oracle Managed Files, 17.3.2
	using Oracle Managed Files, examples, 17.3.2.6, 17.5.1, 17.5.2

	CREATE INDEX statement
	
	NOLOGGING, 21.2.10
	ON CLUSTER clause, 22.3.2
	using, 21.3.1
	with a constraint, 21.3.3.1

	CREATE PFILE FROM MEMORY command, 2.6.7
	CREATE SCHEMA statement
	
	multiple tables and views, 18.1

	CREATE SEQUENCE statement, 24.2.2
	
	CACHE option, 24.2.4.2.2
	examples, 24.2.4.2.2
	NOCACHE option, 24.2.4.2.2

	CREATE SPFILE statement, 2.6.3
	CREATE SYNONYM statement, 24.3.2
	CREATE TABLE statement
	
	AS SELECT clause, 20.2.4, 20.3.3
	CLUSTER clause, 22.3.1
	COMPRESS clause, 20.12.2.7
	creating temporary table, 20.3.2
	example of, 20.3.1
	INCLUDING clause, 20.12.2.5
	index-organized tables, 20.12.2
	MONITORING clause, 20.5
	NOLOGGING clause, 20.2.5
	ORGANIZATION EXTERNAL clause, 20.13.2
	parallelizing, 20.3.3
	PCTTHRESHOLD clause, 20.12.2.4
	TABLESPACE clause, specifying, 20.2.3

	CREATE TABLESPACE statement
	
	BLOCKSIZE CLAUSE, using, 14.3
	FORCE LOGGING clause, using, 14.4
	using Oracle Managed Files, 17.3.3
	using Oracle Managed Files, examples, 17.3.3.1

	CREATE TEMPORARY TABLESPACE statement, 14.2.5.1
	
	using Oracle Managed Files, 17.3.4
	using Oracle managed files, example, 17.3.4.1

	CREATE UNDO TABLESPACE statement
	
	using Oracle Managed Files, 17.3.3
	using Oracle Managed Files, example, 17.3.3.2
	using to create an undo tablespace, 16.5.1.2

	CREATE UNIQUE INDEX statement
	
	using, 21.3.2

	CREATE VIEW statement
	
	about, 24.1.2
	OR REPLACE clause, 24.1.3
	WITH CHECK OPTION, 24.1.2, 24.1.4

	CREATE_SIMPLE_PLAN procedure
	
	Database Resource Manager, 27.4

	creating
	
	an Oracle database, 2
	chains, 29.6.2
	control files, 11.3
	database services, 2.7.2
	databases, 2.1
	event schedule, 29.5.2.3
	event-based job, 29.5.2.1
	indexes, 21.3
	
	after inserting table data, 21.2.1
	associated with integrity constraints, 21.3.3
	NOLOGGING, 21.2.10
	online, 21.3.5
	USING INDEX clause, 21.3.3.1

	job classes, 29.7.1.2
	jobs, 29.2.2
	programs, 29.3.2
	Scheduler windows, 29.7.3.2
	schedules, 29.4.2
	sequences, 24.2.4.2.2, 24.2.4.2.2
	window groups, 29.7.4.2

	creating database links, 32.2
	
	connected user, 32.2.3.2.1
	connected user scenarios, 32.8.3
	current user, 32.2.3.2.2
	current user scenario, 32.8.5
	examples, 31.2.8
	fixed user, 32.2.3.1
	fixed user scenario, 32.8.1, 32.8.2
	obtaining necessary privileges, 32.2.1
	private, 32.2.2.1
	public, 32.2.2.2
	service names within link names, 32.2.4
	shared, 32.3
	shared connected user scenario, 32.8.4
	specifying types, 32.2.2

	creating databases
	
	backing up the new database, 2.3.13
	default temporary tablespace, specifying, 2.4.6
	example, 2.3.9
	manually from a script, 2.1
	overriding default tablespace type, 2.4.8.2
	planning, 2.1.1
	preparing to, 2.1.1
	prerequisites for, 2.1.1.2
	setting default tablespace type, 2.4.8.1
	specifying bigfile tablespaces, 2.4.8, 2.4.8.2
	UNDO TABLESPACE clause, 2.4.4
	upgrading to a new release, 2.1
	using Oracle Managed Files, 2.4.7, 17.3.2
	with DBCA, 2.2
	with locally managed tablespaces, 2.4.2

	creating datafiles, 15.2
	creating sequences, 24.2.2
	creating synonyms, 24.3.2
	creating views, 24.1.2
	credentials, Oracle Scheduler
	
	about, 28.2.6
	creating, 29.2.2.3.2
	granting privileges on, 28.2.6

	critical errors
	
	diagnosing, 9.1.1

	CRSCTL utility
	
	Oracle Restart, 4.1.4

	current user database links
	
	advantages and disadvantages, 31.2.7.3
	cannot access in shared schema, 31.3.2.4.2
	definition, 31.2.7
	example, 31.2.8
	schema independence, 31.3.2.4.2

	CURRVAL pseudo-column, 24.2.4.1
	
	restrictions, 24.2.4.1.3

	cursors
	
	and closing database links, 33.2

	customize package page, accessing, 9.10.3.2
	customizing an incident package, 9.10.3, 9.10.3.2

D

	data
	
	loading using external tables, 20.13.2

	data block corruption
	
	repairing, 25.1

	data blocks
	
	altering size of, 2.5.5.1
	nonstandard block size, 2.5.5.2
	shared in clusters, 22.1
	specifying size of, 2.5.5
	standard block size, 2.5.5
	verifying, 15.7

	data dictionary
	
	conflicts with control files, 11.4.1
	purging pending rows from, 35.6, 35.6.2
	See also views, data dictionary

	data encryption
	
	distributed systems, 31.3.2.5

	data manipulation language
	
	statements allowed in distributed transactions, 31.4.1

	Data Recovery Advisor, repairing data corruptions with, 9.9
	Data Repair Advisor, 9.1.1
	database
	
	cloning, 1.2.11
	creating, 2.1
	creating and configuring, 2
	creating with DBCA, 2.2
	data dictionary views reference, 2.10
	starting up, 3.1

	database administrators
	
	DBA role, 1.5.2.3
	operating system account, 1.5.1
	password files for, 1.6.2.1
	responsibilities of, 1.1.1
	security and privileges of, 1.5
	security officer versus, 7.1
	SYS and SYSTEM accounts, 1.5.2
	task definitions, 1.2
	utilities for, 1.8

	database buffers
	
	multiple buffer pools, 6.4.2.2.2

	Database Configuration Assistant, 2.1
	
	shared server configuration, 5.3.4

	database destinations, Oracle Scheduler
	
	about, 28.2.4
	creating, 29.2.2.3.3

	database jobs, Oracle Scheduler, 28.3.1.1
	database links
	
	advantages, 31.2.3
	auditing, 31.3.3
	authentication, 31.3.2.1
	authentication without passwords, 31.3.2.2
	closing, 32.4.1, 33.2
	connected user, 31.2.7, 31.2.7.1, 32.2.3.2, 32.8.3
	connections, determining open, 32.5.2
	controlling connections, 33.2
	creating, 32.2, 32.8.1, 32.8.3, 32.8.4, 32.8.5
	creating shared, 32.3.2
	creating, examples, 31.2.8
	creating, scenarios, 32.8
	current user, 31.2.7, 31.2.7.3, 32.2.3.2
	data dictionary USER views, 32.5.1
	definition, 31.2.1
	distributed queries, 31.4.2
	distributed transactions, 31.4.5
	dropping, 32.4.2
	enforcing global naming, 32.1.2
	enterprise users and, 31.3.2.4.2
	fixed user, 31.2.7, 31.2.7.2, 32.8.1
	global, 31.2.6
	global names, 31.2.4
	
	loopback, 31.2.4.1

	global object names, 31.4.7
	handling errors, 33.3
	limiting number of connections, 32.4.3
	listing, 32.5.1, 35.3.1, 35.3.2
	loopback, 31.2.4.1
	managing, 32.4
	minimizing network connections, 32.3
	name resolution, 31.4.7
	names for, 31.2.5
	private, 31.2.6
	public, 31.2.6
	referential integrity in, 33.3
	remote transactions, 31.4.1, 31.4.4
	resolution, 31.4.7
	restrictions, 31.2.10
	roles on remote database, 31.2.10
	schema objects and, 31.2.9
	service names used within link names, 32.2.4
	shared, 31.2.2, 32.3.1, 32.3.3, 32.3.3.1, 32.3.3.2
	shared SQL, 31.4.3
	synonyms for schema objects, 31.2.9.3
	tuning distributed queries, 33.4
	tuning queries with hints, 33.4.3
	tuning using collocated inline views, 33.4.1
	types of links, 31.2.6
	types of users, 31.2.7
	users, specifying, 32.2.3
	using cost-based optimization, 33.4.2
	viewing, 32.5, 32.5.1

	database objects
	
	obtaining growth trends for, 19.7.3

	database program unit, definition, 28.1
	database resident connection pooling, 5.2
	
	advantages, 5.2
	configuration parameters, 5.4.2
	configuring the connection pool, 5.4.2
	data dictionary views reference, 5.4.3
	disabling, 5.4.1
	enabling, 5.4.1
	restrictions, 5.2.2
	triggers, 5.2

	Database Resource Manager
	
	active session pool with queuing, 27.3.5
	administering system privilege, 27.1.3
	and operating system control, 27.12
	automatic consumer group switching, 27.3.6
	CREATE_SIMPLE_PLAN procedure, 27.4
	data dictionary views reference, 27.13.3
	description, 27.1
	enabling, 27.6
	execution time limit, 27.3.8
	resource allocation methods, 27.5.3, 27.5.4, 27.5.4, 27.5.4, 27.5.4, 27.5.4, 27.5.4, 27.5.4, 27.5.4
	resource consumer groups, 27.1.2, 27.2, 27.5.3
	resource plan directives, 27.1.2, 27.5.5, 27.5.6
	resource plans, 27.1.2, 27.1.2.6, 27.3.1, 27.4, 27.6, 27.6, 27.7, 27.7.5
	undo pool, 27.3.9
	used for quiescing a database, 3.4
	validating plan schema changes, 27.5.6

	database services
	
	about, 2.7.1
	controlling automatic startup of, 3.1.3
	data dictionary views, 2.7.3
	managing application workloads with, 2.7

	database services, creating, 2.7.2
	Database Smart Flash Cache
	
	configuring and tuning, 6.5
	overview, 6.2

	database writer process
	
	calculating checksums for data blocks, 15.7

	database writer process (DBWn), 5.5
	DATABASE_PROPERTIES view
	
	rename of default temporary tablespace, 14.8

	databases
	
	administering, 1
	administration of distributed, 32
	altering availability, 3.2
	backing up, 2.3.13
	control files of, 11.2
	default temporary tablespace, specifying, 2.4.6
	dropping, 2.9
	global database names in distributed systems, 2.5.2.2
	mounting a database, 3.1.5.3
	mounting to an instance, 3.2.1
	names, about, 2.5.2.1
	names, conflicts in, 2.5.2.1
	opening a closed database, 3.2.2
	planning, 1.2.3
	planning creation, 2.1.1
	quiescing, 3.4
	read-only, opening, 3.2.3
	recovery, 3.1.5.6
	renaming, 11.3.3.1, 11.3.3.2, 11.3.3.3
	restricting access, 3.2.4
	resuming, 3.5
	shutting down, 3.3
	specifying control files, 2.5.4
	suspending, 3.5
	undo management, 2.4.4
	upgrading, 2.1
	with locally managed tablespaces, 2.4.2

	datafile headers
	
	when renaming tablespaces, 14.8

	datafiles
	
	adding to a tablespace, 15.2
	bringing online and offline, 15.4
	checking associated tablespaces, 14.14.2
	copying using database, 15.8
	creating, 15.2
	creating Oracle Managed Files, 17.3, 17.3.6.2
	data dictionary views reference, 15.10
	database administrators access, 1.5.1
	default directory, 15.2
	definition, 15.1
	deleting, 14.9
	dropping, 15.4.2, 15.6
	dropping Oracle managed, 17.4.1
	file numbers, 15.1
	fully specifying filenames, 15.2
	guidelines for managing, 15.1
	headers when renaming tablespaces, 14.8
	identifying OS filenames, 15.5.1.2
	location, 15.1.3
	mapping files to physical devices, 15.9
	minimum number of, 15.1.1
	MISSING, 11.4.1
	online, 15.4.2
	Oracle managed, 17
	relocating, 15.5
	renaming, 15.5
	reusing, 15.2
	size of, 15.1.2
	statements to create, 15.2
	storing separately from redo log files, 15.1.4
	unavailable when database is opened, 3.1.5
	verifying data blocks, 15.7

	DB_BLOCK_CHECKING initialization parameter, 25.3.1, 25.3.1.4
	DB_BLOCK_CHECKSUM initialization parameter, 15.7
	
	enabling redo block checking with, 12.7

	DB_BLOCK_SIZE initialization parameter, 6.4.2.2
	
	and nonstandard block sizes, 14.3
	setting, 2.5.5

	DB_CACHE_SIZE initialization parameter, 6.4.2.2.1
	
	specifying multiple block sizes, 14.3

	DB_CREATE_FILE_DEST initialization parameter, 17.2
	
	setting, 17.2.1

	DB_CREATE_ONLINE_LOG_DEST_n initialization parameter, 17.2
	
	setting, 17.2.3

	DB_DOMAIN initialization parameter
	
	setting for database creation, 2.5.2, 2.5.2.2

	DB_FILES initialization parameter
	
	determining value for, 15.1.1.1

	DB_KEEP_CACHE_SIZE initialization parameter, 6.4.2.2.2
	DB_NAME initialization parameter
	
	setting before database creation, 2.5.2

	DB_nK_CACHE_SIZE initialization parameter, 6.4.2.2.1
	
	specifying multiple block sizes, 14.3
	using with transportable tablespaces, 14.13.5.6

	DB_RECOVERY_FILE_DEST initialization parameter, 17.2
	
	setting, 17.2.2

	DB_RECYCLY_CACHE_SIZE initialization parameter, 6.4.2.2.2
	DB_UNRECOVERABLE_SCN_TRACKING initialization parameter, Preface, 20.4.2.4.2
	DBA
	
	See database administrators

	DBA role, 1.5.2.3
	DBA_2PC_NEIGHBORS view, 35.3.2
	
	using to trace session tree, 35.3.2

	DBA_2PC_PENDING view, 35.3.1, 35.6, 35.7.6
	
	using to list in-doubt transactions, 35.3.1

	DBA_DB_LINKS view, 32.5.1, 32.5.1, 32.5.1
	DBA_RESUMABLE view, 19.2.4.1
	DBA_UNDO_EXTENTS view
	
	undo tablespace extents, 16.7

	DBCA
	
	See Database Configuration Assistant

	DBMS_FILE_TRANSFER package
	
	copying datafiles, 15.7

	DBMS_JOB
	
	about, A.1
	moving jobs to Oracle Scheduler, A.2

	DBMS_METADATA package
	
	GET_DDL function, 18.11.1
	using for object definition, 18.11.1

	DBMS_REDEFINITION package
	
	performing online redefinition with, 20.7.2
	required privileges, 20.7.9

	DBMS_REPAIR
	
	logical corruptions, 25.3.2

	DBMS_REPAIR package
	
	examples, 25.4
	limitations, 25.2.2
	procedures, 25.2.1
	using, 25.3, 25.4.5

	DBMS_RESOURCE_MANAGER package, 27.1.2, 27.1.3, 27.2.4.1
	
	procedures (table of), 27.1.3

	DBMS_RESOURCE_MANAGER_PRIVS package, 27.1.3
	
	procedures (table of), 27.1.3

	DBMS_RESUMABLE package, 19.2.4.3
	DBMS_SCHEDULER.GET_FILE, retrieving external job stdout with, 29.2.2.9
	DBMS_SERVER_ALERT package
	
	setting alert thresholds, 19.1

	DBMS_SPACE package, 19.3.4
	
	example for unused space, 19.6.1
	FREE_BLOCK procedure, 19.6.1
	SPACE_USAGE procedure, 19.6.1
	UNUSED_SPACE procedure, 19.6.1

	DBMS_SPACE_ADMIN
	
	DROP_EMPTY_SEGMENTS procedure, 19.4
	MATERIALIZE_DEFERRED_SEGMENTS procedure, 20.2.9

	DBMS_STATS package, 18.2.1
	
	MONITORING clause of CREATE TABLE, 20.5

	DBMS_STORAGE_MAP package
	
	invoking for file mapping, 15.9.3.1
	views detailing mapping information, 15.9.3.3

	DBMS_TRANSACTION package
	
	PURGE_LOST_DB_ENTRY procedure, 35.6.1

	DBVERIFY utility, 25.3.1, 25.3.1.2
	DDL lock timeout, 2.5.7
	DDL_LOCK_TIMEOUT initialization parameter, 2.5.7
	DEALLOCATE UNUSED clause, 19.3.4
	deallocating unused space, 19.3
	
	DBMS_SPACE package, 19.3.4
	DEALLOCATE UNUSED clause, 19.3.4

	declarative referential integrity constraints, 33.3
	dedicated server processes, 5.1.1
	
	trace files for, 8.1.1

	default temporary tablespace
	
	renaming, 14.8

	default temporary tablespaces
	
	specifying at database creation, 2.3.9, 2.4.6
	specifying bigfile tempfile, 2.4.8.2

	DEFAULT_CONSUMER_GROUP for Database Resource Manager, 27.2.6, 27.9.2
	deferred segment creation
	
	in tables, 20.2.8
	indexes, 21.2.6

	deferred segments
	
	materializing, 20.2.9

	defining
	
	chain steps, 29.6.3

	dependencies
	
	between schema objects, 18.7
	displaying, 18.11.2.2

	destinations, Oracle Scheduler
	
	about, 28.2.4
	creating, 29.2.2.3.3

	detached jobs, 28.3.1.5
	DIAGNOSTIC_DEST initialization parameter, 8.1.1, 9.1.4
	dictionary-managed tablespaces
	
	migrating SYSTEM to locally managed, 14.12

	Digital POLYCENTER Manager on NetView, 31.3.4.3
	direct-path INSERT
	
	benefits, 20.4.2.1
	how it works, 20.4.2.2
	index maintenance, 20.4.2.5.2
	locking considerations, 20.4.2.5.4
	logging mode, 20.4.2.4
	parallel INSERT, 20.4.2.3.2
	parallel load compared with parallel INSERT, 20.4.2.1
	space considerations, 20.4.2.5.3

	disabling
	
	chains, 29.6.10
	jobs, 29.2.7
	programs, 29.3.5
	SQL patch, 9.8.3
	window groups, 29.7.4.7
	windows, 29.7.3.7

	disabling recoverer process, 35.9.2
	dispatcher process (Dnnn), 5.5
	dispatcher processes, 5.3.4.3, 5.3.6
	DISPATCHERS initialization parameter
	
	setting attributes of, 5.3.4.1
	setting initially, 5.3.4.3

	distributed applications
	
	distributing data, 33.1

	distributed databases
	
	administration overview, 31.3
	application development, 31.5, 33, 33.5
	client/server architectures, 31.1.3
	commit point strength, 34.2.5.2
	cost-based optimization, 31.5.3
	direct and indirect connections, 31.1.3
	distributed processing, 31.1.1.1
	distributed queries, 31.4.2
	distributed updates, 31.4.2, 31.4.2
	forming global database names, 32.1.1
	global object names, 31.2.9.4, 32.1
	globalization support, 31.6
	location transparency, 31.5.1.1, 32.6
	management tools, 31.3.4
	managing read consistency, 35.10
	nodes of, 31.1.3
	overview, 31.1.1
	remote object security, 32.6.1
	remote queries and updates, 31.4.1
	replicated databases and, 31.1.1.2
	resumable space allocation, 19.2.1.4
	running in ARCHIVELOG mode, 13.2.2
	running in NOARCHIVELOG mode, 13.2.2
	scenarios, 32.8
	schema object name resolution, 31.4.8
	schema-dependent global users, 31.3.2.4.1
	schema-independent global users, 31.3.2.4.2
	security, 31.3.2
	site autonomy of, 31.3.1
	SQL transparency, 31.5.1.2
	starting a remote instance, 3.1.5.8
	transaction processing, 31.4
	transparency, 31.5.1

	distributed processing
	
	distributed databases, 31.1.1.1

	distributed queries, 31.4.2
	
	analyzing tables, 33.4.2.2.2
	application development issues, 33.4
	cost-based optimization, 33.4.2
	optimizing, 31.5.3

	distributed systems
	
	data encryption, 31.3.2.5

	distributed transactions, 31.4.5
	
	case study, 34.5
	commit point site, 34.2.5
	commit point strength, 34.2.5.2, 35.1
	committing, 34.2.5.1
	database server role, 34.2.2
	defined, 34.1
	DML and DDL, 34.1.1
	failure during, 35.8.1
	global coordinator, 34.2.4
	local coordinator, 34.2.3
	lock timeout interval, 35.8
	locked resources, 35.8
	locks for in-doubt, 35.8.2
	manually overriding in-doubt, 35.4.2
	naming, 35.2, 35.4.3.2
	session trees, 34.2, 34.2.2, 34.2.3, 34.2.4, 34.2.5, 35.3.2
	setting advice, 35.4.3.3
	transaction control statements, 34.1.2
	transaction timeouts, 35.8.1
	two-phase commit, 34.5, 35.4.1
	viewing database links, 35.3.1

	distributed updates, 31.4.2
	DML
	
	See data manipulation language

	DML error logging, inserting data with, 20.4.4
	DRIVING_SITE hint, 33.4.3.2
	DROP ALL STORAGE clause, 18.3.3
	DROP CLUSTER statement
	
	CASCADE CONSTRAINTS clause, 22.5
	dropping cluster, 22.5
	dropping cluster index, 22.5
	dropping hash cluster, 23.5
	INCLUDING TABLES clause, 22.5

	DROP DATABASE statement, 2.9
	DROP LOGFILE clause
	
	ALTER DATABASE statement, 12.5.1

	DROP LOGFILE MEMBER clause
	
	ALTER DATABASE statement, 12.5.2

	DROP SYNONYM statement, 24.3.4
	DROP TABLE statement
	
	about, 20.10
	CASCADE CONSTRAINTS clause, 20.10
	for clustered tables, 22.5.1

	DROP TABLESPACE statement, 14.9
	dropping
	
	chain steps, 29.6.11
	chains, 29.6.7
	columns
	
	marking unused, 20.6.8.2
	remove unused columns, 20.6.8.2

	columns in compressed tables, 20.6.8.4
	database links, 32.4.2
	datafiles, 15.6
	datafiles, Oracle managed, 17.4.1
	job classes, 29.7.1.4
	jobs, 29.2.6
	programs, 29.3.4
	rules from chains, 29.6.9
	schedules, 29.4.4
	SQL patch, 9.8.3
	tables
	
	CASCADE clause, 20.10
	consequences of, 20.10

	tempfiles, 15.6
	
	Oracle managed, 17.4.1

	window groups, 29.7.4.3
	windows, 29.7.3.6

	DUMP_ORPHAN_KEYS procedure, 25.3.2
	
	checking sync, 25.3.2
	DBMS_REPAIR package, 25.2.1
	example, 25.4.4
	recovering data, 25.3.4.1

	dumps, 9.1.3.3

E

	ECID, 9.1.2.2
	editions
	
	in CONNECT statements, 1.3.2.4
	managing, 18.10
	Scheduler jobs and, 28.6

	e-mail notifications, Scheduler, 29.8.4
	EMCA
	
	command-line arguments, 10.2.4
	sample EMCA input file, 10.2.5

	EMPHASIS resource allocation method, 27.5.4
	empty tables
	
	dropping segments, 19.4

	enabling
	
	chains, 29.6.5
	jobs, 29.2.8
	programs, 29.3.6
	window groups, 29.7.4.6
	windows, 29.7.3.8

	enabling recoverer process
	
	distributed transactions, 35.9.2

	encryption
	
	column, 20.2.7
	tablespace, 14.2.4

	encryption, transparent data, 2.8.2
	enterprise users
	
	definition, 31.3.2.4.2

	environment variables
	
	ORACLE_SID, 2.3.1

	error logging, DML
	
	inserting data with, 20.4.4

	errors
	
	alert log and, 8.1.1
	assigning names with PRAGMA_EXCEPTION_INIT, 33.5
	critical, 9.1.1
	exception handler, 33.5
	integrity constrain violation, 33.3
	ORA-00028, 5.8.2
	ORA-01090, 3.3
	ORA-01173, 11.4.2
	ORA-01176, 11.4.2
	ORA-01177, 11.4.2
	ORA-01215, 11.4.2
	ORA-01216, 11.4.2
	ORA-01578, 15.7
	ORA-01591, 35.8.2
	ORA-02049, 35.8.1
	ORA-02050, 35.4.1
	ORA-02051, 35.4.1
	ORA-02054, 35.4.1
	RAISE_APPLICATION_ERROR() procedure, 33.5
	remote procedure, 33.5
	rollback required, 33.3
	trace files and, 8.1.1
	when creating control file, 11.4.2
	while starting a database, 3.1.5.5
	while starting an instance, 3.1.5.5

	event message
	
	passing to event-based job, 29.5.2.5

	event schedule
	
	altering, 29.5.2.4
	creating, 29.5.2.3

	event-based job
	
	altering, 29.5.2.2
	creating, 29.5.2.1
	passing event messages to, 29.5.2.5

	events
	
	using to start Scheduler jobs, 29.5

	events (Scheduler)
	
	overview, 29.5.1

	example
	
	setting maximum utilization limit for plans and subplans, 27.7.2

	examples
	
	managing parallel statement execution using Resource Manager, 27.7.4

	exception handler, 33.5
	EXCEPTION keyword, 33.5
	exceptions
	
	assigning names with PRAGMA_EXCEPTION_INIT, 33.5
	integrity constraints, 18.5.5
	user-defined, 33.5

	executing
	
	remote external jobs, 30.1.3

	execution context identifier, 9.1.2.2
	execution plans
	
	analyzing for distributed queries, 33.4.4

	export operations
	
	restricted mode and, 3.1.5.4

	expressions, calendaring, 29.4.5.1
	EXTENT MANAGEMENT LOCAL clause
	
	CREATE DATABASE, 2.4.2

	extents
	
	allocating cluster extents, 22.4
	allocating for tables, 20.6.4
	data dictionary views for, 19.6.2
	deallocating cluster extents, 22.4
	displaying free extents, 19.6.2.3

	external destinations, Oracle Scheduler
	
	about, 28.2.4
	creating, 29.2.2.3.3

	external jobs
	
	retrieving stdout and stderr, 28.3.1.2.1, 28.3.1.2.2, 29.2.2.9, 29.2.10

	external jobs, Oracle Scheduler, 28.3.1.2
	external procedures
	
	managing processes for, 5.7.1

	external tables
	
	altering, 20.13.3
	creating, 20.13.2
	defined, 20.13.1
	dropping, 20.13.5
	privileges required, 20.13.6
	uploading data example, 20.13.2

F

	Fast Recovery Area
	
	former name, Preface

	fast recovery area
	
	as archive log destination, 13.4.1.1
	initialization parameters to specify, 2.5.3
	with Oracle managed files, 17.2

	fault diagnosability infrastructure, 9.1.1
	file mapping
	
	examples, 15.9.4
	how it works, 15.9.2
	how to use, 15.9.3
	overview, 15.9.1
	structures, 15.9.2.2
	views, 15.9.3.3

	file system
	
	used for Oracle managed files, 17.1.1.2

	file watchers
	
	about, 29.5.3.1
	changing detection interval, 29.5.3.5
	creating, 29.5.3.3
	managing, 29.5.3.5

	FILE_MAPPING initialization parameter, 15.9.3.1
	filenames
	
	Oracle Managed Files, 17.3.1

	files
	
	creating Oracle Managed Files, 17.3, 17.3.6.2

	finalizing
	
	an incident package, definition, 9.10.1.1

	FIX_CORRUPT_BLOCKS procedure
	
	DBMS_REPAIR, 25.2.1
	example, 25.4.3
	marking blocks corrupt, 25.3.3.1

	fixed user database links
	
	advantages and disadvantages, 31.2.7.2
	creating, 32.2.3.1
	definition, 31.2.7
	example, 31.2.8

	Flash Cache
	
	See Database Smart Flash Cache

	Flashback Drop
	
	about, 20.11
	purging recycle bin, 20.11.4
	querying recycle bin, 20.11.3
	recycle bin, 20.11.1
	restoring objects, 20.11.5

	Flashback Table
	
	overview, 20.9

	flood-controlled incidents
	
	defined, 9.1.2.1
	viewing, 9.3

	FMON background process, 15.9.2.1.1
	FMPUTL external process
	
	used for file mapping, 15.9.2.1.2

	FORCE clause
	
	COMMIT statement, 35.5
	ROLLBACK statement, 35.5

	FORCE LOGGING clause
	
	CREATE CONTROLFILE, 2.4.10.1
	CREATE DATABASE, 2.4.10
	CREATE TABLESPACE, 14.4
	performance considerations, 2.4.10.2

	FORCE LOGGING mode, 20.4.2.4
	forcing
	
	COMMIT or ROLLBACK, 35.3.1, 35.4.2

	forcing a log switch, 12.6
	
	using ARCHIVE_LAG_TARGET, 12.2.6
	with the ALTER SYSTEM statement, 12.6

	forget phase
	
	in two-phase commit, 34.3.3

	free space
	
	listing free extents, 19.6.2.3
	tablespaces and, 14.14.3

	function-based indexes, 21.3.6

G

	generic connectivity
	
	definition, 31.1.2.3

	global coordinators, 34.2.4
	
	distributed transactions, 34.2.4

	global database consistency
	
	distributed databases and, 34.3.2.2

	global database links, 31.2.6
	
	creating, 32.2.2.3

	global database names
	
	changing the domain, 32.1.4
	database links, 31.2.4
	
	loopback, 31.2.4.1

	enforcing for database links, 31.2.5
	enforcing global naming, 32.1.2
	forming distributed database names, 32.1.1
	impact of changing, 31.4.9.1
	querying, 32.1.3

	global object names
	
	database links, 31.4.7
	distributed databases, 32.1

	global users, 32.8.5
	
	schema-dependent in distributed systems, 31.3.2.4.1
	schema-independent in distributed systems, 31.3.2.4.2

	GLOBAL_NAME view
	
	using to determine global database name, 32.1.3

	GLOBAL_NAMES initialization parameter
	
	database links, 31.2.5

	globalization support
	
	client/server architectures, 31.6.1
	distributed databases, 31.6

	GRANT statement
	
	SYSOPER/SYSDBA privileges, 1.7.3.1

	granting privileges and roles
	
	SYSOPER/SYSDBA privileges, 1.7.3.1

	groups, Oracle Scheduler, 28.2.10
	growth trends
	
	of database objects, 19.7.3

	GV$DBLINK view, 32.5.2

H

	hash clusters
	
	advantages and disadvantages, 23.1
	altering, 23.4
	choosing key, 23.3.3.1
	contrasted with index clusters, 23.1
	controlling space use of, 23.3.3
	creating, 23.3
	data dictionary views reference, 23.6
	dropping, 23.5
	estimating storage, 23.3.4
	examples, 23.3.3.5.1
	hash function, 23.1, 23.2.2, 23.3, 23.3.3.1, 23.3.3.2, 23.3.3.3
	HASH IS clause, 23.3, 23.3.3.2
	HASHKEYS clause, 23.3, 23.3.3.4
	single-table, 23.3.2
	SIZE clause, 23.3.3.3
	sorted, 23.3.1

	hash functions
	
	for hash cluster, 23.1

	health checks, 9.1.1
	Health Monitor, 9.7
	
	checks, 9.7.1.1
	
	generating reports, 9.7.3
	running, 9.7.2
	viewing reports, 9.7.3
	viewing reports using ADRCI, 9.7.3.3

	heterogeneous distributed systems
	
	definition, 31.1.2

	Heterogeneous Services
	
	overview, 31.1.2

	HI_SHARED_MEMORY_ADDRESS parameter, 6.4.2.8.2
	hints, 33.4.3
	
	DRIVING_SITE, 33.4.3.2
	NO_MERGE, 33.4.3.1
	using to tune distributed queries, 33.4.3

	HP OpenView, 31.3.4.3

I

	IBM NetView/6000, 31.3.4.3
	import operations
	
	restricted mode and, 3.1.5.4

	incident package
	
	correlated, 9.10.1.3
	correlated, creating, editing, and uploading, 9.10.4
	correlated, deleting, 9.10.5
	creating, editing and uploading custom, 9.10
	customizing, 9.10.3, 9.10.3.2
	defined, 9.1.1
	viewing, 9.10.3.1

	incident packaging service, 9.1.1
	incidents
	
	about, 9.1.2
	flood-controlled, 9.1.2.1
	
	viewing, 9.3

	index clusters
	
	See clusters

	indexes
	
	altering, 21.4
	analyzing, 18.2
	choosing columns to index, 21.2.2
	cluster indexes, 22.3.2, 22.4.1, 22.5
	coalescing, 21.2.12, 21.4.2
	column order for performance, 21.2.3
	creating, 21.3
	data dictionary views reference, 21.7
	deferred segment creation, 21.2.6
	determining unusable status of, 21.4.3, 21.4.3
	disabling and dropping constraints cost, 21.2.13
	dropping, 21.2.5, 21.6, 21.6
	estimating size, 21.2.7
	estimating space use, 19.7.2
	explicitly creating a unique index, 21.3.2
	function-based, 21.3.6
	guidelines for managing, 21.1
	invisible, 21.2.11, 21.2.11
	keeping when disabling constraint, 18.5.3
	keeping when dropping constraint, 18.5.3
	key compression, 21.3.7
	limiting for a table, 21.2.4
	monitoring space use of, 21.5
	monitoring usage, 21.4.6
	parallelizing index creation, 21.2.9
	rebuilding, 21.2.12, 21.4.2, 21.4.2
	rebuilt after direct-path INSERT, 20.4.2.5.2
	renaming, 21.4.5
	setting storage parameters for, 21.2.7
	shrinking, 19.3.3
	space used by, 21.5
	statement for creating, 21.3.1
	tablespace for, 21.2.8
	temporary segments and, 21.2.1
	unusable, 21.2.11, 21.3.8, 21.4.3
	validating structure, 18.2.2
	when to create, 21.2.2

	index-organized tables
	
	analyzing, 20.12.5
	AS subquery, 20.12.2.6
	converting to heap, 20.12.7
	creating, 20.12.2
	described, 20.12.1
	INCLUDING clause, 20.12.2.5
	key compression, 20.12.2.7
	maintaining, 20.12.3
	ORDER BY clause, using, 20.12.6
	parallel creation, 20.12.2.6
	rebuilding with MOVE clause, 20.12.3.2
	storing nested tables, 20.12.2.3
	storing object types, 20.12.2.3
	threshold value, 20.12.2.4

	in-doubt transactions, 34.4
	
	after a system failure, 35.4.1
	automatic resolution, 34.4.1, 34.4.1.1
	deciding how to handle, 35.4
	deciding whether to perform manual override, 35.4.2
	defined, 34.3.1.2
	manual resolution, 34.4.2
	manually committing, 35.5.1
	manually committing, example, 35.7
	manually overriding, 35.4.2, 35.5
	manually overriding, scenario, 35.7
	manually rolling back, 35.5.2
	overview, 34.4
	pending transactions table, 35.7.6
	purging rows from data dictionary, 35.6, 35.6.2
	recoverer process and, 35.9.2
	rolling back, 35.5, 35.5.1.1, 35.5.2, 35.5.2
	SCNs and, 34.4.3
	simulating, 35.9
	tracing session tree, 35.3.2
	viewing database links, 35.3.1

	INITIAL parameter
	
	cannot alter, 20.6.2

	initialization parameter file
	
	about, 2.5.1
	creating, 2.3.4
	creating by copying and pasting from alert log, 2.6.9
	creating for database creation, 2.3.4
	editing before database creation, 2.5
	individual parameter names, 2.5.2
	sample, 2.5.1.2
	server parameter file, 2.6

	initialization parameter files
	
	default locations, 3.1.2.1
	search order, 3.1.2.1

	initialization parameters
	
	about, 2.5.1
	and database startup, 3.1.2.1
	ARCHIVE_LAG_TARGET, 12.2.6.1
	BUFFER_POOL_KEEP, 6.4.2.2.2
	BUFFER_POOL_RECYCLE, 6.4.2.2.2
	changing, 2.6.5.1
	clearing, 2.6.6
	COMMIT_POINT_STRENGTH, 34.2.5.2, 35.1
	CONTROL_FILES, 2.5.4, 2.5.4, 11.2.1, 11.3.1
	DB_BLOCK_CHECKING, 25.3.1.4
	DB_BLOCK_CHECKSUM, 12.7, 15.7
	DB_BLOCK_SIZE, 2.5.5, 14.3
	DB_CACHE_SIZE, 14.3
	DB_DOMA, 2.5.2
	DB_DOMAIN, 2.5.2.2
	DB_FILES, 15.1.1.1
	DB_NAME, 2.5.2
	DB_nK_CACHE_SIZE, 14.3, 14.13.5.6
	DISPATCHERS, 5.3.4.3
	FILE_MAPPING, 15.9.3.1
	for buffer cache, 6.4.2.2
	GLOBAL_NAMES, 31.2.5
	HI_SHARED_MEMORY_ADDRESS, 6.4.2.8.2
	LOCK_SGA, 6.4.2.8.1
	LOG_ARCHIVE_DEST, 13.4.1
	LOG_ARCHIVE_DEST_n, 13.4.1, 13.6.2
	LOG_ARCHIVE_DEST_STATE_n, 13.4.2
	LOG_ARCHIVE_MAX_PROCESSES, 13.3.4
	LOG_ARCHIVE_MIN_SUCCEED_DEST, 13.6.1
	LOG_ARCHIVE_TRACE, 13.7
	MAX_DUMP_FILE_SIZE, 8.1.1.1
	OPEN_LINKS, 32.4.3
	PROCESSES, 2.5.6
	REMOTE_LOGIN_PASSWORDFILE, 1.7.2
	REMOTE_OS_AUTHENT, 31.2.7.1
	resetting, 2.6.6
	RESOURCE_MANAGER_PLAN, 27.6, 27.6
	server parameter file and, 2.6, 2.6.10
	SET SQL_TRACE, 8.1.1.2
	setting, 2.6.5.1
	shared server and, 5.3.1
	SHARED_MEMORY_ADDRESS, 6.4.2.8.2
	SHARED_SERVERS, 5.3.3.2
	SORT_AREA_SIZE, 21.2.1
	SPFILE, 2.6.4, 3.1.2.2
	SQL_TRACE, 8.1.1
	STATISTICS_LEVEL, 20.5
	UNDO_MANAGEMENT, 2.4.4
	UNDO_TABLESPACE, 2.5.8.2, 16.2.1
	USE_INDIRECT_DATA_BUFFERS, 6.4.2.8.3

	INITRANS parameter
	
	altering, 20.6.2

	INSERT statement
	
	with DML error logging, 20.4.4

	installing
	
	patches, 1.2.10

	instance caging, 27.8.1
	
	with maximum utilization limit, 27.8.1

	instances
	
	aborting, 3.3.4
	shutting down immediately, 3.3.2
	shutting down normally, 3.3.1
	transactional shutdown, 3.3.3

	instances, managing CPU for multiple, 27.8.1
	integrity constraints
	
	See also constraints
	cost of disabling, 21.2.13
	cost of dropping, 21.2.13
	creating indexes associated with, 21.3.3
	dropping tablespaces and, 14.9
	ORA-02055 constraint violation, 33.3

	INTERNAL username
	
	connecting for shutdown, 3.3

	invisible indexes, 21.2.11, 21.2.11
	IOT
	
	See index-organized tables

	IPS, 9.1.1

J

	Java Message Service (JMS), 10.2.6
	job classes
	
	altering, 29.7.1.3
	creating, 29.7.1.2
	dropping, 29.7.1.4
	managing Scheduler job attributes, resources, and priorities with, 29.7.1
	overview, 28.2.8

	job coordinator, 28.4.2
	job destination ID, defined, 29.2.5, 29.8.2
	job log, Scheduler
	
	viewing, 29.8.1

	job recovery (Scheduler), 30.4.1.4
	job scheduling
	
	dependency, 28.1
	event-based, 28.1
	time-based, 28.1

	JOB_QUEUE_PROCESSES initialization parameter, 28.4.2.2, A.1.2
	jobs
	
	altering, 29.2.3
	and editions, 28.6
	copying, 29.2.9
	creating, 29.2.2
	creating and managing Scheduler, 29.2
	creating for chains, 29.6.6
	credentials, 28.2.6
	database, 28.3.1.1
	detached, 28.3.1.5
	disabling, 29.2.7
	dropping, 29.2.6
	e-mail notifications, 29.8.4
	enabling, 29.2.8
	event-based, 29.5.2.1
	external, 28.3.1.2
	lightweight, 28.3.1.6
	lightweight, example of creating, 29.2.2.2.1
	monitoring, 29.8
	monitoring with events raised by the Scheduler, 29.8.3
	multiple-destination, 28.3.2
	
	status of child jobs, 30.2.2

	overview, 28.2.3
	priorities, 29.7.2
	remote database, 28.3.1.1
	remote external
	
	about, 28.3.1.2.2

	running, 29.2.4
	starting when a file arrives on a system, 29.5.3
	starting with events raised by your application, 29.5.2
	status, 29.8, 30.6.2
	stopping, 29.2.5
	troubleshooting remote, 30.4.1.3
	viewing information on running, 30.2.2
	viewing stdout and stderr for, 29.2.10

	join views
	
	definition, 24.1.2.1
	DELETE statements, 24.1.5.2.2
	key-preserved tables in, 24.1.5.1
	modifying, 24.1.5
	rules for modifying, 24.1.5.2
	updating, 24.1.5

	joins
	
	statement transparency in distributed databases, 32.7

K

	key compression, 20.12.2.7
	
	indexes, 21.3.7

	key-preserved tables
	
	in join views, 24.1.5.1
	in outer joins, 24.1.5.3

	keys
	
	cluster, 22.1, 22.2.3

L

	large objects, 20.3.1
	lightweight jobs, 28.3.1.6
	
	example, 29.2.2.2.1
	example of creating, 29.2.2.2.1

	links
	
	See database links

	LIST CHAINED ROWS clause
	
	of ANALYZE statement, 18.2.3.1

	listeners
	
	removing with srvctl, 4.4

	listing database links, 32.5.1, 35.3.1, 35.3.2
	loading data
	
	using external tables, 20.13.2

	LOBs, 20.3.1
	local coordinators, 34.2.3
	
	distributed transactions, 34.2.3

	locally managed tablespaces, 14.2.1
	
	automatic segment space management in, 14.2.1.2
	DBMS_SPACE_ADMIN package, 14.11
	detecting and repairing defects, 14.11
	migrating SYSTEM from dictionary-managed, 14.12
	shrinking, temporary, 14.7.5
	tempfiles, 14.2.5.1
	temporary, creating, 14.2.5.1

	location transparency in distributed databases
	
	creating using synonyms, 32.6.2
	creating using views, 32.6.1
	restrictions, 32.7
	using procedures, 32.6.3.3

	lock timeout interval
	
	distributed transactions, 35.8

	LOCK_SGA parameter, 6.4.2.8.1
	locks
	
	in-doubt distributed transactions, 35.8, 35.8.2
	monitoring, 8.2.1

	log
	
	window (Scheduler), 29.7.3

	log sequence number
	
	control files, 12.1.3.2

	log switches
	
	description, 12.1.3.2
	forcing, 12.6, 12.6
	log sequence numbers, 12.1.3.2
	multiplexed redo log files and, 12.2.1.1
	privileges, 12.6
	using ARCHIVE_LAG_TARGET, 12.2.6
	waiting for archiving to complete, 12.2.1.1

	log writer process (LGWR), 5.5
	
	multiplexed redo log files and, 12.2.1.1
	online redo logs available for use, 12.1.3
	trace files and, 12.2.1.1
	writing to online redo log files, 12.1.3

	LOG_ARCHIVE_DEST initialization parameter
	
	specifying destinations using, 13.4.1

	LOG_ARCHIVE_DEST_n initialization parameter, 13.4.1
	
	REOPEN attribute, 13.6.2

	LOG_ARCHIVE_DEST_STATE_n initialization parameter, 13.4.2
	LOG_ARCHIVE_DUPLEX_DEST initialization parameter
	
	specifying destinations using, 13.4.1

	LOG_ARCHIVE_MAX_PROCESSES initialization parameter, 13.3.4
	LOG_ARCHIVE_MIN_SUCCEED_DEST initialization parameter, 13.6.1
	LOG_ARCHIVE_TRACE initialization parameter, 13.7
	LOGGING clause
	
	CREATE TABLESPACE, 14.4

	logging mode
	
	direct-path INSERT, 20.4.2.4
	NOARCHIVELOG mode and, 20.4.2.4.1

	logical corruptions from DBMS_REPAIR, 25.3.2
	logical volume managers
	
	mapping files to physical devices, 15.9, 15.9.4.3
	used for Oracle Managed Files, 17.1.1.1

	LOGON trigger
	
	setting resumable mode, 19.2.3

	logs
	
	job, 30.2.3
	window (Scheduler), 29.7.3, 30.2.3

	LONG columns, 32.7
	LONG RAW columns, 32.7

M

	maintenance tasks, automatic
	
	See automatic maintenance tasks

	maintenance window
	
	creating, 26.4.2
	definition, 26.1
	MAINTENANCE_WINDOW_GROUP, 26.2
	modifying, 26.4.1
	predefined, 26.6.1
	removing, 26.4.3
	Scheduler, 26.2

	managing
	
	memory, 6
	space threshold alerts for the undo tablespace, 16.5.6

	managing datafiles, 15
	managing sequences, 24.2.1
	managing synonyms, 24.3.1
	managing tables, 20
	managing views, 24.1
	manual archiving
	
	in ARCHIVELOG mode, 13.3.3

	manual overrides
	
	in-doubt transactions, 35.5

	materializing deferred segments, 20.2.9
	MAX_DUMP_FILE_SIZE initialization parameter, 8.1.1.1
	MAXDATAFILES parameter
	
	changing, 11.3.3.2

	MAXINSTANCES, 11.3.3.2
	MAXLOGFILES parameter
	
	changing, 11.3.3.2
	CREATE DATABASE statement, 12.2.5

	MAXLOGHISTORY parameter
	
	changing, 11.3.3.2

	MAXLOGMEMBERS parameter
	
	changing, 11.3.3.2
	CREATE DATABASE statement, 12.2.5, 12.2.5

	MAXTRANS parameter
	
	altering, 20.6.2

	media recovery
	
	effects of archiving on, 13.2.1

	memory
	
	extended buffer cache (32-bit), 6.4.2.8.3
	managing, 6
	overview of architecture of, 6.2
	system global area (SGA)
	
	initialization parameters, 6.4.2.8
	locking into physical memory, 6.4.2.8.1
	starting address, 6.4.2.8.2

	memory management
	
	about, 6.1
	automatic, 6.1, 6.3.2
	data dictionary views reference, 6.6.2

	MEMORY_MAX_TARGET parameter, 6.3.1
	MEMORY_TARGET parameter, 6.3.1
	migrated rows
	
	eliminating from table, procedure, 18.2.3.2

	MINEXTENTS parameter
	
	cannot alter, 20.6.2

	mirrored files
	
	control files, 2.5.4, 11.2.2
	online redo log, 12.2.1.1
	online redo log location, 12.2.2
	online redo log size, 12.2.3

