
[image: Oracle Corporation]

Contents

List of Examples

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documentation
	Conventions

What's New in This Guide

	New Features in Oracle Identity Management 11gR1 PS1
	New Features in Release 11gR1 PS3
	New Features in Oracle Identity Management 11gR1
	New Features in Release 11gR1 PS2
	New Features in Release 11gR1 PS1
	New Features in Release 11gR1
	Desupported Features from 10.1.3.x
	Links to Upgrade Documentation

Part I Understanding Security Concepts

1 Introduction to Oracle Platform Security Services

	1.1 What is Oracle Platform Security Services?
	1.1.1 OPSS Main Features
	1.1.2 Supported Server Platforms

	1.2 OPSS Architecture Overview
	1.2.1 Benefits of Using OPSS

	1.3 Oracle ADF Security Overview
	1.4 OPSS for Administrators
	1.5 OPSS for Developers
	1.5.1 Scenario 1: Enhancing Security in a Java EE Application
	1.5.2 Scenario 2: Securing an Oracle ADF Application
	1.5.3 Scenario 3: Securing a Java SE Application

2 Understanding Users and Roles

	2.1 Terminology
	2.2 Role Mapping
	2.2.1 Permission Inheritance and the Role Hierarchy

	2.3 The Authenticated Role
	2.4 The Anonymous User and Role
	2.4.1 Anonymous Support and Subject

	2.5 Administrative Users and Roles
	2.6 Managing User Accounts
	2.7 Principal Name Comparison Logic
	2.7.1 How Does Principal Comparison Affect Authorization?
	2.7.2 System Parameters Controlling Principal Name Comparison

	2.8 The Role Category

3 Understanding Identities, Policies, and Credentials

	3.1 Authentication Basics
	3.1.1 Supported LDAP Identity Store Types
	3.1.2 Oracle WebLogic Authenticators
	3.1.2.1 Using an LDAP Authenticator
	3.1.2.2 Configuring the LDAP Identity Store Service
	3.1.2.3 Additional Authentication Methods

	3.1.3 WebSphere Identity Stores

	3.2 Policy Store Basics
	3.3 Credential Store Basics

4 About Oracle Platform Security Services Scenarios

	4.1 Supported LDAP-, DB-, and File-Based Services
	4.2 Management Tools
	4.3 Packaging Requirements
	4.4 Example Scenarios
	4.5 Other Scenarios

Part II Basic OPSS Administration

5 Security Administration

	5.1 Choosing the Administration Tool According to Technology
	5.2 Basic Security Administration Tasks
	5.2.1 Setting Up a Brand New Production Environment

	5.3 Typical Security Practices with Fusion Middleware Control
	5.4 Typical Security Practices with the Administration Console
	5.5 Typical Security Practices with Oracle Entitlements Server
	5.6 Typical Security Practices with OPSS Scripts

6 Deploying Secure Applications

	6.1 Overview
	6.2 Selecting the Tool for Deployment
	6.2.1 Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control

	6.3 Deploying Oracle ADF Applications to a Test Environment
	6.3.1 Deploying to a Test Environment
	6.3.1.1 Typical Administrative Tasks after Deployment in a Test Environment

	6.4 Deploying Standard Java EE Applications
	6.5 Migrating from a Test to a Production Environment
	6.5.1 Migrating Providers other than Policy and Credential Providers
	6.5.1.1 Migrating Identities Manually

	6.5.2 Migrating Policies and Credentials at Deployment
	6.5.2.1 Migrating Policies Manually
	6.5.2.2 Migrating Credentials Manually
	6.5.2.3 Migrating Large Volume Policy and Credential Stores

	6.5.3 Migrating Audit Policies

Part III Advanced OPSS Administration

7 Configuring the Identity Store Service

	7.1 Introduction to the Identity Store Service
	7.1.1 About the Identity Store Service
	7.1.2 Service Architecture
	7.1.3 Application Server Support
	7.1.4 Java SE Support

	7.2 Configuring the Identity Store Provider
	7.3 Configuring the Identity Store Service
	7.3.1 What is Configured?
	7.3.1.1 Configuring Multi-LDAP Lookup
	7.3.1.2 Global/Connection Parameters
	7.3.1.3 Back-End/Connection Parameters

	7.3.2 Configuration in WebLogic Server
	7.3.2.1 Configuring the Service for Single LDAP
	7.3.2.2 Configuring the Service for Multiple LDAP using Fusion Middleware Control
	7.3.2.3 Configuring the Service for Multiple LDAP using WLST
	7.3.2.4 Configuring Other Parameters
	7.3.2.5 Restarting Servers
	7.3.2.6 Examples of the Configuration File

	7.3.3 Configuring Split Profiles
	7.3.4 Configuration in Other Application Servers
	7.3.4.1 Configuring the Service for Single LDAP
	7.3.4.2 Configuring the Service for Multiple LDAP

	7.3.5 Java SE Environments

	7.4 Querying the Identity Store Programmatically

8 Configuring the OPSS Security Store

	8.1 Introduction to the OPSS Security Store
	8.2 Using an LDAP-Based OPSS Security Store
	8.2.1 Multiple-Node Server Environments
	8.2.2 Prerequisites to Using an LDAP-Based Security Store

	8.3 Using a DB-Based OPSS Security Store
	8.3.1 Prerequisites to Using a DB-Based Security Store
	8.3.1.1 Creating the OPSS Schema in an Oracle Database
	8.3.1.2 Dropping the OPSS Schema in an Oracle Database
	8.3.1.3 Creating a Data Source Instance

	8.3.2 Maintaining a DB-Based Security Store
	8.3.3 Setting Up an SSL Connection to the DB
	8.3.3.1 Configuring SSL on an Oracle DB Server
	8.3.3.2 Configuring SSL on a Client

	8.4 Configuring the OPSS Security Store
	8.5 Reassociating the OPSS Security Store
	8.5.1 Reassociating with Fusion Middleware Control
	8.5.1.1 Setting Up a One- Way SSL Connection
	8.5.1.2 Securing Access to Oracle Internet Directory Nodes

	8.5.2 Reassociating with the Script reassociateSecurityStore

	8.6 Migrating the OPSS Security Store
	8.6.1 Migrating with Fusion Middleware Control
	8.6.2 Migrating with the Script migrateSecurityStore
	8.6.2.1 Examples of Use

	8.7 Configuring the Identity Provider, Property Sets, and SSO
	8.7.1 Configuring the Identity Store Provider
	8.7.2 Configuring Properties and Property Sets
	8.7.3 Specifying a Single Sign-On Solution
	8.7.3.1 The OPSS SSO Framework
	8.7.3.2 Configuring an SSO Solution with Fusion Middleware Control
	8.7.3.3 OAM Configuration Example

	8.8 Cataloging Oracle Internet Directory Attributes

9 Managing the Policy Store

	9.1 Managing the Policy Store
	9.2 Managing Policies with Fusion Middleware Control
	9.2.1 Managing Application Policies
	9.2.2 Managing Application Roles
	9.2.3 Managing System Policies

	9.3 Managing Application Policies with OPSS Scripts
	9.3.1 listAppStripes
	9.3.1.1 Running listAppStripes after Reassociating to a DB-Based Store

	9.3.2 createAppRole
	9.3.3 deleteAppRole
	9.3.4 grantAppRole
	9.3.5 revokeAppRole
	9.3.6 listAppRoles
	9.3.7 listAppRolesMembers
	9.3.8 grantPermission
	9.3.9 revokePermission
	9.3.10 listPermissions
	9.3.11 deleteAppPolicies
	9.3.12 createResourceType
	9.3.13 getResourceType
	9.3.14 deleteResourceType
	9.3.15 createResource
	9.3.16 deleteResource
	9.3.17 listResources
	9.3.18 listResourceActions
	9.3.19 createEntitlement
	9.3.20 getEntitlement
	9.3.21 deleteEntitlement
	9.3.22 addResourceToEntitlement
	9.3.23 revokeResourceFromEntitlement
	9.3.24 listEntitlements
	9.3.25 grantEntitlement
	9.3.26 revokeEntitlement
	9.3.27 listEntitlement
	9.3.28 listResourceTypes
	9.3.29 reassociateSecurityStore

	9.4 Caching and Refreshing the Cache
	9.4.1 An Example

	9.5 Granting Policies to Anonymous and Authenticated Roles with WLST Scripts
	9.6 Application Stripe for Versioned Applications in WLST Scripts
	9.7 Managing Application Policies with Oracle Entitlements Server
	9.8 Guidelines for Configuring the Policy Store

10 Managing the Credential Store

	10.1 Credential Types
	10.2 Managing the Credential Store
	10.3 Managing Credentials with Fusion Middleware Control
	10.4 Managing Credentials with OPSS Scripts
	10.4.1 listCred
	10.4.2 updateCred
	10.4.3 createCred
	10.4.4 deleteCred
	10.4.5 modifyBootStrapCredential
	10.4.6 addBootStrapCredential

11 Introduction to Oracle Fusion Middleware Audit Framework

	11.1 Benefits and Features of the Oracle Fusion Middleware Audit Framework
	11.1.1 Objectives of Auditing
	11.1.2 Today's Audit Challenges
	11.1.3 Oracle Fusion Middleware Audit Framework in 11g

	11.2 Overview of Audit Features
	11.3 Oracle Fusion Middleware Audit Framework Concepts
	11.3.1 Audit Architecture
	11.3.2 Key Technical Concepts
	11.3.3 Audit Record Storage
	11.3.4 Analytics

12 Configuring and Managing Auditing

	12.1 Audit Administration Tasks
	12.2 Managing the Audit Store
	12.2.1 Create the Audit Schema using RCU
	12.2.2 Set Up Audit Data Sources
	12.2.2.1 Multiple Data Sources

	12.2.3 Configure a Database Audit Store for Java Components
	12.2.3.1 View Audit Store Configuration
	12.2.3.2 Configure the Audit Store
	12.2.3.3 Deconfigure the Audit Store

	12.2.4 Configure a Database Audit Store for System Components
	12.2.4.1 Deconfigure the Audit Store

	12.2.5 Tuning the Bus-stop Files
	12.2.6 Configuring the Stand-alone Audit Loader
	12.2.6.1 Configuring the Environment
	12.2.6.2 Running the Stand-Alone Audit Loader

	12.3 Managing Audit Policies
	12.3.1 Manage Audit Policies for Java Components with Fusion Middleware Control
	12.3.2 Manage Audit Policies for System Components with Fusion Middleware Control
	12.3.3 Manage Audit Policies with WLST
	12.3.3.1 View Audit Policies with WLST
	12.3.3.2 Update Audit Policies with WLST
	12.3.3.3 Example 1: Configuring an Audit Policy for Users with WLST
	12.3.3.4 Example 2: Configuring an Audit Policy for Events with WLST
	12.3.3.5 Custom Configuration is Retained when the Audit Level Changes

	12.3.4 Manage Audit Policies Manually
	12.3.4.1 Location of Configuration Files for Java Components
	12.3.4.2 Audit Service Configuration Properties in jps-config.xml for Java Components
	12.3.4.3 Switching from Database to File for Java Components
	12.3.4.4 Manually Configuring Audit for System Components

	12.4 Audit Logs
	12.4.1 Location of Audit Logs
	12.4.2 Audit Log Timestamps

	12.5 Advanced Management of Database Store
	12.5.1 Schema Overview
	12.5.2 Table Attributes
	12.5.3 Indexing Scheme
	12.5.4 Backup and Recovery
	12.5.5 Importing and Exporting Data
	12.5.6 Partitioning
	12.5.6.1 Partition Tables
	12.5.6.2 Backup and Recovery of Partitioned Tables
	12.5.6.3 Import, Export, and Data Purge
	12.5.6.4 Tiered Archival

13 Using Audit Analysis and Reporting

	13.1 Setting up Oracle Business Intelligence Publisher for Audit Reports
	13.1.1 About Oracle Business Intelligence Publisher
	13.1.2 Install Oracle Business Intelligence Publisher
	13.1.3 Set Up Oracle Reports in Oracle Business Intelligence Publisher
	13.1.4 Set Up Audit Report Templates
	13.1.5 Set Up Audit Report Filters
	13.1.6 Configure Scheduler in Oracle Business Intelligence Publisher

	13.2 Organization of Audit Reports
	13.3 View Audit Reports
	13.4 Example of Oracle Business Intelligence Publisher Reports
	13.5 Audit Report Details
	13.5.1 List of Audit Reports in Oracle Business Intelligence Publisher
	13.5.2 Attributes of Audit Reports in Oracle Business Intelligence Publisher

	13.6 Customizing Audit Reports
	13.6.1 Using Advanced Filters on Pre-built Reports
	13.6.2 Creating Custom Reports

Part IV Single Sign-On Configuration

14 Introduction to Single Sign-On in Oracle Fusion Middleware

	14.1 Choosing the Right SSO Solution for Your Deployment
	14.2 Introduction: OAM Authentication Provider for WebLogic Server
	14.2.1 About Using the Identity Asserter Function with Oracle Access Manager
	14.2.2 About Using the Authenticator Function with Oracle Access Manager
	14.2.3 Choosing Applications for Oracle Access Manager SSO Scenarios and Solutions
	14.2.3.1 Applications Using Oracle Access Manager for the First TIme
	14.2.3.2 Applications Migrating from Oracle Application Server to Oracle WebLogic Server
	14.2.3.3 Applications Using OAM Security Provider for WebLogic SSPI

	14.2.4 Implementation: Using the Provider with OAM 11g versus OAM 10g
	14.2.5 Requirements for the Provider with Oracle Access Manager

	14.3 Setting Up Debugging in the WebLogic Administration Console

15 Configuring Single Sign-On with Oracle Access Manager 11g

	15.1 Introduction to Oracle Access Manager 11g SSO
	15.1.1 Previewing Pre-Seeded OAM 11g Policies for Use by the OAM 10g AccessGate

	15.2 Deploying the Oracle Access Manager 11g SSO Solution
	15.2.1 Installing the Authentication Provider with Oracle Access Manager 11g
	15.2.2 Provisioning an OAM Agent with Oracle Access Manager 11g
	15.2.2.1 About WebGate Provisioning Methods for Oracle Access Manager 11g
	15.2.2.2 Provisioning a WebGate with Oracle Access Manager 11g

	15.2.3 Configuring Identity Assertion for SSO with Oracle Access Manager 11g
	15.2.3.1 Establishing Trust with Oracle WebLogic Server
	15.2.3.2 Configuring Providers in the WebLogic Domain
	15.2.3.3 Reviewing the Login Page for the Oracle Access Manager Identity Asserter
	15.2.3.4 Testing Oracle Access Manager Identity Assertion for Single Sign-on

	15.2.4 Configuring the Authenticator Function for Oracle Access Manager 11g
	15.2.4.1 Configuring Providers for the Authenticator in a WebLogic Domain
	15.2.4.2 Configuring the Application Authentication Method for the Authenticator
	15.2.4.3 Mapping the Authenticated User to a Group in LDAP
	15.2.4.4 Testing the Oracle Access Manager Authenticator Implementation

	15.2.5 Configuring Identity Assertion for Oracle Web Services Manager and OAM 11g
	15.2.5.1 Configuring Oracle Web Services Manager Policies for Web Services
	15.2.5.2 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
	15.2.5.3 Testing the Identity Asserter with Oracle Web Services Manager

	15.3 Configuring Centralized Log Out for Oracle Access Manager 11g
	15.3.1 Logout for 11g WebGate and OAM 11g
	15.3.2 Logout for 10g WebGate with Oracle Access Manager 11g

	15.4 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	15.5 Troubleshooting Tips

16 Configuring Single Sign-On Using Oracle Access Manager 10g

	16.1 Deploying SSO Solutions with Oracle Access Manager 10g
	16.1.1 Installing and Setting Up Authentication Providers for OAM 10g
	16.1.1.1 About Oracle Access Manager 10g Installation and Setup
	16.1.1.2 Installing Components and Files for Authentication Providers and OAM 10g
	16.1.1.3 Converting Oracle Access Manager Certificates to Java Keystore Format
	16.1.1.4 Creating Resource Types in Oracle Access Manager 10g

	16.1.2 Configuring Global Logout for Oracle Access Manager 10g and 10g WebGates
	16.1.2.1 Recommended Process for Configuring Logout
	16.1.2.2 Alternative Process for Configuring Logout

	16.2 Oracle Access Manager Authentication Provider Parameter List
	16.3 Introduction to OAMCfgTool
	16.3.1 OAMCfgTool Process Overview
	16.3.2 OAMCfgTool Parameters and Values
	16.3.2.1 Create Mode Parameters and Values
	16.3.2.2 Validate Mode Parameters and Values
	16.3.2.3 Delete Mode Parameters and Values

	16.3.3 Sample Policy Domain and AccessGate Profile Created with OAMCfgTool
	16.3.4 Known Issues: JAR Files and OAMCfgTool

	16.4 Configuring OAM Identity Assertion for SSO with Oracle Access Manager 10g
	16.4.1 Establishing Trust with Oracle WebLogic Server
	16.4.1.1 Setting Up the Application Authentication Method for SSO
	16.4.1.2 Confirming mod_weblogic for Oracle Access Manager Identity Asserter
	16.4.1.3 Establishing Trust between Oracle WebLogic Server and Other Entities

	16.4.2 Configuring the Authentication Scheme for the Identity Asserter
	16.4.2.1 Creating an Authentication Scheme, Policy Domain, and a WebGate Profile

	16.4.3 Configuring Providers in the WebLogic Domain
	16.4.3.1 About Oracle WebLogic Server Authentication and Identity Assertion Providers
	16.4.3.2 About the Oracle WebLogic Scripting Tool (WLST)
	16.4.3.3 Setting Up Providers for Oracle Access Manager Identity Assertion

	16.4.4 Setting Up the Login Form for the Identity Asserter and OAM 10g
	16.4.5 Testing Identity Assertion for SSO with OAM 10g

	16.5 Configuring the Authenticator for Oracle Access Manager 10g
	16.5.1 Creating an Authentication Scheme for the Authenticator
	16.5.2 Configuring a Policy Domain for the Oracle Access Manager Authenticator
	16.5.2.1 About Creating a Policy Domain
	16.5.2.2 Creating a Policy Domain and Access Policies for the Authenticator

	16.5.3 Configuring Providers for the Authenticator in a WebLogic Domain
	16.5.4 Configuring the Application Authentication Method for the Authenticator
	16.5.5 Mapping the Authenticated User to a Group in LDAP
	16.5.6 Testing the Oracle Access Manager Authenticator Implementation

	16.6 Configuring Identity Assertion for Oracle Web Services Manager and OAM 10g
	16.6.1 Creating an Policy Domain for Use with Oracle Web Services Manager
	16.6.2 Configuring Oracle Web Services Manager Policies for Web Services
	16.6.3 Configuring Providers in a WebLogic Domain for Oracle Web Services Manager
	16.6.4 Testing the Identity Asserter with Oracle Web Services Manager

	16.7 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	16.8 Troubleshooting Tips for OAM Provider Deployments
	16.8.1 About Using IPv6
	16.8.2 Apache Bridge Failure: Timed Out
	16.8.3 Authenticated User with Access Denied
	16.8.4 Browser Back Button Results in Error
	16.8.5 Cannot Reboot After Adding OAM and OID Authenticators
	16.8.6 Client in Cluster with Load-Balanced WebGates
	16.8.7 Error 401: Unable to Access the Application
	16.8.8 Error 403: Unable to Access the Application
	16.8.9 Error 404: Not Found ... Anything Matching the Request URI
	16.8.10 Error Issued with the Action URL in Form Login Page
	16.8.11 Error or Failure on Oracle WebLogic Server Startup
	16.8.12 JAAS Control Flag
	16.8.13 Login Form is Shown Repeatedly Upon Credential Submission: No Error
	16.8.14 Logout and Session Time Out Issues
	16.8.15 Not Found: The requested URL or Resource Was Not Found
	16.8.16 Oracle WebLogic Server Fails to Start
	16.8.17 Oracle ADF Integration and Cert Mode
	16.8.18 About Protected_JSessionId_Policy

17 Configuring Single Sign-On using OracleAS SSO 10g

	17.1 Deploying the OracleAS 10g Single Sign-On (OSSO) Solution
	17.1.1 Using the OSSO Identity Asserter
	17.1.1.1 Oracle WebLogic Security Framework
	17.1.1.2 OSSO Identity Asserter Processing
	17.1.1.3 Consumption of Headers with OSSO Identity Asserter

	17.1.2 New Users of the OSSO Identity Asserter
	17.1.2.1 Configuring mod_weblogic
	17.1.2.2 Registering Oracle HTTP Server mod_osso with OSSO Server 10.1.4
	17.1.2.3 Configuring mod_osso to Protect Web Resources
	17.1.2.4 Adding Providers to a WebLogic Domain for OSSO
	17.1.2.5 Establishing Trust Between Oracle WebLogic Server and Other Entities
	17.1.2.6 Configuring the Application for the OSSO Identity Asserter

	17.2 Synchronizing the User and SSO Sessions: SSO Synchronization Filter
	17.3 Troubleshooting for an OSSO Identity Asserter Deployment
	17.3.1 SSO-Related Problems
	17.3.2 OSSO Identity Asserter-Related Problems
	17.3.3 URL Rewriting and JSESSIONID
	17.3.4 About mod_osso, OSSO Cookies, and Directives
	17.3.4.1 New OssoHTTPOnly Directive in mod_osso
	17.3.4.2 OssoSecureCookies Directive in mod_osso
	17.3.4.3 Mod_osso Does Not Encode the Return URL
	17.3.4.4 mod_osso: "Page Not found" error After Default Installation

	17.3.5 About Using IPv6

Part V Developing with Oracle Platform Security Services APIs

18 Integrating Java EE Application Security with OPSS

	18.1 Introduction
	18.2 Terminology
	18.3 Oracle Identity and Access Management Suite
	18.3.1 OID for Identity and Policy Stores
	18.3.2 OAM and OSSO for User Authentication and Web SSO
	18.3.3 OIM for User and Role Provisioning
	18.3.4 OPSS for User and Role Profiling
	18.3.5 OPSS for User Authorization
	18.3.6 OAPM for Application Policy Management
	18.3.7 OPSS for Cryptography

	18.4 Security Life Cycle of an Application
	18.4.1 Development Phase
	18.4.2 Deployment Phase
	18.4.3 Management Phase
	18.4.4 Summary of Tasks per Participant per Phase

	18.5 Getting Started with Application Security Integration
	18.5.1 Oracle Platform Security Services
	18.5.2 Use Case 1 - Java EE Application

	18.6 Required Security Features
	18.6.1 Credentials
	18.6.2 Authentication
	18.6.3 Authorization
	18.6.4 User and Role Management

	18.7 Integrating Authentication
	18.7.1 Container-Based Authentication
	18.7.2 Oracle WebLogic Server Authentication Providers
	18.7.3 Programmatic Authentication
	18.7.4 Single Sign-On through OPSS

	18.8 Integrating Authorization
	18.8.1 Functional Security
	18.8.1.1 The Functional Security Model
	18.8.1.2 Checking Permissions with CheckPermission

	18.8.2 Functional Security with ADF

	18.9 Integrating the Credential Store
	18.9.1 Guidelines for Using CSF
	18.9.2 Cryptography

19 Developing Secure Applications with Oracle Platform Security Services

	19.1 OPSS for Developers
	19.1.1 The Development Cycle
	19.1.2 Challenges of Securing Java Applications
	19.1.3 Meeting the Challenges with Oracle Platform Security Services
	19.1.4 OPSS Architecture

	19.2 OPSS APIs
	19.2.1 The LoginService API
	19.2.2 The User and Role API
	19.2.3 JAAS Authorization and the JpsAuth.checkPermission API
	19.2.4 The Credential Store Framework API

	19.3 Common Uses of OPSS
	19.3.1 Java EE Application using OPSS APIs
	19.3.2 Authenticating with OPSS APIs
	19.3.3 Programmatic Authorization
	19.3.4 Credential Store Framework
	19.3.5 User and Role
	19.3.6 Oracle ADF Authorization
	19.3.7 Java SE Application Using OPSS APIs

	19.4 Using OPSS with Oracle Application Development Framework
	19.4.1 About Oracle ADF
	19.4.2 How Oracle ADF Uses OPSS
	19.4.3 The Oracle ADF Development Life Cycle

	19.5 Using the Oracle Security Developer Tools
	19.6 Using OPSS Outside Oracle JDeveloper/Oracle ADF

20 The OPSS Policy Model

	20.1 The Security Policy Model
	20.2 Authorization Overview
	20.2.1 Introduction to Authorization
	20.2.2 The Java EE Authorization Model
	20.2.2.1 Declarative Authorization
	20.2.2.2 Programmatic Authorization
	20.2.2.3 Java EE Code Example

	20.2.3 The JAAS Authorization Model

	20.3 The JAAS/OPSS Authorization Model
	20.3.1 The Resource Catalog
	20.3.2 Managing Policies
	20.3.3 Checking Policies
	20.3.3.1 Using the Method checkPermission
	20.3.3.2 Using the Methods doAs and doAsPrivileged
	20.3.3.3 Using the Method checkBulkAuthorization
	20.3.3.4 Using the Method getGrantedResources

	20.3.4 The Class ResourcePermission

21 Manually Configuring Java EE Applications to Use OPSS

	21.1 Configuring the Servlet Filter and the EJB Interceptor
	21.1.1 Interceptor Configuration Syntax
	21.1.2 Summary of Filter and Interceptor Parameters
	21.1.3 Configuring the Application Stripe for Application MBeans

	21.2 Choosing the Appropriate Class for Enterprise Groups and Users
	21.3 Packaging a Java EE Application Manually
	21.3.1 Packaging Policies with Application
	21.3.2 Packaging Credentials with Application

	21.4 Configuring Applications to Use OPSS
	21.4.1 Parameters Controlling Policy Migration
	21.4.2 Policy Parameter Configuration According to Behavior
	21.4.2.1 To Skip Migrating All Policies
	21.4.2.2 To Migrate All Policies with Merging
	21.4.2.3 To Migrate All Policies with Overwriting
	21.4.2.4 To Remove (or Prevent the Removal of) Application Policies
	21.4.2.5 To Migrate Policies in a Static Deployment
	21.4.2.6 Recommendations

	21.4.3 Using a Wallet-Based Credential Store
	21.4.4 Parameters Controlling Credential Migration
	21.4.5 Credential Parameter Configuration According to Behavior
	21.4.5.1 To Skip Migrating Credentials
	21.4.5.2 To Migrate Credentials with Merging
	21.4.5.3 To Migrate Credentials with Overwriting

	21.4.6 Supported Permission Classes
	21.4.6.1 Policy Store Permission
	21.4.6.2 Credential Store Permission
	21.4.6.3 Generic Permission

	21.4.7 Specifying Bootstrap Credentials Manually
	21.4.8 Migrating Identities with migrateSecurityStore
	21.4.9 Example of Configuration File jps-config.xml

22 Authentication for Java SE Applicaitons

	22.1 Links to Authentication Topics for Java EE Applications
	22.2 Authentication for Java SE Applications
	22.2.1 The Identity Store
	22.2.2 Configuring an LDAP Identity Store in Java SE Applications
	22.2.3 Supported Login Modules for Java SE Applications
	22.2.3.1 The Identity Store Login Module
	22.2.3.2 Using the Identity Store Login Module for Authentication
	22.2.3.3 Using the Identity Login Module for Assertion

	22.2.4 Using the OPSS API LoginService in Java SE Applications

	22.3 The OPSS Java SE Client
	22.3.1 Supported Services
	22.3.2 Configuration Examples

23 Authorization for Java SE Applications

	23.1 Configuring Policy and Credential Stores in Java SE Applications
	23.1.1 Configuring File-Based Policy and Credential Stores
	23.1.2 Configuring LDAP-Based Policy and Credential Stores
	23.1.3 Configuring DB-Based OPSS Security Stores

	23.2 Unsupported Methods for File-Based Policy Stores

24 Developing with the Credential Store Framework

	24.1 About the Credential Store Framework API
	24.2 Overview of Application Development with CSF
	24.3 Setting the Java Security Policy Permissions
	24.3.1 Guidelines for Granting Permissions
	24.3.2 Permissions Grant Example 1
	24.3.3 Permissions Grant Example 2

	24.4 Guidelines for the Map Name
	24.5 Configuring the Credential Store
	24.6 Steps for Using the API
	24.6.1 Using the CSF API in a Standalone Environment
	24.6.2 Using the CSF API in Oracle WebLogic Server

	24.7 Examples
	24.7.1 Code for CSF Operations
	24.7.2 Example 1: Java SE Application with Wallet Store
	24.7.3 Example 2: Java EE Application with Wallet Store
	24.7.4 Example 3: Java EE Application with LDAP Store

	24.8 Best Practices

25 Developing with the User and Role API

	25.1 Introduction to the User and Role API Framework
	25.1.1 User and Role API and the Oracle WebLogic Server Authenticators

	25.2 Summary of Roles and Classes
	25.3 Working with Service Providers
	25.3.1 Understanding Service Providers
	25.3.2 Setting Up the Environment
	25.3.3 Selecting the Provider
	25.3.4 Creating the Provider Instance
	25.3.5 Properties for Provider Configuration
	25.3.5.1 Start-time and Run-time Configuration
	25.3.5.2 ECID Propagation
	25.3.5.3 When to Pass Configuration Values

	25.3.6 Configuring the Provider when Creating a Factory Instance
	25.3.6.1 Oracle Internet Directory Provider
	25.3.6.2 Using Existing Logger Objects
	25.3.6.3 Supplying Constant Values
	25.3.6.4 Configuring Connection Parameters
	25.3.6.5 Configuring a Custom Connection Pool Class

	25.3.7 Configuring the Provider when Creating a Store Instance
	25.3.8 Runtime Configuration
	25.3.9 Programming Considerations
	25.3.9.1 Provider Portability Considerations
	25.3.9.2 Considerations when Using IdentityStore Objects

	25.3.10 Provider Life cycle

	25.4 Searching the Repository
	25.4.1 Searching for a Specific Identity
	25.4.2 Searching for Multiple Identities
	25.4.3 Specifying Search Parameters
	25.4.4 Using Search Filters
	25.4.4.1 Operators in Search Filters
	25.4.4.2 Handling Special Characters when Using Search Filters
	25.4.4.3 Examples of Using Search Filters

	25.4.5 Searching by GUID

	25.5 User Authentication
	25.6 Creating and Modifying Entries in the Identity Store
	25.6.1 Handling Special Characters when Creating Identities
	25.6.2 Creating an Identity
	25.6.3 Modifying an Identity
	25.6.4 Deleting an Identity

	25.7 Examples of User and Role API Usage
	25.7.1 Example 1: Searching for Users
	25.7.2 Example 2: User Management in an Oracle Internet Directory Store
	25.7.3 Example 3: User Management in a Microsoft Active Directory Store

	25.8 SSL Configuration for LDAP-based User and Role API Providers
	25.8.1 Out-of-the-box Support for SSL
	25.8.1.1 System Properties
	25.8.1.2 SSL configuration

	25.8.2 Customizing SSL Support for the User and Role API
	25.8.2.1 SSL configuration

	25.9 The User and Role API Reference
	25.10 Developing Custom User and Role Providers
	25.10.1 SPI Overview
	25.10.2 Types of User and Role Providers
	25.10.3 Developing a Read-Only Provider
	25.10.3.1 SPI Classes Requiring Extension
	25.10.3.2 oracle.security.idm.spi.AbstractIdentityStoreFactory
	25.10.3.3 oracle.security.idm.spi.AbstractIdentityStore
	25.10.3.4 oracle.security.idm.spi.AbstractRoleManager
	25.10.3.5 oracle.security.idm.spi.AbstractUserManager
	25.10.3.6 oracle.security.idm.spi.AbstractRoleProfile
	25.10.3.7 oracle.security.idm.spi.AbstractUserProfile
	25.10.3.8 oracle.security.idm.spi.AbstractSimpleSearchFilter
	25.10.3.9 oracle.security.idm.spi.AbstractComplexSearchFilter
	25.10.3.10 oracle.security.idm.spi.AbstractSearchResponse

	25.10.4 Developing a Full-Featured Provider
	25.10.5 Development Guidelines
	25.10.6 Testing and Verification
	25.10.7 Example: Implementing an Identity Provider
	25.10.7.1 About the Sample Provider
	25.10.7.2 Overview of Implementation
	25.10.7.3 Configure jps-config.xml to use the Sample Identity Provider
	25.10.7.4 Configure Oracle WebLogic Server

	The User and Role SPI Reference
	oracle.security.idm.spi.AbstractUserProfile
	oracle.security.idm.spi.AbstractUserManager
	oracle.security.idm.spi.AbstractUser
	oracle.security.idm.spi.AbstractSubjectParser
	oracle.security.idm.spi.AbstractStoreConfiguration
	oracle.security.idm.spi. AbstractSimpleSearchFilter
	oracle.security.idm.spi.AbstractSearchResponse
	oracle.security.idm.spi.AbstractRoleProfile
	oracle.security.idm.spi.AbstractRoleManager
	oracle.security.idm.spi.AbstractRole
	oracle.security.idm.spi.AbstractIdentityStoreFactory
	oracle.security.idm.spi.AbstractIdentityStore
	oracle.security.idm.spi.AbstractComplexSearchFilter

Part VI Appendices

A OPSS Configuration File Reference

	A.1 Top- and Second-Level Element Hierarchy
	A.2 Lower-Level Elements
	<description>
	<extendedProperty>
	<extendedPropertySet>
	<extendedPropertySetRef>
	<extendedPropertySets>
	<jpsConfig>
	<jpsContext>
	<jpsContexts>
	<name>
	<property>
	<propertySet>
	<propertySetRef>
	<propertySets>
	<serviceInstance>
	<serviceInstanceRef>
	<serviceInstances>
	<serviceProvider>
	<serviceProviders>
	<value>
	<values>

B File-Based Identity and Policy Store Reference

	B.1 Hierarchy of Elements in system-jazn-data.xml
	B.2 Elements and Attributes of system-jazn-data.xml
	<actions>
	<actions-delimiter>
	<app-role>
	<app-roles>
	<application>
	<applications>
	<attribute>
	<class>
	<codesource>
	<credentials>
	<description>
	<display-name>
	<extended-attributes>
	<grant>
	<grantee>
	<guid>
	<jazn-data>
	<jazn-policy>
	<jazn-realm>
	<matcher-class>
	<member>
	<member-resource>
	<member-resources>
	<members>
	<name>
	<owner>
	<owners>
	<permission>
	<permissions>
	<permission-set>
	<permission-sets>
	<policy-store>
	<principal>
	<principals>
	<provider-name>
	<realm>
	<resource>
	<resources>
	<resource-name>
	<resource-type>
	<resource-types>
	<role>
	<role-categories>
	<role-category>
	<role-name-ref>
	<roles>
	<type>
	<type-name-ref>
	<uniquename>
	<url>
	<user>
	<users>
	<value>
	<values>

C Oracle Fusion Middleware Audit Framework Reference

	C.1 Audit Events
	C.1.1 What Components Can be Audited?
	C.1.2 What Events can be Audited?
	C.1.2.1 Oracle Directory Integration Platform Events and their Attributes
	C.1.2.2 Oracle Platform Security Services Events and their Attributes
	C.1.2.3 Oracle HTTP Server Events and their Attributes
	C.1.2.4 Oracle Internet Directory Events and their Attributes
	C.1.2.5 Oracle Identity Federation Events and their Attributes
	C.1.2.6 Oracle Virtual Directory Events and their Attributes
	C.1.2.7 OWSM-Agent Events and their Attributes
	C.1.2.8 OWSM-PM-EJB Events and their Attributes
	C.1.2.9 Reports Server Events and their Attributes
	C.1.2.10 WS-Policy Attachment Events and their Attributes
	C.1.2.11 Oracle Web Cache Events and their Attributes
	C.1.2.12 Oracle Web Services Manager Events and their Attributes

	C.1.3 Event Attribute Descriptions

	C.2 Pre-built Audit Reports
	C.2.1 Common Audit Reports
	C.2.2 Component-Specific Audit Reports

	C.3 The Audit Schema
	C.4 WLST Commands for Auditing
	C.4.1 getNonJava EEAuditMBeanName
	C.4.1.1 Description
	C.4.1.2 Syntax
	C.4.1.3 Example

	C.4.2 getAuditPolicy
	C.4.2.1 Description
	C.4.2.2 Syntax
	C.4.2.3 Example

	C.4.3 setAuditPolicy
	C.4.3.1 Description
	C.4.3.2 Syntax
	C.4.3.3 Example

	C.4.4 getAuditRepository
	C.4.4.1 Description
	C.4.4.2 Syntax
	C.4.4.3 Example

	C.4.5 setAuditRepository
	C.4.5.1 Description
	C.4.5.2 Syntax
	C.4.5.3 Example

	C.4.6 listAuditEvents
	C.4.6.1 Description
	C.4.6.2 Syntax
	C.4.6.3 Example

	C.4.7 exportAuditConfig
	C.4.7.1 Description
	C.4.7.2 Syntax
	C.4.7.3 Example

	C.4.8 importAuditConfig
	C.4.8.1 Description
	C.4.8.2 Syntax
	C.4.8.3 Example

	C.5 Audit Filter Expression Syntax
	C.6 Naming and Logging Format of Audit Files

D User and Role API Reference

	D.1 Mapping User Attributes to LDAP Directories
	D.2 Mapping Role Attributes to LDAP Directories
	D.3 Default Configuration Parameters
	D.4 Secure Connections for Microsoft Active Directory

E Administration with WLST Scripting and MBean Programming

	E.1 Configuring OPSS Service Provider Instances with a WLST Script
	E.2 Configuring OPSS Services with MBeans
	E.2.1 List of Supported OPSS MBeans
	E.2.2 Invoking an OPSS MBean
	E.2.3 Programming with OPSS MBeans

	E.3 Access Restrictions
	E.3.1 Annotation Examples
	E.3.2 Mapping of Logical Roles to WebLogic Roles
	E.3.3 Particular Access Restrictions

F OPSS System and Configuration Properties

	F.1 OPSS System Properties
	F.2 OPSS Configuration Properties
	F.2.1 Policy Store Properties
	F.2.1.1 Policy Store Configuration
	F.2.1.2 Runtime Policy Store Configuration

	F.2.2 Credential Store Properties
	F.2.3 LDAP Identity Store Properties
	F.2.4 Properties Common to All LDAP-Based Instances
	F.2.5 Anonymous and Authenticated Roles Properties

G Upgrading Security Data

	G.1 Upgrading Security Data with upgradeSecurityStore
	G.1.1 Examples of Use
	G.1.1.1 Example 1 - Upgrading Identities
	G.1.1.2 Example 2 - Upgrading to File-Based Policies
	G.1.1.3 Example 3 - Upgrading to Oracle Internet Directory LDAP-Based Policies
	G.1.1.4 Example 4 - Upgrading File-Based Policies to Use the Resource Catalog

	G.2 Upgrading Policies with upgradeOpss

H References

	H.1 OPSS API References

I OPSS Scripts

	I.1 Policy-Related Scripts
	I.2 Credential-Related Scripts
	I.3 Other Security Scripts
	I.4 Audit Scripts

J Using an OpenLDAP Identity Store

	J.1 Using an OpenLDAP Identity Store

K Adapter Configuration for Identity Virtualization

	K.1 About Split Profiles
	K.2 Configuring a Split Profile
	K.3 Deleting a Join Rule
	K.4 Deleting a Join Adapter
	K.5 Changing Adapter Visibility

L Troubleshooting Security in Oracle Fusion Middleware

	L.1 Diagnosing Security Errors
	L.1.1 Log Files and OPSS Loggers
	L.1.1.1 Diagnostic Log Files
	L.1.1.2 Generic Log Files
	L.1.1.3 Authorization Loggers
	L.1.1.4 Other OPSS Loggers
	L.1.1.5 Audit Loggers
	L.1.1.6 Managing Loggers with Fusion Middleware Control

	L.1.2 System Properties
	L.1.2.1 jps.auth.debug
	L.1.2.2 jps.auth.debug.verbose
	L.1.2.3 Debugging the Authorization Process

	L.1.3 Solving Security Errors
	L.1.3.1 Understanding Sample Log Entries
	L.1.3.2 Searching Logs with Fusion Middleware Control
	L.1.3.3 Identifying a Message Context with Fusion Middleware Control
	L.1.3.4 Generating Error Listing Files with Fusion Middleware Control

	L.2 Reassociation Failure
	L.2.1 Missing Policies in Reassociated Policy Store
	L.2.2 Unsupported Schema

	L.3 Server Fails to Start
	L.3.1 Missing Required LDAP Authenticator
	L.3.2 Missing Administrator Account
	L.3.3 Missing Permission
	L.3.4 Other Causes

	L.4 Failure to Grant or Revoke Permissions - Case Mismatch
	L.5 Failure to Connect to an LDAP Server
	L.6 Failure to Connect to the Embedded LDAP Authenticator
	L.7 User and Role API Failure
	L.8 Failure to Access Data in the Credential Store
	L.9 Failure to Establish an Anonymous SSL Connection
	L.10 Authorization Check Failure
	L.11 User Gets Unexpected Permissions
	L.12 Security Access Control Exception
	L.13 Permission Check Failure
	L.14 Policy Migration Failure
	L.15 Characters in Policies
	L.15.1 Use of Special Characters in Oracle Internet Directory 10.1.4.3
	L.15.2 XML Policy Store that Contains Certain Characters
	L.15.3 Characters in Application Role Names
	L.15.4 Missing Newline Characters in XML Policy Store

	L.16 Granting Permissions in Java SE Applications
	L.17 Troubleshooting Oracle Business Intelligence Reporting
	L.17.1 Audit Templates for Oracle Business Intelligence Publisher
	L.17.2 Oracle Business Intelligence Publisher Time Zone

	L.18 Search Failure when Matching Attribute in Policy Store
	L.19 Search Failure with an Unknown Host Exception
	L.20 Incompatible Versions of Binaries and Policy Store
	L.21 Need Further Help?

