

Part IV

Single Sign-On Configuration

This part describes how to configure single sign-on in Oracle Fusion Middleware in the following chapters:

	
Chapter 14, "Introduction to Single Sign-On in Oracle Fusion Middleware"

	
Chapter 15, "Configuring Single Sign-On with Oracle Access Manager 11g"

	
Chapter 16, "Configuring Single Sign-On Using Oracle Access Manager 10g"

	
Chapter 17, "Configuring Single Sign-On using OracleAS SSO 10g"

Index

A B C D E F G H I J L M N O P R S T U V W X

A

	AbstractTypedPermission, 20.3.4
	access control list, 8.5.1.2
	Access Server
	
	cache, 16.6.1

	AccessGate
	
	configureAccessGate tool, 16.4.2.1, 16.8.6

	ACL, 8.5.1.2
	add.application.roles, 21.1
	add.authenticated.role, 21.1
	addBootStrapCredential, 10.4.6
	addPrincipalsToAppRole, 20.2.3
	administration tools, 5.1
	administrative tasks, 5.4
	administrators group, 2.5
	Anonymous and Authenticated Roles Properties, F.2.5
	anonymous role, 2.4, 2.4.1, 5.2
	anonymous role and authentication, 2.4.1
	anonymous SSL, 8.5.1
	anonymous user, 2.1, 2.4, 2.4.1
	anonymous user and role, 21.1
	app.context, 8.7.3.3
	Application Name or Stripe, 21.1
	application policy, 2.1
	application role, 2.1, 21.1
	application role hierarchy, 9.3.4
	application stripe, 21.1, 21.1
	application.name, 21.1, 21.1
	ApplicationRole class, 2.2.1
	application-specific policies and roles, 3.2
	audit data
	
	bus-stop files, 12.2.5
	file management, C.6
	migrating, 12.5.5
	reports, 13.1

	audit data store
	
	backup and recovery, 12.5.6.2
	configuring for Java components, 12.2.3.2
	configuring for system components, 12.2.4
	data purge, 12.5.6.3
	de-configuring, 12.2.4.1
	partitioning, 12.5.6.1
	schema, 12.5.1
	tiered archival, 12.5.6.4

	Audit Flow, 11.3.1
	audit logs, 12.4
	audit policies migration, 6.5.3
	audit policy, 12.3
	
	event filters, 11.3.2

	audit report
	
	example of, 13.4

	audit reports
	
	attributes, 13.5.2
	by component, C.2.2
	custom, 13.6.2
	list of standard, 13.5.1
	types of, 13.2
	viewing, 13.3

	Audit Schema, C.3
	audit-aware components, C.1.1
	auditing
	
	event attributes, C.1.3
	events, C.1.2
	filter expression syntax, C.5
	for Oracle Fusion Middleware components, 12.3
	in Oracle Fusion Middleware, 11
	Java components, C.1.1
	manual policy management, 12.3.4
	manually configure for Java components, 12.3.4.2
	manually configure for system components, 12.3.4.4
	Oracle Directory Integration Platform, C.1.2.1
	Oracle HTTP Server, C.1.2.3
	Oracle Identity Federation, C.1.2.5
	Oracle Internet Directory, C.1.2.4
	Oracle Platform Security Services, C.1.2.2
	Oracle Virtual Directory, C.1.2.6
	Oracle Web Cache, C.1.2.11
	Oracle Web Services Manager, C.1.2.12
	overview, 11.2
	OWSM-Agent, C.1.2.7
	OWSM-PM-EJB, C.1.2.8
	policy management with Fusion Middleware Control, 12.3.1, 12.3.2
	policy management with WLST, 12.3.3
	record storage, 11.3.3
	report filters, 13.1.5
	report setup for Oracle Business Intelligence Publisher, 13.1.3
	report templates, 13.1.4
	Reports Server, C.1.2.9
	system components, C.1.1
	WLST commands, C.4
	WS-Policy Attachment, C.1.2.10

	Authenticated Role, 21.1
	authenticated role, 2.3, 5.2, 21.1
	authenticated user, 2.1
	Authentication providers, 17.1.2.4
	
	DefaultAuthenticator, 15.2.3.2.4, 15.2.4.1, 15.2.5.2, 16.4.3.3, 16.5.3, 16.6.3, 17.1.2.4
	LDAP Authentication, 15.2.3.2.1, 16.4.3.1
	OAM, 14.2, 14.2
	OAM Authenticator, 15.2.4.1, 16.5.3
	OAM Identity Asserter, 15.2.3.2.4, 15.2.5.2, 16.4.3.3, 16.6.3
	OID Authenticator, 15.2.3.2.4, 15.2.5.2, 16.4.3.3, 16.6.3, 17.1.1.2, 17.1.2.4
	OSSO Identity Asserter, 17.1.2.4
	WebLogic, 14.1

	authenticator flags, 3.1.2.2
	Authenticator for OAM, 14.2
	Authorization failure, 20.3.3
	authorization failure, 9.1
	Auto login, 8.7.3.1
	autologin.url, 8.7.3.3

B

	backup, 5.2
	basic security tasks, 5.2
	bootstrap credentials, 6.3.1, 23.1.2
	Bulk authorization, 23.2
	bulkload, 6.5.2.3

C

	cache
	
	Access Server, 16.6.1
	refresh frequency, 9.4.1

	cache refresh, 9.4
	caching, 9.4, 9.4
	Cascading deletions, 23.2
	characters allowed in policies, L.15.2
	characters in security artifacts, 9.1
	checkBulkAuthorization, 20.3.3.3
	checkPermission, 20.3.3, 20.3.3.1, 20.3.3.1, L.1.1.3.1
	choosing
	
	the right SSO solution, 14

	class path, 1.5.3, 3.2, 8, 9.2.1, 9.3.4, 21.4.6, E.2.3
	class permission, 21.4.6
	
	CredentialAccessPermission, 21.4.6.2
	JpsPermission, 21.4.6.3
	PolicyStoreAccessPermission, 21.4.6.1

	cloning environments, 5.2.1
	commands to administer credentials, 9.3, 10.4
	Complex queries, 23.2
	Compliance, 11.1.1
	configuration file, 21.4.9
	configuration of multiple authenticators, 3.1.2.2
	configureAccessGate tool, 16.4.2.1, 16.8.6
	configuring
	
	global logout
	
	Oracle Access Manager, 16.1.2

	Identity Assertion
	
	for single sign-on with OAM, 15.2.3, 16.4
	Oracle Web Services Manager, 15.2.5, 16.6

	OAM Authenticator, 16.5
	OAM for single-sign on with OAMCfgTool, 16.4.2.1
	OAM for SSO with OAMCfgTool, 16.4.2
	OSSO, 17.1
	providers for Oracle Web Services Manager, 15.2.5.2, 16.6.3
	Single Sign-On in Oracle Fusion Middleware, 14, 15, 16, 17

	configuring domains, 5.4
	configuring resource permissions, 20.3.4
	configuring WebLogic domains, 5.4
	CONNECTION_POOL_CLASS, L.6
	createAppRole, 9.3.1, 9.3.2
	createCred, 10.4.3
	createResourceType, 9.3.12
	creating user accounts, 2.6
	credential migration settings, 6.2.1
	credential store, 2.1
	Credential Store Framework, 19.3.4
	Credential Store Framework API, 19.2.4
	Credential Store Types, 3.3
	CredentialAccessPermission, 21.4.6.2
	CredentialMapping permission, 8.7.3.3
	CSF
	
	J2EE example with LDAP store, 24.7.4
	J2EE example with wallet, 24.7.3
	J2SE example with wallet, 24.7.2

	CSIv2 identity assertion, 3.1.2.3
	custom authorization providers, 3.2
	cwallet.sso, 4.3, 6.2.1, 21, 21.4.3
	cwallet.sso file, 21.3

D

	DB-based credential store, 3.3
	DB-based policy store, 8.3
	DB-based security store, 4.1
	DBMS_STATS, 8.3.2
	debugging authorization, L.1.2.3
	DefaultAuthenticator, 15.2.3.2.4, 15.2.4.1, 15.2.5.2, 16.4.3.3, 16.5.3, 16.6.3, 17.1.2.4
	default.auth.level, 8.7.3.3
	deleteAppPolicies, 9.3.11
	deleteAppRole, 9.3.3
	deleteResourceType, 9.3.14
	deleting a role, 9.3.3
	deployed application, 5.3
	deploying applications, 6.1
	deploying JavaEE applications, 6.4
	deploying to a test environment, 6.3.1
	deployment tools, 6.2
	development mode, 21.4.4, 21.4.5.3
	distribute environments, 8.2.1
	DN, 2.7.2
	doAs, 20.3.3.2
	doAsPrivileged, 20.3.3.2
	Dynamic authentication, 8.7.3.1

E

	EAR file, 21.3, 21.3.1, 21.3.2
	EJB Interceptor, 21.1
	ejb-jar.xml, 3.2, 21.1, 21.3
	embedded LDAP, 3.1.2, 4.2
	enable.anonymous, 21.1
	enterprise group, 2.1
	Enterprise Groups and Users Class, 21.2
	enterprise user, 2.1
	Enterprise-Level SSO, 14.1
	entitlement-based policies, 2.1
	Event Source Type, 11.3.2
	Existing OSSO, 14.1
	exportAuditConfig, C.4.7
	EXTRA_JAVA_PROPERTIES, F.1, L.1.2

F

	fail over support, 5.4
	FAQ, 1.1
	file-based policy store, 3.2
	file-based security store, 4.1

G

	generic credential, 10.1
	Generic LDAP Properties, F.2.4
	getAuditPolicy, C.4.2
	getGrantedResources, 20.3.3.4
	getNonJavaEEAuditMBeanName, C.4.1
	getPermissions, L.1.1.3.2
	getResourceType, 9.3.13, 9.3.15, 9.3.15, 9.3.16, 9.3.16, 9.3.17, 9.3.17, 9.3.17, 9.3.18, 9.3.19, 9.3.19, 9.3.20, 9.3.20, 9.3.21, 9.3.21, 9.3.22, 9.3.22, 9.3.23, 9.3.23, 9.3.24, 9.3.24, 9.3.24, 9.3.25, 9.3.25, 9.3.26, 9.3.26, 9.3.27, 9.3.27, 9.3.28, 9.3.28
	Global logout, 8.7.3.1
	grant
	
	permission-based, 2.2.1

	grantAppRole, 9.3.4
	GrantManager class, 20.3.2
	grantPermission, 9.3.8
	group, 2.1
	GUID, 2.7.2

H

	Headers
	
	sent by Oracle HTTP Server, 17.1.1.3

	host name verification, 3.1.2.2
	hot deployed, 6.5.2

I

	Identity Asserter for Single Sign-on with OAM, 14.2
	identity store, 2.1
	
	creating provider, 25.3.4
	provider configuration properties, 25.3.5
	selecting provider, 25.3.3
	WebLogic, 3.1.2
	WebSphere, 3.1.3

	identity store in JavaSE, 22.2.2
	Identity Store Service, 7.1
	identity store types, 3.1.1
	identity virtualization, 7.1.1
	idstore.type, F.2.3
	importAuditConfig, C.4.8
	incompatible versions, L.20
	initializing an LDAP authenticator, 3.1.2.2
	invoking MBeans, E.2.2
	isCallerInRole, 1.5.1
	isUserInRole, 1.5.1, 20.2.2.2

J

	JAAS mode, 21.1
	Java component, 2.1
	javadocs
	
	OPSS APIs, H.1
	OPSS MBeans APIs, H.1
	OPSS User and Role APIs, H.1

	JavaSE application, 23.1
	java.security.policy, F.1
	jazn-data.xml, 4.3, 6.2.1, 21, 21.3, 21.3.1
	join, 9.3.29
	JpsApplicationLifecycleListener, 21.4.4
	jpsApplicationLifecycleListener, 21.4.1
	jps.apppolicy.idstoreartifact.migration, 21.4.1, 21.4.1
	JpsAuth.checkPermission API, 19.2.3
	jps.auth.debug, L.1.2.1
	jps.auth.debug.verbose, L.1.2.2
	jps-config-jse.xml, 1.5.3
	jps-config.xml, 21, A
	jps-config.xml example, 21.4.9
	jps-config.xml full example, 21.4.9
	jps.credstore.migration, 21.4.4
	jps.deployment.handler.disabled, 8.6, 21.4
	JpsFilter, 21.1, 21.3, L.1.1.4
	JpsInterceptor, 21.1, 21.1.1, 21.3, L.1.1.4
	JpsPermission, 21.4.6.3
	jps.policystore.applicationid, 21.4.1
	jps.policystore.hybrid.mode, F.1
	jps.policystore.migration, 21.4.1
	jps.policystore.migration.validate.principal, 21.4.1
	jps.policystore.removal, 21.4.1

L

	large volume stores, 6.5.2.3
	LDAP Credential Store Properties, F.2.2
	LDAP Identity Store Properties, F.2.3
	LDAP Policy Store Properties, F.2.1
	LDAP servers, 4.1
	ldapadd, 8.2.2
	LDAP-based policy store, 3.2, 8.2
	ldapmodify, 8.5.1.2
	ldapsearch, 8.2.2
	LDIF file, 8.2.2
	ldifwrite, 6.5.2.3
	listAppRoleMembers, 9.3.7
	listAppRoles, 9.3.6
	listAuditEvents, C.4.6
	listPermissions, 9.3.10
	loggers
	
	oracle.security.jps.trace.logger, L.1.1.3.2
	oracle.security.jps.util.JpsAuth, L.1.1.3.1

	logical role, 2.1, E.3
	LoginService API, 19.2.1
	login.url.FORM, 8.7.3.3
	logout.url, 8.7.3.3

M

	management tools, 4.2
	managing credentials, 6.3.1, 6.3.1.1
	managing domain authenticators, 5.4
	managing identities, 4.2, 6.3.1
	managing policies, 6.3.1
	managing policies and credentials, 4.2, 4.2
	managing system policies, 6.3.1.1
	managing users and groups, 4.2
	Manually Configuring
	
	WebGate Web Server, 15.2.2

	mapping application roles to enterprise groups, 6.3.1.1
	mapping of application roles, 2.2
	mapping roles, 6.5.2
	matcher class, 20.3.4
	Matcher Class for a Resource Type, 20.3.4
	MBean
	
	Administration Policy Store, E.2.1
	annotations, E.3.1
	Application Policy Store, E.2.1
	code sample, E.2.3
	Credential Store, E.2.1
	Global Policy Store, E.2.1
	Jps Configuration, E.2.1

	migrateSecurityStore, 6.5.1.1, 6.5.2, 8.6.2, 21.4.8, I.3
	
	DB to DB, 6.5.2.1, 6.5.2.2
	LDAP to LDAP, 6.5.2.1, 6.5.2.2
	XML to LDAP, 6.5.2.1, 6.5.2.2

	migrating credentials example, 6.5.2.2
	Migrating Identities, 21.4.8
	migrating identities manually, 6.5.1.1
	migrating large stores, 6.5.2.3
	migrating other providers, 6.5.1
	migrating policies and credentials at deployment, 6.5.2
	migrating policies example, 6.5.2.1
	Migration of credentials, 3.3
	Migration of policies, 3.2
	mod_osso, 17.1.2, 17.3.1
	modifyBootStrapCredential, 10.4.5
	modifying a resource type, 9.3.14
	Monitoring, 11.1.1
	multiple-node server domain, 8.2.1

N

	name comparison logic, 2.7.2

O

	OAM
	
	Authentication provider, 14.2, 14.2
	
	parameter, 16.2
	Troubleshooting, 16.8

	Authenticator, 14.2, 15.2.4.1, 16.5.3
	Identity Asserter, 14.2, 15.2.3.2.4, 15.2.5.2, 16.4.3.3, 16.6.3

	OAM 10g SSO solution, 16
	OAM 11g SSO solution, 15
	OAM solution, 8.7.3.1
	oamauthenticationprovider.war, 15.2.1, 16.1.1.2
	oamAuthnProvider.jar, 14.2.5, 15.2.1, 15.2.1, 16.1.1.2, 16.1.1.2
	OAMCfgTool, 16.1.1.1, 16.1.1.2, 16.4, 16.4.2
	
	about using, 16.3
	Create mode parameters, 16.3.2.1
	host identifiers created, 16.3.3
	Known Issues, 16.3.4
	process overview, 16.3.1
	Validate mode parameters, 16.3.2.2

	oamcfgtool.jar, 14.2.5, 16.1.1.2
	OID Authenticator, 15.2.3.2.4, 15.2.5.2, 16.4.3.3, 16.6.3, 17.1.1.2, 17.1.2.4
	OID patches, 8.2
	one-way SSL, 8.5.1
	OPSS
	
	and Oracle Application Development Framework, 19.4
	and the development cycle, 19.1.1
	features for developers, 19.1.3

	OPSS APIs
	
	and JavaEE application, 19.3.1
	and JavaSE application, 19.3.7
	authentication with, 19.3.2
	authorization with, 19.3.3
	common uses, 19.3
	CSF, 19.3.4
	User and Role, 19.3.5, D

	OPSS Architecture, 19.1.4
	OPSS security store, 2.1
	OPSS SSO Framework, 8.7.3.1
	OPSS System Properties, F.1
	opss_purge_changelog, 8.3.2
	Oracle Access Manager
	
	Integration with OSSO, 14.1, 14.1

	Oracle ADF security, 5.1
	Oracle Business Intelligence Publisher, 13.1
	
	audit report example, 13.4

	Oracle Entitlements Server, 5.2, 5.5, 9, 9.1, 9.7
	Oracle Fusion Middleware Audit Framework, 11.1, 11.1.3
	
	architecture, 11.3.1
	concepts, 11.3, 11.3.2

	Oracle Information Lifecycle Management Assistant, 12.5.6.4
	Oracle Internet Directory, 4.1
	Oracle Internet Directory 10.1.4.3 patch, 4.1
	Oracle Internet Directory tuning, 4.1
	Oracle JDeveloper 11g, 5.1
	Oracle Platform Security Services, 14.1
	
	developing with, 19

	Oracle Security Developer Tools, 19.5
	OracleAS Single Sign-On solution, See Also OSSO, 17.1
	oracle.deployed.app.dir, B.2
	oracle.deployed.app.ext, B.2
	oracle.security.jps.config, 1.5.3, A
	oracle.security.jps.jaas.mode, 21.1
	oracle.security.jps.log.for.approle.substring, L.1.2.3
	oracle.security.jps.log.for.enterprise.principalname, L.1.2.3
	oracle.security.jps.log.for.permclassname, L.1.2.3
	oracle.security.jps.log.for.permeffect, L.1.2.3
	oracle.security.jps.log.for.permtarget.substring, L.1.2.3
	Oracle-specific applications, 5.1
	OSSO
	
	existing implementation, 14.1
	Identity Asserter, 17.1.1, 17.1.2.4, 17.1.2.4
	
	new users, 17.1.2
	processing, 17.1.1.2
	Tips and Troubleshooting, 17.3

	solution, 14.1, 14.1, 17

	OSSO Identity Asserter, 17.1.1.1

P

	packaging an J2EE application, 21.3
	Packaging Credentials, 21.3.2
	Packaging Policies, 21.3.1
	password credential, 10.1
	password validation, 2.6
	passwords, 2.6
	permission, 20.3.4
	permission class, 20.3.4
	permission classes, 3.2, 8, 21.4.6
	permission inheritance, 2.2.1
	permissions to anonymous role, 2.4
	permissions to authenticated role, 2.3
	PermissionSetManager class, 20.3.2
	policy domain
	
	URL prefixes, 16.5.2.1, 16.5.2.2, 16.6.1

	policy migration settings, 6.2.1
	Policy Store, 3.2
	policy store, 2.1
	policy store cache, 9.4
	policy store removal, 3.2
	PolicyStoreAccessPermission, 21.4.6.1
	PolicyStoreIncompatibleVersionException, L.20
	policystore.refresh.interval, 9.4
	Post-installation tasks, 5.3
	principal, 2.1
	principal name comparison, 2.7.1, 2.7.2
	principal.cache.key, 23.1.1
	PrincipalEqualsCaseInsensitive, 2.7.2
	PrincipalEqualsCompareDnAndGuid, 2.7.2
	Procedure
	
	WebGate
	
	To manually configure a Web server, 15.2.2.2

	Process overview
	
	OAMCfgTool, 16.3.1
	Oracle Access Manager Authenticator for Web and non-Web Resources, 14.2.2
	OSSO Identity Asserter, 17.1.1.2

	production environment, 5.2.1
	Programmatic Authorization, 19.3.3
	props.auth.level, 8.7.3.3
	props.auth.uri, 8.7.3.3
	props.auth.url, 8.7.3.3

R

	RCU, 8.3.1
	reassociateSecurityStore, 9.3.29, I.3
	Reassociation of credentials, 3.3
	Reassociation of policies, 3.2
	recovery of server files, 5.2
	reference integrity, 3.1.1
	referencial integrity, 8.2
	remove.anonymous.role, 21.1
	Resource Catalog, 20.3.1
	resource permissions, 20.3.4
	
	managing, 20.3.4

	resource type, 20.3.4
	resource-based policies, 2.1
	ResourceManager class, 20.3.2
	ResourcePermission class, 20.3.4
	resourcetypeenforcementmode, F.2.1.1, F.2.1.2
	ResourceTypeManager class, 20.3.2
	revokeAppRole, 9.3.5
	revokePermission, 9.3.9
	role category, 2.8
	role hierarchy, 2.2.1
	RoleCategoryManager class, 2.8

S

	SAML 1.1 identity assertion, 3.1.2
	SAML 2.0 identity assertion, 3.1.2
	scenarios, 4.4, 4.4
	Security Provider Configuration, 8.5.1, 8.7
	Security Provider for WebLogic SSPI, 14.2.3.3
	security store, 2.1
	security-related commands, 5.6
	server restart, 4.2, F
	service instance update script, E.1
	Service Providers, 25.3
	
	introduction, 25.3
	understanding, 25.3.1

	Set Security Provider, 8.5.1
	setAuditPolicy, C.4.3
	setAuditRepository, C.4.5
	setDomainEnv shell script, F.1, L.1.2
	setPolicy, 20.3.3, 20.3.3.3
	Setting a Node in LDAP server, 8.2.2
	setting up providers
	
	OAM Asserter with Oracle Web Services Manager, 15.2.5.2
	OAM Authenticator, 15.2.4.1
	OAM Identity Assertion, 15.2.3.2.4, 16.4.3.3
	OSSO Identity Asserter, 17.1.2.4

	Single Sign-On, 8.7.3
	single sign-on solutions for Fusion Middleware, See Also SSO, 14
	split profiles, 7.3.3
	SPNEGO, 3.1.2.3
	SPNEGO tokens, 3.1.2.3
	SSL
	
	and User/Role APIs, 25.8
	anonymous, 8.5.1
	one-way, 8.5.1

	SSL to a DB, 8.3.3
	SSO
	
	enterprise level, 14.1
	existing 10g SSO, 14.1
	Oracle Access Manager, 14.2
	Synchronization Filter, 15.4, 16.7, 17.2

	SSO Logout URL, 15.3.1
	SSO service, 8.7.3.1
	SSO service configuration, 8.7.3.3
	sso.provider.class, 8.7.3.3
	storing policies and credentials, 4.1
	subject, 2.1, 2.4.1, 2.7.1
	supported
	
	identity store types, 3.1.1

	synchronizing
	
	user and SSO Sessions, 15.4, 16.7, 17.2

	system component, 2.1
	system-jazn-data.xml, 21

T

	Task overview
	
	Configuring the OAM Authenticator, 15.2.4, 16.5
	Deploying and configuring OAM Identity Assertion for single sign-on includes, 15.2.3, 16.4
	Deploying OSSO Identity Asserter, 17.1.2
	Deploying the Identity Asserter with Oracle Web Services Manager, 15.2.5, 16.6
	Installing required components for OAM Authentication Provider, 15.2.1, 16.1.1.2
	Setting policies in Oracle Web Services Manager, 15.2.5.1, 16.6.2

	test environments, 6.3
	token.provider.class, 8.7.3.3
	troubleshooting
	
	search fails against Microsoft Active Directory, L.19

	typical security practices, 5.3

U

	Unsupported Methods in PS2, 23.2
	updateServiceInstanceProperty, E.1
	updating instance with script, E.1
	upgradeSecurityStore, G
	URL
	
	SSO Logout URL, 15.3.1

	User and Role API, 19.2.2, D
	
	Javadoc, 25.9
	programming tips, 25.3.9.1

	User and Role APIs
	
	and WebLogic authenticators, 25.1.1
	developing with, 25
	environment setup, 25.3.2
	introduction, 25.1
	programming tips, 25.3.9
	summary, 25.2

	User and Role SPI
	
	Javadoc, 25.10.7.4

	UseRetrievedUserNameAsPrincipal, 3.1.2.2
	user.login.attr, L.7
	username.attr, L.7

V

	virtualize, 7.3.1.1, 7.3.2, 7.3.2.3, F.2.3
	virtualized identity, 7.1.1

W

	WAR file, 21.1
	WebLogic
	
	Authentication provider, 14.1, 15.2.3.2.1, 16.4.3.1
	Authentication providers
	
	Identity Assertion, 15.2.3.2.1, 16.4.3.1

	J2EE applications, 14.2.3.3

	WebLogic Administration Console, 4.2
	WebLogic Scripting Tool (WLST), 15.2.3.2.2, 16.4.3.2
	weblogic-application.xml, 21
	web.xml, 3.2, 21, 21.1, 21.3
	WLSGroupImpl, 2.2.1, 9.3.4, 9.3.5, 21.2, 22.3.2
	WLST
	
	createAppRole, 9.3.1, 9.3.2
	createCred, 10.4.3
	createResourceType, 9.3.12
	deleteAppPolicies, 9.3.11
	deleteAppRole, 9.3.3
	deleteCred, 10.4.4
	deleteResourceType, 9.3.14
	getResourceType, 9.3.13, 9.3.15, 9.3.15, 9.3.16, 9.3.16, 9.3.17, 9.3.17, 9.3.17, 9.3.18, 9.3.19, 9.3.19, 9.3.20, 9.3.20, 9.3.21, 9.3.21, 9.3.22, 9.3.22, 9.3.23, 9.3.23, 9.3.24, 9.3.24, 9.3.24, 9.3.25, 9.3.25, 9.3.26, 9.3.26, 9.3.27, 9.3.27, 9.3.28, 9.3.28
	grantAppRole, 9.3.4
	grantPermission, 9.3.8
	listAppRoleMembers, 9.3.7
	listAppRoles, 9.3.6
	listCred, 10.4.1
	listPermissions, 9.3.10
	reassociateSecurityStore, 9.3.29
	revokeAppRole, 9.3.5
	revokePermission, 9.3.9
	updateCred, 10.4.2

	WLSUserImpl, 2.2.1, 21.2, 22.3.2

X

	X509 identity assertion, 3.1.2

Contents

List of Examples

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

What's New in This Guide

	New Features in Oracle Identity Management 11gR1 PS1
	New Features in Release 11gR1 PS3
	New Features in Oracle Identity Management 11gR1
	New Features in Release 11gR1 PS2
	New Features in Release 11gR1 PS1
	New Features in Release 11gR1
	Desupported Features from 10.1.3.x
	Links to Upgrade Documentation

Part I Understanding Security Concepts

1 Introduction to Oracle Platform Security Services

	1.1 What is Oracle Platform Security Services?
	1.1.1 OPSS Main Features
	1.1.2 Supported Server Platforms

	1.2 OPSS Architecture Overview
	1.2.1 Benefits of Using OPSS

	1.3 Oracle ADF Security Overview
	1.4 OPSS for Administrators
	1.5 OPSS for Developers
	1.5.1 Scenario 1: Enhancing Security in a Java EE Application
	1.5.2 Scenario 2: Securing an Oracle ADF Application
	1.5.3 Scenario 3: Securing a Java SE Application

2 Understanding Users and Roles

	2.1 Terminology
	2.2 Role Mapping
	2.2.1 Permission Inheritance and the Role Hierarchy

	2.3 The Authenticated Role
	2.4 The Anonymous User and Role
	2.4.1 Anonymous Support and Subject

	2.5 Administrative Users and Roles
	2.6 Managing User Accounts
	2.7 Principal Name Comparison Logic
	2.7.1 How Does Principal Comparison Affect Authorization?
	2.7.2 System Parameters Controlling Principal Name Comparison

	2.8 The Role Category

3 Understanding Identities, Policies, and Credentials

	3.1 Authentication Basics
	3.1.1 Supported LDAP Identity Store Types
	3.1.2 Oracle WebLogic Authenticators
	3.1.2.1 Using an LDAP Authenticator
	3.1.2.2 Configuring the LDAP Identity Store Service
	3.1.2.3 Additional Authentication Methods

	3.1.3 WebSphere Identity Stores

	3.2 Policy Store Basics
	3.3 Credential Store Basics

4 About Oracle Platform Security Services Scenarios

	4.1 Supported LDAP-, DB-, and File-Based Services
	4.2 Management Tools
	4.3 Packaging Requirements
	4.4 Example Scenarios
	4.5 Other Scenarios

Part II Basic OPSS Administration

5 Security Administration

	5.1 Choosing the Administration Tool According to Technology
	5.2 Basic Security Administration Tasks
	5.2.1 Setting Up a Brand New Production Environment

	5.3 Typical Security Practices with Fusion Middleware Control
	5.4 Typical Security Practices with the Administration Console
	5.5 Typical Security Practices with Oracle Entitlements Server
	5.6 Typical Security Practices with OPSS Scripts

6 Deploying Secure Applications

	6.1 Overview
	6.2 Selecting the Tool for Deployment
	6.2.1 Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control

	6.3 Deploying Oracle ADF Applications to a Test Environment
	6.3.1 Deploying to a Test Environment
	6.3.1.1 Typical Administrative Tasks after Deployment in a Test Environment

	6.4 Deploying Standard Java EE Applications
	6.5 Migrating from a Test to a Production Environment
	6.5.1 Migrating Providers other than Policy and Credential Providers
	6.5.1.1 Migrating Identities Manually

	6.5.2 Migrating Policies and Credentials at Deployment
	6.5.2.1 Migrating Policies Manually
	6.5.2.2 Migrating Credentials Manually
	6.5.2.3 Migrating Large Volume Policy and Credential Stores

	6.5.3 Migrating Audit Policies

Part III Advanced OPSS Administration

7 Configuring the Identity Store Service

	7.1 Introduction to the Identity Store Service
	7.1.1 About the Identity Store Service
	7.1.2 Service Architecture
	7.1.3 Application Server Support
	7.1.4 Java SE Support

	7.2 Configuring the Identity Store Provider
	7.3 Configuring the Identity Store Service
	7.3.1 What is Configured?
	7.3.1.1 Configuring Multi-LDAP Lookup
	7.3.1.2 Global/Connection Parameters
	7.3.1.3 Back-End/Connection Parameters

	7.3.2 Configuration in WebLogic Server
	7.3.2.1 Configuring the Service for Single LDAP
	7.3.2.2 Configuring the Service for Multiple LDAP using Fusion Middleware Control
	7.3.2.3 Configuring the Service for Multiple LDAP using WLST
	7.3.2.4 Configuring Other Parameters
	7.3.2.5 Restarting Servers
	7.3.2.6 Examples of the Configuration File

	7.3.3 Configuring Split Profiles
	7.3.4 Configuration in Other Application Servers
	7.3.4.1 Configuring the Service for Single LDAP
	7.3.4.2 Configuring the Service for Multiple LDAP

	7.3.5 Java SE Environments

	7.4 Querying the Identity Store Programmatically

8 Configuring the OPSS Security Store

	8.1 Introduction to the OPSS Security Store
	8.2 Using an LDAP-Based OPSS Security Store
	8.2.1 Multiple-Node Server Environments
	8.2.2 Prerequisites to Using an LDAP-Based Security Store

	8.3 Using a DB-Based OPSS Security Store
	8.3.1 Prerequisites to Using a DB-Based Security Store
	8.3.1.1 Creating the OPSS Schema in an Oracle Database
	8.3.1.2 Dropping the OPSS Schema in an Oracle Database
	8.3.1.3 Creating a Data Source Instance

	8.3.2 Maintaining a DB-Based Security Store
	8.3.3 Setting Up an SSL Connection to the DB
	8.3.3.1 Configuring SSL on an Oracle DB Server
	8.3.3.2 Configuring SSL on a Client

	8.4 Configuring the OPSS Security Store
	8.5 Reassociating the OPSS Security Store
	8.5.1 Reassociating with Fusion Middleware Control
	8.5.1.1 Setting Up a One- Way SSL Connection
	8.5.1.2 Securing Access to Oracle Internet Directory Nodes

	8.5.2 Reassociating with the Script reassociateSecurityStore

	8.6 Migrating the OPSS Security Store
	8.6.1 Migrating with Fusion Middleware Control
	8.6.2 Migrating with the Script migrateSecurityStore
	8.6.2.1 Examples of Use

	8.7 Configuring the Identity Provider, Property Sets, and SSO
	8.7.1 Configuring the Identity Store Provider
	8.7.2 Configuring Properties and Property Sets
	8.7.3 Specifying a Single Sign-On Solution
	8.7.3.1 The OPSS SSO Framework
	8.7.3.2 Configuring an SSO Solution with Fusion Middleware Control
	8.7.3.3 OAM Configuration Example

	8.8 Cataloging Oracle Internet Directory Attributes

9 Managing the Policy Store

	9.1 Managing the Policy Store
	9.2 Managing Policies with Fusion Middleware Control
	9.2.1 Managing Application Policies
	9.2.2 Managing Application Roles
	9.2.3 Managing System Policies

	9.3 Managing Application Policies with OPSS Scripts
	9.3.1 listAppStripes
	9.3.1.1 Running listAppStripes after Reassociating to a DB-Based Store

	9.3.2 createAppRole
	9.3.3 deleteAppRole
	9.3.4 grantAppRole
	9.3.5 revokeAppRole
	9.3.6 listAppRoles
	9.3.7 listAppRolesMembers
	9.3.8 grantPermission
	9.3.9 revokePermission
	9.3.10 listPermissions
	9.3.11 deleteAppPolicies
	9.3.12 createResourceType
	9.3.13 getResourceType
	9.3.14 deleteResourceType
	9.3.15 createResource
	9.3.16 deleteResource
	9.3.17 listResources
	9.3.18 listResourceActions
	9.3.19 createEntitlement
	9.3.20 getEntitlement
	9.3.21 deleteEntitlement
	9.3.22 addResourceToEntitlement
	9.3.23 revokeResourceFromEntitlement
	9.3.24 listEntitlements
	9.3.25 grantEntitlement
	9.3.26 revokeEntitlement
	9.3.27 listEntitlement
	9.3.28 listResourceTypes
	9.3.29 reassociateSecurityStore

	9.4 Caching and Refreshing the Cache
	9.4.1 An Example

	9.5 Granting Policies to Anonymous and Authenticated Roles with WLST Scripts
	9.6 Application Stripe for Versioned Applications in WLST Scripts
	9.7 Managing Application Policies with Oracle Entitlements Server
	9.8 Guidelines for Configuring the Policy Store

10 Managing the Credential Store

	10.1 Credential Types
	10.2 Managing the Credential Store
	10.3 Managing Credentials with Fusion Middleware Control
	10.4 Managing Credentials with OPSS Scripts
	10.4.1 listCred
	10.4.2 updateCred
	10.4.3 createCred
	10.4.4 deleteCred
	10.4.5 modifyBootStrapCredential
	10.4.6 addBootStrapCredential

11 Introduction to Oracle Fusion Middleware Audit Framework

	11.1 Benefits and Features of the Oracle Fusion Middleware Audit Framework
	11.1.1 Objectives of Auditing
	11.1.2 Today's Audit Challenges
	11.1.3 Oracle Fusion Middleware Audit Framework in 11g

	11.2 Overview of Audit Features
	11.3 Oracle Fusion Middleware Audit Framework Concepts
	11.3.1 Audit Architecture
	11.3.2 Key Technical Concepts
	11.3.3 Audit Record Storage
	11.3.4 Analytics

12 Configuring and Managing Auditing

	12.1 Audit Administration Tasks
	12.2 Managing the Audit Store
	12.2.1 Create the Audit Schema using RCU
	12.2.2 Set Up Audit Data Sources
	12.2.2.1 Multiple Data Sources

	12.2.3 Configure a Database Audit Store for Java Components
	12.2.3.1 View Audit Store Configuration
	12.2.3.2 Configure the Audit Store
	12.2.3.3 Deconfigure the Audit Store

	12.2.4 Configure a Database Audit Store for System Components
	12.2.4.1 Deconfigure the Audit Store

	12.2.5 Tuning the Bus-stop Files
	12.2.6 Configuring the Stand-alone Audit Loader
	12.2.6.1 Configuring the Environment
	12.2.6.2 Running the Stand-Alone Audit Loader

	12.3 Managing Audit Policies
	12.3.1 Manage Audit Policies for Java Components with Fusion Middleware Control
	12.3.2 Manage Audit Policies for System Components with Fusion Middleware Control
	12.3.3 Manage Audit Policies with WLST
	12.3.3.1 View Audit Policies with WLST
	12.3.3.2 Update Audit Policies with WLST
	12.3.3.3 Example 1: Configuring an Audit Policy for Users with WLST
	12.3.3.4 Example 2: Configuring an Audit Policy for Events with WLST
	12.3.3.5 Custom Configuration is Retained when the Audit Level Changes

	12.3.4 Manage Audit Policies Manually
	12.3.4.1 Location of Configuration Files for Java Components
	12.3.4.2 Audit Service Configuration Properties in jps-config.xml for Java Components
	12.3.4.3 Switching from Database to File for Java Components
	12.3.4.4 Manually Configuring Audit for System Components

	12.4 Audit Logs
	12.4.1 Location of Audit Logs
	12.4.2 Audit Log Timestamps

	12.5 Advanced Management of Database Store
	12.5.1 Schema Overview
	12.5.2 Table Attributes
	12.5.3 Indexing Scheme
	12.5.4 Backup and Recovery
	12.5.5 Importing and Exporting Data
	12.5.6 Partitioning
	12.5.6.1 Partition Tables
	12.5.6.2 Backup and Recovery of Partitioned Tables
	12.5.6.3 Import, Export, and Data Purge
	12.5.6.4 Tiered Archival

13 Using Audit Analysis and Reporting

	13.1 Setting up Oracle Business Intelligence Publisher for Audit Reports
	13.1.1 About Oracle Business Intelligence Publisher
	13.1.2 Install Oracle Business Intelligence Publisher
	13.1.3 Set Up Oracle Reports in Oracle Business Intelligence Publisher
	13.1.4 Set Up Audit Report Templates
	13.1.5 Set Up Audit Report Filters
	13.1.6 Configure Scheduler in Oracle Business Intelligence Publisher

	13.2 Organization of Audit Reports
	13.3 View Audit Reports
	13.4 Example of Oracle Business Intelligence Publisher Reports
	13.5 Audit Report Details
	13.5.1 List of Audit Reports in Oracle Business Intelligence Publisher
	13.5.2 Attributes of Audit Reports in Oracle Business Intelligence Publisher

	13.6 Customizing Audit Reports
	13.6.1 Using Advanced Filters on Pre-built Reports
	13.6.2 Creating Custom Reports

Part IV Single Sign-On Configuration

14 Introduction to Single Sign-On in Oracle Fusion Middleware

	14.1 Choosing the Right SSO Solution for Your Deployment
	14.2 Introduction: OAM Authentication Provider for WebLogic Server
	14.2.1 About Using the Identity Asserter Function with Oracle Access Manager
	14.2.2 About Using the Authenticator Function with Oracle Access Manager
	14.2.3 Choosing Applications for Oracle Access Manager SSO Scenarios and Solutions
	14.2.3.1 Applications Using Oracle Access Manager for the First TIme
	14.2.3.2 Applications Migrating from Oracle Application Server to Oracle WebLogic Server
	14.2.3.3 Applications Using OAM Security Provider for WebLogic SSPI

	14.2.4 Implementation: Using the Provider with OAM 11g versus OAM 10g
	14.2.5 Requirements for the Provider with Oracle Access Manager

	14.3 Setting Up Debugging in the WebLogic Administration Console

15 Configuring Single Sign-On with Oracle Access Manager 11g

	15.1 Introduction to Oracle Access Manager 11g SSO
	15.1.1 Previewing Pre-Seeded OAM 11g Policies for Use by the OAM 10g AccessGate

	15.2 Deploying the Oracle Access Manager 11g SSO Solution
	15.2.1 Installing the Authentication Provider with Oracle Access Manager 11g
	15.2.2 Provisioning an OAM Agent with Oracle Access Manager 11g
	15.2.2.1 About WebGate Provisioning Methods for Oracle Access Manager 11g
	15.2.2.2 Provisioning a WebGate with Oracle Access Manager 11g

	15.2.3 Configuring Identity Assertion for SSO with Oracle Access Manager 11g
	15.2.3.1 Establishing Trust with Oracle WebLogic Server
	15.2.3.2 Configuring Providers in the WebLogic Domain
	15.2.3.3 Reviewing the Login Page for the Oracle Access Manager Identity Asserter
	15.2.3.4 Testing Oracle Access Manager Identity Assertion for Single Sign-on

	15.2.4 Configuring the Authenticator Function for Oracle Access Manager 11g
	15.2.4.1 Configuring Providers for the Authenticator in a WebLogic Domain
	15.2.4.2 Configuring the Application Authentication Method for the Authenticator
	15.2.4.3 Mapping the Authenticated User to a Group in LDAP
	15.2.4.4 Testing the Oracle Access Manager Authenticator Implementation

	15.2.5 Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g
	15.2.5.1 Configuring Oracle Web Services Manager Policies for Web Services
	15.2.5.2 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
	15.2.5.3 Testing the Identity Asserter with Oracle Web Services Manager

	15.3 Configuring Centralized Log Out for Oracle Access Manager 11g
	15.3.1 Logout for 11g WebGate and OAM 11g
	15.3.2 Logout for 10g WebGate with Oracle Access Manager 11g

	15.4 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	15.5 Troubleshooting Tips

16 Configuring Single Sign-On Using Oracle Access Manager 10g

	16.1 Deploying SSO Solutions with Oracle Access Manager 10g
	16.1.1 Installing and Setting Up Authentication Providers for OAM 10g
	16.1.1.1 About Oracle Access Manager 10g Installation and Setup
	16.1.1.2 Installing Components and Files for Authentication Providers and OAM 10g
	16.1.1.3 Converting Oracle Access Manager Certificates to Java Keystore Format
	16.1.1.4 Creating Resource Types in Oracle Access Manager 10g

	16.1.2 Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates
	16.1.2.1 Recommended Process for Configuring Logout
	16.1.2.2 Alternative Process for Configuring Logout

	16.2 Oracle Access Manager Authentication Provider Parameter List
	16.3 Introduction to OAMCfgTool
	16.3.1 OAMCfgTool Process Overview
	16.3.2 OAMCfgTool Parameters and Values
	16.3.2.1 Create Mode Parameters and Values
	16.3.2.2 Validate Mode Parameters and Values
	16.3.2.3 Delete Mode Parameters and Values

	16.3.3 Sample Policy Domain and AccessGate Profile Created with OAMCfgTool
	16.3.4 Known Issues: JAR Files and OAMCfgTool

	16.4 Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g
	16.4.1 Establishing Trust with Oracle WebLogic Server
	16.4.1.1 Setting Up the Application Authentication Method for SSO
	16.4.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter
	16.4.1.3 Establishing Trust between Oracle WebLogic Server and Other Entities

	16.4.2 Configuring the Authentication Scheme for the Identity Asserter
	16.4.2.1 Creating an Authentication Scheme, Policy Domain, and a WebGate Profile

	16.4.3 Configuring Providers in the WebLogic Domain
	16.4.3.1 About Oracle WebLogic Server Authentication and Identity Assertion Providers
	16.4.3.2 About the Oracle WebLogic Scripting Tool (WLST)
	16.4.3.3 Setting Up Providers for Oracle Access Manager Identity Assertion

	16.4.4 Setting Up the Login Form for the Identity Asserter and OAM 10g
	16.4.5 Testing Identity Assertion for SSO with OAM 10g

	16.5 Configuring the Authenticator for Oracle Access Manager 10g
	16.5.1 Creating an Authentication Scheme for the Authenticator
	16.5.2 Configuring a Policy Domain for the Oracle Access Manager Authenticator
	16.5.2.1 About Creating a Policy Domain
	16.5.2.2 Creating a Policy Domain and Access Policies for the Authenticator

	16.5.3 Configuring Providers for the Authenticator in a WebLogic Domain
	16.5.4 Configuring the Application Authentication Method for the Authenticator
	16.5.5 Mapping the Authenticated User to a Group in LDAP
	16.5.6 Testing the Oracle Access Manager Authenticator Implementation

	16.6 Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g
	16.6.1 Creating an Policy Domain for Use with Oracle Web Services Manager
	16.6.2 Configuring Oracle Web Services Manager Policies for Web Services
	16.6.3 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
	16.6.4 Testing the Identity Asserter with Oracle Web Services Manager

	16.7 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	16.8 Troubleshooting Tips for OAM Provider Deployments
	16.8.1 About Using IPv6
	16.8.2 Apache Bridge Failure: Timed Out
	16.8.3 Authenticated User with Access Denied
	16.8.4 Browser Back Button Results in Error
	16.8.5 Cannot Reboot After Adding OAM and OID Authenticators
	16.8.6 Client in Cluster with Load-Balanced WebGates
	16.8.7 Error 401: Unable to Access the Application
	16.8.8 Error 403: Unable to Access the Application
	16.8.9 Error 404: Not Found ... Anything Matching the Request URI
	16.8.10 Error Issued with the Action URL in Form Login Page
	16.8.11 Error or Failure on Oracle WebLogic Server Startup
	16.8.12 JAAS Control Flag
	16.8.13 Login Form is Shown Repeatedly Upon Credential Submission: No Error
	16.8.14 Logout and Session Time Out Issues
	16.8.15 Not Found: The requested URL or Resource Was Not Found
	16.8.16 Oracle WebLogic Server Fails to Start
	16.8.17 Oracle ADF Integration and Cert Mode
	16.8.18 About Protected_JSessionId_Policy

17 Configuring Single Sign-On using OracleAS SSO 10g

	17.1 Deploying the OracleAS 10g Single Sign-On (OSSO) Solution
	17.1.1 Using the OSSO Identity Asserter
	17.1.1.1 Oracle WebLogic Security Framework
	17.1.1.2 OSSO Identity Asserter Processing
	17.1.1.3 Consumption of Headers with OSSO Identity Asserter