	MISSING datafiles, 11.4.1
	monitoring
	
	performance, 8.2
	running chains, 29.6.17

	MONITORING clause
	
	CREATE TABLE, 20.5

	MONITORING USAGE clause
	
	of ALTER INDEX statement, 21.4.6

	mounting a database, 3.1.5.3
	moving control files, 11.3.2
	multiple instances, managing CPU for, 27.8.1
	multiple temporary tablespaces, 14.2.6, 14.2.6.3
	multiple-destination jobs, Oracle Scheduler, 28.3.2
	
	status of child jobs, 30.2.2

	multiplexed control files
	
	importance of, 11.2.2

	multiplexing
	
	archived redo logs, 13.4.1
	control files, 11.2.2
	redo log file groups, 12.2.1
	redo log files, 12.2.1, 12.2.1

N

	name resolution in distributed databases
	
	database links, 31.4.7
	impact of global name changes, 31.4.9.1
	procedures, 31.4.9
	schema objects, 31.2.9.4, 31.4.8
	synonyms, 31.4.9
	views, 31.4.9
	when global database name is complete, 31.4.7.1
	when global database name is partial, 31.4.7.2
	when no global database name is specified, 31.4.7.3

	named user limits
	
	setting initially, 2.5.10

	networks
	
	connections, minimizing, 32.3
	distributed databases use of, 31.1.1

	NEXT parameter
	
	altering, 20.6.2

	NEXTVAL pseudo-column, 24.2.4.1, 24.2.4.1.1
	
	restrictions, 24.2.4.1.3

	NO_DATA_FOUND keyword, 33.5
	NO_MERGE hint, 33.4.3.1
	NOARCHIVELOG mode
	
	archiving, 13.2
	definition, 13.2.1
	dropping datafiles, 15.4.2
	LOGGING mode and, 20.4.2.4.1
	media failure, 13.2.1
	no hot backups, 13.2.1
	running in, 13.2.1
	switching to, 13.3.2
	taking datafiles offline in, 15.4.2

	NOCACHE option
	
	CREATE SEQUENCE statement, 24.2.4.2.2

	NOLOGGING clause
	
	CREATE TABLESPACE, 14.4

	NOLOGGING mode
	
	direct-path INSERT, 20.4.2.4

	normal transmission mode
	
	definition, 13.5.1

	Novell NetWare Management System, 31.3.4.3

O

	object privileges
	
	for external tables, 20.13.6

	objects
	
	See schema objects

	offline tablespaces
	
	priorities, 14.5.1
	taking offline, 14.5.1

	OLTP table compression, 20.2.6
	online redefinition of tables, 20.7
	
	abort and cleanup, 20.7.5
	examples, 20.7.8
	features of, 20.7.1
	intermediate synchronization, 20.7.4
	redefining a single partition, 20.7.7
	
	rules for, 20.7.7.1

	restrictions, 20.7.6
	with DBMS_REDEFINITION, 20.7.2

	online redo log files
	
	See online redo logs

	online redo logs
	
	See also redo log files
	creating groups, 12.3
	creating members, 12.3.2
	data dictionary views reference, 12.9
	dropping groups, 12.5
	dropping members, 12.5
	forcing a log switch, 12.6
	guidelines for configuring, 12.2
	INVALID members, 12.5.2
	location of, 12.2.2
	managing, 12
	moving files, 12.4
	number of files in the, 12.2.5
	optimum configuration for the, 12.2.5
	renaming files, 12.4
	renaming members, 12.4
	specifying ARCHIVE_LAG_TARGET, 12.2.6
	STALE members, 12.5.2

	online segment shrink, 19.3.3
	OPEN_LINKS initialization parameter, 32.4.3
	opening windows, 29.7.3.4
	operating system authentication, 1.6.3.2
	operating systems
	
	database administrators requirements for, 1.5.1
	renaming and relocating files, 15.5

	ORA-01013 error message, 3.3.5
	ORA-02055 error
	
	integrity constraint violation, 33.3

	ORA-02067 error
	
	rollback required, 33.3

	ORA-12838 error, direct path insert, 20.4.2.3.2
	Oracle Call Interface
	
	See OCI

	Oracle Data Guard
	
	support by the Scheduler, 28.5, 30.5.5

	Oracle Database
	
	release numbers, 1.4.1

	Oracle Database users
	
	types of, 1.1

	Oracle Enterprise Manager, 3.1.1.3, 3.1.1.3
	Oracle home
	
	cloning, 1.2.11

	Oracle Managed Files
	
	adding to an existing database, 17.5.3
	behavior, 17.4
	benefits, 17.1.2
	CREATE DATABASE statement, 17.3.2
	creating, 17.3
	creating control files, 17.3.5
	creating datafiles, 17.3.3
	creating online redo log files, 17.3.6
	creating tempfiles, 17.3.4
	described, 17.1
	dropping datafile, 17.4.1
	dropping online redo log files, 17.4.2
	dropping tempfile, 17.4.1
	initialization parameters, 17.2
	introduction, 2.4.7
	renaming, 17.4.3

	Oracle managed files
	
	naming, 17.3.1
	scenarios for using, 17.5

	Oracle Managed Files feature
	
	See Oracle managed files

	Oracle Restart
	
	about, 4.1.1
	configuration
	
	adding components to, 4.2.3
	modifying, 4.2.8
	removing components from, 4.2.4
	viewing for a component, 4.2.7

	configuring, 4.2
	CRSCTL utility, 4.1.4
	disabling and enabling management for a component, 4.2.5
	environment variables in, 4.2.9
	patches
	
	installing, 4.3

	registering a component with, 4.2.3
	starting, 4.1.4
	starting and stopping components managed by, 4.3
	
	Oracle home, 4.3

	status of components, 4.2.6
	stopping, 4.1.4

	Oracle Scheduler
	
	See Scheduler

	Oracle Scheduler Agent, 30.1.3
	Oracle Scheduler agent
	
	on Windows, 30.1.3.3.2
	OracleSchedulerExecutionAgent, 30.1.3.3.2
	tasks, 30.1.3.3
	Windows Service, 30.1.3.3.2

	Oracle Scheduler agents
	
	registering with databases, 30.1.3.3.5

	Oracle Universal Installer, 2.1
	Oracle wallet, 14.2.4, 20.2.7
	ORACLE_SID environment variable, 2.3.1
	OracleSchedulerExecutionAgent, 30.1.3.3.2
	oraenv and coraenv, 1.3.2.2
	ORAPWD utility, 1.7.1
	ORGANIZATION EXTERNAL clause
	
	of CREATE TABLE, 20.13.2

	orphan key table
	
	example of building, 25.4.1.2

	OSDBA group, 1.6.3.1
	OSOPER group, 1.6.3.1
	OTHER_GROUPS
	
	for Database Resource Manager, 27.1.2.1

	OTHER_GROUPS for Database Resource Manager, 27.5.5, 27.5.6, 27.7.5
	outer joins, 24.1.5.3
	
	key-preserved tables in, 24.1.5.3

	overlapping windows, 28.2.9.1

P

	package
	
	See incident package

	packages
	
	DBMS_FILE_TRANSFER, 15.7
	DBMS_METADATA, 18.11.1
	DBMS_REDEFINITION, 20.7.2, 20.7.9
	DBMS_REPAIR, 25.2
	DBMS_RESOURCE_MANAGER, 27.1.2, 27.1.3, 27.1.3, 27.2.4.1
	DBMS_RESOURCE_MANAGER_PRIVS, 27.1.3, 27.1.3
	DBMS_RESUMABLE, 19.2.4.3
	DBMS_SPACE, 19.3.4, 19.6.1
	DBMS_STATS, 18.2.1, 20.5
	DBMS_STORAGE_MAP, 15.9.3.2, 15.9.3.3

	packaging and uploading problems, 9.10.2
	parallel execution
	
	managing, 5.6
	parallel hints, 5.6, 5.6
	parallelizing index creation, 21.2.9
	resumable space allocation, 19.2.1.5

	parallel hints, 5.6, 5.6
	parallel statement execution
	
	directive attributes for managing, 27.7.4
	managing using Resource Manager, 27.3.4

	PARALLEL_DEGREE_LIMIT_ABSOLUTE resource allocation method, 27.5.4
	parallelizing table creation, 20.2.4, 20.3.3
	parameter files
	
	See initialization parameter file

	partitioned tables
	
	redefining partitions online, 20.7.7
	
	rules for, 20.7.7.1

	password
	
	setting for SYSTEM account in CREATE DATABASE statement, 2.4.1
	setting SYS in CREATE DATABASE statement, 2.4.1

	password file
	
	adding users, 1.7.3
	creating, 1.7.1
	ORAPWD utility, 1.7.1
	removing, 1.7.4.2
	setting REMOTE_LOGIN_PASSWORD, 1.7.2
	synchronizing administrator passwords with the data dictionary, 1.7.2
	viewing members, 1.7.3.2

	password file authentication, 1.6.4.1
	passwords
	
	case sensitivity of, 1.6.2, 1.6.4.1, 1.6.4.2
	default for SYS and SYSTEM, 1.5.2
	password file, 1.7.3
	setting REMOTE_LOGIN_PASSWORD parameter, 1.7.2

	patches
	
	installing, 1.2.10
	
	Oracle Restart, 4.3

	pausing chains and chain steps, 29.6.14
	PCTINCREASE parameter, 20.6.2
	pending area for Database Resource Manager plans, 27.5.8
	
	validating plan schema changes, 27.5.6

	pending transaction tables, 35.7.6
	performance
	
	index column order, 21.2.3
	location of datafiles and, 15.1.3
	monitoring, 8.2

	PGA_AGGREGATE_TARGET initialization parameter, 6.4.3
	plan schemas for Database Resource Manager, 27.3.1, 27.6, 27.9.4
	
	validating plan changes, 27.5.6

	plans for Database Resource Manager
	
	examples, 27.7

	PL/SQL
	
	replaced views and program units, 24.1.3

	PRAGMA_EXCEPTION_INIT procedure
	
	assigning exception names, 33.5

	predefined user accounts, 2.8.1
	prepare phase
	
	abort response, 34.3.1.1.3
	in two-phase commit, 34.3.1
	prepared response, 34.3.1.1.1
	read-only response, 34.3.1.1.2
	recognizing read-only nodes, 34.3.1.1.2
	steps, 34.3.1.2

	prepare/commit phases
	
	effects of failure, 35.8.1
	failures during, 35.4.1
	locked resources, 35.8
	pending transaction table, 35.7.6

	prepared response
	
	two-phase commit, 34.3.1.1.1

	prerequisites
	
	for creating a database, 2.1.1.2

	PRIMARY KEY constraints
	
	associated indexes, 21.3.3.1
	dropping associated indexes, 21.6
	enabling on creation, 21.3.3
	foreign key references when dropped, 18.5.3.1
	indexes associated with, 21.3.3

	priorities
	
	job, 29.7.2

	private database links, 31.2.6
	private synonyms, 24.3.1
	privileges
	
	adding redo log groups, 12.3
	altering index, 21.4
	altering tables, 20.6
	closing a database link, 33.2
	creating database links, 32.2.1
	creating tables, 20.3
	creating tablespaces, 14.2
	database administrator, 1.5
	drop table, 20.10
	dropping indexes, 21.6
	dropping online redo log members, 12.5.2
	dropping redo log groups, 12.5.1
	enabling and disabling triggers, 18.4
	for external tables, 20.13.6
	forcing a log switch, 12.6
	managing with procedures, 32.6.3.4
	managing with synonyms, 32.6.2.2
	managing with views, 32.6.1
	manually archiving, 13.3.3
	renaming objects, 18.6
	renaming redo log members, 12.4
	RESTRICTED SESSION system privilege, 3.1.5.4
	Scheduler, 30.6.1
	sequences, 24.2.2, 24.2.2, 24.2.5
	setting chain (Scheduler), 30.1.1
	synonyms, 24.3.2, 24.3.4
	taking tablespaces offline, 14.5.1
	truncating, 18.3.3
	using a view, 24.1.4
	using sequences, 24.2.4
	views, 24.1.2, 24.1.3, 24.1.7

	problem activity log
	
	adding comments to, 9.2.7

	problems
	
	about, 9.1.2
	adding comments to activity log, 9.2.7

	problems (critical errors)
	
	packaging and uploading, 9.10.2

	procedures
	
	external, 5.7.1
	location transparency in distributed databases, 32.6.3
	name resolution in distributed databases, 31.4.9
	remote calls, 31.5.2

	process monitor (PMON), 5.5
	processes
	
	See server processes

	PROCESSES initialization parameter
	
	setting before database creation, 2.5.6

	PRODUCT_COMPONENT_VERSION view, 1.4.2
	program global area (PGA), 6.2
	program global areas, 6.2
	programs
	
	altering, 29.3.3
	creating, 29.3.2
	creating and managing, to define Scheduler jobs, 29.3
	disabling, 29.3.5
	dropping, 29.3.4
	enabling, 29.3.6
	overview, 28.2.1

	public database links, 31.2.6
	
	connected user, 32.8.3
	fixed user, 32.8.1

	public fixed user database links, 32.8.1
	public synonyms, 24.3.1
	PURGE_LOST_DB_ENTRY procedure
	
	DBMS_TRANSACTION package, 35.6.1

Q

	queries
	
	distributed, 31.4.2
	distributed application development issues, 33.4
	location transparency and, 31.5.1.2
	remote, 31.4.1

	question mark, 2.3.11
	quiescing a database, 3.4
	quotas
	
	tablespace, 14.1.2

R

	RAISE_APPLICATION_ERROR() procedure, 33.5
	read consistency
	
	managing in distributed databases, 35.10

	read-only database
	
	opening, 3.2.3

	read-only databases
	
	limitations, 3.2.3

	read-only response
	
	two-phase commit, 34.3.1.1.2

	read-only tables, 20.6.9
	read-only tablespaces
	
	datafile headers when rename, 14.8
	delaying opening of datafiles, 14.6.4
	making read-only, 14.6.1
	making writable, 14.6.2
	WORM devices, 14.6.3

	Real Application Clusters
	
	allocating extents for cluster, 22.4
	sequence numbers and, 24.2.2
	threads of online redo log, 12.1.1

	rebuilding indexes, 21.4.2
	
	costs, 21.2.12
	online, 21.4.2

	reclaiming unused space, 19.3
	RECOVER clause
	
	STARTUP command, 3.1.5.6

	recoverer process
	
	disabling, 35.9.2
	distributed transaction recovery, 35.9.2
	enabling, 35.9.2
	pending transaction table, 35.9.2

	recoverer process (RECO), 5.5
	recovering
	
	Scheduler jobs, 30.4.1.4

	recovery
	
	creating new control files, 11.3.3.2

	Recovery Manager
	
	starting a database, 3.1.1.2
	starting an instance, 3.1.1.2

	recycle bin
	
	about, 20.11.1
	purging, 20.11.4
	renamed objects, 20.11.1
	restoring objects from, 20.11.5
	viewing, 20.11.3

	redefining tables online
	
	See online redefinition of tables

	redo log files
	
	See also online redo logs
	active (current), 12.1.3.1
	archiving, 13.2
	available for use, 12.1.3
	block size, setting, 12.2.4
	circular use of, 12.1.3
	clearing, 12.2.1.1, 12.8
	contents of, 12.1.2
	creating as Oracle Managed Files, 17.3.6
	creating as Oracle Managed Files, example, 17.5.1
	creating groups, 12.3
	creating members, 12.3, 12.3.2
	distributed transaction information in, 12.1.3
	dropping groups, 12.5
	dropping members, 12.5
	group members, 12.2.1
	groups, defined, 12.2.1
	how many in redo log, 12.2.5
	inactive, 12.1.3.1, 12.1.3.1
	instance recovery use of, 12.1
	legal and illegal configurations, 12.2.1.2
	LGWR and the, 12.1.3
	log switches, 12.1.3.2
	maximum number of members, 12.2.5
	members, 12.2.1
	mirrored, log switches and, 12.2.1.1
	multiplexed, 12.2.1, 12.2.1, 12.2.1.1
	online, defined, 12.1
	planning the, 12.2, 12.2.5
	redo entries, 12.1.2
	requirements, 12.2.1.2
	specifying at database creation, 17.3.2.2
	storing separately from datafiles, 15.1.4
	threads, 12.1.1
	unavailable when database is opened, 3.1.5
	verifying blocks, 12.7

	redo logs
	
	See online redo log

	redo records, 12.1.2
	
	LOGGING and NOLOGGING, 14.4

	referential integrity
	
	distributed database application development, 33.3

	release number format, 1.4.1
	releases, 1.4.1
	
	checking the Oracle Database release number, 1.4.2

	relocating control files, 11.3.2
	remote connections
	
	connecting as SYSOPER/SYSDBA, 1.6.1
	password files, 1.7.2

	remote data
	
	querying, 32.7
	updating, 32.7

	remote database jobs, 28.3.1.1
	
	Scheduler agent setup, 30.1.3.2

	remote external jobs
	
	about, 28.3.1.2.2
	executing, 30.1.3
	Scheduler agent setup, 30.1.3.2

	Remote Method Invocation (RMI), 10.2.6
	remote procedure calls, 31.5.2, 31.5.2
	
	distributed databases and, 31.5.2

	remote queries
	
	distributed databases and, 31.4.1

	remote transactions, 31.4.4
	
	defined, 31.4.4

	REMOTE_LOGIN_PASSWORDFILE initialization parameter, 1.7.2
	REMOTE_OS_AUTHENT initialization parameter
	
	connected user database links, 31.2.7.1

	RENAME statement, 18.6
	renaming control files, 11.3.2
	renaming files
	
	Oracle Managed Files, 17.4.3

	renaming indexes, 21.4.5
	REOPEN attribute
	
	LOG_ARCHIVE_DEST_n initialization parameter, 13.6.2

	repair table
	
	example of building, 25.4.1.1

	repairing data block corruption
	
	DBMS_REPAIR, 25.1

	repeat interval, schedule, 29.4.5
	RESIZE clause
	
	for single-file tablespace, 14.7.3

	resource allocation methods
	
	active session pool, 27.5.4
	ACTIVE_SESS_POOL_MTH, 27.5.4
	CPU, 27.3.1
	CPU resource, 27.5.4, 27.5.4
	EMPHASIS, 27.5.4
	limit on degree of parallelism, 27.5.4
	MAX_UTILIZATION_METHOD, 27.3.1
	PARALLEL_DEGREE_LIMIT_ABSOLUTE, 27.5.4
	PARALLEL_DEGREE_LIMIT_MTH, 27.5.4
	PARALLEL_DEGREE_LIMIT_P1, 27.3.2
	PARALLEL_QUEUE_TIMEOUT, 27.3.4
	PARALLEL_TARGET_PERCENTAGE, 27.3.3
	QUEUEING_MTH, 27.5.4
	queuing resource allocation method, 27.5.4
	ROUND-ROBIN, 27.5.3

	resource consumer groups, 27.1.2
	
	changing, 27.2.4.1
	creating, 27.5.3
	DEFAULT_CONSUMER_GROUP, 27.2.6, 27.9.2
	deleting, 27.9.2
	granting the switch privilege, 27.2.6
	managing, 27.2, 27.2.4.2
	OTHER_GROUPS, 27.1.2.1, 27.5.5, 27.5.6, 27.7.5
	parameters, 27.5.3
	revoking the switch privilege, 27.2.6.2
	setting initial, 27.2.2
	switching a session, 27.2.4.1.1
	switching sessions for a user, 27.2.4.1.2
	SYS_GROUP, 27.7.5
	updating, 27.9.1

	Resource Manager
	
	AUTO_TASK_CONSUMER_GROUP consumer group, 26.5
	managing parallel statement execution, 27.3.4

	resource plan directives, 27.1.2, 27.5.6
	
	deleting, 27.9.6
	for managing parallel statement execution, 27.7.4
	specifying, 27.5.5
	updating, 27.9.5

	resource plans, 27.1.2, 27.1.2.6
	
	creating, 27.4
	DEFAULT_MAINTENANCE_PLAN, 26.5.1
	DELETE_PLAN_CASCADE, 27.9.4
	deleting, 27.9.4
	examples, 27.7
	parameters, 27.5.4
	plan schemas, 27.3.1, 27.6, 27.9.4
	SYSTEM_PLAN, 27.7.5
	top plan, 27.5.6, 27.6
	updating, 27.9.3
	validating, 27.5.6

	RESOURCE_MANAGER_PLAN initialization parameter, 27.6, 27.6
	RESTRICTED SESSION system privilege
	
	restricted mode and, 3.1.5.4

	result cache
	
	and the shared pool size, 6.4.2.3.1
	setting size of, 6.4.2.7

	RESULT_CACHE_SIZE initialization parameter, 6.4.2.7
	resumable space allocation
	
	correctable errors, 19.2.1.3
	detecting suspended statements, 19.2.4
	disabling, 19.2.2
	distributed databases, 19.2.1.4
	enabling, 19.2.2
	example, 19.2.6
	how resumable statements work, 19.2.1.1
	naming statements, 19.2.2.2.2
	parallel execution and, 19.2.1.5
	resumable operations, 19.2.1.2
	setting as default for session, 19.2.3
	timeout interval, 19.2.2.2.1, 19.2.4.1

	RESUMABLE_TIMEOUT initialization parameter, 19.2.1.1
	
	setting, 19.2.2.1

	retention guarantee (for undo), 16.2.2.2
	reversing table changes, 20.8
	RMAN
	
	See Recovery Manager

	roles
	
	DBA role, 1.5.2.3
	obtained through database links, 31.2.10

	ROLLBACK statement
	
	FORCE clause, 35.5, 35.5.1.1, 35.5.2
	forcing, 35.4.2

	rollbacks
	
	ORA-02, 33.3

	ROUND-ROBIN resource allocation method, 27.5.3
	rows
	
	listing chained or migrated, 18.2.3

	rules
	
	adding to a chain, 29.6.4
	dropping from chains, 29.6.9

	running
	
	chains, 29.6.8
	jobs, 29.2.4
	SQL Repair Advisor, 9.8.2

S

	Sample Schemas
	
	description, 2.8.4

	savepoints
	
	in-doubt transactions, 35.5, 35.5.2

	schagent utility, 30.1.3.3.1
	Scheduler
	
	administering, 30
	architecture, 28.4
	configuring, 30.1
	credentials for jobs, 28.2.6
	data dictionary views reference, 30.6.2
	e-mail notifications, 29.8.4
	examples of using, 30.5
	import and export, 30.3
	maintenance window, 26.2
	monitoring and managing, 30.2
	monitoring jobs, 29.8
	objects, 28.2
	overview, 28.1
	scheduling tasks with, 29
	security, 30.2.4
	support for Oracle Data Guard, 28.5, 30.5.5
	troubleshooting, 30.4
	
	job does not run, 30.4.1

	using in RAC, 28.4.5

	Scheduler agent, 30.1.3
	
	configuration, 30.1.3.2
	installation, 30.1.3.2
	setup, 30.1.3.2

	Scheduler calendaring syntax, 29.4.5.1
	Scheduler chain condition syntax, 29.6.4
	Scheduler objects, naming, 29.1
	Scheduler privileges reference, 30.6.1
	SCHEDULER_BATCH_ERRORS view, 29.2.6
	schedules
	
	altering, 29.4.3
	creating, 29.4.2
	creating and managing, to define Scheduler jobs, 29.4
	dropping, 29.4.4
	overview, 28.2.2

	scheduling database tasks, 29
	schema objects
	
	analyzing, 18.2
	creating multiple objects, 18.1
	data dictionary views reference, 18.11.2
	defining using DBMS_METADATA package, 18.11.1
	dependencies between, 18.7
	distributed database naming conventions for, 31.2.9.4
	global names, 31.2.9.4
	listing by type, 18.11.2.1
	name resolution in distributed databases, 31.2.9.4, 31.4.8
	name resolution in SQL statements, 18.8
	privileges to rename, 18.6
	referencing with synonyms, 32.6.2.1
	renaming, 18.6, 18.6
	validating structure, 18.2.2
	viewing information, 18.11, 19.6

	schema objects space usage
	
	data dictionary views reference, 19.6.2

	SCN
	
	See system change number

	SCOPE clause
	
	ALTER SYSTEM SET, 2.6.5.1

	scripts, authenticating users in, 2.8.3
	SEC_CASE_SENSITIVE_LOGON initialization parameter, 1.6.2, 1.6.4.1
	security
	
	accessing a database, 7.1
	administrator of, 7.1
	centralized user management in distributed databases, 31.3.2.4
	database security, 7.1
	distributed databases, 31.3.2
	establishing policies, 7
	privileges, 7.1
	remote objects, 32.6.1
	Scheduler, 30.2.4
	using synonyms, 32.6.2.2

	Segment Advisor, 19.3.2
	
	configuring Scheduler job, 19.3.2.4
	invoking with Enterprise Manager, 19.3.2.2.1
	invoking with PL/SQL, 19.3.2.2.2
	running manually, 19.3.2.2
	viewing results, 19.3.2.3
	views, 19.3.2.5

	SEGMENT_FIX_STATUS procedure
	
	DBMS_REPAIR, 25.2.1

	segments
	
	available space, 19.6.1
	data dictionary views for, 19.6.2
	deallocating unused space, 19.3
	displaying information on, 19.6.2.1
	dropping for empty tables, 19.4
	shrinking, 19.3.3

	SELECT statement
	
	FOR UPDATE clause and location transparency, 32.7

	SEQUENCE_CACHE_ENTRIES parameter, 24.2.4.2.2
	sequences
	
	accessing, 24.2.4
	altering, 24.2.3
	caching sequence numbers, 24.2.4.2
	creating, 24.2.2, 24.2.4.2.2, 24.2.4.2.2
	CURRVAL, 24.2.4.1.2
	data dictionary views reference, 24.4
	dropping, 24.2.5
	managing, 24.2.1
	NEXTVAL, 24.2.4.1.1
	Oracle Real Applications Clusters and, 24.2.2

	SERVER parameter
	
	net service name, 32.3.3.1

	server parameter file
	
	creating, 2.6.3
	defined, 2.6.1
	exporting, 2.6.7
	migrating to, 2.6.2
	recovering, 2.6.9
	RMAN backup, 2.6.8
	setting initialization parameter values, 2.6.5
	SPFILE initialization parameter, 2.6.4
	STARTUP command behavior, 2.6.1
	viewing parameter settings, 2.6.10

	server processes
	
	archiver (ARCn), 5.5
	background, 5.5
	checkpoint (CKPT), 5.5
	database writer (DBWn), 5.5
	dedicated, 5.1.1
	dispatcher (Dnnn), 5.5
	dispatchers, 5.3.4.3
	log writer (LGWR), 5.5
	monitoring locks, 8.2.1
	process monitor (PMON), 5.5
	recoverer (RECO), 5.5
	shared server, 5.1.2
	system monitor (SMON), 5.5
	trace files for, 8.1.1

	server-generated alerts, 8.1.2
	servers
	
	role in two-phase commit, 34.2.2

	service names
	
	database links and, 32.2.4

	services
	
	controlling automatic startup of, 3.1.3
	creating with SRVCTL and Oracle Restart, 4.2.10
	role-based, 3.1.3

	session trees for distributed transactions
	
	clients, 34.2.1
	commit point site, 34.2.5, 34.2.5.2
	database servers, 34.2.2
	definition, 34.2
	global coordinators, 34.2.4
	local coordinators, 34.2.3
	tracing transactions, 35.3.2

	sessions
	
	active, 5.8.2
	inactive, 5.8.3
	setting advice for transactions, 35.4.3.3
	terminating, 5.8

	SET TIME_ZONE clause
	
	ALTER SESSION, 2.4.9.1
	CREATE DATABASE, 2.4.9.1

	SET TRANSACTION statement
	
	naming transactions, 35.2

	SGA
	
	See system global area

	SGA_MAX_SIZE initialization parameter, 6.4.1.3
	SGA_TARGET initialization parameter, 6.4.1.4
	shared database links
	
	configuring, 32.3.3
	creating, 32.3.2
	dedicated servers, creating links to, 32.3.3.1
	determining whether to use, 32.3.1
	example, 31.2.8
	shared servers, creating links to, 32.3.3.2

	SHARED keyword
	
	CREATE DATABASE LINK statement, 32.3.2

	shared server, 5.1.2
	
	configuring dispatchers, 5.3.4
	data dictionary views reference, 5.3.6
	disabling, 5.3.3.2, 5.3.5
	initialization parameters, 5.3.1
	interpreting trace output, 8.1.1.3
	setting minimum number of servers, 5.3.3.2
	trace files for processes, 8.1.1

	shared SQL
	
	for remote and distributed statements, 31.4.3

	SHARED_MEMORY_ADDRESS parameter, 6.4.2.8.2
	shrinking segments online, 19.3.3
	shutdown
	
	default mode, 3.3.1

	SHUTDOWN command
	
	IMMEDIATE clause, 3.3.2
	interrupting, 3.3.5
	NORMAL clause, 3.3.1

	silent mode
	
	creating a database with DBCA in, 2.2.2

	Simple Network Management Protocol (SNMP) support
	
	database management, 31.3.4.3

	single-file tablespaces
	
	description, 14.2.2

	single-instance
	
	defined, 2.3

	single-table hash clusters, 23.3.2
	site autonomy
	
	distributed databases, 31.3.1

	SKIP_CORRUPT_BLOCKS procedure, 25.3.3.1
	
	DBMS_REPAIR, 25.2.1
	example, 25.4.5

	skipping chain steps, 29.6.15
	snapshot too old error, 16.2.2.1
	SORT_AREA_SIZE initialization parameter
	
	index creation and, 21.2.1

	space
	
	deallocating unused, 19.3.4
	reclaiming unused, 19.3

	space allocation
	
	resumable, 19.2

	space management
	
	data types, space requirements, 19.5
	deallocating unused space, 19.3
	Segment Advisor, 19.3
	shrink segment, 19.3

	SPACE_ERROR_INFO procedure, 19.2.4.1
	SPFILE initialization parameter, 2.6.4
	
	specifying from client system, 3.1.2.2

	SQL
	
	submitting, 1.3

	SQL failure
	
	repairing with SQL Repair Advisor, 9.8

	SQL patch
	
	disabling, 9.8.3
	removing, 9.8.3
	viewing, 9.8.3

	SQL Repair Advisor
	
	about, 9.8.1
	repairing SQL failure with, 9.8
	running, 9.8.2

	SQL statements
	
	distributed databases and, 31.4.1

	SQL test case builder, 9.1.1
	SQL*Loader
	
	about, 1.8

	SQL*Plus, 1.3
	
	about, 1.3.1
	connecting with, 1.3.2
	starting, 3.1.4
	starting a database, 3.1.1.1
	starting an instance, 3.1.1.1

	SQL_TRACE initialization parameter
	
	trace files and, 8.1.1

	SRVCTL
	
	add asm command, 4.4
	add command, usage description, 4.4
	add database command, 4.4
	add listener command, 4.4
	add ons command, 4.4
	adding a disk group with, 4.4
	case sensitivity, 4.4, 4.4
	case sensitivity of commands, 4.4, 4.4
	command reference, 4.4
	commands, case sensitivity, 4.4, 4.4
	component names, 4.4
	config asm command, 4.4
	config command, usage description, 4.4
	config database command, 4.4
	config listener command, 4.4
	config ons command, 4.4
	config service command, 4.4
	creating and deleting databases services with, 4.2.10
	disable asm command, 4.4
	disable command, usage description, 4.4
	disable database command, 4.4
	disable diskgroup command, 4.4
	disable listener command, 4.4
	disable ons command, 4.4
	disable service command, 4.4
	enable asm command, 4.4
	enable command, usage description, 4.4
	enable database command, 4.4
	enable diskgroup command, 4.4
	enable listener command, 4.4
	enable ons command, 4.4
	enable service command, 4.4
	getenv asm command, 4.4
	getenv command, usage description, 4.4
	getenv database command, 4.4
	getenv listener command, 4.4
	help for, 4.2.2
	modify asm command, 4.4
	modify command, usage description, 4.4
	modify database command, 4.4
	modify listener command, 4.4
	modify ons command, 4.4
	modify service command, 4.4
	preparing to run, 4.2.1
	reference, 4.4
	remove asm command, 4.4
	remove command, usage description, 4.4
	remove database command, 4.4
	remove diskgroup command, 4.4
	remove listener command, 4.4
	remove ons command, 4.4
	remove service command, 4.4
	setenv asm command, 4.4
	setenv command, usage description, 4.4
	setenv database command, 4.4
	setenv listener command, 4.4
	start asm command, 4.4
	start command, usage description, 4.4
	start database command, 4.4
	start diskgroup command, 4.4
	start home command, 4.4
	start listener command, 4.4
	start ons command, 4.4
	start service command, 4.4
	status asm command, 4.4
	status command, usage description, 4.4
	status database command, 4.4
	status diskgroup command, 4.4
	status home command, 4.4
	status listener command, 4.4
	status ons command, 4.4
	status service command, 4.4
	stop asm command, 4.4
	stop command, usage description, 4.4
	stop database command, 4.4
	stop diskgroup command, 4.4
	stop home command, 4.4
	stop listener command, 4.4
	stop ons command, 4.4
	stop service command, 4.4
	unsetenv asm command, 4.4
	unsetenv command, usage description, 4.4
	unsetenv database command, 4.4
	unsetenv listener command, 4.4

	SRVCTL stop option
	
	default, 3.3.1

	STALE status
	
	of redo log members, 12.5.2

	stalled chain (Scheduler), 29.6.18
	standby transmission mode
	
	definition of, 13.5.2

	starting a database, 3.1
	
	forcing, 3.1.5.5
	Oracle Enterprise Manager, 3.1.1.3
	recovery and, 3.1.5.6
	Recovery Manager, 3.1.1.2
	restricted mode, 3.1.5.4
	SQL*Plus, 3.1.1.1
	when control files unavailable, 3.1.5
	when redo logs unavailable, 3.1.5

	starting an instance
	
	automatically at system startup, 3.1.5.7
	database closed and mounted, 3.1.5.3
	database name conflicts and, 2.5.2.1
	forcing, 3.1.5.5
	mounting and opening the database, 3.1.5.1
	normally, 3.1.5.1
	Oracle Enterprise Manager, 3.1.1.3
	recovery and, 3.1.5.6
	Recovery Manager, 3.1.1.2
	remote instance startup, 3.1.5.8
	restricted mode, 3.1.5.4
	SQL*Plus, 3.1.1.1
	when control files unavailable, 3.1.5
	when redo logs unavailable, 3.1.5
	without mounting a database, 3.1.5.2

	startup
	
	allocation of the SGA
	
	starting a, 6.4.2.8.2

	of database services, controlling, 3.1.3

	STARTUP command
	
	default behavior, 2.6.1
	NOMOUNT clause, 2.3.8
	RECOVER clause, 3.1.5.6
	starting a database, 3.1.1.1, 3.1.5

	statement transparency in distributed database
	
	managing, 32.7

	statistics
	
	automatically collecting for tables, 20.5

	STATISTICS_LEVEL initialization parameter
	
	automatic statistics collection, 20.5

	stderr
	
	for local external jobs, 28.3.1.2.1, 28.3.1.2.2, 29.2.10
	
	retrieving, 28.3.1.2.1, 28.3.1.2.2, 29.2.10

	stdout
	
	for local external jobs, 28.3.1.2.1, 28.3.1.2.2, 29.2.10
	
	retrieving, 28.3.1.2.1, 28.3.1.2.2, 29.2.2.9, 29.2.10

	steps, chain
	
	dropping, 29.6.11

	stopping
	
	chain steps, 29.6.13
	chains, 29.6.12
	jobs, 29.2.5

	storage parameters
	
	INITIAL, 20.6.2
	INITRANS, altering, 20.6.2
	MAXTRANS, altering, 20.6.2
	MINEXTENTS, 20.6.2
	NEXT, 20.6.2
	PCTINCREASE, 20.6.2

	storage subsystems
	
	mapping files to physical devices, 15.9, 15.9.4.3

	stored procedures
	
	managing privileges, 32.6.3.4
	remote object security, 32.6.3.4

	submitting SQL and commands to the database, 1.3
	subqueries
	
	in remote updates, 31.4.1
	statement transparency in distributed databases, 32.7

	SunSoft SunNet Manager, 31.3.4.3
	Support Workbench, 9.1.3.5
	
	for Oracle ASM instance, 9.3
	viewing problems with, 9.3

	SWITCH LOGFILE clause
	
	ALTER SYSTEM statement, 12.6

	synonyms, 24.3.3
	
	creating, 24.3.2, 32.6.2.1
	data dictionary views reference, 24.4
	definition and creation, 32.6.2.1
	displaying dependencies of, 18.11.2.2
	dropping, 24.3.4
	examples, 32.6.2.1
	location transparency in distributed databases, 32.6.2
	managing, 24.3.1, 24.3.4
	managing privileges in remote database, 32.6.2.2
	name resolution in distributed databases, 31.4.9
	private, 24.3.1
	public, 24.3.1
	remote object security, 32.6.2.2

	SYS account
	
	default password, 1.5.2
	objects owned, 1.5.2.1
	privileges, 1.5.2.1
	specifying password for CREATE DATABASE statement, 2.4.1

	SYS_GROUP for Database Resource Manager, 27.7.5
	SYSAUX tablespace, 14.2
	
	about, 2.4.3
	cannot rename, 14.8
	creating at database creation, 2.3.9, 2.4.3
	DATAFILE clause, 2.4.3
	monitoring occupants, 14.10.1
	moving occupants, 14.10.2

	SYSDBA system privilege
	
	adding users to the password file, 1.7.3
	connecting to database, 1.6.1.1
	determining who has privileges, 1.7.3.2
	granting and revoking, 1.7.3.1

	SYSOPER system privilege
	
	adding users to the password file, 1.7.3
	connecting to database, 1.6.1.1
	determining who has privileges, 1.7.3.2
	granting and revoking, 1.7.3.1

	SYSTEM account
	
	default password, 1.5.2
	objects owned, 1.5.2.2
	specifying password for CREATE DATABASE, 2.4.1

	system change numbers
	
	coordination in a distributed database system, 34.3.2.2
	in-doubt transactions, 35.5.1.2
	using V$DATAFILE to view information about, 15.10
	when assigned, 12.1.2

	system global area, 6.2
	
	holds sequence number cache
	specifying buffer cache sizes, 6.4.2.2

	system monitor process (SMON), 5.5
	system privileges
	
	ADMINISTER_RESOURCE_MANAGER, 27.1.3
	for external tables, 20.13.6

	SYSTEM tablespace
	
	cannot rename, 14.8
	creating at database creation, 2.3.9
	creating locally managed, 2.3.9, 2.4.2
	restrictions on taking offline, 15.4
	when created, 14.2

	SYSTEM_PLAN for Database Resource Manager, 27.7.5

T

	table size
	
	estimating, 19.7.1

	tables
	
	about, 20.1
	adding columns, 20.6.6
	allocating extents, 20.6.4
	altering, 20.6.1
	altering physical attributes, 20.6.2
	analyzing, 18.2
	clustered (hash)
	
	See hash clusters

	compressed, 20.2.6
	creating, 20.3
	data dictionary views reference, 20.14
	deferred segment creation, 20.2.8
	designing before creating, 20.2.1
	dropping, 20.10
	dropping columns, 20.6.8
	estimating size, 20.2.10
	estimating space use, 19.7.1
	external, 20.13
	Flashback Drop, 20.11
	Flashback Table, 20.9
	guidelines for managing, 20.2
	hash clustered
	
	See hash clusters

	increasing column length, 20.6.5
	index-organized, 20.12
	key-preserved, 24.1.5.1
	limiting indexes on, 21.2.4
	managing, 20
	modifying column definition, 20.6.5
	moving, 20.6.3
	parallelizing creation, 20.2.4, 20.3.3
	read-only, 20.6.9
	redefining online, 20.7
	renaming columns, 20.6.7
	researching and reversing erroneous changes to, 20.8
	restrictions when creating, 20.2.11
	setting storage parameters, 20.2.10
	shrinking, 19.3.3
	specifying location, 20.2.3
	statistics collection, automatic, 20.5
	temporary, 20.3.2
	truncating, 18.3
	unrecoverable (NOLOGGING), 20.2.5
	validating structure, 18.2.2

	tablespace set, 14.13.5.2
	tablespaces
	
	adding datafiles, 15.2
	assigning user quotas, 14.1.2
	autoextending, 14.7.1
	automatic segment space management, 14.2.1.2
	bigfile, 2.4.8, 14.2.2
	checking default storage parameters, 14.14.1
	compressed, 14.2.3
	containing XMLTypes, 14.13.3
	creating undo tablespace at database creation, 2.4.4, 2.4.8.2
	data dictionary views reference, 14.14
	DBMS_SPACE_ADMIN package, 14.11
	default temporary tablespace, creating, 2.4.6, 2.4.8.2
	detecting and repairing defects, 14.11
	diagnosing and repairing problems in locally managed, 14.11
	dictionary managed, 14.2.2.2
	dropping, 14.9
	encrypted, 14.2.4
	guidelines for managing, 14.1
	increasing size, 14.7.1
	listing files of, 14.14.2
	listing free space in, 14.14.3
	locally managed, 14.2.1
	locally managed SYSTEM, 2.4.2
	locally managed temporary, 14.2.5.1
	location, 15.1.3
	migrating SYSTEM to locally managed, 14.12
	multiple block sizes, 14.13.5.6
	on a WORM device, 14.6.3
	Oracle Managed Files, managing, 17.5.1, 17.5.2
	overriding default type, 2.4.8.2
	quotas, assigning, 14.1.2
	read-only, 14.6
	renaming, 14.7, 14.8
	setting default type, 2.4.8.1
	single-file, 2.4.8, 2.4.8.2, 14.2.2, 14.7.3
	specifying nonstandard block sizes, 14.3
	SYSAUX, 14.2, 14.8
	SYSAUX creation, 2.4.3
	SYSAUX, managing, 14.10
	SYSTEM, 14.2, 14.2.1, 14.6.1, 14.12
	taking offline normal, 14.5.1
	taking offline temporarily, 14.5.1
	tempfiles in locally managed, 14.2.5.1
	temporary, 14.2.5, 14.2.6.3
	temporary bigfile, 14.2.5.2
	temporary for creating large indexes, 21.3.4
	transportable
	
	See transportable tablespaces

	undo, 16.1
	using multiple, 14.1.1
	using Oracle Managed Files, 17.3.3

	tempfiles, 14.2.5.1
	
	creating as Oracle managed, 17.3.4
	dropping, 15.6
	dropping Oracle managed, 17.4.1

	temporary segments
	
	index creation and, 21.2.1

	temporary tables
	
	assigning to a tablespace, 20.3.2
	creating, 20.3.2

	temporary tablespace, default
	
	specifying at database creation, 17.3.2.5

	temporary tablespaces
	
	altering, 14.7.4
	bigfile, 14.2.5.2
	creating, 14.2.5.1
	groups, 14.2.6
	renaming default, 14.8
	shrinking, locally managed, 14.7.5

	terminating user sessions
	
	active sessions, 5.8.2
	identifying sessions, 5.8.1
	inactive session, example, 5.8.3
	inactive sessions, 5.8.3

	test case
	
	builder, SQL, 9.1.1

	threads
	
	online redo log, 12.1.1

	threshold based alerts
	
	managing with Oracle Enterprise Manager, 8.1.2.1

	threshold-based alerts
	
	server-generated, 8.1.2

	thresholds
	
	setting alert, 19.1.1

	time zone
	
	files, 2.4.9.2
	setting for database, 2.4.9.1

	trace files, 9.1.3.3
	
	location of, 8.1.1
	log writer process and, 12.2.1.1
	size of, 8.1.1.1
	using, 8.1.1
	when written, 8.1.1.2

	trace files, finding, 9.6
	traces, 9.1.3.3
	tracing
	
	archivelog process, 13.7

	transaction control statements
	
	distributed transactions and, 34.1.2

	transaction failures
	
	simulating, 35.9

	transaction management
	
	overview, 34.3

	transaction processing
	
	distributed systems, 31.4

	transactions
	
	closing database links, 33.2
	distributed and two-phase commit, 31.4.6
	in-doubt, 34.3.1.2, 34.4, 34.4.3, 35.4
	naming distributed, 35.2, 35.4.3.2
	remote, 31.4.4

	transmitting archived redo logs, 13.5
	transparent data encryption, 2.8.2, 14.2.4, 20.2.7
	transportable set
	
	See transportable tablespace set

	transportable tablespace set
	
	defined, 14.13.5

	transportable tablespaces, 14.13
	
	compatibility considerations, 14.13.4
	from backup, 14.13.1
	introduction, 14.13.1
	limitations, 14.13.3
	multiple block sizes, 14.13.5.6
	procedure, 14.13.5
	when to use, 14.13.6
	wizard in Enterprise Manager, 14.13.1
	XMLTypes in, 14.13.3

	transporting tablespaces between databases
	
	See transportable tablespaces

	triggers
	
	disabling, 18.4.2
	enabling, 18.4.1

	.trm files, 9.1.3.3
	TRUNCATE statement
	
	DROP ALL STORAGE, 18.3.3
	DROP STORAGE, 18.3.3
	DROP STORAGE clause, 18.3.3
	REUSE STORAGE, 18.3.3
	REUSE STORAGE clause, 18.3.3
	vs. dropping table, 20.10

	tuning
	
	analyzing tables, 33.4.2.2.2
	cost-based optimization, 33.4.2

	two-phase commit
	
	case study, 34.5
	commit phase, 34.3.2, 34.5.4
	described, 31.4.6
	discovering problems with, 35.4.1
	distributed transactions, 34.3
	example, 34.5
	forget phase, 34.3.3
	in-doubt transactions, 34.4, 34.4.3
	phases, 34.3
	prepare phase, 34.3.1, 34.3.1.2
	recognizing read-only nodes, 34.3.1.1.2
	specifying commit point strength, 35.1
	steps in commit phase, 34.3.2.1
	tracing session tree in distributed transactions, 35.3.2
	viewing database links, 35.3.1

