

Index

A B C D E G H I J L M N O P S T U W X

A

	Administration Console, 2.3.1
	
	configuring Container properties with, 3.2

	Administration Server
	
	best practices, 2.5

	Aggregation Proxy, 9.2.10, 16.3.1.5.7
	
	authenticating XCAP traffic, 9.2.10

	All-In-One Managed Server, 16.2
	authentication providers, 5.1.1

B

	Bus MBean, 9.2.2

C

	channels
	
	SIP and SIPS, 4.4.2
	TCP and TLS, 4.5

	Client-Cert authentication, 5.8
	Command Service (XDMS Provisioning), 9.2.8
	configruation
	
	locking and persisting, 3.2.1

	configuration locks, managing, 3.3
	configurations
	
	single NIC, 4.8.1

	custom channels
	
	properties, 4.4.3

D

	datatier.xml, 6.1.1
	Default Application Router (DAR), 2.2
	deployed SIP Servlets
	
	upgrading, 17

	Deployment Topologies, 16.2, 16.3.1
	deployment topologies, 16
	Diameter
	
	configuration, 2.2.1

	diameter
	
	configuration, C
	domain, 10.3
	nodes and relays, 10

	diameter applications
	
	configuring, 10.6.2

	Diameter Console, 10.4
	diameter nodes
	
	configuring, 10.6

	Diameter, resource, 2.2
	digest authentication, 5.7.4
	
	configuring, 5.7

	DNS
	
	support, 4.3

	DNS name, 4.1
	drivers
	
	deploying
	
	Oracle User Messaging Service, 13.1

E

	engine tier, 15.3
	Enterprise Deployment, 4.8, 16.3
	export and import
	
	Oracle WebLogic Communication Services (OWLCS), F

G

	Geo-Redundancy, 6.5

H

	High Availability, 16.2, 16.3.1
	HTTP Servlets
	
	configuring, 5.11

I

	identity assertion support, 5.3
	IP_ANY, 4.6
	IPv4, 4.1.1
	IPv6, 4.1.1

J

	JMX, 3.3
	JMX-compliant MBeans, 2.3.3.2
	jrockit, 8.8.4

L

	LDAP
	
	embedded, 5.7.5

	LDAP administration, 5.7.3
	Listen Address, 4.1
	Listen Port, 4.1
	load balancer, 15.2
	
	SIP-aware, 2.2

	load balancers
	
	configuring, 4.2, 4.8.5
	multi-homed, 4.2.1

	log levels, setting, 2.3.3.2.1
	logging
	
	error logging in Sash, 7.5.1

M

	MBean
	
	communication services, 3.3.2

	MBeans
	
	creating and deleting, 3.4.2

	MessagingWebServiceConfig, 9.3.3

N

	NAT (Network Address Translation, 4.8.5.3
	network resources
	
	managing, 4

	NTP
	
	configuring, 3.5.2

O

	Oracle Internet Directory (OID), 5.12
	
	configuring, 5.12.1

	Oracle User Messaging Service (UMS)
	
	configuring, 11
	managing, 13
	monitoring, 12

	Oracle WebLogic Communication Services (OWLCS)
	
	architecture, 15
	common configuration tasks, 2.6
	common security configuration tasks, 5.5
	configuration, 4.8.5.3
	configuring Presence, 9
	deployment topologies, 16
	export and import, F
	introduction, 1
	overview, 1.1
	Presence Service, 1.1.3
	security, 5
	shared configuration, 2
	SIP Data Tier partitions, 6

	Oracle WebLogic Communication Services (OWLCS)custom resources, 2.2

P

	PackageManager, 9.2.3
	Parlay X Web Services architecture, 18
	Presence
	
	configuring, 9.1
	scalable deployment, G

	Presence MBean, 9.2.4
	Presence Server
	
	configuring, 9.2

	Presence Web Services
	
	configuring, 9.3

	PresenceConsumerWebService, 9.3.2
	PresenceEventPackage, 9.2.5
	PresenceSupplierWebService, 9.3.1
	PresenceWInfoEventPackage, 9.2.6
	Proxy Registrar, 14.1, 16.3.1.5.3
	
	configuring, 14.1

S

	Sash
	
	command and subcommands, 7.3
	commands, 7.3.1
	connection to external instances, 7.2.2
	creating a user with, 7.4.1
	error logging, 7.5.1
	error logging in, 7.7
	launching, 7.2
	provisioning XDMS with, 7.5
	scripting with, 7.6
	using, 7.3
	utility, 7

	SCTP, 10.5.2
	Security Event Auditing, 5.5
	servers
	
	stopping and starting, 2.4

	SIP Application Servers, 16.3.1.5.1
	SIP Container
	
	configuring, 3

	SIP Data Tier
	
	configuration reference, B

	SIP data tier, 15.4
	SIP Infrastructure Applications
	
	configuring, 14

	SIP Servlet Container
	
	configuration reference, A

	SIP Servlet container, 2.2
	SIP Servlet Declarative Security, 5.4
	SIP Servlet Identity Assertion, 5.9
	SIP timers, 3.5.2
	startup
	
	command options, D

	STUN
	
	configuring the STUN server, 14.2, 14.2

T

	Third Party Call Control (TPCC), 1.1.2
	third-party load balancer, 16.3.1.5.2
	timer affinity, 3.5.1
	timers, 3.5
	troubleshooting, 8

U

	UA-ProfileEventPackage, 9.2.7
	User Messaging Service (UMS)
	
	messaging, 1.1.1

	users
	
	bulk provisioning, 7.6
	provisioning users using Sash, 7.4
	provisioning using the CommandService Mbean, 7.4.2

W

	WebLogic Scripting Tool (WLST), 2.3.2
	WebLogic Server platform, 1.1.4
	WLST
	
	configuring, 3.4
	invoking, 3.4.1

X

	XCapConfigManager, 9.2.9
	XDMS
	
	configuring, 9.2.1
	provisioning with Sash, 7.5
	provisioning with the CommandService MBean, 7.5.1

11 Configuring Oracle User Messaging Service

This chapter describes how to configure Oracle User Messaging Service (UMS).

This chapter includes the following topics:

	
Section 11.1, "User Messaging Service Overview"

	
Section 11.2, "Introduction to Oracle User Messaging Service Configuration"

	
Section 11.3, "Accessing User Messaging Service Configuration Pages"

	
Section 11.4, "Configuring User Messaging Service Drivers"

	
Section 11.5, "Securing User Messaging Service"

11.1 User Messaging Service Overview

Oracle User Messaging Service enables two-way communication between users and deployed applications. Key features include:

	
Support for a variety of messaging channels—Messages can be sent and received through Email, IM (XMPP), SMS (SMPP), and Voice. Messages can also be delivered to a user's SOA/WebCenter Worklist.

	
Two-way Messaging—In addition to sending messages from applications to users (referred to as outbound messaging), users can initiate messaging interactions (inbound messaging). For example, a user can send an email or text message to a specified address; the message is routed to the appropriate application which can then respond to the user or invoke another process according to its business logic.

	
User Messaging Preferences—End users can use a web interface to define preferences for how and when they receive messaging notifications. Applications immediately become more flexible; rather than deciding whether to send to a user's email address or instant messaging client, the application can simply send the message to the user, and let UMS route the message according to the user's preferences.

	
Robust Message Delivery—UMS keeps track of delivery status information provided by messaging gateways, and makes this information available to applications so that they can respond to a failed delivery. Or, applications can specify one or more failover addresses for a message in case delivery to the initial address fails. Using the failover capability of UMS frees application developers from having to implement complicated retry logic.

	
Pervasive integration within Fusion Middleware: UMS is integrated with other Fusion Middleware components providing a single consolidated bi-directional user messaging service.

	
Integration with Oracle BPEL—Oracle JDeveloper includes pre-built BPEL activities that enable messaging operations. Developers can add messaging capability to a SOA composite application by dragging and dropping the desired activity into any workflow.

	
Integration with Oracle Human Workflow—UMS enables the Human Workflow engine to send actionable messages to and receive replies from users over email.

	
Integration with Oracle BAM—Oracle BAM uses UMS to send email alerts in response to monitoring events.

	
Integration with Oracle WebCenter—UMS APIs are available to developers building applications for Oracle WebCenter Spaces. The API is a realization of Parlay X Web Services for Multimedia Messaging, version 2.1, a standard web service interface for rich messaging.

11.1.1 Components

There are three types of components that make up Oracle User Messaging Service. These components are standard Java EE applications, making it easy to deploy and manage them using the standard tools provided with Oracle WebLogic Server.

	
UMS Server: The UMS Server orchestrates message flows between applications and users. The server routes outbound messages from a client application to the appropriate driver, and routes inbound messages to the correct client application. The server also maintains a repository of previously sent messages in a persistent store, and correlates delivery status information with previously sent messages.

	
UMS Drivers: UMS Drivers connect UMS to the messaging gateways, adapting content to the various protocols supported by UMS. Drivers can be deployed or undeployed independently of one another depending on what messaging channels are available in a given installation.

	
UMS Client applications: UMS client applications implement the business logic of sending and receiving messages. A UMS client application might be a SOA application that sends messages as one step of a BPEL workflow, or a WebCenter Spaces application that can send messages from a web interface.

In addition to the components that make up UMS itself, the other key entities in a messaging environment are the external gateways required for each messaging channel. These gateways are not a part of UMS or Oracle WebLogic Server. Since UMS Drivers support widely-adopted messaging protocols, UMS can be integrated with existing infrastructures such as a corporate email servers or XMPP (Jabber) servers. Alternatively, UMS can connect to outside providers of SMS or text-to-speech services that support SMPP or VoiceXML, respectively.

11.1.2 Architecture

The system architecture of Oracle User Messaging Service is shown in Figure 11-1.

For maximum flexibility, the components of UMS are separate Java EE applications. This allows them to be deployed and managed independently of one another. For example, a particular driver can be stopped and reconfigured without affecting message delivery on all other channels.

Exchanges between UMS client applications and the UMS Server occur as SOAP/HTTP web service requests for web service clients, or through Remote EJB and JMS calls for BPEL messaging activities. Exchanges between the UMS Server and UMS Drivers occur through JMS queues.

Oracle UMS server and drivers are installed alongside SOA or BAM in their respective WebLogic Server instances. A WebCenter installation will include the necessary libraries to act as a UMS client application, invoking a server deployed in a SOA instance.

Figure 11-1 UMS architecture

[image: Description of Figure 11-1 follows]

11.2 Introduction to Oracle User Messaging Service Configuration

Oracle User Messaging Service enables users to receive notifications sent from SOA applications that are developed and deployed to the Oracle WebLogic Server using Oracle JDeveloper.

At the application level, there is notification activity for a specific delivery channel (such as SMS or E-Mail). For example, when you build a SOA application that sends e-mail notification, you drag and drop an Email Activity component from the JDeveloper Component Palette to the appropriate location within a workflow. The application connects then sends notifications.

For more information about Oracle JDeveloper, see your JDeveloper documentation.

Figure 11-2 shows a user adding an Email Activity to the BPEL process of a SOA composite application.

Figure 11-2 Setting the Notification Activity in the BPEL Workflow

[image: Description of Figure 11-2 follows]

To enable the workflow participants to receive and forward notifications, use Oracle 11g Enterprise Manager to set the Oracle User Messaging Service environment by configuring the appropriate driver instances that reside on the same Oracle WebLogic Server on which you deploy the workflow application (Figure 11-3). Oracle User Messaging Service includes drivers that support messaging through E-Mail, IM, SMS and voice channels. For more information, see Section 11.4, "Configuring User Messaging Service Drivers".

Figure 11-3 Oracle Enterprise Manager 11g Fusion Middleware Control

[image: EM Grid Control]

In order for workflow participants to actually receive the notifications, they must register the devices that they use to access messages through User Messaging Preferences (Figure 11-4).

Figure 11-4 User Messaging Preferences

[image: User Preferences screen]

11.3 Accessing User Messaging Service Configuration Pages

You configure User Messaging Service through Oracle Enterprise Manager Fusion Middleware Control. For more information on Oracle Enterprise Manager, see your Oracle Enterprise Manager documentation.

11.3.1 How to Set the Storage Method

Use the Basic Configuration page to set deployment type for the Messaging Server (that is, select the storage method for run time and management data) and add (or remove) the User Messaging Preference Business Terms that are used for creating message filters.

Select Persistent (the default) to enable entries and the Messaging Store to persist when the server has been restarted. In the Transient mode (which is recommended for lightweight deployments), the Messaging Server does not maintain any data stored in the Messaging Store after a restart.

11.3.2 How to Add or Remove User Messaging Preferences Business Terms

The Basic Configuration page enables you to add or remove the business terms used to construct the message filters in User Message Preferences. For more information about building messaging filters with business terms, refer to Adding Business Terms.

11.3.2.1 Adding Business Terms

	
Note:

Business Terms are stored per server instance. If there are multiple instances (as in a cluster), then new business terms must be added to each instance individually.

To add a business term to User Messaging Preferences:

	
Click Add.

	
Enter a descriptive name for the business term.

	
Select a data type (string, number, or date).

	
Click Apply.

11.3.2.2 Removing Business Terms

To remove a business term from User Messaging Preferences:

	
Select the business term.

	
Click Delete.

	
Click Apply to confirm the new term.

11.4 Configuring User Messaging Service Drivers

Oracle User Messaging Service includes the following drivers.

	
E-Mail Driver

	
SMPP Driver

	
XMPP Driver

	
Worklist Driver

	
Proxy Driver

	
Note:

For the cluster env, when you use separate messaging drivers for separate managed server nodes, all the drivers must be configured separately.
UMS Messaging Drivers are configured per instance. Configuring only one does not populate the configuration values to the drivers on the other cluster nodes.

11.4.1 How to Configure a Driver

To configure a driver:

	
Log into the Enterprise Manager Fusion Middleware Control console as an administrator.

	
Expand the Fusion Middleware folder (Figure 11-5).

Figure 11-5 Expanding the UMS Folder

[image: Description of Figure 11-5 follows]

	
Navigate to the User Messaging Service Home page.

	
Click usermessagingserver(soa_server1). The Associated Drivers page appears.

Figure 11-6 Drivers Associated with the UMS Instance

[image: Description of Figure 11-6 follows]

	
Select the Local tab to access the drivers collocated with the UMS server instance. These drivers may or may not be registered with the UMS server depending on whether or not they are properly configured. The ALL tab lists all drivers that are deployed in the domain and registered to all the UMS server instances.

	
Find the Email driver in the list, and then click the adjacent Configure Driver icon.

The configuration page displays (Figure 11-7).

Figure 11-7 The Basic Configuration Page for a Selected Driver

[image: Description of Figure 11-7 follows]

	
If needed, expand the Driver-Specific Configuration section and configure the driver parameters. For more information, see Section 11.4.1.1, "About Driver Properties".

11.4.1.1 About Driver Properties

Oracle User Messaging Service drivers share common properties (listed in Table 11-1) that are used by the Messaging Engine when routing outbound messages. Typically, administrators set such Quality of Service (QoS) properties as driver cost (Cost) and driver speed (Speed), supported carriers (SupportedCarriers), and supported protocols (SupportedProtocols). Driver developers configure properties that typically do not require modification by the administrator, such as supported delivery types (SupportedDeliveryTypes), and supported content types (SupportedContentTypes).

	
Note:

Properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies.

Table 11-1 Common Driver Properties

	Name	Description	Mandatory Property?
	
Capability

	
Sets the driver's capability to send or receive messages. The values are SEND, RECEIVE, and BOTH.

	
Yes

	
Cost

	
The cost level of the driver (from 0 - 10). 0 is least expensive; 10 is most expensive. If the value is not in this range, cost is considered to be 0.

	
No

	
DefaultSenderAddress

	
The default address of the sender. The driver uses these addresses when sending a message that has no sender address specified, or when the specified sender address is not in the sender addresses list and the driver does not support using the application-provided sender address.

	
No

	
SenderAddresses

	
The list of sender addresses that the driver supports. If provided by the driver, the Messaging Engine can use this to route a sending message to the driver by matching against the sender address of the message.

	
No

	
SendingQueuesInfo

	
The information for the Driver Sending Queue.

	
Yes

	
Speed

	
The speed level of the driver (from 0-10, with 10 being the fastest).

	
No

	
SupportedCarriers

	
A comma-separated list of supported carriers.

	
No

	
SupportedContent Types

	
The content type supported by the driver.

	
Yes

	
SupportedDelivery Types

	
The delivery types supported by the driver.

	
Yes

	
SupportedProtocols

	
A comma-separated list of supported protocols. Entering an asterisk (*) for any protocol.

	
No

	
SupportedStatusTypes

	
The status types supported by the driver.

	
No

	
SupportsCancel

	
Supports a Cancel operation on a message.

	
No

	
SupportsReplace

	
Supports a Replace operation on a message.

	
No

	
SupportsStatusPolling

	
For certain protocols, an active polling of the remote gateway must be performed to check the status of a message previously sent. This property indicates whether the driver supports such status polling. If set to true, the Messaging Engine invokes the driver connection's getStatus() operation.

	
No

	
SupportsTracking

	
Supports Tracking operation on a message.

	
No

11.4.1.2 Securing Passwords

Sensitive driver properties (namely, passwords) can be stored securely in the credential store using Oracle Enterprise Manager. Properties are marked with the flag Encoded Credential and have a custom entry form field.

To store a sensitive driver property securely:

	
Go to the driver configuration page of the selected driver.

	
In the Driver-Specific Configuration section, locate the property with the Encoded Credential flag set.

	
Select the credential type (Depending on the selected credential type, you will be prompted to enter the username and/or password.). There are three options:

	
Indirect password, create new user (default option)—specify the username and real password; the password will be stored in the credential store with the username as part of the key. The key and a fixed folder (map name) will be stored in the driver deployment's driverconfig.xml.

	
Indirect password, use existing user—choose an existing username/key in the credential store (to reference the password you stored previously).

	
User a clear text password—specify the password, and it will be stored directly in driverconfig.xml.

	
Click on Apply to save the changes.

	
Restart the driver application or the container for the changes to take effect.

You can check the password in the driver deployment directory's driverconfig.xml. For an indirect password, the format will be:

value="->mapName:keyName" (mapName is the driver target name, and the key is <parameter_name>.<username>)

For example, here is a sample entry in driverconfig.xml for an Email Driver's OutgoingPassword property:

<Property value="->/Farm_base_domain/base_domain/server_soa/usermessagingdriver-email:OutgoingPassword.ouser" encodedCredential="true" type="java.lang.String" mandatory="no" name="OutgoingPassword" description="oracle.sdp.messaging.EmailDriverConfig.outgoingPassword"/>

11.4.1.3 Configuring the E-Mail Driver

The E-Mail Driver both sends and receives messages (that is, its Capability property is set to BOTH by default). The E-Mail Driver sends messages over SMTP and uses either IMAP and POP3 for receiving messages.

11.4.1.3.1 E-Mail Driver Interoperability

This section details interoperability features of the E-Mail Driver.

The E-Mail driver is compatible with these protocols: POP3, IMAP4, and SMTP.

E-Mail Driver features include:

	
Automatic connection retry

	
SMTP for message sending

	
IMAP4 and POP3 for message receiving (using polling)

	
Scalable, highly available

	
Prevents message loss and avoids duplication

The Gateway Vendors and Versions in Table 11-2 have been verified.

Table 11-2 E-Mail Driver Gateway Vendors and Versions

	Vendor	Version
	
Oracle Beehive

	
Release 1 (1.4.3)

	
Oracle Collaboration Suite

	
10g Release 1 (10.1.2)

	
Microsoft Exchange

	
2003

	
Dovecot (IMAP4/POP3)

	
0.99.11

	
sendmail (SMTP)

	
8.13.1

11.4.1.3.2 Common Properties

These are common driver properties that are indicative of the capabilities of this driver for use by the engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Some properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies. For a complete description of these properties and available values refer to the javadoc of DriverConfigPropertyNames.

Table 11-3 Common Email Properties

	Name	Description	Mandatory	Default Value
	
InstanceName

	
Instance Name (for internal use only)

	
Yes

	
Email-Driver

	
Capability

	
Message sending and receiving capability

	
Yes

	
Both

	
SupportedDeliveryTypes

	
Supported Delivery Types

	
Yes

	
Email

	
SupportedContentTypes

	
Supported Content Types

	
Yes

	
text/plain, text/html, multipart/mixed, multipart/alternative, multipart/related

	
SupportedStatusTypes

	
Supported Status Types

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE, USER_REPLY_ACKNOWLEDGEMENT_SUCCESS, USER_REPLY_ACKNOWLEDGEMENT_FAILURE

	
Cost

	
Cost

	
No

	
N/A

	
Speed

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
Supported Carriers

	
No

	
N/A

	
Supported Protocols

	
Supported Protocols

	
No

	
N/A

	
SupportsCancel

	
Supports Cancel Operation on the Message

	
No

	
False

	
SupportsReplace

	
Supports Replace Operation on the Message

	
No

	
False

	
SupportsTracking

	
Supports Tracking Operation on the Message

	
No

	
False

	
SupportsStatusPolling

	
Supports Status Polling Operation on the Message

	
No

	
False

	
SenderAddresses

	
Sender Addresses

	
No

	
N/A

	
DefaultSenderAddress

	
Default Sender Address

	
No

	
N/A

	
SendingQueuesInfo

	
Driver Sending Queue Info

	
Yes

	
OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1

11.4.1.3.3 Email Custom Properties

These are properties specific to this driver and are generally associated with configuring access to the remote gateway and certain protocol or channel-specific behavior.

Table 11-4 Custom E-Mail Properties

	Name	Description	Mandatory?	Default Value
	
MailAccessProtocol

	
E-mail receiving protocol. The possible values are IMAP and POP3. Required only if e-mail receiving is supported on the driver instance

	
No

	
IMAP

	
RetryLimit

	
This value specifies the number of times to retry connecting to the incoming mail server, if the connection is lost due to some reason. The default value is -1 which means no limit to the number of tries.

	
No

	
N/A

	
MailDelFreq

	
The frequency to permanently remove deleted messages. The unit is in seconds and the default value is 300 seconds. A negative value indicates the messages should not be expunged. For the POP3 protocol, the message is expunged after it is processed.

	
No

	
600

	
AutoDelete

	
This value indicates if the driver should mark the messages deleted after they have been processed. The value can be true or false and the default value is false. For the POP3 protocol, the messages are always deleted right after they are processed.

	
No

	
True

	
CheckMailFreq

	
The frequency with which to retrieve messages from the mail server. The unit is in seconds and the default value is 5 seconds.

	
No

	
30

	
ReceiveFolder

	
The name of the folder the driver is polling messages from. The default value is INBOX.

	
No

	
INBOX

	
OutgoingMailServer

	
The name of the SMTP server. Mandatory only if e-mail sending is required

	
No

	
N/A

	
OutgoingMailServerPort

	
The port number of SMTP server. Typically 25

	
No

	
25

	
OutgoingMailServerTLS

	
Whether to use TLS encryption to communicating to SMTP server.

	
No

	
False

	
OutgoingDefaultFromAddr

	
The default FROM address (if one is not provided in the outgoing message).

	
No

	
N/A

	
OutgoingUsername

	
The username used for SMTP authentication. Required only if SMTP authentication is supported by the SMTP server.

	
No

	
N/A

	
OutgoingPassword

	
The password used for SMTP authentication. Required only if SMTP authentication is supported by the SMTP server.

	
No

	
N/A

	
IncomingMailServer

	
The host name of the incoming mail server. Required only if e-mail receiving is supported on the driver instance.

	
No

	
N/A

	
IncomingMailServerPort

	
Port number of IMAP4 (i.e. 143 or 993) or POP3 (i.e. 110 or 995) server.

	
No

	
N/A

	
IncomingMailServerSSL

	
Whether to enable SSL when connecting to IMAP4 or POP3 server.

	
No

	
False

	
IncomingMailIDs

	
The e-mail addresses corresponding to the user names. Each e-mail address is separated by a comma and must reside in the same position in the list as their corresponding user name appears on the usernames list. Required only if e-mail receiving is supported on the driver instance.

	
No

	
N/A

	
IncomingUserIDs

	
The list of user names of the mail accounts the driver instance is polling from. Each name must be separated by a comma, for example, foo,bar. Required only if e-mail receiving is supported on the driver instance

	
No

	
N/A

	
IncomingUserPasswords

	
The list of passwords corresponding to the user names. Each password is separated by a comma and must reside in the same position in the list as their corresponding user name appears on the usernames list. Required only if e-mail receiving is supported on the driver instance.

	
No

	
N/A

	
IncomingProcessingChunkSize

	
Max number of messages processed per message polling.

	
No

	
100

11.4.1.3.4 Client API MessageInfo Support

These properties are message delivery related which are specified through client API. Table 11-5 describes if the protocol or driver implementation honors such properties.

Table 11-5 Client API MessageInfo Support

	Name	Description	Support
	
Expiration

	
Expiration means how long the message will exist until it expires.

	
False

	
Delay

	
Delay means the amount of time that must elapse before the message is sent.

	
False

11.4.1.4 Configuring the SMPP Driver

SMPP (Short Message Peer-to-Peer) is one of the most popular GSM SMS protocols. User Messaging Service includes a pre-built implementation of the SMPP protocol as a driver that is capable of both sending and receiving short messages. If the sending feature is enabled, the SMPP driver opens one TCP connection to the SMS-C (Short Message Service Center) as a transmitter for sending. If the driver's receiving feature is enabled, it opens another connection to the SMS-C as a receiver for receiving. Only two TCP connections (both initiated by the driver) are needed for all communication between the driver and the SMS-C.

	
Note:

The SMPP Driver implements Version 3.4 of the SMPP protocol and only supports connections to an SMS-C that supports this version.

11.4.1.4.1 SMPP Driver Interoperability

This section details interoperability features of the SMPP Driver.

The SMPP driver is compatible with these protocols: SMPP v3.4.

SMPP Driver features include:

	
Automatic connection retry

	
HTTP proxy for firewall traversal

	
Authentication configuration

	
Configurable chunk size

	
Bulk Sending

	
Encoding: UCS2, IA5, GSM_DEFAULT

	
Priority Setting

	
Configurable Window size

	
Plain text content only

The Gateway Vendors in Table 11-6 have been verified.

Table 11-6 SMPP Driver Gateway Vendors

	Vendor
	
Logica CMG

	
Clickatell

	
Verisign

	
OpenSMPP (simulator)

11.4.1.4.2 Common Properties

These are common driver properties that are indicative of the capabilities of this driver for use by the engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Some properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies. For a complete description of these properties and available values refer to the javadoc of DriverConfigPropertyNames.

Table 11-7 Common SMPP Properties

	Name	Description	Mandatory	Default Value
	
InstanceName

	
Instance Name (for internal use only)

	
Yes

	
SMPP-Driver

	
Capability

	
Message sending and receiving capability

	
Yes

	
Both

	
SupportedDeliveryTypes

	
Supported Delivery Types

	
Yes

	
SMS

	
SupportedContentTypes

	
Supported Content Types

	
Yes

	
text/plain

	
SupportedStatusTypes

	
Supported Status Types

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
Cost

	
No

	
N/A

	
Speed

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
Supported Carriers

	
No

	
N/A

	
Supported Protocols

	
Supported Protocols

	
No

	
N/A

	
SupportsCancel

	
Supports Cancel Operation on the Message

	
No

	
False

	
SupportsReplace

	
Supports Replace Operation on the Message

	
No

	
False

	
SupportsTracking

	
Supports Tracking Operation on the Message

	
No

	
False

	
SupportsStatusPolling

	
Supports Status Polling Operation on the Message

	
No

	
False

	
SenderAddresses

	
Sender Addresses

	
No

	
N/A

	
DefaultSenderAddress

	
Default Sender Address

	
No

	
N/A

	
SendingQueuesInfo

	
Driver Sending Queue Info

	
Yes

	
OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1

11.4.1.4.3 Custom Properties

These are properties specific to this driver and are generally associated with configuring access to the remote gateway and certain protocol or channel-specific behavior.

