

Part V

Diagnosing and Responding to Failures

The following chapters describe how to diagnose and respond to media failures and data corruptions. This part of the book contains the following chapters:

	
Chapter 14, "RMAN Data Repair Concepts"

	
Chapter 15, "Diagnosing and Repairing Failures with Data Recovery Advisor"

	
Chapter 16, "Validating Database Files and Backups"

	
Chapter 17, "Performing Complete Database Recovery"

	
Chapter 18, "Performing Flashback and Database Point-in-Time Recovery"

	
Chapter 19, "Performing Block Media Recovery"

	
Chapter 20, "Performing RMAN Recovery: Advanced Scenarios"

	
Chapter 21, "Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)"

14 RMAN Data Repair Concepts

This chapter describes the general concepts that you need to understand to perform data repair. This chapter contains the following topics:

	
Overview of RMAN Data Repair

	
RMAN Restore Operations

	
RMAN Media Recovery

Overview of RMAN Data Repair

As explained in "Data Protection", a principal purpose of a backup and recovery strategy is data protection. The key to an effective, efficient strategy is to understand the basic options of data repair.

Problems Requiring Data Repair

While several problems can halt the normal operation of an Oracle database or affect database I/O operations, only the following typically require DBA intervention and data repair: user errors, application errors, and media failures.

User Errors

User errors occur when, either due to an error in application logic or a manual mistake, data in your database is changed or deleted incorrectly. For example, a user logs in to the wrong database and drops a database table. User errors are estimated to be the greatest single cause of database downtime.

Application Errors

Sometimes a software malfunction can corrupt data blocks. In a physical corruption, which is also called a media corruption, the database does not recognize the block.

Media Failures

A media failure occurs when a problem external to the database prevents it from reading from or writing to a file during normal operations. Typical media failures include disk failures and the deletion of database files. Media failures are less common than user or application errors, but your backup and recovery strategy should prepare for them.

RMAN Data Repair Techniques

Depending on the situations you anticipate, consider incorporating each of the following options into your strategy for responding to data loss, and then set up your database to make these options possible.

	
Data Recovery Advisor

This Oracle Database infrastructure can diagnose failures, advise you on how to respond to them, and repair the failures automatically.

"Overview of Data Recovery Advisor" explains the basic concepts of Data Recovery Advisor.

	
logical flashback features

This subset of Oracle Flashback Technology features enables you to view or rewind individual database objects or transactions to a past time. These features do not require use of RMAN.

"Overview of Oracle Flashback Technology and Database Point-in-Time Recovery" explains the basic concepts of the logical flashback features and provides pointers where appropriate.

	
Oracle Flashback Database

Flashback Database is a block-level recovery mechanism that is similar to media recovery, but is generally faster and does not require a backup to be restored. You can return your whole database to a previous state without restoring old copies of your datafiles from backup, as long as you have enabled flashback logging in advance. You must have a fast recovery area configured for logging for flashback database or guaranteed restore points.

"Basic Concepts of Point-in-Time Recovery and Flashback Features" explains the basic concepts of Flashback Database.

	
datafile media recovery

This form of media recovery enables you to restore datafile backups and apply archived redo logs or incremental backups to recover lost changes. You can either recover a whole database or a subset of the database. Datafile media recovery is the most general-purpose form of recovery and can protect against both physical and logical failures.

The general concepts of datafile media recovery are explained in this chapter. The techniques are described in Chapter 17, "Performing Complete Database Recovery" and "Performing Database Point-in-Time Recovery".

	
block media recovery

This form of media recovery enables you to recover individual blocks within a datafile rather than the whole datafile.

"Overview of Block Media Recovery" explains the basic concepts of block media recovery.

	
tablespace point-in-time recovery (TSPITR)

This is a specialized form of point-in-time recovery in which you recover one or more tablespaces to a time earlier than the rest of the database.

"Overview of RMAN TSPITR" explains the basic concepts of TSPITR.

In general, the concepts required to use the preceding repair techniques are explained along with the techniques. This chapter explains concepts that are common to several RMAN data repair solutions.

RMAN Restore Operations

In an RMAN restore operation, you select files to be restored and then run the RESTORE command. Typically, you restore files in preparation for media recovery. You can restore the following types of files:

	
Database (all datafiles)

	
Tablespaces

	
Control files

	
Archived redo logs

	
Server parameter files

You can specify either the default location or a new location for restored datafiles and control files. If you restore to the default location, then RMAN overwrites any files with the same name that currently exist in this location. Alternatively, you can use the SET NEWNAME command to specify new locations for restored datafiles. You can then run a SWITCH command to update the control file to indicate that the restored files in their new locations are now the current datafiles.

	
See Also:

Oracle Database Backup and Recovery Reference for RESTORE syntax and prerequisites, Oracle Database Backup and Recovery Reference for SET NEWNAME syntax, and Oracle Database Backup and Recovery Reference for SWITCH syntax

Backup Selection

RMAN uses the records of available backup sets or image copies in the RMAN repository to select the best available backups for use in the restore operation. The most recent backup available, or the most recent backup satisfying any UNTIL clause specified in the RESTORE command, is the preferred choice. If two backups are from the same point in time, then RMAN prefers image copies over backup sets because RMAN can restore more quickly from image copies than from backup sets (especially those stored on tape).

All specifications of the RESTORE command must be satisfied before RMAN restores a backup. Unless limited by the DEVICE TYPE clause, the RESTORE command searches for backups on all device types of configured channels. If no available backup in the repository satisfies all the specified criteria, then RMAN returns an error indicating that the file cannot be restored.

If you use only manually allocated channels, then a backup job may fail if there is no usable backup on the media for which you allocated channels. Configuring automatic channels makes it more likely that RMAN can find and restore a backup that satisfies the specified criteria.

If backup sets are protected with backup encryption, then RMAN automatically decrypts them when their contents are restored. Transparently encrypted backups require no intervention to restore, as long as the Oracle wallet is open and available. Password-encrypted backups require the correct password to be entered before they can be restored.

	
See Also:

"Configuring Advanced Channel Options"

Restore Failover

RMAN automatically uses restore failover to skip corrupted or inaccessible backups and look for usable backups. When a backup is not found, or contains corrupt data, RMAN automatically looks for another backup from which to restore the desired files.

RMAN generates messages that indicate the type of failover that it is performing. For example, when RMAN fails over to another backup of the same file, it generates a message similar to the following:

failover to piece handle=/u01/backup/db_1 tag=BACKUP_031009

If no usable copies are available, then RMAN searches for previous backups. The message generated is similar to the following example:

ORA-19624: operation failed, retry possible
ORA-19505: failed to identify file "/u01/backup/db_1"
ORA-27037: unable to obtain file status
SVR4 Error: 2: No such file or directory
Additional information: 3
failover to previous backup

RMAN will perform restore failover repeatedly until it has exhausted all possible backups. If all of the backups are unusable or no backups exists, then RMAN attempts to re-create the datafile. Restore failover is also used when there are errors restoring archived redo logs during RECOVER, RECOVER ... BLOCK, and FLASHBACK DATABASE commands.

Restore Optimization

RMAN uses restore optimization to avoid restoring datafiles from backup when possible. If a datafile is already present in the correct location and its header contains the expected information, then RMAN does not restore the datafile from backup.

	
Note:

Restore optimization only checks the datafile header. It does not the scan the datafile body for corrupted blocks.

You can use the FORCE option of the RESTORE command to override this behavior and restore the requested files unconditionally.

Restore optimization is particularly useful when an operation that restores several datafiles is interrupted. For example, assume that a full database restore encounters a power failure after all except one of the datafiles has been restored. If you run the same RESTORE command again, then RMAN only restores the single datafile that was not restored during the previous attempt.

Restore optimization is also used when duplicating a database. If a datafile at the duplicate is in the correct place with the correct header contents, then the datafile is not duplicated. Unlike RESTORE, DUPLICATE does not support a FORCE option. To force RMAN to duplicate a datafile that is skipped due to restore optimization, delete the datafile from the duplicate before running the DUPLICATE command.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for description of RESTORE behavior in an Oracle RAC configuration

RMAN Media Recovery

In media recovery, RMAN applies changes to restored data to roll forward this data in time. RMAN can perform either datafile media recovery or block media recovery.

Datafile media recovery is the application of redo logs or incremental backups to a restored datafile in order to update it to the current time or some other specified time. As explained in Oracle Database Concepts, you can use RMAN to perform complete recovery, database point-in-time recovery (DBPITR), or tablespace point-in-time recovery (TSPITR). You can use the RESTORE command to restore backups of lost and damaged datafiles or control files and the RECOVER command to perform media recovery.

Block media recovery is the recovery of individual data blocks rather than entire datafiles. This section explains datafile media recovery only. Block media recovery, which is a specialized form of media recovery, is explained in "Overview of Block Media Recovery".

Selection of Incremental Backups and Archived Redo Logs

RMAN automates media recovery. RMAN automatically restores and applies both incremental backups and archived redo logs in whatever combination is most efficient.

If the RMAN repository indicates that no copies of a required log sequence number exist on disk, then will automatically restore the required log from backup. By default, RMAN restores the archived logs to the fast recovery area, if one of the archiving destinations is set to USE_DB_RECOVERY_FILE_DEST. Otherwise, RMAN restores the logs to the first local archiving destination specified in the initialization parameter file.

	
See Also:

Oracle Database Backup and Recovery Reference for CROSSCHECK syntax

Database Incarnations

A database incarnation is created whenever you open the database with the RESETLOGS option. After complete recovery, you can resume normal operations without an OPEN RESETLOGS. After a DBPITR or recovery with a backup control file, however, you must open the database with the RESETLOGS option, thereby creating a new incarnation of the database. The database requires a new incarnation to avoid confusion when two different redo streams have the same SCNs, but occurred at different times. If you apply the wrong redo to your database, then you will corrupt it.

The existence of multiple incarnations of a single database determines how RMAN treats backups that are not in the current incarnation path. In almost all cases, the current database incarnation is the correct one to use. Nevertheless, in some cases resetting the database to a previous incarnation is the best approach. For example, you may be dissatisfied with the results of a point-in-time recovery that you have already performed and want to return the database to a time before the RESETLOGS. An understanding of database incarnations is helpful to prepare for such situations.

OPEN RESETLOGS Operations

When you open the database with the RESETLOGS option, the database performs the following actions:

	
Archives the current online redo logs (if they are accessible) and then erases the contents of the online redo logs and resets the log sequence number to 1.

For example, if the current online redo logs are sequence 1000 and 1001 when you open RESETLOGS, then the database archives logs 1000 and 1001 and then resets the online redo logs to sequence 1 and 2.

	
Creates the online redo log files if they do not currently exist.

	
Initializes redo thread records and online redo log records in the control file to the beginning of the new database incarnation.

More specifically, the database sets the redo thread status to closed, sets the current thread sequence in the redo thread records to 1, sets the thread checkpoint of each redo thread to the beginning of log sequence 1, chooses one redo log from each thread and initialize its sequence to 1, and so on.

	
Updates all current datafiles and online redo logs and all subsequent archived redo logs with a new RESETLOGS SCN and time stamp.

Because the database will not apply an archived redo log to a datafile unless the RESETLOGS SCN and time stamps match, the RESETLOGS requirement prevents you from corrupting datafiles with archived logs that are not from direct parent incarnations of the current incarnation. The relationship among incarnations is explained more fully in the following section.

In previous releases, it was recommended that you back up the database immediately after the OPEN RESETLOGS. Because you can now easily recover a pre-RESETLOGS backup like any other backup, making a new database backup is optional. To perform recovery through RESETLOGS you must have all archived logs generated after the most recent backup and at least one control file (current, backup, or created).

Relationship Among Database Incarnations

Database incarnations can stand in the following relationships to each other:

	
The current incarnation is the one in which the database is currently operating.

	
The incarnation from which the current incarnation branched following an OPEN RESETLOGS operation is the parent incarnation of the current incarnation.

	
The parent of the parent incarnation is an ancestor incarnation. Any parent of an ancestor incarnation is also an ancestor of the current incarnation.

	
The direct ancestral path of the current incarnation begins with the earliest incarnation and includes only the branches to an ancestor of the current incarnation, the parent incarnation, or the current incarnation.

An incarnation number is used to uniquely tag and identify a stream of redo. Figure 14-1 illustrates a database that goes through several incarnations, each with a different incarnation number.

Figure 14-1 Database Incarnation History

[image: Diagram showing the incarnation history of a database]

Incarnation 1 of the database starts at SCN 1 and continues through SCN 1000 to SCN 2000. Suppose that at SCN 2000 in incarnation 1, you perform a point-in-time recovery back to SCN 1000, and then open the database with the RESETLOGS option. Incarnation 2 now begins at SCN 1000 and continues to SCN 3000. In this example, incarnation 1 is the parent of incarnation 2.

Suppose that at SCN 3000 in incarnation 2, you perform a point-in-time recovery to SCN 2000 and open the database with the RESETLOGS option. In this case, incarnation 2 is the parent of incarnation 3. Incarnation 1 is an ancestor of incarnation 3.

When DBPITR or Flashback Database has occurred in database, an SCN can refer to more than one point in time, depending on which incarnation is current. For example, SCN 1500 in Figure 14-1 could refer to an SCN in incarnation 1 or 2.

You can use the RESET DATABASE TO INCARNATION command to specify that SCNs are to be interpreted in the frame of reference of a specific database incarnation. The RESET DATABASE TO INCARNATION command is required when you use FLASHBACK, RESTORE, or RECOVER to return to an SCN in a noncurrent database incarnation. However, RMAN executes the RESET DATABASE TO INCARNATION command implicitly with Flashback, as explained in "Resetting the Database Incarnation in the Recovery Catalog".

	
See Also:

	
"Recovering the Database to an Ancestor Incarnation"

	
Oracle Database Backup and Recovery Reference for details about the RESET DATABASE command

Orphaned Backups

When a database goes through multiple incarnations, some backups can become orphaned backups. Orphaned backups are backups created during incarnations of the database that are not in the direct ancestral path.

Assume the scenario shown in Figure 14-1. If incarnation 3 is the current incarnation, then the following backups are orphaned:

	
All backups from incarnation 1 after SCN 1000

	
All backups from incarnation 2 after SCN 2000

In contrast, the following backups are not orphaned because they are in the direct ancestral path:

	
All backups from incarnation 1 prior to SCN 1000

	
All backups from incarnation 2 prior to SCN 2000

	
All backups from incarnation 3

You can use orphaned backups when you intend to restore the database to an SCN not in the direct ancestral path. RMAN can restore backups from parent and ancestor incarnations and recover to the current time, even across OPEN RESETLOGS operations, as long as a continuous path of archived logs exists from the earliest backups to the point to which you want to recover. If you restore a control file from an incarnation in which the changes represented in the backups had not been abandoned, then RMAN can also restore and recover orphaned backups.

Index

A B C D E F G H I J K L M N O P Q R S T U V W

Symbols

	%b substitution variable
	
	SET NEWNAME, 25.1.1.1

	%d substitution variable
	
	BACKUP FORMAT, 2.4.3

	%f substitution variable
	
	SET NEWNAME, 25.1.1.1

	%I substitution variable
	
	SET NEWNAME, 25.1.1.1

	%N substitution variable
	
	SET NEWNAME, 25.1.1.1

	%p substitution variable
	
	BACKUP FORMAT, 2.4.3

	%s substitution variable
	
	BACKUP FORMAT, 2.4.3

	%t substitution variable
	
	BACKUP FORMAT, 2.4.3

	%U substitution variable, 9.2.3.1
	
	BACKUP FORMAT, 2.4.3
	SET NEWNAME, 25.1.1.1

A

	ABORT option
	
	SHUTDOWN statement, 29.5, 30.1.1, 30.1.2

	active database duplication, 4.5.4, 24.1.2.1.1
	Advanced Compression Option, 6.2.5.3
	Advanced Security Option, 6.2.6.1, 8.3.5
	ADVISE FAILURE command, 15.1.2.4, 15.4
	alert log, 12.2.2, 23.1.1
	ALLOCATE CHANNEL command, 5.1.4.1, 6.1.1, 9.2.3.1
	
	MAXPIECESIZE option, 6.2.2

	ALLOW ... CORRUPTION clause, RECOVER command, 29.6.5
	ALTER DATABASE statement
	
	CLEAR LOGFILE clause, 30.7.2.1.3
	END BACKUP clause, 28.3.2.3.1
	OPEN RESETLOGS clause, 13.8.5
	RECOVER clause, 29.2.4.2, 29.3.1, 29.3.2
	RESETLOGS option, 29.5

	ALTER SYSTEM statement
	
	KILL SESSION clause, 23.4.1
	RESUME clause, 28.6.2
	SUSPEND clause, 28.6.2, 28.6.2

	ALTER TABLESPACE statement
	
	BEGIN BACKUP clause, 28.3.2.1, 28.3.2.2.2
	END BACKUP option, 28.3.2.2.2

	application errors, 1.1.1.3
	archival backups, 1.1.2, 9.6.1, 9.6.1, 12.4.2.2
	archived redo log deletion policies, 5.6.1, 5.6.2, 9.4.3
	archived redo log files
	
	applying during media recovery, 29.2.1, 29.2.3, 29.2.4.2
	backing up, 9.4.2
	
	using RMAN, 9.4
	with other backups, 9.4.1.2

	cataloging, 12.4.3
	changing default location, 29.2.4.1
	corrupted, 29.6.1
	deleting, 14.3.1, 29.3.1
	deletion after backup, 9.4.1
	failover, 9.4.1.1
	incompatible format, 29.6.1
	location during recovery, 29.2.1
	loss of, 29.4
	restoring using RMAN, 17.2.5

	ARCHIVELOG mode
	
	backups in, 2.4.1

	AS SELECT clause
	
	CREATE TABLE statement, 30.5

	authentication, RMAN, 2.2
	autobackups, control file, 8.6, 8.6, 9.3.3, 9.6.2
	
	configuring, 5.1.5
	format, 5.1.5.1

	automated repairs
	
	Data Recovery Advisor, 1.4

	automatic channel allocation, 6.1.1
	automatic channels, 3.3, 3.3.2
	
	configuring, 6.1.2
	naming conventions, 3.3.2
	overriding, 6.1

	Automatic Diagnostic Repository (ADR), 5.2.4.1, 8.6.2, 12.2.1, 15.1.2.2, 16.1.2.2, 16.1.2.4, 23.1.1
	Automatic Storage Management (ASM)
	
	backups to, 9.2.3

	Automatic Workload Repository (AWR), 7.5.4
	AUTORECOVERY option
	
	SET statement, 29.2.2

	auxiliary channels, 24.1.2.3
	auxiliary instance parameter file
	
	with TRANSPORT TABLESPACE, 26.2

	availability
	
	of RMAN backups, 12.4.2.1

	AVAILABLE option
	
	of CHANGE command, 12.4.2.1

B

	backup and recovery
	
	definition, 1.1
	introduction, 1
	solutions, 1.2
	strategy, 1.1.1
	user-managed, 1.2

	BACKUP command, 2.4, 2.4.1, 2.4.2, 3.3.2, 3.7.2.3, 5.3.5, 5.5.1, 6.1.1, 6.2.1, 6.2.4, 8.1, 8.1, 8.3, 9.1.2, 9.4.3
	
	ARCHIVELOG option, 9.4.1.2, 9.4.2
	AS COMPRESSION BACKUPSET option, 9.2.5
	AS COPY option, 2.4, 8.4.1, 8.4.1
	BACKUPSET option, 6.2.6.1, 6.2.6.1, 8.5, 8.5.2.1, 8.5.2.1, 8.5.2.1, 9.7.1, 9.7.1, 9.7.2
	CHANNEL option, 5.1.4.3
	COMPRESSED BACKUPSET option, 9.2.5
	COPIES parameter, 8.5, 8.5.1
	COPY OF option, 8.5, 8.5.2.2, 9.7.1, 9.7.3
	CURRENT CONTROLFILE option, 9.3.3, 9.3.3.1
	DATABASE option, 9.3.1
	DATAFILE option, 9.3.2
	DB_FILE_NAME_CONVERT parameter, 8.4.1, 8.4.1
	DELETE INPUT option, 9.4.4, 9.4.4, 12.5.1.1
	DELETE option, 9.4.1
	DEVICE TYPE clause, 5.1.2, 5.5.1, 9.2.1, 9.2.1, 9.3.3.1
	DURATION parameter, 10.8.2
	FILESPERSET parameter, 8.3.9
	FOR RECOVER OF COPY option, 9.5.4.1
	FORMAT parameter, 2.4.3, 5.2.3, 5.2.5.1, 8.3.6, 8.5.1, 9.2.3
	INCREMENTAL option, 2.4.4, 2.4.4, 2.4.4.1, 9.5, 9.5.3, 9.5.3.1
	KEEP option, 9.6.1, 9.6.3.1, 9.6.3.1, 9.6.4
	MAXSETSIZE parameter, 10.1
	NOT BACKED UP clause, 9.4.3
	PLUS ARCHIVELOG option, 9.4.1.2, 9.4.1.2
	PROXY ONLY option, 8.3.10, 8.3.10
	PROXY option, 8.3.10
	RECOVERY AREA option, 9.7.1
	SECTION SIZE parameter, 8.3.1, 10.1.3
	SPFILE option, 9.3.4
	TABLESPACE option, 9.3.2
	TAG parameter, 2.4.3, 9.2.4.1, 9.2.4.1
	VALIDATE option, 2.4.5, 15.1.2.2, 15.3, 16.2

	BACKUP CONTROLFILE clause
	
	ALTER DATABASE statement, 28.1.1, 28.1.1

	BACKUP COPIES parameter
	
	CONFIGURE command, 6.2.3

	backup encryption, 6.2.6.1, 8.3.5, 14.2.1
	
	decrypting backups, 17.3.1.2
	default algorithm, 6.2.6
	dual-mode, 6.2.6.1.3, 10.6.4
	overview, 10.6
	password, 6.2.6.1.2, 10.6.3
	transparent, 6.2.6.1.1, 6.2.6.1.1, 10.6.2

	backup mode, 8.4.2
	
	ending with ALTER DATABASE END BACKUP, 28.3.2.3.1
	for online user-managed backups, 8.2, 28.3.2.1
	instance failure, 28.3.2.3

	backup optimization, 9.4.3
	
	configuring, 5.5, 10.2
	definition, 5.5.1, 9.4.3
	disabling, 5.5.1, 5.5.3
	enabling, 5.5.1, 5.5.3
	redundancy and, 5.5.2.2
	retention policies and, 5.5.2

	backup pieces, 8.3.1
	
	definition, 2.4
	maximum size, 6.2.2
	names, 8.3.6
	names on tape, 5.2.5.1

	backup retention policies, 1.1.2, 3.6, 5.3.1
	
	affect on backup optimization, 5.5.2
	configuring, 5.4, 5.4
	configuring for redundancy, 5.4.1
	definition, 8.8
	disabling, 5.4.3
	exempt backups, 9.6.1, 12.4.2.2
	recovery window, 8.8
	recovery windows, 5.4.2
	redundancy, 8.8, 8.8.2

	backup sets, 2.4, 8.1
	
	backing up, 8.5.2.1, 8.5.2.1, 9.7.1
	compressed, 5.1.3, 6.2.5, 9.2.5
	configuring as default, 5.1.3
	configuring maximum size, 6.2.1
	crosschecking, 12.4.1.1
	duplexing, 10.4
	how RMAN generates, 8.3.8
	limiting size, 8.3.8
	maximum size, 6.2.1, 10.1
	multiplexed, 2.4, 6.2.1, 8.3.9, 9.2.4.2, 22.2.1.1
	naming, 8.3.6
	overview, 8.3
	specifying maximum size, 8.3.7
	specifying number, 8.3.8
	testing restore of, 17.2.4

	Backup Solutions Program (BSP), 3.5.3
	backup strategy
	
	fast recovery area, 5.3

	backup tags, RMAN, 9.2.4
	backup techniques, comparison, 1.2
	backup windows, 10.8.1
	backup-based duplication, 24.1.2.1.1
	backups
	
	archival, 1.1.2, 9.6.1
	archived redo logs
	
	using RMAN, 9.4

	availability, 12.4.2.1
	backup sets, 9.7.1
	backups of, 8.5.2.1
	closed, 28.2
	consistent, 28.2, 28.2
	
	making using RMAN, 8.1.1

	control file, 9.3.3, 28.4
	control files, 28.4
	
	binary, 28.4.1

	correlating RMAN channels with, 23.2.2.2.1, 23.2.2.2.2
	crosschecking, 12.4.1, 12.4.1
	cumulative incremental, 8.7.1.2
	datafile
	
	using RMAN, 9.7.2, 9.7.3

	DBVERIFY utility, 28.9
	default type for RMAN, 5.1.3
	determining datafile status, 28.1.2
	duplexing, 6.2.3, 6.2.3, 10.4
	excluding tablespaces from backups, 6.2.4
	exempt from retention policy, 12.4.2.2
	expired, deleting, 12.5.4
	generating reports for, 11.1.2, 11.3.1
	image copies, 8.4
	inconsistent, 28.2
	
	making using RMAN, 8.1.1

	incremental, 8.7.1.1, 9.5, 10.4.1, 10.4.2
	incrementally updated, 9.5.4
	listing files needed, 28.1
	logical, 1.1.1
	long-term, 1.1.2
	managing, 12.1.1
	multisection, 3.3.2, 8.3.1, 16.2
	NOARCHIVELOG mode, 9.3.5
	obsolete, 8.8.3, 12.5.5
	offline, 28.3.1, 28.3.1, 28.3.1
	offsite, 17.2.3.1
	optimizing, 5.5.1, 9.4.3
	orphaned, 14.3.2.3
	physical, 1.1.1
	previewing, 17.2.3
	read-only tablespaces, 28.3.2.4
	recovering pre-RESETLOGS, 18.6.3
	recovery catalog, 13.6.1, 13.6.1
	Recovery Manager, 9.1.2
	reporting objects needing backups, 11.3.2
	restartable, 10.7.1
	restoring user-managed, 29.2.1
	server parameter files, 9.3.4
	skipping files during, 10.3
	split mirror, 8.4.2
	
	using RMAN, 10.5

	stored scripts, 13.1.2.4, 13.7.1
	tablespace, 28.3.2.2
	
	using RMAN, 9.3.2, 9.7.2, 9.7.3

	testing RMAN, 16.1.2.4, 16.2, 16.2, 16.3, 16.3
	
	using media manager, 5.2.4.2

	user-managed, 28
	validating, 16.2, 16.2, 16.3, 16.3
	verifying, 28.9
	whole database, 9.3.1, 9.3.1, 28.2

	BEGIN BACKUP clause
	
	ALTER TABLESPACE statement, 28.3.2.1

	binary compression for backups, 9.2.5
	block change tracking, 1.2, 8.7.2, 9.5.5, 9.5.5
	
	disk space used for, 9.5.5.1.3
	enabling and disabling, 9.5.5.2, 9.5.5.2, 9.5.5.3, 9.5.5.3
	moving the change tracking file, 9.5.5.5

	block corruptions, 1.1.1.3
	
	stored in V$DATABASE_BLOCK_CORRUPTION, 16.2

	block media recovery, 1.1.1.3, 16.1.2.4
	
	automatic, 19.1.2

	BSP. See Backup Solutions Program (BSP)

C

	cancel-based media recovery, 29.4.2
	canceling RMAN commands, 23.4
	CATALOG command, 12.4.3, 12.4.3
	
	START WITH parameter, 13.4

	CHANGE command
	
	AVAILABLE option, 12.4.2.1
	DB_UNIQUE_NAME parameter, 13.8.3
	RESET DB_UNIQUE_NAME option, 3.7.2.2
	UNCATALOG option, 12.4.4.1

	CHANGE FAILURE command, 15.6
	channels, RMAN, 3.3, 3.3
	
	auxiliary, 24.1.2.3
	configuring, 5.1.4
	configuring advanced options, 6.1
	definition, 2.3, 3.3
	generic, 5.1.4.1
	naming conventions, 3.3.2
	Oracle RAC environment, 6.1.2
	parallel, 5.1.4.3

	character sets
	
	setting for use with RMAN, 4.3

	circular reuse records, 12.2.1
	CLEAR LOGFILE clause
	
	of ALTER DATABASE, 30.7.2.1.3

	client, RMAN, 2.1, 2.1, 3.1, 3.5
	cold failover cluster
	
	definition, 28.3.2.3

	command files, RMAN, 2.4.6
	command interface
	
	RMAN, 3.2

	commands, Recovery Manager
	
	ADVISE FAILURE, 15.1.2.4, 15.4
	ALLOCATE CHANNEL, 5.1.4.1, 6.1.1, 6.2.2, 9.2.3.1
	BACKUP, 2.4, 2.4, 2.4.1, 2.4.2, 2.4.3, 2.4.4, 2.4.4, 2.4.4.1, 2.4.5, 3.3.2, 3.7.2.3, 5.1.2, 5.1.4.3, 5.2.3, 5.2.5.1, 5.3.5, 5.3.5, 5.5.1, 5.5.1, 6.1.1, 6.2.1, 6.2.4, 6.2.6.1, 8.1, 8.3, 8.3.1, 8.3.9, 8.3.10, 8.3.10, 8.4.1, 8.4.1, 8.5, 8.5, 8.5.1, 8.5.1, 8.5.2.1, 8.5.2.2, 9.1.2, 9.2.1, 9.2.4.1, 9.2.5, 9.3.1, 9.3.2, 9.3.2, 9.3.3, 9.3.3.1, 9.3.4, 9.4.1, 9.4.1.2, 9.4.1.2, 9.4.3, 9.4.3, 9.4.4, 9.5, 9.5.3, 9.5.3.1, 9.5.4.1, 9.6.1, 9.6.3.1, 9.6.4, 9.7.1, 9.7.1, 9.7.1, 9.7.2, 9.7.3
	
	PROXY ONLY option, 8.3.10
	PROXY option, 8.3.10

	BACKUP CURRENT CONTROLFILE, 9.3.3.1
	canceling, 23.4
	CATALOG, 12.4.3, 12.4.3, 12.4.3
	CHANGE, 3.7.2.2, 12.4.1, 12.4.1
	CHANGE FAILURE, 15.6
	CONFIGURE, 3.7.1, 5.1.4.1, 5.4, 5.7, 6.1.1, 6.2.2, 6.2.6.2, 6.3
	CREATE CATALOG, 13.2.3, 13.5.3
	CREATE SCRIPT, 13.7.2
	CROSSCHECK, 12.4.1, 12.4.1
	DELETE, 12.4.1.1, 12.4.3.1, 12.4.3.1, 12.5
	DROP CATALOG, 13.9
	DROP DATABASE, 12.6
	DUPLICATE, 24
	EXECUTE SCRIPT, 13.7.1, 13.7.4
	EXIT, 2.2
	FLASHBACK DATABASE, 7.1.1, 13.8.5
	GRANT, 13.5.2
	how RMAN interprets, 3.2
	IMPORT CATALOG, 13.8.7
	LIST, 2.5.1, 2.5.1, 11.1.2, 11.2, 11.2, 11.2.1, 13.8.5, 15.2
	
	INCARNATION option, 11.2.4, 13.8.5

	MAXSETSIZE, 6.2.1
	piping, 4.6
	PRINT SCRIPT, 13.7.6
	RECOVER, 14.3
	REPAIR FAILURE, 15.5.1, 15.6
	REPLACE SCRIPT, 13.7.3
	REPORT, 2.5.2, 11.3.1, 11.3.2
	
	NEED BACKUP option, 11.3.2

	RESET DATABASE
	
	INCARNATION option, 13.8.5

	RESTORE, 17.2.1.2, 17.2.1.2
	RESYNC CATALOG, 13.6.2, 13.8.2, 13.8.2.3
	
	FROM CONTROLFILECOPY option, 13.6.2

	REVOKE, 13.5.4
	SET, 6.2.6.1.2
	SHOW, 2.3, 5.1.1
	SPOOL, 15.5.1
	SWITCH, 17.3.4
	terminating, 23.4, 23.4
	UNREGISTER DATABASE, 13.8.4
	UPGRADE CATALOG, 13.8.6.1
	VALIDATE, 15.1.2.2, 15.3, 16.2

	commands, SQL*Plus
	
	RECOVER
	
	UNTIL TIME option, 29.4.2

	SET, 29.2.2, 29.2.4.2, 29.3.1, 29.3.2

	comments in RMAN syntax, 4.4.3
	COMPATIBLE initialization parameter, 6.2.6.1
	complete recovery
	
	overview, 17.1
	procedures, 29.3

	compressed backups, 5.1.3, 9.2.5
	
	algorithms, 6.2.5

	CONFIGURE command
	
	AUXNAME option, 6.3
	BACKUP OPTIMIZATION option, 5.5.3
	CHANNEL option, 5.1.4.1, 6.1.1
	CONTROLFILE AUTOBACKUP option, 8.6.1, 9.6.2
	DB_UNIQUE_NAME option, 5.7
	ENCRYPTION option, 6.2.6.2
	EXCLUDE option, 6.2.4
	FOR DB_UNIQUE_NAME option, 3.7.1
	MAXPIECESIZE option, 6.2.2
	MAXSETSIZE option, 6.2.1
	RETENTION POLICY clause, 8.8
	RETENTION POLICY option, 5.4

	configuring media managers, 5.2.3
	
	installing, 5.2.1
	prerequisites, 5.2.1

	configuring Recovery Manager
	
	autobackups, 5.1.5, 5.1.5.1, 8.6
	backup optimization, 5.5
	backup retention policies, 5.4
	backup set size, 6.2.1
	default backup type, 5.1.3
	default devices, 5.1.2
	overview, 5.1
	shared server, 6.5
	snapshot control file location, 6.4
	specific channels, 6.1.2
	tablespace exclusion for backups, 6.2.4

	consistent backups, 8.1.1
	
	using RMAN, 8.1.1
	whole database, 28.2

	control file autobackups, 12.2.3
	
	after structural changes to database, 8.6
	configuring, 5.1.5, 5.1.5, 5.1.5, 5.1.5.1, 5.1.5.1, 8.6, 8.6
	default format, 8.6.2
	format, 5.1.5.1

	control files
	
	backups, 28.1.1, 28.4
	
	binary, 28.4.1
	including within database backup, 9.3.3.1
	recovery using, 20.3.1
	using RMAN, 9.3.3

	circular reuse records, 12.2.1
	configuring location, 5.3.4
	creating after loss of all copies, 30.3
	finding filenames, 28.1.1
	multiplexed, 5.3.1, 5.3.4, 12.2.3, 17.2.1.1, 28.1.1, 29.2.1, 30.1.1
	
	loss of, 30.1

	multiplexing, 12.2.3
	recreated, 30.3
	restoring, 20.3.1.1, 30.1.1, 30.1.2
	snapshot, 13.8.2.1
	
	specifying location of, 6.4

	user-managed restore after loss of all copies, 30.3

	CONTROL_FILE_RECORD_KEEP_TIME initialization parameter, 12.2.1, 12.2.2, 13.8.2.2.4
	CONTROL_FILES initialization parameter, 5.3.4.2, 20.3.1.1, 21.6.1.2, 30.1.2
	CONVERT command
	
	with tablespaces and datafiles, 27

	COPIES option
	
	BACKUP command, 10.4.2

	corrupt blocks, 14.1.1.2, 16.1.2.1, 29.6.1
	
	recovering, 19.1.2.1, 19.1.2.1
	RMAN and, 10.7.1

	CREATE CATALOG command, 13.2.3, 13.5.3
	CREATE DATAFILE clause, ALTER DATABASE statement, 30.4
	CREATE SCRIPT command, 13.7.2
	CREATE TABLE statement
	
	AS SELECT clause, 30.5

	CREATE TABLESPACE statement, 30.2.3
	CROSSCHECK command, 12.4.1, 12.4.1
	crosschecking, RMAN, 2.6, 12.1.2.2.1, 12.4.1, 12.4.1
	
	definition, 12.4.1.1
	recovery catalog with the media manager, 12.4.1.1

	cross-platform transportable tablespace, 27
	cumulative incremental backups, 2.4.4, 2.4.4.1, 8.7.1, 8.7.1.2

D

	data blocks, corrupted, 1.1.1.3, 1.2, 2.7.1, 2.9.4, 14.1.1.2, 15.3, 15.6, 16.2, 19.1.1, 29.6.1, 29.6.1
	data dictionary views, 28.3.1, 28.3.2.1, 28.3.2.4
	Data Guard environment, 3.7.2.3
	
	archived log deletion policies, 5.6.1.2
	changing a DB_UNIQUE_NAME, 13.8.3
	configuring RMAN, 5.7
	reporting in a, 11.1.2.1
	RMAN backups, 9.1.2
	RMAN backups, accessibility of, 3.7.2.3
	RMAN backups, association of, 3.7.2.2
	RMAN backups, interchangeability of, 3.7.2.1, 9.3.3
	RMAN usage, 3.7

	data integrity checks, 1.4, 15.1.2.2, 15.3
	data preservation, definition of, 1.1.2
	data protection
	
	definition, 1.1.1

	Data Recovery Advisor, 2.7, 11.2.1, 14.1.2
	
	automated repairs, 1.4
	data integrity checks, 15.1.2.2, 15.3
	failure consolidation, 15.1.2.3.3
	failure priority, 15.1.2.3.2
	failures, 15.1.2.1, 15.1.2.3
	feasibility checks, 15.1.2.4
	overview, 1.4
	purpose, 15.1.1
	repair options, 15.4
	repairing failures, 15.5.1
	repairs, 15.1.2.1, 15.1.2.4, 15.1.2.4.1
	supported configurations, 15.1.2.5
	user interfaces, 15.1.2.1

	data repair
	
	overview, 14.1.1
	techniques, 14.1.2

	data transfer, RMAN, 1.1.3
	database connections
	
	Recovery Manager
	
	auxiliary database, 4.5.4
	hiding passwords, 4.5.5
	without a catalog, 4.5

	SYSDBA required for RMAN, 4.5.1.1
	types in RMAN, 4.5.1

	database point-in-time recovery, 18.5
	
	definition, 18.1.2.1
	Flashback Database and, 7.1.1, 18.1
	prerequisites, 18.5.1
	user-managed, 29.4

	databases
	
	listing for backups, 28.1
	media recovery procedures, user-managed, 29
	media recovery scenarios, 30
	recovery
	
	after control file damage, 30.1.1, 30.1.2

	registering in recovery catalog, 13.3.2, 13.3.2
	reporting on schemas, 11.3.5
	suspending, 28.6.1
	unregistering from recovery catalog, 13.8.4

	datafiles
	
	backing up, 9.3.2, 9.7.2, 9.7.3, 28.3.1
	determining status, 28.1.2
	listing, 28.1
	losing, 29.2.1
	recovery
	
	without backup, 30.4

	re-creating, 30.4
	renaming
	
	after recovery, 30.2.3

	restoring, 14.2

	DB_BLOCK_CHECKSUM initialization parameter, 16.1.2.1
	DB_CREATE_FILE_DEST initialization parameter, 5.3.4.1, 9.5.5.2, 17.3.2
	DB_FILE_NAME_CONVERT initialization parameter, 21.6.1.2
	DB_FLASHBACK_RETENTION_TARGET initialization parameter, 5.3.2, 5.3.2.1, 5.3.2.3
	DB_LOST_WRITE_PROTECT initialization parameter, 6.6
	DB_NAME initialization parameter, 21.6.1.2
	DB_RECOVERY_FILE_DEST initialization parameter, 2.1, 5.3.2, 5.3.4.1
	DB_RECOVERY_FILE_DEST_SIZE initialization parameter, 2.1, 5.3.2
	DB_UNIQUE_NAME initialization parameter, 3.7, 3.7.2.2, 5.7, 11.1.2.1
	DBA_DATA_FILES view, 28.3.1, 28.3.2.1, 28.3.2.4
	DBID
	
	determining, 17.2.2
	problems registering copied database, 13.1.2.1
	setting with DBNEWID, 13.3.1

	DBMS_PIPE package, 4.6, 4.6
	DBNEWID utility, 13.3.1, 24.1.1
	DBPITR. See database point-in-time recovery
	DBVERIFY utility, 28.9
	DELETE command, 12.4.3.1, 12.5, 12.5.3
	
	EXPIRED option, 12.4.1.1, 12.5.4
	OBSOLETE option, 8.8.3, 8.8.3, 12.5.5

	deleting backups, 2.6.2, 12.5, 12.5, 12.5.1.1, 12.5.3
	deletion policies, archived redo log, 5.6.1
	
	enabling, 5.6.2

	devices, configuring default, 5.1.2
	differential incremental backups, 2.4.4, 8.7.1, 8.7.1.1
	direct ancestral path, 14.3.2.2, 18.4.2, 18.6.2
	disaster recovery, 1.1.2
	
	definition, 1.1.1.1

	disconnecting
	
	from Recovery Manager, 2.2

	disk API, 5.2.4
	disk failures, 1.1.1.1
	disk usage
	
	monitoring, 12.3.2

	DROP DATABASE command, 12.6
	dropped tables, retrieving, 18.3.1
	dropping a database, 12.6
	dropping the recovery catalog, 13.9
	dual mode backup encryption, 6.2.6.1.3, 6.2.6.1.3
	dual-mode backup encryption, 10.6.4
	dummy API, 5.2.4
	duplexing backup sets, 6.2.3, 6.2.3, 8.5.1, 10.4
	DUPLICATE command, 24
	duplicate databases, 3.1
	
	active database duplication, 4.5.4, 24.1.2.1.1
	backup-based duplication, 24.1.2.1.2
	
	no target connection, 24.1.2.1.2
	no target/recovery connection, 24.1.2.1.2
	target connection, 24.1.2.1.2

	generating filenames, 24.2.2
	how RMAN creates, 24.1.2.3
	restarting after failed DUPLICATE, 24.7
	skipping offline normal tablespaces, 25.5.2
	skipping read-only tablespaces, 25.5

	DURATION parameter, BACKUP command, 10.8.2

E

	encrypted backups, 10.6, 14.2.1
	
	decrypting, 17.3.1.2

	environment variables
	
	NLS_DATE_FORMAT, 4.3
	NLS_LANG, 4.3

	error codes
	
	media manager, 23.1.3.2
	RMAN, 23.1, 23.1.3, 23.1.3.1

	error messages, RMAN
	
	interpreting, 23.1.4

	error stacks, RMAN
	
	interpreting, 23.1.4

	EXECUTE SCRIPT command, 13.7.4
	EXIT command, 2.2
	exiting RMAN, 2.2
	expired backups, 8.8, 12.4.1.1
	
	deleting, 12.5.4

	EXPIRED option
	
	DELETE command, 12.5.4

F

	failover, when restoring files, 14.2.2
	failures
	
	definition, 1.1.1
	media, 1.1.1.1
	See also recovery

	failures, Data Recovery Advisor, 15.1.2.1, 15.1.2.3
	
	consolidation, 15.1.2.3.3
	priority, 15.1.2.3.2

	fast recovery area, 3.1, 3.6, 18.1.2.2.1
	
	autobackups, 5.1.5.1
	changing locations, 12.3.5
	configuring, 5.3
	definition, 2.1
	disabling, 12.3.6
	effect of retention policy, 8.8.4
	enabling, 5.3.2
	flashback database window, 7.1.2
	maintaining, 12.3
	monitoring disk usage, 12.3.2
	monitoring usage, 12.3.2
	Oracle Managed Files, 5.3.1.1
	permanent and impermanent files, 5.3.1
	RMAN files in, 5.3.5
	setting location, 5.3.2.2
	setting size, 5.3.2.1
	snapshot control files, 6.4
	space management, 5.3.1.2

	feasibility checks, Data Recovery Advisor, 15.1.2.4
	file sections, 8.3.7, 8.3.9, 10.1.3, 16.2
	filenames, listing for backup, 28.1
	flashback data archive
	
	definition, 1.3.1

	Flashback Database, 2.8, 14.1.2
	
	determining the flashback database window, 18.4.2
	flashback logs, 1.3.2, 7.2.1
	limitations, 7.1.3
	monitoring, 7.5.4
	overview, 1.3.2
	prerequisites, 18.4.1
	purpose, 18.1.1
	requirements, 7.3
	space management, 12.3.3
	
	estimating disk space requirement, 5.3.2.3

	tuning performance, 7.5.3

	FLASHBACK DATABASE command, 7.1.1, 18.4.2
	flashback database window, 7.1.2
	Flashback Drop, 18.1.2.2.2, 18.3.1
	flashback logs, 1.3.2, 2.8, 7.1.1, 12.3.3, 18.1.2.2.1
	
	guaranteed restore points and, 7.1.5

	flashback retention target, 7.1.1
	Flashback Table, 18.1.2.2.2
	
	using, 18.2.1, 18.2.2

	FLASHBACK TABLE statement, 18.2.1, 18.2.1, 18.2.2
	Flashback Technology, 18.1.2
	
	logical features, 18.1.2.2.2
	overview, 1.3

	flashback undrop
	
	restoring objects, 18.3.3

	formats, for RMAN backups, 9.2.3
	fractured blocks, 8.2
	
	detection, 8.2

	full backups, 8.7
	
	incremental backups and, 2.4.4

G

	generic channels
	
	definition, 5.1.4.1

	GRANT command, 13.5.2
	groups, redo log, 30.7.1, 30.7.1, 30.7.2, 30.7.2
	guaranteed restore points, 1.3.2, 5.3.2.1
	
	alternative to storage snapshots, 7.1.5.1
	compared to storage snapshots, 7.1.5.1
	creating, 7.4.1
	flashback logs and, 7.1.5
	requirements, 7.3
	space usage in fast recovery area, 7.4.2

H

	Health Monitor, 15.1.2.2
	hot backup mode
	
	failed backups, 28.3.2.3, 28.3.2.3.1
	for online user-managed backups, 28.3.2.1

I

	image copies, 2.4, 8.1, 8.4
	
	definition, 8.4
	testing restore of, 17.2.4

	IMPORT CATALOG command, 13.8.7
	INCARNATION option
	
	LIST command, 11.2.4, 13.8.5
	RESET DATABASE command, 13.8.5, 13.8.5

	incarnations, database, 11.2.4, 14.3.2, 18.4.2, 18.6.2
	INCLUDE CURRENT CONTROLFILE option
	
	BACKUP command, 9.3.3.1

	incomplete media recovery, 29.4
	incomplete recovery
	
	defined, 18.5
	in Oracle Real Application Clusters configuration, 29.2.2.2
	overview, 14.3
	time-based, 29.4.2
	with backup control file, 29.2.2.2

	inconsistent backups, 8.1.2
	
	using RMAN, 2.4.1, 8.1.1

	incremental backups, 2.4.4, 9.5
	
	block change tracking, 9.5.5
	differential, 8.7.1.1
	how RMAN applies, 14.3.1
	making, 9.5
	using RMAN, 10.4.1, 10.4.2

	initialization parameter file, 14.3
	initialization parameters
	
	CONTROL_FILES, 20.3.1.1, 30.1.2
	DB_FILE_NAME_CONVERT, 21.6.1.2
	DB_NAME, 21.6.1.2
	LARGE_POOL_SIZE, 22.4.3
	LOCK_NAME_SPACE, 21.6.1.2
	LOG_ARCHIVE_DEST_n, 29.2.3
	LOG_ARCHIVE_FORMAT, 29.2.3
	LOG_FILE_NAME_CONVERT, 21.6.1.2

	instance failures
	
	backup mode and, 28.3.2.3

	integrity checks, 16.1.2
	interpreting RMAN error stacks, 23.1.4
	interrupting media recovery, 29.2.5
	I/O errors
	
	effect on backups, 10.7.1

J

	jobs, RMAN
	
	monitoring progress, 22.3.1
	querying details about, 11.4.1

K

	KEEP option
	
	BACKUP command, 12.4.2.2

L

	level 0 incremental backups, 2.4.4, 8.7.1, 8.7.1, 8.7.2
	level 1 incremental backups, 8.7.1.1, 8.7.1.2
	LIST command, 2.5.1, 11.1.2, 11.2, 11.2.1
	
	FAILURE option, 15.2
	INCARNATION option, 13.8.5

	LOCK_NAME_SPACE initialization parameter, 21.6.1.2
	log sequence numbers, 29.2.1
	LOG_ARCHIVE_DEST_n initialization parameter, 5.3.4.3, 5.3.5, 17.2.5, 29.2.2, 29.2.3, 29.2.3, 29.3.1, 29.4.1, 29.4.2
	LOG_ARCHIVE_FORMAT initialization parameter, 29.2.3
	LOG_FILE_NAME_CONVERT initialization parameter, 21.6.1.2
	logical backups, 1.1.1
	logical block corruption, 16.1.2.2
	LOGSOURCE variable
	
	SET statement, 29.2.4.2, 29.3.1, 29.3.2

	long waits, 22.3.2.2
	loss of
	
	inactive log group, 30.7.2.1

	lost writes, detecting, 6.6

M

	maintenance commands, RMAN, 2.6, 3.3.2, 12.1.2
	
	Data Guard environment, 12.1.2.2

	managing RMAN metadata, 11, 12, 12
	MAXPIECESIZE parameter
	
	SET command, 5.2.5.1

	MAXSETSIZE parameter
	
	BACKUP command, 6.2.1, 10.1
	CONFIGURE command, 6.2.1

	media failures, 1.1.1
	
	archived redo log file loss, 29.4
	complete recovery, 29.3
	complete recovery, user-managed, 29.3
	control file loss, 30.3
	datafile loss, 29.2.1
	definition, 1.1.1.1
	NOARCHIVELOG mode, 29.5
	online redo log group loss, 30.7.2
	recovery, 29.3
	recovery procedures
	
	examples, 29.2.1

	Media Management Layer (MML) API, 3.5, 6.2.2
	media managers, 3.1, 3.3.1, 3.5, 3.5.2
	
	backing up files, 3.5.1
	backup piece names, 5.2.5.1
	Backup Solutions Program, 3.5.3
	catalog, 3.1
	configuring for use with RMAN, 5.2.3
	crosschecking, 12.4.1.1
	definition, 2.1
	error codes, 23.1.3.2
	file restrictions, 5.2.5.1
	installing, 5.2.1
	library location, 5.2.2
	linking
	
	testing, 5.2.4

	linking to software, 3.5.2, 5.2.2
	multiplexing backups, 8.3.9
	prerequisites for configuring, 5.2.1
	sbttest program, 23.3.1
	testing, 5.2.4
	testing backups, 5.2.4.2
	testing the API, 23.3
	third-party, 5.2
	troubleshooting, 5.2.4.2

	media recovery, 8.7.4
	
	ADD DATAFILE operation, 30.2.3
	after control file damage, 30.1.1, 30.1.2
	applying archived redo logs, 29.2.1
	cancel-based, 29.4, 29.4.2
	complete, 29.3
	
	closed database, 29.3.1

	complete, user-managed, 29.3
	corruption
	
	allowing to occur, 29.6.4

	datafiles
	
	without backup, 30.4

	errors, 29.6.1
	incomplete, 29.4
	interrupting, 29.2.5
	lost files
	
	lost archived redo log files, 29.4
	lost datafiles, 29.2.1
	lost mirrored control files, 30.1

	NOARCHIVELOG mode, 29.5, 29.5
	offline tablespaces in open database, 29.3.2
	online redo log files, 30.7
	parallel, 29.2.6
	problems, 29.6.1, 29.6.1, 29.6.2, 29.6.3
	restarting, 29.2.5
	restoring
	
	whole database backups, 29.5

	resuming after interruption, 29.2.5
	roll forward phase, 29.2.1
	scenarios, 30
	time-based, 29.4
	transportable tablespaces, 30.6
	trial, 29.6.6, 29.6.6, 29.6.6.1
	troubleshooting, 29.6.1, 29.6.1
	undamaged tablespaces online, 29.3.2
	user-managed, 29
	using Recovery Manager, 14.3

	metadata, RMAN, 3.4, 11, 12, 13
	mirrored files
	
	backups using, 10.5
	splitting, 28.6.1
	
	suspend/resume mode, 28.6.1
	using RMAN, 10.5

	monitoring fast recovery area usage, 12.3.2
	monitoring RMAN, 23.2
	MTTR, 15.1.1
	multiplexed backup sets, 6.2.1, 8.3.9, 9.2.4.2, 22.2.1.1
	multiplexed control files, 5.3.1, 5.3.4, 12.2.3, 12.2.3, 17.2.1.1, 28.1.1, 29.2.1, 30.1.1
	multisection backups, 3.3.2, 8.3.1, 8.3.7, 8.3.9, 10.1.3, 16.2

N

	naming backup sets, 8.3.6
	NLS_DATE_FORMAT environment variable, 4.3
	NLS_LANG environment variable, 4.3
	NOARCHIVELOG mode
	
	backing up, 9.3.5
	disadvantages, 29.5
	recovery, 29.5

O

	obsolete backups, 8.8
	
	definition, 8.8
	deleting, 2.6.2, 8.8.3, 12.5.5

	off-site backups, 17.2.3.1
	online redo logs, 30.7.2.1
	
	active group, 30.7.1, 30.7.2
	applying during media recovery, 29.2.1
	archived group, 30.7.1, 30.7.2
	clearing
	
	failure, 30.7.2.1.3

	clearing inactive logs
	
	archived, 30.7.2.1.1
	unarchived, 30.7.2.1.2

	configuring location, 5.3.4
	current group, 30.7.1, 30.7.2
	inactive group, 30.7.1, 30.7.2
	loss of, 30.7.2.1
	
	active group, 30.7.2.2.1, 30.7.2.2.1
	all members, 30.7.2
	group, 30.7.2
	recovery, 30.7

	loss of group, 30.7.2.2.1, 30.7.2.2.1
	multiple group loss, 30.7.2.3
	replacing damaged member, 30.7.1
	status of members, 30.7.1, 30.7.2

	OPEN RESETLOGS clause
	
	ALTER DATABASE statement, 13.8.5, 14.3.2.1, 18.4.2, 18.6.1

	ORA-01578 error message, 30.5
	Oracle Backup Solutions Program (BSP), 3.5.3
	Oracle Data Pump, 1.1.1, 18.4.2
	Oracle Encryption Wallet
	
	and backups, 6.2.6.1.1

	Oracle Flashback Database. See Flashback Database
	Oracle Flashback Drop, 1.3.1
	Oracle Flashback Query, 1.3.1
	Oracle Flashback Table, 1.3.1
	Oracle Flashback Transaction, 1.3.1
	Oracle Flashback Transaction Query, 1.3.1
	Oracle Flashback Version Query, 1.3.1
	Oracle Managed Files
	
	fast recovery, 5.3.1.1

	Oracle Real Application Clusters (Oracle RAC)
	
	RMAN channels and, 6.1.2

	Oracle Secure Backup, 3.5.2, 5.2
	Oracle VSS writer, 5.3.1
	Oracle wallet, 6.2.6.1.1
	orphaned backups, 14.3.2.3
	OSB Cloud Module
	
	See Also Oracle Database Backup and Restore Reference, Preface

P

	packages
	
	DBMS_PIPE, 4.6, 4.6

	password backup encryption, 6.2.6.1.2, 6.2.6.1.2
	password-mode encryption, 10.6.3
	passwords
	
	connecting to RMAN, 4.5.5

	performance tuning
	
	short waits
	
	definition of, 22.3.2.2

	performance tuning, RMAN
	
	backup performance, 22.4
	LARGE_POOL_SIZE initialization parameter, 22.4.3
	long waits, 22.3.2.2

	physical backups, 1.1.1
	physical block corruption, 16.1.2.2
	pipe interface, RMAN, 4.6
	point of recoverability
	
	recovery window, 8.8.1

	point-in-time recovery, 29.4
	
	performing
	
	with current control file, 18.5.2

	tablespace, 18.1.2

	PREVIEW option, RESTORE command, 11.1.2
	previewing backups, 17.2.3
	PRINT SCRIPT command, 13.7.6
	proxy copies, 3.5.1, 8.3.10
	PROXY option
	
	BACKUP command, 8.3.10, 8.3.10

Q

	QUIT command, 2.2
	quitting RMAN, 2.2

R

	raw devices
	
	backing up to, 28.7
	UNIX backups, 28.7.1
	Windows backups, 28.7.2

	RC_ARCHIVED_LOG view, 11.5.1.1
	RC_BACKUP_FILES view, 11.5.3
	RC_BACKUP_PIECE view, 11.5.1
	RC_BACKUP_SET view, 12.5.1
	read-only tablespaces
	
	backups, 28.3.2.4

	RECOVER clause
	
	ALTER DATABASE statement, 29.2.4.2, 29.3.1, 29.3.2

	RECOVER command, 14.3
	
	COPY option, 9.5.4
	PARALLEL and NOPARALLEL options, 29.2.6
	TEST option, 16.4
	unrecoverable objects and standby databases, 30.5
	UNTIL TIME option, 29.4.2
	USING BACKUP CONTROLFILE clause, 30.2.4

	recovery
	
	ADD DATAFILE operation, 30.2.3
	automatically applying archived logs, 29.2.2
	cancel-based, 29.4.2
	complete, 17.1, 29.3
	
	closed database, 29.3.1
	offline tablespaces, 29.3.2

	corruption
	
	intentionally allowing, 29.6.4

	database
	
	in NOARCHIVELOG mode, 20.1

	database files
	
	how RMAN applies changes, 14.3.1
	overview, 14.3

	database point-in-time, 18.5
	datafiles, 29.2.1
	disaster using RMAN, 20.4
	dropped table, 30.8
	errors, 29.6.1
	failures requiring, 1.1.1
	interrupting, 29.2.5
	media, 29, 29.6, 30
	multiple redo threads, 29.2.2.2
	of lost or damaged recovery catalog, 13.6.2
	online redo logs, 30.7
	
	loss of group, 30.7.2

	parallel, 29.2.6
	preparing for, 17.2.1.2
	problems, 29.6.1
	
	fixing, 29.6.3
	investigating, 29.6.2

	stuck, 29.6.1
	time-based, 29.4.2
	transportable tablespaces, 30.6
	trial, 29.6.6
	
	explanation, 29.6.6.1
	overview, 29.6.6

	troubleshooting, 29.6.1
	user errors, 30.8
	user-managed, 29, 29.6, 30
	using backup control file, 20.3.1
	
	without recovery catalog, 20.3.2

	using logs in a nondefault location, 29.2.4.1
	using logs in default location, 29.2.3
	using logs in nondefault location, 29.2.4.2
	without a recovery catalog, 12.2.3

	recovery catalog, 3.4, 13.1
	
	backing up, 13.6.1, 13.6.1
	cataloging backups, 12.4.3, 13.4
	centralization of metadata, 13.1.2.2
	creating, 13.2
	crosschecking, 12.4.1.1
	DBID problems, 13.1.2.1
	definition, 2.1, 3.1
	deleting backups, 12.5
	deleting records, 12.5.3
	dropping, 13.9
	log switch record, 12.4.3
	managing size of, 13.8.2.2.4
	operating with, 3.4
	purpose of, 13.1.1
	recovery of, 13.6.2
	refreshing, 13.8.2
	registering databases, 13.1.2.1, 13.3.1, 13.3.2, 13.3.2
	resynchronizing, 13.8.2, 13.8.2.1
	space requirements, 13.2.1.2
	stored scripts, 13.7.1
	
	creating, 13.7.2

	synchronization, 13.8.2.1
	unregistering databases, 13.8.4
	updating
	
	after operating system deletions, 12.4.4.2

	upgrading, 13.8.6, 13.8.6.1
	views, querying, 11.5
	virtual private catalogs, 3.4

	recovery catalogs
	
	backing up, 13.6.1
	dropping, 13.9
	importing, 13.8.7
	moving, 13.8.7.4

	Recovery Manager
	
	allocating tape buffers, 22.2.3.1.1
	archived redo logs
	
	backups, 9.4

	authentication, 2.2
	backups, 9.1.2
	
	archived redo logs, 9.4
	backing up, 8.5.2.1, 9.7.1
	batch deletion of obsolete, 8.8.3
	control files, 9.3.3
	datafile, 9.3.2, 9.7.2, 9.7.3
	duplexed, 8.5.1
	image copy, 8.4
	incremental, 9.5, 10.4.1, 10.4.2
	optimization, 5.5.1, 9.4.3
	tablespace, 9.7.2, 9.7.3
	testing, 16.1.2.4, 16.2, 16.2, 16.3, 16.3
	validating, 16.2, 16.2, 16.3, 16.3
	whole database, 9.3.1, 9.3.1

	channels, 3.3, 3.3
	
	naming conventions, 3.3.2

	client, 2.1
	connecting to databases, 2.2
	corrupt datafile blocks
	
	handling I/O errors and, 10.7.1

	crosschecking recovery catalog, 12.4.1.1
	database character set, 4.3
	database connections, 4.5.1
	
	auxiliary database, 4.5.4
	duplicate database, 4.5.4
	hiding passwords, 4.5.5
	SYSDBA required for target, 4.5.1.1
	without a catalog, 4.5