U

	Undo Advisor, 16.4
	undo management
	
	automatic, 16.2
	described, 16.1
	initialization parameters for, 16.2.1

	undo retention
	
	automatic tuning of, 16.2.2.1
	explained, 16.2.2
	guaranteeing, 16.2.2.2
	setting, 16.3

	undo segments
	
	in-doubt distributed transactions, 35.4.2

	undo space
	
	data dictionary views reference, 16.7

	undo space management
	
	automatic undo management mode, 16.2

	Undo tablespace
	
	specifying at database creation, 17.3.2.4

	undo tablespace
	
	managing, 16.5
	managing space threshold alerts, 16.5.6
	sizing a fixed-size, 16.4

	undo tablespaces
	
	altering, 16.5.2
	creating, 16.5.1
	data dictionary views reference, 16.7
	dropping, 16.5.3
	monitoring, 16.7
	PENDING OFFLINE status, 16.5.4
	renaming, 14.8
	specifying at database creation, 2.3.9, 2.4.4, 2.4.8.2
	statistics for, 16.7
	switching, 16.5.4
	user quotas, 16.5.5

	UNDO_MANAGEMENT initialization parameter, 2.4.4
	UNDO_TABLESPACE initialization parameter
	
	for undo tablespaces, 2.5.8.2
	starting an instance using, 16.2.1

	UNIQUE key constraints
	
	associated indexes, 21.3.3.1
	dropping associated indexes, 21.6
	enabling on creation, 21.3.3
	foreign key references when dropped, 18.5.3.1
	indexes associated with, 21.3.3

	UNRECOVERABLE DATAFILE clause
	
	ALTER DATABASE statement, 12.8

	unusable indexes, 21.2.11
	updates
	
	location transparency and, 31.5.1.2

	upgrading a database, 2.1
	USE_INDIRECT_DATA_BUFFERS parameter, 6.4.2.8.3
	user accounts
	
	predefined, 2.8.1, 7.5

	user names
	
	SYS and SYSTEM, 1.5.2

	USER_DB_LINKS view, 32.5.1, 32.5.1
	USER_DUMP_DEST initialization parameter, 9.1.3.1
	USER_RESUMABLE view, 19.2.4.1
	users
	
	assigning tablespace quotas, 14.1.2
	in a newly created database, 2.8.1
	limiting number of, 2.5.10
	predefined, 2.8.1
	session, terminating, 5.8.3

	utilities
	
	for the database administrator, 1.8
	SQL*Loader, 1.8

	UTLCHAIN.SQL script
	
	listing chained rows, 18.2.3.1

	UTLCHN1.SQL script
	
	listing chained rows, 18.2.3.1

	UTLLOCKT.SQL script, 8.2.1

V

	V$ARCHIVE view, 13.8
	V$ARCHIVE_DEST view
	
	obtaining destination status, 13.4.2

	V$BLOCKING_QUIESCE view, 3.4.1
	V$BUFFER_POOL view, 6.4.2.2.1
	V$DATABASE view, 13.8.1
	V$DBLINK view, 32.5.2
	V$DIAG_CRITICAL_ERROR view, 9.1.4
	V$DIAG_INFO view, 9.1.4
	V$DISPATCHER view
	
	monitoring shared server dispatchers, 5.3.4.4

	V$DISPATCHER_RATE view
	
	monitoring shared server dispatchers, 5.3.4.4

	V$ENCRYPTED_TABLESPACES view, 14.2.4, 14.14
	V$INSTANCE view
	
	for database quiesce state, 3.4.3

	V$LOG view, 12.9, 13.8
	
	displaying archiving status, 13.8

	V$LOG_HISTORY view, 12.9
	V$LOGFILE view, 12.9
	
	log file status, 12.5.2

	V$OBJECT_USAGE view
	
	for monitoring index usage, 21.4.6

	V$PWFILE_USERS view, 1.7.3.2
	V$QUEUE view
	
	monitoring shared server dispatchers, 5.3.4.4

	V$RESULT_CACHE_STATISTICS view, 6.4.2.7, 6.4.2.7
	V$ROLLSTAT view
	
	undo segments, 16.7

	V$SESSION view, 5.8.3
	V$SYSAUX_OCCUPANTS view
	
	occupants of SYSAUX tablespace, 14.10.2

	V$THREAD view, 12.9
	V$TIMEZONE_NAMES view
	
	time zone table information, 2.4.9.2

	V$TRANSACTION view
	
	undo tablespaces information, 16.7

	V$UNDOSTAT view
	
	statistics for undo tablespaces, 16.7

	V$VERSION view, 1.4.2
	VALIDATE STRUCTURE clause
	
	of ANALYZE statement, 18.2.2

	VALIDATE STRUCTURE ONLINE clause
	
	of ANALYZE statement, 18.2.2

	verifying blocks
	
	redo log files, 12.7

	viewing
	
	alerts, 19.1.2
	incident package details, 9.10.3.1
	SQL patch, 9.8.3

	views
	
	creating, 24.1.2
	creating with errors, 24.1.2.3
	data dictionary
	
	for archived redo logs, 13.8.1
	for clusters, 22.6
	for control files, 11.8
	for database, 2.10
	for database resident connection pooling, 5.4.3
	for Database Resource Manager, 27.13.3
	for datafiles, 15.10
	for hash clusters, 23.6
	for indexes, 21.7
	for memory management, 6.6.2
	for Oracle Scheduler, 30.6.2
	for redo log, 12.9
	for schema objects, 18.11.2
	for sequences, 24.4
	for shared server, 5.3.6
	for space usage in schema objects, 19.6.2
	for synonyms, 24.4
	for tables, 20.14
	for tablespaces, 14.14
	for undo space, 16.7
	for views, 24.4

	data dictionary views for, 24.4
	DBA_2PC_NEIGHBORS, 35.3.2
	DBA_2PC_PENDING, 35.3.1
	DBA_DB_LINKS, 32.5.1
	DBA_RESUMABLE, 19.2.4.1
	displaying dependencies of, 18.11.2.2
	dropping, 24.1.7
	file mapping views, 15.9.3.3
	FOR UPDATE clause and, 24.1.2
	invalid, 24.1.4
	join
	
	See join views

	location transparency in distributed databases, 32.6.1
	managing, 24.1, 24.1.3
	managing privileges with, 32.6.1
	name resolution in distributed databases, 31.4.9
	ORDER BY clause and, 24.1.2
	remote object security, 32.6.1
	restrictions, 24.1.4
	USER_RESUMABLE, 19.2.4.1
	using, 24.1.4
	V$ARCHIVE, 13.8
	V$ARCHIVE_DEST, 13.4.2
	V$DATABASE, 13.8.1
	V$LOG, 13.8
	V$LOGFILE, 12.5.2
	V$OBJECT_USAGE, 21.4.6
	wildcards in, 24.1.2.2
	WITH CHECK OPTION, 24.1.2

	virtual columns, 20.1
	
	indexing, 21.2.2

W

	wallet, Oracle, 14.2.4, 20.2.7
	wildcards
	
	in views, 24.1.2.2

	window groups
	
	creating, 29.7.4.2
	disabling, 29.7.4.7
	dropping, 29.7.4.3
	dropping a member from, 29.7.4.5
	enabling, 29.7.4.6
	managing job scheduling and job priorities with, 29.7.4
	overview, 28.2.10.2

	window logs, 29.7.3
	windows (Scheduler)
	
	altering, 29.7.3.3
	closing, 29.7.3.5
	creating, 29.7.3.2
	disabling, 29.7.3.7
	dropping, 29.7.3.6
	enabling, 29.7.3.8
	opening, 29.7.3.4
	overlapping, 28.2.9.1
	overview, 28.2.9

	windows, managing job scheduling and resource allocation with, 29.7.3
	workloads
	
	managing with database services, 2.7

	WORM devices
	
	and read-only tablespaces, 14.6.3

	WRH$_UNDOSTAT view, 16.7

X

	XMLTypes
	
	in transportable tablespaces, 14.13.3

Suspending and Resuming a Database

The ALTER SYSTEM SUSPEND statement halts all input and output (I/O) to datafiles (file header and file data) and control files. The suspended state lets you back up a database without I/O interference. When the database is suspended all preexisting I/O operations are allowed to complete and any new database accesses are placed in a queued state.

The suspend command is not specific to an instance. In an Oracle Real Application Clusters environment, when you issue the suspend command on one system, internal locking mechanisms propagate the halt request across instances, thereby quiescing all active instances in a given cluster. However, if someone starts a new instance another instance is being suspended, the new instance will not be suspended.

Use the ALTER SYSTEM RESUME statement to resume normal database operations. The SUSPEND and RESUME commands can be issued from different instances. For example, if instances 1, 2, and 3 are running, and you issue an ALTER SYSTEM SUSPEND statement from instance 1, then you can issue a RESUME statement from instance 1, 2, or 3 with the same effect.

The suspend/resume feature is useful in systems that allow you to mirror a disk or file and then split the mirror, providing an alternative backup and restore solution. If you use a system that cannot split a mirrored disk from an existing database while writes are occurring, then you can use the suspend/resume feature to facilitate the split.

The suspend/resume feature is not a suitable substitute for normal shutdown operations, because copies of a suspended database can contain uncommitted updates.

	
Caution:

Do not use the ALTER SYSTEM SUSPEND statement as a substitute for placing a tablespace in hot backup mode. Precede any database suspend operation by an ALTER TABLESPACE BEGIN BACKUP statement.

The following statements illustrate ALTER SYSTEM SUSPEND/RESUME usage. The V$INSTANCE view is queried to confirm database status.

SQL> ALTER SYSTEM SUSPEND;
System altered
SQL> SELECT DATABASE_STATUS FROM V$INSTANCE;
DATABASE_STATUS

SUSPENDED

SQL> ALTER SYSTEM RESUME;
System altered
SQL> SELECT DATABASE_STATUS FROM V$INSTANCE;
DATABASE_STATUS

ACTIVE

	
See Also:

Oracle Database Backup and Recovery User's Guide for details about backing up a database using the database suspend/resume feature

Configuring Database Resident Connection Pooling

The database server is preconfigured to allow database resident connection pooling. However, you must explicitly enable this feature by starting the connection pool.

This section contains the following topics:

	
Enabling Database Resident Connection Pooling

	
Configuring the Connection Pool for Database Resident Connection Pooling

	
Data Dictionary Views for Database Resident Connection Pooling

	
See Also:

"About Database Resident Connection Pooling"

Enabling Database Resident Connection Pooling

Oracle Database includes a default connection pool called SYS_DEFAULT_CONNECTION_POOL. By default, this pool is created, but not started. To enable database resident connection pooling, you must explicitly start the connection pool.

To enable database resident connection pooling:

	
Start the database resident connection pool, as described in "Starting the Database Resident Connection Pool".

	
Route the client connection requests to the connection pool, as described in "Routing Client Connection Requests to the Connection Pool".

Starting the Database Resident Connection Pool

To start the connection pool, use the following steps:

	
Start SQL*Plus and connect to the database as the SYS user.

	
Issue the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.START_POOL();

Once started, the connection pool remains in this state until it is explicitly stopped. The connection pool is automatically restarted when the database instance is restarted if the pool was active at the time of instance shutdown.

In an Oracle Real Application Clusters (Oracle RAC) environment, you can use any instance to manage the connection pool. Any changes you make to the pool configuration are applicable on all Oracle RAC instances.

Routing Client Connection Requests to the Connection Pool

In the client application, the connect string must specify the connect type as POOLED.

The following example shows an easy connect string that enables clients to connect to a database resident connection pool:

examplehost.company.com:1521/books.company.com:POOLED

The following example shows a TNS connect descriptor that enables clients to connect to a database resident connection pool:

(DESCRIPTION=(ADDRESS=(PROTOCOL=tcp) (HOST=myhost)
 (PORT=1521))(CONNECT_DATA=(SERVICE_NAME=sales)
 (SERVER=POOLED)))

Disabling Database Resident Connection Pooling

To disable database resident connection pooling, you must explicitly stop the connection pool. Use the following steps:

	
Start SQL*Plus and connect to the database as the SYS user.

	
Issue the following command:

SQL> EXECUTE DBMS_CONNECTION_POOL.STOP_POOL();

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_CONNECTION_POOL package.

	
Note:

The operation of disabling the database resident connection pool can be completed only when all client requests that have been handed off to a server are completed.

Configuring the Connection Pool for Database Resident Connection Pooling

The connection pool is configured using default parameter values. You can use the procedures in the DBMS_CONNECTION_POOL package to configure the connection pool according to your usage. In an Oracle Real Application Clusters (Oracle RAC) environment, the configuration parameters are applicable to each Oracle RAC instance.

Table 5-2 lists the parameters that you can configure for the connection pool.

Table 5-2 Configuration Parameters for Database Resident Connection Pooling

	Parameter Name	Description
	
MINSIZE

	
The minimum number of pooled servers in the pool. The default value is 4.

	
MAXSIZE

	
The maximum number of pooled servers in the pool. The default value is 40.

The connection pool reserves 5% of the pooled servers for authentication, and at least one pooled server is always reserved for authentication. When setting this parameter, ensure that there are enough pooled servers for both authentication and connections.

	
INCRSIZE

	
The number of pooled servers by which the pool is incremented if servers are unavailable when a client application request is received. The default value is 2.

	
SESSION_CACHED_CURSORS

	
The number of session cursors to cache in each pooled server session. The default value is 20.

	
INACTIVITY_TIMEOUT

	
The maximum time, in seconds, the pooled server can stay idle in the pool. After this time, the server is terminated. The default value is 300.

This parameter does not apply if the pool is at MINSIZE.

	
MAX_THINK_TIME

	
The maximum time of inactivity, in seconds, for a client after it obtains a pooled server from the pool. After obtaining a pooled server from the pool, if the client application does not issue a database call for the time specified by MAX_THINK_TIME, the pooled server is freed and the client connection is terminated. The default value is 120.

	
MAX_USE_SESSION

	
The number of times a pooled server can be taken and released to the pool. The default value is 500000.

	
MAX_LIFETIME_SESSION

	
The time, in seconds, to live for a pooled server in the pool. The default value is 86400.

	
NUM_CBROK

	
The number of Connection Brokers that are created to handle client requests. The default value is 1.

Creating multiple Connection Broker processes helps distribute the load of client connection requests if there are a large number of client applications.

	
MAXCONN_CBROK

	
The maximum number of connections that each Connection Broker can handle.

The default value is 40000. But if the maximum connections allowed by the platform on which the database is installed is lesser than the default value, this value overrides the value set using MAXCONN_CBROK.

Set the per-process file descriptor limit of the operating system sufficiently high so that it supports the number of connections specified by MAXCONN_CBROK.

Using the CONFIGURE_POOL Procedure

The CONFIGURE_POOL procedure of the DBMS_CONNECTION_POOL package enables you to configure the connection pool with advanced options. This procedure is usually used when you must modify all the parameters of the connection pool.

Using the ALTER_PARAM Procedure

The ALTER_PARAM procedure of the DBMS_CONNECTION_POOL package enables you to alter a specific configuration parameter without affecting other parameters.For example, the following command changes the minimum number of pooled servers used:

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('','MINSIZE','10');

The following example, changes the maximum number of connections that each connection broker can handle to 50000.

SQL> EXECUTE DBMS_CONNECTION_POOL.ALTER_PARAM ('','MAXCONN_CBROK','50000');

Before you execute this command, ensure that the maximum number of connections allowed by the platform on which your database is installed is not less than the value you set for MAXCONN_CBROK.

For example, in Linux, the following entry in the /etc/security/limits.conf file indicates that the maximum number of connections allowed for the user test_user is 30000.

test_user HARD NOFILE 30000

To set the maximum number of connections that each connection broker can allow to 50000, first change the value in the limits.conf file to a value not less than 50000.

Restoring the Connection Pool Default Settings

If you have made changes to the connection pool parameters, but you want to revert to the default pool settings, use the RESTORE_DEFAULT procedure of the DBMS_CONNECTION_POOL package. The command to restore the connection pool to its default settings is:

SQL> EXECUTE DBMS_CONNECTION_POOL.RESTORE_DEFAULTS();

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_CONNECTION_POOL package.

Data Dictionary Views for Database Resident Connection Pooling

Table 5-3 lists the data dictionary views that provide information about database resident connection pooling. Use these views to obtain information about your connection pool and to monitor the performance of database resident connection pooling.

Table 5-3 Data Dictionary Views for Database Resident Connection Pooling

	View	Description
	
DBA_CPOOL_INFO

	
Contains information about the connection pool such as the pool status, the maximum and minimum number of connections, and timeout for idle sessions.

	
V$CPOOL_CONN_INFO

	
Contains information about each connection to the connection broker.

	
V$CPOOL_STATS

	
Contains pool statistics such as the number of session requests, number of times a session that matches the request was found in the pool, and total wait time for a session request.

	
V$CPOOL_CC_STATS

	
Contains connection class level statistics for the pool.

	
See Also:

Oracle Database Reference for more information about these views.

9 Managing Diagnostic Data

Beginning with Release 11g, Oracle Database includes an advanced fault diagnosability infrastructure for collecting and managing diagnostic data. Diagnostic data includes the trace files, dumps, and core files that are also present in previous releases, plus new types of diagnostic data that enable customers and Oracle Support to identify, investigate, track, and resolve problems quickly and effectively.

In this chapter:

	
About the Oracle Database Fault Diagnosability Infrastructure

	
Investigating, Reporting, and Resolving a Problem

	
Viewing Problems with the Enterprise Manager Support Workbench

	
Creating a User-Reported Problem

	
Viewing the Alert Log

	
Finding Trace Files

	
Running Health Checks with Health Monitor

	
Repairing SQL Failures with the SQL Repair Advisor

	
Repairing Data Corruptions with the Data Recovery Advisor

	
Creating, Editing, and Uploading Custom Incident Packages

5 Managing Processes

In this chapter:

	
About Dedicated and Shared Server Processes

	
About Database Resident Connection Pooling

	
Configuring Oracle Database for Shared Server

	
Configuring Database Resident Connection Pooling

	
About Oracle Database Background Processes

	
Managing Processes for Parallel SQL Execution

	
Managing Processes for External Procedures

	
Terminating Sessions

	
Process and Session Data Dictionary Views

12 Managing the Redo Log

In this chapter:

	
What Is the Redo Log?

	
Planning the Redo Log

	
Creating Redo Log Groups and Members

	
Relocating and Renaming Redo Log Members

	
Dropping Redo Log Groups and Members

	
Forcing Log Switches

	
Verifying Blocks in Redo Log Files

	
Clearing a Redo Log File

	
Redo Log Data Dictionary Views

	
See Also:

Chapter 17, "Using Oracle Managed Files" for information about redo log files that are both created and managed by the Oracle Database server

Automatically Collecting Statistics on Tables

The PL/SQL package DBMS_STATS lets you generate and manage statistics for cost-based optimization. You can use this package to gather, modify, view, export, import, and delete statistics. You can also use this package to identify or name statistics that have been gathered.

Formerly, you enabled DBMS_STATS to automatically gather statistics for a table by specifying the MONITORING keyword in the CREATE (or ALTER) TABLE statement. Starting with Oracle Database 11g, the MONITORING and NOMONITORING keywords have been deprecated and statistics are collected automatically. If you do specify these keywords, they are ignored.

Monitoring tracks the approximate number of INSERT, UPDATE, and DELETE operations for the table since the last time statistics were gathered. Information about how many rows are affected is maintained in the SGA, until periodically (about every three hours) SMON incorporates the data into the data dictionary. This data dictionary information is made visible through the DBA_TAB_MODIFICATIONS,ALL_TAB_MODIFICATIONS, or USER_TAB_MODIFICATIONS views. The database uses these views to identify tables with stale statistics.

To disable monitoring of a table, set the STATISTICS_LEVEL initialization parameter to BASIC. Its default is TYPICAL, which enables automatic statistics collection. Automatic statistics collection and the DBMS_STATS package enable the optimizer to generate accurate execution plans.

	
See Also:

	
Oracle Database Reference for detailed information on the STATISTICS_LEVEL initialization parameter

	
Oracle Database Performance Tuning Guide for information on managing optimizer statistics

	
Oracle Database PL/SQL Packages and Types Reference for information about using the DBMS_STATS package

	
"About Automated Maintenance Tasks" for information on using the Scheduler to collect statistics automatically

Configuring Oracle Database for Shared Server

This section discusses how to enable shared server and how to set or alter shared server initialization parameters. It contains the following topics:

	
Initialization Parameters for Shared Server

	
Memory Management for Shared Server

	
Enabling Shared Server

	
Configuring Dispatchers

	
Disabling Shared Server

	
Shared Server Data Dictionary Views

	
See Also:

	
"About Dedicated and Shared Server Processes"

	
Oracle Database SQL Language Reference for further information about the ALTER SYSTEM statement

Initialization Parameters for Shared Server

The following initialization parameters control shared server operation:

	
SHARED_SERVERS: Specifies the initial number of shared servers to start and the minimum number of shared servers to keep. This is the only required parameter for using shared servers.

	
MAX_SHARED_SERVERS: Specifies the maximum number of shared servers that can run simultaneously.

	
SHARED_SERVER_SESSIONS: Specifies the total number of shared server user sessions that can run simultaneously. Setting this parameter enables you to reserve user sessions for dedicated servers.

	
DISPATCHERS: Configures dispatcher processes in the shared server architecture.

	
MAX_DISPATCHERS: Specifies the maximum number of dispatcher processes that can run simultaneously. This parameter can be ignored for now. It will only be useful in a future release when the number of dispatchers is auto-tuned according to the number of concurrent connections.

	
CIRCUITS: Specifies the total number of virtual circuits that are available for inbound and outbound network sessions.

	
See Also:

Oracle Database Reference for more information about these initialization parameters

Memory Management for Shared Server

Shared server requires some user global area (UGA) in either the shared pool or large pool. For installations with a small number of simultaneous sessions, the default sizes for these system global area (SGA) components are generally sufficient. However, if you expect a large number of sessions for your installation, you may have to tune memory to support shared server.

See the "Configuring and Using Memory" section of Oracle Database Performance Tuning Guide for guidelines.

Enabling Shared Server

Shared server is enabled by setting the SHARED_SERVERS initialization parameter to a value greater than 0. The other shared server initialization parameters need not be set. Because shared server requires at least one dispatcher in order to work, a dispatcher is brought up even if no dispatcher has been configured. Dispatchers are discussed in "Configuring Dispatchers".

Shared server can be started dynamically by setting the SHARED_SERVERS parameter to a nonzero value with the ALTER SYSTEM statement, or SHARED_SERVERS can be included at database startup in the initialization parameter file. If SHARED_SERVERS is not included in the initialization parameter file, or is included but is set to 0, then shared server is not enabled at database startup.

	
Note:

If SHARED_SERVERS is not included in the initialization parameter file at database startup, but DISPATCHERS is included and it specifies at least one dispatcher, shared server is enabled. In this case, the default for SHARED_SERVERS is 1.
If neither SHARED_SERVERS nor DISPATCHERS is included in the initialization file, you cannot start shared server after the instance is brought up by just altering the DISPATCHERS parameter. You must specifically alter SHARED_SERVERS to a nonzero value to start shared server.

	
Note:

If you create your Oracle database with Database Configuration Assistant (DBCA), DBCA configures a dispatcher for Oracle XML DB (XDB). This is because XDB protocols like HTTP and FTP require shared server. This results in a SHARED_SERVER value of 1. Although shared server is enabled, this configuration permits only sessions that connect to the XDB service to use shared server. To enable shared server for regular database sessions (for submitting SQL statements), you must add an additional dispatcher configuration, or replace the existing configuration with one that is not specific to XDB. See "Configuring Dispatchers" for instructions.

Determining a Value for SHARED_SERVERS

The SHARED_SERVERS initialization parameter specifies the minimum number of shared servers that you want created when the instance is started. After instance startup, Oracle Database can dynamically adjust the number of shared servers based on how busy existing shared servers are and the length of the request queue.

In typical systems, the number of shared servers stabilizes at a ratio of one shared server for every ten connections. For OLTP applications, when the rate of requests is low, or when the ratio of server usage to request is low, the connections-to-servers ratio could be higher. In contrast, in applications where the rate of requests is high or the server usage-to-request ratio is high, the connections-to-server ratio could be lower.

The PMON (process monitor) background process cannot terminate shared servers below the value specified by SHARED_SERVERS. Therefore, you can use this parameter to stabilize the load and minimize strain on the system by preventing PMON from terminating and then restarting shared servers because of coincidental fluctuations in load.

If you know the average load on your system, you can set SHARED_SERVERS to an optimal value. The following example shows how you can use this parameter:

Assume a database is being used by a telemarketing center staffed by 1000 agents. On average, each agent spends 90% of the time talking to customers and only 10% of the time looking up and updating records. To keep the shared servers from being terminated as agents talk to customers and then spawned again as agents access the database, a DBA specifies that the optimal number of shared servers is 100.

However, not all work shifts are staffed at the same level. On the night shift, only 200 agents are needed. Since SHARED_SERVERS is a dynamic parameter, a DBA reduces the number of shared servers to 20 at night, thus allowing resources to be freed up for other tasks such as batch jobs.

Decreasing the Number of Shared Server Processes

You can decrease the minimum number of shared servers that must be kept active by dynamically setting the SHARED_SERVERS parameter to a lower value. Thereafter, until the number of shared servers is decreased to the value of the SHARED_SERVERS parameter, any shared servers that become inactive are marked by PMON for termination.

The following statement reduces the number of shared servers:

ALTER SYSTEM SET SHARED_SERVERS = 5;

Setting SHARED_SERVERS to 0 disables shared server. For more information, see "Disabling Shared Server".

Limiting the Number of Shared Server Processes

The MAX_SHARED_SERVERS parameter specifies the maximum number of shared servers that can be automatically created by PMON. It has no default value. If no value is specified, then PMON starts as many shared servers as is required by the load, subject to these limitations:

	
The process limit (set by the PROCESSES initialization parameter)

	
A minimum number of free process slots (at least one-eighth of the total process slots, or two slots if PROCESSES is set to less than 24)

	
System resources

	
Note:

On Windows NT, take care when setting MAX_SHARED_SERVERS to a high value, because each server is a thread in a common process.

The value of SHARED_SERVERS overrides the value of MAX_SHARED_SERVERS. Therefore, you can force PMON to start more shared servers than the MAX_SHARED_SERVERS value by setting SHARED_SERVERS to a value higher than MAX_SHARED_SERVERS. You can subsequently place a new upper limit on the number of shared servers by dynamically altering the MAX_SHARED_SERVERS to a value higher than SHARED_SERVERS.

The primary reason to limit the number of shared servers is to reserve resources, such as memory and CPU time, for other processes. For example, consider the case of the telemarketing center discussed previously:

The DBA wants to reserve two thirds of the resources for batch jobs at night. He sets MAX_SHARED_SERVERS to less than one third of the maximum number of processes (PROCESSES). By doing so, the DBA ensures that even if all agents happen to access the database at the same time, batch jobs can connect to dedicated servers without having to wait for the shared servers to be brought down after processing agents' requests.

Another reason to limit the number of shared servers is to prevent the concurrent run of too many server processes from slowing down the system due to heavy swapping, although PROCESSES can serve as the upper bound for this rather than MAX_SHARED_SERVERS.

Still other reasons to limit the number of shared servers are testing, debugging, performance analysis, and tuning. For example, to see how many shared servers are needed to efficiently support a certain user community, you can vary MAX_SHARED_SERVERS from a very small number upward until no delay in response time is noticed by the users.

Limiting the Number of Shared Server Sessions

The SHARED_SERVER_SESSIONS initialization parameter specifies the maximum number of concurrent shared server user sessions. Setting this parameter, which is a dynamic parameter, lets you reserve database sessions for dedicated servers. This in turn ensures that administrative tasks that require dedicated servers, such as backing up or recovering the database, are not preempted by shared server sessions.

This parameter has no default value. If it is not specified, the system can create shared server sessions as needed, limited by the SESSIONS initialization parameter.

Protecting Shared Memory

The CIRCUITS parameter sets a maximum limit on the number of virtual circuits that can be created in shared memory. This parameter has no default. If it is not specified, then the system can create circuits as needed, limited by the DISPATCHERS initialization parameter and system resources.

Configuring Dispatchers

The DISPATCHERS initialization parameter configures dispatcher processes in the shared server architecture. At least one dispatcher process is required for shared server to work.If you do not specify a dispatcher, but you enable shared server by setting SHARED_SERVER to a nonzero value, then by default Oracle Database creates one dispatcher for the TCP protocol. The equivalent DISPATCHERS explicit setting of the initialization parameter for this configuration is:

dispatchers="(PROTOCOL=tcp)"

You can configure more dispatchers, using the DISPATCHERS initialization parameter, if either of the following conditions apply:

	
You must configure a protocol other than TCP/IP. You configure a protocol address with one of the following attributes of the DISPATCHERS parameter:

	
ADDRESS

	
DESCRIPTION

	
PROTOCOL

	
You want to configure one or more of the optional dispatcher attributes:

	
DISPATCHERS

	
CONNECTIONS

	
SESSIONS

	
TICKS

	
LISTENER

	
MULTIPLEX

	
POOL

	
SERVICE

	
Note:

Database Configuration Assistant helps you configure this parameter.

DISPATCHERS Initialization Parameter Attributes

This section provides brief descriptions of the attributes that can be specified with the DISPATCHERS initialization parameter.

A protocol address is required and is specified using one or more of the following attributes:

	Attribute	Description
	ADDRESS	Specify the network protocol address of the endpoint on which the dispatchers listen.
	DESCRIPTION	Specify the network description of the endpoint on which the dispatchers listen, including the network protocol address. The syntax is as follows:

(DESCRIPTION=(ADDRESS=...))

	PROTOCOL	Specify the network protocol for which the dispatcher generates a listening endpoint. For example:

(PROTOCOL=tcp)

See the Oracle Database Net Services Reference for further information about protocol address syntax.

The following attribute specifies how many dispatchers this configuration should have. It is optional and defaults to 1.

	Attribute	Description
	DISPATCHERS	Specify the initial number of dispatchers to start.

The following attributes tell the instance about the network attributes of each dispatcher of this configuration. They are all optional.

	Attribute	Description
	CONNECTIONS	Specify the maximum number of network connections to allow for each dispatcher.
	SESSIONS	Specify the maximum number of network sessions to allow for each dispatcher.
	TICKS	Specify the duration of a TICK in seconds. A TICK is a unit of time in terms of which the connection pool timeout can be specified. Used for connection pooling.
	LISTENER	Specify an alias name for the listeners with which the PMON process registers dispatcher information. Set the alias to a name that is resolved through a naming method.
	MULTIPLEX	Used to enable the Oracle Connection Manager session multiplexing feature.
	POOL	Used to enable connection pooling.
	SERVICE	Specify the service names the dispatchers register with the listeners.

You can specify either an entire attribute name a substring consisting of at least the first three characters. For example, you can specify SESSIONS=3, SES=3, SESS=3, or SESSI=3, and so forth.

	
See Also:

Oracle Database Reference for more detailed descriptions of the attributes of the DISPATCHERS initialization parameter

Determining the Number of Dispatchers

Once you know the number of possible connections for each process for the operating system, calculate the initial number of dispatchers to create during instance startup, for each network protocol, using the following formula:

Number of dispatchers =
 CEIL (max. concurrent sessions / connections for each dispatcher)

CEIL returns the result roundest up to the next whole integer.

For example, assume a system that can support 970 connections for each process, and that has:

	
A maximum of 4000 sessions concurrently connected through TCP/IP and

	
A maximum of 2,500 sessions concurrently connected through TCP/IP with SSL

The DISPATCHERS attribute for TCP/IP should be set to a minimum of five dispatchers (4000 / 970), and for TCP/IP with SSL three dispatchers (2500 / 970:

DISPATCHERS='(PROT=tcp)(DISP=5)', '(PROT-tcps)(DISP=3)'

Depending on performance, you may need to adjust the number of dispatchers.

Setting the Initial Number of Dispatchers

You can specify multiple dispatcher configurations by setting DISPATCHERS to a comma separated list of strings, or by specifying multiple DISPATCHERS parameters in the initialization file. If you specify DISPATCHERS multiple times, the lines must be adjacent to each other in the initialization parameter file. Internally, Oracle Database assigns an INDEX value (beginning with zero) to each DISPATCHERS parameter. You can later refer to that DISPATCHERS parameter in an ALTER SYSTEM statement by its index number.

Some examples of setting the DISPATCHERS initialization parameter follow.

Example: Typical This is a typical example of setting the DISPATCHERS initialization parameter.

DISPATCHERS="(PROTOCOL=TCP)(DISPATCHERS=2)"

Example: Forcing the IP Address Used for Dispatchers The following hypothetical example will create two dispatchers that will listen on the specified IP address. The address must be a valid IP address for the host that the instance is on. (The host may be configured with multiple IP addresses.)

DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(HOST=144.25.16.201))(DISPATCHERS=2)"

Example: Forcing the Port Used by Dispatchers To force the dispatchers to use a specific port as the listening endpoint, add the PORT attribute as follows:

DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(PORT=5000))"
DISPATCHERS="(ADDRESS=(PROTOCOL=TCP)(PORT=5001))"

Altering the Number of Dispatchers

You can control the number of dispatcher processes in the instance. Unlike the number of shared servers, the number of dispatchers does not change automatically. You change the number of dispatchers explicitly with the ALTER SYSTEM statement. In this release of Oracle Database, you can increase the number of dispatchers to more than the limit specified by the MAX_DISPATCHERS parameter. It is planned that MAX_DISPATCHERS will be taken into consideration in a future release.

Monitor the following views to determine the load on the dispatcher processes:

	
V$QUEUE

	
V$DISPATCHER

	
V$DISPATCHER_RATE

	
See Also:

Oracle Database Performance Tuning Guide for information about monitoring these views to determine dispatcher load and performance

If these views indicate that the load on the dispatcher processes is consistently high, then performance may be improved by starting additional dispatcher processes to route user requests. In contrast, if the load on dispatchers is consistently low, reducing the number of dispatchers may improve performance.

To dynamically alter the number of dispatchers when the instance is running, use the ALTER SYSTEM statement to modify the DISPATCHERS attribute setting for an existing dispatcher configuration. You can also add new dispatcher configurations to start dispatchers with different network attributes.

When you reduce the number of dispatchers for a particular dispatcher configuration, the dispatchers are not immediately removed. Rather, as users disconnect, Oracle Database terminates dispatchers down to the limit you specify in DISPATCHERS,

For example, suppose the instance was started with this DISPATCHERS setting in the initialization parameter file:

DISPATCHERS='(PROT=tcp)(DISP=2)', '(PROT=tcps)(DISP=2)'

To increase the number of dispatchers for the TCP/IP protocol from 2 to 3, and decrease the number of dispatchers for the TCP/IP with SSL protocol from 2 to 1, you can issue the following statement:

ALTER SYSTEM SET DISPATCHERS = '(INDEX=0)(DISP=3)', '(INDEX=1)(DISP=1)';

or

ALTER SYSTEM SET DISPATCHERS = '(PROT=tcp)(DISP=3)', '(PROT-tcps)(DISP=1)';

	
Note:

You need not specify (DISP=1). It is optional because 1 is the default value for the DISPATCHERS parameter.

If fewer than three dispatcher processes currently exist for TCP/IP, the database creates new ones. If multiple dispatcher processes currently exist for TCP/IP with SSL, then the database terminates the extra ones as the connected users disconnect.

Suppose that instead of changing the number of dispatcher processes for the TCP/IP protocol, you want to add another TCP/IP dispatcher that supports connection pooling. You can do so by entering the following statement:

ALTER SYSTEM SET DISPATCHERS = '(INDEX=2)(PROT=tcp)(POOL=on)';

The INDEX attribute is needed to add the new dispatcher configuration. If you omit (INDEX=2) in the preceding statement, then the TCP/IP dispatcher configuration at INDEX 0 will be changed to support connection pooling, and the number of dispatchers for that configuration will be reduced to 1, which is the default when the number of dispatchers (attribute DISPATCHERS) is not specified.

Notes on Altering Dispatchers

	
The INDEX keyword can be used to identify which dispatcher configuration to modify. If you do not specify INDEX, then the first dispatcher configuration matching the DESCRIPTION, ADDRESS, or PROTOCOL specified will be modified. If no match is found among the existing dispatcher configurations, then a new dispatcher will be added.

	
The INDEX value can range from 0 to n-1, where n is the current number of dispatcher configurations. If your ALTER SYSTEM statement specifies an INDEX value equal to n, where n is the current number of dispatcher configurations, a new dispatcher configuration will be added.

	
To see the values of the current dispatcher configurations--that is, the number of dispatchers, whether connection pooling is on, and so forth--query the V$DISPATCHER_CONFIG dynamic performance view. To see which dispatcher configuration a dispatcher is associated with, query the CONF_INDX column of the V$DISPATCHER view.

	
When you change the DESCRIPTION, ADDRESS, PROTOCOL, CONNECTIONS, TICKS, MULTIPLEX, and POOL attributes of a dispatcher configuration, the change does not take effect for existing dispatchers but only for new dispatchers. Therefore, in order for the change to be effective for all dispatchers associated with a configuration, you must forcibly terminate existing dispatchers after altering the DISPATCHERS parameter, and let the database start new ones in their place with the newly specified properties.

The attributes LISTENER and SERVICES are not subject to the same constraint. They apply to existing dispatchers associated with the modified configuration. Attribute SESSIONS applies to existing dispatchers only if its value is reduced. However, if its value is increased, it is applied only to newly started dispatchers.

Shutting Down Specific Dispatcher Processes

With the ALTER SYSTEM statement, you leave it up to the database to determine which dispatchers to shut down to reduce the number of dispatchers. Alternatively, it is possible to shut down specific dispatcher processes. To identify the name of the specific dispatcher process to shut down, use the V$DISPATCHER dynamic performance view.

SELECT NAME, NETWORK FROM V$DISPATCHER;

Each dispatcher is uniquely identified by a name of the form Dnnn.

To shut down dispatcher D002, issue the following statement:

ALTER SYSTEM SHUTDOWN IMMEDIATE 'D002';

The IMMEDIATE keyword stops the dispatcher from accepting new connections and the database immediately terminates all existing connections through that dispatcher. After all sessions are cleaned up, the dispatcher process shuts down. If IMMEDIATE were not specified, the dispatcher would wait until all of its users disconnected and all of its connections terminated before shutting down.

Disabling Shared Server

You disable shared server by setting SHARED_SERVERS to 0. You can do this dynamically with the ALTER SYSTEM statement. When you disable shared server, no new clients can connect in shared mode. However, Oracle Database retains some shared servers until all shared server connections are closed. The number of shared servers retained is either the number specified by the preceding setting of SHARED_SERVERS or the value of the MAX_SHARED_SERVERS parameter, whichever is smaller. If both SHARED_SERVERS and MAX_SHARED_SERVERS are set to 0, then all shared servers will terminate and requests from remaining shared server clients will be queued until the value of SHARED_SERVERS or MAX_SHARED_SERVERS is raised again.

To terminate dispatchers once all shared server clients disconnect, enter this statement:

ALTER SYSTEM SET DISPATCHERS = '';

Shared Server Data Dictionary Views

The following views are useful for obtaining information about your shared server configuration and for monitoring performance.

	View	Description
	V$DISPATCHER	Provides information on the dispatcher processes, including name, network address, status, various usage statistics, and index number.
	V$DISPATCHER_CONFIG	Provides configuration information about the dispatchers.
	V$DISPATCHER_RATE	Provides rate statistics for the dispatcher processes.
	V$QUEUE	Contains information on the shared server message queues.
	V$SHARED_SERVER	Contains information on the shared servers.
	V$CIRCUIT	Contains information about virtual circuits, which are user connections to the database through dispatchers and servers.
	V$SHARED_SERVER_MONITOR	Contains information for tuning shared server.
	V$SGA	Contains size information about various system global area (SGA) groups. May be useful when tuning shared server.
	V$SGASTAT	Contains detailed statistical information about the SGA, useful for tuning.
	V$SHARED_POOL_RESERVED	Lists statistics to help tune the reserved pool and space within the shared pool.

	
See Also:

	
Oracle Database Reference for detailed descriptions of these views

	
Oracle Database Performance Tuning Guide for specific information about monitoring and tuning shared server

Identifying Your Oracle Database Software Release

Because Oracle Database continues to evolve and can require maintenance, Oracle periodically produces new releases. Not all customers initially subscribe to a new release or require specific maintenance for their existing release. As a result, multiple releases of the product exist simultaneously.

As many as five numbers may be required to fully identify a release. The significance of these numbers is discussed in the sections that follow.

Release Number Format

To understand the release nomenclature used by Oracle, examine the following example of an Oracle Database release labeled "11.2.0.1.0".

Figure 1-1 Example of an Oracle Database Release Number

[image: Description of Figure 1-1 follows]

	
Note:

Starting with release 9.2, maintenance releases of Oracle Database are denoted by a change to the second digit of a release number. In previous releases, the third digit indicated a particular maintenance release.

Major Database Release Number

The first digit is the most general identifier. It represents a major new version of the software that contains significant new functionality.

Database Maintenance Release Number

The second digit represents a maintenance release level. Some new features may also be included.

Fusion Middleware Release Number

The third digit reflects the release level of Oracle Fusion Middleware.

Component-Specific Release Number

The fourth digit identifies a release level specific to a component. Different components can have different numbers in this position depending upon, for example, component patch sets or interim releases.

Platform-Specific Release Number

The fifth digit identifies a platform-specific release. Usually this is a patch set. When different platforms require the equivalent patch set, this digit will be the same across the affected platforms.

Checking Your Current Release Number

To identify the release of Oracle Database that is currently installed and to see the release levels of other database components you are using, query the data dictionary view PRODUCT_COMPONENT_VERSION. A sample query follows. (You can also query the V$VERSION view to see component-level information.) Other product release levels may increment independent of the database server.

COL PRODUCT FORMAT A40
COL VERSION FORMAT A15
COL STATUS FORMAT A15
SELECT * FROM PRODUCT_COMPONENT_VERSION;

PRODUCT VERSION STATUS
-- ----------- -----------
NLSRTL 11.2.0.0.1 Production
Oracle Database 11g Enterprise Edition 11.2.0.0.1 Production
PL/SQL 11.2.0.0.1 Production
...

It is important to convey to Oracle the results of this query when you report problems with the software.

Contents

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Database Administrator's Guide?