	17.1.2 New Users of the OSSO Identity Asserter
	17.1.2.1 Configuring mod_weblogic
	17.1.2.2 Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4
	17.1.2.3 Configuring mod_osso to Protect Web Resources
	17.1.2.4 Adding Providers to a WebLogic Domain for OSSO
	17.1.2.5 Establishing Trust Between Oracle WebLogic Server and Other Entities
	17.1.2.6 Configuring the Application for the OSSO Identity Asserter

	17.2 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	17.3 Troubleshooting for an OSSO Identity Asserter Deployment
	17.3.1 SSO-Related Problems
	17.3.2 OSSO Identity Asserter-Related Problems
	17.3.3 URL Rewriting and JSESSIONID
	17.3.4 About mod_osso, OSSO Cookies, and Directives
	17.3.4.1 New OssoHTTPOnly Directive in mod_osso
	17.3.4.2 OssoSecureCookies Directive in mod_osso
	17.3.4.3 Mod_osso Does Not Encode the Return URL
	17.3.4.4 mod_osso: "Page Not found" error After Default Installation

	17.3.5 About Using IPv6

Part V Developing with Oracle Platform Security Services APIs

18 Integrating Java EE Application Security with OPSS

	18.1 Introduction
	18.2 Terminology
	18.3 Oracle Identity and Access Management Suite
	18.3.1 OID for Identity and Policy Stores
	18.3.2 OAM and OSSO for User Authentication and Web SSO
	18.3.3 OIM for User and Role Provisioning
	18.3.4 OPSS for User and Role Profiling
	18.3.5 OPSS for User Authorization
	18.3.6 OAPM for Application Policy Management
	18.3.7 OPSS for Cryptography

	18.4 Security Life Cycle of an Application
	18.4.1 Development Phase
	18.4.2 Deployment Phase
	18.4.3 Management Phase
	18.4.4 Summary of Tasks per Participant per Phase

	18.5 Getting Started with Application Security Integration
	18.5.1 Oracle Platform Security Services
	18.5.2 Use Case 1 - Java EE Application

	18.6 Required Security Features
	18.6.1 Credentials
	18.6.2 Authentication
	18.6.3 Authorization
	18.6.4 User and Role Management

	18.7 Integrating Authentication
	18.7.1 Container-Based Authentication
	18.7.2 Oracle WebLogic Server Authentication Providers
	18.7.3 Programmatic Authentication
	18.7.4 Single Sign-On through OPSS

	18.8 Integrating Authorization
	18.8.1 Functional Security
	18.8.1.1 The Functional Security Model
	18.8.1.2 Checking Permissions with CheckPermission

	18.8.2 Functional Security with ADF

	18.9 Integrating the Credential Store
	18.9.1 Guidelines for Using CSF
	18.9.2 Cryptography

19 Developing Secure Applications with Oracle Platform Security Services

	19.1 OPSS for Developers
	19.1.1 The Development Cycle
	19.1.2 Challenges of Securing Java Applications
	19.1.3 Meeting the Challenges with Oracle Platform Security Services
	19.1.4 OPSS Architecture

	19.2 OPSS APIs
	19.2.1 The LoginService API
	19.2.2 The User and Role API
	19.2.3 JAAS Authorization and the JpsAuth.checkPermission API
	19.2.4 The Credential Store Framework API

	19.3 Common Uses of OPSS
	19.3.1 Java EE Application using OPSS APIs
	19.3.2 Authenticating with OPSS APIs
	19.3.3 Programmatic Authorization
	19.3.4 Credential Store Framework
	19.3.5 User and Role
	19.3.6 Oracle ADF Authorization
	19.3.7 Java SE Application Using OPSS APIs

	19.4 Using OPSS with Oracle Application Development Framework
	19.4.1 About Oracle ADF
	19.4.2 How Oracle ADF Uses OPSS
	19.4.3 The Oracle ADF Development Life Cycle

	19.5 Using the Oracle Security Developer Tools
	19.6 Using OPSS Outside Oracle JDeveloper/Oracle ADF

20 The OPSS Policy Model

	20.1 The Security Policy Model
	20.2 Authorization Overview
	20.2.1 Introduction to Authorization
	20.2.2 The Java EE Authorization Model
	20.2.2.1 Declarative Authorization
	20.2.2.2 Programmatic Authorization
	20.2.2.3 Java EE Code Example

	20.2.3 The JAAS Authorization Model

	20.3 The JAAS/OPSS Authorization Model
	20.3.1 The Resource Catalog
	20.3.2 Managing Policies
	20.3.3 Checking Policies
	20.3.3.1 Using the Method checkPermission
	20.3.3.2 Using the Methods doAs and doAsPrivileged
	20.3.3.3 Using the Method checkBulkAuthorization
	20.3.3.4 Using the Method getGrantedResources

	20.3.4 The Class ResourcePermission

21 Manually Configuring Java EE Applications to Use OPSS

	21.1 Configuring the Servlet Filter and the EJB Interceptor
	21.1.1 Interceptor Configuration Syntax
	21.1.2 Summary of Filter and Interceptor Parameters
	21.1.3 Configuring the Application Stripe for Application MBeans

	21.2 Choosing the Appropriate Class for Enterprise Groups and Users
	21.3 Packaging a Java EE Application Manually
	21.3.1 Packaging Policies with Application
	21.3.2 Packaging Credentials with Application

	21.4 Configuring Applications to Use OPSS
	21.4.1 Parameters Controlling Policy Migration
	21.4.2 Policy Parameter Configuration According to Behavior
	21.4.2.1 To Skip Migrating All Policies
	21.4.2.2 To Migrate All Policies with Merging
	21.4.2.3 To Migrate All Policies with Overwriting
	21.4.2.4 To Remove (or Prevent the Removal of) Application Policies
	21.4.2.5 To Migrate Policies in a Static Deployment
	21.4.2.6 Recommendations

	21.4.3 Using a Wallet-Based Credential Store
	21.4.4 Parameters Controlling Credential Migration
	21.4.5 Credential Parameter Configuration According to Behavior
	21.4.5.1 To Skip Migrating Credentials
	21.4.5.2 To Migrate Credentials with Merging
	21.4.5.3 To Migrate Credentials with Overwriting

	21.4.6 Supported Permission Classes
	21.4.6.1 Policy Store Permission
	21.4.6.2 Credential Store Permission
	21.4.6.3 Generic Permission

	21.4.7 Specifying Bootstrap Credentials Manually
	21.4.8 Migrating Identities with migrateSecurityStore
	21.4.9 Example of Configuration File jps-config.xml

22 Authentication for Java SE Applicaitons

	22.1 Links to Authentication Topics for Java EE Applications
	22.2 Authentication for Java SE Applications
	22.2.1 The Identity Store
	22.2.2 Configuring an LDAP Identity Store in Java SE Applications
	22.2.3 Supported Login Modules for Java SE Applications
	22.2.3.1 The Identity Store Login Module
	22.2.3.2 Using the Identity Store Login Module for Authentication
	22.2.3.3 Using the Identity Login Module for Assertion

	22.2.4 Using the OPSS API LoginService in Java SE Applications

	22.3 The OPSS Java SE Client
	22.3.1 Supported Services
	22.3.2 Configuration Examples

23 Authorization for Java SE Applications

	23.1 Configuring Policy and Credential Stores in Java SE Applications
	23.1.1 Configuring File-Based Policy and Credential Stores
	23.1.2 Configuring LDAP-Based Policy and Credential Stores
	23.1.3 Configuring DB-Based OPSS Security Stores

	23.2 Unsupported Methods for File-Based Policy Stores

24 Developing with the Credential Store Framework

	24.1 About the Credential Store Framework API
	24.2 Overview of Application Development with CSF
	24.3 Setting the Java Security Policy Permissions
	24.3.1 Guidelines for Granting Permissions
	24.3.2 Permissions Grant Example 1
	24.3.3 Permissions Grant Example 2

	24.4 Guidelines for the Map Name
	24.5 Configuring the Credential Store
	24.6 Steps for Using the API
	24.6.1 Using the CSF API in a Standalone Environment
	24.6.2 Using the CSF API in Oracle WebLogic Server

	24.7 Examples
	24.7.1 Code for CSF Operations
	24.7.2 Example 1: Java SE Application with Wallet Store
	24.7.3 Example 2: Java EE Application with Wallet Store
	24.7.4 Example 3: Java EE Application with LDAP Store

	24.8 Best Practices

25 Developing with the User and Role API

	25.1 Introduction to the User and Role API Framework
	25.1.1 User and Role API and the Oracle WebLogic Server Authenticators

	25.2 Summary of Roles and Classes
	25.3 Working with Service Providers
	25.3.1 Understanding Service Providers
	25.3.2 Setting Up the Environment
	25.3.3 Selecting the Provider
	25.3.4 Creating the Provider Instance
	25.3.5 Properties for Provider Configuration
	25.3.5.1 Start-time and Run-time Configuration
	25.3.5.2 ECID Propagation
	25.3.5.3 When to Pass Configuration Values

	25.3.6 Configuring the Provider when Creating a Factory Instance
	25.3.6.1 Oracle Internet Directory Provider
	25.3.6.2 Using Existing Logger Objects
	25.3.6.3 Supplying Constant Values
	25.3.6.4 Configuring Connection Parameters
	25.3.6.5 Configuring a Custom Connection Pool Class

	25.3.7 Configuring the Provider when Creating a Store Instance
	25.3.8 Runtime Configuration
	25.3.9 Programming Considerations
	25.3.9.1 Provider Portability Considerations
	25.3.9.2 Considerations when Using IdentityStore Objects

	25.3.10 Provider Life cycle

	25.4 Searching the Repository
	25.4.1 Searching for a Specific Identity
	25.4.2 Searching for Multiple Identities
	25.4.3 Specifying Search Parameters
	25.4.4 Using Search Filters
	25.4.4.1 Operators in Search Filters
	25.4.4.2 Handling Special Characters when Using Search Filters
	25.4.4.3 Examples of Using Search Filters

	25.4.5 Searching by GUID

	25.5 User Authentication
	25.6 Creating and Modifying Entries in the Identity Store
	25.6.1 Handling Special Characters when Creating Identities
	25.6.2 Creating an Identity
	25.6.3 Modifying an Identity
	25.6.4 Deleting an Identity

	25.7 Examples of User and Role API Usage
	25.7.1 Example 1: Searching for Users
	25.7.2 Example 2: User Management in an Oracle Internet Directory Store
	25.7.3 Example 3: User Management in a Microsoft Active Directory Store

	25.8 SSL Configuration for LDAP-based User and Role API Providers
	25.8.1 Out-of-the-box Support for SSL
	25.8.1.1 System Properties
	25.8.1.2 SSL configuration

	25.8.2 Customizing SSL Support for the User and Role API
	25.8.2.1 SSL configuration

	25.9 The User and Role API Reference
	25.10 Developing Custom User and Role Providers
	25.10.1 SPI Overview
	25.10.2 Types of User and Role Providers
	25.10.3 Developing a Read-Only Provider
	25.10.3.1 SPI Classes Requiring Extension
	25.10.3.2 oracle.security.idm.spi.AbstractIdentityStoreFactory
	25.10.3.3 oracle.security.idm.spi.AbstractIdentityStore
	25.10.3.4 oracle.security.idm.spi.AbstractRoleManager
	25.10.3.5 oracle.security.idm.spi.AbstractUserManager
	25.10.3.6 oracle.security.idm.spi.AbstractRoleProfile
	25.10.3.7 oracle.security.idm.spi.AbstractUserProfile
	25.10.3.8 oracle.security.idm.spi.AbstractSimpleSearchFilter
	25.10.3.9 oracle.security.idm.spi.AbstractComplexSearchFilter
	25.10.3.10 oracle.security.idm.spi.AbstractSearchResponse

	25.10.4 Developing a Full-Featured Provider
	25.10.5 Development Guidelines
	25.10.6 Testing and Verification
	25.10.7 Example: Implementing an Identity Provider
	25.10.7.1 About the Sample Provider
	25.10.7.2 Overview of Implementation
	25.10.7.3 Configure jps-config.xml to use the Sample Identity Provider
	25.10.7.4 Configure Oracle WebLogic Server

	The User and Role SPI Reference
	oracle.security.idm.spi.AbstractUserProfile
	oracle.security.idm.spi.AbstractUserManager
	oracle.security.idm.spi.AbstractUser
	oracle.security.idm.spi.AbstractSubjectParser
	oracle.security.idm.spi.AbstractStoreConfiguration
	oracle.security.idm.spi. AbstractSimpleSearchFilter
	oracle.security.idm.spi.AbstractSearchResponse
	oracle.security.idm.spi.AbstractRoleProfile
	oracle.security.idm.spi.AbstractRoleManager
	oracle.security.idm.spi.AbstractRole
	oracle.security.idm.spi.AbstractIdentityStoreFactory
	oracle.security.idm.spi.AbstractIdentityStore
	oracle.security.idm.spi.AbstractComplexSearchFilter

Part VI Appendices

A OPSS Configuration File Reference

	A.1 Top- and Second-Level Element Hierarchy
	A.2 Lower-Level Elements
	<description>
	<extendedProperty>
	<extendedPropertySet>
	<extendedPropertySetRef>
	<extendedPropertySets>
	<jpsConfig>
	<jpsContext>
	<jpsContexts>
	<name>
	<property>
	<propertySet>
	<propertySetRef>
	<propertySets>
	<serviceInstance>
	<serviceInstanceRef>
	<serviceInstances>
	<serviceProvider>
	<serviceProviders>
	<value>
	<values>

B File-Based Identity and Policy Store Reference

	B.1 Hierarchy of Elements in system-jazn-data.xml
	B.2 Elements and Attributes of system-jazn-data.xml
	<actions>
	<actions-delimiter>
	<app-role>
	<app-roles>
	<application>
	<applications>
	<attribute>
	<class>
	<codesource>
	<credentials>
	<description>
	<display-name>
	<extended-attributes>
	<grant>
	<grantee>
	<guid>
	<jazn-data>
	<jazn-policy>
	<jazn-realm>
	<matcher-class>
	<member>
	<member-resource>
	<member-resources>
	<members>
	<name>
	<owner>
	<owners>
	<permission>
	<permissions>
	<permission-set>
	<permission-sets>
	<policy-store>
	<principal>
	<principals>
	<provider-name>
	<realm>
	<resource>
	<resources>
	<resource-name>
	<resource-type>
	<resource-types>
	<role>
	<role-categories>
	<role-category>
	<role-name-ref>
	<roles>
	<type>
	<type-name-ref>
	<uniquename>
	<url>
	<user>
	<users>
	<value>
	<values>

C Oracle Fusion Middleware Audit Framework Reference

	C.1 Audit Events
	C.1.1 What Components Can be Audited?
	C.1.2 What Events can be Audited?
	C.1.2.1 Oracle Directory Integration Platform Events and their Attributes
	C.1.2.2 Oracle Platform Security Services Events and their Attributes
	C.1.2.3 Oracle HTTP Server Events and their Attributes
	C.1.2.4 Oracle Internet Directory Events and their Attributes
	C.1.2.5 Oracle Identity Federation Events and their Attributes
	C.1.2.6 Oracle Virtual Directory Events and their Attributes
	C.1.2.7 OWSM-Agent Events and their Attributes
	C.1.2.8 OWSM-PM-EJB Events and their Attributes
	C.1.2.9 Reports Server Events and their Attributes
	C.1.2.10 WS-Policy Attachment Events and their Attributes
	C.1.2.11 Oracle Web Cache Events and their Attributes
	C.1.2.12 Oracle Web Services Manager Events and their Attributes

	C.1.3 Event Attribute Descriptions

	C.2 Pre-built Audit Reports
	C.2.1 Common Audit Reports
	C.2.2 Component-Specific Audit Reports

	C.3 The Audit Schema
	C.4 WLST Commands for Auditing
	C.4.1 getNonJava EEAuditMBeanName
	C.4.1.1 Description
	C.4.1.2 Syntax
	C.4.1.3 Example

	C.4.2 getAuditPolicy
	C.4.2.1 Description
	C.4.2.2 Syntax
	C.4.2.3 Example

	C.4.3 setAuditPolicy
	C.4.3.1 Description
	C.4.3.2 Syntax
	C.4.3.3 Example

	C.4.4 getAuditRepository
	C.4.4.1 Description
	C.4.4.2 Syntax
	C.4.4.3 Example

	C.4.5 setAuditRepository
	C.4.5.1 Description
	C.4.5.2 Syntax
	C.4.5.3 Example

	C.4.6 listAuditEvents
	C.4.6.1 Description
	C.4.6.2 Syntax
	C.4.6.3 Example

	C.4.7 exportAuditConfig
	C.4.7.1 Description
	C.4.7.2 Syntax
	C.4.7.3 Example

	C.4.8 importAuditConfig
	C.4.8.1 Description
	C.4.8.2 Syntax
	C.4.8.3 Example

	C.5 Audit Filter Expression Syntax
	C.6 Naming and Logging Format of Audit Files

D User and Role API Reference

	D.1 Mapping User Attributes to LDAP Directories
	D.2 Mapping Role Attributes to LDAP Directories
	D.3 Default Configuration Parameters
	D.4 Secure Connections for Microsoft Active Directory

E Administration with WLST Scripting and MBean Programming

	E.1 Configuring OPSS Service Provider Instances with a WLST Script
	E.2 Configuring OPSS Services with MBeans
	E.2.1 List of Supported OPSS MBeans
	E.2.2 Invoking an OPSS MBean
	E.2.3 Programming with OPSS MBeans

	E.3 Access Restrictions
	E.3.1 Annotation Examples
	E.3.2 Mapping of Logical Roles to WebLogic Roles
	E.3.3 Particular Access Restrictions

F OPSS System and Configuration Properties

	F.1 OPSS System Properties
	F.2 OPSS Configuration Properties
	F.2.1 Policy Store Properties
	F.2.1.1 Policy Store Configuration
	F.2.1.2 Runtime Policy Store Configuration

	F.2.2 Credential Store Properties
	F.2.3 LDAP Identity Store Properties
	F.2.4 Properties Common to All LDAP-Based Instances
	F.2.5 Anonymous and Authenticated Roles Properties

G Upgrading Security Data

	G.1 Upgrading Security Data with upgradeSecurityStore
	G.1.1 Examples of Use
	G.1.1.1 Example 1 - Upgrading Identities
	G.1.1.2 Example 2 - Upgrading to File-Based Policies
	G.1.1.3 Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies
	G.1.1.4 Example 4 - Upgrading File-Based Policies to Use the Resource Catalog

	G.2 Upgrading Policies with upgradeOpss

H References

	H.1 OPSS API References

I OPSS Scripts

	I.1 Policy-Related Scripts
	I.2 Credential-Related Scripts
	I.3 Other Security Scripts
	I.4 Audit Scripts

J Using an OpenLDAP Identity Store

	J.1 Using an OpenLDAP Identity Store

K Adapter Configuration for Identity Virtualization

	K.1 About Split Profiles
	K.2 Configuring a Split Profile
	K.3 Deleting a Join Rule
	K.4 Deleting a Join Adapter
	K.5 Changing Adapter Visibility

L Troubleshooting Security in Oracle Fusion Middleware

	L.1 Diagnosing Security Errors
	L.1.1 Log Files and OPSS Loggers
	L.1.1.1 Diagnostic Log Files
	L.1.1.2 Generic Log Files
	L.1.1.3 Authorization Loggers
	L.1.1.4 Other OPSS Loggers
	L.1.1.5 Audit Loggers
	L.1.1.6 Managing Loggers with Fusion Middleware Control

	L.1.2 System Properties
	L.1.2.1 jps.auth.debug
	L.1.2.2 jps.auth.debug.verbose
	L.1.2.3 Debugging the Authorization Process

	L.1.3 Solving Security Errors
	L.1.3.1 Understanding Sample Log Entries
	L.1.3.2 Searching Logs with Fusion Middleware Control
	L.1.3.3 Identifying a Message Context with Fusion Middleware Control
	L.1.3.4 Generating Error Listing Files with Fusion Middleware Control

	L.2 Reassociation Failure
	L.2.1 Missing Policies in Reassociated Policy Store
	L.2.2 Unsupported Schema

	L.3 Server Fails to Start
	L.3.1 Missing Required LDAP Authenticator
	L.3.2 Missing Administrator Account
	L.3.3 Missing Permission
	L.3.4 Other Causes

	L.4 Failure to Grant or Revoke Permissions - Case Mismatch
	L.5 Failure to Connect to an LDAP Server
	L.6 Failure to Connect to the Embedded LDAP Authenticator
	L.7 User and Role API Failure
	L.8 Failure to Access Data in the Credential Store
	L.9 Failure to Establish an Anonymous SSL Connection
	L.10 Authorization Check Failure
	L.11 User Gets Unexpected Permissions
	L.12 Security Access Control Exception
	L.13 Permission Check Failure
	L.14 Policy Migration Failure
	L.15 Characters in Policies
	L.15.1 Use of Special Characters in Oracle Internet Directory 10.1.4.3
	L.15.2 XML Policy Store that Contains Certain Characters
	L.15.3 Characters in Application Role Names
	L.15.4 Missing Newline Characters in XML Policy Store

	L.16 Granting Permissions in Java SE Applications
	L.17 Troubleshooting Oracle Business Intelligence Reporting
	L.17.1 Audit Templates for Oracle Business Intelligence Publisher
	L.17.2 Oracle Business Intelligence Publisher Time Zone

	L.18 Search Failure when Matching Attribute in Policy Store
	L.19 Search Failure with an Unknown Host Exception
	L.20 Incompatible Versions of Binaries and Policy Store
	L.21 Need Further Help?

Index

Surrounding text describes this screen.

The following text describes this figure.

Surrounding text describes this graphic.

This diagram is described in following text.

Surrounding text describes this graphic.

Surrounding text describes this graphic.

Surrounding text describes this graphic.

Surrounding text describes this graphic.

Surrounding text describes this graphic.

Oracle BI Publisher page

Surrounding text describes this graphic.

Audit event flow

Audit store configuration

Surrounding text describes this graphic.

Surrounding text describes this graphic.

Surrounding text describes this graphic.

17 Configuring Single Sign-On using OracleAS SSO 10g

The chapter describes how to implement SSO using OracleAS SSO (OSSO) 10g. It includes the following major sections:

	
Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

	
Synchronizing the User and SSO Sessions: SSO Synchronization Filter

	
Troubleshooting for an OSSO Identity Asserter Deployment

17.1 Deploying the OracleAS 10g Single Sign-On (OSSO) Solution

The OracleAS Single Sign-On solution provides single sign-on access to Web Applications. Oracle Internet Directory is the LDAP-based repository.

This solution is intended for applications that have been deployed on Oracle WebLogic Server but do not yet have single sign-on implemented. Requirements and steps to configure the OSSO solution are explained in "New Users of the OSSO Identity Asserter".

	
Note:

Oracle recommends using Oracle Access Manager 11g, as described in "Introduction to Oracle Access Manager 11g SSO".

Applications that are already using the OracleAS Single Sign-On solution with the JPS login module and dynamically re-directing requests to OSSO are unaffected by the new OSSO solution. In this case, there is no need to configure the new OSSO Authentication Provider described in this section.

This section is divided as follows:

	
Using the OSSO Identity Asserter

	
New Users of the OSSO Identity Asserter

	
Troubleshooting for an OSSO Identity Asserter Deployment

17.1.1 Using the OSSO Identity Asserter

This section describes the expected behavior when you implement the OracleAS Single Sign-On Identity Asserter. This section is divided as follows:

	
Oracle WebLogic Security Framework

	
OSSO Identity Asserter Processing

	
Consumption of Headers with OSSO Identity Asserter

17.1.1.1 Oracle WebLogic Security Framework

Figure 17-1 illustrates the location of components in the Oracle WebLogic Security Framework, including the OSSO Identity Asserter. Additional details follow.

Figure 17-1 Location of OSSO Components in the Oracle WebLogic Security Framework

[image: SSO Components in WLS Security Framework]

At the top of the figure, Oracle HTTP Server is installed. This installation includes mod_weblogic and mod_osso, which are required to pass the identity token to the Providers and Oracle WebLogic Server. The Oracle WebLogic Server includes the partner application and the Identity Asserter (also known as the Identity Assertion Provider). The 10g OracleAS Single Sign-On server (OSSO Server), on the right side of the figure, communicates directly with the directory server and Oracle HTTP Server.

	
Note:

For simplicity in text, this chapter uses the generic name of the WebLogic Server plug-in for Apache: mod_weblogic. For Oracle HTTP Server, the name of this plug-in differs from release 10g to 11g:
	
Oracle HTTP Server 10g: mod_wl (actual binary name is mod_wl_20.so)

	
Oracle HTTP Server 11g: mod_wl_ohs (actual binary name is mod_wl_ohs.so)

17.1.1.2 OSSO Identity Asserter Processing

Figure 17-2 illustrates the processing that occurs when you have OSSO implemented with the Identity Asserter. Additional details follow the figure.

Figure 17-2 OSSO Identity Asserter Processing

[image: Processing for OSSO with the Identity Asserter]

The first time a request for a protected resource arrives at the mid-tier Web server, the request is redirected to the 10g OracleAS Single Sign-On server, which requires user credentials For a certificate-based authentication, no login page is displayed. After the user has been successfully authenticated, all further requests from that user require only that the user identity be asserted by the OSSO Identity Asserter before the population of a JAAS Subject takes place. The Subject is consumed by the downstream applications.

For example, suppose you have an application residing on an Oracle WebLogic Server that is front-ended with the Oracle HTTP Server. The application is protected using resource mappings in the mod_osso configuration. This case is described in the following process overview.

Process overview: OSSO Identity Asserter

	
The user requests a protected application.

	
The Oracle HTTP Server intercepts the request and processes it using mod_osso to check for an existing, valid Oracle HTTP Server cookie.

	
If there is no valid Oracle HTTP Server cookie, mod_osso redirects to the OracleAS SSO Server, which contacts the directory during authentication.

	
After successful authentication mod_osso decrypts the encrypted user identity populated by the OSSO server and sets the headers with user attributes.

	
mod_weblogic completes further processing and redirects the request to the Oracle WebLogic Server.

	
The WebLogic security layer invokes providers depending on their settings and the order specified. For example: the security layer invokes the:

	
Identity Asserter, which makes the identity assertion based on retrieved tokens

	
Oracle Internet Directory Authenticator (OID Authenticator), which populates the Subject with necessary Principals

	
See Also:

"Consumption of Headers with OSSO Identity Asserter"

	
A response is sent to the user through the Oracle HTTP Server, and access to the application is granted.

17.1.1.3 Consumption of Headers with OSSO Identity Asserter

This topic describes the headers sent by Oracle HTTP Server and the tokens set in the header and the headers consumed by the OSSO Identity Asserter. If the application needs to use the JAAS subject, configure OSSO Identity Asserter.

Table 17-1 provides the list of headers set by Oracle HTTP Server (mod_osso and mod_weblogic). An application whose logic consumes the JAAS subject for identifying user information, should be configured to use the OSSO Identity Asserter. which uses the OracleAS SSO token type set in bold in the table (Proxy-Remote-User). The OSSO Identity Asserter looks for the Proxy-Remote-User header and asserts the user's identity. The follow up OID Authenticator populates the JAAS subject.

Table 17-1 Headers Sent by Oracle HTTP Server

	Attribute	Sample Value	Description
	
Cookie

	
OHS-Stads42.us.oracle.com:7777=.......

	
Cookies

	
Osso-User-Guid

	
4F4E3D2BF4BFE250E040548CE9816D7E

	
GUID of the authenticated user

	
Osso-User-Dn

	
cn=orcladmin,cn=users, dc=us,dc=oracle,dc=com

	
DN of the authenticated user

	
Osso-Subscriber

	
DEFAULT COMPANY

	
Subscriber name

	
Osso-Subscriber-Dn

	
dc=us,dc=oracle,dc=com

	
Base DN of the subscriber

	
Osso-Subscriber-Guid

	
4F4E3D2BF410E250E040548CE9816D7E

	
GUID of the subscriber

	
Proxy-Remote-User

	
ORCLADMIN

	
The authenticated user

	
Proxy-Auth-Type

	
Basic SSO

	
Authentication type

Applications that do not require the JAAS subject for identifying user information, can read the headers directly using the request.getHeader() API. Such applications are free to read any header they need. Headers with user info are Osso-User-Dn, Osso-User-Guid, and Proxy-Remote-User.

17.1.2 New Users of the OSSO Identity Asserter

The new OracleAS Single Sign-On solution includes the OSSO Identity Asserter, one of the two new Authentication Providers for the Oracle WebLogic Server.

To have your application use the OSSO solution, you need the components described in the following task.

	
Note:

If you already have components installed and set up, you do not need more. You can skip any steps that do not apply to your deployment.

Task overview: Deploying and configuring the OSSO Identity Asserter

	
Install the following components:

	
OracleAS Single Sign-On Server 10g (10g OSSO server

	
See Also:

Oracle Application Server Installation Guide on Oracle Technology Network at: http://www.oracle.com/technology/documentation/oim1014.html

	
An Oracle Internet Directory repository configured to be used by the 10g OSSO server. Ensure that the directory server is tuned for your deployment.

	
See Also:

The following manuals for Release 11g (11.1.1.1.0)
	
Oracle Fusion Middleware Installation Guide for Oracle Identity Management

	
Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

	
One of the following Web servers (based on Apache 2):

	
Oracle HTTP Server 11g as a front end to the Oracle WebLogic Server. This installation includes mod_osso and mod_weblogic.

	
OHS 10g, available in the companion CD release Oracle HTTP Server 10.1.3. This includes mod_osso. However, mod_weblogic must be added.

	
See Also:

The following manuals for Release 11g (11.1.1.1.0)
	
Oracle Fusion Middleware Installation Guide for Web Tier

	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

	
Oracle WebLogic Server 10.3.1+

	
See Also:

Oracle Fusion Middleware Getting Started With Installation for Oracle WebLogic Server

	
An Oracle Fusion Middleware product such as Oracle Identity Management, Oracle SOA Suite, or Oracle WebCenter is required; it includes the provider required for OSSO by Oracle WebLogic Server in the following path:

ORACLE_INSTANCE/modules/oracle.ossoiap_11.1.1/ossoiap.jar

	
See Also:

	
Oracle Fusion Middleware Installation Guide for Oracle Identity Management

	
Oracle Fusion Middleware Installation Guide for Oracle SOA Suite

	
Oracle Fusion Middleware Installation Guide for Oracle WebCenter

	
Configure mod_weblogic so that it forwards requests to Oracle WebLogic Server, as explained in section "Configuring mod_weblogic".

	
Register the module mod_osso with the 10g SSO Server as a partner application, as described in "Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4".

	
Configure mod_osso, as described in "Configuring mod_osso to Protect Web Resources".

	
Add the OSSO Identity Asserter to the appropriate domain, as explained in section "Adding Providers to a WebLogic Domain for OSSO".

	
Configure a connection filter, as explained in section "Establishing Trust Between Oracle WebLogic Server and Other Entities".

	
Configure the use of the solution by the application, as explained in section "Configuring the Application for the OSSO Identity Asserter".

	
Identify and resolve issues with your OSSO Identity Asserter implementation, see "Troubleshooting for an OSSO Identity Asserter Deployment".

17.1.2.1 Configuring mod_weblogic

You can either edit the Oracle HTTP Server httpd.conf file directly or add mod_weblogic configuration in a separate file and include that file in httpd.conf.

The following procedure includes steps for two different Web server releases. Perform steps as needed for your deployment:

	
OHS 11g ships with mod_wl_ohs.so. In this case, skip Step 1.

	
OHS 10g does not ship with mod_weblogic (mod_wl_.so). If Oracle HTTP Server 10g is installed, start with Step 1 to copy mod_wl_20.so before configuration.

	
Note:

For Oracle HTTP Server, the name of this plug-in differs from release 10g to 11g:
	
Oracle HTTP Server 10g: mod_wl (actual binary name is mod_wl_20.so)

	
Oracle HTTP Server 11g: mod_wl_ohs (actual binary name is mod_wl_ohs.so)

To install and configure mod_weblogic

	
Oracle HTTP Server 10.1.3: Copy mod_wl_20.so to the Oracle HTTP Server modules directory: For example:

From: WL_HOME/wlserver_10.0/server/plugin/linux/i686

To: ORACLE_HOME/ohs/modules

	
Locate the Oracle HTTP Server httpd.conf file. For example:

Oracle HTTP Server 10.1.3:

ORACLE_HOME/ohs/conf/httpd.conf

Oracle HTTP Server 11g:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

	
Verify that mod_weblogic configuration is in httpd.conf, either by inclusion of the appropriate configuration file or the configuration itself directly. For example, for Oracle HTTP Server 10g:

LoadModule weblogic_module ${ORACLE_HOME}/ohs/modules/mod_wl_20.so
<IfModule mod_weblogic.c>
 WebLogicHost yourHost.yourDomain.com
 WebLogicPort yourWlsPortNumber
</IfModule>

<Location /request-uri-pattern>
 SetHandler weblogic-handler
</Location>

17.1.2.2 Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4

The mod_osso module is an Oracle HTTP Server module that provides authentication to OracleAS applications. This module resides on the Oracle HTTP Server that enables applications protected by OracleAS Single Sign-On to accept HTTP headers in lieu of a user name and password once the user has logged into the OracleAS Single Sign-On server. The values for these headers are stored in a mod_osso cookie.

The mod_osso module enables single sign-on for Oracle HTTP Server by examining incoming requests and determining whether the requested resource is protected. If it is, then it retrieves the Oracle HTTP Server cookie.

Under certain circumstances, you must register Oracle HTTP Server mod_osso using the 10.1.4 Oracle Identity Manager single sign-on registration tool (ssoreg.sh or ssoreg.bat). Table 17-2 provides a summary of parameters and values for this purpose. Running the tool updates the mod_osso registration record in osso.conf. The tool generates this file whenever it runs.

Table 17-2 ssoreg Parameters to Register Oracle HTTP Server mod_osso

	Parameter	Description
	
-oracle_home_path

	
Path to the 10.1.4 SSO Oracle_Home

	
-site_name

	
Any site name to be covered

	
-config_mod_osso

	
TRUE. If set to TRUE, this parameter indicates that the application being registered is mod_osso. You must include config_mod_osso for osso.conf to be generated.

	
-mod_osso_url

	
URL for front-ending Oracle HTTP Server Host:port. This is the URL that is used to access the partner application. The value should be specified in the URL format:http://oracle_http_host.domain:port

	
-update_mode

	
Optional. CREATE, the default, generates a new record.

	
-remote_midtier

	
Specifies that the mod_osso partner application to be registered is at a remote mid-tier. Use this option only when the mod_osso partner application to be configured is at a different ORACLE_HOME, and the OracleAS Single Sign-On server runs locally at the current ORACLE_HOME.

	
-config_file

	
Path where osso.conf is to be generated

	
[-admin_info

	
Optional. User name of the mod_osso administrator. If you omit this parameter, the Administer Information field on the Edit Partner Application page is left blank.

	
admin_id

	
Optional. Any additional information, such as email address, about the administrator. If you omit this parameter, the Administrator E-mail field on the Edit Partner Application page is left blank.

	
<VirtualHost ...>

	
Host name. Optional. Include this parameter only if you are registering an Oracle HTTP virtual host with the single sign-on server. Omit the parameter if you are not registering a virtual host.

If you are creating an HTTP virtual host, use the httpd.conf file to fill in the directive for each protected URL.

	
See Also:

The following books on Oracle Technology Network at: http://www.oracle.com/technology/documentation/oim1014.html
	
Oracle Application Server Single Sign-On Administrator's Guide 10g (10.1.4.0.1) Part Number B15988-01

	
Oracle Identity Management Application Developer's Guide 10g (10.1.4.0.1) Part Number B15997-01

The following procedure includes a sample command to register mod_osso. Values for your environment will be different.

To register mod_osso

	
Go to the following 10.1.4 Oracle Identity Manager directory path:

ORACLE_HOME/sso/bin/ssoreg

	
Run ssoreg with the following parameters and values for your environment. For example, on Unix, this might look like:

./ssoreg.sh -oracle_home_path \OraHome -site_name wls_server
-config_mod_osso TRUE -mod_osso_url http://oracle_http_host.domain:7788
-update_mode CREATE -remote_midtier -config_file \tmp\osso.conf

	
Verify that the module mod_osso of the required Oracle HTTP Server is registered.

	
Proceed to "Configuring mod_osso to Protect Web Resources".

17.1.2.3 Configuring mod_osso to Protect Web Resources

mod_osso redirects the user to the single sign-on server only if the URL you request is configured to be protected. You can secure URLs in one of two ways: statically or dynamically. Static directives simply protect the application, ceding control over user interaction to mod_osso. Dynamic directives not only protect the application, they also enable it to regulate user access.

For more information, see:

	
Configuring mod_osso with Static Directives

	
Protecting URLs and Logout Dynamically (without mod_osso)

17.1.2.3.1 Configuring mod_osso with Static Directives

You can statically protect URLs with mod_osso by applying directives to the mod_osso.conf file. You must configure mod_osso to ensure that requests are intercepted properly. In addition, you specify the location of protected URIs, time out interval, and the authentication method. Oracle recommends that you place in the httpd.conf file the include statement for mod_osso.conf before the one wherein the weblogic_module statement is loaded.

The following procedure describes how to configure mod_osso by editing the mod_osso.conf file. This procedure provides details for two different releases. Ensure that you follow instructions for your OHS deployment:

	
Oracle HTTP Server 11g: Requires Step 2 and AuthType Osso in Step 4. The path name in Step 5 differs for Oracle HTTP Server 11g.

	
Oracle HTTP Server 10g: Requires Step 3 and AuthType Basic in Step 4. The path name in Step 5 differs for Oracle HTTP Server 10g.

To configure mod_osso to protect Web resources

	
Copy osso.conf from the location where it was generated to the following location:

From: /tmp/osso.conf

To:

ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

	
Oracle HTTP Server 11g: Copy mod_osso.conf from the disabled directory to the moduleconf directory for editing. For example:

From:

ORACLE_INSTANCE/config/OHS/<ohs_name>/disabled/mod_osso.conf

To:

ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

	
Oracle HTTP Server 10g: Locate mod_osso.conf for editing. For example:

ORACLE_HOME/ohs/conf/mod_osso.conf

	
Edit mod_osso.conf to add the following information using values for your deployment. For example, using Oracle HTTP Server as an example (paths are different for 10g):

LoadModule osso_module ${ORACLE_HOME}/ohs/modules/mod_osso.so
<IfModule mod_osso.c>

OssoIdleTimeout off
OssoIpCheck on
OssoConfigFile ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

#Location is the URI you want to protect
<Location />
require valid-user
#OHS 11g AuthType Osso
#OHS 10g AuthType Basic
AuthType Osso

</Location>

</IfModule>

	
Locate the httpd.conf file for editing. For example:

Oracle HTTP Server 10.1.3:

ORACLE_HOME/ohs/config/httpd.conf

Oracle HTTP Server 11g:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

	
In the httpd.conf, confirm that the mod_osso.conf file path for your environment is included. For example:

include /ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

	
Restart the Oracle HTTP Server.

	
Tip:

If the interception of requests is not working properly, consider placing the include statement for mod_osso.conf before the LoadModule weblogic_module statement in the httpd.conf.

	
Proceed to "Adding Providers to a WebLogic Domain for OSSO".

17.1.2.3.2 Protecting URLs and Logout Dynamically (without mod_osso)

Applications that use dynamic directives require no entry in mod_osso.conf because mod_osso protection is written directly into the application as one or more dynamic directives.

Dynamic directives are HTTP response headers that have special error codes that enable an application to request granular functionality from the single sign-on system without having to implement the intricacies of the single sign-on protocol. Upon receiving a directive as part of a simple HTTP response from the application, mod_osso creates the appropriate single sign-on protocol message and communicates it to the single sign-on server.

OracleAS supports dynamic directives for Java servlets and JSPs. The product does not currently support dynamic directives for PL/SQL applications. The JSPs that follow show how such directives are incorporated. Like their "static" counterparts, these sample "dynamic" applications generate user information:

	
Example 17-1, "SSO Authentication with Dynamic Directives"

	
Example 17-2, "SSO Logout with Dynamic Directives"

	
Note:

After adding dynamic directives, be sure to restart the Oracle HTTP Server, and the proceed to "Adding Providers to a WebLogic Domain for OSSO".

Example 17-1 SSO Authentication with Dynamic Directives

The home.jsp includes ssodynauth.jsp that uses the request.getUserPrincipal().getName() method to check the user in the session. If the user is absent, it issues dynamic directive 499, a request for simple authentication. The key lines are in boldface.

//home.jsp

<%@ include file="ssodynauth.jsp" %>
<%
//page content goes here
%>

//ssodynauth.jsp

<%
response.setHeader("Cache-Control", "no-cache");
response.setHeader("Pragma", "no-cache");
response.setHeader("Expires", "0");
%>
<%
// Check for user
String ssoUser = null;
try
(
//ssoUser = request.getRemoteUser();
ssoUser = request.getUserPrincipal().getName();
ssoUser = ssoUser.trim();
 }
catch(Exception e)
{
ssoUser = null;
 }

// If user is not authenticated then generate
// dynamic directive for authentication
if((ssoUser == null) || (ssoUser.length() < 1))
{
response.sendError(499, "Oracle SSO");
return;
}%>

	
See Also:

Oracle Identity Management Application Developer's Guide 10g (10.1.4.0.1) Part Number B15997-01 on Oracle Technology network at: http://www.oracle.com/technology/software/products/ias/htdocs/101401.html

Example 17-2 SSO Logout with Dynamic Directives

To achieve global logout (also known as single log-out), applications are expected to first invalidate sessions and then make a call to OSSO logout. The logout.jsp issues dynamic directive 470, a request for OSSO logout. The osso-return-logout is set by the application to specify the return URL after logout.

The key lines for SSO logout with dynamic directives appear in boldface in the following example. In 11g, the SSOFilter handles session synchronization.

//logout.jsp
<%@page session="false"%>
<%
 response.setHeader("Osso-Return-Url", "http://my.oracle.com/");
 HttpSession session = null;
 session = request.getSession();
 if (null != session)
 {
 // necessary for achieving SLO
 session.invalidate();
 }
 response.sendError(470, "Oracle SSO");
%>

	
See Also:

	
"Synchronizing the User and SSO Sessions: SSO Synchronization Filter"

	
Oracle Identity Management Application Developer's Guide 10g (10.1.4.0.1) Part Number B15997-01 on Oracle Technology Network at: http://www.oracle.com/technology/software/products/ias/htdocs/101401.html

	
Note:

After adding dynamic directives, be sure to restart the Oracle HTTP Server, and the proceed to "Adding Providers to a WebLogic Domain for OSSO".

17.1.2.4 Adding Providers to a WebLogic Domain for OSSO

You must add the OSSO Identity Asserter to a WebLogic domain. In addition to the OSSO Identity Asserter, Oracle recommends the following Authentication Providers:

	
OSSO Identity Asserter

	
DefaultAuthenticator

	
OID Authenticator

	
See Also:

"About Oracle WebLogic Server Authentication and Identity Assertion Providers"

You can add providers using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.

	
See Also:

	
"About Oracle WebLogic Server Authentication and Identity Assertion Providers"

	
Oracle Fusion Middleware Oracle WebLogic Scripting Tool

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

The following procedure illustrates adding Authentication Providers using the Oracle WebLogic Administration Console. Before you begin, there is a condition to pay attention to:

Step 10: If your application requires the user in the same case as in Oracle Internet Directory (uppercase, lowercase, initial capitals), check Use Retrieved User Name as Principal. Otherwise, leave it unchecked.

To add providers to your WebLogic domain for OSSO Identity Assertion

	
Log in to the WebLogic Administration Console.

	
OSSO Identity Asserter: Perform the following steps to add this to the domain:

	
Click Security Realms, Default Realm Name, Providers.

	
Select New under the Authentication Providers table.

	
Enter a name for the new provider, select its type, and then click OK. For example:

Name: OSSO Identity Asserter

Type: OSSOIdentityAsserter

Ok

	
Click the name of the newly added provider.

	
On the Common tab, set the appropriate values for common parameters and set the Control Flag to SUFFICIENT and then save the settings.

	
Default Authentication Provider:

	
Click Security Realms, Default Realm Name, Providers.

	
Click Default Authentication Provider.

	
Set the control flag to OPTIONAL, and click Save

	
OID Authenticator: Perform the following steps to add this provider.

	
Click Security Realms, Default Realm Name, Providers.

	
Click New, and enter a name and type:.

Name. OID Authenticator

Type: OracleInternetDirectoryAuthenticator

Click Save.

	
Click the newly added authenticator to see the Settings page. Retain the default settings; do not change the Control Flag until you have verified that the Oracle Internet Directory configuration is valid.

	
Note:

If OID Authenticator is the only provider, ensure the WebLogic Server user account and its granted group memberships are created in Oracle Internet Directory. Otherwise the WebLogic domain does not start properly.

	
Click the Provider Specific tab and specify the following required settings:

Propagate Cause For Login Exception: Check

Principal: LDAP administrative user. For example: cn=orcladmin

Host: The Oracle Internet Directory hostname

Use Retrieved User Name as Principal: Check

Credential: LDAP administrative user password. For example: password

Confirm Credential: For example: password

Group Base DN: Oracle Internet Directory group search base

User Base DN: Oracle Internet Directory user search base.

Port: Oracle Internet Directory port

	
Reorder Providers: The order in which providers populate a subject with principals is significant and you might want to reorder the list of all providers in your realm and bring the newly added provider to the top of the list.

	
Save all configuration settings.

	
Stop and restart the Oracle WebLogic Server for the changes to take effect.

	
Log in to the WebLogic Administration Console:

	
Click Security Realms, Default Realm Name, Providers.

	
Select the Users and Groups tab to see a list of users and groups contained in the configured Authentication Providers.

You should see usernames from the Oracle Internet Directory configuration, which implicitly verifies that the configuration is working.

--If the Oracle Internet Directory instance is configured successfully, you can change the Control Flag.

--If the Oracle Internet Directory authentication is sufficient for an application to identify the user, then choose the SUFFICIENT flag. SUFFICIENT means that if a user can be authenticated against Oracle Internet Directory, no further authentication is processed. REQUIRED means that the Authentication Provider must succeed even if another provider already authenticated the user.

	
Application Requires User in Same Case as in Oracle Internet Directory: Check Use Retrieved User Name as Principal. Otherwise, leave it unchecked.