Table 11-8 Custom SMPP Properties

	Name	Description	Mandatory?	Default Value
	
SmsAccountId

	
The Account Identifier on the SMS-C.

	
Yes

	
N/A

	
SmsServerHost

	
The name (or IP address) of the SMS-C server.

	
Yes

	
N/A

	
TransmitterSystemId

	
The account ID that is used to send out messages.

	
Yes

	
N/A

	
ReceiverSystemId

	
The account ID that is used to receive messages.

	
Yes

	
N/A

	
TransmitterSystemType

	
The type of transmitter system.

	
Yes

	
The default value is Logica.

	
ReceiverSystemType

	
The type of receiver system.

	
Yes

	
The default value is Logica.

	
TransmitterSystemPassword

	
The password of the transmitter system.

	
Yes

	
N/A

	
ReceiverSystemPassword

	
The password for the receiver system.

	
Yes

	
N/A

	
ServerTransmitterPort

	
The TCP port number of the transmitter system.

	
Yes

	
N/A

	
ServerReceiverPort

	
The TCP port number of the receiver system.

	
Yes

	
N/A

	
DefaultEncoding

	
The default encoding of the SMPP driver.

	
No

	
The default value is UCS2.

	
EncodingAutoDetect

	
If set to true (the default), the SMPP driver encodes automatically.

	
No

	
The default value is true.

	
LocalSendingPort

	
The local TCP port used by the SMPP driver to messages to the SMS-C.

	
No

	
N/A

	
LocalReceivingPort

	
The local TCP port used by the SMPP drivers to receive messages from the SMS-C.

	
No

	
N/A

	
LocalAddress

	
The host name (or IP address) of the server that hosts the SMPP driver.

	
No

	
N/A

	
WindowSize

	
The window size for SMS. This value must be a positive number.

	
No

	
The default value is 1.

	
EnquireInterval

	
The interval, in seconds, to send an enquire message to the SMS-C.

	
No

	
The default value is 30.

	
ThrottleDelay

	
The delay, in seconds, between throttles.

	
No

	
The default value is 15.

	
BindRetryDelay

	
The delay, in seconds, for a binding retry.

	
No

	
The default value is 30.

	
ResponseTimer

	
Time lapse allowed between SMPP request and response, in seconds. Default is 30.

	
No

	
30

	
RegisteredDeliveryMask

	
The delay, in seconds, for a binding retry.

	
No

	
0xFF

	
RangeSetNull

	
Set to true to set the address range field of BIND_RECEIVER to null. Set to false (the default value) to set the address range field to SmsSystemId.

	
No

	
The default value is false.

	
PriorityAllowed

	
The highest priority allowed for the SMPP driver. The range is 0 (normal) to 3 (highest).

	
No

	
The default value is 0.

	
BulkSending

	
Setting this value to true (the default) enables sending messages in bulk to the SMS-C.

	
No.

	
The default value is true.

	
PayloadSending

	
If set to true, the SMPP driver always uses the message payload properties when sending messages to the SMS-C.

	
No

	
The default value is false.

	
SourceTon

	
The Type of Number (TON) for ESME address(es) served through SMPP receiver session.

	
No

	
The default value is 0.

	
SourceNpi

	
The Numbering Plan Indicator (NPI) for ESME address(es) served through the SMPP receiver session.

	
No

	
The default value is 0.

	
DestinationTon

	
The Type of Number (TON) for destination.

	
No

	
The default value is 0.

	
DestinationNpi

	
The Numbering Plan Indicator (NPI) for destination.

	
No

	
The default value is 0.

	
ExtraErrorCode

	
A comma-separated list of error codes.

	
No

	
N/A

	
MaxChunks

	
The maximum SMS chunks for a message.

	
No

	
The default value is -1 (no maximum).

	
ChunkSize

	
The size of each SMS message chunk.

	
No

	
The default value is 160.

	
LongMessageSending

	
Supports sending long messages.

	
No

	
N/A

	
DatagramMessageMode

	
Supports Datagram Message mode.

	
No

	
N/A

11.4.1.4.4 Client API MessageInfo Support

These properties are message delivery related which are specified through client API. Table 11-9 describes if the protocol or driver implementation honors such properties.

Table 11-9 Client API MessageInfo Support

	Name	Description	Support
	
Expiration

	
Expiration means how long the message will exist until it expires.

	
True

	
Delay

	
Delay means the amount of time that must elapse before the message is sent.

	
False

11.4.1.5 Configuring the XMPP Driver

The XMPP Driver provides unidirectional as well as bidirectional access from Oracle Fusion Middleware to end users for real-time instant messaging (IM) via XMPP (Extensible Messaging and Presence Protocol). This driver enables end users to receive alert notifications or interactively chat with applications through their IM client of choice.

11.4.1.5.1 About XMPP

XMPP is an open, XML-based protocol for Instant Messaging and Presence. XMPP-based software is deployed on thousands of servers across the Internet and is used by millions of people worldwide. XMPP consists of a client-server architecture, which resembles the ubiquitous e-mail network. XMPP servers are completely decentralized, allowing anyone to set up their own server. Messaging is achieved as in the email network, where recipients are addressed by a username and a host name (for example: username@host name). In the XMPP network, users are identified by an XMPP (Jabber) ID, which consists of a username and the host name of the particular XMPP server to which the user connects. An end user of XMPP connects to an XMPP server using an XMPP client in order to send instant messages to other XMPP users. XMPP, however, is not the only protocol network available for instant messaging. XMPP has an extensible and modular architecture. It integrates with proprietary IM networks such as Yahoo, MSN, AOL and ICQ using transport gateways that can connect to these networks. This allows XMPP users to communicate with those on other networks.

In order to use the XMPP Driver in UMS, you must have access to a Jabber/XMPP server and an XMPP account for the UMS XMPP Driver instance to login as. In addition, the XMPP Driver includes configuration parameters that enable UMS to communicate with users on Yahoo, MSN, AOL or ICQ IM networks. This requires that you additionally have accounts on these proprietary IM networks to which you are connecting from the XMPP Driver, and thus, allow end users of those particular networks to communicate with UMS.

11.4.1.5.2 XMPP Driver Interoperability

This section details interoperability features of the XMPP Driver.

The XMPP driver is compatible with these protocols: XMPP (RFC 3920, 3921).

XMPP Driver features include:

	
Automatic connection retry

	
HTTP proxy for firewall traversal

	
Plain text content only

The Gateway Vendors and Versions in Table 11-6 have been verified.

Table 11-10 XMPP Driver Gateway Vendors and Versions

	Vendor	Version
	
Jabberd

	
v1, v2

	
ejabberd

	
v2

11.4.1.5.3 Third-Party Software

The XMPP Driver uses or requires the following third-party software:

Table 11-11 Required Third-Party Software

	Name	Instructions	Version(s)
	
JabberBeans

	
This driver uses the JabberBeans Java library to connect to a Jabber/XMPP Instant Messaging Server. This driver includes a licensed copy of JabberBeans (version 0.9.1).

	
0.9.1

	
XMPP Server

	
Optional. To download and install your own Jabber/XMPP server, pick and install a server from http://www.jabber.org.

	

	
Yahoo, MSN, AOL(AIM), and ICQ Transport Gateways

	
Optional. Follow the transport installation guide that comes with the Jabber/XMPP server to install and configure one or more transports to connect to proprietary IM gateways.

	

	
Note:

You do not need to install your own XMPP Server if you have access to an existing server. For a list of public servers, see http://www.jabber.org.

11.4.1.5.4 Driver Application Archive (EAR)

$ORACLE_HOME/communications/applications/sdpmessagingdriver-xmpp.ear

11.4.1.5.5 Common Properties

These are common driver properties that are indicative of the capabilities of this driver for use by the engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Some properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies. For a complete description of these properties and available values refer to the javadoc of DriverConfigPropertyNames.

Table 11-12 Common XMPP Properties

	Name	Description	Mandatory	Default Value
	
InstanceName

	
Instance Name (for internal use only)

	
Yes

	
XMPP-IM-Driver

	
Capability

	
Message sending and receiving capability

	
Yes

	
Both

	
SupportedDeliveryTypes

	
Supported Delivery Types

	
Yes

	
IM

	
SupportedContentTypes

	
Supported Content Types

	
Yes

	
text/plain

	
SupportedStatusTypes

	
Supported Status Types

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
Cost

	
No

	
N/A

	
Speed

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
Supported Carriers

	
No

	
N/A

	
Supported Protocols

	
Supported Protocols

	
No

	
N/A

	
SupportsCancel

	
Supports Cancel Operation on the Message

	
No

	
False

	
SupportsReplace

	
Supports Replace Operation on the Message

	
No

	
False

	
SupportsTracking

	
Supports Tracking Operation on the Message

	
No

	
False

	
SupportsStatusPolling

	
Supports Status Polling Operation on the Message

	
No

	
False

	
SenderAddresses

	
Sender Addresses

	
No

	
N/A

	
DefaultSenderAddress

	
Default Sender Address

	
No

	
N/A

	
SendingQueuesInfo

	
Driver Sending Queue Info

	
Yes

	
OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1

11.4.1.5.6 XMPP Custom Properties

The XMPP Driver includes the custom properties shown below.

Table 11-13 Custom XMPP Properties

	Name	Description	Mandatory	Default Values
	
IMServerHost

	
Jabber server host name. For multiple servers, use a comma-separated list (for example: my1.host.com, my2.host.com). If only one host name is specified, it will be used for all accounts.

	
Yes

	
N/A

	
IMServerPort

	
Corresponding comma-separated list of Jabber server ports (e.g. 5222, 5222)

	
Yes

	
5222

	
IMServerUsername

	
List of Jabber usernames to login as (these user accounts will be automatically created, if necessary, on the corresponding Jabber servers). If you have multiple servers listed above, there must be an equal number of usernames (one username per server). If you have only one server listed above, all usernames listed here will use that server (e.g. oracleagent1, oracleagent2). You may also enter a complete Jabber ID if its domain name is different from the Jabber server host name (for example: oracleagent1@host.com).

	
Yes

	
N/A

	
IMServerPassword

	
Corresponding comma-separated list of passwords for each username listed above.

	
Yes

	
N/A

	
YahooEnable

	
Enable/disable Yahoo Transport (set true to enable, and leave blank to set false to disable), for each user account specified above in a comma-separated list.

	
No

	
N/A

	
YahooUsername

	
Comma-separated list of Yahoo account IDs (requires that you already have these IDs registered on Yahoo), for each user account above (leave entries blank for accounts without Yahoo). Entering valid Yahoo account info allows Yahoo users to access applications via instant messaging.

	
No

	
N/A

	
YahooPassword

	
Corresponding comma-separated list of Yahoo account passwords.

	
No

	
N/A

	
MSNEnable

	
Enable/Disable MSN Transport (set 'true' to enable, and leave blank or set 'false' to disable), for each user account specified above in a comma-separated list.

	
No

	
N/A

	
MSNUsername

	
Comma-separated list of MSN Messenger (known as .NET passport) account IDs (requires that you already have these IDs registered as .NET passports), for each user account above (leave entries blank for accounts without MSN). Entering valid .NET account info allows MSN Messenger users to access applications via instant messaging.

	
No

	
N/A

	
MSNPassword

	
Corresponding comma-separated list of MSN Messenger account passwords.

	
No

	
N/A

	
AOLEnable

	
Enable/Disable AOL IM (AIM) Transport (set 'true' to enable, and leave blank or set 'false' to disable), for each user account specified above in a comma-separated list.

	
No

	
N/A

	
AOLUsername

	
Comma-separated list of AOL IM (AIM) account IDs (requires that you already have these IDs registered with AOL), for each user account above (leave entries blank for accounts without AOL). Entering valid AOL account info allows AOL users to access applications via instant messaging.

	
No

	
N/A

	
AOLPassword

	
Corresponding comma-separated list of AOL IM account passwords.

	
No

	
N/A

	
ICQEnable

	
Enable/Disable ICQ IM Transport (set 'true' to enable, and leave blank or set 'false' to disable), for each user account specified above in a comma-separated list.

	
No

	
N/A

	
ICQUsername

	
Comma-separated list of ICQ account IDs (requires that you already have these IDs registered with ICQ), for each user account above (leave entries blank for accounts without ICQ). Entering valid ICQ account info allows ICQ users to access applications via instant messaging

	
No

	
N/A

	
ICQPassword

	
Corresponding comma-separated list of ICQ account passwords.

	
No

	
N/A

	
RetryLimit

	
Number of times the driver should attempt to reconnect when disconnected from the Jabber server. Enter -1 for unlimited retries.

	
No

	
N/A

	
RetryInterval

	
Time interval (in seconds) between reconnect attempts.

	
No

	
N/A

11.4.1.5.7 Client API MessageInfo Support

These properties are message delivery related which are specified through client API. The table below describes if the protocol or driver implementation honors such properties.

Table 11-14 Client API MessageInfo Support

	Name	Description	Support
	
Expiration

	
Expiration means how long the message will exist until it expires.

	
False

	
Delay

	
Delay means the amount of time that must elapse before the message is sent.

	
False

11.4.1.6 Configuring the VoiceXML Driver

The VoiceXML Driver supports the Genesys VoiceGenie gateway's outbound call protocol to send messages authored in VoiceXML. The gateway delivers the message using text-to-speech synthesis.

11.4.1.6.1 VoiceXML Driver Interoperability

This section details interoperability features of the VoiceXML Driver.

The VoiceXML driver is compatible with these protocols: VoiceXML over HTTP (VoiceGenie gateway protocol).

VoiceXML Driver features include:

	
VoiceXML content only

The Gateway Vendor and Version in Table 11-6 has been verified.

Table 11-15 VoiceXML Driver Gateway Vendor and Version

	Vendor	Version
	
Genesys VoiceGenie

	
6.4.2

11.4.1.6.2 Common Properties

These are common driver properties that are indicative of the capabilities of this driver for use by the engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Some properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies. For a complete description of these properties and available values refer to the javadoc of DriverConfigPropertyNames.

Table 11-16 Common VoiceXML Properties

	Name	Description	Mandatory	Default Value
	
InstanceName

	
Instance Name (for internal use only)

	
Yes

	
VoiceXML-Driver

	
Capability

	
Message sending and receiving capability

	
Yes

	
SEND

	
SupportedDeliveryTypes

	
Supported Delivery Types

	
Yes

	
VOICE

	
SupportedContentTypes

	
Supported Content Types

	
Yes

	
text/vxml, text/x-vxml

	
SupportedStatusTypes

	
Supported Status Types

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
Cost

	
No

	
N/A

	
Speed

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
Supported Carriers

	
No

	
N/A

	
Supported Protocols

	
Supported Protocols

	
No

	
N/A

	
SupportsCancel

	
Supports Cancel Operation on the Message

	
No

	
False

	
SupportsReplace

	
Supports Replace Operation on the Message

	
No

	
False

	
SupportsTracking

	
Supports Tracking Operation on the Message

	
No

	
False

	
SupportsStatusPolling

	
Supports Status Polling Operation on the Message

	
No

	
False

	
SenderAddresses

	
Sender Addresses

	
No

	
N/A

	
DefaultSenderAddress

	
Default Sender Address

	
No

	
N/A

	
SendingQueuesInfo

	
Driver Sending Queue Info

	
Yes

	
OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1

11.4.1.6.3 VoiceXML Custom Properties

The VoiceXML Driver includes the custom properties shown below.

Table 11-17 Custom VoiceXML Properties

	Name	Description	Mandatory	Default Values
	
VoiceXMLOutboundServletURI

	
The URL of the VoiceXML/VoiceGenie gateway.

	
Yes

	
N/A

	
VoiceXMLOutboundServletUserName

	
The user name of the VoiceXML gateway.

	
No

	
N/A

	
VoiceXMLOutboundServletPassword

	
The password of the VoiceXML gateway.

	
No

	
N/A

	
VoiceXMLOutboundServletDNIS

	
The number that appears in the recipient's ID display.

	
No

	
N/A

	
VoiceXMLReceiveURL

	
The URL of this driver's servlet which will handle incoming requests from the VoiceXML Gateway. The format is http://<host>:<port>/usermessagingdriver-voicexml/receive. The default behavior, if this property is not set, is to use the local container's HTTP listen host and port. The auto-generated default URL will only work for the first driver instance. For additional instances, the context root is different and this property must be configured using the correct context root replacement for /sdpmessagingdriver-voicexml.

	
No

	
N/A

11.4.1.6.4 Client API MessageInfo Support

These properties are message delivery related which are specified through client API. The table below describes if the protocol or driver implementation honors such properties.

Table 11-18 Client API MessageInfo Support

	Name	Description	Support
	
Expiration

	
Expiration means how long the message will exist until it expires.

	
False

	
Delay

	
Delay means the amount of time that must elapse before the message is sent.

	
False

11.4.1.7 Configuring the Worklist Driver

The Worklist driver enables notifications from all sources to be sent to users in the form of worklist tasks for integration into the users' WebCenter Unified Worklist.

	
Note:

Worklist Message tasks are accessible both through a WebCenter that has been configured to search the BPEL connection that the Worklist message driver is sending messages to, as well as through the BPEL Worklist application. The BPEL Worklist Application will also show these message-based tasks as Worklist items.

This integration is achieved by exposing a Worklist channel (delivery type) to applications and end users. Messages sent through the user's Worklist channel are processed by the Worklist driver. The User Messaging Service API semantics are the same as those for existing channels such as IM or Email. This driver handles sending messages only. The Driver Application Archive (EAR) is located at: $ORACLE_HOME/communications/applications/sdpmessagingdriver-worklist.ear

11.4.1.7.1 Install the Worklist Driver

To enable the messaging worklist feature, the WebLogic SOA domain must be extended using the extension template available at $ORACLE_HOME/common/templates/applications/oracle.ums.driver.worklist_template_11.1.1.jar. To extend a SOA domain using the Oracle Fusion Middleware Configuration Wizard:

	
Launch Oracle Fusion Middleware Configuration Wizard ($ORACLE_HOME/common/bin/config.sh or %ORACLE_HOME%\common\bin\config.cmd).

	
Select the Extend an existing WebLogic domain option.

	
Select the desired SOA domain directory.

	
Select the Extend my domain using an existing extension template option.

	
Click Browse, and navigate to $ORACLE_HOME/common/templates/applications

	
Select oracle.ums.driver.worklist_template_11.1.1.jar

	
Complete the remaining steps of the Oracle Fusion Middleware Configuration Wizard, and restart the SOA servers.

	
Note:

Special Considerations if the SOA managed server is on a remote machine: The oracle.ums.driver.worklist_template_11.1.1.jar extension template includes a SOA composite application (sca_sdpmessagingsca-worklist-composite_rev1.0.jar) that is copied to $DOMAIN_HOME/soa/autodeploy, and is auto-deployed by the SOA Infra runtime upon server restart. However, if the SOA Infra runtime is on a remote machine, and the domain is packed with the -managed=true option (the correct option to use), this directory is not included in the archive. Thus, the composite is not deployed upon restarting the SOA managed server.
In order to complete the installation, copy the contents of $DOMAIN_HOME/soa/autodeploy from the AdminServer machine to the corresponding location on the remote machine with the SOA managed server, and restart the SOA managed server. You may have to create the directory structure soa/autodeploy under $DOMAIN_HOME on the remote machine.

11.4.1.7.2 Common Properties

The following common driver properties are indicative of the capabilities of this driver for use by the engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Some properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies. For a complete description of these properties and available values see the javadoc of DriverConfigPropertyNames.

Table 11-19 Common Worklist Properties

	Name	Description	Mandatory?	Default Value
	
InstanceName

	
Instance Name (for internal use only)

	
Yes

	
Worklist-Driver

	
Capability

	
Message sending and receiving capability

	
Yes

	
SEND

	
SupportedDeliveryTypes

	
Supported Delivery Types

	
Yes

	
WORKLIST

	
SupportedContentTypes

	
Supported Content Types

	
Yes

	
text/plain, text/html

	
SupportedStatusTypes

	
Supported Status Types

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
Cost

	
No

	
N/A

	
Speed

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
SupportedCarriers

	
No

	
N/A

	
SupportedProtocols

	
SupportedProtocols

	
No

	
N/A

	
SupportsCancel

	
Supports Cancel Operation on the Message

	
No

	
False

	
SupportsReplace

	
Supports Replace Operation on the Message

	
No

	
False

	
SupportsTracking

	
Supports Tracking Operation on the Message

	
No

	
False

	
SupportsStatusPolling

	
Supports Status Polling Operation on the Message

	
No

	
False

	
SenderAddresses

	
Sender Addresses

	
No

	
N/A

	
DefaultSenderAddress

	
Default Sender Address

	
No

	
N/A

	
SendingQueuesInfo

	
Driver Sending Queue Info

	
Yes

	
OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1

11.4.1.7.3 Custom Properties

The following custom property is available:

Table 11-20 Custom Worklist Property

	Name	Description	Mandatory	Default Value
	
BPELConnectionURL

	
The URL of the BPEL server to connect to. The format is http://<bpel-host>:<bpel-port>. The default behavior, unless changed, is to use the local container's HTTP connection URL.

	
	

11.4.1.7.4 Client API MessageInfo Support

This table shows if the protocol or driver implementation honor the following message delivery-related properties that are specified through the client API.

Table 11-21 Client API MessageInfo Support

	Name	Description	Support
	
Expiration

	
Expiration means how long the message will exist until it expires.

	
False

	
Delay

	
Delay means the amount of time that must elapse before the message is sent.

	
False

11.4.1.8 Configuring the Proxy Driver

The Proxy Driver acts as a Messaging Web Service client to a Fusion Middleware Messaging server hosted elsewhere in the intranet or Internet. It uses SOAP over HTTP (the Parlay X Multimedia Web Service protocol) to send messages and receive messages as well as return message delivery status. The ParlayX Web Service relays messages from one UMS instance to another. It can be used to relay traffic from multiple instances in an Intranet to a terminating instance that has all of the protocol-specific drivers configured to an external gateway such as an SMSC, or to an SMTP or IMAP mail server.

11.4.1.8.1 Common Properties

These are common driver properties that are indicative of the capabilities of this driver for use by the engine when routing outbound messages. Some properties are set by the driver developer and do not normally require modification, while others can be modified by the administrator to change the routing behavior. Some properties such as SendingQueuesInfo are for advanced use and only require modification for advanced deployment topologies. For a complete description of these properties and available values refer to the javadoc of DriverConfigPropertyNames.

Table 11-22 Common Proxy Properties

	Name	Description	Mandatory	Default Value
	
InstanceName

	
Instance Name (for internal use only)

	
Yes

	
Proxy-Driver

	
Capability

	
Message sending and receiving capability

	
Yes

	
SEND

	
SupportedDeliveryTypes

	
Supported Delivery Types

	
Yes

	
EMAIL, SMS, VOICE, IM, WORKLIST

	
SupportedContentTypes

	
Supported Content Types

	
Yes

	
*

	
SupportedStatusTypes

	
Supported Status Types

	
No

	
DELIVERY_TO_GATEWAY_SUCCESS, DELIVERY_TO_GATEWAY_FAILURE

	
Cost

	
Cost

	
No

	
N/A

	
Speed

	
Speed

	
No

	
N/A

	
SupportedCarriers

	
Supported Carriers

	
No

	
N/A

	
Supported Protocols

	
Supported Protocols

	
No

	
N/A

	
SupportsCancel

	
Supports Cancel Operation on the Message

	
No

	
False

	
SupportsReplace

	
Supports Replace Operation on the Message

	
No

	
False

	
SupportsTracking

	
Supports Tracking Operation on the Message

	
No

	
False

	
SupportsStatusPolling

	
Supports Status Polling Operation on the Message

	
No

	
False

	
SenderAddresses

	
Sender Addresses

	
No

	
N/A

	
DefaultSenderAddress

	
Default Sender Address

	
No

	
N/A

	
SendingQueuesInfo

	
Driver Sending Queue Info

	
Yes

	
OraSDPM/QueueConnectionFactory:OraSDPM/Queues/OraSDPMDriverDefSndQ1

11.4.1.8.2 Proxy Custom Properties

The Proxy Driver includes the custom properties shown below.

Table 11-23 Custom Proxy Properties

	Name	Description	Mandatory	Default Values
	
GatewayURL

	
The URL to the hosted 11g UMS Web Service gateway. The URL is in the following format:

http://<host>:<port>/sdpmessaging/parlayx/SendMessageService

	
Yes

	
N/A

	
Username

	
Username of the messaging gateway.

	
No

	
N/A

	
Password

	
The password of the username

	
No

	
N/A

	
Policies

	
Comma-separated list of Oracle Web Services Manager WS-Security policies to be attached to proxy driver requests

	
No

	
N/A

11.4.1.8.3 Client API MessageInfo Support

These properties are message delivery related which are specified through client API. The table below describes if the protocol or driver implementation honors such properties.

Table 11-24 Client API MessageInfo Support

	Name	Description	Support
	
Expiration

	
Expiration means how long the message will exist until it expires.

	
False

	
Delay

	
Delay means the amount of time that must elapse before the message is sent.

	
False

11.5 Securing User Messaging Service

The User Messaging Preferences User Interface and the Parlay X Web Services can be secured at the transport-level using Secure Sockets Layer (SSL). By default, all deployed web services are unsecured. Web Service Security should be enabled for any services that will be deployed in a production environment.

	
To enable SSL in the Oracle WebLogic Server, see "Configure SSL for Oracle WebLogic Server" in the Oracle Fusion Middleware Administrator's Guide. This step is sufficient to secure the User Messaging Preferences User Interface.

	
To secure the Parlay X Web Services, see "Configuring Transport-Level Security" in the Securing WebLogic Web Services.

UMS supports the use of Oracle Web Services Manager WS-Security policies to protect UMS web services. For more information about Oracle Web Services Manager, see "Using Oracle Web Service Security Policies", in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server.

The recommended security configuration for web services uses Security Assertion Markup Language (SAML) tokens to pass identities between web service clients and UMS. With SAML tokens, instead of the web service client passing a username and password to UMS, a trust relationship is established between the client and UMS by means of exchanging certificates. Once this keystore configuration is in place, the web service client passes only the user identity, and vouches for the fact that it has authenticated the user appropriately.

The recommended policies to use for UMS web services are:

	
oracle/wss11_saml_token_with_message_protection_service_policy (server-side)

	
oracle/wss11_saml_token_with_message_protection_service_policy (client-side)

11.5.1 Web Service Security on Notification

The different Web services include corresponding notification Web services (MessageNotification, PresenceNotification) that run on the client side and receive notifications (message delivery status, message receipt, presence status change) when the appropriate event occurs. This implementation does not provide for the use of Web Service security (WS-Security) by default during notification of the clients. That is, the server assumes that the notification Web services running on the client side do not use WS-Security, and makes no attempt to authenticate itself when sending notifications. If you enable WS-Security on the client side, the notification from the server will fail because the notification SOAP request will be missing the required headers.