Index

List of Examples

	7-1 Single-LDAP Configuration in Oracle WebLogic Server
	7-2 Multi-LDAP Configuration in Oracle WebLogic Server
	7-3 Multi-LDAP Configuration in Third-Party Application Servers
	7-4 Querying the LDAP Identity Store Programmatically
	16-1 logout.html Script
	16-2 OIM Integration-Related Parameter Usage
	17-1 SSO Authentication with Dynamic Directives
	17-2 SSO Logout with Dynamic Directives
	B-1 <jazn-policy>
	B-2 <jazn-policy>

List of Figures

	2-1 Application Policy Logical Model
	7-1 The OPSS Identity Store Service
	10-1 The Generic Key Dialog
	10-2 The Edit Key Dialog
	11-1 Audit Event Flow
	12-1 Audit Schema
	14-1 Identity Asserter Configuration with Oracle Access Manager and WebGates
	14-2 Authenticator for Web and non-Web Resources
	15-1 Pre-seeded Resources in the User ID Assertion Authentication Policy
	15-2 Pre-seeded Responses in the User ID Assertion Policy
	15-3 Pre-seeded Application SSO Authentication Policy and Resources
	15-4 Pre-seeded Responses for the Application SSO Authentication Policy
	15-5 Pre-seeded Application SSO Authorization Policy and Resources
	16-1 Sample OAMCfgTool Policy Domain General Tab
	16-2 Sample OAMCfgTool Policy Domain Resources Tab
	16-3 Sample OAMCfgTool Policy Domain Authorization Rules Tab
	16-4 Sample OAMCfgTool Policy Domain Default Rules Tab
	16-5 Sample OAMCfgTool Policy Domain Policies Tab
	16-6 OAMCfgTool Policy Domain Delegated Access Admins Tab
	16-7 Sample OAMCfgTool Host Identifiers
	16-8 Sample OAMCfgTool AccessGate Profile
	16-9 Default Login Form for Single Sign-On with 10g WebGates
	16-10 Create Policy Domain Page in the Oracle Access Manager Policy Manager
	17-1 Location of OSSO Components in the Oracle WebLogic Security Framework
	17-2 OSSO Identity Asserter Processing
	19-1 OPSS Architecture
	19-2 Java EE Application using Multiple OPSS APIs
	19-3 Programmatic Authentication
	19-4 Fine-grained Authorization
	19-5 Storing External Passwords in Credential Store Framework
	19-6 Searching the Identity Store with User and Role API
	19-7 Java SE Application using OPSS APIs
	19-8 Oracle ADF using JpsAuth.checkPermission
	19-9 Oracle ADF Application Deployed to Oracle WebLogic Server

List of Tables

	2-1 Granted and Inherited Permissions
	5-1 Basic Administrative Security Tasks and Tools
	6-1 Tools to Deploy Applications after Development
	7-1 Global LDAP Identity Store Parameters
	8-1 SSO Provider Properties
	12-1 Audit Properties in jps-config.xml
	12-2 Attributes of Base Table IAU_BASE
	13-1 List of Audit Reports
	13-2 Attributes of Audit Reports
	14-1 Differences in Authentication Provider Implementation Tasks for OAM 11g versus OAM 10g
	15-1 Provisioning Methods for OAM 11g
	15-2 Required Registration Details for OAM Agents
	15-3 Connection Filter Rules
	15-4 addOAMSSOProvider Command-line Arguments
	15-5 SSO Sync Filter Properties and Sync Behavior
	16-1 Options to Create DER Format Files from PEM
	16-2 Oracle Access Manager Authentication Provider Common Parameters
	16-3 Provider-Specific Parameters
	16-4 Provider-Specific Parameters: Oracle Access Manager Authenticator
	16-5 OAMCfgTool CREATE Mode Parameters and Values
	16-6 Additional OIM Integration-Related Parameters and Values
	16-7 OAMCfgTool VALIDATE Mode Parameters and Values
	16-8 OAMCfgTool DELETE Mode Parameters
	16-9 OAMCfgTool Known Issues
	16-10 Connection Filter Rules
	16-11 addOAMSSOProvider Command-line Arguments
	16-12 SSO Sync Filter Properties and Sync Behavior
	17-1 Headers Sent by Oracle HTTP Server
	17-2 ssoreg Parameters to Register Oracle HTTP Server mod_osso
	17-3 Connection Filter Rules
	17-4 SSO Sync Filter Properties and Sync Behavior
	18-1 Security Tasks for the Application Architect
	18-2 Security Tasks for the Application Developer
	18-3 Security Tasks for the Application Security Administrator
	18-4 Resource Catalog Entities
	20-1 Comparing Authorization in the Java EE Model
	20-2 Behavior of checkPermission According to JAAS Mode
	21-1 Summary of JpsFilter and JpsInterceptor Parameters
	21-2 Settings to Skip Policy Migration
	21-3 Settings to Migrate Policies with Merging
	21-4 Settings to Migrate Policies with Overwriting
	21-5 Settings to Remove Policies
	21-6 Settings to Prevent the Removal of Policies
	21-7 Settings to Migrate Policies with Static Deployments
	21-8 Settings Not to Migrate Policies with Static Deployments
	21-9 Settings to Skip Credential Migration
	21-10 Settings to Migrate Credentials with Merging
	21-11 Settings to Migrate Credentials with Overwriting
	22-1 Idstore Types
	25-1 Classes and Interfaces in the User and Role API
	25-2 LDAP Identity Provider Classes
	25-3 Start-time Identity Provider Configuration Properties
	25-4 Runtime Identity Provider Configuration Properties
	25-5 SPI Classes to Extend for Custom Provider
	25-6 Methods of AbstractSimpleSearchFilter
	25-7 Methods of Complex Search Filter
	A-1 First- and Second-Level Elements in jps-config.xml
	A-2 Scenarios for <extendedProperty>
	A-3 Scenarios for <property>
	B-1 Hierarchy of Elements in system-jazn-data.xml
	C-1 Oracle Directory Integration Platform Events
	C-2 Oracle Platform Security Services Events
	C-3 Oracle HTTP Server Events
	C-4 Oracle Directory Integration Platform Events
	C-5 Oracle Identity Federation Events
	C-6 Oracle Virtual Directory Events
	C-7 OWSM-Agent Events
	C-8 OWSM-PM-EJB Events
	C-9 Reports Server Events
	C-10 WS-Policy Attachment Events
	C-11 Oracle Web Cache Events
	C-12 Oracle Web Services Manager Events
	C-13 Attributes of Audited Events
	C-14 The Audit Schema
	C-15 WLST Audit Commands
	D-1 User Attributes in UserProfile.Property
	D-2 Role Attribute Values in LDAP Directories
	D-3 Default Values - Oracle Internet Directory and Microsoft Active Directory
	D-4 Default Values - Oracle Directory Server Enterprise Edition and Novell eDirectory
	D-5 Default Values - OpenLDAP and Oracle Virtual Directory
	D-6 Default Values - Oracle WebLogic Server LDAP
	E-1 List of OPSS MBeans
	E-2 Mapping of Logical Roles to WebLogic Groups
	E-3 Roles Required per Operation
	F-1 Java System Properties Used by OPSS
	F-2 Policy Store Properties
	F-3 Runtime Policy Store Properties
	F-4 Credential Store Properties
	F-5 LDAP-Based Identity Store Properties
	F-6 Generic LDAP Properties
	F-7 Anonymous and Authenticated Roles Properties
	L-1 Log Files for Audit Diagnostics

Oracle® Fusion Middleware

Application Security Guide

11g Release 1 (11.1.1)

E10043-09

May 2011

Oracle Fusion Middleware Application Security Guide, 11g Release 1 (11.1.1)

E10043-09

Copyright © 2003, 2011, Oracle and/or its affiliates. All rights reserved.

Primary Author: Carlos Subi

Contributing Author: Vinaye Misra, Gail Flanegin

Contributor: Amit Agarwal, Soumya Aithal, Moushmi Banerjee, Josh Bregman, Rachel Chan, Andre Correa, Marc Chanliau, Pratik Datta, Jordan Douglas, Guru Dutt, Todd Elwood, Vineet Garg, Vikas Ghorpade, Sandeep Guggilam, Shiang-Jia Huang, Dan Hynes, Michael Khalandovsky, Supriya Kalyanasundaram, Lakshmi Kethana, Ganesh Kirti, Ashish Kolli, Rohit Koul, Nithya Muralidharan, Raymond Ng, Frank Nimphius, Craig Perez, Sudip Regmi, Vinay Shukla, Bhupindra Singh, Mamta Suri, Kavita Tippana, Srikant Tirumalai, Ramana Turlapati, Sirish Vepa, Jane Xu, Sam Zhou.

This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.

This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.

Preface

This manual explains the features and administration of the Oracle Platform Security Services.

This preface is divided into the following sections:

	
Audience

	
Documentation Accessibility

	
Related Documentation

	
Conventions

Audience

The intended audience of this guide are experienced Java developers, administrators, deployers, and application managers who want to understand and use Oracle Platform Security Services.

The overall structure of the guide is divided into parts, each of which groups related major topics. Parts I through III are relevant to administrators; parts IV contains information about the OPSS policy model and is intended for developers; and part V contains reference information.

Documentation Accessibility

Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation

Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation

This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.

Access to Oracle Support

Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html or visit http://www.oracle.com/accessibility/support.html if you are hearing impaired.

Related Documentation

Additional information is found in the following documents:

	
Oracle Fusion Middleware Administrator's Guide

	
Oracle Fusion Middleware 2 Day Administration Guide

	
Oracle Fusion Middleware Security and Administrator's Guide for Web Services

	
Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory

	
Oracle Fusion Middleware Integration Guide for Oracle Identity Management

	
Oracle Fusion Middleware Administrator's Guide for Oracle Identity Federation

	
Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework

	
Oracle Fusion Middleware Security Overview

	
Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server

	
Oracle Fusion Middleware Third-Party Application Server Guide

	
For links to API documentation, see Section H.1, "OPSS API References."

For a comprehensive list of Oracle documentation or to search for a particular topic within Oracle documentation libraries, see http://www.oracle.com/technology/documentation/index.html.

Conventions

The following text conventions are used in this document:

	Convention	Meaning
	boldface	Boldface type indicates graphical user interface elements associated with an action.
	italic	Italic type indicates book titles, emphasis, terms defined in text, or placeholder variables for which you supply particular values.
	monospace	Monospace type within a paragraph indicates commands, URLs, Java class names and method names, file and directory names, text that appears on the screen, or text that you enter.

What's New in This Guide

This chapter describes the most important changes introduced in releases 11gR1, 11gR1 PS1, 11gR1 PS2, Oracle Identity Management 11gR1, 11gR1 PS3, and Oracle Identity Management 11gR1 PS1.

New Features in Oracle Identity Management 11gR1 PS1

The features introduced in Oracle Indentity Management 11gR1 PS1 include the following:

	
The OPSS Java SE Client. For details, see Section 22.3, "The OPSS Java SE Client."

	
Oracle Entitlements Server, a tool that supersedes Oracle Authorization Policy Manager. For details, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

	
The stand-alone audit loader. For details, see Section 12.2.6, "Configuring the Stand-alone Audit Loader".

New Features in Release 11gR1 PS3

The features introduced in release 11gR1 PS3 include the following:

	
Support for DB-based stores.

	
Support for the IBM WebSphere Application Server.

	
Support for identity virtualization, which allows querying multiple identity stores.

	
Support for security administrative scripts on IBM WebSphere Application Server.

	
The OPSS script upgradeOpss to upgrade security data from 11gR1 PS1 or 11gR1 PS2 to 11gR1 PS3.

	
Additional OPSS scripts.

	
Improved Fusion Middleware Control security pages.

	
Enhanced OAMCfgTool for OAM 10g SSO, with additional parameters.

	
User and Role API support for IBM Tivoli and Microsoft ADAM directories.

New Features in Oracle Identity Management 11gR1

The features introduced in Oracle Identity Management 11gR1 include the following:

	
Oracle Authorization Policy Manager, a tool to manage application security artifacts. The set of available tools to administer application security is expanded to Oracle WebLogic Administration Console, Oracle Enterprise Manager Fusion Middleware Control, WLST commands, and Oracle Authorization Policy Manager.

Additions to This Guide

New material in this guide includes:

	
An appendix that lists all security-related WLST commands.

New Features in Release 11gR1 PS2

The features introduced in release 11gR1 PS2 include the following:

	
The Resource Catalog, a way of specifying resource types, resources, actions, and entitlements in an application policy grant. Starting with this release, OPSS supports resource-based policies with the introduction of the resource catalog.

	
Instructions for developing custom User and Role providers.

	
Use of the class ResourcePermission in permissions.

	
New WLST commands to manage resource types.

	
The system property jps.deployment.handler.disabled of the Oracle WebLogic Server has been introduced.

	
A new use of the command upgradeSecurityStore.

	
A new argument to the command migrateSecurityStore to control the migration behavior upon encountering duplicate items. It applies only when migrating application policies.

New Features in Release 11gR1 PS1

The features introduced in release 11gR1 PS1 include the following:

	
The class Resource Permission.

	
Principal name comparison has been enhanced.

	
Manual settings for policy migration have been simplified. In particular, versioning the application is no longer required.

	
The WLST command migrateSecurityStore supports the embedded LDAP store as a target.

	
The configuration of the identity store has been simplified. For example, previously required properties such as username.attr and login.name.attr are no longer needed when configuring an LDAP identity store.

	
The WLST command reassociateSecurityStore supports an existing LDAP node as a target.

	
New and improved Oracle Fusion Middleware Control pages. In particular, using these pages, one can specify the SSO service to use in a domain.

New Features in Release 11gR1

The single most important new feature in the 11gR1 release is the introduction of the Oracle WebLogic Server as the environment where applications run and where security is provisioned.

The features introduced in release 11gR1 include the following:

	
Support for application policies and roles, and the authenticated and anonymous users and roles

	
Credential Store Framework

	
Auditing framework for Oracle Platform Security Services (OPSS) events for credential and policy management, and authorization checks

	
Support for application lifecycle security integrated with JDeveloper

	
Enhanced authorization framework

	
Consolidation of code-based and subject-based policies in system-jazn-data.xml

	
Management of security with Oracle Fusion Middleware and WLST commands

	
New security-related WLST commands

Desupported Features from 10.1.3.x

The features de-supported in release 11gR1 include the following:

	
Jazn is replaced with OPSS.

	
Jazn Realm API is replaced by the User and Role API.

	
Migration of OSDT toolkit from proprietary objects to JCE is desupported.

	
The identity store, as previously configured in system-jazn-data.xml, is replaced by the use of WebLogic authenticators.

	
The functions of Oracle Jazn Administration Tool are replaced as follows:

	
User and Role CRUD operations are replaced by the use of the Embedded LDAP configured and operated with the Oracle WebLogic Administration Console

	
The configuration of login modules is replaced with the use of the Oracle WebLogic Administration Console to configure authenticators

	
JavaSSO is no longer supported. On a Oracle WebLogic Server domain, Single Sign-On (SSO) is automatic within clusters only when session replication is turned on.

Links to Upgrade Documentation

To upgrade from a previous release to the current, see any of the following documents:

	
Oracle Fusion Middleware Upgrade Planning Guide

	
Oracle Fusion Middleware Upgrade Guide for Java EE

	
Oracle Fusion Middleware Upgrade Guide for Oracle SOA Suite, WebCenter, and ADF

	
Oracle Fusion Middleware Upgrade Guide for Oracle Portal, Forms, Reports, and Discoverer

	
Oracle Fusion Middleware Upgrade Guide for Oracle Identity Management

Part I

Understanding Security Concepts

This part contains the following chapters:

	
Chapter 1, "Introduction to Oracle Platform Security Services"

	
Chapter 2, "Understanding Users and Roles"

	
Chapter 3, "Understanding Identities, Policies, and Credentials"

	
Chapter 4, "About Oracle Platform Security Services Scenarios"

1 Introduction to Oracle Platform Security Services

Oracle Platform Security Services (OPSS) is a security platform that can be used to secure applications deployed in any of the supported platforms or in standalone applications. This chapter introduces the main features of this platform in the following sections:

	
What is Oracle Platform Security Services?

	
OPSS Architecture Overview

	
Oracle ADF Security Overview

	
OPSS for Administrators

	
OPSS for Developers

The scope of this document does not include Oracle Web Services security. For details about that topic, see Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

For an overview of Oracle Fusion Middleware security topics, see Oracle Fusion Middleware Security Overview.

1.1 What is Oracle Platform Security Services?

OPSS provides enterprise product development teams, systems integrators, and independent software vendors with a standards-based, portable, integrated, enterprise-grade security framework for Java SE and Java EE applications.

OPSS is the underlying security platform that provides security to Oracle Fusion Middleware including WebLogic Server, Server Oriented Architecture (SOA) applications, Oracle WebCenter, Oracle Application Development Framework (ADF) applications, and Oracle Entitlement Server. OPSS is designed to be portable to third-party application servers, so developers can use OPSS as the single security framework for both Oracle and third-party environments, thus decreasing application development, administration, and maintenance costs.

OPSS provides an abstraction layer in the form of application programming interfaces (APIs) that insulate developers from security and identity management implementation details. With OPSS, developers do not need to know the details of, for example, cryptographic key management, repository interfaces, or other identity management infrastructures. Using OPSS, in-house developed applications, third-party applications, and integrated applications benefit from the same, uniform security, identity management, and audit services across the enterprise.

For OPSS-related news, including FAQs, a whitepaper, and code examples, and forum discussions, see http://www.oracle.com/technology/products/id_mgmt/opss/index.html.

1.1.1 OPSS Main Features

OPSS complies with the following standards: role-based-access-control (RBAC); Java Enterprise Edition (Java EE); and Java Authorization and Authentication Services (JAAS).

Built upon these standards, OPSS provides an integrated security platform that supports:

	
Authentication

	
Identity assertion

	
Authorization, based on fine-grained JAAS permissions

	
The specification and management of application policies

	
Secure storage and access of system credentials through the Credential Store Framework

	
Auditing

	
Role administration and role mappings

	
The User and Role API

	
Identity Virtualization

	
Security configuration and management

	
SAML and XACML

	
Oracle Security Developer Tools, including cryptography tools

	
Policy Management API

	
Java Authorization for Containers (JAAC)

Details about a given OPSS feature functionality are found in subsequent chapters of this guide.

For details about the WebLogic Auditing Provider, see section Configuring the WebLogic Auditing Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.

1.1.2 Supported Server Platforms

OPSS is supported in the following application server platforms:

	
Oracle WebLogic Server

	
IBM WebSphere Application Server - Network Deployment (ND) 7.0

	
IBM WebSphere Application Server 7.0

This guide documents OPSS features relevant to the Oracle WebLogic Server that apply uniformly to all other platforms. Those topics that apply specifically to third-party servers are found in Oracle Fusion Middleware Third-Party Application Server Guide.

1.2 OPSS Architecture Overview

OPSS comprises the application server's security and Oracle's Fusion Middleware security. The following graphic illustrates the layered architecture that combines these two security frameworks, in the case of the Oracle WebLogic Server:

[image: Surrounding text describes architecture.gif.]

This figure depicts the various security components as layers. The uppermost layer includes the Oracle WebLogic Server and the Java applications running on the server; under it, is the layer consisting of APIs for Authentication, Authorization, CSF, User and Role, and identity virtualization; the bottom layer includes the Service Provider Interface (SPI) layer and the service providers. The bottom layer interacts with security data repositories, such as LDAP and database servers.

The list of providers in the above figure is not comprehensive: other providers include the role mapping provider and the audit provider.

Security Services Provider Interface

Security Services Provider Interface (SSPI) provides Java EE container security in permission-based (JACC) mode and in resource-based (non-JACC) mode, and resource-based authorization for the environment.

SSPI is a set of APIs for implementing pluggable security providers. A module implementing any of these interfaces can be plugged into SSPI to provide a particular type of security service, such as custom authentication or a particular role mapping.

For details, see section The Security Service Provider Interfaces (SSPIs) in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

Oracle Platform Security Services

Java Authorization (JAZN) functionality was redesigned and expanded to include the Credential Store Framework (CSF), the Common Audit Framework (CAF), and other components, and combined with SSPI as Oracle Platform Security Services (OPSS).

OPSS includes the following services: Credential Store Framework, User and Role API, libOvd, Common Audit Framework, Identity Services, and improved design-time support.

1.2.1 Benefits of Using OPSS

The benefits that OPSS offers include the following:

	
Allows developers to focus on application and domain problems

	
Supports enterprise deployments

	
Supports several LDAP servers and SSO systems

	
Is certified on the Oracle WebLogic Server

	
Pre-integrates with Oracle products and technologies

	
Offers a consistent security experience for developers and administrators

	
Provides a uniform set of APIs for all types of applications

	
Optimizes development time by offering abstraction layers (declarative APIs)

	
Provides a simplified application security maintenance

	
Allows changing security rules without affecting application code

	
Eases the administrator's job

	
Integrates with identity management systems

	
Integrates with legacy and third-party security providers

OPSS combines SSPI and JPS to provide a framework where the application server and Oracle applications can seamlessly run in a single environment.

OPSS supports security for Java EE applications and for Oracle Fusion Middleware applications, such as Oracle WebCenter and Oracle SOA Suite.

Developers can use OPSS APIs to secure all types of applications and integrate them with other security artifacts, such as LDAP servers, RDBMS, and custom security components.

Administrators can use OPSS to deploy large enterprise applications with a small, uniform set of tools and administer all security in them. OPSS simplifies the maintenance of application security because it allows the modification of security configuration without changing the application code.

By default and out-of-the-box, Oracle WebLogic Server stores users and groups in its embedded LDAP repository. Domains can be configured, however, to use identity data in other kinds of LDAP repositories, such as Oracle Internet Directory, ActiveDirectory, Novell eDirectory, and OpenLDAP. In addition, Oracle WebLogic Server provides a generic, default LDAP authenticator that can be used with other LDAP servers not in the preceding list.

Out-of-the-box, policies and credentials are stored in file-based stores; these stores can be moved (or reassociated) to an LDAP repository backed by an Oracle Internet Directory.

	
Note:

This guide does not attempt to describe in detail WebLogic security features; wherever specific information about SSPI is used or assumed, the reader is referred to the appropriate document.

1.3 Oracle ADF Security Overview

Oracle ADF is an end-to-end Java EE framework that simplifies development by providing out-of-the-box infrastructure services and a visual and declarative development experience.

Oracle ADF Security is based on the JAAS security model, and it uses OPSS. Oracle ADF Security supports LDAP- or file-based policy and credential stores, uses permission-based fine-grained authorization provided by OPSS, and simplifies the configuration of application security with the aid of visual declarative editors and the Oracle ADF Security wizard, all of them available in Oracle JDeveloper 11g (any reference to this tool in this guide stands for its 11g release).

Oracle ADF Security authorization allows protecting components (flows and pages), is integrated with Oracle JDeveloper at design time, and is available at run time when the application is deployed to the integrated server where testing of security features is typically carried out.

During the development of an Oracle ADF application, the authenticators are configured with the Oracle WebLogic Server Administration Console for the particular domain where the application is deployed, and the policy store is file-based and stored in the file jazn-data.xml. For deployment details, see Section 6.3.1, "Deploying to a Test Environment."

To summarize, Oracle ADF Security provides:

	
Control over granular declarative security

	
Visual and declarative development of security artifacts

	
Assignment of simplified permission through a role hierarchy

	
Use of EL (expression language) to access Oracle ADF resources

	
Integration with Oracle JDeveloper that allows quick development and test cycles

	
Rich Web user interfaces and simplified database access

1.4 OPSS for Administrators

Depending on the application type, the guidelines to administer application security with Oracle WebLogic Administration Console, OPSS scripts, Fusion Middleware Control, or Oracle Entitlements Server are as follows:

	
For Java EE applications, security is managed with Oracle WebLogic Administration Console, Oracle Entitlements Server, or OPSS scripts.

	
For Oracle SOA, Oracle WebCenter, MDS, and Oracle ADF applications, authentication is managed with Oracle WebLogic Administration Console and authorization is managed with Fusion Middleware Control and Oracle Entitlements Server.

	
For Java EE applications integrating with OPSS, authentication is managed using Oracle WebLogic Administration Console, and authorization is managed with Fusion Middleware Control and Oracle Entitlements Server.

For details about security administration, see Chapter 5, "Security Administration."

1.5 OPSS for Developers

This section summarizes the main OPSS features that developers typically implement in different kind of applications, in the following scenarios:

	
Scenario 1: Enhancing Security in a Java EE Application

	
Scenario 2: Securing an Oracle ADF Application

	
Scenario 3: Securing a Java SE Application

1.5.1 Scenario 1: Enhancing Security in a Java EE Application

A Java EE application can be enhanced to use OPSS APIs such as the CSF, User and Role, or Policy Management: user attributes, such as a user's email, phone, or address, can be retrieved using the Identity Governance Framework API or the User and Role API; external system credentials (stored in a wallet or in a LDAP-based store) can be retrieved using the CSF API; and authorization policy data can be managed with the policy management APIs.

Java EE applications, such as servlets, JSPs, and EJBs, deployed on Oracle WebLogic Server can be configured to use authentication and authorization declaratively, with specifications in the file web.xml, or programmatically, with calls to isUserInRole and isCallerInRole.

Custom authenticators include the standard basic, form, and client certification methods. Authentication between servlets and EJBs is controlled using user roles and enterprise groups, typically stored in an LDAP repository, a database, or a custom authenticators.

1.5.2 Scenario 2: Securing an Oracle ADF Application

Oracle Application Development Framework (ADF) is a Java EE development framework available in Oracle JDeveloper that simplifies the development of Java EE applications by minimizing the need to write code that implements the application's infrastructure, thus allowing developers to focus on the application features. Oracle ADF provides these infrastructure implementations as part of the Oracle JDeveloper framework, therefore enhancing the development experience with visual and declarative approaches to Java EE development.

Oracle ADF implicitly uses OPSS, and, for most part, the developer does not have to code directly to OPSS APIs; of course, the developer can nevertheless use direct calls to OPSS APIs.

Oracle ADF leverages container authentication and subsequently uses JAAS based authorization to control access to Oracle ADF resources. These authorization policies may include application-specific roles and JAAS authorization permissions. Oracle ADF connection credentials are stored securely in the credential store.

Oracle ADF and Oracle WebCenter applications deployed on Oracle WebLogic Server include WebLogic authenticators, such as the default WebLogic authenticator, and may include a single sign-on solution (Oracle Access Manager or Oracle Application Server Single Sign-On).

Usually, applications also use one or several of the following OPSS features: anonymous and authenticated role support, policy management APIs, and the Credential Store Framework.

For details about these topics, see the following sections:

	
Section 2.3, "The Authenticated Role"

	
Section 2.4, "The Anonymous User and Role"

	
Section 3.2, "Policy Store Basics"

	
Section 3.3, "Credential Store Basics"

For complete details on how to develop and secure an Oracle ADF application, see chapter 29 in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

1.5.3 Scenario 3: Securing a Java SE Application

Most of the OPSS features that work in Java EE applications work in Java SE applications, but there are some differences, which are noted in this section.

Configuration

All OPSS-related configuration and data files are located under configuration directory in the domain home. For example, the configuration file for a Java SE environment is defined in the file jps-config-jse.xml by default installed in the following location:

$DOMAIN_HOME/config/fmwconfig/jps-config-jse.xml

To specify a different location, use the following switch:

-Doracle.security.jps.config=pathToConfigFile

The syntax of this file is identical to that of the file jps-config.xml. This file is used by code running in WebLogic containers. For details, see Appendix A, "OPSS Configuration File Reference."

For details about security configuration for Java SE applications, see Section 22.2, "Authentication for Java SE Applications," and Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."

Required JAR in Class Path

To make OPSS services available to a Java SE application, ensure that the following JAR file is added to your class path, located in the modules area of the Oracle installation home:

$ORACLE_HOME/oracle_common/modules/oracle.jps_11.1.1/jps-manifest.jar

Login Modules

Java SE applications can use standard JAAS login modules. However, to use the same login module on WLS, implement a custom authentication provider that invokes the login module. The SSPI interfaces allow integrating custom authentication providers in WLS.

The login module recommended for Java SE applications is the IdentityStore login module.

For details, see section Authentication Providers in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.

2 Understanding Users and Roles

This chapter describes various characteristics of users and roles, such as the anonymous role, the authenticated role, role mapping, and the role category. It also includes the definition of terms used throughout this guide and an overview of the User and Role API Framework.

OPSS delegates authentication to Oracle WebLogic Server authenticator providers managed with the WebLogic Administration Console.

This chapter is divided into the following sections:

	
Terminology

	
Role Mapping

	
The Authenticated Role

	
The Anonymous User and Role

	
Administrative Users and Roles

	
Managing User Accounts

	
Principal Name Comparison Logic

	
The Role Category

For further details about managing users and roles programmatically, see Chapter 25, "Developing with the User and Role API."

2.1 Terminology

This section definies most of the OPSS security terms.

Users

A user, or enterprise user, is an end-user accessing a service. User information is stored in the identity store. An authenticated user is a user whose credentials have been validated.

An anonymous user is a user whose credentials have not been validated (hence unauthenticated) that is permitted access to only unprotected resources. This user is specific to OPSS and its use can be enabled or disabled by an application. For details about anonymous user support, see Section 2.4, "The Anonymous User and Role."

Roles

An enterprise role or enterprise group is a collection of users and other groups. It can be hierarchical, that is, a group can include arbitrarily nested groups (other than itself).

A Java EE logical role is a role specified declaratively or programmatically by a Java EE application. It is defined in an application deployment descriptor and, typically, used in the application code. It can be mapped to only enterprise groups or users, and it cannot be mapped directly to application roles.

An application role is a collection of users, groups, and other application roles; it can be hierarchical. Application roles are defined by application policies and not necessarily known to a Java EE container. Application roles can be many-to-many mapped to external roles. For example, the external group employee (stored in the identity store) can be mapped to the application role helpdesk service request (in one stripe) and to the application role self service HR (in another stripe).

For details about the anonymous role, see Section 2.4, "The Anonymous User and Role." For details about the authenticated role, see Section 2.3, "The Authenticated Role."

Principal

A principal is the identity to which the authorization in the policy is granted. A principal can be a user, an external role, or an application role. Most frequently, it is an application role.

Application Policy

An application policy is a functional policy that specifies a set of permissions that an entity (the grantee, a principal or code source) is allowed within an application, such as viewing web pages or modifying reports. That is, it specifies who can do what in an application.

An application policy uses:

	
Principals as grantees, and must have at least one principal.

	
Either one or more permissions, or an entitlement, but not both.

Policies that use an entitlement are called entitlement-based policies; policies that use one or more permissions are called resource-based policies.

Figure 2-1 illustrates the application policy model.

Figure 2-1 Application Policy Logical Model

[image: Surrounding text describes Figure 2-1 .]

OPSS Subject

An OPSS subject is a collection of principals and, possibly, user credentials such as passwords or cryptographic keys. The server authentication populates the subject with users and groups, and then augments the subject with application roles. The OPSS Subject is key in identity propagation using other Oracle Identity Management products such as OAM, for example. For details about how anonymous data is handled, see Section 2.4.1, "Anonymous Support and Subject."

Security Stores

The identity store is the repository of enterprise users and groups and must be LDAP-based. Out-of-the-box the identity store is the WebLogic LDAP DefaultAuthenticator. Other types of identity stores include Oracle Internet Directory, Sun Directory Server, and Oracle Virtual Directory.

The policy store is the repository of application and system policies. This store is administered with Oracle Enterprise Manager Fusion Middleware Control.

The credential store is the repository of credentials. This store is administered with Oracle Enterprise Manager Fusion Middleware Control.

The OPSS security store is the logical repository of system and application-specific policies, credentials, and keys. The only type of LDAP-based OPSS security store supported is Oracle Internet Directory.

For details, see Chapter 3, "Understanding Identities, Policies, and Credentials."

Other Terms

A system component is a manageable process that is not a WebLogic component. Examples include Oracle Internet Directory, WebCache, and Java SE components.

A Java component is a peer of a system component, but managed by an application server container. Generally it refers to a collection of applications and resources in one-to-one relationship with a domain extension template. Examples include Oracle SOA applications, Oracle WebCenter Spaces.