	
Save the changes.

	
Activate the changes and restart Oracle WebLogic Server.

	
Proceed with "Establishing Trust Between Oracle WebLogic Server and Other Entities".

17.1.2.5 Establishing Trust Between Oracle WebLogic Server and Other Entities

The Oracle WebLogic Connection Filtering mechanism must be configured for creating access control lists and for accepting requests from only the hosts where Oracle HTTP Server and the front-end Web server are running.

	
Note:

This topic is the same whether you are using OSSO or Oracle Access Manager. In the WebLogic Administration Console.

A network connection filter is a component that controls the access to network level resources. It can be used to protect resources of individual servers, server clusters, or an entire internal network. For example, a filter can deny non-SSL connections originating outside of a corporate network. A network connection filter functions like a firewall since it can be configured to filter protocols, IP addresses, or DNS node names. It is typically used to establish trust between Oracle WebLogic Server and foreign entities.

Connection Filter Rules: The format of filter rules differ depending on whether you are using a filter file to enter the filter rules or you enter the filter rules in the Administration Console. When entering the filter rules on the Administration Console, enter them in the following format:

targetAddress localAddress localPort action protocols

	
See Also:

"Configuring Security in a WebLogic Domain" in Oracle Fusion Middleware Securing Oracle WebLogic Server

Table 17-3 provides a description of each parameter in a connection filter.

Table 17-3 Connection Filter Rules

	Parameter	Description
	
target

	
Specifies one or more systems to filter

	
localAddress

	
Defines the host address of the WebLogic Server instance. (If you specify an asterisk (*), the match returns all local IP addresses.)

	
localPort

	
Defines the port on which the WebLogic Server instance is listening. (If you specify an asterisk, the match returns all available ports on the server.)

	
action

	
Specifies the action to perform. This value must be allow or deny.

	
protocols

	
Is the list of protocol names to match. The following protocols may be specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is defined, all protocols match a rule.

The Connection Logger Enabled attribute logs successful connections and connection data in the server. This information can be used to debug problems relating to server connections.

To configure a connection filter to allow requests from the host of the 11g Oracle HTTP Server

	
Log in to the Oracle WebLogic Administration Console.

	
Click Domain under Domain Configurations.

	
Click the Security tab, click the Filter tab.

	
Click the Connection Logger Enabled attribute to enable the logging of accepted messages for use when debugging problems relating to server connections.

	
Specify the connection filter to be used in the domain:

	
Default Connection Filter: In the Connection Filter attribute field, specify weblogic.security.net.ConnectionFilterImpl.

	
Custom Connection Filter: In the Connection Filter attribute field, specify the class that implements the network connection filter, which should also be specified in the CLASSPATH for Oracle WebLogic Server.

	
Enter the appropriate syntax for the connection filter rules.

	
Click Save.

	
Restart the Oracle WebLogic Server.

	
Proceed to "Configuring the Application for the OSSO Identity Asserter".

17.1.2.6 Configuring the Application for the OSSO Identity Asserter

This topic describes how to create the application authentication method for the OSSO Identity Asserter.

	
See Also:

Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server

Oracle WebLogic Server supports adding multiple auth-methods. If you are setting up an OSSO Identity Asserter in the WebLogic Application Console, the Web application using the OSSO Identity Asserter must have its auth-method set to CLIENT-CERT.

After deploying the application on the Oracle WebLogic Server, all web.xml files in the application EAR file must include CLIENT-CERT in the element auth-method for the appropriate realm, as described in the following procedure.

To edit web.xml for the OSSO Identity Asserter

	
Locate the web.xml file in the application EAR file. For example:

WEB-INF/web.xml

	
Locate the auth-method for the appropriate realm and enter CLIENT-CERT. For example:

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>myRealm</realm-name>
</login-config>

	
Save the file.

	
Redeploy and restart the application.

	
Repeat for each web.xml file in the application EAR file.

17.2 Synchronizing the User and SSO Sessions: SSO Synchronization Filter

In Fusion Middleware 11g, a new component that synchronizes the container user session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic system filter implementation that intercepts all requests to the container, acts on protected resource requests, and attempts to synchronize the container's user session with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the Oracle Access Manager SSO session cookie (ObSSOCookie).

SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter based on Java Servlet Specification version 2.3. SSO sync filter relieves applications from tracking the SSO user session and synchronizing it with their respective sessions. Instead, applications would only need to synchronize with container's user session.

SSO Sync Filter intercepts each request to the container and determines whether to act on it based on certain HTTP headers that are attached to the request. Filter expects SSO agent to have set those headers in the Web Tier. When access is made to unprotected areas of the application, the filter acts as a pass through. Once a protected resource is accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO system such as Oracle Access Manager. After the authentication, Oracle Access Manager Identity Asserter helps establish a user identity in form of JAAS Subject to the container and a user session is created. WebLogic maintains the user session data as part of HTTP Session Cookie (JSESSIONID).

Subsequent access to the application resources provides two pieces of information to the SSO Sync Filter:

	
User identifying header in OSSO (Proxy-Remote-User)

	
User data in the Oracle Access Manager SSO session cookie (ObSSOCookie)

The job of SSO Sync Filter is to make sure that the user identity in the container matches with that of the SSO session. If there is a mismatch, filter invalidates the container's user session. As a result, the downstream application would only have to track container user session and react in a consistent fashion regardless of SSO environment in use.

Notes:

	
Enabled and Active by Default: SSO Sync Filter fetches the user information from the configured tokens, gets the user from existing session (if any), invalidates the session and redirects to the requested URL in case the CurrentSessionUser does not match the incoming SSO User. Otherwise, the request is simply passed through.

If you have not configured the OSSO or Oracle Access Manager Assertion Providers in your domain, the filter disables automatically during WebLogic Server start-up.

	
Active for All URI's by Default (/*): No changes are required in the application code.

	
Configured for the OSSO Tokens/Header: Proxy-Remote-User, and performs a case insensitive match.

	
Configured for the Oracle Access Manager SSO Tokens/Header: OAM_REMOTE_USER and REMOTE_USER, and does a case insensitive match.

	
Global Logout: SSO Sync Filter is intended to provide the Single Logout Experience to the Oracle Fusion Middleware applications that use the OSSO or Oracle Access Manager Solutions. Is handled similarly to single sign-on. After global logout is performed, SSO filter reconciles the session when subsequent access to an application that has not cleaned up its session is made.

Any application that use the OSSO or Oracle Access Manager Solutions is expected to invalidate its session before making a call to OSSO logout or Oracle Access Manager logout. For more information on OSSO logout, see "SSO Logout with Dynamic Directives". For details about Oracle Access Manager logout, see "Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates".

	
Application Session Time Out: SSO cookies typically track user inactivity/idle times and force users to login when a time out occurs. OSSO and Oracle Access Manager are no exception. Oracle Access Manager takes a sophisticated approach at this and specifically tracks Maximum Idle Session Time and Longest Idle Session Time along with SSO session creation time and time when it was last refreshed.

The general recommendation for applications that are maintaining their own sessions when integrating with SSO systems is to configure their session time outs close to that of SSO session time outs so as to make user experience remains consistent across SSO and application session time outs.

You can alter the behavior of the SSO Sync Filter for application requirements by passing various over-riding system properties to WebLogic. To do this, you change the Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in setDomainEnv.sh. The properties and Sync behavior is shown in Table 17-4.

Table 17-4 SSO Sync Filter Properties and Sync Behavior

	Area	Overriding System Property	Default value of System property	Default Behavior of the Sync Filter
	
Status (Active or Inactive)

	
sso.filter.enable

	
Not configured

	
Enabled

	
Case sensitive matches

	
sso.filter.name.exact.match

	
Not configured

	
Case Ignore Match

	
Configured Tokens

	
sso.filter.ssotoken

	
Not configured

	
	
OSSO: Look for Proxy-Remote-User

	
Oracle Access Manager: Look for OAM_REMOTE_USER and REMOTE_USER.

OAM_REMOTE_USER takes precedence.

	
URI Mappings

	
Not Applicable

	
Not Applicable

	
/*

You cannot enable the filter for selected applications. The SSO Sync Filter is a system filter. As such, it is activated for all deployed applications (the URI mapping is /*).

	
Note:

You cannot enable the filter for selected applications.

The following procedure gives some tips about modifying the SSO Sync filter properties and behavior.

To modify the SSO Sync Filter properties and behavior

	
Disable the Filter: Change the system property "sso.filter.enable" to "false" (pass as -D to the jvm) and restart the Oracle WebLogic Server. This toggles the filter status.

	
User-Identifying Header Differs from Pre-Configured Sync Filter Tokens: Over-ride the SSO token that the Sync Filter looks for using the system property "sso.filter.ssotoken".

For example, pass to the WebLogic Server jvm in the WebLogic Server startup script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.

When you contact Oracle Support you might be requested to set up debugging, as described in "Setting Up Debugging in the WebLogic Administration Console".

17.3 Troubleshooting for an OSSO Identity Asserter Deployment

The troubleshooting items described in this section are grouped into the following categories:

	
SSO-Related Problems

	
OSSO Identity Asserter-Related Problems

	
URL Rewriting and JSESSIONID

	
About mod_osso, OSSO Cookies, and Directives

	
About Using IPv6

	
See Also:

	
"Setting Up Debugging in the WebLogic Administration Console"

	
Oracle Application Server Single Sign-On Administrator's Guide for 10g, Troubleshooting, on the Oracle Technology Network at: http://www.oracle.com/technology/documentation/oim1014.html

17.3.1 SSO-Related Problems

This section addresses the following troubleshooting items:

	
OHS Is Not Redirecting to SSO - Internal Server Error 500

	
Is Attribute AuthName Required?

	
URL Request not Redirected to SSO

	
Error 404 - Not Found is Issued (OHS Side)

	
Error 404 - Not Found is Issued (Oracle WebLogic Server Side)

	
Oracle SSO Failure - Unable to process request

	
OSSO Solution for Applications Deployed on a Stand-alone WebLogic Server

OHS Is Not Redirecting to SSO - Internal Server Error 500

The most likely source of this problem is an incorrect configuration.

The following sample uses Oracle HTTP Server 11g. Path names are different if you have Oracle HTTP Server 10g.

To address it, proceed as follows:

	
Open the file mod_osso.conf and ensure that the resource is protected. For example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

<Location /protected-resource-uri>
require valid-user
AuthType Basic
</Location>

	
Ensure that osso.conf is present and included in mod_osso.conf. For example, using Oracle HTTP Server 11g (paths are different for 10g)

OssoConfigFile ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

	
Note:

There is no set location for osso.conf. The value is determined at registration time; it can be any absolute path.

	
Ensure that httpd.conf includes mod_osso.conf. For example, using Oracle HTTP Server 11g (paths are different for 10g):

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

include /ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

	
If all of the above were correctly specified, the SSO registration did not complete successfully and you must re-register SSO.

To register SSO, proceed as follows using the appropriate ssoreg tool for your platform. For example:

	
Run ssoreg.sh in 10.1.4 ORACLE_HOME/sso/bin to produce the file osso.conf. The following is a sample usage of this utility that produces the file in /tmp/osso.conf (the arguments are displayed in different lines only for illustration):

>ssoreg.sh -oracle_home_path /OraHome
 -site_name wls_server
 -config_mod_osso TRUE
 -mod_osso_url http://host.domain.com:6666
 -update_mode CREATE
 -remote_midtier
 -config_file /tmp/osso.conf

	
Copy the generated osso.confto another file system directory. For example: ORACLE_INSTANCE/config/OHS/<ohs_name>/osso.

	
Restart OHS.

Is Attribute AuthName Required?

Log messages might suggest that the attribute AuthName is required, and certain versions of Apache do require this attribute.

This example uses Oracle HTTP Server 11g. Path names are different for Oracle HTTP Server 10g.

To include this attribute, edit the file mod_osso.conf and insert a fragment like the following:

LoadModule osso_module modules/mod_osso.so
<IfModule mod_osso.c>
OssoIdleTimeout off
OssoIpCheck on
OssoConfigFile ORACLE_INSTANCE/config/OHS/<ohs_name>/osso/osso.conf

<Location />
AuthName "Oracle Single Sign On"
require valid-user
AuthType Basic
</Location>
</IfModule>

URL Request not Redirected to SSO

Once a URL request is issued, if a basic pop-up is displayed instead of being redirected to SSO, then, most likely, the URL request has been intercepted by the Apache authorization module.

To address this problem, proceed as follows:

	
Edit the file httpd.conf and comment out the loading authorization modules as illustrated in the following fragment:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

LoadModule access_module modules/mod_access.so
#LoadModule auth_module modules/mod_auth.so
#LoadModule auth_anon_module modules/mod_auth_anon.so
#LoadModule auth_db_module modules/mod_auth_dbm.so
LoadModule proxy_module modules/mod_proxy.so

	
Restart OHS.

Error 404 - Not Found is Issued (OHS Side)

Typically, this error has the following format:

The requested URL <request-uri> was not found on this server

Most likely, the WebLogic redirect is not happening, and the request is attempting to grab an OHS resource not available.

To address this problem, verify that mod_weblogic is included in the file httpd.conf and that the WebLogic handler is set for the request pattern, as illustrated in the following fragment:

#httpd.conf
<IfModule mod_weblogic.c>
 WebLogicHost <host>
 WebLogicPort yourWlsPortNumber
</IfModule>

<Location /request-uri-pattern>
 SetHandler weblogic-handler
</Location>

Error 404 - Not Found is Issued (Oracle WebLogic Server Side)

Typically, this error has the following format:

Error 404--Not Found

Cause

This message informs that the Oracle WebLogic Server is not able to find a resource.

Solution

To address the problem, check that the resource is indeed deployed on the server. For example, if the pattern is /private1/Hello, check that Hello is accessible on the server with private1 as root.

Oracle SSO Failure - Unable to process request

Problem

You receive a message stating:

Oracle SSO Failure - Unable to process request
Either the requested URL was not specified in terms of a fully-qualified host
name or Oracle HTTP Server single sign-on is incorrectly configured.
Please notify your administrator.

Solution

Modify the Oracle HTTP Server httpd.conf file to include a port number in the ServerName and restart the Web server. For example:

From: ServerName host.domain.com

To: ServerName host.domain.com:port

OSSO Solution for Applications Deployed on a Stand-alone WebLogic Server

This chapter describes how to configure single sign-on (SSO) for applications that are deployed on Oracle Fusion Middleware Oracle WebLogic Server. However, details for applications that are deployed on a stand-alone Oracle WebLogic Server (one without Fusion Middleware) are provided here:

	
Oracle Fusion Middleware with OSSO: The required OSSO Identity Asserter (ossoiap.jar) is provided automatically when you install Oracle Fusion Middleware: Oracle Identity Management, Oracle SOA Suite, or Oracle WebCenter.

	
Note:

Oracle Fusion Middleware with OSSO enables you to use either the Oracle HTTP Server 10g or 11g Web server.

	
Stand-Alone Oracle WebLogic Server with OSSO: The required OSSO Identity Asserter (ossoiap.jar) must be acquired from the Oracle Web Tier, as described here.

	
Note:

Without Fusion Middleware, OSSO requires Oracle HTTP Server 11g.

Whether you use OSSO for Oracle Fusion Middleware applications or other applications, the Identity Asserter performs the same functions as those illustrated and described in "Using the OSSO Identity Asserter".

Included in the following are additional, optional, details that you can use to configure and test Single Logout for session invalidation and synchronization between the SSO cookie and the JSESSIONID cookie. Required files must be acquired from the Oracle Web Tier.

Task overview: Deploying and configuring the OSSO Identity Asserter for applications on a stand-alone WebLogic Server

	
Install Oracle WebLogic Server 10.3.1+ and other required components as follows:

	
Perform Step 1, a-d as described in the "Task overview: Deploying and configuring the OSSO Identity Asserter for applications on a stand-alone WebLogic Server".

	
Skip Step 1e and instead deploy your application.

	
Create a WebLogic security domain with the weblogin domain extension template that is supplied with Oracle WebLogic Server and can be used from $WLS_HOME/common/bin/config.sh.

	
Configure mod_weblogic to forward requests to Oracle WebLogic Server, as explained in "Configuring mod_weblogic".

	
Register and configure the module mod_osso with the 10g SSO Server as a partner application, as described in "New Users of the OSSO Identity Asserter".

	
Perform steps described in "Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4".

	
Perform steps described in "Configuring mod_osso to Protect Web Resources".

	
Add Authentication Providers to the appropriate security domain as follows:

	
Acquire the OSSO Identity Asserter (ossoiap.jar from the Oracle Web Tier at:

$ORACLE_INSTANCE/modules/oracle.ossoiap_11.1.1/ossoiap.jar

	
Copy ossoiap.jar into $WLS_HOME/wlserver_10.x/server/lib/mbeantype, then restart the Oracle WebLogic Server.

	
Configure providers as described in "Adding Providers to a WebLogic Domain for OSSO".

	
Configure the Oracle WebLogic Connection Filtering mechanism to create access control lists and accept requests from the hosts where Oracle HTTP Server and the front-end Web server are running, as explained in "Establishing Trust Between Oracle WebLogic Server and Other Entities".

	
Note:

Test the secured application to ensure that it is working with the default authenticator using the Oracle WebLogic Server host and port.

	
Configure the application authentication method for the OSSO Identity Asserter (all web.xml files in the application EAR file must include CLIENT-CERT in the element auth-method), as explained in "Configuring the Application for the OSSO Identity Asserter".

	
Note:

Test the application with users authenticated by OSSO while accessing the application with the Oracle HTTP Server host and port.

	
Optional: You can configure and test Single Logout [Session Invalidation and synchronization between the SSO cookie and JSESSIONID cookie] as follows:

	
See Also:

""Synchronizing the User and SSO Sessions: SSO Synchronization Filter" for details on SSOFilter

	
Acquire ssofilter.jar and configure Oracle WebLogic Server to use it as follows:

1. Acquire ssofilter.jar from the Oracle Web Tier at:

$ORACLE_INSTANCE/modules/oracle.ssofilter_11.1.1/ssofilter.jar

2. Copy it to an appropriate directory in Oracle Middleware home: WLS_INSTALL/Oracle/Middleware/modules directory, for example.

3. Add the absolute path of ssofilter.jar to the Oracle WebLogic Server classpath (by editing the setDomainEnv.sh script POST_CLASSPATH variable or CLASSPATH variable).

	
Deploy system-filters.war as a system filter, as follows:

1. Acquire system-filters.war from the Oracle Web Tier at:

$ORACLE_INSTANCE/modules/oracle.jrf_11.1.1/system-filters.war

2. Copy system-filters.war to an appropriate directory in Oracle Middleware home: WLS_INSTALL/Oracle/Middleware/modules directory, for example.

3. Deploy system-filters.war as an application library: From the WebLogic Administration Console, click Deployment, select New, and choose the location of file.

4. Restart the Oracle WebLogic Server, if asked.

	
Enable Logs to verify that the SSOFilter is working, as follows:

1. From the WebLogic Administration Console, click Domain, Environment, Servers, AdminServer.

2. Click the Logging tab.

3. From the Advanced drop-down, select "Minimum Severity to Log" as "Debug".

4. From the Advanced drop-down, "Message destinations", select LogFile: Severity Level as "Debug".

5. Save changes and restart the Oracle WebLogic Server.

	
Confirm that the SSOFilter is loaded as a system filter:

1. Open the AdminServer.log file in DomainHome/Servers/AdminServer/log/AdminServer.log.

2. Search for "SSOFilter" and confirm that you can see <Debug> messages, which indicate SSOFilter initialization nd confirm a filter load

	
Test the filter functionality to confirm that the SSO and JSESSIONID cookie are cleaned up after user logout and that attempts to access the application after logout require another login.

	
Note:

You must have OSSO Identity Asserter configured in the WebLogic security domain, otherwise the filter will automatically disable during its initialization.

	
Test logout with applications to confirm that the session is ends cleanly.

SSO Users Specified in "Users to Always Audit" Must Be Uppercase

When you specify SSO users in the Oracle HTTP Server audit configuration "Users to Always Audit" section, the SSO username must be specified in uppercase characters.

A comma-separated list of users can be specified to force the audit framework to audit events initiated by these users. Auditing occurs regardless of the audit level or filters that have been specified. This is true for all authentication types.

For more information, see "Managing Audit Policies" in the chapter "Configuring and Managing Auditing" in the Oracle Fusion Middleware Application Security Guide.

17.3.2 OSSO Identity Asserter-Related Problems

This section addresses the following troubleshooting items:

	
Error 403 - Forbidden

	
Error 401 - Unauthorized

	
OSSO Identity Assertion Not Getting Invoked

Error 403 - Forbidden

This message informs that the user does not have the required permission to access a resource. This message is shown, for example, when the application has been configured to allow access to users belonging to WLS Group SSOUsers and the asserted user belongs to a different group.

If you have verified that this is not a permissions issue, then check whether the JAAS Control Flag for the Default Identity Authenticator is set to REQUIRED, and if so, change the setting to OPTIONAL or to SUFFICIENT, as appropriate.

Error 401 - Unauthorized

This message informs that the access to a resource requires the user to be first authenticated.

Solution

	
Check that the user is indeed authenticated.

	
Check whether the server is being hit without first going through authentication using SSO.

OSSO Identity Assertion Not Getting Invoked

Situations in which the OSSO Identity Asserter is not getting invoked for a protected source, typically, involve incorrect configuration. Make sure that your environment accurately includes a configuration as that described in "Configuring the Application for the OSSO Identity Asserter".

17.3.3 URL Rewriting and JSESSIONID

In some cases when an application resource (URL) is accessed and the JSESSIONID cookie is not found, WebLogic Server rewrites the URL by including the JSESSIONID as part of the URL. If the URL in question is protected, Oracle Access Manager and OSSO Web agents might have issues matching the re-written URL.

To avoid issues of a mismatch, you can append an asterisk, *, to the end of the protected resource specified in mod_osso.conf. For example, if the protected URL is:

/myapp/login

The location in the mod_osso entry would be:

<Location /myapp/login*>
valid user
AuthType OSSO
</Location>

17.3.4 About mod_osso, OSSO Cookies, and Directives

Mod_osso module provides communication between the SSO-enabled login server and the Oracle HTTP Server listener. The mod_osso module is controlled by editing the mod_osso.conf file:

	
Oracle HTTP Server 11g installation includes mod_osso and mod_weblogic.

	
OHS 10g, available in the companion CD release Oracle HTTP Server 10.1.3, includes mod_osso.

	
See Also:

The following topic and Release 1 (11.1.1) manuals
	
"Configuring mod_osso to Protect Web Resources"

	
Oracle Fusion Middleware Installation Guide for Web Tier

	
Oracle Fusion Middleware Administrator's Guide for Oracle HTTP Server

This section provides the following information:

	
New OssoHTTPOnly Directive in mod_osso

	
OssoSecureCookies Directive in mod_osso

	
Mod_osso Does Not Encode the Return URL

	
mod_osso: "Page Not found" error After Default Installation

17.3.4.1 New OssoHTTPOnly Directive in mod_osso

A new configuration directive has been added to mod_osso to configure setting the HTTPOnly flag on OSSO cookies. The new Directive is: OssoHTTPOnly. Values are On (to enable) and Off (to disable) the flag. By default, the HTTPOnly flag is set to On; the directive is not set in the configuration.

This directive appends the HttpOnly flag to the OSSO cookies set in the browser. This purpose of this flag is to prevent cross-site scripting. Cookies that have this flag set are not accessible by javascript code or applets running on the browser. Cookies that have this flag set is only sent to the server that set the cookie for the particular domain across over http or https.

This is a per VirtualHost directive. It can only be set at the global scope or inside a VirtualHost section. The following example shows the new directive:

<VirtualHost *.7778>
OssoConfigFile conf/osso.conf
OssoHTTPOnly On

<Location /osso>
AuthType Osso

</Location>

</VirtualHost>

17.3.4.2 OssoSecureCookies Directive in mod_osso

In mod_osso 10g, the OssoSecureCookies directive is disabled by default. However, in mod_osso 11g, this behavior is enabled by default. In mod_osso 11g, to disable the OssoSecureCookies directive you must set OssoSecureCookies to Off in the corresponding configuration file. When mod_osso is enabled, the mod_osso.conf file is available at:

ORACLE_INSTANCE/config/OHS/<ohs_name>/moduleconf/mod_osso.conf

Set the OssoSecureCookies directive as follows:

OssoSecureCookies "Off"

17.3.4.3 Mod_osso Does Not Encode the Return URL

Mod_osso does not encode the return URL in the query when redirecting to the Oracle SSO Server for logout.

To fix this issue, the encoded URL must be passed. For example: response.setHeader("Osso-Return-Url", encoded-url)

17.3.4.4 mod_osso: "Page Not found" error After Default Installation

The following causes might result in a "Page Not Found" error when trying to display SSO page:

	
Multiple routing relationships with the same OHS in the absence of load balancer: This is not supported.

	
No routing relationship

Solutions: Multiple Routing Relationships

Locate and remove the extra routing relationship that is not related to this oc4j_im. Leave the routing relationship that is related to this oc4j_im.

	
Use the following command to display all routing relationships in your environment:

asctl:/imha/inst1/ohs_im>ls -a -l
oc4j_im_ohs_im_routing_relationship -> /imha/inst12/oc4j_im
oc4j_im_ohs_im_routing_relationship_ -> /imha/inst11/oc4j_im

	
Remove the routing relationship that is not related to this specific oc4j_im using the following command with values for your environment. For example:

asctl:/imha/inst1/ohs_im> rmrel(name='oc4j_im_ohs_im_routing_relationship_
',pt='/imha/inst11/oc4j_im')

	
Stop and start both OHS Web server and oc4j_im.

	
Confirm that the SSO page displays.

Solutions: No Routing Relationships

By default, the installer creates a routing relationship between each OHS and each oc4j_im. If there is no routing relationship between OHS and oc4j_im, you must create one.

	
Use the following command to create a routing relationship using values for your environment:

createRoutingRelationship(name='rr1',ut='/imha/inst1/ohs_im',pt='/imha/inst12/
@ oc4j_im')

	
Stop and start both OHS Web server and oc4j_im.

	
Confirm that the SSO page displays.

17.3.5 About Using IPv6

Oracle Fusion Middleware supports Internet Protocol Version 4 (IPv4) and Internet Protocol Version 6 (IPv6.) Among other features, IPv6 supports a larger address space (128 bits) than IPv4 (32 bits), providing an exponential increase in the number of computers that can be addressable on the Web.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for details about using IPv6 with the Oracle Single Sign-on Server.

I OPSS Scripts

An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this chapter apply to both platforms: WebLogic Application Server and WebSphere Application Server.

For OPSS scripts details specific to WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

The OPSS security-related scripts are described in the following sections:

	
Policy-Related Scripts

	
Credential-Related Scripts

	
Other Security Scripts

	
Audit Scripts

I.1 Policy-Related Scripts

For details on the following scripts, see Section 9.3, "Managing Application Policies with OPSS Scripts."

	
listAppStripes

	
createAppRole

	
deleteAppRole

	
grantAppRole

	
revokeAppRole

	
listAppRoles

	
listAppRolesMembers

	
grantPermission

	
revokePermission

	
listPermissions

	
deleteAppPolicies

	
createResourceType

	
getResourceType

	
deleteResourceType

	
createResource

	
deleteResource

	
listResources

	
listResourceActions

	
createEntitlement

	
getEntitlement

	
deleteEntitlement

	
addResourceToEntitlement

	
revokeResourceFromEntitlement

	
listEntitlements

	
grantEntitlement

	
revokeEntitlement

	
listEntitlement

	
listResourceTypes

I.2 Credential-Related Scripts

For details on the following scripts, see Section 10.4, "Managing Credentials with OPSS Scripts."

	
listCred

	
updateCred

	
createCred

	
deleteCred

	
modifyBootStrapCredential

	
addBootStrapCredential

I.3 Other Security Scripts

	
migrateSecurityStore

For details, see Section 8.6.2, "Migrating with the Script migrateSecurityStore."

	
reassociateSecurityStore

For details, see Section 9.3.29, "reassociateSecurityStore."

	
upgradeSecurityStore

For details, see Section G.1, "Upgrading Security Data with upgradeSecurityStore."

	
upgradeOpss

For details, see Section G.2, "Upgrading Policies with upgradeOpss."

I.4 Audit Scripts

For the description of audit-related scripts, see Section C.4, "WLST Commands for Auditing."

G Upgrading Security Data

This appendix describes several procedures to update JAZN security data. Specifically, it describes how to upgrade data from release 10.1.3.x to security data used by OPSS in release 11g Release 1 (11.1.1), and how to upgrade file-based application policies from release 11.1.1.1.0 to release 11.1.1.2.0 using the offline OPSS script upgradeSecurityStore, which allows the separate upgrading of identity, policy, or credential data; in addition, it describes a procedure to update policies from a PS1 or PS2 release to a PS3 release, in the following sections:

	
Upgrading Security Data with upgradeSecurityStore

	
Upgrading Policies with upgradeOpss

	
If upgrading from 11gR1 to 11gR1 PS1:

For details about this upgrade combination, see section Special Instructions for Oracle Fusion Middleware 11g Release 1 (11.1.1.1.0) in Oracle Fusion Middleware Installation Planning Guide.

For an overview and details about Identity Management upgrade, see Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management.

G.1 Upgrading Security Data with upgradeSecurityStore

This section describes the use of the OPSS script upgradeSecurityStore to upgrade application security data from previous releases to more recent ones. The details of the particular scenarios are explained below, with the various syntaxes that the script has on each of the supported platforms.

If the target of the upgrading is an LDAP-based repository, then some setting up before running the script is required, as described in Section 8.2.2, "Prerequisites to Using an LDAP-Based Security Store."

The script is offline, that is, it does not require a connection to a running server to operate, and can be run in interactive mode or in script mode, on WebLogic, and in interactive mode only, on WebSphere. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.

For platform-specific requirements to run an OPSS script, see Important Note.

Script and Interactive Modes Syntaxes

The script syntax varies depending on the type of store being upgraded. Optional arguments are enclosed in square brackets; arguments in script mode syntax are written in separate lines for clarity of exposition.

To upgrade 10.1.3.x XML identity data to 11g Release 1 (11.1.1) XML identity data, use either of the following syntaxes:

updateSecurityStore -type xmlIdStore
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznDataFile srcJazn
 -srcRealm jaznRealm
 [-dst dstJpsContext]

updateSecurityStore(type="xmlIdStore", jpsConfigFile="jpsConfigFileLocation", srcJaznDataFile="srcJazn", srcRealm="jaznRealm", [dst="dstJpsContext"])

To upgrade a 10.1.3.x XML policy data to 11g Release 1 (11.1.1) XML policy data, use either of the following syntaxes:

updateSecurityStore -type xmlPolicyStore
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznDataFile srcJazn
 [-dst dstJpsContext]

updateSecurityStore(type="xmlPolicyStore", jpsConfigFile="jpsConfigFileLocation", srcJaznDataFile="srcJazn", [dst="dstJpsContext"])

To upgrade a 10.1.3.x Oracle Internet DirectoryLDAP-based policy data to 11g Release 1 (11.1.1) XML policy data, use either of the following syntaxes:

updateSecurityStore -type oidPolicyStore
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznConfigFile srcJazn
 [-dst dstJpsContext]

updateSecurityStore(type="oidPolicyStore", jpsConfigFile="jpsConfigFileLocation", srcJaznConfigFile="srcJazn", [dst="dstJpsContext"])

To upgrade file-based application policies from release 11.1.1.1.0 to release 11.1.1.2.0, use either of the following syntaxes:

updateSecurityStore -type xmlAppPolicies
 -srcApp applicationStripeName
 -jpsConfigFile jpsConfigFileLocation
 -srcJaznDataFile srcJazn
 -dstJaznDataFile dstJazn
 -resourceTypeFile resTypeJazn

updateSecurityStore(type="xmlAppPolicies", srcApp="applicationStripeName", jpsConfigFile="jpsConfigFileLocation", srcJaznDataFile="srcJazn", dstJaznDataFile="dstJazn", srcJaznDataFile="resTypeJazn")

To upgrade 11.1.1.1.0 application policies to 11.1.1.2.0 format, use either of the following syntaxes:

updateSecurityStore -type appPolicies
 -srcApp applicationStripeName
 -jpsConfigFile jpsConfigFileLocation
 -dst dstContext
 [-resourceTypeFile resTypeJazn]

updateSecurityStore(type="appPolicies", srcApp="applicationStripeName", jpsConfigFile="jpsConfigFileLocation", dst="dstContext" [, resourceTypeFile="resTypeJazn"])

This upgrade works in-place and involves the creation of specified resource types and resources corresponding to permissions in the grants.

Once the run completes, the policy store pointed to by the context passed in dst in the configuration file passed in jpsConfigFile has new resource types and new resources defined for application passed in srcApp. The resource types are read from the file specified in resourceTypeFile and resources are created corresponding to permissions in the application grants.

The meaning of the arguments is as follows:

	
type specifies the kind of security data being upgraded. The only valid values are xmlIdStore, xmlPolicyStore, oidPolicyStore, xmlCredStore, xmlAppPolicies, and appPolicies.

	
jpsConfigFile specifies the location of a configuration file jps-config.xml relative to the directory where the script is run. The target store of the upgrading is read from the context specified with the argument dst.

In case the type is xmlAppPolicies, the configuration file is not used to point to neither source nor destination, but to configure the audit service only. Note that the location must be passed even when the audit service is not specified in the jps-config.xml file.

	
srcJaznDataFile specifies the location of a 10.1.3.x jazn data file relative to the directory where the script is run. This argument is required if the specified type is xmlIdStore, xmlPolicyStore, or xmlCredStore.

In case the specified type is xmlAppPolicies, it specifies the location of the application 11.1.1.1.0 jazn-data.xml file, a file that does not include resource type specifications.

	
srcJaznConfigFile specifies the location of a 10.1.3.x jazn configuration file relative to the directory where the script is run. This argument is required if the specified type is oidPolicyStore.

	
users specifies a comma-delimited list of users each formatted as realmName/userName. This argument is required if the specified type is xmlCredStore.

	
srcRealm specifies the name of a realm in the file passed to the argument srcJaznDataFile that identifies the identities to be migrated. This argument is required if the specified type is xmlIdStore.

	
dst specifies the name of a jpsContext in the file passed to the argument jpsConfigFile where the destination store is configured. Optional. If unspecified, it defaults to the default jpsContext.

	
srcApp specifies the application stripe. It should match the application name present in the files srcJaznDataFile and resourceTypeFile. A stripe with this name is created in the file dstJaznDataFile.

	
dstJaznDataFile specifies the location of the application 11.1.1.2.0 jazn-data.xml file. This file includes resource type and resource instance specifications and is the replacement for the original jazn-data.xml specified in srcJaznDataFile.

	
resourceTypeFile specifies the location of the 11.1.1.2.0 jazn-data.xml file which includes resource type specifications.

	
dst specifies the destination context that points to the policy store to update.

G.1.1 Examples of Use

The following sections contain examples that illustrate the use of the script upgradeSecurityStore in different scenarios:

	
Example 1 - Upgrading Identities

	
Example 2 - Upgrading to File-Based Policies

	
Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies

	
Example 4 - Upgrading File-Based Policies to Use the Resource Catalog

G.1.1.1 Example 1 - Upgrading Identities

The following invocation illustrates the migration of 10.1.3 file-based identities to an 11g Release 1 (11.1.1) file-based identity store:

upgradeSecurityStore -type xmlIdStore
 -jpsConfigFile jps-config-idstore.xml
 -srcJaznDataFile jazn-data.xml
 -srcRealm jazn.com

This use of the script assumes that: (a) the files jps-config-idstore.xml and jazn-data.xml are located in the directory where the script is run; (b) the default jpsContext in the file jps-config-idstore.xml references the target identity store; and (c) the file jazn-data.xml contains a realm named jazn.com.

Here are the relevant excerpts of the two files involved in the use sample above:

<!-- excerpt from file jps-config-idstore.xml -->
<serviceProviders>
 <serviceProvider name="R11idstore" class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider" type="IDENTITY_STORE">
 <description>11g XML-based IdStore</description>
 </serviceProvider>
</serviceProviders>
...
<serviceInstances>
 <serviceInstance name="idstore.xml1" provider="R11idstore" location="./jazn-data-11.xml">
 <property name="subscriber.name" value="jazn.com"/>
 <property name="jps.xml.idstore.pwd.encoding" value="OBFUSCATE"/>
 </serviceInstance>
</serviceInstances>
...
<jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="idstore.xml1" />
 </jpsContext>
</jpsContexts>

<!-- excerpt from jazn-data.xml -->
<jazn-realm>
 <realm>
 <name>jazn.com</name>
 <users> ... </users>
 <roles> ... </roles>
 </realm>
</jazn-realm>

Thus, the sample invocation above migrates every user in the element <users>, to the XML identity store R11idStore.

G.1.1.2 Example 2 - Upgrading to File-Based Policies

The following invocation illustrates the migration of a 10.1.3 file-based policy store to an 11g Release 1 (11.1.1) policy store:

upgradeSecurityStore -type xmlPolicyStore
 -jpsConfigFile jps-config.xml
 -srcJaznDataFile jazn-data.xml
 -dst destContext

This use of the script assumes that: the files jps-config.xml and jazn-data.xml are located in the directory where the script is run; and the file jps-config.xml contains a jpsContext named destContext.

Here are the relevant excerpts of the two files involved in the use sample above:

<!-- excerpt from file jps-config.xml -->
<serviceProviders>
 <serviceProvider type="POLICY_STORE" name="policystore.xml.provider" class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider">
 <description>R11 XML-based PolicyStore Provider</description>
 </serviceProvider>
</serviceProviders>
...
<serviceInstances>
 <serviceInstance name="policystore1.xml" provider="policystore.xml.provider">
 <property name="R11PolStore" value="jazn-data1.xml"/>
</serviceInstance>
...
<jpsContexts default="default1">
 <jpsContext name="default1"> ... </jpsContext>
 <jpsContext name="destContext">
 ...
 <serviceInstanceRef ref="policystore1.xml"/>
 </jpsContext>
</jpsContexts>

<!-- excerpt from jazn-data.xml -->
<jazn-realm>
 <realm>
 ...
 <roles> ... </roles>
 </realm>
</jazn-realm>
...
<jazn-policy> ... </jazn-policy>

Thus, the sample invocation above migrates every role in the element <roles> and every policy in the element <jazn-policy> to the XML policy store R11PolStore.

G.1.1.3 Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies

The following invocation illustrates the upgrading of a 10.1.4 Oracle Internet Directory LDAP-based policy store to an 11g Release 1 (11.1.1) Oracle Internet Directory LDAP-based policy store:

upgradeSecurityStore -type oidPolicyStore
 -jpsConfigFile jps-config.xml
 -srcJaznConfigFile jazn.xml
 -dst destContext

The assumptions about the location of the two XML files involved in this example are similar to those in Example 2. In addition, it is assumed that (a) the file jps-config.xml contains the jpsContext destContext that points to the target Oracle Internet Directory LDAP-based policy store; and (b) the file jazn.xml describes the location of the Oracle Internet Directory LDAP server from where the policies are migrated.

Here is the relevant excerpt from the file jazn.xml:

<jazn provider="LDAP" location="ldap://myCompany.com:3843">
 <property name="ldap.user" value="cn=orcladmin"/>
 <property name="ldap.password" value="!welcome1"/>
 <property name="ldap.protocol" value="no-ssl"/>
 <property name="ldap.cache.policy.enable" value="false"/>
 <property name="ldap.initctx" value="com.sun.jndi.ldap.LdapCtxFactory"/>
</jazn>

G.1.1.4 Example 4 - Upgrading File-Based Policies to Use the Resource Catalog

The following invocation upgrades an application 11.1.1.1.0 file-based policy store to an application 11.1.1.2.0 file-based policy store.

updateSecurityStore -type xmlAppPolicies
 -srcApp PolicyServlet1
 -jpsConfigFile ./folder/jps-config.xml
 -srcJaznDataFile ./11.1.1.1.0/jazn-data.xml
 -dstJaznDataFile ./11.1.1.2.0/final-jazn-data.xml
 -resourceTypeFile ./resCat/res-jazn-data.xml

The point of this upgrade is that the original 11.1.1.1.0 file does not use resource catalog elements, but the resulting 11.1.1.2.0 file does use resource type and resource instance elements.

The script basically takes the original application configuration file, along with another file specifying resource type elements, and it produces a new application configuration file that contains policies as in the original file, but modified to use resource catalog specifications.

The original and the new application configuration files provide identical behavior to the application.

The above invocation assumes that:

	
The source file ./11.1.1.1.0/jazn-data.xml contains policies for the application PolicyServlet1.

	
The resource type file ./resCat/res-jazn-data.xml contains resource type specifications for the application PolicyServlet1.

	
The configuration file ./folder/jps-config.xml is any valid configuration file that may or may not use an audit service instance. In any case, it must be specified.

The following samples illustrate the relevant portions of three data files: the input source jazn-data.xml and resource res-jazn-data.xml, and the output final-jazn-data.xml.

Input Source File jazn-data.xml

<policy-store>
 <applications>
 <application>
 <name>PolicyServlet1</name>
 <app-roles>
 <app-role>
 <name>myAppRole2</name>
 <display-name>application role myAppRole</display-name>
 <members>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole</name>
 <display-name>application role myAppRole</display-name>
 <members>
 <member>
 <class>
oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
 <name>developers</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>testrole_DATA</name>
 <display-name>application role test</display-name>
 <members>
 <member>
 <class>
oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
 <name>test-entrole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole_PRIV</name>
 <display-name>application role private</display-name>
 <description>app role private description</description>
 <members>
 <member>
 <class>
oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
 <name>developers</name>
 </member>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 </member>
 </members>
 </app-role>
 </app-roles>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole_PRIV</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>getClassLoader</name>
 </permission>
 <permission>
 <class>
oracle.adf.share.security.authorization.RegionPermission</class>
 <name>dummyName</name>
 <actions>view,edit</actions>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.lang.XYZPermission</class>
 <name>newxyz</name>
 </permission>
 </permissions>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.internal.core.principals.JpsXmlEnterpriseRoleImpl</class>
 <name>test-entrole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>newxy</name>
 <actions>view,edit</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </application>
 </applications>
</policy-store>

Input Resource File res-jazn-data.xml

<jazn-data>
 <jazn-realm default="jazn.com">
 </jazn-realm>
 <policy-store>
 <applications>
 <application>
 <name>PolicyServlet1</name>
 <resource-types>
 <resource-type>
 <name>FileResourceType</name>
 <display-name>File Access</display-name>
 <description>Resource Type Modelling File Access</description>
 <provider-name>provider</provider-name>
 <matcher-class>oracle.security.jps.JpsPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>delete,write,read</actions>
 </resource-type>
 </resource-types>
 <jazn-policy>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
 <jazn-policy>
 </jazn-policy>
</jazn-data>

Output Data File final-jazn-data.xml

<jazn-data>
 <jazn-realm>
 </jazn-realm>
 <policy-store>
 <applications>
 <application>
 <name>PolicyServlet1</name>
 <app-roles>
 <app-role>
 <name>myAppRole2</name>
 <display-name>application role myAppRole</display-name>
 <guid>4341CC10EAFB11DE9F7F17D892026AF8</guid>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole</name>
 <display-name>application role myAppRole</display-name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developers</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>testrole_DATA</name>
 <display-name>application role test role</display-name>
 <guid>4342B670EAFB11DE9F7F17D892026AF8</guid>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>test-entrole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>myAppRole_PRIV</name>
 <display-name>application role private</display-name>
 <description>app role private description</description>
 <guid>4342B671EAFB11DE9F7F17D892026AF8</guid>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <members>
 <member>
 <class>
weblogic.security.principal.WLSGroupImpl</class>
 <name>developers</name>
 </member>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 </member>
 </members>
 </app-role>
 </app-roles>
 <resource-types>
 <resource-type>
 <name>FileResourceType</name>
 <display-name>File Access</display-name>
 <description>Resource Type Modelling File Access</description>
 <provider-name>provider</provider-name>
 <matcher-class>oracle.security.jps.JpsPermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>delete,write,read</actions>
 </resource-type>
 </resource-types>
 <resources>
 <resource>
 <name>getClassLoader</name>
 <type-name-ref>FileResourceType</type-name-ref>
 </resource>
 <resource>
 <name>newxy</name>
 <type-name-ref>FileResourceType</type-name-ref>
 </resource>
 </resources>
 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole_PRIV</name>
 <guid>4342B671EAFB11DE9F7F17D892026AF8</guid>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>getClassLoader</name>
 </permission>
 <permission>
 <class>
oracle.adf.share.security.authorization.RegionPermission</class>
 <name>dummyName</name>
 <actions>view,edit</actions>
 </permission>
 </permissions>
 <permission-set-refs>
 </permission-set-refs>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>myAppRole</name>
 <guid>43428F60EAFB11DE9F7F17D892026AF8</guid>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.lang.XYZPermission</class>
 <name>newxyz</name>
 </permission>
 </permissions>
 <permission-set-refs>
 </permission-set-refs>
 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
weblogic.security.principal.WLSGroupImpl</class>
 <name>test-entrole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>newxy</name>
 <actions></actions>
 </permission>
 </permissions>
 <permission-set-refs>
 </permission-set-refs>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
 <jazn-policy>
 </jazn-policy>
</jazn-data>

G.2 Upgrading Policies with upgradeOpss

upgradeOpss is an offline script that upgrades PS1 or PS2 configurations and stores to a PS3 configuration and store. This script takes a PS1 or PS2 jps configuration file and updates it into a PS3 configuration file based on a PS3 system-jazn-data file.

	
Important Note:

upgradeOpss must be run on the system that hosts the administration server instance, so that when the server comes up, the updagraded data is pushed to all managed servers in the cluster.

Specifically, this script carries out the following actions:

	
Saves a copy of the jps configuration file passed in a file with extension .bak located in the same directory where the passed file is.

	
Adds a SAML login module service instance to the jps configuration file passed in the first argument.

	
Adds a trust service instance to the jps configuration file passed in the first argument.

	
Adds a PDP service instance to the jps configuration file passed in the first argument.

	
Generates a master key and stores it in the bootstrap wallet.

	
If the (PS1 or PS2) policy store type is LDAP-based OID, it upgrades the OID schema in the LDAP repository.

	
Reads all policies in the system-jazn-data.xml file passed in the second argument and adds them to the policy store in the jps configuration file passed in the first argument. Duplicate policies are ignored.