	Oracle Database 11g Release 2 (11.2.0.2) New Features in the Administrator's Guide
	Oracle Database 11g Release 2 (11.2.0.1) New Features in the Administrator's Guide

Part I Basic Database Administration

1 Getting Started with Database Administration

	Types of Oracle Database Users
	Database Administrators
	Security Officers
	Network Administrators
	Application Developers
	Application Administrators
	Database Users

	Tasks of a Database Administrator
	Task 1: Evaluate the Database Server Hardware
	Task 2: Install the Oracle Database Software
	Task 3: Plan the Database
	Task 4: Create and Open the Database
	Task 5: Back Up the Database
	Task 6: Enroll System Users
	Task 7: Implement the Database Design
	Task 8: Back Up the Fully Functional Database
	Task 9: Tune Database Performance
	Task 10: Download and Install Patches
	Task 11: Roll Out to Additional Hosts

	Submitting Commands and SQL to the Database
	About SQL*Plus
	Connecting to the Database with SQL*Plus
	Step 1: Open a Command Window
	Step 2: Set Operating System Environment Variables
	Step 3: Start SQL*Plus
	Step 4: Submit the SQL*Plus CONNECT Statement

	Identifying Your Oracle Database Software Release
	Release Number Format
	Major Database Release Number
	Database Maintenance Release Number
	Fusion Middleware Release Number
	Component-Specific Release Number
	Platform-Specific Release Number

	Checking Your Current Release Number

	About Database Administrator Security and Privileges
	The Database Administrator's Operating System Account
	Administrative User Accounts
	SYS
	SYSTEM
	The DBA Role

	Database Administrator Authentication
	Administrative Privileges
	SYSDBA and SYSOPER
	Connecting with Administrative Privileges: Example

	Selecting an Authentication Method for Database Administrators
	Nonsecure Remote Connections
	Local Connections and Secure Remote Connections

	Using Operating System Authentication
	OSDBA and OSOPER
	Preparing to Use Operating System Authentication
	Connecting Using Operating System Authentication

	Using Password File Authentication
	Preparing to Use Password File Authentication
	Connecting Using Password File Authentication

	Creating and Maintaining a Password File
	Creating a Password File with ORAPWD
	ORAPWD Command Line Argument Descriptions

	Sharing and Disabling the Password File
	Adding Users to a Password File
	Granting and Revoking SYSDBA and SYSOPER Privileges
	Viewing Password File Members

	Maintaining a Password File
	Expanding the Number of Password File Users
	Removing a Password File

	Data Utilities

2 Creating and Configuring an Oracle Database

	About Creating an Oracle Database
	Considerations Before Creating the Database
	Planning for Database Creation
	Meeting Creation Prerequisites

	Creating a Database with DBCA
	Creating a Database with Interactive DBCA
	Creating a Database with Noninteractive/Silent DBCA

	Creating a Database with the CREATE DATABASE Statement
	Step 1: Specify an Instance Identifier (SID)
	Step 2: Ensure That the Required Environment Variables Are Set
	Step 3: Choose a Database Administrator Authentication Method
	Step 4: Create the Initialization Parameter File
	Step 5: (Windows Only) Create an Instance
	Step 6: Connect to the Instance
	Step 7: Create a Server Parameter File
	Step 8: Start the Instance
	Step 9: Issue the CREATE DATABASE Statement
	Step 10: Create Additional Tablespaces
	Step 11: Run Scripts to Build Data Dictionary Views
	Step 12: (Optional) Run Scripts to Install Additional Options
	Step 13: Back Up the Database.
	Step 14: (Optional) Enable Automatic Instance Startup

	Specifying CREATE DATABASE Statement Clauses
	Protecting Your Database: Specifying Passwords for Users SYS and SYSTEM
	Creating a Locally Managed SYSTEM Tablespace
	About the SYSAUX Tablespace
	Using Automatic Undo Management: Creating an Undo Tablespace
	Creating a Default Permanent Tablespace
	Creating a Default Temporary Tablespace
	Specifying Oracle Managed Files at Database Creation
	Supporting Bigfile Tablespaces During Database Creation
	Specifying the Default Tablespace Type
	Overriding the Default Tablespace Type

	Specifying the Database Time Zone and Time Zone File
	Setting the Database Time Zone
	About the Database Time Zone Files
	Specifying the Database Time Zone File

	Specifying FORCE LOGGING Mode
	Using the FORCE LOGGING Clause
	Performance Considerations of FORCE LOGGING Mode

	Specifying Initialization Parameters
	About Initialization Parameters and Initialization Parameter Files
	Text Initialization Parameter File Format
	Sample Initialization Parameter File

	Determining the Global Database Name
	DB_NAME Initialization Parameter
	DB_DOMAIN Initialization Parameter

	Specifying a Fast Recovery Area
	Specifying Control Files
	Specifying Database Block Sizes
	DB_BLOCK_SIZE Initialization Parameter
	Nonstandard Block Sizes

	Specifying the Maximum Number of Processes
	Specifying the DDL Lock Timeout
	Specifying the Method of Undo Space Management
	UNDO_MANAGEMENT Initialization Parameter
	UNDO_TABLESPACE Initialization Parameter

	About The COMPATIBLE Initialization Parameter
	Setting the License Parameter

	Managing Initialization Parameters Using a Server Parameter File
	What Is a Server Parameter File?
	Migrating to a Server Parameter File
	Creating a Server Parameter File
	The SPFILE Initialization Parameter
	Changing Initialization Parameter Values
	Setting or Changing Initialization Parameter Values

	Clearing Initialization Parameter Values
	Exporting the Server Parameter File
	Backing Up the Server Parameter File
	Recovering a Lost or Damaged Server Parameter File
	Viewing Parameter Settings

	Managing Application Workloads with Database Services
	About Database Services
	Creating Database Services
	Database Service Data Dictionary Views

	Considerations After Creating a Database
	Some Security Considerations
	Enabling Transparent Data Encryption
	Creating a Secure External Password Store
	Installing the Oracle Database Sample Schemas

	Dropping a Database
	Database Data Dictionary Views

3 Starting Up and Shutting Down

	Starting Up a Database
	About Database Startup Options
	Starting Up a Database Using SQL*Plus
	Starting Up a Database Using Recovery Manager
	Starting Up a Database Using Oracle Enterprise Manager
	Starting Up a Database Using SRVCTL

	Specifying Initialization Parameters at Startup
	About Initialization Parameter Files and Startup
	Starting Up with SQL*Plus with a Nondefault Server Parameter File
	Starting Up with SRVCTL with a Nondefault Server Parameter File

	About Automatic Startup of Database Services
	Preparing to Start Up an Instance
	Starting Up an Instance
	Starting an Instance, and Mounting and Opening a Database
	Starting an Instance Without Mounting a Database
	Starting an Instance and Mounting a Database
	Restricting Access to an Instance at Startup
	Forcing an Instance to Start
	Starting an Instance, Mounting a Database, and Starting Complete Media Recovery
	Automatic Database Startup at Operating System Start
	Starting Remote Instances

	Altering Database Availability
	Mounting a Database to an Instance
	Opening a Closed Database
	Opening a Database in Read-Only Mode
	Restricting Access to an Open Database

	Shutting Down a Database
	Shutting Down with the Normal Mode
	Shutting Down with the Immediate Mode
	Shutting Down with the Transactional Mode
	Shutting Down with the Abort Mode
	Shutdown Timeout

	Quiescing a Database
	Placing a Database into a Quiesced State
	Restoring the System to Normal Operation
	Viewing the Quiesce State of an Instance

	Suspending and Resuming a Database

4 Configuring Automatic Restart of an Oracle Database

	About Oracle Restart
	Oracle Restart Overview
	About Startup Dependencies
	About Starting and Stopping Components with Oracle Restart
	About Starting and Stopping Oracle Restart
	Oracle Restart Configuration
	Oracle Restart Integration with Oracle Data Guard
	Fast Application Notification with Oracle Restart
	Overview of Fast Application Notification
	Application High Availability with Services and FAN

	Configuring Oracle Restart
	Preparing to Run SRVCTL
	Obtaining Help for SRVCTL
	Adding Components to the Oracle Restart Configuration
	Adding Components with SRVCTL
	Adding Components with Oracle Enterprise Manager Database Control

	Removing Components from the Oracle Restart Configuration
	Disabling and Enabling Oracle Restart Management for a Component
	Viewing Component Status
	Viewing the Oracle Restart Configuration for a Component
	Modifying the Oracle Restart Configuration for a Component
	Managing Environment Variables in the Oracle Restart Configuration
	Setting and Unsetting Environment Variables
	Viewing Environment Variables

	Creating and Deleting Database Services with SRVCTL
	Enabling FAN Events in an Oracle Restart Environment
	Automating the Failover of Connections Between Primary and Standby Databases
	Enabling Clients for Fast Connection Failover
	Enabling Fast Connection Failover for JDBC Clients
	Enabling Fast Connection Failover for Oracle Call Interface Clients
	Enabling Fast Connection Failover for ODP.NET Clients

	Starting and Stopping Components Managed by Oracle Restart
	Starting and Stopping Components Managed by Oracle Restart with SRVCTL
	Starting a Database Managed by Oracle Restart with Oracle Enterprise Manager

	Stopping and Restarting Oracle Restart for Maintenance Operations
	SRVCTL Command Reference for Oracle Restart
	add
	srvctl add asm
	srvctl add database
	srvctl add listener
	srvctl add ons
	srvctl add service

	config
	srvctl config asm
	srvctl config database
	srvctl config listener
	srvctl config ons
	srvctl config service

	disable
	srvctl disable asm
	srvctl disable database
	srvctl disable diskgroup
	srvctl disable listener
	srvctl disable ons
	srvctl disable service

	enable
	srvctl enable asm
	srvctl enable database
	srvctl enable diskgroup
	srvctl enable listener
	srvctl enable ons
	srvctl enable service

	getenv
	srvctl getenv asm
	srvctl getenv database
	srvctl getenv listener

	modify
	srvctl modify asm
	srvctl modify database
	srvctl modify listener
	srvctl modify ons
	srvctl modify service

	remove
	srvctl remove asm
	srvctl remove database
	srvctl remove diskgroup
	srvctl remove listener
	srvctl remove ons
	srvctl remove service

	setenv
	srvctl setenv asm
	srvctl setenv database
	srvctl setenv listener

	start
	srvctl start asm
	srvctl start database
	srvctl start diskgroup
	srvctl start home
	srvctl start listener
	srvctl start ons
	srvctl start service

	status
	srvctl status asm
	srvctl status database
	srvctl status diskgroup
	srvctl status home
	srvctl status listener
	srvctl status ons
	srvctl status service

	stop
	srvctl stop asm
	srvctl stop database
	srvctl stop diskgroup
	srvctl stop home
	srvctl stop listener
	srvctl stop ons
	srvctl stop service

	unsetenv
	srvctl unsetenv asm
	srvctl unsetenv database
	srvctl unsetenv listener

	CRSCTL Command Reference
	check
	config
	disable
	enable
	start
	stop

5 Managing Processes

	About Dedicated and Shared Server Processes
	Dedicated Server Processes
	Shared Server Processes

	About Database Resident Connection Pooling
	Comparing DRCP to Dedicated Server and Shared Server
	Restrictions on Using Database Resident Connection Pooling

	Configuring Oracle Database for Shared Server
	Initialization Parameters for Shared Server
	Memory Management for Shared Server
	Enabling Shared Server
	Determining a Value for SHARED_SERVERS
	Decreasing the Number of Shared Server Processes
	Limiting the Number of Shared Server Processes
	Limiting the Number of Shared Server Sessions
	Protecting Shared Memory

	Configuring Dispatchers
	DISPATCHERS Initialization Parameter Attributes
	Determining the Number of Dispatchers
	Setting the Initial Number of Dispatchers
	Altering the Number of Dispatchers
	Shutting Down Specific Dispatcher Processes

	Disabling Shared Server
	Shared Server Data Dictionary Views

	Configuring Database Resident Connection Pooling
	Enabling Database Resident Connection Pooling
	Configuring the Connection Pool for Database Resident Connection Pooling
	Data Dictionary Views for Database Resident Connection Pooling

	About Oracle Database Background Processes
	Managing Processes for Parallel SQL Execution
	About Parallel Execution Servers
	Altering Parallel Execution for a Session
	Disabling Parallel SQL Execution
	Enabling Parallel SQL Execution
	Forcing Parallel SQL Execution

	Managing Processes for External Procedures
	About External Procedures
	DBA Tasks to Enable External Procedure Calls

	Terminating Sessions
	Identifying Which Session to Terminate
	Terminating an Active Session
	Terminating an Inactive Session

	Process and Session Data Dictionary Views

6 Managing Memory

	About Memory Management
	Memory Architecture Overview
	Using Automatic Memory Management
	About Automatic Memory Management
	Enabling Automatic Memory Management
	Monitoring and Tuning Automatic Memory Management

	Configuring Memory Manually
	Using Automatic Shared Memory Management
	About Automatic Shared Memory Management
	Components and Granules in the SGA
	Setting Maximum SGA Size
	Setting SGA Target Size
	Enabling Automatic Shared Memory Management
	Automatic Shared Memory Management Advanced Topics

	Using Manual Shared Memory Management
	Enabling Manual Shared Memory Management
	Setting the Buffer Cache Initialization Parameters
	Specifying the Shared Pool Size
	Specifying the Large Pool Size
	Specifying the Java Pool Size
	Specifying the Streams Pool Size
	Specifying the Result Cache Maximum Size
	Specifying Miscellaneous SGA Initialization Parameters

	Using Automatic PGA Memory Management
	Using Manual PGA Memory Management

	Configuring Database Smart Flash Cache
	When to Configure the Flash Cache
	Sizing the Flash Cache
	Tuning Memory for the Flash Cache
	Flash Cache Initialization Parameters
	Flash Cache in an Oracle Real Applications Clusters Environment

	Memory Management Reference
	Platforms That Support Automatic Memory Management
	Memory Management Data Dictionary Views

7 Managing Users and Securing the Database

	The Importance of Establishing a Security Policy for Your Database
	Managing Users and Resources
	Managing User Privileges and Roles
	Auditing Database Use
	Predefined User Accounts

8 Monitoring Database Operations

	Monitoring Errors and Alerts
	Monitoring Errors with Trace Files and the Alert Log
	Controlling the Size of Trace Files
	Controlling When Oracle Database Writes to Trace Files
	Reading the Trace File for Shared Server Sessions

	Monitoring Database Operations with Server-Generated Alerts
	Setting and Retrieving Thresholds for Server-Generated Alerts
	Viewing Server-Generated Alerts
	Server-Generated Alerts Data Dictionary Views

	Monitoring Performance
	Monitoring Locks
	Monitoring Wait Events
	Performance Monitoring Data Dictionary Views

9 Managing Diagnostic Data

	About the Oracle Database Fault Diagnosability Infrastructure
	Fault Diagnosability Infrastructure Overview
	About Incidents and Problems
	Incident Flood Control
	Related Problems Across the Topology

	Fault Diagnosability Infrastructure Components
	Automatic Diagnostic Repository (ADR)
	Alert Log
	Trace Files, Dumps, and Core Files
	Other ADR Contents
	Enterprise Manager Support Workbench
	ADRCI Command-Line Utility

	Structure, Contents, and Location of the Automatic Diagnostic Repository

	Investigating, Reporting, and Resolving a Problem
	Roadmap—Investigating, Reporting, and Resolving a Problem
	Task 1 – View Critical Error Alerts in Enterprise Manager
	Task 2 –View Problem Details
	Task 3 – (Optional) Gather Additional Diagnostic Information
	Task 4 – (Optional) Create a Service Request
	Task 5 – Package and Upload Diagnostic Data to Oracle Support
	Task 6 – Track the Service Request and Implement Any Repairs
	Task 7 – Close Incidents

	Viewing Problems with the Enterprise Manager Support Workbench
	Creating a User-Reported Problem
	Viewing the Alert Log
	Finding Trace Files
	Running Health Checks with Health Monitor
	About Health Monitor
	About Health Monitor Checks
	Types of Health Checks

	Running Health Checks Manually
	Running Health Checks Using the DBMS_HM PL/SQL Package
	Running Health Checks Using Enterprise Manager

	Viewing Checker Reports
	Viewing Reports Using Enterprise Manager
	Viewing Reports Using DBMS_HM
	Viewing Reports Using the ADRCI Utility

	Health Monitor Views
	Health Check Parameters Reference

	Repairing SQL Failures with the SQL Repair Advisor
	About the SQL Repair Advisor
	Running the SQL Repair Advisor
	Viewing, Disabling, or Removing a SQL Patch

	Repairing Data Corruptions with the Data Recovery Advisor
	Creating, Editing, and Uploading Custom Incident Packages
	About Incident Packages
	About Correlated Diagnostic Data in Incident Packages
	About Quick Packaging and Custom Packaging
	About Correlated Packages

	Packaging and Uploading Problems with Custom Packaging
	Viewing and Modifying Incident Packages
	Viewing Package Details
	Accessing the Customize Package Page
	Editing Incident Package Files (Copying Out and In)
	Adding an External File to an Incident Package
	Removing Incident Package Files
	Viewing and Updating the Incident Package Activity Log

	Creating, Editing, and Uploading Correlated Packages
	Deleting Correlated Packages
	Setting Incident Packaging Preferences

10 Managing Oracle Enterprise Manager Database Control

	Database Control Overview
	Understanding the Enterprise Manager Directories

	Configuring Database Control During and After Installation
	Overview of Configuration Options
	Configuring Database Control During Installation
	Configuring Database Control with DBCA
	Configuring Database Control Using EMCA
	Using an Input File for EMCA Parameters
	Specifying the Ports Used by Database Control
	Using EMCA With Oracle RAC

	Administering Database Control
	Starting and Stopping the Database Control Process
	Accessing the Database Home Page
	Creating Database Control Administrative Users
	Granting Access to Database Control for Non-Administrative Users
	Setting Database Control Preferences
	About Database Control Preferences
	Defining Blackout Periods
	Setting Preferred Credentials

	Managing Database Control in an Oracle RAC Environment
	Verifying that Database Control is Running in an Oracle RAC Environment
	Backing Up the emkey.ora File

	Deleting and Creating Database Control Objects
	Deleting Database Control Objects
	Option 1: Deleting Database Control Configuration Files Using EMCA Scripts
	Option 2: Deleting Database Control Configuration Files and Repository Objects Using An EMCA Script
	Option 3: Deleting A Database Control Repository Using EMCA Scripts
	Option 4: Deleting Database Control Configuration Files Manually
	Option 5: Deleting the Database Control Repository Using RepManager

	Creating Database Control Objects
	Option 1: Creating the DB Control Configuration Files
	Option 2: Creating the Database Control Repository Objects and Configuration Files
	Option 3: Creating the Database Control Repository Objects and Configuration Files For a Cloned Database Home

	Re-Creating Or Reconfiguring Database Control
	Option 1: Re-Creating the Database Control Configuration Files Only (Leaving Repository Intact)
	Option 2: Re-Creating the Database Control Configuration Files and Repository

	EMCA Troubleshooting Tips
	Using EMCA After Changing the Database Listener Port
	Upgrading 11g Release 2 Grid Control Agents
	Using EMCA When the Database Host Name or IP Address Changes
	Using EMCA When the TNS Configuration Is Changed
	Using EMCA for Desktop Class Installations
	Handling EMCA Error Messages
	Failed To Allocate Port(s) In the Specified Range(s)
	Listener Is Not Up or Database Service Is Not Registered With It

Part II Oracle Database Structure and Storage

11 Managing Control Files

	What Is a Control File?
	Guidelines for Control Files
	Provide Filenames for the Control Files
	Multiplex Control Files on Different Disks
	Back Up Control Files
	Manage the Size of Control Files

	Creating Control Files
	Creating Initial Control Files
	Creating Additional Copies, Renaming, and Relocating Control Files
	Creating New Control Files
	When to Create New Control Files
	The CREATE CONTROLFILE Statement
	Steps for Creating New Control Files

	Troubleshooting After Creating Control Files
	Checking for Missing or Extra Files
	Handling Errors During CREATE CONTROLFILE

	Backing Up Control Files
	Recovering a Control File Using a Current Copy
	Recovering from Control File Corruption Using a Control File Copy
	Recovering from Permanent Media Failure Using a Control File Copy

	Dropping Control Files
	Control Files Data Dictionary Views

12 Managing the Redo Log

	What Is the Redo Log?
	Redo Threads
	Redo Log Contents
	How Oracle Database Writes to the Redo Log
	Active (Current) and Inactive Redo Log Files
	Log Switches and Log Sequence Numbers

	Planning the Redo Log
	Multiplexing Redo Log Files
	Responding to Redo Log Failure
	Legal and Illegal Configurations

	Placing Redo Log Members on Different Disks
	Planning the Size of Redo Log Files
	Planning the Block Size of Redo Log Files
	Choosing the Number of Redo Log Files
	Controlling Archive Lag
	Setting the ARCHIVE_LAG_TARGET Initialization Parameter
	Factors Affecting the Setting of ARCHIVE_LAG_TARGET

	Creating Redo Log Groups and Members
	Creating Redo Log Groups
	Creating Redo Log Members

	Relocating and Renaming Redo Log Members
	Dropping Redo Log Groups and Members
	Dropping Log Groups
	Dropping Redo Log Members

	Forcing Log Switches
	Verifying Blocks in Redo Log Files
	Clearing a Redo Log File
	Redo Log Data Dictionary Views

13 Managing Archived Redo Logs

	What Is the Archived Redo Log?
	Choosing Between NOARCHIVELOG and ARCHIVELOG Mode
	Running a Database in NOARCHIVELOG Mode
	Running a Database in ARCHIVELOG Mode

	Controlling Archiving
	Setting the Initial Database Archiving Mode
	Changing the Database Archiving Mode
	Performing Manual Archiving
	Adjusting the Number of Archiver Processes

	Specifying Archive Destinations
	Setting Initialization Parameters for Archive Destinations
	Method 1: Using the LOG_ARCHIVE_DEST_n Parameter
	Method 2: Using LOG_ARCHIVE_DEST and LOG_ARCHIVE_DUPLEX_DEST

	Understanding Archive Destination Status
	Specifying Alternate Destinations

	About Log Transmission Modes
	Normal Transmission Mode
	Standby Transmission Mode

	Managing Archive Destination Failure
	Specifying the Minimum Number of Successful Destinations
	Specifying Mandatory and Optional Destinations
	Specifying the Number of Successful Destinations: Scenarios

	Rearchiving to a Failed Destination

	Controlling Trace Output Generated by the Archivelog Process
	Viewing Information About the Archived Redo Log
	Archived Redo Logs Views
	The ARCHIVE LOG LIST Command

14 Managing Tablespaces

	Guidelines for Managing Tablespaces
	Using Multiple Tablespaces
	Assigning Tablespace Quotas to Users

	Creating Tablespaces
	Locally Managed Tablespaces
	Creating a Locally Managed Tablespace
	Specifying Segment Space Management in Locally Managed Tablespaces

	Bigfile Tablespaces
	Creating a Bigfile Tablespace
	Identifying a Bigfile Tablespace

	Compressed Tablespaces
	Encrypted Tablespaces
	Temporary Tablespaces
	Creating a Locally Managed Temporary Tablespace
	Creating a Bigfile Temporary Tablespace
	Viewing Space Usage for Temporary Tablespaces

	Multiple Temporary Tablespaces: Using Tablespace Groups
	Creating a Tablespace Group
	Changing Members of a Tablespace Group
	Assigning a Tablespace Group as the Default Temporary Tablespace

	Specifying Nonstandard Block Sizes for Tablespaces
	Controlling the Writing of Redo Records
	Altering Tablespace Availability
	Taking Tablespaces Offline
	Bringing Tablespaces Online

	Using Read-Only Tablespaces
	Making a Tablespace Read-Only
	Making a Read-Only Tablespace Writable
	Creating a Read-Only Tablespace on a WORM Device
	Delaying the Opening of Datafiles in Read-Only Tablespaces

	Altering and Maintaining Tablespaces
	Increasing the Size of a Tablespace
	Altering a Locally Managed Tablespace
	Altering a Bigfile Tablespace
	Altering a Locally Managed Temporary Tablespace
	Shrinking a Locally Managed Temporary Tablespace

	Renaming Tablespaces
	Dropping Tablespaces
	Managing the SYSAUX Tablespace
	Monitoring Occupants of the SYSAUX Tablespace
	Moving Occupants Out Of or Into the SYSAUX Tablespace
	Controlling the Size of the SYSAUX Tablespace

	Diagnosing and Repairing Locally Managed Tablespace Problems
	Scenario 1: Fixing Bitmap When Allocated Blocks are Marked Free (No Overlap)
	Scenario 2: Dropping a Corrupted Segment
	Scenario 3: Fixing Bitmap Where Overlap is Reported
	Scenario 4: Correcting Media Corruption of Bitmap Blocks
	Scenario 5: Migrating from a Dictionary-Managed to a Locally Managed Tablespace

	Migrating the SYSTEM Tablespace to a Locally Managed Tablespace
	Transporting Tablespaces Between Databases
	Introduction to Transportable Tablespaces
	About Transporting Tablespaces Across Platforms
	Limitations on Transportable Tablespace Use
	Compatibility Considerations for Transportable Tablespaces
	Transporting Tablespaces Between Databases: A Procedure and Example
	Task 1: Determine if Platforms are Supported and Determine Endianness
	Task 2: Pick a Self-Contained Set of Tablespaces
	Task 3: Generate a Transportable Tablespace Set
	Task 4: Transport the Tablespace Set
	Task 5: (Optional) Restore Tablespaces to Read/Write Mode
	Task 6: Import the Tablespace Set

	Using Transportable Tablespaces: Scenarios
	Transporting and Attaching Partitions for Data Warehousing
	Publishing Structured Data on CDs
	Mounting the Same Tablespace Read-Only on Multiple Databases
	Archiving Historical Data Using Transportable Tablespaces
	Using Transportable Tablespaces to Perform TSPITR

	Moving Databases Across Platforms Using Transportable Tablespaces

	Tablespace Data Dictionary Views
	Example 1: Listing Tablespaces and Default Storage Parameters
	Example 2: Listing the Datafiles and Associated Tablespaces of a Database
	Example 3: Displaying Statistics for Free Space (Extents) of Each Tablespace

15 Managing Datafiles and Tempfiles

	Guidelines for Managing Datafiles
	Determine the Number of Datafiles
	Determine a Value for the DB_FILES Initialization Parameter
	Consider Possible Limitations When Adding Datafiles to a Tablespace
	Consider the Performance Impact

	Determine the Size of Datafiles
	Place Datafiles Appropriately
	Store Datafiles Separate from Redo Log Files

	Creating Datafiles and Adding Datafiles to a Tablespace
	Changing Datafile Size
	Enabling and Disabling Automatic Extension for a Datafile
	Manually Resizing a Datafile

	Altering Datafile Availability
	Bringing Datafiles Online or Taking Offline in ARCHIVELOG Mode
	Taking Datafiles Offline in NOARCHIVELOG Mode
	Altering the Availability of All Datafiles or Tempfiles in a Tablespace

	Renaming and Relocating Datafiles
	Procedures for Renaming and Relocating Datafiles in a Single Tablespace
	Procedure for Renaming Datafiles in a Single Tablespace
	Procedure for Relocating Datafiles in a Single Tablespace

	Procedure for Renaming and Relocating Datafiles in Multiple Tablespaces

	Dropping Datafiles
	Verifying Data Blocks in Datafiles
	Copying Files Using the Database Server
	Copying a File on a Local File System
	Third-Party File Transfer
	File Transfer and the DBMS_SCHEDULER Package
	Advanced File Transfer Mechanisms

	Mapping Files to Physical Devices
	Overview of Oracle Database File Mapping Interface
	How the Oracle Database File Mapping Interface Works
	Components of File Mapping
	Mapping Structures
	Example of Mapping Structures
	Configuration ID

	Using the Oracle Database File Mapping Interface
	Enabling File Mapping
	Using the DBMS_STORAGE_MAP Package
	Obtaining Information from the File Mapping Views

	File Mapping Examples
	Example 1: Map All Database Files that Span a Device
	Example 2: Map a File into Its Corresponding Devices
	Example 3: Map a Database Object

	Datafiles Data Dictionary Views

16 Managing Undo

	What Is Undo?
	Introduction to Automatic Undo Management
	Overview of Automatic Undo Management
	About the Undo Retention Period
	Automatic Tuning of Undo Retention
	Retention Guarantee
	Undo Retention Tuning and Alert Thresholds
	Tracking the Tuned Undo Retention Period

	Setting the Minimum Undo Retention Period
	Sizing a Fixed-Size Undo Tablespace
	The Undo Advisor PL/SQL Interface

	Managing Undo Tablespaces
	Creating an Undo Tablespace
	Using CREATE DATABASE to Create an Undo Tablespace
	Using the CREATE UNDO TABLESPACE Statement

	Altering an Undo Tablespace
	Dropping an Undo Tablespace
	Switching Undo Tablespaces
	Establishing User Quotas for Undo Space
	Managing Space Threshold Alerts for the Undo Tablespace

	Migrating to Automatic Undo Management
	Undo Space Data Dictionary Views

17 Using Oracle Managed Files

	What Are Oracle Managed Files?
	Who Can Use Oracle Managed Files?
	What Is a Logical Volume Manager?
	What Is a File System?

	Benefits of Using Oracle Managed Files
	Oracle Managed Files and Existing Functionality

	Enabling the Creation and Use of Oracle Managed Files
	Setting the DB_CREATE_FILE_DEST Initialization Parameter
	Setting the DB_RECOVERY_FILE_DEST Parameter
	Setting the DB_CREATE_ONLINE_LOG_DEST_n Initialization Parameters

	Creating Oracle Managed Files
	How Oracle Managed Files Are Named
	Creating Oracle Managed Files at Database Creation
	Specifying Control Files at Database Creation
	Specifying Redo Log Files at Database Creation
	Specifying the SYSTEM and SYSAUX Tablespace Datafiles at Database Creation
	Specifying the Undo Tablespace Datafile at Database Creation
	Specifying the Default Temporary Tablespace Tempfile at Database Creation
	CREATE DATABASE Statement Using Oracle Managed Files: Examples

	Creating Datafiles for Tablespaces Using Oracle Managed Files
	CREATE TABLESPACE: Examples
	CREATE UNDO TABLESPACE: Example
	ALTER TABLESPACE: Example

	Creating Tempfiles for Temporary Tablespaces Using Oracle Managed Files
	CREATE TEMPORARY TABLESPACE: Example
	ALTER TABLESPACE... ADD TEMPFILE: Example

	Creating Control Files Using Oracle Managed Files
	CREATE CONTROLFILE Using NORESETLOGS Keyword: Example
	CREATE CONTROLFILE Using RESETLOGS Keyword: Example

	Creating Redo Log Files Using Oracle Managed Files
	Using the ALTER DATABASE ADD LOGFILE Statement
	Using the ALTER DATABASE OPEN RESETLOGS Statement

	Creating Archived Logs Using Oracle Managed Files

	Operation of Oracle Managed Files
	Dropping Datafiles and Tempfiles
	Dropping Redo Log Files
	Renaming Files
	Managing Standby Databases

	Scenarios for Using Oracle Managed Files
	Scenario 1: Create and Manage a Database with Multiplexed Redo Logs
	Scenario 2: Create and Manage a Database with Database and Fast Recovery Areas
	Scenario 3: Adding Oracle Managed Files to an Existing Database

Part III Schema Objects

18 Managing Schema Objects

	Creating Multiple Tables and Views in a Single Operation
	Analyzing Tables, Indexes, and Clusters
	Using DBMS_STATS to Collect Table and Index Statistics
	Validating Tables, Indexes, Clusters, and Materialized Views
	Listing Chained Rows of Tables and Clusters
	Creating a CHAINED_ROWS Table
	Eliminating Migrated or Chained Rows in a Table

	Truncating Tables and Clusters
	Using DELETE
	Using DROP and CREATE
	Using TRUNCATE

	Enabling and Disabling Triggers
	Enabling Triggers
	Disabling Triggers

	Managing Integrity Constraints
	Integrity Constraint States
	Disabling Constraints
	Enabling Constraints
	Enable Novalidate Constraint State
	Efficient Use of Integrity Constraints: A Procedure

	Setting Integrity Constraints Upon Definition
	Disabling Constraints Upon Definition
	Enabling Constraints Upon Definition

	Modifying, Renaming, or Dropping Existing Integrity Constraints
	Disabling Enabled Constraints
	Renaming Constraints
	Dropping Constraints

	Deferring Constraint Checks
	Set All Constraints Deferred
	Check the Commit (Optional)

	Reporting Constraint Exceptions
	Viewing Constraint Information

	Renaming Schema Objects
	Managing Object Dependencies
	About Object Dependencies and Object Invalidation
	Manually Recompiling Invalid Objects with DDL
	Manually Recompiling Invalid Objects with PL/SQL Package Procedures

	Managing Object Name Resolution
	Switching to a Different Schema
	Managing Editions
	About Editions and Edition-Based Redefinition
	DBA Tasks for Edition-Based Redefinition
	Setting the Database Default Edition
	Querying the Database Default Edition
	Setting the Edition Attribute of a Database Service
	Setting the Edition Attribute During Database Service Creation
	Setting the Edition Attribute of an Existing Database Service

	Using an Edition
	Editions Data Dictionary Views

	Displaying Information About Schema Objects
	Using a PL/SQL Package to Display Information About Schema Objects
	Schema Objects Data Dictionary Views
	Example 1: Displaying Schema Objects By Type
	Example 2: Displaying Dependencies of Views and Synonyms

19 Managing Space for Schema Objects

	Managing Tablespace Alerts
	Setting Alert Thresholds
	Viewing Alerts
	Limitations

	Managing Resumable Space Allocation
	Resumable Space Allocation Overview
	How Resumable Space Allocation Works
	What Operations are Resumable?
	What Errors are Correctable?
	Resumable Space Allocation and Distributed Operations
	Parallel Execution and Resumable Space Allocation

	Enabling and Disabling Resumable Space Allocation
	Setting the RESUMABLE_TIMEOUT Initialization Parameter
	Using ALTER SESSION to Enable and Disable Resumable Space Allocation

	Using a LOGON Trigger to Set Default Resumable Mode
	Detecting Suspended Statements
	Notifying Users: The AFTER SUSPEND System Event and Trigger
	Using Views to Obtain Information About Suspended Statements
	Using the DBMS_RESUMABLE Package

	Operation-Suspended Alert
	Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger

	Reclaiming Wasted Space
	Understanding Reclaimable Unused Space
	Using the Segment Advisor
	Automatic Segment Advisor
	Running the Segment Advisor Manually
	Viewing Segment Advisor Results
	Configuring the Automatic Segment Advisor
	Viewing Automatic Segment Advisor Information

	Shrinking Database Segments Online
	Deallocating Unused Space

	Dropping Unused Object Storage
	Understanding Space Usage of Data Types
	Displaying Information About Space Usage for Schema Objects
	Using PL/SQL Packages to Display Information About Schema Object Space Usage
	Schema Objects Space Usage Data Dictionary Views
	Example 1: Displaying Segment Information
	Example 2: Displaying Extent Information
	Example 3: Displaying the Free Space (Extents) in a Tablespace

	Capacity Planning for Database Objects
	Estimating the Space Use of a Table
	Estimating the Space Use of an Index
	Obtaining Object Growth Trends

20 Managing Tables

	About Tables
	Guidelines for Managing Tables
	Design Tables Before Creating Them
	Specify the Type of Table to Create
	Specify the Location of Each Table
	Consider Parallelizing Table Creation
	Consider Using NOLOGGING When Creating Tables
	Consider Using Table Compression
	Consider Encrypting Columns That Contain Sensitive Data
	Understand Deferred Segment Creation
	Materializing Segments
	Estimate Table Size and Plan Accordingly
	Restrictions to Consider When Creating Tables

	Creating Tables
	Example: Creating a Table
	Creating a Temporary Table
	Parallelizing Table Creation

	Loading Tables
	Methods for Loading Tables
	Improving INSERT Performance with Direct-Path INSERT
	About Direct-Path INSERT
	How Direct-Path INSERT Works
	Loading Data with Direct-Path INSERT
	Specifying the Logging Mode for Direct-Path INSERT
	Additional Considerations for Direct-Path INSERT

	Using Conventional Inserts to Load Tables
	Avoiding Bulk INSERT Failures with DML Error Logging
	Error Logging Table Format
	Creating an Error Logging Table
	Error Logging Restrictions and Caveats

	Automatically Collecting Statistics on Tables
	Altering Tables
	Reasons for Using the ALTER TABLE Statement
	Altering Physical Attributes of a Table
	Moving a Table to a New Segment or Tablespace
	Manually Allocating Storage for a Table
	Modifying an Existing Column Definition
	Adding Table Columns
	Adding a Column to a Compressed Table
	Adding a Virtual Column

	Renaming Table Columns
	Dropping Table Columns
	Removing Columns from Tables
	Marking Columns Unused
	Removing Unused Columns
	Dropping Columns in Compressed Tables

	Placing a Table in Read-Only Mode

	Redefining Tables Online
	Features of Online Table Redefinition
	Performing Online Redefinition with DBMS_REDEFINITION
	Constructing a Column Mapping String
	Creating Dependent Objects Automatically
	Creating Dependent Objects Manually

	Results of the Redefinition Process
	Performing Intermediate Synchronization
	Aborting Online Table Redefinition and Cleaning Up After Errors
	Restrictions for Online Redefinition of Tables
	Online Redefinition of a Single Partition
	Rules for Online Redefinition of a Single Partition

	Online Table Redefinition Examples
	Privileges Required for the DBMS_REDEFINITION Package

	Researching and Reversing Erroneous Table Changes
	Recovering Tables Using Oracle Flashback Table
	Dropping Tables
	Using Flashback Drop and Managing the Recycle Bin
	What Is the Recycle Bin?
	Enabling and Disabling the Recycle Bin
	Viewing and Querying Objects in the Recycle Bin
	Purging Objects in the Recycle Bin
	Restoring Tables from the Recycle Bin

	Managing Index-Organized Tables
	What Are Index-Organized Tables?
	Creating Index-Organized Tables
	Example: Creating an Index-Organized Table
	Restrictions for Index-Organized Tables
	Creating Index-Organized Tables that Contain Object Types
	Choosing and Monitoring a Threshold Value
	Using the INCLUDING Clause
	Parallelizing Index-Organized Table Creation
	Using Key Compression

	Maintaining Index-Organized Tables
	Altering Index-Organized Tables
	Moving (Rebuilding) Index-Organized Tables

	Creating Secondary Indexes on Index-Organized Tables
	Syntax for Creating the Secondary Index
	Maintaining Physical Guesses in Logical Rowids
	Bitmap Indexes

	Analyzing Index-Organized Tables
	Collecting Optimizer Statistics for Index-Organized Tables
	Validating the Structure of Index-Organized Tables

	Using the ORDER BY Clause with Index-Organized Tables
	Converting Index-Organized Tables to Regular Tables

	Managing External Tables
	About External Tables
	Creating External Tables
	Altering External Tables
	Preprocessing External Tables
	Dropping External Tables
	System and Object Privileges for External Tables

	Tables Data Dictionary Views

21 Managing Indexes

	About Indexes
	Guidelines for Managing Indexes
	Create Indexes After Inserting Table Data
	Index the Correct Tables and Columns
	Order Index Columns for Performance
	Limit the Number of Indexes for Each Table
	Drop Indexes That Are No Longer Required
	Indexes and Deferred Segment Creation
	Estimate Index Size and Set Storage Parameters
	Specify the Tablespace for Each Index
	Consider Parallelizing Index Creation
	Consider Creating Indexes with NOLOGGING
	Understand When to Use Unusable or Invisible Indexes
	Consider Costs and Benefits of Coalescing or Rebuilding Indexes
	Consider Cost Before Disabling or Dropping Constraints

	Creating Indexes
	Creating an Index Explicitly
	Creating a Unique Index Explicitly
	Creating an Index Associated with a Constraint
	Specifying Storage Options for an Index Associated with a Constraint
	Specifying the Index Associated with a Constraint

	Creating a Large Index
	Creating an Index Online
	Creating a Function-Based Index
	Creating a Key-Compressed Index
	Creating an Unusable Index
	Creating an Invisible Index

	Altering Indexes
	Altering Storage Characteristics of an Index
	Rebuilding an Existing Index
	Making an Index Unusable
	Making an Index Invisible
	Renaming an Index
	Monitoring Index Usage

	Monitoring Space Use of Indexes
	Dropping Indexes
	Indexes Data Dictionary Views

22 Managing Clusters

	About Clusters
	Guidelines for Managing Clusters
	Choose Appropriate Tables for the Cluster
	Choose Appropriate Columns for the Cluster Key
	Specify the Space Required by an Average Cluster Key and Its Associated Rows
	Specify the Location of Each Cluster and Cluster Index Rows
	Estimate Cluster Size and Set Storage Parameters

	Creating Clusters
	Creating Clustered Tables
	Creating Cluster Indexes

	Altering Clusters
	Altering Clustered Tables
	Altering Cluster Indexes

	Dropping Clusters
	Dropping Clustered Tables
	Dropping Cluster Indexes

	Clusters Data Dictionary Views

23 Managing Hash Clusters

	About Hash Clusters
	When to Use Hash Clusters
	Situations Where Hashing Is Useful
	Situations Where Hashing Is Not Advantageous

	Creating Hash Clusters
	Creating a Sorted Hash Cluster
	Creating Single-Table Hash Clusters
	Controlling Space Use Within a Hash Cluster
	Choosing the Key
	Setting HASH IS
	Setting SIZE
	Setting HASHKEYS
	Controlling Space in Hash Clusters

	Estimating Size Required by Hash Clusters

	Altering Hash Clusters
	Dropping Hash Clusters
	Hash Clusters Data Dictionary Views

24 Managing Views, Sequences, and Synonyms

	Managing Views
	About Views
	Creating Views
	Join Views
	Expansion of Defining Queries at View Creation Time
	Creating Views with Errors

	Replacing Views
	Using Views in Queries
	Updating a Join View
	Key-Preserved Tables
	DML Statements and Join Views
	Updating Views That Involve Outer Joins
	Using the UPDATABLE_ COLUMNS Views

	Altering Views
	Dropping Views

	Managing Sequences
	About Sequences
	Creating Sequences
	Altering Sequences
	Using Sequences
	Referencing a Sequence
	Caching Sequence Numbers

	Dropping Sequences

	Managing Synonyms
	About Synonyms
	Creating Synonyms
	Using Synonyms in DML Statements
	Dropping Synonyms

	Views, Synonyms, and Sequences Data Dictionary Views

25 Repairing Corrupted Data

	Options for Repairing Data Block Corruption
	About the DBMS_REPAIR Package
	DBMS_REPAIR Procedures
	Limitations and Restrictions

	Using the DBMS_REPAIR Package
	Task 1: Detect and Report Corruptions
	DBMS_REPAIR: Using the CHECK_OBJECT and ADMIN_TABLES Procedures
	DB_VERIFY: Performing an Offline Database Check
	ANALYZE: Reporting Corruption
	DB_BLOCK_CHECKING Initialization Parameter

	Task 2: Evaluate the Costs and Benefits of Using DBMS_REPAIR
	Task 3: Make Objects Usable
	Corruption Repair: Using the FIX_CORRUPT_BLOCKS and SKIP_CORRUPT_BLOCKS Procedures
	Implications when Skipping Corrupt Blocks

	Task 4: Repair Corruptions and Rebuild Lost Data
	Recover Data Using the DUMP_ORPHAN_KEYS Procedures
	Fix Segment Bitmaps Using the SEGMENT_FIX_STATUS Procedure

	DBMS_REPAIR Examples
	Examples: Building a Repair Table or Orphan Key Table
	Example: Creating a Repair Table
	Example: Creating an Orphan Key Table

	Example: Detecting Corruption
	Example: Fixing Corrupt Blocks
	Example: Finding Index Entries Pointing to Corrupt Data Blocks
	Example: Skipping Corrupt Blocks

Part IV Database Resource Management and Task Scheduling

26 Managing Automated Database Maintenance Tasks

	About Automated Maintenance Tasks
	About Maintenance Windows
	Configuring Automated Maintenance Tasks
	Enabling and Disabling Maintenance Tasks for all Maintenance Windows
	Enabling and Disabling Maintenance Tasks for Specific Maintenance Windows

	Configuring Maintenance Windows
	Modifying a Maintenance Window
	Creating a New Maintenance Window
	Removing a Maintenance Window

	Configuring Resource Allocations for Automated Maintenance Tasks
	About Resource Allocations for Automated Maintenance Tasks
	Changing Resource Allocations for Automated Maintenance Tasks

	Automated Maintenance Tasks Reference
	Predefined Maintenance Windows
	Automated Maintenance Tasks Database Dictionary Views

27 Managing Resources with Oracle Database Resource Manager

	About Oracle Database Resource Manager
	What Solutions Does the Resource Manager Provide for Workload Management?
	Elements of the Resource Manager
	About Resource Consumer Groups
	About Resource Plan Directives
	About Resource Plans
	Example: A Simple Resource Plan
	About Subplans
	Example: A Resource Plan with Subplans

	About Resource Manager Administration Privileges

	Assigning Sessions to Resource Consumer Groups
	Overview of Assigning Sessions to Resource Consumer Groups
	Assigning an Initial Resource Consumer Group
	Specifying Session-to–Consumer Group Mapping Rules
	About Session-to–Consumer Group Mapping Rules
	Creating Consumer Group Mapping Rules
	Modifying and Deleting Consumer Group Mapping Rules
	Creating Mapping Rule Priorities

	Switching Resource Consumer Groups
	Manually Switching Resource Consumer Groups
	Enabling Users or Applications to Manually Switch Consumer Groups

	Specifying Automatic Resource Consumer Group Switching
	Specifying Automatic Switching with Mapping Rules
	Specifying Automatic Switching by Setting Resource Limits

	Granting and Revoking the Switch Privilege
	Granting the Switch Privilege
	Revoking Switch Privileges

	The Types of Resources Managed by the Resource Manager
	CPU
	Degree of Parallelism Limit
	Parallel Target Percentage
	Managing Parallel Statement Queuing Using Parallel Target Percentage

	Parallel Queue Timeout
	Active Session Pool with Queuing
	Automatic Consumer Group Switching
	Canceling SQL and Terminating Sessions
	Execution Time Limit
	Undo Pool
	Idle Time Limit

	Creating a Simple Resource Plan
	Creating a Complex Resource Plan
	About the Pending Area
	Creating a Pending Area
	Creating Resource Consumer Groups
	Creating a Resource Plan
	About the RATIO CPU Allocation Method

	Creating Resource Plan Directives
	How Resource Plan Directives Interact

	Validating the Pending Area
	Submitting the Pending Area
	Clearing the Pending Area

	Enabling Oracle Database Resource Manager and Switching Plans
	Putting It All Together: Oracle Database Resource Manager Examples
	Multilevel Plan Example
	Examples of Using the Maximum Utilization Limit Attribute
	Example of Using Several Resource Allocation Methods
	Example of Managing Parallel Statements Using Directive Attributes
	An Oracle-Supplied Mixed Workload Plan

	Managing Multiple Database Instances on a Single Server
	About Instance Caging
	Enabling Instance Caging

	Maintaining Consumer Groups, Plans, and Directives
	Updating a Consumer Group
	Deleting a Consumer Group
	Updating a Plan
	Deleting a Plan
	Updating a Resource Plan Directive
	Deleting a Resource Plan Directive

	Viewing Database Resource Manager Configuration and Status
	Viewing Consumer Groups Granted to Users or Roles
	Viewing Plan Information
	Viewing Current Consumer Groups for Sessions
	Viewing the Currently Active Plans

	Monitoring Oracle Database Resource Manager
	Interacting with Operating-System Resource Control
	Guidelines for Using Operating-System Resource Control

	Oracle Database Resource Manager Reference
	Predefined Resource Plans and Consumer Groups
	Predefined Consumer Group Mapping Rules
	Resource Manager Data Dictionary Views

28 Oracle Scheduler Concepts

	Overview of Oracle Scheduler
	About Jobs and Supporting Scheduler Objects
	Programs
	Schedules
	Jobs
	Destinations
	About Destinations and Scheduler Agents

	File Watchers
	Credentials
	Chains
	Job Classes
	Windows
	Overlapping Windows

	Groups
	Destination Groups
	Window Groups

	More About Jobs
	Job Categories
	Database Jobs
	External Jobs
	Multiple-Destination Jobs
	Chain Jobs
	Detached Jobs
	Lightweight Jobs

	Job Instances
	Job Arguments
	How Programs, Jobs, and Schedules are Related

	Scheduler Architecture
	The Job Table
	The Job Coordinator
	Job Coordinator Actions
	Maximum Number of Scheduler Job Processes

	How Jobs Execute
	After Jobs Complete
	Using the Scheduler in Real Application Clusters Environments
	Service Affinity when Using the Scheduler

	Scheduler Support for Oracle Data Guard
	Oracle Scheduler and Editions

29 Scheduling Jobs with Oracle Scheduler

	About Scheduler Objects and Their Naming
	Creating, Running, and Managing Jobs
	Job Tasks and Their Procedures
	Creating Jobs
	Overview of Creating Jobs
	Specifying a Job Action and Job Schedule
	Specifying Job Credentials and Job Destinations
	Creating Multiple-Destination Jobs
	Setting Job Arguments
	Setting Additional Job Attributes
	Creating Detached Jobs
	Creating Multiple Jobs in a Single Transaction
	Techniques for External Jobs

	Altering Jobs
	Running Jobs
	Stopping Jobs
	Stopping External Jobs
	Stopping a Chain Job

	Dropping Jobs
	Disabling Jobs
	Enabling Jobs
	Copying Jobs
	Viewing stdout and stderr for External Jobs

	Creating and Managing Programs to Define Jobs
	Program Tasks and Their Procedures
	Creating Programs
	Defining Program Arguments

	Altering Programs
	Dropping Programs
	Disabling Programs
	Enabling Programs

	Creating and Managing Schedules to Define Jobs
	Schedule Tasks and Their Procedures
	Creating Schedules
	Altering Schedules
	Dropping Schedules
	Setting the Repeat Interval
	Using the Scheduler Calendaring Syntax
	Using a PL/SQL Expression
	Differences Between PL/SQL Expression and Calendaring Syntax Behavior
	Repeat Intervals and Daylight Savings

	Using Events to Start Jobs
	About Events
	Starting Jobs with Events Raised by Your Application
	Creating an Event-Based Job
	Altering an Event-Based Job
	Creating an Event Schedule
	Altering an Event Schedule
	Passing Event Messages into an Event-Based Job

	Starting a Job When a File Arrives on a System
	About File Watchers
	Enabling File Arrival Events from Remote Systems
	Creating File Watchers and File Watcher Jobs
	File Arrival Example
	Managing File Watchers
	Viewing File Watcher Information

	Creating and Managing Job Chains
	Chain Tasks and Their Procedures
	Creating Chains
	Defining Chain Steps
	Adding Rules to a Chain
	Setting an Evaluation Interval for Chain Rules

	Enabling Chains
	Creating Jobs for Chains
	Dropping Chains
	Running Chains
	Dropping Chain Rules
	Disabling Chains
	Dropping Chain Steps
	Stopping Chains
	Stopping Individual Chain Steps
	Pausing Chains
	Skipping Chain Steps
	Running Part of a Chain
	Monitoring Running Chains
	Handling Stalled Chains