	DBMS_PIPE package, 4.6
	definition, 2.1
	disconnecting from, 2.2
	duplicate databases, overview of, 24.1.2.3
	error codes
	
	message numbers, 23.1.3.1

	errors, 23.1, 23.1.3
	
	interpreting, 23.1.4

	file deletion, 12.5.1.1
	fractured block detection in, 8.2
	image copy backups, 8.4
	incremental backups
	
	cumulative, 8.7.1.2
	differential, 8.7.1.1
	level 0, 8.7.1

	integrity checking, 16.1.2
	jobs, monitoring progress, 22.3.1
	jobs, querying details of, 11.4.1
	lists, 11.2
	maintenance commands, 2.6
	media management
	
	backing up files, 3.5.1
	Backup Solutions Program (BSP), 3.5.3
	crosschecking, 12.4.1.1
	media manager, linking with a, 5.2.2

	metadata, 3.4, 11, 12, 13
	monitoring, 23.2
	overview, 2.1, 3.2
	performance
	
	monitoring, 23.2

	pipe interface, 4.6
	proxy copy, 3.5.1
	recovery
	
	after total media failure, 20.4

	recovery catalog, 13.1
	
	backing up, 13.6.1
	crosschecking, 12.4.1.1
	managing the size of, 13.8.2.2.4
	operating with, 3.4
	recovering, 13.6.2
	registration of target databases, 13.1.2.1, 13.3.1, 13.3.2
	resynchronizing, 13.8.2
	synchronization, 13.8.2.1
	upgrading, 13.8.6.1

	reports, 11.3.1
	
	database schema, 11.3.5
	objects needing a backup, 11.3.2
	obsolete backups, 11.3.4

	repository, 3.4
	restoring
	
	archived redo logs, 17.2.5
	datafiles, 14.2

	retention policies
	
	configuring, 5.4

	return codes, 23.1.5
	setting time parameters, 4.3
	snapshot control file location, 6.4
	starting, 2.2
	synchronous and asynchronous I/O, 22.2.1.2, 22.2.1.3, 22.2.3.1.3
	terminating commands, 23.4
	test disk API, 5.2.4
	types of backups, 8.4
	using RMAN commands, 3.2

	recovery window, 5.4
	
	point of recoverability, 8.8.1

	RECOVERY WINDOW parameter
	
	CONFIGURE command, 5.4.2

	recovery windows
	
	configuring for retention policy, 5.4.2
	definition, 8.8.1

	RECOVERY_CATALOG_OWNER role, 13.5.2
	recycle bin, 18.1.2.2.2, 18.3.2
	
	restoring objects from, 18.3.3

	redo logs
	
	incompatible format, 29.6.1
	naming, 29.2.3
	parallel redo, 29.6.1

	redo records
	
	problems when applying, 29.6.1

	REGISTER command, 13.3.2
	REPAIR FAILURE command, 15.5.1, 15.6
	repair options, Data Recovery Advisor, 15.4
	repairs, Data Recovery Advisor, 15.1.2.1
	
	consolidation of, 15.1.2.4.1
	manual and automatic, 15.1.2.4

	REPLACE SCRIPT command, 13.7.3
	REPORT command, 2.5.2, 11.1.2, 11.3.1
	
	NEED BACKUP option, 11.3.2, 11.3.2
	OBSOLETE option, 8.8.3, 8.8.3

	reports, RMAN, 2.5, 11.1.2, 11.3.1, 11.3.1
	
	backup jobs, 11.4.1
	database schema, 11.3.5
	files needing backups, 11.3.2
	obsolete backups, 11.3.4
	unrecoverable backups, 11.3.4

	repository, RMAN, 3.4, 3.4
	RESET DATABASE command
	
	INCARNATION option, 13.8.5

	RESETLOGS operation
	
	when necessary, 14.3.2.1

	RESETLOGS option
	
	of ALTER DATABASE, 29.5

	restartable backups, 10.7.1
	RESTORE command, 14.2, 17.2.1.2
	
	FORCE option, 14.2.3
	PREVIEW option, 11.1.2, 17.2.3
	VALIDATE HEADER option, 11.1.2, 17.2.3

	restore optimization, 14.2.3
	restore points, 1.3.2, 2.8
	
	creating, 7.4.1
	flashing back to, 18.6.2
	guaranteed, 1.3.2, 7.1.5
	
	compared to storage snapshots, 7.1.5.1

	listing, 7.4.2
	requirements, 7.3

	restore validation, 17.2.4
	restoring
	
	control files, 20.3.1.1
	
	to default location, 30.1.1
	to nondefault location, 30.1.2

	database
	
	to default location, 29.5

	database files, 14.2, 14.2.1, 14.2.3
	server parameter files, 20.2, 20.2
	testing, 16.4, 17.2.4
	user-managed backups, 29.2.1

	RESUME clause
	
	ALTER SYSTEM statement, 28.6.2

	resuming recovery after interruption, 29.2.5
	RESYNC CATALOG command, 13.8.2, 13.8.2.3
	
	FROM CONTROLFILECOPY option, 13.6.2

	resynchronizing the recovery catalog, 3.7.1, 13.8.2, 13.8.2.3
	retention policies. See backup retention policies
	return codes
	
	RMAN, 23.1.5

	REVOKE command, 13.5.4
	RMAN repository, 1.2, 2.1
	RMAN. See Recovery Manager
	RMAN sessions, 2.7.2, 3.3

S

	SBT, 3.3.1, 5.2.5.2
	sbtio.log
	
	and RMAN, 23.1.1

	sbttest program, 23.3.1
	scenarios, Recovery Manager
	
	NOARCHIVELOG backups, 9.3.5
	recovering pre-resetlogs backup, 18.6.3, 20.1
	recovery after total media failure, 20.4

	scripts, RMAN, 2.4.6
	
	substitution variables in, 9.6.3

	server parameter files
	
	autobackups, 8.6
	backups, 9.3.4
	configuring autobackups, 5.1.5, 5.1.5.1, 8.6
	restoring, 20.2, 20.2

	server sessions, Recovery Manager, 3.3
	session architecture, Recovery Manager, 3.3
	SET command
	
	DBID option, 3.7.1
	ENCRYPTION option, 6.2.6.1.2
	MAXCORRUPT option, 16.1.2.3
	NEWNAME option, 25.1.1.1

	SET statement
	
	AUTORECOVERY option, 29.2.2
	LOGSOURCE variable, 29.2.4.2, 29.3.1, 29.3.2

	shadow copies, 9.5.3.1
	shared server
	
	configuring for use with RMAN, 6.5
	configuring RMAN, 6.5

	short waits
	
	definition, 22.3.2.2

	SHOW command, 2.3, 2.3, 5.1.1
	SHUTDOWN statement
	
	ABORT option, 29.5, 30.1.1, 30.1.2

	size of backup sets, setting, 8.3.7
	skipping files in RMAN backups, 10.3
	snapshot control files, 6.4, 13.8.2.1
	
	specifying location, 6.4

	split mirrors
	
	suspend/resume mode, 28.6.1
	using as backups, 10.5

	SPOOL command, 15.5.1
	standby databases, 3.1
	
	creating with DUPLICATE, 24.1.1

	statements, SQL
	
	ALTER DATABASE, 29.2.4.2, 29.3.1, 29.3.2

	storage snapshots, 7.1.5.1
	stored scripts, 3.4, 9.6.3, 13.1.2.4, 13.7.1, 13.7.1, 13.8.7.1
	
	creating RMAN, 13.7.2
	deleting, 13.7.8, 13.7.8
	dynamic, 13.7.5
	executing, 13.7.9
	listing names of, 13.7.7
	managing, 13.7.1
	printing, 13.7.6
	substitution variables in, 13.7.5

	stuck recovery, 29.6.1
	substitution variables, FORMAT parameter, 5.2.5.1, 8.3.6, 8.4.1
	substitution variables, stored scripts, 13.7.5
	SUSPEND clause
	
	ALTER SYSTEM statement, 28.6.2, 28.6.2

	suspending a database, 28.6.1
	suspend/resume mode, 28.6.1
	SWITCH command, 17.3.4
	SYSDBA privileges, 2.2
	system backup to tape. See SBT
	system time
	
	changing
	
	effect on recovery, 29.4.2

T

	tables, recovery of dropped, 30.8
	tablespace point-in-time recovery, 18.1.2
	
	configuring datafile names, 6.3
	performing on dropped tablespaces, 21.1.1
	planning, 21.3
	preparing the auxiliary instance, 21.6.1
	restrictions, 21.2.2
	why perform, 21.1.1

	tablespaces
	
	backups, 9.7.2, 9.7.3, 28.3.2.2
	
	offline, 28.3.1
	online, 28.3.2.2

	backups using RMAN, 9.3.2
	excluding from backups, 6.2.4
	excluding from RMAN backups, 6.2.4
	read-only
	
	backing up, 28.3.2.4

	read/write
	
	backing up, 28.3.2.1

	recovering accessible
	
	when database is open, 17.3.3

	recovering offline in open database, 29.3.2
	transporting with RMAN, 26

	tape devices, 3.5.2
	target database
	
	connecting to, 2.2
	definition, 2.1, 3.1

	terminating RMAN commands, 23.4
	test disk API, 5.2.4
	testing RMAN
	
	backups, 16.1.2.4, 16.2, 16.2, 16.3, 16.3
	with media management API, 23.3

	time format
	
	RECOVER DATABASE UNTIL TIME statement, 29.4.2

	time parameters
	
	setting for Recovery Manager use, 4.3

	time-based recovery, 29.4.2
	trace files, RMAN, 23.1.1
	transparent backup encryption, 6.2.6.1.1, 6.2.6.1.1
	transparent-mode backup encryption, 10.6.2
	transportable tablespaces
	
	creating with RMAN, 26.1.1
	
	and Data Pump Export, 26.5.2
	and past points in time, 26.5.1
	auxiliary destination, 26.1.2
	auxiliary instance parameter file, 26.2, 26.2.2
	file locations, 26.5.3
	initialization parameters, 26.2.1

	cross-platform, 27
	recovery, 30.6

	transporting tablespaces, 26
	trial recovery, 16.4, 29.6.6, 29.6.6.1
	tuning Recovery Manager
	
	V$ views, 23.2

U

	UNAVAILABLE option
	
	of CHANGE, 12.4.2.1

	UNCATALOG option
	
	CHANGE command, 12.4.4.1
	deleting repository records, 12.4.4.1

	undo optimization, backup, 5.5.1, 8.3.4
	unrecoverable objects
	
	recovery, 30.5, 30.5

	UNREGISTER DATABASE command, 13.8.4
	unregistering databases, 13.8.4
	UNTIL TIME option
	
	RECOVER command, 29.4.2

	upgrading the recovery catalog, 13.8.6.1
	user errors
	
	definition, 1.1.1.2
	recovery from, 30.8

	user-managed backups, 28, 28.2
	
	backup mode, 28.3.2.1, 28.3.2.3
	control files, 28.4, 28.4
	definition, 8.4.2
	determining datafile status, 28.1.2
	hot backups, 8.2, 28.3.2.3.1
	listing files before, 28.1
	offline tablespaces, 28.3.1, 28.3.1
	read-only tablespaces, 28.3.2.4
	tablespace, 28.3.2.2
	verifying, 28.9
	whole database, 28.2

	user-managed recovery, 29.4
	
	ADD DATAFILE operation, 30.2.3
	complete, 29.3
	incomplete, 29.4
	interrupting, 29.2.5
	scenarios, 30

	user-managed restore operations, 29.2.1

V

	V$ARCHIVED_LOG view, 5.3.2.3, 11.5.1.1, 18.5.2
	
	listing all archived logs, 28.5

	V$BACKUP view, 28.1.2
	V$BACKUP_ASYNC_IO view, 22.3.2
	V$BACKUP_DATAFILE view, 9.5.2, 12.4.3.3
	V$BACKUP_FILES view, 5.4.2, 12.4.1.1, 12.4.3.2
	V$BACKUP_PIECE view, 11.5.1, 12.4.3.3
	V$BACKUP_REDOLOG view, 12.4.3.3
	V$BACKUP_SET view, 12.4.3.3, 12.5.1
	V$BACKUP_SPFILE view, 12.4.3.3
	V$BACKUP_SYNC_IO view, 22.3.2
	V$BLOCK_CHANGE_TRACKING view, 9.5.5.4
	V$CONTROLFILE view, 9.3.3
	V$DATABASE view, 11.5.2, 18.2.2, 18.6.1
	V$DATABASE_BLOCK_CORRUPTION view, 1.2, 2.9.4, 16.1.2.4, 16.2, 16.2, 19, 19.1.2.1, 19.1.2.1, 19.3, 19.4
	V$DATABASE_INCARNATION view, 13.8.5
	V$DATAFILE view, 17.2.1.2.2, 21.6.1.2, 28.1.1
	
	listing files for backups, 28.1

	V$DATAFILE_HEADER view, 11.1.2, 17.2.1.2.2, 17.2.1.2.2
	V$DIAG_INFO view, 2.9.4, 19.3
	V$EVENT_NAME view, 23.2.1
	V$FLASHBACK_DATABASE_LOG view, 5.3.2.3, 18.4.2, 18.6.1
	V$FLASHBACK_DATABASE_STAT view, 7.5.4
	V$INSTANCE view, 17.2.1.2.2
	V$LOG_HISTORY view
	
	listing all archived logs, 29.3.1

	V$LOGFILE view, 21.6.1.2, 30.7.1, 30.7.2
	V$PARAMETER view, 18.2.2
	V$PROCESS view, 11.1.2, 23.2, 23.2.2
	V$PROXY_ARCHIVEDLOG view, 8.3.10
	V$PROXY_DATAFILE view, 8.3.10
	V$RECOVER_FILE view, 17.2.1.2.2, 29.3.1
	V$RECOVERY_AREA_USAGE view, 12.3.2, 12.3.2
	V$RECOVERY_FILE_DEST, 12.3.2
	V$RECOVERY_FILE_DEST view, 12.3.2, 12.3.2
	V$RECOVERY_LOG view
	
	listing logs needed for recovery, 29.3.1

	V$RESTORE_POINT view, 18.2.2
	V$RMAN_BACKUP_JOB_DETAILS view, 11.4.1
	V$RMAN_BACKUP_SUBJOB_DETAILS view, 11.4.1
	V$RMAN_ENCRYPTION_ALGORITHMS view, 6.2.6.1, 6.2.6.1, 6.2.6.3, 22.2.2
	V$RMAN_OUTPUT view, 11.5.2
	V$RMAN_STATUS view, 23.1.1
	V$SESSION view, 6.5, 11.1.2, 23.2, 23.2.2
	V$SESSION_LONGOPS view, 22.3.1
	V$SESSION_WAIT view, 23.2, 23.2.1
	V$SGASTAT view, 22.4.3
	V$SYSSTAT view, 7.5.4
	V$TABLESPACE view, 17.2.1.2.2, 28.1.1
	VALIDATE command, 15.1.2.2, 15.3, 16.2, 17.2.1.2.1
	
	SECTION SIZE parameter, 16.2

	VALIDATE HEADER option, RESTORE command, 11.1.2
	validation, RMAN, 15.3
	
	backups, 2.4.5, 16.2, 16.2, 16.2, 16.2, 16.3, 16.3, 16.3, 16.3
	database files, 2.4.5, 16.2
	restore operations, 17.2.4

	views, recovery catalog, 11.1.2, 11.5
	virtual private catalogs, 3.4
	
	dropping, 13.5.5

	Volume Shadow Copy Service (VSS), 5.3.1, 9.5.3.1

W

	wallet, 6.2.6.1.1
	whole database backups
	
	ARCHIVELOG mode, 28.2
	inconsistent, 28.2
	NOARCHIVELOG mode, 28.2
	preparing for, 28.2
	using RMAN, 9.3.1, 9.3.1

Contents

List of Examples

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Relocated Documentation
	Conventions

What's New in Backup and Recovery?

	New Backup and Recovery Features for Oracle 11g Release 2

Part I Overview of Backup and Recovery

1 Introduction to Backup and Recovery

	Purpose of Backup and Recovery
	Data Protection
	Media Failures
	User Errors
	Application Errors

	Data Preservation
	Data Transfer

	Oracle Backup and Recovery Solutions
	Oracle Flashback Technology
	Logical Flashback Features
	Flashback Database

	Data Recovery Advisor
	Backup and Recovery Documentation Roadmap
	Recovery Manager Documentation Roadmap
	User-Managed Backup and Recovery Documentation Roadmap

2 Getting Started with RMAN

	Overview of the RMAN Environment
	Starting RMAN and Connecting to a Database
	Showing the Default RMAN Configuration
	Backing Up a Database
	Backing Up a Database in ARCHIVELOG Mode
	Backing Up a Database in NOARCHIVELOG Mode
	Typical Backup Options
	Making Incremental Backups
	Making Incrementally Updated Backups

	Validating Database Files and Backups
	Scripting RMAN Operations

	Reporting on RMAN Operations
	Listing Backups
	Reporting on Database Files and Backups

	Maintaining RMAN Backups
	Cross-checking Backups
	Deleting Obsolete Backups

	Diagnosing and Repairing Failures with Data Recovery Advisor
	Listing Failures and Determining Repair Options
	Repairing Failures

	Rewinding a Database with Flashback Database
	Restoring and Recovering Database Files
	Preparing to Restore and Recover Database Files
	Recovering the Whole Database
	Recovering Tablespaces
	Recovering Individual Data Blocks

Part II Starting and Configuring RMAN and Flashback Database

3 Recovery Manager Architecture

	About the RMAN Environment
	RMAN Command-Line Client
	RMAN Channels
	Channels and Devices
	Automatic and Manual Channels

	RMAN Repository
	Media Management
	RMAN Interaction with a Media Manager
	Oracle Secure Backup
	Backup Solutions Program

	Fast Recovery Area
	RMAN in a Data Guard Environment
	RMAN Configuration in a Data Guard Environment
	RMAN File Management in a Data Guard Environment
	Interchangeability of Backups in a Data Guard Environment
	Association of Backups in a Data Guard Environment
	Accessibility of Backups in a Data Guard Environment

4 Starting and Interacting with the RMAN Client

	Starting and Exiting RMAN
	Specifying the Location of RMAN Output
	Setting Globalization Support Environment Variables for RMAN
	Entering RMAN Commands
	Entering RMAN Commands at the RMAN Prompt
	Using Command Files with RMAN
	Entering Comments in RMAN Command Files
	Using Substitution Variables in Command Files
	Checking RMAN Syntax
	Checking RMAN Syntax at the Command Line
	Checking RMAN Syntax in Command Files

	Making Database Connections with RMAN
	About RMAN Database Connections
	Authentication for RMAN Database Connections

	Making RMAN Database Connections from the Operating System Command Line
	Making Database Connections from the RMAN Prompt
	Connecting RMAN to an Auxiliary Database
	Making RMAN Database Connections Within Command Files
	Diagnosing RMAN Connection Problems
	Diagnosing Target and Auxiliary Database Connection Problems
	Diagnosing Recovery Catalog Connection Problems

	Using the RMAN Pipe Interface
	Executing Multiple RMAN Commands in Succession Through a Pipe: Example
	Executing RMAN Commands in a Single Job Through a Pipe: Example

5 Configuring the RMAN Environment

	Configuring the Environment for RMAN Backups
	Showing and Clearing Persistent RMAN Configurations
	Configuring the Default Device for Backups: Disk or SBT
	Configuring the Default Type for Backups: Backup Sets or Copies
	Configuring Channels
	About Channel Configuration
	Configuring Channels for Disk
	Configuring Parallel Channels for Disk and SBT Devices
	Manually Overriding Configured Channels

	Configuring Control File and Server Parameter File Autobackups
	Configuring the Control File Autobackup Format
	Overriding the Configured Control File Autobackup Format

	Configuring RMAN to Make Backups to a Media Manager
	Prerequisites for Using a Media Manager with RMAN
	Determining the Location of the Media Management Library
	Configuring Media Management Software for RMAN Backups
	Testing Whether the Media Manager Library Is Integrated Correctly
	Testing ALLOCATE CHANNEL on the Media Manager
	Testing Backup and Restore Operations on the Media Manager

	Configuring SBT Channels for Use with a Media Manager
	About Media Manager Backup Piece Names
	Configuring Automatic SBT Channels

	Configuring the Fast Recovery Area
	Overview of the Fast Recovery Area
	Oracle Managed Files and Automatic Storage Management
	How Oracle Manages Disk Space in the Fast Recovery Area

	Enabling the Fast Recovery Area
	Considerations When Setting the Size of the Fast Recovery Area
	Considerations When Setting the Location of the Fast Recovery Area
	Setting the Fast Recovery Area Location and Initial Size

	Disabling the Fast Recovery Area
	Configuring Locations for Control Files and Redo Logs
	Configuring Online Redo Log Locations
	Configuring Control File Locations
	Configuring Archived Redo Log Locations

	Configuring RMAN File Creation in the Fast Recovery Area

	Configuring the Backup Retention Policy
	Configuring a Redundancy-Based Retention Policy
	Configuring a Recovery Window-Based Retention Policy
	Disabling the Retention Policy

	Backup Optimization and the CONFIGURE command
	Overview of Backup Optimization
	Effect of Retention Policies on Backup Optimization for SBT Backups
	Backup Optimization for SBT Backups with Recovery Window Retention Policy
	Backup Optimization for SBT Backups With Redundancy Retention Policy

	Configuring Backup Optimization

	Configuring an Archived Redo Log Deletion Policy
	About Archived Redo Log Deletion Policies
	When the Archived Redo Log Deletion Policy Is Disabled
	When the Archived Redo Log Deletion Policy Is Enabled

	Enabling an Archived Redo Log Deletion Policy

	Configuring RMAN in a Data Guard Environment

6 Configuring the RMAN Environment: Advanced Topics

	Configuring Advanced Channel Options
	About Channel Control Options
	Configuring Specific Channel Parameters
	Configuring Specific Channels: Examples
	Relationship Between CONFIGURE CHANNEL and Parallelism Setting

	Configuring Advanced Backup Options
	Configuring the Maximum Size of Backup Sets
	Configuring the Maximum Size of Backup Pieces
	Configuring Backup Duplexing
	Configuring Tablespaces for Exclusion from Whole Database Backups
	Configuring Compression Options
	Precompression Block Processing
	Basic Compression Option
	Advanced Compression Option

	Configuring Backup Encryption
	About Backup Encryption
	Configuring RMAN Backup Encryption Modes
	Configuring the Backup Encryption Algorithm

	Configuring Auxiliary Instance Datafile Names
	Configuring the Snapshot Control File Location
	Viewing the Configured Location of the Snapshot Control File
	Setting the Location of the Snapshot Control File

	Configuring RMAN for Use with a Shared Server
	Enabling Lost Write Detection

7 Using Flashback Database and Restore Points

	Understanding Flashback Database, Restore Points and Guaranteed Restore Points
	Flashback Database
	Flashback Database Window
	Limitations of Flashback Database
	Normal Restore Points
	Guaranteed Restore Points
	Guaranteed Restore Points versus Storage Snapshots

	Logging for Flashback Database and Guaranteed Restore Points
	Guaranteed Restore Points and Fast Recovery Area Space Usage
	Logging for Guaranteed Restore Points with Flashback Logging Disabled
	Logging for Flashback Database with Guaranteed Restore Points Defined

	Prerequisites for Flashback Database and Guaranteed Restore Points
	Using Normal and Guaranteed Restore Points
	Creating Normal and Guaranteed Restore Points
	Listing Restore Points
	Dropping Restore Points

	Using Flashback Database
	Enabling Flashback Database
	Disabling Flashback Database Logging
	Configuring the Environment for Optimal Flashback Database Performance
	Monitoring the Effect of Flashback Database on Performance
	Flashback Writer (RVWR) Behavior with I/O Errors

Part III Backing Up and Archiving Data

8 RMAN Backup Concepts

	Consistent and Inconsistent RMAN Backups
	Consistent Backups
	Inconsistent Backups

	Online Backups and Backup Mode
	Backup Sets
	Backup Sets and Backup Pieces
	Block Compression for Backup Sets
	Unused Block Compression
	Null Block Compression

	Binary Compression for Backup Sets
	Backup Undo
	Encryption for Backup Sets
	Filenames for Backup Pieces
	Number and Size of Backup Pieces
	Number and Size of Backup Sets
	Multiplexed Backup Sets
	Proxy Copies

	Image Copies
	RMAN-Created Image Copies
	User-Managed Image Copies

	Multiple Copies of RMAN Backups
	Duplexed Backup Sets
	Backups of Backups
	Backups of Backup Sets
	Backups of Image Copies

	Control File and Server Parameter File Autobackups
	When RMAN Performs Control File Autobackups
	How RMAN Performs Control File Autobackups

	Incremental Backups
	Multilevel Incremental Backups
	Differential Incremental Backups
	Cumulative Incremental Backups

	Block Change Tracking
	Incremental Backup Algorithm
	Recovery with Incremental Backups

	Backup Retention Policies
	Recovery Window
	Backup Redundancy
	Batch Deletes of Obsolete Backups
	Backup Retention Policy and Fast Recovery Area Deletion Rules

9 Backing Up the Database

	Overview of RMAN Backups
	Purpose of RMAN Backups
	Basic Concepts of RMAN Backups

	Specifying Backup Output Options
	Specifying the Device Type for an RMAN Backup
	Specifying Backup Set or Copy for an RMAN Backup to Disk
	Specifying a Format for RMAN Backups
	Specifying Multiple Formats for Disk Backups

	Specifying Tags for an RMAN Backup
	About Backup Tags
	Specifying Tags for Backup Sets and Image Copies

	Making Compressed Backups

	Backing Up Database Files with RMAN
	Backing Up a Whole Database with RMAN
	Backing Up Tablespaces and Datafiles with RMAN
	Backing Up Control Files with RMAN
	Making a Manual Backup of the Control File

	Backing Up Server Parameter Files with RMAN
	Backing Up a Database in NOARCHIVELOG Mode

	Backing Up Archived Redo Logs with RMAN
	About Backups of Archived Redo Logs
	Archived Redo Log Failover
	Online Redo Log Switching

	Backing Up Archived Redo Log Files
	Backing Up Only Archived Redo Logs That Need Backups
	Deleting Archived Redo Logs After Backups

	Making and Updating Incremental Backups
	Purpose of Incremental Backups
	Planning an Incremental Backup Strategy
	Making Incremental Backups
	Making Incremental Backups of a VSS Snapshot

	Incrementally Updating Backups
	Incrementally Updating Backups: Basic Example
	Incrementally Updated Backups: Advanced Example

	Using Block Change Tracking to Improve Incremental Backup Performance
	About Block Change Tracking
	Enabling and Disabling Block Change Tracking
	Disabling Block Change Tracking
	Checking Whether Change Tracking is Enabled
	Changing the Location of the Block Change Tracking File

	Making Database Backups for Long-Term Storage
	Purpose of Archival Backups
	Basic Concepts of Archival Backups
	Making an Archival Backup for Long-Term Storage
	Making an Archival Backup

	Making a Temporary Archival Backup

	Backing Up RMAN Backups
	About Backups of Backups
	Multiple Copies of Backup Sets
	Effect of a Backup Retention Policy on Backups of Backups

	Backing Up Backup Sets with RMAN
	Backing Up Image Copy Backups with RMAN

10 Backing Up the Database: Advanced Topics

	Limiting the Size of RMAN Backup Sets
	About Backup Set Size
	Limiting the Size of Backup Sets with BACKUP ... MAXSETSIZE
	Dividing the Backup of a Large Datafile into Sections

	Using Backup Optimization to Skip Files
	Optimizing a Daily Archived Log Backup to a Single Tape: Scenario
	Optimizing a Daily Archived Log Backup to Multiple Media Families: Scenario
	Creating a Weekly Secondary Backup of Archived Logs: Example

	Skipping Offline, Read-Only, and Inaccessible Files
	Duplexing Backup Sets
	Duplexing Backup Sets with CONFIGURE BACKUP COPIES
	Duplexing Backup Sets with BACKUP ... COPIES

	Making Split Mirror Backups with RMAN
	Encrypting RMAN Backups
	About RMAN Backup Encryption Settings
	Making Transparent-Mode Encrypted Backups
	Making Password-Mode Encrypted Backups
	Making Dual-Mode Encrypted Backups

	Restarting RMAN Backups
	About Restartable Backups
	Restarting a Backup After It Partially Completes

	Managing Backup Windows
	About Backup Windows
	Specifying a Backup Duration
	Permitting Partial Backups in a Backup Window
	Minimizing Backup Load and Duration

Part IV Managing RMAN Backups

11 Reporting on RMAN Operations

	Overview of RMAN Reporting
	Purpose of RMAN Reporting
	Basic Concepts of RMAN Reporting
	Reporting in a Data Guard Environment

	Listing Backups and Recovery-Related Objects
	About the LIST Command
	Listing All Backups and Copies
	Listing Selected Backups and Copies
	Listing Database Incarnations

	Reporting on Backups and Database Schema
	About Reports of RMAN Backups
	Reporting on Files Needing a Backup Under a Retention Policy
	Using RMAN REPORT NEED BACKUP with Different Retention Policies
	Using RMAN REPORT NEED BACKUP with Tablespaces and Datafiles
	Using REPORT NEED BACKUP with Backups on Tape or Disk Only

	Reporting on Datafiles Affected by Unrecoverable Operations
	Reporting on Obsolete Backups
	Reporting on the Database Schema

	Using V$ Views to Query Backup Metadata
	Querying Details of Past and Current RMAN Jobs
	Determining the Encryption Status of Backup Pieces

	Querying Recovery Catalog Views
	About Recovery Catalog Views
	Unique Identifiers for Registered Databases
	Unique Identifiers in a Data Guard Environment

	Querying Catalog Views for the Target DB_KEY or DBID Values
	Querying RC_BACKUP_FILES

12 Maintaining RMAN Backups and Repository Records

	Overview of RMAN Backup and Repository Maintenance
	Purpose of Backup and Repository Maintenance
	Basic Concepts of Backup and Repository Maintenance
	Maintenance Commands and RMAN Repository Metadata
	Maintenance Commands in a Data Guard Environment

	Maintaining the Control File Repository
	About Control File Records
	Fast Recovery Area and Control File Records

	Preventing the Loss of Control File Records
	Protecting the Control File

	Maintaining the Fast Recovery Area
	Deletion Rules for the Fast Recovery Area
	Monitoring Fast Recovery Area Space Usage
	Managing Space for Flashback Logs in the Fast Recovery Area
	Responding to a Full Fast Recovery Area
	Changing the Fast Recovery Area to a New Location
	Disabling the Fast Recovery Area
	Responding to an Instance Crash During File Creation

	Updating the RMAN Repository
	Crosschecking the RMAN Repository
	About RMAN Crosschecks
	Crosschecking All Backups and Copies
	Crosschecking Specific Backup Sets and Copies

	Changing the Repository Status of Backups and Copies
	Updating a Backup to Status AVAILABLE or UNAVAILABLE
	Changing the Status of an Archival Backup

	Adding Backup Records to the RMAN Repository
	About Cataloging Operations
	Cataloging User-Managed Datafile Copies
	Cataloging Backup Pieces
	Cataloging All Files in a Disk Location

	Removing Records from the RMAN Repository
	About Uncataloging Operations
	Removing Records for Files Deleted with Operating System Utilities

	Deleting RMAN Backups and Archived Redo Logs
	Overview of RMAN Deletion
	RMAN Deletion Commands
	Deletion of Archived Redo Logs

	Deleting All Backups and Copies
	Deleting Specified Backups and Copies
	Deleting Specified Files with BACKUP ... DELETE

	Deleting Expired RMAN Backups and Copies
	Deleting Obsolete RMAN Backups Based on Retention Policies
	DELETE OBSOLETE Behavior When KEEP UNTIL TIME Expires

	Dropping a Database

13 Managing a Recovery Catalog

	Overview of the Recovery Catalog
	Purpose of the Recovery Catalog
	Basic Concepts for the Recovery Catalog
	Database Registration
	Centralization of Metadata in a Base Recovery Catalog
	Recovery Catalog Resynchronization
	Stored Scripts
	Recovery Catalog in a Data Guard Environment

	Basic Steps of Managing a Recovery Catalog

	Creating a Recovery Catalog
	Configuring the Recovery Catalog Database
	Planning the Size of the Recovery Catalog Schema
	Allocating Disk Space for the Recovery Catalog Database

	Creating the Recovery Catalog Schema Owner
	Executing the CREATE CATALOG Command

	Registering a Database in the Recovery Catalog
	About Registration of a Database in the Recovery Catalog
	About Standby Database Registration

	Registering a Database with the REGISTER DATABASE Command

	Cataloging Backups in the Recovery Catalog
	Creating and Managing Virtual Private Catalogs
	About Virtual Private Catalogs
	Creating and Granting Privileges to a Virtual Private Catalog Owner
	Creating a Virtual Private Catalog
	Revoking Privileges from a Virtual Private Catalog Owner
	Dropping a Virtual Private Catalog

	Protecting the Recovery Catalog
	Backing Up the Recovery Catalog
	Backing Up the Recovery Catalog Frequently
	Choosing the Appropriate Technique for Physical Backups
	Separating the Recovery Catalog from the Target Database
	Exporting the Recovery Catalog Data for Logical Backups

	Recovering the Recovery Catalog

	Managing Stored Scripts
	About Stored Scripts
	Creating Stored Scripts
	Replacing Stored Scripts
	Executing Stored Scripts
	Creating and Executing Dynamic Stored Scripts
	Printing Stored Scripts
	Listing Stored Script Names
	Deleting Stored Scripts
	Executing a Stored Script at RMAN Startup

	Maintaining a Recovery Catalog
	About Recovery Catalog Maintenance
	Resynchronizing the Recovery Catalog
	About Resynchronization of the Recovery Catalog
	Deciding When to Resynchronize the Recovery Catalog
	Manually Resynchronizing the Recovery Catalog

	Updating the Recovery Catalog After Changing a DB_UNIQUE_NAME
	Unregistering a Target Database from the Recovery Catalog
	Unregistering a Target Database When Not in a Data Guard Environment
	Unregistering a Standby Database

	Resetting the Database Incarnation in the Recovery Catalog
	Upgrading the Recovery Catalog
	About Recovery Catalog Upgrades
	Determining the Schema Version of the Recovery Catalog
	Using the UPGRADE CATALOG Command

	Importing and Moving a Recovery Catalog
	About Recovery Catalog Imports
	Prerequisites for Importing a Recovery Catalog
	Importing a Recovery Catalog
	Moving a Recovery Catalog

	Dropping a Recovery Catalog

Part V Diagnosing and Responding to Failures

14 RMAN Data Repair Concepts

	Overview of RMAN Data Repair
	Problems Requiring Data Repair
	User Errors
	Application Errors
	Media Failures

	RMAN Data Repair Techniques

	RMAN Restore Operations
	Backup Selection
	Restore Failover
	Restore Optimization

	RMAN Media Recovery
	Selection of Incremental Backups and Archived Redo Logs
	Database Incarnations
	OPEN RESETLOGS Operations
	Relationship Among Database Incarnations
	Orphaned Backups

15 Diagnosing and Repairing Failures with Data Recovery Advisor

	Overview of Data Recovery Advisor
	Purpose of Data Recovery Advisor
	Basic Concepts of Data Recovery Advisor
	User Interfaces to Data Recovery Advisor
	Data Integrity Checks
	Failures
	Manual Actions and Automatic Repair Options
	Supported Database Configurations

	Basic Steps of Diagnosing and Repairing Failures

	Listing Failures
	Listing All Failures
	Listing a Subset of Failures

	Checking for Block Corruptions by Validating the Database
	Determining Repair Options
	Determining Repair Options for All Failures
	Determining Repair Options for a Subset of Failures

	Repairing Failures
	About Repairing Failures
	Repairing a Failure

	Changing Failure Status and Priority

16 Validating Database Files and Backups

	Overview of RMAN Validation
	Purpose of RMAN Validation
	Basic Concepts of RMAN Validation
	Checksums and Corrupt Blocks
	Physical and Logical Block Corruption
	Limits for Corrupt Blocks in RMAN Backups
	Detection of Block Corruption

	Checking for Block Corruption with the VALIDATE Command
	Validating Database Files with BACKUP VALIDATE
	Validating Backups Before Restoring Them

17 Performing Complete Database Recovery

	Overview of Complete Database Recovery
	Purpose of Complete Database Recovery
	Scope of This Chapter

	Preparing for Complete Database Recovery
	Identifying the Database Files to Restore or Recover
	Identifying a Lost Control File
	Identifying Datafiles Requiring Media Recovery

	Determining the DBID of the Database
	Previewing Backups Used in Restore Operations
	Recalling Offsite Backups

	Validating Backups Before Restoring Them
	Restoring Archived Redo Logs Needed for Recovery
	Restoring Archived Redo Logs to a New Location
	Restoring Archived Redo Logs to Multiple Locations

	Performing Complete Database Recovery
	About Complete Database Recovery
	Restoring Datafiles to a Nondefault Location
	Decryption of Backups

	Performing Complete Recovery of the Whole Database
	Performing Complete Recovery of a Tablespace
	Performing Complete Recovery After Switching to a Copy
	Switching to a Datafile Copy
	Switching to a Database Copy

18 Performing Flashback and Database Point-in-Time Recovery

	Overview of Oracle Flashback Technology and Database Point-in-Time Recovery
	Purpose of Flashback and Database Point-in-Time-Recovery
	Basic Concepts of Point-in-Time Recovery and Flashback Features
	Basic Concepts of Database Point-in-Time Recovery
	Basic Concepts of Flashback Technology

	Rewinding a Table with Flashback Table
	Prerequisites for Flashback Table
	Performing a Flashback Table Operation
	Keeping Triggers Enabled During Flashback Table

	Rewinding a DROP TABLE Operation with Flashback Drop
	About Flashback Drop
	Prerequisites of Flashback Drop
	Performing a Flashback Drop Operation
	Retrieving Objects When Multiple Objects Share the Same Original Name

	Rewinding a Database with Flashback Database
	Prerequisites of Flashback Database
	Performing a Flashback Database Operation
	Monitoring Flashback Database

	Performing Database Point-in-Time Recovery
	Prerequisites of Database Point-in-Time Recovery
	Performing Database Point-in-Time Recovery

	Flashback and Database Point-in-Time Recovery Scenarios
	Rewinding an OPEN RESETLOGS Operation with Flashback Database
	Undoing an OPEN RESETLOGS on Standby Databases with Flashback Database

	Rewinding the Database to an SCN in an Abandoned Incarnation Branch
	Recovering the Database to an Ancestor Incarnation

19 Performing Block Media Recovery

	Overview of Block Media Recovery
	Purpose of Block Media Recovery
	Basic Concepts of Block Media Recovery
	Identification of Corrupt Blocks
	Missing Redo During Block Recovery

	Prerequisites for Block Media Recovery
	Recovering Individual Blocks
	Recovering All Blocks in V$DATABASE_BLOCK_CORRUPTION

20 Performing RMAN Recovery: Advanced Scenarios

	Recovering a NOARCHIVELOG Database with Incremental Backups
	Restoring the Server Parameter File
	Restoring the Server Parameter File from a Control File Autobackup
	Creating an Initialization Parameter File with RMAN

	Performing Recovery with a Backup Control File
	About Recovery with a Backup Control File
	Control File Locations
	Recovery With and Without a Recovery Catalog
	Recovery When Using a Fast Recovery Area

	Performing Recovery with a Backup Control File and No Recovery Catalog

	Performing Disaster Recovery
	Prerequisites of Disaster Recovery
	Recovering the Database After a Disaster

	Restoring a Database on a New Host
	Preparing to Restore a Database on a New Host
	Restoring Disk Backups to a New Host

	Testing the Restore of a Database on a New Host

21 Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)

	Overview of RMAN TSPITR
	Purpose of RMAN TSPITR
	Basic Concepts of RMAN TSPITR
	Common Terms
	Modes of RMAN TSPITR
	How RMAN TSPITR Works With an RMAN-Managed Auxiliary Instance

	TSPITR Restrictions, Special Cases, and Limitations
	Limitations of TSPITR
	Special Considerations When Not Using a Recovery Catalog

	Planning and Preparing for TSPITR
	Step 1: Select the Right Target Time for TSPITR
	Step 2: Determine the Recovery Set
	Identify and Resolve Dependencies on the Primary Database

	Step 3: Identify and Preserve Objects That Will Be Lost After TSPITR

	Performing Fully Automated RMAN TSPITR
	Overriding Defaults for RMAN TSPITR with an RMAN-Managed Auxiliary Instance
	Renaming TSPITR Recovery Set Datafiles with SET NEWNAME
	Naming TSPITR Auxiliary Set Datafiles
	Considerations When Renaming OMF Auxiliary Set Files in TSPITR
	Using SET NEWNAME to Name Auxiliary Set Datafiles
	Using DB_FILE_NAME_CONVERT to Name Auxiliary Set Datafiles

	Using Image Copies for Faster RMAN TSPITR Performance
	Using SET NEWNAME with Recovery Set Image Copies
	Using SET NEWNAME and CONFIGURE AUXNAME with Auxiliary Set Image Copies
	Performing TSPITR with CONFIGURE AUXNAME and Image Copies: Scenario

	Customizing Initialization Parameters for the Automatic Auxiliary Instance in TSPITR
	Specifying the Auxiliary Instance Control File Location in TSPITR
	Specifying the Auxiliary Instance Archived Logs in TSPITR
	Specifying the Auxiliary Instance Online Log Location in TSPITR

	Performing RMAN TSPITR Using Your Own Auxiliary Instance
	Preparing Your Own Auxiliary Instance for RMAN TSPITR
	Step 1: Create an Oracle Password File for the Auxiliary Instance
	Step 2: Create an Initialization Parameter File for the Auxiliary Instance
	Step 3: Check Oracle Net Connectivity to the Auxiliary Instance

	Preparing RMAN Commands for TSPITR with Your Own Auxiliary Instance
	Planning Channels for TSPITR with Your Own Auxiliary Instance
	Planning Datafile Names with Your Own Auxiliary Instance: SET NEWNAME

	Executing TSPITR with Your Own Auxiliary Instance
	Step 1: Start the Auxiliary Instance in NOMOUNT Mode
	Step 2: Connect the RMAN Client to Target and Auxiliary Instances
	Step 3: Execute the RECOVER TABLESPACE Command

	Performing TSPITR with Your Own Auxiliary Instance: Scenario

	Troubleshooting RMAN TSPITR
	Troubleshooting Filename Conflicts
	Troubleshooting the Identification of Tablespaces with Undo Segments
	Troubleshooting the Restart of a Manual Auxiliary Instance After TSPITR Failure

Part VI Tuning and Troubleshooting

22 Tuning RMAN Performance

	Purpose of RMAN Performance Tuning
	Basic Concepts of RMAN Performance Tuning
	Read Phase
	Allocation of Input Disk Buffers
	Synchronous and Asynchronous Disk I/O
	Disk I/O Slaves
	RATE Channel Parameter

	Copy Phase
	Write Phase for System Backup Tape (SBT)
	RMAN Component of the Write Phase for SBT
	Media Manager Component of the Write Phase for SBT

	Write Phase for Disk

	Using V$ Views to Diagnose RMAN Performance Problems
	Monitoring RMAN Job Progress with V$SESSION_LONGOPS
	Identifying Bottlenecks with V$BACKUP_SYNC_IO and V$BACKUP_ASYNC_IO
	Identifying Bottlenecks with Synchronous I/O
	Identifying Bottlenecks with Asynchronous I/O

	Tuning RMAN Backup Performance
	Step 1: Remove the RATE Parameter from Channel Settings
	Step 2: If You Use Synchronous Disk I/O, Set DBWR_IO_SLAVES
	Step 3: If You Fail to Allocate Shared Memory, Set LARGE_POOL_SIZE
	Step 4: Tune the Read, Write, and Copy Phases
	Using Backup Validation To Distinguish Between Read and Write Bottlenecks
	Tuning the Read Phase
	Tuning the Copy and Write Phases

23 Troubleshooting RMAN Operations

	Interpreting RMAN Message Output
	Identifying Types of Message Output
	Recognizing RMAN Error Message Stacks
	Identifying Error Codes
	RMAN Error Message Numbers
	ORA-19511: Media Manager Errors

	Interpreting RMAN Error Stacks
	Interpreting RMAN Errors: Example
	Interpreting Server Errors: Example
	Interpreting SBT 2.0 Media Management Errors: Example
	Interpreting SBT 1.1 Media Management Errors: Example

	Identifying RMAN Return Codes

	Using V$ Views for RMAN Troubleshooting
	Monitoring RMAN Interaction with the Media Manager
	Correlating Server Sessions with RMAN Channels
	Matching Server Sessions with Channels When One RMAN Session Is Active
	Matching Server Sessions with Channels in Multiple RMAN Sessions

	Testing the Media Management API
	Obtaining the sbttest Utility
	Obtaining Online Documentation for the sbttest Utility
	Using the sbttest Utility

	Terminating an RMAN Command
	Terminating the Session with ALTER SYSTEM KILL SESSION
	Terminating the Session at the Operating System Level
	Terminating an RMAN Session That Is Not Responding in the Media Manager
	Components of an RMAN Session
	Process Behavior During a Suspended Job
	Terminating an RMAN Session: Basic Steps

Part VII Transferring Data with RMAN

24 Duplicating a Database

	Overview of RMAN Database Duplication
	Purpose of Database Duplication
	Basic Concepts of Database Duplication
	Techniques for Duplicating a Database
	Contents of a Duplicate Database
	How RMAN Duplicates a Database

	Basic Steps of Database Duplication

	Preparing to Duplicate a Database
	Step 1: Choosing a Duplication Technique
	Step 2: Choosing a Strategy for Naming Duplicate Files
	Step 3: Making Backups Accessible to the Duplicate Instance
	Making SBT Backups Accessible to the Auxiliary Instance
	Making Disk Backups Accessible to the Auxiliary Instance

	Step 4: Preparing Remote Access to Databases
	Establishing Connectivity in Required Cases
	Creating a Password File for the Auxiliary Instance

	Step 5: Creating an Initialization Parameter File and Starting the Auxiliary Instance

	Placing the Source Database in the Proper State
	Starting RMAN and Connecting to Databases
	Configuring RMAN Channels for Use in Duplication
	Configuring Channels for Active Database Duplication
	Configuring Channels for Backup-Based Duplication

	Duplicating a Database
	Backup-Based Duplication Without a Target Connection: Example
	Backup-Based Duplication with a Target Connection: Example
	Backup-Based Duplication Without a Target and a Recovery Catalog Connection: Example

	Restarting DUPLICATE After a Failure

25 Duplicating a Database: Advanced Topics

	Specifying Alternative Names for Duplicate Database Files
	Specifying Non-OMF or Non-ASM Alternative Names for Duplicate Database Files
	Using SET NEWNAME to Name File System Datafiles and Tempfiles
	Using CONFIGURE AUXNAME to Name File System Datafiles and OMF/ASM Target Datafiles

	Specifying OMF or ASM Alternative Names for Duplicate Database Files
	Settings and Restrictions for OMF Initialization Parameters
	Setting Initialization Parameters for ASM
	Using SET NEWNAME to Create OMF or ASM Files
	Using DB_FILE_NAME_CONVERT to Generate Names for Non-OMF or ASM Datafiles
	Using LOG_FILE_NAME_CONVERT to Generate Names for Non-OMF or ASM Logfiles

	Making Disk Backups Accessible Without Shared Disk
	Duplicating a Database When No Server Parameter File Exists
	Starting the Auxiliary Instance When No Server Parameter File Exists
	Duplicating a Subset of the Source Database Tablespaces
	Excluding Specified Tablespaces
	Including Specified Tablespaces

26 Creating Transportable Tablespace Sets

	Overview of Creating Transportable Tablespace Sets
	Purpose of Creating Transportable Tablespace Sets
	Basic Concepts of Transportable Tablespace Sets
	Basic Steps of Creating Transportable Tablespace Sets

	Customizing Initialization Parameters for the Auxiliary Instance
	Setting Initialization Parameters for the Auxiliary Instance
	Setting the Location of the Auxiliary Instance Parameter File

	Creating a Transportable Tablespace Set
	Troubleshooting the Creation of Transportable Tablespace Sets
	Transportable Tablespace Set Scenarios
	Creating a Transportable Tablespace Set at a Specified Time or SCN
	Specifying Locations for Data Pump Files
	Specifying Auxiliary File Locations
	Using SET NEWNAME for Auxiliary Datafiles
	Using CONFIGURE AUXNAME for Auxiliary Datafiles
	Using AUXILIARY DESTINATION to Specify a Location for Auxiliary Files
	Using Initialization Parameters to Name Auxiliary Files

27 Transporting Data Across Platforms

	Overview of Cross-Platform Data Transportation
	Purpose of Cross-Platform Data Transportation
	Basic Concepts of Cross-Platform Data Transportation
	Tablespace and Datafile Conversion
	Database Conversion

	Performing Cross-Platform Tablespace Conversion on the Source Host
	Performing Cross-Platform Datafile Conversion on the Destination Host
	About Cross-Platform Datafile Conversion on the Destination Host
	Using CONVERT DATAFILE to Convert Datafile Formats

	Checking the Database Before Cross-Platform Database Conversion
	Converting Datafiles on the Source Host When Transporting a Database
	Converting Datafiles on the Destination Host When Transporting a Database
	Performing Preliminary Datafile Conversion Steps on the Source Host
	Converting Datafiles on the Destination Host

Part VIII Performing User-Managed Backup and Recovery

28 Making User-Managed Database Backups

	Querying V$ Views to Obtain Backup Information
	Listing Database Files Before a Backup
	Determining Datafile Status for Online Tablespace Backups

	Making User-Managed Backups of the Whole Database
	Making User-Managed Backups of Tablespaces and Datafiles
	Making User-Managed Backups of Offline Tablespaces and Datafiles
	Making User-Managed Backups of Online Tablespaces and Datafiles
	Making User-Managed Backups of Online Read/Write Tablespaces
	Making Multiple User-Managed Backups of Online Read/Write Tablespaces
	Ending a Backup After an Instance Failure or SHUTDOWN ABORT
	Making User-Managed Backups of Read-Only Tablespaces

	Making User-Managed Backups of the Control File
	Backing Up the Control File to a Binary File
	Backing Up the Control File to a Trace File

	Making User-Managed Backups of Archived Redo Logs
	Making User-Managed Backups in SUSPEND Mode
	About the Suspend/Resume Feature
	Making Backups in a Suspended Database

	Making User-Managed Backups to Raw Devices
	Backing Up to Raw Devices on Linux and UNIX
	Backing Up with the dd Utility on Linux and UNIX: Examples

	Backing Up to Raw Devices on Windows
	Backing Up with OCOPY: Example
	Specifying the -b and -r Options for OCOPY: Example

	Making Backups with the Volume Shadow Copy Service (VSS)
	Verifying User-Managed Datafile Backups
	Testing the Restoration of Datafile Backups
	Running the DBVERIFY Utility

29 Performing User-Managed Database Flashback and Recovery

	Performing Flashback Database with SQL*Plus
	Overview of User-Managed Media Recovery
	About User-Managed Restore and Recovery
	Automatic Recovery with the RECOVER Command
	Automatic Recovery with SET AUTORECOVERY
	Automatic Recovery with the AUTOMATIC Option of the RECOVER Command

	Recovery When Archived Logs Are in the Default Location
	Recovery When Archived Logs Are in a Nondefault Location
	Resetting the Archived Log Destination
	Overriding the Archived Log Destination

	Recovery Cancellation
	Parallel Media Recovery

	Performing Complete Database Recovery
	Performing Closed Database Recovery
	Performing Open Database Recovery

	Performing Incomplete Database Recovery
	Performing Cancel-Based Incomplete Recovery
	Performing Time-Based or Change-Based Incomplete Recovery

	Recovering a Database in NOARCHIVELOG Mode
	Troubleshooting Media Recovery
	About User-Managed Media Recovery Problems
	Investigating the Media Recovery Problem: Phase 1
	Trying to Fix the Recovery Problem Without Corrupting Blocks: Phase 2
	Deciding Whether to Allow Recovery to Mark as Corrupt Blocks: Phase 3
	Allowing Recovery to Corrupt Blocks: Phase 4
	Performing Trial Recovery
	How Trial Recovery Works
	Executing the RECOVER ... TEST Statement

30 Performing User-Managed Recovery: Advanced Scenarios

	Responding to the Loss of a Subset of the Current Control Files
	Copying a Multiplexed Control File to a Default Location
	Copying a Multiplexed Control File to a Nondefault Location

	Recovering After the Loss of All Current Control Files
	Recovering with a Backup Control File in the Default Location
	Recovering with a Backup Control File in a Nondefault Location
	Recovering Through an Added Datafile with a Backup Control File
	Recovering Read-Only Tablespaces with a Backup Control File

	Re-Creating a Control File
	Recovering Through a RESETLOGS with a Created Control File
	Recovery of Read-Only Files with a Re-Created Control File

	Re-Creating Datafiles When Backups Are Unavailable
	Recovering NOLOGGING Tables and Indexes
	Recovering Transportable Tablespaces
	Recovering After the Loss of Online Redo Log Files
	Recovering After Losing a Member of a Multiplexed Online Redo Log Group
	Recovering After Losing of All Members of an Online Redo Log Group
	Losing an Inactive Online Redo Log Group
	Losing an Active Online Redo Log Group
	Loss of Multiple Redo Log Groups

	Recovering from a Dropped Table Without Using Flashback Features
	Dropping a Database with SQL*Plus

Glossary

Index

This illustration depicts part one of a recovery window. There is a timeline beginning at January 1 and proceeding through January 28. Beginning on January 1, a backup is scheduled for every two weeks. Archived logs are saved every seven days, and are numbered Log 100 for January 1, Log 250 on day 7, Log 500 on day 14, Log 750 on day 21, and Log 850 on day 23. A recovery window is shown extending back seven days from day 23 to day 16. The recovery is explained in the following text.

This illustration presents using the control file as the repository for backups of the catalog. RMAN is used to back up the target database. Metadata about backups of the target database are stored in the recovery catalog database. RMAN is also used to back up the catalog database. Metadata about backups of the recovery catalog database are stored in the catalog database control file. RMAN takes autobackups of the control file of the recovery catalog database.

The figure shows the major entities involved in RMAN transportable tablespace from backup:

	
The source database, with RMAN-usable backups and archived redo logs

	
The RMAN client, connected to the source database

	
The auxiliary instance created by RMAN for use in creating the transportable tablespace set

	
The auxiliary destination, where the output files for the auxiliary instance that are not part of the transportable set are stored

	
The tablespace destination, where the datafiles and Data Pump Export dump file are written, along with a sample import script

The part played by each of these entities is described in the text which follows.

This illustration depicts datafile multiplexing. Three separate datafiles are read by a server session and written in intermingled fashion into a single backup piece as RMAN backs them up.

This graphic depicts the Perform Recovery page in Enterprise Manager.

This illustration shows RMAN crosschecking datafile backups and copies stored in a recovery catalog and control file with those stored in a media management library.

This graphic is described in the surrounding text.

This graphic depicts the phases of a multichannel backup to disk. The input devices are three disks, while the output devices are two disks. The phases of read, copy, and write are depicted.

This illustration depicts the incarnation history of a database that goes through three incarnations. The incarnation history and the series of point-in-time recovery operations and RESETLOGS operations that creates the incarnation history is described in the text which follows.

This illustration depicts channel allocation. RMAN has allocated one channel, which is shown starting a server session with a target database. The server session is shown performing backup operations to disk and tape.

This illustration depicts differential incremental backups. In this example, RMAN is shown backing up blocks of data over the course of two weeks. Sunday is shown as having a backup level of 0; Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday are shown as having backup levels of 1. The second week is a repeat of the first. The backups are described in the following text.

This graphic depicts a channel writing data to 4 output tape buffers. The output tape buffers are transferred to a tape drive.

This illustration depicts cumulative incremental backups. In this example, RMAN is shown backing up blocks of data over the course of two weeks. Sunday is shown as having a backup level of 0; Monday, Tuesday, Wednesday, Thursday, Friday, and Saturday are shown as having backup levels of 1. The second week is a repeat of the first. The backups are described in the following text.