2.2 Role Mapping

OPSS supports many-to-many mapping of application roles in the policy store to enterprise groups in the identity store, which allows users in enterprise groups to access application resources as specified by application roles. Since this mapping is many-to-many, it is alternatively referred to as the role-to-group mapping or as the group-to-role mapping.

	
Notes:

Oracle JDeveloper allows specifying this mapping when the application is being developed in that environment. Alternatively, the mapping can be also specified, after the application has been deployed, using OPSS scripts, Fusion Middleware Control, or Oracle Entitlements Server, as explained in Section 9.2.2, "Managing Application Roles."
The mapping of an application role to an enterprise group rewrites the privilege of the enterprise group as the union of its privileges and those of the mapped application role. Therefore, it (possibly) augments the privileges of the enterprise group but never removes any from it.

2.2.1 Permission Inheritance and the Role Hierarchy

OPSS roles can be structured hierarchically by the relation “is a member of.” Thus a role can have as members users or other roles.

	
Important:

When building a role hierarchy, ensure that you do not introduce circular dependencies to prevent unwanted behavior. For example, setting roleA to be a member of roleB, and roleB to be a member of roleA would create such a circular dependency.

In a role hierarchy, role members inherit permissions from the parent role. Thus, if roleA is a member of roleB, then all permissions granted to roleB are also permissions granted to roleA. Of course, roleA may have its own particular permissions, but, just by being a member of roleB, roleA inherits all the permissions granted to roleB.

For details about managing an application role hierarchy with OPSS scripts, see Section 9.3.4, "grantAppRole," and Section 9.3.5, "revokeAppRole."

For details about managing an application role hierarchy with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following example illustrates a role hierarchy consisting of the following nested application users and roles:

	
The role developerAppRole has the following members:

developer
developer_group
managerAppRole
directorAppRole

	
In addition, the role directorAppRole has the following members:

developer
developer_group

Here is the relevant portions of the file jazn-data.xml specifying the above hierarchy:

<policy-store>
 <applications>
 <application>
 <name>MyApp</name>
 <app-roles>
 <app-role>
 <name>developerAppRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application developer role</display-name>
 <description>Application developer role</description>
 <guid>61FD29C0D47E11DABF9BA765378CF9F5</guid>
 <members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>developer</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developer_group</name>
 </membe>
 <member>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>managerAppRole</name>
 </member>
 </members>
 </app-role>
 <app-role>
 <name>directorAppRole</name>
 <class>oracle.security.jps.service.policystore.ApplicationRole</class>
 <display-name>Application director role </display-name>
 <description>Application director role</description>
 <guid>61FD29C0D47E11DABF9BA765378CF9F8</guid>
 <members>
 <member>
 <class>weblogic.security.principal.WLSUserImpl</class>
 <name>developer</name>
 </member>
 <member>
 <class>weblogic.security.principal.WLSGroupImpl</class>
 <name>developer_group</name>
 </member>
 </members>
 </app-role> ...
 </app-roles>

 <jazn-policy>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>developerAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.io.FilePermission</class>
 <name>/tmp/oracle.txt</name>
 <actions>write</actions>
 </permission>
 </permissions>
 </grant>

 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
 oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>managerAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>java.util.PropertyPermission</class>
 <name>myProperty</name>
 <actions>read</actions>
 </permission>
 </permissions>

 </grant>
 <grant>
 <grantee>
 <principals>
 <principal>
 <class>
oracle.security.jps.service.policystore.ApplicationRole</class>
 <name>directorAppRole</name>
 </principal>
 </principals>
 </grantee>
 <permissions>
 <permission>
 <class>foo.CustomPermission</class>
 <name>myProperty</name>
 <actions>*</actions>
 </permission>
 </permissions>
 </grant>
 </jazn-policy>
 </policy-store>

Table 2-1 summarizes the permissions that each of the five users and roles in the above hierarchy gets according the inheritance rule:

Table 2-1 Granted and Inherited Permissions

	Role	Permission Granted	Actual Permissions
	
developerAppRole

	
P1=java.io.FilePermission

	
P1

	
managerAppRole

	
P2= java.util.PropertyPermission

	
P2 and (inherited) P1

	
directorAppRole

	
P3=foo.CustomPermission

	
P3 and (inherited) P1

	
developer

	
	
P1 and P3 (both inherited)

	
developer_group

	
	
P1 and P3 (both inherited)

2.3 The Authenticated Role

OPSS supports the use of a special role: the authenticated role. This role has the following characteristics:

	
It need not be declared in any configuration file.

	
It is always represented by a principal attached to a subject after a successful authentication. In another words: it is granted by default to any authenticated user.

	
Its presence, within a subject, is mutually exclusive with the anonymous role, that is, either (a) a subject has not gone through authentication, in which case it contains a principal with the anonymous role as explained in Anonymous Support and Subject or (b) the subject has gone through authentication successfully, in which case it contains the authenticated role and, depending on the configuration, the anonymous role.

	
It is an application role and, therefore, it can be used by any application and participate in the application's role hierarchy.

The permissions granted to the authenticated role need not be specified explicitly but are implicitly derived from the enterprise groups and application roles of which it is a member.

A typical use of the authenticated role is to allow authenticated users access to common application resources, that is, to resources available to a user that has been authenticated.

For details on how an application can manually configure the use of the authenticated role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."

2.4 The Anonymous User and Role

OPSS supports the use of two special entities: the anonymous user and the anonymous role. Like the authenticated role, these entities need not be declared and applications configure their use in the JpsFilter or JpsInterceptor. Any of them can be used by an application in the application's role hierarchy.

When enabled, before the user is authenticated and while the user is accessing unprotected resources, the user is represented by a subject populated with just the anonymous user and the anonymous role. Eventually, if that subject attempts access to a protected resource, then authorization handles the subject as explained in Anonymous Support and Subject.

The permissions granted to the anonymous user and role need not be specified explicitly but are implicitly derived from the enterprise groups and application roles of which they are a member.

A typical use of the anonymous user and role is to allow unauthenticated users to access public, unprotected resources.

For details on how an application can manually configure the use of the anonymous user and role, see Section 21.1, "Configuring the Servlet Filter and the EJB Interceptor."

2.4.1 Anonymous Support and Subject

Throughout this section, it is assumed that the use of the anonymous user and anonymous role are enabled.

When an end-user first accesses an unprotected resource, the system creates a subject and populates it with two principals corresponding with the anonymous user and the anonymous role. While unprotected resources are involved, that subject is not modified and authentication does not take place.

When a protected resource is accessed, then authentication kicks in, and the subject (which thus far contained just the anonymous role) is modified according to the result of the authentication process, as follows.

If authentication is successful, then:

	
The anonymous user is removed from the subject and replaced, as appropriate, by an authenticated user.

	
The anonymous role is removed and the authenticated role is added.

	
Other roles are added to the subject, as appropriate.

Notice that a successful authentication results then in a subject that has exactly one principal corresponding to a non-anonymous user, one principal corresponding to the authenticated role, and possibly other principals corresponding to enterprise or application roles.

If authentication is not successful, then the anonymous user is retained, the anonymous role is removed or retained (according to how the application has configured the JpsFilter or JpsInterceptor), and no other principals are added. By default, the anonymous role is removed from the subject.

2.5 Administrative Users and Roles

A (WebLogic) administrator is any user member of the group Administrators, and any user that exists in a security realm can be added to this group.

For details about the default groups that exist in a security realm, see section Users, Groups, And Security Roles in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

Generally, there is no default name for an administrator, with just one exception: when you install the examples, you get a default user name and password for the administrator of the sample domain. It is recommended, however, that these examples not be used in any production environment.

For details, see section Install WebLogic Server in a Secure Manner in Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic Server.

Once a domain is configured, users that have been created in the security realm can be added or removed from the Administrators group at anytime by any member of the Administrators group. The two basic tools for managing these accounts are the Oracle WebLogic Administration Console and the Oracle WebLogic Scripting Tool (WLST).

For details, see section Add Users to Groups in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help, and section Using the WebLogic Scripting Tool in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

2.6 Managing User Accounts

This section provides several links to information about creating user accounts and protecting their passwords.

	
For general guidelines on creating passwords, see section Manage Users and Groups in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help. The default authentication provider requires a minimum password length of 8 characters, but this is configurable.

A few recommendations regarding password creation are explained in section Securing the WebLogic Server Host in Oracle Fusion Middleware Securing a Production Environment for Oracle WebLogic Server.

	
In general, passwords are stored in either an LDAP server or an RDBMS. The particular location in which they are stored is determined by the specific authentication provider that is configured in the environment (or more precisely, the security realm of a domain). For details about out-of-the-box authentication providers, see section Managing the Embedded LDAP Server in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
For information about how to configure the optional Password Validation provider, which is automatically called whenever you create a password and that enforces a set of customizable password composition rules, see section Configuring the Password Validation Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
When adding or deleting a user, consider the recommendations explained in Section L.11, "User Gets Unexpected Permissions."

2.7 Principal Name Comparison Logic

This section explains how principal comparison affects OPSS authorization and describes the system parameters that control the principal name comparison logic, in the following sections:

	
How Does Principal Comparison Affect Authorization?

	
System Parameters Controlling Principal Name Comparison

2.7.1 How Does Principal Comparison Affect Authorization?

Upon a successful user authentication, the system populates a Subject with principals whose names accord with the user and enterprise group names (of enterprise groups the user is included in) stored in the identity store.

On the other hand, when the user (or enterprise group) needs to be authorized, the system considers how application roles have been mapped to enterprise groups, and builds another set of principals from names in application grants stored in the policy store.

In order to authorized a principal, the principal names populated in the Subject (from names found in the identity store) and those built from names in the policy store are compared. The user (or group) is authorized if and only if a match of principal names is found.

It is therefore crucial that principal names be compared properly for the authorization provider to work as expected.

Suppose, for instance, a scenario where the identity store contains the user name "jdoe", but, in grants, that user is referred to as "Jdoe". Then one would want the principal name comparison to be case insensitive, for otherwise the principals built from the names "jdoe" and "Jdoe" will not match (that is, they will be considered distinct) and the system will not authorize "jdoe" as expected.

2.7.2 System Parameters Controlling Principal Name Comparison

The following two WebLogic Server system parameters control the way principal names are compared in a domain and allow, furthermore, to compare principals using DN and GUID data:

PrincipalEqualsCaseInsensitive (True or False; False by default)
PrincipalEqualsCompareDnAndGuid (True or False; False by default)

To set these parameters using the WebLogic Server Console, proceed as follows:

	
In the left pane of the Console, under Domain Structure, select the domain for which you intend to set the parameters above.

	
Select Configuration > Security and click Advanced.

	
Check (to set to true) or uncheck (to set to false) the box next to the following entries:

	
Principal Equals Case Insensitive

	
Principal Equals Compare DN and GUID

	
Restart the server. Changes do not take effect until the server is restarted.

These parameters can alternatively be set using OPSS scripts. For more details about configuring the WebLogic server, see section Configuring a Domain to Use JAAS Authorization in Oracle Fusion Middleware Securing Oracle WebLogic Server.

The name comparison logic chosen at runtime is described by the following pseudo-code fragment:

if PrincipalEqualsCompareDnAndGuid is true
//use GUID and DN to compare principals
{
 when GUID is present in both principals {
 use case insensitive to compare GUIDs
 }
 when DN is present in both principals {
 use case insensitive to compare DNs
 }
}

if PrincipalEqualsCaseInsensitive is true
//use just name to compare principals
{
 use case insensitive to compare principal names
}
else
{
 use case sensitive to compare principal names
}

Since by default both PrincipalEqualsCompareDnAndGuid and PrincipalEqualsCaseInsensitive are false, name principal comparison defaults to case sensitive.

2.8 The Role Category

The role category allows a security administrator to organize application roles. Rather than displaying the flat list of roles in an application, an administrator can organize them arbitrarily in flat sets or categories.

For details about managing an application role category with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following fragment illustrates the configuration of a role category:

<role-categories>
 <role-category>
 <name>RC_READONLY</name>
 <display-name>RC_READONLY display name</display-name>
 <description>RC_READONLY description</description>
 <members>
 <role-name-ref>AppRole1</role-name-ref>
 <role-name-ref>AppRole2</role-name-ref>
 <role-name-ref>AppRole3</role-name-ref>
 </members>
 </role-category>
</role-categories>

The role category name is case insensitive. The role category can be managed with the interface RoleCategoryManager.

For details about this interface, see the Javadoc document Oracle Fusion Middleware Java API Reference for Oracle Platform Security Services.

3 Understanding Identities, Policies, and Credentials

Applications use the identity, policy, and credential stores configured in the domain in which they run. This chapter introduces the basic concepts regarding identity, policy, and credential data, and it is divided into the following sections:

	
Authentication Basics

	
Policy Store Basics

	
Credential Store Basics

For definitions of the terms used in this chapter, see Section 2.1, "Terminology."

For scenarios illustrating the use of stores, see Chapter 4, "About Oracle Platform Security Services Scenarios."

3.1 Authentication Basics

OPSS uses server authentication providers, components that validate user credentials or system processes based on a user name-password combination or a digital certificate. Authentication providers also make user identity information available to other components in a domain (through subjects) when needed.

Java EE applications must use LDAP-based authentication providers; Java SE applications use file-based identity stores out-of-the-box, but the identity store can be configured to be LDAP-based.

For further details, see section Authentication in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

	
Note:

OPSS does not support automatic migration of users and groups used in application development to a remote WebLogic Server where an application may be deployed. Instead, one must independently create the necessary application identities using the Oracle WebLogic Administration Console, OPSS scripts, or the appropriate tool depending on the authentication provider(s) configured in your domain.

This section covers the following topics:

	
Supported LDAP Identity Store Types

	
Oracle WebLogic Authenticators

	
WebSphere Identity Stores

3.1.1 Supported LDAP Identity Store Types

The following list enumerates the LDAP repositories supported for an identity store:

	
Oracle Internet Directory 11g

	
Oracle Virtual Directory

	
Oracle Directory Server Enterprise Edition 11.1.1.3.0

	
Active Directory 2008

	
Novell eDirectory 8.8

	
OpenLDAP 2.2. For the special configuration required for this type, see Appendix J, "Using an OpenLDAP Identity Store."

	
Tivoli Access Manager

	
Sun DS 6.3, 7.0

	
Oracle DB 10g, 11gR1, 11gR2

	
iPlanet Directory Server

	
Custom Authenticator

For information about Oracle Fusion Middleware Certification and Supported Configurations, visit http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html.

In regards to support for reference integrity in Oracle Internet Directory servers, see Important note Section 8.2, "Using an LDAP-Based OPSS Security Store."

3.1.2 Oracle WebLogic Authenticators

For a list of WebLogic authenticator providers, see chapter 4, Authentication Providers in Oracle Fusion Middleware Developing Security Providers for Oracle WebLogic Server.

For details about the available authenticators, and choosing and configuring one, see section Configuring Authentication Providers in Oracle Fusion Middleware Securing Oracle WebLogic Server, and section Configure Authentication and Identity Assertion providers in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

By default and out-of-the-box, Oracle WebLogic Server stores users and groups in the DefaultAuthenticator. This authenticator is setup to use cn as the default attribute.

The data stored in any LDAP authenticator can be accessed by the User and Role API to query user profile attributes. For details about WebLogic LDAP authenticators, see the following sections:

	
Using an LDAP Authenticator

	
Configuring the LDAP Identity Store Service

	
Additional Authentication Methods

	
Important:

If your domain uses the DefaultAuthenticator, then the domain administration server must be running for an application to query data using the User and Role API.
OPSS requires that a domain have at least one LDAP-based authenticator configured in a domain.

For details about X.509 identity assertion, see section How an LDAP X509 Identity Assertion Provider Works in Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about authentication using the SAML 1.1 or SAML 2.0 identity assertion provider, see section Configuring the SAML Authentication Provider in Oracle Fusion Middleware Securing Oracle WebLogic Server.

3.1.2.1 Using an LDAP Authenticator

Oracle WebLogic Server offers several LDAP-based authenticators. For a choice of available LDAP servers for the identity store, see Supported LDAP Identity Store Types. The Weblogic DefaultAuthenticator is the default authenticator configured and ready to use out-of-the-box after installation. Other authenticators can be configured using the WebLogic Administration Console.

For details about the use of authenticators in Java SE applications, see Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications."

3.1.2.2 Configuring the LDAP Identity Store Service

Oracle WebLogic Server allows the configuration of multiple authenticators in a given context, each of which has a control flag set. One of them must be an LDAP-based authenticator.

OPSS initializes the identity store service with the LDAP authenticator chosen from the list of configured LDAP authenticators according to the following algorithm:

	
Consider the subset of LDAP authenticators configured. Note that, since the context is assumed to contain at least one LDAP authenticator, this subset is not empty.

	
Within that subset, consider those that have set the maximum flag. The flag ordering used to compute this subset is the following:

REQUIRED > REQUISITE > SUFFICIENT > OPTIONAL

Again, this subset (of LDAPs realizing the maximum flag) is not empty.

	
Within that subset, consider the first configured in the context.

The LDAP authenticator singled out in step 3 is the one chosen to initialize the identity store service. For details about host name verification when establishing an SSL connection with an LDAP authenticator, see Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about the default values that OPPS uses to initialize the various supported LDAP authenticators, see javadoc User and Role API documentation in Section H.1, "OPSS API References." If a service instance initialization value is provided by default and also (explicitly) in the service instance configuration, the value configured takes precedence over the default one.

	
Important:

Any LDAP-based authenticator used in a domain, other than the DefaultAuthenticator, requires that the flag UseRetrievedUserNameAsPrincipal be set. Out-of-the-box, this flag is set in the DefaultAuthenticator.

3.1.2.3 Additional Authentication Methods

The WebLogic Identity Assertion providers support certificate authentication using X.509 certificates, SPNEGO tokens, SAML assertion tokens, and CORBA Common Secure Interoperability version 2 (CSIv2) identity assertion.

The Negotiate Identity provider is used for SSO with Microsoft clients that support the SPNEGO protocol. This provider decodes SPNEGO tokens to obtain Kerberos tokens, validates the Kerberos tokens, and maps Kerberos tokens to WebLogic users.

For general information about identity assertion providers, see section Identity Assertion Providers in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

For an overview of SSO with Microsoft clients, see section Overview of Single Sign-On with Microsoft Clients in Oracle Fusion Middleware Securing Oracle WebLogic Server.

For details about Kerberos identification, see section Creating a Kerberos Identification for WebLogic Server in Oracle Fusion Middleware Securing Oracle WebLogic Server.

3.1.3 WebSphere Identity Stores

On WebSphere, OPSS supports LDAP-based registries only; in particular, it does not support WebSphere's built-in file-based user registry.

For details about configuration and seeding a registry, see Oracle Fusion Middleware Third-Party Application Server Guide

3.2 Policy Store Basics

A Java 2 policy specifies the permissions granted to signed code loaded from a given location.

A JAAS policy extends Java 2 grants by allowing an optional list of principals; the semantics of the permissions are granted to only code from a given location, possibly signed, and run by a user represented by those principals.

JACC extends the Java 2 and JAAS permission-based policy to EJBs and Servlets by defining an interface to plug custom authorization providers, that is, pluggable components that allow the control and customizing of authorizations granted to running Java EE applications.

An application policy is a collection of Java 2 and JAAS policies, which is applicable to just that application (in contrast to a Java 2 policy, which are applicable to the whole JVM).

The policy store is a repository of system and application-specific policies and roles. Application roles can include enterprise users and groups specific to the application (such as administrative roles). A policy can use any of these groups or users as principals.

In the case of applications that manage their own roles, Java EE application roles (configured in files web.xml or ejb-jar.xml) get mapped to enterprise users and groups and used by application-specific policies.

	
Important:

As long as a domain is pointing to a policy store, that policy store cannot be deleted from the environment.

Policy Store Types

A policy store can be file-, LDAP-, or DB-based. A file-based policy store is an XML file, and this store is the out-of-the-box policy store provider. The only LDAP-based policy store type supported is Oracle Internet Directory. The only DB-based policy store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).

Policy Store Scope, Migration, and Reassociation

There is exactly one policy store per domain. During development, application policies are file-based and specified in the file jazn-data.xml.

When the application is deployed on WebLogic with Fusion Middleware Control, they can be automatically migrated into the policy store. For details about this feature, see Section 8.6.1, "Migrating with Fusion Middleware Control." By default, the policy store is file-based.

When the application is deployed on WebSphere, the behavior of migration at deployment can be manually specified as described in Section 21.4.1, "Parameters Controlling Policy Migration," and Section 21.4.4, "Parameters Controlling Credential Migration."

For reassociation details, see Section 8.5, "Reassociating the OPSS Security Store."

	
Note:

All permission classes must be specified in the system class path.

For details about the resource catalog support within a policy store, see Section 20.3.1, "The Resource Catalog."

3.3 Credential Store Basics

A credential store is a repository of security data (credentials) that certify the authority of users, Java components, and system components. A credential can hold user name and password combinations, tickets, or public key certificates. This data is used during authentication, when principals are populated in subjects, and, further, during authorization, when determining what actions the subject can perform.

OPSS provides the Credential Store Framework, a set of APIs that applications can use to create, read, update, and manage credentials securely.

Credential Store Types

A credential store can be file-, LDAP-, or DB-based. A file-based credential store, also referred to as wallet-based and represented by the file cwallet.sso, is the out-of-the-box credential store. The only LDAP-based credential store type supported is Oracle Internet Directory. The only DB-based credential store type supported is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).

Credential Store Scope, Migration, and Reassociation

An application can use either the domain credential store or its own wallet-based credential store. The domain credential store can be wallet-based (by default), LDAP-, or DB-based. The only LDAP-based credential store type supported is Oracle Internet Directory.

The migration of application credentials to the credential store can be configured to take place automatically when the application is deployed. For details, see Section 8.6.1, "Migrating with Fusion Middleware Control."

Credentials can also be reassociated from one type of store to another. For details, see Section 8.5, "Reassociating the OPSS Security Store."

4 About Oracle Platform Security Services Scenarios

This chapter describes some typical security scenarios supported by Oracle Platform Security Services. It also includes the list of LDAP, DB, and XML servers supported, the management tools that an administrator would use to administer security data in each scenario, and the package requirements for policies and credentials.

These topics are explained in the following sections:

	
Supported LDAP-, DB-, and File-Based Services

	
Management Tools

	
Packaging Requirements

	
Example Scenarios

	
Other Scenarios

4.1 Supported LDAP-, DB-, and File-Based Services

Oracle Platform Security Services supports the following LDAP-, DB-, and file-based repositories:

	
For the OPSS security store:

	
If file-based, XML for the policy store and cwallet for the credential store.

	
If LDAP-based, Oracle Internet Directory (versions 10.1.4.3 or 11g) for the policy store and credential store.

	
If DB-based, Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).

	
For the identity store, any of the LDAP authenticators supported by the Oracle WebLogic Server. An XML identity store is supported in only Java SE applications.

	
Important:

If using Oracle Internet Directory 10.1.4.3 with OPSS, a mandatory one-off patch for bug number 8351672 is recommended on top of Oracle Internet Directory 10.1.4.3. Download the patch for your platform from Oracle Support at http://myoraclesupport.oracle.com.
To ensure optimal performance, the following Oracle Internet Directory tuning is recommended:

ldapmodify -D cn=orcladmin -w <password> -v <<EOF
dn: cn=dsaconfig,cn=configsets,cn=oracle internet directory
changetype: modify
add: orclinmemfiltprocess
orclinmemfiltprocess: (objectclass=orcljaznpermission)
orclinmemfiltprocess: (objectclass=orcljazngrantee)
EOF

For details about LDAP authenticators, see section Configuring LDAP Authentication Providers in Oracle Fusion Middleware Securing Oracle WebLogic Server. In particular, the DefaultAuthenticator is available out-of-the-box, but its use is recommended only in developing environments for no more than ten thousand entries, for users, and for no more than twenty five hundred entries, for groups.

Policies and credentials stored in an LDAP-based store must use the same physical persistent repository. For details, see the following chapters:

	
Chapter 9, "Managing the Policy Store"

	
Chapter 10, "Managing the Credential Store"

4.2 Management Tools

The tools available to a security administrator are the following:

	
WebLogic Administration Console

	
Oracle Enterprise Manager Fusion Middleware Control

	
Oracle Entitlements Server

	
OPSS scripts (available on all supported platforms)

	
LDAP server-specific utilities

The tool to manage security data depends on the type of data stored and the kind of store used to keep that data. For applications deployed on WebSphere Application Server, there is also the WebSphere Application Server Administration Console; for details, see WebSphere Application Server documentation. Note that OPSS scripts are available for both platforms: WebLogic and WebSphere.

Users and Groups

If a domain uses the DefaultAuthenticator to store identities, then use the Oracle WebLogic Server Administration Console to manage the stored data. The data stored in the DefaultAuthenticator can also be accessed by the User and Role API to query user profile attributes. To insert additional attributes to users or groups in the DefaultAuthenticator, an applications also uses the User and Role API.

	
Important:

If your domain uses the DefaultAuthenticator, then the domain administration server must be running for an application to operate on identity data using the User and Role API.

For details about configuring this authenticator, see Section 3.1.2.1, "Using an LDAP Authenticator."

Otherwise, if authentication uses any other LDAP server different from the default authenticator or a DB, then, to manage users and groups, use the services of that LDAP server.

Policies and Credentials

Policies and credentials must use the same kind of storage (file-, LDAP-, or DB-based), and if LDAP-based, the same LDAP server (Oracle Internet Directory only).

To manage policies and credentials use Fusion Middleware Control as explained in Section 9.2, "Managing Policies with Fusion Middleware Control" and Section 10.3, "Managing Credentials with Fusion Middleware Control," or the OPSS scripts, as explained in Section 9.3, "Managing Application Policies with OPSS Scripts" and Section 10.4, "Managing Credentials with OPSS Scripts."

Alternatively, to manage policy data, use Oracle Entitlements Server as explained in Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

The following list summarizes the tools used to manage security data:

	
Identity data

	
Default Authenticator: use Administration Console

	
Other LDAP or DB stores: use utilities provided by the LDAP server or DB

	
Policy and Credential data

	
File-based: use Fusion Middleware Control or WLST

	
LDAP-based: use Fusion Middleware Control, WLST, or Oracle Entitlements Server to manage policies.

Changes to policies or credentials do not require server restart; changes to the file jps-config.xml do require server restart.

	
Note:

In general, domain configuration changes require the server to be restarted; however, changes to the domain data do not require the server to be restarted. An example of a domain configuration change is the reassociation of domain stores.

For details about the automatic migration of application policies and credentials to the domain stores when the application is deployed, see Section 8.6, "Migrating the OPSS Security Store."

For details about managing tools on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

4.3 Packaging Requirements

File-based application policies are defined in the file jazn-data.xml. The only supported way to package this file with an application is to place it in the directory META-INF of an EAR file.

File-based application credentials are defined in a file that must be named cwallet.sso. The only supported way to package this file with an application is to place it in the directory META-INF of an EAR file. For details, see Section 21.3, "Packaging a Java EE Application Manually."

For information about deployment on WebLogic, see Chapter 6, "Deploying Secure Applications."

On WebSphere, the behavior at deployment is controlled by properties specified in the file META-INF/opss-application.xml. For details about policy migration, see Oracle Fusion Middleware Third-Party Application Server Guide. For details about credential migration, see Oracle Fusion Middleware Third-Party Application Server Guide.

	
Note:

Oracle JDeveloper automatically packages the EAR file for a secured Oracle ADF application with all the required files (and with the appropriate security configurations), when the EAR file is produced within that environment.

4.4 Example Scenarios

The scenarios explained in this section describe the security features adopted by most Oracle ADF applications, Oracle WebCenter, and Web Services Manager Control.

They assume that the application employs a security scheme that has the following characteristics:

	
Authentication: it uses the WebLogic Default Authenticator to store users and groups.

	
Authorization: it uses fine-grained JAAS authorization supported by file-based policies and credentials packaged with the application and by policy and credential stores (file- or LDAP-based).

One of these security schemes is typically employed by applications, such as Oracle ADF or Oracle SOA applications, that require fine-grained JAAS authorization. The various security components in these cases are managed with the appropriate tool.

Based on these assumptions, the following scenarios are typical variations on the basic theme; note, however, that the list of variations is not exhaustive.

Related Documentation

For details about configuring the Default Authenticator, see section Configure Authentication and Identity Assertion Providers in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

For details about configuring the OPSS security store, see Chapter 8, "Configuring the OPSS Security Store."

For details about managing policies, see Chapter 9, "Managing the Policy Store."

For details about managing credentials, see Chapter 10, "Managing the Credential Store."

For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

Common Scenario 1

This scenario describes a Java EE application during development.

Authentication: The application uses the Default Authenticator, typical in development environments.

Authorization: The policy and credential stores are file-based.

Variation: The application uses the WebLogic support for SSO and Java EE security.

For details about WebLogic support for SSO, see section Configuring Single Sign-On with Web Browsers and HTTP Clients in Oracle Fusion Middleware Securing Oracle WebLogic Server.

Common Scenario 2

This scenario describes a Java EE application during development.

Authentication: The application uses the Default Authenticator, typical in development environments.

Authorization: The policy and credential stores are LDAP-based using the services of the same instance of an Oracle Internet Directory LDAP server.

Variation: JAAS is enabled and policies include permissions for the anonymous and the authenticated roles.

For details about configuring support for the anonymous and authenticated roles, see Section 2.3, "The Authenticated Role," and Section 2.4, "The Anonymous User and Role."

Common Scenario 3

This scenario describes a Java EE application during development.

Authentication: The application uses the Default Authenticator, typical in development environments.

Authorization: The policy and credential stores are LDAP-based using the services of the same instance of an Oracle Internet Directory LDAP server.

Variation: The application uses Java EE security, JAAS is enabled, and policies include permissions for the anonymous and the authenticated role. It also uses the Credential Store Framework (CSF) APIs to query, retrieve, and manage policies.

For details about configuring support for the anonymous and authenticated roles, see Section 2.3, "The Authenticated Role," and Section 2.4, "The Anonymous User and Role."

For details about CSF APIs, see Section 24.1, "About the Credential Store Framework API."

4.5 Other Scenarios

The following scenarios differ from the common scenarios in that the application uses an authenticator other than the DefaultAuthenticator (typically used in the application development phase) or some API to access security data.

Scenario 4

Authentication: The application uses an LDAP authenticator (other than the DefaultAuthenticator).

Authorization: Both, the policy and credential use the same Oracle Internet Directory LDAP-based store.

Variation: The application uses the User and Role API to access user profiles in the DB and the Credential Store Framework (CSF) APIs to access credentials.

For details about User and Role API, see Chapter 25, "Developing with the User and Role API."

For details about CSF APIs, see Section 24.1, "About the Credential Store Framework API."

Scenario 5

Authentication: The application uses the Oracle Internet Directory LDAP authenticator, typical in test and production environments.

Authorization: The policy and credential stores are file-based and packaged with the application. These data is automatically mapped to domain security data at deployment.

Variation: Post-deployment, the policy and credential stores are reassociated to an LDAP-based store configured through one-way SSL transmission channel.

For details about automatic migration of application security data at deployment, see Section 8.6, "Migrating the OPSS Security Store."

For details about reassociation, see Section 8.5, "Reassociating the OPSS Security Store."

For details about SSL configuration and related topics, see the following:

	
Section Configuring SSL in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
Oracle Fusion Middleware Administrator's Guide.

	
Section Set up SSL in Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

	
Section Using SSL Authentication in Java Clients in Oracle Fusion Middleware Programming Security for Oracle WebLogic Server.

Scenario 6

This scenario describes a Java SE application using OPPS APIs.

Authentication: The application the LoginService API.

Authorization: The application uses the method CheckPermission.

In addition, the application uses the User and Role API to query attributes into the domain authenticator, and the Credential Store Framework API to query the credential store.

Part II

Basic OPSS Administration

This part describes basic OPSS administration features in the following chapters:

	
Chapter 5, "Security Administration"

	
Chapter 6, "Deploying Secure Applications"

5 Security Administration

This chapter introduces the tools available to an administrator and the typical tasks to manage application security; it is divided into the following sections:

	
Choosing the Administration Tool According to Technology

	
Basic Security Administration Tasks

	
Typical Security Practices with Fusion Middleware Control

	
Typical Security Practices with the Administration Console

	
Typical Security Practices with Oracle Entitlements Server

	
Typical Security Practices with OPSS Scripts

For advanced administrator tasks, see Appendix E, "Administration with WLST Scripting and MBean Programming."

5.1 Choosing the Administration Tool According to Technology

The four basic tools available to a security administrator are Oracle Enterprise Manager Fusion Middleware Control, Oracle WebLogic Administration Console, Oracle Entitlements Server, and the Oracle WebLogic Scripting Tool (WLST). For further details on these and other tools, see chapter 3, Getting Started Managing Oracle Fusion Middleware in Oracle Fusion Middleware Administrator's Guide.

The main criterion that determines the tool to use to administer application security is whether the application uses just container-managed security (Java EE application) or it includes Oracle ADF security (Oracle ADF application).

Oracle-specific applications, such as Oracle Application Development Framework (Oracle ADF) applications, Oracle Server-Oriented Architecture (SOA) applications, and Web Center applications, are deployed, secured, and maintained with Fusion Middleware Control and Oracle Entitlements Server.

Other applications, such as those developed by third parties, Java SE, and Java EE applications, are typically deployed, secured, and administered with Oracle WebLogic Administration Console or with WLST.

The recommended tool to develop Java applications is Oracle JDeveloper 11g. This tool helps the developer configure file-based identity, policy, and credential stores through specialized graphical editors. In particular, when developing Oracle ADF applications, the developer can run a wizard to configure security for web pages associated with Oracle ADF resources (such as Oracle ADF task flows and page definitions), and define security artifacts using a specialized, visual editor for the file jazn-data.xml.

For details about procedures and related topics, see the following sections in the Oracle JDeveloper online help documentation:

	
Securing a Web Application Using Oracle ADF Security

	
Securing a Web Application Using Java EE Security

	
About Oracle ADF Security as an Alternative to Security Constraints

	
About Securing Web Applications

For further details about Oracle ADF Security and its integration with Oracle JDeveloper, see Accessing the Oracle ADF Security Design Time Tools, in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For further details about Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

5.2 Basic Security Administration Tasks

Table 5-1 lists some basic security tasks and the tools used to execute them. Recall that the tool chosen to configure and manage application security depends on the type of the application: for Java EE applications, which use just container-managed security, use the Oracle WebLogic Administration Console; for Oracle ADF applications, which use OPSS authorization, use Fusion Middleware Control and Oracle Entitlements Server.

Manual settings without the aid of the tools listed below are not recommended. For information about using the Oracle WebLogic Administration Console, see the list of links following the table below. For details about Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

Table 5-1 Basic Administrative Security Tasks and Tools

	Task	Use Fusion Middleware Control Security Menu	Use Other Tool
	
Configure WebLogic Domains

	
	
WebLogic Admin Console

	
Configure WebLogic Security Realms

	
	
WebLogic Admin Console

	
Manage WebLogic Domain Authenticators

	
	
WebLogic Admin Console

	
Enable SSO for MS clients, Web Browsers, and HTTP clients.

	
	
WebLogic Admin Console

	
Manage Domain Administrative Accounts

	
	
WebLogic Admin Console

	
Configuring the identity store service

	
	
WebLogic Admin Console or the WebSphere command configureIdentityStore

	
Manage Credentials for Oracle ADF Application

	
Credentials

	

	
Enable anonymous role in Oracle ADF Application

	
Security Provider Configuration

	

	
Enable authenticated role in Oracle ADF Application

	
Security Provider Configuration

	

	
Enable JAAS in Oracle ADF Application

	
Security Provider Configuration

	

	
Map application to enterprise groups for Oracle ADF Application

	
Application Roles or Application Policies

	
Oracle Entitlements Server

	
Manage system-wide policies for Oracle ADF Applications

	
System Policies

	

	
Configure OPSS Properties

	
Security Provider Configuration

	

	
Reassociate Policy and Credential Stores

	
Security Provider Configuration

	

Details about using the Oracle WebLogic Administration Console for the tasks above are found in the following documents:

	
For general use of the Administration Console, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

	
To configure WebLogic domains, see Oracle Fusion Middleware Understanding Domain Configuration for Oracle WebLogic Server.

	
To configure WebLogic security realms, see section Creating and Configuring a New Security Realm: Main Steps in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
To manage WebLogic domain authenticators, see chapter 5 in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
To configure SSO with MS clients, see chapter 6 in Oracle Fusion Middleware Securing Oracle WebLogic Server.

	
To manage domain administrative accounts, see chapter 6 in Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server.

	
For details about configuring an LDAP identity store, see Section 3.1.2, "Oracle WebLogic Authenticators," and Section 3.1.3, "WebSphere Identity Stores."

	
Note:

OPSS does not support automatic backup or recovery of server files. It is recommended that the server administrator periodically back up all server configuration files, as appropriate.
For details about backing up and recovering Oracle Fusion Middleware, see chapter 15, Introducing Backup and Recovery, in Oracle Fusion Middleware Administrator's Guide.