	Prioritizing Jobs
	Managing Job Priorities with Job Classes
	Job Class Tasks and Their Procedures
	Creating Job Classes
	Altering Job Classes
	Dropping Job Classes

	Setting Relative Job Priorities Within a Job Class
	Managing Job Scheduling and Job Priorities with Windows
	Window Tasks and Their Procedures
	Creating Windows
	Altering Windows
	Opening Windows
	Closing Windows
	Dropping Windows
	Disabling Windows
	Enabling Windows

	Managing Job Scheduling and Job Priorities with Window Groups
	Window Group Tasks and Their Procedures
	Creating Window Groups
	Dropping Window Groups
	Adding a Member to a Window Group
	Removing a Member from a Window Group
	Enabling a Window Group
	Disabling a Window Group

	Allocating Resources Among Jobs Using Resource Manager
	Example of Resource Allocation for Jobs

	Monitoring Jobs
	Viewing the Job Log
	Run Details
	Precedence of Logging Levels in Jobs and Job Classes

	Monitoring Multiple Destination Jobs
	Monitoring Job State with Events Raised by the Scheduler
	About Job State Events
	Altering a Job to Raise Job State Events
	Consuming Job State Events with your Application

	Monitoring Job State with E-mail Notifications
	About E-mail Notifications
	Adding E-mail Notifications for a Job
	Removing E-mail Notifications for a Job
	Viewing Information About E-mail Notifications

30 Administering Oracle Scheduler

	Configuring Oracle Scheduler
	Setting Oracle Scheduler Privileges
	Setting Scheduler Preferences
	Using the Oracle Scheduler Agent to Run Remote Jobs
	Enabling and Disabling Databases for Remote Jobs
	Installing and Configuring the Scheduler Agent on a Remote Host
	Performing Tasks with the Scheduler Agent

	Monitoring and Managing the Scheduler
	Viewing the Currently Active Window and Resource Plan
	Finding Information About Currently Running Jobs
	Monitoring and Managing Window and Job Logs
	Job Log
	Window Log
	Purging Logs

	Managing Scheduler Security

	Import/Export and the Scheduler
	Troubleshooting the Scheduler
	A Job Does Not Run
	About Job States
	Viewing the Job Log
	Troubleshooting Remote Jobs
	About Job Recovery After a Failure

	A Program Becomes Disabled
	A Window Fails to Take Effect

	Examples of Using the Scheduler
	Examples of Creating Job Classes
	Examples of Setting Attributes
	Examples of Creating Chains
	Examples of Creating Jobs and Schedules Based on Events
	Example of Creating a Job In an Oracle Data Guard Environment

	Scheduler Reference
	Scheduler Privileges
	Scheduler Data Dictionary Views

Part V Distributed Database Management

31 Distributed Database Concepts

	Distributed Database Architecture
	Homogenous Distributed Database Systems
	Distributed Databases Versus Distributed Processing
	Distributed Databases Versus Replicated Databases

	Heterogeneous Distributed Database Systems
	Heterogeneous Services
	Transparent Gateway Agents
	Generic Connectivity

	Client/Server Database Architecture

	Database Links
	What Are Database Links?
	What Are Shared Database Links?
	Why Use Database Links?
	Global Database Names in Database Links
	Global Name as a Loopback Database Link

	Names for Database Links
	Types of Database Links
	Users of Database Links
	Connected User Database Links
	Fixed User Database Links
	Current User Database Links

	Creation of Database Links: Examples
	Schema Objects and Database Links
	Naming of Schema Objects Using Database Links
	Authorization for Accessing Remote Schema Objects
	Synonyms for Schema Objects
	Schema Object Name Resolution

	Database Link Restrictions

	Distributed Database Administration
	Site Autonomy
	Distributed Database Security
	Authentication Through Database Links
	Authentication Without Passwords
	Supporting User Accounts and Roles
	Centralized User and Privilege Management
	Data Encryption

	Auditing Database Links
	Administration Tools
	Enterprise Manager
	Third-Party Administration Tools
	SNMP Support

	Transaction Processing in a Distributed System
	Remote SQL Statements
	Distributed SQL Statements
	Shared SQL for Remote and Distributed Statements
	Remote Transactions
	Distributed Transactions
	Two-Phase Commit Mechanism
	Database Link Name Resolution
	Name Resolution When the Global Database Name Is Complete
	Name Resolution When the Global Database Name Is Partial
	Name Resolution When No Global Database Name Is Specified
	Terminating the Search for Name Resolution

	Schema Object Name Resolution
	Example of Global Object Name Resolution: Complete Object Name
	Example of Global Object Name Resolution: Partial Object Name

	Global Name Resolution in Views, Synonyms, and Procedures
	What Happens When Global Names Change
	Scenarios for Global Name Changes

	Distributed Database Application Development
	Transparency in a Distributed Database System
	Location Transparency
	SQL and COMMIT Transparency
	Replication Transparency

	Remote Procedure Calls (RPCs)
	Distributed Query Optimization

	Character Set Support for Distributed Environments
	Client/Server Environment
	Homogeneous Distributed Environment
	Heterogeneous Distributed Environment

32 Managing a Distributed Database

	Managing Global Names in a Distributed System
	Understanding How Global Database Names Are Formed
	Determining Whether Global Naming Is Enforced
	Viewing a Global Database Name
	Changing the Domain in a Global Database Name
	Changing a Global Database Name: Scenario

	Creating Database Links
	Obtaining Privileges Necessary for Creating Database Links
	Specifying Link Types
	Creating Private Database Links
	Creating Public Database Links
	Creating Global Database Links

	Specifying Link Users
	Creating Fixed User Database Links
	Creating Connected User and Current User Database Links

	Using Connection Qualifiers to Specify Service Names Within Link Names

	Using Shared Database Links
	Determining Whether to Use Shared Database Links
	Creating Shared Database Links
	Configuring Shared Database Links
	Creating Shared Links to Dedicated Servers
	Creating Shared Links to Shared Servers

	Managing Database Links
	Closing Database Links
	Dropping Database Links
	Procedure for Dropping a Private Database Link
	Procedure for Dropping a Public Database Link

	Limiting the Number of Active Database Link Connections

	Viewing Information About Database Links
	Determining Which Links Are in the Database
	Determining Which Link Connections Are Open

	Creating Location Transparency
	Using Views to Create Location Transparency
	Using Synonyms to Create Location Transparency
	Creating Synonyms
	Managing Privileges and Synonyms

	Using Procedures to Create Location Transparency
	Using Local Procedures to Reference Remote Data
	Using Local Procedures to Call Remote Procedures
	Using Local Synonyms to Reference Remote Procedures
	Managing Procedures and Privileges

	Managing Statement Transparency
	Managing a Distributed Database: Examples
	Example 1: Creating a Public Fixed User Database Link
	Example 2: Creating a Public Fixed User Shared Database Link
	Example 3: Creating a Public Connected User Database Link
	Example 4: Creating a Public Connected User Shared Database Link
	Example 5: Creating a Public Current User Database Link

33 Developing Applications for a Distributed Database System

	Managing the Distribution of Application Data
	Controlling Connections Established by Database Links
	Maintaining Referential Integrity in a Distributed System
	Tuning Distributed Queries
	Using Collocated Inline Views
	Using Cost-Based Optimization
	How Does Cost-Based Optimization Work?
	Setting Up Cost-Based Optimization

	Using Hints
	Using the NO_MERGE Hint
	Using the DRIVING_SITE Hint

	Analyzing the Execution Plan
	Preparing the Database to Store the Plan
	Generating the Execution Plan
	Viewing the Execution Plan

	Handling Errors in Remote Procedures

34 Distributed Transactions Concepts

	What Are Distributed Transactions?
	DML and DDL Transactions
	Transaction Control Statements

	Session Trees for Distributed Transactions
	Clients
	Database Servers
	Local Coordinators
	Global Coordinator
	Commit Point Site
	How a Distributed Transaction Commits
	Commit Point Strength

	Two-Phase Commit Mechanism
	Prepare Phase
	Types of Responses in the Prepare Phase
	Steps in the Prepare Phase

	Commit Phase
	Steps in the Commit Phase
	Guaranteeing Global Database Consistency

	Forget Phase

	In-Doubt Transactions
	Automatic Resolution of In-Doubt Transactions
	Failure During the Prepare Phase
	Failure During the Commit Phase

	Manual Resolution of In-Doubt Transactions
	Relevance of System Change Numbers for In-Doubt Transactions

	Distributed Transaction Processing: Case Study
	Stage 1: Client Application Issues DML Statements
	Stage 2: Oracle Database Determines Commit Point Site
	Stage 3: Global Coordinator Sends Prepare Response
	Stage 4: Commit Point Site Commits
	Stage 5: Commit Point Site Informs Global Coordinator of Commit
	Stage 6: Global and Local Coordinators Tell All Nodes to Commit
	Stage 7: Global Coordinator and Commit Point Site Complete the Commit

35 Managing Distributed Transactions

	Specifying the Commit Point Strength of a Node
	Naming Transactions
	Viewing Information About Distributed Transactions
	Determining the ID Number and Status of Prepared Transactions
	Tracing the Session Tree of In-Doubt Transactions

	Deciding How to Handle In-Doubt Transactions
	Discovering Problems with a Two-Phase Commit
	Determining Whether to Perform a Manual Override
	Analyzing the Transaction Data
	Find a Node that Committed or Rolled Back
	Look for Transaction Comments
	Look for Transaction Advice

	Manually Overriding In-Doubt Transactions
	Manually Committing an In-Doubt Transaction
	Committing Using Only the Transaction ID
	Committing Using an SCN

	Manually Rolling Back an In-Doubt Transaction

	Purging Pending Rows from the Data Dictionary
	Executing the PURGE_LOST_DB_ENTRY Procedure
	Determining When to Use DBMS_TRANSACTION

	Manually Committing an In-Doubt Transaction: Example
	Step 1: Record User Feedback
	Step 2: Query DBA_2PC_PENDING
	Determining the Global Transaction ID
	Determining the State of the Transaction
	Looking for Comments or Advice

	Step 3: Query DBA_2PC_NEIGHBORS on Local Node
	Obtaining Database Role and Database Link Information
	Determining the Commit Point Site

	Step 4: Querying Data Dictionary Views on All Nodes
	Checking the Status of Pending Transactions at sales
	Determining the Coordinators and Commit Point Site at sales
	Checking the Status of Pending Transactions at HQ

	Step 5: Commit the In-Doubt Transaction
	Step 6: Check for Mixed Outcome Using DBA_2PC_PENDING

	Data Access Failures Due to Locks
	Transaction Timeouts
	Locks from In-Doubt Transactions

	Simulating Distributed Transaction Failure
	Forcing a Distributed Transaction to Fail
	Disabling and Enabling RECO

	Managing Read Consistency

Part VI Appendixes

A Support for DBMS_JOB in Release 11gR2

	About DBMS_JOB
	Configuring DBMS_JOB
	Using Both DBMS_JOB and Oracle Scheduler

	Moving from DBMS_JOB to Oracle Scheduler
	Creating a Job
	Altering a Job
	Removing a Job from the Job Queue

Index

This screenshot shows the Segment Advisor Recommendations page. It contains a list of recommendations rolled up by tablespace.

The image admin031.gif depicts an example of a session tree. There are three nodes on this session tree: SALES.EXAMPLE.COM, WAREHOUSE.EXAMPLE.COM, and FINANCE.EXAMPLE.COM. The SALES.EXAMPLE.COM node has assumed the roles Global Coordinator, Commit Point Site, Database Server, and Client. These roles are explained in the text that follows the figure. A transaction consisting of several SQL statements associated only with the sales node, which in turn is associated with the warehouse and finance nodes.

End of image description.

The image admin040.gif depicts an Oracle distributed database system. There are two databases located on separate servers: HQ and SALES. The figure shows examples of direct and indirect client connections. Queries are made to the HQ database directly, and queries are made indirectly to the SALES database, through the HQ database, which then acts as a client. Communication between the servers occurs over the network using Oracle Net.

End of image description.

This is an image of the Dumps subpage of the Package Details page. Across the top of the subpage are three tabs: Incidents, Dumps, and Activity Log. The Dumps tab is the current tab. Below the tabs, going from left to right, are the following controls: A View list, which enables you to choose "Incremental Package Contents" or "Full Package Contents", an Add Incident Files button, and an Add External Files button.

Below these controls is table of dump files. The table columns are: Select, File Source, File Name, Size, Has User Data, Date, Path, and View. There are two rows showing. The Select column contains a check box for each row. The View column has an eyeglasses icon for each row. The File Source for each row is "Incident".

Just above the table, on the left-hand side of the page, are two links: Select All and Select None. Just above the links is a Remove button.

This is a text description of admin002.gif. The figure displays a release number and notes the significance of each digit. The release number is 11.2.0.1.0.

The significance of each number (reading from left to right) is as follows:

	
11 is the major database release number

	
2 is the database maintenance release number

	
0 is the application server release number

	
1 is the component-specific release number

	
0 is the platform-specific release number

End of image description.

This image is a screenshot of the Support Workbench home page. It contains the following three subpages: Problems, Checker Findings, and Packages. The Problems subpage is currently shown. This subpage has the following sections:

	
An incident and problem summary, which includes six read-only fields organized across the page in two rows and three columns. The fields contain statistics on the number of incidents and problems in the ADR.

	
A search section that includes a list that enables you to choose the period from which to show problems (the default is 24 hours, however, the setting shown in the image is "Last Week"), a search field with a Go button, and an Advanced Search link.

	
A table of problems. The table shows 2 rows (for 2 problems) and contains the following columns: Select, Details, ID, Description, Number Of Incidents, Last Incident, Last Comment, Active, Packaged, and SR#. Above the table are two buttons: View and Package. The Details column contains a Show/Hide icon, which when clicked, displays all incidents for the problem below the problem.

	
A Performance and Critical Error section, which displays a graphical timeline of session activity above the x axis, and different colored 1/8" dots below the x axis, representing occurrences of incidents within the timeline. Each color represents a different problem. Below the dots is a legend of problem names (for example, ORA 1578) and corresponding colors. To the right of the graph is a legend that differentiates the traces on the graph by color. The three colors represent CPU, User I/O, and Wait.

The image admin.060.gif shows how jobs, programs, and schedules are related. The figure represents at the top level ten programs (P1 through P10; P4 through P7 are represented by ellipses); at the middle level, 24 jobs (J1 through J24; J5 through J19 are represented by ellipses); and at the bottom level, four schedules (S1 through S4).

At the program level, P1 is associated with J1 and J2. P2 is not associated with any jobs. P3 is associated with J3. P8 is associated with J20, and P10 is associated with J21, J22, and J23.

At the schedule level, S1 is associated with J1 and J2 (and thus with P1) and J3 (and thus with P3). S2 is not associated with any jobs. S3 is associated with J20 (and thus P8), J21 and J22 (and thus with P10). S4 is associated with J24 (but not with any programs).

End of image description.

This screenshot is very similar to the standard open-a-file dialog box that is found in Windows operating systems, except that this one is implemented in a browser. Small icons are shown to the left of each file or directory name. A page icon is shown next to files, and a folder icon is shown next to directories. Files and directories are shown in a table, with the following columns: Select, Name, Owner, Group, Size (KB), Last Modified Time (PST). Above the table is a Search field. To the right of this field is a Go button. Above the Search field is a Path field, which shows the currently selected path. Above that field, the current host name and host user name are shown. Next to the user name is a Change button. In the upper right-hand corner of the window there are two buttons, arranged from left to right: Cancel and Select.

This is a text description of Figure 27-1. It illustrates the simple resource plan that is described in the preceding text.

The image admin068.gif illustrates that a service can have multiple instances. It also illustrates that one instance can be in multiple services. It shows a database and eight instances, and then the following mappings:

	
Instance 1 maps to Service A

	
Instances 2 and 3 map to Service B

	
Instance 4 does not map to anything

	
Instance 5 maps to Service C

	
Instances 6 and 7 map to Service D

	
Instances 7 and 8 map to Service E

In this figure, Instance 7 maps to both Services D and E.

End of image description.

This screenshot shows a list of tablespace full alerts.

This figure illustrates the following windows over a 24 hour repeating schedule:

	
Window1 from 4AM to 11AM is Low Priority.

	
Window3 from 6AM to 9AM is High Priority.

	
Window2 from 2PM to 8PM is High Priority.

	
Window4 from 3PM to 10PM is High Priority.

In addition, the following resource plans are scheduled:

	
A default resource plan from 12AM to 4AM.

	
Resource plan 1 from 4AM to 6AM.

	
Resource plan 3 from 6AM to 9AM.

	
Resource plan 1 from 9AM to 11AM.

	
A default resource plan from 11AM to 2PM.

	
Resource plan 2 from 2PM to 8PM.

	
Resource plan 4 from 8PM to 10PM.

	
A default resource plan from 10PM to 12AM.

The accompanying text explains which windows take effect when and why.

End of image description.

This image shows the Checker Findings subpage of the Support Workbench home page. The page contains a Search section, which contains four horizontally arranged search fields and a Go button, and a Data Corruption section, which contains a table of the data corruptions detected by health checkers. The table columns are as follows: Select, Description, Priority, Damage Translation, Incident ID, Status, and Time Detected. Above the table is a Launch Recovery Advisor button. The table shows one finding (one row), and the Description column for the finding explains that datafile number 4 contains one or more corrupt blocks.

This image shows a large rectangle representing the SGA. Inside the SGA are two rows of boxes representing the SGA components. The three boxes in the top row, going from left to right, are labeled Java Pool, Redo Buffer, and Buffer Cache. The four boxes in the bottom row, going from left to right, are labeled Shared pool, Streams pool, Large pool, and Other Components. Outside the SGA is another memory component labeled Flash Cache. It is connected by a double-arrow to the Buffer Cache box inside the SGA. Outside the SGA are three boxes labeled Server Process 1, Server Process 2, and Server Process 3, and two boxes labeled Background Process. Each of these five processes is connected to the large SGA box with a double-sided arrow, indicating that each process reads from and writes to the SGA. Each process is also connected with a double-sided arrow to a small box labeled PGA. Each process has its own connected PGA box.

The image admin030.gif illustrates views and location transparency. Two servers are shown, a remote sales database and a local HQ database.The sales database contains the scott.emp table with the following columns: empno, ename, job, mgr, hiredate, sal, comm, deptno.The HQ database contains the jward.dept table with columns deptno and dname. A client is shown accessing a customized view that contains selected columns from each table (empno, ename, and dname).

End of image description.

This graphic shows the High Availability section on the Database Home page. The High Availability section includes the following fields: a Console field with a "Details" link, an Oracle Restart field with a "Disabled" link, and Instance Recovery Time (sec) field with a "22" link, a Last Backup field with "n/a" text, a Usable Flash Recovery Area (%) field with a "100" link, and a Flashback Database Logging field with a "Disabled" link.

The image admin051.gif shows a distributed database system. There are three databases, one local (SALES), and two remote (HQ and MAINT). A user (SCOTT) is shown updating tables on all three databases using a distributed transaction over Oracle Net database links.

End of image description.

The image admin045.gif shows a database link between user Scott and a remote database. The link passes through the local database, and, because the link to the remote database is stored on the local database, a unidirectional link links the remote database to the user.

End of image description.

This is a text description of admin059.gif. The image is described in the preceding text.

End of image description.

This is another view of the Problem Details page. The Investigate and Resolve section at the right of the page contains a link to the Data Recovery Advisor under the Resolve heading, at the bottom. The problem key includes the error type ORA-1578.

The image admin036.gif shows the instruction of nodes to commit. SALES.EXAMPLE.COM sends a "commit" message to WAREHOUSE.EXAMPLE.COM.

End of image description.

The image admin033.gif defines the session tree when each of the SQL statements in the transaction executes. The SQL statements are listed in the text preceding the image.

The SALES.EXAMPLE.COM database takes on the roles of global coordinator, database server, and client when each SQL statement to the WAREHOUSE.EXAMPLE.COM database executes.

End of image description.

This is a partial image of the Select Package page. At the top left-hand side of the page, the problem keys for the selected problems are displayed. At the top right-hand side are two buttons: Cancel and OK.

The remainder of the page presents two options, one above the other: "Create new package" or "Select from existing packages." If you select "Create new package" you fill in the following fields that are just under this option: Package name and Package description. There is a default value already entered in the Package name field. If you select the "Select from existing packages" option, you must select one entry from a table of existing packages. The table columns are: Select, Name, Status, Type, Description, Main Problem Keys, and Created. There is one row in the table, and its type is Main. The Created column is a timestamp.

This is a text description of admin057.gif. It illustrates the multilevel schema created by the example in the preceding text. There are three plans. MYDB_PLAN is the top level plan. MAILDB_PLAN and BUGDB_PLAN are subplans of MYDB_PLAN. MAILDB_PLAN receives 30 percent of the CPU at level 1, and BUGDB_PLAN receives 70 percent at level 1.There are three groups (and the mandatory OTHER_GROUPS) that consume resources in MAILDB_PLAN. MAIL_POSTMAN_GROUP receives 40% of the CPU at level 1, MAIL_USERS_GROUP receives 80% of the CPU at level 2, and MAIL_MAINTENANCE_GROUP receives 20 percent of the CPU at level 2. OTHER_GROUPS receives 100 percent of the CPU at level 3.There are also three groups (and the mandatory OTHER_GROUPS) that consume resources in the BUGDB_PLAN. The BUG_ONLINE_GROUP receives 80 percent of the resources at level 1, the BUG_BATCH_GROUP receives 20 percent of the resources at level 1, and the BUG_MAINTENANCE_GROUP receives 100 percent of the resources at level 2. OTHER_GROUPS receives 100 percent of the CPU at level 3.End of image description.

The image admin042.gif shows globalization support parameter settings in a heterogeneous environment. The character sets of the client, gateway agent, and non-Oracle server are shown to be the same as, or subsets of, the Oracle server character set.

End of image description.

This is a text description of admin026.gif. It shows a B-tree index before and after coalescing. In the "before" image, there are two index blocks, each of which is half full. The "after" image shows that these two index blocks have been combined into one full index block.

End of image description.

This figure shows the directory structure of the ADR for a single database instance, where each directory is represented by a folder. At the top is a folder labeled as "ADR base". Beneath ADR base is a directory named diag, beneath which is a directory named rdbms. Beneath the rdbms directory is a directory whose name is the database name. Beneath that directory is a directory whole name is the database SID. This directory is flagged by a label as the ADR home for the database instance. Beneath the ADR home directory (the directory whose name is the database SID) are the following subdirectories: alert, cdump, incident, trace, and one named "(others)", which indicates several other ADR home subdirectories

This is a text description of admin054.gif. The image shows how LGWR reuses online redo log files. This process is described in the text preceding the image.

End of image description.

This is a partial screenshot of the SQL Repair Results page. The main feature on the page is a table entitled Recommendations. The table has the following columns: Select, SQL Text, Parsing Schema, SQL ID, and SQL Patch. There is one row in the table, and it is selected. The SQL Patch column has a check mark in it for that row. Above the table is a View button.

The image admin037.gif shows an example of an in-doubt distributed transaction. In this example, the following occurs:

	
SALES.EXAMPLE.COM is the global coordinator and is in the prepared state.

	
WAREHOUSE.EXAMPLE.COM is the database server and is in the prepared state.

	
HQ.EXAMPLE.COM is the commit point site and has issued the commit request.

The failure occurs during the commit phase when a communication break between HQ.EXAMPLE.COM and SALES.EXAMPLE.COM disrupts the transaction.

End of image description.

This is a text description of admin058.gif. It shows the components of file mapping. It shows FMON and the SGA within an Oracle instance. FMON stores information in the SGA. FMON communicates with the FMPUTL utility, shown as an external process. FMPUTL communicates with several mapping libraries.

End of image description.

Figure 26-2 shows a 24-hour timeline, starting with hour zero at the left and hour 24 at the right. Window 1 is shown as a two-sided arrow that points from 6am to 11am. Window 2 goes from 2pm to 8pm. Window 1 points to Resource Plan A, which allocates 90% of resources to Consumer Group 1 and 10% to Consumer Group 2. Window 2 points to Resource Plan B, which allocates 10% of resources to Consumer Group 1 and 90% to Consumer Group 2.

This screenshot shows the Tables page in Enterprise Manager. It contains a list of tables in the HR schema. One table is selected, and the Actions drop-down list is set to "Run Segment Advisor". The GO button next to the Actions list causes the command to be executed.

This image is identical to the image in Figure 28-1 except that the Step 3 icon contains the standard pause symbol found on remote controls to indicate that this step is paused.

This image depicts a chain of steps, with a BEGIN icon at the left, an END icon at the right, and three different branches that connect the BEGIN and END points. Steps along the branches are indicated by a step icon. Immediately to the right the BEGIN icon is Step 1, with an arrow pointing from BEGIN to Step 1. From Step 1, three branches emerge that head toward the END icon. Two branches have multiple icons along them, where each icon represents a step. Right-pointing arrows connect the steps along a branch, indicating the order that the steps are run. The third branch has no steps after Step 1, and goes right to END. One of the other branches with steps on it momentary branches itself into two branches, which merge back into the single branch before proceeding to END. On one of those subbranches is Step 7, whose icon indicates that it is a nested chain.

Focusing on one branch, the branch goes like this: BEGIN, Step1, Step 3, Step 5, END.

This diagram shows the Oracle Database home directory tree for a release 10g installation. The root of the tree is a folder named Oracle Database Home. Beneath the root are four folders named bin, sysman, hostname_sid, and oc4j. These folders all have various subfolders.

The image admin035.gif shows the sending and acknowledging of the "prepare" message. SALES.EXAMPLE.COM sends a "please prepare" message to WAREHOUSE.EXAMPLE.COM. WAREHOUSE.EXAMPLE.COM acknowledges by sending a "prepared" message back to SALES.EXAMPLE.COM.

End of image description.

The image admin047.gif depicts global user security using the enterprise directory service. There are two databases, DB1 and DB2, and an LDAP server. A user, SCOTT, is shown connecting to DB1. All communication between client and server, and among the servers, occurs over SSL.

End of image description.

The image admin044.gif shows globalization support parameter settings in a homogeneous environment. The character sets of the client and server are shown as the same as, or subsets of the main server character set.

End of image description.

This is a text description of admin052.gif. This image shows two disks, DISK A and DISK B, containing online redo log files. Each disk contains identical online redo log files. LGWR writes concurrently to the online redo log files. Each identical set of redo log files is called a group. This image shows two groups.Group 1 consists of the following:

	
A_LOG1 on DISK A

	
B_LOG1 on DISK B

Group 2 consists of the following:

	
A_LOG2 on DISK A

	
B_LOG2 on DISK B

End of image description.

This is an image of the Copy Out Files page. There are two buttons at the upper right-hand corner of the page: Cancel and OK. Below the buttons are the following sections, going from top to bottom:

	
Destination folder—This section contains the following fields: A label field that shows the host name to which files are copied; a Destination Folder text field into which you can enter a path; and a flashlight icon to the right of the Destination Folder field.

	
Files to copy out—This section contains the following fields: At the top right, a set of navigation controls consisting of a Previous link, a Next link, and between them, a list that displays the sequence numbers of the files shown in the table below. Selecting from the list causes the files with the designated sequence numbers to be displayed. Below the navigation controls is a table of files in the package. The table contains these columns: Select, Source, File Name, Size, Data, Date, Path. There are six rows displayed, each for a different file. The Select column contains a check box for each row.

The image admin039.gif shows a shared database link to dedicated server processes. A client workstation owns several user processes which link to a local server through dispatcher processes. A shared server process on the local server owns a link to a dedicated remote server process. The shared server process on the local server interacts with the local system global area (SGA). The dedicated server processes on the remote server interact with the remote SGA.

End of image description.

This diagram shows the Oracle Database home directory tree for a release 11g installation. The root of the tree is a folder named Oracle Database Home. Beneath the root are four folders named bin, sysman, hostname_dbuniquename, and oc4j. These folders all have various subfolders.

This is a text description of admin027.gif. It illustrates the Database Resource Manager plan with subplans that is described in the text following the image.

End of image description.

This screenshot shows the Advisor Central page in Enterprise Manager. The Results list shows one entry for a Segment Advisor task. The status of the task is COMPLETED, and it is selected. Clicking the View Result button will display the Segment Advisor recommendations.

The image admin038.gif shows a shared database link to a shared server. The shared server processes, in this configuration, are located on the remote server. User processes on the client connect to shared server processes on the server through dispatcher processes on the remote server.

End of image description.

The image admin034.gif shows the determination of the commit point site following the COMMIT statement. SALES.EXAMPLE.COM, the global coordinator, is determined as the commit point site.

End of image description.

This image is an illustration of the typical workflow for investigating, reporting, and resolving a problem. The workflow tasks (1–7) are described in the text. Each task is represented by an oval. In each oval is a task number, task name, and an icon that represents the activity for the task. (For example, for the Close Incidents task, there is an image of a door closing.) The task ovals are arranged in a circle with arrows pointing from one task to another.

This figure illustrates a resource plan called Night Plan, which allocates resources as follows:

	
Consumer Group DW gets 60%

	
Consumer Group OLTP gets 30%

	
Consumer Group Other gets 10%

End of image description.

This screenshot shows the Automated Maintenance Tasks Configuration page. At the upper right-hand corner are three buttons: Show SQL, Revert, and Apply. Beneath the buttons are two options next to a Global Status heading: Enabled and Disabled. Beneath these options are two sections, aligned at the left-hand side of the page:

	
Task Settings—This section contains a group of three settings, where each setting has an Enabled and Disabled option. The settings are labeled with the three automated maintenance tasks: Optimizer Statistics Gathering, Segment Advisor, and Automatic SQL Tuning. Next to the first and last setting is a Configure button.

	
Maintenance Window Group Assignment—This section contains a matrix of check boxes, with column and row headings. The seven row headings at the left are names of maintenance windows: MONDAY_WINDOW, TUESDAY_WINDOW, and so on. The three column headings are the names of the automated maintenance tasks. Just below each column heading is a pair of links: Select All and Select None.

The image admin042.gif shows globalization support parameter settings in a client/server environment. The client character set is shown as the same as, or a subset of, the Oracle database server character set.

End of image description.

This screenshot shows the Space Summary section of the database Home page in Enterprise Manager. An arrow indicates the link to click, which is next to the Segment Advisor Recommendations heading.

This is a text description of admin013.gif. The figure shows application code for two users. Each piece of application code is shown using its own copy of Oracle server code (dedicated server).

End of image description.

This image shows the Package Details page. It includes the following sections:

	
Summary (at the upper left)—Includes package status, type (e.g. Main), and size, a list of the problems in the package, and more.

	
Packaging tasks (a box at the upper right)—Includes two buttons at the upper right-hand corner of the box: Generate Upload File and Send to Oracle. Below the buttons are four sections of links, where each link represents a packaging task. The sections are arranged in two rows and two columns. In the top left section, whose heading is "Edit Contents," the links are: Add Problems, Exclude Problems, and View Package Manifest. In the top right section, whose heading is "Scrub User Data," the links are: Copy out Files to Edit Contents and Copy in Files to Replace Contents. In the bottom left section, whose heading is "Additional Diagnostic Data," the links are: Gather Additional Dumps, Add External Files, and Create/Update Correlated Packages. In the bottom right section, whose heading is "Send to Oracle Support," the links are: Finish Contents Preparation, Generate Upload File, and View/Send Upload Files. Of these links, only Finish Contents Preparation is clickable. The others are disabled.

	
A set of three subpages (at the bottom)—The subpage tabs are labeled Incidents, Files, and Activity Log. The Incidents subpage is shown. It contains a table of incidents. The table columns are Select, ID, Type, Problem ID, Description, Size (MB), and Timestamp. The table has two rows, both of type Main and Description ORA-600 [15700]. Each row has a different timestamp. Directly above the table, at the left, is an Exclude button. Above the table and the Exclude button, at the right, are two buttons: Add Incidents and Add Recent Incidents.

The image admin062.gif illustrates how clients, databases, job coordinators, and job slaves are related. A client interacts with the database in the usual way. The database contains a Job Table, which includes Job1, Job2, Job3, Job4, Job5, and Job6. The Job Table is used by the Job Coordinator, which spawns and controls job slaves. In the figure, the Job Coordinator has three slaves working.End of image description.

This screenshot shows the Recommendation Details page for the Segment Advisor. It includes a list of segments that were selected for space reclamation. The three items in the list all have the recommendation of Shrink. The recommendation is actually a button that you click to initiate the Shrink process.

The image admin048.gif shows a failure during the commit phase of a distributed transaction. User SCOTT, and two databases, Local and Remote, are shown. The Local database has COMMIT_POINT_STRENGTH = 200. The Remote database has COMMIT_POINT_STRENGTH = 100. The events leading to failure are described in the text following the image.

End of image description.

This is a text description of admin056.gif. This figure illustrates how online redo log files are archived. In this case there is only one archive process (ARC0) and only one archived redo log. It shows the following sequence:

	
LGWR writes to online redo log file 1 (Log0001).

	
When Log0001 is full, ARC0 writes it to the archived redo log.

	
LGWR writes to online redo log file 2 (Log0002).

	
When Log0002 is full, ARC0 writes it to the archived redo log.

	
LGWR writes to online redo log file 3 (Log0003).

	
When Log0003 is full, ARC0 writes it to the archived redo log.

	
LGWR writes to online redo log file 4 (Log0004).

	
When Log0004 is full, ARC0 writes it to the archived redo log.

End of image description.

This image is a partial screen snapshot of the Problem Details page. On the left side of the page, arranged vertically, are several read-only fields that provide problem details. The right side of the page is occupied by the Investigate and Resolve section, which contains two subsections, accessible through tabs. The Self Service subsection is displayed. It includes several links under three headings. The link entitled SQL Repair Advisor appears under the Resolve heading, the third heading. This link is called out in the image by the presence of a red rectangle.

The image admin067.gif illustrates a typical RAC architecture and how the Scheduler works with it. It shows the following elements:End of image description.

	
A database, which contains a Job Table

	
Instance 1, Instance 2, and Instance 3

	
Job Coordinator 1, which controls three job slaves

	
Job Coordinator 2, which controls three job slaves

	
Job Coordinator 3, which controls three job slaves

	
Nine job slaves

Also, the following relationships apply:

	
Job Coordinators 1, 2, and 3 each control three slaves

	
Instance 1 works with Job Coordinator 1

	
Instance 2 which works with Job Coordinator 2

	
Instance 3, which works with Job Coordinator 3

	
The three Job Coordinators exchange information among themselves

End of image description.

The image admin049.gif shows a failure during the prepare phase of a distributed transaction. User SCOTT and two databases, Local and Remote, are shown. The Local database has COMMIT_POINT_STRENGTH = 200. The Remote database has COMMIT_POINT_STRENGTH = 100. The sequence of events leading to failure is described in the text following the image.

End of image description.

The image admin050.gif shows commit point site settings in a distributed system. There are three databases shown: SALES, WAREHOUSE, and FINANCE. SALES serves as the commit point site in this example and has a COMMIT_POINT_STRENGTH setting of 100. WAREHOUSE and FINANCE have COMMIT_POINT_STRENGTH settings of 75 and 50, respectively.

End of image description.

This diagram shows a hierarchy of folders. The top folder is labeled ADR base. The single folder underneath it and connected to it by a straight line is named diag. Underneath diag are five folders, all connected to diag with straight lines, with the following names: asm, rdbms, tnslsnr, clients, and (others).

This is a text description of admin011.gif. The process that is illustrated by admin011.gif is described in the text that follows the image.

End of image description.

This image depicts a chain of steps, with a BEGIN icon at the left, an END icon at the right, and three different branches that connect the BEGIN and END points. Steps along the branches are indicated by a step icon. Immediately to the right the BEGIN icon is Step 1, with an arrow pointing from BEGIN to Step 1. From Step 1, three branches emerge that head toward the END icon. Two branches have multiple icons along them, where each icon represents a step. Right-pointing arrows connect the steps along a branch, indicating the order that the steps are run. The third branch has no steps after Step 1, and goes right to END. One of the other branches with steps on it momentary branches itself into two branches, which merge back into the single branch before proceeding to END. On one of those subbranches is Step 7, whose icon indicates that it is a nested chain.

Focusing on one branch, the branch goes like this: BEGIN, Step1, Step 3, Step 5, END.

The image admin041.gif shows the representative hierarchical arrangement of databases throughout a network to illustrate global database names. There are three root domains: EDU, COM, and ORG. There is one subdomain each for the EDU and ORG domains: Educational Institutions and Non-Commercial Organizations, respectively. There are three subdomains associated with the root domain COM: EXAMPLE_TOOLS, Other Companies, and EXAMPLE_AUTO. EXAMPLE_TOOLS is subdivided into three divisions:

	
DIVISION1contains the HQ and Finance databases.

	
DIVISION2 contains the Sales database.

	
DIVISION3 contains the MFG database.

The subdomain Other Companies has no subordinates.

EXAMPLE_AUTO is subdivided into geographical regions (ASIA, AMERICAS, EUROPE):

	
Subordinate to ASIA is JAPAN, with the SALES database Sales.

	
Subordinate to AMERICAS are US and MEXICO. US contains the HQ and Sales databases. MEXICO contains the SALES database. Subordinate to EUROPE are UK and GERMANY. Both UK and GERMANY contain a database called Sales.

End of image description.

This is a text description of max_util_limit_ex.gif. It illustrates the multilevel schema created by the example in the following text.

The resource plan APPS_PLAN is the top level plan. At the next lower level are the following: consumer group APP1_GROUP, subplan APP2_SUBPLAN, and consumer group APP3_GROUP. The MAX_UTILIZATION_LIMIT attribute is set to 40% for both APP1_GROUP and APP2_SUBPLAN.

At the next lower level, the subplan APP2_SUBPLAN further contains resource allocations for the consumer group APP2_OLTP_GROUP and the subplan APP2_REPORTS_SUBPLAN.The MAX_UTILIZATION_LIMIT attribute for APP2_OLTP_GROUP is set to 90%.

At the next lower level, the APP2_REPORTS_SUBPLAN contains the consumer groups APP2_ADHOC_GROUP and APP2_REPORT_GROUP. The MAX_UTILIZATION_LIMIT attribute for both these groups is set to 50%.

This image shows a table of alerts. The table columns are Severity, Category (Incident or Alert), Name, Impact, Message, and Alert Triggered. There are two rows in the table. The top row is a critical alert, as indicated by a red × in the Severity column.

The image admin046.gif shows a homogeneous distributed database. The figure shows three databases: HQ.EXAMPLE.COM, SALES.EXAMPLE.COM, and MFG.EXAMPLE.COM. Each database is connected to several client systems at Headquarters and the Sales and Manufacturing divisions.

End of image description.

The image admin032.gif shows a sample session tree with five nodes and their associated commit point strengths. The illustration shows how the commit point site is determined. The five nodes and their associated commit point strengths are SALES.EXAMPLE.COM (45), WAREHOUSE.EXAMPLE.COM (140), HQ.EXAMPLE.COM (165), FINANCE.EXAMPLE.COM (45), and HR.EXAMPLE.COM (45). HQ.EXAMPLE.COM is determined as the commit point site because it has the highest commit point strength.

End image description.

This image shows a portion of the top of the Problem Details page. Above the Problem Details page heading is a series of labels separated by right angle brackets that serve as right arrows. Each label is the name of a page. Clicking the label goes to that page. This is a breadcrumb trail. The displayed breadcrumb trail is: "Database Instance:database > Support Workbench >"

This is a text description of admin021.gif. This figure compares the structure of clustered tables to the structure of nonclustered tables.

One part of the illustration shows two tables as nonclustered tables. There are two distinct tables, EMP and DEPT. The EMP table contains (among other columns) the following columns: EMPNO, ENAME, DEPTNO. The DEPT table contains the following columns: DEPTNO, DNAME, LOC.

Another part of the illustration shows the EMP table and DEPT table created as clustered tables. The cluster key is DEPTNO. The information relating to DEPTNO is stored in the cluster. EMPNO, ENAME, and the other columns in the EMP table are all stored with the department data. Effectively, all data has been stored in the same table (cluster).

End of image description.

This is a text description of admin001.gif. This illustration is a flow diagram showing the choices available for database authentication schemes, depending on whether you are administering the database from a remote client or locally from the same system where the database resides. If you are administering the database locally, or from a remote client with a secure connection, then you have the following choices:

	
Operating system authentication

	
Password file authentication

If you are administering the database from a remote client, and you do not have a secure connection, then your only choice is to use password file authentication.

End of image description.

This is a text description of admin053.gif. This figure shows two multiplexed online redo log configurations. One is labeled LEGAL. The other is labeled ILLEGAL. The LEGAL configuration shows DISK A and DISK B, which contain 3 online redo log groups, each with 2 members. The ILLEGAL configuration shows DISK A and DISK B, but they contain only one online redo log group with 2 members. This is illegal because there must be at least 2 online redo log groups.

End of image description.

This figure illustrates the following windows over a repeating schedule that runs from 12AM to 11AM:

	
Window1 from 4AM to 11AM is Low Priority.

	
Window3 from 6AM to 9AM is High Priority.

	
Window6 from 6:30AM to 7AM is High Priority.

	
Window5 from 8AM to 11AM is Low Priority.

In addition, the following resource plans are scheduled:

	
A default resource plan from 12AM to 4AM

	
Resource plan 1 from 4AM to 6AM

	
Resource plan 3 from 6AM to 9AM

	
Resource plan 5 from 9AM to 11AM

The accompanying text explains which windows take effect when and why.

End of image description.

This is an image of the Create New Package page of the Quick Packaging wizard. At the top of the page is a progress bar that names all of the pages in the wizard, and indicates that you are on the first page. Below the progress bar and toward the right-hand side of the page are two buttons: Cancel and Next. Between the two buttons is the text Step 1 of 4. Below the buttons is a form that you fill in, with the following fields, arranged vertically: Package Name (with a default package name supplied), Package Description, Send to Oracle Support (with Yes and No options), My Oracle Support Username, My Oracle Support Password, Customer Support Identifier (CSI), Country (a list that currently shows the default country, the United States), and Create New Service Request (SR) (with Yes and No options).

This is a screenshot of the Create User-Reported Problem page. The main feature of the page is a table of issue types. The table has these columns: Select, Issue type, Description, and Recommended Advisor. There are four rows, each showing a different issue type. Under the Recommended Advisor column are names of available advisors. The listed issue types and corresponding Recommended Advisors are: System Performance (ADDM), Query Performance (SQL Advisor), Resource Usage (Memory Advisor), and None of the Above. Each issue type has a description in the Description column.

Above the table are two buttons: Run Recommended Advisor, and Continue with Creation of Problem. At the top right-hand corner of the page is a Cancel button.

Managing Resumable Space Allocation

Oracle Database provides a means for suspending, and later resuming, the execution of large database operations in the event of space allocation failures. Therefore, you can take corrective action instead of the Oracle Database server returning an error to the user. After the error condition is corrected, the suspended operation automatically resumes. This feature is called resumable space allocation. The statements that are affected are called resumable statements.

This section contains the following topics:

	
Resumable Space Allocation Overview

	
Enabling and Disabling Resumable Space Allocation

	
Detecting Suspended Statements

	
Operation-Suspended Alert

	
Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger

Resumable Space Allocation Overview

This section provides an overview of resumable space allocation. It describes how resumable space allocation works, and specifically defines qualifying statements and error conditions.

How Resumable Space Allocation Works

The following is an overview of how resumable space allocation works. Details are contained in later sections.

	
A statement executes in a resumable mode only if its session has been enabled for resumable space allocation by one of the following actions:

	
The RESUMABLE_TIMEOUT initialization parameter is set to a nonzero value.

	
The ALTER SESSION ENABLE RESUMABLE statement is issued.

	
A resumable statement is suspended when one of the following conditions occur (these conditions result in corresponding errors being signalled for non-resumable statements):

	
Out of space condition

	
Maximum extents reached condition

	
Space quota exceeded condition.

	
When the execution of a resumable statement is suspended, there are mechanisms to perform user supplied operations, log errors, and to query the status of the statement execution. When a resumable statement is suspended the following actions are taken:

	
The error is reported in the alert log.

	
The system issues the Resumable Session Suspended alert.

	
If the user registered a trigger on the AFTER SUSPEND system event, the user trigger is executed. A user supplied PL/SQL procedure can access the error message data using the DBMS_RESUMABLE package and the DBA_ or USER_RESUMABLE view.

	
Suspending a statement automatically results in suspending the transaction. Thus all transactional resources are held through a statement suspend and resume.

	
When the error condition is resolved (for example, as a result of user intervention or perhaps sort space released by other queries), the suspended statement automatically resumes execution and the Resumable Session Suspended alert is cleared.

	
A suspended statement can be forced to throw the exception using the DBMS_RESUMABLE.ABORT() procedure. This procedure can be called by a DBA, or by the user who issued the statement.

	
A suspension time out interval is associated with resumable statements. A resumable statement that is suspended for the timeout interval (the default is two hours) wakes up and returns the exception to the user.

	
A resumable statement can be suspended and resumed multiple times during execution.

What Operations are Resumable?

The following operations are resumable:

	
Queries

SELECT statements that run out of temporary space (for sort areas) are candidates for resumable execution. When using OCI, the calls OCIStmtExecute() and OCIStmtFetch() are candidates.

	
DML

INSERT, UPDATE, and DELETE statements are candidates. The interface used to execute them does not matter; it can be OCI, SQLJ, PL/SQL, or another interface. Also, INSERT INTO...SELECT from external tables can be resumable.

	
Import/Export

As for SQL*Loader, a command line parameter controls whether statements are resumable after recoverable errors.

	
DDL

The following statements are candidates for resumable execution:

	
CREATE TABLE ... AS SELECT

	
CREATE INDEX

	
ALTER INDEX ... REBUILD

	
ALTER TABLE ... MOVE PARTITION

	
ALTER TABLE ... SPLIT PARTITION

	
ALTER INDEX ... REBUILD PARTITION

	
ALTER INDEX ... SPLIT PARTITION

	
CREATE MATERIALIZED VIEW

	
CREATE MATERIALIZED VIEW LOG

What Errors are Correctable?

There are three classes of correctable errors:

	
Out of space condition

The operation cannot acquire any more extents for a table/index/temporary segment/undo segment/cluster/LOB/table partition/index partition in a tablespace. For example, the following errors fall in this category:

ORA-01653 unable to extend table ... in tablespace ...
ORA-01654 unable to extend index ... in tablespace ...

	
Maximum extents reached condition

The number of extents in a table/index/temporary segment/undo segment/cluster/LOB/table partition/index partition equals the maximum extents defined on the object. For example, the following errors fall in this category:

ORA-01631 max # extents ... reached in table ...
ORA-01632 max # extents ... reached in index ...