This illustration depicts synchronous I/O in a backup to tape and is explained in the text that follows.

This illustration depicts disk buffer allocation. One channel is backing up four datafiles. The channel settings are FILESPERSET=4 and MAXOPENFILES=4. Four 1 MB input disk buffers are allocated for each datafile.

This illustration depicts asynchronous I/O in a backup to tape and is explained in the text that follows.

This illustration depicts block media recovery. Block 13 is shown on a line with its associated archived logs. The line represents the redo stream. At the beginning of the line, Block 13 is restored in datafile 4; the associated archived log is Log 100. At the next stage, Log 120 is missing redo for block 13. At the next stage, Log 140, block 13 is newed. Finally, Log 160 has the last change for block 13. The recovery is explained in the following text.

This graphic depicts the phases of a multichannel backup to disk. The input devices are three disks, while the output devices are two tape drives. One of the input devices is mounted through NFS. The phases of read, copy, and write are depicted.

This illustration is described in the preceding text.

This illustration depicts part two of a recovery window. There is a timeline beginning at January 1 and proceeding through February 4. Beginning on January 1, a backup is scheduled for every two weeks. Archived logs are saved every seven days, and are numbered Log 100 for January 1, Log 250 on day 7, Log 500 on day 14, Log 750 on day 21, Log 1000 on day 28, and Log 1150 on day 30. A recovery window is shown extending back seven days from day 30 to day 23. The recovery is explained in the following text.

21 Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)

This chapter explains how to perform RMAN tablespace point-in-time recovery. This chapter contains the following sections:

	
Overview of RMAN TSPITR

	
TSPITR Restrictions, Special Cases, and Limitations

	
Planning and Preparing for TSPITR

	
Running RMAN TSPITR:

	
Performing Fully Automated RMAN TSPITR

	
Overriding Defaults for RMAN TSPITR with an RMAN-Managed Auxiliary Instance

	
Performing RMAN TSPITR Using Your Own Auxiliary Instance

	
Troubleshooting RMAN TSPITR

Overview of RMAN TSPITR

To use RMAN tablespace point-in-time recovery (TSPITR) effectively, it is helpful to understand what types of problems it can resolve, its components, what RMAN does during TSPITR, and the various limitations and restrictions on when and how it can be run. This section explains the basic concepts, preparatory tasks, and modes of running RMAN TSPITR.

Purpose of RMAN TSPITR

Recovery Manager (RMAN) TSPITR enables quick recovery of one or more tablespaces in a database to an earlier time without affecting the rest of the tablespaces and objects in the database.

RMAN TSPITR is most useful for the following situations:

	
To recover a logical database to a point different from the rest of the physical database, when multiple logical databases exist in separate tablespaces of one physical database. For example, you maintain logical databases in the orders and personnel tablespaces. An incorrect batch job or data manipulation language (DML) statement corrupts the data in only one of the tablespaces.

	
To recover data lost after data definition language (DDL) operations that change the structure of tables. You cannot use Flashback Table to rewind a table to before the point of a structural change such as a truncate table operation.

	
To recover a table after it has been dropped with the PURGE option.

	
To recover from the logical corruption of a table.

	
To recover dropped tablespaces. In fact, RMAN can perform TSPITR on dropped tablespaces even when a recovery catalog is not used.

You can also use Flashback Database to rewind data, but you must rewind the entire database rather than just a subset. Also, unlike TSPITR, the Flashback Database feature necessitates the overhead of maintaining flashback logs. The point in time to which you can flash back the database is more limited than the TSPITR window, which extends back to your earliest recoverable backup.

Basic Concepts of RMAN TSPITR

The following sections explain RMAN TSPITR fundamentals:

	
Common Terms

	
Modes of RMAN TSPITR

	
How RMAN TSPITR Works With an RMAN-Managed Auxiliary Instance

Common Terms

Table 21-1 defines some of the common entities that are used by RMAN TSPITR.

Table 21-1 RMAN TSPITR Entities

	Name	Explanation
	
Target instance

	
Contains the tablespace to be recovered to the target time

	
Target time

	
Point in time or SCN of the tablespace after TSPITR completes

	
Auxiliary instance

	
A database instance used in the recovery process to perform the work of recovery. The auxiliary instance has other files associated with it. See auxiliary set for a complete list.

	
Auxiliary destination

	
An optional disk location that RMAN uses to temporarily store the auxiliary set files. The auxiliary destination is used only with an RMAN-managed auxiliary instance. Specifying an auxiliary destination with a user-managed auxiliary instance results in an error.

All references to auxiliary destination in this chapter assume use of an RMAN-managed auxiliary instance.

	
Recovery set

	
Datafiles in the tablespaces that you intend to recover

	
Auxiliary set

	
Datafiles required for TSPITR that are not part of the recovery set. The auxiliary set typically includes:

	
The SYSTEM and SYSAUX tablespaces.

	
Datafiles containing rollback or undo segments from the target database instance.

	
Temporary tablespaces.

	
Control file from source database.

	
Archived redo logs that must be restored to recover the auxiliary instance to specified point in time.

	
Online redo logs of the auxiliary instance. These are not the same logs as the online redo logs from the source database. They are created when the auxiliary instance is opened with the RESETLOGS option.

The auxiliary set does not include the parameter file, password file, or associated network files.

Modes of RMAN TSPITR

You start RMAN TSPITR with the RMAN RECOVER TABLESPACE command. You have several options for running RMAN TSPITR. The difference between the various modes of operation corresponds to how much automation versus customization you require in your environment. There are three ways to run the utility:

	
Fully Automated (the default)

In this mode, RMAN manages the entire TSPITR process including the auxiliary instance. You specify the tablespaces of the recovery set, an auxiliary destination, the target time, and you allow RMAN to manage all other aspects of TSPITR.

The default mode is recommended unless you specifically need more control over the location of recovery set files after TSPITR, auxiliary set files during TSPITR, channel settings and parameters or some other aspect of your auxiliary instance. For more information, see "Performing Fully Automated RMAN TSPITR".

	
Automated: RMAN-Managed Auxiliary Instance with User Settings

You can override some of the defaults of RMAN TSPITR while still using an RMAN-managed auxiliary instance and destination. This variation of the default mode enables you to benefit from some of the built-in management that RMAN TSITR provides while being able to specify:

	
Location of auxiliary set or recovery set files

	
Initialization parameters

For more information, see "Overriding Defaults for RMAN TSPITR with an RMAN-Managed Auxiliary Instance".

	
Non-Automated: TSPITR and User-Managed Auxiliary Instance

This mode of RMAN TSPITR requires you to set up and manage all aspects of the auxiliary instance as well as some aspects of the TSPITR process. This mode may be appropriate if, for example, you must allocate a different number of channels or change the channel parameters for your user-managed auxiliary instance.

For more information, see "Performing RMAN TSPITR Using Your Own Auxiliary Instance".

How RMAN TSPITR Works With an RMAN-Managed Auxiliary Instance

Having selected tablespaces from the recovery set, an auxiliary destination and a target time, you are now ready to perform Fully Automated RMAN TSPITR (default). The automated mode of RMAN TSPITR shares many of these high-level processing steps.

RMAN TSPITR automatically performs the following actions:

	
If the tablespaces in the recovery set have not been dropped, checks to see if they are self-contained by executing the DBMS_TTS.TRANSPORT_SET_CHECK for the recovery set tablespaces and then checking that the view TRANSPORT_SET_VIOLATIONS is empty. If the query returns rows, RMAN stops TSPITR processing. You must resolve any tablespace containment violations before TSPITR can proceed. Example 21-1 shows you how to set up and run the query before invoking RMAN TSPITR.

	
Checks to see if a connection to a user-managed auxiliary instance was provided. If it is, then RMAN TSPITR uses it. If not, RMAN TSPITR creates the auxiliary instance, starts it, and connects to it.

	
Takes the tablespaces to be recovered offline in the target database, if the tablespaces in the recovery set have not been dropped.

	
Restores a backup control file from a point in time before the target time to the auxiliary instance.

	
Restores the datafiles from the recovery set and the auxiliary set to the auxiliary instance.

Files are restored either in the:

	
Locations that you specify for each file

	
Original location of the file (for recovery set datafiles)

	
Auxiliary destination (if you used the AUXILIARY DESTINATION argument of RECOVER TABLESPACE and an RMAN-managed auxiliary instance)

	
Recovers the restored datafiles in the auxiliary instance to the specified time.

	
Opens the auxiliary database with the RESETLOGS option.

	
Makes the recovery set tablespaces read-only in the auxiliary instance.

	
Exports the recovery set tablespaces from the auxiliary instance using the Data Pump utility to produce a transportable tablespace dump file.

	
Shuts down the auxiliary instance.

	
Drops the recovery set tablespaces from the target.

	
Data Pump utility reads the transportable tablespace dump file and plugs the recovery set tablespaces into the target.

	
Makes the tablespaces that were put in the target database read/write and immediately takes them offline.

	
Deletes all auxiliary set files.

At this point, RMAN TSPITR has finished. The recovery set datafiles are returned to their contents at the specified point in time, and belong to the target database.

The recovery set tablespaces are left offline for you to back up and then bring back online. These last steps follow Oracle's recommendation and best practice of backing up recovered tablespaces as soon as TSPITR completes.

TSPITR Restrictions, Special Cases, and Limitations

A number of database problems cannot be resolved with TSPITR. The following list explains when you cannot perform TSPITR:

	
If there are no archived redo logs or if the database runs in NOARCHIVELOG mode.

	
If TSPITR is used to recover a renamed tablespace to a point in time before it was renamed, you must use the previous name of the tablespace to perform the recovery operation.

In this case when TSPITR completes, the target database will contain two copies of the same tablespace, the original tablespace with the new name and the TSPITR tablespace with the old name. If this is not your goal, then you can drop the new tablespace with the new name.

	
If constraints for the tables in tablespace tbs1 are contained in tablespace tbs2, then you cannot recover tbs1 without also recovering tbs2.

	
You cannot use TSPITR to recover the current default tablespace.

	
You cannot use TSPITR to recover tablespaces containing any of the following objects:

	
Objects with underlying objects (such as materialized views) or contained objects (such as partitioned tables) unless all of the underlying or contained objects are in the recovery set

	
Undo or rollback segments

	
Oracle8-compatible advanced queues with multiple recipients

	
Objects owned by the user SYS. Examples of these types of objects are: PL/SQL, Java classes, callout programs, views, synonyms, users, privileges, dimensions, directories, and sequences.

Limitations of TSPITR

After TSPITR completes, RMAN recovers the datafiles in the recovery set to the target time. Note the following special cases:

	
TSPITR will not recover query optimizer statistics for recovered objects.You must gather new statistics after TSPITR completes.

	
If you run TSPITR on a tablespace and bring the tablespace online at time t, then backups of the tablespace created before time t are no longer usable for recovery with a current control file. You cannot use the current control file to recover the database to any time less than or equal to t.

	
If one or more datafiles in the recovery set have Oracle Managed File (OMF) names and the compatibility in the target database is set to version 10.1 or earlier, RMAN cannot reuse the datafile. This restriction is true even if no SET NEWNAME command is provided for the datafile. A new OMF name is created for the recovery set datafile. This action will temporarily double the space requirements for the datafile. This is because DB_CREATE_FILE_DEST has two copies of the datafile (the original datafile and the one used by TSPITR) until the tablespace is dropped in the target and the original datafile is deleted.

Special Considerations When Not Using a Recovery Catalog

You should be aware of following precautions:

	
Because RMAN has no historical record of the undo in the control file, RMAN assumes that the current set of tablespaces with rollback or undo segments were the same set present at the time when recovery was performed. If the tablespace set has changed since that time, then the current rollback or undo segments were the same segments present at the time to which recovery is performed. If the undo segments have changed since that time, then you can use UNDO TABLESPACE to indicate the correct set of tablespaces with undo at the point in time where the tablespaces are being recovered.

	
TSPITR to a time that is too old may not succeed if Oracle Database has reused the control file records for needed backups. (In planning your database, set the CONTROL_FILE_RECORD_KEEP_TIME initialization parameter to a value large enough to ensure that control file records needed for TSPITR are kept.)

	
To rerun TSPITR when you are not using a recovery catalog, you must first drop the tablespace to be used by TSPITR from the target database.

Planning and Preparing for TSPITR

This section assumes that you have read "TSPITR Restrictions, Special Cases, and Limitations". You must complete the following steps when preparing for TSPITR:

	
Step 1: Select the Right Target Time for TSPITR

	
Step 2: Determine the Recovery Set

	
Step 3: Identify and Preserve Objects That Will Be Lost After TSPITR

Step 1: Select the Right Target Time for TSPITR

It is extremely important that you choose the right target time or SCN for your TSPITR. As noted in "TSPITR Restrictions, Special Cases, and Limitations", after you bring a tablespace online after TSPITR, you cannot use any backup from a time earlier than the moment you brought the tablespace online.

If you have a recovery catalog, then you can perform repeated TSPITR operations to different target times because the catalog contains tablespace history information. If RMAN uses only a control file, however, repeated TSPITR is only possible after dropping the tablespace because the control file does not have the tablespace history. In this case, RMAN only knows about the current set of tablespaces. The tablespace on which TSPITR was performed has a creation time equal to the time it was brought online.

To investigate past states of your data to identify the target time for TSPITR, you can use Flashback Query, Oracle Transaction Query, and Flashback Version Query to find the point in time when unwanted database changes occurred.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information on Flashback Query, Flashback Transaction Query, and Flashback Version Query

Step 2: Determine the Recovery Set

Initially, your recovery set includes the datafiles for the tablespaces that you intend to recover. However, if objects in the tablespaces that you need have relationships (such as constraints) to objects in other tablespaces, then you must account for these relationships before you can perform TSPITR. You have the following choices when faced with such a relationship:

	
Add the tablespace including the related objects to your recovery set

	
Remove the relationship

	
Suspend the relationship for the duration of TSPITR

Identify and Resolve Dependencies on the Primary Database

RMAN TSPITR requires that the tablespace be self-contained and that no SYS -owned objects reside in the tablespace. You can use the DBMS_TTS.TRANSPORT_SET_CHECK procedure to locate objects outside the tablespace and identify relationships between objects that span the recovery set boundaries. If the TRANSPORT_SET_VIOLATIONS view returns rows, you must investigate and correct the problem according to the choices mentioned earlier in this step.

	
Note:

If one or more of the tablespaces in the recovery set have been dropped, RMAN TSPITR cannot run the procedure DBMS_TTS.TRANSPORT_SET_CHECK. In this case, DBMS_TTS.TRANSPORT_SET_CHECK is run when the Data Pump export of the auxiliary instance occurs. Just like RMAN TSPITR, if the export operation encounters any tablespaces that are not self-contained, it will fail.

Record all actions performed during this step so that you can re-create any suspended or removed relationships after completing TSPITR. Proceed with TSPITR only when the TRANSPORT_SET_VIOLATIONS view is empty for the tablespaces in the recovery set.

The query in Example 21-1 illustrates how to use the DBMS_TTS.TRANSPORT_SET_CHECK procedure for an initial recovery set consisting of tablespaces tools and users. It queries the transportable tablespace violations table to manage any dependencies. No rows are returned from this query when all dependencies are managed.

Example 21-1 Querying DBMS_TTS.TRANSPORT_SET_CHECK for a Subset of Tablespaces

BEGIN
 EXECUTE DBMS_TTS.TRANSPORT_SET_CHECK('USERS,TOOLS', TRUE,TRUE);
END;
/
SELECT * FROM TRANSPORT_SET_VIOLATIONS;

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_TTS.TRANSPORT_SET_CHECK procedure and corresponding view

Step 3: Identify and Preserve Objects That Will Be Lost After TSPITR

When you perform RMAN TSPITR on a tablespace, objects created after the target recovery time are lost. You can preserve such objects after they are identified by exporting them before TSPITR with the Data Pump Export utility and reimporting them afterward with Data Pump Import.

To determine which objects will be lost in TSPITR, query the TS_PITR_OBJECTS_TO_BE_DROPPED view on the primary database. Table 21-2 describes the contents of the view.

Table 21-2 TS_PITR_OBJECTS_TO_BE_DROPPED View

	Column Name	Meaning
	
OWNER

	
Owner of the object to be dropped

	
NAME

	
The name of the object that will be lost as a result of undergoing TSPITR

	
CREATION_TIME

	
Creation time stamp for the object

	
TABLESPACE_NAME

	
Name of the tablespace containing the object

Filter the view for objects whose CREATION_TIME is after the target time for TSPITR. For example, with a recovery set consisting of users and tools, and a recovery point in time of November 2, 2007, 7:03:11 am, issue the statement shown in Example 21-2.

Example 21-2 Querying TS_PITR_OBJECTS_TO_BE_DROPPED

SELECT OWNER, NAME, TABLESPACE_NAME,
 TO_CHAR(CREATION_TIME, 'YYYY-MM-DD:HH24:MI:SS')
 FROM TS_PITR_OBJECTS_TO_BE_DROPPED
WHERE TABLESPACE_NAME IN ('USERS','TOOLS')
AND CREATION_TIME > TO_DATE('02-NOV-07:07:03:11','YY-MON-DD:HH24:MI:SS')
ORDER BY TABLESPACE_NAME, CREATION_TIME;

The TO_CHAR and TO_DATE functions are used to avoid issues with different national date formats. Of course, you can use local date formats in your own work.

Alternatively, if you have the SCN of the tablespaces, you can use conversion functions to determine the time stamp associated with the SCN and the objects that will be dropped. For example, if the SCN to recover tablespaces users and tools is 1645870, use the statement outlined in Example 21-3 to determine the objects that will be dropped.

Example 21-3 Using SCN and TS_PITR_OBJECTS_TO_BE_DROPPED

SELECT OWNER, NAME, TABLESPACE_NAME,
 TO_CHAR(CREATION_TIME,'YYYY-MM-DD:HH24:MI:SS')
 FROM TS_PITR_OBJECTS_TO_BE_DROPPED
WHERE TABLESPACE_NAME IN ('USERS','TOOLS')
AND CREATION_TIME > TO_DATE(TO_CHAR(SCN_TO_TIMESTAMP(1645870),
'MM/DD/YYYY HH24:MI:SS'),
'MM/DD/YYYY HH24:MI:SS')
ORDER BY TABLESPACE_NAME, CREATION_TIME;

	
See Also:

Oracle Database Reference for more information about the TS_PITR_OBJECTS_TO_BE_DROPPED view

Performing Fully Automated RMAN TSPITR

In the default mode, RMAN bases as much of the configuration for TSPITR as possible on the target database. During TSPITR, the recovery set datafiles are written in their current locations on the target database (For OMF files, see "Limitations of TSPITR"). The same channel configurations for the target database are used on the auxiliary instance when restoring files from backup. Auxiliary set datafiles and other auxiliary instance files, however, are stored in the auxiliary destination.

Use the AUXILIARY DESTINATION parameter to set a location for RMAN to use for the auxiliary set datafiles. The auxiliary destination must be a location on disk with enough space to hold auxiliary set datafiles. Even if you use other techniques to rename some or all of the auxiliary set datafiles, specifying an AUXILIARY DESTINATION parameter provides a default location for auxiliary set datafiles for which names are not specified. TSPITR will not fail if you inadvertently do not provide names for all auxiliary set datafiles.

To perform fully automated RMAN TSPITR, the user performing TSPITR should be able to connect as SYSDBA using operating system authentication.

To perform fully automated RMAN TSPITR:

	
Review the information in "TSPITR Restrictions, Special Cases, and Limitations".

	
Perform the tasks in "Planning and Preparing for TSPITR".

	
Start an RMAN session on the target database and, if applicable, connect to a recovery catalog.

	
Note:

Do not connect to an auxiliary instance when starting the RMAN client for automated TSPITR. If RMAN is connected to an auxiliary instance when you run RECOVER TABLESPACE, then RMAN assumes that you are trying to manage your own auxiliary instance, as described in "Performing RMAN TSPITR Using Your Own Auxiliary Instance", and will try to use the connected auxiliary for TSPITR.

	
Configure any channels required for TSPITR on the target instance.

The auxiliary instance uses the same channel configuration as the target instance when performing TSPITR.

	
Run the RECOVER TABLESPACE command, specifying both the UNTIL clause and the AUXILIARY DESTINATION parameter.

Example 21-4 returns the users and tools tablespaces to the end of log sequence number 1299, and stores the auxiliary set files in the /disk1/auxdest directory.

Example 21-4 Performing TSPITR on Two Tablespaces

RECOVER TABLESPACE users, tools
 UNTIL LOGSEQ 1300 THREAD 1
 AUXILIARY DESTINATION '/disk1/auxdest';

The next step depends on the results of the RECOVER command:

	
If no error occurs during TSPITR, then proceed to Step 6.

The tablespaces are taken offline by RMAN, restored from backup and recovered to the desired point in time on the auxiliary instance, and then reimported to the target database. The tablespaces are left offline. All auxiliary set datafiles and other auxiliary instance files are cleaned up from the auxiliary destination.

	
If an error occurs during TSPITR, then proceed to "Troubleshooting RMAN TSPITR".

	
If TSPITR completes successfully, then back up the recovered tablespaces before bringing them online.

For example, enter the following command:

BACKUP TABLESPACE users, tools;

After you perform TSPITR on a tablespace, you can no longer use previous backups of that tablespace once TSPITR successfully completes. If you use the recovered tablespaces without taking a backup, then you are running your database without a usable backup of these tablespaces.

	
Bring the tablespaces back online.

For example, enter the following command:

RMAN> SQL "ALTER TABLESPACE users, tools ONLINE";

Your recovered tablespaces are now ready for use.

Overriding Defaults for RMAN TSPITR with an RMAN-Managed Auxiliary Instance

You can customize the following aspects of RMAN TSPITR while still mostly following the procedure described in "Performing Fully Automated RMAN TSPITR":

	
Rename or relocate your recovery set datafiles so that the datafiles making up the recovered tablespaces are not stored in the original locations after TSPITR. This may be necessary if the disk that originally contained the tablespace is not usable.

This task is described in "Renaming TSPITR Recovery Set Datafiles with SET NEWNAME".

	
Specify a location other than the auxiliary destination for some or all auxiliary set datafiles. You might choose this option if no single location on disk has enough space for all auxiliary set files.

This task is described in "Naming TSPITR Auxiliary Set Datafiles".

	
Rename files in an Oracle Managed Files format.

This task is described in "Considerations When Renaming OMF Auxiliary Set Files in TSPITR".

	
Set up image copy backups of your auxiliary set datafiles in advance to avoid having to restore datafiles during TSPITR.

This task is described in "Using Image Copies for Faster RMAN TSPITR Performance".

	
Customize initialization parameters for your RMAN-managed auxiliary instance.

This task is described in "Customizing Initialization Parameters for the Automatic Auxiliary Instance in TSPITR".

Renaming TSPITR Recovery Set Datafiles with SET NEWNAME

You may not want the recovery set datafiles restored and recovered in their original locations. The SET NEWNAME command enables you to specify a new destination. When you specify a new destination for the recovery set, RMAN does not remove the original datafiles of the tablespaces.

To specify new recovery set filenames, create a RUN block and use SET NEWNAME commands within it. Be sure to assign names that do not conflict with each other or with the names of your current datafiles. Example 21-5 illustrates the basic technique.

Example 21-5 Renaming Recovery Set Files

RUN
{
 .
 .
 .
 SET NEWNAME FOR DATAFILE 'ORACLE_HOME/oradata/trgt/users01.dbf'
 TO '/newfs/users01.dbf';
 ...other SET NEWNAME commands...
 RECOVER TABLESPACE users, tools UNTIL SEQUENCE 1300 THREAD 1;
}

In this example, RMAN takes the following actions:

	
Restores each specified datafile to the new location during TSPITR.

	
Uses the image copy if one exists at the specified location and its checkpoint is before the specified point in time. If this criteria is not met, then RMAN overwrites the image copy.

	
Plugs the newly recovered datafile into the target control file.

RMAN does not detect conflicts between names set with SET NEWNAME and current datafile names on the target database until the actual recovery. If RMAN detects a conflict, then TSPITR fails and RMAN reports an error. The valid datafile is not overwritten.

Naming TSPITR Auxiliary Set Datafiles

Unlike recovery set datafiles, which are usually stored in their original locations, auxiliary set datafiles must not overwrite the corresponding original files in the target database. If you do not specify an auxiliary set file location that is different from its original location, then TSPITR fails. The failure occurs when RMAN attempts to overwrite the corresponding file in the original database and discovers the file in use.

The simplest way to provide locations for auxiliary set datafiles is to specify an auxiliary destination for TSPITR. However, RMAN supports the following alternatives for controlling the location of auxiliary set datafiles, which are listed in order of precedence shown in Table 21-3.

Table 21-3 Order of Precedence for Naming Files

	Order	Technique	Section
	
1

	
SET NEWNAME

	
"Using SET NEWNAME to Name Auxiliary Set Datafiles"

	
2

	
CONFIGURE AUXNAME

	
"Using SET NEWNAME and CONFIGURE AUXNAME with Auxiliary Set Image Copies"

	
3

	
DB_FILE_NAME_CONVERT

	
"Using DB_FILE_NAME_CONVERT to Name Auxiliary Set Datafiles". If the target database uses OMF names for auxiliary set, then you cannot use DB_FILE_NAME_CONVERT. See "Considerations When Renaming OMF Auxiliary Set Files in TSPITR".

	
4

	
AUXILIARY DESTINATION argument to RECOVER TABLESPACE when using an RMAN-managed auxiliary instance

	

Settings higher on the list override settings lower on the list in situations where both have been applied. For example, you might run RECOVER TABLESPACE... AUXILIARY DESTINATION on a target database when some auxiliary set datafiles have auxiliary names configured with CONFIGURE AUXNAME.

Even if you intend to use either of the preceding techniques to provide locations for specific files, Oracle recommends that you provide an AUXILIARY DESTINATION argument to RECOVER TABLESPACE when using an RMAN-managed auxiliary instance. If you overlook renaming some auxiliary set datafiles, then TSPITR will still succeed. Any files not otherwise renamed will be placed in the auxiliary destination.

	
Note:

You can view any current CONFIGURE AUXNAME settings by running the SHOW AUXNAME command, which is described in Oracle Database Backup and Recovery Reference.

Considerations When Renaming OMF Auxiliary Set Files in TSPITR

Auxiliary set datafiles can have Oracle Managed Files (OMF) in the target and can use Automatic Storage Management (ASM) or non-ASM storage. TSPITR performs name conversion differently when the DB_FILE_NAME_CONVERT initialization parameter is set and the OMF files are in ASM or non-ASM storage.

Using ASM Storage

For Oracle Managed Files (OMF) that use ASM storage, the database converts only disk group names as in: +DISK1 to +DISK2.

You can use DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT initialization parameters for the auxiliary instance to specify the conversion of the disk group. RMAN uses the pattern to convert the ASM disk group name and generates a valid OMF filename in the converted disk group. The following command demonstrates this point:

LOG_FILE_NAME_CONVERT='+onlinelogs','+tmpasm'

If the DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT parameters change a substring other than the disk group name, the conversion is ignored and the resulting disk group name is used, for example:

DB_FILE_NAME_CONVERT='+DATAFILE/prod','+DATAFILE/tspitr'

The preceding command results in an invalid ASM OMF filename and the change is ignored. Instead, the files are created in disk group name +DATAFILE and the following message is issued:

WARNING: DB_FILE_NAME_CONVERT resulted in invalid ASM names; names changed to disk group only

If auxiliary set datafiles are stored in ASM disk groups, then you can use the SET NEWNAME command to redirect individual files to a specific disk group accessible from the auxiliary instance (and allow the database to generate the filename within the disk group). Example 21-6 shows how to do this.

Example 21-6 Redirecting ASM files

RUN
{
 SET NEWNAME FOR DATAFILE 1 TO "+DISK2";
 SET NEWNAME FOR DATAFILE 2 TO "+DISK3";
 RECOVER TABLESPACE users, tools
 UNTIL LOGSEQ 1300 THREAD 1
 AUXILIARY DESTINATION '/disk1/auxdest';
}

Using Non-ASM Storage

The initialization parameters DB_FILE_NAME_CONVERT and LOG_FILE_NAME_CONVERT cannot be used to rename OMF (non-ASM) filenames for the auxiliary instance because this method generates invalid OMF filenames. If you need to control the generation of new OMF filenames that do not use ASM storage, you must rename them using one of the following alternate techniques. The various naming options are listed in order from most recommended to least recommended.

	
Use an auxiliary destination, as described in "Performing Fully Automated RMAN TSPITR".

	
Specify locations for new OMF files with one or more of the OMF initialization parameters for the auxiliary instance so that all of the necessary OMF files are handled:

	
DB_CREATE_FILE_DEST for the auxiliary set datafiles

	
DB_CREATE_ONLINE_LOG_DEST_n together with DB_CREATE_FILE_DEST for the online redo logs of the auxiliary instance if the online logs will not be created in the DB_CREATE_FILE_DEST

Using SET NEWNAME to Name Auxiliary Set Datafiles

To specify a new name for an auxiliary set datafile, you can enclose RECOVER TABLESPACE in a RUN command and use a SET NEWNAME command within the RUN block to rename the file. Example 21-7 illustrates the basic technique.

Example 21-7 Renaming Auxiliary Set Oracle Managed Files (OMF) in TSPITR

RUN
{
 SET NEWNAME FOR DATAFILE '?/oradata/prod/system01.dbf'
 TO '/disk1/auxdest/system01.dbf';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/sysaux01.dbf'
 TO '/disk1/auxdest/sysaux01.dbf';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/undotbs01.dbf'
 TO '/disk1/auxdest/undotbs01.dbf';
 RECOVER TABLESPACE users, tools
 UNTIL LOGSEQ 1300 THREAD 1
 AUXILIARY DESTINATION '/disk1/auxdest';
}

The result depends on whether /disk1/auxdest/system01.dbf exists when RECOVER TABLESPACE is executed. If ?/oradata/system01.dbf exists at the specified location and was created at an SCN before the UNTIL time for TSPITR, then the DATAFILECOPY is used and the restore operation is not necessary. For more information, see "Using SET NEWNAME and CONFIGURE AUXNAME with Auxiliary Set Image Copies". Otherwise, RMAN restores the auxiliary set datafile to the NEWNAME instead of the default location. If your intention is to control where the auxiliary set datafiles are stored, then ensure that no file is stored at the location specified by SET NEWNAME before performing TSPITR.

Using DB_FILE_NAME_CONVERT to Name Auxiliary Set Datafiles

Assume that you do not want to use an auxiliary destination for all of your auxiliary set datafiles, but you also do not want to name every file individually. In this case, you can include a DB_FILE_NAME_CONVERT initialization parameter in the initialization parameter file used by the auxiliary instance. You can use this technique only in the following circumstances:

One of the following situations exists:

	
- You create your own initialization parameter file for an automatically managed auxiliary instance, as described in "Customizing Initialization Parameters for the Automatic Auxiliary Instance in TSPITR"

	
- You create your own auxiliary instance, as described in "Performing RMAN TSPITR Using Your Own Auxiliary Instance"

The DB_FILE_NAME_CONVERT initialization parameter in the auxiliary instance specifies how to derive names for files in the auxiliary instance from the original names of the corresponding files in the target database instance. The parameter consists of a list of pairs of strings. For any filename that contains the first string of a pair as a substring, the name of the corresponding file in the auxiliary instance is generated by substituting the second string of the pair into the original filename.

For example, assume that the target instance contains the following files:

	
?/oradata/trgt/system01.dbf of the SYSTEM tablespace

	
?/oradata/trgt/sysaux01.dbf of the SYSAUX tablespace

	
?/oradata/trgt/undotbs01.dbf of the undotbs tablespace

To place the corresponding files of the auxiliary instance in /bigtmp, you would add the following line to the auxiliary instance parameter file:

DB_FILE_NAME_CONVERT=('?/oradata/trgt', '/bigtmp')

New filenames for the corresponding auxiliary instance files would be /bigtmp/trgt/system01.dbf, /bigtmp/trgt/sysaux01.dbf, and /bigtmp/trgt/undotbs01.dbf.

The most important point to remember is that DB_FILE_NAME_CONVERT must be present in the auxiliary instance parameter file. If the auxiliary instance was manually created, then add DB_FILE_NAME_CONVERT to the auxiliary instance parameter file.

You can still rename individual auxiliary set datafiles with the SET NEWNAME or CONFIGURE AUXNAME command. Also, files that do not match the patterns provided in DB_FILE_NAME_CONVERT will not be renamed. When using RMAN-managed auxiliary instance, you can use the AUXILIARY DESTINATION parameter of RECOVER TABLESPACE command to ensure that all auxiliary set datafiles are sent to some destination. If none of the renaming methods used provide a new name for a file at the auxiliary instance, then TSPITR will fail.

Renaming Tempfiles During TSPITR

Tempfiles are considered part of the auxiliary set for your database. When the auxiliary instance is instantiated, RMAN re-creates the temporary tablespaces of the target database and generates their names by means of the regular rules for the auxiliary datafile names.

To rename tempfiles, you can use one of the following:

	
SET NEWNAME FOR TEMPFILE command

	
DB_FILE_NAME_CONVERT initialization parameter of the auxiliary instance. See the previous example. If the temporary files have non-ASM Oracle Managed File names, you cannot use this parameter option. See "Considerations When Renaming OMF Auxiliary Set Files in TSPITR".

	
AUXILIARY DESTINATION clause of the RECOVER command when using an RMAN-managed auxiliary instance

Using Image Copies for Faster RMAN TSPITR Performance

You can enhance TSPITR performance by redirecting RMAN to use existing image copies of the recovery set and auxiliary set datafiles. In this case, RMAN does not need to restore the datafiles from backup. You can use the following techniques to tell RMAN about the possible existence of an image copy of a datafile:

	
Use the CONFIGURE AUXNAME command with image copies of auxiliary set datafiles

	
Use the SET NEWNAME command with image copies of recovery set datafiles or auxiliary set datafiles

In general, if a suitable image copy is available in the specified location, then RMAN uses the image copy to perform TSPITR, and the datafile copy is uncataloged from the target control file.

Using SET NEWNAME with Recovery Set Image Copies

During TSPITR, RMAN looks in the specified NEWNAME location for the datafile. RMAN checks whether an image copy backup of the datafile exists with a datafile checkpoint SCN early enough that it can be recovered to the target time. If RMAN finds a usable image copy, then RMAN uses it in TSPITR. Otherwise, RMAN restores the datafile to the NEWNAME location. Any file in the location specified by the NEWNAME is overwritten. The specified NEWNAME becomes the name of the datafile in the target database once TSPITR completes. Example 21-8 illustrates this technique.

Example 21-8 Using SET NEWNAME

RUN
{
SET NEWNAME FOR DATAFILE 'ORACLE_HOME/oradata/trgt/users01.dbf'
 TO '/newfs/users1.dbf';
...other RMAN commands, if any...
RECOVER TABLESPACE users, tools UNTIL SEQUENCE 1300 THREAD 1;
}

Using SET NEWNAME and CONFIGURE AUXNAME with Auxiliary Set Image Copies

The CONFIGURE AUXNAME command sets a persistent alternative location for an auxiliary set datafile image copy, whereas the SET NEWNAME command sets an alternative location for the duration of a RUN command.

Assume that you use SET NEWNAME or CONFIGURE AUXNAME to specify a new location for an auxiliary set datafile. Also assume that there is an image copy at that location with an SCN that can be used in TSPITR. In this case, RMAN uses the image copy. If there is no usable image copy at that location, however, then RMAN restores a usable copy from backup. (If an image copy is present but the SCN is after the target time for TSPITR, then the datafile is overwritten by the restored file.)

As with all auxiliary set files, the file is deleted after TSPITR. This behavior occurs regardless of whether it was an image copy created before TSPITR or restored by RMAN during TSPITR.

The primary use of CONFIGURE AUXNAME is to make TSPITR faster by eliminating restore times. If you anticipate performing TSPITR, then you can include in your backup routine the maintenance of a set of image copies of the auxiliary set datafiles, and update these periodically to the earliest point to which you expect to perform TSPITR. The recommended usage model is:

	
Configure the AUXNAME for the files once, when setting up this strategy.

	
Perform BACKUP AS COPY DATAFILE n FORMAT auxname regularly to maintain the updated image copy. For better performance, use an incrementally updated backup strategy to keep the image copies up-to-date without performing full backups of the datafiles.

	
When TSPITR is needed, specify a target time after the last update of the image copy.

Performing TSPITR with CONFIGURE AUXNAME and Image Copies: Scenario

Assume that you have enough disk space to save image copies of your entire database for use in TSPITR. In preparation for the possibility of TSPITR, you do the following:

	
Configure an AUXNAME for each datafile in the auxiliary set by using a command of the following form:

CONFIGURE AUXNAME FOR DATAFILE n TO auxname_n;

	
Take an image copy of the auxiliary set every Sunday by using a command of the following form:

 BACKUP AS COPY DATAFILE n FORMAT auxname_n

If the image copies are all in the same location on disk, and if they are named similarly to the original datafiles, then you can avoid performing backups of every datafile. Instead, you can use the FORMAT or DB_FILE_NAME_CONVERT options of the BACKUP command and use BACKUP AS COPY DATABASE. For example, if the configured auxiliary names are a translation of the location maindisk to auxdisk, then you use the following command:

BACKUP AS COPY
 DATABASE
 DB_FILE_NAME_CONVERT (maindisk, auxdisk);

	
Note:

Because Oracle managed filenames cannot generally be translated using a simple substitution, you cannot typically use DB_FILE_NAME_CONVERT to generate names for image copies stored in OMF.

After these steps, you are prepared for TSPITR without restoring the auxiliary set from backup. For example, if an erroneous batch job, started on November 15, 2007, at 19:00:00, incorrectly updates the tables in the tablespace parts, you use the following command to perform TSPITR on tablespace parts:

RECOVER TABLESPACE parts UNTIL TIME 'November 15 2007, 19:00:00';

Because AUXNAME locations are configured and refer to datafile copies from an SCN before the TSPITR target time, the auxiliary set is not restored from backup. Instead, the datafile copies are used in recovery, which reduces the restore overhead.

You can also prevent the recovery set from being restored. You must take frequent image copies of the tablespaces and use SET NEWNAME to specify the location of these copies. This method ensures that the recovery set will not be restored and the tablespace will change location once TSPITR successfully completes.

Customizing Initialization Parameters for the Automatic Auxiliary Instance in TSPITR

The automatic auxiliary instance uses a set of default initialization parameters as shown in Table 21-4. It also looks for additional initialization parameters to complement the default parameters in a location that is operating system-dependent. For example, in UNIX this location is: ?/rdbms/admin/params_auxinst.ora. RMAN always looks for this additional parameter file for an RMAN-automatic auxiliary instance when performing TSPITR. If the file is not found, then RMAN does not generate an error. Instead, RMAN uses the default parameters in Table 21-4 for the RMAN-managed automatic auxiliary instance.

Table 21-4 Default Initialization Parameters for the RMAN-Managed Auxiliary Instance

	Initialization Parameter	Value
	
DB_NAME

	
Same as DB_NAME of the source database

	
COMPATIBLE

	
Same as the COMPATIBLE setting of the target database

	
DB_UNIQUE_NAME

	
RMAN auto-generated unique value based on DB_NAME

	
DB_BLOCK_SIZE

	
Same as the DB_BLOCK_SIZE of the target database

	
DB_CREATE_FILE_DEST

	
Auxiliary destination (only if the AUXILIARY DESTINATION argument is specified when using an RMAN-managed auxiliary instance). RMAN creates Oracle Managed Files for the auxiliary set files in this location.

	
LOG_ARCHIVE_DEST_1

	
Auxiliary destination (only if the AUXILIARY DESTINATION clause is specified when using an RMAN-managed auxiliary instance). Archived logs needed for recovery are restored to this location.

	
SGA_TARGET

	
280M

	
DB_FILES

	
Same as DB_FILES of the target database

	
PROCESSES

	
50

In most cases it is not necessary to alter or add to the values of these initialization parameters, especially if you provide an AUXILIARY DESTINATION clause to the RECOVER TABLESPACE command when using a RMAN-managed auxiliary instance. If you override one of the initialization parameters in Table 21-4 with an inappropriate value, then TSPITR may fail due to problems with the auxiliary instance. Nevertheless, you can add other parameters besides these basic parameters if needed. For example, you can use DB_FILE_NAME_CONVERT to specify the names of the datafiles in the auxiliary and recovery sets.

To override or specify parameters for the automatic auxiliary instance, you can do either of the following:

	
- Place the initialization parameters in the operating system specific default auxiliary parameter filename. For example, in UNIX, the filename is: ?/rdbms/admin/params_auxinst.ora.

	
Perform these steps:

	
Place the initialization parameters in a file.

	
Specify the location of this file with the SET AUXILIARY INSTANCE PARAMETER FILE command before executing TSPITR.

Regardless of the method that you choose, the parameters that you specify take precedence over defaults and can override the value of an AUXILIARY DESTINATION clause.

Specifying the Auxiliary Instance Control File Location in TSPITR

If you use an initialization parameter file, then you can specify your own location for the control file of your auxiliary instance. Set the CONTROL_FILES initialization parameter to specify a location for the control files.

If you do not explicitly specify a control file location, and if you use the AUXILIARY DESTINATION clause, then RMAN locates the control file in the auxiliary destination. If you do not use the AUXILIARY DESTINATION clause, then the auxiliary instance control files are stored in an operating system-specific location.

No matter where you store your auxiliary instance control file, it is removed at the end of the TSPITR operation. Because control files are relatively small, it is rare that RMAN will encounter a problem creating an auxiliary control file. If there is not enough space to create the control file, however, then TSPITR will fail.

Specifying the Auxiliary Instance Archived Logs in TSPITR

To perform recovery on the auxiliary and recovery sets after restoring them at the auxiliary instance, RMAN may need to restore archived logs. When an auxiliary destination is being used, the archived logs are restored to that location. In the absence of an auxiliary destination and any other initialization parameters, the archived logs will be restored to an operating system specific location. For details, consult your operating system specific documentation. You can use the LOG_ARCHIVE_DEST_1 initialization parameter to specify an alternative location where the archived logs will be restored.

Specifying the Auxiliary Instance Online Log Location in TSPITR

If you specify the LOG_FILE_NAME_CONVERT initialization parameter in your auxiliary instance parameter file and the parameter successfully converts the names of the online redo logs of the target, then this parameter determines the online redo log location. The same restrictions that apply to OMF datafiles, apply to OMF online redo logs. For more information, see "Considerations When Renaming OMF Auxiliary Set Files in TSPITR". If RMAN is managing the auxiliary instance and an auxiliary destination is specified, RMAN creates the online redo log in the auxiliary destination.

Alternatively, you can use DB_CREATE_FILE_DEST or DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_1 to specify the location where the auxiliary instance redo logs will be created. If you choose the latter option, you must use DB_CREATE_ONLINE_LOG_1 together with DB_CREATE_FILE_DEST.

TSPITR will fail trying to create the online redo logs if you do not specify a location for them by using one of the following:

	
LOG_FILE_NAME_CONVERT

	
DB_CREATE_FILE_DEST

	
DB_CREATE_FILE_DEST and DB_CREATE_ONLINE_LOG_1

	
AUXILIARY DESTINATION

Performing RMAN TSPITR Using Your Own Auxiliary Instance

Although Oracle recommends that you let RMAN manage all aspects of the auxiliary instance, there may be times when you need to create and manage your own auxiliary instance. If you select this mode, you are responsible for setting up, starting, stopping and cleaning up the auxiliary instance used in TSPITR.

One reason that you might want to create your own instance is to exercise control of channels used in TSPITR. The automatic auxiliary instance uses the configured channels of the target database as the basis for the channels to configure on the auxiliary instance and to use during the restore operation. You may need different channel settings and may not want to use the CONFIGURE command to change the settings on the target database. In this case, you can operate your own auxiliary instance. By connecting to the auxiliary instance before invoking RECOVER, a run block can provide specific channel allocations using the ALLOCATE AUXILIARY CHANNEL command.

Preparing Your Own Auxiliary Instance for RMAN TSPITR

Creating an Oracle instance suitable for use as an auxiliary instance requires that you complete all of the following steps:

	
Step 1: Create an Oracle Password File for the Auxiliary Instance

	
Step 2: Create an Initialization Parameter File for the Auxiliary Instance

	
Step 3: Check Oracle Net Connectivity to the Auxiliary Instance

Step 1: Create an Oracle Password File for the Auxiliary Instance

For instructions on how to create and maintain Oracle password files, refer to Oracle Database Administrator's Guide.

Step 2: Create an Initialization Parameter File for the Auxiliary Instance

Use a text editor to create an initialization parameter file for the auxiliary instance on the target database host. For this example, assume that your parameter file is placed at /tmp/initAux.ora. Set the parameters described in Table 21-5.

	
Note:

For TSPITR, the target and auxiliary database instances must be on the same host.

Table 21-5 Initialization Parameters in a User-Managed Auxiliary Instance

	Parameter	Mandatory?	Value
	
DB_NAME

	
YES

	
The same name as the target database

	
DB_UNIQUE_NAME

	
YES

	
A value different from any database in the same Oracle home. For simplicity, specify _dbname. For example, if the target database name is trgt, then specify _trgt.

	
REMOTE_LOGIN_PASSWORDFILE

	
YES

	
Set to EXCLUSIVE when connecting to the auxiliary instance by means of a password file. Otherwise, set to NONE.

	
COMPATIBLE

	
YES

	
The same value as the parameter in the target database

	
DB_BLOCK_SIZE

	
YES

	
If this initialization parameter is set in the target database, then it must be set to the same value in the auxiliary instance.

	
LOG_FILE_NAME_CONVERT

	
NO

	
Patterns to generate filenames for the online redo logs of the auxiliary database based on the online redo log names of the target database. Query V$LOGFILE.MEMBERto obtain target instance online redo log filenames, and ensure that the conversion pattern matches the format of the filename shown in the view.

Note: Some platforms do not support ending patterns in a forward or backward slash (\ or /).

See Also: "Specifying the Auxiliary Instance Online Log Location in TSPITR" for restrictions on possible values for LOG_FILE_NAME_CONVERT with OMF filenames and "Considerations When Renaming OMF Auxiliary Set Files in TSPITR"

	
DB_FILE_NAME_CONVERT

	
NO

	
Patterns to convert filenames for the datafiles of the auxiliary database. You can use this parameter to generate filenames for those files that you did not name with SET NEWNAME or CONFIGURE AUXNAME. Obtain the datafile filenames by querying V$DATAFILE.NAME, and ensure that the conversion pattern matches the format of the filename displayed in the view.

Note: Some platforms do not support ending patterns in a forward or backward slash (\ or /).

See Also: "Using DB_FILE_NAME_CONVERT to Name Auxiliary Set Datafiles" and "Considerations When Renaming OMF Auxiliary Set Files in TSPITR".

	
DB_CREATE_FILE_DEST

	
NO

	
Use it to specify a location for all auxiliary set files.

	
LOG_ARCHIVE_DEST_n

	
NO

	
Use it to specify where archived logs required for recover will be created.

	
DB_CREATE_ONLINE_LOG_n

	
NO

	
Use it together with DB_CREATE_FILE_DEST to specify a different location where online redo logs are created.

	
CONTROL_FILES

	
NO

	
Filenames that do not conflict with the control file names of the target instance (or any other existing file).

	
SGA_TARGET

	
NO (Recommended)

	
280M

	
STREAMS_POOL_SIZE

	
NO

YES

	
If SGA_TARGET is set

If SGA_TARGET is not set

Set other parameters as needed, including the parameters to specify how much memory the auxiliary instance will use.

The following example shows possible initialization parameter settings for an auxiliary instance for TSPITR:

DB_NAME=trgt
DB_UNIQUE_NAME=_trgt
CONTROL_FILES=/tmp/control01.ctl
DB_FILE_NAME_CONVERT=('/oracle/oradata/trgt/','/tmp/')
LOG_FILE_NAME_CONVERT=('/oracle/oradata/trgt/redo','/tmp/redo')
REMOTE_LOGIN_PASSWORDFILE=exclusive
COMPATIBLE =11.0.0
DB_BLOCK_SIZE=8192

	
Note:

After setting these initialization parameters, ensure that you do not overwrite the initialization settings for the production files at the target database.

Step 3: Check Oracle Net Connectivity to the Auxiliary Instance

The auxiliary instance must have a valid net service name. Before proceeding, use SQL*Plus to ensure that you can establish a SYSDBA connection to the auxiliary instance.

	
See Also:

Oracle Database Net Services Administrator's Guide for more information about Oracle Net

Preparing RMAN Commands for TSPITR with Your Own Auxiliary Instance

If you are running your own auxiliary instance, then it is possible for the sequence of commands required for TSPITR to be long. This situation can occur when you allocate a complex channel configuration for restoring from backup and you are not using DB_CREATE_FILE_DEST to determine file naming of auxiliary set files.

You may want to store the series of commands for TSPITR in an RMAN command file. Review the command file carefully to catch any errors. To read the command file into RMAN, use the @ command (or the CMDFILE command-line argument when starting RMAN).

The following example runs the command file named /tmp/tspitr.rman:

@/tmp/tspitr.rman;

	
See Also:

"Using Command Files with RMAN"

Planning Channels for TSPITR with Your Own Auxiliary Instance

When you run your own auxiliary instance, the default behavior is to use the automatic channel configuration of the target instance. If you decide to allocate your own channels with a different configuration (changing the number of channels or channel parameters), you can include ALLOCATE AUXILIARY CHANNEL commands in a RUN block along with the RECOVER TABLESPACE command for TSPITR. Plan out these commands, if necessary, and add them to the sequence of commands you will run for TSPITR.

	
See Also:

"Performing TSPITR with Your Own Auxiliary Instance: Scenario" to learn how to include channel allocation in your TSPITR script

Planning Datafile Names with Your Own Auxiliary Instance: SET NEWNAME

You may want to use SET NEWNAME commands to refer to existing image copies of auxiliary set files to improve TSPITR performance, or to assign new names to the recovery set files for after TSPITR. Plan these commands, if necessary, and add them to the sequence of commands that you will run for TSPITR. For more information, see "Renaming TSPITR Recovery Set Datafiles with SET NEWNAME".

Executing TSPITR with Your Own Auxiliary Instance

With the preparations complete and your TSPITR commands completely planned, you are now ready to perform TSPITR. The following steps are required:

	
Step 1: Start the Auxiliary Instance in NOMOUNT Mode

	
Step 2: Connect the RMAN Client to Target and Auxiliary Instances

	
Step 3: Execute the RECOVER TABLESPACE Command

Step 1: Start the Auxiliary Instance in NOMOUNT Mode

Before beginning RMAN TSPITR, start SQL*Plus and connect to the auxiliary instance with SYSOPER privileges.

Start the auxiliary instance in NOMOUNT mode, specifying a parameter file if necessary. For example, enter the following SQL*Plus command:

SQL> STARTUP NOMOUNT PFILE='/tmp/initAux.ora'

Remember that if you specify PFILE, then the path for the PFILE will be a client-side path on the host from which you run SQL*Plus.

Because the auxiliary instance does not yet have a control file, you can only start the instance in NOMOUNT mode. Do not create a control file or try to mount or open the auxiliary instance for TSPITR.

Step 2: Connect the RMAN Client to Target and Auxiliary Instances

Start RMAN and connect to the target database and the manually created auxiliary instance.

$rman target dba/dbapwd AUXILARY aux/auxpwd@aux

Step 3: Execute the RECOVER TABLESPACE Command

In the simplest case, execute the RECOVER TABLESPACE... UNTIL command at the RMAN prompt:

RECOVER TABLESPACE ts1, ts2... UNTIL TIME 'time';

If you want to use the ALLOCATE AUXILIARY CHANNEL or SET NEWNAME commands, then include these commands before the RECOVER TABLESPACE command within a RUN command. The following example illustrates this technique:

RUN
{
 ALLOCATE AUXILIARY CHANNEL c1 DEVICE TYPE DISK;
 ALLOCATE AUXILIARY CHANNEL c2 DEVICE TYPE sbt;
 # and so on...
 RECOVER TABLESPACE ts1, ts2 UNTIL TIME 'time';
}

Performing TSPITR with Your Own Auxiliary Instance: Scenario

This scenario shows the execution of a RECOVER TABLESPACE... UNTIL operation. This scenario illustrates the following features of RMAN TSPITR:

	
Managing your own auxiliary instance

	
Configuring channels for restore of backups from disk and SBT devices

	
Using recoverable image copies for some auxiliary set datafiles using SET NEWNAME

	
Specifying new names for recovery set datafiles using SET NEWNAME

To use TSPITR with your own auxiliary instance:

	
Prepare the auxiliary instance as described in "Preparing Your Own Auxiliary Instance for RMAN TSPITR". Specify a password for the auxiliary instance in the password file, and set up the auxiliary instance parameter file /bigtmp/init_tspitr_prod.ora with the following settings:

DB_NAME=PROD
DB_UNIQUE_NAME=tspitr_PROD
CONTROL_FILES=/bigtmp/tspitr_cntrl.dbf
DB_CREATE_FILE_DEST=/bigtmp
COMPATIBLE=11.0.0
BLOCK_SIZE=8192
REMOTE_LOGIN_PASSWORD=exclusive

	
Create service name pitprod for the auxiliary instance, and check for connectivity.

	
Using SQL*Plus, connect to the auxiliary instance with SYSOPER privileges. Start the instance in NOMOUNT mode:

SQL> STARTUP NOMOUNT PFILE=/bigtmp/init_tspitr_prod.ora

	
Start RMAN and connect to the target and auxiliary database instances.

rman target / auxiliary sys/syspwd@pitprod

	
Enter the following commands in a RUN block to set up and execute TSPITR:

RUN
{
Specify NEWNAME for recovery set datafiles
 SET NEWNAME FOR TABLESPACE clients
 TO '?/oradata/prod/rec/%b';

Specify NEWNAMES for some of the auxiliary set
datafiles that have a valid image copy to avoid restores:
 SET NEWNAME FOR DATAFILE '?/oradata/prod/system01.dbf'
 TO '/backups/prod/system01_monday_noon.dbf';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/system02.dbf'
 TO '/backups/prod/system02_monday_noon.dbf';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/sysaux01.dbf'
 TO '/backups/prod/sysaux01_monday_noon.dbf';
 SET NEWNAME FOR DATAFILE '?/oradata/prod/undo01.dbf'
 TO '/backups/prod/undo01_monday_noon.dbf';

Specify the types of channels to use
 ALLOCATE AUXILIARY CHANNEL c1 DEVICE TYPE DISK;
 ALLOCATE AUXILIARY CHANNEL t1 DEVICE TYPE sbt;

Recover the clients tablespace to 24 hours ago:
 RECOVER TABLESPACE clients UNTIL TIME 'sysdate-1';
}

Consider storing this command sequence in a command file and executing the command file.

If the TSPITR operation is successful, then the results are:

	
The recovery set datafiles are registered in the target database control file under the names specified with SET NEWNAME, with their contents as of the time specified time for TSPITR.

	
The auxiliary files are removed by RMAN, including the control files, online logs, and auxiliary set datafiles of the auxiliary instance.

	
The auxiliary instance is shut down.

If the TSPITR operation fails, the auxiliary set files are removed and the auxiliary instance is shut down. The recovery set files are left in the specified location and in an unresolved state from the failed TSPITR run.

Troubleshooting RMAN TSPITR

A variety of problems can cause RMAN TSPITR to fail. This section lists possible areas to check and fix:

	
Filename conflicts

	
Mismatched or incorrect TSPITR target times for sets of tablespaces and undo segments

	
Management issues with auxiliary instances not created by RMAN

Troubleshooting Filename Conflicts

Name conflicts can occur between files already in the target database, filenames assigned by the SET NEWNAME or CONFIGURE AUXNAME commands, and filenames generated by the effect of the DB_FILE_NAME_CONVERT parameter.

Suppose that SET NEWNAME, CONFIGURE AUXNAME, and DB_FILE_NAME_CONVERT cause multiple files in the auxiliary or recovery sets to have the same name. In this case, RMAN reports an error during TSPITR. To correct the problem, use different values for these parameters.

Troubleshooting the Identification of Tablespaces with Undo Segments

During TSPITR, RMAN needs information about which tablespaces had undo segments at the TSPITR target time. This information is usually available in the recovery catalog, if one is used.

If there is no recovery catalog or if the information is not found in the recovery catalog, RMAN assumes that the set of tablespaces with undo segments at the target time is the same as the set of tablespaces with undo segments at the present time. If this assumption is not correct, then TSPITR will fail with an error. In this case, use the UNDO TABLESPACE clause to provide a list of tablespaces with undo segments at the target time.

Troubleshooting the Restart of a Manual Auxiliary Instance After TSPITR Failure

If you are managing your own auxiliary instance and TSPITR fails, do not attempt to rerun TSPITR without resolving the errors and following this approach:

	
Identify and fix the problems that prevented TSPITR from a successful run.

	
Start the auxiliary instance in NOMOUNT.

	
Run TSPITR again.

30 Performing User-Managed Recovery: Advanced Scenarios

This chapter describes several common media failure scenarios. It shows how to recover from each failure when using a user-managed backup and recovery strategy, that is, a strategy that does not depend on Recovery Manager. This chapter contains the following topics:

	
Responding to the Loss of a Subset of the Current Control Files

	
Recovering After the Loss of All Current Control Files

	
Re-Creating a Control File

	
Re-Creating Datafiles When Backups Are Unavailable

	
Recovering NOLOGGING Tables and Indexes

	
Recovering Transportable Tablespaces

	
Recovering After the Loss of Online Redo Log Files

	
Recovering from a Dropped Table Without Using Flashback Features

	
Dropping a Database with SQL*Plus

Responding to the Loss of a Subset of the Current Control Files

Use the following procedures to recover a database if a permanent media failure has damaged one or more control files of a database and at least one current control file has not been damaged by the media failure.

Copying a Multiplexed Control File to a Default Location

If the disk and file system containing the lost control file are intact, then you can simply copy one of the intact control files to the location of the missing control file. In this case, you do not have to edit the CONTROL_FILES initialization parameter.

To replace a damaged control file by copying a multiplexed control file:

	
If the instance is still running, then shut it down:

SQL> SHUTDOWN ABORT

	
Correct the hardware problem that caused the media failure. If you cannot repair the hardware problem quickly, then proceed with database recovery by restoring damaged control files to an alternative storage device, as described in "Copying a Multiplexed Control File to a Nondefault Location".