11.5.2 Enabling UMS Service Security

To enable a policy for an UMS web service, follow the steps in "Configuring Oracle WSM Security Policies in Administration Console" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server, selecting policy oracle/wss11_saml_token_with_message_protection_service_policy. This configuration must be repeated for each service that you wish to secure.

11.5.3 Enabling Client Security

Web service client security must be enabled programmatically. When using the client libraries described in Parlay X Messaging Client API and Client Proxy Packages (in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite), WS-Security policy configuration is provided when a client object is constructed. The client constructors take an argument of type Map<String, Object>. In general when using SAML authentication, the key/value pairs (Table 11-25) should be added to the configuration map in addition to other required properties such as the endpoint address.

Table 11-25 Client security keys

	Key	Type	Typical Value
	
oracle.sdp.parlayx.ParlayXConstants.POLICIES

	
String[]

	
oracle/wss11_saml_token_with_message_protection_client_policy

	
javax.xml.ws.BindingProvider.USERNAME_PROPERTY

	
String

	
<valid username>

	
oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_ALIAS_PROPERTY

	
String

	
(optional) keystore alias for target service. See Client Aliases.

Example 11-1 Web Service Client Security

import oracle.sdp.parlayx.presence.consumer.PresenceConsumerClient;

...

Map<String, Object> config = new HashMap<String, Object>();
config.put(javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ums_url);
config.put(oracle.sdp.parlayx.ParlayXConstants.POLICIES, new String[] {"oracle/wss11_saml_token_with_message_protection_client_policy"});
config.put(javax.xml.ws.BindingProvider.USERNAME_PROPERTY, "test.user1");

PresenceConsumerClient presenceClient = new PresenceConsumerClient(config);

11.5.4 Keystore Configuration

In order to use the recommended WS-Security policy, you must configure a keystore containing the public and private key information required by OWSM. Refer to "Configuring the Credential Store Using WLST" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server for information on how to configure the keystore and corresponding credential store entries.

	
If both your web service client and UMS server are in the same domain, then they share a keystore and credential store.

	
If your web service client and UMS server are in different domains, then you must import the UMS public key into your client domain's keystore, and must import your client domain's public key into the UMS keystore.

11.5.5 Client Aliases

When using certain WS-Security policies such as the SAML policy recommended here, the client must use the server's public key to encrypt the web service request. However, there is generally only one keystore configured per domain. Therefore, if you have a domain in which there are web service clients that communicate with web services in multiple other domains, then you may need to override the default keystore entry used by OWSM.

For example, if you have a domain in which application "A" is a web service client to a UMS web service, and application "B" is a web service client to a web service in another domain, then A's requests must be encrypted using the public key of the UMS domain, and B's requests must be encrypted using the public key of the other domain. You can accomplish this goal by overriding the keystore alias used by OWSM for each request:

	
Import (for example) the UMS public key with alias "ums_public_key", and the other public key with alias "other_public_key".

	
When creating an UMS web service client, specify the recipient keystore alias parameter, setting the key to oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_ALIAS_PROPERTY and the value to "ums_public_key" as shown in Example 11-2.

Example 11-2 Client Aliases

import oracle.sdp.parlayx.multimedia_messaging.send.SendMessageClient

...

Map<String, Object> config = new HashMap<String, Object>();
config.put(javax.xml.ws.BindingProvider.ENDPOINT_ADDRESS_PROPERTY, ums_url);
config.put(oracle.sdp.parlayx.ParlayXConstants.POLICIES, new String[] {"oracle/wss11_saml_token_with_message_protection_client_policy"});
config.put(javax.xml.ws.BindingProvider.USERNAME_PROPERTY, "test.user1");
config.put(oracle.wsm.security.util.SecurityConstants.Config.KEYSTORE_RECIPIENT_ALIAS_PROPERTY, "ums_public_key")
SendMessageClient sendClient = new SendMessageClient(config);

	
The other web service client will similarly need to override the keystore alias, but the exact mechanism may differ. For example if using a JAX-WS client stub directly, then you can add the override property to the JAX-WS request context. See "Policy Configuration Overrides for the Web Service Client" in Oracle Fusion Middleware Securing WebLogic Web Services for Oracle WebLogic Server for more details.

11.6 Troubleshooting Oracle User Messaging Service

To debug User Messaging Service, first check the server diagnostic logs. The logs may contain exception, error, or warning messages that provide details about incorrect behavior along with actions to remedy the problem. The following table describes additional methods for debugging common User Messaging Service problems.

Table 11-26 Troubleshooting UMS

	Symptom	Possible Causes	Solutions
	
Notifications are not being sent from BPEL or Human Workflow components in SOA.

	
Notification Mode is set to NONE in SOA Workflow Notification configuration.

	
Change the Notification Mode setting to EMAIL or ALL using Oracle Fusion Middleware Control.

	
Email notification is not being sent.

	
The Outgoing (SMTP) Mail Server settings in the UMS Email Driver are incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
OutgoingMailServer

	
OutgoingMailServerPort

Note: Validate the values by using them in any e-mail client for connecting to the SMTP server.

	
	
The SMTP server requires authentication or a secure connection (TLS or SSL).

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
OutgoingUsername

	
OutgoingPassword

	
OutgoingMailServerSecurity

	
Notifications are not being sent because of error message: No matching drivers found for sender address = <address>

	
The UMS Driver for the appropriate channel is configured with a specific list of SenderAddresses, and the message sent by the application has set a non-matching Sender Address.

Note: UMS Server matches the outbound message's sender address, if set, against the available drivers' SenderAddresses to find a matching driver to use for delivering the message. If a driver has set one or more SenderAddresses, then the UMS Server will only send messages with the matching sender address to it.

	
	
Check the following settings in the appropriate UMS Driver using Oracle Fusion Middleware Control:

SenderAddresses

Note: The format for SenderAddresses is a comma-separated list of <DeliveryType>:<Address>.

For example:

EMAIL:sender@example.com, EMAIL:sender@example2.com

	
Leave this property blank, if you want this driver to service outbound messages for all sender addresses for this channel (delivery type).

	
If there are multiple driver instances deployed for the same channel (delivery type) with different configurations, use the SenderAddresses to differentiate the driver instances. For example, one instance can be set with a specific value in SenderAddresses to only service outbound messages with that matching sender address, while the other instance can keep the SenderAddresses blank in order to service all outbound messages that do not specify any sender address or one that does not match that of the first driver instance.

	
SenderAddresses that are configured with the incorrect syntax (such as missing <DeliveryType>:) are ignored by the UMS Server for the purpose of driver selection.

	
The email client inconsistently receives notifications.

	
The Incoming Mail Server settings in the UMS Email Driver are configured with the same email account to which notifications are being sent.

If the notification is sent to the same account, the UMS Email Driver may download and process the email before the email client can display it.

	
Use an exclusive e-mail account for Incoming Mail Server settings. Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
IncomingMailIDs

	
IncomingUserIDs

	
SOA Human Workflow notifications are sent, but are not actionable.

	
The Actionable Email Address is not configured in SOA Workflow Notification Properties.

	
Set the Actionable Email Address in SOA Workflow Notification Properties with the address of the email account configured in the UMS Email Driver.

	
	
The Human Workflow task is not set to send actionable notifications.

	
Set the actionable attribute for the Human Workflow task in JDeveloper and redeploy the SOA composite application.

	
SOA Human Workflow actionable notifications are sent, but no action is taken after responding.

	
The Incoming Mail Server settings in the UMS Email Driver are incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
MailAccessProtocol (IMAP or POP3, in uppercase)

	
ReceiveFolder

	
IncomingMailServer

	
IncomingMailServerPort

	
IncomingMailServerSSL

	
IncomingMailServerSSL

	
IncomingUserIDs

	
IncomingUserPasswords

	
ImapAuthPlainDisable

Note: Validate the values by using them in any e-mail client for connecting to an IMAP or POP3 server.

	
	
The mail access protocol is incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
MailAccessProtocol (IMAP or POP3, in uppercase)

	
	
The email server is SSL-enabled.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
IncomingMailServerSS

	
	
The receive folder name is incorrect.

	
Check the following settings in the UMS Email Driver using Oracle Fusion Middleware Control:

	
ReceiveFolder

Note: Some email servers may expect the value INBOX to be inbox or Inbox (that is, case-sensitive). Based on your email server, use an appropriate value.

	
	
A non-default email client is configured for receiving notifications. When the user clicks the approval link, the default mail client page opens, which may send emails to a different email server.

	
Configure the default email client to receive actionable notifications.

	
SOA BPEL User Notification or Human Workflow notifications are sent to the correct delivery type (email, sms, and so on) but to the wrong address.

	
A self-provisioned messaging channel was created by the user in User Messaging Preferences for use in BPEL User Notification or Human Workflow use cases.

Note: The User Messaging Preferences UI allows the end user to create his or her own messaging channel for various use cases, but these are not to be used for BPEL User Notification and Human Workflow.

	
Do not use a self-provisioned messaging channel for BPEL User Notification or Human Workflow use cases (that is, do not set as Default channel, and do not use in a messaging filter for such use cases). BPEL User Notification and Human Workflow utilize User Messaging Preferences only for the delivery type preference, and the actual address is retrieved from the user profile in the identity management system.

Note: Addresses from the user profile in the identity management system are available through User Messaging Preferences using pre-defined channel names, such as Business Email, Business Mobile, Business Phone, Instant Messaging. Use these pre-defined messaging channels instead for BPEL User Notification and Human Workflow use cases.

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

Part I General Configuration

1 Introduction to Oracle WebLogic Communication Services

	1.1 Oracle WebLogic Communication Services
	1.1.1 Messaging
	1.1.2 Telephony
	1.1.3 Presence
	1.1.4 WebLogic Server 10.3 Platform with support for SIP and converged applications

2 Shared Configuration Tasks

	2.1 Shared Configuration Tasks for Oracle WebLogic Communication Services and Oracle WebLogic Server
	2.2 Oracle WebLogic Communication Services Configuration Overview
	2.2.1 Diameter Configuration

	2.3 Methods and Tools for Performing Configuration Tasks
	2.3.1 Administration Console
	2.3.2 WebLogic Scripting Tool (WLST)
	2.3.3 Additional Configuration Methods
	2.3.3.1 Editing Configuration Files
	2.3.3.2 Custom JMX Applications

	2.4 Starting and Stopping Servers
	2.5 Administration Server Best Practices
	2.6 Common Configuration Tasks

3 Configuring SIP Servlet Container Properties

	3.1 Overview of SIP Container Configuration
	3.2 Using the Administration Console to Configure Container Properties
	3.2.1 Locking and Persisting the Configuration

	3.3 Configuring Container Properties Using WLST (JMX)
	3.3.1 Managing Configuration Locks
	3.3.2 Locating the Oracle WebLogic Communication Services MBeans

	3.4 WLST Configuration
	3.4.1 Invoking WLST
	3.4.2 Creating and Deleting MBeans

	3.5 Configuring Timer Processing
	3.5.1 Configuring Timer Affinity (Optional)
	3.5.2 Configuring NTP for Accurate SIP Timers

4 Managing Network Resources

	4.1 Overview of Network Configuration
	4.1.1 IPv4 and IPv6

	4.2 Configuring Load Balancer Addresses
	4.2.1 Multiple Load Balancers and Multi-homed Load Balancers

	4.3 Enabling Domain Name Service (DNS) Support
	4.4 Configuring Network Channels for SIP or SIPS
	4.4.1 Reconfiguring an Existing Channel
	4.4.2 Creating a New SIP or SIPS Channel
	4.4.3 Configuring Custom Timeout, MTU, and Other Properties
	4.4.4 Configuring SIP Channels for Multi-Homed Machines

	4.5 Configuring TCP and TLS Channels for Diameter Support
	4.6 Configuring Engine Servers to Listen on Any IP Interface
	4.7 Configuring Unique Listen Address Attributes for SIP Data Tier Replicas
	4.8 Production Network Architectures and Configuration
	4.8.1 Single-NIC Configurations with TCP and UDP Channels
	4.8.1.1 Static Port Configuration for Outbound UDP Packets

	4.8.2 Multi-homed Server Configurations Overview
	4.8.3 Multi-homed Servers Listening On All Addresses (IP_ANY)
	4.8.4 Multi-homed Servers Listening on Multiple Subnets
	4.8.4.1 Understanding the Route Resolver
	4.8.4.2 IP Aliasing with Multi-homed Hardware

	4.8.5 Load Balancer Configurations
	4.8.5.1 Single Load Balancer Configuration
	4.8.5.2 Multiple Load Balancers and Multi-homed Load Balancers
	4.8.5.3 Network Address Translation Options

	4.9 Example Network Configuration
	4.9.1 Example Network Topology
	4.9.2 Oracle WebLogic Communication Services Configuration
	4.9.3 Load Balancer Configuration
	4.9.3.1 NAT-based configuration
	4.9.3.2 maddr-Based Configuration
	4.9.3.3 rport-Based Configuration

5 Administering Security Features

	5.1 Authentication for SIP Servlets
	5.1.1 Authentication Providers

	5.2 Overriding Authentication with Trusted Hosts
	5.3 Identity Assertion Support
	5.4 Role Assignment for SIP Servlet Declarative Security
	5.5 Security Event Auditing
	5.6 Common Security Configuration Tasks
	5.7 Configuring Digest Authentication
	5.7.1 What Is Digest Authentication?
	5.7.2 Digest Authentication Support in Oracle WebLogic Communication Services
	5.7.3 Prerequisites for Configuring LDAP Digest Authentication
	5.7.4 Steps for Configuring Digest Authentication
	5.7.4.1 Configure the LDAP Server or RDBMS
	5.7.4.2 Reconfigure the DefaultAuthenticator Provider
	5.7.4.3 Configure an Authenticator Provider
	5.7.4.4 Configure a New Digest Identity Asserter Provider

	5.7.5 Sample Digest Authentication Configuration Using Embedded LDAP
	5.7.5.1 Store User Password Information in the Description Field
	5.7.5.2 Set the Embedded LDAP Password
	5.7.5.3 Configure the Digest Identity Asserter Provider

	5.8 Configuring Client-Cert Authentication
	5.8.1 Configuring SSL and X509 for Oracle WebLogic Communication Services
	5.8.1.1 Configuring the Default Identity Asserter
	5.8.1.2 Configuring the LDAP X509 Identity Asserter

	5.8.2 Configuring Oracle WebLogic Communication Services to Use WL-Proxy-Client-Cert
	5.8.3 Supporting Perimeter Authentication with a Custom IA Provider

	5.9 Configuring SIP Servlet Identity Assertion Mechanisms
	5.9.1 Understanding Trusted Host Forwarding with P-Asserted-Identity
	5.9.2 Overview of Strict and Non-Strict P-Asserted-Identity Asserter Providers
	5.9.3 Configuring a P-Asserted-Identity Assertion Provider
	5.9.4 Understanding Identity Assertion with the Identity and Identity-Info Headers
	5.9.5 Configuring the Identity Header Assertion Provider

	5.10 Configuring 3GPP HTTP Identity Assertion Providers
	5.10.1 Configuring a X-3GPP-Asserted-Identity Provider

	5.11 Configuring Basic Authentication for HTTP Servlets
	5.12 Provisioning Resources in Oracle Internet Directory
	5.12.1 Configuring Oracle Internet Directory
	5.12.2 Configuring Static Verifiers
	5.12.2.1 Add Oracle WebLogic Communication Services
	5.12.2.2 Install the Static Verifier

	5.12.3 Add a New Oracle WebLogic Communication Services
	5.12.4 Grant Verifier Privileges to the Oracle WebLogic Communication Services Instance

	5.13 Provisioning Users
	5.13.1 Create a New User
	5.13.2 Create a Group
	5.13.3 Assign Group Memberships to Users
	5.13.4 Set JAAS Realm for Users

	5.14 Configuring OWLCS Server Instance
	5.14.1 Add an LDAP Authenticator (Setting Up Roles)
	5.14.2 Improving LDAP Authenticator Performance
	5.14.3 Configuring Userservice to work with OID

6 Configuring SIP Data Tier Partitions and Replicas

	6.1 Overview of SIP Data Tier Configuration
	6.1.1 datatier.xml Configuration File
	6.1.2 Configuration Requirements and Restrictions

	6.2 Best Practices for Configuring and Managing SIP Data Tier Servers
	6.3 Example SIP Data Tier Configurations and Configuration Files
	6.3.1 SIP Data Tier with One Partition
	6.3.2 SIP Data Tier with Two Partitions
	6.3.3 SIP Data Tier with Two Partitions and Two Replicas

	6.4 Storing Long-Lived Call State Data In A RDBMS
	6.4.1 Requirements and Restrictions
	6.4.2 Steps for Enabling RDBMS Call State Storage
	6.4.3 Using the Configuration Wizard RDBMS Store Template
	6.4.3.1 Modify the JDBC Datasource Connection Information

	6.4.4 Configuring RDBMS Call State Storage by Hand
	6.4.4.1 Configure JDBC Resources
	6.4.4.2 Configure Oracle WebLogic Communication Services Persistence Options
	6.4.4.3 Create the Database Schema

	6.4.5 Using Persistence Hints in SIP Applications

	6.5 Introducing Geo-Redundancy
	6.5.1 Situations Best Suited to Use Geo-Redundancy
	6.5.2 Situations Not Suited to Use Geo-Redundancy
	6.5.3 Geo-Redundancy Considerations: Before Your Begin

	6.6 Using Geographically-Redundant SIP Data Tiers
	6.6.1 Example Domain Configurations
	6.6.2 Requirements and Limitations
	6.6.3 Steps for Configuring Geographic Persistence
	6.6.4 Using the Configuration Wizard Templates for Geographic Persistence
	6.6.4.1 Installing and Configuring the Primary Site
	6.6.4.2 Installing the Secondary Site

	6.6.5 Manually Configuring Geographical Redundancy
	6.6.5.1 Configuring JDBC Resources (Primary and Secondary Sites)
	6.6.5.2 Configuring Persistence Options (Primary and Secondary Sites)
	6.6.5.3 Configuring JMS Resources (Secondary Site Only)

	6.6.6 Understanding Geo-Redundant Replication Behavior
	6.6.6.1 Call State Replication Process
	6.6.6.2 Call State Processing After Failover

	6.6.7 Removing Backup Call States
	6.6.8 Monitoring Replication Across Regional Sites
	6.6.9 Troubleshooting Geographical Replication

	6.7 Caching SIP Data in the Engine Tier
	6.7.1 Configuring Engine Tier Caching
	6.7.2 Monitoring and Tuning Cache Performance

	6.8 Monitoring and Troubleshooting SIP Data Tier Servers

7 Provisioning Users With Sash

	7.1 Overview of Sash
	7.2 Launching Sash
	7.2.1 Launching Sash from the Command Line
	7.2.2 Connecting Sash to an External OWLCS Instance
	7.2.2.1 Connecting to an External Instance of OWLCS

	7.3 Using Sash
	7.3.1 Viewing Available Commands
	7.3.1.1 Viewing Subcommands

	7.4 Creating a User
	7.4.1 Creating a User from the Sash Command-Line Prompt
	7.4.2 Creating a User with the Command Service MBean
	7.4.3 Creating a User with the Identity Add Command
	7.4.3.1 Deleting a User Account with the identity delete Command

	7.5 Provisioning the XDMS Using Sash
	7.5.1 Provisioning XDMS User Accounts Using the CommandService MBean
	7.5.2 Provisioning XDMS User Accounts from the Sash Prompt
	7.5.3 Using xcap Commands
	7.5.3.1 Provisioning XDMS User Accounts
	7.5.3.2 Adding XDMS Users
	7.5.3.3 Removing an XDMS User
	7.5.3.4 Searching for Application Usage for an XDMS User
	7.5.3.5 Listing XDMS Users
	7.5.3.6 Provisioning Application Usage
	7.5.3.7 Listing All Application Usages

	7.6 Scripting with Sash
	7.7 Error Logging in Sash

8 Monitoring and Troubleshooting

	8.1 Avoiding and Recovering from Server Failures
	8.1.1 Failure Prevention and Automatic Recovery Features
	8.1.1.1 Overload Protection
	8.1.1.2 Redundancy and Failover for Clustered Services
	8.1.1.3 Automatic Restart for Failed Server Instances
	8.1.1.4 Managed Server Independence Mode
	8.1.1.5 Automatic Migration of Failed Managed Servers
	8.1.1.6 Geographic Redundancy for Regional Site Failures

	8.1.2 Directory and File Backups for Failure Recovery
	8.1.2.1 Enabling Automatic Configuration Backups
	8.1.2.2 Storing the Domain Configuration Offline
	8.1.2.3 Backing Up Server Start Scripts
	8.1.2.4 Backing Up Logging Servlet Applications
	8.1.2.5 Backing Up Security Data
	8.1.2.6 Backing Up Additional Operating System Configuration Files

	8.1.3 Restarting a Failed Administration Server
	8.1.3.1 Restarting an Administration Server on the Same Machine
	8.1.3.2 Restarting an Administration Server on Another Machine

	8.1.4 Restarting Failed Managed Servers

	8.2 Overview of Failover Detection
	8.2.1 WlssEchoServer Failure Detection
	8.2.2 Forced Shutdown for Failed Replicas

	8.3 Improving Failover Performance for Physical Network Failures
	8.3.1 Starting WlssEchoServer on SIP Data Tier Server Machines
	8.3.2 Enabling and Configuring the Heartbeat Mechanism on Servers

	8.4 Configuring SNMP
	8.4.1 Browsing the MIB
	8.4.2 Steps for Configuring SNMP

	8.5 Understanding and Responding to SNMP Traps
	8.5.1 Files for Troubleshooting
	8.5.2 Trap Descriptions
	8.5.2.1 connectionLostToPeer
	8.5.2.2 connectionReestablishedToPeer
	8.5.2.3 dataTierServerStopped
	8.5.2.4 overloadControlActivated, overloadControlDeactivated
	8.5.2.5 replicaAddedToPartition
	8.5.2.6 replicaRemovedEnginesRegistration
	8.5.2.7 replicaRemovedFromPartition
	8.5.2.8 serverStopped
	8.5.2.9 sipAppDeployed
	8.5.2.10 sipAppUndeployed
	8.5.2.11 sipAppFailedToDeploy

	8.6 Using the WebLogic Diagnostics Framework (WLDF)
	8.6.1 Data Collection and Logging
	8.6.2 Watches and Notifications
	8.6.3 Image Capture
	8.6.4 Instrumentation
	8.6.4.1 Configuring Server-Scoped Monitors
	8.6.4.2 Configuring Application-Scoped Monitors

	8.7 Logging SIP Requests and Responses
	8.7.1 Defining Logging Servlets in sip.xml
	8.7.2 Configuring the Logging Level and Destination
	8.7.3 Specifying the Criteria for Logging Messages
	8.7.3.1 Using XML Documents to Specify Logging Criteria
	8.7.3.2 Using Servlet Parameters to Specify Logging Criteria

	8.7.4 Specifying Content Types for Unencrypted Logging
	8.7.5 Enabling Log Rotation and Viewing Log Files
	8.7.6 trace-pattern.dtd Reference
	8.7.7 Adding Tracing Functionality to SIP Servlet Code
	8.7.8 Order of Startup for Listeners and Logging Servlets

	8.8 Tuning JVM Garbage Collection for Production Deployments
	8.8.1 Modifying JVM Parameters in Server Start Scripts
	8.8.2 Tuning Garbage Collection with JRockit
	8.8.3 Using Oracle JRockit Real Time (Deterministic Garbage Collection)
	8.8.4 Using Oracle JRockit without Deterministic Garbage Collection
	8.8.5 Tuning Garbage Collection with Sun JDK

	8.9 Avoiding JVM Delays Caused By Random Number Generation

Part II Configuring Presence

9 Configuring Presence and Presence Web Services

	9.1 Overview of Presence
	9.2 Configuring Presence
	9.2.1 Configuring XDMS
	9.2.2 Bus
	9.2.3 PackageManager
	9.2.4 Presence
	9.2.5 PresenceEventPackage
	9.2.6 PresenceWInfoEventPackage
	9.2.7 UA-ProfileEventPackage
	9.2.8 Command Service (XDMS Provisioning)
	9.2.9 XCapConfigManager
	9.2.10 Aggregation Proxy
	9.2.11 Configuring Default Application Router for OPTIONS

	9.3 Configuring Presence Web Services
	9.3.1 PresenceSupplierWebService
	9.3.2 PresenceConsumerWebService
	9.3.3 MessagingWebServiceConfig

Part III Configuring Diameter

10 Configuring Diameter Client Nodes and Relay Agents

	10.1 Overview of Diameter Protocol Configuration
	10.2 Steps for Configuring Diameter Client Nodes and Relay Agents
	10.3 Installing the Diameter Domain
	10.4 Enabling the Diameter Console Extension
	10.5 Creating TCP, TLS, and SCTP Network Channels for the Diameter Protocol
	10.5.1 Configuring Two-Way SSL for Diameter TLS Channels
	10.5.2 Configuring and Using SCTP for Diameter Messaging

	10.6 Configuring Diameter Nodes
	10.6.1 Creating a New Node Configuration (General Node Configuration)
	10.6.2 Configuring Diameter Applications
	10.6.2.1 Configuring the Sh Client Application
	10.6.2.2 Configuring the Rf Client Application
	10.6.2.3 Configuring the Ro Client Application
	10.6.2.4 Configuring a Diameter Relay Agent
	10.6.2.5 Configuring the Sh and Rf Simulator Applications
	10.6.2.6 Enabling Profile Service (using an Sh backend)

	10.6.3 Configuring Peer Nodes
	10.6.4 Configuring Routes

	10.7 Example Domain Configuration
	10.8 Troubleshooting Diameter Configurations

Part IV Oracle User Messaging Services

11 Configuring Oracle User Messaging Service

	11.1 User Messaging Service Overview
	11.1.1 Components
	11.1.2 Architecture

	11.2 Introduction to Oracle User Messaging Service Configuration
	11.3 Accessing User Messaging Service Configuration Pages
	11.3.1 How to Set the Storage Method
	11.3.2 How to Add or Remove User Messaging Preferences Business Terms
	11.3.2.1 Adding Business Terms
	11.3.2.2 Removing Business Terms

	11.4 Configuring User Messaging Service Drivers
	11.4.1 How to Configure a Driver
	11.4.1.1 About Driver Properties
	11.4.1.2 Securing Passwords
	11.4.1.3 Configuring the E-Mail Driver
	11.4.1.4 Configuring the SMPP Driver
	11.4.1.5 Configuring the XMPP Driver
	11.4.1.6 Configuring the VoiceXML Driver
	11.4.1.7 Configuring the Worklist Driver
	11.4.1.8 Configuring the Proxy Driver

	11.5 Securing User Messaging Service
	11.5.1 Web Service Security on Notification
	11.5.2 Enabling UMS Service Security
	11.5.3 Enabling Client Security
	11.5.4 Keystore Configuration
	11.5.5 Client Aliases

	11.6 Troubleshooting Oracle User Messaging Service

12 Monitoring Oracle User Messaging Service

	12.1 Monitoring Oracle User Messaging Service
	12.1.1 Using Message Status
	12.1.2 Deregistering Messaging Client Applications
	12.1.3 Monitoring Drivers Using the All Tab

	12.2 Log Files
	12.2.1 Configuring Logging

	12.3 Metrics and Statistics

13 Managing Oracle User Messaging Service

	13.1 Deploying Drivers
	13.1.1 Using WebLogic Server Administration Console
	13.1.2 Using Oracle Enterprise Manager to Deploy Drivers
	13.1.3 Using WLST Commands
	13.1.3.1 deployUserMessagingDriver