	
Space quota exceeded condition

The user has exceeded his assigned space quota in the tablespace. Specifically, this is noted by the following error:

ORA-01536 space quote exceeded for tablespace string

Resumable Space Allocation and Distributed Operations

In a distributed environment, if a user enables or disables resumable space allocation, or if you, as a DBA, alter the RESUMABLE_TIMEOUT initialization parameter, only the local instance is affected. In a distributed transaction, sessions or remote instances are suspended only if RESUMABLE has been enabled in the remote instance.

Parallel Execution and Resumable Space Allocation

In parallel execution, if one of the parallel execution server processes encounters a correctable error, that server process suspends its execution. Other parallel execution server processes will continue executing their respective tasks, until either they encounter an error or are blocked (directly or indirectly) by the suspended server process. When the correctable error is resolved, the suspended process resumes execution and the parallel operation continues execution. If the suspended operation is terminated, the parallel operation aborts, throwing the error to the user.

Different parallel execution server processes may encounter one or more correctable errors. This may result in firing an AFTER SUSPEND trigger multiple times, in parallel. Also, if a parallel execution server process encounters a non-correctable error while another parallel execution server process is suspended, the suspended statement is immediately aborted.

For parallel execution, every parallel execution coordinator and server process has its own entry in the DBA_ or USER_RESUMABLE view.

Enabling and Disabling Resumable Space Allocation

Resumable space allocation is only possible when statements are executed within a session that has resumable mode enabled. There are two means of enabling and disabling resumable space allocation. You can control it at the system level with the RESUMABLE_TIMEOUT initialization parameter, or users can enable it at the session level using clauses of the ALTER SESSION statement.

	
Note:

Because suspended statements can hold up some system resources, users must be granted the RESUMABLE system privilege before they are allowed to enable resumable space allocation and execute resumable statements.

Setting the RESUMABLE_TIMEOUT Initialization Parameter

You can enable resumable space allocation system wide and specify a timeout interval by setting the RESUMABLE_TIMEOUT initialization parameter. For example, the following setting of the RESUMABLE_TIMEOUT parameter in the initialization parameter file causes all sessions to initially be enabled for resumable space allocation and sets the timeout period to 1 hour:

RESUMABLE_TIMEOUT = 3600

If this parameter is set to 0, then resumable space allocation is disabled initially for all sessions. This is the default.

You can use the ALTER SYSTEM SET statement to change the value of this parameter at the system level. For example, the following statement will disable resumable space allocation for all sessions:

ALTER SYSTEM SET RESUMABLE_TIMEOUT=0;

Within a session, a user can issue the ALTER SESSION SET statement to set the RESUMABLE_TIMEOUT initialization parameter and enable resumable space allocation, change a timeout value, or to disable resumable mode.

Using ALTER SESSION to Enable and Disable Resumable Space Allocation

A user can enable resumable mode for a session, using the following SQL statement:

ALTER SESSION ENABLE RESUMABLE;

To disable resumable mode, a user issues the following statement:

ALTER SESSION DISABLE RESUMABLE;

The default for a new session is resumable mode disabled, unless the RESUMABLE_TIMEOUT initialization parameter is set to a nonzero value.

The user can also specify a timeout interval, and can provide a name used to identify a resumable statement. These are discussed separately in following sections.

	
See Also:

"Using a LOGON Trigger to Set Default Resumable Mode"

Specifying a Timeout Interval

A timeout period, after which a suspended statement will error if no intervention has taken place, can be specified when resumable mode is enabled. The following statement specifies that resumable transactions will time out and error after 3600 seconds:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600;

The value of TIMEOUT remains in effect until it is changed by another ALTER SESSION ENABLE RESUMABLE statement, it is changed by another means, or the session ends. The default timeout interval when using the ENABLE RESUMABLE TIMEOUT clause to enable resumable mode is 7200 seconds.

	
See Also:

"Setting the RESUMABLE_TIMEOUT Initialization Parameter" for other methods of changing the timeout interval for resumable space allocation

Naming Resumable Statements

Resumable statements can be identified by name. The following statement assigns a name to resumable statements:

ALTER SESSION ENABLE RESUMABLE TIMEOUT 3600 NAME 'insert into table';

The NAME value remains in effect until it is changed by another ALTER SESSION ENABLE RESUMABLE statement, or the session ends. The default value for NAME is 'User username(userid), Session sessionid, Instance instanceid'.

The name of the statement is used to identify the resumable statement in the DBA_RESUMABLE and USER_RESUMABLE views.

Using a LOGON Trigger to Set Default Resumable Mode

Another method of setting default resumable mode, other than setting the RESUMABLE_TIMEOUT initialization parameter, is that you can register a database level LOGON trigger to alter a user's session to enable resumable and set a timeout interval.

	
Note:

If there are multiple triggers registered that change default mode and timeout for resumable statements, the result will be unspecified because Oracle Database does not guarantee the order of trigger invocation.

Detecting Suspended Statements

When a resumable statement is suspended, the error is not raised to the client. In order for corrective action to be taken, Oracle Database provides alternative methods for notifying users of the error and for providing information about the circumstances.

Notifying Users: The AFTER SUSPEND System Event and Trigger

When a resumable statement encounter a correctable error, the system internally generates the AFTER SUSPEND system event. Users can register triggers for this event at both the database and schema level. If a user registers a trigger to handle this system event, the trigger is executed after a SQL statement has been suspended.

SQL statements executed within a AFTER SUSPEND trigger are always non-resumable and are always autonomous. Transactions started within the trigger use the SYSTEM rollback segment. These conditions are imposed to overcome deadlocks and reduce the chance of the trigger experiencing the same error condition as the statement.

Users can use the USER_RESUMABLE or DBA_RESUMABLE views, or the DBMS_RESUMABLE.SPACE_ERROR_INFO function, within triggers to get information about the resumable statements.

Triggers can also call the DBMS_RESUMABLE package to terminate suspended statements and modify resumable timeout values. In the following example, the default system timeout is changed by creating a system wide AFTER SUSPEND trigger that calls DBMS_RESUMABLE to set the timeout to 3 hours:

CREATE OR REPLACE TRIGGER resumable_default_timeout
AFTER SUSPEND
ON DATABASE
BEGIN
 DBMS_RESUMABLE.SET_TIMEOUT(10800);
END;
/

	
See Also:

Oracle Database PL/SQL Language Reference for information about triggers and system events

Using Views to Obtain Information About Suspended Statements

The following views can be queried to obtain information about the status of resumable statements:

	View	Description
	DBA_RESUMABLE
USER_RESUMABLE

	These views contain rows for all currently executing or suspended resumable statements. They can be used by a DBA, AFTER SUSPEND trigger, or another session to monitor the progress of, or obtain specific information about, resumable statements.
	V$SESSION_WAIT	When a statement is suspended the session invoking the statement is put into a wait state. A row is inserted into this view for the session with the EVENT column containing "statement suspended, wait error to be cleared".

	
See Also:

Oracle Database Reference for specific information about the columns contained in these views

Using the DBMS_RESUMABLE Package

The DBMS_RESUMABLE package helps control resumable space allocation. The following procedures can be invoked:

	Procedure	Description
	ABORT(sessionID)	This procedure aborts a suspended resumable statement. The parameter sessionID is the session ID in which the statement is executing. For parallel DML/DDL, sessionID is any session ID which participates in the parallel DML/DDL.
Oracle Database guarantees that the ABORT operation always succeeds. It may be called either inside or outside of the AFTER SUSPEND trigger.

The caller of ABORT must be the owner of the session with sessionID, have ALTER SYSTEM privilege, or have DBA privileges.

	GET_SESSION_TIMEOUT(sessionID)	This function returns the current timeout value of resumable space allocation for the session with sessionID. This returned timeout is in seconds. If the session does not exist, this function returns -1.
	SET_SESSION_TIMEOUT(sessionID, timeout)	This procedure sets the timeout interval of resumable space allocation for the session with sessionID. The parameter timeout is in seconds. The new timeout setting will applies to the session immediately. If the session does not exist, no action is taken.
	GET_TIMEOUT()	This function returns the current timeout value of resumable space allocation for the current session. The returned value is in seconds.
	SET_TIMEOUT(timeout)	This procedure sets a timeout value for resumable space allocation for the current session. The parameter timeout is in seconds. The new timeout setting applies to the session immediately.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for details about the DBMS_RESUMABLE package.

Operation-Suspended Alert

When a resumable session is suspended, an operation-suspended alert is issued on the object that needs allocation of resource for the operation to complete. Once the resource is allocated and the operation completes, the operation-suspended alert is cleared. See "Managing Tablespace Alerts" for more information on system-generated alerts.

Resumable Space Allocation Example: Registering an AFTER SUSPEND Trigger

In the following example, a system wide AFTER SUSPEND trigger is created and registered as user SYS at the database level. Whenever a resumable statement is suspended in any session, this trigger can have either of two effects:

	
If an undo segment has reached its space limit, then a message is sent to the DBA and the statement is aborted.

	
If any other recoverable error has occurred, the timeout interval is reset to 8 hours.

Here are the statements for this example:

CREATE OR REPLACE TRIGGER resumable_default
AFTER SUSPEND
ON DATABASE
DECLARE
 /* declare transaction in this trigger is autonomous */
 /* this is not required because transactions within a trigger
 are always autonomous */
 PRAGMA AUTONOMOUS_TRANSACTION;
 cur_sid NUMBER;
 cur_inst NUMBER;
 errno NUMBER;
 err_type VARCHAR2;
 object_owner VARCHAR2;
 object_type VARCHAR2;
 table_space_name VARCHAR2;
 object_name VARCHAR2;
 sub_object_name VARCHAR2;
 error_txt VARCHAR2;
 msg_body VARCHAR2;
 ret_value BOOLEAN;
 mail_conn UTL_SMTP.CONNECTION;
BEGIN
 -- Get session ID
 SELECT DISTINCT(SID) INTO cur_SID FROM V$MYSTAT;

 -- Get instance number
 cur_inst := userenv('instance');

 -- Get space error information
 ret_value :=
 DBMS_RESUMABLE.SPACE_ERROR_INFO(err_type,object_type,object_owner,
 table_space_name,object_name, sub_object_name);
 /*
 -- If the error is related to undo segments, log error, send email
 -- to DBA, and abort the statement. Otherwise, set timeout to 8 hours.
 --
 -- sys.rbs_error is a table which is to be
 -- created by a DBA manually and defined as
 -- (sql_text VARCHAR2(1000), error_msg VARCHAR2(4000),
 -- suspend_time DATE)
 */

 IF OBJECT_TYPE = 'UNDO SEGMENT' THEN
 /* LOG ERROR */
 INSERT INTO sys.rbs_error (
 SELECT SQL_TEXT, ERROR_MSG, SUSPEND_TIME
 FROM DBMS_RESUMABLE
 WHERE SESSION_ID = cur_sid AND INSTANCE_ID = cur_inst
);
 SELECT ERROR_MSG INTO error_txt FROM DBMS_RESUMABLE
 WHERE SESSION_ID = cur_sid and INSTANCE_ID = cur_inst;

 -- Send email to receipient through UTL_SMTP package
 msg_body:='Subject: Space Error Occurred

 Space limit reached for undo segment ' || object_name ||
 on ' || TO_CHAR(SYSDATE, 'Month dd, YYYY, HH:MIam') ||
 '. Error message was ' || error_txt;

 mail_conn := UTL_SMTP.OPEN_CONNECTION('localhost', 25);
 UTL_SMTP.HELO(mail_conn, 'localhost');
 UTL_SMTP.MAIL(mail_conn, 'sender@localhost');
 UTL_SMTP.RCPT(mail_conn, 'recipient@localhost');
 UTL_SMTP.DATA(mail_conn, msg_body);
 UTL_SMTP.QUIT(mail_conn);

 -- Abort the statement
 DBMS_RESUMABLE.ABORT(cur_sid);
 ELSE
 -- Set timeout to 8 hours
 DBMS_RESUMABLE.SET_TIMEOUT(28800);
 END IF;

 /* commit autonomous transaction */
 COMMIT;
END;
/

Part III

Schema Objects

Part III describes how to create and manage schema objects in Oracle Database. It includes the following chapters:

	
Chapter 18, "Managing Schema Objects"

	
Chapter 19, "Managing Space for Schema Objects"

	
Chapter 20, "Managing Tables"

	
Chapter 21, "Managing Indexes"

	
Chapter 22, "Managing Clusters"

	
Chapter 23, "Managing Hash Clusters"

	
Chapter 24, "Managing Views, Sequences, and Synonyms"

	
Chapter 25, "Repairing Corrupted Data"

27 Managing Resources with Oracle Database Resource Manager

In this chapter:

	
About Oracle Database Resource Manager

	
Assigning Sessions to Resource Consumer Groups

	
The Types of Resources Managed by the Resource Manager

	
Creating a Simple Resource Plan

	
Creating a Complex Resource Plan

	
Enabling Oracle Database Resource Manager and Switching Plans

	
Putting It All Together: Oracle Database Resource Manager Examples

	
Managing Multiple Database Instances on a Single Server

	
Maintaining Consumer Groups, Plans, and Directives

	
Viewing Database Resource Manager Configuration and Status

	
Monitoring Oracle Database Resource Manager

	
Interacting with Operating-System Resource Control

	
Oracle Database Resource Manager Reference

	
Note:

This chapter discusses using PL/SQL package procedures to administer the Resource Manager. An easier way to administer the Resource Manager is with the graphical user interface of Enterprise Manager. For instructions about administering Resource Manager with Enterprise Manager, see Oracle Database 2 Day DBA.

Changing Datafile Size

This section describes the various ways to alter the size of a datafile, and contains the following topics:

	
Enabling and Disabling Automatic Extension for a Datafile

	
Manually Resizing a Datafile

Enabling and Disabling Automatic Extension for a Datafile

You can create datafiles or alter existing datafiles so that they automatically increase in size when more space is needed in the database. The file size increases in specified increments up to a specified maximum.

Setting your datafiles to extend automatically provides these advantages:

	
Reduces the need for immediate intervention when a tablespace runs out of space

	
Ensures applications will not halt or be suspended because of failures to allocate extents

To determine whether a datafile is auto-extensible, query the DBA_DATA_FILES view and examine the AUTOEXTENSIBLE column.

You can specify automatic file extension by specifying an AUTOEXTEND ON clause when you create datafiles using the following SQL statements:

	
CREATE DATABASE

	
ALTER DATABASE

	
CREATE TABLESPACE

	
ALTER TABLESPACE

You can enable or disable automatic file extension for existing datafiles, or manually resize a datafile, using the ALTER DATABASE statement. For a bigfile tablespace, you are able to perform these operations using the ALTER TABLESPACE statement.

The following example enables automatic extension for a datafile added to the users tablespace:

ALTER TABLESPACE users
 ADD DATAFILE '/u02/oracle/rbdb1/users03.dbf' SIZE 10M
 AUTOEXTEND ON
 NEXT 512K
 MAXSIZE 250M;

The value of NEXT is the minimum size of the increments added to the file when it extends. The value of MAXSIZE is the maximum size to which the file can automatically extend.

The next example disables the automatic extension for the datafile.

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/users03.dbf'
 AUTOEXTEND OFF;

	
See Also:

Oracle Database SQL Language Reference for more information about the SQL statements for creating or altering datafiles

Manually Resizing a Datafile

You can manually increase or decrease the size of a datafile using the ALTER DATABASE statement. Therefore, you can add more space to your database without adding more datafiles. This is beneficial if you are concerned about reaching the maximum number of datafiles allowed in your database.

For a bigfile tablespace you can use the ALTER TABLESPACE statement to resize a datafile. You are not allowed to add a datafile to a bigfile tablespace.

Manually reducing the sizes of datafiles enables you to reclaim unused space in the database. This is useful for correcting errors in estimates of space requirements.

In the next example, assume that the datafile /u02/oracle/rbdb1/stuff01.dbf has extended up to 250M. However, because its tablespace now stores smaller objects, the datafile can be reduced in size.

The following statement decreases the size of datafile /u02/oracle/rbdb1/stuff01.dbf:

ALTER DATABASE DATAFILE '/u02/oracle/rbdb1/stuff01.dbf'
 RESIZE 100M;

	
Note:

It is not always possible to decrease the size of a file to a specific value. It could be that the file contains data beyond the specified decreased size, in which case the database will return an error.

Configuring Maintenance Windows

You may want to adjust the predefined maintenance windows to a time suitable to your database environment or create a new maintenance window. You can customize maintenance windows using the DBMS_SCHEDULER PL/SQL package.

This section contains the following topics:

	
Modifying a Maintenance Window

	
Creating a New Maintenance Window

	
Removing a Maintenance Window

Modifying a Maintenance Window

The DBMS_SCHEDULER PL/SQL package includes a SET_ATTRIBUTE procedure for modifying the attributes of a window. For example, the following script changes the duration of the maintenance window SATURDAY_WINDOW to 4 hours:

BEGIN
 dbms_scheduler.disable(
 name => 'SATURDAY_WINDOW');
 dbms_scheduler.set_attribute(
 name => 'SATURDAY_WINDOW',
 attribute => 'DURATION',
 value => numtodsinterval(4, 'hour'));
 dbms_scheduler.enable(
 name => 'SATURDAY_WINDOW');
END;
/

Note that you must use the DBMS_SCHEDULER.DISABLE subprogram to disable the window before making changes to it, and then re-enable the window with DBMS_SCHEDULER.ENABLE when you are finished. If you change a window when it is currently open, the change does not take effect until the next time the window opens.

	
See Also:

"Managing Job Scheduling and Job Priorities with Windows" for more information about modifying windows.

Creating a New Maintenance Window

To create a new maintenance window, you must create an Oracle Scheduler window object and then add it to the window group MAINTENANCE_WINDOW_GROUP. You use the DBMS_SCHEDULER.CREATE_WINDOW package procedure to create the window, and the DBMS_SCHEDULER.ADD_GROUP_MEMBER procedure to add the new window to the window group.

The following example creates a maintenance window named EARLY_MORNING_WINDOW. This window runs for one hour daily between 5 a.m. and 6 a.m.

BEGIN
 dbms_scheduler.create_window(
 window_name => 'EARLY_MORNING_WINDOW',
 duration => numtodsinterval(1, 'hour'),
 resource_plan => 'DEFAULT_MAINTENANCE_PLAN',
 repeat_interval => 'FREQ=DAILY;BYHOUR=5;BYMINUTE=0;BYSECOND=0');
 dbms_scheduler.add_group_member(
 group_name => 'MAINTENANCE_WINDOW_GROUP',
 member => 'EARLY_MORNING_WINDOW');
END;
/

	
See Also:

	
"Creating Windows"

	
Oracle Database PL/SQL Packages and Types Reference for information on the DBMS_SCHEDULER package

Removing a Maintenance Window

To remove an existing maintenance window, remove it from the MAINTENANCE_WINDOW_GROUP window group. The window continues to exist but no longer runs automated maintenance tasks. Any other Oracle Scheduler jobs assigned to this window continue to run as usual.

The following example removes EARLY_MORNING_WINDOW from the window group:

BEGIN
 DBMS_SCHEDULER.REMOVE_GROUP_MEMBER(
 group_name => 'MAINTENANCE_WINDOW_GROUP',
 member => 'EARLY_MORNING_WINDOW');
END;
/

	
See Also:

	
"Removing a Member from a Window Group"

	
"Dropping Windows"

	
Oracle Database PL/SQL Packages and Types Reference for information on the DBMS_SCHEDULER package

Creating a Complex Resource Plan

When your situation calls for a more complex resource plan, you must create the plan, with its directives and consumer groups, in a staging area called the pending area, and then validate the plan before storing it in the data dictionary.

The following is a summary of the steps required to create a complex resource plan.

	
Note:

A complex resource plan is any resource plan that is not created with the DBMS_RESOURCE_MANAGER.CREATE_SIMPLE_PLAN procedure.

Step 1: Create a pending area.

Step 2: Create, modify, or delete consumer groups.

Step 3: Create the resource plan.

Step 4: Create resource plan directives.

Step 5: Validate the pending area.

Step 6: Submit the pending area.

You use procedures in the DBMS_RESOURCE_MANAGER PL/SQL package to complete these steps. The following sections provide details:

	
About the Pending Area

	
Creating a Pending Area

	
Creating Resource Consumer Groups

	
Creating a Resource Plan

	
Creating Resource Plan Directives

	
Validating the Pending Area

	
Submitting the Pending Area

	
Clearing the Pending Area

	
See Also:

	
Predefined Consumer Group Mapping Rules

	
Oracle Database PL/SQL Packages and Types Reference for details on the DBMS_RESOURCE_MANAGER PL/SQL package.

	
"Elements of the Resource Manager"

About the Pending Area

The pending area is a staging area where you can create a new resource plan, update an existing plan, or delete a plan without affecting currently running applications. When you create a pending area, the database initializes it and then copies existing plans into the pending area so that they can be updated.

	
Tip:

After you create the pending area, if you list all plans by querying the DBA_RSRC_PLANS data dictionary view, you see two copies of each plan: one with the PENDING status, and one without. The plans with the PENDING status reflect any changes you made to the plans since creating the pending area. Pending changes can also be viewed for consumer groups using DBA_RSRC_CONSUMER_GROUPS and for resource plan directives using DBA_RSRC_PLAN_DIRECTIVES. See Resource Manager Data Dictionary Views for more information.

After you make changes in the pending area, you validate the pending area and then submit it. Upon submission, all pending changes are applied to the data dictionary, and the pending area is cleared and deactivated.

If you attempt to create, update, or delete a plan (or create, update, or delete consumer groups or resource plan directives) without first creating the pending area, you receive an error message.

Submitting the pending area does not activate any new plan that you create; it just stores new or updated plan information in the data dictionary. However, if you modify a plan that is currently active, the plan is reactivated with the new plan definition. See "Enabling Oracle Database Resource Manager and Switching Plans" for information about activating a resource plan.

When you create a pending area, no other users can create one until you submit or clear the pending area or log out.

Creating a Pending Area

You create a pending area with the CREATE_PENDING_AREA procedure.

Example: Creating a pending area:

The following PL/SQL block creates and initializes a pending area:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PENDING_AREA();
END;
/

Creating Resource Consumer Groups

You create a resource consumer group using the CREATE_CONSUMER_GROUP procedure. You can specify the following parameters:

	Parameter	Description
	CONSUMER_GROUP	Name to assign to the consumer group.
	COMMENT	Any comment.
	CPU_MTH	Deprecated. Use MGMT_MTH.
	MGMT_MTH	The resource allocation method for distributing CPU among sessions in the consumer group. The default is 'ROUND-ROBIN', which uses a round-robin scheduler to ensure that sessions are fairly executed. 'RUN-TO-COMPLETION' specifies that long-running sessions are scheduled ahead of other sessions. This setting helps long-running sessions (such as batch processes) complete sooner.

Example: Creating a Resource Consumer Group

The following PL/SQL block creates a consumer group called OLTP with the default (ROUND-ROBIN) method of allocating resources to sessions in the group:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_CONSUMER_GROUP (
 CONSUMER_GROUP => 'OLTP',
 COMMENT => 'OLTP applications');
END;
/

	
See Also:

	
"Updating a Consumer Group"

	
"Deleting a Consumer Group"

Creating a Resource Plan

You create a resource plan with the CREATE_PLAN procedure. You can specify the parameters shown in the following table. The first two parameters are required. The remainder are optional.

	Parameter	Description
	PLAN	Name to assign to the plan.
	COMMENT	Any descriptive comment.
	CPU_MTH	Deprecated. Use MGMT_MTH.
	ACTIVE_SESS_POOL_MTH	Active session pool resource allocation method. ACTIVE_SESS_POOL_ABSOLUTE is the default and only method available.
	PARALLEL_DEGREE_LIMIT_MTH	Resource allocation method for specifying a limit on the degree of parallelism of any operation. PARALLEL_DEGREE_LIMIT_ABSOLUTE is the default and only method available.
	QUEUEING_MTH	Queuing resource allocation method. Controls the order in which queued inactive sessions are removed from the queue and added to the active session pool. FIFO_TIMEOUT is the default and only method available.
	MGMT_MTH	Resource allocation method for specifying how much CPU each consumer group or subplan gets. 'EMPHASIS', the default method, is for single-level or multilevel plans that use percentages to specify how CPU is distributed among consumer groups. 'RATIO' is for single-level plans that use ratios to specify how CPU is distributed.
	SUB_PLAN	If TRUE, the plan cannot be used as the top plan; it can be used as a subplan only. Default is FALSE.

Example: Creating a Resource Plan

The following PL/SQL block creates a resource plan named DAYTIME:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN(
 PLAN => 'DAYTIME',
 COMMENT => 'More resources for OLTP applications');
END;
/

About the RATIO CPU Allocation Method

The RATIO method is an alternate CPU allocation method intended for simple plans that have only a single level of CPU allocation. Instead of percentages, you specify numbers corresponding to the ratio of CPU that you want to give to each consumer group. To use the RATIO method, you set the MGMT_MTH argument for the CREATE_PLAN procedure to 'RATIO'. See "Creating Resource Plan Directives" for an example of a plan that uses this method.

	
See Also:

	
"Updating a Plan"

	
"Deleting a Plan"

Creating Resource Plan Directives

You use the CREATE_PLAN_DIRECTIVE procedure to create resource plan directives. Each directive belongs to a plan or subplan and allocates resources to either a consumer group or subplan.

	
Note:

The set of directives for a resource plan and its subplans can name a particular subplan only once.
You can specify directives for a particular consumer group in a top plan and its subplans. However, Oracle recommends that the set of directives for a resource plan and its subplans name a particular consumer group only once.

You can specify the following parameters:

	Parameter	Description
	PLAN	Name of the resource plan to which the directive belongs.
	GROUP_OR_SUBPLAN	Name of the consumer group or subplan to which to allocate resources.
	COMMENT	Any comment.
	CPU_P1	Deprecated. Use MGMT_P1.
	CPU_P2	Deprecated. Use MGMT_P2.
	CPU_P3	Deprecated. Use MGMT_P3.
	CPU_P4	Deprecated. Use MGMT_P4.
	CPU_P5	Deprecated. Use MGMT_P5.
	CPU_P6	Deprecated. Use MGMT_P6.
	CPU_P7	Deprecated. Use MGMT_P7.
	CPU_P8	Deprecated. Use MGMT_P8.
	ACTIVE_SESS_POOL_P1	Specifies the maximum number of concurrently active sessions for a consumer group. Other sessions await execution in an inactive session queue. Default is UNLIMITED.
	QUEUEING_P1	Specifies time (in seconds) after which a session in an inactive session queue (waiting for execution) times out and the call is aborted. Default is UNLIMITED.
	PARALLEL_DEGREE_LIMIT_P1	Specifies a limit on the degree of parallelism for any operation. Default is UNLIMITED.
	SWITCH_GROUP	Specifies the consumer group to which a session is switched if switch criteria are met. If the group name is 'CANCEL_SQL', then the current call is canceled when switch criteria are met. If the group name is 'KILL_SESSION', then the session is killed when switch criteria are met. Default is NULL.
If the group name is 'CANCEL_SQL', the SWITCH_FOR_CALL parameter is always set to TRUE, overriding the user-specified setting.

	SWITCH_TIME	Specifies the time (in CPU seconds) that a call can execute before an action is taken. Default is UNLIMITED. The action is specified by SWITCH_GROUP.
	SWITCH_ESTIMATE	If TRUE, the database estimates the execution time of each call, and if estimated execution time exceeds SWITCH_TIME, the session is switched to the SWITCH_GROUP before beginning the call. Default is FALSE.
The execution time estimate is obtained from the optimizer. The accuracy of the estimate is dependent on many factors, especially the quality of the optimizer statistics. In general, you should expect statistics to be no more accurate than ± 10 minutes.

	MAX_EST_EXEC_TIME	Specifies the maximum execution time (in CPU seconds) allowed for a call. If the optimizer estimates that a call will take longer than MAX_EST_EXEC_TIME, the call is not allowed to proceed and ORA-07455 is issued. If the optimizer does not provide an estimate, this directive has no effect. Default is UNLIMITED.
The accuracy of the estimate is dependent on many factors, especially the quality of the optimizer statistics. In general, you should expect statistics to be no more accurate than ± 10 minutes.

	UNDO_POOL	Sets a maximum in kilobytes (K) on the total amount of undo for uncommitted transactions that can be generated by a consumer group. Default is UNLIMITED.
	MAX_IDLE_TIME	Indicates the maximum session idle time, in seconds. Default is NULL, which implies unlimited.
	MAX_IDLE_BLOCKER_TIME	Indicates the maximum session idle time of a blocking session, in seconds. Default is NULL, which implies unlimited.
	SWITCH_TIME_IN_CALL	Deprecated. Use SWITCH_FOR_CALL.
	MGMT_P1	For a plan with the MGMT_MTH parameter set to EMPHASIS, specifies the CPU percentage to allocate at the first level. For MGMT_MTH set to RATIO, specifies the weight of CPU usage. Default is NULL for all MGMT_Pn parameters.
	MGMT_P2	For EMPHASIS, specifies CPU percentage to allocate at the second level. Not applicable for RATIO.
	MGMT_P3	For EMPHASIS, specifies CPU percentage to allocate at the third level. Not applicable for RATIO.
	MGMT_P4	For EMPHASIS, specifies CPU percentage to allocate at the fourth level. Not applicable for RATIO.
	MGMT_P5	For EMPHASIS, specifies CPU percentage to allocate at the fifth level. Not applicable for RATIO.
	MGMT_P6	For EMPHASIS, specifies CPU percentage to allocate at the sixth level. Not applicable for RATIO.
	MGMT_P7	For EMPHASIS, specifies CPU percentage to allocate at the seventh level. Not applicable for RATIO.
	MGMT_P8	For EMPHASIS, specifies CPU percentage to allocate at the eighth level. Not applicable for RATIO.
	SWITCH_IO_MEGABYTES	Specifies the number of megabytes of I/O that a session can transfer (read and write) before an action is taken. Default is UNLIMITED. The action is specified by SWITCH_GROUP.
	SWITCH_IO_REQS	Specifies the number of I/O requests that a session can execute before an action is taken. Default is UNLIMITED. The action is specified by SWITCH_GROUP.
	SWITCH_FOR_CALL	If TRUE, a session that was automatically switched to another consumer group (according to SWITCH_TIME, SWITCH_IO_MEGABYTES, or SWITCH_IO_REQS) is returned to its original consumer group when the top level call completes. Default is NULL.
	MAX_UTILIZATION_LIMIT	Absolute maximum CPU utilization percentage permitted for the consumer group. This value overrides any level allocations for CPU (MGMT_P1 through MGMT_P8), and also imposes a limit on total CPU utilization when unused allocations are redistributed. You can specify this attribute and leave MGMT_P1 through MGMT_P8 NULL. You cannot specify this attribute for a subplan.
	PARALLEL_TARGET_PERCENTAGE	Specifies the maximum percentage of the parallel server pool that a particular consumer group can use. The number of parallel servers used by a particular consumer group is counted as the sum of the parallel servers used by all sessions in that consumer group.
	PARALLEL_QUEUE_TIMEOUT	Specifies the maximum time, in seconds, that a parallel statement can wait in the parallel statement queue before it is timed out.

Example 1:

The following PL/SQL block creates a resource plan directive for plan DAYTIME. (It assumes that the DAYTIME plan and OLTP consumer group are already created in the pending area.)

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OLTP',
 COMMENT => 'OLTP group',
 MGMT_P1 => 75);
END;
/

This directive assigns 75% of CPU resources to the OLTP consumer group at level 1.

To complete the plan shown in Figure 27-1, you would create the REPORTING consumer group, and then execute the following PL/SQL block:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'REPORTING',
 COMMENT => 'Reporting group',
 MGMT_P1 => 15,
 PARALLEL_DEGREE_LIMIT_P1 => 8,
 ACTIVE_SESS_POOL_P1 => 4);

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE (
 PLAN => 'DAYTIME',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'This one is required',
 MGMT_P1 => 10);
END;
/

In this plan, consumer group REPORTING has a maximum degree of parallelism of 8 for any operation, while none of the other consumer groups are limited in their degree of parallelism. In addition, the REPORTING group has a maximum of 4 concurrently active sessions.

Example 2:

This example uses the RATIO method to allocate CPU, which uses ratios instead of percentages. Suppose your application suite offers three service levels to clients: Gold, Silver, and Bronze. You create three consumer groups named GOLD_CG, SILVER_CG, and BRONZE_CG, and you create the following resource plan:

BEGIN
 DBMS_RESOURCE_MANAGER.CREATE_PLAN
 (PLAN => 'SERVICE_LEVEL_PLAN',
 MGMT_MTH => 'RATIO',
 COMMENT => 'Plan that supports three service levels');

 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'GOLD_CG',
 COMMENT => 'Gold service level customers',
 MGMT_P1 => 10);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'SILVER_CG',
 COMMENT => 'Silver service level customers',
 MGMT_P1 => 5);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'BRONZE_CG',
 COMMENT => 'Bronze service level customers',
 MGMT_P1 => 2);
 DBMS_RESOURCE_MANAGER.CREATE_PLAN_DIRECTIVE
 (PLAN => 'SERVICE_LEVEL_PLAN',
 GROUP_OR_SUBPLAN => 'OTHER_GROUPS',
 COMMENT => 'Lowest priority sessions',
 MGMT_P1 => 1);
END;
/

The ratio of CPU allocation is 10:5:2:1 for the GOLD_CG, SILVER_CG, BRONZE_CG, and OTHER_GROUPS consumer groups, respectively.

If sessions exist only in the GOLD_CG and SILVER_CG consumer groups, then the ratio of CPU allocation is 10:5 between the two groups.

How Resource Plan Directives Interact

You may have occasion to reference the same consumer group from the top plan and any number of subplans. This results in multiple resource plan directives referring to the same consumer group. Although this is allowed, Oracle strongly recommends that you avoid referencing the same consumer group from a top plan and any of its subplans.

When multiple resource plan directives refer to the same consumer group, the following rules apply:

	
The parallel degree limit for the consumer group will be the minimum of all the incoming values.

	
The active session pool for the consumer group will be the sum of all the incoming values and the queue timeout will be the minimum of all incoming timeout values.

	
The undo pool for the consumer group will be the sum of all the incoming values.

	
If there is more than one SWITCH_TIME, SWITCH_IO_MEGABYTES, or SWITCH_IO_REQS, Oracle Database Resource Manager (the Resource Manager) chooses the most restrictive of all incoming values. Specifically:

	
SWITCH_TIME = min (all incoming SWITCH_TIME values)

	
SWITCH_IO_MEGABYTES = min (all incoming SWITCH_IO_MEGABYTES values)

	
SWITCH_IO_REQS = min (all incoming SWITCH_IO_REQS values)

	
SWITCH_ESTIMATE = TRUE overrides SWITCH_ESTIMATE = FALSE

	
Note:

If both plan directives specify the same switch time, but different switch groups, then the choice about which group to switch to is statically but arbitrarily decided by the Resource Manager.

	
SWITCH_FOR_CALL is TRUE if any of the incoming values are TRUE.

	
The maximum estimated execution time will be the most restrictive of all incoming values. Specifically:

MAX_EST_EXEC_TIME = min (all incoming MAX_EST_EXEC_TIME values)

	
The maximum idle time is the minimum of all incoming values.

	
The maximum idle blocker time is the minimum of all incoming values.

	
See Also:

	
"Updating a Resource Plan Directive"

	
"Deleting a Resource Plan Directive"

Validating the Pending Area

At any time when you are making changes in the pending area, you can call VALIDATE_PENDING_AREA to ensure that the pending area is valid so far.

The following rules must be adhered to, and are checked by the validate procedure:

	
No plan can contain any loops. A loop occurs when a subplan contains a directive that references a plan that is above the subplan in the plan hierarchy. For example, a subplan cannot reference the top plan.

	
All plans and resource consumer groups referred to by plan directives must exist.

	
All plans must have plan directives that point to either plans or resource consumer groups.

	
All percentages in any given level must not add up to greater than 100.

	
A plan that is currently being used as a top plan by an active instance cannot be deleted.

	
The following parameters can appear only in plan directives that refer to resource consumer groups, not other resource plans:

	
PARALLEL_DEGREE_LIMIT_P1

	
ACTIVE_SESS_POOL_P1

	
QUEUEING_P1

	
SWITCH_GROUP

	
SWITCH_TIME

	
SWITCH_ESTIMATE

	
SWITCH_IO_REQS

	
SWITCH_IO_MEGABYTES

	
MAX_EST_EXEC_TIME

	
UNDO_POOL

	
MAX_IDLE_TIME

	
MAX_IDLE_BLOCKER_TIME

	
SWITCH_FOR_CALL

	
MAX_UTILIZATION_LIMIT

	
There can be no more than 31 resource consumer groups in any active plan. Also, at most, a plan can have 31 children.

	
Plans and resource consumer groups cannot have the same name.

	
There must be a plan directive for OTHER_GROUPS somewhere in any active plan. This ensures that a session that is not part of any of the consumer groups included in the currently active plan is allocated resources (as specified by the directive for OTHER_GROUPS).

VALIDATE_PENDING_AREA raises an error if any of the preceding rules are violated. You can then make changes to fix any problems and call the procedure again.

It is possible to create "orphan" consumer groups that have no plan directives referring to them. This allows the creation of consumer groups that will not currently be used, but might be part of some plan to be implemented in the future.

Example: Validating the Pending Area:

The following PL/SQL block validates the pending area.

BEGIN
 DBMS_RESOURCE_MANAGER.VALIDATE_PENDING_AREA();
END;
/

	
See Also:

"About the Pending Area"

Submitting the Pending Area

After you have validated your changes, call the SUBMIT_PENDING_AREA procedure to make your changes active.

The submit procedure also performs validation, so you do not necessarily need to make separate calls to the validate procedure. However, if you are making major changes to plans, debugging problems is often easier if you incrementally validate your changes. No changes are submitted (made active) until validation is successful on all of the changes in the pending area.

The SUBMIT_PENDING_AREA procedure clears (deactivates) the pending area after successfully validating and committing the changes.

	
Note:

A call to SUBMIT_PENDING_AREA might fail even if VALIDATE_PENDING_AREA succeeds. This can happen if, for example, a plan being deleted is loaded by an instance after a call to VALIDATE_PENDING_AREA, but before a call to SUBMIT_PENDING_AREA.

Example: Submitting the Pending Area:

The following PL/SQL block submits the pending area:

BEGIN
 DBMS_RESOURCE_MANAGER.SUBMIT_PENDING_AREA();
END;
/

	
See Also:

"About the Pending Area"

Clearing the Pending Area

There is also a procedure for clearing the pending area at any time. This PL/SQL block causes all of your changes to be cleared from the pending area and deactivates the pending area:

BEGIN
 DBMS_RESOURCE_MANAGER.CLEAR_PENDING_AREA();
END;
/

After calling CLEAR_PENDING_AREA, you must call the CREATE_PENDING_AREA procedure before you can again attempt to make changes.

	
See Also:

"About the Pending Area"

Planning the Redo Log

This section provides guidelines you should consider when configuring a database instance redo log and contains the following topics:

	
Multiplexing Redo Log Files

	
Placing Redo Log Members on Different Disks

	
Planning the Size of Redo Log Files

	
Planning the Block Size of Redo Log Files

	
Choosing the Number of Redo Log Files

	
Controlling Archive Lag

Multiplexing Redo Log Files

To protect against a failure involving the redo log itself, Oracle Database allows a multiplexed redo log, meaning that two or more identical copies of the redo log can be automatically maintained in separate locations. For the most benefit, these locations should be on separate disks. Even if all copies of the redo log are on the same disk, however, the redundancy can help protect against I/O errors, file corruption, and so on. When redo log files are multiplexed, LGWR concurrently writes the same redo log information to multiple identical redo log files, thereby eliminating a single point of redo log failure.

Multiplexing is implemented by creating groups of redo log files. A group consists of a redo log file and its multiplexed copies. Each identical copy is said to be a member of the group. Each redo log group is defined by a number, such as group 1, group 2, and so on.

Figure 12-2 Multiplexed Redo Log Files

[image: Description of Figure 12-2 follows]

In Figure 12-2, A_LOG1 and B_LOG1 are both members of Group 1, A_LOG2 and B_LOG2 are both members of Group 2, and so forth. Each member in a group must be the same size.

Each member of a log file group is concurrently active—that is, concurrently written to by LGWR—as indicated by the identical log sequence numbers assigned by LGWR. In Figure 12-2, first LGWR writes concurrently to both A_LOG1 and B_LOG1. Then it writes concurrently to both A_LOG2 and B_LOG2, and so on. LGWR never writes concurrently to members of different groups (for example, to A_LOG1 and B_LOG2).

	
Note:

Oracle recommends that you multiplex your redo log files. The loss of the log file data can be catastrophic if recovery is required. Note that when you multiplex the redo log, the database must increase the amount of I/O that it performs. Depending on your configuration, this may impact overall database performance.

Responding to Redo Log Failure

Whenever LGWR cannot write to a member of a group, the database marks that member as INVALID and writes an error message to the LGWR trace file and to the database alert log to indicate the problem with the inaccessible files. The specific reaction of LGWR when a redo log member is unavailable depends on the reason for the lack of availability, as summarized in the table that follows.

	Condition	LGWR Action
	LGWR can successfully write to at least one member in a group	Writing proceeds as normal. LGWR writes to the available members of a group and ignores the unavailable members.
	LGWR cannot access the next group at a log switch because the group must be archived	Database operation temporarily halts until the group becomes available or until the group is archived.
	All members of the next group are inaccessible to LGWR at a log switch because of media failure	Oracle Database returns an error, and the database instance shuts down. In this case, you may need to perform media recovery on the database from the loss of a redo log file.
If the database checkpoint has moved beyond the lost redo log, media recovery is not necessary, because the database has saved the data recorded in the redo log to the datafiles. You need only drop the inaccessible redo log group. If the database did not archive the bad log, use ALTER DATABASE CLEAR UNARCHIVED LOG to disable archiving before the log can be dropped.

	All members of a group suddenly become inaccessible to LGWR while it is writing to them	Oracle Database returns an error and the database instance immediately shuts down. In this case, you may need to perform media recovery. If the media containing the log is not actually lost--for example, if the drive for the log was inadvertently turned off--media recovery may not be needed. In this case, you need only turn the drive back on and let the database perform automatic instance recovery.

Legal and Illegal Configurations

In most cases, a multiplexed redo log should be symmetrical: all groups of the redo log should have the same number of members. However, the database does not require that a multiplexed redo log be symmetrical. For example, one group can have only one member, and other groups can have two members. This configuration protects against disk failures that temporarily affect some redo log members but leave others intact.

The only requirement for an instance redo log is that it have at least two groups. Figure 12-3 shows legal and illegal multiplexed redo log configurations. The second configuration is illegal because it has only one group.

Figure 12-3 Legal and Illegal Multiplexed Redo Log Configuration

[image: Description of Figure 12-3 follows]

Placing Redo Log Members on Different Disks

When setting up a multiplexed redo log, place members of a group on different physical disks. If a single disk fails, then only one member of a group becomes unavailable to LGWR and other members remain accessible to LGWR, so the instance can continue to function.

If you archive the redo log, spread redo log members across disks to eliminate contention between the LGWR and ARCn background processes. For example, if you have two groups of multiplexed redo log members (a duplexed redo log), place each member on a different disk and set your archiving destination to a fifth disk. Doing so will avoid contention between LGWR (writing to the members) and ARCn (reading the members).

Datafiles should also be placed on different disks from redo log files to reduce contention in writing data blocks and redo records.

Planning the Size of Redo Log Files

When setting the size of redo log files, consider whether you will be archiving the redo log. Redo log files should be sized so that a filled group can be archived to a single unit of offline storage media (such as a tape or disk), with the least amount of space on the medium left unused. For example, suppose only one filled redo log group can fit on a tape and 49% of the tape storage capacity remains unused. In this case, it is better to decrease the size of the redo log files slightly, so that two log groups could be archived on each tape.

All members of the same multiplexed redo log group must be the same size. Members of different groups can have different sizes. However, there is no advantage in varying file size between groups. If checkpoints are not set to occur between log switches, make all groups the same size to guarantee that checkpoints occur at regular intervals.

The minimum size permitted for a redo log file is 4 MB.

	
See Also:

Your operating system–specific Oracle documentation. The default size of redo log files is operating system dependent.

Planning the Block Size of Redo Log Files

Unlike the database block size, which can be between 2K and 32K, redo log files always default to a block size that is equal to the physical sector size of the disk. Historically, this has typically been 512 bytes (512B).

Some newer high-capacity disk drives offer 4K byte (4K) sector sizes for both increased ECC capability and improved format efficiency. Most Oracle Database platforms are able to detect this larger sector size. The database then automatically creates redo log files with a 4K block size on those disks.

However, with a block size of 4K, there is increased redo wastage. In fact, the amount of redo wastage in 4K blocks versus 512B blocks is significant. You can determine the amount of redo wastage by viewing the statistics stored in the V$SESSTAT and V$SYSSTAT views.

SQL> SELECT name, value FROM v$sysstat WHERE name = 'redo wastage';

NAME VALUE
-------------------------------- ----------
redo wastage 17941684

To avoid the additional redo wastage, if you are using emulation-mode disks—4K sector size disk drives that emulate a 512B sector size at the disk interface—you can override the default 4K block size for redo logs by specifying a 512B block size or, for some platforms, a 1K block size. However, you will incur a significant performance degradation when a redo log write is not aligned with the beginning of the 4K physical sector. Because seven out of eight 512B slots in a 4K physical sector are not aligned, performance degradation typically does occur. Thus, you must evaluate the trade-off between performance and disk wastage when planning the redo log block size on 4K sector size emulation-mode disks.

Beginning with Oracle Database 11g Release 2, you can specify the block size of online redo log files with the BLOCKSIZE keyword in the CREATE DATABASE, ALTER DATABASE, and CREATE CONTROLFILE statements. The permissible block sizes are 512, 1024, and 4096.

The following statement adds a redo log file group with a block size of 512B. The BLOCKSIZE 512 clause is valid but not required for 512B sector size disks. For 4K sector size emulation-mode disks, the BLOCKSIZE 512 clause overrides the default 4K size.

ALTER DATABASE orcl ADD LOGFILE
 GROUP 4 ('/u01/logs/orcl/redo04a.log','/u01/logs/orcl/redo04b.log')
 SIZE 100M BLOCKSIZE 512 REUSE;

To ascertain the redo log file block size, run the following query:

SQL> SELECT BLOCKSIZE FROM V$LOG;

BLOCKSIZE

 512

	
See Also:

	
Oracle Database SQL Language Reference for information about the ALTER DATABASE command.

	
Oracle Database Reference for information about the V$SESSTAT and V$SYSSTAT views

Choosing the Number of Redo Log Files

The best way to determine the appropriate number of redo log files for a database instance is to test different configurations. The optimum configuration has the fewest groups possible without hampering LGWR from writing redo log information.