5.2.1 Setting Up a Brand New Production Environment

A new production environment based on an existing environment can be set up in either of the following ways:

	
Replicating an established environment using Oracle Cloning utilities. For details, see section 9.5, Cloning Oracle Fusion Middleware Entities, in Oracle Fusion Middleware Administrator's Guide.

	
Reinstalling software and configuring the environment, as it was done to set up the established environment.

5.3 Typical Security Practices with Fusion Middleware Control

Fusion Middleware Control is a Web-based tool that allows the administration of a network of applications from a single point. Fusion Middleware Control is used to deploy, configure, monitor, diagnose, and audit Oracle SOA applications, Oracle ADF applications, Oracle WebCenter, and other Oracle applications using OPSS. Note that this section mentions only security-related operations.

In regards to security, it provides several administration tasks; using this tool, an administrator can:

	
Post-installation and before deploying applications, reassociate the policy and credential stores; for details, see Section 8.5.1, "Reassociating with Fusion Middleware Control."

	
Post-installation and before deploying applications, define OPSS properties. For details, see Section 8.7, "Configuring the Identity Provider, Property Sets, and SSO."

	
At deploy time, configure the automatic migration of file-based application policies and credentials to LDAP-based domain policies and credentials.

For details see:

	
Section 6.3, "Deploying Oracle ADF Applications to a Test Environment."

	
Section 8.6, "Migrating the OPSS Security Store."

	
For each application after it is deployed:

	
Manage application policies. For details, see Section 9.1, "Managing the Policy Store."

	
Manage credentials; for details, see Section 10.2, "Managing the Credential Store."

	
Specify the mapping from application roles to users, groups, and application roles. For details, see Section 9.2.2, "Managing Application Roles."

	
For the domain, manage system policies; for details see Section 9.2.3, "Managing System Policies."

	
For the domain, manage OPSS properties; for details see Section 8.7, "Configuring the Identity Provider, Property Sets, and SSO."

For a summary of security administrative tasks and the tools used to execute them, see Basic Security Administration Tasks.

For further details about other functions, see the Fusion Middleware Control online help documentation.

For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

5.4 Typical Security Practices with the Administration Console

The Oracle WebLogic Administration Console is a Web-based tool that allows, among other functions, application deployment and redeployment, domain configuration, and monitoring of application status. Note that this section mentions only security-related operations.

Typical tasks performed with the Oracle WebLogic Administration Console include the following:

	
Starting and stopping Oracle WebLogic Servers; for details see section Starting and Stopping Servers in Oracle Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server.

	
Configuring Oracle WebLogic Servers and Domains; for details see section Configuring Existing Domains in Oracle Fusion Middleware Oracle WebLogic Scripting Tool.

	
Deploying applications; for details, see Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

	
Configuring fail over support; for details see section Failover and Replication in a Cluster in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server.

	
Configuring WebLogic domains and WebLogic realms.

	
Managing users and groups in domain authenticators.

	
Enabling the use of Single Sign-On for MS clients, Web browsers, and HTTP clients.

	
Managing administrative users and administrative policies.

For details about Oracle WebLogic Administration Console, see Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help.

5.5 Typical Security Practices with Oracle Entitlements Server

Typical security tasks performed with Oracle Entitlements Server include the following:

	
Searching application security artifacts.

	
Managing application security artifacts, including policies.

	
Viewing the external role hierarchy.

	
Managing the application role hierarchy.

For a list of some of the most frequent security tasks to administer application security with Oracle Entitlements Server, see Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server.

5.6 Typical Security Practices with OPSS Scripts

Most of the operations available in the Oracle WebLogic Administration Console can be effected with OPSS scripts, a set of command-line interface that allows the scripting and automation of administration tasks, including domain configuration and application deployment.

For the list of security-related OPSS scripts, see Appendix I, "OPSS Scripts." For the complete list of WLST scripts, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

For details about managing Oracle Fusion Middleware on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

6 Deploying Secure Applications

An application can be deployed to an Oracle WebLogic Server using any of the following tools: the Oracle WebLogic Server Administration Console, Oracle Enterprise Manager Fusion Middleware Control, Oracle JDeveloper, or the WebSphere Application Server console. An application can also be started by setting the its bits in a location known to the WebLogic server, without the need to restart the server; this kind of application start is known as hot deployment.

The recommended way to deploy an application depends on the platform, the application type, and whether the application is in the developing phase or in a post-development phase. For example, in the post-development phase, typically, the appliction is started in a production environment by means of a hot deployment.

The recommendations stated in this chapter apply to Oracle ADF applications and to Java EE applications using OPSS.

During development, the application is typically deployed with Oracle JDeveloper to the embedded Oracle WebLogic Server. Once the application transitions to test or production environments, it is typically deployed with Fusion Middleware Control or the Oracle WebLogic Server Administration Console or by a hot deployment.

This chapter focuses on administrative tasks performed at deployment of an Oracle ADF or pure Java EE application. The last section explains the packaging requirements to secure Java EE applications, a topic relevant only when the application is packaged manually.

This chapter is divided into the following sections:

	
Overview

	
Selecting the Tool for Deployment

	
Deploying Oracle ADF Applications to a Test Environment

	
Deploying Standard Java EE Applications

	
Migrating from a Test to a Production Environment

Additional Documentation

For further details about deployment, see Chapter 8, Deploying Applications, in Oracle Fusion Middleware Administrator's Guide.

For an overview of the entire security life-cycle of an application, from development to production, see Oracle Fusion Middleware Security Overview.

For details about securing an Oracle ADF application during development, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.

For an overview of the development cycle, see Section 19.1.1, "The Development Cycle."

For details about the files in an EAR file relevant to application security management and configuration, such as web.xml and weblogic-application.xml, see Chapter 21, "Manually Configuring Java EE Applications to Use OPSS."

6.1 Overview

The steps that lead to the deployment of an Oracle ADF application into a remote Oracle WebLogic Server are, typically, as follows:

	
Using Oracle JDeveloper, a developer develops an Oracle ADF application into which Oracle ADF security is included with the Oracle ADF Security Wizard.

	
Application users and groups, authorization policies, and credentials are copied by Oracle JDeveloper to the integrated WebLogic Server, into which the application is auto-deployed during the test cycles in that environment.

	
The developer creates an application EAR file which packs policies and credentials.

	
The domain administrator deploys the EAR file to a remote Oracle WebLogic Server using Fusion Middleware Control.

This flow is illustrated in the following graphic:

[image: Surrounding text describes jisec014.gif.]

6.2 Selecting the Tool for Deployment

The types of application we consider in this chapter are Java EE applications, which are further categorized into pure Java EE applications and Oracle Fusion Middleware ADF applications. The distinction of these two kinds of Java EE applications is explained in sections Section 1.5.1, "Scenario 1: Enhancing Security in a Java EE Application," and Section 1.5.2, "Scenario 2: Securing an Oracle ADF Application."

Table 6-1 lists the tool used to deploy a developed application according to its type.

Table 6-1 Tools to Deploy Applications after Development

	Application Type	Tool to Use
	
Pure Java EE Application

	
Oracle WebLogic Administration Console, Fusion Middleware Control, WebSphere Application Server Administrator Console, WebSphere Application Server WASAdmin commands. The recommended tool is Oracle WebLogic Administration Console.

	
Oracle ADF Application

	
Fusion Middleware Control or OPSS script. The recommended tool is Fusion Middleware Control.

6.2.1 Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control

This section focuses on the security configurations available when deploying an application that uses Oracle ADF security or a Java EE application that uses OPSS with Fusion Middleware Control on the WebLogic server.

Specifically, it describes the options you find in the page Configure Application Security at the third stage of the deploy settings.

The appearance of this page varies according to what is packaged in the EAR fie, as follows:

	
If the EAR file packages jazn-data.xml with application policies, the application policy migration section is shown.

	
If the EAR file packages credentials in cwallet.sso, the credential migration section is shown.

	
If the EAR file does not include any of the above, then the page displays the default Java EE security options.

This page, showing the policy migration sections, is partially illustrated in the following graphic:

[image: Surrounding text describes emdeploy1.gif.]

The settings in this page concern the migration of application policies and credentials (packed in application EAR file) to the corresponding domain store, and they are explained next.

Application Policy Migration Settings

These settings control of the policy migration in the following scenarios:

	
If you are deploying the application for the first time, you typically want application policies to be migrated to the policy store. Therefore, select Append in the Application Policy Migration area.

If for some reason you do not want the migration to take place, select instead Ignore. The option Overwrite is also supported.

	
If you are redeploying the application, and assuming that the migration of application policies has taken place in a previous deployment, you can choose Append, to merge the packed policies with the existing ones in the domain, or Ignore, to prevent policy migration.

The option Ignore is typically selected when an application is redeployed and you want to leave the current application policies in the domain unchanged, that is, when you want to preserve changes to the policy store made during previous deployments.

	
When you choose Append, you can further specify which grants and roles should be migrated; the basic distinction is between ADF application roles and grants (needed in a production environment), and development-time only roles and grants (not needed in a production environment).

To migrate ADF application roles and grants, and not to migrate development-time only security roles and grants, check the box Migrate only application roles and grants. Ignore identity store artifacts. Typically, this box is checked when deploying to a production environment. Note that when this box is checked, you will need to map application roles to enterprise groups once the application has been deployed.

	
When you choose Append, you can further specify a particular stripe (different from the default stripe, which is the application name) into which the application policies should be migrated, by entering the name of that stripe in the box Application Stripe Id.

	
About Application Stripes:

The policy store is logically partitioned in stripes, one for each application name specified in the file system-jazn-data.xml under the element <applications>. Each stripe identifies the subset of domain policies pertaining to a particular application.
	Typical Use Cases
This page supports specifying the migration of policies in the following two most common scenarios:

	
Resolving inconsistent specifications found in the EAR file - The specifications in the EAR file are validated; if specifications regarding the application stripe found in the files web.application.xml, web.xml, and ejb-jar.xml (packed in the EAR file) are inconsistent (that is, do not match), you can enter a new stripe to use or select one from the drop-down list. The specified value trumps any other specified value in the EAR file and it is used as the target of the migration and in the runtime environment.

	
Allowing two or more applications to share an application stripe - If your application is to share an existing stripe (populated originally by some other application), you can specify that stripe. The Overwrite option should be used carefully when sharing an existing application stripe.

	
I f nothing is specified, the default settings are Append (in deployment) and Ignore (in redeployment).

Application Credential Migration Settings

These settings control of the credential migration in the following scenarios:

	
If you are deploying the application for the first time, you typically want application credentials to be migrated to the credential store. Therefore, select Append in the Application Credential Migration area.

	
In any case (first or succeeding deployment), if for some reason you do not want the migration to take place, select instead Ignore.

	
Note:

Application code using credentials may not work if the credential migration is ignored. Typically, one would choose the Ignore option under the assumption that the credentials are manually created with the same map and key, but with different values.

	
The option Overwrite is supported only when the WebLogic server is running in development mode.

	
If nothing is entered, the default is Ignore.

6.3 Deploying Oracle ADF Applications to a Test Environment

An Oracle ADF application is a Java EE application using JAAS authorization, and it is typically developed and tested using Oracle JDeveloper; this environment allows a developer to package the application and deploy it in the Embedded Oracle WebLogic Server integrated with the tool. When transitioning to a test or production environment, the application is deployed using Oracle Fusion Middleware Control to leverage all the Oracle ADF security features that the framework offers. For details, see Overview.

For step-by-step instructions on how to deploy an Oracle ADF application with Fusion Middleware Control, see:

	
Section Deploy an Application Using Fusion Middleware Control in the Oracle Fusion Middleware Control online help system.

	
Section 8.4, Deploying and Undeploying Oracle ADF Applications, in Oracle Fusion Middleware Administrator's Guide.

This section is divided into the following topics:

	
Deploying to a Test Environment

	
Migrating from a Test to a Production Environment

6.3.1 Deploying to a Test Environment

The security options available at deployment are explained in Deploying Java EE and Oracle ADF Applications with Fusion Middleware Control.

When deploying an Oracle ADF application to a test environment with Fusion Middleware Control, the following operations take place:

Policy Management

	
Application-specific policies packed with the application are automatically migrated to the policy store when the application is deployed.

Oracle JDeveloper automatically writes the necessary configuration for this migration to occur.

	
Note:

Before migrating a file-based policy store (that is, the file jazn-data.xml) to a production environment, verify that any grant contains no duplicate permissions. If a duplicate permission (one that has the same name and class) appears in a grant, the migration runs into an error and it is halted. In this case, manually edit the jazn-data.xml file to remove any duplicate permissions from a grant definition, and invoke the migration again.

Credential Management

	
Application-specific credentials packed with the application are automatically migrated to the credential store when the application is deployed.

Oracle JDeveloper automatically writes the necessary configuration for this migration to occur.

	
The bootstrap credentials necessary to access LDAP repositories during migration are automatically produced by Fusion Middleware Control. For details about a manual setup, see Section 21.4.7, "Specifying Bootstrap Credentials Manually."

Identity Management

Identities packed with the application are not migrated. The domain administrator must configure the domain authenticator (with the Administration Console), update identities (enterprise users and groups) in the environment, as appropriate, and map application roles to enterprise users and groups (with Fusion Middleware Control).

Other Considerations

	
When deploying to a domain with LDAP-based security stores and to preserve application data integrity, it is recommended that the application be deployed at the cluster level or, otherwise, to just one managed server.

	
When deploying an application to multiple managed servers, be sure to include the administration server so that data is migrated as expected.

	
The reassociation of domain stores is an infrequent operation and, typically, takes place when the domain is set up before applications are deployed. For procedure details, see Section 8.5.1, "Reassociating with Fusion Middleware Control."

6.3.1.1 Typical Administrative Tasks after Deployment in a Test Environment

At any time after an application is deployed in a test environment, an administrator can perform the following tasks using Fusion Middleware Control or the Administration Console:

	
Map application roles to enterprise groups. Until this mapping is accomplished, security does not work as expected. For procedure details, see Section 9.2.2, "Managing Application Roles."

	
Create additional application roles or customize existing ones. For details, see Section 9.2.2, "Managing Application Roles."

	
Manage system policies. For procedure details, see Section 9.2.3, "Managing System Policies."

	
Manage credentials. For procedure details, see Section 10.2, "Managing the Credential Store."

	
Notes:

If the application is undeployed with Fusion Middleware Control from a server running in production mode, then the application-specific policies are automatically removed from the policy store. Otherwise, if you use any other tool to undeploy the application, then the removal of application-specific policies must be performed manually.
Credentials are not deleted upon an application undeployment. A credential may have started it life as being packaged with an application, but when the application is undeployed credentials are not removed.

6.4 Deploying Standard Java EE Applications

There are two ways to secure Java EE applications that do not use OPSS but that use standard Java authorization: administratively, with the Administration Console or a OPSS script; or programmatically, with deployment descriptors.

A Java EE application deployed to the Oracle WebLogic Server is a WebLogic resource. Therefore, an administrator would set security for the deployed application the same way that he would for any other resource.

For details about deployment procedures, see section 8.3, Deploying and Undeploying Java EE Applications, in Oracle Fusion Middleware Administrator's Guide.

For details about deploying applications with WLST commands, see section Deployment Commands in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

For an overview of WebLogic Server deployment features, see chapter Understanding WebLogic Server Deployment in Oracle Fusion Middleware Deploying Applications to Oracle WebLogic Server.

Related Documentation

Further information about securing application resources, can be found in the following documents:

In Oracle Fusion Middleware Securing Resources Using Roles and Policies for Oracle WebLogic Server

	
Section Application Resources

	
Section Options for Securing Web Application and EJB Resources

In Oracle Fusion Middleware Oracle WebLogic Server Administration Console Help:

	
Section Use Roles and Policies to Secure Resources

In Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server:

	
Section Overview of Web Services Security

In Oracle Fusion Middleware Programming Security for Oracle WebLogic Server:

	
Section Securing Web Applications. Particularly relevant is the subsection Using Declarative Security with Web Applications

	
Section Securing Enterprise JavaBeans (EJBs)

	
Section Using Java Security to Protect WebLogic Resources

6.5 Migrating from a Test to a Production Environment

The recommendations that follow apply only to Java EE applications using JAAS authorization, such as Oracle Application Development Framework, Oracle SOA, and Oracle WebCenter applications, and they do not apply to Java EE applications using standard authorization. For deploying the latter, see Deploying Standard Java EE Applications.

The recommended tool to deploy applications is Fusion Middleware Control, and the user performing the operations described in the following sections must have the appropriate privileges, including the privilege to seed a schema in an LDAP repository.

It is assumed that a production has been set up as explained in Section 5.2.1, "Setting Up a Brand New Production Environment."

The migration to a new production environment is divided into three major portions: migrating providers other than policy or credential providers, migrating policy and credential providers, and migrating audit policies, as explained in the following sections:

	
Migrating Providers other than Policy and Credential Providers

	
Migrating Policies and Credentials at Deployment

	
Migrating Audit Policies

6.5.1 Migrating Providers other than Policy and Credential Providers

The configuration of providers (other than policy and credential providers) in the production environment must be repeated as it was done in the test environment. This task may include:

	
The identity store configuration, including the provisioning of required users and groups using the WebLogic Administrator Console or the OPSS script configureIdentityStore. For details about this last command, see Migrating Identities Manually.

	
Any particular provider configuration that you have performed in the test environment.

	
Note:

Oracle WebLogic Server provides several tools to facilitate the creation of domains, such as the pack and unpack commands. For details, see Oracle Fusion Middleware Creating Templates and Domains Using the Pack and Unpack Commands.

6.5.1.1 Migrating Identities Manually

Identity data can be migrated manually from a source repository to a target repository using the OPSS script migrateSecurityStore. This migration is needed, for example, when transitioning from a test environment that uses a file-based identity store to a production environment that uses an LDAP-based identity store.

This script is offline, that is, it does not require a connection to a running server to operate; therefore, the configuration file passed to the argument configFile need not be an actual domain configuration file, but it can be assembled just to specify the source and destination repositories of the migration.

This script can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.

For platform-specific requirements to run an OPSS script, see Important Note.

Script and Interactive Modes Syntaxes

To migrate identities on WebLogic, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):

migrateSecurityStore -type idStore
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext
 [-dstLdifFile LdifFileLocation]

migrateSecurityStore(type="idStore", configFile="jpsConfigFileLocation", src="srcJpsContext", dst="dstJpsContext", [dstLdifFile="LdifFileLocation"])

The migration of identities on WebSphere is accomplished with a similar script. For details, see Oracle Fusion Middleware Third-Party Application Server Guide.

The meaning of the arguments (all required except dstLdifFile) is as follows:

	
configFile specifies the location of a configuration file jps-config.xml relative to the directory where the script is run.

	
src specifies the name of a jps-context in the configuration file passed to the argument configFile, where the source store is specified.

	
dst specifies the name of another jps-context in the configuration file passed to the argument configFile, where the destination store is specified. The destination store must be an LDAP-based identity store. For list of supported types, see Section 3.1.1, "Supported LDAP Identity Store Types."

	
dstLdifFile specifies the relative or absolute path to the LDIF file created. Required only if destination is an LDAP-based Oracle Internet Directory store. Notice that the LDIF file is not imported into the LDAP server.

The contexts passed to src and dst must be defined in the passed configuration file and must have distinct names. From these two contexts, the script determines the locations of the source and the target repositories involved in the migration.

After an LDIF file is generated, the next step typically involves manual editing this file to customize the attributes of the LDAP repository where the LDIF file would, eventually, be imported.

6.5.2 Migrating Policies and Credentials at Deployment

In a production environment, it is strongly recommended that the OPSS security store (policy, credential, and key stores) be reassociated to an LDAP-based Oracle Internet Directory; if the test policy and credential stores were also LDAP, the production LDAP is assumed to be distinct from the test LDAP; if the test policy store was file-based, verify that no grant has duplicate permissions; see note in Policy Management.

For details on how to reassociate stores, see Section 8.5.1, "Reassociating with Fusion Middleware Control."

The migration of policies and credentials can take place in the following ways: automatically, when an application is deployed; or manually, before or after the application is deployed.

	
Important Note:

If the application is hot deployed, that is without stoping and restarting the server, the migration of data in the file jazn-data.xml to the domain security store is carried out provided the security store does not contain a stripe with the same name as the application. In particular, if the application is hot re-deployed (that is, hot deployed for a second or later time), any changes introduced in the file jazn-data.xml are not migrated over the domain security store.

To disable the automatic migration of policies and credentials for all applications deployed in a WebLogic Server (regardless of the application migration particular settings), set the system property jps.deployment.handler.disabled to TRUE.

When deploying an application to a production environment, an administrator should know the answer the following question:

Have policies or credentials packed in the application EAR been modified in the test environment?

Assuming that you know the answer to the above question, to deploy an application to a production environment, proceed as follows:

	
Use Fusion Middleware Control to deploy the application EAR file to the production environment using the following options:

	
If policies (application or system) have been modified in the test environment, then disable the option to migrate policies at deploy time by selecting the option Ignore under the Application Policy Migration area in Fusion Middleware Control's page Configuration Application Security; otherwise, select Append.

	
Note:

You can select Append (that is, to migrate application policies) in combination with checking the box Migrate only application roles and grants. Ignore identity store artifacts, even when application roles have been modified in the test environment to the extent of mapping them to test enterprise groups.
Selecting this combination migrates application policies but disregards the maps to test enterprise groups. Later on, in step 3 below, you must remap application roles to production enterprise groups.

	
If credentials have been modified in the test environment, then disable the option to migrate credentials at deploy time by selecting the option Ignore under the Application Credential Migration area in Fusion Middleware Control's page Configuration Application Security; otherwise, select Append.

	
Use the script migrateSecurityStore to migrate modified data, as follows:

	
If you chose to Ignore application policy migration, then migrate application and system policies from the test to the production LDAP. See example in Migrating Policies Manually.

	
If you chose to Ignore application credential migration, then migrate credentials from the test to the production LDAP. See example in Migrating Credentials Manually.

	
In any case, use Fusion Middleware Control to map application roles to production enterprise groups, as appropriate.

	
Use Fusion Middleware Control to verify that administrative credentials in the production environment are valid; in particular, test passwords versus production passwords; if necessary, modify the production data, as appropriate.

	
Note:

There is a way to configure the application so that, at deployment, the migration of policies preserves GUIDs (instead of recreating them).
This setting can only be configured manually. For details, see parameter jps.approle.preserveguid in Section 21.4.1, "Parameters Controlling Policy Migration."

6.5.2.1 Migrating Policies Manually

By default, the script migrateSecurityStore recreates GUIDs and may take a long time to migrate large volume of policies; for these reasons, during the transition from a test to a production environment, you may want to consider migrating policies and credentials with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Migrating Large Volume Policy and Credential Stores.

Migrating policies manually with the script migrateSecurityStore requires assembling a configuration file where the source and destination are specified.

Here is a complete sample of a configuration file, named t2p-policies.xml, illustrating the specification of policy sources in LDAP, DB, and XML storages, and of policy destinations in LDAP and DB storages:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>
 <serviceProvider class="oracle.security.jps.internal.policystore.xml.XmlPolicyStoreProvider" name="policystore.xml.provider" type="POLICY_STORE">
 <description>XML-based policy store provider</description>
 </serviceProvider>

 <serviceProvider class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider" name="ldap.policystore.provider" type="POLICY_STORE">
 <property value="OID" name="policystore.type"/>
 <description>LDAP-based policy store provider</description>
 </serviceProvider>

 <serviceProvider class="oracle.security.jps.internal.policystore.ldap.LdapPolicyStoreProvider" name="db.policystore.provider" type="POLICY_STORE">
 <property value="DB_ORACLE" name="policystore.type"/>
 <description>DB-based policy store provider</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
 <!-- Source XML-based policy store instance -->
 <serviceInstance location="./system-jazn-data.xml" provider="policystore.xml.provider" name="policystore.xml.source">
 <description>Replace location with the full path of the folder where the system-jazn-data.xml is located in the source file system </description>
 </serviceInstance>

<!-- Source LDAP-based policy store instance -->
<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source LDAP directory structure; B. OID with OVD,
 if your source LDAP is OVD; C. ldap://mySourceHost.com:3060 with the URL
 and port number of your source LDAP</description>
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Source DB-based policy store instance -->
<serviceInstance provider="db.policystore.provider" name="policystore.db.source">
 <description>Replace: mySourceDomain and mySourceRootName to appropriate
 values according to your source DB policy store structure
 </description>
 <property value="DB_ORACLE" name="policystore.type"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@mySourceHost.com:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the source
 datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="mySourceKeyName" />
 <property name="bootstrap.security.principal.map" value="mySourceMapName" />
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map
 should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

 <!-- Destination LDAP-based policy store instance -->
 <serviceInstance provider="ldap.policystore.provider" name="policystore.ldap.destination">
<description>Replace: A. myDestDomain and myDestRootName to appropriate values according to your destination LDAP directory structure; B. OID with OVD, if your destination LDAP is OVD; C. ldap://myDestHost.com:3060 with the URL and port number of your destination LDAP</description>
 <property value="OID" name="policystore.type"/>
 <property value="bootstrap" name="bootstrap.security.principal.key"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myDestHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Destination DB-based policy store instance -->
 <serviceInstance provider="db.policystore.provider" name="policystore.db.destination">
<description>Replace: myDestDomain and myDestRootName to appropriate values
 according to your destination DB policy store structure</description>
 <property value="DB_ORACLE" name="policystore.type"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@myDestHostcom:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the destination datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="myDestKeyName" />
 <property name="bootstrap.security.principal.map" value="myDestMapName" />
 <!-- the value of bootstrap.security.principal.key and
 bootstratp.security.principal.map
 should be the value entered when the bootstrap credential was set up -->
</serviceInstance>

<!-- Bootstrap credentials to access source and destination LDAPs or DBs-->
 <serviceInstance location="./bootstrap" provider="credstoressp" name="bootstrap.cred">
 <description>Replace location with the full path of the directory where the bootstrap file cwallet.sso is located; typically found in destinationDomain/config/fmwconfig/</description>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts>
 <jpsContext name="XMLsourceContext">
 <serviceInstanceRef ref="policystore.xml.source"/>
 </jpsContext>

 <jpsContext name="LDAPsourceContext">
 <serviceInstanceRef ref="policystore.ldap.source"/>
 </jpsContext>

<jpsContext name="DBsourceContext">
 <serviceInstanceRef ref="policystore.db.source"/>
 </jpsContext>

 <jpsContext name="LDAPdestinationContext">
 <serviceInstanceRef ref="policystore.ldap.destination"/>
 </jpsContext>

<jpsContext name="DBdestinationContext">
 <serviceInstanceRef ref="policystore.db.destination"/>
 </jpsContext>

 <!-- Do not change the name of the next context -->
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

Note that since the migration involves LDAP and DB stores, the file includes a jps-context named bootstrap_credstore_context that specifies the directory where the bootstrap credential file cwallet.sso is located. Furthermore, for each pair of map name and key name in the sample above, you must provide the corresponding bootstrap credentials using the WLST script addBootStrapCredential as illustrated in the following example:

wls:/offline> addBootStrapCredential(jpsConfigFile='jps-config.xml',
 map='myMapName', key='myKeyName', username='myUserName',
 password='myPassword')

where myUserName and myPassaword specify the user account name and password to access the target database.

The following examples of use of migrateSecurityStore assume that:

	
The file t2p-policies.xml is located on the target system in the directory where the script is run.

	
The directory structure of LDAP or DB system policies in the test and production environments should be identical. If this is not the case, before using the script, restructure manually the system policy directory in the production environment to match the corresponding structure in the test environment.

Under these assumptions, to migrate policies from a test (or source) LDAP store to a production (or destination) LDAP store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="policyStore",configFile="t2p-policies.xml",src="LDAPsourceContext",dst="LDAPdestinationContext")

To migrate policies from a test (or source) XML store to a production (or destination) LDAP store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="policyStore",configFile="t2p-policies.xml",src="XMLsourceContext",dst="LDAPdestinationContext")

To migrate policies from a test (or source) DB store to a production (or destination) DB store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="policyStore",configFile="t2p-policies.xml",src="DBsourceContext",dst="DBdestinationContext")

6.5.2.2 Migrating Credentials Manually

The script migrateSecurityStore recreates GUIDs and may take a long time to migrate large volume of credentials; for these reasons, during the transition from a test to a production environment, you may want to consider migrating policies and credentials with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Migrating Large Volume Policy and Credential Stores.

Migrating credentials manually with migrateSecurityStore requires assembling a configuration file where the source and destination are specified.

Since migrateSecurityStore recreates GUIDs and takes a long time to migrate large volume of data, you may want to consider migrating stores with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Migrating Large Volume Policy and Credential Stores.

Here is a complete sample of a configuration file, named t2p-credentials.xml, illustrating the specification of credential sources in LDAP, DB, and XML storages, and of credential destinations in LDAP or DB storages:

<?xml version="1.0" encoding="UTF-8" standalone='yes'?>
<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" schema-major-version="11" schema-minor-version="1">

<serviceProviders>
 <serviceProvider class="oracle.security.jps.internal.credstore.ssp.SspCredentialStoreProvider" name="credstoressp" type="CREDENTIAL_STORE">
 <description>File-based credential provider</description>
 </serviceProvider>

 <serviceProvider class="oracle.security.jps.internal.credstore.ldap.LdapCredentialStoreProvider" name="ldap.credentialstore.provider" type="CREDENTIAL_STORE">
 <description>LDAP-based credential provider</description>
 </serviceProvider>

<serviceProvider class="oracle.security.jps.internal.credstore.rdbms.DbmsCredentialStoreProvider" name="db.credentialstore.provider" type="CREDENTIAL_STORE">
 <description>DB-based credential provider</description>
 </serviceProvider>

</serviceProviders>

<serviceInstances>
 <!-- Source file-based credential store instance -->
 <serviceInstance location="myFileBasedCredStoreLocation" provider="credstoressp" name="credential.file.source">
 <description>Replace location with the full path of the folder where the file-based source credential store cwallet.sso is located in the source file system; typically located in sourceDomain/config/fmwconfig/</description>
 </serviceInstance>

<!-- Source LDAP-based credential store instance -->
<serviceInstance provider="ldap.credentialstore.provider" name="credential.ldap.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source LDAP directory structure; B. ldap://mySourceHost.com:3060 with the URL and port number of your source LDAP</description>
 <property value="bootstrap" name="bootstrap.security.credential.key"/>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://mySourceHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Source DB-based credential store instance -->
<serviceInstance provider="db.credentialstore.provider" name="credential.db.source">
 <description>Replace: A. mySourceDomain and mySourceRootName to appropriate
 values according to your source DB credential store</description>
 <property value="cn=mySourceDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=mySourceRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@mySourceHost:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the source datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="mySourceKeyName" />
 <property name="bootstrap.security.principal.map" value="mySourceMapName" />
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map
 should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

 <!-- Destination LDAP-based credential store instance -->
 <serviceInstance provider="ldap.credentialstore.provider" name="credential.ldap.destination">
<description>Replace: A. myDestDomain and myDestRootName to appropriate values according to your destination LDAP directory structure; B. ldap://myDestHost.com:3060 with the URL and port number of your destination LDAP</description>
 <property value="bootstrap" name="bootstrap.security.credential.key"/>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="ldap://myDestHost.com:3060" name="ldap.url"/>
</serviceInstance>

<!-- Destination DB-based credential store instance -->
 <serviceInstance provider="db.credentialstore.provider" name="credential.db.destination">
<description>Replace: myDestDomain and myDestRootName to appropriate values according to your destination DB credential store</description>
 <property value="cn=myDestDomain" name="oracle.security.jps.farm.name"/>
 <property value="cn=myDestRootName" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc:oracle:thin:@myDestHost.com:1722:orcl" name="jdbc.url"/>
 <!-- the value of jdbc.url should be the value entered when the destination datasource was set up -->
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property name="bootstrap.security.principal.key" value="myDestKeyName" />
 <property name="bootstrap.security.principal.map" value="myDestMapName" />
 <!-- the values of bootstrap.security.principal.key and
 bootstratp.security.principal.map
 should be the values entered when the bootstrap credential was set up -->
</serviceInstance>

<!-- Bootstrap credentials to access source and destination LDAPs and DBs -->
 <serviceInstance location="./bootstrap" provider="credstoressp" name="bootstrap.cred">
 <description>Replace location with the full path of the directory where the bootstrap file cwallet.sso is located; typically found in destinationDomain/config/fmwconfig/</description>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts>
 <jpsContext name="FileSourceContext">
 <serviceInstanceRef ref="credential.file.source"/>
 </jpsContext>

 <jpsContext name="LDAPsourceContext">
 <serviceInstanceRef ref="credential.ldap.source"/>
 </jpsContext>

<jpsContext name="DBsourceContext">
 <serviceInstanceRef ref="credential.db.source"/>
 </jpsContext>

 <jpsContext name="LDAPdestinationContext">
 <serviceInstanceRef ref="credential.ldap.destination"/>
 </jpsContext>

<jpsContext name="DBdestinationContext">
 <serviceInstanceRef ref="credential.db.destination"/>
 </jpsContext>

 <!-- Do not change the name of the next context -->
 <jpsContext name="bootstrap_credstore_context">
 <serviceInstanceRef ref="bootstrap.cred"/>
 </jpsContext>
 </jpsContexts>
</jpsConfig>

Note that since the migration involves LDAP and/or DB stores, the file includes a jps-context named bootstrap_credstore_context that specifies the directory where the bootstrap credential file cwallet.sso is located.

The following examples of use of migrateSecurityStore assume that the file t2p-credentials.xml is located on the target system in the directory where the script is run.

Under that assumption, to migrate credentials from a test (or source) LDAP store to a production (or destination) LDAP store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="credStore",configFile="t2p-credentials.xml",src="LDAPsourceContext",dst="LDAPdestinationContext")

To migrate credentials from a test (or source) XML store to a production (or destination) LDAP store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="credStore",configFile="t2p-credentials.xml",src="FileSourceContext",dst="LDAPdestinationContext")

To migrate credentials from a test (or source) DB store to a production (or destination) DB store, invoke migrateSecurityStore in the target system as follows:

>migrateSecurityStore(type="credStore",configFile="t2p-credentials.xml",src="DBSourceContext",dst="DBdestinationContext")

6.5.2.3 Migrating Large Volume Policy and Credential Stores

Migrating stores with the alternate procedure explained in this section is suitable to preserve source GUIDs or for large volume stores (where migrating with the script migrateSecurityStore would take an unacceptable amount of time).

	
Note:

Large volume migration of stores is supported for LDAP-based stores only. It is not supported for DB-based stores.

For illustration purpose, assume that the policy store LDAP to be migrated is configured in the file jps-config.xml with a service instance as in the following fragment:

<serviceInstance provider="ldap.policystore.provider" name="policystore.ldap">
 <property name="policystore.type" value="OID" />
 <property name="bootstrap.security.principal" value="bootstrap"/>
 <property name="oracle.security.jps.farm.name" value="cn=base_domain"/>
 <property name="oracle.security.jps.ldap.root.name" value="cn=mySrcRootName"/>
 <property name="ldap.url" value="ldap://myCompany.com:7766"/>
</serviceInstance>

	
Important:

If you intend to use the procedure that follows with a destination Oracle Internet Directory version 10.1.4.3.0, then you must first apply a patch for bug number 8417224. To download this patch for your platform, visit Oracle Support at http://myoraclesupport.oracle.com.

To migrate a source Oracle Internet Directory store to a destination Oracle Internet Directory store using bulk commands, proceed as follows:

	
In the system where the source Oracle Internet Directory is located, produce an LDIF file by running ldifwrite as illustrated in the following line:

>ldifwrite connect="srcOidDbConnectStr" baseDN="cn=jpsnode, c=us" ldiffile="srcOid.ldif"

This command writes all entries under the node cn=jpsnode, c=us to the file srcOid.ldif. Once generated, move this file, as appropriate, to the destination Oracle Internet Directory file system so it is available to the commands that follow.

	
In the destination Oracle Internet Directory node, ensure that the JPS schema has been seeded.

	
In the destination Oracle Internet Directory system, verify that there are no schema errors or bad entries by running bulkload as illustrated in the following line:

>bulkload connect="dstOidDbConnectStr" check=true generate=true restore=true file="fullPath2SrcOidLdif"

If duplicated DNs (common entries between the source and destination directories) are detected, review them to prevent unexpected results.

	
Backup the destination DB. If the next steps fails (and corrupts the DB), the DB must be restored.

	
Load data into the destination Oracle Internet Directory, by running bulkload as illustrated in the following line:

>bulkload connect="dstOidDbConnectStr" load=true file="fullPath2SrcOidLdif"

For details about the above commands, see chapter 14, Performing Bulk Operations, in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

6.5.3 Migrating Audit Policies

To migrate audit policies, use the export and import operations as explained next.

First, export the audit configuration from a test environment to a file using one of the following tools:

	
Fusion Middleware Control: navigate to Domain > Security > Audit Policy, and then click Export.

	
The OPSS script exportAuditConfig. For details, see Appendix C, "exportAuditConfig."

Then, import that file into the production environment using one of the following tools:

	
Fusion Middleware Control: navigate to Domain > Security > Audit Policy, and then click Import.

	
The OPSS script importAuditConfig. For details, see Appendix C, "importAuditConfig."