	
Use an intact multiplexed copy of the database's current control file to copy over the damaged control files. For example, to replace bad_cf.f with good_cf.f, you might enter:

% cp /oracle/good_cf.f /oracle/dbs/bad_cf.f

	
Start a new instance and mount and open the database. For example, enter:

SQL> STARTUP

Copying a Multiplexed Control File to a Nondefault Location

Assuming that the disk and file system containing the lost control file are not intact, then you cannot copy one of the good control files to the location of the missing control file. In this case, you must alter the CONTROL_FILES initialization parameter to indicate a new location for the missing control file.

To restore a control file to a nondefault location:

	
If the instance is still running, then shut it down:

SQL> SHUTDOWN ABORT

	
If you cannot correct the hardware problem that caused the media failure, then copy the intact control file to alternative location.

For example, to copy a good version of control01.dbf to a new disk location you might issue the following commands:

% cp /disk1/oradata/trgt/control01.dbf /new_disk/control01.dbf

	
Edit the parameter file of the database so that the CONTROL_FILES parameter reflects the current locations of all control files and excludes all control files that were not restored.

Assume that the initialization parameter file contains the following setting:

CONTROL_FILES='/disk1/oradata/trgt/control01.dbf','/bad_disk/control02.dbf'

You can edit the CONTROL_FILES initialization parameter as follows:

CONTROL_FILES='/disk1/oradata/trgt/control01.dbf','/new_disk/control02.dbf'

	
Start a new instance and mount and open the database. For example:

SQL> STARTUP

Recovering After the Loss of All Current Control Files

Use the following procedures to restore a backup control file if a permanent media failure has damaged all control files of a database and you have a backup of the control file. When a control file is inaccessible, you can start the instance, but not mount the database. If you attempt to mount the database when the control file is unavailable, then you receive the following error message:

ORA-00205: error in identifying control file, check alert log for more info

	
Note:

The easiest way to locate trace files and the alert log is to run the following SQL query: SELECT NAME, VALUE FROM V$DIAG_INFO.

You cannot mount and open the database until the control file is accessible again. If you restore a backup control file, then you must open the database with the RESETLOGS option.

As indicated in Table 30-1, the procedure for restoring the control file depends on whether the online redo logs are available.

Table 30-1 Scenarios When Control Files Are Lost

	Status of Online Logs	Status of Datafiles	Restore Procedure
	
Available

	
Current

	
If the online logs contain redo necessary for recovery, then restore a backup control file and apply the logs during recovery. You must specify the filename of the online logs containing the changes in order to open the database. After recovery, open the database with the RESETLOGS option.

Note: If you re-create a control file, then it is not necessary to use the OPEN RESETLOGS option after recovery when the online redo logs are accessible.

	
Unavailable

	
Current

	
If the online logs contain redo necessary for recovery, then re-create the control file. Because the online redo logs are inaccessible, open RESETLOGS.

	
Available

	
Backup

	
Restore a backup control file, perform complete recovery, and then open the database with the RESETLOGS option.

	
Unavailable

	
Backup

	
Restore a backup control file, perform incomplete recovery, and then open RESETLOGS.

Recovering with a Backup Control File in the Default Location

If possible, restore the control file to its original location. In this way, you avoid having to specify new control file locations in the initialization parameter file.

To restore a backup control file to its default location:

	
If the instance is still running, shut it down:

SQL> SHUTDOWN ABORT

	
Correct the hardware problem that caused the media failure.

	
Restore the backup control file to all locations specified in the CONTROL_FILES parameter file. For example, if /disk1/oradata/trgt/control01.dbf and /disk2/oradata/trgt/control02.dbf are the control file locations listed in the server parameter file, then use an operating system utility to restore the backup control file to these locations:

% cp /backup/control01.dbf /disk1/oradata/trgt/control01.dbf
% cp /backup/control02.dbf /disk2/oradata/trgt/control02.dbf

	
Start a new instance and mount the database. For example, enter:

SQL> STARTUP MOUNT

	
Begin recovery by executing the RECOVER command with the USING BACKUP CONTROLFILE clause. Specify UNTIL CANCEL if you are performing incomplete recovery. For example, enter:

SQL> RECOVER DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

	
Apply the prompted archived logs. If you then receive another message saying that the required archived log is missing, then it probably means that a necessary redo record is located in the online redo logs. This situation can occur when unarchived changes were located in the online logs when the instance failed.

For example, assume that you see the following:

ORA-00279: change 55636 generated at 11/08/2002 16:59:47 needed for thread 1
ORA-00289: suggestion : /oracle/work/arc_dest/arcr_1_111.arc
ORA-00280: change 55636 for thread 1 is in sequence #111
Specify log: {<RET>=suggested | filename | AUTO | CANCEL}

You can specify the name of an online redo log and press Enter (you may have to try this a few times until you find the correct log):

ORACLE_HOME/oradata/redo01.dbf
Log applied.
Media recovery complete.

If the online logs are inaccessible, then you can cancel recovery without applying them. If all datafiles are current, and if redo in the online logs is required for recovery, then you cannot open the database without applying the online logs. If the online logs are inaccessible, then you must re-create the control file, using the procedure described in "Re-Creating a Control File".

	
Open the database with the RESETLOGS option after finishing recovery:

SQL> ALTER DATABASE OPEN RESETLOGS;

Recovering with a Backup Control File in a Nondefault Location

If you cannot restore the control file to its original place because the media damage is too severe, then you must specify new control file locations in the server parameter file. A valid control file must be available in all locations specified by the CONTROL_FILES initialization parameter. If not, then the database prevents you from the mounting the database.

To restore a control file to a nondefault location:

Follow the steps in "Recovering with a Backup Control File in the Default Location", except after Step 2 add the following step:

Edit all locations specified in the CONTROL_FILES initialization parameter to reflect the new control file locations. Assume that the control file locations listed in the server parameter file are as follows, and both disks are inaccessible:

CONTROL_FILES='/disk1/oradata/trgt/control01.dbf',
 '/disk2/oradata/trgt/control02.dbf'

You can edit the initialization parameter file and specify accessible locations, as shown in the following example:

CONTROL_FILES='/disk3/cf/control01.dbf','/disk4/cf/control02.dbf'

Recovering Through an Added Datafile with a Backup Control File

If database recovery with a backup control file rolls forward through a CREATE TABLESPACE or an ALTER TABLESPACE ADD DATAFILE operation, then the database stops recovery when applying the redo record for the added files and lets you confirm the filenames.

For example, suppose that the following sequence of events occurs:

	
You back up the database.

	
You create a new tablespace containing the following datafiles: /disk1/oradata/trgt/test01.dbf and /disk1/oradata/trgt/test02.dbf.

	
You restore a backup control file and perform media recovery through the CREATE TABLESPACE operation.

You may see the following error when applying the CREATE TABLESPACE redo data:

ORA-00283: recovery session canceled due to errors
ORA-01244: unnamed datafile(s) added to control file by media recovery
ORA-01110: data file 11: '/disk1/oradata/trgt/test02.dbf'
ORA-01110: data file 10: '/disk1/oradata/trgt/test01.dbf'

To recover through an ADD DATAFILE operation:

	
View the files added by querying V$DATAFILE., as in the following example:

SELECT FILE#,NAME
FROM V$DATAFILE;

FILE# NAME
--------------- ----------------------
1 /disk1/oradata/trgt/system01.dbf
.
.
.
10 /disk1/oradata/trgt/UNNAMED00001
11 /disk1/oradata/trgt/UNNAMED00002

	
If multiple unnamed files exist, then determine which unnamed file corresponds to which datafile by using one of these methods:

	
Open the alert_SID.log, which contains messages about the original file location for each unnamed file.

	
Derive the original file location of each unnamed file from the error message and V$DATAFILE: each unnamed file corresponds to the file in the error message with the same file number.

	
Issue the ALTER DATABASE RENAME FILE statement to rename the datafiles. For example, enter:

ALTER DATABASE RENAME FILE '/db/UNNAMED00001' TO
 '/disk1/oradata/trgt/test01.dbf';
ALTER DATABASE RENAME FILE '/db/UNNAMED00002' TO
 '/disk1/oradata/trgt/test02.dbf';

	
Continue recovery by issuing the recovery statement. For example:

RECOVER AUTOMATIC DATABASE USING BACKUP CONTROLFILE UNTIL CANCEL

Recovering Read-Only Tablespaces with a Backup Control File

If you have a read-only tablespace on read-only or slow media, then you may encounter errors or poor performance when recovering with the USING BACKUP CONTROLFILE option. This situation occurs when the backup control file indicates that a tablespace was read/write when the control file was backed up. In this case, media recovery may attempt to write to the files. For read-only media, the database issues an error saying that it cannot write to the files. For slow media, such as a hierarchical storage system backed up by tapes, performance may suffer.

To avoid these problems, use current control files rather than backups to recover the database. If you need to use a backup control file, then you can also avoid this problem if the read-only tablespace has not suffered a media failure. You have the following alternatives for recovering read-only and slow media when using a backup control file:

	
Take datafiles from read-only tablespaces offline before doing recovery with a backup control file, and then bring the files online at the end of media recovery.

	
Use the correct version of the control file for the recovery. If the tablespace will be read-only when recovery completes, then the control file backup must be from a time when the tablespace was read-only. Similarly, if the tablespace will be read/write at the end of recovery, then the control file must be from a time when the tablespace was read/write.

Re-Creating a Control File

If all control files have been lost in a permanent media failure, but all online redo log members remain intact, then you can recover the database after creating a new control file. You are not required to open the database with the RESETLOGS option after the recovery.

Depending on the existence and currency of a control file backup, you have the options listed in Table 30-2 for generating the text of the CREATE CONTROLFILE statement. The changes to the database are recorded in the alert_SID.log, so check this log when you are deciding which option to choose.

Table 30-2 Options for Creating the Control File

	If you . . .	Then . . .
	
Executed ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS after you made the last structural change to the database, and if you have saved the SQL command trace output

	
Use the CREATE CONTROLFILE statement from the trace output as-is.

	
Performed your most recent execution of ALTER DATABASE BACKUP CONTROLFILE TO TRACE before you made a structural change to the database

	
Edit the output of ALTER DATABASE BACKUP CONTROLFILE TO TRACE to reflect the change. For example, if you recently added a datafile to the database, then add this datafile to the DATAFILE clause of the CREATE CONTROLFILE statement.

	
Backed up the control file with the ALTER DATABASE BACKUP CONTROLFILE TO filename statement (not the TO TRACE option)

	
Use the control file copy to obtain SQL output. Create a temporary database instance, mount the backup control file, and then run ALTER DATABASE BACKUP CONTROLFILE TO TRACE NORESETLOGS. If the control file copy predated a recent structural change, then edit the trace option to reflect the change.

	
Do not have a control file backup in either TO TRACE format or TO filename format

	
Execute the CREATE CONTROLFILE statement manually (See Oracle Database SQL Language Reference).

	
Note:

If your character set is not the default US7ASCII, then you must specify the character set as an argument to the CREATE CONTROLFILE statement. The database character set is written to the alert log at startup. The character set information is also recorded in the BACKUP CONTROLFILE TO TRACE output.

To create a new control file and recover the database:

	
Start the database in NOMOUNT mode. For example, enter:

STARTUP NOMOUNT

	
Create the control file with the CREATE CONTROLFILE statement, specifying the NORESETLOGS option (See to Table 30-2 for options). The following example assumes that the character set is the default US7ASCII:

CREATE CONTROLFILE REUSE DATABASE SALES NORESETLOGS ARCHIVELOG
 MAXLOGFILES 32
 MAXLOGMEMBERS 2
 MAXDATAFILES 32
 MAXINSTANCES 16
 MAXLOGHISTORY 1600
LOGFILE
 GROUP 1 (
 '/diska/prod/sales/db/log1t1.dbf',
 '/diskb/prod/sales/db/log1t2.dbf'
) SIZE 100K
 GROUP 2 (
 '/diska/prod/sales/db/log2t1.dbf',
 '/diskb/prod/sales/db/log2t2.dbf'
) SIZE 100K,
DATAFILE
 '/diska/prod/sales/db/database1.dbf',
 '/diskb/prod/sales/db/filea.dbf';

After creating the control file, the instance mounts the database.

	
Recover the database as usual (without specifying the USING BACKUP CONTROLFILE clause):

RECOVER DATABASE

	
Open the database after recovery completes (The RESETLOGS option is not required):

ALTER DATABASE OPEN;

	
Immediately back up the control file. The following SQL statement backs up a database's control file to /backup/control01.dbf:

ALTER DATABASE BACKUP CONTROLFILE TO '/backup/control01.dbf' REUSE;

	
See Also:

"Backing Up the Control File to a Trace File", and "Re-Creating Datafiles When Backups Are Unavailable"

Recovering Through a RESETLOGS with a Created Control File

You can recover backups through an OPEN RESETLOGS operation so long as:

	
You have a current, backup, or created control file that detects prior incarnations

	
You have all available archived redo logs

If you need to re-create the control file, then the trace file generated by ALTER DATABASE BACKUP CONTROLFILE TO TRACE will contain the necessary commands to reconstruct the complete incarnation history. The V$DATABASE_INCARNATION view displays the RESETLOGS history of the control file, and the V$LOG_HISTORY view displays the archived log history.

It is possible for the incarnation history to be incomplete in the in re-created control file. For example, archived logs necessary for recovery may be missing. In this case, it is possible to create incarnation records explicitly with the ALTER DATABASE REGISTER LOGFILE statement.

In the following example, you register four logs that are necessary for recovery but are not recorded in the re-created control file, and then recover the database:

ALTER DATABASE REGISTER LOGFILE '/disk1/oradata/trgt/arch/arcr_1_1_42343523.arc';
ALTER DATABASE REGISTER LOGFILE '/disk1/oradata/trgt/arch/arcr_1_1_34546466.arc';
ALTER DATABASE REGISTER LOGFILE '/disk1/oradata/trgt/arch/arcr_1_1_23435466.arc';
ALTER DATABASE REGISTER LOGFILE '/disk1/oradata/trgt/arch/arcr_1_1_12343533.arc';
RECOVER AUTOMATIC DATABASE;

Recovery of Read-Only Files with a Re-Created Control File

If a current or backup control file is unavailable for recovery, then you can execute a CREATE CONTROLFILE statement. Read-only files should not be listed in the CREATE CONTROLFILE statement so that recovery can skip these files. No recovery is required for read-only datafiles unless you restored backups of these files from a time when the datafiles were read/write.

After you create a new control file and attempt to mount and open the database, the database performs a data dictionary check against the files listed in the control file. For each file that is not listed in the CREATE CONTROLFILE statement but is present in the data dictionary, an entry is created for them in the control file. These files are named as MISSINGnnnnn, where nnnnn is a 5-digit number starting with 0.

After the database is open, rename the read-only files to their correct filenames by executing the ALTER DATABASE RENAME FILE statement for all the files whose names are prefixed with MISSING.

To prepare for a scenario in which you might have to re-create the control file:

Run the following statement when the database is mounted or open to obtain the CREATE CONTROLFILE syntax:

ALTER DATABASE BACKUP CONTROLFILE TO TRACE;

The preceding SQL statement produces a trace file that you can edit and use as a script to re-create the control file. You can specify either the RESETLOGS or NORESETLOGS (default) keywords to generate CREATE CONTROLFILE ... RESETLOGS or CREATE CONTROLFILE ... NORESETLOGS versions of the script.

All the restrictions related to read-only files in CREATE CONTROLFILE statements also apply to offline normal tablespaces, except that you must to bring the tablespace online after the database is open. You should omit tempfiles from the CREATE CONTROLFILE statement and add them after opening the database.

	
See Also:

"Backing Up the Control File to a Trace File" to learn how to make trace backups of the control file

Re-Creating Datafiles When Backups Are Unavailable

If a datafile is damaged and no backup of the file is available, then you can still recover the datafile if:

	
All archived log files written after the creation of the original datafile are available

	
The control file contains the name of the damaged file (that is, the control file is current, or is a backup taken after the damaged datafile was added to the database)

	
Note:

You cannot re-create any of the datafiles for the SYSTEM tablespace by using the CREATE DATAFILE clause of the ALTER DATABASE statement because the necessary redo is not available.

To re-create a datafile for recovery:

	
Create a new, empty datafile to replace a damaged datafile that has no corresponding backup. For example, assume that the datafile /disk1/oradata/trgt/users01.dbf has been damaged, and no backup is available. The following statement re-creates the original datafile (same size) on disk2:

ALTER DATABASE CREATE DATAFILE '/disk1/oradata/trgt/users01.dbf' AS
 '/disk2/users01.dbf';

This statement creates an empty file that is the same size as the lost file. The database looks at information in the control file and the data dictionary to obtain size information. The old datafile is renamed as the new datafile.

	
Perform media recovery on the empty datafile. For example, enter:

RECOVER DATAFILE '/disk2/users01.dbf'

	
All archived logs written after the original datafile was created must be applied to the new, empty version of the lost datafile during recovery.

Recovering NOLOGGING Tables and Indexes

You can create tables and indexes with the CREATE TABLE AS SELECT statement. You can also specify that the database create them with the NOLOGGING option. When you create a table or index as NOLOGGING, the database does not generate redo log records for the operation. Thus, you cannot recover objects created with NOLOGGING, even if you are running in ARCHIVELOG mode.

	
Note:

If you cannot afford to lose tables or indexes created with NOLOGGING, then make a backup after the unrecoverable table or index is created.

Be aware that when you perform media recovery, and some tables or indexes are created normally whereas others are created with the NOLOGGING option, the NOLOGGING objects are marked logically corrupt by the RECOVER operation. Any attempt to access the unrecoverable objects returns an ORA-01578 error message. Drop the NOLOGGING objects and re-create them if needed.

Because it is possible to create a table with the NOLOGGING option and then create an index with the LOGGING option on that table, the index is not marked as logically corrupt after you perform media recovery. The table was unrecoverable (and thus marked as corrupt after recovery), however, so the index points to corrupt blocks. The index must be dropped, and the table and index must be re-created if necessary.

	
See Also:

Oracle Data Guard Concepts and Administration for information about the effect of NOLOGGING on a database

Recovering Transportable Tablespaces

The transportable tablespace feature of Oracle Database enables a user to transport a set of tablespaces from one database to another. Transporting a tablespace into a database is like creating a tablespace with preloaded data. Using this feature is often an advantage for the following reasons:

	
It is faster than using the Data Pump Export or SQL*Loader utilities because it involves only copying datafiles and integrating metadata

	
You can use it to move index data, hence avoiding the necessity of rebuilding indexes

	
See Also:

Oracle Database Administrator's Guide for detailed information about using the transportable tablespace feature

Like normal tablespaces, transportable tablespaces are recoverable. However, even though you can recover normal tablespaces without a backup, you must have a consistent version of the transported datafiles in order to recover a transported tablespace.

To recover a transportable tablespace, use the following procedure:

	
If the database is open, then take the transported tablespace offline. For example, if you want to recover the users tablespace, then issue the following statement:

ALTER TABLESPACE users OFFLINE IMMEDIATE;

	
Restore a backup of the transported datafiles with an operating system utility. The backup can be the initial version of the transported datafiles or any backup taken after the tablespace is transported. For example, enter:

% cp /backup/users.dbf $ORACLE_HOME/oradata/trgt/users01.dbf

	
Recover the tablespace as usual. For example, enter:

RECOVER TABLESPACE users

You may see the error ORA-01244 when recovering through a transportable tablespace operation just as when recovering through a CREATE TABLESPACE operation. In this case, rename the unnamed files to the correct locations using the procedure in "Recovering Through an Added Datafile with a Backup Control File".

Recovering After the Loss of Online Redo Log Files

If a media failure has affected the online redo logs of a database, then the appropriate recovery procedure depends on the following considerations:

	
The configuration of the online redo log: mirrored or non-mirrored

	
The type of media failure: temporary or permanent

	
The types of online redo log files affected by the media failure: current, active, unarchived, or inactive

Table 30-3 displays V$LOG status information that can be crucial in a recovery situation involving online redo logs.

Table 30-3 STATUS Column of V$LOG

	Status	Description
	
UNUSED

	
The online redo log has never been written to.

	
CURRENT

	
The online redo log is active, that is, needed for instance recovery, and it is the log to which the database is currently writing. The redo log can be open or closed.

	
ACTIVE

	
The online redo log is active, that is, needed for instance recovery, but is not the log to which the database is currently writing. It may be in use for block recovery, and may or may not be archived.

	
CLEARING

	
The log is being re-created as an empty log after an ALTER DATABASE CLEAR LOGFILE statement. After the log is cleared, then the status changes to UNUSED.

	
CLEARING_CURRENT

	
The current log is being cleared of a closed thread. The log can stay in this status if there is some failure in the switch such as an I/O error writing the new log header.

	
INACTIVE

	
The log is no longer needed for instance recovery. It may be in use for media recovery, and may or may not be archived.

Recovering After Losing a Member of a Multiplexed Online Redo Log Group

You can recover after losing a member of a multiplexed online redo log group. The database continues to function as usual during the following conditions:

If the online redo log of a database is multiplexed, and if at least one member of each online redo log group is not affected by the media failure, then the database continues functioning as usual, but error messages are written to the log writer trace file and the alert_SID.log of the database.

You can resolve the problem of a missing member of a multiplexed online redo log group by taking one of the following actions:

	
If the hardware problem is temporary, then correct it. The log writer process accesses the previously unavailable online redo log files as if the problem never existed.

	
If the hardware problem is permanent, then drop the damaged member and add a new member by using the following procedure.

	
Note:

The newly added member provides no redundancy until the log group is reused.

	
Locate the filename of the damaged member in V$LOGFILE. The status is INVALID if the file is inaccessible:

SELECT GROUP#, STATUS, MEMBER
FROM V$LOGFILE
WHERE STATUS='INVALID';

GROUP# STATUS MEMBER
------- ----------- ---------------------
0002 INVALID /disk1/oradata/trgt/redo02.log

	
Drop the damaged member. For example, to drop member redo02.log from group 2, issue the following statement:

ALTER DATABASE DROP LOGFILE MEMBER '/disk1/oradata/trgt/redo02.log';

	
Add a new member to the group. For example, to add redo02.log to group 2, issue the following statement:

ALTER DATABASE ADD LOGFILE MEMBER '/disk1/oradata/trgt/redo02b.log'
 TO GROUP 2;

If the file that you want to add already exists, then it must be the same size as the other group members, and you must specify the REUSE option. For example:

ALTER DATABASE ADD LOGFILE MEMBER '/disk1/oradata/trgt/redo02b.log'
 REUSE TO GROUP 2;

Recovering After Losing of All Members of an Online Redo Log Group

If a media failure damages all members of an online redo log group, then different scenarios can occur depending on the type of online redo log group affected by the failure and the archiving mode of the database.

If the damaged online redo log group is current and active, then it is needed for crash recovery; otherwise, it is not. Table 30-4 outlines the various recovery scenarios.

Table 30-4 Recovering After the Loss of an Online Redo Log Group

	If the Group Is . . .	Then . . .	And You Should . . .
	
Inactive

	
It is not needed for crash recovery

	
Clear the archived or unarchived group.

	
Active

	
It is needed for crash recovery

	
Attempt to issue a checkpoint and clear the log; if impossible, then you must either use Flashback Database or restore a backup and perform incomplete recovery up to the most recent available redo log.

	
Current

	
It is the redo log that the database is currently writing to

	
Attempt to clear the log; if impossible, then you must either use Flashback Database or restore a backup and perform incomplete recovery up to the most recent available redo log.

To determine whether the damaged group is active or inactive.

	
Locate the filename of the lost redo log in V$LOGFILE and then look for the group number corresponding to it. For example, enter:

SELECT GROUP#, STATUS, MEMBER FROM V$LOGFILE;

GROUP# STATUS MEMBER
------- ----------- ---------------------
0001 /oracle/dbs/log1a.f
0001 /oracle/dbs/log1b.f
0002 INVALID /oracle/dbs/log2a.f
0002 INVALID /oracle/dbs/log2b.f
0003 /oracle/dbs/log3a.f
0003 /oracle/dbs/log3b.f

	
Determine which groups are active.

For example, execute the following SQL query (sample output included):

SELECT GROUP#, MEMBERS, STATUS, ARCHIVED
FROM V$LOG;

GROUP# MEMBERS STATUS ARCHIVED
------ ------- --------- -----------
 0001 2 INACTIVE YES
 0002 2 ACTIVE NO
 0003 2 CURRENT NO

	
Perform one of the following actions:

	
If the affected group is inactive, then follow the procedure in "Losing an Inactive Online Redo Log Group".

	
If the affected group is active (as in the preceding example), then follow the procedure in "Losing an Active Online Redo Log Group".

Losing an Inactive Online Redo Log Group

If all members of an online redo log group with INACTIVE status are damaged, then the procedure depends on whether you can fix the media problem that damaged the inactive redo log group. If the failure is temporary, then fix the problem. The log writer can reuse the redo log group when required. If the failure is permanent, then the damaged inactive online redo log group eventually halts normal database operation. Reinitialize the damaged group manually by issuing the ALTER DATABASE CLEAR LOGFILE statement as described in this section.

Clearing Inactive, Archived Redo

You can clear an inactive redo log group when the database is open or closed. The procedure depends on whether the damaged group has been archived.

To clear an inactive, online redo log group that has been archived:

	
If the database is shut down, then start a new instance and mount the database:

STARTUP MOUNT

	
Reinitialize the damaged log group. For example, to clear redo log group 2, issue the following statement:

ALTER DATABASE CLEAR LOGFILE GROUP 2;

Clearing Inactive, Unarchived Redo

Clearing a not-yet-archived redo log allows it to be reused without archiving it. This action makes backups unusable if they were started before the last change in the log, unless the file was taken offline prior to the first change in the log. Hence, if you need the cleared log file for recovery of a backup, then you cannot recover that backup. Clearing a not-yet-archived-redo-log, prevents complete recovery from backups due to the missing log.

To clear an inactive, online redo log group that has not been archived:

	
If the database is shut down, then start a new instance and mount the database:

SQL> STARTUP MOUNT

	
Clear the log using the UNARCHIVED keyword.

For example, to clear log group 2, issue the following SQL statement:

SQL> ALTER DATABASE CLEAR LOGFILE UNARCHIVED GROUP 2;

If there is an offline datafile that requires the cleared log to bring it online, then the keywords UNRECOVERABLE DATAFILE are required. The datafile must be dropped because the redo logs necessary to bring the datafile online are being cleared, and there is no copy of it. For example, enter:

SQL> ALTER DATABASE CLEAR LOGFILE UNARCHIVED GROUP 2 UNRECOVERABLE DATAFILE;

	
Immediately back up all datafiles in the database with an operating system utility, so that you have a backup you can use for complete recovery without relying on the cleared log group. For example, enter:

% cp /disk1/oracle/dbs/*.dbf /disk2/backup

	
Back up the database's control file with the ALTER DATABASE statement. For example, enter:

SQL> ALTER DATABASE BACKUP CONTROLFILE TO '/oracle/dbs/cf_backup.f';

Failure of CLEAR LOGFILE Operation

The ALTER DATABASE CLEAR LOGFILE statement can fail with an I/O error due to media failure when it is not possible to:

	
Relocate the redo log file onto alternative media by re-creating it under the currently configured redo log filename

	
Reuse the currently configured log filename to re-create the redo log file because the name itself is invalid or unusable (for example, due to media failure)

In these cases, the ALTER DATABASE CLEAR LOGFILE statement (before receiving the I/O error) would have successfully informed the control file that the log was being cleared and did not require archiving. The I/O error occurred at the step in which the CLEAR LOGFILE statement attempted to create the new redo log file and write zeros to it. This fact is reflected in V$LOG.CLEARING_CURRENT.

Losing an Active Online Redo Log Group

If the database is still running and the lost active redo log is not the current log, then issue the ALTER SYSTEM CHECKPOINT statement. If the operation is successful, then the active redo log becomes inactive, and you can follow the procedure in "Losing an Inactive Online Redo Log Group". If the operation is unsuccessful, or if your database has halted, then perform one of procedures in this section, depending on the archiving mode.

The current log is the one LGWR is currently writing to. If a LGWR I/O operation fails, then LGWR terminates and the instance fails. In this case, you must restore a backup, perform incomplete recovery, and open the database with the RESETLOGS option.

Recovering from the Loss of Active Logs in NOARCHIVELOG Mode

In this scenario, the database archiving mode is NOARCHIVELOG.

To recover from the loss of an active online log group in NOARCHIVELOG mode:

	
If the media failure is temporary, then correct the problem so that the database can reuse the group when required.

	
Restore the database from a consistent, whole database backup (datafiles and control files). For example, enter:

% cp /disk2/backup/*.dbf $ORACLE_HOME/oradata/trgt/

	
Mount the database:

STARTUP MOUNT

	
Because online redo logs are not backed up, you cannot restore them with the datafiles and control files. To allow the database to reset the online redo logs, you must first mimic incomplete recovery:

RECOVER DATABASE UNTIL CANCEL
CANCEL

	
Open the database using the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

	
Shut down the database consistently. For example, enter:

SHUTDOWN IMMEDIATE

	
Make a whole database backup.

If the media failure is temporary, then correct the problem so that the database can reuse the group when required. If the media failure is not temporary, then use the following procedure.

Recovering from Loss of Active Logs in ARCHIVELOG Mode

In this scenario, the database archiving mode is ARCHIVELOG.

To recover from loss of an active online redo log group in ARCHIVELOG mode:

	
Begin incomplete media recovery, recovering up through the log before the damaged log.

	
Ensure that the current name of the lost redo log can be used for a newly created file. If not, then rename the members of the damaged online redo log group to a new location. For example, enter:

ALTER DATABASE RENAME FILE "/disk1/oradata/trgt/redo01.log" TO "/tmp/redo01.log";
ALTER DATABASE RENAME FILE "/disk1/oradata/trgt/redo02.log" TO "/tmp/redo02.log";

	
Open the database using the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

	
Note:

All updates executed from the end point of the incomplete recovery to the present must be reexecuted.

Loss of Multiple Redo Log Groups

If you have lost multiple groups of the online redo log, then use the recovery method for the most difficult log to recover. The order of difficulty, from most difficult to least difficult, is as follows:

	
The current online redo log

	
An active online redo log

	
An unarchived online redo log

	
An inactive online redo log

Recovering from a Dropped Table Without Using Flashback Features

One common error is the accidental dropping of a table from your database. In general, the fastest and simplest solution is to use the Flashback Drop feature to reverse the dropping of the table. If you cannot use Flashback Table (for example, because Flashback Drop is disabled or the table was dropped with the PURGE option), then you can perform the procedure in this section.

In this scenario, assume that you do not have the Flashback Database functionality enabled, so the FLASHBACK DATABASE command is not an option. However, you do have physical backups of the database. If possible, keep the database that experienced the user error online and available for use.

	
Note:

Grant powerful privileges only to appropriate users to minimize user errors that require recovery.

To recover a table that has been accidentally dropped:

	
Back up all datafiles of the existing database in case an error is made during the remaining steps of this procedure.

	
Restore a partial backup of the database to an alternative location. At minimum, restore the following:

	
SYSTEM and SYSAUX tablespaces

	
Tablespaces containing undo or rollback segments

	
Self-contained tablespaces that contain the data to be retrieved

	
Perform incomplete recovery of this backup using a restored backup control file, to the point just before the table was dropped.

	
Export the lost data from the temporary, restored version of the database using Data Pump Export. In this case, export the accidentally dropped table.

	
Note:

System audit options are exported.

	
Use the Data Pump Import utility to import the data back into the production database.

	
Delete the files of the temporary copy of the database to conserve space.

	
See Also:

Oracle Database Utilities for more information about Oracle Data Pump

Dropping a Database with SQL*Plus

You may need to remove a database, that is, the database files that form the database, from the operating system. For example, this scenario can occur when you create a test database and then no longer have a use for it. The SQL statement DROP DATABASE can perform this function.

	
See Also:

"Dropping a Database" to learn how to use the equivalent RMAN command DROP DATABASE

To drop a database with SQL*Plus:

	
After connecting to the database with administrator privileges, ensure that the database is either mounted or open in restricted mode with no users connected.

For example, enter the following command:

SQL> STARTUP RESTRICT FORCE MOUNT

	
Remove the datafiles and control files from the operating system.

For example, enter the following command:

SQL> DROP DATABASE; # deletes all database files, both ASM and non-ASM

If the database is on raw disk, then the command does not delete the actual raw disk special files.

	
Use an operating system utility to delete all backups and archived logs associated with the database.

For example, on Linux and Unix enter the following command:

% rm /backup/* /disk1/oradata/trgt/arch/*

Part II

Starting and Configuring RMAN and Flashback Database

The chapters in this part explain the basic components of the RMAN environment and how to configure it. This part contains the following chapters:

	
Chapter 3, "Recovery Manager Architecture"

	
Chapter 4, "Starting and Interacting with the RMAN Client"

	
Chapter 5, "Configuring the RMAN Environment"

	
Chapter 6, "Configuring the RMAN Environment: Advanced Topics"

	
Chapter 7, "Using Flashback Database and Restore Points"

20 Performing RMAN Recovery: Advanced Scenarios

The preceding chapters in Part V, "Diagnosing and Responding to Failures" cover the most basic recovery scenarios and are intended to be as generic as possible. The scenarios in this chapter are less common or are more complicated than the basic scenarios.

This chapter contains the following topics:

	
Recovering a NOARCHIVELOG Database with Incremental Backups

	
Restoring the Server Parameter File

	
Performing Recovery with a Backup Control File

	
Performing Disaster Recovery

	
Restoring a Database on a New Host

Recovering a NOARCHIVELOG Database with Incremental Backups

Restoring a database running in NOARCHIVELOG mode is similar to restoring a database in ARCHIVELOG mode. The main differences are:

	
Only consistent backups can be used in restoring a database in NOARCHIVELOG mode.

	
Media recovery is not possible because no archived redo logs exist.

You can perform limited recovery of changes to a database running in NOARCHIVELOG mode by applying incremental backups. The incremental backups must be consistent, like all backups of a database run in NOARCHIVELOG mode, so you cannot make backups of the database when it is open.

When you are recovering a NOARCHIVELOG database, specify the NOREDO option on the RECOVER command to indicate that RMAN should not attempt to apply archived redo logs. Otherwise, RMAN returns an error.

To recover a NOARCHIVELOG database with incremental backups:

	
After connecting to the target database and the recovery catalog, place the database in a mounted state:

STARTUP FORCE MOUNT

	
Restore and recover the database.

For example, you can perform incomplete recovery with the following commands:

RESTORE DATABASE
 FROM TAG "consistent_whole_backup";
RECOVER DATABASE NOREDO;

	
Open the database with the RESETLOGS option.

For example, enter the following command:

ALTER DATABASE OPEN RESETLOGS;

Restoring the Server Parameter File

If you lose the server parameter file, then RMAN can restore it to its default location or to a location of your choice. Unlike the loss of the control file, the loss of the server parameter file does not cause the instance to immediately stop. The instance may continue operating, although you will have to shut it down and restart it after restoring the server parameter file.

Note the following considerations when restoring the server parameter file:

	
If the instance is already started with the server parameter file, then you cannot overwrite the existing server parameter file.

	
When the instance is started with a client-side initialization parameter file, RMAN restores the server parameter file to the default location if the TO clause is not used in the restore command. The default location is platform-specific, for example, ?/dbs/spfile.ora on Linux.

	
A recovery catalog simplifies the recovery procedure because you can avoid recording and remembering the DBID. This procedure assumes that you are not using a recovery catalog.

To restore the server parameter file from autobackup:

	
Start RMAN and do one of the following:

	
If the database instance is started at the time of the loss of the server parameter file, then connect to the target database.

	
If the database instance is not started when the server parameter file is lost, and if you are not using a recovery catalog, then run the SET DBID command to set the DBID of the target database. See "Determining the DBID of the Database" for details on determining the DBID.

	
Shut down the database instance and restart it without mounting the database.

When the server parameter file is not available, RMAN starts the instance with a dummy parameter file. For example, enter the following command:

STARTUP FORCE NOMOUNT;

	
Execute a RUN command to restore the server parameter file.

Depending on the situation, you may need to execute multiple commands in the RUN command. Note the following considerations:

	
If restoring from tape, then use ALLOCATE CHANNEL to allocate an SBT channel manually. If restoring from disk, then RMAN uses the default disk channel.

	
If the autobackups were not produced with the default format (%F), then use the SET CONTROLFILE AUTOBACKUP FOR DEVICE TYPE command to specify the format in effect when the autobackup was performed.

	
If the most recent autobackup was not created today, then use SET UNTIL to specify the date from which to start the search.

	
If RMAN is not connected to a recovery catalog, then use SET DBID to set the DBID for the target database.

	
To restore the server parameter file to a nondefault location, specify the TO clause or TO PFILE clause on the RESTORE SPFILE command.

	
If you know that RMAN never produces more than n autobackups each day, then you can set the RESTORE SPFILE FROM AUTOBACKUP ... MAXSEQ parameter to n to reduce the search time. MAXSEQ is set to 255 by default, and RESTORE counts backward from MAXSEQ to find the last backup of the day. To terminate the restore operation if you do not find the autobackup in the current day (or specified day), set MAXDAYS 1 on the RESTORE command.

The following example illustrates a RUN command that restores a server parameter file from an autobackup on tape:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS ...;
 SET UNTIL TIME 'SYSDATE-7';
 SET CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE sbt TO '/disk1/control_files/autobackup_%F';
 SET DBID 123456789;
 RESTORE SPFILE
 TO '/tmp/spfileTEMP.ora'
 FROM AUTOBACKUP MAXDAYS 10;
}

	
Restart the database instance with the restored file.

If you are restarting RMAN with a server parameter file in a nondefault location, then create a new initialization parameter file with the line SPFILE=new_location, where new_location is the path name of the restored server parameter file. Then, restart the instance with the client-side initialization parameter file.

For example, create a file /tmp/init.ora which contains the single line:

SPFILE=/tmp/spfileTEMP.ora

You can use the following RMAN command to restart the instance with the restored server parameter file:

STARTUP FORCE PFILE=/tmp/init.ora;

Restoring the Server Parameter File from a Control File Autobackup

If you have configured control file autobackups, then the server parameter file is backed up with the control file whenever an autobackup is taken.

To restore the server parameter file from the control file autobackup, you must first set the DBID for your database and then use the RESTORE SPFILE FROM AUTOBACKUP command. If the autobackup is in a nondefault format, then first use the SET CONTROLFILE AUTOBACKUP FORMAT command to specify the format.

Example 20-1 sets the DBID and restores the server parameter file from a control file autobackup in a nondefault location.

Example 20-1 Restoring the Server Parameter File from a Control File Autobackup

SET DBID 320066378;
RUN
{
 SET CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE DISK TO 'autobackup_format';
 RESTORE SPFILE FROM AUTOBACKUP;
}

RMAN uses the autobackup format and DBID to hunt for control file autobackups. If a control file autobackup is found, then RMAN restores the server parameter file from that backup to its default location.

To learn how to determine the correct value for autobackup_format, see the description of CONFIGURE CONTROLFILE AUTOBACKUP FORMAT in the entry for the CONFIGURE command in Oracle Database Backup and Recovery Reference.

	
See Also:

"Determining the DBID of the Database" for details on how to determine the DBID

Creating an Initialization Parameter File with RMAN

You can also restore the server parameter file as a client-side initialization parameter file with the TO PFILE 'filename' clause. The filename that you specify should be on a file system accessible from the host where the RMAN client is running. This file need not be accessible directly from the host running the instance.

The following RMAN command creates an initialization parameter file named /tmp/initTEMP.ora on the system running the RMAN client:

RESTORE SPFILE TO PFILE '/tmp/initTEMP.ora';

To restart the instance with the initialization parameter file, use the following command, again running RMAN on the same client host:

STARTUP FORCE PFILE='/tmp/initTEMP.ora';

Performing Recovery with a Backup Control File

This section explains what to do when all current control files are lost and you must restore a backup control file.

About Recovery with a Backup Control File

If all copies of the current control file are lost or damaged, then you must restore and mount a backup control file. You must then run the RECOVER command, even if no datafiles have been restored, and open the database with the RESETLOGS option. If some copies of the current control file are usable, however, then you can follow the procedure in "Responding to the Loss of a Subset of the Current Control Files" and avoid the recovery and RESETLOGS operation.

During recovery, RMAN automatically searches for online and archived logs that are not recorded in the RMAN repository and catalogs any that it finds. RMAN attempts to find a valid archived redo log in any current archiving destination with the current log format. The current format is specified in the initialization parameter file used to start the instance (or all instances in an Oracle RAC configuration). Similarly, RMAN attempts to find the online redo logs by using the filenames listed in the control file.

If you changed the archiving destination or format during recovery, or if you added new online log members after the backup of the control file, then RMAN may not be able to automatically catalog a needed online or archived log. Whenever RMAN cannot find online redo logs and you did not specify an UNTIL time, RMAN reports errors similar to the following:

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-03002: failure of recover command at 08/29/2007 14:23:09
RMAN-06054: media recovery requesting unknown log: thread 1 scn 86945

In this case, you must use the CATALOG command to manually add the required redo logs to the repository so that recovery can proceed.

	
See Also:

The discussion of RESTORE CONTROLFILE in Oracle Database Backup and Recovery Reference for more details about restrictions on using RESTORE CONTROLFILE in different scenarios (such as when using a recovery catalog, or restoring from a specific backup)

Control File Locations

When you are restoring the control file, the default destination is all of the locations defined in the CONTROL_FILES initialization parameter. If you do not set the CONTROL_FILES initialization parameter, then the database uses the same rules to determine the destination for the restored control file that it uses when creating a control file if the CONTROL_FILES parameter is not set. These rules are described in Oracle Database SQL Language Reference in the description of the CREATE CONTROLFILE statement.

One way to restore the control file to one or more new locations is to change the CONTROL_FILES initialization parameter, and then use the RESTORE CONTROLFILE command with no arguments to restore the control file to the default locations. For example, if you are restoring your control file after a disk failure made some but not all CONTROL_FILES locations unusable, you can change CONTROL_FILES to replace references to the failed disk with path names pointing to another disk, and then run RESTORE CONTROLFILE with no arguments.

You can also restore the control file to any location that you choose other than the CONTROL_FILES locations, by using the form RESTORE CONTROLFILE TO 'filename':

RESTORE CONTROLFILE TO '/tmp/my_controlfile';

You can perform this operation with the database in NOMOUNT, MOUNT, or OPEN states, because you are not overwriting any of the control files currently in use. Any existing file named 'filename' is overwritten. After restoring the control file to a new location, you can then update the CONTROL_FILES initialization parameter to include the new location.

	
See Also:

Oracle Database Backup and Recovery Reference for RESTORE CONTROLFILE syntax

Recovery With and Without a Recovery Catalog

When RMAN is connected to a recovery catalog, the recovery procedure with a backup control file is identical to recovery with a current control file. The RMAN metadata missing from the backup control file is available from the recovery catalog. The only exception is if the database name is not unique in the catalog, in which case you must use SET DBID command before restoring the control file.

If you are not using a recovery catalog, then you must restore your control file from an autobackup. To restore the control file from autobackup, the database must be in a NOMOUNT state. As shown in Example 20-2, you must first set the DBID for your database, and then use the RESTORE CONTROLFILE FROM AUTOBACKUP command.

Example 20-2 Setting the DBID and Restoring the Control File from Autobackup

SET DBID 320066378;
RUN
{
 SET CONTROLFILE AUTOBACKUP FORMAT
 FOR DEVICE TYPE DISK TO 'autobackup_format';
 RESTORE CONTROLFILE FROM AUTOBACKUP;
}

RMAN uses the autobackup format and DBID to determine where to hunt for the control file autobackup. If one is found, RMAN restores the control file to all control file locations listed in the CONTROL_FILES initialization parameter.

	
See Also:

	
The description of CONFIGURE CONTROLFILE AUTOBACKUP FORMAT in the entry for CONFIGURE in Oracle Database Backup and Recovery Reference to learn how to determine the correct value for the autobackup format.

	
See "Determining the DBID of the Database" to learn how to determine your DBID.

Recovery When Using a Fast Recovery Area

The commands for restoring a control file are the same whether or not the database uses a fast recovery area. If the database uses a recovery area, then RMAN updates a control file restored from backup by crosschecking all disk-based backups and image copies recorded in the control file. RMAN catalogs any backups in the recovery area that are not recorded. As a result, the restored control file has a complete and accurate record of all backups in the recovery area and any other backups known to the control file at the time of the backup.

RMAN does not automatically crosscheck tape backups after restoring a control file. If you are using tape backups, then you can restore and mount the control file, and optionally crosscheck the backups on tape, as shown in the following example:

CROSSCHECK BACKUP DEVICE TYPE sbt;

Performing Recovery with a Backup Control File and No Recovery Catalog

This section assumes that you have RMAN backups of the control file, but do not use a recovery catalog. It also assumes that you enabled the control file autobackup feature for the target database and can restore an autobackup of the control file.

Because the autobackup uses a well-known format, RMAN can restore it even though it does not have a repository available that lists the available backups. You can restore the autobackup to the default or a new location. RMAN replicates the control file to all CONTROL_FILES locations automatically.

	
Note:

If you know the backup piece name that contains the control file (for example, from the media manager or because the piece is on disk), then you can specify the piece name using the RESTORE CONTROLFILE FROM 'filename' command. The database records the location of every autobackup in the alert log.

Because you are not connected to a recovery catalog, the RMAN repository contains only information about available backups at the time of the control file backup. If you know the location of other usable backup sets or image copies, then add them to the control file RMAN repository with the CATALOG command.

To recover the database with a control file autobackup in NOCATALOG mode:

	
Start RMAN and connect to a target database.

	
Start the target database instance without mounting the database. For example:

STARTUP NOMOUNT;

	
Set the database identifier for the target database with the SET DBID command.

RMAN displays the DBID whenever you connect to a target database. You can also obtain it by inspecting saved RMAN log files, querying the catalog, or looking at the filenames of control file autobackup. For example, run:

SET DBID 676549873;

	
Write an RMAN command file to restore the autobackup control file and perform recovery.

The command file should contain the following steps:

	
Optionally, specify the most recent backup time stamp that RMAN can use when searching for a control file autobackup to restore.

	
If you know that a different control file autobackup format was in effect when the control file autobackup was created, then specify a nondefault format for the restore of the control file.

	
If an SBT channel created the control file autobackup, then allocate one or more SBT channels. Because no recovery catalog is available, you cannot use preconfigured channels.

	
Restore the autobackup of the control file, optionally setting the maximum number of days backward that RMAN can search and the initial sequence number that it should use in its search for the first day.

	
If you know that the control file contained information about configured channels that will be useful to you in the rest of the restore process, then you can exit RMAN to clear manually allocated channels from Step c.

If you restart the RMAN client and mount the database, then these configured channels are available for your use. If you do not care about using configured channels from your control file, then you can simply mount the database.

	
This step depends on whether the online redo logs are available. The option OPEN RESETLOGS is always required after recovery with a backup control file, regardless of whether logs are available.

If the online redo logs are usable, then RMAN can find and apply these logs. Perform a complete restore and recovery as described in "Performing Complete Database Recovery".

If the online redo logs are unusable, then perform DBPITR as described in "Performing Database Point-in-Time Recovery". An UNTIL clause is required to specify a target time, SCN, or log sequence number for the recovery prior to the first SCN of the online redo logs (otherwise, RMAN issues the RMAN-6054 error).

	
Note:

When specifying log sequences, if the last created archived redo log has sequence n, then specify UNTIL SEQUENCE n+1 so that RMAN will apply n and then stop.

In the following example, the online redo log files have been lost, and the most recent archived redo log sequence number is 13243. This example shows how to restore the control file autobackup and recover through the latest log.

RUN
{
 # Optionally, set upper limit for eligible time stamps of control file
 # backups
 # SET UNTIL TIME '09/10/2007 13:45:00';
 # Specify a nondefault autobackup format only if required
 # SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK
 # TO '?/oradata/%F.bck';
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS '...'; # allocate manually
 RESTORE CONTROLFILE FROM AUTOBACKUP
 MAXSEQ 100 # start at sequence 100 and count down
 MAXDAYS 180; # start at UNTIL TIME and search back 6 months
 ALTER DATABASE MOUNT DATABASE;
}
Now use automatic channels configured in restored control file
RESTORE DATABASE UNTIL SEQUENCE 13244;
RECOVER DATABASE UNTIL SEQUENCE 13244;

	
If recovery was successful, then open the database and reset the online logs:

ALTER DATABASE OPEN RESETLOGS;

Performing Disaster Recovery

Disaster recovery includes the restoration and recovery of the target database after the loss of the entire target database, the recovery catalog database, all current control files, all online redo log files, and all parameter files.

Prerequisites of Disaster Recovery

To perform a disaster recovery, you must have the following:

	
Backups of all datafiles

	
All archived redo logs generated after the creation time of the oldest backup that you intend to restore

	
At least one control file autobackup

	
A record of the DBID of the database

Recovering the Database After a Disaster

The procedure for disaster recovery is similar to the procedure for recovering the database with a backup control file in NOCATALOG mode. If you are restoring the database to a new host, then you should also review the considerations described in "Restoring a Database on a New Host".

This scenario assumes that the Linux server on which your database was running has been damaged beyond repair. Fortunately, you backed up the database to Oracle Secure Backup and have the tapes available. The scenario assumes the following:

	
Oracle Database is already installed on the new host.

	
You are restoring the database to a new Linux host with the same directory structure as the old host.

	
You have one tape drive containing backups of all the datafiles and archived redo logs through log 1124, as well as autobackups of the control file and server parameter file.

	
You do not use a recovery catalog with the database.

To recover the database on the new host:

	
If possible, restore or re-create all relevant network files such as tnsnames.ora and listener.ora and a password file.

	
Start RMAN and connect to the target database instance.

At this stage, no initialization parameter file exists. If you have set ORACLE_SID and ORACLE_HOME, then you can use operating system authentication to connect as SYSDBA. For example, start RMAN as follows:

% rman
RMAN> CONNECT TARGET /

	
Specify the DBID for the target database with the SET DBID command, as described in "Restoring the Server Parameter File".

For example, enter the following command:

SET DBID 676549873;

	
Run the STARTUP NOMOUNT command.

When the server parameter file is not available, RMAN attempts to start the instance with a dummy server parameter file.

	
Allocate a channel to the media manager and then restore the server parameter file from autobackup.

For example, enter the following command to restore the server parameter file from Oracle Secure Backup:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt;
 RESTORE SPFILE FROM AUTOBACKUP;
}

	
Restart the instance with the restored server parameter file.

STARTUP FORCE NOMOUNT;

	
Write a command file to perform the restore and recovery operation, and then execute the command file. The command file should do the following:

	
Allocate a channel to the media manager.

	
Restore a control file autobackup (see "Performing Recovery with a Backup Control File and No Recovery Catalog").

	
Mount the restored control file.

	
Catalog any backups not recorded in the repository with the CATALOG command.

	
Restore the datafiles to their original locations. If volume names have changed, then run SET NEWNAME commands before the restore operation and perform a switch after the restore operation to update the control file with the new locations for the datafiles, as shown in the following example.

	
Recover the datafiles. RMAN stops recovery when it reaches the log sequence number specified.

RMAN> RUN
{
 # Manually allocate a channel to the media manager
 ALLOCATE CHANNEL t1 DEVICE TYPE sbt;
 # Restore autobackup of the control file. This example assumes that you have
 # accepted the default format for the autobackup name.
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 # The set until command is used in case the database
 # structure has changed in the most recent backups, and you want to
 # recover to that point in time. In this way RMAN restores the database
 # to the same structure that the database had at the specified time.
 ALTER DATABASE MOUNT;
 SET UNTIL SEQUENCE 1124 THREAD 1;
 RESTORE DATABASE;
 RECOVER DATABASE;
}

The following example of the RUN command shows the same scenario except with new filenames for the restored datafiles:

RMAN> RUN
{
 # If you need to restore the files to new locations,
 # use SET NEWNAME commands:
 SET NEWNAME FOR DATAFILE 1 TO '/dev/vgd_1_0/rlvt5_500M_1';
 SET NEWNAME FOR DATAFILE 2 TO '/dev/vgd_1_0/rlvt5_500M_2';
 SET NEWNAME FOR DATAFILE 3 TO '/dev/vgd_1_0/rlvt5_500M_3';
 ALLOCATE CHANNEL t1 DEVICE TYPE sbt;
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 ALTER DATABASE MOUNT;
 SET UNTIL SEQUENCE 124 THREAD 1;
 RESTORE DATABASE;
 SWITCH DATAFILE ALL; # Update control file with new location of datafiles.
 RECOVER DATABASE;
}

	
If recovery was successful, then open the database and reset the online logs:

ALTER DATABASE OPEN RESETLOGS;

Restoring a Database on a New Host

If your goal is to perform a test run of your disaster recovery procedures, or to permanently move a database to a new host, then you can use the procedure in this section. This procedure uses the RESTORE and RECOVER commands.

If you use the procedure in this section, then the DBID for the restored database will be the same as the DBID for the original database. You should not register a test database created in this way in the same recovery catalog as the source database. Because the DBID of the two databases is the same, the metadata for the test database can interfere with RMAN's ability to restore and recover the source database.

If your goal is to create a new copy of your target database for ongoing use on a new host, then use the RMAN DUPLICATE command instead of this procedure. The DUPLICATE command assigns a new DBID to the database it creates, enabling it to be registered in the same recovery catalog as the original database.

	
See Also:

"Overview of RMAN Database Duplication" to learn how to duplicate a database

Preparing to Restore a Database on a New Host

To prepare for the restoration of the database to a new host, take the following steps:

	
Record the DBID for your source database. If you do not know the DBID for your database, then see "Determining the DBID of the Database" to learn how to determine the DBID.

	
Make the source database initialization parameter file accessible on the new host. Copy the file from the old host to a new host by using an operating system utility.

	
If you perform a test restore operation only, then ensure that RMAN is not connected to the recovery catalog. Otherwise, RMAN records metadata about the restored datafiles in the recovery catalog. This metadata interferes with future attempts to restore and recover the primary database.

If you must use a recovery catalog because the control file is not large enough to contain the RMAN repository data on all of the backups that you need to restore, then use Oracle Data Pump to export the catalog and import it into a different schema or database. Afterward, use the copied recovery catalog for the test restore. Otherwise, the recovery catalog considers the restored database as the current target database.

	
Ensure that backups used for the restore operation are accessible on the restore host. For example, if the backups were made with a media manager, then verify that the tape device is connected to the new host. If you are using disk copies, then use the procedure in the following section.

	
If you are performing a trial restore of the production database, then perform either of the following actions before restoring the database in the test environment:

	
If the test database will use a fast recovery area that is physically different from the recovery area used by the production database, then set DB_RECOVERY_FILE_DEST in the test database instance to the new location.

	
If the test database will use a fast recovery area that is physically the same as the recovery area used by the production database, then set DB_UNIQUE_NAME in the test database instance to a different name from the production database.

If you do not perform either of the preceding actions, then RMAN assumes that you are restoring the production database and deletes flashback logs from the fast recovery area because they are considered unusable.

Restoring Disk Backups to a New Host

To move the database to a new host by means of datafile copies or backup sets on disk, you must transfer the files manually to the new host. This example assumes that RMAN is using a recovery catalog.

To restore backup files to a new host:

	
Start RMAN and connect to a target database and recovery catalog.

	
Run a LIST command to see a listing of backups of the datafile and control file autobackups.

For example, enter the following command to view datafile copies:

LIST COPY;

For example, enter the following command to view control file backups:

LIST BACKUP OF CONTROLFILE;

The piece name of the autobackup must use the %F substitution variable, so the autobackup piece name will include the string c-IIIIIIIIII-YYYYMMDD-QQ, where IIIIIIIIII stands for the DBID, YYYYMMDD is a time stamp in the Gregorian calendar of the day the backup is generated, and QQ is the sequence in hexadecimal.

	
Copy the backups to the new host with an operating system utility.

Enter a command such as the following to copy all datafile copies to the ?/oradata/trgt directory on the new host:

% cp -r /disk1/*dbf /net/new_host/oracle/oradata/trgt

Enter a command such as the following to copy the autobackup backup piece to the /tmp directory on the new host:

% cp -r /disk1/auto_bkp_loc/c-1618370911-20070208-00 /net/new_host/tmp

As explained in "Restoring the Server Parameter File from a Control File Autobackup", you will need to use the SET CONTROLFILE AUTOBACKUP FORMAT command when restoring an autobackup from a nondefault location.

Testing the Restore of a Database on a New Host

This scenario assumes that you want to test whether you can restore your database to a new host. In this scenario, you have two networked Linux hosts, hosta and hostb. A target database named trgta is on hosta and is registered in recovery catalog catdb. You want to test the restore and recovery of trgta on hostb, while keeping database trgta up and running on hosta.

Now, assume that the directory structure of hostb is different from hosta. The target database is located in /net/hosta/dev3/oracle/dbs, but you want to restore the database to /net/hostb/oracle/oradata/test. You have tape backups of datafiles, control files, archived redo logs, and the server parameter file on a media manager accessible by both hosts. The ORACLE_SID for the trgta database is trgta and will not change for the restored database.

	
Caution:

If you are restoring the database for test purposes, then never connect RMAN to the test database and the recovery catalog.

To restore the database on a new host:

	
Ensure that the backups of the target database are accessible on the new host.

To test disaster recovery, you must have a recoverable backup of the target database. When preparing your disaster recovery strategy, ensure that the backups of the datafiles, control files, and server parameter file are restorable on hostb. Thus, you must configure the media management software so that hostb is a media manager client and can read the backup sets created on hosta. Consult the media management vendor for support on this issue.

	
Configure the ORACLE_SID on hostb.

This scenario assumes that you want to start the RMAN client on hostb and authenticate yourself through the operating system. However, you must be connected to hostb either locally or through a net service name.

After logging in to hostb with administrator privileges, edit the /etc/group file so that you are included in the DBA group:

dba:*:614:<your_user_name>

Set the ORACLE_SID environment variable on hostb to the same value used on hosta:

% setenv ORACLE_SID trgta

	
Start RMAN on hostb and connect to the target database without connecting to the recovery catalog.

For example, enter the following command:

% rman NOCATALOG
RMAN> CONNECT TARGET /

	
Set the DBID and start the database instance without mounting the database.