Once the script completes, the file passed in the first argument is transformed to a jps-config.xml file that can be used in the PS3 domain. The OPSS binaries and the target policy store must have compatible versions; for details, see Section L.20, "Incompatible Versions of Binaries and Policy Store."

	
Note:

Before using this script, make sure that you backup the store to be upgraded. In case of a LDAP store, backup all data under the root node of the store (which is specified as a property of the store in the configuration file). In case of an upgrade failure, restore that node entirely.

Script Syntax

The script has the following syntax:

upgradeOpss(jpsConfig="ps1OrPs2JpsConfigFile", jaznData="ps3SystemJaznDataFile")

The meaning of the arguments is as follows:

	
jpsConfig specifies the full path to the location of the PS1 or PS2 jps-config.xml file. This configuration file is automatically saved in the same directory as the passed one with the suffix .bak appended to the its name.

	
jaznData specifies the full path to the location of the PS3 out-of-the-box system-jazn-data.xml file.

Example of Use

The following invocation illustrates the use of this script, where jps-config.xml is a PS1 or PS2 jps configuration file, and system-jazn-data.xml is the out-of-the-box, PS3 system JAZN configuration file:

upgradeOpss(jpsConfig="./config/jps-config.xml", jaznData="/upgrade/system-jazn-data.xml")

The above invocation saves a copy of jps-config.xml in the file ./config/jps-config.xml.bak.

List of Examples

	7-1 Single-LDAP Configuration in Oracle WebLogic Server
	7-2 Multi-LDAP Configuration in Oracle WebLogic Server
	7-3 Multi-LDAP Configuration in Third-Party Application Servers
	7-4 Querying the LDAP Identity Store Programmatically
	16-1 logout.html Script
	16-2 OIM Integration-Related Parameter Usage
	17-1 SSO Authentication with Dynamic Directives
	17-2 SSO Logout with Dynamic Directives
	B-1 <jazn-policy>
	B-2 <jazn-policy>

A OPSS Configuration File Reference

This appendix describes the element hierarchy and attributes in the file that configures OPSS services. By default, this file is named jps-config.xml (for Java EE applications) or jps-config-jse.xml (for Java SE applications) and is located in the directory $DOMAIN_HOME/config/fmwconfig.

For Java SE applications, an alternative location can be specified using the system property oracle.security.jps.config.

The configuration file is used to configure the policy, credential, and identity stores, the login modules, and the audit service. For a complete example of a configuration file see Section 21.4.9, "Example of Configuration File jps-config.xml."

To configure services programmatically, see Section E.2, "Configuring OPSS Services with MBeans."

This appendix includes the following sections:

	
Top- and Second-Level Element Hierarchy

	
Lower-Level Elements

A.1 Top- and Second-Level Element Hierarchy

The top element in the file jps-config.xml is <jpsConfig>. It contains the following second-level elements:

	
<property>

	
<propertySets>

	
<extendedProperty>

	
<serviceProviders>

	
<serviceInstances>

	
<jpsContexts>

Table A-1 describes the function of these elements. The annotations between curly braces{} indicate the number of occurrences the element is allowed. For example, {0 or more} indicates that the element can occur 0 or more times; {1} indicates that the element must occur once.

These elements are not application-specific configurations: all items in the configuration file pertain to an entire domain and apply to all managed servers and applications deployed in the domain.

Table A-1 First- and Second-Level Elements in jps-config.xml

	Elements	Description
	

<jpsConfig> {1}

	
Defines the top-level element in the configuration file.

	

 <property> {0 or more}

	
Defines names and values of properties. It can also appear elsewhere in the hierarchy, such as under the elements <propertySet>, <serviceProvider>, and <serviceInstance>.

	

 <propertySets> {0 or 1}
 <propertySet> {1 or more}
 <property> {1 or more}

	
Groups one or more <propertySet> elements so that they can referenced as a group.

	

 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

	
Defines a property that has multiple values. It can also appear elsewhere in the hierarchy, such as under the elements extendedProperty and serviceInstance.

	

 <extendedPropertySets> {0 or 1}
 <extendedPropertySet> {1 or more}
 <extendedProperty> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

	
Groups one or more <extendedPropertySet> elements so that they can referenced a group.

	

 <serviceProviders> {0 or 1}
 <serviceProvider> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}

	
Groups one or more <serviceProvider> elements, each of which defines an implementation of an OPSS service, such as a policy store provider, a credential store provider, or a login module.

	

 <serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

	
Groups one or more <serviceInstance> elements, each of which configures and specifies property values for a service provider defined in a <serviceProvider> element.

	

 <jpsContexts> {1}
 <jpsContext> {1 or more}
 <serviceInstanceRef> {1 or more}

	
Groups one or more <jpsContext> elements, each of which is a collection of service instances that an application can use.

A.2 Lower-Level Elements

This section describes, in alphabetical order, the complete set of elements that can occur in under the second-level elements described in the Top- and Second-Level Element Hierarchy.

	
<description>

	
<extendedProperty>

	
<extendedPropertySet>

	
<extendedPropertySetRef>

	
<extendedPropertySets>

	
<jpsConfig>

	
<jpsContext>

	
<jpsContexts>

	
<name>

	
<property>

	
<propertySet>

	
<propertySetRef>

	
<propertySets>

	
<serviceInstance>

	
<serviceInstanceRef>

	
<serviceInstances>

	
<serviceProvider>

	
<serviceProviders>

	
<value>

	
<values>

<description>

This element describes the corresponding entity (a service instance or service provider).

Parent Elements

<serviceInstance> or <serviceProvider>

Child Element

None.

Occurrence

<description> can be a child of <serviceInstance> or <serviceProvider>.

	
As a child of <serviceInstance>:

<serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

	
As a child of <serviceProvider>:

<serviceProviders> {0 or 1}
 <serviceProvider> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}

Example

The following example sets a description for a service provider.

<serviceProvider ... >
 <description>XML-based IdStore Provider</description>
 ...
</serviceProvider>

<extendedProperty>

This element defines an extended property in the following scenarios:

Table A-2 Scenarios for <extendedProperty>

	Location in jps-config.xml	Function
	
Directly under <jpsConfig>

	
Defines an extended property for general use. As a child of <jpsConfig>, an extended property can specify, for example, all the base DNs in an LDAP-based authenticators.

	
Directly under <extendedPropertySet>

	
Defines an extended property for general use that is part of an extended property set.

	
Directly under <serviceInstance>

	
Defines an extended property for a particular service instance.

An extended property typically includes multiple values. Use a <value> element to specify each value. Several LDAP identity store properties are in this category, such as the specification of the following values:

	
Object classes used for creating user objects

	
Attribute names that must be specified when creating a user

	
Base DNs for searching users

Parent Elements

<extendedPropertySet>, <jpsConfig>, or <serviceInstance>

Child Elements

<name> or <values>

Occurrence

<extendedProperty> can be a child of <extendedPropertySet>, <jpsConfig>, or <serviceInstance>.

	
As a child of <extendedPropertySet>:

<extendedPropertySets> {0 or 1}
 <extendedPropertySet> {1 or more}
 <extendedProperty> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

	
As a child of <jpsConfig>:

<jpsConfig>
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

	
As a child of <serviceInstance>:

<serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

Example

The following example sets a single value:

<extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
</extendedProperty>

<extendedPropertySet>

This element defines a set of extended properties. The extended property set can then be referenced by an <extendedPropertySetRef> element to specify the given properties as part of the configuration of a service instance.

Attributes

	Name	Description
	name 	Designates a name for the extended property set. No two <extendedPropertySet> elements may have the same name attribute setting within a configuration file.
Values: string

Default: n/a (required)

Parent Element

<extendedPropertySets>

Child Element

<extendedProperty>

Occurrence

Required within <extendedPropertySets>, one or more:

<extendedPropertySets> {0 or 1}
 <extendedPropertySet> {1 or more}
 <extendedProperty> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

<extendedPropertySetRef>

This element configures a service instance by referring to an extended property set defined elsewhere in the file.

Attributes

	Name	Description
	ref 	Refers to an extended property set whose extended properties are used for the service instance defined in the <serviceInstance> parent element. The ref value of <extendedPropertySetRef> must match the name value of an <extendedPropertySet> element.
Values: string

Default: n/a (required)

Parent Element

<serviceInstance>

Child Element

None.

Occurrence

Optional, zero or more.

<serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

<extendedPropertySets>

This element specifies a set of properties.

Parent Element

<jpsConfig>

Child Element

<extendedPropertySet>

Occurrence

Optional, zero or one.

<jpsConfig>
 <extendedPropertySets> {0 or 1}
 <extendedPropertySet> {1 or more}
 <extendedProperty> {1 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

<jpsConfig>

This is the root element of a configuration file.

Parent Element

None.

Child Elements

<extendedProperty>, <extendedPropertySets>, <jpsContexts>, <property>, <propertySets>, <serviceInstances>, or <serviceProviders>

Occurrence

Required, one only.

Example

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd"
 schema-major-version="11" schema-minor-version="1">
...
</jpsConfig>

<jpsContext>

This element declares an OPSS context, a collection of service instances common to a domain, either by referring to a set of service instances that comprise the context (typical usage), or by referring to another context. Each <jspContext> in a configuration file must have a distinct name.

Attributes

	Name	Description
	name	Designates a name for the OPSS context. Each context must have a unique name.
Values: string

Default: n/a (required)

Parent Element

<jpsContexts>

Child Element

<serviceInstanceRef>

Occurrence

There must be at least one <jpsContext> element under <jpsContexts>. A <jpsContext> element contains the <serviceInstanceRef> element.

<jpsContexts> {1}
 <jpsContext> {1 or more}
 <serviceInstanceRef> {1 or more}

Example

The following example illustrates the definition of two contexts; the first one, named default, is the default context (specified by the attribute default in <jpsContexts>), and it references several service instances by name.

The second one, named anonymous, is used for unauthenticated users, and it references the anonymous and anonymous.loginmodule service instances.

<serviceInstances>
...
 <serviceInstance provider="credstoressp" name="credstore">
 <description>File Based Default Credential Store Service Instance</description>
 <property name="location" value="${oracle.instance}/config/JpsDataStore/JpsSystemStore"/>
 </serviceInstance>
...
 <serviceInstance provider="anonymous.provider" name="anonymous">
 <property value="anonymous" name="anonymous.user.name"/>
 <property value="anonymous-role" name="anonymous.role.name"/>
 </serviceInstance>
...
 <serviceInstance provider="jaas.login.provider" name="anonymous.loginmodule">
 <description>Anonymous Login Module</description>
 <property value="oracle.security.jps.internal.jaas.module.anonymous.AnonymousLoginModule"
 name="loginModuleClassName"/>
 <property value="REQUIRED"
 name="jaas.login.controlFlag"/>
 </serviceInstance>
...
</serviceInstances>
...
<jpsContexts default="default">
...
 <jpsContext name="default">
 <!-- This is the default JPS context. All the mandatory services and Login Modules must be
 configured in this default context -->
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="idstore.xml"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="idstore.loginmodule"/>
 <serviceInstanceRef ref="idm"/>
 </jpsContext>
 <jpsContext name="anonymous">
 <serviceInstanceRef ref="anonymous"/>
 <serviceInstanceRef ref="anonymous.loginmodule"/>
 </jpsContext>
...
</jpsContexts>

<jpsContexts>

This element specifies a set of contexts.

Attributes

	Name	Description
	default 	Specifies the context that is used by an application if none is specified. The default value of the <jpsContexts> element must match the name of a <jpsContext> child element.
Values: string

Default: n/a (required)

Note: The default context must configure all mandatory services and login modules.

Parent Element

<jpsConfig>

Child Element

<jpsContext>

Occurrence

Required, one only.

<jpsConfig>
 <jpsContexts> {1}
 <jpsContext> {1 or more}

Example

See <jpsContext> for an example.

<name>

This element specifies the name of an extended property.

Parent Element

<extendedProperty>

Child Element

None

Occurrence

Required, one only.

<extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

Example

See <extendedProperty> for an example.

<property>

This element defines a property in the following scenarios:

Table A-3 Scenarios for <property>

	Location in jps-config.xml	Function
	
Directly under <jpsConfig>

	
Defines a one-value property for general use.

	
Directly under <propertySet>

	
Defines a multi-value property for general use that is part of a property set.

	
Directly under <serviceInstance>

	
Defines a property for use by a particular service instance.

	
Directly under <serviceProvider>

	
Defines a property for use by all service instances of a particular service provider.

For a list of properties, see Appendix F, "OPSS System and Configuration Properties".

Attributes

	Name	Description
	name 	Specifies the name of the property being set.
Values: string

Default: n/a (required)

	value	Specifies the value of the property being set.
Values: string

Default: n/a (required)

Parent Elements

<jpsConfig>, <propertySet>, <serviceInstance>, or <serviceProvider>

Child Element

None.

Occurrence

Under a<propertySet>, it is required, one or more; otherwise, it is optional, zero or more.

	
As a child of <jpsConfig>:

<jpsConfig>
 <property> {0 or more}

	
As a child of <propertySet>:

<propertySets> {0 or 1}
 <propertySet> {1 or more}
 <property> {1 or more}

	
As a child of <serviceInstance>:

<serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

	
As a child of <serviceProvider>:

<serviceProviders> {0 or 1}
 <serviceProvider> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}

Example

The following example illustrates a property to disable JAAS mode for authorization:

<jpsConfig ... >
 ...
 <property name="oracle.security.jps.jaas.mode" value="off"/>
 ...
</jpsConfig>

For additional examples, see <propertySet> and <serviceInstance>.

<propertySet>

This element defines a set of properties. Each property set has a name so that it can be referenced by a <propertySetRef> element to include the properties as part of the configuration of a service instance.

Attributes

	Name	Description
	name 	Designates a name for the property set. No two <propertySet> elements may have the same name within a jps-config.xml file.
Values: string

Default: n/a (required)

Parent Element

<propertySets>

Child Element

<property>

Occurrence

Required within a<propertySets>, one or more

<propertySets> {0 or 1}
 <propertySet> {1 or more}
 <property> {1 or more}

Example

<propertySets>
...
 <!-- For property that points to valid Access SDK installation directory -->
 <propertySet name="access.sdk.properties">
 <property name="access.sdk.install.path" value="$ACCESS_SDK_HOME"/>
 </propertySet>
...
</propertySets>

<serviceInstances>
...
 <serviceInstance provider="jaas.login.provider" name="oam.loginmodule">
 <description>Oracle Access Manager Login Module</description>
 <property
 value="oracle.security.jps.internal.jaas.module.oam.OAMLoginModule"
 name="loginModuleClassName"/>
 <property value="REQUIRED" name="jaas.login.controlFlag"/>
 <propertySetRef ref="access.sdk.properties"/>
 </serviceInstance>
...
</serviceInstances>

<propertySetRef>

This element configures a service instance by referring to a property set defined elsewhere in the file.

Attributes

	Name	Description
	ref 	Refers to a property set whose properties are used by the service instance defined in the <serviceInstance> parent element. The ref value of a <propertySetRef> element must match the name of a <propertySet> element.
Values: string

Default: n/a (required)

Parent Element

<serviceInstance>

Child Element

None.

Occurrence

Optional, zero or more.

<serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

Example

See <propertySet> for an example.

<propertySets>

This element specifies a set of property sets.

Parent Element

<jpsConfig>

Child Element

<propertySet>

Occurrence

Optional. If present, there can be only one <propertySets> element.

<jpsConfig>
 <propertySets> {0 or 1}
 <propertySet> {1 or more}
 <property> {1 or more}

Example

See <propertySet> for an example.

<serviceInstance>

This element defines an instance of a service provider, such as an identity store service instance, policy store service instance, or login module service instance.

Each provider instance specifies the name of the instance, used to refer to the provider within the configuration file; the name of the provider being instantiated; and, possibly, the properties of the instance. Properties include the location of the instance and can be specified directly, within the instance element itself, or indirectly, by referencing a property or a property set. To change the properties of a service instance, you can use the procedure explained in Section E.1, "Configuring OPSS Service Provider Instances with a WLST Script."

Set properties and extended properties of a service instance in the following ways:

	
Set properties directly through <property> subelements.

	
Set extended properties directly through <extendedProperty> subelements.

	
Refer to previously defined sets of properties through <propertySetRef> subelements.

	
Refer to previously defined sets of extended properties through <extendedPropertySetRef> subelements.

Attributes

	Name	Description
	name	Designates a name for this service instance. Note that no two <serviceInstance> elements may have the same name attribute setting within a jps-config.xml file.
Values: string

Default: n/a (required)

	provider	Indicates which service provider this is an instance of.
The provider value of a <serviceInstance> element must match the name value of a <serviceProvider> element.

Values: string

Default: n/a (required)

Parent Element

<serviceInstances>

Child Elements

<description>, <extendedProperty>, <extendedPropertySetRef>, <property>, or <propertySetRef>

Occurrence

Required within <serviceInstances>, one or more.

<serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

Examples

	
	Example 1
	
The following example illustrates the configuration of a file-based identity store service. For a file-based identity store, the subscriber name is the default realm. The example sets the lo cation using the location property.

<serviceInstances>
 <serviceInstance name="idstore.xml" provider="idstore.xml.provider">
 <!-- Subscriber name must be defined for XML Identity Store -->
 <property name="subscriber.name" value="jazn.com"/>
 <!-- This is the location of XML Identity Store -->
 <property name="location" value="./system-jazn-data.xml"/>
 </serviceInstance>
...
</serviceInstances>

	
	Example 2
	
The following example illustrates the configuration a credential store service. It uses the location property to set the location of the credential store.

<serviceInstances>
 <serviceInstance provider="credstoressp" name="credstore">
 <description>File Based Default Credential Store Service
 Instance</description>
 <property name="location"
 value="${oracle.instance}/config/JpsDataStore/JpsSystemStore" />
 </serviceInstance>
...
</serviceInstances>

	
	Example 3
	
The following example illustrates the configuration of an LDAP-based identity store using Oracle Internet Directory:

<serviceInstance name="idstore.oid" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="OID"/>
 <property name="security.principal.key" value="ldap.credentials"/>
 <property name="security.principal.alias" value="JPS"/>
 <property name="ldap.url" value="ldap://myServerName.com:389"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <property name="username.attr" value="uid"/>
 <property name="groupname.attr" value="cn"/>
</serviceInstance>

	
	Example 4
	
The following example illustrates the configuration of an audit provider:

<serviceInstances>
 <serviceInstance name="audit" provider="audit.provider">
 <property name="audit.filterPreset" value="Low"/>
 <property name="audit.specialUsers" value ="admin, fmwadmin" />
 <property name="audit.customEvents" value ="JPS:CheckAuthorization, CreateCredential, OIF:UserLogin"/>
 <property name="audit.loader.jndi" value="jdbc/AuditDB"/>
 <property name="audit.loader.interval" value="15" />
 <property name="audit.maxDirSize" value="102400" />
 <property name="audit.maxFileSize" value="10240" />
 <property name=" audit.loader.repositoryType " value="Db" />
 </serviceInstance>
 </serviceInstances>

	
See Also:

	
<serviceProvider>, for related examples defining service providers referenced here.

	
<jpsContext>, for a corresponding example of <serviceInstanceRef>.

<serviceInstanceRef>

This element refers to service instances.

Attributes

	Name	Description
	ref 	Refers to a service instance that are part of the context defined in the <jpsContext> parent element. The ref value of a <serviceInstanceRef> element must match the name of a <serviceInstance> element.
Values: string

Default: n/a (required)

Parent Element

<jpsContext>

Child Element

None

Occurrence

Required within a <jpsContext>, one or more.

<jpsContexts> {1}
 <jpsContext> {1 or more}
 <serviceInstanceRef> {1 or more}

Example

See <jpsContext> for an example.

<serviceInstances>

This element is the parent of a <serviceInstance> element.

Parent Element

<jpsConfig>

Child Element

<serviceInstance>

Occurrence

Optional, zero or one.

<jpsConfig>
 <serviceInstances> {0 or 1}
 <serviceInstance> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}
 <propertySetRef> {0 or more}
 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}
 <extendedPropertySetRef> {0 or more}

Example

See <serviceInstance> for an example.

<serviceProvider>

This element defines a service provider. Each provider specifies the type of the provider, such as credential store, authenticators, policy store, or login module; the name of the provider, used to refer to the provider within the configuration file; and the Java class that implements the provider and that is instantiated when the provider is created. Furthermore, the element property specifies settings used to instantiate the provider.

It specifies the following data:

	
The type of service provider (specified in the type attribute)

	
A designated name of the service provider (to be referenced in each <serviceInstance> element that defines an instance of this service provider)

	
The class that implements this service provider and is instantiated for instances of this service provider

	
Optionally, properties that are generic to any instances of this service provider

Attributes

	Name	Description
	type	Specifies the type of service provider being declared; it must be either of the following:
CREDENTIAL_STORE

IDENTITY_STORE

POLICY_STORE

AUDIT

LOGIN

ANONYMOUS

KEY_STORE

IDM (for pluggable identity management)

CUSTOM

The implementation class more specifically defines the type of provider, such as by implementing a file-based identity store or LDAP-based policy store, for example.

Values: string (a value above)

Default: n/a (required)

	name	Designates a name for this service provider. This name is referenced in the provider attribute of <serviceInstance> elements to create instances of this provider. No two <serviceProvider> elements may have the same name attribute setting within a configuration file.
Values: string

Default: n/a (required)

	class	Specifies the fully qualified name of the Java class that implements this service provider (and that is instantiated to create instances of the service provider).
Values: string

Default: n/a (required)

Parent Element

<serviceProviders>

Child Elements

<description> or <property>

Occurrence

Required within the <serviceProviders> element, one or more.

<serviceProviders> {0 or 1}
 <serviceProvider> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}

Examples

The following example illustrates the specification of a login module service provider:

<serviceProviders>
 <serviceProvider type="LOGIN" name="jaas.login.provider"
 class="oracle.security.jps.internal.login.jaas.JaasLoginServiceProvider">
 <description>This is Jaas Login Service Provider and is used to configure
 login module service instances</description>
 </serviceProvider>
</serviceProviders>

The following example illustrates the definition of an audit service provider:

 <serviceProviders>
 <serviceProvider name="audit.provider" type="AUDIT" class="oracle.security.jps.internal.audit.AuditProvider">
 </serviceProvider>
 </serviceProviders>

See <serviceInstance> for other examples.

<serviceProviders>

This element specifies a set of service providers.

Parent Element

<jpsConfig>

Child Element

<serviceProvider>

Occurrence

Optional, one only.

<jpsConfig>
 <serviceProviders> {0 or 1}
 <serviceProvider> {1 or more}
 <description> {0 or 1}
 <property> {0 or more}

Example

See <serviceProvider> for an example.

<value>

This element specifies a value of an extended property, which can have multiple values. Each <value> element specifies one value.

Parent Element

<values>

Child Element

None.

Occurrence

Required within <values>, one or more.

 <extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

Example

See <extendedProperty> for an example.

<values>

This element is the parent element of a <value> element.

Parent Element

<extendedProperty>

Child Element

<value>

Occurrence

Required within <extendedProperty>, one only.

<extendedProperty> {0 or more}
 <name> {1}
 <values> {1}
 <value> {1 or more}

Example

See <extendedProperty> for an example.

10 Managing the Credential Store

A credential store is a repository of security data (credentials). A credential can hold user name and password combinations, tickets, or public key certificates. Credentials are used during authentication, when principals are populated in subjects, and, further, during authorization, when determining what actions the subject can perform.

Oracle Platform Security Services includes the Credential Store Framework (CSF), a set of APIs that applications can use to create, read, update, and manage credentials securely. A typical use of the credential store is to store credentials (user name and password) to access some external system, such as a database or an LDAP-base repository.

This chapter is divided into the following sections:

	
Credential Types

	
Managing Credentials with Fusion Middleware Control

	
Managing Credentials with OPSS Scripts

10.1 Credential Types

OPSS supports the following types of credentials according to the data they contain:

	
A password credential encapsulates a user name and a password.

	
A generic credential encapsulates any customized data or arbitrary token, such as a symmetric key.

In CSF, a credential is uniquely identified by a map name and a key name. Typically, the map name corresponds with the name of an application and all credentials with the same map name define a logical group of credentials, such as the credentials used by the application. The combination of map name and key name must be unique for all entries in the credential store.

Oracle Wallet is the default credential store; in a production environment, it is recommended the use of an LDAP-based Oracle Internet Directory as the credential store. It is also recommended that the Oracle Wallet be used to store X.509 certificates. The credential store does not allow the storage of end-user digital certificates.

10.2 Managing the Credential Store

Credentials can be provisioned, retrieved, modified, or deleted, but only by a user in the appropriate administration role. The following sections explain how an administrator can manage credentials using Fusion Middleware Control pages or OPSS scripts, and how code can access data in the CSF.

10.3 Managing Credentials with Fusion Middleware Control

The following procedure explains how to manage credentials with Fusion Middleware Control, including creating, viewing, deleting, or updating a credential.

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Credentials, to display the Credentials page. The following graphic partially illustrates this page:

[image: Surrounding text describes emsyscreds.gif.]

The area Credential Store Provider is read-only and, when expanded, displays the credential store provider currently in use in the domain.

The table below this read-only area allows creating, editing, and searching credentials.

	
At any point, use the button Delete to remove a selected item (key or map) in the table. Note that deleting a credential map, deletes all keys in it. Similarly, use the button Edit to view or modify the data in a selected item.

	
To display credentials matching a given key name, enter the string to match in the box Credential Key Name, and then click the blue button to the right of it. The result of the query is displayed in the table.

	
To redisplay the list of credentials after examining the results of a query, select Domain > Security > Credentials.

To create a credential map:

	
Click Create Map to display the Create Map dialog.

	
In this dialog, enter the name of the map for the credential being created.

	
Click OK to return to the Credentials page. The new credential map name is displayed with a map icon in the table.

To add a key to a credential map:

	
Click Create Key to display the Create Key dialog.

	
In this dialog, select a map from the menu Select Map for the key being created, enter a key in the text box Key, and select a type (Password or Generic) from the pull-down menu Type. The dialog display changes according the type selected.

If Password is selected, enter the required fields (Key, User Name, Password, Confirm Passwords).

If Generic is selected, enter the required field Key and the credential information either as text (select Enter as Text radio button), or as a list of key-value pairs (select Enter Map of Property Name and Value Pairs radio button); to add a key-value pair, click Add Row, and then enter the Property Name, Value, and Confirm Value in the added arrow.

Figure 10-1 illustrates the Create Key dialog used to create a generic key.

	
Click OK to return to the Credentials page. The new key is displayed under the map icon corresponding to the map you selected.

Figure 10-1 The Generic Key Dialog

[image: Surrounding text describes Figure 10-1 .]

To edit a key:

	
Select a key from the table.

	
Click Edit to bring up the Edit Key dialog.

	
In that dialog, modify the key data as appropriate. In case of editing a generic key, use the red X next to a row to delete the corresponding property-value pair.

Figure 10-2 illustrates the Edit Key dialog used to edit a generic key.

	
Click OK to save your changes and return to the Credentials page.

For specific considerations that apply to ADF applications only, see section How to Edit Credentials Deployed with the Application in Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.

Figure 10-2 The Edit Key Dialog

[image: Surrounding text describes Figure 10-2 .]

To remove a key or a map:

	
Select the item from the table.

	
Click Delete and confirm the item's removal.

10.4 Managing Credentials with OPSS Scripts

An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this section apply to both platforms: WebLogic Application Server and WebSphere Application Server.

An online script is a script that requires a connection to a running server. Unless otherwise stated, scripts listed in this section are online scripts and operate on a policy store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that are offline, that is, they do not require a server to be running to operate.

Read-only scripts can be performed only by users in the following WebLogic groups: Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only by users in the following WebLogic groups: Admin or Configurator. All WLST scripts are available out-of-the-box with the installation of the Oracle WebLogic Server.

WLST scripts can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.

WASAdmin scripts can be run in interactive mode only. For details, see Oracle Fusion Middleware Third-Party Application Server Guide.

For platform-specific requirements to run an OPSS script, see Important Note.

OPSS provides the following scripts on all supported platforms to administer credentials (all scripts are online, unless otherwise stated):

	
listCred

	
updateCred

	
createCred

	
deleteCred

	
modifyBootStrapCredential

	
addBootStrapCredential

10.4.1 listCred

The script listCred returns the list of attribute values of a credential in the credential store with given map name and key name. This script lists the data encapsulated in credentials of type password only.

Script Mode Syntax

listCred.py -map mapName -key keyName

Interactive Mode Syntax

listCred(map="mapName", key="keyName")

The meanings of the arguments (all required) are as follows:

	
map specifies a map name (folder).

	
key specifies a key name.

Example of Use

The following invocation returns all the information (such as user name, password, and description) in the credential with map name myMap and key name myKey:

listCred.py -map myMap -key myKey

10.4.2 updateCred

The script updateCred modifies the type, user name, and password of a credential in the credential store with given map name and key name. This script updates the data encapsulated in credentials of type password only. Only the interactive mode is supported.

Interactive Mode Syntax

updateCred(map="mapName", key="keyName", user="userName", password="passW", [desc="description"])

The meanings of the arguments (optional arguments are enclosed by square brackets) are as follows:

	
map specifies a map name (folder) in the credential store.

	
key specifies a key name.

	
user specifies the credential user name.

	
password specifies the credential password.

	
desc specifies a string describing the credential.

Example of Use

The following invocation updates the user name, password, and description of the password credential with map name myMap and key name myKey:

updateCred(map="myMap", key="myKey", user="myUsr", password="myPassw")

10.4.3 createCred

The script createCred creates a credential in the credential store with a given map name, key name, user name and password. This script can create a credential of type password only. Only the interactive mode is supported.

Interactive Mode Syntax

createCred(map="mapName", key="keyName", user="userName", password="passW", [desc="description"])

The meanings of the arguments (optional arguments are enclosed by square brackets) are as follows:

	
map specifies the map name (folder) of the credential.

	
key specifies the key name of the credential.

	
user specifies the credential user name.

	
password specifies the credential password.

	
desc specifies a string describing the credential.

Example of Use

The following invocation creates a password credential with the specified data:

createCred(map="myMap", key="myKey", user="myUsr", password="myPassw")

10.4.4 deleteCred

The script deleteCred removes a credential with given map name and key name from the credential store.

Script Mode Syntax

deleteCred.py -map mapName -key keyName

Interactive Mode Syntax

deleteCred(map="mapName",key="keyName")

The meanings of the arguments (all required) are as follows:

	
map specifies a map name (folder).

	
key specifies a key name.

Example of Use

The following invocation removes the credential with map name myMap and key name myKey:

deleteCred.py -map myMap -key myKey

10.4.5 modifyBootStrapCredential

The offline script modifyBootStrapCredential modifies the bootstrap credentials configured in the default jps context, and it is typically used in the following scenario: suppose that the policy and credential stores are LDAP-based, and the credentials to access the LDAP store (stored in the LDAP server) are changed. Then this script can be used to seed those changes into the bootstrap credential store.

This script is available in interactive mode only.

Interactive Mode Syntax

modifyBootStrapCredential(jpsConfigFile="pathName", username="usrName", password="usrPass")

The meanings of the arguments (all required) are as follows:

	
jpsConfigFile specifies the location of the file jps-config.xml relative to the location where the script is run.

	
username specifies the distinguished name of the user in the LDAP store.

	
password specifies the password of the user.

Example of Use

Suppose that in the LDAP store, the password of the user with distinguished name cn=orcladmin has been changed to welcome1, and that the configuration file jps-config.xml is located in the current directory.Then the following invocation changes the password in the bootstrap credential store to welcome1:

modifyBootStrapCredential(jpsConfigFile='./jps-config.xml', username='cn=orcladmin', password='welcome1')

Any output regarding the audit service can be disregarded.

10.4.6 addBootStrapCredential

The offline script addBootStrapCredential adds a password credential with given map, key, user name, and user password to the bootstrap credentials configured in the default jps context of a jps configuration file.

This script is available in interactive mode only.

Interactive Mode Syntax

addBootStrapCredential(jpsConfigFile="pathName", map="mapName", key="keyName", username="usrName", password="usrPass")

The meanings of the arguments (all required) are as follows:

	
jpsConfigFile specifies the location of the file jps-config.xml relative to the location where the script is run.

	
map specifies the map of the credential to add.

	
key specifies the key of the credential to add.

	
username specifies the name of the user in the credential to add.

	
password specifies the password of the user in the credential to add.

Example of Use

The following invocation adds a credential to the bootstrap credential store:

addBootStrapCredential(jpsConfigFile='./jps-config.xml', map='myMapName', key='myKeyName', username='myUser', password='myPassword')

5 Security Administration

This chapter introduces the tools available to an administrator and the typical tasks to manage application security; it is divided into the following sections:

	
Choosing the Administration Tool According to Technology

	
Basic Security Administration Tasks

	
Typical Security Practices with Fusion Middleware Control

	
Typical Security Practices with the Administration Console

	
Typical Security Practices with Oracle Entitlements Server

	
Typical Security Practices with OPSS Scripts

For advanced administrator tasks, see Appendix E, "Administration with WLST Scripting and MBean Programming."

5.1 Choosing the Administration Tool According to Technology

The four basic tools available to a security administrator are Oracle Enterprise Manager Fusion Middleware Control, Oracle WebLogic Administration Console, Oracle Entitlements Server, and the Oracle WebLogic Scripting Tool (WLST). For further details on these and other tools, see chapter 3, Getting Started Managing Oracle Fusion Middleware in Oracle Fusion Middleware Administrator's Guide.

The main criterion that determines the tool to use to administer application security is whether the application uses just container-managed security (Java EE application) or it includes Oracle ADF security (Oracle ADF application).

Oracle-specific applications, such as Oracle Application Development Framework (Oracle ADF) applications, Oracle Server-Oriented Architecture (SOA) applications, and Web Center applications, are deployed, secured, and maintained with Fusion Middleware Control and Oracle Entitlements Server.

Other applications, such as those developed by third parties, Java SE, and Java EE applications, are typically deployed, secured, and administered with Oracle WebLogic Administration Console or with WLST.

The recommended tool to develop Java applications is Oracle JDeveloper 11g. This tool helps the developer configure file-based identity, policy, and credential stores through specialized graphical editors. In particular, when developing Oracle ADF applications, the developer can run a wizard to configure security for web pages associated with Oracle ADF resources (such as Oracle ADF task flows and page definitions), and define security artifacts using a specialized, visual editor for the file jazn-data.xml.

For details about procedures and related topics, see the following sections in the Oracle JDeveloper online help documentation:

	
Securing a Web Application Using Oracle ADF Security

	
Securing a Web Application Using Java EE Security

	
About Oracle ADF Security as an Alternative to Security Constraints

	
About Securing Web Applications

For further details about Oracle ADF Security and its integration with Oracle JDeveloper, see Accessing the Oracle ADF Security Design Time Tools, in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For further details about Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

5.2 Basic Security Administration Tasks

Table 5-1 lists some basic security tasks and the tools used to execute them. Recall that the tool chosen to configure and manage application security depends on the type of the application: for Java EE applications, which use just container-managed security, use the Oracle WebLogic Administration Console; for Oracle ADF applications, which use OPSS authorization, use Fusion Middleware Control and Oracle Entitlements Server.

Manual settings without the aid of the tools listed below are not recommended. For information about using the Oracle WebLogic Administration Console, see the list of links following the table below. For details about Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Table 5-1 Basic Administrative Security Tasks and Tools

	Task	Use Fusion Middleware Control Security Menu	Use Other Tool
	
Configure WebLogic Domains

	
	
WebLogic Admin Console

	
Configure WebLogic Security Realms

	
	
WebLogic Admin Console

	
Manage WebLogic Domain Authenticators

	
	
WebLogic Admin Console

	
Enable SSO for MS clients, Web Browsers, and HTTP clients.

	
	
WebLogic Admin Console

	
Manage Domain Administrative Accounts

	
	
WebLogic Admin Console

	
Configuring the identity store service

	
	
WebLogic Admin Console or the WebSphere command configureIdentityStore

	
Manage Credentials for Oracle ADF Application

	
Credentials

	

	
Enable anonymous role in Oracle ADF Application

	
Security Provider Configuration

	

	
Enable authenticated role in Oracle ADF Application

	
Security Provider Configuration

	

	
Enable JAAS in Oracle ADF Application

	
Security Provider Configuration

	

	
Map application to enterprise groups for Oracle ADF Application

	
Application Roles or Application Policies

	
Oracle Entitlements Server

	
Manage system-wide policies for Oracle ADF Applications

	
System Policies

	

	
Configure OPSS Properties

	
Security Provider Configuration

	

	
Reassociate Policy and Credential Stores

	
Security Provider Configuration

	

Details about using the Oracle WebLogic Administration Console for the tasks above are found in the following documents:

	
For general use of the Administration Console, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

	
To configure WebLogic domains, see Oracle Fusion Middleware Understanding Domain Configuration for Oracle WebLogic Server.

	
To configure WebLogic security realms, see section Creating and Configuring a New Security Realm: Main Steps in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
To manage WebLogic domain authenticators, see chapter 5 in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
To configure SSO with MS clients, see chapter 6 in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
To manage domain administrative accounts, see chapter 6 in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

	
For details about configuring an LDAP identity store, see Section 3.1.2, "Oracle WebLogic Authenticators," and Section 3.1.3, "WebSphere Identity Stores."

	
Note:

OPSS does not support automatic backup or recovery of server files. It is recommended that the server administrator periodically back up all server configuration files, as appropriate.
For details about backing up and recovering Oracle Fusion Middleware, see chapter 15, Introducing Backup and Recovery, in Oracle Fusion Middleware Administrator's Guide.

5.2.1 Setting Up a Brand New Production Environment

A new production environment based on an existing environment can be set up in either of the following ways:

	
Replicating an established environment using Oracle Cloning utilities. For details, see section 9.5, Cloning Oracle Fusion Middleware Entities, in Oracle Fusion Middleware Administrator's Guide.

	
Reinstalling software and configuring the environment, as it was done to set up the established environment.

5.3 Typical Security Practices with Fusion Middleware Control

Fusion Middleware Control is a Web-based tool that allows the administration of a network of applications from a single point. Fusion Middleware Control is used to deploy, configure, monitor, diagnose, and audit Oracle SOA applications, Oracle ADF applications, Oracle WebCenter, and other Oracle applications using OPSS. Note that this section mentions only security-related operations.

In regards to security, it provides several administration tasks; using this tool, an administrator can:

	
Post-installation and before deploying applications, reassociate the policy and credential stores; for details, see Section 8.5.1, "Reassociating with Fusion Middleware Control."

	
Post-installation and before deploying applications, define OPSS properties. For details, see Section 8.7, "Configuring the Identity Provider, Property Sets, and SSO."

	
At deploy time, configure the automatic migration of file-based application policies and credentials to LDAP-based domain policies and credentials.

For details see:

	
Section 6.3, "Deploying Oracle ADF Applications to a Test Environment."

	
Section 8.6, "Migrating the OPSS Security Store."

	
For each application after it is deployed:

	
Manage application policies. For details, see Section 9.1, "Managing the Policy Store."

	
Manage credentials; for details, see Section 10.2, "Managing the Credential Store."

	
Specify the mapping from application roles to users, groups, and application roles. For details, see Section 9.2.2, "Managing Application Roles."

	
For the domain, manage system policies; for details see Section 9.2.3, "Managing System Policies."

	
For the domain, manage OPSS properties; for details see Section 8.7, "Configuring the Identity Provider, Property Sets, and SSO."

For a summary of security administrative tasks and the tools used to execute them, see Basic Security Administration Tasks.

For further details about other functions, see the Fusion Middleware Control online help documentation.

For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

5.4 Typical Security Practices with the Administration Console

The Oracle WebLogic Administration Console is a Web-based tool that allows, among other functions, application deployment and redeployment, domain configuration, and monitoring of application status. Note that this section mentions only security-related operations.

Typical tasks performed with the Oracle WebLogic Administration Console include the following:

	
Starting and stopping Oracle WebLogic Servers; for details see section Starting and Stopping Servers in Oracle Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server.

	
Configuring Oracle WebLogic Servers and Domains; for details see section Configuring Existing Domains in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

	
Deploying applications; for details, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

	
Configuring fail over support; for details see section Failover and Replication in a Cluster in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

	
Configuring WebLogic domains and WebLogic realms.

	
Managing users and groups in domain authenticators.

	
Enabling the use of Single Sign-On for MS clients, Web browsers, and HTTP clients.

	
Managing administrative users and administrative policies.

For details about Oracle WebLogic Administration Console, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

5.5 Typical Security Practices with Oracle Entitlements Server

Typical security tasks performed with Oracle Entitlements Server include the following:

	
Searching application security artifacts.

	
Managing application security artifacts, including policies.

	
Viewing the external role hierarchy.

	
Managing the application role hierarchy.

For a list of some of the most frequent security tasks to administer application security with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

5.6 Typical Security Practices with OPSS Scripts

Most of the operations available in the Oracle WebLogic Administration Console can be effected with OPSS scripts, a set of command-line interface that allows the scripting and automation of administration tasks, including domain configuration and application deployment.

For the list of security-related OPSS scripts, see Appendix I, "OPSS Scripts." For the complete list of WLST scripts, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

23 Authorization for Java SE Applications

This chapter explains how to develop and configure authorization in Java SE applications and lists some unsupported methods in the following sections:

	
Configuring Policy and Credential Stores in Java SE Applications

	
Unsupported Methods for File-Based Policy Stores

The information in this chapter assumes familiarity with Section 19.3.3, "Programmatic Authorization." For details about the policy model, see Section 20.3, "The JAAS/OPSS Authorization Model."

23.1 Configuring Policy and Credential Stores in Java SE Applications

The configuration of policy and credential stores in Java SE applications is explained in the following sections:

	
Configuring File-Based Policy and Credential Stores

	
Configuring LDAP-Based Policy and Credential Stores

	
Configuring DB-Based OPSS Security Stores

For details about configuring authentication for Java SE applications, see Section 22.2, "Authentication for Java SE Applications."

System properties should be set, as appropriate, for authorization to work in Java SE applications. For a complete list of properties, see Section F.1, "OPSS System Properties."

A Java SE application can use file-, LDAP-, or DB-based store providers; these services are configured in the application file jps-config-jse.xml.

23.1.1 Configuring File-Based Policy and Credential Stores

A file-based policy store is specified in the file system-jazn-data.xml; a file-based credential store is specified in the file cwallet.sso (this wallet file should not be confused with the bootstrap file, also named cwallet.sso, which contains the credentials to access LDAP stores, when the application security is LDAP-based).

For details about wallets, see Section 21.4.3, "Using a Wallet-Based Credential Store." For details about modifying or adding bootstrap credentials, see Section 10.4.5, "modifyBootStrapCredential," and Section 10.4.6, "addBootStrapCredential."

The following fragments illustrate the configuration of file-based policy and credential stores, and the jpsContext that reference them:

<serviceProviders>
 <serviceProvider type="CREDENTIAL_STORE" name="credstoressp"
 class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider">
 <description>SecretStore-based CSF Provider</description>
 </serviceProvider>
 <serviceProvider type="POLICY_STORE" name="policystore.xml.provider"
 class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider">
 <description>XML-based PolicyStore Provider</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
 <serviceInstance name="credstore" provider="credstoressp" location="./">
 <description>File-based Credential Store Service Instance</description>
 </serviceInstance>

 <serviceInstance name="policystore.xml" provider="policystore.xml.provider" location="./system-jazn-data.xml">
 <description>File-based Policy Store Service Instance</description>
 <property name="oracle.security.jps.policy.principal.cache.key" value="false"/>
 </serviceInstance>
</serviceInstances>

<jpsContexts default="TestJSE">
 <jpsContext name="TestJSE">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="policystore.xml"/>
 ...
 </jpsContext>
 ...
</jpsContexts>

Note the required setting of the property oracle.security.jps.policy.principal.cache.key to false in the policy store instance.

23.1.2 Configuring LDAP-Based Policy and Credential Stores

This section assumes that an LDAP-based store has been set to be used as the policy and credential stores; for details about setting up nodes in an Oracle Internet Directory, see section Section 8.2.2, "Prerequisites to Using an LDAP-Based Security Store."

The following fragments illustrate the configurations of instances of LDAP-based policy and credential stores for a Java SE application:

<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=PS1domainRC3" name="oracle.security.jps.farm.name"/>
 <property value="cn=myTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myComp.com:1234" name="ldap.url"/> </serviceInstance>

<serviceInstance provider="ldap.credentialstore.provider" name="credstore.ldap">
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=PS1domainRC3" name="oracle.security.jps.farm.name"/>
 <property value="cn=myTestNode" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myComp.com:1234" name="ldap.url"/>
</serviceInstance>

The following fragment illustrates the configuration of the bootstrap credentials file (cwallet.sso), which allows the program access to the LDAP server:

<serviceInstance location="./bootstrap" provider="credstoressp" name="bootstrap.cred">
 <property value="./bootstrap" name="location"/>
</serviceInstance>

The following fragment illustrates the configuration of the necessary jpsContexts that reference the instances above:

<jpsContexts default="TestJSE">
 <jpsContext name="TestJSE">
 <serviceInstanceRef ref="policystore.ldap"/>
 <serviceInstanceRef ref="credstore.ldap"/>
 </jpsContext>
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
</jpsContexts>

The following code fragment illustrates how to obtain programmatically a reference to the LDAP-based policy store configured above, and it assumes that the following system properties have been set in the environment:

	
jps.policystore.hybrid.mode, set to true.

	
oracle.security.jps.config, set to the location of the file jps-config-jse.xml.

String contextName="TestJSE"; ...
public static PolicyStore getPolicyStore(String contextName) {
 try-block
 JpsContextFactory ctxFact;
 ctxFact = JpsContextFactory.getContextFactory();
 JpsContext ctx = ctxFact.getContext(contextName);
 return ctx.getServiceInstance(PolicyStore.class);
 catch-block
...

23.1.3 Configuring DB-Based OPSS Security Stores

This section assumes that a DB-based store has been set to be used as the OPSS security store. For details about setting up nodes in a DB, see section Section 8.3.1, "Prerequisites to Using a DB-Based Security Store."

Note the following important points regarding the sample configuration below:

	
The value of the configuration property jdbc.url should be identical to the name of the JDBC data source entered when the data source was created.

	
The values of the bootstrap credentials (map and key) must match those passed to the WLST script addBootStrapCredential when the bootstrap credential was created.