	13.1.4 Using the Oracle Fusion Middleware Configuration Wizard

	13.2 Undeploying and Unregistering Drivers

Part V Confiding SIP Infrastructure Applications

14 Configuring SIP Infrastructure Applications

	14.1 Proxy Registrar
	14.2 STUN Service

Part VI Deploying Oracle WebLogic Communication Services

15 Oracle WebLogic Communication Services Base Platform Topologies

	15.1 Goals of the Oracle WebLogic Communication Services Base Platform
	15.2 Load Balancer
	15.3 Engine Tier
	15.4 SIP Data tier
	15.4.1 Example of Writing and Retrieving Call State Data
	15.4.2 RDBMS Storage for Long-Lived Call State Data

	15.5 Geographically-Redundant Installations
	15.6 Example Hardware Configurations
	15.7 Alternate Configurations

16 Deployment Topologies for Communication Services

	16.1 Terminology
	16.2 OWLCS Deployment Topologies
	16.2.1 Single-node Topologies

	16.3 Oracle WebLogic Communication Services Enterprise Deployment Topology
	16.3.1 Introduction to OWLCS Enterprise Deployment Topology
	16.3.1.1 Runtime Processes
	16.3.1.2 Request Flow
	16.3.1.3 Client Connections
	16.3.1.4 Artifacts
	16.3.1.5 Topology Components
	16.3.1.6 Overview of SIP State Tier Configuration
	16.3.1.7 Example SIP State Tier Configurations and Configuration Files
	16.3.1.8 Storing Long-Lived Call State Data in an RDBMS

	16.3.2 Geographic Redundancy
	16.3.3 Failover
	16.3.3.1 OWLCS Presence Failover
	16.3.3.2 Presentity Migration
	16.3.3.3 Standby Server Pool
	16.3.3.4 Failure Types
	16.3.3.5 Failover Actions
	16.3.3.6 Overload Policy
	16.3.3.7 Synchronization of Failover Events
	16.3.3.8 Expanding the Cluster
	16.3.3.9 Failover Use Cases

17 Upgrading Deployed SIP Applications

	17.1 Overview of SIP Application Upgrades
	17.2 Requirements and Restrictions for Upgrading Deployed Applications
	17.3 Steps for Upgrading a Deployed SIP Application
	17.4 Assign a Version Identifier
	17.4.1 Defining the Version in the Manifest

	17.5 Deploy the Updated Application Version
	17.6 Undeploy the Older Application Version
	17.7 Roll Back the Upgrade Process
	17.8 Accessing the Application Name and Version Identifier
	17.9 Using Administration Mode

18 Parlay X Web Services Architecture

	18.1 Architecture of Web Service Client Applications
	18.2 Web Service Security
	18.2.1 Web Service Security on Notification
	18.2.2 Enabling OWLCS Service Security
	18.2.3 Enabling Client Security
	18.2.4 Keystore Configuration
	18.2.5 Client Aliases

	18.3 Installing the Web Services

Part VII Reference

A SIP Servlet Container Configuration Reference

	A.1 Overview of sipserver.xml
	A.2 Editing sipserver.xml
	A.2.1 Steps for Editing sipserver.xml

	A.3 XML Schema
	A.4 Example sipserver.xml File
	A.5 XML Element Description
	A.5.1 enable-timer-affinity
	A.5.2 overload
	A.5.2.1 Selecting an Appropriate Overload Policy
	A.5.2.2 Overload Control Based on Session Generation Rate
	A.5.2.3 Overload Control Based on Capacity Constraints
	A.5.2.4 Two Levels of Overload Protection

	A.5.3 message-debug
	A.5.4 proxy—Setting Up an Outbound Proxy Server
	A.5.5 t1-timeout-interval
	A.5.6 t2-timeout-interval
	A.5.7 t4-timeout-interval
	A.5.8 timer-b-timeout-interval
	A.5.9 timer-f-timeout-interval
	A.5.10 max-application-session-lifetime
	A.5.11 enable-local-dispatch
	A.5.12 cluster-loadbalancer-map
	A.5.13 default-behavior
	A.5.14 default-servlet-name
	A.5.15 retry-after-value
	A.5.16 sip-security
	A.5.17 route-header
	A.5.18 engine-call-state-cache-enabled
	A.5.19 server-header
	A.5.20 server-header-value
	A.5.21 persistence
	A.5.22 use-header-form
	A.5.23 enable-dns-srv-lookup
	A.5.24 connection-reuse-pool
	A.5.25 globally-routable-uri
	A.5.26 domain-alias-name
	A.5.27 enable-rport
	A.5.28 image-dump-level
	A.5.29 stale-session-handling
	A.5.30 enable-contact-provisional-response
	A.5.31 app-router
	A.5.32 use-custom-app-router
	A.5.33 app-router-config-data
	A.5.34 custom-app-router-jar-file-name
	A.5.35 default-application-name

B SIP Data Tier Configuration Reference

	B.1 Overview of datatier.xml
	B.2 Editing datatier.xml
	B.3 XML Schema
	B.4 Example datatier.xml File
	B.5 XML Element Description

C Diameter Configuration Reference

	C.1 Overview of diameter.xml
	C.2 Graphical Representation
	C.3 Editing diameter.xml
	C.3.1 Steps for Editing diameter.xml

	C.4 XML Schema
	C.5 Example diameter.xml File
	C.6 XML Element Description
	C.6.1 configuration
	C.6.2 target
	C.6.3 host
	C.6.4 realm
	C.6.5 address
	C.6.6 port
	C.6.7 tls-enabled
	C.6.8 sctp-enabled
	C.6.9 debug-enabled
	C.6.10 message-debug-enabled
	C.6.11 application
	C.6.11.1 class-name
	C.6.11.2 param*

	C.6.12 peer-retry-delay
	C.6.13 allow-dynamic-peers
	C.6.14 request-timeout
	C.6.15 watchdog-timeout
	C.6.16 supported-vendor-id+
	C.6.17 include-origin-state
	C.6.18 peer+
	C.6.18.1 host
	C.6.18.2 address
	C.6.18.3 port
	C.6.18.4 protocol

	C.6.19 route
	C.6.19.1 realm
	C.6.19.2 application-id
	C.6.19.3 action
	C.6.19.4 server+

	C.6.20 default-route
	C.6.20.1 action
	C.6.20.2 server+

D Startup Command Options

E Supported Platforms, Protocols, RFCs and Standards

	E.1 Supported Configurations
	E.2 Supported SIP Clients
	E.3 Supported Load Balancer
	E.4 Supported Databases
	E.5 Overview of Oracle WebLogic Communication Services Standards Alignment
	E.6 Java Sun Recommendation (JSR) Standards Compliance
	E.7 IETF RFC Compliance
	E.8 3GPP R6 Specification Conformance

F Using Oracle WebLogic Communication Services Export/Import

	F.1 Export
	F.1.1 Export the Database Data from the Current Environment

	F.2 Import

G Deploying a Scalable Presence Deployment

	G.1 Presence Cluster
	G.2 XDM Cluster
	G.3 Presence Node
	G.4 XDM Node
	G.5 Complete Presence and XDM Cluster

Index

Enterprise Deployment. Discussed in surrounding text.

User Messaging Preferences. Discussed in surrounding text.

General Information display. Discussed in surrounding text.

Final confirmation. Discussed in surrounding text.

UMS metrics. Discussed in surrounding text.

Metrics Palette. Discussed in surrounding text.

UMS architecture. Discussed in surrounding text.

This graphic shows multi-homed configuration. Discussed in surrounding text.

Deploying UMS Driver using EM. Discussed in surrounding text.

Targeting style. Discussed in surrounding text.

This graphic shows single load balancer configuration. Discussed in surrounding text.

This graphic shows alternate Geo-redundancy configuration. Discussed in surrounding text.

Deployments. Discussed in surrounding text.

This graphic shows layers affected by OWLCS network configuration. Discussed in surrounding text.

This graphic shows outbound requests. Discussed in surrounding text.

OWLCS overview. Discussed in surrounding text.

Querying logs. Discussed in surrounding text.

Summary page. Discussed in surrounding text.

Oracle WebLogic Communication Services Geographic Persistence. Discussed in surrounding text.

SIP Data Tier Monitoring in the Administration Console. Discussed in surrounding text.

This graphic shows multi-LDAP servers. Discussed in surrounding text.

This graphic shows single NIC network channel configuration. Discussed in surrounding text.

Configuring log levels. Discussed in surrounding text.

This graphic shows inbound requests. Discussed in surrounding text.

This graphic shows digest authentication in OWLCS. Discussed in surrounding text.

All-in-One Managed Server. Discussed in surrounding text.

Deployment Settings screen. Discussed in surrounding text.

This graphic shows rport SUBSCRIBE sequence. Discussed in surrounding text.

Available actions to take on drivers. Discussed in surrounding text.

OWLCS High Availability detail. Discussed in surrounding text.

Messaging Client Applications page. Discussed in surrounding text.

This graphic shows listing the driver instances for UMS in Oracle Enterprise Manager.

cluster2.gif illustrates the two-node Presence Server topology, including the Presence Server on one node and the XDMS Server and Aggregation Proxy on the other.

Error messages. Discussed in surrounding text.

Activate changes. Discussed in surrounding text.

Log search results. Discussed in surrounding text.

Custom search. Discussed in surrounding text.

This graphic shows a sample Diameter domain.SIP Data Tier Monitoring in the Administration Console

Deployment Completed screen. Discussed in surrounding text.

ns_configdriver.gif illustrates the configuration page for the E-Mail driver.

Common Geographically-Redundant Configuration. Discussed in surrounding text.

Configure driver icon. Discussed in surrounding text.

ns_emailact.gif illustrates adding an Email Activity to the BPEL process of a SOA composite application.

This graphic shows rport NOTIFY sequence. Discussed in surrounding text.

This graphic shows OWLCS architecture. Discussed in surrounding text.

Managing your SOA farm. Discussed in surrounding text.

Select Target screen

This graphic shows element hierarchy of diameter.xml. Discussed in surrounding text.

This graphic shows Geo-Redundancy across sites. Discussed in surrounding text.

This graphic shows maddr sequence. Discussed in surrounding text.

This graphic shows source and destination NAT. Discussed in surrounding text.

This graphic shows single server configurations. Discussed in surrounding text.

Install. Discussed in surrounding text.

This graphic shows unregistering a driver instance.

This graphic shows managing inbound requests. Discussed in surrounding text.

Install Application Assistant. Discussed in surrounding text.

Host details for OWLCS. Discussed in surrounding text.

ns_assoc_drv.gif illustrates the Associated Drivers section of the Enterprise Manager Fusion Middleware Control console. In this illustration, the Edit icon is selected.

Viewing log files. Discussed in surrounding text.

This graphic shows security check procedure. Discussed in surrounding text.

EM Fusion Middleware Control screen. Discussed in surrounding text.

Message status screen. Discussed in surrounding text.

This graphic shows a NOTIFY sequence. Discussed in surrounding text.

Administration Console Display of SIP Data Tier Configuration (Read-Only). Discussed in surrounding text.

All-in-One Administration Server. Discussed in surrounding text.

Selecting notification level. Discussed in surrounding text.

Confirmation page. Discussed in surrounding text.

17 Upgrading Deployed SIP Applications

The following sections describe how to upgrade deployed SIP Servlets and converged SIP/HTTP applications to a newer version of the same application without losing active calls:

	
Section 17.1, "Overview of SIP Application Upgrades"

	
Section 17.2, "Requirements and Restrictions for Upgrading Deployed Applications"

	
Section 17.3, "Steps for Upgrading a Deployed SIP Application"

	
Section 17.4, "Assign a Version Identifier"

	
Section 17.5, "Deploy the Updated Application Version"

	
Section 17.6, "Undeploy the Older Application Version"

	
Section 17.7, "Roll Back the Upgrade Process"

	
Section 17.8, "Accessing the Application Name and Version Identifier"

	
Section 17.9, "Using Administration Mode"

17.1 Overview of SIP Application Upgrades

With Oracle WebLogic Communication Services, you can upgrade a deployed SIP application to a newer version without losing existing calls being processed by the application. This type of application upgrade is accomplished by deploying the newer application version alongside the older version. Oracle WebLogic Communication Services automatically manages the SIP Servlet mapping so that new requests are directed to the new version. Subsequent messages for older, established dialogs are directed to the older application version until the calls complete. After all of the older dialogs have completed and the earlier version of the application is no longer processing calls, you can safely undeploy it.

Oracle WebLogic Communication Services's upgrade feature ensures that no calls are dropped while during the upgrade of a production application. The upgrade process also enables you to revert or rollback the process of upgrading an application. If, for example, you determine that there is a problem with the newer version of the deployed application, you can undeploy the newer version and activate the older version.

	
Note:

When you undeploy an active version of an application, the previous application version remains in administration mode. You must explicitly activate the older version in order to direct new requests to the application.

You can also use the upgrade functionality with a SIP administration channel to deploy a new application version with restricted access for final testing. After performing final testing using the administration channel, you can open the application to general SIP traffic.

Oracle WebLogic Communication Services application upgrades provide the same functionality as Oracle WebLogic Server 10g Release 3 application upgrades, with the following exceptions:

	
Oracle WebLogic Communication Services does not support "graceful" retirement of old application versions. Instead, only timeout-based undeployment is supported using the -retiretimeout option to weblogic.Deployer.

	
If you want to use administration mode with SIP Servlets or converged applications, you must configure a sips-admin channel that uses TLS transport.

	
Oracle WebLogic Communication Services handles application upgrades differently in replicated and non-replicated environments. In replicated environments, the server behaves as if the save-sessions-enabled element was set to "true" in the weblogic.xml configuration file. This preserves sessions across a redeployment operation.

For non-replicated environments, sessions are destroyed immediately upon redeployment.

17.2 Requirements and Restrictions for Upgrading Deployed Applications

To use the application upgrade functionality of Oracle WebLogic Communication Services:

	
You must assign version information to your updated application in order to distinguish it from the older application version. Note that only the newer version of a deployed application requires version information; if the currently-deployed application contains no version designation, Oracle WebLogic Communication Services automatically treats this application as the "older" version. See Section 17.4, "Assign a Version Identifier".

	
A maximum of two different versions of the same application can be deployed at one time.

	
If your application hard-codes the use of an application name (for example, in composed applications where multiple SIP Servlets process a given call), you must replace the application name with calls to a helper method that obtains the base application name. WebLogic Server provides ApplicationRuntimeMBean methods for obtaining the base application name and version identifier, as well as determining whether the current application version is active or retiring. See Section 17.8, "Accessing the Application Name and Version Identifier".

	
When applications take part in a composed application (using application composition techniques), Oracle WebLogic Communication Services always uses the latest version of an application when only the base name is supplied.

	
If you want to deploy an application in administration mode, you must configure a sips-admin channel that uses TLS transport.

17.3 Steps for Upgrading a Deployed SIP Application

Follow these steps to upgrade a deployed SIP application to a newer version:

	
Assign a Version Identifier—Package the updated version of the application with a version identifier.

	
Deploy the Updated Application Version—Deploy the updated version of the application alongside the previous version to initiate the upgrade process.

	
Undeploy the Older Application Version—After the older application has finished processing all SIP messages for its established calls, you can safely undeploy that version. This leaves the newly-deployed application version responsible for processing all current and future calls.

Each procedure is described in the sections that follow. You can also roll back the upgrade process if you discover a problem with the newly-deployed application. Applications that are composed of multiple SIP Servlets may also need to use the ApplicationRuntimeMBean for accessing the application name and version identifier.

17.4 Assign a Version Identifier

Oracle WebLogic Communication Services uses a version identifier—a string value—appended to the application name to distinguish between multiple versions of a given application. The version string can be a maximum of 215 characters long, and must consist of valid characters as identified in Table 17-1.

Table 17-1 Valid and Invalid Characters

	Valid ASCII Characters	Invalid Version Constructs
	
a-z

	
..

	
A-Z

	
.

	
0-9

	

	
period ("."), underscore ("_"), or hyphen ("-") in combination with other characters

	

For deployable SIP Servlet WAR files, you must define the version identifier in the MANIFEST.MF file of the application or specify it on the command line at deployment time.

17.4.1 Defining the Version in the Manifest

Both WAR and EAR deployments must specify a version identifier in the MANIFEST.MF file. Example 17-1 shows an application with the version identifier "v2":

Example 17-1 Version Identifier in Manifest

Manifest-Version: 1.0
Created-By: 1.4.1_05-b01 (Sun Microsystems Inc.)
Weblogic-Application-Version: v2

If you deploy an application without a version identifier, and later deploy with a version identifier, Oracle WebLogic Communication Services recognizes the deployments as separate versions of the same application.

17.5 Deploy the Updated Application Version

To begin the upgrade process, simply deploy the updated application archive using either the Administration Console or weblogic.Deployer utility. Use the -retiretimeout option to the weblogic.Deployer utility if you want to automatically undeploy the older application version after a fixed amount of time. For example:

java weblogic.Deployer -name MyApp -version v2 -deploy -retiretimeout 7

Oracle WebLogic Communication Services examines the version identifier in the manifest file to determine if another version of the application is currently deployed. If two versions are deployed, the server automatically begins routing new requests to the most recently-deployed application. The server allows the other deployed application to complete in-flight calls, directs no new calls to it. This process is referred to as "retiring" the older application, because eventually the older application version will process no SIP messages.

Note that Oracle WebLogic Communication Services does not compare the actual version strings of two deployed applications to determine which is the higher version. New calls are always routed to the most recently-deployed version of an application.

Oracle WebLogic Communication Services also distinguishes between a deployment that has no version identifier (no version string in the manifest) and a subsequent version that does specify a version identifier. This enables you to easily upgrade applications that were packaged before you began including version information as described in Section 17.4, "Assign a Version Identifier".

17.6 Undeploy the Older Application Version

After deploying a new version of an existing application, the original deployment process messages only for in-flight calls (calls that were initiated with the original deployment). After those in-flight calls complete, the original deployment no longer processes any SIP messages. In most production environments, you will want to ensure that the original deployment is no longer processing messages before you undeploy the application.

To determine whether a deployed application is processing messages, you can obtain the active session count from the application's SipApplicationRuntimeMBean instance. Example 17-2 shows the sample WLST commands for viewing the active session count for the findme sample application on the default single-server domain.

Based on the active session count value, you can undeploy the application safely (without losing any in-flight calls) or abruptly (losing the active session counts displayed at the time of undeployment).

Use either the Administration Console or weblogic.Deployer utility to undeploy the correct deployment name.

Example 17-2 Sample WLST Session for Examining Session Count

connect()
custom()
cd ('examples:Location=myserver,Name=myserver_myserver_findme_findme,ServerRuntime=myserver,Type=SipApplicationRuntime')
ls()
-rw- ActiveAppSessionCount 0
-rw- ActiveSipSessionCount 0
-rw- AppSessionCount 0
-rw- CachingDisabled true
-rw- MBeanInfo weblogic.management.tools.In
fo@5ae636
-rw- Name myserver_myserver_findme_fin
dme
-rw- ObjectName examples:Location=myserver,N
ame=myserver_myserver_findme_findme,ServerRuntime=myserver,Type=SipApplicationRu
ntime
-rw- Parent examples:Location=myserver,N
ame=myserver,Type=ServerRuntime
-rw- Registered false
-rw- SipSessionCount 0
-rw- Type SipApplicationRuntime

-rwx preDeregister void :

17.7 Roll Back the Upgrade Process

If you deploy a new version of an application and discover a problem with it, you can roll back the upgrade process by:

	
Undeploying the active version of the application.

	
Activating the older version of the application. For example:

java weblogic.Deployer -name MyApp -appversion v1 -start

	
Note:

When you undeploy an active version of an application, the previous application version remains in administration mode. You must explicitly activate the older version in order to direct new requests to the application.

Alternately, you can use simply use the -start option to start the older application version, which causes the older version of the application to process new requests and retire the newer version.

17.8 Accessing the Application Name and Version Identifier

If you intend to use Oracle WebLogic Communication Services's production upgrade feature, applications that are composed of multiple SIP Servlets should not hard-code the application name. Instead of hard-coding the application name, your application can dynamically access the deployment name or version identifier by using helper methods in ApplicationRuntimeMBean.

17.9 Using Administration Mode

You can optionally use the -adminmode option with weblogic.Deployer to deploy a new version of an application in administration mode. While in administration mode, SIP traffic is accepted only via a configured network channel named sips-admin having the TLS transport. If no sips-admin channel is configured, or if a request is received using a different channel, the server rejects the request with a 503 message.

To transition the application from administration mode to a generally-available mode, use the -start option with weblogic.Deployer.

	
Note:

If using TLS is not feasible with your application, you can alternately change the Servlet role mapping rules to allow only 1 user on the newer version of the application. This enables you to deploy the newer version alongside the older version, while restricting access to the newer version.

C Diameter Configuration Reference

The following sections provide a complete reference to the Diameter configuration file, diameter.xml:

	
Section C.1, "Overview of diameter.xml"

	
Section C.2, "Graphical Representation"

	
Section C.3, "Editing diameter.xml"

	
Section C.4, "XML Schema"

	
Section C.5, "Example diameter.xml File"

	
Section C.6, "XML Element Description"

C.1 Overview of diameter.xml

The diameter.xml file configures attributes of a Diameter node, such as:

	
The host identity of the Diameter node

	
The Diameter applications that are deployed on the node

	
Connection information for Diameter peer nodes

	
Routing information and default routes for handling Diameter messages.

The Diameter protocol implementation reads the configuration file at boot time. diameter.xml is stored in the DOMAIN_DIR/config/custom subdirectory where DOMAIN_DIR is the root directory of the Oracle WebLogic Communication Services domain.

C.2 Graphical Representation

Figure C-1 shows the element hierarchy of the diameter.xml file.

Figure C-1 Element Hierarchy of diameter.xml

[image: Description of Figure C-1 follows]

C.3 Editing diameter.xml

You should never move, modify, or delete the diameter.xml file during normal operations.

Oracle recommends using the Administration Console to modify diameter.xml indirectly, rather than editing the file by hand. Using the Administration Console ensures that the diameter.xml document always contains valid XML.

You may need to manually view or edit diameter.xml to troubleshoot problem configurations, repair corrupted files, or to roll out custom Diameter node configurations to a large number of machines when installing or upgrading Oracle WebLogic Communication Services. When you manually edit diameter.xml, you must reboot Diameter nodes to apply your changes.

	
Caution:

Always use the Diameter node in the Administration Console or the WLST utility, as described in Configuring Engine Tier Container Properties in the Configuration Guide to make changes to a running Oracle WebLogic Communication Services deployment.

C.3.1 Steps for Editing diameter.xml

If you need to modify diameter.xml on a production system, follow these steps:

	
Use a text editor to open the DOMAIN_DIR/config/custom/diameter.xml file, where DOMAIN_DIR is the root directory of the Oracle WebLogic Communication Services domain.

	
Modify the diameter.xml file as necessary. See Section C.6, "XML Element Description" for a full description of the XML elements.

	
Save your changes and exit the text editor.s

	
Reboot or start servers to have your changes take effect:

	
Caution:

Always use the Diameter node in the Administration Console or the WLST utility, as described in Configuring Engine Tier Container Properties in the Configuration Guide, to make changes to a running Oracle WebLogic Communication Services deployment.

	
Test the updated system to validate the configuration.

C.4 XML Schema

The xml schema file (wcp-diameter.xsd) is bundled within the wlssdiameter.jar library, installed in the WLSS_HOME/server/lib/wlss directory.

C.5 Example diameter.xml File

See Configuring Diameter Sh Client Nodes and Relay Agents in Configuring Network Resources for multiple listings of example diameter.xml configuration files.

C.6 XML Element Description

The following sections describe each XML element in diameter.xml.

C.6.1 configuration

The top level configuration element contains the entire diameter node configuration.

C.6.2 target

Specifies one or more target Oracle WebLogic Communication Services instances to which the node configuration is applied. The target servers must be defined in the config.xml file for your domain.

C.6.3 host

Specifies the host identity for this Diameter node. If no host element is specified, the identity is taken from the local server's host name. Note that the host identity may or may not match the DNS name.

	
Note:

When configuring Diameter support for multiple Sh client nodes, it is best to omit the host element from the diameter.xml file. This enables you to deploy the same Diameter Web Application to all servers in the engine tier cluster, and the host name is dynamically obtained for each server instance.

C.6.4 realm

Specifies the realm name for which this Diameter node has responsibility. You can run multiple Diameter nodes on a single host using different realms and listen port numbers. The HSS, Application Server, and relay agents must all agree on a realm name or names. The realm name for the HSS and Application Server need not match.

If you omit the realm element, the realm named is derived using the domain name portion of the host name, if the host name is fully-qualified (for example, host@oracle.com).

C.6.5 address

Specifies the listen address for this Diameter node, using either the DNS name or IP address. If you do not specify an address, the node uses the host identity as the listen address.

	
Note:

The host identity may or may not match the DNS name of the Diameter node. Oracle recommends configuring the address element with an explicit DNS name or IP address to avoid configuration errors.

C.6.6 port

Specifies the TCP or TLS listen port for this Diameter node. The default port is 3868.

C.6.7 tls-enabled

This element is used only for standalone node operation to advertise TLS capabilities.

Oracle WebLogic Communication Services ignores the tls-enabled element for nodes running within a server instance. Instead, TLS transport is reported as enabled if the server instance has configured a Network Channel having TLS support (a diameters channel). See Creating Network Channels for the Diameter Protocol in Configuring Network Resources.

C.6.8 sctp-enabled

This element is used only for standalone node operation to advertise SCTP capabilities.

Oracle WebLogic Communication Services ignores the sctp-enabled element for nodes running within a server instance. Instead, SCTP transport is reported as enabled if the server instance has configured a Network Channel having SCTP support (a diameter-sctp channel). See Creating Network Channels for the Diameter Protocol in Configuring Network Resources.

C.6.9 debug-enabled

Specifies a boolean value to enable or disable debug message output. Debug messages are disabled by default.

C.6.10 message-debug-enabled

Specifies a boolean value to enable or disable tracing of Diameter messages. This element is disabled by default.

C.6.11 application

Configures a particular Diameter application to run on the selected node. Oracle WebLogic Communication Services includes applications to support nodes that act as Diameter Sh, Ro, and Rf clients, Diameter relay agents, or Home Subscriber Servers (HSS). Note that the HSS application is a simulator that is provided only for development or testing purposes.

C.6.11.1 class-name

Specifies the application class file to load.

C.6.11.2 param*

Specifies one or more optional parameters to pass to the application class.

C.6.11.2.1 name

Specifies the name of the application parameter.

C.6.11.2.2 value

Specifies the value of the parameter.

C.6.12 peer-retry-delay

Specifies the number of seconds this node waits between retries to Diameter peers. The default value is 30 seconds.

C.6.13 allow-dynamic-peers

Specifies a boolean value that enables or disables dynamic peer configuration. Dynamic peer support is disabled by default. Oracle recommends enabling dynamic peers only when using the TLS transport, because no access control mechanism is available to restrict hosts from becoming peers.

C.6.14 request-timeout

Specifies the number of milliseconds to wait for an answer from a peer before timing out.

C.6.15 watchdog-timeout

Specifies the number of seconds used for the Diameter Tw watchdog timer.