For example, run SET DBID to set the DBID, then run STARTUP NOMOUNT:

SET DBID 1340752057;
STARTUP NOMOUNT

RMAN will fail to find the server parameter file, which has not yet been restored, but will start the instance with a "dummy" file. Sample output follows:

startup failed: ORA-01078: failure in processing system parameters
LRM-00109: could not open parameter file '/net/hostb/oracle/dbs/inittrgta.ora'

trying to start the Oracle instance without parameter files ...
Oracle instance started

	
Restore and edit the server parameter file.

Because you enabled the control file autobackup feature when making your backups, the server parameter file is included in the backup. If you are restoring an autobackup that has a nondefault format, then use the SET CONTROLFILE AUTOBACKUP FORMAT command to indicate the format.

Allocate a channel to the media manager, then restore the server parameter file as a client-side parameter file and use the SET command to indicate the location of the autobackup (in this example, the autobackup is in /tmp):

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS '...';
 SET CONTROLFILE AUTOBACKUP FORMAT FOR DEVICE TYPE DISK TO '/tmp/%F';
 RESTORE SPFILE
 TO PFILE '?/oradata/test/inittrgta.ora'
 FROM AUTOBACKUP;
 SHUTDOWN ABORT;
}

	
Edit the restored initialization parameter file.

Change any location-specific parameters, for example, those ending in _DEST, to reflect the new directory structure. For example, edit the following parameters:

 - IFILE
 - LOG_ARCHIVE_DEST_1
 - CONTROL_FILES

	
Restart the instance with the edited initialization parameter file.

For example, enter the following command:

STARTUP FORCE NOMOUNT PFILE='?/oradata/test/inittrgta.ora';

	
Restore the control file from an autobackup and then mount the database.

For example, enter the following command:

RUN
{
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS '...';
 RESTORE CONTROLFILE FROM AUTOBACKUP;
 ALTER DATABASE MOUNT;
}

RMAN restores the control file to whatever locations you specified in the CONTROL_FILES initialization parameter.

	
Catalog the datafile copies that you copied in "Restoring Disk Backups to a New Host", using their new filenames or CATALOG START WITH (if you know all the files are in directories with a common prefix easily addressed with a CATALOG START WITH command). For example, run:

CATALOG START WITH '/oracle/oradata/trgt/';

If you want to specify files individually, then you can execute a CATALOG command as follows:

CATALOG DATAFILECOPY
 '/oracle/oradata/trgt/system01.dbf', '/oracle/oradata/trgt/undotbs01.dbf',
 '/oracle/oradata/trgt/cwmlite01.dbf', '/oracle/oradata/trgt/drsys01.dbf',
 '/oracle/oradata/trgt/example01.dbf', '/oracle/oradata/trgt/indx01.dbf',
 '/oracle/oradata/trgt/tools01.dbf', '/oracle/oradata/trgt/users01.dbf';

	
Start a SQL*Plus session on the new database and query the database filenames recorded in the control file.

Because the control file is from the trgta database, the recorded filenames use the original hosta filenames. You can query V$ views to obtain this information. Run the following query in SQL*Plus:

COLUMN NAME FORMAT a60
SPOOL LOG '/tmp/db_filenames.out'
SELECT FILE# AS "File/Grp#", NAME
FROM V$DATAFILE
UNION
SELECT GROUP#,MEMBER
FROM V$LOGFILE;
SPOOL OFF
EXIT

	
Write the RMAN restore and recovery script. The script must include the following steps:

	
For each datafile on the destination host that is restored to a different path than it had on the source host, use a SET NEWNAME command to specify the new path on the destination host. If the file systems on the destination system are set up to have the same paths as the source host, then do not use SET NEWNAME for those files restored to the same path as on the source host.

	
For each online redo log that is to be created at a different location than it had on the source host, use SQL ALTER DATABASE RENAME FILE commands to specify the pathname on the destination host. If the file systems on the destination system are set up to have the same paths as the source host, then do not use ALTER DATABASE RENAME FILE for those files restored to the same path as on the source host.

	
Perform a SET UNTIL operation to limit recovery to the end of the archived redo logs. The recovery stops with an error if no SET UNTIL command is specified.

	
Restore and recover the database.

	
Run the SWITCH DATAFILE ALL command so that the control file recognizes the new path names as the official new names of the datafiles.

Example 20-3 shows the RMAN script reco_test.rman that can perform the restore and recovery operation.

Example 20-3 Restoring a Database on a New Host

RUN
{
 # allocate a channel to the tape device
 ALLOCATE CHANNEL c1 DEVICE TYPE sbt PARMS '...';

 # rename the datafiles and online redo logs
 SET NEWNAME FOR DATAFILE 1 TO '?/oradata/test/system01.dbf';
 SET NEWNAME FOR DATAFILE 2 TO '?/oradata/test/undotbs01.dbf';
 SET NEWNAME FOR DATAFILE 3 TO '?/oradata/test/cwmlite01.dbf';
 SET NEWNAME FOR DATAFILE 4 TO '?/oradata/test/drsys01.dbf';
 SET NEWNAME FOR DATAFILE 5 TO '?/oradata/test/example01.dbf';
 SET NEWNAME FOR DATAFILE 6 TO '?/oradata/test/indx01.dbf';
 SET NEWNAME FOR DATAFILE 7 TO '?/oradata/test/tools01.dbf';
 SET NEWNAME FOR DATAFILE 8 TO '?/oradata/test/users01.dbf';
 SQL "ALTER DATABASE RENAME FILE ''/dev3/oracle/dbs/redo01.log''
 TO ''?/oradata/test/redo01.log'' ";
 SQL "ALTER DATABASE RENAME FILE ''/dev3/oracle/dbs/redo02.log''
 TO ''?/oradata/test/redo02.log'' ";

 # Do a SET UNTIL to prevent recovery of the online logs
 SET UNTIL SCN 123456;
 # restore the database and switch the datafile names
 RESTORE DATABASE;
 SWITCH DATAFILE ALL;

 # recover the database
 RECOVER DATABASE;
}
EXIT

	
Execute the script created in the previous step.

For example, start RMAN to connect to the target database and run the @ command:

% rman TARGET / NOCATALOG
RMAN> @reco_test.rman

	
Open the restored database with the RESETLOGS option.

From the RMAN prompt, open the database with the RESETLOGS option:

ALTER DATABASE OPEN RESETLOGS;

	
Caution:

When you re-open your database in the next step, do not connect to the recovery catalog. Otherwise, the new database incarnation created is registered automatically in the recovery catalog, and the filenames of the production database are replaced by the new filenames specified in the script.

	
Optionally, delete the test database with all of its files.

	
Note:

If you used an ASM disk group, then the DROP DATABASE command is the only way to safely remove the files of the test database. If you restored to non-ASM storage then you can also use operating system commands to remove the database.

Use the DROP DATABASE command to delete all files associated with the database automatically. The following example deletes the database files:

STARTUP FORCE NOMOUNT PFILE='?/oradata/test/inittrgta.ora';
DROP DATABASE;

Because you did not perform the restore and recovery operation when connected to the recovery catalog, the recovery catalog contains no records for any of the restored files or the procedures performed during the test. Likewise, the control file of the trgta database is completely unaffected by the test.

List of Examples

	2-1 LIST FAILURE and ADVISE FAILURE
	2-2 REPAIR FAILURE
	4-1 Checking the Syntax of a Command File with Bad Syntax
	4-2 Connecting to a Target Database from the System Prompt
	4-3 Connecting to a Target Database from the System Prompt
	4-4 Connecting to Target and Catalog Databases from the System Prompt
	4-5 Connecting to the Target and Catalog Databases from the RMAN Prompt
	5-1 SHOW ALL Command
	5-2 Configuring a Nondefault Backup Location
	5-3 Configuring an ASM Disk Location
	5-4 Configuring Parallelism for an SBT Device
	5-5 Configuring the Backup Type for an SBT Device
	5-6 PARMS Setting for Oracle Secure Backup
	5-7 Backing Up the Server Parameter File to Tape
	5-8 Restoring the Server Parameter File from Tape
	6-1 Configuring Channel Parallelism for Tape Devices
	6-2 Configuring Basic Compression for Backup
	8-1 Specifying Filenames with DB_FILE_NAME_CONVERT
	8-2 Backing Up Backup Sets to Tape
	8-3 Managing Space Allocation
	9-1 Specifying Device Type DISK
	9-2 Making Image Copies
	9-3 Making Backup Sets
	9-4 Applying a Tag to a Backup Set
	9-5 Applying Tags to Image Copies
	9-6 Assigning Tags to Output Copies
	9-7 Making Compressed Backups
	9-8 Backing Up a Database in NOARCHIVELOG Mode
	9-9 Basic Incremental Update Script
	9-10 Advanced Incremental Update Script
	9-11 Creating a Temporary Archival Backup
	10-1 Configuring Backup Optimization
	10-2 Backing Up Archived Redo Logs to Multiple Media Families
	10-3 Skipping Files During an RMAN Backup
	10-4 Using MINIMIZE TIME with BACKUP DURATION
	10-5 Using MINIMIZE LOAD with BACKUP DURATION
	12-1 Fast Recovery Area Space Consumption
	15-1 Sample Repair Script
	17-1 BACKUP VALIDATE DATABASE
	17-2 RESTORE ... PREVIEW Output
	18-1 Dropping Multiple Objects with the Same Name
	18-2 Renaming Dropped Tables
	18-3 Tracking Flashback Database Progress - Restore Phase
	20-1 Restoring the Server Parameter File from a Control File Autobackup
	20-2 Setting the DBID and Restoring the Control File from Autobackup
	20-3 Restoring a Database on a New Host
	21-1 Querying DBMS_TTS.TRANSPORT_SET_CHECK for a Subset of Tablespaces
	21-2 Querying TS_PITR_OBJECTS_TO_BE_DROPPED
	21-3 Using SCN and TS_PITR_OBJECTS_TO_BE_DROPPED
	21-4 Performing TSPITR on Two Tablespaces
	21-5 Renaming Recovery Set Files
	21-6 Redirecting ASM files
	21-7 Renaming Auxiliary Set Oracle Managed Files (OMF) in TSPITR
	21-8 Using SET NEWNAME
	23-1 RMAN Syntax Error
	24-1 Duplicating to a Host with the Same Directory Structure (Active)
	24-2 Duplicating a Database to a Past Point in Time (Backup-Based)
	24-3 Using an Archival Backup for Backup-Based Duplication
	24-4 Duplicating a Database to a Past Point in Time (Backup-Based)
	24-5 Duplicating a Database Without a Target and Recovery Catalog Connection (Backup-Based)
	24-6 Duplicating a Database to a Past Point in Time (Backup-Based)
	25-1 Duplicating with SET NEWNAME FOR DATAFILE
	25-2 Duplicating with SET NEWNAME FOR DATAFILE and FOR TABLESPACE
	25-3 Duplicating with SET NEWNAME FOR DATABASE
	25-4 Duplicating from a File System to ASM (Active)
	25-5 Duplicating from ASM to ASM (Active)
	25-6 Duplicating with SET NEWNAME FOR DATAFILE and FOR TABLESPACE
	25-7 Using SET NEWNAME to Create Files in an ASM Disk Group
	25-8 Sample Initialization Parameter File for the Auxiliary Instance
	25-9 Excluding Read-Only Tablespaces
	25-10 Excluding Specified Tablespaces
	25-11 Including Specified Tablespaces
	25-12 Including Specified Tablespaces
	26-1 Specifying an Auxiliary Instance Parameter File
	26-2 Creating a Transportable Tablespace Set
	26-3 Specifying an End SCN
	26-4 Specifying an End Restore Point
	26-5 Specifying an End Time
	26-6 Specifying Output File Locations
	26-7 Using SET NEWNAME FOR DATAFILE to Name Auxiliary Datafiles
	27-1 Executing DBMS_TDB.CHECK_DB
	27-2 Executing DBMS_TDB.CHECK_EXTERNAL
	27-3 Converting a Database on the Source Host
	27-4 Executing CONVERT DATABASE ON DESTINATION PLATFORM

18 Performing Flashback and Database Point-in-Time Recovery

This chapter explains how to investigate unwanted database changes, and select and carry out an appropriate recovery strategy based upon Oracle Flashback Technology and database backups. It includes the following topics:

	
Overview of Oracle Flashback Technology and Database Point-in-Time Recovery

	
Rewinding a Table with Flashback Table

	
Rewinding a DROP TABLE Operation with Flashback Drop

	
Rewinding a Database with Flashback Database

	
Performing Database Point-in-Time Recovery

	
Flashback and Database Point-in-Time Recovery Scenarios

Overview of Oracle Flashback Technology and Database Point-in-Time Recovery

This section explains the purpose and basic concepts of Flashback Technology and database point-in-time recovery.

Purpose of Flashback and Database Point-in-Time-Recovery

Typically, the following situations call for flashback features or point-in-time recovery:

	
A user error or corruption removes needed data or introduces corrupted data. For example, a user or DBA might erroneously delete or update the contents of one or more tables, drop database objects that are still needed during an update to an application, or run a large batch update that fails midway.

	
A database upgrade fails or an upgrade script goes awry.

	
A complete database recovery after a media failure cannot succeed because you do not have all of the needed redo logs or incremental backups.

In either situation, you can use point-in-time recovery or flashback features to return the database or database object to its state at a previous point in time.

Basic Concepts of Point-in-Time Recovery and Flashback Features

The most basic solution to unwanted database changes is RMAN database point-in-time recovery (DBPITR). DBPITR is sometimes called incomplete recovery because it does not use all of the available redo or completely recover all changes to your database. In this case, you restore a whole database backup and then apply redo logs or incremental backups to re-create all changes up to a point in time before the unwanted change.

If unwanted database changes are extensive but confined to specific tablespaces, then you can use tablespace point-in-time recovery (TSPITR) to return these tablespaces to an earlier SCN while the unaffected tablespaces remain available. RMAN TSPITR is an advanced technique described in Chapter 21, "Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)".

Oracle Database also provides a set of features collectively known as Flashback Technology that supports viewing past states of data, and winding and rewinding data back and forth in time, without requiring the restore of the database from backup. Depending on the changes to your database, Flashback Technology can often reverse the unwanted changes more quickly and with less impact on database availability.

Basic Concepts of Database Point-in-Time Recovery

DBPITR works at the physical level to return the datafiles to their state at a target time in the past. In an RMAN DBPITR operation, you specify a target SCN, log sequence, restore point, or time. RMAN restores the database from backups created before the target time, and then applies incremental backups and logs to re-create all changes between the time of the datafile backups and the end point of recovery. When the end point is specified as an SCN, the database applies the redo logs and stops at the end of each redo thread or the specified SCN, whichever occurs first. When the end point is specified as a time, the database internally determines a suitable SCN for the specified time and then recovers to this SCN.

If your backup strategy is properly designed and your database is running in ARCHIVELOG mode, then DBPITR is an option in nearly all circumstances. RMAN simplifies DBPITR in comparison to the user-managed DBPITR described in "Performing Incomplete Database Recovery". Given a target SCN, datafiles are restored from backup and recovered efficiently with no intervention from the user. Nevertheless, RMAN DBPITR has the following disadvantages:

	
You cannot return selected objects to their earlier state, only the entire database.

	
Your entire database is unavailable during the DBPITR.

	
DBPITR can be time-consuming because RMAN must restore all datafiles. Also, RMAN may need to restore redo logs and incremental backups to recover the datafiles. If backups are on tape, then this process can take even longer.

Basic Concepts of Flashback Technology

The flashback features of Oracle are more efficient than media recovery in most circumstances in which they are available. You can use them to investigate past states of the database.

Physical Flashback Features Useful in Backup and Recovery

Oracle Flashback Database, which is explained in "Rewinding a Database with Flashback Database", is the most efficient alternative to DBPITR. Unlike the other flashback features, it operates at a physical level and reverts the current datafiles to their contents at a past time. The result is like the result of a DBPITR, including the OPEN RESETLOGS, but Flashback Database is typically faster because it does not require you to restore datafiles and requires only limited application of redo compared to media recovery.

As explained in "Configuring the Fast Recovery Area", a fast recovery area is required for Flashback Database. To enable logging for Flashback Database, you must set the DB_FLASHBACK_RETENTION_TARGET initialization parameter and issue the ALTER DATABASE FLASHBACK ON statement.

During normal operation, the database periodically writes old images of datafile blocks to the flashback logs. Flashback logs are written sequentially and often in bulk. In some respects, flashback logging is like a continuous backup. The database automatically creates, deletes, and resizes flashback logs in the recovery area. Flashback logs are not archived. You need only be aware of flashback logs for monitoring performance and determining disk space allocation for the recovery area.

When you perform a Flashback Database operation, the database uses flashback logs to access past versions of data blocks and also uses some data in the archived redo logs. Consequently, you cannot enable Flashback Database after a failure is discovered and then use Flashback Database to rewind through this failure. You can use the related capability of guaranteed restore points to protect the contents of your database at a fixed point in time, such as immediately before a risky database change.

Logical Flashback Features Useful in Backup and Recovery

The remaining flashback features operate at the logical level. The logical features documented in this chapter are as follows:

	
Flashback Table

You can recover a table or set of tables to a specified point in time in the past without taking any part of the database offline. In many cases, Flashback Table eliminates the need to perform more complicated point-in-time recovery operations. Flashback Table restores tables while automatically maintaining associated attributes such as current indexes, triggers and constraints, and not requiring you to find and restore application-specific properties.

"Rewinding a Table with Flashback Table" explains how to use this feature.

	
Flashback Drop

You can reverse the effects of a DROP TABLE statement.

"Rewinding a DROP TABLE Operation with Flashback Drop" explains how to use this feature.

	
Note:

Because the logical flashback features have uses not specific to backup and recovery, some of the documentation for them is located elsewhere in the documentation set.

All logical flashback features except Flashback Drop rely on undo data. Used primarily for providing read consistency for SQL queries and rolling back transactions, undo records contain the information required to reconstruct data as it existed at a past time and examine the record of changes since that past time.

Flashback Drop relies on a mechanism called the recycle bin, which the database uses to manage dropped database objects until the space they occupied is needed for new data. There is no fixed amount of space allocated to the recycle bin, and no guarantee as to how long dropped objects remain in the recycle bin. Depending on system activity, a dropped object may remain in the recycle bin for seconds or for months.

	
See Also:

	
Oracle Database Concepts and Oracle Database Administrator's Guide for more information about undo data and automatic undo management

	
Oracle Database Advanced Application Developer's Guide to learn how to use the logical flashback features

	
"Understanding Flashback Database, Restore Points and Guaranteed Restore Points" for more information on setting up your database to use Flashback Database, and on the related restore points feature

Rewinding a Table with Flashback Table

Flashback Table uses information in the undo tablespace rather than restored backups to retrieve the table. When a Flashback Table operation occurs, new rows are deleted and old rows are reinserted. The rest of your database remains available while the flashback of the table is being performed.

	
See Also:

Oracle Database Administrator's Guide for more information on Automatic Undo Management

Prerequisites for Flashback Table

To use the Flashback Table feature on one or more tables, use the FLASHBACK TABLE SQL statement with a target time or SCN.

You must have the following privileges to use the Flashback Table feature:

	
You must have been granted the FLASHBACK ANY TABLE system privilege or you must have the FLASHBACK object privilege on the table.

	
You must have SELECT, INSERT, DELETE, and ALTER privileges on the table.

	
To flash back a table to a restore point, you must have the SELECT ANY DICTIONARY or FLASHBACK ANY TABLE system privilege or the SELECT_CATALOG_ROLE role.

For an object to be eligible to be flashed back, the following prerequisites must be met:

	
The object must not be included the following categories: tables that are part of a cluster, materialized views, Advanced Queuing (AQ) tables, static data dictionary tables, system tables, remote tables, object tables, nested tables, or individual table partitions or subpartitions.

	
The structure of the table must not have been changed between the current time and the target flash back time.

The following DDL operations change the structure of a table: upgrading, moving, or truncating a table; adding a constraint to a table, adding a table to a cluster; modifying or dropping a column; adding, dropping, merging, splitting, coalescing, or truncating a partition or subpartition (with the exception of adding a range partition).

	
Row movement must be enabled on the table, which indicates that rowids will change after the flashback occurs.

This restriction exists because if rowids before the flashback were stored by the application, then there is no guarantee that the rowids will correspond to the same rows after the flashback. If your application depends on rowids, then you cannot use Flashback Table.

	
The undo data in the undo tablespace must extend far enough back in time to satisfy the flashback target time or SCN.

The point to which you can perform Flashback Table is determined by the undo retention period, which is the minimal time for which undo data will be kept before being recycled, and tablespace characteristics. The undo data contains information about data blocks before they were changed. The flashback operation uses undo to re-create the original data.

To ensure that the undo information is retained for Flashback Table operations, Oracle suggests setting the UNDO_RETENTION parameter to 86400 seconds (24 hours) or greater for the undo tablespace.

	
Note:

FLASHBACK TABLE ... TO BEFORE DROP is a use of the Flashback Drop feature, not Flashback Table, and therefore is not subject to these prerequisites. See "Rewinding a DROP TABLE Operation with Flashback Drop" for more information.

Performing a Flashback Table Operation

In this scenario, assume that you want to perform a flashback of the hr.temp_employees table after a user made a number of incorrect updates.

The perform a flashback of temp_employees:

	
Connect SQL*Plus to the target database and identify the current SCN.

You cannot roll back a FLASHBACK TABLE statement, but you can issue another FLASHBACK TABLE statement and specify a time just prior to the current time. Therefore, it is advisable to record the current SCN. You can obtain it by querying V$DATABASE as follows:

SELECT CURRENT_SCN
FROM V$DATABASE;

	
Identify the time, SCN, or restore point to which you want to return the table.

If you have created restore points, then you can list available restore points by executing the following query:

SELECT NAME, SCN, TIME
FROM V$RESTORE_POINT;

	
Ensure that enough undo data exists to rewind the table to the specified target.

If the UNDO_RETENTION intialization parameter is set, and the undo retention guarantee is on, then you can use the following query to determine how long undo data is being retained:

SELECT NAME, VALUE/60 MINUTES_RETAINED
FROM V$PARAMETER
WHERE NAME = 'undo_retention';

	
Ensure that row movement is enabled for all objects that you are rewinding with Flashback Table.

You can enable row movement for a table with the following SQL statement, where table is the name of the table that you are rewinding:

ALTER TABLE table ENABLE ROW MOVEMENT;

	
Determine whether the table that you intend to flash back has dependencies on other tables. If dependencies exist, then decide whether to flash back these tables as well.

You can issue the following SQL query to determine the dependencies, where schema_name is the schema for the table to be flashed back and table_name is the name of the table:

SELECT other.owner, other.table_name
FROM sys.all_constraints this, sys.all_constraints other
WHERE this.owner = schema_name
AND this.table_name = table_name
AND this.r_owner = other.owner
AND this.r_constraint_name = other.constraint_name
AND this.constraint_type='R';

	
Execute a FLASHBACK TABLE statement for the objects that you want to flash back.

The following SQL statement returns the hr.temp_employees table to the restore point named temp_employees_update:

FLASHBACK TABLE hr.temp_employees
 TO RESTORE POINT temp_employees_update;

The following SQL statement rewinds the hr.temp_employees table to its state when the database was at the time specified by the SCN:

FLASHBACK TABLE hr.temp_employees
 TO SCN 123456;

As shown in the following example, you can also specify the target point in time with TO_TIMESTAMP:

FLASHBACK TABLE hr.temp_employees
 TO TIMESTAMP TO_TIMESTAMP('2007-10-17 09:30:00', 'YYYY-MM-DD HH:MI:SS');

	
Note:

The mapping of timestamps to SCNs is not always exact. When using timestamps with the FLASHBACK TABLE statement, the time to which the table is flashed back can vary by up to approximately three seconds of the time specified for TO_TIMESTAMP. If an exact point in time is required, then use an SCN rather than a time.

	
Optionally, query the table to check the data.

Keeping Triggers Enabled During Flashback Table

By default, the database disables triggers on the affected table before performing a FLASHBACK TABLE operation. After the operation, the database returns the triggers to the state they were in before the operation (enabled or disabled). To keep triggers enabled during the flashback of the table, add an ENABLE TRIGGERS clause to the FLASHBACK TABLE statement in Step 6.

For example, assume that at 17:00 an HR administrator discovers that an employee is missing from the hr.temp_employees table. This employee was included in the table at 14:00, the last time the report was run. Therefore, someone accidentally deleted the record for this employee between 14:00 and 17:00. She uses Flashback Table to return the table to its state at 14:00, respecting any triggers set on the hr.temp_employees table, by using the SQL statement in the following example:

FLASHBACK TABLE temp_employees
 TO TIMESTAMP TO_TIMESTAMP('2005-03-03 14:00:00' , 'YYYY-MM-DD HH:MI:SS')
 ENABLE TRIGGERS;

	
See Also:

	
Oracle Database Administrator's Guide to learn how to recover tables with the Flashback Table feature

	
Oracle Database SQL Language Reference for a simple Flashback Table scenario

Rewinding a DROP TABLE Operation with Flashback Drop

This section explains how to retrieve objects from the recycle bin by means of the FLASHBACK TABLE ... TO BEFORE DROP statement.

About Flashback Drop

Flashback Drop reverses the effects of a DROP TABLE operation. Flashback Drop is faster than other recovery mechanisms that can be used in this situation, such as point-in-time recovery, and does not lead to downtime or loss of recent transactions.

When you drop a table, the database does not immediately remove the space associated with the table. Instead, the table is renamed and, along with any associated objects, placed in the recycle bin. System-generated recycle bin object names are unique. You can query objects in the recycle bin, just as you can query other objects.

A flashback operation retrieves the table from the recycle bin. When retrieving dropped tables, you can specify either the original user-specified name of the table or the system-generated name.

When you drop a table, the table and all of its dependent objects go into the recycle bin together. Likewise, when you perform Flashback Drop, the objects are generally all retrieved together. When you restore a table from the recycle bin, dependent objects such as indexes do not get their original names back; they retain their system-generated recycle bin names. Oracle Database retrieves all indexes defined on the table except for bitmap join indexes, and all triggers and constraints defined on the table except for referential integrity constraints that reference other tables.

It is possible that some dependent objects such as indexes may have been reclaimed because of space pressure. In such cases, the reclaimed dependent objects are not retrievable from the recycle bin.

Prerequisites of Flashback Drop

The following list summarizes the user privileges required for the operations related to Flashback Drop and the recycle bin:

	
DROP

Any user with drop privileges over an object can drop the object, placing it in the recycle bin.

	
FLASHBACK TABLE ... TO BEFORE DROP

Privileges for this statement are tied to the privileges for DROP. That is, any user who can drop an object can perform Flashback Drop to retrieve the dropped object from the recycle bin.

	
PURGE

Privileges for a purge of the recycle bin are tied to the DROP privileges. Any user having DROP TABLE or DROP ANY TABLE privileges can purge the objects from the recycle bin.

	
SELECT for objects in the Recycle Bin

Users must have SELECT and FLASHBACK privileges over an object in the recycle bin to query the object in the recycle bin. Any users who had the SELECT privilege over an object before it was dropped continue to have the SELECT privilege over the object in the recycle bin. Users must have FLASHBACK privilege to query any object in the recycle bin because these are objects from a past state of the database.

Objects must meet the following prerequisites to be eligible for retrieval from the recycle bin:

	
The recycle bin is only available for non-system, locally managed tablespaces. If a table is in a non-system, locally managed tablespace, but one or more of its dependent segments (objects) is in a dictionary-managed tablespace, then these objects are protected by the recycle bin.

	
Tables that have Fine-Grained Auditing (FGA) and Virtual Private Database (VPD) policies defined over them are not protected by the recycle bin.

	
Partitioned index-organized tables are not protected by the recycle bin.

	
The table must not have been purged, either by a user or by Oracle Database as a result of a space reclamation operation.

Performing a Flashback Drop Operation

Use the FLASHBACK TABLE ... TO BEFORE DROP statement to recover objects from the recycle bin. You can specify either the name of the table in the recycle bin or the original table name.

This section assumes a scenario in which you drop the wrong table. Many times you have been asked to drop tables in the test databases, but in this case you accidentally connect to the production database instead and drop hr.employee_demo. You decide to use FLASHBACK TABLE to retrieve the dropped object.

To retrieve a dropped table:

	
Connect SQL*Plus to the target database and obtain the name of the dropped table in the recycle bin.

You can use the SQL*Plus command SHOW RECYCLEBIN as follows:

SHOW RECYCLEBIN;

ORIGINAL NAME RECYCLEBIN NAME TYPE DROP TIME
---------------- --------------------------------- ------------ -------------
EMPLOYEE_DEMO BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 TABLE 2005-04-11:17:08:54

The ORIGINAL NAME column shows the original name of the object, while the RECYCLEBIN NAME column shows the name of the object as it exists in the bin.

Alternatively, you can query USER_RECYCLEBIN or DBA_RECYCLEBIN to obtain the table name. The following example queries the views to determine the original names of dropped objects:

SELECT object_name AS recycle_name, original_name, type
FROM recyclebin;

RECYCLE_NAME ORIGINAL_NAME TYPE
-------------------------------- --------------------- ----------
BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 EMPLOYEE_DEMO TABLE
BIN$JKS983293M1dsab4gsz/I249==$0 I_EMP_DEMO INDEX

If you plan to manually restore original names for dependent objects, then ensure that you make note of each dependent object's system-generated recycle bin name before you restore the table.

	
Note:

Object views such as DBA_TABLES do not display the recycle bin objects.

	
Optionally, query the table in the recycle bin.

You must use the recycle bin name of the object in your query rather than the object's original name. The following example queries the table with the recycle bin name of BIN$KSD8DB9L345KLA==$0:

SELECT *
FROM "BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0";

Quotes are required because of the special characters in the recycle bin name.

	
Note:

If you have the necessary privileges, then you can also use Flashback Query on tables in the recycle bin, but only by using the recycle bin name rather than the original table name. You cannot use DML or DDL statements on objects in the recycle bin.

	
Retrieve the dropped table.

Use the FLASHBACK TABLE ... TO BEFORE DROP statement. The following example restores the BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0 table, changes its name back to hr.employee_demo, and purges its entry from the recycle bin:

FLASHBACK TABLE "BIN$gk3lsj/3akk5hg3j2lkl5j3d==$0" TO BEFORE DROP;

The table name is enclosed in quotes because of the possibility of special characters appearing in the recycle bin object names.

Alternatively, you can use the original name of the table:

FLASHBACK TABLE HR.EMPLOYEE_DEMO TO BEFORE DROP;

You can also assign a new name to the restored table by specifying the RENAME TO clause. For example:

FLASHBACK TABLE "BIN$KSD8DB9L345KLA==$0" TO BEFORE DROP
 RENAME TO hr.emp_demo;

	
Optionally, verify that all dependent objects retained their system-generated recycle bin names.

The following query determines the names of the indexes of the retrieved hr.employee_demo table:

SELECT INDEX_NAME
FROM USER_INDEXES
WHERE TABLE_NAME = 'EMPLOYEE_DEMO';

INDEX_NAME

BIN$JKS983293M1dsab4gsz/I249==$0

	
Optionally, rename the retrieved indexes to their original names.

The following statement renames the index to its original name of i_emp_demo:

ALTER INDEX "BIN$JKS983293M1dsab4gsz/I249==$0" RENAME TO I_EMP_DEMO;

	
If the retrieved table had referential constraints before it was placed in the recycle bin, then re-create them.

This step must be performed manually because the recycle bin does not preserve referential constraints on a table.

Retrieving Objects When Multiple Objects Share the Same Original Name

You can create, and then drop, several objects with the same original name. All the dropped objects will be stored in the recycle bin. For example, consider the SQL statements in the following example.

Example 18-1 Dropping Multiple Objects with the Same Name

CREATE TABLE temp_employees (...columns); # temp_employees version 1
DROP TABLE temp_employees;

CREATE TABLE temp_employees (...columns); # temp_employees version 2
DROP TABLE temp_employees;

CREATE TABLE temp_employees (...columns); # temp_employees version 3
DROP TABLE temp_employees;

In Example 18-1, each table temp_employees is assigned a unique name in the recycle bin when it is dropped. You can use a FLASHBACK TABLE ... TO BEFORE DROP statement with the original name of the table, as shown in this example:

FLASHBACK TABLE temp_employees TO BEFORE DROP;

The most recently dropped table with this original name is retrieved from the recycle bin, with its original name. Example 18-2 shows the retrieval from the recycle bin of all three dropped temp_employees tables from the previous example, with each assigned a new name.

Example 18-2 Renaming Dropped Tables

FLASHBACK TABLE temp_employees TO BEFORE DROP
 RENAME TO temp_employees_VERSION_3;
FLASHBACK TABLE temp_employees TO BEFORE DROP
 RENAME TO temp_employees_VERSION_2;
FLASHBACK TABLE temp_employees TO BEFORE DROP
 RENAME TO temp_employees_VERSION_1;

Because the original name in FLASHBACK TABLE refers to the most recently dropped table with this name, the last table dropped is the first retrieved.

You can also retrieve any table from the recycle bin, regardless of any collisions among original names, by using the unique recycle bin name of the table. For example, assume that you query the recycle bin as follows (sample output included):

SELECT object_name, original_name, createtime
FROM recyclebin;

OBJECT_NAME ORIGINAL_NAME CREATETIME
------------------------------ --------------- -------------------
BIN$yrMKlZaLMhfgNAgAIMenRA==$0 TEMP_EMPLOYEES 2007-02-05:21:05:52
BIN$yrMKlZaVMhfgNAgAIMenRA==$0 TEMP_EMPLOYEES 2007-02-05:21:25:13
BIN$yrMKlZaQMhfgNAgAIMenRA==$0 TEMP_EMPLOYEES 2007-02-05:22:05:53

You can use the following command to retrieve the middle table:

FLASHBACK TABLE BIN$yrMKlZaVMhfgNAgAIMenRA==$0 TO BEFORE DROP;

	
See Also:

	
Oracle Database Administrator's Guide to learn how to use Flashback Drop and manage the recycle bin

	
Oracle Database SQL Language Reference for information about the FLASHBACK TABLE statement

Rewinding a Database with Flashback Database

This section explains the most common scenario for using Flashback Database to reverse unwanted changes to your database.

Prerequisites of Flashback Database

To use the FLASHBACK DATABASE command to return your database contents to points in time within the flashback window, your database must have been previously configured for flashback logging as described in "Understanding Flashback Database, Restore Points and Guaranteed Restore Points". To return the database to a guaranteed restore point, you must have previously defined a guaranteed restore point as described in "Using Normal and Guaranteed Restore Points".

Flashback Database works by undoing changes to the datafiles that exist at the moment that you run the command. Note the following important prerequisites:

	
No current datafiles are lost or damaged. You can only use FLASHBACK DATABASE to rewind changes to a datafile made by an Oracle database, not to repair media failures or recover from accidental deletion of datafiles.

	
You are not trying to use FLASHBACK DATABASE to return to a point in time before the restore or re-creation of a control file. If the database control file is restored from backup or re-created, then all accumulated flashback log information is discarded.

	
You are not trying to use FLASHBACK DATABASE to undo a resize datafile operation. A shrinking a database object such as a table does not affect your ability to use FLASHBACK DATABASE.

	
See Also:

Oracle Database Backup and Recovery Reference for a complete list of command prerequisites and usage notes for FLASHBACK DATABASE

Performing a Flashback Database Operation

This section presents a basic technique for performing a flashback of the database in almost all cases, specifying the desired target point in time with a time expression, the name of a normal or guaranteed restore point, or an SCN.

This scenario assumes that you are rewinding the database to a point in time within the current database incarnation. To return the database to the point in time immediately before the most recent OPEN RESETLOGS, see "Rewinding an OPEN RESETLOGS Operation with Flashback Database".

By default, an SCN used in a FLASHBACK DATABASE command refers to an SCN in the direct ancestral path of the database incarnations. As explained in "Database Incarnations", an incarnation is in this path if it was not abandoned after the database was previously opened with the RESETLOGS option. To retrieve changes in abandoned incarnations, see "Rewinding the Database to an SCN in an Abandoned Incarnation Branch".

To perform a Flashback Database operation:

	
Connect SQL*Plus to the target database and determine the desired SCN, restore point, or point in time for the FLASHBACK DATABASE command.

Obtain the earliest SCN in the flashback database window as follows:

SELECT OLDEST_FLASHBACK_SCN, OLDEST_FLASHBACK_TIME
FROM V$FLASHBACK_DATABASE_LOG;

The most recent SCN that can be reached with Flashback Database is the current SCN of the database. The following query returns the current SCN:

SELECT CURRENT_SCN
FROM V$DATABASE;

You can query available guaranteed restore points as follows (sample output included):

SELECT NAME, SCN, TIME, DATABASE_INCARNATION#,
 GUARANTEE_FLASHBACK_DATABASE
FROM V$RESTORE_POINT
WHERE GUARANTEE_FLASHBACK_DATABASE='YES';

NAME SCN TIME DATABASE_INCARNATION# GUA
--------------- ---------- --------------------- --------------------- ---
BEFORE_CHANGES 5753126 04-MAR-05 12.39.45 AM 2 YES

	
Note:

If the flashback window does not extend far enough back into the past to reach the desired target time, and if you do not have a guaranteed restore point at the desired time, then you can achieve similar results by using database point-in-time recovery, as described in "Performing Database Point-in-Time Recovery".

	
Shut down the database consistently, ensure that it is not opened by any instance, and then mount it:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

	
Repeat the query in Step 1 of this procedure.

Some flashback logging data is generated when the database is shut down. If flashback logs were deleted due to space pressure in the fast recovery area, then it is possible that your target SCN is no longer reachable.

	
Note:

If you run FLASHBACK DATABASE when your target SCN is outside the flashback window, then FLASHBACK DATABASE fails with an ORA-38729 error. In this case your database will not be changed.

	
Start RMAN and connect to the target database.

	
Run the SHOW command to see which channels are preconfigured.

During the flashback operation, RMAN may need to restore archived redo logs from backup. Enter the following command to see whether channels are configured (sample output is included):

SHOW ALL;

RMAN configuration parameters for database with db_unique_name PROD1 are:
.
.
.
CONFIGURE DEFAULT DEVICE TYPE TO DISK; # default
CONFIGURE DEVICE TYPE DISK PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE DEVICE TYPE SBT_TAPE PARALLELISM 1 BACKUP TYPE TO BACKUPSET; # default
CONFIGURE CHANNEL DEVICE TYPE 'SBT_TAPE' PARMS "SBT_LIBRARY=/usr/local/oracle/backup/lib/libobk.so";

If the necessary devices and channels are already configured, then no action is necessary. Otherwise, use the CONFIGURE command to configure automatic channels, or include ALLOCATE CHANNEL commands within a RUN block.

	
Run the RMAN FLASHBACK DATABASE command.

You can specify the target time by using one of the forms of the command shown in the following examples:

FLASHBACK DATABASE TO SCN 46963;

FLASHBACK DATABASE
 TO RESTORE POINT BEFORE_CHANGES;

FLASHBACK DATABASE TO TIME
 "TO_DATE('09/20/05','MM/DD/YY')";

When the FLASHBACK DATABASE command completes, the database is left mounted and recovered to the specified target time.

	
Open the database read-only in SQL*Plus and run some queries to verify the database contents.

Open the database read-only as follows:

ALTER DATABASE OPEN READ ONLY;

If you are satisfied with the state of the database, then end the procedure with Step 8. If you are not satisfied with the state of the database, skip to Step 9.

	
If satisfied with the results, then perform either of the following mutually exclusive actions:

	
Make the database available for updates by opening the database with the RESETLOGS option. If the database is currently open read-only, then execute the following commands in SQL*Plus:

SHUTDOWN IMMEDIATE
STARTUP MOUNT
ALTER DATABASE OPEN RESETLOGS;

	
Note:

After you perform this OPEN RESETLOGS operation, all changes to the database after the target SCN for FLASHBACK DATABASE are abandoned. Nevertheless, you can use the technique in "Rewinding the Database to an SCN in an Abandoned Incarnation Branch" to return the database to that range of SCNs while they remain in the flashback window.

	
Use Oracle Data Pump Export to make a logical backup of the objects whose state was corrupted. Afterward, use RMAN to recover the database to the present time:

RECOVER DATABASE;

This step undoes the effect of the Flashback Database by re-applying all changes in the redo logs to the database, returning it to the most recent SCN.

After re-opening the database read/write, you can import the exported objects with the Data Pump Import utility. See Oracle Database Utilities to learn how to use Data Pump.

	
If you find that you used the wrong restore point, time, or SCN for the flashback, then mount the database and perform one of the following mutually exclusive options:

	
If your chosen target time was not far enough in the past, then use another FLASHBACK DATABASE command to rewind the database further back in time:

FLASHBACK DATABASE TO SCN 42963; #earlier than current SCN

	
If you chose a target SCN that is too far in the past, then use RECOVER DATABASE UNTIL to wind the database forward in time to the desired SCN:

RECOVER DATABASE UNTIL SCN 56963; #later than current SCN

	
If you want to completely undo the effect of the FLASHBACK DATABASE command, then you can perform complete recovery of the database by using the RECOVER DATABASE command without an UNTIL clause or SET UNTIL command:

RECOVER DATABASE;

The RECOVER DATABASE command reapplies all changes to the database, returning it to the most recent SCN.

Monitoring Flashback Database

When you use Flashback Database to rewind a database to a past target time, Flashback Database determines which blocks changed after the target time and restores them from the flashback logs. This is called the restore phase. After this phase completes, Flashback Database then uses redo logs to reapply changes that were made after these blocks were written to the flashback logs. This is called the recovery phase.

The progress of Flashback Database during the restore phase can be monitored by querying the v$session_longops view. The opname is Flashback Database. Under the column TOTALWORK is the number of megabytes of flashback logs that must be read. The column SOFAR in Example 18-3 lists the number of megabytes that have been currently read.

Example 18-3 Tracking Flashback Database Progress - Restore Phase

SQL> select sofar, totalwork, units from v$session_longops where opname = 'Flashback Database';

SOFAR TOTALWORK UNITS
----- ---------- --------------------------------
 17 60 Megabytes

The progress of Flashback Database during the recovery phase can be monitored by querying the view v$recovery_progress.

	
See Also:

The Oracle Database Reference for information on the view v$recovery_progress.

Performing Database Point-in-Time Recovery

RMAN DBPITR restores the database from backups prior to the target time for recovery, then uses incremental backups and redo to roll the database forward to the target time. You can recover to an SCN, time, log sequence number, or restore point. Oracle recommends that you create restore points at important times to make point-in-time recovery more manageable if it ever becomes necessary.

Oracle recommends that you perform Flashback Database rather than database point-in-time recovery if possible. Media recovery with backups should be the last option when flashback technologies cannot be used to undo the most recent changes.

Prerequisites of Database Point-in-Time Recovery

The prerequisites for database point-in-time recovery are as follows:

	
Your database must be running in ARCHIVELOG mode.

	
You must have backups of all datafiles from before the target SCN for DBPITR and archived logs for the period between the SCN of the backups and the target SCN.

For a complete account of command prerequisites and usage notes, refer to the RECOVER entry in Oracle Database Backup and Recovery Reference.

Performing Database Point-in-Time Recovery

This section explains the basic steps of DBPITR. The procedure makes the following assumptions:

	
You are performing DBPITR within the current database incarnation. If your target time is not in the current incarnation, then see "Recovering the Database to an Ancestor Incarnation" for more information on DBPITR to ancestor incarnations.

	
The control file is current. If you need to restore a backup control file, then see "Performing Recovery with a Backup Control File".

	
Your database is using the current server parameter file. If you need to restore a backup server parameter file, then see "Restoring the Server Parameter File".

When performing DBPITR, you can avoid errors by using the SET UNTIL command to set the target time at the beginning of the procedure, rather than specifying the UNTIL clause on the RESTORE and RECOVER commands individually. This ensures that the datafiles restored from backup will have timestamps early enough to be used in the subsequent RECOVER operation.

To perform DBPITR:

	
Determine the time, SCN, restore point, or log sequence that should end recovery.

You can use the Flashback Query features to help you identify when the logical corruption occurred. If you have a flashback data archive enabled for a table, then you can query data that existed far in the past.

You can also use the alert log to try to determine the time of the event from which you need to recover.

Alternatively, you can use a SQL query to determine the log sequence number that contains the target SCN and then recover through this log. For example, run the following query to list the logs in the current database incarnation (sample output included):

SELECT RECID, STAMP, THREAD#, SEQUENCE#, FIRST_CHANGE#
 FIRST_TIME, NEXT_CHANGE#
FROM V$ARCHIVED_LOG
WHERE RESETLOGS_CHANGE# =
 (SELECT RESETLOGS_CHANGE#
 FROM V$DATABASE_INCARNATION
 WHERE STATUS = 'CURRENT');

RECID STAMP THREAD# SEQUENCE# FIRST_CHAN FIRST_TIM NEXT_CHANG
---------- ---------- ---------- ---------- ---------- --------- ----------
 1 344890611 1 1 20037 24-SEP-05 20043
 2 344890615 1 2 20043 24-SEP-05 20045
 3 344890618 1 3 20045 24-SEP-05 20046

For example, if you discover that a user accidentally dropped a tablespace at 9:02 a.m., then you can recover to 9 a.m., just before the drop occurred. You lose all changes to the database made after this time.

	
If you are using a target time expression instead of a target SCN, then make sure the time format environment variables are appropriate before invoking RMAN.

The following are sample Globalization Support settings:

NLS_LANG = american_america.us7ascii
NLS_DATE_FORMAT="Mon DD YYYY HH24:MI:SS"

	
Connect RMAN to the target database and, if applicable, the recovery catalog database. Bring the database to a mounted state:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

	
Perform the following operations within a RUN block:

	
Use SET UNTIL to specify the target time, restore point, SCN, or log sequence number for DBPITR. If specifying a time, then use the date format specified in the NLS_LANG and NLS_DATE_FORMAT environment variables.

	
If automatic channels are not configured, then manually allocate disk and tape channels as needed.

	
Restore and recover the database.

The following example performs DBPITR on the target database until SCN 1000:

RUN
{
 SET UNTIL SCN 1000;
 RESTORE DATABASE;
 RECOVER DATABASE;
}

As shown in the following examples, you can also use time expressions, restore points, or log sequence numbers to specify the SET UNTIL time:

SET UNTIL TIME 'Nov 15 2004 09:00:00';
SET UNTIL SEQUENCE 9923;
SET UNTIL RESTORE POINT before_update;

If the operation completes without errors, then DBPITR has succeeded.

	
Open the database read-only in SQL*Plus and perform queries as needed to ensure that the effects of the logical corruption have been reversed.

Open the database read-only as follows:

ALTER DATABASE OPEN READ ONLY;

If you are satisfied with the state of the database, then end the procedure with Step 6. If not satisfied, then you may have chosen the wrong target SCN. In this case, investigate the unwanted change further and determine a new target SCN, then repeat the DBPITR procedure.

	
If satisfied with the results, then perform either of the following mutually exclusive actions:

	
Open your database for read/write, abandoning all changes after the target SCN. In this case, you must shut down the database, mount it, and then execute the following command:

ALTER DATABASE OPEN RESETLOGS;

The OPEN RESETLOGS operation fails if a datafile is offline unless the datafile went offline normally or is read-only. You can bring files in read-only or offline normal tablespaces online after the RESETLOGS because they do not need any redo.

	
Export one or more objects from your database with Data Pump Export. You can then recover the database to the current point in time and re-import the exported objects, thus returning these objects to their state before the unwanted change without abandoning all other changes.

Flashback and Database Point-in-Time Recovery Scenarios

This section describes variations on the basic scenarios described in "Rewinding a Database with Flashback Database" and "Performing Database Point-in-Time Recovery".

Rewinding an OPEN RESETLOGS Operation with Flashback Database

The procedure for using Flashback Database to reverse an unwanted ALTER DATABASE OPEN RESETLOGS statement is similar to the general case described in "Performing a Flashback Database Operation". Rather than specifying a particular SCN or point in time for the FLASHBACK DATABASE command, however, you use FLASHBACK DATABASE TO BEFORE RESETLOGS.

To undo an OPEN RESETLOGS operation:

	
Connect SQL*Plus to the target database and verify that the beginning of the flashback window is earlier than the time of the most recent OPEN RESETLOGS.

Run the following queries:

SELECT RESETLOGS_CHANGE#
FROM V$DATABASE;

SELECT OLDEST_FLASHBACK_SCN
FROM V$FLASHBACK_DATABASE_LOG;

If V$DATABASE.RESETLOGS_CHANGE# is greater than V$FLASHBACK_DATABASE_LOG.OLDEST_FLASHBACK_SCN, then you can use Flashback Database to reverse the OPEN RESETLOGS.

	
Shut down the database, mount it, and recheck the flashback window. If the resetlogs SCN is still within the flashback window, then proceed to the next step.

	
Connect RMAN to the target database and perform a flashback to the SCN immediately before the RESETLOGS.

Use the following form of the FLASHBACK DATABASE command:

FLASHBACK DATABASE TO BEFORE RESETLOGS;

As with other uses of FLASHBACK DATABASE, if the target SCN is before the beginning of the flashback database window, an error is returned and the database is not modified. If the command completes successfully, then the database is left mounted and recovered to the most recent SCN before the OPEN RESETLOGS in the previous incarnation.

	
Open the database read-only in SQL*Plus and perform queries as needed to ensure that the effects of the logical corruption have been reversed.

Open the database read-only as follows:

ALTER DATABASE OPEN READ ONLY;

	
To make the database available for updates again, shut down the database, mount it, and then execute the following command:

ALTER DATABASE OPEN RESETLOGS;

Undoing an OPEN RESETLOGS on Standby Databases with Flashback Database

Flashback Database across OPEN RESETLOGS may be used to perform the following functions in a Data Guard environment:

	
Flashback to undo logical standby switchovers

In this case, the database reverts to its role (primary or standby) at the target time for the Flashback Database operation.

	
Undo of a physical standby activation

You can temporarily activate a physical standby database, use it for testing or reporting purposes, and then use Flashback Database to return it to its role as a physical standby.

	
Ongoing use of a standby database for testing

The use of Flashback Database means that you do are not require the use of storage snapshots.

	
See Also:

Oracle Data Guard Concepts and Administration for details on these advanced applications of Flashback Database with Data Guard

Rewinding the Database to an SCN in an Abandoned Incarnation Branch

The effect of Flashback Database or DBPITR followed by an OPEN RESETLOGS is to return the database to a previous SCN, and to abandon changes after this point. Therefore, some SCNs after that point can refer either to changes that were abandoned or changes in the current history of the database. In this way, a target SCN specified in FLASHBACK DATABASE can be ambiguous.

Unlike SCNs, time expressions and restore points are not ambiguous. A time expression is always associated with the incarnation that was current at that time. A restore point is always associated with the current incarnation when it was created. This is true even for times and restore points that correspond to abandoned database incarnations. The database incarnation is automatically reset to the incarnation that was current at the specified time or when the restore point was created.

You may want to use Flashback Database to rewind the database to an SCN in the parent incarnation that is later than the SCN of the OPEN RESETLOGS at which the current incarnation path branched from the old incarnation. Figure 14-1, "Database Incarnation History" shows how SCNs can be generated in an incarnation branch even after an OPEN RESETLOGS creates a new incarnation. As shown in the diagram, the database could be at SCN 3000 in incarnation 3 when you need to return to the abandoned SCN 1500 in incarnation 1.

If the SCN to which you are rewinding is in the direct ancestral path, or if you are rewinding the database to a restore point, then an explicit RESET DATABASE is not necessary for Flashback Database. However, an explicit RESET DATABASE TO INCARNATION command is required when using FLASHBACK DATABASE to rewind the database to an SCN in an abandoned database incarnation.

To rewind the database to an SCN in an abandoned incarnation branch:

	
Use SQL*Plus to connect to the target database and verify that the flashback logs contain enough information to flash back to the SCN.

For example, execute the following query:

SELECT OLDEST_FLASHBACK_SCN
FROM V$FLASHBACK_DATABASE_LOG;

	
Determine the target incarnation number for the Flashback Database operation, that is, the incarnation key for the parent incarnation.

For example, execute the following query:

SELECT PRIOR_INCARNATION#
FROM V$DATABASE_INCARNATION
WHERE STATUS = 'CURRENT';

	
Start RMAN and connect to the target database.

	
Shut down the database, and then mount it as follows:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

	
Set the database incarnation to the parent incarnation.

For example, use the following command to return to incarnation 1:

RESET DATABASE TO INCARNATION 1;

	
Run the FLASHBACK DATABASE command, specifying the target SCN.

For example, use the following command to rewind the database to SCN 1500:

FLASHBACK DATABASE TO SCN 1500;

	
Open the database read-only in SQL*Plus and perform queries as needed to ensure that the effects of the logical corruption have been reversed.

Open the database read-only as follows:

ALTER DATABASE OPEN READ ONLY;

	
To make the database available for updates again, shut down the database, mount it, and then execute the following command:

ALTER DATABASE OPEN RESETLOGS;

	
See Also:

	
"Database Incarnations" for useful background information about database incarnations, abandoned changes, and the effects of ALTER DATABASE OPEN RESETLOGS

	
Oracle Database Backup and Recovery Reference for details about the RESET DATABASE command

Recovering the Database to an Ancestor Incarnation

The procedure for DBPITR within the current incarnation is different from DBPITR to an SCN in a noncurrent incarnation. In the latter case, you must explicitly execute the RESET DATABASE to reset the database to the incarnation that was current at the target SCN. Also, you must restore a control file from the database incarnation containing the target SCN.

When RMAN is connected to a recovery catalog, a RESTORE CONTROLFILE command only searches the current database incarnation for the closest time specified in the UNTIL clause. To restore a control file from a noncurrent incarnation, you must execute LIST INCARNATION to identify the target database incarnation and specify this incarnation in the RESET DATABASE TO INCARNATION command.

When RMAN is connected to a recovery catalog, you cannot execute the RESET DATABASE TO INCARNATION command before the database is mounted. Thus, you must execute SET UNTIL, restore the control file from autobackup, and then mount it.

Assume the following situation:

	
RMAN is connected to a recovery catalog.

	
You have a backup of target database trgt from October 2, 2007.

	
DBPITR was performed on this database on October 10, 2007 to correct an earlier error. The OPEN RESETLOGS operation at the end of that DBPITR started a new incarnation.

On October 25, you discover that you need crucial data that was dropped from the database at 8:00 a.m. on October 8, 2007. This time is prior to the beginning of the current incarnation.

To perform DBPITR to a noncurrent incarnation:

	
Start RMAN and connect to a target database and recovery catalog.

	
Determine which database incarnation was current at the time of the backup.

Use LIST INCARNATION to find the primary key of the incarnation that was current at the target time:

LIST INCARNATION OF DATABASE trgt;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------- ---------- ----------
1 2 TRGT 1224038686 PARENT 1 02-OCT-06
1 582 TRGT 1224038686 CURRENT 59727 10-OCT-06

Look at the Reset SCN and Reset Time columns to identify the correct incarnation, and note the incarnation key in the Inc Key column. In this example, the backup was made 2 October 2007. In this case, the incarnation key value is 2.

	
Make sure the database is started but not mounted.

STARTUP FORCE NOMOUNT

	
Reset the target database to the incarnation obtained in Step 2.

In this example, specify the incarnation current at the time of the backup of 2 October. Use the value from the Inc Key column to identify the incarnation.

RESET DATABASE TO INCARNATION 2;

	
Restore and recover the database, performing the following actions in the RUN command:

	
Set the end time for recovery to the time just before the loss of the data.

	
Allocate any channels required that are not already configured.

	
Restore the control file from the October 2 backup and mount it.

	
Restore the datafiles and recover the database. Use the RECOVER DATABASE ... UNTIL command to perform DBPITR, bringing the database to the target time of 7:55 a.m. on October 8, just before the data was lost.

The following example shows all of the steps required in this case:

RUN
{
 SET UNTIL TIME 'Oct 8 2007 07:55:00';
 RESTORE CONTROLFILE;
 # without recovery catalog, use RESTORE CONTROLFILE FROM AUTOBACKUP
 ALTER DATABASE MOUNT;
 RESTORE DATABASE;
 RECOVER DATABASE;
}
ALTER DATABASE OPEN RESETLOGS;

	
See Also:

Oracle Database Backup and Recovery Reference for details about the RESET DATABASE command

15 Diagnosing and Repairing Failures with Data Recovery Advisor

This chapter explains how to use the Data Recovery Advisor tool in RMAN to diagnose and repair database failures. This chapter contains the following topics:

	
Overview of Data Recovery Advisor

	
Listing Failures

	
Checking for Block Corruptions by Validating the Database

	
Determining Repair Options

	
Repairing Failures

	
Changing Failure Status and Priority

Overview of Data Recovery Advisor

This section explains the purpose and basic concepts of the Data Recovery Advisor.

Purpose of Data Recovery Advisor

Data Recovery Advisor is an Oracle Database tool that automatically diagnoses data failures, determines and presents appropriate repair options, and executes repairs at the user's request. In this context, a data failure is a corruption or loss of persistent data on disk. By providing a centralized tool for automated data repair, Data Recovery Advisor improves the manageability and reliability of an Oracle database and thus helps reduce the MTTR.

Diagnosing a data failure and devising an optimal strategy for repair requires a high degree of training and experience. Data Recovery Advisor provides the following advantages over traditional repair techniques:

	
Data Recovery Advisor can potentially detect, analyze, and repair data failures before a database process discovers the corruption and signals an error. Early warnings help limit damage caused by corruption.

	
Manually assessing symptoms of data failures and correlating them into a problem statement can be complex, error-prone, and time-consuming. Data Recovery Advisor automatically diagnoses failures, assesses their impact, and reports these findings to the user.

	
Traditionally, users must manually determine repair options along with the repair impact. If multiple failures are present, then users must determine the right sequence of repair execution and try to consolidate repairs. In contrast, Data Recovery Advisor automatically determines the best repair options and runs checks to make sure that these options are feasible in your environment.

	
Execution of a data repair can be complex and error-prone. If you choose an automated repair option, then Data Recovery Advisor executes the repair and verifies its success.

Basic Concepts of Data Recovery Advisor

This section explains the concepts that you need to familiarize yourself with before using Data Recovery Advisor.

User Interfaces to Data Recovery Advisor

Data Recovery Advisor has both a command-line and GUI interface. The GUI interface is available in Oracle Enterprise Manager Database Control and Grid Control. You can click Perform Recovery in the Availability tab of the Database Home page to navigate to the page shown in Figure 15-1.

Figure 15-1 Data Recovery Advisor

[image: Screen capture of Data Recovery Advisor in Database Control]

In the RMAN command-line interface, the Data Recovery Advisor commands are LIST FAILURE, ADVISE FAILURE, REPAIR FAILURE, and CHANGE FAILURE.