The following fragment illustrates the configuration of DB-based policy, credential, and key stores in the file jps-config-jse.xml valid only for a Java SE application:

<jpsConfig …>
 <propertySets>
 <propertySet name="props.db.1">
 <property value="cn=myDomain" name="oracle.security.jps.farm.name"/>
 <property value="DB_ORACLE" name="server.type"/>
 <property value="cn=myRoot" name="oracle.security.jps.ldap.root.name"/>
 <property name="jdbc.url" value="jdbc:oracle:thin:@myhost.com:1521/srv_name"/>
 <property name="jdbc.driver" value="oracle.jdbc.driver.OracleDriver"/>
 <property name="bootstrap.security.principal.key" value="myKeyName" />
 <property name="bootstrap.security.principal.map" value="myMapName" />
 </propertySet>
 </propertySets>
 <serviceProviders>
 <serviceProvider class="oracle.security.jps.internal.policystore.OPSSPolicyStoreProvider"
 type="POLICY_STORE" name="policy.rdbms">
 <description>DBMS based PolicyStore</description>
 </serviceProvider>

 <serviceProvider class="oracle.security.jps.internal.credstore.rdbms.DbmsCredentialStoreProvider"
 type="CREDENTIAL_STORE" name="db.credentialstore.provider" >

 <serviceProvider class="oracle.security.jps.internal.keystore.KeyStoreProvider"
 type="KEY_STORE" name="keystore.provider" >
 <property name="provider.property.name" value="owsm"/>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <serviceInstance name="policystore.rdbms" provider="db.policystore.provider">
 <propertySetRef ref = "props.db.1"/>
 <property name="policystore.type" value="DB_ORACLE"/>
 </serviceInstance>

 <serviceInstance name="credstore.rdbms" provider="db.credstore.provider">
 <propertySetRef ref = "props.db.1"/>
 </serviceInstance>

 <serviceInstance name="keystore.rdbms" provider="db.keystore.provider">
 <propertySetRef ref = "props.db.1"/>
 <property name="keystore.provider.type" value="db"/>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">
 <jpsContext name="default">
 <serviceInstanceRef ref="policystore.rdbms"/>
 <serviceInstanceRef ref="credstore.rdbms"/>
 <serviceInstanceRef ref="keystore.rdbms"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

23.2 Unsupported Methods for File-Based Policy Stores

This release does not support, for file-based policy stores, methods involving the following features:

	
Bulk authorization

	
Complex queries

	
Cascading deletions

Bulk authorization is encapsulated in the following method of the interface oracle.security.jps.service.policystore:

java.util.Set<ResourceActionsEntry>
checkBulkAuthorization(javax.security.auth.Subject subject,
 java.util.Set<ResourceActionsEntry> requestedResources)
 throws PolicyStoreException

Complex queries relates to any method that takes a query. When the policy store is file-based, the query must be simple; if such a method is passed a complex query and the policy store is file-based, the method will throw an exception.

A simple query is a query with just one search criterion; a complex query is a query with two or more search criteria; each call to addQuery adds a criterion to the query.

The following code fragment that illustrates the building of a simple query that returns of all permissions with a display name matching the string MyDisplayName:

PermissionSetSearchQuery query = new PermissionSetSearchQuery();
query.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.DISPLAY_NAME,
 false,
 ComparatorType.EQUALITY,
 "MyDisplayName",
 BaseSearchQuery.MATCHER.EXACT);
getPermissionSets(query);

The following example illustrates the building of a complex query that returns all permission sets with a given resource type and a given resource instance name:

PermissionSetSearchQuery query = new PermissionSetSearchQuery();
query.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.RESOURCE_TYPE,
 false,
 ComparatorType.EQUALITY,
 "MyResourceType",
 BaseSearchQuery.MATCHER.EXACT);

query.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.RESOURCE_NAME,
 false,
 ComparatorType.EQUALITY,
 "MyResourceInstanceName",
 BaseSearchQuery.MATCHER.EXACT);

query.setANDMatch();
getPermissionSets(query);

Cascading deletions relates to any method that includes the Boolean argument cascadeDelete. The only value allowed for this argument in case the policy store is file-based is FALSE. Here is an example of such a method in the interface ResourceTypeManager:

void deleteResourceType(EntryReference rtRef, boolean cascadeDelete)
 throws PolicyObjectNotFoundException,
 PolicyStoreOperationNotAllowedException,
 PolicyStoreException

20 The OPSS Policy Model

This chapter explains the OPSS policy and authorization models in the following sections:

	
The Security Policy Model

	
Authorization Overview

	
The JAAS/OPSS Authorization Model

20.1 The Security Policy Model

For details about the OPSS policy model and the security artifacts used in it, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

20.2 Authorization Overview

This section compares and contrasts the authorization available in the Java EE and the JAAS models, in the following sections:

	
Introduction to Authorization

	
The Java EE Authorization Model

	
The JAAS Authorization Model

20.2.1 Introduction to Authorization

A Java 2 policy specifies the permissions granted to signed code loaded from a given location. A JAAS policy extends Java 2 grants by allowing an optional list of principals; permissions are granted only to code from a given location, possibly signed, and run by a user represented by those principals.

The Policy Store is a repository of system and application-specific policies and roles. Application roles can be granted (mapped) to enterprise users and groups specific to the application (such as administrative roles). A policy can grant permissions to any of these roles, groups, or users as principals.

For more details about policy-related security artifacts, see Chapter 3, "Policy Store Basics."

An application can delegate the enforcement of authorization to the container, or it can implement its own enforcement of policy checking with calls to methods such as checkPermission, checkBulkAuthorization, or getGrantedResources.

For details about policy checking with API calls, see Checking Policies.

20.2.2 The Java EE Authorization Model

The Java EE authorization model uses role membership to control access to EJB methods and web resources that are referenced by URLs; policies assign permissions to users and roles, and they are enforced by the container to protect resources.

In the Java EE model, authorization is implemented in either of the following ways:

	
Declaratively, where authorization policies are specified in deployment descriptors; the container reads those policies from deployment descriptors and enforces them. No special application code is required to enforce authorization.

	
Programmatically, where authorization policies are checked in application code; the code checks whether a subject has the appropriate permission to execute specific sections of code. If the subject fails to have the proper permission, the code throws an exception.

Table 20-1 shows the advantages and disadvantages of each approach.

Table 20-1 Comparing Authorization in the Java EE Model

	Authorization Type	Advantages	Disadvantages
	
Declarative

	
No coding needed; easy to update by modifying just deployment descriptors.

	
Authorization is coarse-grained and specified at the URL level or at the method level (for EJBs).

	
Programmatic

	
Specified in application code; can protect code at a finer levels of granularity.

	
Not so easy to update, since it involves code changes and recompilation.

A container can provide authorization to applications running in it in two ways: declaratively and programmatically; these topics and an example are explained in the following sections:

	
Declarative Authorization

	
Programmatic Authorization

	
Java EE Code Example

20.2.2.1 Declarative Authorization

Declarative authorization allows to control access to URL-based resources (such as servlets and pages) and methods in EJBs.

The basic steps to configure declarative authorization are the following:

	
In standard deployment descriptors, specify the resource to protect, such as a web URL or an EJB method, and a logical role that has access to the resource.

Alternatively, since Java EE 1.5 supports annotations, use code annotations instead of deployment descriptors.

	
In proprietary deployment descriptors (such as web.xml), map the logical role defined in step 1 to an enterprise group.

For details, see the chapter Using Security Services in Oracle Fusion Middleware Enterprise JavaBeans Developer's Guide for Oracle Containers for Java EE.

20.2.2.2 Programmatic Authorization

Programmatic authorization provides a finer grained authorization than the declarative approach, and it requires that the application code invoke the method isUserInRole (for servlets and JSPs) or the method isCallerInRole (for EJBs), both available from standard Java APIs.

Although these methods still depend on role membership to determine authorization, they give finer control over authorization decisions since the controlling access is not limited at the resource level (EJB method or URL).

20.2.2.3 Java EE Code Example

The following example illustrates a servlet calling the method isUserInRole. It is assumed that the EAR file packing the servlet includes the configuration files web.xml and weblogic-application.xml, and that these files include the following configuration fragments:

web.xml

 <!-- security roles -->
 <security-role>
 <role-name>sr_developer</role-name>
 </security-role>

weblogic-application.xml

The following snippet shows the mapping between the user weblogic and the security role sr_developer:

<wls:security-role-assignment>
 <wls:role-name>sr_developer</wls:role-name>
 <wls:principal-name>weblogic</wls:principal-name>
</wls:security-role-assignment>

Code Example Invoking isUserInRole

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.util.Date;

public class PolicyServlet extends HttpServlet {

 public PolicyServlet() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 final ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("
request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('sr_developer') = " + request.isUserInRole("sr_developer") + "
");
 out.println("request.getUserPrincipal = " + request.getUserPrincipal() + "
");
 out.println("</BODY>");
 out.println("</HTML>");
 }
}

20.2.3 The JAAS Authorization Model

The JAAS authorization introduces permissions but can still use the notion of roles. An authorization policy binds permissions with a Subject (role, group, or user) and, optionally, with source code. Granting to a role is achieved through calls to addPrincipalsToAppRole.

Permissions are evaluated by calls to the SecurityManager or the AccessController, and it allows fine-grained control to resources.

In this model, an authorization policy specifies the following information:

	
Application roles and enterprise groups.

	
Permissions granted to users, groups, and code sources. For users and groups, they determine what a user or the member of a group is allowed to access. For code sources, they determine what actions the code is allowed to perform.

When programming with this model, sensitive lines of code are preceded with calls to check whether the current user or role is granted the appropriate permissions to access the code. If the user has the appropriate permissions, the code is run. Otherwise, the code throws and exception.

For details about JAAS standard permissions, see http://java.sun.com/Java SE/6/docs/technotes/guides/security/permissions.html.

20.3 The JAAS/OPSS Authorization Model

JAAS/OPSS authorization is based on controlling the operations that a class can perform when it is loaded and run in the environment.

This section is divided into the following sections:

	
The Resource Catalog

	
Managing Policies

	
Checking Policies

	
The Class ResourcePermission

20.3.1 The Resource Catalog

OPSS supports the specification and runtime support of the resource catalog in file-, LDAP-, and DB-based policy stores.

Using the resource catalog provides the following benefits:

	
Describes policies and secured artifacts in human-readable terms.

	
Allows defining and modifying policies independently of and without knowledge of the application source code.

	
Allows browsing and searching secured artifacts.

	
Allows grouping of secured artifacts in building blocks (entitlements or permission sets) which can be later used in authorization policies.

20.3.2 Managing Policies

Resource catalog artifacts can be managed with the policy management API. Specifically, the following interfaces, all subinterfaces of the interface oracle.security.jps.service.policystore.EntityManager, are directly relevant to the artifacts in the resource catalog:

	
GrantManager - This interface includes methods to query grants using search criteria, to obtain list of grants that satisfy various combinations of resource catalog artifacts, and to grant or revoke permissions to principals.

	
PermissionSetManager - This interface includes methods to create, modify, and query permission sets (entitlements).

	
ResourceManager - This interface includes methods to create, delete, and modify resource (instances).

	
ResourceTypeManager - This interface includes methods to create, delete, modify, and query resource types.

For details about these interfaces, see the Javadoc document Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services.

The following code snippet illustrates the creation of a resource type, a resource instance, actions, and a permission set:

import oracle.security.jps.service.policystore.entitymanager.*;
import oracle.security.jps.service.policystore.search.*;
import oracle.security.jps.service.policystore.info.resource.*;
import oracle.security.jps.service.policystore.info.*;
import oracle.security.jps.service.policystore.*;
import java.util.*;

public class example {
 public static void main(String[] args) throws Exception {
 ApplicationPolicy ap;

 ResourceTypeManager rtm = ap.getEntityManager(ResourceTypeManager.class);
 ResourceTypeSearchQuery query = new ResourceTypeSearchQuery();
 query.setANDMatch();
 query.addQuery(ResourceTypeSearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "resourceType", BaseSearchQuery.MATCHER.EXACT);
 List<ResourceTypeEntry> allResourceTypes = rtm.getResourceTypes(query);

 ResourceManager rm = ap.getEntityManager(ResourceManager.class);
 ResourceSearchQuery ResourceQuery = new ResourceSearchQuery();
 ResourceQuery.setANDMatch();
 ResourceQuery.addQuery(ResourceSearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "R2", BaseSearchQuery.MATCHER.EXACT);
 List<ResourceEntry> allResources = rm.getResources("RT2", ResourceQuery);

 PermissionSetManager psm = ap.getEntityManager(PermissionSetManager.class);
 PermissionSetSearchQuery pssq = new PermissionSetSearchQuery();
 pssq.setANDMatch();
 pssq.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "PS1", BaseSearchQuery.MATCHER.EXACT);
 List<PermissionSetEntry> allPermSets = psm.getPermissionSets(pssq);

 RoleCategoryManager rcm = ap.getEntityManager(RoleCategoryManager.class);
 RoleCategorySearchQuery rcsq = new RoleCategorySearchQuery();
 rcsq.setANDMatch();
 rcsq.addQuery(RoleCategorySearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "roleCategoryCartoon", BaseSearchQuery.MATCHER.EXACT);

 List<RoleCategoryEntry> allRoleCategories = rcm.getRoleCategories(rcsq);
 }
}

The following code snippet illustrates a complex query involving resource catalog elements:

//ApplicationPolicy ap as in the preceeding example
ResourceTypeManager rtm = ap.getEntityManager(ResourceTypeManager.class);
ResourceTypeSearchQuery query = new ResourceTypeSearchQuery();
query.setANDMatch();
query.addQuery(ResourceTypeSearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "resourceType", BaseSearchQuery.MATCHER.EXACT);
List<ResourceTypeEntry> enties = rtm.getResourceTypes(query);

ResourceManager rm = ap.getEntityManager(ResourceManager.class);
ResourceSearchQuery ResourceQuery = new ResourceSearchQuery();
ResourceQuery.setANDMatch();
ResourceQuery.addQuery(ResourceSearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "R2", BaseSearchQuery.MATCHER.EXACT);
ArrayList<BaseSearchQuery> querries = ResourceQuery.getQueries();
List<ResourceEntry> resources = rm.getResources("RT2", ResourceQuery);

PermissionSetManager psm = ap.getEntityManager(PermissionSetManager.class);
PermissionSetSearchQuery pssq = new PermissionSetSearchQuery();
pssq.setANDMatch();
pssq.addQuery(PermissionSetSearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "PS1", BaseSearchQuery.MATCHER.EXACT);
List<PermissionSetEntry> psets = psm.getPermissionSets(pssq);

RoleCategoryManager rcm = ap.getEntityManager(RoleCategoryManager.class);
RoleCategorySearchQuery rcsq = new RoleCategorySearchQuery();
rcsq.setANDMatch();
rcsq.addQuery(RoleCategorySearchQuery.SEARCH_PROPERTY.NAME, false, ComparatorType.EQUALITY, "roleCategoryCartoon", BaseSearchQuery.MATCHER.EXACT);
ArrayList<BaseSearchQuery> queries = rcsq.getQueries();
List<RoleCategoryEntry> rcs = rcm.getRoleCategories(rcsq);

The following code sample illustrates how to create a grant:

GrantManager gm = ap.getEntityManager(GrantManager.class);
Set<PrincipalEntry> pe = new HashSet<PrincipalEntry>();
List<AppRoleEntry> are = ap.searchAppRoles(appRoleName);
pe.addAll(are);
gm.grant(pe, null, permissionSetName);

20.3.3 Checking Policies

This section illustrates several ways to check policies programmatically, in the following sections:

	
Using the Method checkPermission

	
Using the Methods doAs and doAsPrivileged

	
Using the Method checkBulkAuthorization

	
Using the Method getGrantedResources

	
Important Note 1:

Authorization failures are not visible, by default, in the console. To have authorization failures sent to the console you must set the system variable jps.auth.debug as follows: -Djps.auth.debug=true
In particular, to have JpsAuth.checkPermission failures sent to the console, you must set the variable as above.

	
Important Note 2:

The OPSS policy provider must be explicitly set in Java SE applications, as illustrated in the following snippet:

java.security.Policy.setPolicy(new oracle.security.jps.internal.policystore.JavaProvider())

Not setting the policy provider explicitly in a Java SE application may cause runtime methods (such as JpsAuth.checkPermission) to return incorrect values.

20.3.3.1 Using the Method checkPermission

Oracle Fusion Middleware supports the use of the method checkPermission in the following standard classes:

	
java.lang.SecurityManager

	
java.security.AccessController

In addition, Oracle Fusion Middleware also supports the use of the method checkPermission in the class oracle.security.jps.util.JpsAuth.:

Oracle recommends the use of checkPermission in the class JpsAuth (instead of the previous two) because it provides better debugging support, better performance, and audit support.

The static method AccessController.checkPermission uses the default access control context (the context inherited when the thread was created). To check permissions on some other context, call the instance method checkPermission on a particular AccessControlContext instance.

The method checkPermission behaves according to the value of the JAAS mode (see JAAS mode in Chapter 21, "Configuring the Servlet Filter and the EJB Interceptor"), as listed in the following table:

Table 20-2 Behavior of checkPermission According to JAAS Mode

	JAAS Mode Setting	checkPermission
	
off or undefined

	
Enforces code-based security based on the security policy in effect, and there is no provision for subject-based security.

	
doAs

	
Enforces a combination of code-based and subject-based security using the access control context created through the doAs block.

	
doAsPrivileged

	
Enforces subject-based security using a null access control context.

	
subjectOnly

	
Takes into consideration grants involving principals only (and it disregards those involving codebase) when evaluating a permission.

	
Note:

If checkPermission is called inside a doAs block and the check permission call fails, to display the failed protection domain you must set the system property java.security.debug=access,failure.

The following example illustrates a servlet checking a permission. It is assumed that the EAR file packing the servlet includes the configuration files jazn-data.xml and web.xml.

jazn-data.xml

The application file-based policy store is as follows:

<?xml version="1.0" ?>
<jazn-data>
 <policy-store>
 <applications>
 <application>
 <name>MyApp</name>

 <app-roles>
 <app-role>
 <name>AppRole</name>
 <display-name>AppRole display name</display-name>
 <description>AppRole description</description>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 </app-role>
 </app-roles>

 <role-categories>
 <role-category>
 <name>MyAppRoleCategory</name>
 <display-name>MyAppRoleCategory display name</display-name>
 <description>MyAppRoleCategory description</description>
 </role-category>
 </role-categories>

 <resource-types>
 <resource-type>
 <name>MyResourceType</name>
 <display-name>MyResourceType display name</display-name>
 <description>MyResourceType description</description>
 <provider-name>MyResourceType provider</provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions>write,read</actions>
 </resource-type>
 </resource-types>

 <resources>
 <resource>
 <name>MyResource</name>
 <display-name>MyResource display name</display-name>
 <description>MyResource description</description>
 <type-name-ref>MyResourceType</type-name-ref>
 </resource>
 </resources>

 <permission-sets>
 <permission-set>
 <name>MyEntitlement</name>
 <display-name>MyEntitlement display name</display-name>
 <description>MyEntitlement description</description>
 <member-resources>
 <member-resource>
 <type-name-ref>MyResourceType</type-name-ref>
 <resource-name>MyResource</resource-name>
 <actions>write</actions>
 </member-resource>
 </member-resources>
 </permission-set>
 </permission-sets>

 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>AppRole</name>
 <guid>F5494E409CFB11DEBFEBC11296284F58</guid>
 </principal>
 </principals>
 </grantee>

 <!-- entitlement-based permissions -->
 <permission-set-refs>
 <permission-set-ref>
 <name>MyEntitlement</name>
 </permission-set-ref>
 </permission-set-refs>
 </grant>
 </jazn-policy>
 </application>
 </applications>
 </policy-store>
 <jazn-policy></jazn-policy>
</jazn-data>

web.xml

The filter JpsFilter is configured as follows:

<web-app>
 <display-name>PolicyTest: PolicyServlet</display-name>
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 <init-param>
 <param-name>application.name</param-name>
 <param-value>PolicyServlet</param-value>
 </init-param>
 </filter>
 <filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>PolicyServlet</servlet-name>
 <dispatcher>REQUEST</dispatcher>
 </filter-mapping>...

Code Example

In the following example, Subject.doAsPrivileged may be replaced by JpsSubject.doAsPrivileged:

import javax.security.auth.Subject;
import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.ServletOutputStream;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;
import java.security.*;
import java.util.Date;
import java.util.PropertyPermission;
import java.io.FilePermission;

public class PolicyServlet extends HttpServlet {

 public PolicyServlet() {
 super();
 }

 public void init(ServletConfig config)
 throws ServletException {
 super.init(config);
 }

 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException {
 final ServletOutputStream out = response.getOutputStream();

 response.setContentType("text/html");
 out.println("<HTML><BODY bgcolor=\"#FFFFFF\">");
 out.println("Time stamp: " + new Date().toString());
 out.println("
request.getRemoteUser = " + request.getRemoteUser() + "
");
 out.println("request.isUserInRole('sr_developer') = " + request.isUserInRole("sr_developer") + "
");
 out.println("request.getUserPrincipal = " + request.getUserPrincipal() + "
");

 Subject s = null;
 s = Subject.getSubject(AccessController.getContext());

 out.println("Subject in servlet " + s);
 out.println("
");
 final RuntimePermission rtPerm = new RuntimePermission("getClassLoader");
 try {
 Subject.doAsPrivileged(s, new PrivilegedAction() {
 public Object run() {
 try {
 AccessController.checkPermission(rtPerm);
 out.println("
");
 out.println("CheckPermission passed for permission: " + rtPerm+ " seeded in application policy");
 out.println("
");
 } catch (IOException e) {
 e.printStackTrace();
 printException ("IOException", e, out);
 } catch (AccessControlException ace) {
 ace.printStackTrace();
 printException ("Accesscontrol Exception", ace, out);
 }
 return null;
 }
 }, null);

} catch (Throwable e) {
 e.printStackTrace();
 printException("application policy check failed", e, out);
 }
 out.println("</BODY>");
 out.println("</HTML>");
 }

 void printException(String msg, Throwable e, ServletOutputStream out) {
 Throwable t;
 try {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw, true);
 e.printStackTrace(pw);

 out.println("<p>" + msg + "<p>");
 out.println("<code>");
 out.println(sw.getBuffer().toString());
 t = e;
 /* Print the root cause */
 while ((t = t.getCause()) != null) {
 sw = new StringWriter();
 pw = new PrintWriter(sw, true);
 t.printStackTrace(pw);

 out.println("<hr>");
 out.println("<p> Caused By ... </p>");
 out.println(sw.getBuffer().toString());
 }
 out.println("</code><p>");
 } catch (IOException ioe) {
 ioe.printStackTrace();
 }
 }
}

20.3.3.2 Using the Methods doAs and doAsPrivileged

Oracle Fusion Middleware supports the methods doAs and doAsPrivileged in the standard class javax.security.auth.Subject.

Oracle recommends, however, the use of these methods in the class oracle.security.jps.util.JpsSubject because they render better performance and provide auditing.

	
Note:

If checkPermission is called inside a doAs block and the check permission call fails, to display the failed protection domain you must set the system property java.security.debug=access,failure.

20.3.3.3 Using the Method checkBulkAuthorization

The method checkBulkAuthorization determines whether a Subject has access to one or more resource actions. Specifically, the method returns the set of resource actions the passed Subject is authorized to access in the passed resources.

When invoking this method (in a Java SE application), make sure that:

	
The system property java.security.policy has been set to the location of the OPSS/Oracle WebLogic Server policy file.

	
Your application must call first the method setPolicy to explicitly set the policy provider, as illustrated in the following lines:

java.security.Policy.setPolicy(new oracle.security.jps.internal.policystore.JavaProvider())

	
Your application calls checkBulkAuthorization() after the call to setPolicy.

In any application, checkBulkAuthorization assumes that the caller can provide:

	
A Subject with User and Enterprise Role Principals.

	
A list of resources including the stripe each resource belongs to.

Grants using resource permissions must include the required resource type.

checkBulkAuthorization also assumes that the application has visibility into the policy store stripes configured in the domain where the application is running.

checkBulkAuthorization does not require resources to be present in the policy store.

20.3.3.4 Using the Method getGrantedResources

The method getGrantedResources provides a runtime authorization query to fetch all granted resources on a given Subject by returning the resource actions that have been granted to the Subject; only permissions associated with resource types (directly or indirectly through permission sets) are returned by this method, and it is available only when the policy store is LDAP-based.

20.3.4 The Class ResourcePermission

A permission class provides the means to control the actions that a grantee is allowed on a resource. Even though a custom permission class provides the application designer complete control over the actions, target matching, and the "implies" logic, to work as expected at runtime, a custom permission class must be specified in the system classpath of the server so that it is available and can be loaded when required. But modifying the system class path in environments is difficult and, in some environments, such modification might not be even possible.

OPSS includes the class oracle.security.jps.ResourcePermission that can be used as the permission class within any application grant to protect application or system resources. Therefore, the application developer no longer needs to write custom permission classes, since the class ResourcePermission is available out-of-the-box and can be readily used in permissions within application grants stored in any supported policy provider. This class is not designed to be used in system policies, but only in application policies.

Configuring Resource Permissions

A permission that uses the class ResourcePermission is called a resource permission, and it specifies the resource type, the resource name, and an optional list of actions according to the format illustrated in the following XML sample:

<permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=type,resourceName=name</name>
 <actions>character-separated-list-of-actions</actions>
</permission>

The above specification requires that the resource type encoded in the type name be defined. Even though the resource type information is not used at runtime, its definition must be present for a resource permission to be migrated successfully; moreover, resource types help administrators model resources and manage their use.

The following fragments illustrate the specifications of resource permissions and the corresponding required resource types:

<permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=epm.calcmgr.permission,resourceName=EPM_Calc_Manager</name>
</permission>

<resource-types>
 <resource-type>
 <name>epm.calcmgr.permission</name>
 <display-name>CalcManager ResourceType</display-name>
 <description>Resourcetype for managing CalcManager grants</description>
 <provider-name></provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>,</actions-delimiter>
 <actions></actions>
 </resource-type>
</resource-types>

<permission>
 <class>oracle.security.jps.ResourcePermission</class>
 <name>resourceType=oracle.bi.publisher.Reports,resourceName=GLReports</name>
 <actions>develop;schedule</actions>
</permission>

<resource-types>
 <resource-type>
 <name>oracle.bi.publisher.Reports</name>
 <display-name>BI Publisher Reports</display-name>
 <provider-name></provider-name>
 <matcher-class>oracle.security.jps.ResourcePermission</matcher-class>
 <actions-delimiter>;</actions-delimiter>
 <actions>view;develop;schedule</actions>
 </resource-type>
</resource-types>

Note that a resource type associated with a resource permission can have an empty list of actions. The following important points apply to a resource permission:

	
The name must conform to the following format:

resourceType=aType,resourceName=aName

The resource type of a resource permission must be defined and it is returned by the method ResourcePermission.getType().

	
The character-separated list of actions is optional; if specified, it must be a subset of the actions specified in the associated resource type. This list is returned by the method ResourcePermission.getActions().

The character used to separate the items of the list must equal to the character specified in the <actions-delimiter> of the associated resource type.

	
The display name of a resource used in a permission is returned by the method ResourcePermission.getResourceName().

	
No wildcard use is supported in a resource permission.

Managing and Checking Resource Permissions

The code snippet below illustrates the instantiation of a resource permission and how to check it programmatically; the following code snippet is based on one of the configuration examples described in Configuring Resource Permissions:

ResourcePermission rp =
 new ResourcePermission("oracle.bi.publisher.Reports","GLReports","develop");
JpsAuth.checkPermission(rp);

At runtime the permission check will succeed if the resource permission satisfies all the following four conditions:

	
The permission is an instance of the class ResourcePermision.

	
The resource type name (first argument) matches (ignoring case) the name of a resource type.

	
The resource (second argument) name matches exactly the name of a resource instance.

	
The list of actions (third argument) is a comma-separated subset of the set of actions specified in the resource type.

About the Matcher Class for a Resource Type

When creating a resource type, a matcher class can be optionally supplied. If unspecified, it defaults to oracle.security.jps.ResourcePermission.

If, however, two or more resource types are to share the same resource matcher class, then that class must be one of the following:

	
The class oracle.security.jps.ResourcePermission.

	
A concrete class extending the abstract class oracle.security.jps.AbstractTypedPermission, as illustrated by the class MyAbstractTypedPermission in the following sample:

public class MyAbstractTypedPermission extends AbstractTypedPermission {
 private static final long serialVersionUID = 8665318227676708586L;
 public MyAbstractTypedPermission(String resourceType,
 String resourceName, String actions) {super(resourceType, resourceName, actions);
 }
}

	
A class implementing the class oracle.security.jps.TypePermission and extending the class java.security.Permission.

19 Developing Secure Applications with Oracle Platform Security Services

This chapter explains how applications developed using OPSS benefit and work with Oracle Fusion Middleware, and it includes the following sections:

	
OPSS for Developers

	
OPSS APIs

	
Common Uses of OPSS

	
Using OPSS with Oracle Application Development Framework

	
Using the Oracle Security Developer Tools

	
Using OPSS Outside Oracle JDeveloper/Oracle ADF

19.1 OPSS for Developers

This section explains the benefits of securing applications with Oracle Platform Security Services, in the following topics:

	
The Development Cycle

	
Challenges of Securing Java Applications

	
Meeting the Challenges with Oracle Platform Security Services

	
OPSS Architecture

19.1.1 The Development Cycle

Java EE software development is based on a develop-deploy-manage cycle. The Oracle Platform Security Services security implementation plays an important part in all phases of that cycle.

The following list summarizes the Java EE development cycle, emphasizes the tasks specific to developing secure applications, and highlights the security enhancements that OPSS provides.

	
The developer creates Web components, enterprise beans, servlets, and application clients based on business requirements.

While the developer has access to a declarative approach, additional value is obtained when using Oracle ADF, which makes use of OPSS APIs.

	
The developer defines Java EE logical roles and assigns them privileges through security constraints, all through configuration in standard Java EE deployment descriptors.

	
The components are assembled and combined into an Enterprise Archive (EAR) file.

As part of this process, the assembler specifies options appropriate to the environment.

	
The assembler defines application-level security constraints and resolves potential conflicts between module-level configurations.

	
The EAR file is deployed to Oracle WebLogic Server.

As part of the deployment process, the deployer may map Java EE roles to deployment users and roles.

	
The system administrator maintains and manages the deployed application.

This task includes creating and managing roles and users in the deployment environment as required by the application customers.

For finer-grained code-based or subject-based access control using Java 2 or JAAS features, the traditional steps include:

	
The developer identifies any resources that may be accessed and must be protected as appropriate.

	
The developer defines permissions to protect these resources.

	
The developer implements code for runtime authorization checks.

	
The system administrator maintains any necessary policy configuration to enforce the desired permissions. Policy provisioning should be completed prior to runtime.

Oracle ADF and OPSS provide these enhancements:

	
At Design Time - modeling of application roles, defining resources as permissions, and assigning permissions to roles. Application credential management is supported, for example, ADF connections can store credentials in the Credential Store Framework during design time.

	
At Deployment Time - policy and credential migration options are available

	
Post-deployment, the administrator performs essential tasks such as mapping application roles to enterprise users or groups which are reflected at run-time

19.1.2 Challenges of Securing Java Applications

Java developers face some challenges in developing secure applications:

	
The Java EE standard does not define any API for fine-grained authorization, credential mapping, role mapping, auditing, or integration with single-sign.

	
Developers need to acquire in-depth security knowledge at the expense of focusing on application business logic.

	
There is no consistent security experience across platforms. For example, custom security solutions often develop their own security framework, which is often not portable across platforms.

	
Custom solutions for securing Java EE applications often lack support for large enterprise security deployments.

Such key aspects as manageability, availability, scalability, and reliability are often missing from custom solutions.

19.1.3 Meeting the Challenges with Oracle Platform Security Services

Oracle Platform Security Services (OPSS) is a portable security services abstraction layer that provides a robust security framework that saves development time and effort. OPSS enhances traditional Java EE development in many respects:

	
Provides basic security services such as authentication, authorization, auditing, role management, and credential management.

	
Allows developers to focus on the application logic.

	
Provides the same services that Oracle Fusion Middleware products get:

	
OPSS is the security platform for Oracle Fusion Middleware components, such as Oracle WebLogic Server, Oracle Entitlement Server, Oracle SOA Suite, and Oracle WebCenter.

	
Is standards-based and enterprise-ready:

	
Stress-tested to support enterprise deployments.

	
Interoperable across different LDAP servers and single sign-on (SSO) systems.

	
Certified on Oracle WebLogic Server.

	
Provides the same set of APIs for all types of applications (in-house, third-party, Oracle Fusion).

	
Optimizes development time with by using abstraction layers.

	
Application maintenance is simplified since security rules can be changed without affecting application code.

	
Enables legacy and third-party security provider integration.

OPSS support for Identity Management (IdM) includes:

	
A lightweight infrastructure that allows customers to build and deploy small to mid-size applications

	
A plug-in interface to IDM systems:

	
Applications build against OPSS can be plugged to a centrally deployed Identity Management system

	
Customers can scale their applications to switch to a centrally deployed Identity Management system

	
No code changes are required in the application when switching between IdM systems.

19.1.4 OPSS Architecture

Figure 19-1 shows the basic components of the OPSS architecture. There are specific APIs for most of the features discussed earlier in this manual that are available for use by application developers. Underlying SPIs (service provider interfaces), mentioned briefly in Section 1.2, "OPSS Architecture Overview," are mostly invisible to application developers and administrators.

Figure 19-1 OPSS Architecture

[image: Surrounding text describes Figure 19-1 .]

The Oracle Platform Security architecture provides:

	
A layered architecture that decouples the application layer from the underlying implementation.

	
An extensible framework that allows explicit extensibility points (through the SPI layer) where custom implementations (such as custom login modules) can be plugged into the framework to provide special functionality.

19.2 OPSS APIs

This section describes the APIs available to developers working with Oracle Platform Security Services:

	
The LoginService API

	
The User and Role API

	
JAAS Authorization and the JpsAuth.checkPermission API

	
The Credential Store Framework API

19.2.1 The LoginService API

OPSS provides the LoginService authentication API to enable Java SE applications to access and manage the identity store.

Support for authentication is through the login module, a component that authenticates users and populates a subject with principals. This process occurs in two distinct phases:

	
In the first phase, the login module attempts to authenticate a user by means of credentials supplied by the user.

	
In the second phase, the login module assigns relevant principals to a subject, which is eventually used to perform a privileged action.

For details, see Chapter 22, "Authentication for Java SE Applicaitons".

19.2.2 The User and Role API

The user and role API framework allows applications to access identity information (users and roles) in a uniform and portable manner regardless of the particular underlying identity repository, since the type of the underlying identity store is transparent to the caller.

This API framework provides a convenient way to access repositories programmatically in a portable way, freeing the application developer from the potentially difficult task of accounting for the intricacies of particular identity sources. The framework allows an application to work against different repositories seamlessly. An application can switch between various identity repositories without any code changes being required.

Supported operations include creating, updating, or deleting users and roles, or searching users and roles for attributes or information of interest. For example, you may want to search for the e-mail addresses of all users in a certain role.

The API supports:

	
LDAP directory servers such as Oracle Internet Directory

	
Flat files

	
Other custom repositories such as databases, by implementing a custom provider for the repository

With the User and Role API, you can:

	
Access repositories programmatically in a portable way.

	
Eliminate the need to account for the intricacies of particular identity sources.

	
Enable your application to work against different repositories.

	
Switch between various identity repositories without any code changes to your application.

For details, see Chapter 25, "Developing with the User and Role API".

19.2.3 JAAS Authorization and the JpsAuth.checkPermission API

The Java EE authorization model uses role membership to control access to EJBs and web resources that are referenced by URLs; the Java 2 authorization model uses permissions (instead of role memberships) to control access decisions.

You can specify authorization policies in application code. Sensitive lines of code are preceded with calls to check whether a subject has the appropriate permission to execute specific sections of code. If the subject fails to have the proper permission, the code throws a security exception.

Java 2 authorization is based on permissions, rather than roles, and access control decisions are evaluated by calls to the SecurityManager or the AccessController. When used with JAAS, this model allows for a programmatic authorization capability, thus providing fine-grained control to resources.

Oracle Fusion Middleware supports authorization using Java EE DD/annotation based authorization and JAAS/Java2 permission based authorization. Both declarative and programmatic approaches for enforcing authorization policies are supported; the latter is implemented through the JpsAuth.checkPermission API, and AccessController.checkPermission can be used as well.

OPSS APIs provide the following benefits beyond the traditional authorization models:

	
They extend the JAAS model with the ability to use application roles that are assigned permissions.

	
They provide policy management support, which is lacking in the standard JAAS model. See Section 20.3.2, "Managing Policies" for an example.

	
Using the JpsAuth.checkPermission OPSS API as opposed to the standard checkPermission, they provide additional benefits such as more robust debugging and integrated audit support.

For details about authorization features of OPSS, see Chapter 23, "Authorization for Java SE Applications".

19.2.4 The Credential Store Framework API

A credential store is a secure, central repository where credentials and collections of credentials are stored. Multiple applications can use the same credential store.

The Credential Store Framework (CSF) API provides the mechanism by which applications access the credential store.

The CSF API supports file-based (Oracle wallet) and LDAP-based credential stores.

Critical functions provided by the CSF API include returning credentials for a given map name, assigning credentials to and deleting credentials from a given map name, and other operations related to credential maps and keys.

Operations on CredentialStore are secured by CredentialAccessPermission, which implements the fine-grained access control model utilized by CSF.

For details about the API, see Chapter 24, "Developing with the Credential Store Framework".

19.3 Common Uses of OPSS

The same set of OPSS APIs can be used by both Java EE and Java SE developers. Topics in this section illustrate common applications for the APIs, and demonstrate differences between Java EE and Java SE implementations.

19.3.1 Java EE Application using OPSS APIs

Figure 19-2 illustrates a standard Java EE application using OPSS security APIs.

Figure 19-2 Java EE Application using Multiple OPSS APIs

[image: Surrounding text describes Figure 19-2 .]

Key features include:

	
Integration with Oracle WebLogic Server

	
Credential Store Framework API to secure credentials in the LDAP directory or file-based credential store. Different types of credentials will be stored here - external database credentials, external Web Service credentials, and so on.

	
User and Role API to query attributes stored in the identity store

	
JpsAuth.checkPermission API for authorization

19.3.2 Authenticating with OPSS APIs

Developers have the following choices when implementing authentication:

	
Declarative authentication, where authentication is configured in the file web.xml (this is standard Java EE security)

	
Programmatic security. Oracle Fusion Middleware provides several APIs, including:

	
Oracle WebLogic Server's authentication API, weblogic.security.auth.Authenticate

	
OPSS' oracle.security.jps.service.login.LoginService API for Java SE applications. This API supports user/password authentication and username assertion. The assertion functionality is protected by JpsPermission with the name IdentityAssertion.

Figure 19-3 illustrates a Java EE application that must assert an identity through a token or through user credentials.

Figure 19-3 Programmatic Authentication

[image: Surrounding text describes Figure 19-3 .]

Key features include:

	
Username and password supplied by the application for programmatic authentication with the Authenticate API

	
Uses a WebLogic authenticator

	
Identity assertion through a token (authentication without a password)

	
Assertion protected by a code source permission. Only applications that have been granted the code source permission (codebase permission grant oracle.security.jps.JpsPermission with name IdentityAssertion" nd action execute) can use this API for identity assertion.

	
See Also:

	
Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server

	
Chapter 22, "Authentication for Java SE Applicaitons".

19.3.3 Programmatic Authorization

Figure 19-4 illustrates a Java EE application using portable, fine-grained authorization.

Figure 19-4 Fine-grained Authorization

[image: Surrounding text describes Figure 19-4 .]

Key features include:

	
Authorization through JpsAuth.checkPermission API calls

	
Auditing of authorization decisions

19.3.4 Credential Store Framework

Figure 19-5 illustrates an application needing to access and store credentials for an external system such as a database.

Figure 19-5 Storing External Passwords in Credential Store Framework

[image: Surrounding text describes Figure 19-5 .]

Key features include:

	
Credentials stored securely in a credential store

	
Support for LDAP-based credential stores in addition to Oracle Fusion Middleware's out-of-the-box, file-based credential store called Oracle wallet.

	
Credentials that can be managed with either Oracle Enterprise Manager Fusion Middleware Control or WLST scripts

	
Credential store operations that can be audited

19.3.5 User and Role

Figure 19-6 illustrates an application (deployed on WebLogic) that needs searching the identity store for users, such as searching all users in "APAC", or identifying all emails with users in a given role.

Figure 19-6 Searching the Identity Store with User and Role API

[image: Surrounding text describes Figure 19-6 .]

Key features include:

	
Calling the User and Role API to access user attributes

	
The same APIs work on user attributes in the default authenticator or an external LDAP store.

The User and Role API is automatically configured based on the configuration in the authentication provider, either default or any other LDAP based authentication.

	
Same API regardless of where the attributes are stored

19.3.6 Oracle ADF Authorization

For an example of authorization using Oracle ADF, see Section 19.4.2, "How Oracle ADF Uses OPSS".

19.3.7 Java SE Application Using OPSS APIs

Figure 19-7 illustrates a Java SE Swing application using different OPSS APIs.

Figure 19-7 Java SE Application using OPSS APIs

[image: Surrounding text describes Figure 19-7 .]

	
Note:

In an LDAP-based store, like that shown in the figure, both policies and credentials are maintained in the same store, while file-based stores maintain separate files for each.

Key features include:

	
LoginService API for authentication

	
JpsAuth.CheckPermission for authorization

	
User and Role API to query attributes stored in LDAP or other back-end

	
Use of credential store to secure credentials

	
Important:

The OPSS policy provider must be explicitly set in Java SE applications, as illustrated in the following snippet:

java.security.Policy.setPolicy(new oracle.security.jps.internal.policystore.JavaProvider())

Not setting the policy provider explicitly in a Java SE application may cause runtime methods (such as JpsAuth.checkPermission) to return incorrect values.

19.4 Using OPSS with Oracle Application Development Framework

When you use Oracle ADF to develop and deploy applications, you are able to directly leverage the security features of OPSS, since Oracle ADF is integrated with OPSS.

This section introduces Oracle ADF and provides an example of OPSS security in an Oracle ADF application.

19.4.1 About Oracle ADF

The Oracle Application Development Framework (Oracle ADF) is an end-to-end application framework that builds on Java Platform, Enterprise Edition (Java EE) standards and open-source technologies to simplify and accelerate implementing service-oriented applications. For enterprise solutions that search, display, create, modify, and validate data using web, wireless, desktop, or web services interfaces, Oracle ADF can simplify the development effort.

Used in tandem, Oracle JDeveloper 11g and Oracle ADF give you an environment that covers the full development life cycle from design to deployment, with drag-and-drop data binding, visual UI design, and team development features built in.

19.4.2 How Oracle ADF Uses OPSS

The Oracle ADF Security framework is the preferred technology to provide authentication and authorization services to the Fusion web application. Among the advantages:

	
Oracle ADF Security is built on top of the Oracle Platform Security Services (OPSS) architecture, which provides a critical security framework and is itself well-integrated with Oracle WebLogic Server.

	
Oracle JDeveloper and Oracle ADF use the OPSS application life cycle listener framework to migrate credential and policy data when the application is deployed.

	
See Also:

Chapter 6, "Deploying Secure Applications"

Oracle ADF's built-in support for security features including OPSS features helps reduce some of the effort that would be required to implement those features outside Oracle ADF; indeed, certain features are not available using only container-managed security.

Figure 19-8 illustrates an Oracle ADF application using both fine-grained authorization and Java EE container-based authentication.

Figure 19-8 Oracle ADF using JpsAuth.checkPermission

[image: Surrounding text describes Figure 19-8 .]

Key features include:

	
Use of JDeveloper's security wizard to create required security configuration

	
Calls by Oracle ADF filter to JpsAuth.checkPermission

	
Task flows and regions protected using custom Oracle ADF permissions

For more information, see:

	
ADF Security in the Oracle Fusion Middleware Security Overview

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

19.4.3 The Oracle ADF Development Life Cycle

Figure 19-9 illustrates how an application is first deployed to integrated Oracle WebLogic Server (Oracle WebLogic Server embedded in Oracle JDeveloper). A developer then produces an EAR file that is deployed, through Oracle Enterprise Manager Fusion Middleware Control, to another Oracle WebLogic Server domain. In regards to grants with duplicate permissions, see note in Policy Management.

This Oracle WebLogic Server domain is likely to be located in a test or staging area.

Figure 19-9 Oracle ADF Application Deployed to Oracle WebLogic Server

[image: Surrounding text describes Figure 19-9 .]

Key features include:

	
Oracle ADF application developed with Oracle JDeveloper

	
Oracle ADF security wizard and Oracle ADF authorization policy editor

	
Oracle JDeveloper provides an integrated user experience, migrating artifacts to the run-time environment:

	
Users and groups defined at design-time are available in the default authenticator

	
Authorization policy and credential data is migrated using the OPSS listener framework

	
Application developer creates EAR file containing policy and credentials

	
Administrator deploys the EAR to a remote Oracle WebLogic Server using Fusion Middleware Control or WLST scripts

	
Note:

For more information about deployment tools and options, see Chapter 6, "Deploying Secure Applications."

19.5 Using the Oracle Security Developer Tools

Oracle Security Developer Tools provide you with the cryptographic building blocks necessary for developing robust security applications, ranging from basic tasks like secure messaging to more complex projects such as securely implementing a service-oriented architecture. The tools build upon the core foundations of cryptography, public key infrastructure, web services security, and federated identity management, and are widely used in building Oracle's own security offerings.

For more information about the tools, see:

	
Oracle Security Developer Toolkit in the Oracle Fusion Middleware Security Overview

	
Oracle Fusion Middleware Reference for Oracle Security Developer Tools

19.6 Using OPSS Outside Oracle JDeveloper/Oracle ADF

You can make use of OPSS APIs in your applications if you are using a development IDE other than Oracle JDeveloper and Oracle ADF.

However, in that case, you will need to perform manual configuration in OPSS configuration files and web.xml, so you do not get the benefits of automatic configuration and security migration that are available when using Oracle JDeveloper.

For more information about this topic, see Chapter 21, "Manually Configuring Java EE Applications to Use OPSS".