The import/export operations above migrate audit policies only, and they do not migrate the audit data store settings. If you had configured an audit data source in your test environment, repeat the steps to configure a data source in the production environment. For details, see Section 12.2.2, "Set Up Audit Data Sources."

Normally, you would not want audit data records from a test environment to be migrated to production; however, to do so, use the database import/export utilities for that purpose. For details, see Section 12.5.5, "Importing and Exporting Data."

Part III

Advanced OPSS Administration

This part describes advanced OPSS administration features in the following chapters:

	
Chapter 7, "Configuring the Identity Store Service"

	
Chapter 8, "Configuring the OPSS Security Store"

	
Chapter 9, "Managing the Policy Store"

	
Chapter 10, "Managing the Credential Store"

	
Chapter 11, "Introduction to Oracle Fusion Middleware Audit Framework"

	
Chapter 12, "Configuring and Managing Auditing"

	
Chapter 13, "Using Audit Analysis and Reporting"

7 Configuring the Identity Store Service

This chapter explains how to use the identity store service in OPSS. Topics include:

	
Introduction to the Identity Store Service

	
Configuring the Identity Store Provider

	
Configuring the Identity Store Service

	
Querying the Identity Store Programmatically

7.1 Introduction to the Identity Store Service

This section describes key concepts of the OPSS identity store service:

	
About the Identity Store Service

	
Service Architecture

	
Application Server Support

7.1.1 About the Identity Store Service

The identity store service enables you to query the identity store for user and role (group) information.

By default, a service instance supports querying against a single LDAP identity store. You can configure the service to support a virtualized identity store which queries multiple LDAP identity stores. This feature, known as identity virtualization, is described in Section 7.3, "Configuring the Identity Store Service".

7.1.2 Service Architecture

Figure 7-1 shows the architecture of the identity store service. Depending on the configuration, the service can support:

	
one or more LDAP servers

	
an XML file

as the identity store.

When the service is configured for LDAP, it queries a single LDAP store by default. You can also configure the service to query multiple LDAP stores.

Figure 7-1 The OPSS Identity Store Service

[image: Surrounding text describes Figure 7-1 .]

7.1.3 Application Server Support

The identity store service supports:

	
Oracle WebLogic Server

	
Third-party application servers

The service configuration differs depending on the application server as you need to specify the provider that supports the service.

7.1.4 Java SE Support

The identity store service is available in a stand-alone Java SE environment.

For more information, see Section 7.3.5, "Java SE Environments".

7.2 Configuring the Identity Store Provider

Before you can make use of the identity store service, you need to configure the identity store provider. OPSS support both XML- and LDAP-based providers.

This fragment from the jps-config.xml file shows the configuration of both XML and LDAP providers. The serviceProvider elements are children of the serviceProviders element.

<serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider" class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>LDAP-based IdentityStore Provider</description>
</serviceProvider>

<serviceProvider type="IDENTITY_STORE" name="idstore.xml.provider" class="oracle.security.jps.internal.idstore.xml.XmlIdentityStoreProvider">
 <description>XML-based IdentityStore Provider</description>
</serviceProvider>

For details, see Section 8.7.1, "Configuring the Identity Store Provider".

7.3 Configuring the Identity Store Service

This section describes how to configure the identity store service to LDAP-based stores.

	
What is Configured?

	
Configuration in WebLogic Server

	
Configuring Split Profiles

	
Configuration in Other Application Servers

	
Java SE Environments

7.3.1 What is Configured?

This section explains the different configuration parameters for the identity store service.

	
Configuring Multi-LDAP Lookup

	
Global/Connection Parameters

	
Back-End/Connection Parameters

7.3.1.1 Configuring Multi-LDAP Lookup

You use the following parameters to configure the service for multi-LDAP look-ups:

	
The virtualize property - This property can be either true (multi-LDAP lookup) or false (single-LDAP lookup). The default is false.

	
Global Connection Parameters (if 'virtualize' is enabled) - The calling application uses these parameters to specify global LDAP configuration such as the search base, create base, and so on. If any of these parameters are not configured, OPSS uses default values.

	
Back-end Connection Parameters - These parameters are specific to each LDAP store. One set of back-end parameters is specified for each LDAP. You do not need to set these parameters unless you wish to overwrite existing values.

7.3.1.2 Global/Connection Parameters

Table 7-1 shows the global parameters and their default values, if applicable:

Table 7-1 Global LDAP Identity Store Parameters

	Parameter	Default Value
	
group.create.bases

	
same as user.create.bases

	
group.filter.object.classes

	
groupofuniquenames

If the global value is explicitly given, it is used.

	
group.mandatory.attrs

	
-

	
group.member.attrs

	
uniquemember

	
group.object.classes

	
groupofuniquenames

	
group.search.bases

	
-

	
group.selected.create.base

	
-

	
group.selected.search.base

	
-

	
groupname.attr

	
cn

If the global value is explicitly given, it is used.

	
max.search.filter.length

	
-

	
search.type

	
-

	
user.create.bases

	
If only one authenticator, uses that create base value. If multiple authenticators, no default value is set; user must explicitly set the global value.

	
user.filter.object.classes

	
inetorgperson

	
user.login.attr

	
uid

	
user.mandatory.attrs

	
-

	
user.object.classes

	
inetorgperson

If the global value is explicitly given, it is used.

	
user.search.bases

	
Same as group.search.bases

	
username.attr

	
cn

If the global value is explicitly given, it is used.

	
See Also:

Section F.2.4, "Generic LDAP Properties"

7.3.1.3 Back-End/Connection Parameters

As mentioned earlier, these are specific to the back-end LDAP store. For details, see:

	
Table F-5, "LDAP-Based Identity Store Properties"

	
Section F.2.1, "Policy Store Properties"

7.3.2 Configuration in WebLogic Server

You configure LDAP authenticators in Oracle WebLogic Server using either the WebLogic console or WLST command-line; at runtime, Oracle WebLogic Server passes the configuration details to OPSS. Oracle WebLogic Server allows the configuration of multiple authenticators in a given context, selecting the first authenticator to initialize the identity store service by default. This process is explained in Section 3.1.2.2, "Configuring the LDAP Identity Store Service".

After the authenticators are configured, the identity store service can be set up to query one LDAP identity store or multiple stores. Configuring for multiple stores requires setting up the virtualize property.

This section explains how these options are set up.

7.3.2.1 Configuring the Service for Single LDAP

You can configure the identity store service to query only one LDAP store. Example 7-1 shows a fragment of jps-config.xml with a single LDAP service instance:

7.3.2.2 Configuring the Service for Multiple LDAP using Fusion Middleware Control

As in the single LDAP setup, you start by configuring the authentication providers in Oracle WebLogic Server.

Next, take these steps in Fusion Middleware Control:

	
Select the WebLogic domain in the navigation pane on the left.

	
Navigate to Security, then Security Provider Configuration.

	
Expand the Identity Store Provider section of the page.

	
Click Configure (corresponding to "Configure parameters for User and Role APIs to interact with identity store").

	
The Identity Store Configuration page appears.

	
Under Custom Properties, click Add.

	
Add the new property as follows:

Property Name=virtualize
Value=true

	
Note:

Be sure to add the property to the identity store service instance in the default context.

	
Click OK.

7.3.2.3 Configuring the Service for Multiple LDAP using WLST

To configure the virtualize property using WLST, take these steps:

	
Create a py script file to connect to the administration server in the domain of interest. You need to specify the userName, userPass, localHost, and portNumber for the operation.

See Appendix E, "Configuring OPSS Service Provider Instances with a WLST Script" for details about this script.

	
Navigate to $ORACLE_HOME/common/bin.

	
Run the wlst.sh command to execute the script.

For example, if the domain configuration file contains an authenticator named idstore.ldap, the following command:

wlst.sh /tmp/updateServiceInstanceProperty.py -si idstore.ldap -key "virtualize" -value "true"

configures the provider for multi-LDAP lookup.

	
See Also:

Section E.1, "Configuring OPSS Service Provider Instances with a WLST Script".

7.3.2.4 Configuring Other Parameters

If desired, you can update jps-config.xml to set query parameters listed in Section 7.3.1, "What is Configured?". These parameters are optional; default values are provided.

7.3.2.5 Restarting Servers

After configuring for multi-LDAP query, restart Weblogic servers (admin and managed servers).

7.3.2.6 Examples of the Configuration File

Example 7-1 shows a sample jps-config.xml file configured for single-LDAP queries in the Oracle WebLogic Server environment:

Example 7-1 Single-LDAP Configuration in Oracle WebLogic Server

<!-- JPS WLS LDAP Identity Store Service Instance -->
 <serviceInstance name=idstore.ldap provider=idstore.ldap.provider>
 <property name=idstore.config.provider value=oracle.security.jps.wls.internal.idstore.
 WlsLdapIdStoreConfigProvider/>
 <property name=CONNECTION_POOL_CLASS value=oracle.security.idm.providers.stdldap.JNDIPool/>
 </serviceInstance>

Example 7-2 shows a sample jps-config.xml file configured for multi-LDAP queries in the Oracle WebLogic Server environment:

Example 7-2 Multi-LDAP Configuration in Oracle WebLogic Server

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" schema-major-version="11" schema-minor-version="1">

 <serviceProviders>
 <serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
 class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>LDAP-based IdentityStore Provider</description>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <!-- IDstore instance connecting to multiple ldap -->
 <serviceInstance name="idstore.virtualize" provider="idstore.ldap.provider">

 <!-- following property indicates using WLS ldap Authenticators -->
 <property name="idstore.config.provider"
 value="oracle.security.jps.wls.internal.idstore.WlsLdapIdStoreConfigProvider"/>

 <!-- following property enables virtualization i.e., support for multiple stores -->
 <property name="virtualize" value="true"/>

 <!-- Front end ldap properties (if not supplied, will use default values) -->
 <extendedProperty>
 <name>user.create.bases</name>
 <values>
 <value>cn=users_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.create.bases</name>
 <values>
 <value>cn=groups_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">

 <!-- the identity store uses multiple ldaps -->
 <jpsContext name="default">
 <!-- use multiple ldap -->
 <serviceInstanceRef ref="idstore.virtualize"/>
 <!--other services -->
 </jpsContext>
 </jpsContexts>

</jpsConfig>

Note that:

	
the virtualize property of the service instance is set to true, enabling multi-LDAP queries

	
the extendedProperty element enables you to set front-end parameters if desired to override default values

For more information, see "Front-End Parameters" in Section 7.3.1, "What is Configured?".

7.3.3 Configuring Split Profiles

Identity Virtualization supports a "split profile," where an application makes use of attributes for a single identity that are stored on two different sources.

This feature requires additional configuration beyond that described in this chapter. For details, see Appendix K, "Adapter Configuration for Identity Virtualization".

7.3.4 Configuration in Other Application Servers

Topics in this section include:

	
Configuring the Service for Single LDAP

	
Configuring the Service for Multiple LDAP

7.3.4.1 Configuring the Service for Single LDAP

See the example in Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications," for details.

7.3.4.2 Configuring the Service for Multiple LDAP

To configure the identity store service to handle multiple LDAPs in third-party application servers:

	
Modify the jps-config.xml file to configure service instances for each supported LDAP directory

	
Restart the application server to make the changes effective.

Example 7-3 shows a sample jps-config.xml file configured to run multi-LDAP queries for third-party application servers:

Example 7-3 Multi-LDAP Configuration in Third-Party Application Servers

<jpsConfig xmlns="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/11/jps-config-11_1.xsd" schema-major-version="11" schema-minor-version="1">

 <serviceProviders>
 <serviceProvider type="IDENTITY_STORE" name="idstore.ldap.provider"
 class="oracle.security.jps.internal.idstore.ldap.LdapIdentityStoreProvider">
 <description>LDAP-based IdentityStore Provider</description>
 </serviceProvider>
 </serviceProviders>

 <serviceInstances>
 <!-- instance 'idstore.oid' to represent an ldap server 'oid' -->
 <serviceInstance name="idstore.oid" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="OID"/>
 <property name="security.principal.key" value="oid.ldap.credentials"/>
 <property name="security.principal.alias" value="JPS"/>
 <property name="ldap.url"
 value="ldap://oid1.us.oracle.com:389,ldap://oid2.us.oracle.com:389"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>username.attr</name>
 <values>
 <value>uid</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>groupname.attr</name>
 <values>
 <value>cn</value>
 </values>
 </extendedProperty>
 </serviceInstance>

 <!-- instance 'idstore.ad' to represent an ldap server 'ad' -->
 <serviceInstance name="idstore.ad" provider="idstore.ldap.provider">
 <property name="subscriber.name" value="dc=us,dc=oracle,dc=com"/>
 <property name="idstore.type" value="ACTIVE_DIRECTORY"/>
 <property name="security.principal.key" value="msad.ldap.credentials"/>
 <property name="security.principal.alias" value="JPS"/>
 <property name="ldap.url"
 value="ldap://msad1.us.oracle.com:389,ldap://msad2.us.oracle.com:389"/>
 <extendedProperty>
 <name>user.search.bases</name>
 <values>
 <value>cn=users,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.search.bases</name>
 <values>
 <value>cn=groups,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>username.attr</name>
 <values>
 <value>cn</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>groupname.attr</name>
 <values>
 <value>cn</value>
 </values>
 </extendedProperty>
 </serviceInstance>

 <!-- IDStore service "idservice.virtualize" to connect to multiple ldaps ('oid' and 'ad') using libOVD-->
 <serviceInstance name="idservice.virtualize" provider="idstore.ldap.provider">

 <!--following property enables virtualization i.e., support for multiple stores -->
 <property name="virtualize" value="true"/>
 <!-- backend ldap instance "idstore.oid"-->
 <serviceInstanceRef ref="idstore.oid"/>
 <!-- backend ldap instance "idstore.ad"-->
 <serviceInstanceRef ref="idstore.ad"/>
 <!-- Front end ldap properties (if not supplied, will use default values) -->
 <extendedProperty>
 <name>user.create.bases</name>
 <values>
 <value>cn=users_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 <extendedProperty>
 <name>group.create.bases</name>
 <values>
 <value>cn=groups_front,dc=us,dc=oracle,dc=com</value>
 </values>
 </extendedProperty>
 </serviceInstance>
 </serviceInstances>

 <jpsContexts default="default">

 <!-- IdStore service connect to multiple ldaps ('oid'+'ad') through libOVD-->
 <jpsContext name="default">
 <!-- use multiple ldaps ('oid'+'ad') through libOVD-->
 <serviceInstanceRef ref="idservice.virtualize"/>
 <!--other services -->
 </jpsContext>

 </jpsContexts>

</jpsConfig>

Note that:

	
the first service instance defines the provider for Oracle Internet Directory

	
the second service instance defines the provider for Microsoft Active Directory

	
the virtualize property of the service instance is set to true, enabling multi-LDAP queries

	
the extendedProperty elements enable you to set front-end parameters if desired to override default values

For more information, see "Front-End Parameters" in Section 7.3.1, "What is Configured?".

7.3.5 Java SE Environments

In the Java SE environment, you directly modify the jps-config.xml file as follows:

	
define a new identity store service instance

	
add the new service instance to the JPS context, replacing any previously defined IdentityStore instance

	
to enable the 'virtualize' flag in the identity store service, refer to Example 7-3.

See Section 22.2.2, "Configuring an LDAP Identity Store in Java SE Applications" for details.

7.4 Querying the Identity Store Programmatically

To programmatically query the LDAP identity store, you use OPSS to obtain the JPS context; this acts like a bridge to obtain the store instance, and subsequently you use the User and Role API to query the store.

Example 7-4 Querying the LDAP Identity Store Programmatically

 try {
 //find the JPS context
 JpsContextFactory ctxFactory = JpsContextFactory.getContextFactory();
 JpsContext ctx = ctxFactory.getContext();

 //find the JPS IdentityStore service instance (assuming the backend is ldap type)
 LdapIdentityStore idstoreService = (LdapIdentityStore)ctx.getServiceInstance(IdentityStoreService.class)

 //get the User/Role API's Idmstore instance
 oracle.security.idm.IdentityStore idmIdentityStore = idstoreService.getIdmStore();

 //use the User/Role API to query id store
 //
 } catch (Exception e) {
 e.printStackTrace()
}

To see how to enable the 'virtualize' property in the identity store service, refer to Example 7-3.

For additional information about using MBeans, see Section E.2, "Configuring OPSS Services with MBeans".

8 Configuring the OPSS Security Store

The OPSS security store is the repository of system and application-specific policies, credentials, and keys. For an introduction to policies and credentials, see the following sections:

	
Section 3.2, "Policy Store Basics"

	
Section 3.3, "Credential Store Basics"

This chapter explains the features of the OPSS security store common to policies and credentials, and it is divided into the following sections:

	
Introduction to the OPSS Security Store

	
Using an LDAP-Based OPSS Security Store

	
Using a DB-Based OPSS Security Store

	
Configuring the OPSS Security Store

	
Reassociating the OPSS Security Store

	
Migrating the OPSS Security Store

	
Configuring the Identity Provider, Property Sets, and SSO

	
Cataloging Oracle Internet Directory Attributes

For details about Java EE and WebLogic Security, see section Java EE and WebLogic Security in Oracle Fusion Middleware Understanding Security for Oracle WebLogic Server.

	
Note:

When a WebLogic domain is setup to use policies based on the OPSS security store, JACC policies and the Java Security Manager become unavailable on all managed servers in that domain.

	
Important:

All permission classes used in policies in the OPSS security store must be included in the class path, so the policy provider can load them when a service instance is initialized.

8.1 Introduction to the OPSS Security Store

The OPSS security store is the repository of system and application-specific policies, credentials, and keys. This centralization facilitates the administration and maintenance of policy, credential, and key data.

The OPSS security store can be file-, LDAP-, or DB-based depending on the choice of repository type, and it can be reassociated (that is, the repository type can be changed) from file-based to LDAP- or DB-based; from DB-based to LDAP- or DB-based; and from LDAP-based to LDAP- or DB-based. No other reassociation is supported. For details about the tools and procedures available to reassociate the OPSS security store, see sections Reassociating with Fusion Middleware Control and Reassociating with the Script reassociateSecurityStore. Out-of-the-box, the OPSS security store is file-based.

The security data relevant to a Java EE application is typically packaged with the application and it can be migrated at deploy time to the OPSS security store. For details about the tools and procedures available to migrate to the OPSS security store, see sections Migrating with Fusion Middleware Control and Migrating with the Script migrateSecurityStore.

8.2 Using an LDAP-Based OPSS Security Store

An LDAP-based policy store is typically used in production environments. The only LDAP server supported in this release is the Oracle Internet Directory (release 10.1.4.3 or later).

	
Note:

Depending on the version, the following patches to Oracle Internet Directory are required:
	
Patch to fix bug 9093298 in Oracle Internet Directory 10.1.4.

	
Patch to fix bug 8736355 in Oracle Internet Directory 11.1.x

	
Patch to fix bug 8426457 in Oracle Internet Directory 11.1.x and 10.1.4.3.0

	
Patch to fix bug 8351672 in Oracle Internet Directory 10.1.4.3.0

To apply a patch, proceed as follows:

	
Visit Oracle Automated Release Updates at http://aru.us.oracle.com:8080/

	
Click the Patches tab.

	
Enter the bug number in the Request Number box, and click Search.

	
Apply the patch.

To use a domain LDAP-based OPSS security store the domain administrator must configure it, as appropriate, using Oracle Enterprise Manager Fusion Middleware Control or OPSS scripts.

	
Important:

OPSS does not support enabling referencial integrity on Oracle Internet Directory servers. The server will not work as expected if referencial integrity is enabled.
To disable a server's referencial integrity, use Oracle Enterprise Manager Fusion Middleware Control as follows:

	
Select Administration, then Shared Properties from the Oracle Internet Directory menu, and then select General.

	
Select Disabled from the Enable referencial Integrity list.

For a list of properties that can be specified in a service instance, see Appendix F, "Properties Common to All LDAP-Based Instances."

The information in this section is divided into the following topics:

	
Multiple-Node Server Environments

	
Prerequisites to Using an LDAP-Based Security Store

8.2.1 Multiple-Node Server Environments

In domains where several server instances are distributed across multiple machines, it is highly recommended that the OPSS security store be LDAP- or DB-based.

Typically, applications do not change policy, credential, or key data. When they do, however, it is crucial that these changes be correctly propagated to all managed servers and clusters in a domain and, therefore, it is recommended that any such changes be performed in the domain administration server (and not in managed servers).

In a single-node server domain, the propagation of local changes to security data is irrelevant: in this scenario, local changes are equivalent to global changes.

In a multiple-node server domain, however, the JMX framework propagates local changes to a file-based policy to each runtime environment, so that the data is refreshed based on caching policies and configuration. For details about properties you can set on policies and credentials, see sections Appendix F, "Policy Store Properties," and Appendix F, "Credential Store Properties."

To summarize, in a multiple-node server environment, it is highly recommended that:

	
Both the policy and credential stores be centralized in a LDAP-based store and configured in the administration server.

	
Or, if they are file-based, then local changes to policy or credential data be performed only by the domain administration server to ensure that they are correctly propagated from the administration server to all managed servers in the domain.

8.2.2 Prerequisites to Using an LDAP-Based Security Store

The only supported LDAP-based OPSS security store is Oracle Internet Directory. In order to ensure the proper access to the Oracle Internet Directory, you must set a node in the server directory as explained below.

Fusion Middleware Control automatically provides bootstrap credentials in the file cwallet.sso when that tool is used to reassociate to an LDAP-based repository. To specify these required credentials manually, see section Section 21.4.7, "Specifying Bootstrap Credentials Manually."

Setting a Node in an Oracle Internet Directory Server

The following procedure is carried out by an Oracle Internet Directory administrator.

To set a node in the LDAP Oracle Internet Directory directory, proceed as follows:

	
Create an LDIF file (assumed jpstestnode.ldif, for illustration purpose) specifying the following DN and CN entries:

dn: cn=jpsroot
cn: jpsroot
objectclass: top
objectclass: OrclContainer

The distinguished name of the root node (illustrated by the string jpsroot above) must be distinct from any other distinguished name. Some LDAP servers enforce case sensitivity by default. One root node can be shared by multiple WebLogic domains. It is not required that this node be created at the top level, as long as read and write access to the subtree is granted to the Oracle Internet Directory administrator.

	
Import this data into the LDAP server using the command ldapadd, as illustrated in the following example (there should be no line break in the command invocation):

>ldapadd -h ldap_host -p ldap_port -D cn=orcladmin -w password -v -f jpstestnode.ldif

	
Verify that the node has been successfully inserted using the command ldapsearch, as illustrated in the following example (there should be no line break in the command invocation):

>ldapsearch -h ldap_host -p ldap_port -D cn=orcladmin -w password -s base
-b "cn=jpsroot" objectclass="orclContainer"

	
Run the utility oidstats.sql to generate database statistics for optimal database performance, as illustrated in the following example:

>$ORACLE_HOME/ldap/admin/oidstats.sql

The above utility must be run just once after the initial provisioning. For details about this utility, consult the Oracle Fusion Middleware User Reference for Oracle Identity Management.

To reassociate a policy store, see Reassociating the OPSS Security Store.

8.3 Using a DB-Based OPSS Security Store

A DB-based security store is typically used in production environments. The only supported DB-based security store is Oracle RDBMS (releases 10.2.0.4 or later; releases 11.1.0.7 or later; and releases 11.2.0.1 or later).

To use a DB-based OPSS security store the domain administrator must configure it, as appropriate, using Oracle Enterprise Manager Fusion Middleware Control or OPSS scripts.

For a list of properties that can be configured, see Appendix F, "OPSS Configuration Properties."

This section contains the following topics:

	
Prerequisites to Using a DB-Based Security Store

	
Maintaining a DB-Based Security Store

	
Setting Up an SSL Connection to the DB

8.3.1 Prerequisites to Using a DB-Based Security Store

To use a database repository for the OPSS security store, one must first use Oracle Fusion Middleware Repository Creation Utility (RCU) to create the required schema and to seed some initial data. This setup is also required before reassociating the OPSS security store to a DB-based security store.

For details about RCU, see chapters Repository Creation Utility Overview and Running Repository Creation Utility in Oracle Fusion Middleware Repository Creation Utility User's Guide.

The creation the schema and seeding of initial data are explained in the following sections:

	
Creating the OPSS Schema in an Oracle Database

	
Dropping the OPSS Schema in an Oracle Database

	
Creating a Data Source Instance

8.3.1.1 Creating the OPSS Schema in an Oracle Database

To create the OPSS schema in an Oracle database with RCU, proceed as follows:

	
Start RCU to display the RCU Welcome page; in this page, click Next to display the Create Repository page.

	
In that page, select the radio button Create; then click Next to display the Database Connections Details page.

	
In that page, enter the appropriate connectivity information: Database Type, Host Name, Port, Service Name, Username, Password, and Role.

Then click Next to have RCU check the entered data and perform pre-creation operations; once this check is successfully completed, RCU displays the Select Components dialog.

	
In that dialog, choose to use an existing schema prefix or create a new prefix, and pick the OPSS component to install the schema.

When finished selecting components, click Next to display the Schema Passwords dialog where you supply passwords, and then click Next to display the Map Tablespaces dialog which shows the tablespace summary. Use one default tablespace and one temporary tablespace; the default tablespace names are PREFIX_IAS_OPSS and PREFIX_IAS_TEMP, respectively.

To create a non-default tablespace or datafile, click the button Manage Tablespaces to display the Manage Tablespaces dialog, where you can specify the information to create them. When finished, click OK. If the specified tablespaces are not yet in the database, RCU creates them and informs about this in the Creating Tablespaces; click OK to display the Summary dialog, which displays the summary of data you have entered, and then click Create to effect the creation of the additional tablespace(s) or datafile(s).

	
When the creation is completed, RCU displays the Completion Summary, which shows the database details.

	
Invoke the SQLPlus command illustrated below to verify that the database schema has been properly created:

SQL> desc jps_dn;

8.3.1.2 Dropping the OPSS Schema in an Oracle Database

Dropping the OPSS schema is required only if one no longer wishes to use that DB for storing OPSS security policies.

After the OPSS schema has been successfully created, use RCU to drop the OPSS schema as follows:

	
Start RCU to display the RCU Welcome page; in this page, click Next to display the Drop Repository page.

	
In that page, select the radio button Drop; then click Next to display the Database Connections Details page.

	
In that page, enter the appropriate connectivity information: Database Type, Host Name, Port, Service Name, Username, Password, and Role. Then click Next to display the Select Components dialog.

	
In that dialog, select the prefix and, in the Component hierarchy, check AS Common Schemas and Oracle Platform Security Services; then click Next to display the Summary page.

	
In that page, verify that the details gathered are correct, and click Drop to trigger the dropping; when the operation is successfully completed, RCU displays the Completion Summary page detailing the schema dropped.

8.3.1.3 Creating a Data Source Instance

To create a data source instance, see section Creating a JDBC Data Source in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server. The JNDI name of the JDBC data source entered in the procedure in that section is used in the configuration of a DB-based store.

To set up a data source on WebSphere Application Server, see Oracle Fusion Middleware Third-Party Application Server Guide.

	
Note:

11.2 Oracle JDBC driver deprecated the following time zones: Etc/UCT, UCT, Etc/UTC, Etc/Universal, Etc/Zulu, and Universal. When setting a time zone for your Oracle JDBC driver, make sure that it is a non-deprecated time zone.

8.3.2 Maintaining a DB-Based Security Store

This section describes a few tasks that an administrator can follow to maintain a DB-based security store.

A DB-based security store maintains a change log that should be periodically purged. To purge it, an administrator can use the provided SQL script opss_purge_changelog.sql, which will purge change logs older than 24 hours, or connect to the database and run SQL delete (with the appropriate arguments) as illustrated in the following lines:

SQL>delete from jps_changelog where createdate < (select(max(createdate) - 1) from jps_changelog);
SQL>Commit;

If the OPSS management API performs slowly while accessing the DB-based security store, run the DBMS_STATS package to gather statistics about the physical storage of a DB table, index, of cluster. This information is stored in the data dictionary and can be used to optimize the execution plan for SQL statements accessing analyzed objects.

When loading large amount of data into a DB-based security store, such as when creating thousands of new application roles, it is recommended that DBMS_STATS be run within short periods and concurrently with the loading activity. Otherwise, when the loading activity is small, DBMS_STATS needs to be run just once and according to your needs.

The following sample illustrates the use of DBMS_STATS:

EXEC DBMS_STATS.GATHER_SCHEMA_STATS('DEV_OPSS', DBMS_STATS.AUTO_SAMPLE_SIZE, no_invalidate=>FALSE);

where DEV_OPSS denotes the name of the DB schema created during the RCU setup (see section Creating the OPSS Schema in an Oracle Database). For details about the DBMS_STATS package, see the Oracle Database Administrator's Guide.

To run DBMS_STATS periodically, use a shell script or an SQL script, as described next.

The following sample script runs the command DBMS_STATS every 10 minutes:

#!/bin/sh
i=1
while [$i -le 1000]
do
echo $i
sqlplus dev_opss/welcome1@inst1 @opssstats.sql
sleep 600
i=`expr $i + 1`
done

where opssstats.sql contains the following text:

EXEC DBMS_STATS.gather_schema_stats('DEV_OPSS',DBMS_STATS.AUTO_SAMPLE_SIZE, no_invalidate=>FALSE);
QUIT;

The following sample SQL script also runs the command DBMS_STATS every 10 minutes:

variable jobno number;
BEGIN
DBMS_JOB.submit
(job => :jobno,
what => 'DBMS_STATS.gather_schema_stats(''DEV_OPSS'',DBMS_STATS.AUTO_SAMPLE_SIZE,no_invalidate=>FALSE);',
interval => 'SYSDATE+(10/24/60)');
COMMIT;
END;
/

To stop the periodic invocation of DBMS_STATS by the above SQL script, first find out its job number by issuing the following commands:

sqlplus '/as sysdba'
SELECT job FROM dba_jobs WHERE schema_user = 'DEV_OPSS' AND what = 'DBMS_STATS.gather_schema_stats(''DEV_OPSS'',DBMS_STATS.AUTO_SAMPLE_SIZE, no_invalidate=>FALSE);';

Then issue a command like the following, in which it is assumed that the query above returned the job number 31:

EXEC DBMS_JOB.remove(31);

8.3.3 Setting Up an SSL Connection to the DB

This section describes how to establish a one- or two-way SSL connection to a DB-Based OPSS security store. This set up is optional and the procedures involved in it are explained in the following sections:

	
Configuring SSL on an Oracle DB Server

	
Configuring SSL on a Client

For additional and detailed information about SSL-related topics see the following documents:

	
SSL with Oracle JDBC Thin Driver at the following link: http://www.oracle.com/technology/tech/java/sqlj_jdbc/pdf/wp-oracle-jdbc_thin_ssl_2007.pdf.

	
Oracle Database JDBC Developer's Guide.

8.3.3.1 Configuring SSL on an Oracle DB Server

To configure SSL on an Oracle DB server, start Oracle Wallet Manager on the host where the DB server is running and using this tool proceed as follows:

	
Create a wallet.

	
Obtain a certificate from a trusted Certificate Authority (CA) and import it into the wallet created.

	
Create a certificate request for the DB server.

	
Send the certificate request to the CA and obtain a signed certificate from the CA.

	
Import the signed certificate into the wallet; this certificate is the DB server's certificate.

	
Check the box Auto Login under the menu Wallet to ensure that the DB server picks up the wallet.

	
Save the wallet.

On the host where the DB server is running, start Oracle Net Manager and using this tool proceed as follows:

	
Navigate to Oracle Net Configuration > Local > Profile, then select Oracle Advanced Security, and then click the tab SSL.

	
In that tab, set Wallet Directory to the wallet saved in step 7 above, and check Configure SSL for Server. For a two-way SSL, check the box Require Client Authentication.

	
Set the listener as follows:

	
Navigate to Oracle Net Configuration > Local > Listeners > LISTENER.

	
Add an address (the recommended port number is 2484).

	
Set its protocol to TCP/IP with SSL.

	
Optionally, to create a TNS service to connect the DB with SSL on the host, proceed as follows:

	
Navigate to Oracle Net Configuration > Local > Service Naming.

	
Create a new service.

	
Set its protocol to TCP/IP with SSL.

	
Set its port number to the port number entered for the listener.

	
Save the network configuration, and restart the DB listener. At this point, the DB server should support SSL on the specified port.

8.3.3.1.1 Configuration Samples

The following snippets illustrate portions of the files sqlnet.ora, listener.ora, and tnsnames.ora (all located in $ORACLE_HOME/network/admin) after the above procedures are completed:

sqlnet.ora
 QLNET.AUTHENTICATION_SERVICES= (BEQ, TCPS)
 SSL_CLIENT_AUTHENTICATION = FALSE
 WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /myHome/owm/wallets/myWallets)
)
)

listener.ora
 SSL_CLIENT_AUTHENTICATION = FALSE
 WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /myHome/owm/wallets/myWallets)
)
)

 LISTENER =
 (DESCRIPTION_LIST =
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = IPC)(KEY = EXTPROC1521))
)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCP)(HOST = myHost.com)(PORT = 1521))
)
 (DESCRIPTION =
 (ADDRESS = (PROTOCOL = TCPS)(HOST = myHost.com)(PORT = 2484))
)
)

tnsnames.ora
 ORCLSSL =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCPS)(HOST = myHost.com)(PORT = 2484))
)
 (CONNECT_DATA =
 (SERVICE_NAME = myService.com)
)
)

8.3.3.2 Configuring SSL on a Client

This section explains how to connect a client to a DB server over SSL in the following sections:

	
Connecting to a DB Server with sqlplus or JDBC OCI Driver

	
Connecting to a DB Server with JDBC Thin Driver

8.3.3.2.1 Connecting to a DB Server with sqlplus or JDBC OCI Driver

This task involves specifying a trusted certificate (for one-way SSL) and a client certificate (for two-way SSL).

On the host where the client is running, start Oracle Wallet Manager and using this tool proceed as follows:

	
Create a wallet and import the DB server trusted CA certificate (created in the first procedure in section Configuring SSL on an Oracle DB Server).

	
To establish two-way SSL:

	
Create a certificate request.

	
Sign the certificate with the CA certificate.

	
Import the certificate into wallet. This certificate is used as the client certificate when connecting to DB server over a two-way SSL.

	
Check the check box Auto Login under the menu Wallet.

	
Save the wallet.

If connecting to the server with sqlplus, use Oracle Net Manager to create a TNS service by navigating to Oracle Net Configuration > Configure SSL for Client > Service Naming.

	
Important:

If for this TNS service you set Match server X.509 name to Yes, then the value of SSL_SERVER_CERT_DN must be the same as the value of DN set in the DB server certificate, as illustrated below (where CN=dbserver,OU=OPSS,O=Oracle,ST=Beijing,C=CN is the DB server certificate DN):

(SECURITY=
 (SSL_SERVER_CERT_DN="CN=dbserver,OU=OPSS,O=Oracle,ST=Beijing,C=CN")
)

8.3.3.2.2 Connecting to a DB Server with JDBC Thin Driver

In this scenario, proceed as follows:

	
Set your JDBC URL with following SSL-specific settings:

	
PROTOCOL=TCPS.

	
SECURITY with correct SSL SERVER_CERT_CN value.

The following snippet illustrates this setting:

jdbc:oracle:thin:@(DESCRIPTION=(ADDRESS_LIST=(ADDRESS=(PROTOCOL=TCPS)(HOST=myServer.us.oracle.com)(PORT=2484)))(CONNECT_DATA=(SERVICE_NAME=orcl.us.oracle.com))(SECURITY=(SSL_SERVER_CERT_DN="CN=dbserver,OU=OPSS,O=Oracle,ST=Beijing,C=CN")))

	
Set the following system properties with the appropriate values:

oracle.net.ssl_server_dn_match
javax.net.ssl.trustStore
javax.net.ssl.trustStoreType
javax.net.ssl.trustStorePassword
javax.net.ssl.keystore
javax.net.ssl.keyStoreType
javax.net.ssl.keyStorePassword

For a Java SE application, set the above properties using the -D option when starting a JVM.

	
For a Data Source on the Oracle WebLogic Server, use the WebLogic Administration console to specify the above properties and values in the tab Configuration > Connection Pool of the Data Source. For details, see Oracle Fusion Middleware Administrator's Guide.

	
For a Data Source on the WebSphere Application Server, use the Administration Console as follows:

	
Navigate to Data Sources > YourDataSourceName > Custom Properties.

	
Create the new custom property connectionProperties with a value as illustrated in the following line:

oracle.net.ssl_server_dn_match=true;javax.net.ssl.trustStore=/scratch/weiniu/work/certs/qatestca.jks;javax.net.ssl.trustStoreType=JKS;javax.net.ssl.trustStorePassword=welcome1;javax.net.ssl.keyStore=/scratch/weiniu/work/certs/jksuser1.jks;javax.net.ssl.keyStoreType=JKS;javax.net.ssl.keyStorePassword=welcome1;oracle.net.ssl_version=3.0

Note that the values are separated by a semicolon, and the setting oracle.net.ssl_version=3.0 is required.