C.6.16 supported-vendor-id+

Specifies one or more vendor IDs to be added to the Supported-Version-Ids AVP in the capabilities exchange.

C.6.17 include-origin-state

Specifies whether the node should include the origin state AVP in requests and answers.

C.6.18 peer+

Specifies connection information for an individual Diameter peer. You can choose to configure connection information for individual peer nodes, or allow any node to be dynamically added as a peer. Oracle recommends using dynamic peers only if you are using the TLS transport, because there is no way to filter or restrict hosts from becoming peers when dynamic peers are enabled.

When configuring Sh client nodes, the peers element should contain peer definitions for each Diameter relay agent deployed to your system. If your system does not use relay agents, you must include a peer entry for the Home Subscriber Server (HSS) in the system, as well as for all other engine tier nodes that act as Sh client nodes.

When configuring Diameter relay agent nodes, the peers element should contain peer entries for all Diameter client nodes that access the peer, as well as the HSS.

C.6.18.1 host

Specifies the host identity for a Diameter peer.

C.6.18.2 address

Specifies the listen address for a Diameter peer. If you do not specify an address, the host identity is used.

C.6.18.3 port

Specifies the TCP or TLS port number for this Diameter peer. The default port is 3868.

C.6.18.4 protocol

Specifies the protocol used by the peer. This element may be one of tcp or sctp.

C.6.19 route

Defines a realm-based route that this node uses when resolving messages.

When configuring Sh client nodes, you should specify a route to each Diameter relay agent node deployed in the system, as well as a default-route to a selected relay. If your system does not use relay agents, simply configure a single default-route to the HSS.

When configuring Diameter relay agent nodes, specify a single default-route to the HSS.

C.6.19.1 realm

The target realm used by this route.

C.6.19.2 application-id

The target application ID for the route.

C.6.19.3 action

An action type that describes the role of the Diameter node when using this route. The value of this element can be one of the following:

	
none

	
local

	
relay

	
proxy

	
redirect

C.6.19.4 server+

Specifies one or more target servers for this route. Note that any server specified in the server element must also be defined as a peer to this Diameter node, or dynamic peer support must be enabled.

C.6.20 default-route

Defines a default route to use when a request cannot be matched to a configured route.

C.6.20.1 action

Specifies the default routing action for the Diameter node. See Section C.6.19.3, "action".

C.6.20.2 server+

Specifies one or more target servers for the default route. Any server you include in this element must also be defined as a peer to this Diameter node, or dynamic peer support must be enabled.

13 Managing Oracle User Messaging Service

This chapter describes how to manage Oracle User Messaging Service.

This chapter includes the following topic:

	
Section 13.1, "Deploying Drivers"

	
Section 13.2, "Undeploying and Unregistering Drivers"

13.1 Deploying Drivers

When you install Oracle UMS, pre-installed drivers are included (Email, XMPP, SMPP, and VoiceXML). Of these, only the Email driver is deployed to the WebLogic Server. To deploy the others, target that driver to the WebLogic Server (using WebLogic Administration Console, or you can target the drivers when creating or extending the domain using the Oracle Fusion Middleware Configuration Wizard).

The Worklist driver must be deployed to a SOA Server if you want to make use of the UMS integration with Worklist. Because this integration involves multiple JEE applications and a SOA composite, there is a special extension template you must use to enable this feature in one step. See Install the Worklist Driver for more information.

You can deploy additional drivers in a variety of ways using: WebLogic Server Administration Console, Oracle Enterprise Manager, WLST commands, and through the Oracle Fusion Middleware Configuration Wizard.

	
Note:

To deploy two or more driver instances of a particular driver EAR, you must use the custom deployment plan templates available at $ORACLE_HOME/communications/plans. See Using Oracle Enterprise Manager to Deploy Drivers for instructions on deploying drivers using Oracle Enterprise Manager.

13.1.1 Using WebLogic Server Administration Console

Use WebLogic Server Administration Console to deploy drivers.

	
In the Domain Structure region of the console, click Deployments. The Home page for Deployments appears.

Figure 13-1 Deployments

[image: Description of Figure 13-1 follows]

	
Under Deployments, click Install.

Figure 13-2 Install

[image: Description of Figure 13-2 follows]

The Install Application Assistant appears. Use this page to locate the application you want to deploy.

	
Enter the path to your file.

Figure 13-3 Install Application Assistant

[image: Description of Figure 13-3 follows]

	
Click Next. You will be asked to choose the targeting style.

Figure 13-4 Targeting style

[image: Description of Figure 13-4 follows]

	
Use the Default (Install this deployment as an application). A Summary page appears.

Figure 13-5 Summary page

[image: Description of Figure 13-5 follows]

	
Accept the settings. You can change setting here, but it is recommended that you accept the settings as they are. Click Finish. A Confirmation page appears.

Figure 13-6 Confirmation page

[image: Description of Figure 13-6 follows]

	
In order for your deployment to be complete, you must activate your changes, so click Activate Changes.

Figure 13-7 Activate changes

[image: Description of Figure 13-7 follows]

A final confirmation appears.

Figure 13-8 Final confirmation

[image: Description of Figure 13-8 follows]

13.1.2 Using Oracle Enterprise Manager to Deploy Drivers

Follow these steps to deploy drivers using Oracle Enterprise Manager.

	
Retrieve a deployment template (for example: ORACLE_HOME/communications/plans)

	
Copy the plan to a location of your choice (to the same directory or any other directory).

	
Edit the plan:

Replace DriverDeploymentName with whichever name you want to use (ensure you replace all instances of the name).

Replace DriverShortName with any name you like.

	
Start Oracle Enterprise Manager.

	
Enter the location of the .ear file (Figure 13-9).

	
Enter the location of the Deployment Plan (Figure 13-9).

Figure 13-9 Deploying UMS Drivers using Oracle Enterprise Manager

[image: Deploying UMS Drivers using EM]

The Select Target screen appears.

Figure 13-10 Select Target screen

[image: Select Target screen]

	
Select the SOA target.

	
Enter an application name in the Application Attributes screen. The application name must exactly match the string used for DriverDeploymentName (in Step 3 above) which is provided in the Deployment Plan. If it does not, the deployment and activation will fail. The Deployment Setting screen appears.

Figure 13-11 Deployment Settings screen

[image: Description of Figure 13-11 follows]

	
Click Deploy. The Deployment Completed screen appears.

Figure 13-12 Deployment Completed screen

[image: Deployment Complete screen]

	
To see the result (driver deployed), start the SOA Server.

13.1.3 Using WLST Commands

You can deploy drivers using the WLST command deployUserMessagingDriver.

13.1.3.1 deployUserMessagingDriver

Command Category: UMS

Use with WLST: Online

13.1.3.1.1 Description

deployUserMessagingDriver is used to deploy additional instances of user messaging drivers.Specify a base driver type (for example: email, xmpp, voicexml, and others) and a short name for the new driver deployment. The string usermessagingdriver- will be prepended to the specified application name. Any valid parameters for the deploy command can be specified, and will be passed through when the driver is deployed.

13.1.3.1.2 Syntax

deployUserMessagingDriver(baseDriver, appName, [targets], [stageMode], [options])

	Argument	Definition
	baseDriver	Specifies the base messaging driver type.
Must be a known driver type, such as 'email', 'proxy', 'smpp', 'voicexml', or 'xmpp'.

	appName	A short descriptive name for the new deployment. The specified value will be prepended with the string usermessagingdriver-
	targets
stageMode

options

	Optional. Additional arguments that are valid for the deploy command can be specified and will be passed through when the new driver is deployed.

13.1.3.1.3 Examples

To deploy a second instance of an email driver with name myEmail.

wls:/base_domain/serverConfig> deployUserMessagingDriver(baseDriver='email', appName='myEmail')

To deploy a second instance of an email driver, specifying deployment targets.

wls:/base_domain/serverConfig> deployUserMessagingDriver(baseDriver='email', appName='email2', targets='server1,server2')

13.1.4 Using the Oracle Fusion Middleware Configuration Wizard

To install the SMPP, XMPP and VoiceXML drivers, extend the domain using the extension template available at $ORACLE_HOME/common/templates/applications/oracle.ums.drivers_template_11.1.1.jar.To extend a domain using Oracle Fusion Middleware Configuration Wizard:

	
Launch Oracle Fusion Middleware Configuration Wizard ($ORACLE_HOME/common/bin/config.sh or %ORACLE_HOME%\common\bin\config.cmd).

	
Select the Extend an existing WebLogic domain option.

	
Select the desired domain directory containing UMS.

	
Select the Extend my domain using an existing extension template option.

	
Click Browse, and navigate to $ORACLE_HOME/common/templates/applications

	
Select oracle.ums.drivers_template_11.1.1.jar

	
Complete the remaining steps of the Oracle Fusion Middleware Configuration Wizard, and remember to target the required drivers to the desired WebLogic servers and/or clusters.

	
Restart the appropriate WebLogic servers.

13.2 Undeploying and Unregistering Drivers

Since Messaging Drivers are standard JEE applications, they can be undeployed from the Oracle WebLogic Server using standard Oracle WebLogic tools such as the Admin Console or WLST.

However, since the UMS server keeps track of the messaging drivers that have been registered with it in a persistent store (database), this registration must be cleaned in a separate step using a runtime MBean exposed by the UMS server. The procedure to do this from Oracle Enterprise Manager is as follows:

	
Ensure the UMS server is available.

	
In Oracle Enterprise Manager, select any usermessagingserver target in the domain.

	
From the target's menu, select System MBean Browser.

	
In System MBean Browser, locate the ComponentAdministration MBean of usermessagingserver:

Expand the folder com.oracle.sdp.messaging > Server (such as Server: soa_server1) > SDPMessagingRuntime > ComponentAdministration.

	
Invoke the operation listDriverInstances.

	
Click the Operations tab.

	
Click the operation listDriverInstances.

	
Click Invoke.

	
Identify and copy the name of the driver you want to unregister. (for example: /Farm_soa_bam_domain/soa_bam_domain/soa_server1/usermessagingdriver-email:oracle_sdpmessagingdriver_email#Email-Driver)

Figure 13-13 Listing Driver Instances

[image: list driver in EM]

	
Click Return.

	
Invoke the operation unregisterDriverInstance with the desired driver name.

	
Click the operation unregisterDriverInstance.

	
Paste the driver name in the Value field (for example: /Farm_soa_bam_domain/soa_bam_domain/soa_server1/usermessagingdriver-email:oracle_sdpmessagingdriver_email#Email-Driver).

	
Click Invoke.

Figure 13-14 Unregistering a Driver Instance

[image: Description of Figure 13-14 follows]

	
Check the confirmation dialog for success.

This completes the unregistration of the specified driver from the UMS server and it will no longer be used in future message delivery.

2 Shared Configuration Tasks

The following sections provide an overview of the configuration tasks that are common to both Oracle WebLogic Communication Services and Oracle WebLogic Server. These topics are included:

	
Section 2.1, "Shared Configuration Tasks for Oracle WebLogic Communication Services and Oracle WebLogic Server"

	
Section 2.2, "Oracle WebLogic Communication Services Configuration Overview"

	
Section 2.3, "Methods and Tools for Performing Configuration Tasks"

	
Section 2.4, "Starting and Stopping Servers"

	
Section 2.5, "Administration Server Best Practices"

	
Section 2.6, "Common Configuration Tasks"

2.1 Shared Configuration Tasks for Oracle WebLogic Communication Services and Oracle WebLogic Server

Oracle WebLogic Communication Services is based on the Oracle WebLogic Server 10g Release 3 application server, and many system-level configuration tasks are the same for both products. This guide addresses only those system-level configuration tasks that are unique to Oracle WebLogic Communication Services, such as tasks related to network and security configuration and cluster configuration for the engine and SIP data tiers.

HTTP server configuration and other basic configuration tasks such as server logging are addressed in Oracle WebLogic Server documentation. See Oracle Fusion Middleware Getting Started With Installation for Oracle WebLogic Server to get started.

2.2 Oracle WebLogic Communication Services Configuration Overview

The SIP Servlet container, SIP data tier replication, and Diameter protocol features of Oracle WebLogic Communication Services are implemented in the Oracle WebLogic Server 10g Release 3 product as custom resources. A pair of custom resources, sipserver and datatier, implement the engine tier SIP Servlet container functionality and SIP data tier replication functionality. In production deployments, both resources are generally installed. Specialized deployments may use only the sipserver resource in conjunction with a SIP-aware load balancer, as described in Section 15.7, "Alternate Configurations".

Another custom resource, diameter, provides Diameter base protocol functionality, and is required only for deployments that utilize one or more Diameter protocol applications.

The Oracle WebLogic Communication Services custom resource assignments are visible in the domain configuration file, config.xml, and should not be modified. Example 2-1 shows the definitions for each resource. Note that the sipserver and datatier resources must each be targeted to the same servers or clusters; in Example 2-1, the resources are deployed to both the engine tier and SIP data tier cluster.

Example 2-1 Oracle WebLogic Communication Services Custom Resources

<custom-resource>
 <name>sipserver</name>
 <target>ORA_DATA_TIER_CLUST,ORA_ENGINE_TIER_CLUST</target>
 <descriptor-file-name>custom/sipserver.xml</descriptor-file-name>
 <resource-class>com.bea.wcp.sip.management.descriptor.resource.SipServerResource</resource-class>
 <descriptor-bean-class>com.bea.wcp.sip.management.descriptor.beans.SipServerBean</descriptor-bean-class>
</custom-resource>
<custom-resource>
 <name>datatier</name>
 <target>ORA_DATA_TIER_CLUST,ORA_ENGINE_TIER_CLUST</target>
 <descriptor-file-name>custom/datatier.xml</descriptor-file-name>
 <resource-class>com.bea.wcp.sip.management.descriptor.resource.DataTierResource</resource-class>
 <descriptor-bean-class>com.bea.wcp.sip.management.descriptor.beans.DataTierBean</descriptor-bean-class>
 </custom-resource>
<custom-resource>
 <name>diameter</name>
 <target>ORA_ENGINE_TIER_CLUST</target>
 <deployment-order>200</deployment-order>
 <descriptor-file-name>custom/diameter.xml</descriptor-file-name>
 <resource-class>com.bea.wcp.diameter.DiameterResource</resource-class>
 <descriptor-bean-class>com.bea.wcp.diameter.management.descriptor.beans.ConfigurationBean</descriptor-bean-class>
</custom-resource>

The Oracle WebLogic Communication Services custom resources utilize the basic domain resources defined in config.xml, such as network channels, cluster and server configuration, and Java EE resources. However, Oracle WebLogic Communication Services-specific resources are configured in separate configuration files based on functionality:

	
sipserver.xml configures SIP container properties and general Oracle WebLogic Communication Services engine tier functionality.

	
datatier.xml identifies servers that participate as replicas in the SIP data tier, and also defines the number and layout of SIP data tier partitions.

	
diameter.xml configures Diameter nodes and Diameter protocol applications used in the domain.

	
approuter.xml configures Default Application Router. For more information on configuring DAR, see Oracle WebLogic Communication Services Installation Guide.

Keep in mind that the domain configuration file, config.xml, defines all of the Managed Servers available in the domain. The sipserver.xml, datatier.xml, and diameter.xml configuration files included in the sipserver application determine the role of each server instance, such as whether they behave as SIP data tier replicas, engine tier nodes, or Diameter client nodes.

Configuration changes to SIP Servlet container properties can be applied dynamically (some SIP Servlet container properties may display a Restart may be required icon meaning that restart after making the change will be required) to a running server by using the Administration Console, or from the command line using the WLST utility. Configuration for SIP data tier nodes cannot be changed dynamically, so you must reboot SIP data tier servers in order to change the number of partitions or replicas.

2.2.1 Diameter Configuration

The Diameter protocol implementation is implemented as a custom resource separate from the SIP Servlet container functionality. The Diameter configuration file configures one or more Diameter protocol applications to provide Diameter node functionality. Oracle WebLogic Communication Services provides the Diameter protocol applications to support the following node types:

	
Diameter Sh interface client node (for querying a Home Subscriber Service)

	
Diameter Rf interface client node (for offline charging)

	
Diameter Ro interface client node (for online charging)

	
Diameter relay node

	
HSS simulator node (suitable for testing and development only, not for production deployment)

The Diameter custom resource is deployed only to domains having servers that must function as Diameter client nodes or relay agents, or to servers providing HSS simulation capabilities. The actual function of the server instance depends on the configuration defined in the diameter.xml file.

See Section 10.2, "Steps for Configuring Diameter Client Nodes and Relay Agents" in Configuring Network Resources for instructions to configure the Diameter Web Application in an Oracle WebLogic Communication Services domain. See Oracle WebLogic Communication Services Developer's Guide for information on developing Diameter applications.

2.3 Methods and Tools for Performing Configuration Tasks

Oracle WebLogic Communication Services provides several mechanisms for changing the configuration of the SIP Servlet container:

	
Section 2.3.1, "Administration Console"

	
Section 2.3.2, "WebLogic Scripting Tool (WLST)"

	
Section 2.3.3, "Additional Configuration Methods"

2.3.1 Administration Console

Oracle WebLogic Communication Services provides Administration Console extensions that allow you to modify and SIP Servlet container, SIP Servlet domain, and Diameter configuration properties using a graphical user interface. The Administration Console extensions for Oracle WebLogic Communication Services are similar to the core console available in Oracle WebLogic Server 10g Release 3. All Oracle WebLogic Communication Services configuration and monitoring is provided via these nodes in the left pane of the console:

	
SipServer—configures SIP Servlet container properties and other engine tier functionality. This extension also enables you to create new partitions, and view (but not modify) SIP data tier partitions and replicas. See Section 3.1, "Overview of SIP Container Configuration" for more information about configuring the SIP Servlet container using the Administration Console.

	
Diameter—configures Diameter nodes and applications.

	
Note:

To learn more about using Oracle WebLogic Server Administration Console, see "Getting Started with Oracle WebLogic Server Administration Console" in Oracle Fusion Middleware Administrator's Guide.

2.3.2 WebLogic Scripting Tool (WLST)

The WebLogic Scripting Tool (WLST) enables you to perform interactive or automated (batch) configuration operations using a command-line interface. WLST is a JMX tool that can view or manipulate the MBeans available in a running Oracle WebLogic Communication Services domain. Section 3.1, "Overview of SIP Container Configuration" provides instructions for modifying SIP Servlet container properties using WLST.

	
Note:

To learn more about using WLST, see Oracle Fusion Middleware WebLogic Scripting Tool Command Reference.

2.3.3 Additional Configuration Methods

Most Oracle WebLogic Communication Services configuration is performed using either the Administration Console or WLST. The methods described in the following sections may also be used for certain configuration tasks.

2.3.3.1 Editing Configuration Files

You may also edit sipserver.xml, datatier.xml, diameter.xml, and approuter.xml manually. If you edit configuration files manually, you must reboot all servers to apply the configuration changes.

2.3.3.2 Custom JMX Applications

Oracle WebLogic Communication Services properties are represented by JMX-compliant MBeans. You can therefore program JMX applications to configure SIP container properties using the appropriate Oracle WebLogic Communication Services MBeans.

The general procedure for modifying Oracle WebLogic Communication Services MBean properties using JMX is described in Section 3.3, "Configuring Container Properties Using WLST (JMX)" (WLST itself is a JMX-based application). For more information about the individual MBeans used to manage SIP container properties, see the Oracle Fusion Middleware Communication Services Java API Reference.

2.3.3.2.1 Setting Log Levels

You can set log levels by manually editing the logging.xml file, by setting the setLoggerLevel(String loggerName, String logLevel) MBean, or through Oracle Enterprise Manager. For more information, see Section 12.2.1, "Configuring Logging". See also Oracle Fusion Middleware 2 Day Administration Guide.

2.4 Starting and Stopping Servers

Oracle WebLogic Communication Services start scripts use default values for many JVM parameters that affect performance. For example, JVM garbage collection and heap size parameters may be omitted, or may use values that are acceptable only for evaluation or development purposes. In a production system, you must rigorously profile your applications with different heap size and garbage collection settings in order to realize adequate performance. See Section 8.8, "Tuning JVM Garbage Collection for Production Deployments" for suggestions about maximizing JVM performance in a production domain.

	
Caution:

When you configure a domain with multiple engine and SIP data tier servers, you must accurately synchronize all system clocks to a common time source (to within one or two milliseconds) in order for the SIP protocol stack to function properly. See Section 3.5.2, "Configuring NTP for Accurate SIP Timers" for more information.

Because a typical Oracle WebLogic Communication Services domain contains numerous engine and SIP data tier servers, with dependencies between the different server types, you should generally follow this sequence when starting up a domain:

	
Start the Administration Server for the domain. Start the Administration Server in order to provide the initial configuration to engine and SIP data tier servers in the domain. The Administration Server can also be used to monitor the startup/shutdown status of each Managed Server. You generally start the Administration Server by using either the startWebLogic.cmd script installed with the Configuration Wizard, or a custom startup script.

	
Start SIP data tier servers in each partition. The engine tier cannot function until servers in the SIP data tier are available to manage call state data. Although all replicas in each partition need not be available to begin processing requests, at least one replica in each configured partition must be available in order to manage the concurrent call state. All replicas should be started and available before opening the system to production network traffic.

You generally start each SIP data tier server by using either the startManagedWebLogic.cmd script installed with the Configuration Wizard, or a custom startup script. startManagedWebLogic.cmd requires that you specify the name of the server to startup, as well as the URL of the Administration Server for the domain, as in:

startManagedWebLogic.cmd datanode0-0 t3://adminhost:7001

	
Start engine tier servers. After the SIP data tier servers have started, you can start servers in the engine tier and begin processing client requests. As with SIP data tier servers, engine tier servers are generally started using the startManagedWebLogic.cmd script or a custom startup script.

Following the above startup sequence ensures that all Managed Servers use the latest SIP Servlet container and SIP data tier configuration. This sequence also avoids engine tier error messages that are generated when servers in the SIP data tier are unavailable.

2.5 Administration Server Best Practices

The Administration Server in a Oracle WebLogic Communication Services installation is required for configuring, deploying, and monitoring services and applications.

	
Note:

If an Administration Server fails due to a hardware, software, or network problem, only management, deployment, and monitoring operations are affected. Managed Servers do not require the Administration Server for continuing operation; Java EE applications and SIP features running on Managed Server instances continue to function even if the Administration Server fails.

Oracle recommends the following best practices for configuring Administration Server and Managed Server instances in your Oracle WebLogic Communication Services domain:

	
Run the Administration Server instance on a dedicated machine. The Administration Server machine should have a memory capacity similar to Managed Server machines, although a single CPU is generally acceptable for administration purposes.

	
Configure all Managed Server instances to use Managed Server Independence. This feature allows the Managed Servers to restart even if the Administration Server is unreachable due to a network, hardware, or software failure. See Oracle Fusion Middleware Managing Server Startup and Shutdown for Oracle WebLogic Server for more information.

	
Configure the Node Manager utility to automatically restart all Managed Servers in the Oracle WebLogic Communication Services domain. See Oracle Fusion Middleware Oracle WebLogic Scripting Tool for more information.

Should an Administration Server instance or machine fail, remember that only configuration, deployment, and monitoring features are affected, but Managed Servers continue to operate and process client requests. Potential losses incurred due to an Administration Server failure include:

	
Loss of in-progress management and deployment operations.

	
Loss of ongoing logging functionality.

	
Loss of SNMP trap generation for WebLogic Server instances (as opposed to Oracle WebLogic Communication Services instances). On Managed Servers, Oracle WebLogic Communication Services traps are generated even in the absence of the Administration Server.

To resume normal management activities, restart the failed Administration Server instance as soon as possible.

2.6 Common Configuration Tasks

General administration and maintenance of Oracle WebLogic Communication Services requires that you manage both WebLogic Server configuration properties and Oracle WebLogic Communication Services container properties. These common configuration tasks are summarized in Table 2-1.

Table 2-1 Common Oracle WebLogic Communication Services Configuration Tasks

	Task	Description
	
Section 3.1, "Overview of SIP Container Configuration"

	
	
Configuring SIP Container Properties using the Administration Console

	
Using WLST to perform batch configuration

	
Chapter 6, "Configuring SIP Data Tier Partitions and Replicas"

	
	
Assigning Oracle WebLogic Communication Services instances to the SIP data tier partitions

	
Replicating call state using multiple SIP data tier instances

	
Chapter 4, "Managing Network Resources"

	
	
Configuring WebLogic Server network channels to handling SIP and HTTP traffic

	
Setting up multi-homed server hardware

	
Configuring load balancers for use with Oracle WebLogic Communication Services

	
Section 5.7, "Configuring Digest Authentication"

	
	
Configuring the LDAP Digest Authentication Provider

	
Configuring a trusted host list

	
Section 8.7, "Logging SIP Requests and Responses"

	
	
Configuring logging Servlets to record SIP requests and responses.

	
Defining log criteria for filtering logged messages

	
Maintaining Oracle WebLogic Communication Services log files

Part II

Configuring Presence

This Part contains the following chapter:

	
Chapter 9, "Configuring Presence and Presence Web Services"

14 Configuring SIP Infrastructure Applications

This chapter describes Proxy Registrar and STUN Service. Topics include:

	
Section 14.1, "Proxy Registrar"

	
Section 14.2, "STUN Service"

14.1 Proxy Registrar

The Proxy Registrar is a user agent server (UAS) that implements the proxy and registrar functions described in RFC 3261. This SIP entity is a router of messages. The Proxy Registrar's registrar function processes the REGISTER requests from User Agent clients and uses a Location Service to store a binding (that is, an association) between a user's address of record (AOR) and the user's SIP or SIPS URIs that are located in a CONTACT field. Upon receiving requests to the AOR, the proxy function locates the mapped URIs through a Location Service lookup and then proxies the request using the location information retrieved by this lookup. Table 14-1 describes the attributes of the Proxy Registrar.

Table 14-1 Attributes of the Proxy Registrar

	Attributes	Description
	
CurrentRegDevices

	
A read-only attribute that displays the number of currently registered devices.

	
DefaultExpires

	
Sets the expiration value for the REGISTER request if the client has not indicated a preferred value itself. The default value for this attribute is 3600 seconds.

	
MaxExpires

	
Sets the maximum expiration value for the REGISTER request accepted by the server. Although a client can request any expiration value in the REGISTER request, the server can set a maximum amount of time that it accepts for expiration. If the client requests a time greater than the value set for MaxEpires, then the server sets the expiration time for that particular REGISTER request to the value set for MaxExpires.

The default value for this attribute is 7200 seconds.

	
MinExpires

	
Specifies the minimum expiration value for a REGISTER request accepted by server. While clients can request any expiration time, they can also specify a very low value for the expiration of the REGISTER request. Such low values require clients to update registration information frequently, which creates traffic on the network. If a client requests a value that is below this minimum expiration time, then the server does not accept the REGISTER request and responds with a 423 (Interval Too Brief) error response per RFC 3261. This response message specifies the lowest expiration time allowed, which is set by the MinExpires attribute. The server is allowed to shorten an expiration time, but can never lengthen one.

The default value for this attribute is 60 seconds.

	
SipRegAllowThirdParty

	
Specifies whether the Proxy Registrar allows third-party registrations. In a third-party registration, the entity issuing the request (in the From header) is different from the entity being registered (in the To header) to whom the provided Contact information applies. If set to true, the Proxy Registrar allows third party registrations. If set to false (the default value), then third-party registrations are rejected (the requestor receives a 403 Forbidden status code). This is a read-only attribute that is always set to false.