A failure is detected either automatically by the database or through a manual check such as the VALIDATE command. You can use the LIST FAILURE command to view problem statements for failures and the effect of these failures on database operations. Each failure is uniquely identified by a failure number. In the same RMAN session, you can then use the ADVISE FAILURE command to view repair options, which typically include both automated and manual options.

After executing ADVISE FAILURE, you can either repair failures manually or run the REPAIR FAILURE command to repair the failures automatically. A repair is an action that fixes one or more failures. Examples of repairs include block media recovery, datafile media recovery, and Oracle Flashback Database. When you choose an automated repair option, Data Recovery Advisor verifies the repair success and closes the relevant repaired failures.

	
See Also:

Oracle Database 2 Day DBA to learn how to perform backup and recovery with Enterprise Manager

Data Integrity Checks

A checker is a diagnostic operation or procedure registered with the Health Monitor to assess the health of the database or its components. The health assessment is known as a data integrity check and can be invoked reactively or proactively.

Failures are normally detected reactively. A database operation involving corrupted data results in an error, which automatically invokes a data integrity check that searches the database for failures related to the error. If failures are diagnosed, then they are recorded in the Automatic Diagnostic Repository (ADR), which is a directory structure stored outside of the database. You can use Data Recovery Advisor to generate repair advice and repair failures only after failures have been detected by the database and stored in ADR.

You can also invoke a data integrity check proactively. You can execute the check through the Health Monitor, which detects and stores failures in the same way as when the checks are invoked reactively. You can also check for block corruption with the VALIDATE and BACKUP VALIDATE commands, as explained in "Checking for Block Corruptions by Validating the Database".

	
See Also:

Oracle Database Administrator's Guide to learn how to use the Health Monitor

Failures

A failure is a persistent data corruption that is detected by a data integrity check. A failure can manifest itself as observable symptoms such as error messages and alerts, but a failure is different from a symptom because it represents a diagnosed problem. After a problem is diagnosed by the database as a failure, you can obtain information about the failure and potentially repair it by means of Data Recovery Advisor.

Because failure information is not stored in the database itself, the database does not need to be open or mounted for you to access it. You can view failures when the database is started in NOMOUNT mode. Thus, the availability of the control file and recovery catalog does not affect the ability to view detected failures, although it may affect the feasibility of some repairs.

Data Recovery Advisor can diagnose failures such as the following:

	
Components such as datafiles and control files that are not accessible because they do not exist, do not have the correct access permissions, have been taken offline, and so on

	
Physical corruptions such as block checksum failures and invalid block header field values

	
Inconsistencies such as a datafile that is older than other database files

	
I/O failures such as hardware errors, operating system driver failures, and exceeding operating system resource limits (for example, the number of open files)

The Data Recovery Advisor may detect or handle some logical corruptions. In general, corruptions of this type require help from Oracle Support Services.

Failure Status

Every failure has a failure status: OPEN or CLOSED. The status of a failure is OPEN until the appropriate repair action is invoked. The status changes to CLOSED after the failure is repaired.

Every time you execute LIST FAILURE, Data Recovery Advisor revalidates all open failures and closes failures that no longer exist. Thus, if you fixed some failures as part of a separate procedure, or if the failures were transient problems that disappeared by themselves, running LIST FAILURE will automatically close them.

You can use CHANGE FAILURE to change the status of an open failure to CLOSED if you have fixed it manually. However, it makes sense to use CHANGE FAILURE ... CLOSED only if for some reason the failure was not closed automatically. If a failure still exists when you use CHANGE to close it manually, then Data Recover Advisor re-creates it with a different failure ID when the appropriate data integrity check is executed.

Failure Priority

Every failure has a failure priority: CRITICAL, HIGH, or LOW. Data Recovery Advisor only assigns CRITICAL or HIGH priority to diagnosed failures.

Failures with CRITICAL priority require immediate attention because they make the whole database unavailable. For example, a disk containing a current control file may fail. Failures with HIGH priority make a database partly unavailable or unrecoverable and usually have to be repaired quickly. Examples include block corruptions and missing archived redo logs.

If a failure was assigned a HIGH priority, but the failure has little impact on database availability and recoverability, then you can downgrade the priority to LOW. A LOW priority indicates that a failure can be ignored until more important failures are fixed.

By default LIST FAILURE displays only failures with CRITICAL and HIGH priority. You can use the CHANGE command to change the status for LOW and HIGH failures, but you cannot change the status of CRITICAL failures. The main reason for changing a priority to LOW is to reduce the LIST FAILURE output. If a failure cannot be revalidated at this time (for example, because of another failure), then LIST FAILURE shows the failure as open.

Failure Grouping

For clarity, Data Recovery Advisor groups related failures together. For example, if 20 different blocks in a file are corrupted, then these failures will be grouped under a single parent failure. By default, Data Recovery Advisor lists information about the group of failures, although you can specify the DETAIL option to list information about the individual subfailures.

A subfailure has the same format as a failure. You can get advice on a subfailure and repair it separately or in a combination with any other failure.

Manual Actions and Automatic Repair Options

The ADVISE FAILURE command can present both manual and automatic repair options. Data Recovery Advisor categorizes manual actions as either mandatory or optional.

In some cases, the only possible actions are manual. Suppose that no backups exist for a lost control file. In this case, the manual action is to execute the CREATE CONTROLFILE statement. Data Recovery Advisor presents this manual action as mandatory because no automatic repair is available. In contrast, suppose that RMAN backups exist for a missing datafile. In this case, the REPAIR FAILURE command can perform the repair automatically by restoring and recovering the datafile. An optional manual action would be to restore the datafile if it was unintentionally renamed or moved. Data Recovery Advisor suggests optional manual actions if they might prevent a more extreme form of repair such as datafile restore and recovery.

In contrast to manual actions, automated repairs can be performed by Data Recovery Advisor. The ADVISE FAILURE command presents an option ID for each automated repair option and summarizes the action.

Data Recovery Advisor performs feasibility checks before recommending an automated repair. For example, Data Recovery Advisor checks that all backups and archived redo logs needed for media recovery are present and consistent. Data Recovery Advisor may need specific backups and archived redo logs. If the files needed for recovery are not available, then recovery will not possible.

	
Note:

For performance reasons, Data Recovery Advisor does not exhaustively check every byte in every file. Thus, it is possible that a feasible repair may still fail because of a corrupted backup or archived redo log file.

Consolidated Repairs

When possible, Data Recovery Advisor consolidates repairs to fix multiple failures into a single repair. A consolidated repair may contain multiple steps.

Sometimes a consolidated repair is not possible, as when one failure prevents the creation of repairs for other failures. For example, the feasibility of a datafile repair cannot be determined when the control file is missing. In such cases, Data Recovery Advisor generates a repair option for failures that can be repaired and prints a message stating that some selected failures cannot be repaired at this time. After executing the proposed repair, you can repeat the LIST, ADVISE, and REPAIR sequence to repair remaining failures.

Repair Scripts

Whenever Data Recovery Advisor generates an automated repair option, it creates a script that explains which commands RMAN intends to use to repair the failure. Data Recovery Advisor prints the location of this script, which is a text file residing on the operating system. Example 15-1 shows a sample repair script, which shows how Data Recovery Advisor plans to repair the loss of datafile 27.

Example 15-1 Sample Repair Script

restore and recover datafile
sql 'alter database datafile 27 offline';
restore datafile 27;
recover datafile 27;
sql 'alter database datafile 27 online';

If you do not want Data Recovery Advisor to automatically repair the failure, then you can copy the script, edit it, and execute it manually.

Supported Database Configurations

In the current release, Data Recovery Advisor only supports single-instance databases. Oracle Real Application Clusters (Oracle RAC) databases are not supported.

If a data failure occurs that brings down all Oracle RAC instances, then you can mount the database in single-instance mode and use Data Recovery Advisor to detect and repair control file, SYSTEM datafile, and data dictionary failures. You can also invoke data recovery checks proactively to test other database components for data failures. This approach will not detect data failures that are local to other cluster instances, for example, an inaccessible datafile.

In a Data Guard environment, Data Recovery Advisor cannot do the following:

	
Use files transferred from a physical standby database to repair failures on a primary database

	
Diagnose and repair failures on a standby database

However, if the primary database is unavailable, then Data Recovery Advisor may recommend a failover to a standby database. After the failover you can repair the old primary database. If you are using Enterprise Manager Grid Control in a Data Guard configuration, then you can initiate a failover through the Data Recovery Advisor recommendations page.

	
See Also:

Oracle Data Guard Concepts and Administration to learn how to use RMAN in a Data Guard configuration

Basic Steps of Diagnosing and Repairing Failures

The Data Recovery Advisor workflow begins when you either suspect or discover a failure. You can discover failures in many ways, including error messages, alerts, trace files, and failed data integrity checks. As explained in "Data Integrity Checks", the database can automatically diagnose failures when errors occur.

The basic process for responding to failures is to start an RMAN session and perform all of the following steps in the same session:

	
List failures by running the LIST FAILURE command.

This task is explained in "Listing Failures".

	
If you suspect that failures exist that have not been automatically diagnosed by the database, then run VALIDATE DATABASE to check for corrupt blocks and missing files.

If VALIDATE detects a problem, then RMAN triggers execution of a failure assessment. If a failure is detected, then RMAN logs it into the Automated Diagnostic Repository, where is can be accessed by Data Recovery Advisor.

This task is explained in "Checking for Block Corruptions by Validating the Database".

	
Determine repair options by running the ADVISE FAILURE command.

This task is explained in "Determining Repair Options".

	
Choose a repair option. You can repair the failures manually or run the REPAIR FAILURE command to fix them automatically.

This task is explained in "Repairing Failures".

	
Return to the first step to confirm that all failures were repaired or determine which failures remain.

If appropriate, you can use CHANGE FAILURE command at any time in the Data Recovery Advisor workflow to change the priority of a failure from LOW to HIGH or HIGH to LOW, or close a failure that has been fixed manually. This task is explained in "Changing Failure Status and Priority".

Listing Failures

If you suspect or know that one or more database failures have occurred, then use LIST FAILURE to obtain information about them. You can list all or a subset of failures and restrict output in various ways. Failures are uniquely identified by failure numbers. These numbers are not consecutive, so gaps between failure numbers have no significance.

The LIST FAILURE command does not execute data integrity checks to diagnose new failures; rather, it lists the results of previously executed assessments. Thus, repeatedly executing LIST FAILURE reveals new failures only if the database automatically diagnosed them in response to errors that occurred in between command executions. However, executing LIST FAILURE causes Data Recovery Advisor to revalidate all existing failures. If a user fixed failures manually, or if transient failures disappeared, then Data Recovery Advisor removes these failures from the LIST FAILURE output. If a failure cannot be revalidated at this moment (for example, because of another failure), LIST FAILURE shows the failure as open.

Listing All Failures

The easiest way to determine problems that your database is encountering is to use the LIST FAILURE command.

To list all failures:

	
Start RMAN and connect to a target database. The target database instance must be started.

	
Execute the LIST FAILURE command.

The following example reports all failures known to Data Recovery Advisor (the output has been reformatted to fit on the page).

RMAN> LIST FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf' contains one or more corrupt blocks

In this example, RMAN reports two different failures: a group of missing datafiles and a datafile with corrupt blocks. The output indicates the unique identifier for each failure (12 and 5), the priority, status, and detection time.

	
Optionally, execute LIST FAILURE ... DETAIL to list failures individually.

As explained in "Failure Grouping", Data Recovery Advisor consolidates failures when possible. Specify the DETAIL option to list failures individually. For example, if multiple block corruptions exist in a file, then specifying the DETAIL option would list each of the block corruptions. The following example lists detailed information about failure 101.

RMAN> LIST FAILURE 101 DETAIL;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf' contains one or more corrupt blocks
 List of child failures for parent failure ID 101
 Failure ID Priority Status Time Detected Summary
 ---------- -------- --------- ------------- -------
 104 HIGH OPEN 23-APR-07 Block 56416 in datafile 1: '/disk1/oradata/prod/system01.dbf' is media corrupt
 Impact: Object BLKTEST owned by SYS might be unavailable

	
Proceed to "Determining Repair Options" to determine how to repair the failures displayed by the LIST FAILURE command.

Listing a Subset of Failures

Besides providing more verbose output, LIST FAILURE also enables you to restrict output. For example, you can execute LIST FAILURE with the CRITICAL, HIGH, LOW, or CLOSED options to list only failures with a particular status or priority. You can also exclude specified failures from the output by specifying EXCLUDE FAILURE.

To list a subset of failures:

	
Start RMAN and connect to a target database. The target database instance must be started.

	
Execute LIST FAILURE with the desired options.

The following examples illustrate some LIST FAILURE commands:

LIST FAILURE LOW;
LIST FAILURE CLOSED;
LIST FAILURE EXCLUDE FAILURE 234234;

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the LIST FAILURE command

Checking for Block Corruptions by Validating the Database

As explained in "Data Integrity Checks", the database invokes data integrity checks reactively when a user transaction is trying to access corrupted data. In some cases, latent failures can go undetected. For example, when a data block corruption error occurs, the database reactively execute a data integrity check that validates the block on which the error occurred and other blocks in its immediate vicinity. However, blocks outside of the vicinity may be corrupted. Also, corrupted blocks that are never read by the database will never be detected by a reactive data integrity check.

One effective way to execute a data integrity check proactively is to run the VALIDATE or BACKUP VALIDATE commands in RMAN. These commands can check datafiles and control files for physical and logical corruption. If RMAN discovers block corruptions, then it logs them into the Automatic Diagnostic Repository and creates one or more failures. You can then use Data Recovery Advisor to list information about the failures and repair them.

To validate the database:

	
Start RMAN and connect to a target database. The target database must be mounted.

	
Validate the desired database files.

The following example uses VALIDATE DATABASE to check for physical and logical corruption in the whole database (partial sample output included). Because "Listing Failures" indicates that some datafiles are missing, the SKIP INACCESSIBLE clause is specified. The output shows that the system01.dbf database file has one newly corrupt block (Blocks Failing) and no blocks previously marked corrupt by the database (Marked Corrupt).

RMAN> VALIDATE CHECK LOGICAL SKIP INACCESSIBLE DATABASE;

Starting validate at 23-APR-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=103 device type=DISK
could not access datafile 28
skipping inaccessible file 28
RMAN-06060: WARNING: skipping datafile compromises tablespace USERS recoverability
RMAN-06060: WARNING: skipping datafile compromises tablespace USERS recoverability
channel ORA_DISK_1: starting validation of datafile
channel ORA_DISK_1: specifying datafile(s) for validation
input datafile file number=00001 name=/disk1/oradata/prod/system01.dbf
input datafile file number=00002 name=/disk1/oradata/prod/sysaux01.dbf
input datafile file number=00022 name=/disk1/oradata/prod/undotbs01.dbf
input datafile file number=00023 name=/disk1/oradata/prod/cwmlite01.dbf
input datafile file number=00024 name=/disk1/oradata/prod/drsys01.dbf
input datafile file number=00025 name=/disk1/oradata/prod/example01.dbf
input datafile file number=00026 name=/disk1/oradata/prod/indx01.dbf
input datafile file number=00027 name=/disk1/oradata/prod/tools01.dbf
channel ORA_DISK_1: validation complete, elapsed time: 00:00:25
List of Datafiles
=================
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
1 FAILED 0 3536 57600 637711
 File Name: /disk1/oradata/prod/system01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 1 41876
 Index 0 7721
 Other 0 4467
.
.
.
File Status Marked Corrupt Empty Blocks Blocks Examined High SCN
---- ------ -------------- ------------ --------------- ----------
27 OK 0 1272 1280 400914
 File Name: /disk1/oradata/prod/tools01.dbf
 Block Type Blocks Failing Blocks Processed
 ---------- -------------- ----------------
 Data 0 0
 Index 0 0
 Other 0 8

validate found one or more corrupt blocks
See trace file /disk1/oracle/log/diag/rdbms/prod/prod/trace/prod_ora_2596.trc
 for details
channel ORA_DISK_1: starting validation of datafile
channel ORA_DISK_1: specifying datafile(s) for validation
including current control file for validation
including current SPFILE in backup set
channel ORA_DISK_1: validation complete, elapsed time: 00:00:01
List of Control File and SPFILE
===============================
File Type Status Blocks Failing Blocks Examined
------------ ------ -------------- ---------------
SPFILE OK 0 2
Control File OK 0 512
Finished validate at 23-APR-07

	
See Also:

	
Chapter 16, "Validating Database Files and Backups"

	
Oracle Database Backup and Recovery Reference to learn about the VALIDATE command

	
Oracle Database Administrator's Guide to learn about how Oracle Database manages diagnostic data

Determining Repair Options

Use the ADVISE FAILURE command to display repair options after running LIST FAILURE in an RMAN session. This command prints a summary of the failures and implicitly closes all open failures that are already repaired.

Where appropriate, the ADVISE FAILURE command presents a list of manual and automated repair options. Manual options, which are categorized as either mandatory or optional, appear first. In some cases, an optional manual fix can avoid more extreme actions such as restoring and recovering datafiles. As a rule, use the repair technique that has the least effect on the database and the least possibility for error.

Determining Repair Options for All Failures

If one or more failures exist, then you should typically use LIST FAILURE to show information about the failures and then use ADVISE FAILURE in the same RMAN session to obtain a report of your repair options.

To determine repair options for all failures:

	
List failures as described in "Listing All Failures".

	
In the same RMAN session, execute ADVISE FAILURE.

The following example requests repair options for all failures known to Data Recovery Advisor and includes sample output (reformatted to fit the page).

RMAN> ADVISE FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles
 are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf' contains one or more corrupt blocks

analyzing automatic repair options; this may take some time
using channel ORA_DISK_1
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /disk1/oradata/prod/users01.dbf was unintentionally renamed or moved, restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 28; Perform block media recovery of
 block 56416 in file 1
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_660500184.hm

In the preceding example, ADVISE FAILURE reports two failures: a missing datafile and a datafile with corrupt blocks. The command does not list mandatory manual actions, but it suggests making sure that the missing datafile was not accidentally renamed or removed. The automated repair option involves block media recovery and restoring and recovering the missing datafile. ADVISE FAILURE lists the location of the repair script.

The following variation of the same example shows the output when the RMAN backups or archived redo logs needed for the automated repair are not available. The command ADVISE FAILURE now shows mandatory manual actions.

RMAN> ADVISE FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles
 are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf' contains one or more corrupt blocks

analyzing automatic repair options; this may take some time
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=103 device type=DISK
analyzing automatic repair options complete

Mandatory Manual Actions
========================
1. If file /disk1/oradata/prod/users01.dbf was unintentionally renamed or moved, restore it
2. Contact Oracle Support Services if the preceding recommendations cannot be used, or if they do not fix the failures selected for repair

Optional Manual Actions
=======================
no manual actions available

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Perform block media recovery of block 56416 in file 1
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_1863891774.hm

	
Proceed to "Repairing Failures" to determine how to repair the failures shown in the LIST FAILURE output.

Determining Repair Options for a Subset of Failures

You can also request repair options for specific failures. You can specify failures by status (CRITICAL, HIGH, or LOW) or by failure number. You can also use EXCLUDE FAILURE to exclude one or more failures from the report.

To determine repair options for a subset of failures:

	
List failures as described in "Listing All Failures".

	
In the same RMAN session, execute ADVISE FAILURE with the desired options.

The following example requests repair options for failure 101 only.

RMAN> ADVISE FAILURE 101;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf' contains one or more corrupt blocks

analyzing automatic repair options; this may take some time
using channel ORA_DISK_1
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
no manual actions available

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Perform block media recovery of block 56416 in file 1
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_708819503.hm

	
Proceed to "Repairing Failures" to determine how to repair the failures displayed by the LIST FAILURE command.

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the ADVISE FAILURE command

Repairing Failures

This section explains how to use Data Recovery Advisor to repair failures automatically.

About Repairing Failures

If ADVISE FAILURE suggests manual repairs, then try these first. If manual repairs are not possible, or if they do not repair all failures, then you can use REPAIR FAILURE to automatically fix failures suggested in the most recent ADVISE FAILURE command in your current RMAN session.

By default, REPAIR FAILURE prompts for confirmation before it begins executing. You can suppress the confirmation prompt by specifying the NOPROMPT option. After it starts executing, the command indicates the current phase of repair. Depending on the circumstances, RMAN may prompt for a response. After executing a repair, RMAN reevaluates all existing failures on the chance that they may have been fixed during this repair.

Before performing a repair, it is typically advisable to preview it by specifying the PREVIEW option. RMAN does not make any repairs and generates a script with all repair actions and comments. If you do not specify a particular repair option, then RMAN uses the first repair option of the most recent ADVISE FAILURE command in the current session. By default the repair script is displayed to standard output. You can use the SPOOL command to write the script to an editable file.

	
See Also:

	
Oracle Database Backup and Recovery Reference to learn about the REPAIR FAILURE command

	
Oracle Database Backup and Recovery Reference to learn about the SPOOL command

Repairing a Failure

By default the script is displayed to standard output. You can use the SPOOL command to write the script to an editable file.

To repair a failure:

	
List failures as described in "Listing All Failures".

	
Display repair options as described in "Determining Repair Options".

	
Optionally, execute REPAIR FAILURE PREVIEW.

The following example previews the first repair options displayed by the previous ADVISE FAILURE command in the RMAN session.

RMAN> REPAIR FAILURE PREVIEW;

Strategy: The repair includes complete media recovery with no data loss
Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_475549922.hm
contents of repair script:
 # restore and recover datafile
 sql 'alter database datafile 28 offline';
 restore datafile 28;
 recover datafile 28;
 sql 'alter database datafile 28 online';
 # block media recovery
 recover datafile 1 block 56416;

	
Execute REPAIR FAILURE.

The following repair restores and recovers one datafile and performs block media recovery on one corrupt block. RMAN prompts for confirmation that it should perform the repair. The user-entered text is in bold.

RMAN> REPAIR FAILURE;

Strategy: The repair includes complete media recovery with no data loss
Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_475549922.hm
contents of repair script:
 # restore and recover datafile
 sql 'alter database datafile 28 offline';
 restore datafile 28;
 recover datafile 28;
 sql 'alter database datafile 28 online';
 # block media recovery
 recover datafile 1 block 56416;

Do you really want to execute the above repair (enter YES or NO)? YES
executing repair script

sql statement: alter database datafile 28 offline

Starting restore at 23-APR-07
using channel ORA_DISK_1

channel ORA_DISK_1: starting datafile backup set restore
channel ORA_DISK_1: specifying datafile(s) to restore from backup set
channel ORA_DISK_1: restoring datafile 00028 to /disk1/oradata/prod/users01.dbf
channel ORA_DISK_1: reading from backup piece /disk2/PROD/backupset/2007_04_18/o1_mf_nnndf_TAG20070418T182042_32fjzd3z_.bkp
channel ORA_DISK_1: piece handle=/disk2/PROD/backupset/2007_04_18/o1_mf_nnndf_TAG20070418T182042_32fjzd3z_.bkp tag=TAG20070418T182042
channel ORA_DISK_1: restored backup piece 1
channel ORA_DISK_1: restore complete, elapsed time: 00:00:03
Finished restore at 23-APR-07

Starting recover at 23-APR-07
using channel ORA_DISK_1

starting media recovery
media recovery complete, elapsed time: 00:00:01

Finished recover at 23-APR-07

sql statement: alter database datafile 28 online

Starting recover at 23-APR-07
using channel ORA_DISK_1
searching flashback logs for block images until SCN 429690
finished flashback log search, restored 1 blocks

starting media recovery
media recovery complete, elapsed time: 00:00:03

Finished recover at 23-APR-07
repair failure complete

	
Optionally, execute LIST FAILURE to confirm

Changing Failure Status and Priority

In some situations, you may want to use the CHANGE FAILURE command to alter the status or priority of a failure. For example, if a block corruption has HIGH priority, you may want to change it to LOW temporarily if the block is in a little-used tablespace.

If you repair a failure by a means other than the REPAIR FAILURE command, then Data Recovery Advisor closes it implicitly the next time you execute LIST FAILURE. For this reason, you do not normally need to execute the CHANGE FAILURE ... CLOSED command. You should need to use this command only if the automatic failure revalidation fails, but you believe the failure no longer exists. If you use CHANGE FAILURE to close a failure that still exists, then Data Recovery Advisor re-creates it with a different failure ID when the appropriate data integrity check is executed.

Typically, you specify the failures that you want to change by failure number. You can also change failures in bulk by specifying ALL, CRITICAL, HIGH, or LOW. You can change a failure to CLOSED or to PRIORITY HIGH or PRIORITY LOW.

To change the status or priority of a failure:

	
List failures as described in "Listing All Failures".

The following example lists one failure involving corrupt data blocks.

RMAN> LIST FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles
 are missing
101 HIGH OPEN 23-APR-07 Datafile 25: '/disk1/oradata/prod/example01.dbf' contains one or more corrupt blocks

	
Execute CHANGE FAILURE with the desired options.

The following example changes the priority of a block corruption failure from HIGH to LOW.

RMAN> CHANGE FAILURE 101 PRIORITY LOW;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
101 HIGH OPEN 23-APR-07 Datafile 25: '/disk1/oradata/prod/example01.dbf' contains one or more corrupt blocks

Do you really want to change the above failures (enter YES or NO)? YES
changed 1 failures to LOW priority

	
Optionally, execute LIST FAILURE ALL to view the change.

If you execute LIST FAILURE without ALL, then the command lists failures with LOW priority only if no CRITICAL or HIGH priority failures exist.

RMAN> LIST FAILURE ALL;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles
 are missing
101 LOW OPEN 23-APR-07 Datafile 25: '/disk1/oradata/prod/example01.dbf' contains one or more corrupt blocks

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the CHANGE command

6 Configuring the RMAN Environment: Advanced Topics

This chapter describes how to perform setup and configuration tasks. This chapter contains the following topics:

	
Configuring Advanced Channel Options

	
Configuring Advanced Backup Options

	
Configuring Auxiliary Instance Datafile Names

	
Configuring the Snapshot Control File Location

	
Configuring RMAN for Use with a Shared Server

	
Enabling Lost Write Detection

Configuring Advanced Channel Options

Whereas "Configuring Channels" explains the basics for configuring channels, this section explains more advanced channel topics. This section contains the following topics:

	
About Channel Control Options

	
Configuring Specific Channel Parameters

	
See Also:

"RMAN Channels" for a conceptual overview of configured and allocated channels, and Oracle Database Backup and Recovery Reference for CONFIGURE syntax

About Channel Control Options

Whether you allocate channels manually or use automatic channel allocation, you can use channel commands and options to control behavior. Table 6-1 summarizes the ways in which you can control channel behavior. Unless noted, all channel parameters are supported in both CONFIGURE CHANNEL and ALLOCATE CHANNEL commands.

Table 6-1 Channel Control Options

	Type of Channel Control	Commands
	
Limit I/O bandwidth consumption

	
Use the RATE channel parameter to act as a throttling mechanism for backups.

	
Limit backup sets and pieces

	
Use the MAXPIECESIZE channel parameter to set limits on the size of backup pieces. You can also use the MAXSETSIZE parameter on the BACKUP and CONFIGURE commands to set a limit for the size of backup sets.

	
Vendor-specific instructions

	
Use the PARMS channel parameter to specify vendor-specific information for a media manager. You can also use the SEND command to send vendor-specific commands to a media manager.

	
Channel parallel backup and restore operations

	
Use CONFIGURE DEVICE TYPE ... PARALLELISM for persistent channel parallelism or multiple ALLOCATE CHANNEL commands for job-level parallelism.

	
Connection settings for database instances

	
Specify which instance performs an operation with the CONNECT channel parameter.

	
See Also:

Oracle Database Backup and Recovery Reference for ALLOCATE CHANNEL syntax, and Oracle Database Backup and Recovery Reference for CONFIGURE syntax

Configuring Specific Channel Parameters

In addition to configuring parameters that apply to all channels of a particular type, you can also configure parameters that apply to one specific channel. Run the CONFIGURE CHANNEL n command (where n is a positive integer less than 255) to configure a specific channel.

When manually numbering channels, you must specify one or more channel options (for example, MAXPIECESIZE or FORMAT) for each channel. When you use that specific numbered channel in a backup, the configured settings for that channel are used instead of the configured generic channel settings.

Configure specific channels by number when it is necessary to control the parameters set for each channel separately. This technique is necessary in the following situations:

	
When running an Oracle Real Application Clusters (Oracle RAC) database in which individual nodes do not have access to the full set of backups. Each channel must be configured with a node-specific connect string so that all backups are accessible by at least one channel.

	
When using a media manager that requires different PARMS settings on each channel.

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide to learn about RMAN backups in an Oracle RAC environment

Configuring Specific Channels: Examples

In this example, you want to send disk backups to two different disks. Configure disk channels as follows:

CONFIGURE DEFAULT DEVICE TYPE TO disk; # backup goes to disk
CONFIGURE DEVICE TYPE disk PARALLELISM 2; # two channels used in parallel
CONFIGURE CHANNEL 1 DEVICE TYPE DISK FORMAT '/disk1/%U' # 1st channel to disk1
CONFIGURE CHANNEL 2 DEVICE TYPE DISK FORMAT '/disk2/%U' # 2nd channel to disk2
BACKUP DATABASE; # backup - first channel goes to disk1 and second to disk2

Assume a different case in which you have two tape drives and want each drive to use tapes from a different tape media family. Configure your default output device and default tape channels as shown in Example 6-1 to use parallel database backups.

Example 6-1 Configuring Channel Parallelism for Tape Devices

CONFIGURE DEFAULT DEVICE TYPE TO sbt; # backup goes to sbt
CONFIGURE DEVICE TYPE sbt PARALLELISM 2; # two sbt channels allocated by default
Configure channel 1 to pool named first_pool
CONFIGURE CHANNEL 1 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=first_pool)';
configure channel 2 to pool named second_pool
CONFIGURE CHANNEL 2 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=second_pool)';
BACKUP DATABASE; # first stream goes to 'first_pool' and second to 'second_pool'

In Example 6-1, the backup data is divided between the two tape devices. Each configured channel backs up approximately half the total data.

Relationship Between CONFIGURE CHANNEL and Parallelism Setting

The PARALLELISM setting is not constrained by the number of specifically configured channels. For example, if you back up to 20 different tape devices, then you can configure 20 different SBT channels, each with a manually assigned number (from 1 to 20) and each with a different set of channel options. In such a situation, you can set PARALLELISM to any value up to the number of devices, in this instance 20.

RMAN always numbers parallel channels starting with 1 and ending with the PARALLELISM setting. For example, if the default device is SBT and parallelism is set to 3, then RMAN names the channels as follows:

ORA_SBT_TAPE_1
ORA_SBT_TAPE_2
ORA_SBT_TAPE_3

RMAN always uses the name ORA_SBT_TAPE_n even if you configure DEVICE TYPE sbt (not the synonymous sbt_tape). RMAN always allocates the number of channels specified in PARALLELISM, using specifically configured channels if you have configured them and generic channels if you have not. If you configure specific channels with numbers higher than the parallelism setting, then this setting prevents RMAN from using them.

	
See Also:

"RMAN Channels" to learn about channels

Configuring Advanced Backup Options

"Configuring the Environment for RMAN Backups" explains the basics for configuring RMAN to make backups. This section explains more advanced configuration options. This section contains the following topics:

	
Configuring the Maximum Size of Backup Sets

	
Configuring the Maximum Size of Backup Pieces

	
Configuring Backup Duplexing

	
Configuring Tablespaces for Exclusion from Whole Database Backups

	
Configuring Compression Options

	
Configuring Backup Encryption

Configuring the Maximum Size of Backup Sets

In tape backups, it is possible for a multiplexed backup set to span multiple tapes, which means that blocks from each datafile in the backup set are written to multiple tapes. If one tape of a multivolume backup set fails, then you lose the data on all the tapes rather than just one. If a backup is not a multisection backup, then a backup set always includes a whole datafile rather than a partial datafile. You can use MAXSETSIZE to specify that each backup set should fit on one tape rather than spanning multiple tapes.

The CONFIGURE MAXSETSIZE command limits the size of backup sets created on a channel. This CONFIGURE setting applies to any channel, whether manually allocated or configured, when the BACKUP command is used to create backup sets. The default value is given in bytes and is rounded down to the lowest kilobyte value.

The value set by the CONFIGURE MAXSETSIZE command is a default for the given channel. You can override the configured MAXSETSIZE value by specifying a MAXSETSIZE option for an individual BACKUP command.

Assume that you issue the following commands at the RMAN prompt:

CONFIGURE DEFAULT DEVICE TYPE TO sbt;
CONFIGURE CHANNEL DEVICE TYPE sbt PARMS 'ENV=(OB_MEDIA_FAMILY=first_pool)';
CONFIGURE MAXSETSIZE TO 7500K;
BACKUP TABLESPACE users;
BACKUP TABLESPACE tools MAXSETSIZE 5G;

The results are as follows:

	
The backup of the users tablespace uses the configured SBT channel and the configured default MAXSETSIZE setting of 7500K.

	
The backup of the tools tablespace uses the MAXSETSIZE setting of 5G specified in the BACKUP command.

	
See Also:

	
"Limiting the Size of Backup Sets with BACKUP ... MAXSETSIZE"

	
Oracle Database Backup and Recovery Reference for BACKUP syntax

Configuring the Maximum Size of Backup Pieces

Backup piece size is an issue when it exceeds the maximum file size permitted by the file system or media management software. You can use the MAXPIECESIZE parameter of the CONFIGURE CHANNEL or ALLOCATE CHANNEL command to limit the size of backup pieces.

For example, to limit the backup piece size to 2 gigabytes or less, you can configure the automatic DISK channel as follows and then run BACKUP DATABASE:

CONFIGURE CHANNEL DEVICE TYPE DISK MAXPIECESIZE 2G;
BACKUP DATABASE;

	
Note:

In version 2.0 of the media management API, media management vendors can specify the maximum size of a backup piece that can be written to their media manager. RMAN respects this limit regardless of the settings that you configure for MAXPIECESIZE.

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the CONFIGURE CHANNEL ... MAXPIECESIZE command

Configuring Backup Duplexing

You can use the CONFIGURE ... BACKUP COPIES command to specify how many copies of each backup piece should be created on the specified device type for the specified type of file. This type of backup is known as a duplexed backup set. The CONFIGURE settings for duplexing only affect backups of datafiles, control files, and archived logs into backup sets, and do not affect image copies.

	
Note:

A control file autobackup is never duplexed.

RMAN can duplex backups to either disk or tape, but cannot duplex backups to tape and disk simultaneously. When backing up to tape, ensure that the number of copies does not exceed the number of available tape devices. The following examples show possible duplexing configurations:

Makes 2 disk copies of each datafile and control file backup set
(autobackups excluded)
CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE DISK TO 2;
Makes 3 copies of every archived redo log backup to tape
CONFIGURE ARCHIVELOG BACKUP COPIES FOR DEVICE TYPE sbt TO 3;

To return a BACKUP COPIES configuration to its default value, run the same CONFIGURE command with the CLEAR option, as in the following example:

CONFIGURE DATAFILE BACKUP COPIES FOR DEVICE TYPE sbt CLEAR;

By default, CONFIGURE ... BACKUP COPIES is set to 1 for each device type.

	
Note:

If you do not want to create a persistent copies configuration, then you can specify copies with the BACKUP COPIES and the SET BACKUP COPIES commands.

	
See Also:

	
"Multiple Copies of RMAN Backups" for an overview of duplexed backups

	
"Duplexing Backup Sets" to learn how to create duplexed backups

	
Oracle Database Backup and Recovery Reference for BACKUP syntax

	
Oracle Database Backup and Recovery Reference for CONFIGURE syntax

	
Oracle Database Backup and Recovery Reference for SET syntax

Configuring Tablespaces for Exclusion from Whole Database Backups

Sometimes you may want to omit a specified tablespace from part of the regular backup schedule. Here are some possible scenarios to consider:

	
A tablespace is easy to rebuild, so it is more cost-effective to rebuild it than back it up every day.

	
A tablespace contains temporary or test data that you do not need to back up.

	
A tablespace does not change often and therefore should be backed up on a different schedule from other backups.

You can run CONFIGURE EXCLUDE FOR TABLESPACE to exclude the specified tablespace from the BACKUP DATABASE command. The exclusion condition applies to any datafiles that you add to this tablespace in the future.

For example, you can exclude testing tablespaces cwmlite and example from whole database backups as follows:

CONFIGURE EXCLUDE FOR TABLESPACE cwmlite;
CONFIGURE EXCLUDE FOR TABLESPACE example;

If you run the following command, then RMAN backs up all tablespaces in the database except cwmlite and example:

BACKUP DATABASE;

You can still back up the configured tablespaces by explicitly specifying them in a BACKUP command or by specifying the NOEXCLUDE option on a BACKUP DATABASE command. For example, you can enter one of the following commands:

BACKUP DATABASE NOEXCLUDE; #backs up database, including cwmlite and example
BACKUP TABLESPACE cwmlite, example; # backs up only cwmlite and example

You can disable the exclusion feature for cwmlite and example as follows:

CONFIGURE EXCLUDE FOR TABLESPACE cwmlite CLEAR;
CONFIGURE EXCLUDE FOR TABLESPACE example CLEAR;

RMAN includes these tablespaces in future whole database backups.

	
See Also:

	
Oracle Database Backup and Recovery Reference for BACKUP and CONFIGURE syntax

Configuring Compression Options

RMAN supports precompression processing and binary compression of backup sets.

Precompression Block Processing

Better backup compression ratios are achieved by consolidating the free space in each data block, and setting that free space to binary zeroes. This precompression processing stage has the most benefit for data blocks that have been the subject of many deletes and inserts operations. Conversely, it has no effect on data blocks that are still in their initial loaded state.

The OPTIMIZE FOR LOAD option controls precompression processing. By specifying the default, OPTIMIZE FOR LOAD TRUE, you ensure that RMAN optimizes CPU usage and avoids precompression block processing. By specifying OPTIMIZE FOR LOAD FALSE, RMAN uses additional CPU resources to perform precompression block processing.

	
See Also:

	
Oracle Database Backup and Recovery Reference for CONFIGURE and SET syntax

Basic Compression Option

You can configure the basic compression algorithm, which does not require the Advanced Compression Option, with the following syntax:

Example 6-2 Configuring Basic Compression for Backup

CONFIGURE COMPRESSION ALGORITHM 'BASIC';

Advanced Compression Option

If you have enabled the Oracle Database 11g Release 2 Advanced Compression Option, you can choose from the following compression levels:

	Compression Level	Performance Benefits and Trade-offs
	HIGH	Best suited for backups over slower networks where the limiting factor is network speed.
	MEDIUM	Recommended for most environments. Good combination of compression ratios and speed.
	LOW	Least effect on backup throughput.

The compression ratio generally increases from low to high, with a trade-off of potentially consuming more CPU resources.

Because the performance of the various compression levels depends on the nature of the data in the database, network configuration, system resources and the type of computer system and its capabilities, Oracle cannot document universally applicable performance statistics. Which level is best for your environment depends on how balanced your system is regarding bandwidth into the CPU and the actual speed of the CPU. It is highly recommended that you run tests with the different compression levels on the data in your environment. Choosing a compression level based on your environment, network traffic characteristics (workload), and dataset is the only way to ensure that the backup set compression level can satisfy your organization's performance requirements and applicable service level agreements.

	
Note:

	
If you are backing up to tape and your tape device performs its own compression, then you should not use both RMAN backup set compression and the media manager vendor's compression. See the discussion of tuning RMAN's tape backup performance in Chapter 22, "Tuning RMAN Performance".

	
Restoring a compressed backup is performed in-line, and does not require decompression.

Configuring Backup Encryption

For improved security, you can configure backup encryption for RMAN backup sets. Encrypted backups cannot be read if they are obtained by unauthorized users. This feature requires the Enterprise Edition of the database.

About Backup Encryption

The V$RMAN_ENCRYPTION_ALGORITHMS view contains a list of encryption algorithms supported by RMAN. If no encryption algorithm is specified, then the default encryption algorithm is 128-bit Advanced Encryption Standard (AES). RMAN encryption requires the COMPATIBLE initialization parameter at a target database to be at least 10.2.0.

RMAN offers the following encryption modes:

	
Transparent Encryption of Backups

This is the default mode and uses the Oracle wallet. A wallet is a password-protected container used to store authentication and signing credentials, including private keys, certificates, and trusted certificates needed by SSL.

	
Password Encryption of Backups

This mode uses only password protection. You must provide a password when creating and restoring encrypted backups.

	
Dual Mode Encryption of Backups

This mode requires either the wallet or a password.

	
Note:

Wallet-based encryption is more secure than password-based encryption because no passwords are involved. You should use password-based encryption only when it is absolutely necessary because your backups must be transportable.

Encrypted backups are decrypted automatically during restore and recovery, if the required decryption keys are available. Each backup set gets a separate key. The key is stored in encrypted form in the backup piece. The backup is decrypted with keys obtained by means of a user-supplied password or the Oracle wallet.

To create encrypted backups on disk with RMAN, the database must use the Advanced Security Option. The Oracle Secure Backup SBT is the only supported interface for making encrypted RMAN backups directly to tape. RMAN issues an ORA-19916 error if you attempt to create encrypted RMAN backups using an SBT library other than Oracle Secure Backup. The Advanced Security Option is not required when making encrypted backups using the Oracle Secure Backup SBT.

When you use the BACKUP BACKUPSET command with encrypted backup sets, the backup sets are backed up in encrypted form. Because BACKUP BACKUPSET copies an already-encrypted backup set to disk or tape, no decryption key is needed during BACKUP BACKUPSET. The data is never decrypted during any part of the operation. The BACKUP BACKUPSET command can neither encrypt nor decrypt backup sets.

	
See Also:

Oracle Database Advanced Security Administrator's Guide for details about configuring the Oracle wallet

Transparent Encryption of Backups

Transparent encryption can create and restore encrypted backups with no DBA intervention, as long as the required Oracle key management infrastructure is available. Transparent encryption is best suited for day-to-day backup operations, where backups are restored to the same database from which they were created. Transparent encryption is the default for RMAN encryption.

When you use transparent encryption, you must first configure an Oracle wallet for each database, as described in Oracle Database Advanced Security Administrator's Guide. Transparent backup encryption supports both the encrypted and autologin forms of the Oracle wallet. When you use the Oracle wallet, the wallet must be opened before you can perform backup encryption. When you use the autologin wallet, encrypted backup operations can be done at any time, because the autologin wallet is always open.

	
Caution:

If you use an autologin wallet, do not back it up along with your encrypted backup data, because users can read the encrypted backups if they obtain both the backups and the autologin wallet. It is safe to back up the Oracle wallet because that form of the wallet cannot be used without the wallet password.

After the Oracle wallet is configured, encrypted backups can be created and restored with no further DBA intervention. If some columns in the database are encrypted with transparent data encryption, and if those columns are backed up using backup encryption, then those columns are encrypted a second time during the backup. When the backup sets are decrypted during a restore operation, the encrypted columns are returned to their original encrypted form.

Because the Oracle key management infrastructure archives all previous master keys in the Oracle wallet, changing or resetting the current database master key does not affect your ability to restore encrypted backups performed with an older master key. You can reset the database master key at any time. RMAN can restore all encrypted backups that were ever created by this database.

	
Caution:

If you lose your Oracle wallet, then you will be unable to restore any transparently encrypted backups.

Password Encryption of Backups

Password encryption requires that the DBA provide a password when creating and restoring encrypted backups. Restoring a password-encrypted backup requires the same password that was used to create the backup.

Password encryption is useful for backups that are restored at remote locations, but which must remain secure in transit. Password encryption cannot be persistently configured. You do not need to configure an Oracle wallet if password encryption is used exclusively.

	
Caution:

If you forget or lose the password that you used to encrypt a password-encrypted backup, then you will be unable to restore the backup.

To use password encryption, use the SET ENCRYPTION ON IDENTIFIED BY password ONLY command in your RMAN scripts.

Dual Mode Encryption of Backups

Dual-mode encrypted backups can be restored either transparently or by specifying a password. Dual-mode encrypted backups are useful when you create backups that are normally restored onsite using the Oracle wallet, but which occasionally must be restored offsite, where the Oracle wallet is not available.

When restoring a dual-mode encrypted backup, you can use either the Oracle wallet or a password for decryption.

	
Caution:

If you forget or lose the password that you used to encrypt a dual-mode encrypted backup and you also lose your Oracle wallet, then you will be unable to restore the backup.

To create dual-mode encrypted backup sets, specify the SET ENCRYPTION ON IDENTIFIED BY password command in your RMAN scripts.

Configuring RMAN Backup Encryption Modes

You can use the CONFIGURE command to persistently configure transparent encryption of backups. You can use the command to specify the following:

	
Whether to use transparent encryptions for backups of all database files

	
Whether to use transparent encryptions for backups of specific tablespaces

	
Which algorithm to use for encrypting backups

You can also use the SET ENCRYPTION command to perform the following actions:

	
Override the encryption settings specified by the CONFIGURE ENCRYPTION command. For example, you can use SET ENCRYPTION OFF to create an unencrypted backup, even though a database is configured for encrypted backups.

	
Set a password for backup encryption, persisting until the RMAN client exits. Because of the sensitive nature of passwords, RMAN does not permit configuration of passwords that persist across RMAN sessions.

Using or not using persistent configuration settings controls whether archived redo log backups are encrypted. Backup sets containing archived redo log files are encrypted if any of the following are true:

	
SET ENCRYPTION ON is in effect at the time that the archive log backup is being created.

	
Encryption is configured for backups of the whole database or at least one tablespace.

This behavior ensures that the redo associated with any encrypted backup of a datafile is also encrypted.

To configure the environment so that all RMAN backups are encrypted:

	
Set up the Oracle wallet as explained in Oracle Database Advanced Security Administrator's Guide.

	
Issue the following RMAN command:

CONFIGURE ENCRYPTION FOR DATABASE ON;

At this stage, all RMAN backup sets created by this database use transparent encryption by default.

You can explicitly override the persistent encryption configuration for an RMAN session with the following command:

SET ENCRYPTION ON;

The encryption setting remains in effect until you issue the SET ENCRYPTION OFF command during an RMAN session, or change the persistent setting again with the following command:

CONFIGURE ENCRYPTION FOR DATABASE OFF;

Configuring the Backup Encryption Algorithm

You can use the CONFIGURE command to persistently configure the default algorithm to use for encryption when writing backup sets. Possible values are listed in V$RMAN_ENCRYPTION_ALGORITHMS. The default algorithm is AES 128-bit.

To configure the default backup encryption algorithm:

	
Start RMAN and connect to a target database and a recovery catalog (if used).

	
Ensure that the target database is mounted or open.

	
Execute the CONFIGURE ENCRYPTION ALGORITHM command, specifying a valid value from V$RMAN_ENCRYPTION_ALGORITHMS.ALGORITHM_NAME.

The following example configures the algorithm to AES 256-bit encryption:

CONFIGURE ENCRYPTION ALGORITHM TO 'AES256';

Configuring Auxiliary Instance Datafile Names

Assume that you are performing tablespace point-in-time recovery (TSPITR) or performing data transfer with RMAN. In this case, you may want to set the names of datafiles in the auxiliary instance before starting the TSPITR or database duplication. The command is as follows, where datafileSpec identifies some datafile by its original name or datafile number, and filename is the new path for the specified file:

CONFIGURE AUXNAME FOR datafileSpec TO 'filename';

For example, you might configure a new auxiliary name for datafile 2 as follows:

CONFIGURE AUXNAME FOR DATAFILE 2 TO '/newdisk/datafiles/df2.df';

As with other settings, the CONFIGURE command setting persists across RMAN sessions until cleared with CONFIGURE ... CLEAR, as shown in the following example:

CONFIGURE AUXNAME FOR DATAFILE 2 CLEAR;

If you are performing TSPITR or running the DUPLICATE command, then by using CONFIGURE AUXNAME you can preconfigure the filenames for use on the auxiliary database without manually specifying the auxiliary filenames during the procedure.

When renaming files with the DUPLICATE command, CONFIGURE AUXNAME is an alternative to SET NEWNAME command. The difference is that after you set the AUXNAME the first time, you do not need to reset the filename when you issue another DUPLICATE command; the AUXNAME setting remains in effect until you issue CONFIGURE AUXNAME ... CLEAR. In contrast, you must reissue the SET NEWNAME command every time you rename files.

See Chapter 21, "Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)," for more details on using CONFIGURE AUXNAME in connection with TSPITR, and Chapter 24, "Duplicating a Database," for more details on using CONFIGURE AUXNAME in performing database duplication.

Configuring the Snapshot Control File Location

When RMAN must resynchronize the recovery catalog with a read-consistent version of the control file, it creates a temporary snapshot control file. RMAN needs a snapshot control file when resynchronizing with the recovery catalog or when making a backup of the current control file.

The default location for the snapshot control file is platform-specific and depends on the Oracle home of each target database. For example, the default filename on some Linux platforms is $ORACLE_HOME/dbs/snapcf_@.f. If a fast recovery area is configured for a target database, then the default location for the snapshot control file is not the fast recovery area.

Viewing the Configured Location of the Snapshot Control File

You can see the current snapshot location by running the SHOW command. This example shows a snapshot location that is determined by the default rule:

RMAN> SHOW SNAPSHOT CONTROLFILE NAME;
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/dbs/snapcf_trgt.f'; # default

This example shows a snapshot control file that has a nondefault filename:

RMAN> SHOW SNAPSHOT CONTROLFILE NAME;
CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/oradata/trgt/snap_trgt.ctl';

Setting the Location of the Snapshot Control File

Use the CONFIGURE SNAPSHOT CONTROLFILE NAME TO 'filename' command to change the name of the snapshot control file. Subsequent snapshot control files that RMAN creates use the specified filename.

For example, start RMAN and then enter:

CONFIGURE SNAPSHOT CONTROLFILE NAME TO '/oracle/oradata/trgt/snap_trgt.ctl';

You can also set the snapshot control file name to a raw device.

To reset the snapshot control file location to the default, run the CONFIGURE SNAPSHOT CONTROLFILE NAME CLEAR command.

	
See Also:

	
"Resynchronizing the Recovery Catalog"

	
Oracle Real Application Clusters Administration and Deployment Guide for details about handling snapshot control files in Oracle RAC configurations

Configuring RMAN for Use with a Shared Server

RMAN cannot connect to a target database through a shared server dispatcher. RMAN requires a dedicated server process. If your target database is configured for a shared server, then you must modify your Oracle Net configuration to provide dedicated server processes for RMAN connections.

To ensure that RMAN does not connect to a dispatcher when a target database is configured for a shared server, the net service name used by RMAN must include (SERVER=DEDICATED) in the CONNECT_DATA attribute of the connect string.

Oracle Net configuration varies greatly from system to system. The following procedure illustrates only one method. This scenario assumes that the following service name in tnsnames.ora file connects to a target database using the shared server architecture, where inst1 is a value of the SERVICE_NAMES initialization parameter:

inst1_shs =
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=inst1_host)(port=1521))
 (CONNECT_DATA=(SERVICE_NAME=inst1)(SERVER=shared))
)

To use RMAN with a shared server:

	
Create a net service name in the tnsnames.ora file that connects to the nonshared SID. For example, enter:

inst1_ded =
 (DESCRIPTION=
 (ADDRESS=(PROTOCOL=tcp)(HOST=inst1_host)(port=1521))
 (CONNECT_DATA=(SERVICE_NAME=inst1)(SERVER=dedicated))
)

	
Start SQL*Plus and then connect using both the shared server and dedicated server service names to confirm the mode of each session.

For example, connect with SYSDBA privileges to inst1_ded and then execute the following SELECT statement (sample output included):

SQL> SELECT SERVER
 2 FROM V$SESSION
 3 WHERE SID = (SELECT DISTINCT SID FROM V$MYSTAT);

SERVER

DEDICATED
1 row selected.

To connect to a shared server session, you connect with SYSDBA privileges to inst1_shs and then execute the following SELECT statement (sample output included):

SQL> SELECT SERVER
 2 FROM V$SESSION
 3 WHERE SID = (SELECT DISTINCT SID FROM V$MYSTAT);

SERVER

SHARED
1 row selected.

	
Start RMAN and connect to the target database using the dedicated service name. Optionally, connect to a recovery catalog. For example, enter:

% rman
RMAN> CONNECT TARGET SYS@inst1_ded

target database Password: password
connected to target database: INST1 (DBID=39525561)

RMAN> CONNECT CATALOG rman@catdb

	
See Also:

Your platform-specific Oracle documentation and your Oracle Database Net Services Reference for a complete description of Oracle Net connect string syntax

Enabling Lost Write Detection

A data block lost write occurs when an I/O subsystem acknowledges the completion of the block write, but the write did not occur in the persistent storage. On a subsequent block read, the I/O subsystem returns the stale version of the data block, which might be used to update other blocks of the database, thereby corrupting it.

You can set the DB_LOST_WRITE_PROTECT initialization parameter to TYPICAL or FULL so that a database records buffer cache block reads in the redo log. The default setting is NONE. When the parameter is set to TYPICAL, the instance logs buffer cache reads for read/write tablespaces in the redo log, but not read-only tablespaces. When set to FULL, the instance also records reads for read-only tablespaces. The performance overhead for TYPICAL mode is approximately 5 to 10% and potentially higher for FULL mode.

Lost write detection is most effective when used with Data Guard. In this case, you set DB_LOST_WRITE_PROTECT in both primary and standby databases. When a standby database applies redo during managed recovery, it reads the corresponding blocks and compares the SCNs with the SCNs in the redo log. If the block SCN on the primary database is lower than on the standby database, then it detects a lost write on the primary database and throws an external error (ORA-752). If the SCN is higher, it detects a lost write on the standby database and throws an internal error (ORA-600 [3020]). In either case, the standby database writes the reason for the failure in the alert log and trace file.

To repair a lost write on a primary database, you must initiate failover to the standby database. To repair a lost write on a standby database, you must re-create the entire standby database or restore a backup of only the affected files.

Enabling lost write detection is also useful when you are not using Data Guard. In this case, you can encounter a lost write in two ways: during normal database operation or during media recovery. In the first case, there is no direct way to detect the error. Indirect symptoms such as inconsistent tables cannot be unambiguously traced to the lost write. If you retained a backup made before the suspected lost write, however, then you can restore this backup to an alternative location and recover it. To diagnose the problem, recover the database or tablespace to the SCN of the stale block read, which then generates the lost write error (ORA-752).

If a lost write error is encountered during media recovery, the only response is to open the database with the RESETLOGS option. The database is in a consistent state, but all data after the RESETLOGS SCN is lost. If you recover a backup made after database creation, you have no guarantee that other stale blocks have not already corrupted the database. This possibility exists because the restored backup may have been made after an earlier lost write. To guarantee that no lost writes have corrupted the database, you must perform media recovery from database creation, which is not a practical strategy for most database environments.

	
See Also:

	
Oracle Data Guard Concepts and Administration to learn how to use a standby database for lost write detection and repair

	
Oracle Database Reference to learn about the DB_LOST_WRITE_PROTECT initialization parameter

Part I

Overview of Backup and Recovery

The chapters in this part introduce backup and recovery and explain how to devise a backup and recovery strategy:

	
Chapter 1, " Introduction to Backup and Recovery"

	
Chapter 2, "Getting Started with RMAN"

2 Getting Started with RMAN

This chapter is intended for new users who want to start using RMAN right away without first reading the more detailed chapters in this book. This chapter provides the briefest possible digest of the most important RMAN concepts and tasks. It is not a substitute for the rest of the backup and recovery documentation set.

This chapter contains the following topics:

	
Overview of the RMAN Environment

	
Starting RMAN and Connecting to a Database

	
Showing the Default RMAN Configuration

	
Backing Up a Database

	
Reporting on RMAN Operations

	
Maintaining RMAN Backups

	
Diagnosing and Repairing Failures with Data Recovery Advisor

	
Rewinding a Database with Flashback Database

	
Restoring and Recovering Database Files

Overview of the RMAN Environment

Recovery Manager (RMAN) is an Oracle Database client that performs backup and recovery tasks on your databases and automates administration of your backup strategies. It greatly simplifies backing up, restoring, and recovering database files.

The RMAN environment consists of the utilities and databases that play a role in backing up your data. At a minimum, the environment for RMAN must include the following components:

	
A target database

An Oracle database to which RMAN is connected with the TARGET keyword. A target database is a database on which RMAN is performing backup and recovery operations. RMAN always maintains metadata about its operations on a database in the control file of the database. The RMAN metadata is known as the RMAN repository.

	
The RMAN client

An Oracle Database executable that interprets commands, directs server sessions to execute those commands, and records its activity in the target database control file. The RMAN executable is automatically installed with the database and is typically located in the same directory as the other database executables. For example, the RMAN client on Linux is located in $ORACLE_HOME/bin.

Some environments use the following optional components:

	
A fast recovery area

A disk location in which the database can store and manage files related to backup and recovery. You set the fast recovery area location and size with the DB_RECOVERY_FILE_DEST and DB_RECOVERY_FILE_DEST_SIZE initialization parameters.

	
A media manager

An application required for RMAN to interact with sequential media devices such as tape libraries. A media manager controls these devices during backup and recovery, managing the loading, labeling, and unloading of media. Media management devices are sometimes called SBT (system backup to tape) devices.

	
A recovery catalog

A separate database schema used to record RMAN activity against one or more target databases. A recovery catalog preserves RMAN repository metadata if the control file is lost, making it much easier to restore and recover following the loss of the control file. The database may overwrite older records in the control file, but RMAN maintains records forever in the catalog unless the records are deleted by the user.

This chapter explains how to use RMAN in the most basic configuration, which is without a recovery catalog or media manager.

	
See Also:

	
Chapter 3, "Recovery Manager Architecture"for a more detailed overview of the RMAN environment

	
Oracle Database Backup and Recovery Reference for BACKUP command syntax and semantics

Starting RMAN and Connecting to a Database

The RMAN client is started by issuing the rman command at the command prompt of your operating system. RMAN then displays a prompt for your commands as shown in the following example:

% rman
RMAN>

RMAN connections to a database are specified and authenticated in the same way as SQL*Plus connections to a database. The only difference is that RMAN connections to a target or auxiliary database require the SYSDBA privilege. The AS SYSDBA keywords are implied and cannot be explicitly specified. See Oracle Database Administrator's Guide to learn about database connection options for SQL*Plus.