In some cases, a database instance may require only two groups. In other situations, a database instance may require additional groups to guarantee that a recycled group is always available to LGWR. During testing, the easiest way to determine whether the current redo log configuration is satisfactory is to examine the contents of the LGWR trace file and the database alert log. If messages indicate that LGWR frequently has to wait for a group because a checkpoint has not completed or a group has not been archived, add groups.

Consider the parameters that can limit the number of redo log files before setting up or altering the configuration of an instance redo log. The following parameters limit the number of redo log files that you can add to a database:

	
The MAXLOGFILES parameter used in the CREATE DATABASE statement determines the maximum number of groups of redo log files for each database. Group values can range from 1 to MAXLOGFILES. When the compatibility level is set earlier than 10.2.0, the only way to override this upper limit is to re-create the database or its control file. Therefore, it is important to consider this limit before creating a database. When compatibility is set to 10.2.0 or later, you can exceed the MAXLOGFILES limit, and the control files expand as needed. If MAXLOGFILES is not specified for the CREATE DATABASE statement, then the database uses an operating system specific default value.

	
The MAXLOGMEMBERS parameter used in the CREATE DATABASE statement determines the maximum number of members for each group. As with MAXLOGFILES, the only way to override this upper limit is to re-create the database or control file. Therefore, it is important to consider this limit before creating a database. If no MAXLOGMEMBERS parameter is specified for the CREATE DATABASE statement, then the database uses an operating system default value.

	
See Also:

	
Your operating system specific Oracle documentation for the default and legal values of the MAXLOGFILES and MAXLOGMEMBERS parameters

	
Oracle Database Performance Tuning Guide

Controlling Archive Lag

You can force all enabled redo log threads to switch their current logs at regular time intervals. In a primary/standby database configuration, changes are made available to the standby database by archiving redo logs at the primary site and then shipping them to the standby database. The changes that are being applied by the standby database can lag behind the changes that are occurring on the primary database, because the standby database must wait for the changes in the primary database redo log to be archived (into the archived redo log) and then shipped to it. To limit this lag, you can set the ARCHIVE_LAG_TARGET initialization parameter. Setting this parameter lets you specify in seconds how long that lag can be.

Setting the ARCHIVE_LAG_TARGET Initialization Parameter

When you set the ARCHIVE_LAG_TARGET initialization parameter, you cause the database to examine the current redo log of the instance periodically. If the following conditions are met, then the instance will switch the log:

	
The current log was created prior to n seconds ago, and the estimated archival time for the current log is m seconds (proportional to the number of redo blocks used in the current log), where n + m exceeds the value of the ARCHIVE_LAG_TARGET initialization parameter.

	
The current log contains redo records.

In an Oracle Real Application Clusters environment, the instance also causes other threads to switch and archive their logs if they are falling behind. This can be particularly useful when one instance in the cluster is more idle than the other instances (as when you are running a 2-node primary/secondary configuration of Oracle Real Application Clusters).

The ARCHIVE_LAG_TARGET initialization parameter specifies the target of how many seconds of redo the standby could lose in the event of a primary shutdown or failure if the Oracle Data Guard environment is not configured in a no-data-loss mode. It also provides an upper limit of how long (in seconds) the current log of the primary database can span. Because the estimated archival time is also considered, this is not the exact log switch time.

The following initialization parameter setting sets the log switch interval to 30 minutes (a typical value).

ARCHIVE_LAG_TARGET = 1800

A value of 0 disables this time-based log switching functionality. This is the default setting.

You can set the ARCHIVE_LAG_TARGET initialization parameter even if there is no standby database. For example, the ARCHIVE_LAG_TARGET parameter can be set specifically to force logs to be switched and archived.

ARCHIVE_LAG_TARGET is a dynamic parameter and can be set with the ALTER SYSTEM SET statement.

	
Caution:

The ARCHIVE_LAG_TARGET parameter must be set to the same value in all instances of an Oracle Real Application Clusters environment. Failing to do so results in unpredictable behavior.

Factors Affecting the Setting of ARCHIVE_LAG_TARGET

Consider the following factors when determining if you want to set the ARCHIVE_LAG_TARGET parameter and in determining the value for this parameter.

	
Overhead of switching (as well as archiving) logs

	
How frequently normal log switches occur as a result of log full conditions

	
How much redo loss is tolerated in the standby database

Setting ARCHIVE_LAG_TARGET may not be very useful if natural log switches already occur more frequently than the interval specified. However, in the case of irregularities of redo generation speed, the interval does provide an upper limit for the time range each current log covers.

If the ARCHIVE_LAG_TARGET initialization parameter is set to a very low value, there can be a negative impact on performance. This can force frequent log switches. Set the parameter to a reasonable value so as not to degrade the performance of the primary database.

Database Administrator Authentication

As a DBA, you often perform special operations such as shutting down or starting up a database. Because only a DBA should perform these operations, the database administrator usernames require a secure authentication scheme.

This section contains the following topics:

	
Administrative Privileges

	
Selecting an Authentication Method for Database Administrators

	
Using Operating System Authentication

	
Using Password File Authentication

Administrative Privileges

Administrative privileges that are required for an administrator to perform basic database operations are granted through two special system privileges, SYSDBA and SYSOPER. You must have one of these privileges granted to you, depending upon the level of authorization you require.

	
Note:

The SYSDBA and SYSOPER system privileges allow access to a database instance even when the database is not open. Control of these privileges is totally outside of the database itself.
The SYSDBA and SYSOPER privileges can also be thought of as types of connections that enable you to perform certain database operations for which privileges cannot be granted in any other fashion. For example, if you have the SYSDBA privilege, you can connect to the database by specifying CONNECT AS SYSDBA.

SYSDBA and SYSOPER

The following operations are authorized by the SYSDBA and SYSOPER system privileges:

	System Privilege	Operations Authorized
	SYSDBA	
	Perform STARTUP and SHUTDOWN operations
	
ALTER DATABASE: open, mount, back up, or change character set

	
CREATE DATABASE

	
DROP DATABASE

	
CREATE SPFILE

	
ALTER DATABASE ARCHIVELOG

	
ALTER DATABASE RECOVER

	
Includes the RESTRICTED SESSION privilege

Effectively, this system privilege allows a user to connect as user SYS.

	SYSOPER	
	Perform STARTUP and SHUTDOWN operations
	
CREATE SPFILE

	
ALTER DATABASE OPEN/MOUNT/BACKUP

	
ALTER DATABASE ARCHIVELOG

	
ALTER DATABASE RECOVER (Complete recovery only. Any form of incomplete recovery, such as UNTIL TIME|CHANGE|CANCEL|CONTROLFILE requires connecting as SYSDBA.)

	
Includes the RESTRICTED SESSION privilege

This privilege allows a user to perform basic operational tasks, but without the ability to look at user data.

The manner in which you are authorized to use these privileges depends upon the method of authentication that you use.

When you connect with SYSDBA or SYSOPER privileges, you connect with a default schema, not with the schema that is generally associated with your username. For SYSDBA this schema is SYS; for SYSOPER the schema is PUBLIC.

Connecting with Administrative Privileges: Example

This example illustrates that a user is assigned another schema (SYS) when connecting with the SYSDBA system privilege. Assume that the sample user oe has been granted the SYSDBA system privilege and has issued the following statements:

CONNECT oe
CREATE TABLE admin_test(name VARCHAR2(20));

Later, user oe issues these statements:

CONNECT oe AS SYSDBA
SELECT * FROM admin_test;

User oe now receives the following error:

ORA-00942: table or view does not exist

Having connected as SYSDBA, user oe now references the SYS schema, but the table was created in the oe schema.

	
See Also:

	
"Using Operating System Authentication"

	
"Using Password File Authentication"

Selecting an Authentication Method for Database Administrators

Database Administrators can authenticate database administrators through the data dictionary, (using an account password) like other users. Keep in mind that beginning with Oracle Database 11g Release 1, database passwords are case-sensitive. (You can disable case sensitivity and return to pre–Release 11g behavior by setting the SEC_CASE_SENSITIVE_LOGON initialization parameter to FALSE.)

In addition to normal data dictionary authentication, the following methods are available for authenticating database administrators with the SYSDBA or SYSOPER privilege:

	
Operating system (OS) authentication

	
Password files

	
Strong authentication with a network-based authentication service, such as Oracle Internet Directory

These methods are required to authenticate a database administrator when the database is not started or otherwise unavailable. (They can also be used when the database is available.)

The remainder of this section focuses on operating system authentication and password file authentication. See Oracle Database Security Guide for information about authenticating database administrators with network-based authentication services.

	
Notes:

	
These methods replace the CONNECT INTERNAL syntax provided with earlier versions of Oracle Database. CONNECT INTERNAL is no longer supported.

	
Operating system authentication takes precedence over password file authentication. If you meet the requirements for operating system authentication, then even if you use a password file, you will be authenticated by operating system authentication.

Your choice will be influenced by whether you intend to administer your database locally on the same system where the database resides, or whether you intend to administer many different databases from a single remote client. Figure 1-2 illustrates the choices you have for database administrator authentication schemes.

Figure 1-2 Database Administrator Authentication Methods

[image: Description of Figure 1-2 follows]

If you are performing remote database administration, consult your Oracle Net documentation to determine whether you are using a secure connection. Most popular connection protocols, such as TCP/IP and DECnet, are not secure.

	
See Also:

	
Oracle Database Security Guide for information about authenticating database administrators with network-based authentication services.

	
Oracle Database Net Services Administrator's Guide

Nonsecure Remote Connections

To connect to Oracle Database as a privileged user over a nonsecure connection, you must be authenticated by a password file. When using password file authentication, the database uses a password file to keep track of database user names that have been granted the SYSDBA or SYSOPER system privilege. This form of authentication is discussed in "Using Password File Authentication".

Local Connections and Secure Remote Connections

You can connect to Oracle Database as a privileged user over a local connection or a secure remote connection in two ways:

	
If the database has a password file and you have been granted the SYSDBA or SYSOPER system privilege, then you can connect and be authenticated by a password file.

	
If the server is not using a password file, or if you have not been granted SYSDBA or SYSOPER privileges and are therefore not in the password file, you can use operating system authentication. On most operating systems, authentication for database administrators involves placing the operating system username of the database administrator in a special group, generically referred to as OSDBA. Users in that group are granted SYSDBA privileges. A similar group, OSOPER, is used to grant SYSOPER privileges to users.

Using Operating System Authentication

This section describes how to authenticate an administrator using the operating system.

OSDBA and OSOPER

Membership in one of two special operating system groups enables a DBA to authenticate to the database through the operating system rather than with a database user name and password. This is known as operating system authentication. These operating system groups are generically referred to as OSDBA and OSOPER. The groups are created and assigned specific names as part of the database installation process. The default names vary depending upon your operating system, and are listed in the following table:

	Operating System Group	UNIX User Group	Windows User Group
	OSDBA	dba	ORA_DBA
	OSOPER	oper	ORA_OPER

Oracle Universal Installer uses these default names, but you can override them. One reason to override them is if you have multiple instances running on the same host computer. If each instance is to have a different person as the principal DBA, you can improve the security of each instance by creating a different OSDBA group for each instance. For example, for two instances on the same host, the OSDBA group for the first instance could be named dba1, and OSDBA for the second instance could be named dba2. The first DBA would be a member of dba1 only, and the second DBA would be a member of dba2 only. Thus, when using operating system authentication, each DBA would be able to connect only to his assigned instance.

Membership in the OSDBA or OSOPER group affects your connection to the database in the following ways:

	
If you are a member of the OSDBA group and you specify AS SYSDBA when you connect to the database, then you connect to the database with the SYSDBA system privilege.

	
If you are a member of the OSOPER group and you specify AS SYSOPER when you connect to the database, then you connect to the database with the SYSOPER system privilege.

	
If you are not a member of either of these operating system groups and you attempt to connect as SYSDBA or SYSOPER, the CONNECT command fails.

	
See Also:

Your operating system specific Oracle documentation for information about creating the OSDBA and OSOPER groups

Preparing to Use Operating System Authentication

To enable operating system authentication of an administrative user:

	
Create an operating system account for the user.

	
Add the account to the OSDBA or OSOPER operating system defined groups.

Connecting Using Operating System Authentication

A user can be authenticated, enabled as an administrative user, and connected to a local database by typing one of the following SQL*Plus commands:

CONNECT / AS SYSDBA
CONNECT / AS SYSOPER

For the Windows platform only, remote operating system authentication over a secure connection is supported. You must specify the net service name for the remote database:

CONNECT /@net_service_name AS SYSDBA
CONNECT /@net_service_name AS SYSOPER

Both the client computer and database host computer must be on a Windows domain.

	
See Also:

	
"Connecting to the Database with SQL*Plus"

	
SQL*Plus User's Guide and Reference for syntax of the CONNECT command

Using Password File Authentication

This section describes how to authenticate an administrative user using password file authentication.

Preparing to Use Password File Authentication

To enable authentication of an administrative user using password file authentication you must do the following:

	
If not already created, create the password file using the ORAPWD utility:

ORAPWD FILE=filename ENTRIES=max_users

See "Creating and Maintaining a Password File" for details.

	
Notes:

	
When you invoke Database Configuration Assistant (DBCA) as part of the Oracle Database installation process, DBCA creates a password file.

	
Beginning with Oracle Database 11g Release 1, passwords in the password file are case-sensitive unless you include the IGNORECASE = Y command-line argument.

	
Set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to EXCLUSIVE. (This is the default).

	
Note:

REMOTE_LOGIN_PASSWORDFILE is a static initialization parameter and therefore cannot be changed without restarting the database.

	
Connect to the database as user SYS (or as another user with the administrative privileges).

	
If the user does not already exist in the database, create the user and assign a password.

Keep in mind that beginning with Oracle Database 11g Release 1, database passwords are case-sensitive. (You can disable case sensitivity and return to pre–Release 11g behavior by setting the SEC_CASE_SENSITIVE_LOGON initialization parameter to FALSE.)

	
Grant the SYSDBA or SYSOPER system privilege to the user:

GRANT SYSDBA to oe;

This statement adds the user to the password file, thereby enabling connection AS SYSDBA.

	
See Also:

"Creating and Maintaining a Password File" for instructions for creating and maintaining a password file.

Connecting Using Password File Authentication

Administrative users can be connected and authenticated to a local or remote database by using the SQL*Plus CONNECT command. They must connect using their username and password and the AS SYSDBA or AS SYSOPER clause. Note that beginning with Oracle Database 11g Release 1, passwords are case-sensitive unless the password file was created with the IGNORECASE = Y option.

For example, user oe has been granted the SYSDBA privilege, so oe can connect as follows:

CONNECT oe AS SYSDBA

However, user oe has not been granted the SYSOPER privilege, so the following command will fail:

CONNECT oe AS SYSOPER

	
Note:

Operating system authentication takes precedence over password file authentication. Specifically, if you are a member of the OSDBA or OSOPER group for the operating system, and you connect as SYSDBA or SYSOPER, you will be connected with associated administrative privileges regardless of the username/password that you specify.
If you are not in the OSDBA or OSOPER groups, and you are not in the password file, then attempting to connect as SYSDBA or as SYSOPER fails.

	
See Also:

	
"Connecting to the Database with SQL*Plus"

	
SQL*Plus User's Guide and Reference for syntax of the CONNECT command

Types of Oracle Database Users

The types of users and their roles and responsibilities depend on the database site. A small site can have one database administrator who administers the database for application developers and users. A very large site can find it necessary to divide the duties of a database administrator among several people and among several areas of specialization.

Database Administrators

Each database requires at least one database administrator (DBA). An Oracle Database system can be large and can have many users. Therefore, database administration is sometimes not a one-person job, but a job for a group of DBAs who share responsibility.

A database administrator's responsibilities can include the following tasks:

	
Installing and upgrading the Oracle Database server and application tools

	
Allocating system storage and planning future storage requirements for the database system

	
Creating primary database storage structures (tablespaces) after application developers have designed an application

	
Creating primary objects (tables, views, indexes) once application developers have designed an application

	
Modifying the database structure, as necessary, from information given by application developers

	
Enrolling users and maintaining system security

	
Ensuring compliance with Oracle license agreements

	
Controlling and monitoring user access to the database

	
Monitoring and optimizing the performance of the database

	
Planning for backup and recovery of database information

	
Maintaining archived data on tape

	
Backing up and restoring the database

	
Contacting Oracle for technical support

Security Officers

In some cases, a site assigns one or more security officers to a database. A security officer enrolls users, controls and monitors user access to the database, and maintains system security. As a DBA, you might not be responsible for these duties if your site has a separate security officer. See Oracle Database Security Guide for information about the duties of security officers.

Network Administrators

Some sites have one or more network administrators. A network administrator, for example, administers Oracle networking products, such as Oracle Net Services. See Oracle Database Net Services Administrator's Guide for information about the duties of network administrators.

	
See Also:

Part V, "Distributed Database Management", for information on network administration in a distributed environment

Application Developers

Application developers design and implement database applications. Their responsibilities include the following tasks:

	
Designing and developing the database application

	
Designing the database structure for an application

	
Estimating storage requirements for an application

	
Specifying modifications of the database structure for an application

	
Relaying this information to a database administrator

	
Tuning the application during development

	
Establishing security measures for an application during development

Application developers can perform some of these tasks in collaboration with DBAs. See Oracle Database Advanced Application Developer's Guide for information about application development tasks.

Application Administrators

An Oracle Database site can assign one or more application administrators to administer a particular application. Each application can have its own administrator.

Database Users

Database users interact with the database through applications or utilities. A typical user's responsibilities include the following tasks:

	
Entering, modifying, and deleting data, where permitted

	
Generating reports from the data

Copying Files Using the Database Server

You do not necessarily have to use the operating system to copy a file within a database, or transfer a file between databases as you would do when using the transportable tablespace feature. You can use the DBMS_FILE_TRANSFER package, or you can use Streams propagation. Using Streams is not discussed in this book, but an example of using the DBMS_FILE_TRANSFER package is shown in "Copying a File on a Local File System".

The DBMS_FILE_TRANSFER package can use a local file system or an Oracle Automatic Storage Management (Oracle ASM) disk group as the source or destination for a file transfer. Only Oracle database files (datafiles, tempfiles, controlfiles, and so on) can be involved in transfers to and from Oracle ASM.

	
Caution:

Do not use the DBMS_FILE_TRANSFER package to copy or transfer a file that is being modified by a database because doing so may result in an inconsistent file.

On UNIX systems, the owner of a file created by the DBMS_FILE_TRANSFER package is the owner of the shadow process running the instance. Normally, this owner is ORACLE. A file created using DBMS_FILE_TRANSFER is always writable and readable by all processes in the database, but non privileged users who need to read or write such a file directly may need access from a system administrator.

This section contains the following topics:

	
Copying a File on a Local File System

	
Third-Party File Transfer

	
File Transfer and the DBMS_SCHEDULER Package

	
Advanced File Transfer Mechanisms

	
See Also:

	
Oracle Streams Concepts and Administration

	
"Transporting Tablespaces Between Databases"

	
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_FILE_TRANSFER package.

Copying a File on a Local File System

This section includes an example that uses the COPY_FILE procedure in the DBMS_FILE_TRANSFER package to copy a file on a local file system. The following example copies a binary file named db1.dat from the /usr/admin/source directory to the /usr/admin/destination directory as db1_copy.dat on a local file system:

	
In SQL*Plus, connect as an administrative user who can grant privileges and create directory objects using SQL.

	
Use the SQL command CREATE DIRECTORY to create a directory object for the directory from which you want to copy the file. A directory object is similar to an alias for the directory. For example, to create a directory object called SOURCE_DIR for the /usr/admin/source directory on your computer system, execute the following statement:

CREATE DIRECTORY SOURCE_DIR AS '/usr/admin/source';

	
Use the SQL command CREATE DIRECTORY to create a directory object for the directory into which you want to copy the binary file. For example, to create a directory object called DEST_DIR for the /usr/admin/destination directory on your computer system, execute the following statement:

CREATE DIRECTORY DEST_DIR AS '/usr/admin/destination';

	
Grant the required privileges to the user who will run the COPY_FILE procedure. In this example, the strmadmin user runs the procedure.

GRANT EXECUTE ON DBMS_FILE_TRANSFER TO strmadmin;

GRANT READ ON DIRECTORY source_dir TO strmadmin;

GRANT WRITE ON DIRECTORY dest_dir TO strmadmin;

	
Connect as strmadmin user and provide the user password when prompted:

CONNECT strmadmin

	
Run the COPY_FILE procedure to copy the file:

BEGIN
 DBMS_FILE_TRANSFER.COPY_FILE(
 source_directory_object => 'SOURCE_DIR',
 source_file_name => 'db1.dat',
 destination_directory_object => 'DEST_DIR',
 destination_file_name => 'db1_copy.dat');
END;
/

	
Caution:

Do not use the DBMS_FILE_TRANSFER package to copy or transfer a file that is being modified by a database because doing so may result in an inconsistent file.

Third-Party File Transfer

Although the procedures in the DBMS_FILE_TRANSFER package typically are invoked as local procedure calls, they can also be invoked as remote procedure calls. A remote procedure call lets you copy a file within a database even when you are connected to a different database. For example, you can make a copy of a file on database DB, even if you are connected to another database, by executing the following remote procedure call:

DBMS_FILE_TRANSFER.COPY_FILE@DB(...)

Using remote procedure calls enables you to copy a file between two databases, even if you are not connected to either database. For example, you can connect to database A and then transfer a file from database B to database C. In this example, database A is the third party because it is neither the source of nor the destination for the transferred file.

A third-party file transfer can both push and pull a file. Continuing with the previous example, you can perform a third-party file transfer if you have a database link from A to either B or C, and that database has a database link to the other database. Database A does not need a database link to both B and C.

For example, if you have a database link from A to B, and another database link from B to C, then you can run the following procedure at A to transfer a file from B to C:

DBMS_FILE_TRANSFER.PUT_FILE@B(...)

This configuration pushes the file.

Alternatively, if you have a database link from A to C, and another database link from C to B, then you can run the following procedure at database A to transfer a file from B to C:

DBMS_FILE_TRANSFER.GET_FILE@C(...)

This configuration pulls the file.

File Transfer and the DBMS_SCHEDULER Package

You can use the DBMS_SCHEDULER package to transfer files automatically within a single database and between databases. Third-party file transfers are also supported by the DBMS_SCHEDULER package. You can monitor a long-running file transfer done by the Scheduler using the V$SESSION_LONGOPS dynamic performance view at the databases reading or writing the file. Any database links used by a Scheduler job must be fixed user database links.

You can use a restartable Scheduler job to improve the reliability of file transfers automatically, especially if there are intermittent failures. If a file transfer fails before the destination file is closed, then you can restart the file transfer from the beginning once the database has removed any partially written destination file. Hence you should consider using a restartable Scheduler job to transfer a file if the rest of the job is restartable. See Chapter 29, "Scheduling Jobs with Oracle Scheduler" for more information on Scheduler jobs.

	
Note:

If a single restartable job transfers several files, then you should consider restart scenarios in which some of the files have been transferred already and some have not been transferred yet.

Advanced File Transfer Mechanisms

You can create more sophisticated file transfer mechanisms using both the DBMS_FILE_TRANSFER package and the DBMS_SCHEDULER package. For example, when several databases have a copy of the file you want to transfer, you can consider factors such as source availability, source load, and communication bandwidth to the destination database when deciding which source database to contact first and which source databases to try if failures occur. In this case, the information about these factors must be available to you, and you must create the mechanism that considers these factors.

As another example, when early completion time is more important than load, you can submit several Scheduler jobs to transfer files in parallel. As a final example, knowing something about file layout on the source and destination databases enables you to minimize disk contention by performing or scheduling simultaneous transfers only if they use different I/O devices.

35 Managing Distributed Transactions

In this chapter:

	
Specifying the Commit Point Strength of a Node

	
Naming Transactions

	
Viewing Information About Distributed Transactions

	
Deciding How to Handle In-Doubt Transactions

	
Manually Overriding In-Doubt Transactions

	
Purging Pending Rows from the Data Dictionary

	
Manually Committing an In-Doubt Transaction: Example

	
Data Access Failures Due to Locks

	
Simulating Distributed Transaction Failure

	
Managing Read Consistency

Managing Synonyms

This section describes aspects of managing synonyms, and contains the following topics:

	
About Synonyms

	
Creating Synonyms

	
Using Synonyms in DML Statements

	
Dropping Synonyms

About Synonyms

A synonym is an alias for a schema object. Synonyms can provide a level of security by masking the name and owner of an object and by providing location transparency for remote objects of a distributed database. Also, they are convenient to use and reduce the complexity of SQL statements for database users.

Synonyms allow underlying objects to be renamed or moved, where only the synonym must be redefined and applications based on the synonym continue to function without modification.

You can create both public and private synonyms. A public synonym is owned by the special user group named PUBLIC and is accessible to every user in a database. A private synonym is contained in the schema of a specific user and available only to the user and to grantees for the underlying object.

Synonyms themselves are not securable. When you grant object privileges on a synonym, you are really granting privileges on the underlying object, and the synonym is acting only as an alias for the object in the GRANT statement.

	
See Also:

Oracle Database Concepts for a more complete description of synonyms

Creating Synonyms

To create a private synonym in your own schema, you must have the CREATE SYNONYM privilege. To create a private synonym in another user's schema, you must have the CREATE ANY SYNONYM privilege. To create a public synonym, you must have the CREATE PUBLIC SYNONYM system privilege.

Create a synonym using the CREATE SYNONYM statement. The underlying schema object need not exist, nor do you need privileges to access the object for the CREATE SYNONYM statement to succeed. The following statement creates a public synonym named public_emp on the emp table contained in the schema of jward:

CREATE PUBLIC SYNONYM public_emp FOR jward.emp

When you create a synonym for a remote procedure or function, you must qualify the remote object with its schema name. Alternatively, you can create a local public synonym on the database where the remote object resides, in which case the database link must be included in all subsequent calls to the procedure or function.

	
See Also:

Oracle Database SQL Language Reference for syntax and additional information about the CREATE SYNONYM statement

Using Synonyms in DML Statements

You can successfully use any private synonym contained in your schema or any public synonym, assuming that you have the necessary privileges to access the underlying object, either explicitly, from an enabled role, or from PUBLIC. You can also reference any private synonym contained in another schema if you have been granted the necessary object privileges for the underlying object.

You can reference another user's synonym using only the object privileges that you have been granted. For example, if you have only the SELECT privilege on the jward.emp table, and the synonym jward.employee is created for jward.emp, you can query the jward.employee synonym, but you cannot insert rows using the jward.employee synonym.

A synonym can be referenced in a DML statement the same way that the underlying object of the synonym can be referenced. For example, if a synonym named employee refers to a table or view, then the following statement is valid:

INSERT INTO employee (empno, ename, job)
 VALUES (emp_sequence.NEXTVAL, 'SMITH', 'CLERK');

If the synonym named fire_emp refers to a standalone procedure or package procedure, then you could execute it with the command

EXECUTE Fire_emp(7344);

Dropping Synonyms

You can drop any private synonym in your own schema. To drop a private synonym in another user's schema, you must have the DROP ANY SYNONYM system privilege. To drop a public synonym, you must have the DROP PUBLIC SYNONYM system privilege.

Drop a synonym that is no longer required using DROP SYNONYM statement. To drop a private synonym, omit the PUBLIC keyword. To drop a public synonym, include the PUBLIC keyword.

For example, the following statement drops the private synonym named emp:

DROP SYNONYM emp;

The following statement drops the public synonym named public_emp:

DROP PUBLIC SYNONYM public_emp;

When you drop a synonym, its definition is removed from the data dictionary. All objects that reference a dropped synonym remain. However, they become invalid (not usable). For more information about how dropping synonyms can affect other schema objects, see "Managing Object Dependencies".

	
See Also:

Oracle Database SQL Language Reference for syntax and additional information about the DROP SYNONYM statement

Recovering Tables Using Oracle Flashback Table

Oracle Flashback Table enables you to restore a table to its state as of a previous point in time. It provides a fast, online solution for recovering a table that has been accidentally modified or deleted by a user or application. In many cases, Oracle Flashback Table eliminates the need for you to perform more complicated point-in-time recovery operations.

Oracle Flashback Table:

	
Restores all data in a specified table to a previous point in time described by a timestamp or SCN.

	
Performs the restore operation online.

	
Automatically maintains all of the table attributes, such as indexes, triggers, and constraints that are necessary for an application to function with the flashed-back table.

	
Maintains any remote state in a distributed environment. For example, all of the table modifications required by replication if a replicated table is flashed back.

	
Maintains data integrity as specified by constraints. Tables are flashed back provided none of the table constraints are violated. This includes any referential integrity constraints specified between a table included in the FLASHBACK TABLE statement and another table that is not included in the FLASHBACK TABLE statement.

	
Even after a flashback operation, the data in the original table is not lost. You can later revert to the original state.

	
Note:

You must be using automatic undo management to use Oracle Flashback Table. See "Introduction to Automatic Undo Management".

	
See Also:

Oracle Database Backup and Recovery User's Guide for more information about the FLASHBACK TABLE statement.

Scheduler Support for Oracle Data Guard

Beginning with Oracle Database 11g Release 1, the Scheduler can run jobs based on whether a database is a primary database or a logical standby in an Oracle Data Guard environment.

For a physical standby database, any changes made to Scheduler objects or any database changes made by Scheduler jobs on the primary database are applied to the physical standby like any other database changes.

For the primary database and logical standby databases, there is additional functionality that enables you to specify that a job can run only when the database is in the role of the primary database or a logical standby. You do this using the DBMS_SCHEDULER.SET_ATTRIBUTE procedure to set the database_role job attribute to one of two values: 'PRIMARY' or 'LOGICAL STANDBY'. (To run a job in both roles, you can make a copy of the job and set database_role to 'PRIMARY' for one job and to 'LOGICAL STANDBY' for the other). On switchover or failover, the Scheduler automatically switches to running jobs specific to the new role. DML is replicated to the job event log so that on failover, there is an available record of what ran successfully on the primary database until it failed.

	
See Also:

	
"Examples of Setting Attributes" for an example of setting the database_role attribute

	
"Example of Creating a Job In an Oracle Data Guard Environment"

	
Oracle Data Guard Concepts and Administration

Indexes Data Dictionary Views

The following views display information about indexes:

	View	Description
	DBA_INDEXES
ALL_INDEXES

USER_INDEXES

	DBA view describes indexes on all tables in the database. ALL view describes indexes on all tables accessible to the user. USER view is restricted to indexes owned by the user. Some columns in these views contain statistics that are generated by the DBMS_STATS package or ANALYZE statement.
	DBA_IND_COLUMNS
ALL_IND_COLUMNS

USER_IND_COLUMNS

	These views describe the columns of indexes on tables. Some columns in these views contain statistics that are generated by the DBMS_STATS package or ANALYZE statement.
	DBA_IND_EXPRESSIONS
ALL_IND_EXPRESSIONS

USER_IND_EXPRESSIONS

	These views describe the expressions of function-based indexes on tables.
	DBA_IND_STATISTICS
ALL_IND_STATISTICS

USER_IND_STATISTICS

	These views contain optimizer statistics for indexes.
	INDEX_STATS	Stores information from the last ANALYZE INDEX...VALIDATE STRUCTURE statement.
	INDEX_HISTOGRAM	Stores information from the last ANALYZE INDEX...VALIDATE STRUCTURE statement.
	V$OBJECT_USAGE	Contains index usage information produced by the ALTER INDEX...MONITORING USAGE functionality.

	
See Also:

Oracle Database Reference for a complete description of these views

Import/Export and the Scheduler

You must use the Data Pump utilities (impdp and expdp) to export Scheduler objects. You cannot use the earlier import/export utilities (IMP and EXP) with the Scheduler. Also, Scheduler objects cannot be exported while the database is in read-only mode.

An export generates the DDL that was used to create the Scheduler objects. All attributes are exported. When an import is done, all the database objects are re-created in the new database. All schedules are stored with their time zones, which are maintained in the new database. For example, schedule "Monday at 1 PM PST in a database in San Francisco" would be the same if it was exported and imported to a database in Germany.

Although Scheduler credentials are exported, for security reasons, the passwords in these credentials are not exported. After you import Scheduler credentials, you must reset the passwords using the SET_ATTRIBUTE procedure of the DBMS_SCHEDULER package.

	
See Also:

Oracle Database Utilities for details on Data Pump

Memory Management Reference

This section contains the following reference topics for memory management:

	
Platforms That Support Automatic Memory Management

	
Memory Management Data Dictionary Views

Platforms That Support Automatic Memory Management

The following platforms support automatic memory management—the Oracle Database ability to automatically tune the sizes of the SGA and PGA, redistributing memory from one to the other on demand to optimize performance:

	
Linux

	
Solaris

	
Windows

	
HP-UX

	
AIX

Memory Management Data Dictionary Views

The following dynamic performance views provide information on memory management:

	View	Description
	V$SGA	Displays summary information about the system global area (SGA).
	V$SGAINFO	Displays size information about the SGA, including the sizes of different SGA components, the granule size, and free memory.
	V$SGASTAT	Displays detailed information about how memory is allocated within the shared pool, large pool, Java pool, and Streams pool.
	V$PGASTAT	Displays PGA memory usage statistics as well as statistics about the automatic PGA memory manager when it is enabled (that is, when PGA_AGGREGATE_TARGET is set). Cumulative values in V$PGASTAT are accumulated since instance startup.
	V$MEMORY_DYNAMIC_COMPONENTS	Displays information on the current size of all automatically tuned and static memory components, with the last operation (for example, grow or shrink) that occurred on each.
	V$SGA_DYNAMIC_COMPONENTS	Displays the current sizes of all SGA components, and the last operation for each component.
	V$SGA_DYNAMIC_FREE_MEMORY	Displays information about the amount of SGA memory available for future dynamic SGA resize operations.
	V$MEMORY_CURRENT_RESIZE_OPS	Displays information about resize operations that are currently in progress. A resize operation is an enlargement or reduction of the SGA, the instance PGA, or a dynamic SGA component.
	V$SGA_CURRENT_RESIZE_OPS	Displays information about dynamic SGA component resize operations that are currently in progress.
	V$MEMORY_RESIZE_OPS	Displays information about the last 800 completed memory component resize operations, including automatic grow and shrink operations for SGA_TARGET and PGA_AGGREGATE_TARGET.
	V$SGA_RESIZE_OPS	Displays information about the last 800 completed SGA component resize operations.
	V$MEMORY_TARGET_ADVICE	Displays information that helps you tune MEMORY_TARGET if you enabled automatic memory management.
	V$SGA_TARGET_ADVICE	Displays information that helps you tune SGA_TARGET.
	V$PGA_TARGET_ADVICE	Displays information that helps you tune PGA_AGGREGATE_TARGET.

	
See Also:

Oracle Database Reference for detailed information on memory management views.

2 Creating and Configuring an Oracle Database

In this chapter:

	
About Creating an Oracle Database

	
Creating a Database with DBCA

	
Creating a Database with the CREATE DATABASE Statement

	
Specifying CREATE DATABASE Statement Clauses

	
Specifying Initialization Parameters

	
Managing Initialization Parameters Using a Server Parameter File

	
Managing Application Workloads with Database Services

	
Considerations After Creating a Database

	
Dropping a Database

	
Database Data Dictionary Views

	
See Also:

	
Chapter 17, "Using Oracle Managed Files" for information about creating a database whose underlying operating system files are automatically created and managed by the Oracle Database server

	
Your platform-specific Oracle Real Application Clusters (Oracle RAC) installation guide for information about creating a database in an Oracle RAC environment

8 Monitoring Database Operations

It is important that you monitor the operation of your database on a regular basis. Doing so not only informs you of errors that have not yet come to your attention but also gives you a better understanding of the normal operation of your database. Being familiar with normal behavior in turn helps you recognize when something is wrong.

In this chapter:

	
Monitoring Errors and Alerts

	
Monitoring Performance

Analyzing Tables, Indexes, and Clusters

You analyze a schema object (table, index, or cluster) to:

	
Collect and manage statistics for it

	
Verify the validity of its storage format

	
Identify migrated and chained rows of a table or cluster

	
Note:

Do not use the COMPUTE and ESTIMATE clauses of ANALYZE to collect optimizer statistics. These clauses have been deprecated. Instead, use the DBMS_STATS package, which lets you collect statistics in parallel, collect global statistics for partitioned objects, and fine tune your statistics collection in other ways. The cost-based optimizer, which depends upon statistics, will eventually use only statistics that have been collected by DBMS_STATS. See Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_STATS package.
You must use the ANALYZE statement (rather than DBMS_STATS) for statistics collection not related to the cost-based optimizer, such as:

	
To use the VALIDATE or LIST CHAINED ROWS clauses

	
To collect information on freelist blocks

The following topics are discussed in this section:

	
Using DBMS_STATS to Collect Table and Index Statistics

	
Validating Tables, Indexes, Clusters, and Materialized Views

	
Listing Chained Rows of Tables and Clusters

Using DBMS_STATS to Collect Table and Index Statistics

You can use the DBMS_STATS package or the ANALYZE statement to gather statistics about the physical storage characteristics of a table, index, or cluster. These statistics are stored in the data dictionary and can be used by the optimizer to choose the most efficient execution plan for SQL statements accessing analyzed objects.

Oracle recommends using the more versatile DBMS_STATS package for gathering optimizer statistics, but you must use the ANALYZE statement to collect statistics unrelated to the optimizer, such as empty blocks, average space, and so forth.

The DBMS_STATS package allows both the gathering of statistics, including utilizing parallel execution, and the external manipulation of statistics. Statistics can be stored in tables outside of the data dictionary, where they can be manipulated without affecting the optimizer. Statistics can be copied between databases or backup copies can be made.

The following DBMS_STATS procedures enable the gathering of optimizer statistics:

	
GATHER_INDEX_STATS

	
GATHER_TABLE_STATS

	
GATHER_SCHEMA_STATS

	
GATHER_DATABASE_STATS

	
See Also:

	
Oracle Database Performance Tuning Guide for information about using DBMS_STATS to gather statistics for the optimizer

	
Oracle Database PL/SQL Packages and Types Reference for a description of the DBMS_STATS package

Validating Tables, Indexes, Clusters, and Materialized Views

To verify the integrity of the structure of a table, index, cluster, or materialized view, use the ANALYZE statement with the VALIDATE STRUCTURE option. If the structure is valid, no error is returned. However, if the structure is corrupt, you receive an error message.

For example, in rare cases such as hardware or other system failures, an index can become corrupted and not perform correctly. When validating the index, you can confirm that every entry in the index points to the correct row of the associated table. If the index is corrupt, you can drop and re-create it.

If a table, index, or cluster is corrupt, you should drop it and re-create it. If a materialized view is corrupt, perform a complete refresh and ensure that you have remedied the problem. If the problem is not corrected, drop and re-create the materialized view.

The following statement analyzes the emp table:

ANALYZE TABLE emp VALIDATE STRUCTURE;

You can validate an object and all dependent objects (for example, indexes) by including the CASCADE option. The following statement validates the emp table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE;

By default the CASCADE option performs a complete validation. Because this operation can be resource intensive, you can perform a faster version of the validation by using the FAST clause. This version checks for the existence of corruptions using an optimized check algorithm, but does not report details about the corruption. If the FAST check finds a corruption, you can then use the CASCADE option without the FAST clause to locate it. The following statement performs a fast validation on the emp table and all associated indexes:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE FAST;

You can specify that you want to perform structure validation online while DML is occurring against the object being validated. There can be a slight performance impact when validating with ongoing DML affecting the object, but this is offset by the flexibility of being able to perform ANALYZE online. The following statement validates the emp table and all associated indexes online:

ANALYZE TABLE emp VALIDATE STRUCTURE CASCADE ONLINE;

	
See Also:

Oracle Database SQL Language Reference for more information on the ANALYZE statement

Listing Chained Rows of Tables and Clusters

You can look at the chained and migrated rows of a table or cluster using the ANALYZE statement with the LIST CHAINED ROWS clause. The results of this statement are stored in a specified table created explicitly to accept the information returned by the LIST CHAINED ROWS clause. These results are useful in determining whether you have enough room for updates to rows.

Creating a CHAINED_ROWS Table

To create the table to accept data returned by an ANALYZE...LIST CHAINED ROWS statement, execute the UTLCHAIN.SQL or UTLCHN1.SQL script. These scripts are provided by the database. They create a table named CHAINED_ROWS in the schema of the user submitting the script.

	
Note:

Your choice of script to execute for creating the CHAINED_ROWS table depends on the compatibility level of your database and the type of table you are analyzing. See the Oracle Database SQL Language Reference for more information.

After a CHAINED_ROWS table is created, you specify it in the INTO clause of the ANALYZE statement. For example, the following statement inserts rows containing information about the chained rows in the emp_dept cluster into the CHAINED_ROWS table:

ANALYZE CLUSTER emp_dept LIST CHAINED ROWS INTO CHAINED_ROWS;

	
See Also:

	
Oracle Database Reference for a description of the CHAINED_ROWS table

	
"Using the Segment Advisor" for information on how the Segment Advisor reports tables with excess row chaining.

Eliminating Migrated or Chained Rows in a Table

You can use the information in the CHAINED_ROWS table to reduce or eliminate migrated and chained rows in an existing table. Use the following procedure.

	
Use the ANALYZE statement to collect information about migrated and chained rows.

ANALYZE TABLE order_hist LIST CHAINED ROWS;

	
Query the output table:

SELECT *
FROM CHAINED_ROWS
WHERE TABLE_NAME = 'ORDER_HIST';

OWNER_NAME TABLE_NAME CLUST... HEAD_ROWID TIMESTAMP
---------- ---------- -----... ------------------ ---------
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAA 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAB 04-MAR-96
SCOTT ORDER_HIST ... AAAAluAAHAAAAA1AAC 04-MAR-96

The output lists all rows that are either migrated or chained.

	
If the output table shows that you have many migrated or chained rows, then you can eliminate migrated rows by continuing through the following steps:

	
Create an intermediate table with the same columns as the existing table to hold the migrated and chained rows:

CREATE TABLE int_order_hist
 AS SELECT *
 FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST');

	
Delete the migrated and chained rows from the existing table:

DELETE FROM order_hist
 WHERE ROWID IN
 (SELECT HEAD_ROWID
 FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST');

	
Insert the rows of the intermediate table into the existing table:

INSERT INTO order_hist
 SELECT *
 FROM int_order_hist;

	
Drop the intermediate table:

DROP TABLE int_order_history;

	
Delete the information collected in step 1 from the output table:

DELETE FROM CHAINED_ROWS
 WHERE TABLE_NAME = 'ORDER_HIST';

	
Use the ANALYZE statement again, and query the output table.

Any rows that appear in the output table are chained. You can eliminate chained rows only by increasing your data block size. It might not be possible to avoid chaining in all situations. Chaining is often unavoidable with tables that have a LONG column or large CHAR or VARCHAR2 columns.

Managing Application Workloads with Database Services

This section contains:

	
About Database Services

	
Creating Database Services

	
Database Service Data Dictionary Views

About Database Services

Database services (services) are logical abstractions for managing workloads in Oracle Database. Services divide workloads into mutually disjoint groupings. Each service represents a workload with common attributes, service-level thresholds, and priorities. The grouping is based on attributes of work that might include the application function to be used, the priority of execution for the application function, the job class to be managed, or the data range used in the application function or job class. For example, the Oracle E-Business suite defines a service for each responsibility, such as general ledger, accounts receivable, order entry, and so on. When you configure database services, you give each service a unique global name, associated performance goals, and associated importance. The services are tightly integrated with Oracle Database and are maintained in the data dictionary.

Connection requests can include a database service name. Thus, middle-tier applications and client/server applications use a service by specifying the service as part of the connection in TNS connect data. If no service name is included and the Net Services file listener.ora designates a default service, the connection uses the default service.

Services enable you to configure a workload, administer it, enable and disable it, and measure the workload as a single entity. You can do this using standard tools such as the Database Configuration Assistant (DBCA), Net Configuration Assistant (NetCA), and Oracle Enterprise Manager. Enterprise Manager supports viewing and operating services as a whole, with drill down to the instance-level when needed.

In an Oracle Real Application Clusters (Oracle RAC) environment, a service can span one or more instances and facilitate workload balancing based on transaction performance. This provides end-to-end unattended recovery, rolling changes by workload, and full location transparency. Oracle RAC also enables you to manage several service features with Enterprise Manager, the DBCA, and the Server Control utility (SRVCTL).

Services also offer an extra dimension in performance tuning. Tuning by "service and SQL" can replace tuning by "session and SQL" in the majority of systems where all sessions are anonymous and shared. With services, workloads are visible and measurable. Resource consumption and waits are attributable by application. Additionally, resources assigned to services can be augmented when loads increase or decrease. This dynamic resource allocation enables a cost-effective solution for meeting demands as they occur. For example, services are measured automatically and the performance is compared to service-level thresholds. Performance violations are reported to Enterprise Manager, enabling the execution of automatic or scheduled solutions.

Several Oracle Database features support services. The Automatic Workload Repository (AWR) manages the performance of services. AWR records service performance, including execution times, wait classes, and resources consumed by service. AWR alerts warn when service response time thresholds are exceeded. The dynamic views report current service performance metrics with one hour of history. Each service has quality-of-service thresholds for response time and CPU consumption.

In addition, the Database Resource Manager can map services to consumer groups. Therefore, you can automatically manage the priority of one service relative to others. You can use consumer groups to define relative priority in terms of either ratios or resource consumption. For more information, see Chapter 27, "Managing Resources with Oracle Database Resource Manager," and specifically in "Specifying Session-to–Consumer Group Mapping Rules".

You also can specify an edition attribute for a service. Editions make it possible to have two or more versions of the same objects in the database. When you specify an edition attribute for a service, all subsequent connections that specify the service use this edition as the initial session edition. This is described in more detail in "Setting the Edition Attribute of a Database Service".

Specifying an edition as a service attribute can make it easier to manage resource usage. For example, services associated with an edition can be placed on a separate instance in an Oracle RAC environment, and the Database Resource Manager can manage resources used by different editions by associating resource plans with the corresponding services.

Services describe applications, application functions, and data ranges as either functional services or data-dependent services. Functional services are the most common mapping of workloads. Sessions using a particular function are grouped together. In contrast, data-dependent routing routes sessions to services based on data keys. The mapping of work requests to services occurs in the object relational mapping layer for application servers and TP monitors. For example, in Oracle RAC, these ranges can be completely dynamic and based on demand because the database is shared.

You can also define preconnect application services in Oracle RAC databases. Preconnect services span instances to support a service in the event of a failure. The preconnect service supports TAF preconnect mode and is managed transparently when using Oracle RAC.

In addition to services to be used by applications, Oracle Database also supports two internal services: SYS$BACKGROUND is used by the background processes only and SYS$USERS is the default service for user sessions that are not associated with services.

Using services requires no changes to your application code. Client-side work can connect to a named service. Server-side work, such as Oracle Scheduler, parallel execution, and Oracle Streams Advanced Queuing, set the service name as part of the workload definition. Work requests executing under a service inherit the performance thresholds for the service and are measured as part of the service.