	
SipRegMaxUsers

	
A read-only attribute that specifies the maximum number of users supported by the Proxy Registrar.

14.2 STUN Service

The OWLCS STUN Service implements STUN -- Simple Traversal of User Datagram Protocol (UDP) Through Network Address Translators (NATs). As described in RFC 3489, STUN enables STUN clients behind a NAT (that is, clients behind a router) to discover the presence of a NAT, the type of NAT, and then to learn the address bindings (including IP addresses) allocated by the NAT.

STUN is a client-server protocol in which a STUN client sends a request (a Binding Request) to a server, which in turn sends a response. OWLCS supports the receipt of Binding Requests from a client, which are sent over UDP and are used to both discover the presence of a NAT and discover the public IP address and the port mappings that it generates. When a STUN client sends a Binding Request to the STUN server, the STUN Server examines the request's source IP address and port and copies them into a response that it sends back to the client. When the STUN client receives the Binding Response, it compares the IP address and port in the packet with the local IP address and port to which it bound itself when it sent the Binding Request to the STUN Server.

The attributes of the STUN Service MBean (described in Table 14-2) enable you to set the STUN Server's primary and secondary IP addresses and ports that form the four RFC 3489-dictated address-port combinations used by the STUN server to receive client Binding Requests. Per RFC 3489, the combinations are as follows:

	
A1, P1 -- The Primary Address and Primary Port

	
A2, P1 -- The Secondary Address and the Primary Port

	
A1, P2 -- The Primary Address and the Secondary Port

	
A2, P2 -- The Secondary Address and the Secondary Port

Typically, the STUN server's Primary Port (P1) is set to UDP port 3478. The Stun server uses the Secondary Address and Secondary Port values (A2, P2) in the CHANGED-ADDRESS attribute included in its Binding Response.

Table 14-2 Attributes of the STUNService MBean

	Attribute	Value
	
Autostart

	
Set to true for the Stun Server to start automatically when OWLCS starts.

	
PrimaryAddress

	
The primary STUN address on which to listen for incoming Binding Requests. The default value is 127.0.0.1.

	
PrimaryPort

	
The primary STUN port on which to listen for incoming Binding Requests. The value is UDP port 3478, the default STUN Port as described in RFC 3489.

	
SecondaryAddress

	
The secondary STUN address on which to listen for incoming Binding Requests. This cannot be the same value as PrimaryAddress.

	
SecondaryPort

	
The secondary STUN port to which to listen for incoming Binding Requests. The default value is UDP port 3479.

[image: Oracle Corporation]

9 Configuring Presence and Presence Web Services

This chapter provides an introduction to the Oracle WebLogic Communication Services (OWLCS) in the following sections:

	
Section 9.1, "Overview of Presence"

	
Section 9.2, "Configuring Presence"

	
Section 9.3, "Configuring Presence Web Services"

9.1 Overview of Presence

Presence may be used to display an end-user's availability and ability to participate in a chat or richer multimedia interaction. Client presence is often represented as a contact management list, which displays user availability as icons. These icons, which not only represent a user's availability, but also a user's location, means of contact, or current activity, enable efficient communications between users.

The Presence application enables a service provider or an enterprise to extend presence service to end users. Major capabilities include:

	
Presence Status Publication

	
Presence Status Subscriptions

	
Privacy

	
Presence Hard State

Presence Status Publication

The term presentity is used here to refer to a Presence Entity (a Presence Entity [presentity] is an entity, such as a person, who is defined by their ability and willingness to communicate). A presentity can publish a Presence Information Data Format (PIDF) document containing presence state to the Presence Server.

Presence Status Subscriptions

The Presence Server supports subscriptions to a presentity's (that is, a user's) status. The Presence Server supports the watcher information event package. This event package allows a presentity to be notified as soon as a watcher has subscribed to his/her presence state. The Presence Server notifies the user when the watcher (subscriber) requests authorization to view the presentity's status. The Presence server also notifies all of the active, authorized watchers of the publication of a new presence document.

Privacy

A presentity can create filtering rules allowing certain watchers to only see certain parts of the presence states. Whenever a watcher subscribes to a presentity's presence, the Presence Server checks the authorization policy that the presentity has set to see if the watcher has the required authorization.

If no matching rule can be found, the watcher is put in a pending state and a watcher info notification is sent to the presentity. Usually, the presentity's client (User Agent) presents a pop-up box asking whether to accept or reject a new pending watcher. The answer is added to the presentity's authorization policy document in the form of a rule for this watcher. The document is then updated by the client on the XDMS using HTTP. When the document is updated, the Presence Server reads the new policy document and acts on the new rule, changing the subscription state accordingly.

Presence Hard State

A presentity can leave a hard state note about their presence (such as when going on vacation: 'On vacation - back on the 15th'). Watchers to this presentity's presence state would be able to see this information.

9.2 Configuring Presence

Configuration of the Presence Server is done through the following MBeans:

	
Section 9.2.1, "Configuring XDMS"

	
Section 9.2.2, "Bus"

	
Section 9.2.3, "PackageManager"

	
Section 9.2.4, "Presence"

	
Section 9.2.5, "PresenceEventPackage"

	
Section 9.2.6, "PresenceWInfoEventPackage"

	
Section 9.2.7, "UA-ProfileEventPackage"

	
Section 9.2.8, "Command Service (XDMS Provisioning)"

	
Section 9.2.9, "XCapConfigManager"

	
Section 9.2.10, "Aggregation Proxy"

	
Section 9.2.11, "Configuring Default Application Router for OPTIONS"

9.2.1 Configuring XDMS

The following MBeans enables you to configure the XDMS (XML Document Management Server):

	
Command Service (XDMS Provisioning)

	
XCapConfigManager

	
Note:

If you change any attributes of the following MBeans, you must restart OWLCS for these changes to take effect.
	
Presence

	
PresenceEventPackage

	
PresenceWInfoEventPackage

	
UAProfileEventPackage

	
XCapConfigManager

	
Note:

JGroups channels must only communicate with their intended peers. To ensure that event packages use JGroups correctly, different channels must use different values for the group name, multicast address and multicast port. See http://www.jboss.org/ for more information.

9.2.2 Bus

Through the Bus MBean you can configure the internal asynchronous bus that the Presence Server is using for its internal job execution. Table 9-1 describes the attributes of the Bus MBean.

Table 9-1 Attributes of the Bus MBean

	Attribute	Value Type	Description
	
ThreadPoolSize

	
int

	
The number of threads held in the thread pool, which remains constant throughout the lifetime of the application. If no threads are used, then the specified number of threads remain idle. The default value is 15.

	
HighWatermark

	
int

	
The number of pending jobs reached before the bus's exhausted threshold level is reached. The default value is 20.

	
KeepAlive

	
long

	
The number of seconds to keep an idle thread alive before dropping it. The default value is 60.

	
LogDuration

	
long

	
A warning is logged to the system log for events that remain in the queue for a period exceeding the specified duration before they are broadcast to the bus. This warning indicates that server is about to be overloaded, since an old job has been sent to the bus. The default value is 60.

	
LowWatermark

	
int

	
Specifies the low threshold level for the number of pending jobs. When this threshold is reached from below, the Bus logs a warning that it is about to be choked. At this point, no more warnings are logged until the high watermark level is reached. The default value is 15.

9.2.3 PackageManager

The PresenceEventPackage, PresenceWInfoEventPackage, and UA-ProfileEventPackage MBeans enable you to configure the event packages, which define the state information to be reported by a notifier to a watcher (subscriber). These packages form the core of the Presence Server, as most requests flow through them.

A notifier is a User Agent (UA) that generates NOTIFY requests that alert watchers to the state of a resource (the entity about which watchers request state information). Notifiers typically accept SUBSCRIBE requests to create subscriptions. A watcher is another type of UA, one that receives the NOTIFY requests issued by a notifier. Such requests contain information about the state of a resource of interest to the watcher. Watchers typically also generate SUBSCRIBE requests and send them to notifiers to create subscriptions.

The PackageManager MBean sets the configuration that determines which of the three event packages (Presence, Watcher Info and UA-Profile) get loaded, as well as configures the environment in which these event packages are loaded. Table 9-2 describes the attributes of the PackageManger MBean.

Table 9-2 Attributes of the EventPackageManager MBean

	Attribute	Description
	
JGroupBroadcastEnabled

	
If true, a single JGroup channel is created for all the event packages running on this Presence Server instance. Whenever new resources are created in any of the running event packages, a message is broadcast on this JGroup channel.

	
JGroupXMLConfigPath

	
Path to an XML configuration file for JGroups. The path can be absolute or relative to the WebLogic domain directory on which the event package is running. Leave this empty to use the following default values for the jgroups connection: UDP(bind_addr=[ip address of this host];mcast_addr=230.0.0.1;mcast_port=7426;ip_ttl=1)

	
JGroupChannelName

	
The name to use when creating the JGroup channel. Note that to prevent aliasing of different JGroup clusters, each cluster must have a unique channel name in addition to a unique multicast port or address.

	
CaseSensitiveUserPart

	
Setting this attribute to true enables case-sensitive handling of the user part of the SIP URI. If this parameter is set to false, then the user part of the URI is not a case-sensitive match. For example, foo is considered the same as FoO. The domain part of the URI is always case-insensitive.

	
EventPackageNames

	
A comma-separated list of event package names. For example: presence,presence.winfo,ua-profile. Only the event packages listed here will be started by the Presence Server.

	
WaitingSubsCleanupInterval

	
The interval, in seconds, in which the subscription cleanup check runs. The thread sleeps for this period and then awakens to check for any waiting subscriptions with a timestamp older than the MaxWaitingSubsTimeHours parameter. All old subscriptions are then removed from the subscribed resource.

	
Max WaitingSubsTimeHours

	
The maximum time, in hours, that a subscription can be in a waiting state before the server removes it. This parameter is used by the subscription cleanup check thread (waitingsubscleanupinterval) to decide if a waiting subscription is old enough to be removed from the subscribed resource.

9.2.4 Presence

The Presence MBean controls how the Presence Server interacts with clients connecting to it. The attributes (described in Table 9-3) include those for setting the composition policy for creating a unified document when a presentity publishes presence documents from two or more clients, as well as setting the blocking, filtering, and presence hard state.

Table 9-3 Attributes of the Presence MBean

	Attribute	Description/Value
	
CompositionPolicyFilename

	
The filename of the composition policy document. Values include compose.xslt, for the OWLCS composition policy, and compose_OMA.xslt, for the OMA composition policy.

	
DefaultSubHandling

	
The default subscription authorization decision that the server makes when no presence rule is found for an authenticated user. The defined values are:

	
block

	
confirm

	
polite-block

Unauthenticated users will always be blocked if no rule is found.

	
DocumentStorageFactory

	
The name of the DocumentStorage Factory Class. The default value is oracle.sdp.presenceeventpackage.document.XMLDocumentStorageFactoryImpl.

	
DocumentStorageRootUrl

	
The system identifier for the document storage. In the file storage case, this is the root file URL path where documents are stored. The content of this directory should be deleted when the server is restarted. The default value is file:/tmp/presencestorage/.

	
DocumentStorageType

	
The type of storage to be used for presence documents. Valid values:

	
file

	
memory

The default value is memory.

	
HttpAssertedIdentityHeader

	
The type of asserted identity header used in all HTTP requests from the Presence Server to the XDMS. Set the value of this attribute to one expected by the XDMS. Valid values:

	
X_3GPP_ASSERTED_IDENTITY

	
X_3GPP_INTENDED_IDENTITY

	
X_XCAP_ASSERTED_IDENTITY (The default value.)

	
PidfManipulationAuid

	
Also known as hard state, the ID of the application usage for PIDF (Presence Information Data Format) manipulation. The default value is pidf-manipulation.

	
PidfManipulationDocumentName

	
The document name for pidf manipulation application usage, for example: hardstate. The default value is hardstate.

	
PidfManipulationEnabled

	
Set to true (the default value) to enable PIDF manipulation.

	
PidfManipulationXcapUri

	
The SIP URI of the XDMS for the pidf manipulation application usage. The default value is: sip:127.0.0.1;transport=TCP;lr. The loose route (lr) parameter must be included in the SIP URI for the server to function properly.

	
PoliteBlockPendingSubscription

	
Set to true if pending subscriptions should be polite-blocked. This feature is used to hide the presentity from the presence watcher with a pending subscription and instead send them fake presence documents. If set to false the subscriptions will remain as pending.

	
PresRulesAuid

	
The ID of the application usage for presrules. The default is pres-rules.

	
PresRulesDocumentName

	
The document name for presrules application usage. The default value is presrules.

	
PresRulesXcapUri

	
The SIP URI of the XDMS for the presence rules application usage. The default value is: sip:127.0.0.1; transport=TCP;lr. The loose route (lr) parameter must be included in the SIP URI for the server to function properly.

	
PrivacyFilteringEnabled

	
Set to true to enable privacy filtering. Set to false to disable filtering. If privacy filtering is disabled, then all subscriptions that are allowed to see a presentity's presence will always see everything that has been published for the presentity.

	
TransformerFactory

	
The name of the TransformerFactory class. The default value is oracle.xml.jaxp.JXSAXTransformerFactory.

9.2.5 PresenceEventPackage

Table 9-4 shows the attributes of the PresenceEventPackage MBean. The presence event package has two subgroups: publish and subscribe. Each subgroup has a minexpires and a maxexpires parameter. A client may suggest an expiration time for its subscription or its published state but if the suggested time that is lower than the configured minExpires, the server will return a 423 (Interval Too Brief) response.

If a client suggests an expiration time that is higher than the configured max expiration, the server will shorten the suggested time to this configured value. The value chosen by the server is always conveyed in the response to the request.

To keep a publication or subscription alive, the client sends republish or resubscribe to the server within the expiry time. The client must perform this task repeatedly through the lifetime of the publication or subscription.

Table 9-4 Attributes of the PresenceEventPackage

	Attribute	Value/Description
	
Description

	
A description of the PresenceEventPackage. For example: The event package that enables presence.

	
DocumentFactory

	
The DocumentFactory class name. The default value is oracle.sdp.presenceeventpackage.document.PresenceDocumentFactoryImpl.

	
EscMaxDocumentSize

	
The maximum size, in bytes, for the contents of a publication. If a client attempts to publish a document that is larger than the specified size, the server sends the 413 response, Request entity too large. The default value is 10000.

	
ESCMaxExpires

	
The maximum time, in seconds, for a publication to expire. The default value is 3600.

	
ESCMaxPubPerRes

	
The maximum number of publications allowed per resource. If the maximum number has been reached for a resource when a new publish is received, the server sends the 503 Response (Service Unavailable).

	
ESCMinExpires

	
The minimum time, in seconds, for a publication to expire. The default is 60.

	
EventStateCompositor

	
The class name of the EventStateCompositor. The default value is oracle.sdp.presenceeventpackage.PublishControl.

	
Name

	
The name of this event package. The default value is Presence.

	
Notifier

	
The name of the Notifier class. The default value is oracle.sdp.presenceeventpackage.PresenceSubscriptionControl.

	
NotifierMaxDocumentSize

	
The maximum size for a SUBSCRIBE request.

	
NotifierMaxExpires

	
The maximum time, in seconds, for a SUBSCRIBE to expire. The default is 3600.

	
NotifierMaxNoOfSubsPerRes

	
The maximum number of subscriptions allowed per resource. If the maximum number has been reached for a resource, then a new presence subscribe is received and the server sends the 503 Response (Service Unavailable).

	
NotifierMinExpires

	
The minimum time, in seconds, for a SUBSCRIBE to expire.

	
ResourceManagerClassName

	
The name of the ResourceManager class. The default is oracle.sdp.presenceeventpackage.PresentityManagerImpl.

9.2.6 PresenceWInfoEventPackage

As described in RFC 3857, a Watcher Information Event Package monitors the resources in another event package to ascertain the state of all of the subscriptions to that resource. This information is then sent to the subscribers of the Watcher Information Event Package. As a result, the watcher learns of changes in the monitored resources subscriptions.

The PresenceWInfoEventPackage MBean (described in Table 9-5) sets the subscription state information for the Watcher Information Event Package.

Table 9-5 Attributes of the WatcherinfoEventPackage

	Attribute	Description/Value
	
Description

	
A description of the PresenceWInfoEventPackage. For example: The event package that enables watcherinfo.

	
DocumentFactory

	
The name of the DocumentFactory class. The default is oracle.sdp.eventnotificationservice.DocumentFactoryImpl.

	
Name

	
The name of the event package. The default value is presence.winfo.

	
Notifier

	
The Notifier class name. The default value is oracle.sdp.presenceeventpackage.PresenceSubscriptionControl.

	
NotifierMaxDocumentSize

	
The maximum document size for SUBSCRIBE request.

	
NotifierMaxExpires

	
The maximum time, in seconds, for a SUBSCRIBE to expire. The default is 3600.

	
NotifierMaxNoSubsPerRes

	
The maximum number of subscriptions allowed per resource. If the maximum number has been reached for a resource when a new presence subscribe is received, the server will send a 503 Response (Service Unavailable). The default value is 100.

	
NotifierMinExpires

	
The minimum time, in seconds, for a SUBSCRIBE to expire.

	
ResourceManagerClassName

	
The name of the ResourceManager class. The default is oracle.sdp.winfoeventpackage.WatcherinfoResourceManager.

9.2.7 UA-ProfileEventPackage

Table 9-6 describes the attributes of the UA-ProfileEventPackage MBean.

Table 9-6 Attributes of the UA-Profile Event Package

	Attributes	Description/Value
	
Description

	
A description of the UA-ProfileEventPackage. The default value is The event package that enables the ua-profile.

	
Document Factory

	
The Document Factory class name. The default value is:

oracle.sdp.eventnotificationservice.DocumentFactoryImpl

	
Name

	
The name of the event package. The default value is ua-profile.

	
Notifier

	
The name of the Notifier class. The default value is: oracle.sdp.presenceeventpackage.PresenceSubscriptionControl

	
NotifierMaxDocumentSize

	
The maximum document size for a SUBSCRIBE request.

	
NotifierMaxExpires

	
The maximum time, in seconds, for a SUBSCRIBE to expire. The default is 6000.

	
NotifierMaxNoOfSubsPerRes

	
The maximum number of subscriptions allowed per resource. If the maximum number has been reached for a resource when a new presence subscribe is received, the server will send a 503 Response (Service Unavailable). The default value is 100.

	
NotifierMinExpires

	
The minimum time, in seconds, for a SUBSCRIBE to expire. The default value is 60.

	
ResourceManager

	
The name of the Resource Manager class. The default value is:

oracle.sdp.winfoeventpackage.WatcherinfoResourceManager

9.2.8 Command Service (XDMS Provisioning)

The Command Service MBean enables user provisioning of the XDMS.

9.2.9 XCapConfigManager

The XCapConfigManager MBean controls the configuration of the XDMS, the repository of the XML documents containing user presence rules and hard state information. The XCapConfigManager MBean settings can be ignored if the XDMS is external to the Presence Server.

Table 9-7 Attributes of the XCapConfigManager MBean

	Attribute Name	Description/Value
	
CreateNonExistingUserstore

	
Set to true to create a user store if one does not exist when storing a document; otherwise, set to false. If the parameter is set to false and a client tries to store a document for a user that does not exist, then the store fails. If the parameter is set to true, then the user will first be created in the XDMS and then the document will be stored. The default value is true.

	
MaxContentLength

	
The maximum size, in bytes, for an XCAP request. The default is 1MB.

You can increase or decrease the size of the document. If you increase the document size, then you must be sure to that there is sufficient disk space to accommodate the XDMS document * the number of users * the number of applications. If you set a smaller per-document size, then this calculation is reduced to the sum of (max_doc_size_n * number of users) where each max_doc_size_n is specific to application n.

The default size for the resource-lists document is also 1 MB.

	
PersistenceRootUrl

	
The storage location for the XDMS documents. The default is jpa:xdms, which means documents will be persisted into an Oracle database through the JDBC connector configured during installation. To change the persistence location to filesystem, use a file url (for example, a value of file:/tmp/var/xcaproot will set the storage location to be on the local filesystem in the directory /tmp/var/xcaproot). If you choose a local filesystem, make sure the directory is writable by the user running the Presence Server.

	
PidfManipulationAuid

	
The ID of the application usage for PIDF (Presence Information Data Format) manipulation. The default value is pidf-manipulation.

	
PidfManipulationDocname

	
The document name for pidf manipulation application usage. For example: hardstate.

The default value is hardstate.

	
PresRulesAU

	
The name of the pres-rules application usage. The default value is pres-rules.

	
PresRulesDocName

	
The name of the pres-rules document. The default value is presrules.

	
PublicContentServerRootUrl

	
The URL to the public content server root. The URL must be set to the public URL of the content server (that is, the URL of the authentication HTTP proxy server).

	
PublicXCAPRootUrl

	
The URL to the public XDMS root, entered as http://<your.xdms.domain.com>/services/. For example, enter http://127.0.0.1:8001/services.

	
RequireAssertedIdentity

	
Set to true if all HTTP/XDMS requests require an asserted identity header; otherwise, set this parameter to false. Setting this attribute to true requires all XCAP traffic to be authenticated by the Section 9.2.10, "Aggregation Proxy". If this attribute is set to true, then any incoming XCAP request that lacks an asserted identity is denied access.

9.2.10 Aggregation Proxy

The Aggregation Proxy is a server-side entry point for XCAP clients and Web Service calls and will authenticate incoming traffic by providing identify assertion. This component acts as the gatekeeper for the trusted domain that houses the Presence Server and the XDMS.

The attributes of the Aggregation Proxy MBean (Table 9-8) enable you to set the type of identity assertion that is appropriate to the XDMS. In addition, you set the host and port of the Web Server and XDMS that receive the proxied traffic from the Aggregation Proxy.

Table 9-8 Attributes of the Aggregation Proxy

	Attribute	Description
	
AssertedIdentityType

	
Enter the number corresponding to the identity header inserted into proxied HTTP requests that is appropriate to the XDMS:

	
X_3GPP_ASSERTED_IDENTITY (the default)

	
X_3GPP_INTENDED_IDENTITY

	
X_XCAP_ASSERTED_IDENTITY

	
ContentHost

	
host name of the Content Server where the Aggregation Proxy sends proxied requests.

	
ContentPort

	
The port number of the Content Server where the Aggregation Proxy sends proxied requests.

	
ContentRoot

	
The root URL of the Content Server.

	
IgnoreUserpartCase

	
Set to true if case-sensitive handling of the user name is not required.

	
Realm

	
Realm (for ex: example.com) that is used to create the sip/sips address that's inserted in the P-Asserted-Identity header.

	
TrustedHosts

	
A comma-separated list of IP addresses of trusted hosts. Asserted identity headers are removed from requests with addresses that are not included in this list.

	
XCAPHost

	
The host name of the XDMS to which the Aggregation Proxy proxies requests.

	
XCAPPort

	
The port of the XDMS to which the Aggregation Proxy proxies requests.

	
XCAPRoot

	
The root URL of the XDMS.

9.2.11 Configuring Default Application Router for OPTIONS

Follow these steps to configure DAR for handling OPTIONS requests:

	
Open console application in your browser (for example: http://owlcs.example.com:7001/console).

	
Enter Username and Password to log in.

	
In the left pane, click Sip Server.

	
Click the Application Router tab.

	
Under AR configuration data, depending on whether you want to route the OPTIONS request through proxyregistrar, enter:

OPTIONS: ("proxyregistrar", "DAR:From", "TERMINATING", "", "NO_ROUTE", "0")

OR if you want the request to go through OPTIONSResponder application, enter:

OPTIONS : ("optionsresponder", "DAR:From", "TERMINATING", "", "NO_ROUTE",
"0")

	
Note:

Options Responder application should have been chosen while extending the domain if you choose the latter DAR configuration.

9.3 Configuring Presence Web Services

OWLCS enables Web Service clients to access presence services through its support of the Parlay X Presence Web Service as defined in Open Service Access, Parlay X Web Services, Part 14, Presence ETSI ES 202 391-14. A Parlay X Web Service enables an HTTP Web Service client to access such presence services as publishing and subscribing to presence information. The Parlay X Presence Web Service does not require developers to be familiar with the SIP protocol to build such a Web-based client; instead, Parlay X enables Web developers to build this client using their knowledge of Web Services.

The Presence Web Services application contains the following MBeans that enable you to configure a Web Services deployment server:

	
Section 9.3.1, "PresenceSupplierWebService"

	
Section 9.3.2, "PresenceConsumerWebService"

	
Section 9.3.3, "MessagingWebServiceConfig"

The above MBeans contain attributes for managing presence publication and watcher subscriptions enabled through the OWLCS implementation of Presence Consumer and Presence Supplier interfaces.

9.3.1 PresenceSupplierWebService

The PresenceSupplierWebService MBean (described in Table 9-9) enables you to manage the presence data published to watchers. See Section 9.2.10, "Aggregation Proxy" for more information about aggregation proxy mbean configuration.

Table 9-9 Attributes of the PresenceSupplierWebService MBean

	Attributes	Description
	
Expires

	
The default expiry time, in seconds, for the PUBLISH of a presence status. The value entered for this attribute should be optimized to match that entered for the SessionTimeout attribute.

	
PIDFManipulationAU

	
The name of the application usage for PIDF (Presence Information Data Format) manipulation. The default value is pidf-manipulation.

	
PidfManipulationDocname

	
The document name for pidf manipulation application usage. For example: hardstate. If the URI contains a domain name instead of an IP address, then you must configure the DNS Server.

The default value is hardstate. Note that this value must match the value you entered when configuring XDMS.

	
PresRulesAU

	
The name of the pres-rules application usage. The default value is pres-rules.

	
PresRulesDocname

	
The name of the pres-rules document. The default value is presrules.

	
PublicXCAPRootUrl

	
The URL to the public XDMS root, entered as http://<your.xdms:domain.com>/services/. For example, enter http://127.0.0.1:8001/services.

	
SessionTimeout

	
The timeout of the HTTP session, in seconds. The value entered for this attribute should be optimized to match the value entered for the Expires attribute. This timeout takes effect for new sessions only.

	
SIPOutboundProxy

	
The IP address of the outbound proxy server where all requests are sent on the first hop. Enter this address in the following format:

sip:<IP address>[:port];lr;transport=TCP

You can also enter the default port (5060) in this address. For example, enter sip:127.0.0.1:5060;lr;transport=TCP.

If you do not define this attribute, then no outbound proxy will be used.

9.3.2 PresenceConsumerWebService

The PresenceConsumerWebService MBean (described in Table 9-10) enables you to set the duration of watcher subscriptions.

Table 9-10 Attributes of the PresenceConsumerWebService MBean

	Attribute	Value
	
Expires

	
The default expiry time, in seconds, for watcher subscriptions. The value entered for this attribute should be optimized to match the value entered for the SessionTimeout attribute.

	
SessionTimeout

	
The timeout of the HTTP session, in seconds. The value entered for this attribute should be optimized to match the value entered for the Expires attribute. This timeout takes effect for new sessions only.

	
SIPOutboundProxy

	
The IP address of the outbound proxy server where all requests are sent on the first hop. Enter this address in the following format:

sip:<IP address>[:port];lr;transport=TCP

You can also enter the default port (5060) in this address. For example, enter sip:127.0.0.1:5060;lr;transport=TCP.

If you do not define this attribute, then no outbound proxy will be used.

9.3.3 MessagingWebServiceConfig

MessagingWebServiceConfig (described in Table 9-11) enables you to designate how and when to delete messages stored by the web service.