	
Caution:

Good security practice requires that passwords should not be entered in plain text on the command line. You should enter passwords in RMAN only when requested by an RMAN prompt. See Oracle Database Security Guide to learn about password protection.

You can connect to a database with command-line options or by using the CONNECT TARGET command. The following example starts RMAN and then connects to a target database through Oracle Net, AS SYSDBA is not specified because it is implied. RMAN prompts for a password.

% rman
RMAN> CONNECT TARGET SYS@prod

target database Password: password
connected to target database: PROD (DBID=39525561)

The following variation starts RMAN and then connects to a target database by using operating system authentication:

% rman
RMAN> CONNECT TARGET /

connected to target database: PROD (DBID=39525561)

To quit the RMAN client, enter EXIT at the RMAN prompt:

RMAN> EXIT

Syntax of Common RMAN Command-line Options

RMAN
[TARGET connectStringSpec
| { CATALOG connectStringSpec }
| LOG ['] filename ['] [APPEND]
.
.
.
]...

connectStringSpec::=
['] [userid] [/ [password]] [@net_service_name] [']

The following example appends the output from an RMAN session to a text file at /tmp/msglog.log

% rman TARGET / LOG /tmp/msglog.log APPEND

	
See Also:

Chapter 4, "Starting and Interacting with the RMAN Client," to learn more about starting and using the RMAN client

Showing the Default RMAN Configuration

The RMAN backup and recovery environment is preconfigured for each target database. The configuration is persistent and applies to all subsequent operations on this target database, even if you exit and restart RMAN.

RMAN configured settings can specify backup devices, configure a connection to a backup device (known as a channel), policies affecting backup strategy, and others. The default configuration is adequate for most purposes.

To show the current configuration for a database:

	
Start RMAN and connect to a target database.

	
Run the SHOW ALL command.

For example, enter the command at the RMAN prompt as follows:

RMAN> SHOW ALL;

The output lists the CONFIGURE commands to re-create this configuration.

	
See Also:

Chapter 5, "Configuring the RMAN Environment," and Chapter 6, "Configuring the RMAN Environment: Advanced Topics," to learn how to configure the RMAN environment

Backing Up a Database

Use the BACKUP command to back up files. RMAN backs up data to the configured default device for the type of backup requested. By default, RMAN creates backups on disk. If a fast recovery area is enabled, and if you do not specify the FORMAT parameter (see Table 2-1), then RMAN creates backups in the recovery area and automatically gives them unique names.

By default, RMAN creates backup sets rather than image copies. A backup set consists of one or more backup pieces, which are physical files written in a format that only RMAN can access. A multiplexed backup set contains the blocks from multiple input files. RMAN can write backup sets to disk or tape.

If you specify BACKUP AS COPY, then RMAN copies each file as an image copy, which is a bit-for-bit copy of a database file created on disk. Image copies are identical to copies created with operating system commands like cp on Linux or COPY on Windows, but are recorded in the RMAN repository and so are usable by RMAN. You can use RMAN to make image copies while the database is open.

	
See Also:

	
Chapter 8, "RMAN Backup Concepts," to learn concepts relating to RMAN backups

	
Chapter 9, "Backing Up the Database," to learn how to back up database files with RMAN

	
Oracle Database Backup and Recovery Reference for BACKUP command syntax and semantics

Backing Up a Database in ARCHIVELOG Mode

If a database runs in ARCHIVELOG mode, then you can back up the database while it is open. The backup is called an inconsistent backup because redo is required during recovery to bring the database to a consistent state. If you have the archived redo logs needed to recover the backup, open database backups are as effective for data protection as consistent backups.

To back up the database and archived redo logs while the database is open:

	
Start RMAN and connect to a target database.

	
Run the BACKUP DATABASE command.

For example, enter the following command at the RMAN prompt to back up the database and all archived redo log files to the default backup device:

RMAN> BACKUP DATABASE PLUS ARCHIVELOG;

Backing Up a Database in NOARCHIVELOG Mode

If a database runs in NOARCHIVELOG mode, then the only valid database backup is a consistent backup. For the backup to be consistent, the database must be mounted after a consistent shutdown. No recovery is required after restoring the backup.

To make a consistent database backup:

	
Start RMAN and connect to a target database.

	
Shut down the database consistently and then mount it.

For example, enter the following commands to guarantee that the database is in a consistent state for a backup:

RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP FORCE DBA;
RMAN> SHUTDOWN IMMEDIATE;
RMAN> STARTUP MOUNT;

	
Run the BACKUP DATABASE command.

For example, enter the following command at the RMAN prompt to back up the database to the default backup device:

RMAN> BACKUP DATABASE;

The following variation of the command creates image copy backups of all datafiles in the database:

RMAN> BACKUP AS COPY DATABASE;

	
Open the database and resume normal operations.

The following command opens the database:

RMAN> ALTER DATABASE OPEN;

Typical Backup Options

The BACKUP command includes a host of options, parameters, and clauses that control backup output. Table 2-1 lists some typical backup options.

Table 2-1 Common Backup Options

	Option	Description	Example
	
FORMAT

	
Specifies a location and name for backup pieces and copies. You must use substitution variables to generate unique filenames.

The most common substitution variable is %U, which generates a unique name. Others include %d for the DB_NAME, %t for the backup set time stamp, %s for the backup set number, and %p for the backup piece number.

	

BACKUP
 FORMAT 'AL_%d/%t/%s/%p'
 ARCHIVELOG LIKE '%arc_dest%';

	
TAG

	
Specifies a user-defined string as a label for the backup. If you do not specify a tag , then RMAN assigns a default tag with the date and time. Tags are always stored in the RMAN repository in uppercase.

	

BACKUP
 TAG 'weekly_full_db_bkup'
 DATABASE MAXSETSIZE 10M;

	
See Also:

"Specifying Backup Output Options"

Making Incremental Backups

If you specify BACKUP INCREMENTAL, then RMAN creates an incremental backup of a database. Incremental backups capture block-level changes to a database made after a previous incremental backup. Incremental backups are generally smaller and faster to make than full database backups. Recovery with incremental backups is faster than using redo logs alone.

The starting point for an incremental backup strategy is a level 0 incremental backup, which backs up all blocks in the database. An incremental backup at level 0 is identical in content to a full backup, however, unlike a full backup the level 0 backup is considered a part of the incremental backup strategy.

A level 1 incremental backup contains only blocks changed after a previous incremental backup. If no level 0 backup exists in either the current or parent database incarnation when you run a level 1 backup, then RMAN makes a level 0 backup automatically.

	
Note:

You cannot make incremental backups when a NOARCHIVELOG database is open, although you can make incremental backups when the database is mounted after a consistent shutdown.

A level 1 backup can be a cumulative incremental backup, which includes all blocks changed since the most recent level 0 backup, or a differential incremental backup, which includes only blocks changed since the most recent incremental backup. Incremental backups are differential by default.

When restoring incremental backups, RMAN uses the level 0 backup as the starting point, then updates changed blocks based on level 1 backups where possible to avoid reapplying changes from redo one at a time. Recovering with incremental backups requires no additional effort on your part. If incremental backups are available, then RMAN uses them during recovery.

To make incremental backups of the database:

	
Start RMAN and connect to a target database.

	
Run the BACKUP INCREMENTAL command.

The following example creates a level 0 incremental backup to serve as a base for an incremental backup strategy:

BACKUP INCREMENTAL LEVEL 0 DATABASE;

The following example creates a level 1 cumulative incremental backup:

BACKUP INCREMENTAL LEVEL 1 CUMULATIVE DATABASE;

The following example creates a level 1 differential incremental backup:

BACKUP INCREMENTAL LEVEL 1 DATABASE;

	
See Also:

"Incremental Backups" for a more detailed conceptual overview of incremental backups and "Making and Updating Incremental Backups"

Making Incrementally Updated Backups

The RMAN incrementally updated backup feature is an efficient incremental backup strategy. The strategy has the following main features:

	
The strategy requires a level 0 datafile copy as a base. This copy has either a system-defined or user-defined tag.

	
Periodically, level 1 differential backups are created with the same tag as the level 0 datafile copy. The BACKUP FOR RECOVER OF COPY command specifies that an incremental backup should contain only blocks changed since the most recent incremental backup with the same tag.

	
Periodically, the incremental backups are applied to the level 0 datafile copy. Because the datafile copy has been updated with more recent changes, it now requires less media recovery.

Table 2-2 explains which options to use with FOR RECOVER OF COPY to implement an incrementally updated backup strategy.

Table 2-2 FOR RECOVER OF COPY Options

	BACKUP Option	Description	Example
	
FOR RECOVER OF COPY WITH TAG 'tag_name'

	
Use TAG to identify the tag of the datafile copy serving as basis for the backup strategy. RMAN automatically assigns the same tag to every level 1 backup of this copy.

If no level 0 datafile copy with the specified tag exists in either the current or parent database incarnation, then RMAN creates a level 0 datafile copy with the specified tag.

	

BACKUP
 INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY
 WITH TAG 'incr_update'
 DATABASE;

	
FOR RECOVER OF COPY DATAFILECOPY FORMAT 'format'

	
Specifies where RMAN creates the datafile copy if a copy does not already exist. If you add a new datafile to the database, then you do not need to change your script, because RMAN automatically creates the level 0 copy required by the incremental backup routine.

	

BACKUP
 INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY
 DATAFILECOPY FORMAT
 '/disk2/df1.cpy'
 DATABASE;

To implement an incrementally updated backup strategy:

	
Start RMAN and connect to a target database.

	
Run the RECOVER COPY and BACKUP INCREMENTAL commands.

The following script, run on a regular basis, is all that is required to implement a strategy based on incrementally updated backups.

RECOVER COPY OF DATABASE
 WITH TAG 'incr_update';
BACKUP
 INCREMENTAL LEVEL 1
 FOR RECOVER OF COPY WITH TAG 'incr_update'
 DATABASE;

	
See Also:

"Incrementally Updating Backups"

Validating Database Files and Backups

You can use the VALIDATE command to confirm that all database files exist, are in their correct location, and are free of physical corruption. The CHECK LOGICAL option also checks for logical block corruption.

To validate database files:

	
Start RMAN and connect to a target database.

	
Run the BACKUP VALIDATE ... command for the desired files.

For example, enter the following commands to validate all database files and archived redo log files for physical and logical corruption:

BACKUP VALIDATE CHECK LOGICAL
 DATABASE ARCHIVELOG ALL;

You can also use the VALIDATE command to check individual data blocks, as shown in the following example:

VALIDATE DATAFILE 4 BLOCK 10 TO 13;

You can also validate backup sets, as shown in the following example:

VALIDATE BACKUPSET 3;

You specify backup sets by primary key, which is shown in the output of the LIST BACKUP command.

	
See Also:

	
Chapter 16, "Validating Database Files and Backups"

	
Oracle Database Backup and Recovery Reference for VALIDATE command syntax and semantics

Scripting RMAN Operations

RMAN supports the use of command files to manage recurring tasks such as weekly backups. A command file is a client-side text file containing RMAN commands, exactly as you enter them at the RMAN prompt. You can use any file extension. The RUN command provides a degree of flow-of-control in your scripts.

To create and run a command file:

	
Use a text editor to create a command file.

For example, create a command file with the following contents:

my_command_file.txt
CONNECT TARGET /
BACKUP DATABASE PLUS ARCHIVELOG;
LIST BACKUP;
EXIT;

	
Start RMAN and then execute the contents of a command file by running the @ command at the RMAN prompt:

% rman
RMAN> @/my_dir/my_command_file.txt # runs specified command file

You can also launch RMAN with a command file to run, as shown here:

% rman @/my_dir/my_command_file.txt

	
See Also:

"Using Command Files with RMAN" to learn more about command files, and "Using Substitution Variables in Command Files" to learn how to use substitution variables in command files and pass parameters at run time

Reporting on RMAN Operations

The RMAN LIST and REPORT commands generate reports on backup activities based on the RMAN repository. Use the SHOW ALL command to display the current RMAN configuration.

Listing Backups

Run the LIST BACKUP and LIST COPY commands to display information about backups and datafile copies listed in the repository. For backups, you can control the format of LIST output with the options in Table 2-3 and Table 2-4.

Table 2-3 LIST Options for Backups

	Option	Example	Explanation
	
BY BACKUP

	
LIST BACKUP OF DATABASE BY BACKUP

	
Organizes the output by backup set. This is the default mode of presentation.

	
BY FILE

	
LIST BACKUP BY FILE

	
Lists the backups according to which file was backed up.

	
SUMMARY

	
LIST BACKUP SUMMARY

	
Displays summary output.

For both backups and copies you have additional options shown in Table 2-4.

Table 2-4 Additional LIST Options

	Option	Example	Explanation
	
EXPIRED

	
LIST EXPIRED COPY

	
Lists backups that are recorded in the RMAN repository but that were not present at the expected location on disk or tape during the last CROSSCHECK command. An expired backup may have been deleted by an operating system utility.

	
RECOVERABLE

	
LIST BACKUP RECOVERABLE

	
Lists datafile backups or copies that have status AVAILABLE in the RMAN repository and that can be restored and recovered.

To list backups and copies:

	
Start RMAN and connect to a target database.

	
Run the LIST command at the RMAN prompt.

You can display specific objects, as in the following examples:

LIST BACKUP OF DATABASE;
LIST COPY OF DATAFILE 1, 2;
LIST BACKUP OF ARCHIVELOG FROM SEQUENCE 10;
LIST BACKUPSET OF DATAFILE 1;

	
See Also:

	
"Listing Backups and Recovery-Related Objects" to learn more about the LIST command

	
Oracle Database Backup and Recovery Reference for LIST command syntax

Reporting on Database Files and Backups

The REPORT command performs more complex analysis than theLIST. Some of the main options are shown in tTable 2-5.

Table 2-5 REPORT Options

	Option	Example	Explanation
	
NEED BACKUP

	
REPORT NEED BACKUP DATABASE

	
Shows which files need backing up under current retention policy. Use optional REDUNDANCY and RECOVERY WINDOW parameters to specify different criteria.

	
OBSOLETE

	
REPORT OBSOLETE

	
Lists backups that are obsolete under the configured backup retention policy. Use the optional REDUNDANCY and RECOVERY WINDOW parameters to override the default.

	
SCHEMA

	
REPORT SCHEMA

	
Reports the tablespaces and datafiles in the database at the current time (default) or a different time.

	
UNRECOVERABLE

	
REPORT UNRECOVERABLE

	
Lists all datafiles for which an unrecoverable operation has been performed against an object in the datafile since the last backup of the datafile.

To generate reports of database files and backups:

	
Start RMAN and connect to a target database.

	
Run the REPORT command at the RMAN prompt.

The following example reports backups that are obsolete according to the currently configured backup retention policy:

REPORT OBSOLETE;

The following example reports the datafiles and tempfiles in the database:

REPORT SCHEMA;

	
See Also:

"Reporting on Backups and Database Schema" to learn how to use the REPORT command for RMAN reporting

Maintaining RMAN Backups

RMAN repository metadata is always stored in the control file of the target database. The RMAN maintenance commands use this metadata when managing backups.

Cross-checking Backups

The CROSSCHECK command synchronizes the logical records of RMAN backups and copies with the files on storage media. If a backup is on disk, then CROSSCHECK determines whether the header of the file is valid. If a backup is on tape, then RMAN queries the RMAN repository for the names and locations of the backup pieces. It is a good idea to crosscheck backups and copies before deleting them.

To crosscheck all backups and copies on disk:

	
Start RMAN and connect to a target database.

	
Run the CROSSCHECK command, as shown in the following example:

CROSSCHECK BACKUP;
CROSSCHECK COPY;

	
See Also:

"Crosschecking the RMAN Repository" to learn how to crosscheck RMAN backups

Deleting Obsolete Backups

The DELETE command removes RMAN backups and copies from disk and tape, updates the status of the files to DELETED in the control file repository, and removes the records from the recovery catalog (if you use a catalog). If you run RMAN interactively, and if you do not specify the NOPROMPT option, then DELETE displays a list of files and prompts for confirmation before deleting any file in the list.

The DELETE OBSOLETE command is particular useful because RMAN deletes backups and datafile copies recorded in the RMAN repository that are obsolete, that is, no longer needed. You can use options on the DELETE command to specify what is obsolete or use the configured backup retention policy.

To delete obsolete backups and copies:

	
Start RMAN and connect to a target database.

	
Run the DELETE OBSOLETE command, as shown in the following example:

DELETE OBSOLETE;

	
See Also:

"Deleting RMAN Backups and Archived Redo Logs" to learn how to use the DELETE command

Diagnosing and Repairing Failures with Data Recovery Advisor

The simplest way to diagnose and repair database problems is to use the Data Recovery Advisor. This Oracle Database tool provides an infrastructure for diagnosing persistent data failures, presenting repair options to the user, and automatically executing repairs.

	
See Also:

"Overview of Data Recovery Advisor"

Listing Failures and Determining Repair Options

A failure is a persistent data corruption detected by the Health Monitor. Examples include physical and logical data block corruptions and missing datafiles. Each failure has a failure priority and failure status. The priority can be CRITICAL, HIGH, or LOW. The status can be OPEN or CLOSED.

You can run the LIST FAILURE command to show all known failures. If failures exist, then run the ADVISE FAILURE command in the same session to determine manual and automated repair options. The following example illustrates these two commands (sample output included).

Example 2-1 LIST FAILURE and ADVISE FAILURE

RMAN> LIST FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf'
 contains one or more corrupt blocks

RMAN> ADVISE FAILURE;

List of Database Failures
=========================

Failure ID Priority Status Time Detected Summary
---------- -------- --------- ------------- -------
142 HIGH OPEN 23-APR-07 One or more non-system datafiles are missing
101 HIGH OPEN 23-APR-07 Datafile 1: '/disk1/oradata/prod/system01.dbf'
 contains one or more corrupt blocks

analyzing automatic repair options; this may take some time
using channel ORA_DISK_1
analyzing automatic repair options complete

Mandatory Manual Actions
========================
no manual actions available

Optional Manual Actions
=======================
1. If file /disk1/oradata/prod/users01.dbf was unintentionally renamed or moved, restore it

Automated Repair Options
========================
Option Repair Description
------ ------------------
1 Restore and recover datafile 28; Perform block media recovery of
 block 56416 in file 1
 Strategy: The repair includes complete media recovery with no data loss
 Repair script: /disk1/oracle/log/diag/rdbms/prod/prod/hm/reco_660500184.hm

The ADVISE FAILURE output shows both manual and automated repair options. First try to fix the problem manually. If you cannot fix the problem manually, then review the automated repair section.

An automated repair option describes a server-managed repair for one or more failures. Repairs are consolidated when possible so that a single repair can fix multiple failures. The repair option indicates which repair is performed and whether data is lost by performing the repair operation.

In Example 2-1, the output indicates the filename of a repair script containing RMAN commands. If you do not want to use Data Recovery Advisor to repair the failure automatically, then you can use the script as the basis of your own recovery strategy.

	
See Also:

"Listing Failures" and "Determining Repair Options"

Repairing Failures

After running LIST FAILURE and ADVISE FAILURE in an RMAN session, you can run REPAIR FAILURE to execute a repair option. If you execute REPAIR FAILURE with no other command options, then RMAN uses the first repair option of the most recent ADVISE FAILURE command in the current session. Alternatively, specify the repair option number obtained from the most recent ADVISE FAILURE command. Example 2-2 illustrates how to repair the failures identified in Example 2-1.

Example 2-2 REPAIR FAILURE

RMAN> REPAIR FAILURE;

By default, REPAIR FAILURE prompts for confirmation before it begins executing. After executing a repair, Data Recovery Advisor reevaluates all existing failures on the possibility that they may also have been fixed. Data Recovery Advisor always verifies that failures are still relevant and automatically closes fixed failures. If a repair fails to complete because of an error, then the error triggers a new assessment and re-evaluation of existing failures and repairs.

	
See Also:

"Repairing Failures"

Rewinding a Database with Flashback Database

You can use the Oracle Flashback Database to rewind the whole database to a past time. Unlike media recovery, you do not need to restore datafiles to return the database to a past state.

To use the RMAN FLASHBACK DATABASE command, your database must have been previously configured to generate flashback logs. This configuration task is described in "Flashback Database". Flashback Database works by rewinding changes to the datafiles that exist at the moment that you run the command. You cannot use the command to repair media failures or missing datafiles.

The database must be mounted when you issue FLASHBACK DATABASE. If you have previously created a restore point, then you can flash back to this restore point if it falls within the flashback database window.

To rewind a database with Flashback Database:

	
Start RMAN and connect to a target database.

	
Ensure that the database is in a mounted state.

The following commands shut down and then mount the database:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;

	
Run the FLASHBACK DATABASE command.

The following examples illustrate different forms of the command:

FLASHBACK DATABASE TO SCN 861150;

FLASHBACK DATABASE
 TO RESTORE POINT BEFORE_CHANGES;

FLASHBACK DATABASE
 TO TIMESTAMP TO_DATE(04-DEC-2009 03:30:00','DD-MON-YYYY HH24:MI:SS');

	
After performing the Flashback Database, open the database read-only in SQL*Plus and run some queries to verify the database contents.

Open the database read-only as follows:

SQL "ALTER DATABASE OPEN READ ONLY";

	
If satisfied with the results, then issue the following sequence of commands to shut down and then open the database:

SHUTDOWN IMMEDIATE;
STARTUP MOUNT;
ALTER DATABASE OPEN RESETLOGS;

	
See Also:

"Rewinding a Database with Flashback Database"

Restoring and Recovering Database Files

Use the RESTORE and RECOVER commands for RMAN restore and recovery of physical database files. Restoring datafiles is retrieving them from backups as needed for a recovery operation. Media recovery is the application of changes from redo logs and incremental backups to a restored datafile to bring the datafile forward to a desired SCN or point in time.

	
See Also:

Chapter 17, "Performing Complete Database Recovery"

Preparing to Restore and Recover Database Files

If you need to recover the database because a media failure damages database files, then you should first ensure that you have the necessary backups. You can use the RESTORE ... PREVIEW command to report, but not restore, the backups that RMAN could use to restore to the specified time. RMAN queries the metadata and does not actually read the backup files. The database can be open when you run this command.

To preview a database restore and recovery:

	
Start RMAN and connect to the target database.

	
Optionally, list the current tablespaces and datafiles, as shown in the following command:

RMAN> REPORT SCHEMA;

	
Run the RESTORE DATABASE command with the PREVIEW option.

The following command specifies SUMMARY so that the backup metadata is not displayed in verbose mode (sample output included):

RMAN> RESTORE DATABASE PREVIEW SUMMARY;

Starting restore at 21-MAY-07
allocated channel: ORA_DISK_1
channel ORA_DISK_1: SID=80 device type=DISK

List of Backups
===============
Key TY LV S Device Type Completion Time #Pieces #Copies Compressed Tag
------- -- -- - ----------- --------------- ------- ------- ---------- ---
11 B F A DISK 18-MAY-07 1 2 NO TAG20070518T181114
13 B F A DISK 18-MAY-07 1 2 NO TAG20070518T181114
using channel ORA_DISK_1

List of Archived Log Copies for database with db_unique_name PROD
===

Key Thrd Seq S Low Time
------- ---- ------- - ---------
47 1 18 A 18-MAY-07
 Name: /disk1/oracle/dbs/db1r_60ffa882_1_18_0622902157.arc

Media recovery start SCN is 586534
Recovery must be done beyond SCN 587194 to clear datafile fuzziness
validation succeeded for backup piece
Finished restore at 21-MAY-07

Recovering the Whole Database

Use the RESTORE DATABASE and RECOVER DATABASE commands to recover the whole database. You must have previously made backups of all needed files. This scenario assumes that you can restore all datafiles to their original locations. If the original locations are inaccessible, then use the SET NEWNAME command as described in "Restoring Datafiles to a Nondefault Location".

To recover the whole database:

	
Prepare for recovery as explained in "Preparing to Restore and Recover Database Files".

	
Place the database in a mounted state.

The following example terminates the database instance (if it is started) and mounts the database:

RMAN> STARTUP FORCE MOUNT;

	
Restore the database.

The following example uses the preconfigured disk channel to restore the database:

RMAN> RESTORE DATABASE;

	
Recover the database, as shown in the following example:

RMAN> RECOVER DATABASE;

	
Open the database, as shown in the following example:

RMAN> ALTER DATABASE OPEN;

Recovering Tablespaces

Use the RESTORE TABLESPACE and RECOVER TABLESPACE commands on individual tablespaces when the database is open. In this case, must take the tablespace that needs recovery offline, restore and then recover the tablespace, and bring the recovered tablespace online.

If you cannot restore a datafile to a new location, then use the RMAN SET NEWNAME command within a RUN command to specify the new filename. Afterward, use a SWITCH DATAFILE ALL command, which is equivalent to using the SQL statement ALTER DATABASE RENAME FILE, to update the control file to reflect the new names for all datafiles for which a SET NEWNAME has been issued in the RUN command.

Unlike in user-managed media recovery, you should not place an online tablespace in backup mode. Unlike user-managed tools, RMAN does not require extra logging or backup mode because it knows the format of data blocks.

To recover an individual tablespace when the database is open:

	
Prepare for recovery as explained in "Preparing to Restore and Recover Database Files".

	
Take the tablespace to be recovered offline:

The following example takes the users tablespace offline:

RMAN> SQL 'ALTER TABLESPACE users OFFLINE';

	
Restore and recover the tablespace.

The following RUN command, which you execute at the RMAN prompt, sets a new name for the datafile in the users tablespace:

RUN
{
 SET NEWNAME FOR DATAFILE '/disk1/oradata/prod/users01.dbf'
 TO '/disk2/users01.dbf';
 RESTORE TABLESPACE users;
 SWITCH DATAFILE ALL; # update control file with new filenames
 RECOVER TABLESPACE users;
}

	
Bring the tablespace online, as shown in the following example:

RMAN> SQL 'ALTER TABLESPACE users ONLINE';

You can also use RESTORE DATAFILE and RECOVER DATAFILE for recovery at the datafile level.

	
See Also:

	
"Performing Complete Recovery of a Tablespace"

	
"Online Backups and Backup Mode"

Recovering Individual Data Blocks

RMAN can recover individual corrupted datafile blocks. When RMAN performs a complete scan of a file for a backup, any corrupted blocks are listed in V$DATABASE_BLOCK_CORRUPTION. Corruption is usually reported in alert logs, trace files, or results of SQL queries.

To recover data blocks:

	
Obtain the block numbers of the corrupted blocks if you do not already have this information.

The easiest way to locate trace files and the alert log is to connect SQL*Plus to the target database and execute the following query:

SQL> SELECT NAME, VALUE
 2 FROM V$DIAG_INFO;

	
Start RMAN and connect to the target database.

	
Run the RECOVER command to repair the blocks.

The following RMAN command recovers all corrupted blocks:

RMAN> RECOVER CORRUPTION LIST;

You can also recover individual blocks, as shown in the following example:

RMAN> RECOVER DATAFILE 1 BLOCK 233, 235 DATAFILE 2 BLOCK 100 TO 200;

	
See Also:

Chapter 19, "Performing Block Media Recovery"

4 Starting and Interacting with the RMAN Client

This chapter explains how to start the RMAN command-line interface and make database connections. This chapter contains the following topics:

	
Starting and Exiting RMAN

	
Specifying the Location of RMAN Output

	
Setting Globalization Support Environment Variables for RMAN

	
Entering RMAN Commands

	
Making Database Connections with RMAN

	
Using the RMAN Pipe Interface

Starting and Exiting RMAN

The RMAN executable is automatically installed with the database and is typically located in the same directory as the other database executables. For example, the RMAN client on Linux is located in $ORACLE_HOME/bin. You have the following basic options for starting RMAN:

	
Start the RMAN executable at the operating system command line without specifying any connection options, as in the following example:

% rman

	
Start the RMAN executable at the operating system command line while connecting to a target database and, possibly, to a recovery catalog, as in the following examples:

% rman TARGET / # operating system authentication
% rman TARGET SYS@prod NOCATALOG # RMAN prompts for SYS password
% rman TARGET / CATALOG rco@catdb # RMAN prompts for rco password

	
Note:

Most RMAN commands require that RMAN connect to at least a target database to perform useful work. See "Making Database Connections with RMAN" for more details about connecting RMAN to different types of databases.

To quit RMAN and terminate the program, enter EXIT or QUIT at the RMAN prompt:

RMAN> EXIT

	
See Also:

Oracle Database Backup and Recovery Reference for RMAN command-line syntax

Specifying the Location of RMAN Output

By default, RMAN writes command output to standard output. To redirect output to a log file, enter the LOG parameter on the command line when starting RMAN, as in the following example:

% rman LOG /tmp/rman.log

In this case, RMAN displays command input but does not display the RMAN output. The easiest way to send RMAN output both to a log file and to standard output is to use the Linux tee command or its equivalent. For example, the following technique enables both input and output to be visible in the RMAN command-line interface:

% rman | tee rman.log
RMAN>

	
See Also:

Oracle Database Backup and Recovery Reference to learn about RMAN command-line options

Setting Globalization Support Environment Variables for RMAN

Before invoking RMAN, it may be useful to set the NLS_DATE_FORMAT and NLS_LANG environment variables. These variables determine the format used for the time parameters in RMAN commands such as RESTORE, RECOVER, and REPORT.

The following example shows typical language and date format settings:

NLS_LANG=american
NLS_DATE_FORMAT='Mon DD YYYY HH24:MI:SS'

If you are going to use RMAN to connect to an unmounted database and mount the database later while RMAN is still connected, then set the NLS_LANG environment variable so that it also specifies the character set used by the database.

A database that is not mounted assumes the default character set, which is US7ASCII. If your character set is different from the default, then RMAN returns errors after the database is mounted. For example, if the character set is WE8DEC, then to avoid errors, you can set the NLS_LANG variable as follows:

NLS_LANG=american_america.we8dec

In order for the environment variable NLS_DATE_FORMAT to be applied and override the defaults set for the server in the server initialization file, the environment variable NLS_LANG must also be set.

	
See Also:

	
Oracle Database Reference for more information about the NLS_LANG and NLS_DATE_FORMAT parameters

	
Oracle Database Globalization Support Guide

Entering RMAN Commands

You can enter RMAN commands either directly from the RMAN prompt or read them in from a text file.

This section contains the following topics:

	
Entering RMAN Commands at the RMAN Prompt

	
Using Command Files with RMAN

	
Entering Comments in RMAN Command Files

	
Using Substitution Variables in Command Files

	
Checking RMAN Syntax

Entering RMAN Commands at the RMAN Prompt

When the RMAN client is ready for your commands, it displays the command prompt, as in this example:

RMAN>

Enter commands for RMAN to execute. For example:

RMAN> CONNECT TARGET
RMAN> BACKUP DATABASE;

Most RMAN commands take a number of parameters and must end with a semicolon. Some commands, such as STARTUP, SHUTDOWN, and CONNECT, can be used with or without a semicolon.

When you enter a line of text that is not a complete command, RMAN prompts for continuation input with a line number. For example:

RMAN> BACKUP DATABASE
2> INCLUDE CURRENT
3> CONTROLFILE
4> ;

Using Command Files with RMAN

For repetitive tasks, you can create a text file containing RMAN commands, and start the RMAN client with the @ argument, followed by a filename. For example, create a text file cmdfile1 in the current directory containing one line of text as shown here:

BACKUP DATABASE PLUS ARCHIVELOG;

You can run this command file from the command line as shown in this example, and the command contained in it is executed:

% rman TARGET / @cmdfile1

After the command completes, RMAN exits.

You can also use the @ command at the RMAN command prompt to execute the contents of a command file during an RMAN session. RMAN reads the file and executes the commands in it. For example:

RMAN> @cmdfile1

After the command file contents have been executed, RMAN displays the following message:

RMAN> **end-of-file**

Unlike the case where a command file is executed from the operating system command line, RMAN does not exit.

	
See Also:

Oracle Database Backup and Recovery Reference for RMAN command-line syntax

Entering Comments in RMAN Command Files

The comment character in RMAN is a pound sign (#). All text from the pound sign to the end of the line is ignored. For example, the following command file contents backs up the database and archived redo log files and includes comments:

Command file name: mybackup.rman
The following command backs up the database
BACKUP DATABASE;
The following command backs up the archived redo logs
BACKUP ARCHIVELOG ALL;

The following example shows that you can break a single RMAN command across multiple lines:

RMAN> BACKUP # this is a comment
2> SPFILE;

Using Substitution Variables in Command Files

When running a command file, you can specify one or more values in a USING clause for use in substitution variables in a command file. In this way, you can make your command files dynamic.

As in SQL*Plus, &1 indicates where to place the first value, &2 where to place the second value, and so on. The substitution variable syntax is &integer followed by an optional period, for example, &1.3. The optional period is part of the variable and replaced with the value, thus enabling the substitution text to be immediately followed by another integer. For example, if you pass the value mybackup to a command file containing the variable &1.3, then the result of the substitution is mybackup3.

The following procedure explains how to create and use a dynamic shell script that calls a command file containing substitution variables.

To create and use a dynamic shell script:

	
Create an RMAN command file that uses substitution variables.

The following example shows the contents of a command file named quarterly_backup.cmd, which is run every quarter. The script uses substitution variables for the name of the tape set, for a string in the FORMAT specification, and for the name of the restore point to be created.

quarterly_backup.cmd
CONNECT TARGET /
RUN
{
 ALLOCATE CHANNEL c1
 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=&1)';
 BACKUP DATABASE
 TAG &2
 FORMAT '/disk2/bck/&1%U.bck'
 KEEP FOREVER
 RESTORE POINT &3;
}
EXIT;

	
Create a shell script that you can use to run the RMAN command file created in the previous step.

The following example creates a shell script named runbackup.sh. The example creates shell variables for the format and restore point name and accepts the values for these variables as command-line arguments to the script.

#!/bin/tcsh
name: runbackup.sh
usage: use the tag name and number of copies as arguments
set media_family = $argv[1]
set format = $argv[2]set restore_point = $argv[3]
rman @'/disk1/scripts/whole_db.cmd' USING $media_family $format $restore_point

	
Execute the shell script created in the previous step, specifying the desired arguments on the command line.

The following example runs the runbackup.sh shell script and passes it archival_backup as the media family name, bck0906 as the format string, and FY06Q3 as the restore point name.

% runbackup.sh archival_backup bck0906 FY06Q3

	
See Also:

Oracle Database Backup and Recovery Reference for @ syntax

Checking RMAN Syntax

You may want to test RMAN commands for syntactic correctness without executing them. Use the command-line argument CHECKSYNTAX to start the RMAN client in a mode in which it only parses the commands that you enter and returns an RMAN-00558 error for commands that are not legal RMAN syntax.

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the CHECKSYNTAX command-line option

Checking RMAN Syntax at the Command Line

You can check the syntax of RMAN commands interactively without actually executing the commands.

To check RMAN syntax at the command line:

	
Start RMAN with the CHECKSYNTAX parameter.

For example, enter the following commands:

% rman CHECKSYNTAX

	
Enter the RMAN commands to be tested.

The following shows a sample interactive session, with user-entered text in bold.

RMAN> run [backup database;]

RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01006: error signaled during parse
 RMAN-02001: unrecognized punctuation symbol "["

RMAN> run { backup database; }

The command has no syntax errors

RMAN>

Checking RMAN Syntax in Command Files

To test commands in a command file, start RMAN with the CHECKSYNTAX parameter and use the @ command to name the command file to be passed.

To test commands in a command file:

	
Use a text editor to create a command file.

Assume that you create the /tmp/goodcmdfile with the following contents:

command file with legal syntax
RESTORE DATABASE;
RECOVER DATABASE;

Assume that you create another command file, /tmp/badcmdfile, with the following contents:

command file with bad syntax commands
RESTORE DATABASE
RECOVER DATABASE

	
Run the command file from the RMAN prompt in the following format, where filename is the name of the command file:

% rman CHECKSYNTAX @filename

The following example shows the output when you run /tmp/goodcmdfile with CHECKSYNTAX:

RMAN> # command file with legal syntax
2> restore database;
3> recover database;
4>
The cmdfile has no syntax errors

Recovery Manager complete.

In contrast, the following example shows the output when you run /tmp/badcmdfile with CHECKSYNTAX:

RMAN> #command file with syntax error
2> restore database
3> recover
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01005: syntax error: found "recover": expecting one of: "archivelog,
 channel, check, controlfile, clone, database, datafile, device,
 from, force, high, (, preview, ;, skip, spfile, standby, tablespace,
 until, validate"
RMAN-01007: at line 3 column 1 file: /tmp/badcmdfile

As explained in "Using Substitution Variables in Command Files", you make your command files dynamic by including substitution variables. When you check the syntax of a command file that contains substitution variables, RMAN prompts you to enter values. Example 4-1 illustrates what happens you enter invalid values when checking the syntax of a dynamic command file. The text in bold indicates text entered as the prompt.

Example 4-1 Checking the Syntax of a Command File with Bad Syntax

RMAN> CONNECT TARGET *
2> BACKUP TAG
Enter value for 1: mybackup
abc COPIES
Enter value for 2: mybackup
abc
RMAN-00571: ===
RMAN-00569: =============== ERROR MESSAGE STACK FOLLOWS ===============
RMAN-00571: ===
RMAN-00558: error encountered while parsing input commands
RMAN-01009: syntax error: found "identifier": expecting one of: "integer"
RMAN-01008: the bad identifier was: mybackup
RMAN-01007: at line 2 column 25 file: /tmp/whole_db.cmd

RMAN indicates a syntax error because the string mybackup is not a valid argument for COPIES.

Making Database Connections with RMAN

This section explains how to connect the RMAN client to target databases. It contains the following topics:

	
About RMAN Database Connections

	
Connecting RMAN to an Auxiliary Database

	
Making RMAN Database Connections Within Command Files

	
Diagnosing RMAN Connection Problems

About RMAN Database Connections

To perform useful work, the RMAN client must connect to a database. The following table describes the types of database connections that you can make with RMAN.

Table 4-1 Overview of RMAN Database Connections

	Type of Database Connection	Keyword	Description
	
target database

	
TARGET

	
A database to be backed up or restored by RMAN

	
recovery catalog database

	
CATALOG

	
A database that provides an optional backup store for the RMAN repository in addition to the control file.

	
auxiliary instance or auxiliary database

	
AUXILIARY

	
A physical standby database, or a database instance created for performing a specific task such as creating a duplicate database, transporting tablespaces, or performing tablespace point-in-time recovery (TSPITR).

For many tasks that use an auxiliary database, RMAN creates an automatic auxiliary instance for use during the task, connects to it, performs the task, and then destroys it when the task is completed. You do not give any explicit command to connect to automatic auxiliary instances.

Authentication for RMAN Database Connections

RMAN connections to a database are specified and authenticated in the same way as SQL*Plus connections to a database. The only difference is that RMAN connections to a target or auxiliary database require the SYSDBA privilege. The AS SYSDBA keywords are implied for target and auxiliary connections and cannot be explicitly specified.

A SYSDBA privilege is not required when connecting to the recovery catalog. You must grant the RECOVERY_CATALOG_OWNER role to the catalog schema owner.

	
See Also:

Oracle Database Administrator's Guide to learn about database connection options when using SQL*Plus

Authentication for RMAN Database Connections Using the Operating System

To connect to a database using operating system authentication, you must set the environment variable specifying the Oracle SID. For example, to set the SID to prod in some UNIX shells, you would enter:

% ORACLE_SID=prod; export ORACLE_SID

A special operating system groups controls SYSDBA connections when using operating system authentication. This group is generically referred to as OSDBA. The group is created and assigned a specific name as part of the database installation process. The specific name varies depending upon your operating system.

If the current operating system user is a member of the OSDBA group, and if the Oracle SID is set, then RMAN can connect to this database with SYSDBA privileges as follows:

% rman TARGET /

Authentication for RMAN Database Connections Using a Password File

If a database uses a password file, then RMAN can use a password to connect to this database. Use a password file for either local or remote access. You must use a password file if you are connecting remotely as SYSDBA with a net service name.

	
Caution:

Good security practice requires that passwords should not be entered in plain text on the command line. You should enter passwords in RMAN only when requested by an RMAN prompt. See Oracle Database Security Guide to learn about password protection.

You can start RMAN without a password in the connect string, as in this example:

% rman TARGET SYS@prod

target database Password: password
connected to target database: PROD1 (DBID=39525561)

RMAN prompts for a password and does not echo the characters.

Making RMAN Database Connections from the Operating System Command Line

To connect to a target database from the operating system command line, enter the rman command followed by the connection information. You can begin executing commands after the RMAN prompt is displayed.

In the examples in this chapter, the generic values have the meanings shown in Table 4-2.

Table 4-2 Values in Examples

	Value Used in Example	Meaning
	
SYS

	
User with SYSDBA privileges

	
prod

	
The net service name for the target database

	
rco

	
User that owns the recovery catalog schema. This is a user defined in the recovery catalog database that has been granted the RECOVERY_CATALOG_OWNER role.

	
catdb

	
The net service name for the recovery catalog database

	
aux

	
The net service name for an auxiliary instance

Example 4-2 illustrates a connection to a target database that uses operating system authentication. The NOCATALOG option indicates that a recovery catalog is not used in the session.

Example 4-2 Connecting to a Target Database from the System Prompt

% rman TARGET / NOCATALOG

connected to target database: PROD (DBID=39525561)
using target database control file instead of recovery catalog

RMAN>

Example 4-3 illustrates a connection to a target database that uses Oracle Net authentication. RMAN prompts for the password.

Example 4-3 Connecting to a Target Database from the System Prompt

% rman TARGET SYS@prod NOCATALOG

target database Password: password
connected to target database: PROD (DBID=39525561)

RMAN>

Use the CATALOG keyword to connect to a recovery catalog. Example 4-4 illustrates a connection that uses Oracle Net authentication for the target and recovery catalog databases. In both cases RMAN prompts for a password.

Example 4-4 Connecting to Target and Catalog Databases from the System Prompt

% rman TARGET SYS@prod CATALOG rco@catdb

target database Password: password
connected to target database: PROD (DBID=39525561)
recovery catalog database Password: password
connected to recovery catalog database

RMAN>

You can also start RMAN without specifying NOCATALOG or CATALOG. If you do not specify NOCATALOG on the command line, and if you do not specify CONNECT CATALOG after RMAN has started, then RMAN defaults to NOCATALOG mode the first time that you run a command that requires the use of the RMAN repository.

	
Note:

After you have executed a command that uses the RMAN repository in NOCATALOG mode, you must exit and restart RMAN to be able to connect to a recovery catalog.

If you connect to the target database on the operating system command line, then you can begin executing commands after the RMAN prompt is displayed.

Making Database Connections from the RMAN Prompt

If you start RMAN without connecting to a target database, then you must issue a CONNECT TARGET command at the RMAN prompt to connect to a target database and begin performing useful work.

To make a database connection from the RMAN prompt:

	
On the operating system command line, start the RMAN client without making a database connection. For example, enter rman as follows:

% rman
RMAN>

	
At the RMAN prompt, enter one or more CONNECT commands.

The following example connects to a target database using operating system authentication:

RMAN> CONNECT TARGET /

The following alternative example connects to a target database and then a recovery catalog. The target connection uses operating system authentication, whereas the catalog database connection uses Oracle Net authentication. RMAN prompts for the password of the recovery catalog user.

RMAN> CONNECT TARGET /
RMAN> CONNECT CATALOG rco@catdb

recovery catalog database Password: password
connected to recovery catalog database

The following example connects to a target database with database-level credentials. RMAN prompts for the SYS password.

% rman
RMAN> CONNECT TARGET SYS@prod

target database Password: password
connected to target database: PROD (DBID=39525561)

	
See Also:

Oracle Database Backup and Recovery Reference to learn about the CONNECT command

Connecting RMAN to an Auxiliary Database

To use the DUPLICATE command, you need to connect to an auxiliary instance. To perform RMAN tablespace point-in-time recovery (TSPITR), you may also need to connect to an auxiliary instance.

	
Note:

When you use the DUPLICATE ... FROM ACTIVE DATABASE command, a net service name is required. See "Step 5: Creating an Initialization Parameter File and Starting the Auxiliary Instance" for more details.

The form of an auxiliary connection is identical to a target database connection, except that you use the AUXILIARY keyword instead of the TARGET keyword. Example 4-5 connects to a target database and auxiliary instance from the RMAN prompt.

Example 4-5 Connecting to the Target and Catalog Databases from the RMAN Prompt

% rman
RMAN> CONNECT TARGET /
RMAN> CONNECT AUXILIARY SYS@aux

auxiliary database Password: password
connected to auxiliary database: PROD (DBID=30472568)

	
See Also:

	
Chapter 24, "Duplicating a Database" for more details on using the DUPLICATE command

	
Chapter 21, "Performing RMAN Tablespace Point-in-Time Recovery (TSPITR)" for more details on performing TSPITR

Making RMAN Database Connections Within Command Files

If you create an RMAN command file which uses a CONNECT command with database level credentials (user name and password), then anyone with read access to this file can learn the password. There is no secure way to incorporate a CONNECT string with a password into a command file.

If you create an RMAN command file which uses a CONNECT command, then RMAN does not echo the connect string when you run the command file with the @ command. This behavior prevents connect strings from appearing in any log files that contain RMAN output. For example, suppose you create a command file listbkup.rman as follows:

cat > listbkup.rman << EOF
CONNECT TARGET /
LIST BACKUP;
EOF

You execute this script by running RMAN with the @ command line option as follows:

% rman @listbkup.rman

When the command file executes, RMAN replaces the connection string with an asterisk, as shown in the following output:

RMAN> CONNECT TARGET *
2> LIST BACKUP;
3>
connected to target database: RDBMS (DBID=771530996)

using target database control file instead of recovery catalog

List of Backup Sets
===================
. . .

Diagnosing RMAN Connection Problems

When diagnosing errors RMAN encounters in connecting to the target, catalog and auxiliary databases, using SQL*Plus to connect to the databases directly can reveal underlying problems with the connection information or the databases.

Diagnosing Target and Auxiliary Database Connection Problems

RMAN always connects to target and auxiliary databases using the SYSDBA privilege. Thus, when using SQL*Plus to diagnose connection problems to the target or auxiliary databases, request a SYSDBA connection to reproduce RMAN behavior.

For example, suppose that the following RMAN command encountered connection errors:

RMAN> CONNECT TARGET /

You reproduce the preceding connection attempt with the SQL*Plus command as follows:

SQL> CONNECT / AS SYSDBA

Diagnosing Recovery Catalog Connection Problems

When RMAN connects to the recovery catalog database, it does not use the SYSDBA privilege. So, when you are using SQL*Plus to diagnose connection problems to the recovery catalog database, you must enter the database connect string exactly as it was entered into RMAN. Do not specify AS SYSDBA.

Using the RMAN Pipe Interface

The RMAN pipe interface is an alternative method for issuing commands to RMAN and receiving the output from those commands. With this interface, RMAN obtains commands and sends output by using the DBMS_PIPE PL/SQL package instead of the operating system shell. Using this interface, it is possible to write a portable programmatic interface to RMAN.

The pipe interface is invoked by using the PIPE command-line parameter for the RMAN client. RMAN uses two private pipes: one for receiving commands and the other for sending output. The names of the pipes are derived from the value of the PIPE parameter. For example, you can invoke RMAN with the following command:

% rman PIPE abc TARGET /

RMAN opens the two pipes in the target database: ORA$RMAN_ABC_IN, which RMAN uses to receive user commands, and ORA$RMAN_ABC_OUT, which RMAN uses to send all output back to RMAN. All messages on both the input and output pipes are of type VARCHAR2.

RMAN does not permit the pipe interface to be used with public pipes, because they are a potential security problem. With a public pipe, any user who knows the name of the pipe can send commands to RMAN and intercept its output.

If the pipes are not already initialized, then RMAN creates them as private pipes. If you want to put commands on the input pipe before starting RMAN, you must first create the pipe by calling DBMS_PIPE.CREATE_PIPE. Whenever a pipe is not explicitly created as a private pipe, the first access to the pipe automatically creates it as a public pipe, and RMAN returns an error if it is told to use a public pipe.

	
Note:

If multiple RMAN sessions can run against the target database, then you must use unique pipe names for each RMAN session. The DBMS_PIPE.UNIQUE_SESSION_NAME function is one method that you can use to generate unique pipe names.

Executing Multiple RMAN Commands in Succession Through a Pipe: Example

This scenario assumes that the application controlling RMAN wants to run multiple commands in succession. After each command is sent down the pipe and executed and the output returned, RMAN pauses and waits for the next command.

To execute RMAN commands through a pipe:

	
Start RMAN by connecting to a target database (required) and specifying the PIPE option. For example, issue:

% rman PIPE abc TARGET /

You can also specify the TIMEOUT option, which forces RMAN to exit automatically if it does not receive any input from the input pipe in the specified number of seconds. For example, enter:

% rman PIPE abc TARGET / TIMEOUT 60

	
Connect to the target database and put the desired commands on the input pipe by using DBMS_PIPE.PACK_MESSAGE and DBMS_PIPE.SEND_MESSAGE. In pipe mode, RMAN issues message RMAN-00572 when it is ready to accept input instead of displaying the standard RMAN prompt.

	
Read the RMAN output from the output pipe by using DBMS_PIPE.RECEIVE_MESSAGE and DBMS_PIPE.UNPACK_MESSAGE.

	
Repeat Steps 2 and 3 to execute further commands with the same RMAN instance that was started in Step 1.

	
If you used the TIMEOUT option when starting RMAN, then RMAN terminates automatically after not receiving any input for the specified length of time. To force RMAN to terminate immediately, send the EXIT command.

Executing RMAN Commands in a Single Job Through a Pipe: Example

This scenario assumes that the application controlling RMAN wants to run one or more commands as a single job. After running the commands that are on the pipe, RMAN exits.

To execute RMAN commands in a single job through a pipe:

	
After connecting to the target database, create a pipe (if it does not already exist under the name ORA$RMAN_pipe_IN).

	
Put the desired commands on the input pipe. In pipe mode, RMAN issues message RMAN-00572 when it is ready to accept input instead of displaying the standard RMAN prompt.

	
Start RMAN with the PIPE option, and specify TIMEOUT 0. For example, enter:

% rman PIPE abc TARGET / TIMEOUT 0

	
RMAN reads the commands that were put on the pipe and executes them by using DBMS_PIPE.PACK_MESSAGE and DBMS_PIPE.SEND_MESSAGE. When it has exhausted the input pipe, RMAN exits immediately.

	
Read RMAN output from the output pipe by using DBMS_PIPE.RECEIVE_MESSAGE and DBMS_PIPE.UNPACK_MESSAGE.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for documentation on the DBMS_PIPE package

[image: Oracle Corporation]

13 Managing a Recovery Catalog

This chapter explains how to manage an RMAN recovery catalog. The catalog is a database schema that contains the RMAN repository data for one or more target databases. This chapter contains the following topics:

	
Overview of the Recovery Catalog

	
Creating a Recovery Catalog

	
Registering a Database in the Recovery Catalog

	
Cataloging Backups in the Recovery Catalog

	
Creating and Managing Virtual Private Catalogs

	
Protecting the Recovery Catalog

	
Managing Stored Scripts

	
Maintaining a Recovery Catalog

	
Dropping a Recovery Catalog

	
See Also:

	
Chapter 12, "Maintaining RMAN Backups and Repository Records"to learn how to manage the RMAN repository as stored in the control file, without a recovery catalog

	
The compatibility matrix in Oracle Database Backup and Recovery Reference for descriptions of supported interoperability scenarios

Overview of the Recovery Catalog

This section explains the basic concepts related to managing a recovery catalog.

Purpose of the Recovery Catalog

A recovery catalog is a database schema used by RMAN to store metadata about one or more Oracle databases. Typically, you store the catalog in a dedicated database. A recovery catalog provides the following benefits:

	
A recovery catalog creates redundancy for the RMAN repository stored in the control file of each target database. The recovery catalog serves as a secondary metadata repository. If the target control file and all backups are lost, then the RMAN metadata still exists in the recovery catalog.

	
A recovery catalog centralizes metadata for all your target databases. Storing the metadata in a single place makes reporting and administration tasks easier to perform.

	
A recovery catalog can store metadata history much longer than the control file. This capability is useful if you must do a recovery that goes further back in time than the history in the control file. The added complexity of managing a recovery catalog database can be offset by the convenience of having the extended backup history available.

Some RMAN features function only when you use a recovery catalog. For example, you can store RMAN scripts in a recovery catalog. The chief advantage of a stored script is that it is available to any RMAN client that can connect to the target database and recovery catalog. Command files are only available if the RMAN client has access to the file system on which they are stored.

A recovery catalog is required when you use RMAN in a Data Guard environment. By storing backup metadata for all primary and standby databases, the catalog enables you to offload backup tasks to one standby database while enabling you to restore backups on other databases in the environment.

Basic Concepts for the Recovery Catalog

The recovery catalog contains metadata about RMAN operations for each registered target database. When RMAN is connected to a recovery catalog, RMAN obtains its metadata exclusively from the catalog. The catalog includes the following types of metadata:

	
Datafile and archived redo log backup sets and backup pieces

	
Datafile copies

	
Archived redo logs and their copies

	
Database structure (tablespaces and datafiles)

	
Stored scripts, which are named user-created sequences of RMAN commands

	
Persistent RMAN configuration settings

Database Registration

The process of enrolling of a database in a recovery catalog for RMAN use is called registration. The recommended practice is to register every target database in your environment in a single recovery catalog. For example, you can register databases prod1, prod2, and prod3 in a single catalog owned by catowner in the database catdb.

	
See Also:

"Registering a Database in the Recovery Catalog"

Centralization of Metadata in a Base Recovery Catalog

The owner of a centralized recovery catalog, which is also called the base recovery catalog, can grant or revoke restricted access to the catalog to other database users. Each restricted user has full read/write access to his own metadata, which is called a virtual private catalog. The RMAN metadata is stored in the schema of the virtual private catalog owner. The owner of the base recovery catalog determines which objects each virtual private catalog user can access.

You can use a recovery catalog in an environment in which you use or have used different versions of Oracle Database. As a result, your environment can have different versions of the RMAN client, recovery catalog database, recovery catalog schema, and target database. "Importing and Moving a Recovery Catalog" explains how to merge multiple recovery catalog schemas into one.

	
See Also:

"Creating and Managing Virtual Private Catalogs"

Recovery Catalog Resynchronization

For RMAN operations such as backup, restore, and crosscheck, RMAN always first updates the control file and then propagates the metadata to the recovery catalog. This flow of metadata from the mounted control file to the recovery catalog, which is known as recovery catalog resynchronization, ensures that the metadata that RMAN obtains from the control file is current.

	
See Also:

"Resynchronizing the Recovery Catalog"

Stored Scripts

You can use a stored script as an alternative to a command file for managing frequently used sequences of RMAN commands. The script is stored in the recovery catalog rather than on the file system.

A local stored script is associated with the target database to which RMAN is connected when the script is created, and can only be executed when you are connected to this target database. A global stored script can be run against any database registered in the recovery catalog. A virtual private catalog user has read-only access to global scripts. Creating or updating global scripts must be done while connected to the base recovery catalog.

	
See Also:

"Managing Stored Scripts"

Recovery Catalog in a Data Guard Environment

As explained in "RMAN in a Data Guard Environment", you must use a recovery catalog to manage RMAN metadata for all physical databases, both primary and standby databases, in the Data Guard environment. RMAN uses the recovery catalog as the single source of truth for the Data Guard environment.

RMAN can use the recovery catalog to update a primary or standby control file in a reverse resynchronization. In this case, the metadata flows from the catalog to the control file rather than the other way around. RMAN automatically performs resynchronizations in most situations in which they are needed. Thus, you should not need to use the RESYNC command to manually resynchronize very often.

	
See Also:

Oracle Data Guard Concepts and Administration to learn how to configure the RMAN environment for use with a standby database

Basic Steps of Managing a Recovery Catalog

The basic steps for setting up a recovery catalog for use by RMAN are as follows:

	
Create the recovery catalog.

"Creating a Recovery Catalog" explains how to perform this task.

	
Register your target databases in the recovery catalog.

This step enables RMAN to store metadata for the target databases in the recovery catalog. "Registering a Database in the Recovery Catalog" explains this task.

	
If needed, catalog any older backups whose records are no longer stored in the target control file.

"Cataloging Backups in the Recovery Catalog" explains how to perform this task.

	
If needed, create virtual private catalogs for specific users and determine the metadata to which they are permitted access.

"Creating and Managing Virtual Private Catalogs" explains how to perform this task.

	
Protect the recovery catalog by including it in your backup and recovery strategy.

"Protecting the Recovery Catalog" explains how to back up and recover the catalog as well as increase its availability.

The remainder of the chapter explains how to manage the recovery catalog after it is operational. You can perform the following tasks:

	
"Managing Stored Scripts" explains how to store RMAN scripts in the recovery catalog and manage them.

	
Chapter 11, "Reporting on RMAN Operations" explains how to report on RMAN operations. You can use the LIST and REPORT commands with or without a recovery catalog. "Querying Recovery Catalog Views" explains how to report on RMAN operations by means of fixed views in the recovery catalog.

	
"Maintaining a Recovery Catalog" explains a variety of tasks for ongoing recovery catalog maintenance, including how to import one recovery catalog into another recovery catalog.

If you no longer want to maintain a recovery catalog, then see "Dropping a Recovery Catalog".

Creating a Recovery Catalog

This section explains the phases of recovery catalog creation. This section contains the following topics:

	
Configuring the Recovery Catalog Database

	
Creating the Recovery Catalog Schema Owner

	
Executing the CREATE CATALOG Command

Configuring the Recovery Catalog Database

When you use a recovery catalog, RMAN requires that you maintain a recovery catalog schema. The recovery catalog is stored in the default tablespace of the schema. The SYS user cannot be the owner of the recovery catalog.

Decide which database you will use to install the recovery catalog schema, and also how you will back up this database. Also, decide whether to operate the catalog database in ARCHIVELOG mode, which is recommended.

	
Note:

Do not use the target database to be backed up as the database for the recovery catalog. The recovery catalog must be protected in the event of the loss of the target database.

Planning the Size of the Recovery Catalog Schema

You must allocate space to be used by the catalog schema. The size of the recovery catalog schema depends upon the number of databases monitored by the catalog. The schema also grows as the number of archived redo log files and backups for each database increases. Finally, if you use RMAN stored scripts stored in the catalog, some space must be allocated for those scripts.