11 Introduction to Oracle Fusion Middleware Audit Framework

In Oracle Fusion Middleware 11g Release 1 (11.1.1), auditing provides a measure of accountability and answers the "who has done what and when" types of questions. This chapter introduces auditing in Oracle Fusion Middleware. It contains the following topics:

	
Benefits and Features of the Oracle Fusion Middleware Audit Framework

	
Overview of Audit Features

	
Oracle Fusion Middleware Audit Framework Concepts

11.1 Benefits and Features of the Oracle Fusion Middleware Audit Framework

This section contains these topics:

	
Objectives of Auditing

	
Today's Audit Challenges

	
Oracle Fusion Middleware Audit Framework in 11g

11.1.1 Objectives of Auditing

With compliance becoming an integral part of any business requirement, audit support is also becoming a focus in enterprise deployments. Customers are looking for application vendors to provide out-of-the-box audit support. In addition, middleware customers who are deploying custom applications would like to centralize the auditing of their deployed applications wherever audit is appropriate.

IT organizations are looking for several key audit features driven by compliance, monitoring, and analytics requirements.

Compliance

Compliance is obviously a major requirement in the enterprise. With regulations such as Sarbanes-Oxley (financial) and Health Insurance Portability and Accountability Act (healthcare), many customers must now be able to audit on identity information and user access on applications and devices. These include events like:

	
User profile change

	
Access rights changes

	
User access activity

	
Operational activities like starting and stopping applications, upgrades, and backups

This allows compliance officers to perform periodic reviews of compliance policies.

Monitoring

The audit data naturally provides a rich set of data for monitoring purpose. In addition to any log data and component metrics that are exposed, audit data can be used to create dashboards and to build Key Performance Indicators (KPIs) for alerts to monitor the health of the various systems on an ongoing basis.

Analytics

Audit data can also be used in assessing the efficacy of controls through analysis on the audit data. The data can also be used for risk analysis. Based on historical data, a risk score can be calculated and assigned to any user. Any runtime evaluation of user access can include the various risk scores as additional criteria to protect access to the systems.

11.1.2 Today's Audit Challenges

To satisfy the audit requirements, IT organizations often battle with the deficiencies in audit support for their deployed applications. There is no reliable standard for:

	
Audit Record Generation

	
Audit Record Format and Storage

	
Audit Policy Definition

As a result, today's audit solutions suffer from a number of key drawbacks:

	
There is no centralized audit framework.

	
The quality of audit support is inconsistent from application to application.

	
Audit data is scattered across the enterprise.

	
Complex data correlation is required before any meaningful cross-component analysis can be conducted.

	
Audit policies and their configurations are also scattered.

These factors are costing IT organization considerable amount of time and resources to build and maintain any reasonable audit solutions. With the data scattered among individual silos, and the lack of consistency and centralization, the audit solutions also tend to be fragile with idiosyncrasies among applications from different vendors with their current audit capabilities.

11.1.3 Oracle Fusion Middleware Audit Framework in 11g

Oracle Fusion Middleware Audit Framework is a new service in11g Release 1 (11.1.1), designed to provide a centralized audit framework for the middleware family of products. The framework provides audit service for the following:

	
Middleware Platform - This includes Java components such as Oracle Platform Security Services (OPSS) and Oracle Web Services. These are components that are leveraged by applications deployed in the middleware. Indirectly, all the deployed applications leveraging these Java components will benefit from the audit framework auditing events that are happening at the platform level.

	
Java EE applications - The objective is to provide a framework for Java EE applications, starting with Oracle's own components. Java EE applications will be able to create application-specific audit events.

In 11g Release 1 (11.1.1), the audit framework is only available for Oracle's own applications.

	
System Components - For system components in the middleware that are managed by Oracle Process Manager and Notification Server, the audit framework also provides an end-to-end structure similar to that for Java components.

	
See Also:

Understanding Key Oracle Fusion Middleware Concepts in the Oracle Fusion Middleware Administrator's Guide.

11.2 Overview of Audit Features

Key features of the Oracle Fusion Middleware Audit Framework include:

	
A uniform system for administering audits across a range of Java components, system components, and applications

	
Extensive support for Java component auditing, which includes:

	
support for Oracle Platform Security Services auditing for non-audit-aware applications

	
the ability to search for audit data at any application level

	
Capturing authentication history/failures, authorization history, user management, and other common transaction data

	
Flexible audit policies

	
pre-seeded audit policies, capturing customers' most common audit events, are available for ease of configuration

	
tree-like policy structure simplifies policy setup

	
Prebuilt compliance reporting features

	
Oracle Fusion Middleware Audit Framework provides out-of-the-box analytical reporting capabilities within Oracle BI Publisher; data can be analyzed on multiple dimensions (Execution Context ID (ECID), user ID, and so on) across multiple components. These reports can also be customized according to your preferences.

	
Reports are based on centralized audit data.

	
Customers can customize the reports or write their own based on the published audit schema.

See Chapter 13, "Using Audit Analysis and Reporting" for details.

	
Audit record storage

Data store (database) and files (bus-stop) are available. Maintaining a common location for all audit records simplifies maintenance.

Using a data store lets you generate reports with Oracle Business Intelligence Publisher.

	
Common audit record format

Highlights of the audit trail include:

	
baseline attributes like outcome (status), event date-time, user, and so on

	
event-specific attributes like authentication method, source IP address, target user, resource, and so on

	
contextual attributes like the execution context ID (ECID), session ID, and others

	
Common mechanism for audit policy configuration

Oracle Fusion Middleware Audit Framework offers a unified method for configuring audit policies in the domain.

	
Leverages the Oracle Fusion Middleware 11g infrastructure

	
is usable across Oracle Fusion Middleware 11g components and services such as Oracle Web Services Manager, Oracle Internet Directory, Oracle Virtual Directory, and Oracle Directory Integration and Provisioning

	
integrates with Oracle Enterprise Manager Fusion Middleware Control for UI-based configuration and management

	
integrates with wlst for command-line, script-based configuration

	
integrates with Oracle Platform Security Services to provide multiple benefits

11.3 Oracle Fusion Middleware Audit Framework Concepts

This section introduces basic concepts of the Oracle Fusion Middleware Audit Framework:

	
Audit Architecture

	
Key Technical Concepts

	
Audit Record Storage

	
Analytics

11.3.1 Audit Architecture

The Oracle Fusion Middleware Audit Framework consists of the following key components:

	
Audit APIs

These are APIs provided by the audit framework for any audit-aware components integrating with the Oracle Fusion Middleware Audit Framework. During runtime, applications may call these APIs where appropriate to audit the necessary information about a particular event happening in the application code. The interface allows applications to specify event details such as username and other attributes needed to provide the context of the event being audited.

	
Audit Events and Configuration

The Oracle Fusion Middleware Audit Framework provides a set of generic events for convenient mapping to application audit events. Some of these include common events such as authentication. The framework also allows applications to define application-specific events.

These event definitions and configurations are implemented as part of the audit service in Oracle Platform Security Services. Configurations can be updated through Enterprise Manager (UI) and WLST (command-line tool)

	
The Audit Bus-stop

Bus-stops are local files containing audit data records before they are pushed to the audit store. In the event that no audit store is configured, audit data remains in these bus-stop files. The bus-stop files are simple text files that can be queried easily to look up specific audit events. When an audit store is in place, the bus-stop acts as an intermediary between the component and the audit store. The local files are periodically uploaded to the data store based on a configurable time interval.

A key advantage of the audit store is that audit data from multiple components can be correlated and combined in reports, for example, authentication failures in all middleware components, instances and so on.

	
Audit Loader

As its name implies, the audit loader loads audit data from the audit bus-stop into the audit store, if one is configured. For Java component auditing, the audit loader is is a startup class that is started as part of the container start-up. For system components, the audit loader is a periodically spawned process that is invoked by OPMN.

	
Audit Store

The audit store is a database that contains a pre-defined Oracle Fusion Middleware Audit Framework schema, created by Repository Creation Utility (RCU). Once configured, all the audit loaders are aware of the data store and upload data to it periodically. The audit data in the store is expected to be cumulative and will grow overtime. Ideally, this should not be an operational database used by any other applications - rather, it should be a standalone RDBMS used for audit purposes only.

	
Audit Configuration Mbeans

All audit configuration is managed through audit configuration MBeans. For Java components and applications, these MBeans are present in the domain administration server and the audit configuration is centrally managed. For system components, separate MBean instances are present for every component instance. Enterprise Manager UI and command-line tools manage Audit configuration using these MBeans.

	
Oracle Business Intelligence Publisher

The data in the audit store is exposed through pre-defined reports in Oracle Business Intelligence Publisher. The reports allow users to drill down the audit data based on various criteria. For example:

	
Username

	
Time Range

	
Application Type

	
Execution Context Identifier (ECID)

You can also use Oracle Business Intelligence Publisher to create your own audit reports.

Figure 11-1 Audit Event Flow

[image: Audit event flow]

Audit Flow

The process can be illustrated by looking at the actions taken in the framework when an event (say, login) occurs at a component like Oracle HTTP Server or Oracle Virtual Directory within an application server instance:

	
Note:

The architecture shown in Figure 11-1 contains a data store; if your site did not configure a data store for auditing, the audit records reside in the bus-stop files.

	
Oracle Fusion Middleware Audit Framework is activated for a component when the component starts up.

	
The component calls an audit function to audit the event.

	
The framework checks if events of this type, status, and with certain attributes need to be audited.

	
If so, the audit function is invoked to create the audit event structure and collect event information like the status, initiator, resource, ECID, and so on.

	
The event is stored on a local file in an intermediate location known as the bus-stop; each component has its own bus-stop.

	
The next component in the flow is the Audit Loader, a which is module of the Oracle WebLogic Server instance and provides process control for that instance. The audit loader is responsible for collecting the audit records for all components running in that instance.

If a database is configured for an audit store, the audit loader pulls the events from the bus-stops and moves the data to the audit store.

	
Reports can also be generated from the audit data using Oracle BI Publisher. A set of pre-defined reports are available. (See Chapter 13, "Using Audit Analysis and Reporting".)

Application Behavior in Case of Audit Failure

It is important to note that an application does not stop execution if it is unable to record an audit event for any reason.

11.3.2 Key Technical Concepts

This section introduces key concepts in the Oracle Fusion Middleware Audit Framework.

Audit-Aware Components

The term "audit-aware" refers to components that are integrated with the Oracle Fusion Middleware Audit Framework so that audit policies can be configured and events can be audited for those components. Oracle Internet Directory is an example of an audit-aware component.

Stand-alone applications can be integrate d with the Oracle Fusion Middleware Audit Framework through configuration with the jps-config.xml file.

Audit Policy

An audit policy is a declaration of the type of events to be captured by the audit framework for a particular component. For Java components, the audit policy is defined at the domain level. For system components, the audit policy is managed at the component instance level.

Oracle Fusion Middleware Audit Framework provides several pre-defined policy types:

	
None

	
Low (audits fewer events, definition is component-dependent)

	
Medium (audits many events, definition is component-dependent)

	
Custom (implements filters to narrow the scope of audited events)

Audit Policy Component Type

This refers to the component type to be audited; for example, Oracle Internet Directory is a source of auditable events during authentication.

For lists of the events that can be audited for each component, see Section C.1, "Audit Events".

Event Filters

Certain audit events implement filters to control when the event is logged. For example, a successful login event for the Oracle Internet Directory component may be filtered for specific users.

For details, see Section 12.3, "Managing Audit Policies".

Oracle Platform Security Services

Oracle Platform Security Services, a key component of the Oracle Fusion Middleware 11g, is the Oracle Fusion Middleware security implementation for Java features such as Java Authentication and Authorization Service (JAAS) and Java EE security.

For more information about OPSS, see Section 1.1, "What is Oracle Platform Security Services?".

11.3.3 Audit Record Storage

As shown in Figure 11-1, audit data can reside in two types of storage:

	
bus-stop files for intermediate storage of audit data. Each component instance writes to its own bus-stop.

Bus-stop files are the default out-of-the-box storage mechanism for audit records:

	
For Java components, there is one bus-stop for each Oracle WebLogic Server instance. Audit records generated for all Java EE components running in a given Oracle WebLogic Server instance are stored in the same bus-stop.

	
For system components, there is a separate bus-stop for each component; thus, for example, each instance of Oracle Internet Directory has its own bus-stop.

Bus-stop files are text-based and easy to query. For further details, see Section 11.3.1, "Audit Architecture"

	
permanent storage in a database; this is known as the audit store.

If using a database, audit records generated by all components in all Oracle Fusion Middleware 11g instances in the domain are stored in the same store. You must use an audit store to utilize Oracle Business Intelligence Publisher reports.

You can move from file-based storage to an audit store. This requires a specific configuration procedure. See Section 12.2.3, "Configure a Database Audit Store for Java Components" for details.

Advantages of Using a Database Store

Having the audit records in the bus-stop files has some practical limitations:

	
you cannot view domain-level audit data

	
reports cannot be run on Oracle BI Publisher

Thus, there are certain advantages to using a database audit store:

	
You can use Oracle Business Intelligence Publisher for reporting.

	
The database store centralizes records from all components in the domain, whereas the bus-stop stores audit records on a per-instance basis.

	
performance may be improved compared to file-based storage

For these reasons, Oracle recommends that customers switch to a database store for enhanced auditing capabilities.

11.3.4 Analytics

With Oracle Fusion Middleware 11g, you can utilize Oracle Business Intelligence as a full-featured tool for structured reporting.

A large number of pre-defined reports are available, such as:

	
Users created/deleted

	
User transactions

	
Authentication and authorization failures

	
Policy violations

With Oracle Business Intelligence:

	
You can select records based on criteria like username, date-time range, and so on.

Note that Oracle Business Intelligence works with the database audit store only, and is not usable with bus-stop files.

[image: BI Publisher page]

The pre-defined audit report types available with Oracle Business Intelligence include:

	
errors and exceptions

	
operational

	
user activity

	
authentication and authorization history

	
transaction history

For further details, see Section C.2, "Pre-built Audit Reports." You can also use the audit schema details to create custom audit reports as needed.

1 Introduction to Oracle Platform Security Services

Oracle Platform Security Services (OPSS) is a security platform that can be used to secure applications deployed in any of the supported platforms or in standalone applications. This chapter introduces the main features of this platform in the following sections:

	
What is Oracle Platform Security Services?

	
OPSS Architecture Overview

	
Oracle ADF Security Overview

	
OPSS for Administrators

	
OPSS for Developers

The scope of this document does not include Oracle Web Services security. For details about that topic, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

For an overview of Oracle Fusion Middleware security topics, see Oracle Fusion Middleware Security Overview.

1.1 What is Oracle Platform Security Services?

OPSS provides enterprise product development teams, systems integrators, and independent software vendors with a standards-based, portable, integrated, enterprise-grade security framework for Java SE and Java EE applications.

OPSS is the underlying security platform that provides security to Oracle Fusion Middleware including WebLogic Server, Server Oriented Architecture (SOA) applications, Oracle WebCenter, Oracle Application Development Framework (ADF) applications, and Oracle Entitlement Server. OPSS is designed to be portable to third-party application servers, so developers can use OPSS as the single security framework for both Oracle and third-party environments, thus decreasing application development, administration, and maintenance costs.

OPSS provides an abstraction layer in the form of application programming interfaces (APIs) that insulate developers from security and identity management implementation details. With OPSS, developers do not need to know the details of, for example, cryptographic key management, repository interfaces, or other identity management infrastructures. Using OPSS, in-house developed applications, third-party applications, and integrated applications benefit from the same, uniform security, identity management, and audit services across the enterprise.

For OPSS-related news, including FAQs, a whitepaper, and code examples, and forum discussions, see http://www.oracle.com/technology/products/id_mgmt/opss/index.html.

1.1.1 OPSS Main Features

OPSS complies with the following standards: role-based-access-control (RBAC); Java Enterprise Edition (Java EE); and Java Authorization and Authentication Services (JAAS).

Built upon these standards, OPSS provides an integrated security platform that supports:

	
Authentication

	
Identity assertion

	
Authorization, based on fine-grained JAAS permissions

	
The specification and management of application policies

	
Secure storage and access of system credentials through the Credential Store Framework

	
Auditing

	
Role administration and role mappings

	
The User and Role API

	
Identity Virtualization

	
Security configuration and management

	
SAML and XACML

	
Oracle Security Developer Tools, including cryptography tools

	
Policy Management API

	
Java Authorization for Containers (JAAC)

Details about a given OPSS feature functionality are found in subsequent chapters of this guide.

For details about the WebLogic Auditing Provider, see section Configuring the WebLogic Auditing Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.

1.1.2 Supported Server Platforms

OPSS is supported in the following application server platforms:

	
Oracle WebLogic Server

	
IBM WebSphere Application Server - Network Deployment (ND) 7.0

	
IBM WebSphere Application Server 7.0

This guide documents OPSS features relevant to the Oracle WebLogic Server that apply uniformly to all other platforms. Those topics that apply specifically to third-party servers are found in Oracle Fusion Middleware Third-Party Application Server Guide.

1.2 OPSS Architecture Overview

OPSS comprises the application server's security and Oracle's Fusion Middleware security. The following graphic illustrates the layered architecture that combines these two security frameworks, in the case of the Oracle WebLogic Server:

[image: Surrounding text describes architecture.gif.]

This figure depicts the various security components as layers. The uppermost layer includes the Oracle WebLogic Server and the Java applications running on the server; under it, is the layer consisting of APIs for Authentication, Authorization, CSF, User and Role, and identity virtualization; the bottom layer includes the Service Provider Interface (SPI) layer and the service providers. The bottom layer interacts with security data repositories, such as LDAP and database servers.

The list of providers in the above figure is not comprehensive: other providers include the role mapping provider and the audit provider.

Security Services Provider Interface

Security Services Provider Interface (SSPI) provides Java EE container security in permission-based (JACC) mode and in resource-based (non-JACC) mode, and resource-based authorization for the environment.

SSPI is a set of APIs for implementing pluggable security providers. A module implementing any of these interfaces can be plugged into SSPI to provide a particular type of security service, such as custom authentication or a particular role mapping.

For details, see section The Security Service Provider Interfaces (SSPIs) in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

Oracle Platform Security Services

Java Authorization (JAZN) functionality was redesigned and expanded to include the Credential Store Framework (CSF), the Common Audit Framework (CAF), and other components, and combined with SSPI as Oracle Platform Security Services (OPSS).

OPSS includes the following services: Credential Store Framework, User and Role API, libOvd, Common Audit Framework, Identity Services, and improved design-time support.

1.2.1 Benefits of Using OPSS

The benefits that OPSS offers include the following:

	
Allows developers to focus on application and domain problems

	
Supports enterprise deployments

	
Supports several LDAP servers and SSO systems

	
Is certified on the Oracle WebLogic Server

	
Pre-integrates with Oracle products and technologies

	
Offers a consistent security experience for developers and administrators

	
Provides a uniform set of APIs for all types of applications

	
Optimizes development time by offering abstraction layers (declarative APIs)

	
Provides a simplified application security maintenance

	
Allows changing security rules without affecting application code

	
Eases the administrator's job

	
Integrates with identity management systems

	
Integrates with legacy and third-party security providers

OPSS combines SSPI and JPS to provide a framework where the application server and Oracle applications can seamlessly run in a single environment.

OPSS supports security for Java EE applications and for Oracle Fusion Middleware applications, such as Oracle WebCenter and Oracle SOA Suite.

Developers can use OPSS APIs to secure all types of applications and integrate them with other security artifacts, such as LDAP servers, RDBMS, and custom security components.

Administrators can use OPSS to deploy large enterprise applications with a small, uniform set of tools and administer all security in them. OPSS simplifies the maintenance of application security because it allows the modification of security configuration without changing the application code.

By default and out-of-the-box, Oracle WebLogic Server stores users and groups in its embedded LDAP repository. Domains can be configured, however, to use identity data in other kinds of LDAP repositories, such as Oracle Internet Directory, ActiveDirectory, Novell eDirectory, and OpenLDAP. In addition, Oracle WebLogic Server provides a generic, default LDAP authenticator that can be used with other LDAP servers not in the preceding list.

Out-of-the-box, policies and credentials are stored in file-based stores; these stores can be moved (or reassociated) to an LDAP repository backed by an Oracle Internet Directory.

	
Note:

This guide does not attempt to describe in detail WebLogic security features; wherever specific information about SSPI is used or assumed, the reader is referred to the appropriate document.

1.3 Oracle ADF Security Overview

Oracle ADF is an end-to-end Java EE framework that simplifies development by providing out-of-the-box infrastructure services and a visual and declarative development experience.

Oracle ADF Security is based on the JAAS security model, and it uses OPSS. Oracle ADF Security supports LDAP- or file-based policy and credential stores, uses permission-based fine-grained authorization provided by OPSS, and simplifies the configuration of application security with the aid of visual declarative editors and the Oracle ADF Security wizard, all of them available in Oracle JDeveloper 11g (any reference to this tool in this guide stands for its 11g release).

Oracle ADF Security authorization allows protecting components (flows and pages), is integrated with Oracle JDeveloper at design time, and is available at run time when the application is deployed to the integrated server where testing of security features is typically carried out.

During the development of an Oracle ADF application, the authenticators are configured with the Oracle WebLogic Server Administration Console for the particular domain where the application is deployed, and the policy store is file-based and stored in the file jazn-data.xml. For deployment details, see Section 6.3.1, "Deploying to a Test Environment."

To summarize, Oracle ADF Security provides:

	
Control over granular declarative security

	
Visual and declarative development of security artifacts

	
Assignment of simplified permission through a role hierarchy

	
Use of EL (expression language) to access Oracle ADF resources

	
Integration with Oracle JDeveloper that allows quick development and test cycles

	
Rich Web user interfaces and simplified database access

1.4 OPSS for Administrators

Depending on the application type, the guidelines to administer application security with Oracle WebLogic Administration Console, OPSS scripts, Fusion Middleware Control, or Oracle Entitlements Server are as follows:

	
For Java EE applications, security is managed with Oracle WebLogic Administration Console, Oracle Entitlements Server, or OPSS scripts.

	
For Oracle SOA, Oracle WebCenter, MDS, and Oracle ADF applications, authentication is managed with Oracle WebLogic Administration Console and authorization is managed with Fusion Middleware Control and Oracle Entitlements Server.

	
For Java EE applications integrating with OPSS, authentication is managed using Oracle WebLogic Administration Console, and authorization is managed with Fusion Middleware Control and Oracle Entitlements Server.

For details about security administration, see Chapter 5, "Security Administration."

1.5 OPSS for Developers

This section summarizes the main OPSS features that developers typically implement in different kind of applications, in the following scenarios:

	
Scenario 1: Enhancing Security in a Java EE Application

	
Scenario 2: Securing an Oracle ADF Application

	
Scenario 3: Securing a Java SE Application

1.5.1 Scenario 1: Enhancing Security in a Java EE Application

A Java EE application can be enhanced to use OPSS APIs such as the CSF, User and Role, or Policy Management: user attributes, such as a user's email, phone, or address, can be retrieved using the Identity Governance Framework API or the User and Role API; external system credentials (stored in a wallet or in a LDAP-based store) can be retrieved using the CSF API; and authorization policy data can be managed with the policy management APIs.

Java EE applications, such as servlets, JSPs, and EJBs, deployed on Oracle WebLogic Server can be configured to use authentication and authorization declaratively, with specifications in the file web.xml, or programmatically, with calls to isUserInRole and isCallerInRole.

Custom authenticators include the standard basic, form, and client certification methods. Authentication between servlets and EJBs is controlled using user roles and enterprise groups, typically stored in an LDAP repository, a database, or a custom authenticators.

1.5.2 Scenario 2: Securing an Oracle ADF Application

Oracle Application Development Framework (ADF) is a Java EE development framework available in Oracle JDeveloper that simplifies the development of Java EE applications by minimizing the need to write code that implements the application's infrastructure, thus allowing developers to focus on the application features. Oracle ADF provides these infrastructure implementations as part of the Oracle JDeveloper framework, therefore enhancing the development experience with visual and declarative approaches to Java EE development.

Oracle ADF implicitly uses OPSS, and, for most part, the developer does not have to code directly to OPSS APIs; of course, the developer can nevertheless use direct calls to OPSS APIs.

Oracle ADF leverages container authentication and subsequently uses JAAS based authorization to control access to Oracle ADF resources. These authorization policies may include application-specific roles and JAAS authorization permissions. Oracle ADF connection credentials are stored securely in the credential store.

Oracle ADF and Oracle WebCenter applications deployed on Oracle WebLogic Server include WebLogic authenticators, such as the default WebLogic authenticator, and may include a single sign-on solution (Oracle Access Manager or Oracle Application Server Single Sign-On).

Usually, applications also use one or several of the following OPSS features: anonymous and authenticated role support, policy management APIs, and the Credential Store Framework.

For details about these topics, see the following sections:

	
Section 2.3, "The Authenticated Role"

	
Section 2.4, "The Anonymous User and Role"

	
Section 3.2, "Policy Store Basics"

	
Section 3.3, "Credential Store Basics"

For complete details on how to develop and secure an Oracle ADF application, see chapter 29 in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

1.5.3 Scenario 3: Securing a Java SE Application

Most of the OPSS features that work in Java EE applications work in Java SE applications, but there are some differences, which are noted in this section.

Configuration

All OPSS-related configuration and data files are located under configuration directory in the domain home. For example, the configuration file for a Java SE environment is defined in the file jps-config-jse.xml by default installed in the following location:

$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml

To specify a different location, use the following switch:

-Doracle.security.jps.config=pathToConfigFile

The syntax of this file is identical to that of the file jps-config.xml. This file is used by code running in WebLogic containers. For details, see Appendix A, "OPSS Configuration File Reference."

For details about security configuration for Java SE applications, see Section 22.2, "Authentication for Java SE Applications," and Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."

Required JAR in Class Path

To make OPSS services available to a Java SE application, ensure that the following JAR file is added to your class path, located in the modules area of the Oracle installation home:

$ORACLE_HOME/oracle_common/modules/oracle.jps_11.1.1/jps-manifest.jar

Login Modules

Java SE applications can use standard JAAS login modules. However, to use the same login module on WLS, implement a custom authentication provider that invokes the login module. The SSPI interfaces allow integrating custom authentication providers in WLS.

The login module recommended for Java SE applications is the IdentityStore login module.

For details, see section Authentication Providers in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.

Part II

Basic OPSS Administration

This part describes basic OPSS administration features in the following chapters:

	
Chapter 5, "Security Administration"

	
Chapter 6, "Deploying Secure Applications"

[image: Oracle Corporation]

3 Understanding Identities, Policies, and Credentials

Applications use the identity, policy, and credential stores configured in the domain in which they run. This chapter introduces the basic concepts regarding identity, policy, and credential data, and it is divided into the following sections:

	
Authentication Basics

	
Policy Store Basics

	
Credential Store Basics

For definitions of the terms used in this chapter, see Section 2.1, "Terminology."

For scenarios illustrating the use of stores, see Chapter 4, "About Oracle Platform Security Services Scenarios."

3.1 Authentication Basics

OPSS uses server authentication providers, components that validate user credentials or system processes based on a user name-password combination or a digital certificate. Authentication providers also make user identity information available to other components in a domain (through subjects) when needed.

Java EE applications must use LDAP-based authentication providers; Java SE applications use file-based identity stores out-of-the-box, but the identity store can be configured to be LDAP-based.

For further details, see section Authentication in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

	
Note:

OPSS does not support automatic migration of users and groups used in application development to a remote WebLogic Server where an application may be deployed. Instead, one must independently create the necessary application identities using the Oracle WebLogic Administration Console, OPSS scripts, or the appropriate tool depending on the authentication provider(s) configured in your domain.

This section covers the following topics:

	
Supported LDAP Identity Store Types

	
Oracle WebLogic Authenticators

	
WebSphere Identity Stores

3.1.1 Supported LDAP Identity Store Types

The following list enumerates the LDAP repositories supported for an identity store:

	
Oracle Internet Directory 11g

	
Oracle Virtual Directory

	
Oracle Directory Server Enterprise Edition 11.1.1.3.0

	
Active Directory 2008

	
Novell eDirectory 8.8

	
OpenLDAP 2.2. For the special configuration required for this type, see Appendix J, "Using an OpenLDAP Identity Store."

	
Tivoli Access Manager

	
Sun DS 6.3, 7.0

	
Oracle DB 10g, 11gR1, 11gR2

	
iPlanet Directory Server

	
Custom Authenticator

For information about Oracle Fusion Middleware Certification and Supported Configurations, visit http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html.

In regards to support for reference integrity in Oracle Internet Directory servers, see Important note Section 8.2, "Using an LDAP-Based OPSS Security Store."

3.1.2 Oracle WebLogic Authenticators

For a list of WebLogic authenticator providers, see chapter 4, Authentication Providers in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.

For details about the available authenticators, and choosing and configuring one, see section Configuring Authentication Providers in Oracle Fusion Middleware Securing Oracle WebLogic Server, and section Configure Authentication and Identity Assertion providers in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

By default and out-of-the-box, Oracle WebLogic Server stores users and groups in the DefaultAuthenticator. This authenticator is setup to use cn as the default attribute.

The data stored in any LDAP authenticator can be accessed by the User and Role API to query user profile attributes. For details about WebLogic LDAP authenticators, see the following sections:

	
Using an LDAP Authenticator

	
Configuring the LDAP Identity Store Service

	
Additional Authentication Methods

	
Important:

If your domain uses the DefaultAuthenticator, then the domain administration server must be running for an application to query data using the User and Role API.
OPSS requires that a domain have at least one LDAP-based authenticator configured in a domain.

For details about X.509 identity assertion, see section How an LDAP X509 Identity Assertion Provider Works in Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about authentication using the SAML 1.1 or SAML 2.0 identity assertion provider, see section Configuring the SAML Authentication Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.

3.1.2.1 Using an LDAP Authenticator

Oracle WebLogic Server offers several LDAP-based authenticators. For a choice of available LDAP servers for the identity store, see Supported LDAP Identity Store Types. The Weblogic DefaultAuthenticator is the default authenticator configured and ready to use out-of-the-box after installation. Other authenticators can be configured using the WebLogic Administration Console.

For details about the use of authenticators in Java SE applications, see Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications."

3.1.2.2 Configuring the LDAP Identity Store Service

Oracle WebLogic Server allows the configuration of multiple authenticators in a given context, each of which has a control flag set. One of them must be an LDAP-based authenticator.

OPSS initializes the identity store service with the LDAP authenticator chosen from the list of configured LDAP authenticators according to the following algorithm:

	
Consider the subset of LDAP authenticators configured. Note that, since the context is assumed to contain at least one LDAP authenticator, this subset is not empty.

	
Within that subset, consider those that have set the maximum flag. The flag ordering used to compute this subset is the following:

REQUIRED > REQUISITE > SUFFICIENT > OPTIONAL

Again, this subset (of LDAPs realizing the maximum flag) is not empty.

	
Within that subset, consider the first configured in the context.

The LDAP authenticator singled out in step 3 is the one chosen to initialize the identity store service. For details about host name verification when establishing an SSL connection with an LDAP authenticator, see Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about the default values that OPPS uses to initialize the various supported LDAP authenticators, see javadoc User and Role API documentation in Section H.1, "OPSS API References." If a service instance initialization value is provided by default and also (explicitly) in the service instance configuration, the value configured takes precedence over the default one.

	
Important:

Any LDAP-based authenticator used in a domain, other than the DefaultAuthenticator, requires that the flag UseRetrievedUserNameAsPrincipal be set. Out-of-the-box, this flag is set in the DefaultAuthenticator.

3.1.2.3 Additional Authentication Methods

The WebLogic Identity Assertion providers support certificate authentication using X.509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common Secure Interoperability version 2 (CSIv2) identity assertion.

The Negotiate Identity provider is used for SSO with Microsoft clients that support the SPNEGO protocol. This provider decodes SPNEGO tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to WebLogic users.

For general information about identity assertion providers, see section Identity Assertion Providers in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

For an overview of SSO with Microsoft clients, see section Overview of Single Sign-On with Microsoft Clients in Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about Kerberos identification, see section Creating a Kerberos Identification for WebLogic Server in Oracle Fusion Middleware Securing Oracle WebLogic Server.

3.1.3 WebSphere Identity Stores

On WebSphere, OPSS supports LDAP-based registries only; in particular, it does not support WebSphere's built-in file-based user registry.

For details about configuration and seeding a registry, see Oracle Fusion Middleware Third-Party Application Server Guide

3.2 Policy Store Basics

A Java 2 policy specifies the permissions granted to signed code loaded from a given location.

A JAAS policy extends Java 2 grants by allowing an optional list of principals; the semantics of the permissions are granted to only code from a given location, possibly signed, and run by a user represented by those principals.

JACC extends the Java 2 and JAAS permission-based policy to EJBs and Servlets by defining an interface to plug custom authorization providers, that is, pluggable components that allow the control and customizing of authorizations granted to running Java EE applications.

An application policy is a collection of Java 2 and JAAS policies, which is applicable to just that application (in contrast to a Java 2 policy, which are applicable to the whole JVM).

The policy store is a repository of system and application-specific policies and roles. Application roles can include enterprise users and groups specific to the application (such as administrative roles). A policy can use any of these groups or users as principals.

In the case of applications that manage their own roles, Java EE application roles (configured in files web.xml or ejb-jar.xml) get mapped to enterprise users and groups and used by application-specific policies.

	
Important:

As long as a domain is pointing to a policy store, that policy store cannot be deleted from the environment.

Policy Store Types

A policy store can be file-, LDAP-, or DB-based. A file-based policy store is an XML file, and this store is the out-of-the-box policy store provider. The only LDAP-based policy store type supported is Oracle Internet Directory. The only DB-based policy store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).

Policy Store Scope, Migration, and Reassociation

There is exactly one policy store per domain. During development, application policies are file-based and specified in the file jazn-data.xml.

When the application is deployed on WebLogic with Fusion Middleware Control, they can be automatically migrated into the policy store. For details about this feature, see Section 8.6.1, "Migrating with Fusion Middleware Control." By default, the policy store is file-based.

When the application is deployed on WebSphere, the behavior of migration at deployment can be manually specified as described in Section 21.4.1, "Parameters Controlling Policy Migration," and Section 21.4.4, "Parameters Controlling Credential Migration."

For reassociation details, see Section 8.5, "Reassociating the OPSS Security Store."

	
Note:

All permission classes must be specified in the system class path.

For details about the resource catalog support within a policy store, see Section 20.3.1, "The Resource Catalog."

3.3 Credential Store Basics

A credential store is a repository of security data (credentials) that certify the authority of users, Java components, and system components. A credential can hold user name and password combinations, tickets, or public key certificates. This data is used during authentication, when principals are populated in subjects, and, further, during authorization, when determining what actions the subject can perform.

OPSS provides the Credential Store Framework, a set of APIs that applications can use to create, read, update, and manage credentials securely.

Credential Store Types

A credential store can be file-, LDAP-, or DB-based. A file-based credential store, also referred to as wallet-based and represented by the file cwallet.sso, is the out-of-the-box credential store. The only LDAP-based credential store type supported is Oracle Internet Directory. The only DB-based credential store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).

Credential Store Scope, Migration, and Reassociation

An application can use either the domain credential store or its own wallet-based credential store. The domain credential store can be wallet-based (by default), LDAP-, or DB-based. The only LDAP-based credential store type supported is Oracle Internet Directory.

The migration of application credentials to the credential store can be configured to take place automatically when the application is deployed. For details, see Section 8.6.1, "Migrating with Fusion Middleware Control."

Credentials can also be reassociated from one type of store to another. For details, see Section 8.5, "Reassociating the OPSS Security Store."

2 Understanding Users and Roles

This chapter describes various characteristics of users and roles, such as the anonymous role, the authenticated role, role mapping, and the role category. It also includes the definition of terms used throughout this guide and an overview of the User and Role API Framework.

OPSS delegates authentication to Oracle WebLogic Server authenticator providers managed with the WebLogic Administration Console.

This chapter is divided into the following sections:

	
Terminology

	
Role Mapping

	
The Authenticated Role

	
The Anonymous User and Role

	
Administrative Users and Roles

	
Managing User Accounts

	
Principal Name Comparison Logic

	
The Role Category

For further details about managing users and roles programmatically, see Chapter 25, "Developing with the User and Role API."

2.1 Terminology

This section definies most of the OPSS security terms.

Users

A user, or enterprise user, is an end-user accessing a service. User information is stored in the identity store. An authenticated user is a user whose credentials have been validated.

An anonymous user is a user whose credentials have not been validated (hence unauthenticated) that is permitted access to only unprotected resources. This user is specific to OPSS and its use can be enabled or disabled by an application. For details about anonymous user support, see Section 2.4, "The Anonymous User and Role."

Roles

An enterprise role or enterprise group is a collection of users and other groups. It can be hierarchical, that is, a group can include arbitrarily nested groups (other than itself).

A Java EE logical role is a role specified declaratively or programmatically by a Java EE application. It is defined in an application deployment descriptor and, typically, used in the application code. It can be mapped to only enterprise groups or users, and it cannot be mapped directly to application roles.

An application role is a collection of users, groups, and other application roles; it can be hierarchical. Application roles are defined by application policies and not necessarily known to a Java EE container. Application roles can be many-to-many mapped to external roles. For example, the external group employee (stored in the identity store) can be mapped to the application role helpdesk service request (in one stripe) and to the application role self service HR (in another stripe).

For details about the anonymous role, see Section 2.4, "The Anonymous User and Role." For details about the authenticated role, see Section 2.3, "The Authenticated Role."

Principal

A principal is the identity to which the authorization in the policy is granted. A principal can be a user, an external role, or an application role. Most frequently, it is an application role.

Application Policy

An application policy is a functional policy that specifies a set of permissions that an entity (the grantee, a principal or code source) is allowed within an application, such as viewing web pages or modifying reports. That is, it specifies who can do what in an application.

An application policy uses:

	
Principals as grantees, and must have at least one principal.

	
Either one or more permissions, or an entitlement, but not both.

Policies that use an entitlement are called entitlement-based policies; policies that use one or more permissions are called resource-based policies.

Figure 2-1 illustrates the application policy model.

Figure 2-1 Application Policy Logical Model

[image: Surrounding text describes Figure 2-1 .]

OPSS Subject

An OPSS subject is a collection of principals and, possibly, user credentials such as passwords or cryptographic keys. The server authentication populates the subject with users and groups, and then augments the subject with application roles. The OPSS Subject is key in identity propagation using other Oracle Identity Management products such as OAM, for example. For details about how anonymous data is handled, see Section 2.4.1, "Anonymous Support and Subject."

Security Stores

The identity store is the repository of enterprise users and groups and must be LDAP-based. Out-of-the-box the identity store is the WebLogic LDAP DefaultAuthenticator. Other types of identity stores include Oracle Internet Directory, Sun Directory Server, and Oracle Virtual Directory.

The policy store is the repository of application and system policies. This store is administered with Oracle Enterprise Manager Fusion Middleware Control.

The credential store is the repository of credentials. This store is administered with Oracle Enterprise Manager Fusion Middleware Control.

The OPSS security store is the logical repository of system and application-specific policies, credentials, and keys. The only type of LDAP-based OPSS security store supported is Oracle Internet Directory.

For details, see Chapter 3, "Understanding Identities, Policies, and Credentials."

Other Terms

A system component is a manageable process that is not a WebLogic component. Examples include Oracle Internet Directory, WebCache, and Java SE components.

A Java component is a peer of a system component, but managed by an application server container. Generally it refers to a collection of applications and resources in one-to-one relationship with a domain extension template. Examples include Oracle SOA applications, Oracle WebCenter Spaces.

2.2 Role Mapping

OPSS supports many-to-many mapping of application roles in the policy store to enterprise groups in the identity store, which allows users in enterprise groups to access application resources as specified by application roles. Since this mapping is many-to-many, it is alternatively referred to as the role-to-group mapping or as the group-to-role mapping.

	
Notes:

Oracle JDeveloper allows specifying this mapping when the application is being developed in that environment. Alternatively, the mapping can be also specified, after the application has been deployed, using OPSS scripts, Fusion Middleware Control, or Oracle Entitlements Server, as explained in Section 9.2.2, "Managing Application Roles."
The mapping of an application role to an enterprise group rewrites the privilege of the enterprise group as the union of its privileges and those of the mapped application role. Therefore, it (possibly) augments the privileges of the enterprise group but never removes any from it.

2.2.1 Permission Inheritance and the Role Hierarchy

OPSS roles can be structured hierarchically by the relation “is a member of.” Thus a role can have as members users or other roles.

	
Important:

When building a role hierarchy, ensure that you do not introduce circular dependencies to prevent unwanted behavior. For example, setting roleA to be a member of roleB, and roleB to be a member of roleA would create such a circular dependency.

In a role hierarchy, role members inherit permissions from the parent role. Thus, if roleA is a member of roleB, then all permissions granted to roleB are also permissions granted to roleA. Of course, roleA may have its own particular permissions, but, just by being a member of roleB, roleA inherits all the permissions granted to roleB.

For details about managing an application role hierarchy with OPSS scripts, see Section 9.3.4, "grantAppRole," and Section 9.3.5, "revokeAppRole."

For details about managing an application role hierarchy with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following example illustrates a role hierarchy consisting of the following nested application users and roles:

	
The role developerAppRole has the following members:

developer
developer_group
managerAppRole
directorAppRole

	
In addition, the role directorAppRole has the following members:

developer
developer_group

Here is the relevant portions of the file jazn-data.xml specifying the above hierarchy:

<policy-store>
 <applications>
 <application>
 <name>MyApp</name>
 <app-roles>
 <app-role>
 <name>developerAppRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application developer role</display-name>
 <description>Application developer role</description>
 <guid>61FD29C0D47E11DABF9BA765378CF9F5</guid>
 <members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>developer</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developer_group</name>
 </membe>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>managerAppRole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>directorAppRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application director role </display-name>
 <description>Application director role</description>
 <guid>61FD29C0D47E11DABF9BA765378CF9F8</guid>
 <members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>developer</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developer_group</name>
 </member>
 </members>
 </app-role> ...
 </app-roles>

 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>developerAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.io.FilePermission</class>
 <name>/tmp/oracle.txt</name>
 <actions>write</actions>
 </permission>
 </permissions>
 </grant>

 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>managerAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.util.PropertyPermission</class>
 <name>myProperty</name>
 <actions>read</actions>
 </permission>
 </permissions>

 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>directorAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>foo.CustomPermission</class>
 <name>myProperty</name>
 <actions>*</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </policy-store>

Table 2-1 summarizes the permissions that each of the five users and roles in the above hierarchy gets according the inheritance rule:

Table 2-1 Granted and Inherited Permissions

	Role	Permission Granted	Actual Permissions
	
developerAppRole

	
P1=java.io.FilePermission

	
P1

	
managerAppRole

	
P2= java.util.PropertyPermission

	
P2 and (inherited) P1

	
directorAppRole

	
P3=foo.CustomPermission

	
P3 and (inherited) P1

	
developer

	
	
P1 and P3 (both inherited)

	
developer_group

	
	
P1 and P3 (both inherited)

2.3 The Authenticated Role

OPSS supports the use of a special role: the authenticated role. This role has the following characteristics:

	
It need not be declared in any configuration file.

	
It is always represented by a principal attached to a subject after a successful authentication. In another words: it is granted by default to any authenticated user.

	
Its presence, within a subject, is mutually exclusive with the anonymous role, that is, either (a) a subject has not gone through authentication, in which case it contains a principal with the anonymous role as explained in Anonymous Support and Subject or (b) the subject has gone through authentication successfully, in which case it contains the authenticated role and, depending on the configuration, the anonymous role.

	
It is an application role and, therefore, it can be used by any application and participate in the application's role hierarchy.

The permissions granted to the authenticated role need not be specified explicitly but are implicitly derived from the enterprise groups and application roles of which it is a member.

A typical use of the authenticated role is to allow authenticated users access to common application resources, that is, to resources available to a user that has been authenticated.

For details on how an application can manually configure the use of the authenticated role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."

2.4 The Anonymous User and Role

OPSS supports the use of two special entities: the anonymous user and the anonymous role. Like the authenticated role, these entities need not be declared and applications configure their use in the JpsFilter or JpsInterceptor. Any of them can be used by an application in the application's role hierarchy.

When enabled, before the user is authenticated and while the user is accessing unprotected resources, the user is represented by a subject populated with just the anonymous user and the anonymous role. Eventually, if that subject attempts access to a protected resource, then authorization handles the subject as explained in Anonymous Support and Subject.

The permissions granted to the anonymous user and role need not be specified explicitly but are implicitly derived from the enterprise groups and application roles of which they are a member.

A typical use of the anonymous user and role is to allow unauthenticated users to access public, unprotected resources.

For details on how an application can manually configure the use of the anonymous user and role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."

2.4.1 Anonymous Support and Subject

Throughout this section, it is assumed that the use of the anonymous user and anonymous role are enabled.

When an end-user first accesses an unprotected resource, the system creates a subject and populates it with two principals corresponding with the anonymous user and the anonymous role. While unprotected resources are involved, that subject is not modified and authentication does not take place.

When a protected resource is accessed, then authentication kicks in, and the subject (which thus far contained just the anonymous role) is modified according to the result of the authentication process, as follows.

If authentication is successful, then:

	
The anonymous user is removed from the subject and replaced, as appropriate, by an authenticated user.

	
The anonymous role is removed and the authenticated role is added.

	
Other roles are added to the subject, as appropriate.

Notice that a successful authentication results then in a subject that has exactly one principal corresponding to a non-anonymous user, one principal corresponding to the authenticated role, and possibly other principals corresponding to enterprise or application roles.

If authentication is not successful, then the anonymous user is retained, the anonymous role is removed or retained (according to how the application has configured the JpsFilter or JpsInterceptor), and no other principals are added. By default, the anonymous role is removed from the subject.

2.5 Administrative Users and Roles

A (WebLogic) administrator is any user member of the group Administrators, and any user that exists in a security realm can be added to this group.

For details about the default groups that exist in a security realm, see section Users, Groups, And Security Roles in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Generally, there is no default name for an administrator, with just one exception: when you install the examples, you get a default user name and password for the administrator of the sample domain. It is recommended, however, that these examples not be used in any production environment.

For details, see section Install WebLogic Server in a Secure Manner in Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic Server.

Once a domain is configured, users that have been created in the security realm can be added or removed from the Administrators group at anytime by any member of the Administrators group. The two basic tools for managing these accounts are the Oracle WebLogic Administration Console and the Oracle WebLogic Scripting Tool (WLST).