8.4 Configuring the OPSS Security Store

For examples of store configurations for Java SE applications, see Section 23.1, "Configuring Policy and Credential Stores in Java SE Applications."

For examples of store configurations for Java EE applications, see Example 1and Example 4.

For details about configuring other artifacts, see Configuring the Identity Provider, Property Sets, and SSO.

8.5 Reassociating the OPSS Security Store

Reassociating the OPSS security store consists in relocating the policy, credential, and key stores from one repository to another one. The source can be file-, LDAP-, or DB-based; the target can be LDAP- or DB-based. The only type of LDAP target supported is Oracle Internet Directory; the only type of DB target supported is DB_ORACLE.

Reassociation changes the repository preserving the integrity of the data stored. For each security artifact, reassociation searches the target store and, if it finds a match for it, it updates the matching artifact; otherwise, creates a new artifact.

Reassociation is typically performed, for example, when setting a domain to use an LDAP- or DB-based OPSS store instead of the out-of-the-box file-based store. This operation can take place at any time after the OPSS store has been configured and instantiated, and it is carried out using either Fusion Middleware Control or reassociateSecurityStore as explained in the following sections:

	
Reassociating with Fusion Middleware Control

	
Reassociating with the Script reassociateSecurityStore

8.5.1 Reassociating with Fusion Middleware Control

Reassociation migrates the OPSS policy store (policies, credentials, and keys) from one repository to another and reconfigures the appropriate security store providers. This section explains how to perform reassociation with Fusion Middleware Control pages.

For information about other uses of the Security Provider Configuration page, see Configuring the Identity Provider, Property Sets, and SSO.

Important Points

	
Before reassociating to a target LDAP store, ensure that your setup satisfies the Prerequisites to Using an LDAP-Based Security Store.

	
Before reassociating to a target DB store, ensure that your setup satisfies the Prerequisites to Using a DB-Based Security Store.

	
If reassociation requires a one-way SSL, follow the instructions in Setting Up a One- Way SSL Connection before reassociating.

	
After reassociating to an LDAP store, to secure access to the root node of the Oracle Internet Directory store, follow the instructions in Securing Access to Oracle Internet Directory Nodes.

	
The jps-config.xml file produced by reassociation is good for only Java EE applications. In case of Java SE applications, edit the file jps-config-jse.xml to match the one described in Section 23.1.3, "Configuring DB-Based OPSS Security Stores."

To reassociate the OPSS security store with Fusion Middleware Control, proceed as follows:

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Security Provider Configuration (if connected to Oracle WebLogic Server) or to Cell > Security > Security Provider Configuration (if connected to WebSphere Application Server), to display the Security Provider Configuration page, partially illustrated in the following graphic:

[image: Surrounding text describes emsecprovconf.gif.]

The table in the area Security Stores shows the characteristics of the current provider configured in the domain.

	
Click the button Change Association to display the Set Security Provider page, and choose the Store Type from the pull-down list. The text displayed on this page depends on the store type selected. The following graphic partially illustrates this page when Oracle Internet Directory is selected.

[image: Surrounding text describes emsetsecprvdr.gif.]

	
If you have selected Database, enter the name of the data source in the Datasource Name box. This should be the name of the JDBC data source entered when the data source was created; see Creating a Data Source Instance for details. If needed, click Select to obtain a list of configured data source names.

	
If you have selected Oracle Internet Directory, in the LDAP Server Details area, specify details and connection information about the target LDAP server:

	
Enter the host name and port number of your target Oracle Internet Directory LDAP server.

	
Optionally, check the box Use SSL to Connect to establish an anonymous SSL transmission to the LDAP server.

When checking this box, keep in mind the following points:

The port of the target LDAP server must be configured to handle an anonymous SSL transmission; this port is distinct from the default (non-secure) LDAP server port.

If the reassociation is to use a one-way SSL, be sure to follow the instructions in Setting Up a One- Way SSL Connection before completing this step. Among other things, that setup identifies the port to support a one-way SSL channel, and it is that port that should be specified in this step. Reassociation through a two-way SSL channel is not supported in this release.

Fusion Middleware Control modifies the file weblogic.policy by adding the necessary grant to support the anonymous SSL connection.

	
In the text box Connect DN, enter the full distinguished name, a string containing between 1 and 256 characters. For example, cn=orcladmin,dc=us,dc=oracle,dc=com.

	
In the box Password, enter the user password, also a string containing between 1 and 256 characters.

	
To verify that the connection to the LDAP server using the entered data works, click the button Test LDAP Authentication. If you run into any connection problem, see Section L.9, "Failure to Establish an Anonymous SSL Connection."

	
In the Root Node Details area, enter the root DN in the box Root DN, which identifies the top of the tree that contains the data in the LDAP repository. The Domain Name defaults to the name of the selected domain.

To solve most common errors arising from the specifications in these two fields, see Section L.2, "Reassociation Failure."

	
Optionally, in the Policy Store Properties and Credential Store Properties areas, enter service instance properties, such as Enable Lazy Load and Role Member Cache Size.

To add a new property: click Add to display the Add New Property dialog; in this dialog, enter strings for Property Name and Value; click OK. The added property-value pair is displayed in the table Custom Properties.

These properties are typically used to initialize the instance when it is created.

A property-value pair you enter modifies the domain configuration file jps-config.xml by adding a <property> element in the configuration of the LDAP service instance.

To illustrate how a service instance is modified, suppose you enter the property name foo and value bar; then the configuration for the LDAP service instance changes to contain a <property> element as illustrated in the following excerpt:

<serviceInstance name="myNewLDAPprovider" provider="someProvider"
 ...
 <property name="foo" value="bar"/>
 ...
</serviceInstance>

	
When finished entering your data, click OK to return to the Security Provider Configuration page. The system displays a dialog notifying the status of the reassociation. The table in the Security Stores area is modified to reflect the provider you have specified.

	
Restart the application server. Changes do not take effect until it has been restarted.

Reassociation modifies the domain configuration file $DOMAIN_HOME/config/fmwconfig/jps-config.xml: it deletes any configuration for the old store provider, inserts a configuration for the new store provider, and moves the policy and credential information from the source to the destination store.

If the destination store is LDAP-based, the information is stored under the domain DN according to the following format:

cn=<domain_name>,cn=JpsContext,<JPS ROOT DN>

As long as the configuration of the installation relies upon the above domain DN, that node should not be deleted from the LDAP Server.

8.5.1.1 Setting Up a One- Way SSL Connection

This section describes how to set up a one-way SSL channel between Oracle WebLogic server or a Java SE application and the LDAP Oracle Internet Directory target of a reassociation. This set up is optional, but, if required, it should be in place before reassociating the OPSS security store.

Prerequisite: Configuring the Oracle Internet Directory Server

To configure the Oracle Internet Directory server to listen in one-way SSL mode, see section Enabling SSL on Oracle Internet Directory Listeners in Oracle Fusion Middleware Administrator's Guide.

Exporting Oracle Internet Directory's Certificate Authority (CA)

The use of orapki to create a certificate is needed only if the CA is unknown to the Oracle WebLogic server.

The following sample illustrates the use of this command to create the certificate serverTrust.cert:

>orapki wallet export -wallet CA -dn "CN=myCA" -cert serverTrust.cert

The above invocation prompts the user to enter the keystore password.

Before You Begin

Before configuring SSL, note that:

	
The following procedures are required if the type of SSL being established is server-auth, and they are not required in any other case (no-auth or client-auth).

	
If the flags specified in the procedures below are used in a multi-application environment, then the trust store must be shared by all those applications.

Setting Up the WebLogic Server in Case of a Java EE Application

The difference in the following procedures is because the identity store service and the policy store service use different socket factories.

To establish a one-way SSL connection between the server and the identity store, proceed as follows (if applicable, the trust CA is assumed exported):

	
If the CA is known to the Oracle WebLogic server, skip this step; otherwise, use the utility keytool to import the Oracle Internet Directory's CA into the WebLogic truststore.

The following invocation, which outputs the file myKeys.jks, illustrates the use of this command to import the file serverTrust.cert:

>keytool -import -v -trustcacerts -alias trust -file serverTrust.cert -keystore myKeys.jks -storepass keyStorePassword

	
Modify the script (typically startWebLogic.sh) that starts the server to include a line like the following, and then restart the server:

-Djavax.net.ssl.trustStore=<absolute path name to file myKeys.jks>

To establish a one-way SSL connection between the server and the policy store, proceed as follows (if applicable, the trust CA is assumed exported):

	
Use the utility keytool to import trust CA to the trust key store, as illustrated in the following invocation:

>keytool -import -v -trustcacerts -alias trust -file serverTrust.cert -keystore myKeys.jks -storepass keyStorePassword

	
Modify the script (typically startWebLogic.sh) that starts the server to include a line like the following, and then restart the server:

-Dweblogic.security.SSL.trustedCAKeyStore=<absolute path name to file myKeys.jks>

	
If the OID server uses a wild card in the SSL certificate, then add the following line to the script that starts the WebLogic server:

-Dweblogic.security.SSL.ignoreHostnameVerification=true

Setting Up the WebLogic Server in Case of a Java SE Application

The setting up in the case of Java SE applications is the same for both the identity and the policy store services.

	
If the CA is known to the Oracle WebLogic server, skip this step; otherwise, use the utility keytool to import the Oracle Internet Directory's CA into the WebLogic truststore.

The following invocation, which outputs the file myKeys.jks, illustrates the use of this command to import the file serverTrust.cert:

>keytool -import -v -trustcacerts -alias trust -file serverTrust.cert -keystore myKeys.jks -storepass keyStorePassword

	
Modify the script that starts the JMV to include a line like the following:

-Djavax.net.ssl.trustStore=<absolute path name to file myKeys.jks>

8.5.1.2 Securing Access to Oracle Internet Directory Nodes

The procedure explained in this section is optional and performed only to enhance the security to access an Oracle Internet Directory.

An access control list (ACL) is a list that specifies who can access information and what operations are allowed on the Oracle Internet Directory directory objects. The control list is specified at a node, and its restrictions apply to all entries in the subtree under that node.

ACL can be used to control the access to policy and credential data stored in an LDAP Oracle Internet Directory repository, and it is, typically, specified at the top, root node of the store.

To specify an ACL at a node in an Oracle Internet Directory repository, proceed as follows:

	
Create an LDIF file with a content that specifies the ACL:

dn: <storeRootDN>
changetype: modify
add: orclACI
access to entry by dn="<userDN>" (browse,add,delete) by * (none)
access to attr=(*) by dn="<userDN>" (search,read,write,compare) by * (none)

where storeRootDN stands for a node (typically the root node of the store), and userDN stands for the DN of the administrator data (the same userDN that was entered to perform reassociation).

	
Use the Oracle Internet Directory utility ldapmodify to apply these specifications to the Oracle Internet Directory.

Here is an example of an LDIF file specifying an ACL:

dn: cn=jpsRootNode
changetype: modify
add: orclACI
access to entry by dn="cn=myAdmin,cn=users,dc=us,dc=oracle,dc=com" (browse,add,delete) by * (none)
access to attr=(*) by dn="cn=myAdmin,cn=users,dc=us,dc=oracle,dc=com" (search,read,write,compare) by * (none)

For more information about access control lists and the command ldapmodify, see chapter 18 in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory.

8.5.2 Reassociating with the Script reassociateSecurityStore

The OPSS store can be reassociated with the OPSS script reassociateSecurityStore. For details, see Section 9.3.29, "reassociateSecurityStore."

8.6 Migrating the OPSS Security Store

A domain includes one and only one policy store. Applications can specify their own policies, but these are stored as policies in the policy store when the application is deployed to a server. All applications deployed in a domain use a common policy store, the policy store. The policy store is logically partitioned in stripes, one for each application name specified in the file $DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml under the element <applications>.

Migrating the OPSS security store consists in relocating the policy, credential, and key stores from one repository to another one. The source can be file-, LDAP-, or DB-based; the target can be LDAP- or DB-based. The OPSS binaries and the target policy store must have compatible versions; for details, see Section L.20, "Incompatible Versions of Binaries and Policy Store."

During application development, an application specifies its own policies, and these can be migrated to the OPSS security store when the application is deployed with Fusion Middleware Control. Policies can also be migrated manually; in addition, each application component can specify the use of anonymous user and role, authenticated role, and JAAS mode.

The configuration of the policy store is performed by an administrator.

These topics are explained in the following sections:

	
Migrating with Fusion Middleware Control

	
Migrating with the Script migrateSecurityStore

	
Note:

Use the system property jps.deployment.handler.disabled to disable the migration of application policies and credentials for applications deployed in a WebLogic Server.
When this system property is set to TRUE, the migration of policies and credentials at deployment is disabled for all applications regardless of the particular application settings in the application file weblogic-application.xml.

8.6.1 Migrating with Fusion Middleware Control

Application policies are specified in the application file jazn-data.xml and can be migrated to the policy store when the application is deployed to a server in the WebLogic environment with Fusion Middleware Control; they can also be removed from the policy store when the application is undeployed or be updated when the application is redeployed.

All three operations, the migration, the removal, and the updating of application policies, can take place regardless of the type of policy repository, but they do require particular configurations.

For details, see procedure in Section 6.5.2, "Migrating Policies and Credentials at Deployment."

8.6.2 Migrating with the Script migrateSecurityStore

Application-specific policies or system policies can be migrated manually from a source repository to a target repository using the OPSS script migrateSecurityStore.

This script is offline, that is, it does not require a connection to a running server to operate; therefore, the configuration file passed to the argument configFile need not be an actual domain configuration file, but it can be assembled just to specify the source and destination repositories of the migration.

	
Note:

Since the script migrateSecurityStore recreates GUIDs and takes a long time to migrate large volume of data, you may want to consider migrating stores with an alternate procedure that uses Oracle Internet Directory bulk operations. For details, see Section 6.5.2.3, "Migrating Large Volume Policy and Credential Stores.".

For further details about OPSS scripts and their syntax, see section Overview of WLST Command Categories, in Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

For platform-specific requirements to run an OPSS script, see Important Note.

To migrate all policies (system and application-specific, for all applications) on WebLogic use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):

migrateSecurityStore.py -type policyStore
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext

migrateSecurityStore(type="policyStore", configFile="jpsConfigFileLocation", src="srcJpsContext", dst="dstJpsContext")

The meanings of the arguments (all required) are as follows:

	
configFile specifies the location of a configuration file jps-config.xml relative to the directory where the script is run. Typically, this configuration file is created just to be used with the script and serves no other purpose. This files contains two jps-contexts that specify the source and destination stores.

In addition, if the migration involves one or two LDAP-based stores, then this file must contain a bootstrap jps-context that refers to the location of a cwallet.sso file where the credentials to access the LDAP based involved in the migration are kept.

	
src specifies the name of a jps-context in the configuration file passed to the argument configFile.

	
dst specifies the name of another jps-context in the configuration file passed to the argument configFile.

The contexts passed to src and dst must be defined in the passed configuration file and must have distinct names. From these two contexts, the script determines the locations of the source and the target repositories involved in the migration.

To migrate just system policies on WebLogic, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):

migrateSecurityStore.py -type globalPolicies
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext

migrateSecurityStore(type="globalPolicies", configFile="jpsConfigFileLocation", src="srcJpsContext", dst="dstJpsContext")

The meanings of the arguments (all required) are identical to the previous case.

To migrate just application-specific policies on WebLogic, for one application, use the script (first) or interactive (second) syntaxes (arguments are written in separate lines for clarity):

migrateSecurityStore.py -type appPolicies
 -configFile jpsConfigFileLocation
 -src srcJpsContext
 -dst dstJpsContext
 -srcApp srcAppName
 [-dstApp dstAppName]
 [-overWrite trueOrfalse]
 [migrateIdStoreMapping trueOrfalse]
 [mode laxOrstrict]

migrateSecurityStore(type="appPolicies", configFile="jpsConfigFileLocation", src="srcJpsContext", dst="dstJpsContext", srcApp="srcAppName", [dstApp="dstAppName"], [overWrite="trueOrfalse"], [migrateIdStoreMapping="trueOrfalse"], [mode="strict"])

The meanings of the arguments configFile, src, and dst are identical to the previous cases. The meaning of other five arguments is as follows:

	
srcApp specifies the name of the source application, that is, the application whose policies are being migrated.

	
dstApp specifies the name of the target application, that is, the application whose policies are being written. If unspecified, it defaults to the name of the source application.

	
migrateIdStoreMapping specifies whether enterprise policies should be migrated. The default value is True. To filter out enterprise policies from the migration, that is, to migrate just application policies, set it to False.

	
overWrite specifies whether a target policy matching a source policy should be overwritten by or merged with the source policy. Set to true to overwrite the target policy; set to false to merge matching policies. Optional. If unspecified, defaults to false.

	
mode specifies whether the migration should stop and signal an error upon encountering a duplicate principal or a duplicate permission in an application policy. Either do not specify or set to lax to allow the migration to continue upon encountering duplicate items, to migrate just one of the duplicated items, and to log a warning to this effect.

If the input does not follow the syntax requirements above, the script execution fails and returns an error. In particular, the input must satisfy the following requisites: (a) the file jps-config.xml is found in the passed location; (b) the file jps-config.xml includes the passed jps-contexts; and (c) the source and the destination context names are distinct.

8.6.2.1 Examples of Use

For complete examples illustrating the use of this script, see Section 6.5.2.1, "Migrating Policies Manually."

8.7 Configuring the Identity Provider, Property Sets, and SSO

This section explains how to use Fusion Middleware Control to configure parameters used by the User and Role APIs, property and property sets, and to specify the Single Sign-On Provider, in the following sections:

	
Configuring the Identity Store Provider

	
Configuring Properties and Property Sets

	
Specifying a Single Sign-On Solution

	
Note:

The area of the page Security Provider Configuration labeled Web Services Manager Authentication Providers pertains to the configuration of Login Modules and the Keystore for Web Services Manager only and is not relevant to ADF or Java EE applications.
For details about the login modules available, their parameters, and the keystore for those components, see chapter 9 in Oracle Fusion Middleware Security and Administrator's Guide for Oracle Web Services.

8.7.1 Configuring the Identity Store Provider

To configure the parameters used by the User and Role API that interact with the identity store, proceed as follows:

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Security Provider Configuration, or to Cell > Security > Security Provider Configuration to display the Security Provider Configuration page.

	
Expand, if necessary, the area Identity Store Provider, and click Configure to display the page Identity Store Configuration.

	
Manage custom properties, as appropriate, using the buttons Add and Delete.

	
When finished, click OK to save your settings and to return to the Security Provider Configuration page.

8.7.2 Configuring Properties and Property Sets

A property set is collection of properties typically used to define the properties of a service instance or generic properties of the domain.

For a list of OPSS configuration properties, see Appendix F, "OPSS Configuration Properties."

The elements <property> and <properySet> in the file $DOMAIN_HOME/config/fmwconfig/jps-config.xml are used to define property and property sets. Property sets can be referenced by the element <propertySetRef>.

To define a property or a property set, proceed as follows:

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Security Provider Configuration, or to Cell > Security > Security Provider Configuration to display the Security Provider Configuration page.

	
Expand, if necessary, the area Advanced Properties, and click Configure to display the Advanced Properties page, in which you can enter properties and property sets.

	
To enter a property, click Add in the Properties area to display the dialog Add New Property, and enter a property name and value. When finished, click OK. The entered property appears on the Properties table.

	
To enter a property set, click Add Property Set in the Property Sets area to display the dialog Add Property Set, and enter the property set name.

	
To enter a property in a property set, select a property set from the existing ones, then click Add Property to display the dialog Add New Property, and then enter a property name and value. The entered property is added to the list of properties in the selected property set.

	
Use the button Delete to remove a selected item from any table. When finished entering or editing properties and property sets, click OK.

	
Restart the Oracle WebLogic Server. Changes do not take effect until the server has been restarted.

The addition or deletion of property sets modifies the domain configuration file $DOMAIN_HOME/config/fmwconfig/jps-config.xml; the changes do not take effect until the server is restarted.

The elements <property> and <propertySet> added by the previous procedure are inserted directly under the element <jpsConfig>.

8.7.3 Specifying a Single Sign-On Solution

This section explains the OPSS Single Sign-On (SSO) Framework and how to configure an SSO solution using Fusion Middleware Control, in the following sections:

	
The OPSS SSO Framework

	
Configuring an SSO Solution with Fusion Middleware Control

	
OAM Configuration Example

8.7.3.1 The OPSS SSO Framework

The OPSS SSO Framework provides a way to integrate applications in a domain with an SSO solution. Specifically, it provides applications a common set of APIs across SSO products, to handle login, logout and auto login.

One of these solutions, the OAM solution, is available out-of-the-box, and it includes the following features:

	
Dynamic authentication - Upon accessing a part of a secured artifact that requires authentication, the application triggers authentication and redirects the user to be authenticated by the appropriate solution.

	
Auto login - A user who has initially accessed an application anonymously registers an account with the application; upon a successful registration, the user is redirected to the authentication URL; the user can also be automatically logged in without being prompted.

	
Global logout - When a user logs out of one application, the logout propagates across to any other application that is enabled by the solution.

For a configuration example of an OAM solution, see OAM Configuration Example.

An SSO solution must provide a standard way for applications to login and logout users. After successful authentication, the SSO service is responsible to redirect the user to the appropriate URL.It is assumed that the domain where the solution is applied has been configured to allow the Subject to contain the anonymous user and role before login and after logout, and authenticated roles after login. It is also assumed that the SSO provider has implemented a Credential Mapping Service. In the case of the out-of-the-box OAM solution, the provider implements CredentialMapperService that produces the appropriate OAM token.

The OPSS SSO framework does not support multi-level authentication.

Integration with the desired SSO solution requires a separate installation and appropriate configuration of the solution. For details about recommended solutions, see Part IV, "Single Sign-On Configuration".

8.7.3.2 Configuring an SSO Solution with Fusion Middleware Control

To specify the SSO solution used by a domain, proceed as follows:

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Security Provider Configuration or Cell > Security > Security Provider Configuration to display the Security Provider Configuration page.

	
In that page, click the Configure in the Single Sign-On Provider area to display the Single Sign-On Provider page.

	
In that page, check the box Configure Single Sign-On, to allow entering data for the provider. All boxes are grayed out until this box is checked.

	
Select the Provider Type from the pull-down list, and enter the corresponding data for the selected provider (the data required changes with the type selected).

	
Select the Authentication Level from the pull-down list.

	
Optionally, manage the provider Custom Properties using the buttons Add, Edit, and Delete, at the bottom of the page.

	
When finished, click OK to save the entered data.

8.7.3.3 OAM Configuration Example

The SSO service configuration entered with the procedure described in Configuring an SSO Solution with Fusion Middleware Control is written to the file jps-config.xml. The data specified includes:

	
A particular SSO service

	
The auto-login and auto-logout URIs

	
The authentication level

	
The query parameters contained in the URLs returned by the selected SSO service

	
The appropriate settings for token generation

The following fragment of a jps-config.xml file illustrates the configuration of an OAM SSO provider:

<propertySets>
 <propertySet name = "props.auth.url">
 <property name = "login.url.BASIC" value = "http://host:port/oam_login.cgi?level=BASIC"/>
 <property name = "login.url.FORM" value = "http://host:port/oam_login.cgi?level=FORM"/>
 <property name = "login.url.DIGEST" value = "http://host:port/oam_login.cgi?level= DIGEST"/>
 <property name = "autologin.url" value = " http://host:port/obrar.cgi"/>
 <property name = "logout.url" value = "http://host:port/logout.cgi"/>
 <property name = "param.login.successurl" value = "successurl"/>
 <property name = "param.login.cancelurl" value = "cancelurl"/>
 <property name = "param.autologin.targeturl" value = "redirectto"/>
 <property name = "param.autologin.token" value = "cookie"/>
 <property name = "param.logout.targeturl" value = "targeturl"/>
 </propertySet>

 <propertySet name="props.auth.uri">
 <property name="login.url.BASIC" value="/${app.context}/adfauthentication?level=BASIC" />
 <property name="login.url.FORM" value="/${app.context}/adfauthentication?level=FORM" />
 <property name="login.url.DIGEST" value="/${app.context}/adfauthentication?level=DIGEST" />
 <property name="autologin.url" value="/obrar.cgi" />
 <property name="logout.url" value="/${app.context}/adfauthentication?logout=true" />
 </propertySet>

 <propertySet name = "props.auth.level">
 <property name = "level.anonymous" value = "0"/>
 <property name = "level.BASIC" value = "1"/>
 <property name = "level.FORM" value = "2"/>
 <property name = "level.DIGEST" value = "3"/>
 </propertySet>
<propertySets>

<serviceProviders>
 <serviceProvider name = "sso.provider"
 class = "oracle.security.jps.internal.sso.SsoServiceProvider"
 type = "SSO">
 <description>SSO service provider</description>
 </serviceProvider>
</serviceProviders>

<serviceInstances>
 <serviceInstance name = "sso" provider = "sso.provider">
 <propertySetRef ref = "props.auth.url"/>
 <propertySetRef ref = "props.auth.level"/>
 <property name = "default.auth.level" value = "2"/>
 <property name = "token.type" value = "OAMSSOToken"/>
 <property name = "token.provider.class" value = "oracle.security.jps.wls.internal.sso.WlsTokenProvider"/>
 <property name="sso.provider.class" value="oracle.security.wls.oam.providers.sso.OAMSSOServiceProviderImpl"/>
 </serviceInstance>
</serviceInstances>

<jpsContexts default = "default">
 <jpsContext name = "default">
 <serviceInstanceRef ref = "sso"/>
 </jpsContext>
</jpsContexts>

Table 8-1 describes the meaning of the properties involved in the configuration of an SSO provider.

Table 8-1 SSO Provider Properties

	Property Name	Description
	
logout.url

	
The SSO provider logout URL.

	
login.url.BASIC

	
The SSO provider BASIC logout URL.

	
login.url.FORM

	
The SSO provider FORM logout URL.

	
login.url.DIGEST

	
The SSO provider DIGEST logout URL.

	
autologin.url

	
The self-registration URL for auto-login.

	
logout.url

	
The SSO provider logout URL.

	
param.login.successurl

	
The URL redirect after a succesful login.

	
param.login.cancelurl

	
The URL redirect after a query cancelation.

	
param.autologin.targeturl

	
The URL redirect after auto-login.

	
param.autologin.token

	
The token for auto-login.

	
param.logout.targeturl

	
The URL redirect after loggin out.

Regarding the configuration of an SSO provider, note the following important remarks:

	
Any SSO provider must define the URI for at least the FORM login with the property login.url.FORM. The value need not be a URL.

	
If the application supports a self-registration page URI or URL, it must be specified with the property autologin.url.

	
If the SSO solution supports a global logout URI or URL, it must be specified with the property logout.url. The OAM solution supports global logout.

	
The following properties, illustrated in the preceding example, are optional:

	
param.login.successurl

	
param.login.cancelurl

	
param.autologin.targeturl

	
param.login.token

	
param.logout.targeturl

	
The use of the variable app.context in URI specifications, illustrated in values within the property set props.auth.uri in the preceding example, is allowed for only ADF applications when integrating with the OAM solution.

	
The property set props.auth.level is required.

	
The reference to props.auth.url is required.

	
The property sso.provider.class within a service instance of the SSO provider is the fully qualified name of the class implementing a specific SSO solution.

In the case of the OAM solution, the provided class name is oracle.security.wls.oam.providers.sso.OAMSSOServiceProviderImpl.

	
The property name default.auth.level within a service instance of the SSO provider must be set to 2, as illustrated in the preceding example.

	
The property token.type within a service instance of the SSO provider is required.

This token type identifies the token set on the HTTP request by the SSO provider upon a successful authentication; the SSO provider uses this token, after the first time, to ensure that the user does not need to be reauthenticated and that his sign-on is still valid. In the case of the OAM solution, the token type must be OAMSSOToken, as illustrated in the preceding example.

	
The property token.provider.class within a service instance of the SSO provider is the fully qualified name of the token class, and it is provider-specific.

	
If an application implements a self-registration logic and wants to auto login a user after successful self-registration, it must call the OPSS autoLogin API; in turn, to allow this call, it must grant that application a code source permission named CredentialMapping with class JpsPermission.

The following fragment of the file system-jazn-data.xml illustrates the specification of this permission to the application MyApp:

<grant>
 <grantee>
 <codesource>
 <url>file:${oracle.deployed.app.dir}/<MyApp>${oracle.deployed.app.ext}
 </url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>CredentialMapping</name>
 </permission>
 </permissions>
</grant>

Note the use of system variables in the URL specification. For details, see Example in <url>.

8.8 Cataloging Oracle Internet Directory Attributes

An Oracle Internet Directory attribute used in a search filter must be indexed and cataloged. Indexing and cataloging are optional operations, in general, but required for OPSS-related attributes.

In a production environment, it is recommended that attribute indexing and cataloging be performed after the reassociation of the policy store has been completed.

For details about managing attribute catalogs and identifying whether an attribute is indexed, see the following sections in Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory:

The command ldapmodify, who se syntax is illustrated below, can also be used to index attributes specified in an LDIF file:

	
Adding an Index to a New Attribute by Using Oracle Directory Services Manager

	
Adding an Index to an Existing Attribute by Using Oracle Directory Services Manager

	
Dropping an Index from an Attribute by Using Oracle Directory Services Manager

	
Indexing an Attribute for Which Data Exists by Using Oracle Directory Services Manager

	
Creating and Dropping Indexes from Existing Attributes Using Catalog

>ldapmodify -h <host> -p <port> -D <bind DN> -w <bind password> -v -f <catalogue modify ldif file name>

For example, the above command can be used with the following sample LDIF file to catalog the attributes createtimestamp and modifytimestamp:

dn: cn=catalogs
changetype: modify
add: orclindexedattribute
orclindexedattribute: modifytimestamp
orclindexedattribute: createtimestamp

Each of the following Oracle Internet Directory attributes must be indexed:

	
orclrolescope

	
orclassignedroles

	
orclApplicationCommonName

	
orclAppFullName

	
orclCSFAlias

	
orclCSFKey

	
orclCSFName

	
orclCSFDBUrl

	
orclCSFDBPort

	
orclCSFCredentialType

	
orclCSFExpiryTime

	
modifytimestamp

	
createtimestamp

	
orcljpsassignee

For a note related to the need to catalog an attribute, see Section L.18, "Search Failure when Matching Attribute in Policy Store."

9 Managing the Policy Store

The following sections explain how an administrator can manage policies using either Fusion Middleware Control, OPSS scripts, or Oracle Entitlements Server:

	
Managing the Policy Store

	
Managing Policies with Fusion Middleware Control

	
Managing Application Policies with OPSS Scripts

	
Managing Application Policies with Oracle Entitlements Server

Typical operations include:

	
Changing the grants of an existing application role.

	
Revoking a permission from a principal.

	
Creating and deleting application roles.

	
Listing all application roles and members of an application role.

This chapter also includes the following sections:

	
Caching and Refreshing the Cache

	
Granting Policies to Anonymous and Authenticated Roles with WLST Scripts

	
Application Stripe for Versioned Applications in WLST Scripts

	
Guidelines for Configuring the Policy Store

9.1 Managing the Policy Store

Only a user with the appropriate permissions, such as the domain administrator, can access data in the policy store.

The following sections explain how an administrator can manage policies using either Fusion Middleware Control, OPSS scripts, or Oracle Entitlements Server. Typical operations include:

	
Managing Policies with Fusion Middleware Control

	
Managing Application Policies with OPSS Scripts

	
Managing Application Policies with Oracle Entitlements Server

To avoid unexpected authorization failures and to manage policies effectively, note the following important points:

	
Important Point 1:

Before deleting a user, revoke all permissions, application roles, and enterprise groups that have been granted to the user. If you fail to remove all security artifacts referencing a user to be deleted, they are left dangling and, potentially, be inadvertently inherited if another user with the same name or uid is created at a later time.
Similar considerations apply to when a user name or uid is changed: all policies (grants, permissions, groups) referring to old data must be updated so that it works as expected with the changed data.

See Section L.11, "User Gets Unexpected Permissions."

	
Important Point 2:

Policies use case sensitivity in names when they are applied. The best way to avoid possible authorization errors due to case in user or group names is to use the spelling of those names exactly as specified in the identity store.
It is therefore recommended that:

	
When provisioning a policy, the administrator spell the names of users and groups used in the policy exactly as they are in the identity repository. This guarantees that queries into the policy store (involving a user or group name) work as expected.

	
When entering a user name at run-time, the end-user enter a name that matches exactly the case of a name supplied in the identity repository. This guarantees that the user is authorized as expected.

See Section L.4, "Failure to Grant or Revoke Permissions - Case Mismatch."

	
Important Point 3:

The name of a resource type, a resource, or an entitlement can contain printable charactes only and it cannot start or end with a white space.
For other considerations regarding the use of characters in policies, in particular in role names, see Section L.15, "Characters in Policies."

	
Important Point 4:

Authorization failures are not visible, by default, in the console. To have authorization failures sent to the console you must set the system variable jps.auth.debug as follows: -Djps.auth.debug=true
In particular, to have JpsAuth.checkPermission failures sent to the console, you must set the variable as above.

9.2 Managing Policies with Fusion Middleware Control

Fusion Middleware Control allows managing system and application policies in a WebLogic domain, regardless of the type of policy store provider used in the domain, as explained in the following sections:

	
Managing Application Policies

	
Managing Application Roles

	
Managing System Policies

9.2.1 Managing Application Policies

This section explains the steps you follow to manage application policies with Fusion Middleware Control for an application deployed on Oracle WebLogic Server or on WebSphere Application Server.

	
Note:

If multiple applications are to share a permission and to prevent permission check failures, the corresponding permission class must be specified in the system class path.

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Application Policies (if the application is deployed on Oracle WebLogic Server), or to Cell > Security > Application Policies (if it is deployed on WebSphere Application Server), to display the Application Policies page partially illustrated in the following graphic:

[image: Surrounding text describes emapppols.gif.]

The area Policy Store Provider is read-only and, when expanded, displays the policy store provider currently in use in the domain or cell where the application is deployed.

	
Note:

If the page does not initially display policies and roles, click the blue button to display all items.

	
To display policies in an application matching a given principal or permission, expand the Search area, choose the application or application stripe to search, enter the data to match (a principal name or a permission name or both), and click the blue button. The results of the search are displayed in the table at the bottom of the page.

	
To create an application policy for the selected application or application stripe, click Create to display the Create Application Grant page. The top area Grant Details displays read-only information about the application.

	
To add permissions to the policy being created, click Add in the Permissions area to display the Add Permission dialog.

Using the Search to identify permissions matching a class or resource name, determine the Permission Class and Resource Name of the permission. Optionally, use the Customize area to further qualify the permission.

When finished, click OK to return to the Create Application Grant page. The permission you created is displayed in the table in the Permissions area.

	
To add users to the policy being created, click the button Add User in the Grantee area to display the dialog Add User.

Using the Search, identify users names matching a string; the result of the query is displayed in the Available Users box.

Using the various buttons, move the users you want to grant permissions from the Available Users box to the Selected Users box.

When finished, click OK to return to the Create Application Grant page. The users you selected are displayed in the table in the Grantee area.

	
To add application roles to the policy being created, click the button Add Application Role in the Grantee area to display the dialog Add Application Role.

Using the Search, identify role names matching a type or name; the result of the query is displayed in the Available Roles box.

Using the various buttons, move the roles you want to grant permissions from the Available Roles box to the Selected Roles box.

When finished, click OK to return to the Create Application Grant page. The roles you selected are displayed in the table in the Grantee area.

	
To add groups to the policy being created, click the button Add Group in the Grantee area to display the dialog Add Group.

Using the Search, identify the group names matching a string; the result of the query is displayed in the Available Groups box.

Using the various buttons, move the groups you want to add to the policy from the Available Groups box to the Selected Groups box.

When finished, click OK to return to the Create Application Grant page. The groups you selected are displayed in the table in the Grantee area.

	
At any point you can remove an item from the table by selecting it and clicking the Delete button; similarly, you can modify an item from the table by selecting it and clicking the Edit button.

	
When finished, click OK to return to the Application Policies page. The principal and permissions of the policy created are displayed in the table at the bottom of the page.

	
To create an application policy based on an existing one:

	
Select an existing policy from the table.

	
Click Create Like, to display the Create Application Grant Like page. Notice that in this page the table of permissions is automatically filled in with the data extracted from the policy you selected.

	
Modify those values and enter users, application roles, or groups, as appropriate, as explained in the substeps of step 3 above, and then click OK.

9.2.2 Managing Application Roles

This section explains the steps you follow to manage application roles with Fusion Middleware Control for an application deployed on Oracle WebLogic Server or on WebSphere Application Server.

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Application Roles (if the application is deployed on Oracle WebLogic Server), or to Cell > Security > Application Roles (if it is deployed on WebSphere Application Server), to display the Application Policies page partially illustrated in the following graphic:

[image: Surrounding text describes emapproles.gif.]

The area Policy Store Provider is read-only and, when expanded, displays the policy store provider currently in use in the domain where the application is deployed.

	
Note:

If the page does not initially display application roles, click the blue button to display all items.

	
To display roles in an application, expand the Search area, choose the application or application stripe to search, enter the data to match (a role name), and click the blue button. The results of the search are displayed in the table at the bottom of the page.