Table 9-11 MessagingWebServiceConfig attributes

	Attribute	Value
	
SessionTimeout

	
The timeout of the HTTP session, in seconds. The value entered for this attribute should be optimized to match the value entered for the Expires attribute. This timeout takes effect for new sessions only

	
SIPOutboundProxy

	
The IP address of the outbound proxy server where all requests are sent on the first hop. Enter this address in the following format:

sip:<IP address>[:port];lr;transport=TCP

If you do not define this attribute, then no outbound proxy will be used.

	
MessageLifetime

	
Set the time in seconds after which messages expire from the message store. Setting this to 0 will cause messages to be kept in the store indefinitely (never expire). Messages will stay in the message store for at a maximum MessageLifetime + MessageScanPeriod seconds. Setting this attribute has immediate effect (for instance, reducing the value could cause some messages to be immediately expired if they are older than the lifetime).

	
MessageScanPeriod

	
Set the period in seconds for scanning for and deleting expired messages. Setting this to 0 disables scanning. Setting this attribute has immediate effect.

[bookmark: BIICCACI][bookmark: i1085077]
8 Monitoring and [bookmark: sthref192]Troubleshooting

The following sections describe how to configure use the Oracle WebLogic Communication Services "echo server" process to improve SIP data tier failover performance when a server becomes physically disconnected from the network:

	
Section 8.1, "Avoiding and Recovering from Server Failures"

	
Section 8.2, "Overview of Failover Detection"

	
Section 8.3, "Improving Failover Performance for Physical Network Failures"

	
Section 8.4, "Configuring SNMP"

	
Section 8.5, "Understanding and Responding to SNMP Traps"

	
Section 8.6, "Using the WebLogic Diagnostics Framework (WLDF)"

	
Section 8.7, "Logging SIP Requests and Responses"

	
Section 8.8, "Tuning JVM Garbage Collection for Production Deployments"

	
Section 8.9, "Avoiding JVM Delays Caused By Random Number Generation"

[bookmark: CIHBBHJF]

8.1 Avoiding and Recovering from Server Failures

A variety of events can lead to the failure of a server instance. Often one failure condition leads to another. Loss of power, hardware malfunction, operating system crashes, network partitions, or unexpected application behavior may each contribute to the failure of a server instance.

Oracle WebLogic Communication Services uses a highly clustered architecture as the basis for minimizing the impact of failure events. However, even in a clustered environment it is important to prepare for a sound recovery process in the event that an individual server or server machine fails.

The following sections summarize Oracle WebLogic Communication Services failure prevention and recovery features, and describe the configuration artifacts that are required in order to restore different portions of a Oracle WebLogic Communication Services domain

[bookmark: i1061719]

8.1.1 Failure Prevention and Automatic Recovery Features

Oracle WebLogic Communication Services, and the underlying WebLogic Server platform, provide many features that protect against server failures. In a production system, all available features should be used in order to ensure uninterrupted service.

[bookmark: sthref193]
8.1.1.1 Overload Protection

Oracle WebLogic Communication Services detects increases in system load that could affect the performance and stability of deployed SIP Servlets, and automatically throttles message processing at predefined load thresholds.

Using overload protection helps you avoid failures that could result from unanticipated levels of application traffic or resource utilization.

Oracle WebLogic Communication Services attempts to avoid failure when certain conditions occur:

	
The rate at which SIP sessions are created reaches a configured value, or

	
The size of the SIP timer and SIP request-processing execute queues reaches a configured length.

The underlying WebLogic Server platform also detects increases in system load that can affect deployed application performance and stability. WebLogic Server allows administrators to configure failure prevention actions that occur automatically at predefined load thresholds. Automatic overload protection helps you avoid failures that result from unanticipated levels of application traffic or resource utilization as indicated by:

	
A workload manager's capacity being exceeded

	
The HTTP session count increasing to a predefined threshold value

	
Impending out of memory conditions

[bookmark: sthref194]
8.1.1.2 Redundancy and Failover for Clustered Services

You can increase the reliability and availability of your applications by using multiple engine tier servers in a dedicated cluster, as well as multiple SIP data tier servers (replicas) in a dedicated SIP data tier cluster. Because engine tier clusters maintain no stateful information about SIP dialogs (calls), the failure of an engine tier server does not result in any data loss or dropped calls. Multiple replicas in a SIP data tier partition store redundant copies of call state information, and automatically failover to one another should a replica fail.

[bookmark: i1067082]

8.1.1.3 Automatic Restart for Failed Server Instances

WebLogic Server self-health monitoring features improve the reliability and availability of server instances in a domain. Selected subsystems within each server instance monitor their health status based on criteria specific to the subsystem. (For example, the JMS subsystem monitors the condition of the JMS thread pool while the core server subsystem monitors default and user-defined execute queue statistics.) If an individual subsystem determines that it can no longer operate in a consistent and reliable manner, it registers its health state as "failed" with the host server.

Each WebLogic Server instance, in turn, checks the health state of its registered subsystems to determine its overall viability. If one or more of its critical subsystems have reached the FAILED state, the server instance marks its own health state FAILED to indicate that it cannot reliably host an application.

When used in combination with Node Manager, server self-health monitoring enables you to automatically reboot servers that have failed. This improves the overall reliability of a domain, and requires no direct intervention from an administrator.

[bookmark: sthref195]
8.1.1.4 Managed Server Independence Mode

Managed Servers maintain a local copy of the domain configuration. When a Managed Server starts, it contacts its Administration Server to retrieve any changes to the domain configuration that were made since the Managed Server was last shut down. If a Managed Server cannot connect to the Administration Server during startup, it can use its locally-cached configuration informationthis is the configuration that was current at the time of the Managed Server's most recent shutdown. A Managed Server that starts up without contacting its Administration Server to check for configuration updates is running in Managed Server Independence (MSI) mode. By default, MSI mode is enabled.

[bookmark: sthref196]
8.1.1.5 Automatic Migration of Failed Managed Servers

When using Linux or UNIX operating systems, you can use WebLogic Server's server migration feature to automatically start a candidate (backup) server if a Network tier server's machine fails or becomes partitioned from the network. The server migration feature uses node manager, in conjunction with the wlsifconfig.sh script, to automatically boot candidate servers using a floating IP address. Candidate servers are booted only if the primary server hosting a Network tier instance becomes unreachable. See "Whole Server Migration" in Oracle Fusion Middleware Using Clusters for Oracle WebLogic Server documentation for more information about using the server migration feature.

[bookmark: sthref197]
8.1.1.6 Geographic Redundancy for Regional Site Failures

In addition to server-level redundancy and failover capabilities, Oracle WebLogic Communication Services enables you to configure peer sites to protect against catastrophic failures, such as power outages, that can affect an entire domain. This enables you to failover from one geographical site to another, avoiding complete service outages.

[bookmark: i1068355]

8.1.2 Directory and File Backups for Failure Recovery

Recovery from the failure of a server instance requires access to the domain's configuration data. By default, the Administration Server stores a domain's primary configuration data in a file called domain_name/config/config.xml, where domain_name is the root directory of the domain. The primary configuration file may reference additional configuration files for specific WebLogic Server services, such as JDBC and JMS, and for Oracle WebLogic Communication Services services, such as SIP container properties and SIP data tier configuration. The configuration for specific services are stored in additional XML files in subdirectories of the domain_name/config directory, such as domain_name/config/jms, domain_name/config/jdbc, and domain_name/config/custom for Oracle WebLogic Communication Services configuration files.

The Administration Server can automatically archive multiple versions of the domain configuration (the entire domain-name/config directory). The configuration archives can be used for system restoration in cases where accidental configuration changes need to be reversed. For example, if an administrator accidentally removes a configured resource, the prior configuration can be restored by using the last automated backup.

The Administration Server stores only a finite number of automated backups locally in domain_name/config. For this reason, automated domain backups are limited in their ability to guard against data corruption, such as a failed hard disk. Automated backups also do not preserve certain configuration data that are required for full domain restoration, such as LDAP repository data and server start-up scripts. Oracle recommends that you also maintain multiple backup copies of the configuration and security offline, in a source control system.

This section describes file backups that Oracle WebLogic Communication Services performs automatically, as well as manual backup procedures that an administrator should perform periodically.

[bookmark: i1069457]

8.1.2.1 Enabling Automatic Configuration Backups

Follow these steps to enable automatic domain configuration backups on the Administration Server for your domain:

	
Access the Administration Console for your domain.

	
In the left pane of the Administration Console, select the name of the domain.

	
In the right pane, click the Configuration > General tab.

	
Select Advanced to display advanced options.

	
Select Configuration Archive Enabled.

	
In the Archive Configuration Count box, enter the maximum number of configuration file revisions to save.

	
Click Save.

When you enable configuration archiving, the Administration Server automatically creates a configuration JAR file archive. The JAR file contains a complete copy of the previous configuration (the complete contents of the domain-name\config directory). JAR file archive files are stored in the domain-name\configArchive directory. The files use the naming convention config-number.jar, where number is the sequential number of the archive.

When you save a change to a domain's configuration, the Administration Server saves the previous configuration in domain-name\configArchive\config.xml#n. Each time the Administration Server saves a file in the configArchive directory, it increments the value of the #n suffix, up to a configurable number of copies5 by default. Thereafter, each time you change the domain configuration:

	
The archived files are rotated so that the newest file has a suffix with the highest number,

	
The previous archived files are renamed with a lower number, and

	
The oldest file is deleted.

Keep in mind that configuration archives are stored locally within the domain directory, and they may be overwritten according to the maximum number of revisions you selected. For these reasons, you must also create your own off-line archives of the domain configuration, as described in Section 8.1.2.2, "Storing the Domain Configuration Offline".

[bookmark: i1069475]

8.1.2.2 Storing the Domain Configuration Offline

Although automatic backups protect against accidental configuration changes, they do not protect against data loss caused by a failure of the hard disk that stores the domain configuration, or accidental deletion of the domain directory. To protect against these failures, you must also store a complete copy of the domain configuration offline, preferably in a source control system.

Oracle recommends storing a copy of the domain configuration at regular intervals. For example, back up a new revision of the configuration when:

	
you first deploy the production system

	
you add or remove deployed applications

	
the configuration is tuned for performance

	
any other permanent change is made.

The domain configuration backup should contain the complete contents of the domain_name/config directory. For example:

cd ~/user_projects/domains/mydomain
tar cvf domain-backup-06-17-2007.jar config

Store the new archive in a source control system, preserving earlier versions should you need to restore the domain configuration to an earlier point in time.

[bookmark: sthref198]
8.1.2.3 Backing Up Server Start Scripts

In a Oracle WebLogic Communication Services deployment, the start scripts used to boot engine and SIP data tier servers are generally customized to include domain-specific configuration information such as:

	
JVM Garbage Collection parameters required to achieve throughput targets for SIP message processing (see Section 8.8, "Tuning JVM Garbage Collection for Production Deployments"). Different parameters (and therefore, different start scripts) are generally used to boot engine and SIP data tier servers.

	
Configuration parameters and startup information for the Oracle WebLogic Communication Services heartbeat mechanism. If you use the heartbeat mechanism, engine tier server start scripts should include startup options to enable and configure the heartbeat mechanism. SIP data tier server start scripts should include startup options to enable heartbeats and start the WlssEchoServer process.

Backup each distinct start script used to boot engine tier, SIP data tier, or diameter relay servers in your domain.

[bookmark: sthref199]
8.1.2.4 Backing Up Logging Servlet Applications

If you use Oracle WebLogic Communication Services logging Servlets (see Section 8.7, "Logging SIP Requests and Responses") to perform regular logging or auditing of SIP messages, backup the complete application source files so that you can easily redeploy the applications should the staging server fail or the original deployment directory becomes corrupted.

[bookmark: i1068403]

8.1.2.5 Backing Up Security Data

The WebLogic Security service stores its configuration data config.xml file, and also in an LDAP repository and other files.

[bookmark: i1068425]

8.1.2.5.1 Backing Up SerializedSystemIni.dat and Security Certificates

All servers create a file named SerializedSystemIni.dat and place it in the server's root directory. This file contains encrypted security data that must be present to boot the server. You must back up this file.

If you configured a server to use SSL, also back up the security certificates and keys. The location of these files is user-configurable.

[bookmark: i1068408]

8.1.2.5.2 Backing Up the WebLogic LDAP Repository

The default Authentication, Authorization, Role Mapper, and Credential Mapper providers that are installed with Oracle WebLogic Communication Services store their data in an LDAP server. Each Oracle WebLogic Communication Services contains an embedded LDAP server. The Administration Server contains the master LDAP server, which is replicated on all Managed Servers. If any of your security realms use these installed providers, you should maintain an up-to-date backup of the following directory tree:

domain_name\adminServer\ldap

where domain_name is the domain's root directory and adminServer is the directory in which the Administration Server stores runtime and security data.

Each Oracle WebLogic Communication Services has an LDAP directory, but you only need to back up the LDAP data on the Administration Serverthe master LDAP server replicates the LDAP data from each Managed Server when updates to security data are made. WebLogic security providers cannot modify security data while the domain's Administration Server is unavailable. The LDAP repositories on Managed Servers are replicas and cannot be modified.

The ldap/ldapfiles subdirectory contains the data files for the LDAP server. The files in this directory contain user, group, group membership, policies, and role information. Other subdirectories under the ldap directory contain LDAP server message logs and data about replicated LDAP servers.

Do not update the configuration of a security provider while a backup of LDAP data is in progress. If a change is madefor instance, if an administrator adds a userwhile you are backing up the ldap directory tree, the backups in the ldapfiles subdirectory could become inconsistent. If this does occur, consistent, but potentially out-of-date, LDAP backups are available.

Once a day, a server suspends write operations and creates its own backup of the LDAP data. It archives this backup in a ZIP file below the ldap\backup directory and then resumes write operations. This backup is guaranteed to be consistent, but it might not contain the latest security data.

[bookmark: sthref200]
8.1.2.6 Backing Up Additional Operating System Configuration Files

Certain files maintained at the operating system level are also critical in helping you recover from system failures. Consider backing up the following information as necessary for your system:

	
Load Balancer configuration scripts. For example, any automated scripts used to configure load balancer pools and virtual IP addresses for the engine tier cluster, as well as NAT configuration settings.

	
NTP client configuration scripts used to synchronize the system clocks of engine and SIP data tier servers.

	
Host configuration files for each Oracle WebLogic Communication Services machine (host names, virtual and real IP addresses for multi-homed machines, IP routing table information).

[bookmark: i1068787]

8.1.3 Restarting a Failed Administration Server

When you restart a failed Administration Server, no special steps are required. Start the Administration Server as you normally would.

If the Administration Server shuts down while Managed Servers continue to run, you do not need to restart the Managed Servers that are already running in order to recover management of the domain. The procedure for recovering management of an active domain depends upon whether you can restart the Administration Server on the same machine it was running on when the domain was started.

[bookmark: i1068452]

8.1.3.1 Restarting an Administration Server on the Same Machine

If you restart the WebLogic Administration Server while Managed Servers continue to run, by default the Administration Server can discover the presence of the running Managed Servers.

	
Note:

Make sure that the startup command or startup script does not include -Dweblogic.management.discover=false, which disables an Administration Server from discovering its running Managed Servers.

The root directory for the domain contains a file, running-managed-servers.xml, which contains a list of the Managed Servers in the domain and describes whether they are running or not. When the Administration Server restarts, it checks this file to determine which Managed Servers were under its control before it stopped running.

When a Managed Server is gracefully or forcefully shut down, its status in running-managed-servers.xml is updated to "not-running". When an Administration Server restarts, it does not try to discover Managed Servers with the "not-running" status. A Managed Server that stops running because of a system crash, or that was stopped by killing the JVM or the command prompt (shell) in which it was running, will still have the status "running' in running-managed-servers.xml. The Administration Server will attempt to discover them, and will throw an exception when it determines that the Managed Server is no longer running.

Restarting the Administration Server does not cause Managed Servers to update the configuration of static attributes. Static attributes are those that a server refers to only during its startup process. Servers instances must be restarted to take account of changes to static configuration attributes. Discovery of the Managed Servers only enables the Administration Server to monitor the Managed Servers or make runtime changes in attributes that can be configured while a server is running (dynamic attributes).

[bookmark: sthref201]
8.1.3.2 Restarting an Administration Server on Another Machine

If a machine crash prevents you from restarting the Administration Server on the same machine, you can recover management of the running Managed Servers as follows:

	
Install the Oracle WebLogic Communication Services software on the new administration machine (if this has not already been done).

	
Make your application files available to the new Administration Server by copying them from backups or by using a shared disk. Your application files should be available in the same relative location on the new file system as on the file system of the original Administration Server.

	
Make your configuration and security data available to the new administration machine by copying them from backups or by using a shared disk. For more information, refer to Section 8.1.2.2, "Storing the Domain Configuration Offline" and Section 8.1.2.5, "Backing Up Security Data".

	
Restart the Administration Server on the new machine.

Make sure that the startup command or startup script does not include -Dweblogic.management.discover=false, which disables an Administration Server from discovering its running Managed Servers.

When the Administration Server starts, it communicates with the Managed Servers and informs them that the Administration Server is now running on a different IP address.

[bookmark: i1068792]

8.1.4 Restarting Failed Managed Servers

If the machine on which the failed Managed Server runs can contact the Administration Server for the domain, simply restart the Managed Server manually or automatically using Node Manager. Note that you must configure Node Manager and the Managed Server to support automated restarts.

If the Managed Server cannot connect to the Administration Server during startup, it can retrieve its configuration by reading locally-cached configuration data. A Managed Server that starts in this way is running in Managed Server Independence (MSI) mode.

To start up a Managed Server in MSI mode:

	
Ensure that the following files are available in the Managed Server's root directory:

	
msi-config.xml

	
SerializedSystemIni.dat

	
boot.properties

If these files are not in the Managed Server's root directory:

	
Copy the config.xml and SerializedSystemIni.dat file from the Administration Server's root directory (or from a backup) to the Managed Server's root directory.

	
Rename the configuration file to msi-config.xml. When you start the server, it will use the copied configuration files.

	
Note:

Alternatively, use the -Dweblogic.RootDirectory=path startup option to specify a root directory that already contains these files.

	
Start the Managed Server at the command line or using a script.

The Managed Server will run in MSI mode until it is contacted by its Administration Server. For information about restarting the Administration Server in this scenario, see Section 8.1.3, "Restarting a Failed Administration Server".

[bookmark: i1085827]

8.2 Overview of Failover Detection

In a production system, engine tier servers continually access SIP data tier replicas in order to retrieve and write call state data. The Oracle WebLogic Communication Services architecture depends on engine tier nodes to detect when a SIP data tier server has failed or become disconnected. When an engine cannot access or write call state data because a replica is unavailable, the engine connects to another replica in the same partition and reports the offline server. The replica updates the current view of the SIP data tier to account for the offline server, and other engines are then notified of the updated view as they access and retrieve call state data.

By default, an engine tier server uses its RMI connection to the replica to determine if the replica has failed or become disconnected. The algorithms used to determine a failure of an RMI connection are reliable, but ultimately they depend on the TCP protocol's retransmission timers to diagnose a disconnection (for example, if the network cable to the replica is removed). Because the TCP retransmission timer generally lasts a full minute or longer, Oracle WebLogic Communication Services provides an alternate method of detecting failures that can diagnose a disconnected replica in a matter of a few seconds.

[bookmark: sthref202]
8.2.1 WlssEchoServer Failure Detection

WlssEchoServer is a separate process that you can run on the same server hardware as a SIP data tier replica. The purpose of WlssEchoServer is to provide a simple UDP echo service to engine tier nodes to be used for determining when a SIP data tier server goes offline, for example in the event that the network cable is disconnected. The algorithm for detecting failures with WlssEchoServer is as follows:

	
For all normal traffic, engine tier servers communicate with SIP data tier replicas using TCP. TCP is used as the basic transport between the engine tier and SIP data tier regardless of whether or not WlssEchoServer is used.

	
Engine tier servers send a periodic heartbeat message to each configured WlssEchoServer over UDP. During normal operation, WlssEchoServer responds to the heartbeats so that the connection between the engine node and replica is verified.

	
Should there be a complete failure of the SIP data tier stack, or the network cable is disconnected, the heartbeat messages are not returned to the engine node. In this case, the engine node can mark the replica as being offline without having to wait for the normal TCP connection timeout.

	
After identifying the offline server, the engine node reports the failure to an available SIP data tier replica, and the SIP data tier view is updated as described in the previous section.

Also, should a SIP data tier server notice that its local WlssEchoServer process has died, it automatically shuts down. This behavior ensures even quicker failover because avoids the time it takes engine nodes to notice and report the failure as described in Section 8.2, "Overview of Failover Detection".

You can configure the heartbeat mechanism on engine tier servers to increase the performance of failover detection as necessary. You can also configure the listen port and log file that WlssEchoServer uses on SIP data tier servers.

[bookmark: sthref203]
8.2.2 Forced Shutdown for Failed Replicas

If any engine tier server cannot communicate with a particular replica, the engine access another, available replica in the SIP data tier to report the offline server. The replica updates its view of the affected partition to remove the offline server. The updated view is then distributed to all engine tier servers that later access the partition. Propagating the view in this manner helps to ensure that engine servers do not attempt to access the offline replica.

The replica that updates the view also issues a one-time request to the offline replica to ask it to shut down. This is done to try to shut-down running replica servers that cannot be accessed by one or more engine servers due to a network outage. If an active replica can reach the replica marked as "offline," the offline replica shuts down.

[bookmark: i1084232]

8.3 Improving Failover Performance for Physical Network Failures

	
Note:

Using WlssEchoServer is not required in all Oracle WebLogic Communication Services installations. Enable the echo server only when your system requires detection of a network or replica failure faster than the configured TCP timeout interval.

Observe the following requirements and restrictions when using WlssEchoServer to detect replica failures:

	
If you use the heartbeat mechanism to detect failures, you must ensure that the WlssEchoServer process is always running on each replica server machine. If the WlssEchoServer process fails or is stopped, the replica will be treated as being "offline" even if the server process is unaffected.

	
Note that WlssEchoServer listens on all IP addresses available on the server machine.

	
WlssEchoServer requires a dedicated port number to listen for heartbeat messages.

[bookmark: i1084233]

8.3.1 Starting WlssEchoServer on SIP Data Tier Server Machines

WlssEchoServer is a Java program that you can start directly from a shell or command prompt. The basic syntax for starting WlssEchoServer is:

java -classpath WLSS_HOME/server/lib/wlss/wlssechosvr.jar options com.bea.wcp.util.WlssEchoServer

Where WLSS_HOME is the path to the Oracle WebLogic Communication Services installation and options may include one of the options described in Table 8-1.

[bookmark: sthref204][bookmark: g1090570]
Table 8-1 WlssEchoServer Options

	Option
	Description

	

-Dwlss.ha.echoserver.ipaddress

	
Specifies the IP address on which the WlssEchoServer instance listens for heartbeat messages. If you do not specify an IP address, the instance listens on any available IP address (0.0.0.0).

	

-Dwlss.ha.echoserver.port

	
Specifies the port number used to listen for heartbeat messages. Ensure that the port number you specify is not used by any other process on the server machine. By default WlssEchoServer uses port 6734.

	

-Dwlss.ha.echoserver.logfile

	
Specifies the log file location and name. By default, log messages are written to ./echo_servertime.log where time is the time expressed in milliseconds.

Oracle recommends that you include the command to start WlssEchoServer in the same script you use to start each Oracle WebLogic Communication Services SIP data tier instance. If you use the startManagedWebLogic.sh script to start an engine or SIP data tier server instance, add a command to start WlssEchoServer before the final command used to start the server. For example, change the lines:

"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} \
 -Dweblogic.Name=${SERVER_NAME} \
 -Dweblogic.management.username=${WLS_USER} \
 -Dweblogic.management.password=${WLS_PW} \
 -Dweblogic.management.server=${ADMIN_URL} \
 -Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy" \
 weblogic.Server

to read:

"$JAVA_HOME/bin/java" -classpath WLSS_HOME/server/lib/wlss/wlssechosvr.jar \
 -Dwlss.ha.echoserver.ipaddress=192.168.1.4 \
 -Dwlss.ha.echoserver.port=6734 com.bea.wcp.util.WlssEchoServer &
"$JAVA_HOME/bin/java" ${JAVA_VM} ${MEM_ARGS} ${JAVA_OPTIONS} \
 -Dweblogic.Name=${SERVER_NAME} \
 -Dweblogic.management.username=${WLS_USER} \
 -Dweblogic.management.password=${WLS_PW} \
 -Dweblogic.management.server=${ADMIN_URL} \
 -Djava.security.policy="${WL_HOME}/server/lib/weblogic.policy" \
 weblogic.Server

[bookmark: i1084887]

8.3.2 Enabling and Configuring the Heartbeat Mechanism on Servers

To enable the WlssEchoServer heartbeat mechanism, you must include the -Dreplica.host.monitor.enabled JVM argument in the command you use to start all engine and SIP data tier servers. Oracle recommends adding this option directly to the script used to start Managed Servers in your system. For example, in the startManagedWebLogic.sh script, change the line:

JAVA_OPTIONS="-Dweblogic.attribute=value -Djava.attribute=value"

to read:

JAVA_OPTIONS="-Dreplica.host.monitor.enabled=true"

Several additional JVM options configure the functioning of the heartbeat mechanism. Table 8-1 describes the options used to configure failure detection.

[bookmark: sthref205][bookmark: sthref206]
Table 8-2 WlssEchoServer Options

	Option
	Description

	

-Dreplica.host.monitor.enabled

	
This system property is required on both engine and SIP data tier servers to enable the heartbeat mechanism.

	

-Dwlss.ha.heartbeat.interval

	
Specifies the number of milliseconds between heartbeat messages. By default heartbeats are sent every 1,000 milliseconds.

	

-Dwlss.ha.heartbeat.count

	
Specifies the number of consecutive, missed heartbeats that are permitted before a replica is determined to be offline. By default, a replica is marked offline if the WlssEchoServer process on the server fails to respond to 3 heartbeat messages.

	

-Dwlss.ha.heartbeat.SoTimeout

	
Specifies the UDP socket timeout value.

[bookmark: i1081887]

8.4 Configuring SNMP

Oracle WebLogic Communication Services includes a dedicated SNMP MIB to monitor activity on engine tier and SIP data tier server instances. The Oracle WebLogic Communication Services MIB is available on both Managed Servers and the Administration Server of a domain. However, Oracle WebLogic Communication Services engine and SIP data tier traps are generated only by the Managed Server instances that make up each tier. If your Administration Server is not a target for the sipserver custom resource, it will generate only WebLogic Server SNMP traps (for example, when a server in a cluster fails). Administrators should monitor both WebLogic Server and Oracle WebLogic Communication Services traps to evaluate the behavior of the entire domain.

	
Note:

Oracle WebLogic Communication Services MIB objects are read-only. You cannot modify a Oracle WebLogic Communication Services configuration using SNMP.

[bookmark: i1081936]

8.4.1 Browsing the MIB

The Oracle WebLogic Communication Services MIB file is installed in WLSS_HOME/server/lib/wlss/BEA-WLSS-MIB.asn1. Use an available SNMP management tool or MIB browser to view the contents of this file. See also Section 8.5.2, "Trap Descriptions" for a description of common SNMP traps.

[bookmark: i1081941]

8.4.2 Steps for Configuring SNMP

To enable SNMP monitoring for the entire Oracle WebLogic Communication Services domain, follow these steps:

	
Login to the Administration Console for the Oracle WebLogic Communication Services domain.