For details, see section Add Users to Groups in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help, and section Using the WebLogic Scripting Tool in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

2.6 Managing User Accounts

This section provides several links to information about creating user accounts and protecting their passwords.

	
For general guidelines on creating passwords, see section Manage Users and Groups in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help. The default authentication provider requires a minimum password length of 8 characters, but this is configurable.

A few recommendations regarding password creation are explained in section Securing the WebLogic Server Host in Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic Server.

	
In general, passwords are stored in either an LDAP server or an RDBMS. The particular location in which they are stored is determined by the specific authentication provider that is configured in the environment (or more precisely, the security realm of a domain). For details about out-of-the-box authentication providers, see section Managing the Embedded LDAP Server in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
For information about how to configure the optional Password Validation provider, which is automatically called whenever you create a password and that enforces a set of customizable password composition rules, see section Configuring the Password Validation Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
When adding or deleting a user, consider the recommendations explained in Section L.11, "User Gets Unexpected Permissions."

2.7 Principal Name Comparison Logic

This section explains how principal comparison affects OPSS authorization and describes the system parameters that control the principal name comparison logic, in the following sections:

	
How Does Principal Comparison Affect Authorization?

	
System Parameters Controlling Principal Name Comparison

2.7.1 How Does Principal Comparison Affect Authorization?

Upon a successful user authentication, the system populates a Subject with principals whose names accord with the user and enterprise group names (of enterprise groups the user is included in) stored in the identity store.

On the other hand, when the user (or enterprise group) needs to be authorized, the system considers how application roles have been mapped to enterprise groups, and builds another set of principals from names in application grants stored in the policy store.

In order to authorized a principal, the principal names populated in the Subject (from names found in the identity store) and those built from names in the policy store are compared. The user (or group) is authorized if and only if a match of principal names is found.

It is therefore crucial that principal names be compared properly for the authorization provider to work as expected.

Suppose, for instance, a scenario where the identity store contains the user name "jdoe", but, in grants, that user is referred to as "Jdoe". Then one would want the principal name comparison to be case insensitive, for otherwise the principals built from the names "jdoe" and "Jdoe" will not match (that is, they will be considered distinct) and the system will not authorize "jdoe" as expected.

2.7.2 System Parameters Controlling Principal Name Comparison

The following two WebLogic Server system parameters control the way principal names are compared in a domain and allow, furthermore, to compare principals using DN and GUID data:

PrincipalEqualsCaseInsensitive (True or False; False by default)
PrincipalEqualsCompareDnAndGuid (True or False; False by default)

To set these parameters using the WebLogic Server Console, proceed as follows:

	
In the left pane of the Console, under Domain Structure, select the domain for which you intend to set the parameters above.

	
Select Configuration > Security and click Advanced.

	
Check (to set to true) or uncheck (to set to false) the box next to the following entries:

	
Principal Equals Case Insensitive

	
Principal Equals Compare DN and GUID

	
Restart the server. Changes do not take effect until the server is restarted.

These parameters can alternatively be set using OPSS scripts. For more details about configuring the WebLogic server, see section Configuring a Domain to Use JAAS Authorization in Oracle Fusion Middleware Securing Oracle WebLogic Server.

The name comparison logic chosen at runtime is described by the following pseudo-code fragment:

if PrincipalEqualsCompareDnAndGuid is true
//use GUID and DN to compare principals
{
 when GUID is present in both principals {
 use case insensitive to compare GUIDs
 }
 when DN is present in both principals {
 use case insensitive to compare DNs
 }
}

if PrincipalEqualsCaseInsensitive is true
//use just name to compare principals
{
 use case insensitive to compare principal names
}
else
{
 use case sensitive to compare principal names
}

Since by default both PrincipalEqualsCompareDnAndGuid and PrincipalEqualsCaseInsensitive are false, name principal comparison defaults to case sensitive.

2.8 The Role Category

The role category allows a security administrator to organize application roles. Rather than displaying the flat list of roles in an application, an administrator can organize them arbitrarily in flat sets or categories.

For details about managing an application role category with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following fragment illustrates the configuration of a role category:

<role-categories>
 <role-category>
 <name>RC_READONLY</name>
 <display-name>RC_READONLY display name</display-name>
 <description>RC_READONLY description</description>
 <members>
 <role-name-ref>AppRole1</role-name-ref>
 <role-name-ref>AppRole2</role-name-ref>
 <role-name-ref>AppRole3</role-name-ref>
 </members>
 </role-category>
</role-categories>

The role category name is case insensitive. The role category can be managed with the interface RoleCategoryManager.

For details about this interface, see the Javadoc document Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services.

15 Configuring Single Sign-On with Oracle Access Manager 11g

The chapter provides information on configuring single sign-on using Oracle Access Manager 11g. It includes the following major sections:

	
Introduction to Oracle Access Manager 11g SSO

	
Deploying the Oracle Access Manager 11g SSO Solution

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Synchronizing the User and SSO Sessions: SSO Synchronization Filter

	
Troubleshooting Tips

15.1 Introduction to Oracle Access Manager 11g SSO

Oracle Access Manager 11g is part of Oracle's enterprise class suite of security products. Intended for use in new and existing SSO deployments, Oracle Access Manager 11g provides a full range of Web perimeter security functions that include Web single sign-on; authentication and authorization; policy administration, and more.

Oracle Access Manager 11g single sign-on (SSO) and single log-out (SLO) supports a variety of application platforms including:

	
SOA

	
WebCenter

Oracle Access Manager 11g supports integration with a variety of applications, as described in the Oracle Fusion Middleware Integration Guide for Oracle Access Manager.

	
Oracle Identity Navigator

	
Oracle Identity Federation

	
Oracle Identity Manager

	
Oracle Adaptive Access Manager

As described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service, Oracle Access Manager 11g differs from Oracle Access Manager 10g in that identity administration features have been transferred to Oracle Identity Manager 11g. This includes user self-service and self registration, workflow functionality, dynamic group management, and delegated identity administration.

Console Protection for Oracle Identity Management Applications

Oracle Access Manager 11g and other Oracle Identity Management applications are deployed in a WebLogic container. Individual administration consoles include Oracle Access Manager, Oracle Adaptive Access Manager, Oracle Identity Navigator, Oracle Identity Manager, Oracle WebLogic Server, and Oracle Entitlements Server.

These are protected by default using pre-configured Authentication Providers in the WebLogic Administration Console and a pre-registered IAMSuiteAgent with Oracle Access Manager 11g. OAM 11g SSO policies are pre-seeded. No further configuration is needed for the consoles.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service

Preview of OAM 11g Deployments

You can configure Oracle Access Manager in a new WebLogic administration domain or in an existing WebLogic administration domain using the Oracle Fusion Middleware Configuration Wizard.

See "Requirements for the Provider with Oracle Access Manager"

	
See Also:

Oracle Fusion Middleware Installation Guide for Oracle Identity Management

Oracle Access Manager 11g provides new server-side components that maintain backward compatibility with new or existing policy-enforcement agents. Dynamic Server-initiated updates are performed for any policy or configuration changes.

	
Oracle Access Manager Console (installed on WebLogic Administration Server) replaces the OAM 10g Policy Manager

	
OAM Server (installed on a WebLogic Managed Sever) replaces the OAM 10g Access Server

Oracle Access Manager 11g provides single sign-on (SSO), authentication, authorization, and other services to registered Agents (in any combination) protecting resources:

	
11g WebGates

	
10g WebGates

	
Java-based IAMSuiteAgent

	
OSSO Agents (10g mod_osso)

You can integrate with Oracle Access Manager 11g, any Web applications currently using Oracle ADF Security and the OPSS SSO Framework.

Only users with sufficient privileges can log in to the Oracle Access Manager Administration Console or use OAM administrative command-line tools. Your enterprise might require independent sets of administrators: one set of users responsible for OAM administration and a different set for WebLogic administration. For more information, see "Defining a New OAM Administrator Role" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

Overview of OAM 11g

The following outlines some of the basic features of Oracle Access Manager 11g:

Provisioning/Remote Registration: A new remote registration tool enables administrators inside or outside the network to register agents and policies. A username and password must be set in the primary User Identity Store for OAM 11g.

Authentication: Oracle Access Manager 11g application domains aggregate resources and security policies (one policy per resource). Oracle Access Manager 11g authentication policies include a specific scheme. Supported authentication modules include LDAP, X.509, and Kerberos. Authentication user mapping is performed against the primary user-identity provider by the centralized credential collector.

Authorization: Oracle Access Manager 11g performs authorization based on security policies defined in the application domain and persisted in the database. Authorization policies define the resource and constraint evaluation.

Responses: Administrators can set session attributes using authentication and authorization Responses. Aside from session attributes, a Response can also obtain user-related data and request-related data. Responses, once set, are then sent as either HTTP Headers or Cookies to the agent that helps manifest them. For cookie values and header variables, Responses can retrieve session attributes previously set by another Response. For example, session attributes set by a Response upon authentication can be retrieved as a header value during authorization.

Session Management: Oracle Access Manager 11g session management services track active user sessions through a high performance distributed cache system based on technology from Oracle Coherence. Each Oracle Access Manager runtime instance is a node within the distributed cache system. Secure communication between the nodes is facilitated using a symmetric key. The Oracle Access Manager runtime instances move user session data in the local cache into the distributed cache for other nodes to pick up. Each Oracle Access Manager runtime instance can also configure the replication factor and determine how session data is distributed. Administrators can configure the session lifecycle, locate and remove specific active sessions, and set a limit on the number of concurrent sessions a user can have at any time. Out-of-band session termination prevents unauthorized access to systems when a user has been terminated.

Keys: The Oracle Access Manager 11g runtime is deployed as an application to a WebLogic Managed Server or Cluster. New Oracle Access Manager 11g WebGates support a shared secret per agent trust model. 11g WebGates use agent/host specific cookies, which offers superior security. Oracle Access Manager 11g WebGates are all trusted at the same level; a cookie specific for the WebGate is set and cannot be used to access any other WebGate-protected applications on a user's behalf. Cookie-replay types of attacks are prevented.

SSO and SLO: The Oracle Access Manager 11g Server Session Token forms the basis for SSO between Oracle Access Manager and OSSO Agents. Logout is driven through Oracle Access Manager 11g Server Global Logout, which terminates the central session and logs out the user from each agent that was visited.

	
With Oracle Access Manager 10g WebGates, logout removes the ObSSOCookie and then redirects to the Global Logout page.

	
With Oracle Access Manager 11g WebGates and mod_osso agents, logout redirects to the Global Logout page and each agent is called back to remove the agent-specific cookie.

Logging and Auditing: Oracle Access Manager 11g components use the same logging infrastructure and guidelines as any other component in Oracle Fusion Middleware 11g. Oracle Access Manager 11g provides agent and server monitoring functions. Oracle Access Manager 11g auditing functions are based on the Common Audit Framework; audit-report generation is supported using Oracle Business Intelligence Publisher.

Access Tester: The new Oracle Access Manager 11g Access Tester enables IT professionals and administrators to simulate interactions between registered Oracle Access Manager Agents and Servers. This is useful when testing security policy definitions or troubleshooting issues involving agent connections.

Transition from Test to Production: Oracle Access Manager 11g enables moving configuration or policy data from one Oracle Access Manager 11g deployment to another (from a small test deployment to a production deployment, for example). Support for the creation of new topologies is based on templates. You can also copy and move policy changes.

Co-existence and Upgrades for OSSO 10g: The Oracle-provided Upgrade Assistant scans the existing OracleAS 10g SSO server configuration, accepts as input the 10g OSSO policy properties file and schema information, and transfers configured partner applications into the destination Oracle Access Manager 11g SSO.

	
See Also:

	
Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service for an "Introduction to Post-Upgrade Co-existence Between Oracle Access Manager 11g and OSSO 10g Servers"

	
Oracle Fusion Middleware Upgrade Planning Guide

	
Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management

15.1.1 Previewing Pre-Seeded OAM 11g Policies for Use by the OAM 10g AccessGate

The Application Authenticator application domain is delivered with OAM 11g. It is pre-seeded with the policy objects that enables integration with applications deployed in WebLogic environments using the OAM Authentication Provider as the security provider. It is not associated with WebGate provisioning. When you provision a WebGate or AccessGate to use this (or another existing application domain), you will decline having policies created automatically.

The Application Authenticator application domain comes into play with the custom 10g AccessGate used with the OAM Authenticator (and the Identity Asserter for Oracle Web Services Manager). In this case, the custom AccessGate (not WebGate) contacts the WebLogic Server directly with a token to authenticate the user before OAM 11g is contacted.

The Application Authenticator application domain protects only resources of type wl_authen and is seeded with two authentication policies and one authorization policy. The following wl_authen resources are also seeded in this domain:

	
/Authen/Basic

	
/Authen/SSOToken

	
/Authen/UsernameAssertion protected by LDAPNoPasswordValidationScheme

	
Note:

Only resources of type wl_authen are allowed in this domain; no other resource types can be added. Policies and Responses for wl_authen resources can be added. However, ideally, you will not need to modify this domain.

Figure 15-1 illustrates details of the seeded Application Authenticator application domain in the OAM 11g Administration Console. The page shown describes the pre-seeded User ID Assertion authentication policy, which protects the /Authen/UsernameAssertion resource. The authentication scheme for this policy is also shown along with the resources that are protected by the policy.

Figure 15-1 Pre-seeded Resources in the User ID Assertion Authentication Policy

[image: Surrounding text describes Figure 15-1 .]

Figure 15-2 illustrates pre-seeded Responses for the User ID Assertion authentication policy. For more information about Responses, see the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

Figure 15-2 Pre-seeded Responses in the User ID Assertion Policy

[image: Surrounding text describes Figure 15-2 .]

Figure 15-3 illustrates the pre-seeded Application SSO authentication policy, the resources protected by this policy, and the authentication scheme.

Figure 15-3 Pre-seeded Application SSO Authentication Policy and Resources

[image: Surrounding text describes Figure 15-3 .]

Figure 15-4 illustrates Pre-seeded Responses for the Application SSO authentication policy in the application domain.

Figure 15-4 Pre-seeded Responses for the Application SSO Authentication Policy

[image: Surrounding text describes Figure 15-4 .]

Figure 15-5 illustrates the pre-seeded Application SSO authorization policy and Resources in the application domain.

Figure 15-5 Pre-seeded Application SSO Authorization Policy and Resources

[image: Surrounding text describes Figure 15-5 .]

Authorization Constraints: There are no pre-seeded Application SSO authorization policy Constraints in this application domain. However, you can add constraints as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

Authorization Responses: There are no pre-seeded Application SSO authorization policy Responses in the application domain. However, you can add responses as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

	
See Also:

	
Configuring the Authenticator Function for Oracle Access Manager 11g

	
Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g

15.2 Deploying the Oracle Access Manager 11g SSO Solution

This section introduces how to implement OAM 11g with the Authentication Provider when you have applications that are (or will be) deployed in a WebLogic container.

This section provides the following topics to help you implement OAM 11g SSO when you have applications deployed in a WebLogic container. Aside from these uniquely OAM 11g methods, implementing OAM solutions are the same whether you have OAM 11g or OAM 10g:

	
Installing the Authentication Provider with Oracle Access Manager 11g

	
Provisioning an OAM Agent with Oracle Access Manager 11g

	
Configuring Identity Assertion for SSO with Oracle Access Manager 11g

	
Configuring the Authenticator Function for Oracle Access Manager 11g

	
Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service for details about the scenario for Identity Propagation with the OAM Token.

15.2.1 Installing the Authentication Provider with Oracle Access Manager 11g

The following overview outlines the tasks that must be completed to install the required components and files for the Oracle Access Manager 11g SSO solution using the Authentication Provider. While many of these tasks are nearly the same for Oracle Access Manager 11g and Oracle Access Manager 10g, there are a few differences.

	
See Also:

Oracle Fusion Middleware Installation Guide for Oracle Identity Management for installation and initial configuration details for Oracle Access Manager 11g.

Task overview: Installing components for use with the Authentication Provider and OAM 11g

	
Install and set up Oracle Internet Directory for Oracle Access Manager.

	
See Also:

	
Oracle Fusion Middleware Installation Guide for Oracle Identity Management

	
Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

	
Install and set up Oracle WebLogic Server 10.3.1+.

	
See Also:

Item 3 in this list, and the Oracle Fusion Middleware Getting Started With Installation for Oracle WebLogic Server

	
Optional: Install a Fusion Middleware product (Oracle Identity Manager, Oracle SOA Suite, or Oracle Web Center for example):

	
Note:

Without a Fusion Middleware application, you must acquire the required JAR and WAR files as described in later procedures.

	
Install OHS 11g for the Oracle Access Manager WebGate, if needed:

	
Identity Asserter: Requires Oracle HTTP Server 11g Web server configured as a reverse proxy in front of Oracle WebLogic Server.

	
Authenticator or Oracle Web Services Manager: No Web server is required for the custom AccessGate. The protected resource is accessed using its URL on the Oracle WebLogic Server.

	
Authentication Provider Files: Confirm the required JAR and WAR files as follows:

	
Confirm the location of required JAR files in the following Fusion Middleware path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamAuthnProvider.jar

	
Locate the console-extension WAR file in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprov
ider.war

	
Copy the WAR file to the following path in the WebLogic Server home:

WL_HOME/server/lib/console-ext/autodeploy/oamauthenticationprovider.war

	
Oracle Access Manager 11g:

Install Oracle Access Manager and perform initial configuration as described in Oracle Fusion Middleware Installation Guide for Oracle Identity Management.

Include one primary and one secondary OAM Server for WebGate. Only one secondary server is supported.

	
WebGate (for Identity Asserter for Single Sign-On): In an existing Web Tier with one or more WebGates, provisioning is all you need. In a new Web Tier, you must install a fresh WebGate.

In either case, see "Provisioning an OAM Agent with Oracle Access Manager 11g".

	
AccessGate for the Authenticator (or for Oracle Web Services Manager):

	
You can provision the 10g AccessGate as described in "Provisioning an OAM Agent with Oracle Access Manager 11g" (or refer to an existing OAM Agent registration when configuring the Authentication Provider).

	
Deploy the custom 10g AccessGate available in oamAuthnProvider.jar

15.2.2 Provisioning an OAM Agent with Oracle Access Manager 11g

Provisioning is the process of registering an agent and creating an application domain to use OAM 11g authentication and authorization services.You must provision a WebGate with OAM 11g whether you are preparing to install a fresh 11g or 10g instance or you have a legacy 10g WebGate installed.

The term WebGate is used for WebGates (and for the custom 10g AccessGates used with the Authenticator and the Identity Asserter for Oracle Web Services Manager). Unless explicitly stated, topics apply equally to both.

When you have multiple agents, each one can be provisioned independently or you can use a single OAM Agent registration for multiple agents.

	
Note:

The Application Authenticator application domain is pre-seeded and delivered with OAM 11g. When you provision an OAM Agent to use this (or another existing) application domain, decline the option of having policies automatically created.

The following topics are provided:

	
About WebGate Provisioning Methods for Oracle Access Manager 11g

	
Provisioning a WebGate with Oracle Access Manager 11g

15.2.2.1 About WebGate Provisioning Methods for Oracle Access Manager 11g

Table 15-1 outlines the methods and tools you can use to provision WebGates for use with OAM 11g. The remote registration tool enables you to specify a small amount or all WebGate parameters using templates.

Table 15-1 Provisioning Methods for OAM 11g

	Method	Description
	
Oracle Access Manager Administration Console

	
Enables OAM Administrators to manually enter information and set parameters directly in Oracle Access Manager. This method is required if you are using the Authenticator, or if you have Oracle Web Services Manager policies protecting Web services.

	
Remote Registration

	
Application administrators who are implementing the Identity Asserter for single sign-on, can register the WebGate using the command line. This also creates a new application domain with security policies for a fresh or existing Web Tier.

Required parameters are provisioned using values for your environment specified in a template. Default values are accepted for non-required parameters. After registration, values can be modified in the Oracle Access Manager Console.

During remote registration, you must provide the details discussed in Table 15-2.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service for a complete list of WebGate parameters

Table 15-2 Required Registration Details for OAM Agents

	OAM Agent Element	Description
	
<serverAddress>

	
Points to a running instance of the Oracle Access Manager Administration Console, including the host and port.

	
<webDomain>

OSSO requests only

	
Defines the Web server domain under which the Agent Base URL is stored internally.

	
<agentName>

	
Defines a unique identifier for the agent on the OAM (Administration) Server.

For every agent on the same server instance, this tag must be unique to avoid re-registering the same agent.

Re-registering an agent on the same server instance is not supported.

	
<hostIdentifier>

	
This identifier represents the Web server host. The field is filled in automatically when you specify a value for the OAM Agent Name. If the agent name or host identifier of the same name already exists, an error occurs during registration.

	
<protectedResourcesList>

	
Specifies the resource URLs that you want the OAM Agent to protect with some authentication scheme. The resource URLs should be relative paths to the agentBaseUrl.

	
<publicResourcesList>

	
Specifies the resource URLs that you want to keep public (not protected by the OAM Agent). The resource URLs should be relative paths to the agentBaseUrl. For instance, you might want to specify the Home page or the Welcome page of your application

15.2.2.2 Provisioning a WebGate with Oracle Access Manager 11g

Provisioning a WebGate or AccessGate involves the same steps. You can provision a new instance for use with the Authentication Provider or you can refer to an existing registration when configuring the provider.

In this example, an OAM 10g WebGate is provisioned using the OAMRequest_short.xml template. The registered agent is named my-wl-agent1, protecting /.../*, and declaring a public resource, /public/index.html. Your values will be different.

	
Note:

When provisioning an OAM 11g WebGate, use the OAM11gRequest_short.xml template.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service

To provision a WebGate with OAM 11g

	
Acquire the Tool: On the computer to host the WebGate, acquire the remote registration tool and set up the script for your environment. For example:

	
Locate RREG.tar.gz file in the following path:

WLS_home/Middleware/domain_home/oam/server/rreg/client/RREG.tar.gz

	
Untar RREG.tar.gz file to any suitable location. For example: rreg/bin/oamreg.

	
In the oamreg script, set the following environment variables based on your situation (client side or server side) and information in Table 6–7 in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service:

OAM_REG_HOME = exploded_dir_for_RREG.tar/rreg

JDK_HOME = Java_location_on_the_computer

	
Create the registration request:

	
Locate the *Request_short.xml file and copy it to a new location and name. For example:

WLS_home/Middleware/domain_home/oam/server/rreg/bin/oamreg/

Copy: OAMRequest_short.xml (or OAM 11gRequest.xml)

To: my-wl-agent1.xml

	
Edit my-wl-agent1.xml to include details for your environment, and set automatic policy creation to false. For example:

<OAMRegRequest>
 <serverAddress>http://sample.us.oracle.com:7001</serverAddress>
 <hostIdentifier>my-wl</hostIdentifier>
 <agentName>my-wl-agent1</agentName>
 <primaryCookieDomain>.us.example.com</primaryCookieDomain>
 <autoCreatePolicy>false</autoCreatePolicy>
 <logOutUrls><url>/oamsso/logout.html</url></logOutUrls>
</OAMRegRequest>

	
See Also:

"Creating the Registration Request" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service

	
Provision the agent. For example:

	
Locate the remote registration script.

Linux: rreg/bin/oamreg.sh

Ensure the script has executable permission: chmod +x oamreg.sh

Windows: rreg\bin\oamreg.bat

	
From the directory containing the script, execute the script using inband mode. For example:

$./bin/oamreg.sh inband input/my-wl-agent1.xml

Welcome to OAM Remote Registration Tool!
Parameters passed to the registration tool are:
Mode: inband
Filename: ...

	
When prompted, enter the following information using values for your environment:

Enter your agent username: userame
 Username: userame
Enter agent password: ********
Do you want to enter a Webgate password?(y/n)
 n
iv.Do you want to import an URIs file?(y/n)
 n

	
Review the final message to confirm that this was a successful registration:

Inband registration process completed successfully! Output artifacts are
created in the output folder"

	
Confirm in the Console: Log in to the Oracle Access Manager Console and review the new registration:

	
From the OAM 11g Console System Configuration tab, Access Manager Settings section, expand the SSO Agents nodes to search for the agent you just provisioned:

Access Manager Settings

SSO Agents

OAM Agents

Search

	
In the Search Results table, click the agent's name to display the registration page and review the details, which you will use later. For example:

Agent Name—During WebGate installation, enter this as the WebGate ID. If you deploy the custom 10g AccessGate, enter this as the AccessGate Name when configuring the OAM Authentication Provider in the WebLogic Administration Console.

Access Client Password—During WebGate installation, enter this as the WebGate password. If no password was entered, you can leave the field blank.

Access Server Host Name—Enter the DNS host name for the primary OAM 11g Server with which this WebGate is registered.

	
OAM Proxy Port—From the Oracle Access Manager Console, System Configuration tab, Common Configuration section, open Server Instances and locate the port on which the OAM Proxy is running.

	
Ignore the Obaccessclient.xml file, which is created during provisioning, for now.

	
Proceed as needed for your environment:

	
Agent is Installed: Go to the appropriate topic for your implementation:

	
Configuring Identity Assertion for SSO with Oracle Access Manager 11g

	
Configuring the Authenticator Function for Oracle Access Manager 11g

	
Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Agent is Not Installed:

11g WebGate: See Oracle Fusion Middleware Installation Guide for Oracle Identity Management.

10g WebGate: See Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

15.2.3 Configuring Identity Assertion for SSO with Oracle Access Manager 11g

This section describes the unique steps needed to configure Oracle Access Manager 11g Identity Assertion for Single Sign-On.

Prerequisites

Installing the Authentication Provider with Oracle Access Manager 11g

Provisioning an OAM Agent with Oracle Access Manager 11g

To configure Oracle Access Manager Identity Asserter for single sign-on with your application, perform the tasks as described in the following task overview.

Task overview: Deploying the Identity Asserter for SSO with OAM 11g includes

	
Ensuring that all prerequisite tasks have been performed

	
Establishing Trust with Oracle WebLogic Server

	
Configuring Providers in the WebLogic Domain

	
Reviewing the Login Page for the Oracle Access Manager Identity Asserter

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Testing Oracle Access Manager Identity Assertion for Single Sign-on

15.2.3.1 Establishing Trust with Oracle WebLogic Server

The following topics explain the tasks you must perform to set up the application for single sign-on with the Oracle Access Manager Identity Asserter:

	
Note:

This task is the same for both OAM 11g WebGates and OAM 10g WebGates.

	
Setting Up the Application Authentication Method for Identity Asserter for Single Sign-On

	
Confirming mod_weblogic for Oracle Access Manager Identity Asserter

	
Establishing Trust between Oracle WebLogic Server and Other Entities

15.2.3.1.1 Setting Up the Application Authentication Method for Identity Asserter for Single Sign-On

This topic describes how to create the application authentication method for Oracle Access Manager Identity Assertion.

	
See Also:

Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server

When you use the Oracle Access Manager Identity Asserter, all web.xml files in the application EAR file must specify CLIENT-CERT in the element auth-method for the appropriate realm.

You can add comma separated values here when you want applications accessed directly over the WebLogic Server host:port to be authenticated by the container. For instance: <auth-method>CLIENT-CERT,FORM</auth-method>.

The auth-method can use BASIC, FORM, or CLIENT-CERT values. While these look like similar values in Oracle Access Manager, the auth-method specified in web.xml files are used by Oracle WebLogic Server (not Oracle Access Manager).

To specify authentication in web.xml for the Identity Asserter

	
Locate the web.xml file in the application EAR file:

my_app/WEB-INF/web.xml

	
Locate the auth-method in login-config and enter CLIENT-CERT.

<login-config>
 <auth-method>CLIENT-CERT</auth-method>
</login-config>

	
Save the file.

	
Redeploy and restart the application.

	
Repeat for each web.xml file in the application EAR file.

	
Proceed to "Confirming mod_weblogic for Oracle Access Manager Identity Asserter".

15.2.3.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter

Oracle Oracle HTTP Server includes the mod_weblogic plug-in module (mod_wl_ohs.so in 11g) which is already enabled. You can perform the following procedure to confirm this or skip this procedure.

With Oracle HTTP Server 11g, the mod_weblogic configuration is present in mod_wl_ohs.conf by default, and the path of this file is included in httpd.conf. If the mod_weblogic configuration is not present then you must edit httpd.conf.

To configure mod_weblogic for the Oracle Access Manager Identity Asserter

	
Locate httpd.conf. For example:

ORACLE_INSTANCE/config/OHS/<ohs_name>/httpd.conf

	
Confirm that the following statement is in the file with appropriate values for your deployment (add or uncomment this, if needed):

<IfModule mod_weblogic.c>
 WebLogicHost myHost.myDomain.com
 WebLogicPort myWlsPortNumber
</IfModule>

<Location http://request-uri-pattern>
 SetHandler weblogic-handler
</Location>

	
Save the file.

	
Proceed to "Establishing Trust between Oracle WebLogic Server and Other Entities".

15.2.3.1.3 Establishing Trust between Oracle WebLogic Server and Other Entities

The Oracle WebLogic Connection Filtering mechanism must be configured for creating access control lists and for accepting requests from only the hosts where Oracle HTTP Server and the front-end Web server are running.

	
Note:

This topic is the same whether you are using OSSO or Oracle Access Manager.

A network connection filter is a component that controls the access to network level resources. It can be used to protect resources of individual servers, server clusters, or an entire internal network. For example, a filter can deny non-SSL connections originating outside of a corporate network. A network connection filter functions like a firewall since it can be configured to filter protocols, IP addresses, or DNS node names. It is typically used to establish trust between Oracle WebLogic Server and foreign entities.

To configure a connection filter to allow requests from only mod_weblogic and the host where OHS 11g is running, perform the procedure here.

	
Note:

This chapter uses the generic name of the WebLogic Server plug-in for Apache: mod_weblogic. For Oracle HTTP Server 11g, the name of this plug-in is mod_wl_ohs; the actual binary name is mod_wl_ohs.so. Examples show exact syntax for implementation.

WebLogic Server provides a default connection filter: weblogic.security.net.ConnectionFilterImpl. This filter accepts all incoming connections and also provides static factory methods that allow the server to obtain the current connection filter. To configure this connection filter to deny access, simply enter the connection filters rules in the WebLogic Server Administration Console.

You can also use a custom connection filter by implementing the classes in the weblogic.security.net package. Like the default connection filter, custom connection filters are configured in the WebLogic Server Administration Console.

Connection Filter Rules: The format of filter rules differ depending on whether you are using a filter file to enter the filter rules or you enter the filter rules in the Administration Console. When entering the filter rules on the Administration Console, enter them in the following format:

targetAddress localAddress localPort action protocols

Table 15-3 provides a description of each parameter in a connection filter.

Table 15-3 Connection Filter Rules

	Parameter	Description
	
target

	
Specifies one or more systems to filter

	
localAddress

	
Defines the host address of the WebLogic Server instance. (If you specify an asterisk (*), the match returns all local IP addresses.)

	
localPort

	
Defines the port on which the WebLogic Server instance is listening. (If you specify an asterisk, the match returns all available ports on the server.)

	
action

	
Specifies the action to perform. This value must be allow or deny

	
protocols

	
Is the list of protocol names to match. The following protocols may be specified: http, https, t3, t3s, giop, giops, dcom, ftp, ldap. If no protocol is defined, all protocols match a rule.

The Connection Logger Enabled attribute logs successful connections and connection data in the server. This information can be used to debug problems relating to server connections.

	
See Also:

"Configuring Security in a WebLogic Domain" in Oracle Fusion Middleware Securing Oracle WebLogic Server

To configure a connection filter to allow requests from the host of the 11g Oracle HTTP Server

	
Log in to the Oracle WebLogic Administration Console.

	
Click Domain under Domain Configurations.

	
Click the Security tab, click the Filter tab.

	
Click the Connection Logger Enabled attribute to enable the logging of accepted messages for use when debugging problems relating to server connections.

	
Specify the connection filter to be used in the domain:

	
Default Connection Filter: In the Connection Filter attribute field, specify weblogic.security.net.ConnectionFilterImpl.

	
Custom Connection Filter: In the Connection Filter attribute field, specify the class that implements the network connection filter, which should also be specified in the CLASSPATH for Oracle WebLogic Server.

	
Enter the appropriate syntax for the connection filter rules.

	
Click Save.

	
Restart the Oracle WebLogic Server.

	
Proceed to "Configuring Providers in the WebLogic Domain".

15.2.3.2 Configuring Providers in the WebLogic Domain

The information here applies equally to OAM 11g and OAM 10g. This topic is divided as follows:

	
About Oracle WebLogic Server Authentication and Identity Assertion Providers

	
About the Oracle WebLogic Scripting Tool (WLST)

	
Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM SSO, and OPSS SSO

	
Setting Up Providers for Oracle Access Manager 11g Identity Assertion

15.2.3.2.1 About Oracle WebLogic Server Authentication and Identity Assertion Providers

This topic introduces only a few types of Authentication Providers for a WebLogic security realm, if you are new to them.

Each WebLogic security realm must have one at least one Authentication Provider configured. The WebLogic Security Framework is designed to support multiple Authentication Providers (and thus multiple LoginModules) for multipart authentication. As a result, you can use multiple Authentication Providers as well as multiple types of Authentication Providers in a security realm. The Control Flag attribute determines how the LoginModule for each Authentication Provider is used in the authentication process.

Oracle WebLogic Server offers several types of Authentication and Identity Assertion providers including, among others:

	
The default WebLogic Authentication Provider (Default Authenticator) allows you to manage users and groups in one place, the embedded WebLogic Server LDAP server. This Authenticator is used by the Oracle WebLogic Server to login administrative users.

	
Identity Assertion uses token-based authentication; the Oracle Access Manager Identity Asserter is one example. This must be configured to use the appropriate action for the installed WebGate (either 10g or 11g).

	
LDAP Authentication Providers store user and group information in an external LDAP server. They differ primarily in how they are configured by default to match typical directory schemas for their corresponding LDAP server.

Oracle WebLogic Server 10.3.1+ provides OracleInternetDirectoryAuthenticator.

When you configure multiple Authentication Providers, use the JAAS Control Flag for each provider to control how the Authentication Providers are used in the login sequence. You can choose the following the JAAS Control Flag settings, among others:

	
REQUIRED—The Authentication Provider is always called, and the user must always pass its authentication test. Regardless of whether authentication succeeds or fails, authentication still continues down the list of providers.

	
SUFFICIENT—The user is not required to pass the authentication test of the Authentication Provider. If authentication succeeds, no subsequent Authentication Providers are executed. If authentication fails, authentication continues down the list of providers.

	
OPTIONAL—The user is allowed to pass or fail the authentication test of this Authentication Provider. However, if all Authentication Providers configured in a security realm have the JAAS Control Flag set to OPTIONAL, the user must pass the authentication test of one of the configured providers.

When additional Authentication Providers are added to an existing security realm, the Control Flag is set to OPTIONAL by default. You might need to change the setting of the Control Flag and the order of providers so that each Authentication Provider works properly in the authentication sequence.

	
See Also:

"Configuring Authentication Providers" in Oracle Fusion Middleware Securing Oracle WebLogic Server for a complete list of Authentication Providers and details about configuring the Oracle Internet Directory provider to match the LDAP schema for user and group attributes

15.2.3.2.2 About the Oracle WebLogic Scripting Tool (WLST)

This topic introduces WLST, if you are new to it.

You can add providers to a WebLogic domain using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.

WLST is a Jython-based command-line scripting environment that you can use to manage and monitor WebLogic Server domains. Generally, you can use this tool online or offline. You can use this tool interactively on the command line in batches supplied in a file (Script Mode, where scripts invoke a sequence of WLST commands without requiring your input), or embedded in Java code.

When adding Authentication Providers to a WebLogic domain, you can use WLST online to interact with an Authentication Provider and add, remove, or modify users, groups, and roles.

When you use WLST offline to create a domain template, WLST packages the Authentication Provider's data store along with the rest of the domain documents. If you create a domain from the domain template, the new domain has an exact copy of the Authentication Provider's data store from the domain template. However, you cannot use WLST offline to modify the data in an Authentication Provider's data store.

	
Note:

You cannot use WLST offline to modify the data in an Authentication Provider's data store.

	
See Also:

	
"Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM SSO, and OPSS SSO"

	
Oracle Fusion Middleware Oracle WebLogic Scripting Tool

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference "Infrastructure Security Commands" chapter

15.2.3.2.3 Configuring Oracle WebLogic Server for a Web Application Using ADF Security, OAM SSO, and OPSS SSO

On the Oracle WebLogic Server, you can run a Web application that uses Oracles Application Development Framework (Oracle ADF) security, integrates with Oracle Access Manager Single Sign On (SSO), and uses Oracle Platform Security Services (OPSS) SSO for user authentication. However before the Web application can be run, you must configure the domain-level jps-config.xml file on the application's target Oracle WebLogic Server for the Oracle Access Manager security provider.

The domain-level jps-config.xml file is in the following path and should not be confused with the deployed application's jps-config.xml file:

domain_home/config/fmwconfig/jps-config.xml

You can use an Oracle Access Manager-specific WLST script to configure the domain-level jps-config.xml file, either before or after the Web application is deployed. This Oracle JRF WLST script is named as follows:

Linux: wlst.sh

Windows: wlst.cmd

The Oracle JRF WLST script is available in the following path if you are running through JDev:

 $JDEV_HOME/oracle_common/common/bin/

In a standalone JRF WebLogic installation, the path is:

 $Middleware_home/oracle_common/wlst

	
Note:

The Oracle JRF WLST script is required. When running WLST for Oracle Java Required Files (JRF), do not use the WLST script under $JDEV_HOME/wlserver_10.3/common/bin.

Command Syntax

addOAMSSOProvider(loginuri, logouturi, autologinuri)

Table 15-4 defines the expected value for each argument in the addOAMSSOProvider command line.

Table 15-4 addOAMSSOProvider Command-line Arguments

	Argument	Definition
	
loginuri

	
Specifies the URI of the login page

	
autologinuri

	
Specifies the URI of the autologin page.

	
logouturi

	
Specifies the URI of the logout page

	
See Also:

	
Oracle Fusion Middleware Oracle WebLogic Scripting Tool

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference "Infrastructure Security Commands" chapter

Prerequisites

Configuring Providers in the WebLogic Domain

To modify domain-level jps-config.xml for a Fusion Web application with Oracle ADF Security enabled

	
On the computer hosting the Oracle WebLogic Server and the Web application using Oracle ADF security, locate the Oracle JRF WLST script. For example:

cd $ORACLE_HOME/oracle_common/common/bin

	
Connect to the computer hosting the Oracle WebLogic Server:

connect login_id password hostname:port

For example, the Oracle WebLogic Administration Server host could be localhost using port 7001. However, your environment might be different.

	
Enter the following command-line arguments with values for the application with ADF security enabled:

addOAMSSOProvider(loginuri="/${app.context}/adfAuthentication",
logouturi="/oamsso/logout.html", autologinuri="/obrar.cgi")

	
Stop and start the Oracle WebLogic Server.

	
Perform the following tasks as described in this chapter:

	
Setting Up Providers for Oracle Access Manager 11g Identity Assertion

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Testing Oracle Access Manager Identity Assertion for Single Sign-on

15.2.3.2.4 Setting Up Providers for Oracle Access Manager 11g Identity Assertion

This topic describes how to configure providers in the WebLogic security domain to perform single sign-on with the Oracle Access Manager Identity Asserter. Several Authentication Provider types must be configured and ordered:

	
OAM Identity Asserter: REQUIRED (also specify a chosen Active Type based on the WebGate release you are using with OAM 11g (Table 16-2, "Oracle Access Manager Authentication Provider Common Parameters"))

	
OID Authenticator: SUFFICIENT

	
DefaultAuthenticator: SUFFICIENT

	
See Also:

"About Oracle WebLogic Server Authentication and Identity Assertion Providers"

The following procedure uses the WebLogic Administration Console.

	
Note:

With an Oracle Fusion Middleware application installed, you have the required provider JAR file. Skip Step 1.

To set up Providers for Oracle Access Manager single sign-on in a WebLogic domain

	
No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager provider:

	
Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html

	
Locate the oamAuthnProvider ZIP file with Access Manager WebGates (10.1.4.3.0):

oamAuthnProvider<version number>.zip

	
Extract and copy oamAuthnProvider.jar to the following path on the computer hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

	
With Oracle Fusion Middleware Application Installed:

	
Locate oamauthenticationprovider.war in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprovi
der.war

	
Copy oamauthenticationprovider.war to the following location:

BEA_HOME/wlserver_10.x/server/lib/console-ext/autodeploy/oamauthentication
provider.war

	
Log in to the WebLogic Administration Console.

	
Click Security Realms, Default Realm Name, and click Providers.

	
OAM Identity Asserter: Perform the following steps to add this provider:

	
Click New, and then enter a name and select a type:

Name: OAM Identity Asserter

Type: OAMIdentityAsserter

OK

	
In the Authentication Providers table, click the newly added authenticator.

	
Click the Common tab, set the Control Flag to REQUIRED.

	
Click the Common tab, specify the chosen Active Type for your installed WebGate, (Table 16-2).

	
Save.

	
OID Authenticator: Perform the following steps to add this provider.

	
Click Security Realms, Default Realm Name, and click Providers.

	
Click New, enter a name, and select a type:

Name: OID Authenticator

Type: OracleInternetDirectoryAuthenticator

OK

	
In the Authentication Providers table, click the newly added authenticator.

	
On the Settings page, click the Common tab, set the Control Flag to SUFFICIENT, and then click Save.

	
Click the Provider Specific tab and specify the following required settings using values for your own environment:

Host: Your LDAP host. For example: localhost

Port: Your LDAP host listening port. For example: 6050

Principal: LDAP administrative user. For example: cn=orcladmin

Credential: LDAP administrative user password.

User Base DN: Same searchbase as in Oracle Access Manager.

All Users Filter: For example: (&(uid=*)(objectclass=person))

User Name Attribute: Set as the default attribute for username in the LDAP directory. For example: uid

Group Base DN: The group searchbase (same as User Base DN)

Do not set the All Groups filter as the default works fine as is.

Save.

	
Default Authenticator: Perform the following steps to set up the Default Authenticator for use with the Identity Asserter:

	
Go to Security Realms, Default Realm Name, and click Providers.

	
Click Authentication, Click DefaultAuthenticator to see its configuration page.

	
Click the Common tab and set the Control Flag to SUFFICIENT.

	
Save.

	
Reorder Providers:

	
Click Security Realms, Default Realm Name, Providers.

	
On the Summary page where providers are listed, click the Reorder button

	
On the Reorder Authentication Providers page, select a provider name and use the arrows beside the list to order the providers as follows:

OAM Identity Asserter (REQUIRED)

OID Authenticator (SUFFICIENT)

Default Authenticator (SUFFICIENT)

	
Click OK to save your changes

	
Activate Changes: In the Change Center, click Activate Changes

	
Reboot Oracle WebLogic Server.

	
Proceed as follows:

	
Successful: See "Reviewing the Login Page for the Oracle Access Manager Identity Asserter".

	
Not Successful: Confirm that all providers have the proper specifications for your environment, are in the proper order, and that oamAuthnProvider.jar is in the correct location.

15.2.3.3 Reviewing the Login Page for the Oracle Access Manager Identity Asserter

As mentioned earlier, a login form shipped with 10g WebGate is used only with OAM 10g Access Server. For OAM 11g, neither the 10g WebGate nor 11g WebGate provide a login page.

	
Note:

The OAM 11g Server displays a login page. No set up is needed.

Proceed as Follows

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Testing Oracle Access Manager Identity Assertion for Single Sign-on

15.2.3.4 Testing Oracle Access Manager Identity Assertion for Single Sign-on

The following procedure describes how to test your Oracle Access Manager Identity Assertion setup.

Alternatively, you can run Access Tester in Oracle Access Manager to test your policy domain, as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

To validate Oracle Access Manager Identity Assertion for Single Sign-on

	
Enter the URL to access the protected resource in your environment. For example:

http://ohs_server:port/<protected url>

	
Provide appropriate credentials when the login form appears.

	
Successful: The implementation works.

	
Not Successful: See "Troubleshooting Tips".

15.2.4 Configuring the Authenticator Function for Oracle Access Manager 11g

With the Authenticator function, the user is challenged for credentials based on the authentication method that is configured within the application web.xml. However, an Oracle Access Manager authentication scheme is required and available in the pre-seeded application domain that is delivered with Oracle Access Manager 11g. It protects the following resources (resource type wl_authen):

	
/Authen/Basic

	
/Authen/SSOToken

	
/Authen/UsernameAssertion

You can add Responses and Constraints to policies. However, no other configuration is needed.

For more information about the pre-seeded application domain, see "Previewing Pre-Seeded OAM 11g Policies for Use by the OAM 10g AccessGate".

Prerequisites

	
Installing the Authentication Provider with Oracle Access Manager 11g

	
Provisioning an OAM Agent with Oracle Access Manager 11g

	
Note:

You can provision the custom 10g AccessGate for the Authenticator or simply refer to an existing OAM Agent registration when configuring providers for the Authenticator.

Tasks to configure the Oracle Access Manager Authenticator are described in the following overview.

Task overview: Configuring the Authenticator function for OAM includes

	
Ensuring that all prerequisite tasks have been performed

	
Configuring Providers for the Authenticator in a WebLogic Domain

	
Configuring the Application Authentication Method for the Authenticator

	
Mapping the Authenticated User to a Group in LDAP

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Testing the Oracle Access Manager Authenticator Implementation

15.2.4.1 Configuring Providers for the Authenticator in a WebLogic Domain

This topic includes a procedure that you can use to add and configure the appropriate Authentication providers in a WebLogic domain.

The Oracle Access Manager Authenticator must be configured along with the Default Authentication Provider in a WebLogic domain.

	
DefaultAuthenticator: SUFFICIENT

	
OAM Authenticator: OPTIONAL

The following procedure describes this task using the WebLogic Administration Console. You can also add these using the Oracle WebLogic Scripting Tool (WLST).

	
See Also:

	
"About Oracle WebLogic Server Authentication and Identity Assertion Providers"

	
Oracle Fusion Middleware Oracle WebLogic Scripting Tool

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

	
Note:

When an Oracle Fusion Middleware application is installed, you have the required files and can skip Step 1.

To configure providers for the Oracle Access Manager Authenticator in a WebLogic domain

	
No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager provider if you have no Oracle Fusion Middleware application.

	
Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html

	
Locate the oamAuthnProvider ZIP file with Access Manager WebGates (10.1.4.3.0). For example:

oamAuthnProvider<version>.zip

	
Extract and copy the oamAuthnProvider.jar to the following path on the computer hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

	
Go to the Oracle WebLogic Administration Console.