For example, assume that the trgt database has 100 files, and that you back up the database once a day, producing 50 backup sets containing 1 backup piece each. If you assume that each row in the backup piece table uses the maximum amount of space, then one daily backup will consume less than 170 kilobytes in the recovery catalog. So, if you back up once a day for a year, then the total storage in this period is about 62 megabytes. Assume approximately the same amount for archived logs. Thus, the worst case is about 120 megabytes for a year for metadata storage. For a more typical case in which only a portion of the backup piece row space is used, 15 MB for each year is realistic.

If you plan to register multiple databases in your recovery catalog, then remember to add up the space required for each one based on the previous calculation to arrive at a total size for the default tablespace of the recovery catalog schema.

Allocating Disk Space for the Recovery Catalog Database

If you are creating your recovery catalog in an existing database, then add enough room to hold the default tablespace for the recovery catalog schema. If you are creating a new database to hold your recovery catalog, then in addition to the space for the recovery catalog schema itself, allow space for other files in the recovery catalog database:

	
SYSTEM and SYSAUX tablespaces

	
Temporary tablespaces

	
Undo tablespaces

	
Online redo log files

Most of the space used in the recovery catalog database is devoted to supporting tablespaces, for example, the SYSTEM, temporary, and undo tablespaces. Table 13-1 describes typical space requirements.

Table 13-1 Typical Recovery Catalog Space Requirements for 1 Year

	Type of Space	Space Requirement
	
SYSTEM tablespace

	
90 MB

	
Temp tablespace

	
5 MB

	
Rollback or undo tablespace

	
5 MB

	
Recovery catalog tablespace

	
15 MB for each database registered in the recovery catalog

	
Online redo logs

	
1 MB each (three groups, each with two members)

	
Caution:

Ensure that the recovery catalog and target databases do not reside on the same disk. If both your recovery catalog and your target database suffer hard disk failure, then your recovery process is much more difficult. If possible, take other measures as well to eliminate common points of failure between your recovery catalog database and the databases that you are backing up.

Creating the Recovery Catalog Schema Owner

After choosing the recovery catalog database and creating the necessary space, you are ready to create the owner of the recovery catalog and grant this user necessary privileges. Assume the following background information for the instructions in the following sections:

	
User SYS has SYSDBA privileges on the recovery catalog database catdb.

	
A tablespace called tools in the recovery catalog database catdb stores the recovery catalog. If you use an RMAN reserved word as a tablespace name, you must enclose it in quotes and put it in uppercase. (See Oracle Database Backup and Recovery Reference for a list of RMAN reserved words.)

	
A tablespace called temp exists in the recovery catalog database.

To create the recovery catalog schema in the recovery catalog database:

	
Start SQL*Plus and connect with administrator privileges to the database containing the recovery catalog. In this example, the database is catdb.

	
Create a user and schema for the recovery catalog. For example, you could enter the following SQL statement (replacing password with a user-defined password):

CREATE USER rman IDENTIFIED BY password
 TEMPORARY TABLESPACE temp
 DEFAULT TABLESPACE tools
 QUOTA UNLIMITED ON tools;

	
Note:

Create a password that is secure. See Oracle Database Security Guide for more information.

	
Grant the RECOVERY_CATALOG_OWNER role to the schema owner. This role provides the user with all privileges required to maintain and query the recovery catalog.

GRANT RECOVERY_CATALOG_OWNER TO rman;

Executing the CREATE CATALOG Command

After creating the catalog owner, create the catalog tables with the RMAN CREATE CATALOG command. The command creates the catalog in the default tablespace of the catalog owner.

To create the recovery catalog:

	
Start RMAN and connect to the database that will contain the catalog. Connect to the database as the recovery catalog owner.

	
Run the CREATE CATALOG command to create the catalog. The creation of the catalog can take several minutes. If the catalog tablespace is this user's default tablespace, then you can run the following command:

RMAN> CREATE CATALOG;

You can specify the tablespace name for the catalog in the CREATE CATALOG command. For example:

RMAN> CREATE CATALOG TABLESPACE cat_tbs;

	
Note:

If the tablespace name that you want to use for the recovery catalog is an RMAN reserved word, then it must be uppercase and enclosed in quotes. For example:

CREATE CATALOG TABLESPACE 'CATALOG';

	
You can check the results by using SQL*Plus to query the recovery catalog to see which tables were created:

SQL> SELECT TABLE_NAME FROM USER_TABLES;

	
See Also:

Oracle Database SQL Language Reference for the SQL syntax for the GRANT and CREATE USER statements, and Oracle Database Backup and Recovery Reference for CREATE CATALOG command syntax

Registering a Database in the Recovery Catalog

This section describes how to maintain target database records in the recovery catalog. It contains the following sections:

	
About Registration of a Database in the Recovery Catalog

	
Registering a Database with the REGISTER DATABASE Command

About Registration of a Database in the Recovery Catalog

The process of enrolling of a target database in a recovery catalog is called registration. If a target database is not registered in the recovery catalog, then RMAN cannot use the catalog to store metadata for operations on this database. You can still perform RMAN operations on an unregistered database: RMAN always stores its metadata in the control file of the target database.

If you are not using the recovery catalog in a Data Guard environment, then use the REGISTER command to register each database. Each database must have a unique DBID. If you use the RMAN DUPLICATE command or the CREATE DATABASE statement in SQL, then the database is assigned a unique DBID automatically. If you create a database by other means, then the copied database may have the same DBID as its source database. You can change the DBID with the DBNEWID utility so that you can register the source and copy databases in the same catalog.

You can use the UNREGISTER command to unregister a database from the recovery catalog.

About Standby Database Registration

In a Data Guard environment, the primary and standby databases share the same DBID and database name. To be eligible for registration in the recovery catalog, each database in the Data Guard environment must have different DB_UNIQUE_NAME values. The DB_UNIQUE_NAME parameter for a database is set in its initialization parameter file.

If you use RMAN in a Data Guard environment, then you can use the REGISTER DATABASE command only for the primary database. You can use the following techniques to register a standby database in the recovery catalog:

	
When you connect to a standby database as TARGET, RMAN automatically registers the database in the recovery catalog.

	
When you run the CONFIGURE DB_UNIQUE_NAME command for a standby database that is not known to the recovery catalog, RMAN automatically registers this standby database if its primary database is registered.

	
See Also:

	
"Unregistering a Target Database from the Recovery Catalog"

	
Oracle Database Backup and Recovery Reference for DUPLICATE command syntax

	
Oracle Database Utilities to learn how to use the DBNEWID utility to change the DBID

	
Oracle Data Guard Concepts and Administration to learn about using RMAN in a Data Guard environment

Registering a Database with the REGISTER DATABASE Command

The first step in using a recovery catalog with a target database is registering the target database in the recovery catalog. If you use the catalog in a Data Guard environment, then you can only register the primary database in this way.

Use the following procedure:

	
Start RMAN and connect to a target database and recovery catalog. The recovery catalog database must be open.

For example, issue the following command to connect to the catalog database with the net service name catdb as user rman (who owns the catalog schema):

% rman TARGET / CATALOG rman@catdb

	
If the target database is not mounted, then mount or open it:

STARTUP MOUNT;

	
Register the target database in the connected recovery catalog:

REGISTER DATABASE;

RMAN creates rows in the catalog tables to contain information about the target database, then copies all pertinent data about the target database from the control file into the catalog, synchronizing the catalog with the control file.

	
Verify that the registration was successful by running REPORT SCHEMA:

REPORT SCHEMA;

Report of database schema
File Size(MB) Tablespace RB segs Datafile Name
---- ---------- ---------------- ------- -------------------
1 307200 SYSTEM NO /oracle/oradata/trgt/system01.dbf
2 20480 UNDOTBS YES /oracle/oradata/trgt/undotbs01.dbf
3 10240 CWMLITE NO /oracle/oradata/trgt/cwmlite01.dbf
4 10240 DRSYS NO /oracle/oradata/trgt/drsys01.dbf
5 10240 EXAMPLE NO /oracle/oradata/trgt/example01.dbf
6 10240 INDX NO /oracle/oradata/trgt/indx01.dbf
7 10240 TOOLS NO /oracle/oradata/trgt/tools01.dbf
8 10240 USERS NO /oracle/oradata/trgt/users01.dbf

Cataloging Backups in the Recovery Catalog

If you have datafile copies, backup pieces, or archived logs on disk, then you can catalog them in the recovery catalog with the CATALOG command. When using a recovery catalog, cataloging older backups that have aged out of the control file lets RMAN use the older backups during restore operations. The following commands illustrate this technique:

CATALOG DATAFILECOPY '/disk1/old_datafiles/01_01_2003/users01.dbf';
CATALOG ARCHIVELOG '/disk1/arch_logs/archive1_731.dbf',
 '/disk1/arch_logs/archive1_732.dbf';
CATALOG BACKUPPIECE '/disk1/backups/backup_820.bkp';

You can also catalog multiple backup files in a directory at once by using the CATALOG START WITH command, as shown in the following example:

CATALOG START WITH '/disk1/backups/';

RMAN lists the files to be added to the RMAN repository and prompts for confirmation before adding the backups. Be careful when creating your prefix with CATALOG START WITH. RMAN scans all paths for all files on disk that begin with the specified prefix. The prefix is not just a directory name. Using the wrong prefix can cause the cataloging of the wrong set of files.

For example, assume that a group of directories /disk1/backups, /disk1/backups-year2003, /disk1/backupsets, and /disk1/backupsets/test and so on, all contain backup files. The following command catalogs all files in all of these directories, because /disk1/backups is a prefix for the paths for all of these directories:

CATALOG START WITH '/disk1/backups';

To catalog only backups in the /disk1/backups directory, the correct command would be as follows:

CATALOG START WITH '/disk1/backups/';

	
See Also:

	
Oracle Database Backup and Recovery Reference for REGISTER syntax

	
Oracle Database Upgrade Guide for issues relating to database migration

Creating and Managing Virtual Private Catalogs

About Virtual Private Catalogs

By default, all of the users of an RMAN recovery catalog have full privileges to insert, update, and delete any metadata in the catalog. For example, if the administrators of two unrelated databases share the same recovery catalog, each administrator could, whether inadvertently or maliciously, destroy catalog data for the other's database. In many enterprises, this situation is tolerated because the same people manage many different databases and also manage the recovery catalog. But in other enterprises where clear separation of duty exists between administrators of various databases, as well as between the DBA and the administrator of the recovery catalog, you may desire to restrict each database administrator to modify only backup metadata belonging to those databases that they are responsible for, while still keeping the benefits of a single, centrally-managed, RMAN recovery catalog. This goal can be achieved by implementing virtual private catalogs.

Every 11g recovery catalog supports virtual private catalogs, but they are not used unless explicitly created. There is no restriction to the number of virtual private catalogs that can created beneath one recovery catalog. Each virtual private catalog is owned by a database schema user which is different than the user who owns the recovery catalog.

After creating one or more virtual private catalogs, using the directions that follow, the administrator for the recovery catalog grants each virtual private catalog the privilege to use that catalog for one or more databases that are currently registered in the recovery catalog. The administrator of the recovery catalog can also grant the privilege to register new databases while using a virtual private catalog.

	
Note:

Every virtual private catalog has access to all global stored scripts, as well as those non-global stored scripts that belong to those databases for which this virtual private catalog has privileges. Virtual private catalogs cannot access non-global stored scripts that belong to databases that they do not have privileges for, and they cannot create global stored scripts.

The basic steps for creating a virtual private catalog are as follows:

	
Create the database user who will own the virtual private catalog (if this user does not already exist) and grant this user access privileges.

This task is described in "Creating and Granting Privileges to a Virtual Private Catalog Owner".

	
Create the virtual private catalog.

This task is described in "Creating a Virtual Private Catalog".

After the virtual private catalog is created, you can revoke catalog access privileges as necessary. This task is described in "Revoking Privileges from a Virtual Private Catalog Owner". "Dropping a Virtual Private Catalog" explains how to drop a virtual private catalog.

If the recovery catalog is a virtual private catalog, then the RMAN client connecting to it must be at patch level 10.1.0.6 or 10.2.0.3. Oracle9i RMAN clients cannot connect to a virtual private catalog. This version restriction does not affect RMAN client connections to an Oracle Database 11g base recovery catalog, even if it has some virtual private catalog users.

	
See Also:

Oracle Database Backup and Recovery Reference for details about RMAN version compatibility

Creating and Granting Privileges to a Virtual Private Catalog Owner

This section assumes that you created the base recovery catalog.

Assume that the following databases are registered in the base recovery catalog: prod1, prod2, and prod3. The database user who owns the base recovery catalog is catowner. You want to create database user vpc1 and grant this user access privileges only to prod1 and prod2. By default, a virtual private catalog owner has no access to the base recovery catalog.

To create and grant privileges to a virtual private catalog owner:

	
Start SQL*Plus and connect to the recovery catalog database with administrator privileges.

	
If the user that will own the virtual private catalog is not yet created, then create the user.

For example, if you want to create database user vpc1 to own the catalog, then you could execute the following command (replacing password with a user-defined password):

SQL> CREATE USER vpc1 IDENTIFIED BY password
 2 DEFAULT TABLESPACE vpcusers
 3 QUOTA UNLIMITED ON vpcusers;

	
Note:

Create a password that is secure. See Oracle Database Security Guide for more information.

	
Grant the RECOVERY_CATALOG_OWNER role to the database user that will own the virtual private catalog, and then exit SQL*Plus.

The following example grants the role to user vpc1:

SQL> GRANT recovery_catalog_owner TO vpc1;
SQL> EXIT;

	
Start RMAN and connect to the recovery catalog database as the base recovery catalog owner (not the virtual private catalog owner).

The following example connects to the base recovery catalog as catowner:

% rman
RMAN> CONNECT CATALOG catowner@catdb;

recovery catalog database Password: password
connected to recovery catalog database

	
Grant desired privileges to the virtual private catalog owner.

The following example gives user vpc1 access to the metadata for prod1 and prod2 (but not prod3):

RMAN> GRANT CATALOG FOR DATABASE prod1 TO vpc1;
RMAN> GRANT CATALOG FOR DATABASE prod2 TO vpc1;

You can also use a DBID rather than a database name. The virtual private catalog user does not have access to the metadata for any other databases registered in the recovery catalog.

You can also grant the user the ability to register new target databases in the recovery catalog. For example:

RMAN> GRANT REGISTER DATABASE TO vpc1;

Creating a Virtual Private Catalog

This section assumes that the virtual private catalog owner has been given the RECOVERY_CATALOG_OWNER database role. Also, the base recovery catalog owner used the GRANT command to give the virtual private catalog owner access to metadata in the base recovery catalog.

To create a virtual private catalog:

	
Start RMAN and connect to the recovery catalog database as the virtual private catalog owner (not the base recovery catalog owner).

The following example connects to the recovery catalog as vpc1:

% rman
RMAN> CONNECT CATALOG vpc1@catdb;

	
Create the virtual private catalog.

The following command creates the virtual private catalog:

RMAN> CREATE VIRTUAL CATALOG;

	
If you intend to use a 10.2 or earlier release of RMAN with this virtual private catalog, then execute the following PL/SQL procedure (where base_catalog_owner is the database user who owns the base recovery catalog):

SQL> EXECUTE base_catalog_owner.DBMS_RCVCAT.CREATE_VIRTUAL_CATALOG;

Revoking Privileges from a Virtual Private Catalog Owner

This section assumes that you have already created a virtual private catalog.

Assume that two databases are registered in the base recovery catalog: prod1 and prod2. As owner of the base recovery catalog, you have granted the vpc1 user access privileges to prod1. You have also granted this user the right to register databases in his virtual private catalog. Now you want to revoke privileges from vpc1.

To revoke privileges from a virtual private catalog owner:

	
Start RMAN and connect to the recovery catalog database as the recovery catalog owner (not the virtual private catalog owner).

The following example connects to the recovery catalog as catowner:

% rman
RMAN> CONNECT CATALOG catowner@catdb;

	
Revoke specified privileges from the virtual private catalog owner.

The following command revokes access to the metadata for prod1 from virtual private catalog owner vpc1:

REVOKE CATALOG FOR DATABASE prod1 FROM vpc1;

You can also specify a DBID rather than a database name. The catalog vpc1 retains all other granted catalog privileges.

You can also revoke the privilege to register new target databases in the recovery catalog. For example:

REVOKE REGISTER DATABASE FROM vpc1;

Dropping a Virtual Private Catalog

This section assumes that you have already created a virtual private catalog and now want to drop it. When you drop a virtual private catalog, you do not remove the base recovery catalog itself, but only drop the synonyms and views that refer to the base recovery catalog.

To drop a virtual private catalog:

	
Start RMAN and connect to the recovery catalog database as the virtual private catalog owner (not the base recovery catalog owner).

The following example connects to the recovery catalog as user vpc1:

% rman
RMAN> CONNECT CATALOG vpc1@catdb;

	
Drop the catalog.

If you are using an Oracle Database 11g or later RMAN executable, then drop the virtual private catalog with the DROP CATALOG command:

RMAN> DROP CATALOG;

If you are using an Oracle Database 10g or earlier RMAN executable, then you cannot use the DROP CATALOG command. Instead, connect SQL*Plus to the catalog database as the virtual private catalog user, then execute the following PL/SQL procedure (where base_catalog_owner is the database user who owns the base recovery catalog):

SQL> EXECUTE base_catalog_owner.DBMS_RCVCAT.DELETE_VIRTUAL_CATALOG;

Protecting the Recovery Catalog

Include the recovery catalog database in your backup and recovery strategy. If you do not back up the recovery catalog and a disk failure occurs that destroys the recovery catalog database, then you may lose the metadata in the catalog. Without the recovery catalog contents, recovery of your other databases is likely to be more difficult.

Backing Up the Recovery Catalog

A single recovery catalog is able to store metadata for multiple target databases. Consequently, loss of the recovery catalog can be disastrous. You should back up the recovery catalog frequently. This section provides general guidelines for developing a strategy for protecting the recovery catalog.

Backing Up the Recovery Catalog Frequently

The recovery catalog database is a database like any other, and is also a key part of your backup and recovery strategy. Protect the recovery catalog as you would protect any other part of your database, by backing it up. The backup strategy for your recovery catalog database should be part of your overall backup and recovery strategy.

Back up the recovery catalog with the same frequency that you back up a target database. For example, if you make a weekly whole database backup of a target database, then back up the recovery catalog after the backup of the target database. This backup of the recovery catalog can help you in a disaster recovery scenario. Even if you must restore the recovery catalog database with a control file autobackup, you can use the full record of backups in your restored recovery catalog database to restore the target database.

Choosing the Appropriate Technique for Physical Backups

When backing up the recovery catalog database, you can use RMAN to make the backups. As illustrated in Figure 13-1, start RMAN with the NOCATALOG option so that the repository for RMAN is the control file in the catalog database.

Figure 13-1 Using the Control File as the Repository for Backups of the Recovery Catalog

[image: System diagram using control file as backup repository]

Follow these guidelines when developing an RMAN backup strategy for the recovery catalog database:

	
Run the recovery catalog database in ARCHIVELOG mode so that you can do point-in-time recovery if needed.

	
Set the retention policy to a REDUNDANCY value greater than 1.

	
Back up the database to two separate media (for example, disk and tape).

	
Run BACKUP DATABASE PLUS ARCHIVELOG at regular intervals, to a media manager if available, or just to disk.

	
Do not use another recovery catalog as the repository for the backups.

	
Configure the control file autobackup feature to ON.

With this strategy, the control file autobackup feature ensures that the recovery catalog database can always be recovered, so long as the control file autobackup is available.

	
See Also:

"Performing Disaster Recovery" for more information for recovery with a control file autobackup

Separating the Recovery Catalog from the Target Database

A recovery catalog is only effective when separated from the data that it is designed to protect. Thus, you should never store a recovery catalog containing the RMAN repository for a database in the same database as the target database. Also, do not store the catalog database on the same disks as the target database.

To illustrate why data separation is advised, assume that you store the catalog for database prod1 in prod1. If prod1 suffers a total media failure, and if the recovery catalog for prod1 is also stored in prod1, then if you lose the database you also lose the recovery catalog. At this point the only option is to restore an autobackup of the control file for prod1 and use it to restore and recover the database without the benefit of any information stored in the recovery catalog.

Exporting the Recovery Catalog Data for Logical Backups

Logical backups of the RMAN recovery catalog created with the Data Pump Export utility can be a useful supplement for physical backups. In the event of damage to a recovery catalog database, you can use Data Pump Import to quickly reimport the exported recovery catalog data into another database and rebuild the catalog.

Recovering the Recovery Catalog

Restoring and recovering the recovery catalog database is much like restoring and recovering any other database with RMAN. You can restore the control file and server parameter file for the recovery catalog database from an autobackup, then restore and perform complete recovery on the rest of the database. If you are in a situation where you are using multiple recovery catalogs, then you can also use another recovery catalog to record metadata about backups of this recovery catalog database.

If recovery of the recovery catalog database through the normal Oracle recovery procedures is not possible, then you must re-create the catalog. Examples of this worst-case scenario include:

	
A recovery catalog database that has never been backed up

	
A recovery catalog database that has been backed up, but cannot be recovered because the datafile backups or archived logs are not available

You have the following options for partially re-creating the contents of the missing recovery catalog:

	
Use the RESYNC CATALOG command to update the recovery catalog with any RMAN repository information from the control file of the target database or a control file copy. Any metadata from control file records that aged out of the control file is lost.

	
Issue CATALOG START WITH... commands to recatalog any available backups.

To minimize the likelihood of this worst-case scenario, your backup strategy should at least include backing up the recovery catalog. This technique is described in "Backing Up the Recovery Catalog".

	
See Also:

	
Oracle Database Backup and Recovery Reference for information about the CATALOG command

	
Oracle Database Backup and Recovery Reference for information about the CROSSCHECK command

Managing Stored Scripts

As explained in "About Stored Scripts", you can store scripts in the recovery catalog. This section explains how to create and manage stored scripts.

About Stored Scripts

You can use a stored script as an alternative to a command file for managing frequently used sequences of RMAN commands. The script is stored in the recovery catalog rather than on the file system.

Stored scripts can be local or global. A local script is associated with the target database to which RMAN is connected when the script is created, and can only be executed when you are connected to that target database. A global stored script can be run against any database registered in the recovery catalog, if the RMAN client is connected to the recovery catalog and a target database.

The commands allowable within the brackets of the CREATE SCRIPT command are the same commands supported within a RUN block. Any command that is legal within a RUN command is permitted in the stored script. The following commands are not legal within stored scripts: RUN, @, and @@.

When specifying a script name, RMAN permits but generally does not require that you use quotes around the name of a stored script. If the name begins with a digit or is an RMAN reserved word, however, then you must put quotes around the name to use it as a stored script name. Consider avoiding stored script names that begin with nonalphabetic characters or that are the same as RMAN reserved words.

Consider using a naming convention to avoid confusion between global and local stored scripts. For the EXECUTE SCRIPT, DELETE SCRIPT and PRINT SCRIPT commands, if the script name passed as an argument is not the name of a script defined for the connected target instance, then RMAN looks for a global script by the same name. For example, if the global script global_backup is in the recovery catalog, but no local stored script global_backup is defined for the target database, then the following command deletes the global script:

DELETE SCRIPT global_backup;

To use commands related to stored scripts, even global scripts, you must be connected to both a recovery catalog and a target database instance.

Creating Stored Scripts

You can use the CREATE SCRIPT command to create a stored script. If GLOBAL is specified, then a global script with this name must not already exist in the recovery catalog. If GLOBAL is not specified, then a local script must not already exist with the same name for the same target database. You can also use the REPLACE SCRIPT to create a new script or update an existing script.

To create a stored script:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Run the CREATE SCRIPT command.

The following example illustrates creation of a local script:

CREATE SCRIPT full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

For a global script, the syntax is similar:

CREATE GLOBAL SCRIPT global_full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

Optionally, you can provide a COMMENT with descriptive information:

CREATE GLOBAL SCRIPT global_full_backup
COMMENT 'use only with ARCHIVELOG mode databases'
{
 BACKUP DATABASE PLUS ARCHIVELOG;
 DELETE OBSOLETE;
}

You can also create a script by reading its contents from a text file. The file must begin with a left brace ({) character, contain a series of commands valid within a RUN block, and end with a right brace (}) character. Otherwise, a syntax error is signalled, just as if the commands were entered at the keyboard.

CREATE SCRIPT full_backup
 FROM FILE '/tmp/my_script_file.txt';

	
Examine the output.

If no errors are displayed, then RMAN successfully created the script and stored in the recovery catalog.

	
See Also:

Oracle Database Backup and Recovery Reference for the list of RMAN reserved words

Replacing Stored Scripts

To update stored scripts, use the REPLACE SCRIPT command. If you are replacing a local script, then you must be connected to the target database that you connected to when you created the script. If the script does not already exist, then RMAN creates it.

To replace a stored script:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
Execute REPLACE SCRIPT.

This following example updates the script full_backup with new contents:

REPLACE SCRIPT full_backup
{
 BACKUP DATABASE PLUS ARCHIVELOG;
}

You can update global scripts by specifying the GLOBAL keyword as follows:

REPLACE GLOBAL SCRIPT global_full_backup
COMMENT 'A script for full backup to be used with any database'
{
 BACKUP AS BACKUPSET DATABASE PLUS ARCHIVELOG;
}

As with CREATE SCRIPT, you can update a local or global stored script from a text file with the following form of the command:

REPLACE GLOBAL SCRIPT global_full_backup
 FROM FILE '/tmp/my_script_file.txt';

	
See Also:

Oracle Database Backup and Recovery Reference for REPLACE SCRIPT command syntax

Executing Stored Scripts

Use the EXECUTE SCRIPT command to run a stored script. If GLOBAL is specified, then a global script with this name must already exist in the recovery catalog; otherwise, RMAN returns error RMAN-06004. If GLOBAL is not specified, then RMAN searches for a local stored script defined for the current target database. If no local script with this name is found, then RMAN searches for a global script by the same name and executes it if one is found.

To execute a stored script:

	
Start RMAN and connect to a target database and recovery catalog (if used).

	
If needed, use SHOW to examine your configured channels.

Your script uses the automatic channels configured at the time you execute the script. Use ALLOCATE CHANNEL commands in the script if you need to override the configured channels. Because of the RUN block, if an RMAN command in the script fails, subsequent RMAN commands in the script will not execute.

	
Run EXECUTE SCRIPT. This command requires a RUN block, as shown in the following example:

RUN
{
 EXECUTE SCRIPT full_backup;
}

The preceding command invokes a local script if one is with the name specified. If no local script is found, but there is a global script with the name specified, then RMAN executes the global script.

You can also use EXECUTE GLOBAL SCRIPT to control which script is invoked if a local and a global script have the same name. If there is no local script called global_full_backup, the following two commands have the same effect:

RUN
{
 EXECUTE GLOBAL SCRIPT global_full_backup;
}

RUN
{
 EXECUTE SCRIPT global_full_backup;
}

	
See Also:

Oracle Database Backup and Recovery Reference for EXECUTE SCRIPT command syntax

Creating and Executing Dynamic Stored Scripts

You can specify substitution variables in the CREATE SCRIPT command. When you start RMAN on the command line, the USING clause specifies one or more values for use in substitution variables in a command file. As in SQL*Plus, &1 indicates where to place the first value, &2 indicates where to place the second value, and so on.

To create and use a dynamic stored script:

	
Create a command file that contains a CREATE SCRIPT statement with substitution variables for values that must be dynamically updated.

The following example uses substitution variables for the name of the tape set, for a string in the FORMAT specification, and for the name of the restore point.

CREATE SCRIPT quarterly {
 ALLOCATE CHANNEL c1
 DEVICE TYPE sbt
 PARMS 'ENV=(OB_MEDIA_FAMILY=&1)';
 BACKUP
 TAG &2
 FORMAT '/disk2/bck/&1%U.bck'
 KEEP FOREVER
 RESTORE POINT &3
 DATABASE;
}

	
Connect RMAN to a target database (which must be mounted or open) and recovery catalog, specifying the initial values for the recovery catalog script.

For example, enter the following command:

% rman TARGET / CATALOG rman@catdb USING arc_backup bck0906 FY06Q3

A recovery catalog is required for KEEP FOREVER, but is not required for any other KEEP option.

	
Run the command file created in the first step to create the stored script.

For example, run the /tmp/catscript.rman command file as follows:

RMAN> @/tmp/catscript.rman

This step creates but does not execute the stored script.

	
Every quarter, execute the stored script, passing values for the substitution variables.

The following example executes the recovery catalog script named quarterly. The example specifies arc_backup as the name of the media family (set of tapes), bck1206 as part of the FORMAT string and FY06Q4 as the name of the restore point.

RUN
{
 EXECUTE SCRIPT quarterly
 USING arc_backup
 bck1206
 FY06Q4;
}

	
See Also:

"Making Database Backups for Long-Term Storage"

Printing Stored Scripts

The PRINT SCRIPT command displays a stored script or writes it out to a file.

To print stored scripts:

	
Start RMAN and connect to a target database and recovery catalog.

	
Run the PRINT SCRIPT command as follows:

PRINT SCRIPT full_backup;

To send the contents of a script to a file, use this form of the command:

PRINT SCRIPT full_backup
 TO FILE '/tmp/my_script_file.txt';

For global scripts, the analogous syntax would be as follows:

PRINT GLOBAL SCRIPT global_full_backup;
PRINT GLOBAL SCRIPT global_full_backup
 TO FILE '/tmp/my_script_file.txt';

	
See Also:

Oracle Database Backup and Recovery Reference for PRINT SCRIPT command syntax

Listing Stored Script Names

Use the LIST ... SCRIPT NAMES command to display the names of scripts defined in the recovery catalog. LIST GLOBAL SCRIPT NAMES and LIST ALL SCRIPT NAMES are the only commands that work when RMAN is connected to a recovery catalog without connecting to a target instance; the other forms of the LIST ... SCRIPT NAMES command require a recovery catalog connection.

To list stored script names:

	
Start RMAN and connect to a target database and recovery catalog.

	
Run the LIST ... SCRIPT NAMES command.

For example, run the following command to list the names of all global and local scripts that can be executed for the currently connected target database:

LIST SCRIPT NAMES;

The following example lists only global script names:

LIST GLOBAL SCRIPT NAMES;

To list the names of all scripts stored in the current recovery catalog, including global scripts and local scripts for all target databases registered in the recovery catalog, use the following form of the command:

LIST ALL SCRIPT NAMES;

For each script listed, the output indicates which target database the script is defined for (or whether a script is global).

	
See Also:

Oracle Database Backup and Recovery Reference for LIST SCRIPT NAMES command syntax and output format

Deleting Stored Scripts

Use the DELETE GLOBAL SCRIPT command to delete a stored script from the recovery catalog.

To delete a stored script:

	
Start RMAN and connect to a target database and recovery catalog.

	
Enter the DELETE SCRIPT command.

If you use DELETE SCRIPT without GLOBAL, and there is no stored script for the target database with the specified name, then RMAN looks for a global stored script by the specified name and deletes the global script if it exists. For example, suppose you enter the following command:

DELETE SCRIPT 'global_full_backup';

In this case, RMAN looks for a script global_full_backup defined for the connected target database, and if it did not find one, it searches the global scripts for a script called global_full_backup and delete that script.

To delete a global stored script, use DELETE GLOBAL SCRIPT:

DELETE GLOBAL SCRIPT 'global_full_backup';

	
See Also:

Oracle Database Backup and Recovery Reference for DELETE SCRIPT command syntax

Executing a Stored Script at RMAN Startup

To run the RMAN client and start a stored script in the recovery catalog on startup, use the SCRIPT argument when starting the RMAN client. For example, you could enter the following command to execute script /tmp/fbkp.cmd:

% rman TARGET / CATALOG rman@catdb SCRIPT '/tmp/fbkp.cmd';

You must connect to a recovery catalog, which contains the stored script, and target database, to which the script will apply, when starting the RMAN client.

If local and global stored scripts are defined with the same name, then RMAN always executes the local script.

	
See Also:

Oracle Database Backup and Recovery Reference for full RMAN client command line syntax

Maintaining a Recovery Catalog

This section describes various management and maintenance tasks. This section contains the following topics:

	
About Recovery Catalog Maintenance

	
Resynchronizing the Recovery Catalog

	
Updating the Recovery Catalog After Changing a DB_UNIQUE_NAME

	
Unregistering a Target Database from the Recovery Catalog

	
Resetting the Database Incarnation in the Recovery Catalog

	
Upgrading the Recovery Catalog

	
Importing and Moving a Recovery Catalog

About Recovery Catalog Maintenance

After you have created a recovery catalog and registered your target databases, you need to maintain this catalog. For example, you need to run the RMAN maintenance commands, which are explained in Chapter 12, "Maintaining RMAN Backups and Repository Records", to update backup records as well as to delete backups that are no longer needed. You must perform this type of maintenance regardless of whether you use RMAN with a recovery catalog. Other types of maintenance, such as upgrading a recovery catalog schema, are specific to use of RMAN with a recovery catalog.

If you use a recovery catalog in a Data Guard environment, then special considerations apply for backups and database files recorded in the catalog. See "RMAN File Management in a Data Guard Environment" for an explanation of when backups are accessible to RMAN and how RMAN maintenance commands work with accessible backups.

Resynchronizing the Recovery Catalog

When RMAN performs a resynchronization, it compares the recovery catalog to either the current or backup control file of the target database and updates the catalog with metadata that is missing or changed. Most RMAN commands perform a resynchronization automatically when the target control file is mounted and the catalog is available. In a Data Guard environment, RMAN can perform a reverse resynchronization to update a database control file with metadata from the catalog.

About Resynchronization of the Recovery Catalog

Resynchronization of the recovery catalog ensures that the metadata that RMAN obtains from the control file stays current. Resynchronizations can be full or partial.

In a partial resynchronization, RMAN reads the current control file of the target database to update changed metadata about new backups, new archived redo logs, and so on. RMAN does not resynchronize metadata about the database physical schema.

In a full resynchronization, RMAN updates all changed records, including those for the database schema. RMAN performs a full resynchronization after structural changes to database (adding or dropping database files, creating new incarnation, and so on) or after changes to the RMAN persistent configuration.

RMAN creates a snapshot control file, which is a temporary backup control file, when it performs a full resynchronization. The database ensures that only one RMAN session accesses a snapshot control file at any point in time. RMAN creates the snapshot control file in an operating system-specific location on the target database host. You can specify the name and location of the snapshot control file, as explained in "Configuring the Snapshot Control File Location".

This snapshot control file ensures that RMAN has a consistent view of the control file. Because the control file is intended for short-term use, it is not registered in the catalog. RMAN records the control file checkpoint in the recovery catalog to indicate the currency of the catalog.

	
See Also:

Oracle Database Backup and Recovery Reference for more information about the RESYNC command

Recovery Catalog Resynchronization in a Data Guard Environment

RMAN only automatically resynchronizes the recovery catalog with a database when connected to this database as TARGET. Thus, RMAN does not automatically resynchronize every database in a Data Guard environment when connected as TARGET to one database in the environment. You can use the RESYNC CATALOG FROM DB_UNIQUE_NAME command to manually resynchronize the recovery catalog with a database in the Data Guard environment.

For an example of a manual resynchronization, assume that RMAN is connected as TARGET to production database prod, and that you have used CONFIGURE to create a configuration for dgprod3. If you run RESYNC CATALOG FROM DB_UNIQUE_NAME dgprod3, then RMAN resynchronizes the recovery catalog with the dgprod3 control file. In this case RMAN performs both a normal resynchronization, in which metadata flows from the dgprod3 control file to the catalog, and a reverse resynchronization. In a reverse resynchronization, RMAN uses the persistent configurations in the recovery catalog to update the dgprod3 control file.

	
See Also:

Oracle Data Guard Concepts and Administration

Deciding When to Resynchronize the Recovery Catalog

RMAN automatically resynchronizes the recovery catalog when RMAN is connected to a target database and recovery catalog and you have executed RMAN commands. Thus, you should not need to manually run the RESYNC CATALOG command very often. The following sections describe situations requiring a manual catalog resynchronization.

Resynchronizing After the Recovery Catalog is Unavailable

If the recovery catalog is unavailable when you issue RMAN commands that cause a partial resynchronization, then open the catalog database later and resynchronize it manually with the RESYNC CATALOG command.

For example, the target database may be in New York while the recovery catalog database is in Japan. You may not want to make daily backups of the target database in CATALOG mode, to avoid depending on the availability of a geographically distant database. In such a case you could connect to the catalog as often as feasible and run the RESYNC CATALOG command.

Resynchronizing in ARCHIVELOG Mode When You Back Up Infrequently

Assume that a target database runs in ARCHIVELOG mode. Also assume that you do the following:

	
Back up the database infrequently (for example, hundreds of redo logs are archived between database backups)

	
Generate a high number of log switches every day (for example, 1000 switches between catalog resynchronizations)

In this case, you may want to manually resynchronize the recovery catalog regularly because the recovery catalog is not updated automatically when a redo log switch occurs or when a redo log is archived. The database stores metadata about redo log switches and archived redo logs only in the control file. You must periodically resynchronize in order to propagate this information into the recovery catalog.

How frequently you need to resynchronize the recovery catalog depends on the rate at which the database archives redo logs. The cost of the operation is proportional to the number of records in the control file that have been inserted or changed since the previous resynchronization. If no records have been inserted or changed, then the cost of resynchronization is very low; if many records have been inserted or changed, then the resynchronization is more time-consuming.

Resynchronizing After Configuring a Standby Database

You can create or change an RMAN configuration for a standby database even when not connected to this database as TARGET. You perform this task with the CONFIGURE DB_UNIQUE_NAME or CONFIGURE ... FOR DB_UNIQUE_NAME command. As explained in "Manually Resynchronizing the Recovery Catalog", you can resynchronize the standby database manually to update the control file of the standby database.

Resynchronizing the Recovery Catalog Before Control File Records Age Out

Your goal is to ensure that the metadata in the recovery catalog is current. Because the recovery catalog obtains its metadata from the target control file, the currency of the data in the catalog depends on the currency of the data in the control file. You need to make sure that the backup metadata in the control file is recorded in the catalog before it is overwritten with new records.

The CONTROL_FILE_RECORD_KEEP_TIME initialization parameter determines the minimum number of days that records are retained in the control file before they are candidates for being overwritten. Thus, you must ensure that you resynchronize the recovery catalog with the control file records before these records are erased. You should perform either of the following actions at intervals less than the CONTROL_FILE_RECORD_KEEP_TIME setting:

	
Make a backup, thereby performing an implicit resynchronization of the recovery catalog

	
Manually resynchronize the recovery catalog with the RESYNC CATALOG command

Make sure that CONTROL_FILE_RECORD_KEEP_TIME is longer than the interval between backups or resynchronizations. Otherwise, control file records could be reused before they are propagated to the recovery catalog. An extra week is a safe margin in most circumstances.

	
Caution:

Never set CONTROL_FILE_RECORD_KEEP_TIME to 0. If you do, then backup records may be overwritten in the control file before RMAN is able to add them to the catalog.

One problem can arise if the control file becomes too large. The size of the target database control file grows depending on the number of:

	
Backups that you perform

	
Archived redo logs that the database generates

	
Days that this information is stored in the control file

If the control file grows so large that it can no longer expand because it has reached either the maximum number of blocks or the maximum number of records, then the database may overwrite the oldest records even if their age is less than the CONTROL_FILE_RECORD_KEEP_TIME setting. In this case, the database writes a message to the alert log. If you discover that this situation occurs frequently, then reducing the value of CONTROL_FILE_RECORD_KEEP_TIME and increase the frequency of resynchronizations.

	
See Also:

	
Oracle Database Reference for more information about the CONTROL_FILE_RECORD_KEEP_TIME parameter

	
Oracle Database Administrator's Guide for more detailed information on other aspects of control file management

	
"Preventing the Loss of Control File Records" to learn how to monitor the overwriting of control file records

Manually Resynchronizing the Recovery Catalog

Use RESYNC CATALOG to force a full resynchronization of the recovery catalog with a target database control file. You can specify a database unique name with RESYNC FROM DB_UNIQUE_NAME or ALL, depending on whether you want to resynchronize a specific database or all databases in the Data Guard environment. Typically, you would perform this operation after you have run the CONFIGURE command for a standby database, but have not yet connected to this standby database.

	
Start RMAN and connect to a target database and recovery catalog.

	
Mount or open the target database if it is not already mounted or open:

STARTUP MOUNT;

	
Resynchronize the recovery catalog.

Run the RESYNC CATALOG command at the RMAN prompt as follows:

RESYNC CATALOG;

The following example resynchronizes the control file of standby1:

RESYNC CATALOG FROM DB_UNIQUE_NAME standby1;

The following variation resynchronizes the control files for all databases in the Data Guard environment:

RESYNC CATALOG FROM DB_UNIQUE_NAME ALL;

	
See Also:

	
Oracle Database Backup and Recovery Reference for RESYNC CATALOG command syntax

	
Oracle Data Guard Concepts and Administration to learn how to configure the RMAN environment for use with a standby database

Updating the Recovery Catalog After Changing a DB_UNIQUE_NAME

You may decide to change the DB_UNIQUE_NAME of a database in a Data Guard environment. In this case, you can run the CHANGE DB_UNIQUE_NAME command to associate the metadata stored in recovery catalog for the old DB_UNIQUE_NAME to the new DB_UNIQUE_NAME. The CHANGE DB_UNIQUE_NAME command does not actually change the DB_UNIQUE_NAME of the database itself. Instead, it updates the catalog metadata for the database whose unique name has been or will be changed.

The following procedure assumes that the DB_UNIQUE_NAME of the primary database is prodny, and that you have changed the DB_UNIQUE_NAME of a standby database from prodsf1 to prodsf2. You can use the same procedure after changing the DB_UNIQUE_NAME of a primary database, except in Step 1 connect RMAN as TARGET to a standby database instead of a primary database.

To update the recovery catalog after a DB_UNIQUE_NAME is changed:

	
Connect RMAN to the primary database as TARGET and also to the recovery catalog. For example, enter the following commands:

% rman
RMAN> CONNECT CATALOG catowner@catdb

recovery catalog database Password: password
connected to recovery catalog database

RMAN> CONNECT TARGET SYS@prodny

target database Password: password
connected to target database: PRODNY (DBID=39525561)

	
List the DB_UNQUE_NAME values known to the recovery catalog.

Run the following LIST command:

RMAN> LIST DB_UNIQUE_NAME OF DATABASE;

	
Change the DB_UNIQUE_NAME in the RMAN metadata.

The following example changes the database unique name from standby database prodsf1 to prodsf2:

RMAN> CHANGE DB_UNIQUE_NAME FROM prodsf1 TO prodsf2;

Unregistering a Target Database from the Recovery Catalog

You can use the UNREGISTER DATABASE command to unregister a database from the recovery catalog. When a database is unregistered from the recovery catalog, all RMAN repository records in the recovery catalog are lost. The database can be registered again, but the recovery catalog records for that database are then based on the contents of the control file at the time of reregistration. Records older than the CONTROLFILE_RECORD_KEEP_TIME setting in the target database control file are lost. Stored scripts, which are not stored in the control file, are also lost.

Unregistering a Target Database When Not in a Data Guard Environment

This scenario assumes that you are not using the recovery catalog to store metadata for primary and standby databases.

To unregister a database:

	
Start RMAN and connect as TARGET to the database that you want to unregister. Also connect to the recovery catalog.

It is not necessary to connect to the target database, but if you do not, then you must specify the name of the target database in the UNREGISTER command. If more than one database has the same name in the recovery catalog, then you must create a RUN block around the command and use SET DBID to set the DBID for the database.

	
Make a note of the DBID as displayed by RMAN at startup.

For example, RMAN outputs a line of the following form when it connects to a target database that is open:

connected to target database: PROD (DBID=39525561)

	
As a precaution, it may be useful to list all of the backups recorded in the recovery catalog using LIST BACKUP SUMMARY and LIST COPY SUMMARY. This way, you can recatalog backups not known to the control file if you later decide to reregister the database.

	
If your intention is to actually delete all backups of the database completely, then run DELETE statements to delete all existing backups. Do not delete all backups if your intention is only to remove the database from the recovery catalog and rely on the control file to store the RMAN metadata for this database.

The following commands illustrate how to delete backups:

DELETE BACKUP DEVICE TYPE sbt;
DELETE BACKUP DEVICE TYPE DISK;
DELETE COPY;

RMAN lists the backups that it intends to delete and prompts for confirmation before deleting them.

	
Run the UNREGISTER DATABASE command. For example:

UNREGISTER DATABASE;

RMAN displays the database name and DBID, and prompts you for a confirmation:

database name is "RDBMS" and DBID is 931696259

Do you really want to unregister the database (enter YES or NO)? yes

When the process is complete, RMAN outputs the following message:

database unregistered from the recovery catalog

Unregistering a Standby Database

The UNREGISTER command supports a DB_UNIQUE_NAME clause for use in a Data Guard environment. You can use this clause to remove metadata for a specific database.

The recovery catalog associates a backup with a particular database. When you unregister a database, RMAN updates the database name for these backup files to null. Thus, the backups are still recorded but have no owner. You can execute the CHANGE ... RESET DB_UNIQUE_NAME command to associate ownership of the currently ownerless backups to a different database. If you specify INCLUDING BACKUPS on the UNREGISTER command, then RMAN removes the backup metadata for the unregistered database as well.

In this scenario, assume that primary database lnx3 has associated standby databases standby1. You want to unregister the standby database.

To unregister a standby database:

	
Start RMAN and connect as TARGET to the primary database. Also, connect RMAN to a recovery catalog.

For example, enter the following commands:

% rman
RMAN> CONNECT TARGET SYS@lnx3

target database Password: password
connected to target database: LNX3 (DBID=781317675)

RMAN> CONNECT CATALOG rman@catdb

	
List the database unique names.

For example, execute the LIST DB_UNIQUE_NAME command as follows:

RMAN> LIST DB_UNIQUE_NAME OF DATABASE;

List of Databases
DB Key DB Name DB ID Database Role Db_unique_name
------- ------- ----------------- --------------- ------------------
1 LNX3 781317675 STANDBY STANDBY
1 LNX3 781317675 PRIMARY LNX3

	
Run the UNREGISTER DB_UNIQUE_NAME command.

For example, execute the UNREGISTER command as follows to unregister database standby:

RMAN> UNREGISTER DB_UNIQUE_NAME standby;

RMAN displays the database name and DBID, and prompts you for a confirmation:

database db_unique_name is "standby", db_name is "LNX3" and DBID is 781317675

Do you really want to unregister the database (enter YES or NO)? yes

When the process is complete, RMAN outputs the following message:

database with db_unique_name standby unregistered from the recovery catalog

Resetting the Database Incarnation in the Recovery Catalog

As explained in "Database Incarnations", you create a new incarnation of the database when you open the database with the RESETLOGS option. You can access a record of the new incarnation in the V$DATABASE_INCARNATION view.

If you open the database with the RESETLOGS option, then a new database incarnation record is automatically created in the recovery catalog. The database also implicitly and automatically issues a RESET DATABASE command, which specifies that this new incarnation of the database is the current incarnation. All subsequent backups and log archiving done by the target database is associated with the new database incarnation.

Whenever RMAN returns the database to an SCN before the current RESETLOGS SCN, either by means of RESTORE and RECOVER or FLASHBACK DATABASE, the RESET DATABASE TO INCARNATION command is required. However, you do not need to execute RESET DATABASE TO INCARNATION explicitly in the following scenarios because RMAN runs the command implicitly with Flashback.

	
You use FLASHBACK DATABASE to rewind the database to an SCN in the direct ancestral path (see "Database Incarnations" for an explanation of the direct ancestral path).

	
You use FLASHBACK DATABASE to rewind the database to a restore point.

The following procedure explains how to reset the database incarnation when recovering through a RESETLOGS.

To reset the recovery catalog to an older incarnation for media recovery:

	
Determine the incarnation key of the desired database incarnation. Obtain the incarnation key value by issuing a LIST command:

LIST INCARNATION OF DATABASE trgt;

List of Database Incarnations
DB Key Inc Key DB Name DB ID STATUS Reset SCN Reset Time
------- ------- ------- ------ ------- ---------- ----------
1 2 TRGT 1224038686 PARENT 1 02-JUL-02
1 582 TRGT 1224038686 CURRENT 59727 10-JUL-02

The incarnation key is listed in the Inc Key column.

	
Reset the database to the old incarnation. For example, enter:

RESET DATABASE TO INCARNATION 2;

	
If the control file of the previous incarnation is available and mounted, then skip to Step 6 of this procedure. Otherwise, shut down the database and start it without mounting. For example:

SHUTDOWN IMMEDIATE
STARTUP NOMOUNT

	
Restore a control file from the old incarnation. If you have a control file tagged, then specify the tag. Otherwise, you can run the SET UNTIL command, as in this example:

RUN
{
 SET UNTIL 'SYSDATE-45';
 RESTORE CONTROLFILE; # only if current control file is not available
}

	
Mount the restored control file:

ALTER DATABASE MOUNT;

	
Run RESTORE and RECOVER commands to restore and recover the database files from the prior incarnation, then open the database with the RESETLOGS option. For example, enter:

RESTORE DATABASE;
RECOVER DATABASE;
ALTER DATABASE OPEN RESETLOGS;

	
See Also:

Oracle Database Backup and Recovery Reference for RESET DATABASE syntax, Oracle Database Backup and Recovery Reference for LIST syntax

Upgrading the Recovery Catalog

This section explains what a recovery catalog upgrade is and when you need to do it.

About Recovery Catalog Upgrades

If you use a version of the recovery catalog schema that is older than that required by the RMAN client, then you must upgrade it. The compatibility matrix in Oracle Database Backup and Recovery Reference explains which schema versions are compatible with which versions of RMAN. For example, you must upgrade the catalog if you use an Oracle Database 11g RMAN client with a release 10.2 version of the recovery catalog schema.

The Oracle Database 10gR1 version of the recovery catalog schema requires the CREATE TYPE privilege. If you created the recovery catalog owner in a release before 10gR1, and if you granted the RECOVERY_CATALOG_OWNER role when it did not include the CREATE TYPE privilege, then you must grant CREATE TYPE to this user explicitly before upgrading the catalog.

You receive an error when issuing UPGRADE CATALOG if the recovery catalog is already at a version greater than that required by the RMAN client. RMAN permits the UPGRADE CATALOG command to be run if the recovery catalog is current and does not require upgrading, however, so that you can re-create packages at any time if necessary. Check the message log for error messages generated during the upgrade.

Special Considerations in a Data Guard Environment

Assume that you upgrade the recovery catalog schema to Oracle Database 11g in a Data Guard environment. When RMAN connects to a standby database, it automatically registers the new database information and resynchronizes to obtain the filenames from the control file.

During the resynchronization, RMAN associates the names with the target database name. Because the recovery catalog contains historical metadata, some records in the catalog will not be known to the control file. For example, the standby1 control file will not know about all backups made on primary1. The database unique names for these old records will be null. As explained in "About Recovery Catalog Maintenance", you can use CROSSCHECK to fix these records.

Determining the Schema Version of the Recovery Catalog

The schema version of the recovery catalog is stored in the recovery catalog itself. The information is important in case you maintain multiple databases of different versions in your production system, and need to determine whether the catalog schema version is usable with a specific target database version.

To determine the schema version of the recovery catalog:

	
Start SQL*Plus and connect to the recovery catalog database as the catalog owner.

	
Query the RCVER table to obtain the schema version, as in the following example (sample output included):

SELECT *
FROM rcver;

VERSION

10.02.00

If the table displays multiple rows, then the highest version in the RCVER table is the current catalog schema version. The table stores only the major version numbers and not the patch numbers. For example, assume that the rcver table displays the following rows:

VERSION

08.01.07
09.00.01
10.02.00

These rows indicate that the catalog was created with a release 8.1.7 executable, then upgraded to release 9.0.1, and finally upgraded to release 10.2.0. The current version of the catalog schema is 10.2.0.

	
See Also:

Oracle Database Backup and Recovery Reference for the complete set of compatibility rules governing the RMAN environment

Using the UPGRADE CATALOG Command

This scenario assumes that you are upgrading a recovery catalog schema to the current version.

To upgrade the recovery catalog:

	
If you created the recovery catalog owner in a release before 10gR1, and if the RECOVERY_CATALOG_OWNER role did not include the CREATE TYPE privilege, then grant it.

For example, start SQL*Plus and connect to the recovery catalog database with administrator privileges. You can then execute the following GRANT statement:

SQL> GRANT CREATE TYPE TO rman;
SQL> EXIT;

	
Start RMAN and connect RMAN to the recovery catalog database.

	
Run the UPGRADE CATALOG command:

RMAN> UPGRADE CATALOG;

recovery catalog owner is rman
enter UPGRADE CATALOG command again to confirm catalog upgrade

	
Run the UPDATE CATALOG command again to confirm:

RMAN> UPGRADE CATALOG;

recovery catalog upgraded to version 11.01.00
DBMS_RCVMAN package upgraded to version 11.01.00
DBMS_RCVCAT package upgraded to version 11.01.00

	
See Also:

	
Oracle Database Backup and Recovery Reference for UPGRADE CATALOG command syntax

	
Oracle Database Backup and Recovery Reference for information about recovery catalog compatibility

	
Oracle Database Upgrade Guide for complete compatibility and migration information

Importing and Moving a Recovery Catalog

You can use the IMPORT CATALOG command in RMAN to merge one recovery catalog schema into another. This command is useful in the following situations:

	
You have multiple recovery catalog schemas for different versions of the database. You want to merge all existing schemas into one without losing backup metadata.

	
You want to move a recovery catalog from one database to another database.

About Recovery Catalog Imports

When using IMPORT CATALOG, the source catalog schema is the catalog schema that you want to import into a different schema. The destination catalog schema is the catalog schema into which you intend to import the source catalog schema.

By default, RMAN imports metadata from all target databases registered in the source recovery catalog. Optionally, you can specify the list of database IDs to be imported from the source catalog schema.

By default, RMAN unregisters the imported databases from the source catalog schema after a successful import. To indicate whether the unregister was successful, RMAN prints messages before and after unregistering the merged databases. You can also specify the NO UNREGISTER option to specify that the databases should not be unregistered from the destination catalog.

A stored script is either global or local. It is possible for global scripts, but not local scripts, to have name conflicts during import because the destination schema already contains the script name. In this case, RMAN renames the global script name to COPY OF script_name. For example, RMAN renames bp_cmd to COPY OF bp_cmd.

If the renamed global script is still not unique, then RMAN renames it to COPY(2) OF script_name. If this script name also exists, then RMAN renames the script to COPY(3) OF script_name. RMAN continues the COPY(n) OF pattern until the script is uniquely named.

Prerequisites for Importing a Recovery Catalog

As shown in compatibility matrix in Oracle Database Backup and Recovery Reference, a target database, recovery catalog database, and recovery catalog schema can be at different database versions. The recommended practice is to import all existing recovery catalogs into a single recovery catalog at the latest version of the recovery catalog schema. "Determining the Schema Version of the Recovery Catalog" explains how to determine the catalog version. Check the compatibility matrix to determine which schema versions are compatible in your environment.

When using IMPORT CATALOG, the version of the source recovery catalog schema must be equal to the current version of the RMAN executable with which you run the command. If the source catalog schema is a lower version, then upgrade it to the current version before importing the schema. "Upgrading the Recovery Catalog" explains how to upgrade. If the source recovery catalog schema is a higher version, then retry the import with a higher version RMAN executable.

No database can be registered in both the source and destination catalog schema. If a database is currently registered in both catalog schemas, then unregister the database from source catalog schema before performing the import.

Importing a Recovery Catalog

When importing one recovery catalog into another, no connection to a target database is necessary. RMAN only needs connectivity to the source and destination catalogs.

In this example, database srcdb contains a 10.2 recovery catalog schema owned by user 102cat, while database destdb contains an 11.1 recovery catalog schema owned by user 111cat.

To import a recovery catalog:

	
Start RMAN and connect as CATALOG to the destination recovery catalog schema. For example:

% rman
RMAN> CONNECT CATALOG 111cat@destdb;

	
Import the source recovery catalog schema, specifying the connection string for the source catalog.

For example, enter the following command to import the catalog owned by 102cat on database srcdb:

IMPORT CATALOG 102cat@srcdb;

A variation is to import metadata for a subset of the target databases registered in the source catalog. You can specify the databases by DBID or database name, as shown in the following examples:

IMPORT CATALOG 102cat@srcdb DBID=1423241, 1423242;
IMPORT CATALOG 102cat@srcdb DB_NAME=prod3, prod4;

	
Optionally, connect to a target database to check that the metadata was successfully imported. For example, the following commands connect to database prod1 as TARGET and list all backups for this database:

LIST BACKUP;

Moving a Recovery Catalog

The procedure for moving a recovery catalog from one database to another is a variation of the procedure for importing a catalog. In this scenario, the source database is the database containing the existing recovery catalog, while the destination database will contain the moved recovery catalog.

To move a recovery catalog from the source database to the destination database:

	
Create a recovery catalog on the destination database, but do not register any databases in the new catalog.

"Creating a Recovery Catalog" explains how to perform this task.

	
Import the source catalog into the catalog created in the preceding step.

"Importing a Recovery Catalog" explains how to perform this task.

Dropping a Recovery Catalog

The DROP CATALOG command removes those objects that were created as a result of the CREATE CATALOG command. If the user who owns the recovery catalog also owns objects that were not created by CREATE CATALOG, then the DROP CATALOG command does not remove these objects.

If you drop a recovery catalog, and if you have no backups of the recovery catalog schema, then backups of all target databases registered in this catalog may become unusable. However, the control file of every target database will still retain a record of recent backups of this database.

The DROP CATALOG command is not appropriate for unregistering a single database from a recovery catalog that has multiple target databases registered. Dropping the recovery catalog deletes the recovery catalog record of backups for all target databases registered in the catalog.

To drop a recovery catalog schema:

	
Start RMAN and connect to a target database and recovery catalog. Connect to the recovery catalog as the owner of the catalog schema to be dropped.

The following example connects to a recovery catalog as user catowner:

% rman TARGET / CATALOG catowner@catdb

	
Run the DROP CATALOG command:

DROP CATALOG;

recovery catalog owner is catowner
enter DROP CATALOG command again to confirm catalog removal

	
Run the DROP CATALOG command again to confirm:

DROP CATALOG;

	
Note:

Even after you drop the recovery catalog, the control file still contains records about the backups. To purge RMAN repository records from the control file, re-create the control file.

	
See Also:

Oracle Database Backup and Recovery Reference for DROP CATALOG command syntax, and "Unregistering a Target Database from the Recovery Catalog" to learn how to unregister a database from the catalog