	
To create an application role, click Create to display the Create Application Role page. Note that you need not enter data in all areas at once. For example, you could create a role by entering the role name and display name, save your data, and later on specify the members in it. Similarly, you could enter data for role mapping at a later time.

In the area General, specify the following attributes of the role being created:

	
The name of the role, in the text box Role Name.

	
Optionally, the name to display for the role, in the text box Display Name.

	
Optionally, a description of the role, the text box Description.

In the area Members, specify the users, groups, or other application roles, if any, into which the role being created is mapped.

To add application roles to the application role being created:

	
Click Add Application Role, to display the Add Application Role dialog.

	
In this dialog, identify the available role with a name matching a string by entering the string in the box Role Name, and then clicking the blue button; the result of the query is displayed in the Available Roles box.

	
Select roles from the box Available Roles, as appropriate, and use the buttons in between the boxes to move them to the box Selected Roles.

	
When finished, click OK to return to the Create Application Role page. The selected application roles are displayed in the table Roles.

To add groups to the application role being created:

	
Click Add Group, to display the Add Group dialog.

	
In this dialog, identify the available groups with a name matching a string by entering the string the box Group Name, and then clicking the blue button; the result of the query is displayed in the Available Groups box.

	
Select groups from the box Available Groups, as appropriate, and use the buttons in between the boxes to move them to the box Selected Groups.

	
When finished, click OK to return to the Create Application Role page. The selected groups are displayed in the table Roles.

To add users to the application role being created:

	
Click Add User, to display the Add User dialog.

	
In this dialog, identify the available users with a name matching a string by entering the string in the box User Name, and then clicking the blue button; the result of the query is displayed in the Available Users box.

	
Select users from the box Available Users, as appropriate, and use the buttons in between the boxes to move them to the box Selected Users.

	
When finished, click OK to return to the Create Application Role page. The selected users are displayed in the table Users.

	
At any point you can remove an item from the table by selecting it and clicking the Delete button; similarly, you can modify an item from the table by selecting it and clicking the Edit button.

	
Click OK to effect the role creation (or update) and to return to the Application Roles page. The role just created is displayed in the table at the bottom of that page.

	
To create an application role based on an existing one:

	
Select an existing role from the table.

	
Click Create Like, to display the Create Application Role Like page. Notice that in this page the role and user tables are automatically filled in with the data extracted from the role you selected.

	
Modify the list of roles and users, as appropriate, and then click OK.

To understand how permissions are inherited in a role hierarchy, see Section 2.2.1, "Permission Inheritance and the Role Hierarchy."

9.2.3 Managing System Policies

This section explains the steps you follow to manage system policies for an Oracle WebLogic Server domain or for a WebSphere Application Server cell with Fusion Middleware Control.

The procedure below enables creating two types of system policies: principal policies and codebase policies. A principal policy grants permissions to a list of users or groups. A codebase policy grants permissions to a piece of code, typically a URL or a JAR file; for example, an application using the Credential Store Framework requires an appropriate codebase policy.

	
Log in to Fusion Middleware Control and navigate to Domain > Security > System Policies or to Cell > Security > System Policies, as appropriate, to display the System Policies page partially illustrated in the following graphic:

[image: Surrounding text describes emsyspols.gif.]

The area Policy Store Provider is read-only and, when expanded, displays the policy store provider currently in use in the domain.

	
To display application policies matching a given type, name, or permission, expand the Search area, enter the data to match, and click the blue button. The results of a query are displayed in the table at the bottom of the page.

To redisplay the table of current application policies, select the type All and leave the name and permission boxes blank.

	
At any point, you can edit the characteristics of a selected policy by clicking the Edit button, or remove it from the list by clicking the Delete button.

To create a system policy:

	
Click Create to display the Create System Grant page.

	
In the area Grant Details, select type of policy to create. The valid types are Principal or Codebase. The UI differs slightly depending on the type chose. The steps below assume the selection Principal.

	
To add permissions to policy being created, click the button Add in the Permissions area to display the Add Permission dialog. In this dialog choose a permission to add to the policy being created.

	
Use the Search area to query permissions matching a type, principal name, or permission name. The result of the query is display in the table in the Search area.

	
To choose the permission to add, select a permission from the table. Note that, when a permission is selected, its details are rendered in the read-only Customize area.

	
Click OK to return to the Create System Grant page. The selected permission is added to the table Permissions.

	
At any point, you can select a permission from the table and use the button Edit to change the characteristics of the permission, or the button Delete to remove from the list.

	
To add users to the policy being created, click the button Add User in the Grantee area to display the Add User dialog.

	
Use the Search to display user names matching a pattern. The results of the query are displayed in the box Available Users.

	
Use the buttons in between the boxes to move users from the Available Users box to the Selected Users box.

	
Click OK to return to the Create System Grant page. The users you have selected are added to the table Grantee.

	
To add groups to the policy being created, click the button Add Group in the Grantee area to display the Add Group dialog.

	
Use the Search to display group names matching a specified pattern. The results of the query are displayed in the box Available Groups.

	
Use the buttons in between the boxes to move roles from the Available Groups box to the Selected Groups box.

	
Click OK to return to the Create System Grant page. The groups you have selected are added to the table Grantee.

	
Click OK to return to the System Policies page. An message at the top of the page informs you the result of the operation. If successful, the policy is added to the table at the bottom of the page.

9.3 Managing Application Policies with OPSS Scripts

An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this section apply to both platforms: WebLogic Application Server and WebSphere Application Server.

An online script is a script that requires a connection to a running server. Unless otherwise stated, scripts listed in this section are online scripts and operate on a policy store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that are offline, that is, they do not require a server to be running to operate.

Read-only scripts can be performed only by users in the following WebLogic groups: Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only by users in the following WebLogic groups: Admin or Configurator. All WLST scripts are available out-of-the-box with the installation of the Oracle WebLogic Server.

WLST scripts can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.

WASAdmin scripts can be run in interactive mode only.

Important Note

Before invoking an OPSS script you must run (according to the platform you use) one of the scripts below to ensure that the required JARs are added to the class path.

On WebLogic:

>sh $ORACLE_HOME/common/bin/wlst.sh

To run an online script, you must connect to a WebLogic server as follows:

>java weblogic.WLST
>connect('servername', 'password', 'localhost:portnum')

For details about running OPSS scripts on WebSphere, see Oracle Fusion Middleware Third-Party Application Server Guide.

OPSS provides the following scripts on all supported platforms to administer application policies (all scripts are online, unless otherwise stated):

	
listAppStripes

	
createAppRole

	
deleteAppRole

	
grantAppRole

	
revokeAppRole

	
listAppRoles

	
listAppRolesMembers

	
grantPermission

	
revokePermission

	
listPermissions

	
deleteAppPolicies

	
createResourceType

	
getResourceType

	
deleteResourceType

	
createResource

	
deleteResource

	
listResources

	
listResourceActions

	
createEntitlement

	
getEntitlement

	
deleteEntitlement

	
addResourceToEntitlement

	
revokeResourceFromEntitlement

	
listEntitlements

	
grantEntitlement

	
revokeEntitlement

	
listEntitlement

	
listResourceTypes

	
reassociateSecurityStore

All class names specified in the above scripts must be fully qualified path names. The argument appStripe refers to the application stripe (typically, identical to the application name) and identifies the subset of policies pertaining to a particular application.

For important information about the authenticated and the anonymous roles and WLST scripts, see Section 9.5, "Granting Policies to Anonymous and Authenticated Roles with WLST Scripts."

For the correct usage of the application stripe in versioned applications, see Section 9.6, "Application Stripe for Versioned Applications in WLST Scripts."

9.3.1 listAppStripes

The script listAppStripes lists application stripes. This script can be run in offline or online mode. When run in offline mode, a configuration file must be passed, and it lists the application stripes in the policy store referred to by the configuration in the default context of the passed configuration file. When run in online mode, a configuration file must not be passed, and it lists stripes in the policy store of the domain to which you connect. In any mode, if a regular expression is passed, it lists the application stripes with names that match the regular expression; otherwise, it lists all application stripes.

If this command is used in offline mode after reassociating to a DB-based, the configuration file produced by the reassociation must be manually edited as described in Running listAppStripes after Reassociating to a DB-Based Store.

Script Mode Syntax

listAppStripes.py [-configFile configFileName]
 [-regularExpression aRegExp]

Interactive Mode Syntax

listAppStripes([configFile="configFileName"] [, regularExpression="aRegExp"])

The meanings of the arguments are as follows:

	
configFile specifies the path to the OPSS configuration file. Optional. If specified, the script runs offline; the default context in the specified configuration file must not have a service instance reference to an identity store. If unspecified, the script runs online and it lists application stripes in the policy store.

	
regularExpression specifies the regular expression that stripe names returned should match. Optional. If unspecified, it matches all names. To match substrings, use the character *.

Examples of Use

The following (online) invocation returns the list of application stripes in the policy store:

listAppStripes.py

The following (offline) invocation returns the list of application stripes in the policy store referenced in the default context of the specified configuration file:

listAppStripes.py -configFile /home/myFiles/jps-config.xml

The following (online) invocation returns the list of application stripes that contain the prefix App:

listAppStripes.py -regularExpression App*

9.3.1.1 Running listAppStripes after Reassociating to a DB-Based Store

The jps configuration file produced by the reassociation to a DB-based stored cannot be passed, as is, to the script listAppStripes (when the script is run in offline mode). To run the script in offline mode in this scenario, the passed file must be first manually edited as described below.

The following examples illustrate fragments of jps configuration files before and after reassociating to a DB-based OPSS security store, and the changes required on the file produced by the reassociation.

Before Reassociation

The following fragment illustrates the configuration of a file-based policy store before being reassociated to a DB-based store:

<serviceInstance name="policystore.xml" provider="policystore.xml.provider" location="./system-jazn-data.xml">
 <description>File Based Policy Store Service Instance</description>
</serviceInstance>

<jpsContext name="default">
 <serviceInstanceRef ref="credstore"/>
 <serviceInstanceRef ref="keystore"/>
 <serviceInstanceRef ref="policystore.xml"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="idstore.ldap"/>
 <serviceInstanceRef ref="trust"/>
</jpsContext>

After Reassociation

The following fragment illustrates the configuration file generated by the reassociation of the above store to a DB-based store:

<propertySet name="props.db.1">
 <property value="cn=soa_domain" name="oracle.security.jps.farm.name"/>
 <property value="cn=jpsroot" name="oracle.security.jps.ldap.root.name"/>
 <property value="jdbc/opss" name="datasource.jndi.name"/>
</propertySet>

<serviceInstance provider="policystore.provider" name="policystore.db">
 <property value="DB_ORACLE" name="policystore.type"/>
 <propertySetRef ref="props.db.1"/>
</serviceInstance>

<jpsContext name="default">
 <serviceInstanceRef ref="credstore.db"/>
 <serviceInstanceRef ref="keystore.db"/>
 <serviceInstanceRef ref="policystore.db"/>
 <serviceInstanceRef ref="audit"/>
 <serviceInstanceRef ref="idstore.ldap"/>
 <serviceInstanceRef ref="trust"/>
</jpsContext>

Required Editing

The configuration file produced by the reassociation above must be manually modified before it is passed to the offline script listAppStripes. This editing involves (a) changing the list of properties props.db.1 above to the following:

<propertySet name="props.db.1">
 <property value="cn=reassociation" name="oracle.security.jps.ldap.root.name"/>
 <property value="cn=soa_domain" name="oracle.security.jps.farm.name"/>

 <property value="jdbc:oracle:thin:@dadvma0170:1521:rdbms" name="jdbc.url"/>
 <property value="rc1_opss" name="security.principal"/>
 <property value="oracle.jdbc.driver.OracleDriver" name="jdbc.driver"/>
 <property value="welcome1" name="security.credential"/>
</propertySet>

in which the property datasource.jndi.name has been replaced by four other properties; and (b) removing the reference to the identity store in the default context (that is, the line <serviceInstanceRef ref="idstore.ldap"/>)

The edited file can then be passed to the offline script, which should run without errors.

9.3.2 createAppRole

The script createAppRole creates an application role in the policy store with given application stripe and role name.

Script Mode Syntax

createAppRole.py -appStripe appName
 -appRoleName roleName

Interactive Mode Syntax

createAppRole(appStripe="appName", appRoleName="roleName")

The meanings of the arguments (all required) are as follows:

	
appStripe specifies an application stripe.

	
appRoleName specifies a role name.

Example of Use

The following invocation creates an application role with application stripe myApp and role name myRole:

createAppRole.py -appStripe myApp -appRoleName myRole

9.3.3 deleteAppRole

The script deleteAppRole removes an application role from the passed stripe. Specifically, this script applies a cascading deletion by removing:

	
All grants where the role is present

	
The role from any other role of which it is a member

	
All roles that are member of the role

Script Mode Syntax

deleteAppRole.py -appStripe appName -appRoleName roleName

Interactive Mode Syntax

deleteAppRole(appStripe="appName", appRoleName="roleName")

The meanings of the arguments (all required) are as follows:

	
appStripe specifies an application stripe.

	
appRoleName specifies a role name.

Example of Use

The following invocation removes the role with application stripe myApp and name myRole:

deleteAppRole.py -appStripe myApp -appRoleName myRole

9.3.4 grantAppRole

The script grantAppRole adds a principal (class and name) to a role with a given application stripe and name, and it can be used to build or modify an application role hierarchy.

Script Mode Syntax

grantAppRole.py -appStripe appName
 -appRoleName roleName
 -principalClass className
 -principalName prName

Interactive Mode Syntax

grantAppRole(appStripe="appName", appRoleName="roleName", principalClass="className", principalName="prName")

The meanings of the arguments (all required) are as follows:

	
appStripe specifies an application stripe.

	
appRoleName specifies a role name.

	
principalClass specifies the fully qualified name of a class; this class must be included in the class path so that it is available at runtime. Typically, if the principal is a user, the class is weblogic.security.principal.WLSUserImpl, and if the principal is a group, the class is weblogic.security.principal.WLSGroupImpl.

	
principalName specifies the principal name.

Example of Use

The following invocation adds the principal myPrincipal, defined by the default principal implementation class WLSGroupImpl, to the role myRole in the application stripe myApp:

grantAppRole.py -appStripe myApp
 -appRoleName myRole
 -principalClass weblogic.security.principal.WLSGroupImpl
 -principalName myPrincipal

9.3.5 revokeAppRole

The script revokeAppRole removes a principal (class and name) from a role with a given application stripe and name, and it can be used to modify an application role hierarchy.

Script Mode Syntax

revokeAppRole.py -appStripe appName
 -appRoleName roleName
 -principalClass className
 -principalName prName

Interactive Mode Syntax

revokeAppRole(appStripe="appName", appRoleName="roleName", principalClass="className", principalName="prName")

The meanings of the arguments (all required) are as follows:

	
appStripe specifies an application stripe.

	
appRoleName specifies a role name.

	
principalClass specifies the fully qualified name of the principal class.

	
principalName specifies the principal name.

Example of Use

The following invocation removes the principal myPrincipal, defined by the default principal implementation class WLSGroupImpl, from the role myRole in the application stripe myApp:

revokeAppRole.py -appStripe myApp
 -appRoleName myRole
 -principalClass weblogic.security.principal.WLSGroupImpl
 -principalName myPrincipal

9.3.6 listAppRoles

The script listAppRoles lists all roles with a given application stripe.

Script Mode Syntax

listAppRoles.py -appStripe appName

Interactive Mode Syntax

listAppRoles(appStripe="appName")

The meaning of the argument (required) is as follows:

	
appStripe specifies an application stripe.

Example of Use

The following invocation returns all the roles with application stripe myApp:

listAppRoles.py -appStripe myApp

9.3.7 listAppRolesMembers

The script listAppRoleMembers lists all members in a role with a given application stripe and role name.

Script Mode Syntax

listAppRoleMembers.py -appStripe appName
 -appRoleName roleName

Interactive Mode Syntax

listAppRoleMembers(appStripe="appName", appRoleName="roleName")

The meanings of the arguments (all required) are as follows:

	
appStripe specifies an application stripe.

	
appRoleName specifies a role name.

Example of Use

The following invocation returns all the members in a role with application stripe myApp and name myRole:

listAppRoleMembers.py -appStripe myApp
 -appRoleName myRole

9.3.8 grantPermission

The script grantPermission creates a permission granted to a code base or URL or principal, in either an application policy or the global policy section.

Script Mode Syntax

grantPermission [-appStripe appName]
 [-codeBaseURL url]
 [-principalClass prClassName]
 [-principalName prName]
 -permClass permissionClassName
 [-permTarget permName]
 [-permActions comma_separated_list_of_actions]

Interactive Mode Syntax

grantPermission([appStripe="appName",] [codeBaseURL="url",] [principalClass="prClassName",] [principalName="prName",] permClass="permissionClassName", [permTarget="permName",]
[permActions="comma_separated_list_of_actions"])

The meanings of the arguments (optional arguments are enclosed in between square brackets) are as follows:

	
appStripe specifies an application stripe. If not specified, then the script works on system policies.

	
codeBaseURL specifies the URL of the code granted the permission.

	
principalClass specifies the fully qualified name of a class (grantee).

	
principalName specifies the name of the grantee principal.

	
permClass specifies the fully qualified name of the permission class.

	
permTarget specifies, when available, the name of the permission target. Some permissions may not include this attribute.

	
permActions specifies the list of actions granted. Some permissions may not include this attribute and the actions available depend on the permission class.

Examples of Use

The following invocation creates an application permission (for the application with application stripe myApp) with the specified data:

grantPermission.py -appStripe myApp
 -principalClass my.custom.Principal
 -principalName manager
 -permClass java.security.AllPermission

The following invocation creates a system permission with the specified data:

grantPermission.py -principalClass my.custom.Principal
 -principalName manager
 -permClass java.io.FilePermission
 -permTarget /tmp/fileName.ext
 -permActions read,write

9.3.9 revokePermission

The script revokePermission removes a permission from a principal or code base defined in an application or the global policy section.

Script Mode Syntax

revokePermission [-appStripe appName]
 [-codeBaseURL url]
 [-principalClass prClassName]
 [-principalName prName]
 -permClass permissionClassName
 [-permTarget permName]
 [-permActions comma_separated_list_of_actions]

Interactive Mode Syntax

revokePermission([appStripe="appName",][codeBaseURL="url",]
[principalClass="prClassName",] [principalName="prName",]
permClass="permissionClassName", [permTarget="permName",] [permActions="comma_separated_list_of_actions"])

The meanings of the arguments (optional arguments are enclosed in between square brackets) are as follows:

	
appStripe specifies an application stripe. If not specified, then the script works on system policies.

	
codeBaseURL specifies the URL of the code granted the permission.

	
principalClass specifies the fully qualified name of a class (grantee).

	
principalName specifies the name of the grantee principal.

	
permClass specifies the fully qualified name of the permission class.

	
permTarget specifies, when available, the name of the permission target. (Note that some permissions may not include this attribute.)

	
permActions specifies the list of actions removed. Note that some permissions may not include this attribute and the actions available depend on the permission class.

Examples of Use

The following invocation removes the application permission (for the application with application stripe myApp) with the specified data:

revokePermission.py -appStripe myApp
 -principalClass my.custom.Principal
 -principalName manager
 -permClass java.security.AllPermission

The following invocation removes the system permission with the specified data:

revokePermission.py -principalClass my.custom.Principal
 -principalName manager
 -permClass java.io.FilePermission
 -permTarget /tmp/fileName.ext
 -permActions read,write

9.3.10 listPermissions

The script listPermissions lists all permissions granted to a given principal.

Script Mode Syntax

listPermissions [-appStripe appName]
 -principalClass className
 -principalName prName

Interactive Mode Syntax

listPermissions([appStripe="appName",] principalClass="className", principalName="prName")

The meanings of the arguments (optional arguments are enclosed in between square brackets) are as follows:

	
appStripe specifies an application stripe. If not specified, then the script works on system policies.

	
principalClass specifies the fully qualified name of a class (grantee).

	
principalName specifies the name of the grantee principal.

Examples of Use

The following invocation lists all permissions granted to a principal by the policies of application myApp:

listPermissions.py -appStripe myApp
 -principalClass my.custom.Principal
 -principalName manager

The following invocation lists all permissions granted to a principal by system policies:

listPermissions.py -principalClass my.custom.Principal
 -principalName manager

9.3.11 deleteAppPolicies

The script deleteAppPolicies removes all policies with a given application stripe.

Script Mode Syntax

deleteAppPolicies -appStripe appName

Interactive Mode Syntax

deleteAppPolicies(appStripe="appName")

The meaning of the argument (required) is as follows:

	
appStripe specifies an application stripe. If not specified, then the script works on just system policies.

Example of Use

deleteAppPolicies -appStripe myApp

9.3.12 createResourceType

The script createResourceType inserts a new <resource-type> entry in the policy store within a given application stripe and with specified name, display name, description, and actions. Optional arguments are enclosed in between square brackets; all other arguments are required.

Script Mode Syntax

createResourceType -appStripe appStripeName
 -resourceTypeName resTypeName
 -displayName displName
 -description descripString
 [-provider resTypeProvider]
 [-matcher resTypeClass]
 -actions resTypeActions
 [-delimiter delimChar]

Interactive Mode Syntax

createResourceType(appStripe="appStripeName", resourceTypeName="resTypeName", displayName="displName", description="descripString"
[, provider="resTypeProvider", matcher="resTypeClass"], actions="resTypeActions"[, delimiter="delimChar"])

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where to insert the resource type.

	
resourceTypeName specifies the name of the resource type to insert.

	
displayName specifies the name for the resource type used in UI gadgets.

	
description specifies a brief description of the resource type.

	
provider specifies the provider for the resource type.

	
matcher specifies the class of the resource type. If unspecified, it defaults to oracle.security.jps.ResourcePermission.

	
actions specifies the actions allowed on instances of the resource type.

	
delimiter specifies the character used to delimit the list of actions. If unspecified, it defaults to comma ','.

Example of Use

The following invocation creates a resource type in the stripe myApplication with actions BWPrint and ColorPrint delimited by a semicolon:

createResourceType -appStripe myApplication
 -resourceTypeName Printer
 -displayName PRINTER
 -description A resource type representing a Printer
 -provider Printer
 -matcher com.printer.Printer
 -allowedActions BWPrint;ColorPrint
 -delimiter ;

9.3.13 getResourceType

The script getResourceType returns the relevant parameters of a <resource-type> entry in the policy store within a given application stripe and with specified name.

Script Mode Syntax

getResourceType -appStripe appStripeName
 -resourceTypeName resTypeName

Interactive Mode Syntax

getResourceType(appStripe="stripeName", resourceTypeName="resTypeName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe from where to fetch the resource type.

	
resourceTypeName specifies the name of the resource type to fetch.

Example of Use

The following invocation fetches the resource type myResType from the stripe myApplication:

getResourceType -appStripe myApplication
 -resourceTypeName myResType

9.3.14 deleteResourceType

The script deleteResourceType removes a resource type with a given name from the passed application stripe. This script applies a cascading deletion by removing all resource instances of the resource type from entitlements and all grants that use resource instances of the resource type.

	
Important:

A resource type cannot be modified after it has been created. If you need to modify a resource type in any way (such as adding, renaming, or deleting an action in it), you must delete the resource type and create a new one with the appropriate values. Specifically, you must:
	
Create a new resource type.

	
Create the required new resource instances.

	
Create the required grants.

Script Mode Syntax

deleteResourceType -appStripe appStripeName
 -resourceTypeName resTypeName

Interactive Mode Syntax

deleteResourceType(appStripe="stripeName", resourceTypeName="resTypeName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe from where to remove the resource type.

	
resourceTypeName specifies the name of the resource type to remove.

Example of Use

The following invocation removes the resource type myResType from the stripe myApplication:

deleteResourceType -appStripe myApplication
 -resourceTypeName myResType

9.3.15 createResource

The script createResource creates a new resource of a specified type in a specified application stripe. The passed resource type must exist in the passed application stripe.

Script Mode Syntax

createResource -appStripe appStripeName
 -name resName
 -type resTypeName
 [-displayName dispName]
 [-description descript]

Interactive Mode Syntax

createResource(appStripe="appStripeName", name="resName", type="resTypeName" [,-displayName="dispName"] [,-description="descript"])

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the resource is created.

	
name specifies the name of the resource created.

	
type specifies the type of resource created. The passed resource type must be present in the application stripe at the time this script is invoked.

	
diplayName specifies the display name of the resource created. Optional.

	
description specifies the description of the resource created. Optional.

Example of Use

The following invocation creates the resource myResource in the stripe myApplication:

createResource -appStripe myApplication
 -name myResource
 -type myResType
 -displayName myNewResource

9.3.16 deleteResource

The script deleteResource deletes a resource and all its references from entitlements in an application stripe. The script performs a cascading deletion: if the entitlement refers to one resource only, it removes the entitlement; otherwise, it removes from the entitlement the resource actions for the passed type.

Script Mode Syntax

deleteResource -appStripe appStripeName
 -name resName
 -type resTypeName

Interactive Mode Syntax

deleteResource(appStripe="appStripeName", name="resName", type="resTypeName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the resource is deleted.

	
name specifies the name of the resource deleted.

	
type specifies the type of resource deleted. The passed resource type must be present in the application stripe at the time this script is invoked.

Example of Use

The following invocation deletes the resource myResource in the stripe myApplication:

deleteResource -appStripe myApplication
 -name myResource
 -type myResType

9.3.17 listResources

The script listResources lists resources in a specified application stripe. If a resource type is specified, it lists all the resources of the specified resource type; otherwise, it lists all the resources of all types.

Script Mode Syntax

listResources -appStripe appStripeName
 [-type resTypeName]

Interactive Mode Syntax

listResources(appStripe="appStripeName" [,type="resTypeName"])

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the resources are listed.

	
type specifies the type of resources listed. The passed resource type must be present in the application stripe at the time this script is invoked.

Examples of Use

The following invocation lists all resources of type myResType in the stripe myApplication:

listResources -appStripe myApplication
 -type myResType

The following invocation lists all resources in the stripe myApplication:

listResources -appStripe myApplication

9.3.18 listResourceActions

The script listResourceActions lists the resources and actions in an entitlement within an application stripe.

Script Mode Syntax

listResourceActions -appStripe appStripeName
 -permSetName entitlementName

Interactive Mode Syntax

listResourceActions(appStripe="appStripeName", permSetName="entitlementName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement resides.

	
permSetName specifies the name of the entitlement whose resources and actions to list.

Example of Use

The following invocation lists the resources and actions of the entitlement myEntitlement in the stripe myApplication:

listResourceActions -appStripe myApplication
 -permSetName myEntitlement

9.3.19 createEntitlement

The script createEntitlement creates a new entitlement with just one resource and a list of actions in a specified application stripe. Use addResourceToEntitlement to add additional resources to an existing entitlement; use revokeResourceFromEntitlement to delete resources from an existing entitlement.

Script Mode Syntax

createEntitlement -appStripe appStripeName
 -name entitlementName
 -resourceName resName
 -actions actionList
 [-displayName dispName]
 [-description descript]

Interactive Mode Syntax

createEntitlement(appStripe="appStripeName", name="entitlementName", resourceName="resName", actions="actionList" [,-displayName="dispName"] [,-description="descript"])

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is created.

	
name specifies the name of the entitlement created.

	
resourceName specifies the name of the one resource member of the entitlement created.

	
actions specifies a comma-separated the list of actions for the resource resourceName.

	
diplayName specifies the display name of the resource created. Optional.

	
description specifies the description of the entitlement created. Optional.

Example of Use

The following invocation creates the entitlement myEntitlement with just the resource myResource in the stripe myApplication:

createEntitlement -appStripe myApplication
 -name myEntitlement
 -resourceName myResource
 -actions read,write

9.3.20 getEntitlement

The script getEntitlement returns the name, display name, and all the resources (with their actions) of an entitlement in an application stripe.

Script Mode Syntax

getEntitlement -appStripe appStripeName
 -name entName

Interactive Mode Syntax

getEntitlement(appStripe="appStripeName", name="entName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is located.

	
name specifies the name of the entitlement to access.

Example of Use

The following invocation returns the information of the entitlement myEntitlement in the stripe myApplication:

getEntitlement -appStripe myApplication
 -name myEntitlement

9.3.21 deleteEntitlement

The script deleteEntitlement deletes an entitlement in a specified application stripe. The script performs a cascading deletion by removing all references to the specified entitlement in the application stripe.

Script Mode Syntax

deleteEntitlement -appStripe appStripeName
 -name entName

Interactive Mode Syntax

deleteEntitlement(appStripe="appStripeName", name="entName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is deleted.

	
name specifies the name of the entitlement to delete.

Example of Use

The following invocation deletes the entitlement myEntitlement in the stripe myApplication:

deleteEntitlement -appStripe myApplication
 -name myEntitlement

9.3.22 addResourceToEntitlement

The script addResourceToEntitlement adds a resource with specified actions to an entitlement in a specified application stripe. The passed resource type must exist in the passed application stripe.

Script Mode Syntax

addResourceToEntitlement -appStripe appStripeName
 -name entName
 -resourceName resName
 -resourceType resType
 -actions actionList

Interactive Mode Syntax

addResourceToEntitlement(appStripe="appStripeName", name="entName", resourceName="resName",actions="actionList")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is located.

	
name specifies the name of the entitlement to modify.

	
resourceName specifies the resource to add.

	
resourceType specifies the type of the resource to add. The passed resource type must be present in the application stripe at the time this script is invoked.

	
actions specifies the comma-separated list of actions for the added resource.

Example of Use

The following invocation adds the resource myResource to the entitlement myEntitlement in the application stripe myApplication:

addResourceToEntitlement -appStripe myApplication
 -name myEntitlement
 -resourceName myResource
 -resourceType myResType
 -actions view,edit

9.3.23 revokeResourceFromEntitlement

The script revokeResourceFromEntitlement removes a resource from an entitlement in a specified application stripe.

Script Mode Syntax

revokeResourceFromEntitlement -appStripe appStripeName
 -name entName
 -resourceName resName
 -resourceType resTypeName
 -actions actionList

Interactive Mode Syntax

revokeResourceFromEntitlement(appStripe="appStripeName", name="entName", resourceName="resName" ,-resourceType="resTypeName", actions="actionList")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is located.

	
name specifies the name of the entitlement to modify.

	
resourceName specifies the type of resource to remove.

	
resourceType specifies the type of the resource to remove.

	
actions specifies the comma-separated list of actions to remove.

Example of Use

The following invocation removes the resource myResource from the entitlement myEntitlement in the stripe myApplication:

revokeResourceFromEntitlement -appStripe myApplication
 -name myEntitlement
 -resourceName myResource
 -resourceType myResType
 -actions view,edit

9.3.24 listEntitlements

The script listEntitlements lists all the entitlements in an application stripe. If a resource name and a resource type are specified, it lists the entitlements that have a resource of the specified type matching the specified resource name; otherwise, it lists all the entitlements in the application stripe.

Script Mode Syntax

listEntitlements -appStripe appStripeName
 [-resourceTypeName resTypeName]
 [-resourceName resName]

Interactive Mode Syntax

listEntitlements(appStripe="appStripeName" [,resourceTypeName="resTypeName", resourceName="resName"])

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe from where to list entitlements.

	
resourceTypeName specifies the name of the type of the resources to list. Optional.

	
resourceName specifies the name of resource to match. Optional.

Examples of Use

The following invocation lists all the entitlements in the stripe myApplication:

listEntitlements -appStripe myApplication

The following invocation lists all the entitlements in the stripe myApplication that contain a resource type myResType and a resource whose name match the resource name myResName:

listEntitlements -appStripe myApplication
 -resourceTypeName myResType
 -resourceName myResName

9.3.25 grantEntitlement

The script grantEntitlement creates a new entitlement with a specified principal in a specified application stripe.

Script Mode Syntax

grantEntitlement -appStripe appStripeName
 -principalClass principalClass
 -principalName principalName
 -permSetName entName

Interactive Mode Syntax

grantEntitlement(appStripe="appStripeName", principalClass="principalClass", principalName="principalName" ,-permSetName="entName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is created.

	
principalClass specifies the class associated with the principal.

	
principalName specifies the name of the principal to which the entitlement is granted.

	
permSetName specifies the name of the entitlement created.

Example of Use

The following invocation creates the entitlement myEntitlement in the stripe myApplication:

grantEntitlement -appStripe myApplication
 -principalClass oracle.security.jps.service.policystore.ApplicationRole
 -principalName myPrincipalName
 -permSetName myEntitlement

9.3.26 revokeEntitlement

The script revokeEntitlement deletes an entitlement and revokes the entitlement from the principal in a specified application stripe.

Script Mode Syntax

revokeEntitlement -appStripe appStripeName
 -principalClass principalClass
 -principalName principalName
 -permSetName entName

Interactive Mode Syntax

revokeEntitlement(appStripe="appStripeName", principalClass="principalClass", principalName="principalName" ,-permSetName="entName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is deleted.

	
principalClass specifies the class associated with the principal.

	
principalName specifies the name of the principal to which the entitlement is revoked.

	
permSetName specifies the name of the entitlement deleted.

Example of Use

The following invocation deletes the entitlement myEntitlement in the stripe myApplication:

revokeEntitlement -appStripe myApplication
 -principalClass oracle.security.jps.service.policystore.ApplicationRole
 -principalName myPrincipalName
 -permSetName myEntitlement

9.3.27 listEntitlement

The script listEntitlement lists an entitlement in a specified application stripe. If a principal name and a class are specified, it lists the entitlements that match the specified principal; otherwise, it lists all the entitlements.

Script Mode Syntax

listEntitlement -appStripe appStripeName
 [-principalName principalName
 -principalClass principalClass]

Interactive Mode Syntax

listEntitlement(appStripe="appStripeName" [, principalName="principalName", principalClass="principalClass"])

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the entitlement is located.

	
principalName specifies the name of the principal to match. Optional.

	
principalClass specifies the class of the principal to match. Optional.

Example of Use

The following invocation lists all entitlements in the stripe myApplication:

listEntitlement -appStripe myApplication

9.3.28 listResourceTypes

The script listResourceTypes lists all the resource types in a specified application stripe.

Script Mode Syntax

listResourceTypes -appStripe appStripeName

Interactive Mode Syntax

listResourceTypes(appStripe="appStripeName")

The meaning of the arguments is as follows:

	
appStripe specifies the application stripe where the resource types are located.

Example of Use

The following invocation lists all resource types in the stripe myApplication:

listResourceTypes -appStripe myApplication

9.3.29 reassociateSecurityStore

The script reassociateSecurityStore migrates the OPSS security store from a source to a target LDAP- or DB-based store, and it resets the default policy and credential services to the target repository. It also allows specifying that the OPSS security store be shared with that in a different domain (see optional argument join below). The OPSS binaries and the target policy store must have compatible versions; for details, see Section L.20, "Incompatible Versions of Binaries and Policy Store."

The source can be a file-, LDAP-, or DB-based store; the only type of LDAP target supported is Oracle Internet Directory; the only type of DB target supported is DB_ORACLE. This script uses and modifies the domain configuration file jps-config.xml, and it is supported in only the interactive mode.

For recommendations involving reassociation, see Important Points.

Interactive Mode Syntax

The script syntax varies slightly according to the type of the target store.

When the target is an LDAP-based store, use the following syntax:

reassociateSecurityStore(domain="domainName", servertype="OID", ldapurl="hostAndPort", jpsroot="cnSpecification", admin="cnSpecification", password="passWord" [,join="trueOrfalse"])

When the target is a DB-based store, use the following syntax:

reeassociateSecurityStore(domain="domainName", servertype="DB_ORACLE", datasourcename="datasourceName", jpsroot="jpsRoot",[admin="adminAccnt"], [password="passWord"],[join="trueOrfalse"])

The meaning of the arguments (all required) is as follows:

	
domain: on WebLogic, specifies the domain name where the reassociating takes place; on WebSphere, specifies the WebSphere cell name.

	
admin specifies, in case of an LDAP target, the administrator's user name on the target server, and the format is cn=usrName. In case of a DB target, it is required only when the DB has a protected data source (protected with user/password); in this case, it specifies the user name set to protect the data source when the data source was created; that user and password must be present in the bootstrap credential store.

	
password specifies the password associated with the user specified for the argument admin. It is required in case of an LDAP target.

In case of a DB target, it is required only when the DB has a protected data source; in this case, it specifies the password associated with the user specified for the argument admin.

	
ldapurl specifies the URI of the LDAP server. The format is ldap//:host:port, if you are using the default port, or ldaps://host:port, if you are using an anonymous SSL or one-way SSL transmission. The secure port must be configured to handle the desired SSL connection mode, and must be distinct from the default (non-secure) port.

	
servertype specifies the kind of the target LDAP server or DB server. The only valid types are OID and DB_ORACLE.

	
jpsroot specifies the root node in the target LDAP repository under which all data is migrated. The format is cn=nodeName.

	
join specifies whether the domain is to share an OPSS security store in another domain. Optional. Set to true to share an existing store in another domain; set to false otherwise. The use of this argument allows multiple WebLogic domains to point to the same logical OPSS security store.