	
With Oracle Fusion Middleware Application Installed:

	
Locate oamauthenticationprovider.war in the following path:

ORACLE_INSTANCE/modules/oracle.oamprovider_11.1.1/oamauthenticationprovi
der.war

	
Copy oamauthenticationprovider.war to the following location:

BEA_HOME/wlserver_10.x/server/lib/console-ext/autodeploy/oamauthentication
provider.war

	
Go to the Oracle WebLogic Administration Console.

	
Click Lock & Edit, if desired.

	
OAM Authenticator:

	
Click Security Realms and select the realm you want to configure.

	
Select Providers, Authentication, and click New to display the Create a New Authentication Provider page

	
Enter a name and select a type:

Name OAMAuthN

Type: OAMAuthenticator

OK

	
Click the name of the Authentication provider you have just created to display the Provider Configuration page.

	
In the Provider Configuration page, set the required values as follows:

Access Gate Name: The name of the AccessGate used by the Provider. This must match exactly the name of an OAM Agent registration in the Oracle Access Manager Console.

	
Note:

You can have one or more 10g OAM Agents registered with OAM 11g. Be sure to choose the correct Agent registration name.

Access Gate Password: The same password, if any, that is as defined for the Agent registration (see the Oracle Access Manager Console).

Primary Access Server: The host:port of the primary Access Server that is associated with this AccessGate in the Oracle Access Manager Console.

Advanced Configuration: Following are several advanced configuration values.

Transport Security: The communication mode between Access Server and AccessGate: open, simple, or cert.

If transport security is Simple or Cert, include the following parameters and values:

Trust Store: The absolute path of JKS trust store used for SSL communication between the provider and the OAM Server.

Key Store: The absolute path of JKS key store used for SSL communication between the provider and the OAM Server.

Key Store Pass Phrase: The password to access the key store.

Simple mode pass phrase: The password shared by AccessGate and OAM Server for simple communication modes.

Secondary OAM Server: The host:port of the secondary OAM Server that is associated with this AccessGate in the Oracle Access Manager Console.

Maximum OAM Server Connections in Pool: The maximum number of connections that the AccessGate opens to the OAM Server. The default value is 10.

	
Note:

The Maximum OAM Server Connections in Pool (or Minimum OAM Server Connections in Pool) settings in the WebLogic Administration Console are different from the Maximum (or Minimum) Connections specified in the Oracle Access Manager Console.

Minimum Access Server Connections in Pool: The minimum number of connections that the Authentication provider uses to send authentication requests to the Access Server. The default value is 5.

	
See Also:

"Oracle Access Manager Authentication Provider Parameter List" for descriptions and values of the common and provider-specific parameters

	
Ensure that the parameter Control Flag is set to OPTIONAL initially.

	
Note:

Do not set the parameter Control Flag to REQUIRED until you have verified that the Authentication Provided is operational and configured correctly.

	
In the Change Center, click Activate Changes.

	
DefaultAuthenticator: Under the Providers tab, select DefaultAuthenticator, which changes its control flag to SUFFICIENT.

	
Reorder: Under the Providers tab, reorder the providers so that DefaultAuthenticator is first (OAMAuthenticator follows DefaultAuthenticator).

	
Note:

If the Oracle Access Manager Authenticator flag is set to REQUIRED, or if Oracle Access Manager Authenticator is the only Authentication provider, perform the next step to ensure that the LDAP user who boots Oracle WebLogic Server is included in the administrator group that can perform this task. By default the Oracle WebLogic Server Admin Role includes the Administrators group.

	
Oracle Access Manager Authenticator REQUIRED or the Only Authenticator: Perform the following steps to set user rights for booting Oracle WebLogic Server.

	
Create an Administrators group in the directory server, if one does not already exist (or any other group for which you want boot access).

	
Note:

To provide access to any other group, you must create that group in the directory server and add the user who boots WebLogic Server in that group.

	
Confirm that the LDAP user who boots Oracle WebLogic Server is included in the Administrators (or other) group.

	
From the WebLogic Administration Console, go to Security Realms, myrealm, Roles and Policies, Global Roles.

	
Select View Conditions for the Admin Role.

	
Add the group and click Save.

	
Reboot the WebLogic Server.

	
Once the server has started, reset the Authentication Provider parameter Control Flag to the appropriate value (REQUIRED, OPTIONAL, or SUFFICIENT).

	
Note:

The recommended value is REQUIRED. To prevent a known issue, see "JAAS Control Flag".

	
Proceed with "Configuring the Application Authentication Method for the Authenticator".

15.2.4.2 Configuring the Application Authentication Method for the Authenticator

This topic describes how to create the application authentication method for Oracle Access Manager Authenticator.

	
See Also:

Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server

When you use the Oracle Access Manager Authenticator, all web.xml files in the application EAR file must specify BASIC in the element auth-method for the appropriate realm.

The auth-method can use BASIC or FORM values. While these look like similar values in Oracle Access Manager, the auth-method specified in web.xml files are used by Oracle WebLogic Server (not Oracle Access Manager).

	
Note:

For the Oracle Access Manager Authenticator, Oracle recommends auth-method BASIC in login-config within web.xml.

To configure the application authentication method for the Authenticator

	
Locate the web.xml file in the application EAR file:

WEB-INF/web.xml

	
Locate the auth-method in login-config and enter BASIC. For example:

<security-constraint>
<web-resource-collection>
<web-resource-name>protected</web-resource-name>
<url-pattern>/servlet</url-pattern>
</web-resource-collection>
<auth-constraint>
<role-name>auth-users</role-name>
</auth-constraint>
</security-constraint>
<login-config>
<auth-method>BASIC</auth-method>
</login-config>
<security-role>
<description>Authenticated Users</description>
<role-name>auth-users</role-name>
</security-role>

	
Save the file.

	
Redeploy and restart the application.

	
Repeat for each web.xml file in the application EAR file.

	
Proceed with "Mapping the Authenticated User to a Group in LDAP".

15.2.4.3 Mapping the Authenticated User to a Group in LDAP

This topic describes how to map the authenticated user to a group in LDAP. To do this, you must edit the weblogic.xml file. For example, you might need to map your role-name auth-users to a group named managers in LDAP.

To map the authenticated user to a group in LDAP for the Oracle Access Manager Authenticator

	
Go to the application's weblogic.xml file.

	
Add the following information for your environment anywhere in the file:

<weblogic-web-app xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-web-app
http://www.bea.com/ns/weblogic/weblogic-web-app/1.0/weblogic-web-app.xsd"
xmlns="http://www.bea.com/ns/weblogic/weblogic-web-app">
<security-role-assignment>
<principal-name>managers</principal-name>
<role-name>auth-users</role-name>
</security-role-assignment>
</weblogic-web-app>

	
Save the file.

	
Restart the WebLogic Server.

	
Configure centralized logout as described in "Configuring Centralized Log Out for Oracle Access Manager 11g" and then return here to perform "Testing the Oracle Access Manager Authenticator Implementation".

15.2.4.4 Testing the Oracle Access Manager Authenticator Implementation

After performing all tasks to implement the Authenticator, you can test it by attempting to log in to the application using valid credentials. If the configuration is incorrect, a valid user is denied access.

The following procedure describes how to test your Authenticator setup. Alternatively, you can run Access Tester in Oracle Access Manager to test your policy domain, as described in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

To validate the Oracle Access Manager Authenticator implementation

	
Enter the URL to access the protected resource in your environment. For example:

http://yourdomain.com:port

	
Provide appropriate credentials when the login form appears.

	
Successful: The implementation works.

	
Not Successful: See "Troubleshooting Tips".

15.2.5 Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g

This section describes how to set up the Oracle Access Manager Identity Asserter to enable validation of the token when you have Oracle Web Services Manager protecting Web services.

As discussed earlier, the Oracle Access Manager Identity Asserter works in two modes. The default mode of operation simply asserts the header that is set by WebGate at the perimeter, which handles most SSO situations. The alternate mode uses the custom AccessGate in oamAuthnProvider.jar. In this case, and with the absence of the header, the Identity Asserter contacts the OAM Server to validate the token. For more information about the token, see "Installing the Authentication Provider with Oracle Access Manager 11g".

	
Note:

The 10g custom AccessGate provided with the Authentication Provider is required for Identity Assertion for Oracle Web Services Manager.

With OAM 10g, you would need to manually create the policy domain and policies for this configuration. However, with OAM 11g, a pre-seeded application domain is delivered with policies that protect the following resources (resource type wl_authen):

	
/Authen/Basic

	
/Authen/SSOToken

	
/Authen/UsernameAssertion

You can add policies, Responses, or Constraints for resources of type wl_authen only. Ideally, however, you can use this application domain with no further configuration. For more information, see "Previewing Pre-Seeded OAM 11g Policies for Use by the OAM 10g AccessGate".

When the Oracle Access Manager Identity Asserter is configured for both header and token validation modes, preference is given to the presence of the header. If the header is not present, the Identity Asserter contacts the OAM Server to validate the token. For more information on the token, see "Oracle Access Manager Authentication Provider Parameter List".

Prerequisites

Installing the Authentication Provider with Oracle Access Manager 11g

Provisioning an OAM Agent with Oracle Access Manager 11g

Task overview: Deploying the Identity Asserter with Oracle Web Services Manager includes

	
Configuring Oracle Web Services Manager Policies for Web Services

	
Configuring Providers in a WebLogic Domain for Oracle Web Services Manager

	
Configuring Centralized Log Out for Oracle Access Manager 11g

	
Testing the Identity Asserter with Oracle Web Services Manager

15.2.5.1 Configuring Oracle Web Services Manager Policies for Web Services

This section provides an overview of configuring Oracle Web Services Manager policies to protect Web services.

To use the Identity Asserter with Oracle Web Services Manager, you must set up a Web service with the oracle/wss_oam_token_service_policy and a corresponding client with the oracle/wss_oam_token_client_policy in Oracle Web Services Manager.

	
See Also:

"Introduction: OAM Authentication Provider for WebLogic Server"

About oracle/wss_oam_token_service_policy

This Oracle Web Services Manager policy contains the policy assertion oracle/wss_oam_token_service_template. This template uses the credentials in the WS-Security header's binary security token to authenticate users against the Oracle Access Manager identity store.

The Oracle Access Manager Identity Asserter uses the ObSSOCookie token to assert the identity of users who try to access a Web service protected by the oracle/wss_oam_token_service_policy policy. A Web service that is protected by this policy must be presented with an ObSSOCookie token in a SOAP header. That is, the Web service consumes the ObSSOCookie token; it is not involved in how the token is generated. Specifically, the WebLogic Server security service detects the token type and invokes the Oracle Access Manager Identity Asserter. The Oracle Access Manager Identity Asserter then validates the ObSSOCookie token against the Oracle Access Manager Access Server and obtains the username. The username is populated as the principal in the authenticated subject.

The Web service client, for example the Web application, must obtain the ObSSOCookie token to send it to the Web service. This is typically done using an AccessGate. AccessGate challenges the Web service client user for credentials (depending on the authentication scheme configured in Oracle Access Manager) and authenticates the user. The WebGate sends the ObSSOCookie to the user's browser upon successful authentication

The Web service client then sends the ObSSOCookie token in the SOAP request to the Web service.

	
Note:

Settings for the wss_oam_token_service_template are identical to the client version of the assertion: wss_oam_token_client_template. Identity store configuration for the service template is identical to the client version of the assertion.

About oracle/wss_oam_token_client_policy

This Oracle Web Services Manager policy contains the following policy assertion: oracle/wss_oam_token_client_template. This template inserts Oracle Access Manager credentials into the WS-Security header as part of the binary security token.

oracle/wss_oam_token_client_policy is the analogous client policy to the oracle/wss_oam_token_service_policy service endpoint policy. This policy can be enforced on any SOAP-based endpoint.

The following task overview outlines the procedures you must perform.

Task overview: Setting policies in Oracle Web Services Manager

	
Using Oracle Web Services Manager, set up a Web service with the oracle/wss_oam_token_service_policy policy.

	
Using Oracle Web Services Manager, set up a corresponding client for the Web service with the oracle/wss_oam_token_client_policy policy.

	
Configuring Providers in a WebLogic Domain for Oracle Web Services Manager.

	
See Also:

	
Oracle Fusion Middleware Security and Administrator's Guide for Web Services

"Configuring Policies"

"Predefined Assertion Templates"

15.2.5.2 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager

To use Oracle Access Manager Identity Asserter with Oracle Web Services Manager protected Web services, several Authentication providers must be configured and ordered in a WebLogic domain:

	
OAM Identity Asserter: REQUIRED

	
OID Authenticator: SUFFICIENT

	
DefaultAuthenticator: SUFFICIENT

This procedure is nearly identical to the one for the Oracle Access Manager Identity Asserter with OAM 11g. The difference in this case is that Oracle Web Services Manager requires the custom 10g AccessGate and additional provider-specific values:

	
Primary Access Server: Specify the host and part. For example: mnop:8888

	
Access Gate Name: The name of the AccessGate registration protecting the application. For example: AG1

	
Access Gate Password: The AccessGate password as specified in the Oracle Access Manager Console.

You can add these using either the Oracle WebLogic Administration Console or Oracle WebLogic Scripting Tool (WLST) command-line tool.

	
See Also:

	
"About Oracle WebLogic Server Authentication and Identity Assertion Providers"

	
Oracle Fusion Middleware Oracle WebLogic Scripting Tool

	
Oracle Fusion Middleware WebLogic Scripting Tool Command Reference

	
Note:

With a Oracle Fusion Middleware application installed, you have the required provider file. Skip Step 1.

To set up providers in a WebLogic domain

	
No Oracle Fusion Middleware Application: Obtain the Oracle Access Manager provider if you have no Oracle Fusion Middleware application.

	
Log in to Oracle Technology Network at:

http://www.oracle.com/technology/software/products/middleware/htdocs/111110_fmw.html

	
Locate the oamAuthnProvider ZIP file with Access Manager WebGates (10.1.4.3.0). For example:

oamAuthnProvider<version>.zip

	
Extract and copy the oamAuthnProvider.jar to the following path on the computer hosting Oracle WebLogic Server:

BEA_HOME/wlserver_10.x/server/lib/mbeantypes/oamAuthnProvider.jar

	
Log in to the Oracle WebLogic Administration Console.

	
OAM Identity Asserter: Perform the following steps to add this provider:

	
Click Security Realms, Default Realm Name, and click Providers.

	
Click Authentication, click New, and then enter a name and select a type:

Name: OAM Identity Asserter

Type: OAMIdentityAsserter

OK

	
In the Authentication Providers table, click the newly added authenticator.

	
On the Common tab, set the Control Flag to REQUIRED, and click Save.

	
Click the Common tab, specify ObSSOCookie as the chosen Active Type for the 10g custom AccessGate, and click Save.

	
Click the Provider Specific tab and configure these parameters:

Primary Access Server: Specify the host and part. For example: abcd:7777

Access Gate Name: The name of the OAM Agent registration protecting the application. For example: AG1

Access Gate Password: The AccessGate password, if any, that was specified in during provisioning.

Save.

	
OID Authenticator: Perform the following steps to add this provider.

	
Click Security Realms, Default Realm Name, and click Providers

	
Click New, enter a name, and select a type:

Name: OID Authenticator

Type: OracleInternetDirectoryAuthenticator

Click OK.

	
In the Authentication Providers table, click the newly added authenticator.

	
On the Settings page, click the Common tab, set the Control Flag to SUFFICIENT, and then click Save.

	
Click the Provider Specific tab and specify the following required settings using values for your own environment:

Host: Your LDAP host. For example: localhost

Port: Your LDAP host listening port. For example: 6050

Principal: LDAP administrative user. For example: cn=orcladmin

Credential: LDAP administrative user password.

User Base DN: Same searchbase as in Oracle Access Manager.

All Users Filter: For example: (&(uid=*)(objectclass=person))

User Name Attribute: Set as the default attribute for username in the LDAP directory. For example: uid

Group Base DN: The group searchbase (same as User Base DN)

	
Note:

Do not set the All Groups filter as the default works fine as is.

Click Save.

	
Default Authenticator: Perform the following steps to set up the Default Authenticator for use with the Identity Asserter:

	
Go to Security Realms, Default Realm Name, and click Providers.

	
Click Authentication, Click DefaultAuthenticator to see its configuration page.

	
Click the Common tab and set the Control Flag to SUFFICIENT.

	
Click Save.

	
Reorder Providers:

	
Click Security Realms, Default Realm Name, Providers.

	
On the Summary page where providers are listed, click the Reorder button

	
On the Reorder Authentication Providers page, select a provider name and use the arrows beside the list to order the providers as follows:

OAM Identity Asserter (REQUIRED)

OID Authenticator (SUFFICIENT)

Default Authenticator (SUFFICIENT)

	
Click OK to save your changes

	
Activate Changes: In the Change Center, click Activate Changes

	
Reboot Oracle WebLogic Server.

	
Proceed as follows:

	
Successful: Go to "Configuring Centralized Log Out for Oracle Access Manager 11g", and then return here to perform "Testing the Identity Asserter with Oracle Web Services Manager".

	
Not Successful: Confirm the all providers have the proper specifications for your environment, are in the proper order, and that oamAuthnProvider.jar is in the correct location as described in "Installing the Authentication Provider with Oracle Access Manager 11g".

15.2.5.3 Testing the Identity Asserter with Oracle Web Services Manager

To validate the use of the Oracle Access Manager Identity Asserter with Oracle Web Services Manager, you can access the Web service protected by the Identity Asserter and Oracle Web Services Manager policies. If access is granted, the implementation works. If not, see "Troubleshooting Tips".

15.3 Configuring Centralized Log Out for Oracle Access Manager 11g

This section introduces Centralized logout for Oracle Access Manager 11g.

With OAM 11g, centralized logout refers to the process of terminating an active user session. Guidelines include:

	
Applications must not provide their own logout page for use in an SSO environment.

	
Applications must make their logout links configurable with a value that points to the logout URL specified by the OAM WebGate Administrator.

	
Note:

Oracle strongly recommends that applications use the ADF Authentication servlet, which in turn interfaces with OPSS, where a domain wide configuration parameter can be used to specify the logout URL. This way applications need not be modified or redeployed to change logout configuration.

For more information, see:

	
Logout for 11g WebGate and OAM 11g

	
Logout for 10g WebGate with Oracle Access Manager 11g

15.3.1 Logout for 11g WebGate and OAM 11g

Several elements in the OAM 11g Agent registration page enable centralized logout for OAM 11g WebGates. After agent registration, the ObAccessClient.xml file is populated with the information.

11g WebGate logout options that you must have in the agent registration include the following:

	
Logout URL: Triggers the logout handler, which removes the cookie (ObSSOCookie for 10g WebGates; OAMAuthnCookie for 11g WebGates) and requires the user to re-authenticate the next time he accesses a resource protected by Oracle Access Manager.

	
Logout Callback URL: The URL to oam_logout_success, which clears cookies during the call back. This can be a URI format without host:port (recommended), where the OAM Server calls back on the host:port of the original resource request.

	
Logout Redirect URL: This parameter is automatically populated after agent registration completes.By default, this is based on the OAM Server host name with a default port of 14200.

	
Logout Target URL: The value for this is name for the query parameter that the OPSS applications passes to WebGate during logout. This query parameter specifies the target URL of the landing page after logout.

For more information, see "Configuring Centralized Logout for 11g WebGate with OAM 11g Server" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

15.3.2 Logout for 10g WebGate with Oracle Access Manager 11g

Logout is initiated when an application causes the invocation of the logout.html file configured for the OAM Agent (in this case, a 10g WebGate). The application might also pass end_url as a query string to logout.html. The end_url parameter could either be a URI or a URL.

	
See Also:

Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service
	
About Centralized Logout with OAM 10g Agents and OAM 11g Servers

	
Example 15-5: logout.html Script

	
Configuring Centralized Logout for 10g Webgate with OAM

Task overview: Configuring centralized logout for 10g WebGates

	
Create a default logout page (logout.html) and make it available on the WebGate installation directory: For example, WebGate_install_dir/oamsso/logout.html.

	
In your logout.html, confirm that the logOutUrls parameter is configured for each resource WebGate and that <callBackUri> is the second value as part of 'logOutUrls'.

	
In your logout.html, confirm (from Step 1), confirm that the user is redirected to the central logout URI on the OAM 11g Server, "/oam/server/logout'.

	
Optional: Allow the application to pass the end_url parameter indicating where to redirect the user after logout.

	
Check the OHS Web server configuration file, httpd.conf, on which the 10g WebGate is configured and if the following lines exist delete them.

<LocationMatch "/oamsso/*">
Satisfy any
</LocationMatch>

For more information, see "Configuring Centralized Logout for 10g WebGate with OAM 11g Servers" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

15.4 Synchronizing the User and SSO Sessions: SSO Synchronization Filter

In Fusion Middleware 11g, a new component that synchronizes the container user session and SSO session has been introduced. SSO Sync Filter is an Oracle WebLogic system filter implementation that intercepts all requests to the container, acts on protected resource requests, and attempts to synchronize the container's user session with the user identifying header in OSSO (Proxy-Remote-User) or the user data in the Oracle Access Manager SSO session cookie (ObSSOCookie).

SSO Synchronization Filter (SSO Sync Filter) is an implementation of the Servlet Filter based on Java Servlet Specification version 2.3. SSO sync filter relieves applications from tracking the SSO user session and synchronizing it with their respective sessions. Instead, applications would only need to synchronize with container's user session.

SSO Sync Filter intercepts each request to the container and determines whether to act on it based on certain HTTP headers that are attached to the request. Filter expects SSO agent to have set those headers in the Web Tier. When access is made to unprotected areas of the application, the filter acts as a pass through. Once a protected resource is accessed, SSO agents in the Web Tier, direct user to perform authentication with SSO system such as Oracle Access Manager. After the authentication, Oracle Access Manager Identity Asserter helps establish a user identity in form of JAAS Subject to the container and a user session is created. WebLogic maintains the user session data as part of HTTP Session Cookie (JSESSIONID).

Subsequent access to the application resources provides two pieces of information to the SSO Sync Filter:

	
User identifying header in OSSO (Proxy-Remote-User)

	
User data in the Oracle Access Manager SSO session cookie (ObSSOCookie)

The job of SSO Sync Filter is to make sure that the user identity in the container matches with that of the SSO session. If there is a mismatch, filter invalidates the container's user session. As a result, the downstream application would only have to track container user session and react in a consistent fashion regardless of SSO environment in use.

Notes:

	
Enabled and Active by Default: SSO Sync Filter fetches the user information from the configured tokens, gets the user from existing session (if any), invalidates the session and redirects to the requested URL in case the CurrentSessionUser does not match the incoming SSO User. Otherwise, the request is simply passed through.

If you have not configured the OSSO or Oracle Access Manager Assertion Providers in your domain, the filter disables automatically during WebLogic Server start-up.

	
Active for All URI's by Default (/*): No changes are required in the application code.

	
Configured for the OSSO Tokens/Header: Proxy-Remote-User, and performs a case insensitive match.

	
Configured for the Oracle Access Manager SSO Tokens/Header: OAM_REMOTE_USER and REMOTE_USER, and does a case insensitive match.

	
Global Logout: SSO Sync Filter is intended to provide the Single Logout Experience to the Oracle Fusion Middleware applications that use the OSSO or Oracle Access Manager Solutions. Is handled similarly to single sign-on. After global logout is performed, SSO filter reconciles the session when subsequent access to an application that has not cleaned up its session is made.

Any application that use the OSSO or Oracle Access Manager Solutions is expected to invalidate its session before making a call to OSSO logout or Oracle Access Manager logout. For more information on OSSO logout, see Example 17-2, "SSO Logout with Dynamic Directives". For details about Oracle Access Manager logout, see "Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates".

	
Application Session Time Out: SSO cookies typically track user inactivity/idle times and force users to login when a time out occurs. OSSO and Oracle Access Manager are no exception. Oracle Access Manager takes a sophisticated approach at this and specifically tracks Maximum Idle Session Time and Longest Idle Session Time along with SSO session creation time and time when it was last refreshed.

The general recommendation for applications that are maintaining their own sessions when integrating with SSO systems is to configure their session time outs close to that of SSO session time outs so as to make user experience remains consistent across SSO and application session time outs.

You can alter the behavior of the SSO Sync Filter for application requirements by passing various over-riding system properties to WebLogic. To do this, you change the Oracle WebLogic startup script and check for EXTRA_JAVA_PROPERTIES in setDomainEnv.sh. The properties and Sync behavior is shown in Table 15-5.

Table 15-5 SSO Sync Filter Properties and Sync Behavior

	Area	Overriding System Property	Default value of System property	Default Behavior of the Sync Filter
	
Status (Active or Inactive)

	
sso.filter.enable

	
Not configured

	
Enabled

	
Case sensitive matches

	
sso.filter.name.exact.match

	
Not configured

	
Case Ignore Match

	
Configured Tokens

	
sso.filter.ssotoken

	
Not configured

	
	
OSSO: Look for Proxy-Remote-User

	
Oracle Access Manager: Look for OAM_REMOTE_USER and REMOTE_USER.

OAM_REMOTE_USER takes precedence.

	
URI Mappings

	
Not Applicable

	
Not Applicable

	
/*

You cannot enable the filter for selected applications. The SSO Sync Filter is a system filter. As such, it is activated for all deployed applications (the URI mapping is /*).

	
Note:

You cannot enable the filter for selected applications.

The following procedure gives some tips about modifying the SSO Sync filter properties and behavior.

To modify the SSO Sync Filter properties and behavior

	
Disable the Filter: Change the system property "sso.filter.enable" to "false" (pass as -D to the jvm) and restart the Oracle WebLogic Server. This toggles the filter status.

	
User-Identifying Header Differs from Pre-Configured Sync Filter Tokens: Over-ride the SSO token that the Sync Filter looks for using the system property "sso.filter.ssotoken".

For example, pass to the WebLogic Server jvm in the WebLogic Server startup script -Dsso.filter.ssotoken=HEADERNAME, and restart the server.

When you contact Oracle Support you might be requested to set up debugging, as described in "Setting Up Debugging in the WebLogic Administration Console".

15.5 Troubleshooting Tips

For more information, see "Troubleshooting" in the Oracle Fusion Middleware Administrator's Guide for Oracle Access Manager with Oracle Security Token Service.

	
See Also:

"Troubleshooting Tips for OAM Provider Deployments"

D User and Role API Reference

This appendix contains reference information that you will need when developing applications for LDAP directories based on the User and Role APIs. It contains these sections:

	
Mapping User Attributes to LDAP Directories

	
Mapping Role Attributes to LDAP Directories

	
Default Configuration Parameters

	
Secure Connections for Microsoft Active Directory

	
See Also:

Chapter 25, "Developing with the User and Role API"

	
Note:

IBM Tivoli directory parameters are the same as those specified for openLDAP.
Microsoft ADAM parameters are the same as those specified for Microsoft Active Directory.

D.1 Mapping User Attributes to LDAP Directories

Table D-1 lists each user attribute in UserProfile.property and its corresponding attribute in the different directory servers.

Table D-1 User Attributes in UserProfile.Property

	Attribute	Oracle Internet Directory	Oracle WebLogic Server Embedded LDAP	Microsoft Active Directory	Oracle Directory Server Enterprise Edition	Novell eDirectory	OpenLDAP
	
GUID

	
orclguid

	
uid

	
objectguid

	
nsuniqueid

	
guid

	
entryuuid

	
USER_ID

	
username (see Note below)

	
uid

	
uid

	
uid

	
uid

	
uid

	
DISPLAY_NAME

	
displayname

	
displayname

	
displayname

	
displayname

	
displayname

	
displayname

	
BUSINESS_EMAIL

	
mail

	
mail

	
mail

	
mail

	
mail

	
mail

	
DESCRIPTION

	
description

	
description

	
description

	
description

	
description

	
description

	
EMPLOYEE_TYPE

	
employeeType

	
employeeType

	
employeeType

	
employeeType

	
employeeType

	
employeeType

	
DEPARTMENT

	
departmentnumber

	
departmentnumber

	
departmentnumber

	
departmentnumber

	
departmentnumber

	
departmentnumber

	
DATE_OF_BIRTH

	
orcldateofbirth

	
-

	
-

	
-

	
-

	
-

	
BUSINESS_FAX

	
facsimiletelephonenumber

	
facsimiletelephonenumber

	
facsimiletelephonenumber

	
facsimiletelephonenumber

	
facsimiletelephonenumber

	
facsimiletelephonenumber

	
BUSINESS_CITY

	
l

	
l

	
l

	
l

	
l

	
l

	
BUSINESS_COUNTRY

	
c

	
c

	
c

	
c

	
c

	
c

	
DATE_OF_HIRE

	
orclhiredate

	
-

	
-

	
-

	
-

	
-

	
NAME

	
cn

	
uid

	
cn

	
uid

	
cn

	
cn

	
PREFERRED_LANGUAGE

	
Preferredlanguage

	
preferredlanguage

	
preferredlanguage

	
preferredlanguage

	
preferredlanguage

	
preferredlanguage

	
BUSINESS_POSTAL_ADDR

	
postaladdress

	
postaladdress

	
postaladdress

	
postaladdress

	
postaladdress

	
postaladdress

	
MIDDLE_NAME

	
orclmiddlename

	
-

	
-

	
-

	
-

	
-

	
ORGANIZATIONAL_UNIT

	
ou

	
ou

	
ou

	
ou

	
ou

	
ou

	
WIRELESS_ACCT_NUMBER

	
orclwirelessaccountnumber

	
-

	
-

	
-

	
-

	
-

	
BUSINESS_PO_BOX

	
postofficebox

	
postofficebox

	
postofficebox

	
postofficebox

	
postofficebox

	
postofficebox

	
BUSINESS_STATE

	
St

	
st

	
st

	
st

	
st

	
st

	
HOME_ADDRESS

	
Homepostaladdress

	
homepostaladdress

	
homepostaladdress

	
homepostaladdress

	
homepostaladdress

	
homepostaladdress

	
NAME_SUFFIX

	
Generationqualifier

	
generationqualifier

	
generationqualifier

	
generationqualifier

	
generationqualifier

	
generationqualifier

	
BUSINESS_STREET

	
street

	
street

	
street

	
street

	
street

	
street

	
INITIALS

	
initials

	
initials

	
initials

	
initials

	
initials

	
initials

	
USER_NAME

	
username (see Note below)

	
uid

	
samaccountname

	
uid

	
uid

	
uid

	
BUSINESS_POSTAL_CODE

	
postalcode

	
postalcode

	
postalcode

	
postalcode

	
postalcode

	
postalcode

	
BUSINESS_PAGER

	
pager

	
pager

	
pager

	
pager

	
pager

	
pager

	
LAST_NAME

	
sn

	
sn

	
sn

	
sn

	
sn

	
sn

	
BUSINESS_PHONE

	
telephonenumber

	
telephonenumber

	
telephonenumber

	
telephonenumber

	
telephonenumber

	
telephonenumber

	
FIRST_NAME

	
givenname

	
givenname

	
givenname

	
givenname

	
givenname

	
givenname

	
TIME_ZONE

	
orcltimezone

	
-

	
-

	
-

	
-

	
-

	
MAIDEN_NAME

	
orclmaidenname

	
-

	
-

	
-

	
-

	
-

	
PASSWORD

	
userpasssword

	
userpasssword

	
userpasssword

	
userpasssword

	
userpasssword

	
userpasssword

	
DEFAULT_GROUP

	
orcldefaultprofilegroup

	
-

	
-

	
-

	
-

	
-

	
ORGANIZATION

	
o

	
o

	
o

	
o

	
o

	
o

	
HOME_PHONE

	
homephone

	
homephone

	
homephone

	
homephone

	
homephone

	
homephone

	
BUSINESS_MOBILE

	
mobile

	
mobile

	
mobile

	
mobile

	
mobile

	
mobile

	
UI_ACCESS_MODE

	
orcluiaccessibilitymode

	
-

	
-

	
-

	
-

	
-

	
JPEG_PHOTO

	
jpegphoto

	
jpegphoto

	
jpegphoto

	
jpegphoto

	
jpegphoto

	
jpegphoto

	
MANAGER

	
manager

	
manager

	
manager

	
manager

	
manager

	
manager

	
TITLE

	
title

	
title

	
title

	
title

	
title

	
title

	
EMPLOYEE_NUMBER

	
employeenumber

	
employeenumber

	
employeenumber

	
employeenumber

	
employeenumber

	
employeenumber

	
LDUser.PASSWORD

	
userpassword

	
userpassword

	
userpassword

	
userpassword

	
userpassword

	
userpassword

	
Note:

username* : typically uid, but technically, the attribute designated by the orclCommonNicknameAttribute in the subscriber's oraclecontext products common entry.

D.2 Mapping Role Attributes to LDAP Directories

Table D-2 lists each role attribute in UserProfile.property and its corresponding attribute in different directory servers.

Table D-2 Role Attribute Values in LDAP Directories

	Role Attribute	Oracle Internet Directory
	Oracle WebLogic Server Embedded LDAP	Microsoft Active Directory	Oracle Directory Server Enterprise Edition	Novell eDirectory	OpenLDAP
	
DISPLAY_NAME

	
displayname

	
-

	
displayname

	
displayname

	
displayname

	
displayname

	
MANAGER

	
-

	
-

	
-

	
-

	
-

	
-

	
NAME

	
cn

	
cn

	
cn

	
cn

	
cn

	
cn

	
OWNER

	
owner

	
owner

	
-

	
Owner

	
-

	
owner

	
GUID

	
orclguid

	
cn

	
objectguid

	
NSuniqueid

	
guid

	
entryuuid

D.3 Default Configuration Parameters

This section lists parameters for which the APIs can use default configuration values, and the source of the value in different directory servers.

Table D-3 lists the source for Oracle Internet Directory and Microsoft Active Directory.

Table D-3 Default Values - Oracle Internet Directory and Microsoft Active Directory

	Parameter	Oracle Internet Directory
	Active Directory
	
RT_USER_OBJECT_CLASSES

	
#config

	
{"user" }

	
RT_USER_MANDATORY_ATTRS

	
#schema

	
#schema

	
RT_USER_CREATE_BASES

	
#config

	
cn=users,<subscriberDN>

	
RT_USER_SEARCH_BASES

	
#config

	
<subscriberDN>

	
RT_USER_FILTER_OBJECT_CLASSES

	
#config

	
{"user"}

	
RT_USER_SELECTED_CREATE_BASE

	
#config

	
cn=users,<subscriberDN>

	
RT_GROUP_OBJECT_CLASSES

	
#config

	
{"group" }

	
RT_GROUP_MANDATORY_ATTRS

	
#schema

	
#schema

	
RT_GROUP_CREATE_BASES

	
#config

	
<subscriberDN>

	
RT_GROUP_SEARCH_BASES

	
#config

	
<subscriberDN>

	
RT_GROUP_FILTER_OBJECT_CLASSES

	
#config

	
{"group"}

	
RT_GROUP_MEMBER_ATTRS

	
"uniquemember", "member"

	
"member"

	
RT_GROUP_SELECTED_CREATE_BASE

	
#config

	
<subscriberDN>

	
RT_GROUP_GENERIC_SEARCH_BASE

	
<subscriber-DN>

	
<subscriberDN>

	
RT_SEARCH_TYPE

	
#config

	
#config

	
ST_SUBSCRIBER_NAME

	
#config

	
NULL

	
ST_USER_NAME_ATTR

	
#config

	
cn

	
ST_USER_LOGIN_ATTR

	
#config

	
samaccountname

	
ST_GROUP_NAME_ATTR

	
#config

	
cn

	
ST_MAX_SEARCHFILTER_LENGTH

	
500

	
500

	
ST_BINARY_ATTRIBUTES

	
Choose a Binary Basic Attribute (BBA)

See note below about BBAs.

	
Binary Basic Attribute (BBA)+{ "objectguid" , "unicodepwd" }

See note below about BBAs.

	
ST_LOGGER_NAME

	
oracle.idm.userrole

	
oracle.idm.userrole

	
Notes:

	
The Basic Binary Attributes include: {"photo", "personalsignature", "audio","jpegphoto", "Java SErializeddata", "thumbnailphoto", "thumbnaillogo", "userpassword", "usercertificate", "cacertificate", "authorityrevocationlist", "certificaterevocationlist", "crosscertificatepair", "x500UniqueIdentifier"}

	
#config is extracted from the meta information present in the directory

	
#schema is extracted from the schema in the directory

Table D-4 lists the source for Oracle Directory Server Enterprise Edition and Novell eDirectory.

Table D-4 Default Values - Oracle Directory Server Enterprise Edition and Novell eDirectory

	Parameter	Oracle Directory Server Enterprise Edition	Novell eDirectory
	
RT_USER_OBJECT_CLASSES

	
{"inetorgperson", "person", "organizationalperson" }

	
{ "person", "inetorgperson", "organizationalPerson", "ndsloginproperties" }

	
RT_USER_MANDATORY_ATTRS

	
#schema

	
#schema

	
RT_USER_CREATE_BASES

	
ou=people,<subscriberDN>

	
ou=users,<subscriberDN>

	
RT_USER_SEARCH_BASES

	
<subscriberDN>

	
<subscriberDN>

	
RT_USER_FILTER_OBJECT_CLASSES

	
{"inetorgperson", "person", "organizationalperson" }

	
{ "person", "inetorgperson", "organizationalPerson", "ndsloginproperties" }

	
RT_USER_SELECTED_CREATE_BASE

	
ou=people,<subscriberDN>

	
ou=users,<subscriberDN>

	
RT_GROUP_OBJECT_CLASSES

	
"groupofuniquenames"

	
{"group" }

	
RT_GROUP_MANDATORY_ATTRS

	
#schema

	
#schema

	
RT_GROUP_CREATE_BASES

	
ou=groups,<subscriberDN>

	
ou=groups,<subscriberDN>

	
RT_GROUP_SEARCH_BASES

	
<subscriberDN>

	
<subscriberDN>

	
RT_GROUP_FILTER_OBJECT_CLASSES

	
{"groupofuniquenames"}

	
{"group"}

	
RT_GROUP_MEMBER_ATTRS

	
"uniquemember"

	
"member"

	
RT_GROUP_SELECTED_CREATE_BASE

	
ou=groups,<subscriberDN>

	
ou=groups,<subscriberDN>

	
RT_GROUP_GENERIC_SEARCH_BASE

	
<subscriber-DN>

	
<subscriberDN>

	
RT_SEARCH_TYPE

	
#config

	
#config

	
ST_SUBSCRIBER_NAME

	
NULL

	
NULL

	
ST_USER_NAME_ATTR

	
uid

	
cn

	
ST_USER_LOGIN_ATTR

	
uid

	
cn

	
ST_GROUP_NAME_ATTR

	
cn

	
cn

	
ST_MAX_SEARCHFILTER_LENGTH

	
500

	
500

	
ST_BINARY_ATTRIBUTES

	
Choose a Binary Basic Attribute (BBA)

See note below about BBAs.

	
Binary Basic Attribute (BBA)+{ "guid"}

See note below about BBAs.

	
ST_LOGGER_NAME

	
oracle.idm.userrole

	
oracle.idm.userrole

	
Notes:

	
The Basic Binary Attributes include: {"photo", "personalsignature", "audio","jpegphoto", "Java SErializeddata", "thumbnailphoto", "thumbnaillogo", "userpassword", "usercertificate", "cacertificate", "authorityrevocationlist", "certificaterevocationlist", "crosscertificatepair", "x500UniqueIdentifier"}

	
#config is extracted from the metainformation present in the directory

	
#schema is extracted from the schema in the directory

Table Table D-5 lists the parameters for OpenLDAP and Oracle Virtual Directory.

Table D-5 Default Values - OpenLDAP and Oracle Virtual Directory

	Parameter	OpenLDAP	Oracle Virtual Directory

	
RT_USER_OBJECT_CLASSES

	
{"inetorgperson", "person", "organizationalperson" }

	
{"inetorgperson"}

	
RT_USER_MANDATORY_ATTRS

	
#schema

	
#schema

	
RT_USER_CREATE_BASES

	
ou=people,<subscriberDN>

	
<subscriberDN>

	
RT_USER_SEARCH_BASES

	
<subscriberDN>

	
<subscriberDN>

	
RT_USER_FILTER_OBJECT_CLASSES

	
{"inetorgperson", "person", "organizationalperson" }

	
{"inetorgperson"}

	
RT_USER_SELECTED_CREATE_BASE

	
ou=people,<subscriberDN>

	
<subscriberDN>

	
RT_GROUP_OBJECT_CLASSES

	
"groupofuniquenames"

	
{"groupofuniquenames"}

	
RT_GROUP_MANDATORY_ATTRS

	
#schema

	
#schema

	
RT_GROUP_CREATE_BASES

	
ou=groups,<subscriberDN>

	
<subscriberDN>

	
RT_GROUP_SEARCH_BASES

	
<subscriberDN>

	
<subscriberDN>

	
RT_GROUP_FILTER_OBJECT_CLASSES

	
"groupofuniquenames"

	
{"groupofuniquenames"}

	
RT_GROUP_MEMBER_ATTRS

	
"uniquemember"

	
"uniquemember"

	
RT_GROUP_SELECTED_CREATE_BASE

	
ou=groups,<subscriberDN>

	
<subscriberDN>

	
RT_GROUP_GENERIC_SEARCH_BASE

	
<subscriber-DN>

	
<subscriberDN>

	
RT_SEARCH_TYPE

	
#config

	
#config

	
ST_SUBSCRIBER_NAME

	
NULL

	
#config (namingcontexts)

	
ST_USER_NAME_ATTR

	
uid

	
cn

	
ST_USER_LOGIN_ATTR

	
uid

	
cn

	
ST_GROUP_NAME_ATTR

	
cn

	
cn

	
ST_MAX_SEARCHFILTER_LENGTH

	
500

	
500

	
ST_BINARY_ATTRIBUTES

	
Choose a Binary Basic Attribute (BBA)

See note below about BBAs.

	
Binary Basic Attribute (BBA)+{ "guid"}

See note below about BBAs.

	
ST_LOGGER_NAME

	
oracle.idm.userrole

	
oracle.idm.userrole

	
Notes:

	
The Basic Binary Attributes include: {"photo", "personalsignature", "audio","jpegphoto", "Java SErializeddata", "thumbnailphoto", "thumbnaillogo", "userpassword", "usercertificate", "cacertificate", "authorityrevocationlist", "certificaterevocationlist", "crosscertificatepair", "x500UniqueIdentifier"}

	
#config is extracted from the meta information present in the directory

	
#schema is extracted from the schema in the directory

Table D-6 lists the parameters for Oracle WebLogic Server LDAP.

Table D-6 Default Values - Oracle WebLogic Server LDAP

	Parameter	Oracle WebLogic Server Embedded LDAP
	
RT_USER_OBJECT_CLASSES

	
{"inetorgperson", "person", "organizationalperson", "wlsUser"}

	
RT_USER_MANDATORY_ATTRS

	
#schema

	
RT_USER_CREATE_BASES

	
{"ou=people,<subscriberDN>"}

	
RT_USER_SEARCH_BASES

	
{"ou=people,<subscriberDN>"}

	
RT_USER_FILTER_OBJECT_CLASSES

	
{"inetorgperson", "wlsUser"}

	
RT_USER_SELECTED_CREATE_BASE

	
ou=people,<subscriberDN>

	
RT_GROUP_OBJECT_CLASSES

	
{"top","groupofuniquenames","groupOfURLs"}

	
RT_GROUP_MANDATORY_ATTRS

	
#schema

	
RT_GROUP_CREATE_BASES

	
{"ou=groups,<subscriberDN>"}

	
RT_GROUP_SEARCH_BASES

	
{"ou=groups,<subscriberDN>"}

	
RT_GROUP_FILTER_OBJECT_CLASSES

	
{"top","groupofuniquenames","groupOfURLs"}

	
RT_GROUP_MEMBER_ATTRS

	
"uniquemember"

	
RT_GROUP_SELECTED_CREATE_BASE

	
ou=groups,<subscriberDN>

	
RT_GROUP_GENERIC_SEARCH_BASE

	
<subscriberDN>

	
RT_SEARCH_TYPE

	
#config

	
ST_SUBSCRIBER_NAME

	
#config (namingcontexts)

	
ST_USER_NAME_ATTR

	
uid

	
ST_USER_LOGIN_ATTR

	
uid

	
ST_GROUP_NAME_ATTR

	
cn

	
ST_MAX_SEARCHFILTER_LENGTH

	
500

	
ST_BINARY_ATTRIBUTES

	
*(BBA)

See note below about BBAs.

	
ST_LOGGER_NAME

	
oracle.idm.userrole

D.4 Secure Connections for Microsoft Active Directory

Active Directory requires connections to be SSL-enabled when setting sensitive information like passwords. Therefore, operations like creating a user (which set the password) will not succeed if the connection is not SSL-enabled.

Part VI

Appendices

This part contains the following appendices:

	
Appendix A, "OPSS Configuration File Reference"

	
Appendix B, "File-Based Identity and Policy Store Reference"

	
Appendix C, "Oracle Fusion Middleware Audit Framework Reference"

	
Appendix D, "User and Role API Reference"

	
Appendix E, "Administration with WLST Scripting and MBean Programming"

	
Appendix F, "OPSS System and Configuration Properties"

	
Appendix G, "Upgrading Security Data"

	
Appendix H, "References"

	
Appendix I, "OPSS Scripts"

	
Appendix J, "Using an OpenLDAP Identity Store"

	
Appendix L, "Troubleshooting Security in Oracle Fusion Middleware"

H References

This appendix contains references documentation useful to developes.

H.1 OPSS API References

The following Javadoc documents describe the various APIs that OPSS exposes:

OPSS APIs

Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services

OPSS MBean APIs

Oracle Fusion Middleware MBeans Java API Reference for Oracle Platform Security Services

OPSS User and Role APIs

Oracle Fusion Middleware User and Role Java API Reference for Oracle Platform Security Services

Oracle Security Developer Tools APIs

Oracle Fusion Middleware PKI SDK CMP Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware CMS Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Crypto Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware PKI SDK LDAP Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Liberty 1.1 Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Liberty 1.2 Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware S/MIME Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware PKI SDK OCSP Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Security Engine Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware SAML 1.0/1.1 Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware SAML 2.0 Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware PKI SDK TSP Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Web Services Security Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware XKMS Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware XML Security Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware Crypto FIPS Java API Reference for Oracle Security Developer Tools

Oracle Fusion Middleware JCE Java API Reference for Oracle Security Developer Tools