For Oracle Scheduler, you optionally assign a service when you create a job class. During execution, jobs are assigned to job classes, and job classes can run within services. Using services with job classes ensures that the work executed by the job scheduler is identified for workload management and performance tuning.

For parallel query and parallel DML, the query coordinator connects to a service just like any other client. The parallel query processes inherit the service for the duration of the execution. At the end of query execution, the parallel execution processes revert to the default service.

	
See Also:

	
Chapter 29, "Scheduling Jobs with Oracle Scheduler" for more information about the Oracle Scheduler

	
Oracle Real Application Clusters Administration and Deployment Guide for information about using services in an Oracle RAC environment

	
Oracle Database Net Services Administrator's Guide for information on connecting to a service

Creating Database Services

There are a few ways to create database services, depending on your database configuration.

To create a database service:

	
If your single-instance database is being managed by Oracle Restart, use the SRVCTL utility to create the database service.

srvctl add service -d db_unique_name -s service_name

	
If your single-instance database is not being managed by Oracle Restart, do one of the following:

	
Append the desired service name to the SERVICE_NAMES parameter.

	
Call the DBMS_SERVICE.CREATE_SERVICE package procedure.

	
(Optional) Define service attributes with Oracle Enterprise Manager or with DBMS_SERVICE.MODIFY_SERVICE.

	
See Also:

	
Chapter 4, "Configuring Automatic Restart of an Oracle Database" for information about Oracle Restart

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_SERVICE package

	
Oracle Real Application Clusters Administration and Deployment Guide for information about creating a service in an Oracle RAC environment.

Database Service Data Dictionary Views

You can find service information in the following service-specific views:

	
DBA_SERVICES

	
ALL_SERVICES or V$SERVICES

	
V$ACTIVE_SERVICES

	
V$SERVICE_STATS

	
V$SERVICE_EVENT

	
V$SERVICE_WAIT_CLASSES

	
V$SERV_MOD_ACT_STATS

	
V$SERVICE_METRICS

	
V$SERVICE_METRICS_HISTORY

The following additional views also contain some information about services:

	
V$SESSION

	
V$ACTIVE_SESSION_HISTORY

	
DBA_RSRC_GROUP_MAPPINGS

	
DBA_SCHEDULER_JOB_CLASSES

	
DBA_THRESHOLDS

	
See Also:

Oracle Database Reference for detailed information about these views

Tasks of a Database Administrator

The following tasks present a prioritized approach for designing, implementing, and maintaining an Oracle Database:

Task 1: Evaluate the Database Server Hardware

Task 2: Install the Oracle Database Software

Task 3: Plan the Database

Task 4: Create and Open the Database

Task 5: Back Up the Database

Task 6: Enroll System Users

Task 7: Implement the Database Design

Task 8: Back Up the Fully Functional Database

Task 9: Tune Database Performance

Task 10: Download and Install Patches

Task 11: Roll Out to Additional Hosts

These tasks are discussed in the sections that follow.

	
Note:

When upgrading to a new release, back up your existing production environment, both software and database, before installation. For information on preserving your existing production database, see Oracle Database Upgrade Guide.

Task 1: Evaluate the Database Server Hardware

Evaluate how Oracle Database and its applications can best use the available computer resources. This evaluation should reveal the following information:

	
How many disk drives are available to the Oracle products

	
How many, if any, dedicated tape drives are available to Oracle products

	
How much memory is available to the instances of Oracle Database you will run (see your system configuration documentation)

Task 2: Install the Oracle Database Software

As the database administrator, you install the Oracle Database server software and any front-end tools and database applications that access the database. In some distributed processing installations, the database is controlled by a central computer (database server) and the database tools and applications are executed on remote computers (clients). In this case, you must also install the Oracle Net components necessary to connect the remote systems to the computer that executes Oracle Database.

For more information on what software to install, see "Identifying Your Oracle Database Software Release".

	
See Also:

For specific requirements and instructions for installation, see the following documentation:
	
The Oracle documentation specific to your operating system

	
The installation guides for your front-end tools and Oracle Net drivers

Task 3: Plan the Database

As the database administrator, you must plan:

	
The logical storage structure of the database

	
The overall database design

	
A backup strategy for the database

It is important to plan how the logical storage structure of the database will affect system performance and various database management operations. For example, before creating any tablespaces for your database, you should know how many datafiles will comprise the tablespace, what type of information will be stored in each tablespace, and on which disk drives the datafiles will be physically stored. When planning the overall logical storage of the database structure, consider the effects that this structure will have when the database is actually created and running. Consider how the logical storage structure of the database will affect:

	
The performance of the computer running Oracle Database

	
The performance of the database during data access operations

	
The efficiency of backup and recovery procedures for the database

Plan the relational design of the database objects and the storage characteristics for each of these objects. By planning the relationship between each object and its physical storage before creating it, you can directly affect the performance of the database as a unit. Be sure to plan for the growth of the database.

In distributed database environments, this planning stage is extremely important. The physical location of frequently accessed data dramatically affects application performance.

During the planning stage, develop a backup strategy for the database. You can alter the logical storage structure or design of the database to improve backup efficiency.

It is beyond the scope of this book to discuss relational and distributed database design. If you are not familiar with such design issues, see accepted industry-standard documentation.

Part II, "Oracle Database Structure and Storage", and Part III, "Schema Objects", provide specific information on creating logical storage structures, objects, and integrity constraints for your database.

Task 4: Create and Open the Database

After you complete the database design, you can create the database and open it for normal use. You can create a database at installation time, using the Database Configuration Assistant, or you can supply your own scripts for creating a database.

See Chapter 2, "Creating and Configuring an Oracle Database", for information on creating a database and Chapter 3, "Starting Up and Shutting Down" for guidance in starting up the database.

Task 5: Back Up the Database

After you create the database structure, perform the backup strategy you planned for the database. Create any additional redo log files, take the first full database backup (online or offline), and schedule future database backups at regular intervals.

	
See Also:

Oracle Database Backup and Recovery User's Guide

Task 6: Enroll System Users

After you back up the database structure, you can enroll the users of the database in accordance with your Oracle license agreement, and grant appropriate privileges and roles to these users. See Chapter 7, "Managing Users and Securing the Database" for guidance in this task.

Task 7: Implement the Database Design

After you create and start the database, and enroll the system users, you can implement the planned logical structure database by creating all necessary tablespaces. When you have finished creating tablespaces, you can create the database objects.

Part II, "Oracle Database Structure and Storage" and Part III, "Schema Objects" provide information on creating logical storage structures and objects for your database.

Task 8: Back Up the Fully Functional Database

When the database is fully implemented, again back up the database. In addition to regularly scheduled backups, you should always back up your database immediately after implementing changes to the database structure.

Task 9: Tune Database Performance

Optimizing the performance of the database is one of your ongoing responsibilities as a DBA. Oracle Database provides a database resource management feature that helps you to control the allocation of resources among various user groups. The database resource manager is described in Chapter 27, "Managing Resources with Oracle Database Resource Manager".

	
See Also:

Oracle Database Performance Tuning Guide for information about tuning your database and applications

Task 10: Download and Install Patches

After installation and on a regular basis, download and install patches. Patches are available as single interim patches and as patchsets (or patch releases). Interim patches address individual software bugs and may or may not be needed at your installation. Patch releases are collections of bug fixes that are applicable for all customers. Patch releases have release numbers. For example, if you installed Oracle Database 11.2.0.1, the first patch release will have a release number of 11.2.0.2.

	
See Also:

Oracle Database Installation Guide for your platform for instructions on downloading and installing patches.

Task 11: Roll Out to Additional Hosts

After you have an Oracle Database installation properly configured, tuned, patched, and tested, you may want to roll that exact installation out to other hosts. Reasons to do this include the following:

	
You have multiple production database systems.

	
You want to create development and test systems that are identical to your production system.

Instead of installing, tuning, and patching on each additional host, you can clone your tested Oracle Database installation to other hosts, saving time and avoiding inconsistencies. There are two types of cloning available to you:

	
Cloning an Oracle home—Just the configured and patched binaries from the Oracle home directory and subdirectories are copied to the destination host and "fixed" to match the new environment. You can then start an instance with this cloned home and create a database.

You can use the Enterprise Manager Clone Oracle Home tool to clone an Oracle home to one or more destination hosts. You can also manually clone an Oracle home using a set of provided scripts and Oracle Universal Installer.

	
Cloning a database—The tuned database, including database files, initialization parameters, and so on, are cloned to an existing Oracle home (possibly a cloned home).

You can use the Enterprise Manager Clone Database tool to clone an Oracle database instance to an existing Oracle home.

	
See Also:

	
Oracle Universal Installer and OPatch User's Guide for Windows and UNIX for information about cloning Oracle software.

	
Enterprise Manager online help for instructions for cloning a database.

When to Use Hash Clusters

This section helps you decide when to use hash clusters by contrasting situations where hashing is most useful against situations where there is no advantage. If you find your decision is to use indexing rather than hashing, then you should consider whether to store a table individually or as part of a cluster.

	
Note:

Even if you decide to use hashing, a table can still have separate indexes on any columns, including the cluster key.

Situations Where Hashing Is Useful

Hashing is useful when you have the following conditions:

	
Most queries are equality queries on the cluster key:

SELECT ... WHERE cluster_key = ...;

In such cases, the cluster key in the equality condition is hashed, and the corresponding hash key is usually found with a single read. In comparison, for an indexed table the key value must first be found in the index (usually several reads), and then the row is read from the table (another read).

	
The tables in the hash cluster are primarily static in size so that you can determine the number of rows and amount of space required for the tables in the cluster. If tables in a hash cluster require more space than the initial allocation for the cluster, performance degradation can be substantial because overflow blocks are required.

Situations Where Hashing Is Not Advantageous

Hashing is not advantageous in the following situations:

	
Most queries on the table retrieve rows over a range of cluster key values. For example, in full table scans or queries such as the following, a hash function cannot be used to determine the location of specific hash keys. Instead, the equivalent of a full table scan must be done to fetch the rows for the query.

SELECT . . . WHERE cluster_key < . . . ;

With an index, key values are ordered in the index, so cluster key values that satisfy the WHERE clause of a query can be found with relatively few I/Os.

	
The table is not static, but instead is continually growing. If a table grows without limit, the space required over the life of the table (its cluster) cannot be predetermined.

	
Applications frequently perform full-table scans on the table and the table is sparsely populated. A full-table scan in this situation takes longer under hashing.

	
You cannot afford to preallocate the space that the hash cluster will eventually need.

Viewing Information About Distributed Transactions

The data dictionary of each database stores information about all open distributed transactions. You can use data dictionary tables and views to gain information about the transactions. This section contains the following topics:

	
Determining the ID Number and Status of Prepared Transactions

	
Tracing the Session Tree of In-Doubt Transactions

Determining the ID Number and Status of Prepared Transactions

The following view shows the database links that have been defined at the local database and stored in the data dictionary:

	View	Purpose
	DBA_2PC_PENDING	Lists all in-doubt distributed transactions. The view is empty until populated by an in-doubt transaction. After the transaction is resolved, the view is purged.

Use this view to determine the global commit number for a particular transaction ID. You can use this global commit number when manually resolving an in-doubt transaction.

The following table shows the most relevant columns (for a description of all the columns in the view, see Oracle Database Reference):

Table 35-1 DBA_2PC_PENDING

	Column	Description
	
LOCAL_TRAN_ID

	
Local transaction identifier in the format integer.integer.integer.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_ID for a connection are the same, the node is the global coordinator of the transaction.

	
GLOBAL_TRAN_ID

	
Global database identifier in the format global_db_name.db_hex_id.local_tran_id, where db_hex_id is an eight-character hexadecimal value used to uniquely identify the database. This common transaction ID is the same on every node for a distributed transaction.

Note: When the LOCAL_TRAN_ID and the GLOBAL_TRAN_ID for a connection are the same, the node is the global coordinator of the transaction.

	
STATE

	
STATE can have the following values:

	
Collecting

This category normally applies only to the global coordinator or local coordinators. The node is currently collecting information from other database servers before it can decide whether it can prepare.

	
Prepared

The node has prepared and may or may not have acknowledged this to its local coordinator with a prepared message. However, no commit request has been received. The node remains prepared, holding any local resource locks necessary for the transaction to commit.

	
Committed

The node (any type) has committed the transaction, but other nodes involved in the transaction may not have done the same. That is, the transaction is still pending at one or more nodes.

	
Forced Commit

A pending transaction can be forced to commit at the discretion of a database administrator. This entry occurs if a transaction is manually committed at a local node.

	
Forced termination (rollback)

A pending transaction can be forced to roll back at the discretion of a database administrator. This entry occurs if this transaction is manually rolled back at a local node.

	
MIXED

	
YES means that part of the transaction was committed on one node and rolled back on another node.

	
TRAN_COMMENT

	
Transaction comment or, if using transaction naming, the transaction name is placed here when the transaction is committed.

	
HOST

	
Name of the host system.

	
COMMIT#

	
Global commit number for committed transactions.

Execute the following script, named pending_txn_script, to query pertinent information in DBA_2PC_PENDING (sample output included):

COL LOCAL_TRAN_ID FORMAT A13
COL GLOBAL_TRAN_ID FORMAT A30
COL STATE FORMAT A8
COL MIXED FORMAT A3
COL HOST FORMAT A10
COL COMMIT# FORMAT A10

SELECT LOCAL_TRAN_ID, GLOBAL_TRAN_ID, STATE, MIXED, HOST, COMMIT#
 FROM DBA_2PC_PENDING
/

SQL> @pending_txn_script

LOCAL_TRAN_ID GLOBAL_TRAN_ID STATE MIX HOST COMMIT#
------------- ------------------------------ -------- --- ---------- ----------
1.15.870 HQ.EXAMPLE.COM.ef192da4.1.15.870 commit no dlsun183 115499

This output indicates that local transaction 1.15.870 has been committed on this node, but it may be pending on one or more other nodes. Because LOCAL_TRAN_ID and the local part of GLOBAL_TRAN_ID are the same, the node is the global coordinator of the transaction.

Tracing the Session Tree of In-Doubt Transactions

The following view shows which in-doubt transactions are incoming from a remote client and which are outgoing to a remote server:

	View	Purpose
	DBA_2PC_NEIGHBORS	Lists all incoming (from remote client) and outgoing (to remote server) in-doubt distributed transactions. It also indicates whether the local node is the commit point site in the transaction.
The view is empty until populated by an in-doubt transaction. After the transaction is resolved, the view is purged.

When a transaction is in-doubt, you may need to determine which nodes performed which roles in the session tree. Use to this view to determine:

	
All the incoming and outgoing connections for a given transaction

	
Whether the node is the commit point site in a given transaction

	
Whether the node is a global coordinator in a given transaction (because its local transaction ID and global transaction ID are the same)

The following table shows the most relevant columns (for an account of all the columns in the view, see Oracle Database Reference):

Table 35-2 DBA_2PC_NEIGHBORS

	Column	Description
	
LOCAL_TRAN_ID

	
Local transaction identifier with the format integer.integer.integer.

Note: When LOCAL_TRAN_ID and GLOBAL_TRAN_ID.DBA_2PC_PENDING for a connection are the same, the node is the global coordinator of the transaction.

	
IN_OUT

	
IN for incoming transactions; OUT for outgoing transactions.

	
DATABASE

	
For incoming transactions, the name of the client database that requested information from this local node; for outgoing transactions, the name of the database link used to access information on a remote server.

	
DBUSER_OWNER

	
For incoming transactions, the local account used to connect by the remote database link; for outgoing transactions, the owner of the database link.

	
INTERFACE

	
C is a commit message; N is either a message indicating a prepared state or a request for a read-only commit.

When IN_OUT is OUT, C means that the child at the remote end of the connection is the commit point site and knows whether to commit or terminate. N means that the local node is informing the remote node that it is prepared.

When IN_OUT is IN, C means that the local node or a database at the remote end of an outgoing connection is the commit point site. N means that the remote node is informing the local node that it is prepared.

Execute the following script, named neighbors_script, to query pertinent information in DBA_2PC_PENDING (sample output included):

COL LOCAL_TRAN_ID FORMAT A13
COL IN_OUT FORMAT A6
COL DATABASE FORMAT A25
COL DBUSER_OWNER FORMAT A15
COL INTERFACE FORMAT A3
SELECT LOCAL_TRAN_ID, IN_OUT, DATABASE, DBUSER_OWNER, INTERFACE
 FROM DBA_2PC_NEIGHBORS
/

SQL> CONNECT SYS@hq.example.com AS SYSDBA
SQL> @neighbors_script

LOCAL_TRAN_ID IN_OUT DATABASE DBUSER_OWNER INT
------------- ------ ------------------------- --------------- ---
1.15.870 out SALES.EXAMPLE.COM SYS C

This output indicates that the local node sent an outgoing request to remote server sales to commit transaction 1.15.870. If sales committed the transaction but no other node did, then you know that sales is the commit point site, because the commit point site always commits first.

Creating and Managing Programs to Define Jobs

A program is a collection of metadata about a particular task. You optionally use a program to help define a job. This section introduces you to basic program tasks, and discusses the following topics:

	
Program Tasks and Their Procedures

	
Creating Programs

	
Altering Programs

	
Dropping Programs

	
Disabling Programs

	
Enabling Programs

	
See Also:

"Programs" for an overview of programs.

Program Tasks and Their Procedures

Table 29-3 illustrates common program tasks and their appropriate procedures and privileges:

Table 29-3 Program Tasks and Their Procedures

	Task	Procedure	Privilege Needed
	
Create a program

	
CREATE_PROGRAM

	
CREATE JOB or CREATE ANY JOB

	
Alter a program

	
SET_ATTRIBUTE

	
ALTER or CREATE ANY JOB or be the owner

	
Drop a program

	
DROP_PROGRAM

	
ALTER or CREATE ANY JOB or be the owner

	
Disable a program

	
DISABLE

	
ALTER or CREATE ANY JOB or be the owner

	
Enable a program

	
ENABLE

	
ALTER or CREATE ANY JOB or be the owner

See "Scheduler Privileges" for further information regarding privileges.

Creating Programs

You create programs by using the CREATE_PROGRAM procedure or Enterprise Manager. By default, programs are created in the schema of the creator. To create a program in another user's schema, you must qualify the program name with the schema name. For other users to use your programs, they must have EXECUTE privileges on the program, therefore, once a program has been created, you have to grant the EXECUTE privilege on it. An example of creating a program is the following, which creates a program called my_program1:

BEGIN
 DBMS_SCHEDULER.CREATE_PROGRAM (
 program_name => 'my_program1',
 program_action => '/usr/local/bin/date',
 program_type => 'EXECUTABLE',
 comments => 'My comments here');
END;
/

Programs are created in the disabled state by default; you must enable them before you can enable jobs that point to them.

Do not attempt to enable a program that requires arguments before you define all program arguments, which you must do in a DEFINE_XXX_ARGUMENT procedure as described in "Defining Program Arguments".

Defining Program Arguments

After creating a program, you can define program arguments. Arguments are defined by position in the calling sequence, with an optional argument name and optional default value. If no default value is defined for a program argument, the job that references the program must supply an argument value. (The job can also override a default value.) All argument values must be defined before the job can be enabled.

To set program argument values, use the DEFINE_PROGRAM_ARGUMENT or DEFINE_ANYDATA_ARGUMENT procedures. DEFINE_ANYDATA_ARGUMENT is used for complex types that must be encapsulated in an ANYDATA object. An example of a program that might need arguments is one that starts a reporting program that requires a start date and end date. The following code example sets the end date argument, which is the second argument expected by the reporting program. The example also assigns a name to the argument so that you can refer to the argument by name (instead of position) from other package procedures, including SET_JOB_ANYDATA_VALUE and SET_JOB_ARGUMENT_VALUE.

BEGIN
 DBMS_SCHEDULER.DEFINE_PROGRAM_ARGUMENT (
 program_name => 'operations_reporting',
 argument_position => 2,
 argument_name => 'end_date',
 argument_type => 'VARCHAR2',
 default_value => '12-DEC-03');
END;
/

Valid values for the argument_type argument are only SQL data types, therefore booleans are not supported. For external executables, only string types such as CHAR or VARCHAR2 are permitted.

You can drop a program argument either by name or by position, as in the following:

BEGIN
 DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name => 'operations_reporting',
 argument_position => 2);

 DBMS_SCHEDULER.DROP_PROGRAM_ARGUMENT (
 program_name => 'operations_reporting',
 argument_name => 'end_date');
END;
/

In some special cases, program logic is dependent on the Scheduler environment. The Scheduler has some predefined metadata arguments that can be passed as an argument to the program for this purpose. For example, for some jobs whose schedule is a window name, it is useful to know how much longer the window will be open when the job is started. This is possible by defining the window end time as a metadata argument to the program.

If a program needs access to specific job metadata, you can define a special metadata argument using the DEFINE_METADATA_ARGUMENT procedure, so values will be filled in by the Scheduler when the program is executed.

	
See Also:

"Setting Job Arguments"

Altering Programs

You alter a program by modifying its attributes. You can use Enterprise Manager or the DBMS_SCHEDULER.SET_ATTRIBUTE and DBMS_SCHEDULER.SET_ATTRIBUTE_NULL package procedures to alter programs. See the DBMS_SCHEDULER.CREATE_PROGRAM procedure in Oracle Database PL/SQL Packages and Types Reference for details on program attributes.

If any currently running jobs use the program that you altered, they continue to run with the program as defined before the alter operation.

The following example changes the executable that program my_program1 runs:

BEGIN
 DBMS_SCHEDULER.SET_ATTRIBUTE (
 name => 'my_program1',
 attribute => 'program_action',
 value => '/usr/local/bin/salesreports1');
END;
/

Dropping Programs

You drop one or more programs using the DROP_PROGRAM procedure or Enterprise Manager.

Running jobs that point to the program are not affected by the DROP_PROGRAM call, and are allowed to continue. Any arguments that pertain to the program are also dropped when the program is dropped. You can drop several programs in one call by providing a comma-delimited list of program names. For example, the following statement drops three programs:

BEGIN
 DBMS_SCHEDULER.DROP_PROGRAM('program1, program2, program3');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for detailed information about the DROP_PROGRAM procedure.

Disabling Programs

You disable one or more programs using the DISABLE procedure or Enterprise Manager. When a program is disabled, the status is changed to disabled. A disabled program implies that, although the metadata is still there, jobs that point to this program cannot run.

Running jobs that point to the program are not affected by the DISABLE call, and are allowed to continue. Any argument that pertains to the program will not be affected when the program is disabled.

A program can also become disabled for other reasons. For example, if a program argument is dropped or number_of_arguments is changed so that all arguments are no longer defined.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about the DISABLE procedure.

Enabling Programs

You enable one or more programs using the ENABLE procedure or Enterprise Manager. When a program is enabled, the enabled flag is set to TRUE. Programs are created disabled by default, therefore, you have to enable them before you can enable jobs that point to them. Before programs are enabled, validity checks are performed to ensure that the action is valid and that all arguments are defined.

You can enable several programs in one call by providing a comma-delimited list of program names to the ENABLE procedure call. For example, the following statement enables three programs:

BEGIN
 DBMS_SCHEDULER.ENABLE('program1, program2, program3');
END;
/

See Oracle Database PL/SQL Packages and Types Reference for detailed information about the ENABLE procedure.

Clusters Data Dictionary Views

The following views display information about clusters:

	View	Description
	DBA_CLUSTERS
ALL_CLUSTERS

USER_CLUSTERS

	DBA view describes all clusters in the database. ALL view describes all clusters accessible to the user. USER view is restricted to clusters owned by the user. Some columns in these views contain statistics that are generated by the DBMS_STATS package or ANALYZE statement.
	DBA_CLU_COLUMNS
USER_CLU_COLUMNS

	These views map table columns to cluster columns

	
See Also:

Oracle Database Reference for complete descriptions of these views

Part V

Distributed Database Management

Part V discusses the management of a distributed database environment. It contains the following chapters:

	
Chapter 31, "Distributed Database Concepts"

	
Chapter 32, "Managing a Distributed Database"

	
Chapter 33, "Developing Applications for a Distributed Database System"

	
Chapter 34, "Distributed Transactions Concepts"

	
Chapter 35, "Managing Distributed Transactions"

Oracle Database Resource Manager Reference

The following sections provide reference information for Oracle Database Resource Manager (the Resource Manager):

	
Predefined Resource Plans and Consumer Groups

	
Predefined Consumer Group Mapping Rules

	
Resource Manager Data Dictionary Views

Predefined Resource Plans and Consumer Groups

Table 27-4 lists the resource plans and Table 27-5 lists the resource consumer groups that are predefined in each Oracle database. You can verify these by querying the views DBA_RSRC_PLANS and DBA_RSRC_CONSUMER_GROUPS.

The following query displays the CPU allocations in the example plan DSS_PLAN:

SELECT group_or_subplan, mgmt_p1, mgmt_p2, mgmt_p3, mgmt_p4
 FROM dba_rsrc_plan_directives WHERE plan = 'DSS_PLAN';

GROUP_OR_SUBPLAN MGMT_P1 MGMT_P2 MGMT_P3 MGMT_P4
------------------------------ ---------- ---------- ---------- ----------
SYS_GROUP 75 0 0 0
DSS_CRITICAL_GROUP 0 75 0 0
DSS_GROUP 0 0 75 0
ETL_GROUP 0 0 0 45
BATCH_GROUP 0 0 0 45
ORA$DIAGNOSTICS 0 5 0 0
ORA$AUTOTASK_SUB_PLAN 0 5 0 0
OTHER_GROUPS 0 0 0 10

Table 27-4 Predefined Resource Plans

	Resource Plan	Description
	
DEFAULT_MAINTENANCE_PLAN

	
Default plan for maintenance windows. See "About Resource Allocations for Automated Maintenance Tasks" for details of this plan. Because maintenance windows are regular Oracle Scheduler windows, you can change the resource plan associated with them, if desired. If you do change a maintenance window resource plan, ensure that you include the subplan ORA$AUTOTASK_SUB_PLAN and the consumer group ORA$DIAGNOSTICS in the new plan.

	
DEFAULT_PLAN

	
Basic default plan that prioritizes SYS_GROUP operations and allocates minimal resources for automated maintenance and diagnostics operations.

	
DSS_PLAN

	
Example plan for a data warehouse that prioritizes critical DSS queries over non-critical DSS queries and ETL operations.

	
ETL_CRITICAL_PLAN

	
Example plan for a data warehouse that prioritizes ETL operations over DSS queries.

	
INTERNAL_PLAN

	
For disabling the resource manager. For internal use only.

	
INTERNAL_QUIESCE

	
For quiescing the database. This plan cannot be activated directly. To activate, use the QUIESCE command.

	
MIXED_WORKLOAD_PLAN

	
Example plan for a mixed workload that prioritizes interactive operations over batch operations. See "An Oracle-Supplied Mixed Workload Plan" for details.

Table 27-5 Predefined Resource Consumer Groups

	Resource Consumer Group	Description
	
BATCH_GROUP

	
Consumer group for batch operations. Referenced by the example plan MIXED_WORKLOAD_PLAN.

	
DSS_CRITICAL_GROUP

	
Consumer group for critical DSS queries. Referenced by the example plans DSS_PLAN and ETL_CRITICAL_PLAN.

	
DSS_GROUP

	
Consumer group for non-critical DSS queries. Referenced by the example plans DSS_PLAN and ETL_CRITICAL_PLAN.

	
ETL_GROUP

	
Consumer group for ETL jobs. Referenced by the example plans DSS_PLAN and ETL_CRITICAL_PLAN.

	
INTERACTIVE_GROUP

	
Consumer group for interactive, OLTP operations. Referenced by the example plan MIXED_WORKLOAD_PLAN.

	
LOW_GROUP

	
Consumer group for low-priority sessions.

	
ORA$DIAGNOSTICS

	
Consumer group used by database processes that create diagnostic dumps when critical errors occur.

	
ORA$AUTOTASK_HEALTH_GROUP

	
Reserved for future use. Included in ORA$AUTOTASK_HIGH_SUB_PLAN.

	
ORA$AUTOTASK_MEDIUM_GROUP

	
Consumer group for medium-priority maintenance tasks.

	
ORA$AUTOTASK_SPACE_GROUP

	
Consumer group for Automatic Segment Advisor maintenance task. Included in ORA$AUTOTASK_HIGH_SUB_PLAN.

	
ORA$AUTOTASK_SQL_GROUP

	
Consumer group for Automatic SQL Tuning Advisor maintenance task. Included in ORA$AUTOTASK_HIGH_SUB_PLAN.

	
ORA$AUTOTASK_STATS_GROUP

	
Consumer group for optimizer statistics gathering maintenance task. Included in ORA$AUTOTASK_HIGH_SUB_PLAN.

	
ORA$AUTOTASK_URGENT_GROUP

	
Consumer group for urgent maintenance tasks.

	
OTHER_GROUPS

	
Default consumer group for all sessions that do not have an explicit initial consumer group, are not mapped to a consumer group with session-to–consumer group mapping rules, or are mapped to a consumer group that is not in the currently active resource plan.

OTHER_GROUPS must have a resource plan directive specified in every plan. It cannot be assigned explicitly to sessions through mapping rules.

	
SYS_GROUP

	
Consumer group for system administrators. It is the initial consumer group for all sessions created by user accounts SYS or SYSTEM. This initial consumer group can be overridden by session-to–consumer group mapping rules.

Predefined Consumer Group Mapping Rules

Table 27-6 summarizes the consumer group mapping rules that are predefined in Oracle Database. You can verify these rules by querying the view DBA_RSRC_GROUP_MAPPINGS. You can use the DBMS_RESOURCE_MANAGER.SET_CONSUMER_GROUP_MAPPING procedure to modify or delete any of these mapping rules.

Table 27-6 Predefined Consumer Group Mapping Rules

	Attribute	Value	Mapped Consumer Group	Notes
	
ORACLE_USER

	
SYS

	
SYS_GROUP

	

	
ORACLE_USER

	
SYSTEM

	
SYS_GROUP

	

	
ORACLE_FUNCTION

	
BACKUP

	
BATCH_GROUP

	
The session is running a backup operation with RMAN. The session is automatically switched to BATCH_GROUP when the operation begins.

	
ORACLE_FUNCTION

	
COPY

	
BATCH_GROUP

	
The session is running a copy operation with RMAN. The session is automatically switched to BATCH_GROUP when the operation begins.

	
ORACLE_FUNCTION

	
DATALOAD

	
ETL_GROUP

	
The session is performing a data load operation with Data Pump. The session is automatically switched to ETL_GROUP when the operation begins.

	
See Also:

"Specifying Session-to–Consumer Group Mapping Rules"

Resource Manager Data Dictionary Views

Table 27-7 lists views that are associated with the Resource Manager.

Table 27-7 Resource Manager Data Dictionary Views

	View	Description
	
DBA_RSRC_CONSUMER_GROUP_PRIVS

USER_RSRC_CONSUMER_GROUP_PRIVS

	
DBA view lists all resource consumer groups and the users and roles to which they have been granted. USER view lists all resource consumer groups granted to the user.

	
DBA_RSRC_CONSUMER_GROUPS

	
Lists all resource consumer groups that exist in the database.

	
DBA_RSRC_MANAGER_SYSTEM_PRIVS

USER_RSRC_MANAGER_SYSTEM_PRIVS

	
DBA view lists all users and roles that have been granted Resource Manager system privileges. USER view lists all the users that are granted system privileges for the DBMS_RESOURCE_MANAGER package.

	
DBA_RSRC_PLAN_DIRECTIVES

	
Lists all resource plan directives that exist in the database.

	
DBA_RSRC_PLANS

	
Lists all resource plans that exist in the database.

	
DBA_RSRC_GROUP_MAPPINGS

	
Lists all of the various mapping pairs for all of the session attributes.

	
DBA_RSRC_MAPPING_PRIORITY

	
Lists the current mapping priority of each attribute.

	
DBA_HIST_RSRC_PLAN

	
Displays historical information about resource plan activation. This view contains AWR snapshots of V$RSRC_PLAN_HISTORY.

	
DBA_HIST_RSRC_CONSUMER_GROUP

	
Displays historical statistical information about consumer groups. This view contains AWR snapshots of V$RSRC_CONS_GROUP_HISTORY.

	
DBA_USERS

USERS_USERS

	
DBA view contains information about all users of the database. It contains the initial resource consumer group for each user. USER view contains information about the current user. It contains the current user's initial resource consumer group.

	
V$RSRC_CONS_GROUP_HISTORY

	
For each entry in the view V$RSRC_PLAN_HISTORY, contains an entry for each consumer group in the plan showing the cumulative statistics for the consumer group.

	
V$RSRC_CONSUMER_GROUP

	
Displays information about active resource consumer groups. This view can be used for tuning.

	
V$RSRCMGRMETRIC

	
Displays a history of resources consumed and cumulative CPU wait time (due to resource management) per consumer group for the past minute.

	
V$RSRCMGRMETRIC_HISTORY

	
Displays a history of resources consumed and cumulative CPU wait time (due to resource management) per consumer group for the past hour on a minute-by-minute basis. If a new resource plan is enabled, the history is cleared.

	
V$RSRC_PLAN

	
Displays the names of all currently active resource plans.

	
V$RSRC_PLAN_HISTORY

	
Shows when Resource Manager plans were enabled or disabled on the instance. It helps you understand how resources were shared among the consumer groups over time.

	
V$RSRC_SESSION_INFO

	
Displays Resource Manager statistics for each session. Shows how the session has been affected by the Resource Manager. Can be used for tuning.

	
V$SESSION

	
Lists session information for each current session. Specifically, lists the name of the resource consumer group of each current session.

	
See Also:

Oracle Database Reference for detailed information about the contents of each of these views

Forcing Log Switches

A log switch occurs when LGWR stops writing to one redo log group and starts writing to another. By default, a log switch occurs automatically when the current redo log file group fills.

You can force a log switch to make the currently active group inactive and available for redo log maintenance operations. For example, you want to drop the currently active group, but are not able to do so until the group is inactive. You may also want to force a log switch if the currently active group must be archived at a specific time before the members of the group are completely filled. This option is useful in configurations with large redo log files that take a long time to fill.

To force a log switch, you must have the ALTER SYSTEM privilege. Use the ALTER SYSTEM statement with the SWITCH LOGFILE clause.

The following statement forces a log switch:

ALTER SYSTEM SWITCH LOGFILE;

Viewing the Alert Log

You can view the alert log with a text editor, with Enterprise Manager, or with the ADRCI utility.

To view the alert log with Enterprise Manager:

	
Access the Database Home page in Enterprise Manager.

For Oracle Enterprise Manager Database Control, see Oracle Database 2 Day DBA for instructions. For Oracle Enterprise Manager Grid Control, go to the desired database target.

	
Under Related Links, click Alert Log Contents.

The View Alert Log Contents page appears.

	
Select the number of entries to view, and then click Go.

To view the alert log with a text editor:

	
Connect to the database with SQL*Plus or another query tool, such as SQL Developer.

	
Query the V$DIAG_INFO view as shown in "Viewing ADR Locations with the V$DIAG_INFO View".

	
To view the text-only alert log, without the XML tags, complete these steps:

	
In the V$DIAG_INFO query results, note the path that corresponds to the Diag Trace entry, and change directory to that path.

	
Open file alert_SID.log with a text editor.

	
To view the XML-formatted alert log, complete these steps:

	
In the V$DIAG_INFO query results, note the path that corresponds to the Diag Alert entry, and change directory to that path.

	
Open the file log.xml with a text editor.

	
See Also:

Oracle Database Utilities for information about using the ADRCI utility to view a text version of the alert log (with XML tags stripped) and to run queries against the alert log

About Oracle Database Resource Manager

Oracle Database Resource Manager (the Resource Manager) enables you to manage multiple workloads within a database that are contending for system and database resources.

The following sections provide an overview of the Resource Manager:

	
What Solutions Does the Resource Manager Provide for Workload Management?

	
Elements of the Resource Manager

	
The Types of Resources Managed by the Resource Manager

	
About Resource Manager Administration Privileges

What Solutions Does the Resource Manager Provide for Workload Management?

When database resource allocation decisions are left to the operating system, you may encounter the following problems with workload management:

	
Excessive overhead

Excessive overhead results from operating system context switching between Oracle Database server processes when the number of server processes is high.

	
Inefficient scheduling

The operating system deschedules database servers while they hold latches, which is inefficient.

	
Inappropriate allocation of resources

The operating system distributes resources equally among all active processes and cannot prioritize one task over another.

	
Inability to manage database-specific resources, such as parallel execution servers and active sessions

The Resource Manager helps to overcome these problems by allowing the database more control over how hardware resources are allocated. In an environment with multiple concurrent user sessions that run jobs with differing priorities, all sessions should not be treated equally. The Resource Manager enables you to classify sessions into groups based on session attributes, and to then allocate resources to those groups in a way that optimizes hardware utilization for your application environment.

With the Resource Manager, you can:

	
Guarantee certain sessions a minimum amount of CPU regardless of the load on the system and the number of users.

	
Distribute available CPU by allocating percentages of CPU time to different users and applications. In a data warehouse, a higher percentage can be given to ROLAP (relational online analytical processing) applications than to batch jobs.

	
Limit the degree of parallelism of any operation performed by members of a group of users.

	
Manage the order of parallel statements in the parallel statement queue. Parallel statements from a critical application can be enqueued ahead of parallel statements from a low priority group of users.

	
Limit the number of parallel servers that a group of users can use. This ensures that all the available parallel servers are not allocated to only one group of users.

	
Create an active session pool. An active session pool consists of a specified maximum number of user sessions allowed to be concurrently active within a group of users. Additional sessions beyond the maximum are queued for execution, but you can specify a timeout period, after which queued jobs will terminate. The active session pool limits the total number of sessions actively competing for resources, thereby enabling active sessions to make faster progress.

	
Manage runaway sessions or calls in the following ways:

	
By placing an absolute limit on the percentage of CPU that a group can consume

	
By detecting when a session or call consumes more than a specified amount of CPU or I/O, and then automatically either terminating the session or call, or switching it to a consumer group that is allocated a small amount of CPU, which would in effect mitigate the impact of the runaway session or call

	
Prevent the execution of operations that the optimizer estimates will run for a longer time than a specified limit.

	
Limit the amount of time that a session can be idle. This can be further defined to mean only sessions that are blocking other sessions.

	
Allow a database to use different resource plans, based on changing workload requirements. You can dynamically change the resource plan, for example, from a daytime resource plan to a nighttime resource plan, without having to shut down and restart the instance. You can also schedule a resource plan change with Oracle Scheduler. See Chapter 28, "Oracle Scheduler Concepts" for more information.

Elements of the Resource Manager

The elements of the Resource Manager are described in the following table.

	Element	Description
	Resource consumer group	A group of sessions that are grouped together based on resource requirements. The Resource Manager allocates resources to resource consumer groups, not to individual sessions.
	Resource plan	A container for directives that specify how resources are allocated to resource consumer groups. You specify how the database allocates resources by activating a specific resource plan.
	Resource plan directive	Associates a resource consumer group with a particular plan and specifies how resources are to be allocated to that resource consumer group.

You use the DBMS_RESOURCE_MANAGER PL/SQL package to create and maintain these elements. The elements are stored in tables in the data dictionary. You can view information about them with data dictionary views.

	
See Also:

"Resource Manager Data Dictionary Views"

About Resource Consumer Groups

A resource consumer group (consumer group) is a collection of user sessions that are grouped together based on their processing needs. When a session is created, it is automatically mapped to a consumer group based on mapping rules that you set up. As a database administrator (DBA), you can manually switch a session to a different consumer group. Similarly, an application can run a PL/SQL package procedure that switches its session to a particular consumer group.

Because the Resource Manager allocates resources (such as CPU) only to consumer groups, when a session becomes a member of a consumer group, its resource allocation is determined by the allocation for the consumer group.

There are three special consumer groups that are always present in the data dictionary. They cannot be modified or deleted. They are:

	
SYS_GROUP

This is the initial consumer group for all sessions created by user accounts SYS or SYSTEM. This initial consumer group can be overridden by session-to–consumer group mapping rules.

	
OTHER_GROUPS

This consumer group contains all sessions that have not been assigned to a consumer group. Every resource plan must contain a directive to OTHER_GROUPS.

	
See Also:

	
Table 27-5, "Predefined Resource Consumer Groups"

	
"Specifying Session-to–Consumer Group Mapping Rules"

About Resource Plan Directives

The Resource Manager allocates resources to consumer groups according to the set of resource plan directives (directives) that belong to the currently active resource plan. There is a parent-child relationship between a resource plan and its resource plan directives. Each directive references one consumer group, and no two directives for the currently active plan can reference the same consumer group.

A directive has several ways in which it can limit resource allocation for a consumer group. For example, it can control how much CPU the consumer group gets as a percentage of total CPU, and it can limit the total number of sessions that can be active in the consumer group. See "The Types of Resources Managed by the Resource Manager" for more information.

About Resource Plans

In addition to the resource plans that are predefined for each Oracle database, you can create any number of resource plans. However, only one resource plan is active at a time. When a resource plan is active, each of its child resource plan directives controls resource allocation for a different consumer group. Each plan must include a directive that allocates resources to the consumer group named OTHER_GROUPS. OTHER_GROUPS applies to all sessions that belong to a consumer group that is not part of the currently active plan.

	
Note:

Although the term "resource plan" (or just "plan") denotes one element of the Resource Manager, in this chapter it is also used to refer to a complete resource plan schema, which includes the resource plan element itself, its resource plan directives, and the consumer groups that the directives reference. For example, when this chapter refers to the DAYTIME resource plan, it could mean either the resource plan element named DAYTIME, or the particular resource allocation schema that the DAYTIME resource plan and its directives define. Thus, for brevity, it is acceptable to say, "the DAYTIME plan favors interactive applications over batch applications."

Example: A Simple Resource Plan

Figure 27-1 shows a simple resource plan for an organization that runs online transaction processing (OLTP) applications and reporting applications simultaneously during the daytime. The currently active plan, DAYTIME, allocates CPU resources among three resource consumer groups. Specifically, OLTP is allotted 75% of the CPU time, REPORTS is allotted 15%, and OTHER_GROUPS receives the remaining 10%.

Figure 27-1 A Simple Resource Plan

[image: Description of Figure 27-1 follows]

Oracle Database provides a procedure (CREATE_SIMPLE_PLAN) that enables you to quickly create a simple resource plan. This procedure is discussed in "Creating a Simple Resource Plan".

	
Note:

The currently active resource plan does not enforce allocations until CPU usage is at 100%. If the CPU usage is below 100%, the database is not CPU-bound and hence there is no need to enforce allocations to ensure that all sessions get their designated resource allocation.
In addition, when allocations are enforced, unused allocation by any consumer group can be used by other consumer groups. In the previous example, if the OLTP group does not use all of its allocation, the Resource Manager permits the REPORTS group or OTHER_GROUPS group to use the unused allocation.

About Subplans

Instead of referencing a consumer group, a resource plan directive (directive) can reference another resource plan. In this case, the plan is referred to as a subplan. The subplan itself has directives that allocate resources to consumer groups and other subplans. The resource allocation scheme then works like this: The top resource plan (the currently active plan) divides resources among consumer groups and subplans. Each subplan allocates its portion of the total resource allocation among its consumer groups and subplans. You can create hierarchical plans with any number of subplans.

You create a resource subplan in the same way that you create a resource plan. To create a plan that is to be used only as a subplan, you use the SUB_PLAN argument in the package procedure DBMS_RESOURCE_MANAGER.CREATE_PLAN.

In any top level plan, you can reference a subplan only once. A subplan is not required to have a directive to OTHER_GROUPS and cannot be set as a resource plan.

Example: A Resource Plan with Subplans

In this example, the Great Bread Company allocates the CPU resource as shown in Figure 27-2. The figure illustrates a top plan (GREAT_BREAD) and all of its descendents. For simplicity, the requirement to include the OTHER_GROUPS consumer group is ignored, and resource plan directives are not shown, even though they are part of the plan. Rather, the CPU percentages that the directives allocate are shown along the connecting lines between plans, subplans, and consumer groups.

Figure 27-2 A Resource Plan With Subplans

[image: Description of Figure 27-2 follows]

The GREAT_BREAD plan allocates resources as follows:

	
20% of CPU resources to the consumer group MARKET

	
60% of CPU resources to subplan SALES_TEAM, which in turn divides its share equally between the WHOLESALE and RETAIL consumer groups

	
20% of CPU resources to subplan DEVELOP_TEAM, which in turn divides its resources equally between the BREAD and MUFFIN consumer groups

It is possible for a subplan or consumer group to have multiple parents. An example would be if the MARKET group were included in the SALES_TEAM subplan. However, a plan cannot contain any loops. For example, the SALES_TEAM subplan cannot have a directive that references the GREAT_BREAD plan.

	
See Also:

"Putting It All Together: Oracle Database Resource Manager Examples" for an example of a more complex resource plan.

About Resource Manager Administration Privileges

You must have the system privilege ADMINISTER_RESOURCE_MANAGER to administer the Resource Manager. This privilege (with the ADMIN option) is granted to database administrators through the DBA role.

Being an administrator for the Resource Manager enables you to execute all of the procedures in the DBMS_RESOURCE_MANAGER PL/SQL package.

You may, as an administrator with the ADMIN option, choose to grant the administrative privilege to other users or roles. To do so, use the DBMS_RESOURCE_MANAGER_PRIVS PL/SQL package. The relevant package procedures are listed in the following table.

	Procedure	Description
	GRANT_SYSTEM_PRIVILEGE	Grants the ADMINISTER_RESOURCE_MANAGER system privilege to a user or role.
	REVOKE_SYSTEM_PRIVILEGE	Revokes the ADMINISTER_RESOURCE_MANAGER system privilege from a user or role.

The following PL/SQL block grants the administrative privilege to user HR, but does not grant HR the ADMIN option. Therefore, HR can execute all of the procedures in the DBMS_RESOURCE_MANAGER package, but HR cannot use the GRANT_SYSTEM_PRIVILEGE procedure to grant the administrative privilege to others.

BEGIN
 DBMS_RESOURCE_MANAGER_PRIVS.GRANT_SYSTEM_PRIVILEGE(
 GRANTEE_NAME => 'HR',
 PRIVILEGE_NAME => 'ADMINISTER_RESOURCE_MANAGER',
 ADMIN_OPTION => FALSE);
END;
/

You can revoke this privilege using the REVOKE_SYSTEM_PRVILEGE procedure.

	
Note:

The ADMINISTER_RESOURCE_MANAGER system privilege can only be granted or revoked using the DBMS_RESOURCE_MANAGER_PRIVS package. It cannot be granted or revoked through the SQL GRANT or REVOKE statements.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference. contains detailed information about the Resource Manager packages:
	
DBMS_RESOURCE_MANAGER

	
DBMS_RESOURCE_MANAGER_PRIVS