	
Important:

When an OPSS security store is reassociated with join=true, the bootstrap wallet from the first domain must be manually copied to the second domain. The reason for this requirement is that the first domain generates a local key that is used to encrypt the keystore data and the second domain needs to have the same key in its bootstrap wallet in order to decrypt that data.

	
datasourcename specifies the JNDI name of the JDBC data source; this should be identical to the value of the JNDI name data source entered when the data source was created; see Section 8.3.1.3, "Creating a Data Source Instance."

Examples of Use

reassociateSecurityStore(domain="myDomain", admin="cn=adminName", password="myPass", ldapurl="ldaps://myhost.example.com:3060", servertype="OID", jpsroot="cn=testNode")

Suppose that you want some other domain (distinct from myDomain, say otherDomain) to share the policy store in myDomain. Then you would invoke the script as follows:

reassociateSecurityStore(domain="otherDomain", admin="cn=adminName", password="myPass", ldapurl="ldaps://myhost.example.com:3060", servertype="OID", jpsroot="cn=testNode", join="true")

9.4 Caching and Refreshing the Cache

OPSS optimizes the authorization process by caching security artifacts.

When an application policy (or some other security artifact) is modified, the change becomes effective depending on where the application and the tool used to modified the artifact are running:

	
If both the application and the tool are running on the same host and in the same domain, the change becomes effective immediately.

	
Otherwise, if the application and the tool are running on different hosts or in different domains, the change becomes effective after the policy store cache is refreshed. The frequency of the cache refresh is determined by the value of the property oracle.security.jps.ldap.policystore.refresh.interval. The default value is 10 minutes.

9.4.1 An Example

The following use case illustrates the authorization behavior in four scenarios when (from a different domain or host) Oracle Entitlements Server is used to modify security artifacts, and the property oracle.security.jps.policystore.refresh.interval is set to 10 minutes.

The use case assumes that:

	
A user is member of an enterprise role.

	
That enterprise role is included as a member of an application role.

	
The application role is granted a permission that governs some application functionality.

Under the above assumptions, we now examine the authorization result in the following four scenarios.

Scenario A

	
The user logs in to the application.

	
The user accesses the functionality secured by the application role.

	
From another host (or domain), Oracle Entitlements Server is used to remove the enterprise role from the application role.

	
The user logs out from the application, and immediately logs back in.

	
The user is still able to access the functionality secured by the application role.

The reason for this outcome is that the policy cache has not yet been refreshed with the change introduced in step 3 above.

Scenario B

	
The user logs in to the application.

	
The user accesses the functionality secured by the application role.

	
From another host (or domain), Oracle Entitlements Server is used to remove the enterprise role from the application role.

	
The user logs out from the application, and logs back in after 10 minutes.

	
The user is not able to access the functionality secured by the application role.

The reason for this outcome is that the policy cache has been refreshed with the change introduced in step 3 above.

Scenario C

	
The user logs in to the application.

	
The user accesses the functionality secured by the application role.

	
From another host (or domain), Oracle Entitlements Server is used to remove the enterprise role from the application role.

	
The user does not log out and remains able to access the functionality secured by the application role within 10 minutes.

The reason for this outcome is that the policy cache has not yet been refreshed with the change introduced in step 3 above.

Scenario D

	
The user logs in to the application.

	
The user accesses the functionality secured by the application role.

	
From another host (or domain), Oracle Entitlements Server is used to remove the enterprise role from the application role.

	
The user does not log out, waits more than 10 minutes, and then attempts to access the functionality secured by the application role: the access is denied.

The reason for this outcome is that the policy cache has been refreshed with the change introduced in step 3 above.

9.5 Granting Policies to Anonymous and Authenticated Roles with WLST Scripts

Several WLST scripts require the specification of the principal name and the principal class for a role involved in the operation.

For example, the following invocation adds a principal to the role with application stripe myApp and name myAppRole:

grantAppRole.py -appStripe myApp -appRoleName myAppRole
 -principalClass myPrincipalClass -principalName myPrincipal

When in such scripts the principal refers to the authenticated role or the anonymous role, the principal names and principal classes are fixed and must be one of the following pairs:

	
Authenticated role

	
Name: authenticated-role

	
Class: oracle.security.jps.internal.core.principals.JpsAuthenticatedRoleImpl

	
Anonymous role

	
Name: anonymous-role

	
Class: oracle.security.jps.internal.core.principals.JpsAnonymousRoleImpl

The list of WLST scripts that required the above principal name and class specification are the following:

	
grantAppRole

	
revokeAppRole

	
grantPermission

	
revokePermission

	
listPermissions

9.6 Application Stripe for Versioned Applications in WLST Scripts

Several WLST scripts require the specification of an application stripe. If the application is not versioned, the application stripe defaults to the application name. Otherwise, if the application is versioned, the application name and the application stripe are not identical.

For example, the name of a versioned application with name myApp and version 1 is displayed myApp(v1.0) in Fusion Middleware Control pages, but the application stripe of this application is myApp#v1.0.

In general, an application with display name appName(vers) has application stripe appName#vers. It is this last string that should be passed as the application stripe in WLST scripts, as illustrated in the following invocation:

>listAppRoles myApp#v1.0

The list of WLST scripts that can use stripe specification are the following:

	
createAppRole

	
deleteAppRole

	
grantAppRole

	
revokeAppRole

	
listAppRoles

	
listAppRoleMembers

	
grantPermission

	
revokePermission

	
listPermissions

	
deleteAppPolicies

9.7 Managing Application Policies with Oracle Entitlements Server

Oracle Entitlements Server allows managing and searching application policies and other security artifacts in a WebLogic domain that uses an Oracle Internet Directory LDAP policy store.

For details, see the following topics in Oracle Fusion Middleware Administrator's Guide for Oracle Entitlements Server:

	
Querying Security Artifacts

	
Managing Policies and Roles

9.8 Guidelines for Configuring the Policy Store

For details about OPSS properties tune up, see section Oracle Platform Security Services Tuning in Oracle Fusion Middleware Performance and Tuning Guide.

10 Managing the Credential Store

A credential store is a repository of security data (credentials). A credential can hold user name and password combinations, tickets, or public key certificates. Credentials are used during authentication, when principals are populated in subjects, and, further, during authorization, when determining what actions the subject can perform.

Oracle Platform Security Services includes the Credential Store Framework (CSF), a set of APIs that applications can use to create, read, update, and manage credentials securely. A typical use of the credential store is to store credentials (user name and password) to access some external system, such as a database or an LDAP-base repository.

This chapter is divided into the following sections:

	
Credential Types

	
Managing Credentials with Fusion Middleware Control

	
Managing Credentials with OPSS Scripts

10.1 Credential Types

OPSS supports the following types of credentials according to the data they contain:

	
A password credential encapsulates a user name and a password.

	
A generic credential encapsulates any customized data or arbitrary token, such as a symmetric key.

In CSF, a credential is uniquely identified by a map name and a key name. Typically, the map name corresponds with the name of an application and all credentials with the same map name define a logical group of credentials, such as the credentials used by the application. The combination of map name and key name must be unique for all entries in the credential store.

Oracle Wallet is the default credential store; in a production environment, it is recommended the use of an LDAP-based Oracle Internet Directory as the credential store. It is also recommended that the Oracle Wallet be used to store X.509 certificates. The credential store does not allow the storage of end-user digital certificates.

10.2 Managing the Credential Store

Credentials can be provisioned, retrieved, modified, or deleted, but only by a user in the appropriate administration role. The following sections explain how an administrator can manage credentials using Fusion Middleware Control pages or OPSS scripts, and how code can access data in the CSF.

10.3 Managing Credentials with Fusion Middleware Control

The following procedure explains how to manage credentials with Fusion Middleware Control, including creating, viewing, deleting, or updating a credential.

	
Log in to Fusion Middleware Control and navigate to Domain > Security > Credentials, to display the Credentials page. The following graphic partially illustrates this page:

[image: Surrounding text describes emsyscreds.gif.]

The area Credential Store Provider is read-only and, when expanded, displays the credential store provider currently in use in the domain.

The table below this read-only area allows creating, editing, and searching credentials.

	
At any point, use the button Delete to remove a selected item (key or map) in the table. Note that deleting a credential map, deletes all keys in it. Similarly, use the button Edit to view or modify the data in a selected item.

	
To display credentials matching a given key name, enter the string to match in the box Credential Key Name, and then click the blue button to the right of it. The result of the query is displayed in the table.

	
To redisplay the list of credentials after examining the results of a query, select Domain > Security > Credentials.

To create a credential map:

	
Click Create Map to display the Create Map dialog.

	
In this dialog, enter the name of the map for the credential being created.

	
Click OK to return to the Credentials page. The new credential map name is displayed with a map icon in the table.

To add a key to a credential map:

	
Click Create Key to display the Create Key dialog.

	
In this dialog, select a map from the menu Select Map for the key being created, enter a key in the text box Key, and select a type (Password or Generic) from the pull-down menu Type. The dialog display changes according the type selected.

If Password is selected, enter the required fields (Key, User Name, Password, Confirm Passwords).

If Generic is selected, enter the required field Key and the credential information either as text (select Enter as Text radio button), or as a list of key-value pairs (select Enter Map of Property Name and Value Pairs radio button); to add a key-value pair, click Add Row, and then enter the Property Name, Value, and Confirm Value in the added arrow.

Figure 10-1 illustrates the Create Key dialog used to create a generic key.

	
Click OK to return to the Credentials page. The new key is displayed under the map icon corresponding to the map you selected.

Figure 10-1 The Generic Key Dialog

[image: Surrounding text describes Figure 10-1 .]

To edit a key:

	
Select a key from the table.

	
Click Edit to bring up the Edit Key dialog.

	
In that dialog, modify the key data as appropriate. In case of editing a generic key, use the red X next to a row to delete the corresponding property-value pair.

Figure 10-2 illustrates the Edit Key dialog used to edit a generic key.

	
Click OK to save your changes and return to the Credentials page.

For specific considerations that apply to ADF applications only, see section How to Edit Credentials Deployed with the Application in Oracle Fusion Middleware Administrator's Guide for Oracle Application Development Framework.

Figure 10-2 The Edit Key Dialog

[image: Surrounding text describes Figure 10-2 .]

To remove a key or a map:

	
Select the item from the table.

	
Click Delete and confirm the item's removal.

10.4 Managing Credentials with OPSS Scripts

An OPSS script is either a WLST script, in the context of the Oracle WebLogic Server, or a WASAdmin script, in the context of the WebSphere Application Server. The scripts listed in this section apply to both platforms: WebLogic Application Server and WebSphere Application Server.

An online script is a script that requires a connection to a running server. Unless otherwise stated, scripts listed in this section are online scripts and operate on a policy store, regardless of whether it is file-, LDAP-, or DB-based. There are a few scripts that are offline, that is, they do not require a server to be running to operate.

Read-only scripts can be performed only by users in the following WebLogic groups: Monitor, Operator, Configurator, or Admin. Read-write scripts can be performed only by users in the following WebLogic groups: Admin or Configurator. All WLST scripts are available out-of-the-box with the installation of the Oracle WebLogic Server.

WLST scripts can be run in interactive mode or in script mode. In interactive mode, you enter the script at a command-line prompt and view the response immediately after. In script mode, you write scripts in a text file (with a py file name extension) and run it without requiring input, much like the directives in a shell script.

WASAdmin scripts can be run in interactive mode only. For details, see Oracle Fusion Middleware Third-Party Application Server Guide.

For platform-specific requirements to run an OPSS script, see Important Note.

OPSS provides the following scripts on all supported platforms to administer credentials (all scripts are online, unless otherwise stated):

	
listCred

	
updateCred

	
createCred

	
deleteCred

	
modifyBootStrapCredential

	
addBootStrapCredential

10.4.1 listCred

The script listCred returns the list of attribute values of a credential in the credential store with given map name and key name. This script lists the data encapsulated in credentials of type password only.

Script Mode Syntax

listCred.py -map mapName -key keyName

Interactive Mode Syntax

listCred(map="mapName", key="keyName")

The meanings of the arguments (all required) are as follows:

	
map specifies a map name (folder).

	
key specifies a key name.

Example of Use

The following invocation returns all the information (such as user name, password, and description) in the credential with map name myMap and key name myKey:

listCred.py -map myMap -key myKey

10.4.2 updateCred

The script updateCred modifies the type, user name, and password of a credential in the credential store with given map name and key name. This script updates the data encapsulated in credentials of type password only. Only the interactive mode is supported.

Interactive Mode Syntax

updateCred(map="mapName", key="keyName", user="userName", password="passW", [desc="description"])

The meanings of the arguments (optional arguments are enclosed by square brackets) are as follows:

	
map specifies a map name (folder) in the credential store.

	
key specifies a key name.

	
user specifies the credential user name.

	
password specifies the credential password.

	
desc specifies a string describing the credential.

Example of Use

The following invocation updates the user name, password, and description of the password credential with map name myMap and key name myKey:

updateCred(map="myMap", key="myKey", user="myUsr", password="myPassw")

10.4.3 createCred

The script createCred creates a credential in the credential store with a given map name, key name, user name and password. This script can create a credential of type password only. Only the interactive mode is supported.

Interactive Mode Syntax

createCred(map="mapName", key="keyName", user="userName", password="passW", [desc="description"])

The meanings of the arguments (optional arguments are enclosed by square brackets) are as follows:

	
map specifies the map name (folder) of the credential.

	
key specifies the key name of the credential.

	
user specifies the credential user name.

	
password specifies the credential password.

	
desc specifies a string describing the credential.

Example of Use

The following invocation creates a password credential with the specified data:

createCred(map="myMap", key="myKey", user="myUsr", password="myPassw")

10.4.4 deleteCred

The script deleteCred removes a credential with given map name and key name from the credential store.

Script Mode Syntax

deleteCred.py -map mapName -key keyName

Interactive Mode Syntax

deleteCred(map="mapName",key="keyName")

The meanings of the arguments (all required) are as follows:

	
map specifies a map name (folder).

	
key specifies a key name.

Example of Use

The following invocation removes the credential with map name myMap and key name myKey:

deleteCred.py -map myMap -key myKey

10.4.5 modifyBootStrapCredential

The offline script modifyBootStrapCredential modifies the bootstrap credentials configured in the default jps context, and it is typically used in the following scenario: suppose that the policy and credential stores are LDAP-based, and the credentials to access the LDAP store (stored in the LDAP server) are changed. Then this script can be used to seed those changes into the bootstrap credential store.

This script is available in interactive mode only.

Interactive Mode Syntax

modifyBootStrapCredential(jpsConfigFile="pathName", username="usrName", password="usrPass")

The meanings of the arguments (all required) are as follows:

	
jpsConfigFile specifies the location of the file jps-config.xml relative to the location where the script is run.

	
username specifies the distinguished name of the user in the LDAP store.

	
password specifies the password of the user.

Example of Use

Suppose that in the LDAP store, the password of the user with distinguished name cn=orcladmin has been changed to welcome1, and that the configuration file jps-config.xml is located in the current directory.Then the following invocation changes the password in the bootstrap credential store to welcome1:

modifyBootStrapCredential(jpsConfigFile='./jps-config.xml', username='cn=orcladmin', password='welcome1')

Any output regarding the audit service can be disregarded.

10.4.6 addBootStrapCredential

The offline script addBootStrapCredential adds a password credential with given map, key, user name, and user password to the bootstrap credentials configured in the default jps context of a jps configuration file.

This script is available in interactive mode only.

Interactive Mode Syntax

addBootStrapCredential(jpsConfigFile="pathName", map="mapName", key="keyName", username="usrName", password="usrPass")

The meanings of the arguments (all required) are as follows:

	
jpsConfigFile specifies the location of the file jps-config.xml relative to the location where the script is run.

	
map specifies the map of the credential to add.

	
key specifies the key of the credential to add.

	
username specifies the name of the user in the credential to add.

	
password specifies the password of the user in the credential to add.

Example of Use

The following invocation adds a credential to the bootstrap credential store:

addBootStrapCredential(jpsConfigFile='./jps-config.xml', map='myMapName', key='myKeyName', username='myUser', password='myPassword')

11 Introduction to Oracle Fusion Middleware Audit Framework

In Oracle Fusion Middleware 11g Release 1 (11.1.1), auditing provides a measure of accountability and answers the "who has done what and when" types of questions. This chapter introduces auditing in Oracle Fusion Middleware. It contains the following topics:

	
Benefits and Features of the Oracle Fusion Middleware Audit Framework

	
Overview of Audit Features

	
Oracle Fusion Middleware Audit Framework Concepts

11.1 Benefits and Features of the Oracle Fusion Middleware Audit Framework

This section contains these topics:

	
Objectives of Auditing

	
Today's Audit Challenges

	
Oracle Fusion Middleware Audit Framework in 11g

11.1.1 Objectives of Auditing

With compliance becoming an integral part of any business requirement, audit support is also becoming a focus in enterprise deployments. Customers are looking for application vendors to provide out-of-the-box audit support. In addition, middleware customers who are deploying custom applications would like to centralize the auditing of their deployed applications wherever audit is appropriate.

IT organizations are looking for several key audit features driven by compliance, monitoring, and analytics requirements.

Compliance

Compliance is obviously a major requirement in the enterprise. With regulations such as Sarbanes-Oxley (financial) and Health Insurance Portability and Accountability Act (healthcare), many customers must now be able to audit on identity information and user access on applications and devices. These include events like:

	
User profile change

	
Access rights changes

	
User access activity

	
Operational activities like starting and stopping applications, upgrades, and backups

This allows compliance officers to perform periodic reviews of compliance policies.

Monitoring

The audit data naturally provides a rich set of data for monitoring purpose. In addition to any log data and component metrics that are exposed, audit data can be used to create dashboards and to build Key Performance Indicators (KPIs) for alerts to monitor the health of the various systems on an ongoing basis.

Analytics

Audit data can also be used in assessing the efficacy of controls through analysis on the audit data. The data can also be used for risk analysis. Based on historical data, a risk score can be calculated and assigned to any user. Any runtime evaluation of user access can include the various risk scores as additional criteria to protect access to the systems.

11.1.2 Today's Audit Challenges

To satisfy the audit requirements, IT organizations often battle with the deficiencies in audit support for their deployed applications. There is no reliable standard for:

	
Audit Record Generation

	
Audit Record Format and Storage

	
Audit Policy Definition

As a result, today's audit solutions suffer from a number of key drawbacks:

	
There is no centralized audit framework.

	
The quality of audit support is inconsistent from application to application.

	
Audit data is scattered across the enterprise.

	
Complex data correlation is required before any meaningful cross-component analysis can be conducted.

	
Audit policies and their configurations are also scattered.

These factors are costing IT organization considerable amount of time and resources to build and maintain any reasonable audit solutions. With the data scattered among individual silos, and the lack of consistency and centralization, the audit solutions also tend to be fragile with idiosyncrasies among applications from different vendors with their current audit capabilities.

11.1.3 Oracle Fusion Middleware Audit Framework in 11g

Oracle Fusion Middleware Audit Framework is a new service in11g Release 1 (11.1.1), designed to provide a centralized audit framework for the middleware family of products. The framework provides audit service for the following:

	
Middleware Platform - This includes Java components such as Oracle Platform Security Services (OPSS) and Oracle Web Services. These are components that are leveraged by applications deployed in the middleware. Indirectly, all the deployed applications leveraging these Java components will benefit from the audit framework auditing events that are happening at the platform level.

	
Java EE applications - The objective is to provide a framework for Java EE applications, starting with Oracle's own components. Java EE applications will be able to create application-specific audit events.

In 11g Release 1 (11.1.1), the audit framework is only available for Oracle's own applications.

	
System Components - For system components in the middleware that are managed by Oracle Process Manager and Notification Server, the audit framework also provides an end-to-end structure similar to that for Java components.

	
See Also:

Understanding Key Oracle Fusion Middleware Concepts in the Oracle Fusion Middleware Administrator's Guide.

11.2 Overview of Audit Features

Key features of the Oracle Fusion Middleware Audit Framework include:

	
A uniform system for administering audits across a range of Java components, system components, and applications

	
Extensive support for Java component auditing, which includes:

	
support for Oracle Platform Security Services auditing for non-audit-aware applications

	
the ability to search for audit data at any application level

	
Capturing authentication history/failures, authorization history, user management, and other common transaction data

	
Flexible audit policies

	
pre-seeded audit policies, capturing customers' most common audit events, are available for ease of configuration

	
tree-like policy structure simplifies policy setup

	
Prebuilt compliance reporting features

	
Oracle Fusion Middleware Audit Framework provides out-of-the-box analytical reporting capabilities within Oracle BI Publisher; data can be analyzed on multiple dimensions (Execution Context ID (ECID), user ID, and so on) across multiple components. These reports can also be customized according to your preferences.

	
Reports are based on centralized audit data.

	
Customers can customize the reports or write their own based on the published audit schema.

See Chapter 13, "Using Audit Analysis and Reporting" for details.

	
Audit record storage

Data store (database) and files (bus-stop) are available. Maintaining a common location for all audit records simplifies maintenance.

Using a data store lets you generate reports with Oracle Business Intelligence Publisher.

	
Common audit record format

Highlights of the audit trail include:

	
baseline attributes like outcome (status), event date-time, user, and so on

	
event-specific attributes like authentication method, source IP address, target user, resource, and so on

	
contextual attributes like the execution context ID (ECID), session ID, and others

	
Common mechanism for audit policy configuration

Oracle Fusion Middleware Audit Framework offers a unified method for configuring audit policies in the domain.

	
Leverages the Oracle Fusion Middleware 11g infrastructure

	
is usable across Oracle Fusion Middleware 11g components and services such as Oracle Web Services Manager, Oracle Internet Directory, Oracle Virtual Directory, and Oracle Directory Integration and Provisioning

	
integrates with Oracle Enterprise Manager Fusion Middleware Control for UI-based configuration and management

	
integrates with wlst for command-line, script-based configuration

	
integrates with Oracle Platform Security Services to provide multiple benefits

11.3 Oracle Fusion Middleware Audit Framework Concepts

This section introduces basic concepts of the Oracle Fusion Middleware Audit Framework:

	
Audit Architecture

	
Key Technical Concepts

	
Audit Record Storage

	
Analytics

11.3.1 Audit Architecture

The Oracle Fusion Middleware Audit Framework consists of the following key components:

	
Audit APIs

These are APIs provided by the audit framework for any audit-aware components integrating with the Oracle Fusion Middleware Audit Framework. During runtime, applications may call these APIs where appropriate to audit the necessary information about a particular event happening in the application code. The interface allows applications to specify event details such as username and other attributes needed to provide the context of the event being audited.

	
Audit Events and Configuration

The Oracle Fusion Middleware Audit Framework provides a set of generic events for convenient mapping to application audit events. Some of these include common events such as authentication. The framework also allows applications to define application-specific events.

These event definitions and configurations are implemented as part of the audit service in Oracle Platform Security Services. Configurations can be updated through Enterprise Manager (UI) and WLST (command-line tool)

	
The Audit Bus-stop

Bus-stops are local files containing audit data records before they are pushed to the audit store. In the event that no audit store is configured, audit data remains in these bus-stop files. The bus-stop files are simple text files that can be queried easily to look up specific audit events. When an audit store is in place, the bus-stop acts as an intermediary between the component and the audit store. The local files are periodically uploaded to the data store based on a configurable time interval.

A key advantage of the audit store is that audit data from multiple components can be correlated and combined in reports, for example, authentication failures in all middleware components, instances and so on.

	
Audit Loader

As its name implies, the audit loader loads audit data from the audit bus-stop into the audit store, if one is configured. For Java component auditing, the audit loader is is a startup class that is started as part of the container start-up. For system components, the audit loader is a periodically spawned process that is invoked by OPMN.

	
Audit Store

The audit store is a database that contains a pre-defined Oracle Fusion Middleware Audit Framework schema, created by Repository Creation Utility (RCU). Once configured, all the audit loaders are aware of the data store and upload data to it periodically. The audit data in the store is expected to be cumulative and will grow overtime. Ideally, this should not be an operational database used by any other applications - rather, it should be a standalone RDBMS used for audit purposes only.

	
Audit Configuration Mbeans

All audit configuration is managed through audit configuration MBeans. For Java components and applications, these MBeans are present in the domain administration server and the audit configuration is centrally managed. For system components, separate MBean instances are present for every component instance. Enterprise Manager UI and command-line tools manage Audit configuration using these MBeans.

	
Oracle Business Intelligence Publisher

The data in the audit store is exposed through pre-defined reports in Oracle Business Intelligence Publisher. The reports allow users to drill down the audit data based on various criteria. For example:

	
Username

	
Time Range

	
Application Type

	
Execution Context Identifier (ECID)

You can also use Oracle Business Intelligence Publisher to create your own audit reports.

Figure 11-1 Audit Event Flow

[image: Audit event flow]

Audit Flow

The process can be illustrated by looking at the actions taken in the framework when an event (say, login) occurs at a component like Oracle HTTP Server or Oracle Virtual Directory within an application server instance:

	
Note:

The architecture shown in Figure 11-1 contains a data store; if your site did not configure a data store for auditing, the audit records reside in the bus-stop files.

	
Oracle Fusion Middleware Audit Framework is activated for a component when the component starts up.

	
The component calls an audit function to audit the event.

	
The framework checks if events of this type, status, and with certain attributes need to be audited.

	
If so, the audit function is invoked to create the audit event structure and collect event information like the status, initiator, resource, ECID, and so on.

	
The event is stored on a local file in an intermediate location known as the bus-stop; each component has its own bus-stop.

	
The next component in the flow is the Audit Loader, a which is module of the Oracle WebLogic Server instance and provides process control for that instance. The audit loader is responsible for collecting the audit records for all components running in that instance.

If a database is configured for an audit store, the audit loader pulls the events from the bus-stops and moves the data to the audit store.

	
Reports can also be generated from the audit data using Oracle BI Publisher. A set of pre-defined reports are available. (See Chapter 13, "Using Audit Analysis and Reporting".)

Application Behavior in Case of Audit Failure

It is important to note that an application does not stop execution if it is unable to record an audit event for any reason.

11.3.2 Key Technical Concepts

This section introduces key concepts in the Oracle Fusion Middleware Audit Framework.

Audit-Aware Components

The term "audit-aware" refers to components that are integrated with the Oracle Fusion Middleware Audit Framework so that audit policies can be configured and events can be audited for those components. Oracle Internet Directory is an example of an audit-aware component.

Stand-alone applications can be integrate d with the Oracle Fusion Middleware Audit Framework through configuration with the jps-config.xml file.

Audit Policy

An audit policy is a declaration of the type of events to be captured by the audit framework for a particular component. For Java components, the audit policy is defined at the domain level. For system components, the audit policy is managed at the component instance level.

Oracle Fusion Middleware Audit Framework provides several pre-defined policy types:

	
None

	
Low (audits fewer events, definition is component-dependent)

	
Medium (audits many events, definition is component-dependent)

	
Custom (implements filters to narrow the scope of audited events)

Audit Policy Component Type

This refers to the component type to be audited; for example, Oracle Internet Directory is a source of auditable events during authentication.

For lists of the events that can be audited for each component, see Section C.1, "Audit Events".

Event Filters

Certain audit events implement filters to control when the event is logged. For example, a successful login event for the Oracle Internet Directory component may be filtered for specific users.

For details, see Section 12.3, "Managing Audit Policies".

Oracle Platform Security Services

Oracle Platform Security Services, a key component of the Oracle Fusion Middleware 11g, is the Oracle Fusion Middleware security implementation for Java features such as Java Authentication and Authorization Service (JAAS) and Java EE security.

For more information about OPSS, see Section 1.1, "What is Oracle Platform Security Services?".

11.3.3 Audit Record Storage

As shown in Figure 11-1, audit data can reside in two types of storage:

	
bus-stop files for intermediate storage of audit data. Each component instance writes to its own bus-stop.

Bus-stop files are the default out-of-the-box storage mechanism for audit records:

	
For Java components, there is one bus-stop for each Oracle WebLogic Server instance. Audit records generated for all Java EE components running in a given Oracle WebLogic Server instance are stored in the same bus-stop.

	
For system components, there is a separate bus-stop for each component; thus, for example, each instance of Oracle Internet Directory has its own bus-stop.

Bus-stop files are text-based and easy to query. For further details, see Section 11.3.1, "Audit Architecture"

	
permanent storage in a database; this is known as the audit store.

If using a database, audit records generated by all components in all Oracle Fusion Middleware 11g instances in the domain are stored in the same store. You must use an audit store to utilize Oracle Business Intelligence Publisher reports.

You can move from file-based storage to an audit store. This requires a specific configuration procedure. See Section 12.2.3, "Configure a Database Audit Store for Java Components" for details.

Advantages of Using a Database Store

Having the audit records in the bus-stop files has some practical limitations:

	
you cannot view domain-level audit data

	
reports cannot be run on Oracle BI Publisher

Thus, there are certain advantages to using a database audit store:

	
You can use Oracle Business Intelligence Publisher for reporting.

	
The database store centralizes records from all components in the domain, whereas the bus-stop stores audit records on a per-instance basis.

	
performance may be improved compared to file-based storage

For these reasons, Oracle recommends that customers switch to a database store for enhanced auditing capabilities.

11.3.4 Analytics

With Oracle Fusion Middleware 11g, you can utilize Oracle Business Intelligence as a full-featured tool for structured reporting.

A large number of pre-defined reports are available, such as:

	
Users created/deleted

	
User transactions

	
Authentication and authorization failures

	
Policy violations

With Oracle Business Intelligence:

	
You can select records based on criteria like username, date-time range, and so on.

Note that Oracle Business Intelligence works with the database audit store only, and is not usable with bus-stop files.

[image: BI Publisher page]

The pre-defined audit report types available with Oracle Business Intelligence include:

	
errors and exceptions

	
operational

	
user activity

	
authentication and authorization history

	
transaction history

For further details, see Section C.2, "Pre-built Audit Reports." You can also use the audit schema details to create custom audit reports as needed.

[bookmark: CDDJEFIH][bookmark: JISEC2003]
12 Configuring and Managing Auditing

This chapter explains how to perform day-to-day audit administration tasks.

	
See Also:

Chapter 11, "Introduction to Oracle Fusion Middleware Audit Framework" for background information about auditing in Oracle Fusion Middleware.

	
Audit Administration Tasks

	
Managing the Audit Store

	
Managing Audit Policies

	
Audit Logs

	
Advanced Management of Database Store

[bookmark: CDDJBIAD][bookmark: JISEC2531]

12.1 Audit Administration Tasks

The audit administrator should plan the site's audit setup carefully by following the steps in these areas:

	
Implementation Planning

This includes planning the type of store to use for audit records, data store configuration details, and so on.

See Section 12.2, "Managing the Audit Store" for details.

	
Policy administration

The administrator must configure the appropriate audit policies to ensure that the required audit events are generated.

This is an ongoing activity since the audit policies must be able to reflect changes to the application environment, addition of components and users, and so on.

See Section 12.3, "Managing Audit Policies" for details.

	
Reports Management

This includes planning for and configuring audit reports and queries.

See Chapter 13, "Using Audit Analysis and Reporting" for details.

	
Data Administration

This includes planning/increasing the database size required to store the audit data generated, backing up the audit data and purging the audit data based on company policy.

See Section 12.5, "Advanced Management of Database Store" for details about audit store administration.

[bookmark: BABCBIFA][bookmark: JISEC3000]

12.2 Managing the Audit Store

Out of the box, the audit framework uses the file system to store audit records. In a production environment, however, Oracle recommends that you use a database audit store to provide scalability and high-availability for the audit framework.

In addition, an audit store residing in a database allows the audit data to be viewed through Oracle Business Intelligence Publisher with pre-packaged audit reports that are available with that product. Oracle Business Intelligence Publisher is available in the 11g Release 1 (11.1.1) CD pack.

This section explains these audit store management tasks in detail:

	
Create the Audit Schema using RCU

	
Set Up Audit Data Sources

	
Configure a Database Audit Store for Java Components

	
Configure a Database Audit Store for System Components

	
Tuning the Bus-stop Files

	
Configuring the Stand-alone Audit Loader

[bookmark: BABHGBAH][bookmark: JISEC3004]

12.2.1 Create the Audit Schema using RCU

To switch to a database as the permanent store for your audit records, you first use the Repository Creation Utility (RCU) to create a database store for audit data.

	
Note:

The bus-stop files store audit records in the absence of database storage.

This section explains how to create the audit schema. Once the database schema is created, you can:

	
create a datasource to point to this schema

	
update the domain configuration to switch the audit store for audit records (see Section 12.2.3.2, "Configure the Audit Store").

	
Note:

This discussion assumes that RCU and the database is already installed in your environment. See the Installation Guide for more information.

[bookmark: JISEC3414]
Before You Begin

Before you begin, make sure to collect the details on which database to use, along with the DBA credentials to use.

[bookmark: JISEC3415]
Configuring the Database Schema

Take these steps to configure a schema for the audit store:

	
Go to $RCU_HOME/bin and execute the RCU utility.

	
Choose Create at the starting screen. Click Next.

	
Enter your database details and click Next.

	
Choose the option to create a new prefix, for example IDM.

	
Also, select 'Audit Services' from the list of schemas.

	
Click Next and accept the tablespace creation.

	
Check for any errors while the schemas are being created.

This process will take several minutes to complete.

[bookmark: BABCGJIB][bookmark: JISEC3611]

12.2.2 Set Up Audit Data Sources

As explained in Section 12.2.1, "Create the Audit Schema using RCU", after you create a database schema to store audit records in a database, you must set up an Oracle WebLogic Server audit data source that points to that schema.

Take these steps to set up an audit data source:

	
Note:

This task is performed with the Oracle WebLogic Server administration console.

	
Connect to the Oracle WebLogic Server administration console:

http://host:7001/console

	
Under JDBC, click the Data Sources link.

	
The Data Sources page appears. Click New to create a new data source.

	
Enter the following details for the new data source:

	
Name: Enter a name such as Audit Data Source-0.

	
JNDI Name: jdbc/AuditDB

	
Database Type: Oracle

	
Database Driver: Oracle's Driver (Thin XA) Versions: 9.0.1, 9.0.2, 10, 11

If deploying to a managed cluster server, also check AdminServer; this ensures that the data source is listed in the audit store when switching from file to database store.

Click Next.

	
The Transaction Options page appears. Click Next.

	
The Connection Properties page appears. Enter the following information:

	
Database Name: Enter the name of the database to which you will connect. This usually maps to the SID.

	
Host Name: Enter the hostname of the database.

	
Port: Enter the database port.

	
Database User Name: This is the name of the audit schema that you created in RCU. The suffix is always IAU for the audit schema. For example, if you gave the prefix as test, then the schema name is test_iau.

	
Password: This is the password for the audit schema that you created in RCU.

Click Next.

	
The next page lists the JDBC driver class and database details. Accept the defaults, and click Test Configuration to test the connection. If you see the message "Connection established Successfully", click Next. If it displays any error, go back and check the connection details.

	
In the Select Targets page, select the servers where this data source needs to be configured, and click Finish.

[bookmark: JISEC3947]
[bookmark: sthref384]
12.2.2.1 Multiple Data Sources

For scalability and high availability, you can configure Oracle Real Application Clusters for your audit data.

For details, see:

	
Setting Up Auditing with a RAC Database Store in the Oracle Fusion Middleware High Availability Guide

	
Using WebLogic Server to Configure Audit Data Sources and Multi Data Sources in the Oracle Fusion Middleware High Availability Guide

	
Configuring the JDBC String for the Audit Loader in the Oracle Fusion Middleware High Availability Guide

	
Using WebLogic Server with Oracle RAC in Oracle Fusion Middleware Configuring and Managing JDBC for Oracle WebLogic Server

[bookmark: BABEGIJB][bookmark: JISEC3001]

12.2.3 Configure a Database Audit Store for Java Components

After the schema is created, configuring a database-based audit store involves:

	
creating a data source that points to the audit schema you created, and

	
configuring the audit store to point to the data source

This section describes the following tasks related to audit store configuration:

	
View Audit Store Configuration

	
Configure the Audit Store

	
Note:

These steps configure the audit store for Java components only. Separate steps are needed to configure the audit store for system components. See Section 12.2.4, "Configure a Database Audit Store for System Components".

By configuring the same database to store audit records for Java components and system components, you can ensure that reports for both types of components can be viewed together.

[bookmark: BABBCIEH][bookmark: JISEC3002]

12.2.3.1 View Audit Store Configuration

	
Note:

This task is performed with Oracle Enterprise Manager Fusion Middleware Control.

To view the current audit store configuration, navigate to Domain, then Security, then Audit Store.

[image: Audit store configuration]

This page shows:

	
whether or not a database is configured as the audit store. By default a database is not configured, and audit records are stored in bus-stop files.

	
Datasource JNDI Name - If a database store is configured for audit records, this field shows the JNDI name of the datasource. This field is empty when the audit store is not configured.

	
Datasource Name - If a database store is configured for audit records, this field shows the datasource name. This field is not displayed when the audit store is file-based.

	
URL - If a database repository is configured for audit records, this field shows the data source URL, which is the connect string used to connect to the database. This field is not displayed when the audit store is file-based.

See Section 12.2.2, "Set Up Audit