	
In the left pane, select the Diagnostics > SNMP node.

	
In the Server SNMP Agents table, click the New button to create a new agent.

	
Note:

Ensure that you create a new Server SNMP agent, rather than a Domain-Scoped agent.

	
Enter a unique name for the new SNMP agent (for example, "engine1snmp") and click OK.

	
Select the newly-created SNMP agent from the Server SNMP Agents table.

	
On the Configuration > General tab:

	
Select the Enabled check box to enable the agent.

	
Enter an unused port number in the SNMP UDP Port field.

	
Note:

If you run multiple Managed Server instances on the same machine, each server instance must use a dedicated SNMP agent with a unique SNMP port number.

	
Click Save.

	
Repeat the above steps to generate a unique SNMP agent for each server in your deployment (SIP data tier server, engine tier server, and Administration Server).

[bookmark: i1083227]

8.5 Understanding and Responding to SNMP Traps

The following sections describe the Oracle WebLogic Communication Services SNMP traps in more detail. Recovery procedures for responding to individual traps are also included where applicable.

[bookmark: sthref207]
8.5.1 Files for Troubleshooting

The following Oracle WebLogic Communication Services log and configuration files are frequently helpful for troubleshooting problems, and may be required by your technical support contact:

	
$DOMAIN_DIR/config/config.xml

	
$DOMAIN_DIR/config/custom/sipserver.xml

	
$DOMAIN_DIR/servername/*.log (server and message logs)

	
sip.xml (in the /WEB-INF subdirectory of the application)

	
web.xml (in the /WEB-INF subdirectory of the application)

General information that can help the technical support team includes:

	
The specific versions of:

	
Oracle WebLogic Communication Services

	
Java SDK

	
Operating System

	
Thread dumps for hung Oracle WebLogic Communication Services processes

	
Network analyzer logs

[bookmark: i1086041]

8.5.2 Trap Descriptions

Table 8-3 lists the Oracle WebLogic Communication Services SNMP traps and indicates whether the trap is generated by servers in the engine tier or SIP data tier. Each trap is described in the sections that follow.

[bookmark: sthref208][bookmark: g1088904]
Table 8-3 Oracle WebLogic Communication Services SNMP Traps

	Server Node in which Trap is Generated
	Trap Name

	
Engine Tier Servers

	
Section 8.5.2.1, "connectionLostToPeer"

	

	
Section 8.5.2.2, "connectionReestablishedToPeer"

	

	
Section 8.5.2.4, "overloadControlActivated, overloadControlDeactivated"

	

	
Section 8.5.2.9, "sipAppDeployed"

	

	
Section 8.5.2.10, "sipAppUndeployed"

	

	
Section 8.5.2.11, "sipAppFailedToDeploy"

	
Engine and SIP Data Tier Servers, if servers are members of a cluster

	
Section 8.5.2.8, "serverStopped"

	
SIP Data Tier Servers

	
Section 8.5.2.3, "dataTierServerStopped"

	

	
Section 8.5.2.5, "replicaAddedToPartition"

	

	
Section 8.5.2.6, "replicaRemovedEnginesRegistration"

	

	
Section 8.5.2.7, "replicaRemovedFromPartition"

[bookmark: i1082664]

8.5.2.1 connectionLostToPeer

This trap is generated by an engine tier server instance when it loses its connection to a replica in the SIP data tier. It may indicate a network connection problem between the engine and SIP data tiers, or may be generated with additional traps if a SIP data tier server fails.

[bookmark: sthref209]
8.5.2.1.1 Recovery Procedure

If this trap occurs in isolation from other traps indicating a server failure, it generally indicates a network failure. Verify or repair the network connection between the affected engine tier server and the SIP data tier server.

If the trap is accompanied by additional traps indicating a SIP data tier server failure (for example, dataTierServerStopped), follow the recovery procedures for the associated traps.

[bookmark: i1082666]

8.5.2.2 connectionReestablishedToPeer

This trap is generated by an engine tier server instance when it successfully reconnects to a SIP data tier server after a prior failure (after a connectionLostToPeer trap was generated). Repeated instances of this trap may indicate an intermittent network failure between the engine and SIP data tiers.

[bookmark: sthref210]
8.5.2.2.1 Recovery Procedure

See Section 8.5.2.1, "connectionLostToPeer".

[bookmark: i1083772]

8.5.2.3 dataTierServerStopped

Oracle WebLogic Communication Services SIP data tier nodes generate this alarm when an unrecoverable error occurs in a WebLogic Server instance that is part of the SIP data tier. Note that this trap may be generated by the server that is shutting down, by another replica in the same partition, or in some cases by both servers (network outages can sometimes trigger both servers to generate the same trap).

[bookmark: sthref211]
8.5.2.3.1 Recovery Procedure

See the Recovery Procedure for Section 8.5.2.8, "serverStopped".

[bookmark: i1083879]

8.5.2.4 overloadControlActivated, overloadControlDeactivated

Oracle WebLogic Communication Services engine tier nodes use a configurable throttling mechanism that helps you control the number of new SIP requests that are processed. After a configured overload condition is observed, Oracle WebLogic Communication Services destroys new SIP requests by responding with "503 Service Unavailable" to the caller. The servers continues to destroy new requests until the overload condition is resolved according to a configured threshold control value. This alarm is generated when the throttling mechanism is activated. The throttling behavior should eventually return the server to a non-overloaded state, and further action may be unnecessary.

[bookmark: sthref212]
8.5.2.4.1 Recovery Procedure

Follow this recovery procedure:

	
Check other servers to see if they are nearly overloaded.

	
Check to see if the load balancer is correctly balancing load across the application servers, or if it is overloading one or more servers. If additional servers are nearly overloaded, Notify Tier 4 support immediately.

	
If the issue is limited to one server, notify Tier 4 support within one hour.

[bookmark: sthref213]
8.5.2.4.2 Additional Overload Information

If you set the queue length as an incoming call overload control, you can monitor the length of the queue using the Administration Console. If you specify a session rate control, you cannot monitor the session rate using the Administration Console. (The Administration Console only displays the current number of SIP sessions, not the rate of new sessions generated.)

[bookmark: i1083858]

8.5.2.5 replicaAddedToPartition

Oracle WebLogic Communication Services SIP data tier nodes generate this alarm when a server instance is added to a partition in the SIP data tier.

[bookmark: sthref214]
8.5.2.5.1 Recovery Procedure

This trap is generated during normal startup procedures when SIP data tier servers are booted.

[bookmark: i1086188]

8.5.2.6 replicaRemovedEnginesRegistration

SIP data tier nodes generate this alarm if an engine server client that was not registered (or was removed from the list of registered engines) attempts to communicate with the SIP data tier. This trap is generally followed by a serverStopped trap indicating that the engine tier server was shut down to preserve SIP data tier consistency.

[bookmark: sthref215]
8.5.2.6.1 Recovery Procedure

Restart the engine tier server. Repeated occurrences of this trap may indicate a network problem between the engine tier server and one or more replicas.

[bookmark: i1083864]

8.5.2.7 replicaRemovedFromPartition

Oracle WebLogic Communication Services SIP data tier nodes generate this alarm when a server is removed from the SIP data tier, either as a result of a normal shutdown operation or because of a failure. There must be at least one replica remaining in a partition to generate this trap; if a partition has only a single replica and that replica fails, the trap cannot be generated. In addition, because engine tier nodes determine when a replica has failed, an engine tier node must be running in order for this trap to be generated.

[bookmark: sthref216]
8.5.2.7.1 Recovery Procedure

If this trap is generated as a result of a server instance failure, additional traps will be generated to indicate the exception. See the recovery procedures for traps generated in addition to replicaRemovedFromPartition.

[bookmark: i1083908]

8.5.2.8 serverStopped

This trap indicates that the WebLogic Server instance is now down. This trap applies to both engine tier and SIP data tier server instances, but only when the servers are members of a named WebLogic Server cluster. If this trap is received spontaneously and not as a result of a controlled shutdown, follow the steps below.

[bookmark: sthref217]
8.5.2.8.1 Recovery Procedure

Follow this recovery procedure:

	
Use the following command to identify the hung process:

ps ef | grep java

There should be only one PID for each WebLogic Server instance running on the machine.

	
After identifying the affected PID, use the following command to kill the process:

kill -3 [pid]

	
This command generates the actual thread dump. If the process is not immediately killed, repeat the command several times, spaced 5-10 seconds apart, to help diagnose potential deadlock problems, until the process is killed.

	
Attempt to restart Oracle WebLogic Communication Services immediately.

	
Make a backup copy of all SIP logs on the affected server to aid in troubleshooting. The location of the logs varies based on the server configuration.

	
Copy each log to assist Tier 4 support with troubleshooting the problem.

	
Note:

Oracle WebLogic Communication Services logs are truncated according to your system configuration. Make backup logs immediately to avoid losing critical troubleshooting information.

	
Notify Tier 4 support and include the log files with the trouble ticket.

	
Monitor the server closely over next 24 hours. If the source of the problem cannot be identified in the log files, there may be a hardware or network issue that will reappear over time.

[bookmark: sthref218]
8.5.2.8.2 Additional Shutdown Information

The Administration Console generates SNMP messages for managed WebLogic Server instances only until the ServerShutDown message is received. Afterwards, no additional messages are generated.

[bookmark: i1083945]

8.5.2.9 sipAppDeployed

Oracle WebLogic Communication Services engine tier nodes generate this alarm when a SIP Servlet is deployed to the container.

[bookmark: sthref219]
8.5.2.9.1 Recovery Procedure

This trap is generated during normal deployment operations and does not indicate an exception.

[bookmark: i1083951]

8.5.2.10 sipAppUndeployed

Oracle WebLogic Communication Services engine tier nodes generate this alarm when a SIP application shuts down, or if a SIP application is undeployed. This generally occurs when Oracle WebLogic Communication Services is shutdown while active requests still exist.

[bookmark: sthref220]
8.5.2.10.1 Recovery Procedure

During normal shutdown procedures this alarm should be filtered out and should not reach operations. If the alarm occurs during the course of normal operations, it indicates that someone has shutdown the application or server unexpectedly, or there is a problem with the application. Notify Tier 4 support immediately.

[bookmark: i1083957]

8.5.2.11 sipAppFailedToDeploy

Oracle WebLogic Communication Services engine tier nodes generate this trap when an application deploys successfully as a Web Application but fails to deploy as a SIP application.

[bookmark: sthref221]
8.5.2.11.1 Recovery Procedure

The typical failure is caused by an invalid sip.xml configuration file and should occur only during software installation or upgrade procedures. When it occurs, undeploy the application, validate the sip.xml file, and retry the deployment.

	
Note:

This alarm should never occur during normal operations. If it does, contact Tier 4 support immediately.

[bookmark: i1089885]

8.6 Using the WebLogic Diagnostics Framework (WLDF)

The WebLogic Diagnostic Framework (WLDF) consists of a number of components that work together to collect, archive, and access diagnostic information about a WebLogic Server instance and its applications. Oracle WebLogic Communication Services version integrates with several components of the WLDF in order to monitor and diagnose the operation of engine and SIP data tier nodes, as well as deployed SIP Servlets:

	
Data CollectorsOracle WebLogic Communication Services integrates with the Harvester service to collect information from runtime MBeans, and with the Logger service to archive SIP requests and responses.

	
Watches and NotificationsAdministrators can use the Watches and Notifications component to create complex rules, based on Oracle WebLogic Communication Services runtime MBean attributes, that trigger automatic notifications using JMS, JMX, SNMP, SMTP, and so forth.

	
Image CaptureOracle WebLogic Communication Services instances can collect certain diagnostic data and write the data to an image file when requested by an Administrator. This data can then be used to diagnose problems in a running server.

	
InstrumentationOracle WebLogic Communication Services instruments the server and application code with monitors to help you configure diagnostic actions that are performed on SIP messages (requests and responses) that match certain criteria.

The sections that follow provide more details about how Oracle WebLogic Communication Services integrates with each of the above WLDF components.

[bookmark: e1085224]

8.6.1 Data Collection and Logging

Oracle WebLogic Communication Services uses the WLDF Harvester service to collect data from the attributes of these runtime MBeans:

	
ReplicaRuntimeMBean

	
SipApplicationRuntimeMBean

	
SipServerRuntimeMBean

You can add charts and graphs of this data to your own custom views using the WLDF console extension. To do so, first enable the WLDF console extension by copying the JAR file into the console-ext subdirectory of your domain directory:

cp ~/bea/wlserver_10.3/server/lib/console-ext/diagnostics-console-extension.jar ~/bea/user_projects/domains/mydomain/console-ext

When accessing the WLDF console extension, the Oracle WebLogic Communication Services runtime MBean attributes are available in the Metrics tab of the extension.

Oracle WebLogic Communication Services also uses the WLDF Logger service to archive SIP and Diameter messages to independent, dedicated log files (by default, domain_home/logs/server_name/sipMessages.log). You can configure the name and location of the log file, as well as log rotation policies, using the Configuration > Message Debug tab in the SIP Server Administration Console extension. Note that a server restart is necessary in order to initiate independent logging and log rotation.

[bookmark: i1085418]

8.6.2 Watches and Notifications

The data collected from Oracle WebLogic Communication Services runtime MBeans can be used to create automated monitors, or "watches," that observe a server's diagnostic state. One or more notifications can then be configured for use by a watch, in order to generate a message using SMTP, SNMP, JMX, or JMS when your configured watch conditions and rules occur.

To use watches and notifications, you select the Diagnostics > Diagnostic Modules node in the left pane of the Administration Console and create a new module with the watch rules and notifications required for monitoring your servers. The watch rules can use the metrics collected from Oracle WebLogic Communication Services runtime MBeans, messages written to the log file, or events generated by the diagnostic framework.

[bookmark: i1085428]

8.6.3 Image Capture

Oracle WebLogic Communication Services adds its own image capture information to the diagnostic image generated by the WLDF. You can generate diagnostic images either on demand, or automatically by configuring watch rules.

The information contained in diagnostic images is intended for use by Oracle technical support personnel when troubleshooting a potential server problem and includes:

	
SIP data tier partition and replica configuration

	
Call state and timer statistics

	
Work manager statistics

[bookmark: i1085433]

8.6.4 Instrumentation

The WLDF instrumentation system creates diagnostic monitors and inserts them into Oracle WebLogic Communication Services or application code at specific points in the flow of execution. Oracle WebLogic Communication Services integrates with the instrumentation service to provide a built-in DyeInjection monitor. When enabled, this monitor injects dye flags into the diagnostic context when certain SIP messages enter or exist the system. Dye flags are injected based on the monitor's configuration properties, and on certain request attributes.

Oracle WebLogic Communication Services adds the dye flags described in Table 8-4 below, as well as the WebLogic Server dye flags USER and ADDR. See Oracle Fusion Middleware Configuring and Using the Diagnostics Framework for Oracle WebLogic Server for more information.

[bookmark: sthref222][bookmark: g1092589]
Table 8-4 Oracle WebLogic Communication Services DyeInjection Flags

	Dye Flag
	Description

	
PROTOCOL_SIP

	
Set in the diagnostic context of all SIP protocol messages.

	
SIP_REQ

	
Set in the diagnostic context for all SIP requests that match the value of the property SIP_REQ.

	
SIP_RES

	
Sset if the SIP response matches the value of property SIP_RES.

	
SIP_REQURI

	
Set if the SIP request's reqURI matches the value of property SIP_REQURI.

	
SIP_ANY_HEADER

	
Set if the SIP request contains a header that matches the value of the property SIP_ANY_HEADER.

	
SIP_RES

	
This flag is set in the diagnostic context for all SIP responses that match the value of the property SIP_RES.

	
SIP_REQURI

	
This flag is set if a SIP request's request URI matches the value of property SIP_REQURI.

	
SIP_ANY_HEADER

	
This flag is set if a SIP request contains a header matching the value of the property SIP_ANY_HEADER. The value of SIP_ANY_HEADER is specified using the format messageType.headerName=headerValue where headerValue is either a value or regular expression. For example, you can specify the property as SIP_ANY_HEADER=request.Contact=sip:sipp@localhost:5061 or SIP_ANY_HEADER=response.Contact=sip:findme@172.17.30.50:5060.

Dye flags can be applied to both incoming and outbound SIP messages. The flags are useful for dye filtering, and can be used by delegating monitors to trigger further diagnostic actions.

Oracle WebLogic Communication Services provides several delegating monitors that can be applied at the application and server scope, and which may examine dye flags set by the DyeInjection monitor. The delegating monitors are described in Table 8-4.

[bookmark: sthref223][bookmark: sthref224]
Table 8-5 Oracle WebLogic Communication Services Diagnostic Monitors

	Monitor Name
	Monitor Type
	Scope
	Pointcuts

	
occas/Sip_Servlet_Before_Service

	
Before

	
Application

	
At entry of SipServlet.do* or SipServlet.service methods of all implementing subclasses.

	
occas/Sip_Servlet_After_Service

	
After

	
Application

	
At exit of SipServlet.do* or SipServlet.service methods of all implementing subclasses.

	
occas/Sip_Servlet_Around_Service

	
Around

	
Application

	
At entry and exit of SipServlet.do* or SipServlet.service methods of all implementing subclasses.

	
occas/Sip_Servlet_Before_Session

	
Before

	
Application

	
At entry of getAttribute, set, remove, and invalidate methods for both SipSession and SipApplicationSession.

	
occas/Sip_Servlet_After_Session

	
After

	
Application

	
At exit of getAttribute, set, remove, and invalidate methods for both SipSession and SipApplicationSession.

	
occas/Sip_Servlet_Around_Session

	
Around

	
Application

	
At entry and exit of getAttribute, set, remove, and invalidate methods for both SipSession and SipApplicationSession.

	
occas/SipSessionDebug

	
Around

	
Application

	
This is a built-in, application-scoped monitor having fixed pointcuts and a fixed debug action. Before and after a pointcut, the monitor performs the SipSessionDebug diagnostic action, which calculates the size of the SIP session after serializing the underlying object.

The pointcuts for this monitor are as follows:

	
Before and after calls to getSession and getApplicationSession of the SipServletMessage class hierarchy.

	
Before and after calls to getAttribute, setAttribute, and removeAttribute methods in the SipSession and SipApplicationSession classes.

Note: The occas/SessionDebugAction-Before event is not triggered for the req.getSession() or req.getApplicationSession() joinpoints. Only the occas/SessionDebugAction-After is triggered, because the Session is made available for inspection only after the joinpoints have executed.

Note: If you compile your application using Apache Ant, you must enable the debug attribute to embed necessary debug information into the generated class files.

	
occas/Sip_Servlet_Before_Message_Send_Internal

	
Before

	
Server

	
At entry of Oracle WebLogic Communication Services code that writes messages to the wire.

	
occas/Sip_Servlet_After_Message_Send_Internal

	
After

	
Server

	
At exit of Oracle WebLogic Communication Services code that writes messages to the wire.

	
occas/Sip_Servlet_Around_Message_Send_Internal

	
Around

	
Server

	
At entry and exit of Oracle WebLogic Communication Services code that writes messages to the wire.

[bookmark: i1086895]

8.6.4.1 Configuring Server-Scoped Monitors

To use the server-scoped monitors, you must create a new diagnostic module and create and configure one or more monitors in the module. For the built-in DyeInjection monitor, you then add monitor properties to define the specific dye flags. For delegating monitors such as occas/Sip_Servlet_Before_Message_Send_Internal, you add monitor properties to define diagnostic actions.

Follow these steps to configure the Oracle WebLogic Communication Services DyeInjection monitor, a delegate monitor, and enable dye filtering:

	
Access the Administration Console for you domain.

	
Select the Diagnostics > Diagnostic Modules node in the left pane of the console.

	
Click New to create a new Diagnostic Module. Give the module a descriptive name, such as "instrumentationModule," and click OK.

	
Select the new "instrumentationModule" from the list of modules in the table.

	
Select the Targets tab.

	
Select a server on which to target the module and click Save.

	
Return to the Diagnostics > Diagnostic Modules node and select instrumentationModule from the list of modules.

	
Select the Configuration > Instrumentation tab.

	
Select Enabled to enable instrumentation at the server level, then click Save.

	
Add the DyeInjection monitor to the module:

	
Click Add/Remove.

	
Select the name of a monitor from the Available list (for example, DyeInjection), and use the arrows to move it to the Chosen list.

	
Click OK.

	
Select the newly-created monitor from the list of available monitors.

	
Ensure that the monitor is enabled, and edit the Properties field to add any required properties. For the DyeInjection monitor, sample properties include:

SIP_RES=180
SIP_REQ=INVITE
SIP_ANY_HEADER=request.Contact=sip:sipp@localhost:5061

	
Click Save

	
Add one or more delegate monitors to the module:

	
Return to the Configuration > Instrumentation tab for the new module.

	
Click Add/Remove.

	
Select the name of a delegate monitor from the Available list (for example, occas/Sip_Servlet_Before_Message_Send_Internal), and use the arrows to move it to the Chosen list.

	
Click OK.

	
Select the newly-created monitor from the list of available monitors.

	
Ensure that the monitor is enabled, then select one or more Actions from the available list, and use the arrows to move the actions to the Chosen list. For the occas/Sip_Servlet_Before_Message_Send_Internal monitor, sample actions include DisplayArgumentsAction, StackDumpAction, ThreadDumpAction, and TraceAction.

	
Select the check box to EnableDyeFiltering.

	
Select one or more Dye Masks, such as SIP_REQ, from the Available list and use the arrows to move them to the Chosen list.

	
Click Save

	
Note:

You can repeat the above steps to create additional delegate monitors.

[bookmark: i1086900]

8.6.4.2 Configuring Application-Scoped Monitors

You configure application-scoped monitors in an XML configuration file named weblogic-diagnostics.xml. You must store the weblogic-diagnostics.xml file in the SIP module's or enterprise application's META-INF directory.

The XML file enables instrumentation at the application level, defines point cuts, and also defines delegate monitor dye masks and actions. Example 8-1 shows a sample configuration file that uses the occas/Sip_Servlet_Before_Service monitor.

[bookmark: i1086832]
Example 8-1 Sample weblogic-diagnostics.xml File

<wldf-resource xmlns="http://www.bea.com/ns/weblogic/90/diagnostics">
 <instrumentation>
 <enabled>true</enabled>
 <include>demo.ProxyServlet</include>
 <wldf-instrumentation-monitor>
 <name>occas/Sip_Servlet_Before_Service</name>
 <enabled>true</enabled>
 <dye-mask>SIP_ANY_HEADER</dye-mask>
 <dye-filtering-enabled>true</dye-filtering-enabled>
 <action>DisplayArgumentsAction</action>
 </wldf-instrumentation-monitor>
 </instrumentation>
</wldf-resource>

In this example, if an incoming request's diagnostic context contains the SIP_ANY_HEADER dye flag, then the occas/Sip_Servlet_Before_Service monitor is triggered and the DisplayArgumentsAction is executed.

[bookmark: i1080227]

8.7 Logging SIP Requests and Responses

Oracle WebLogic Communication Services enables you to perform Protocol Data Unit (PDU) logging for the SIP requests and responses it processes. Logged SIP messages are placed either in the domain-wide log file for Oracle WebLogic Communication Services, or in the log files for individual Managed Server instances. Because SIP messages share the same log files as Oracle WebLogic Communication Services instances, you can use advanced server logging features such as log rotation, domain log filtering, and maximum log size configuration when managing logged SIP messages.

Administrators configure SIP PDU logging by defining one or more SIP Servlets using the com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl class. Logging criteria are then configured either as parameters to the defined servlet, or in separate XML files packaged with the application.

As SIP requests are processed or SIP responses generated, the logging Servlet compares the message with the filtering patterns defined in a standalone XML configuration file or Servlet parameter. SIP requests and responses that match the specified pattern are written to the log file along with the name of the logging servlet, the configured logging level, and other details. To avoid unnecessary pattern matching, the Servlet marks new SIP Sessions when an initial pattern is matched and then logs subsequent requests and responses for that session automatically.

Logging criteria are defined either directly in sip.xml as parameters to a logging Servlet, or in external XML configuration files. See Section 8.7.3, "Specifying the Criteria for Logging Messages".

	
Note:

Engineers can implement PDU logging functionality in their Servlets either by creating a delegate with the TraceMessageListenerFactory in the Servlet's init() method, or by using the tracing class in deployed Java applications. Using the delegate enables you to perform custom logging or manipulate incoming SIP messages using the default trace message listener implementation. See Section 8.7.7, "Adding Tracing Functionality to SIP Servlet Code" for an example of using the factory in a Servlet's init() method.

[bookmark: i1078638]

8.7.1 Defining Logging Servlets in sip.xml

Logging Servlets for SIP messages are created by defining Servlets having the implementation class com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl. The definition for a sample msgTraceLogger is shown in Example 8-2.

[bookmark: i1078663]
Example 8-2 Sample Logging Servlet

<servlet>
 <servlet-name>msgTraceLogger</servlet-name>
 <servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl</servlet-class>
 <init-param>
 <param-name>domain</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>level</param-name>
 <param-value>full</param-value>
 </init-param>
 <load-on-startup/>
 </servlet>

[bookmark: i1079814]

8.7.2 Configuring the Logging Level and Destination

Logging attributes such as the level of logging detail and the destination log file for SIP messages are passed as initialization parameters to the logging Servlet. Table 8-5 lists the parameters and parameter values that you can specify as init-param entries. Example 8-2 shows the sample init-param entries for a Servlet that logs full SIP message information to the domain log file.

[bookmark: i1078399]

8.7.3 Specifying the Criteria for Logging Messages

The criteria for selecting SIP messages to log can be defined either in XML files that are packaged with the logging Servlet's application, or as initialization parameters in the Servlet's sip.xml deployment descriptor. The sections that follow describe each method.

[bookmark: i1079761]

8.7.3.1 Using XML Documents to Specify Logging Criteria

If you do not specify logging criteria as an initialization parameter to the logging Servlet, the Servlet looks for logging criteria in a pair of XML descriptor files in the top level of the logging application. These descriptor files, named request-pattern.xml and response-pattern.xml, define patterns that Oracle WebLogic Communication Services uses for selecting SIP requests and responses to place in the log file.

	
Note:

By default Oracle WebLogic Communication Services logs both requests and responses. If you do not want to log responses, you must define a response-pattern.xml file with empty matching criteria.

A typical pattern definition defines a condition for matching a particular value in a SIP message header. For example, the sample response-pattern.xml used by the msgTraceLogger Servlet matches all MESSAGE requests. The contents of this descriptor are shown in

[bookmark: i1079648]
Example 8-3 Sample response-pattern.xml for msgTraceLogger Servlet

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE pattern
 PUBLIC "Registration//Organization//Type Label//Definition Language"
 "trace-pattern.dtd">
<pattern>
 <equal>
 <var>response.method</var>
 <value>MESSAGE</value>
 </equal>
</pattern>

Additional operators and conditions for matching SIP messages are described in Section 8.7.6, "trace-pattern.dtd Reference". Most conditions, such as the equal condition shown in Example 8-3, require a variable (var element) that identifies the portion of the SIP message to evaluate. Table 8-5 lists some common variables and sample values. For additional variable names and examples, see Section 16: Mapping Requests to Servlets in the SIP Servlet API 1.1 specification (http://jcp.org/en/jsr/detail?id=289); Oracle WebLogic Communication Services enables mapping of both request and response variables to logging Servlets.

[bookmark: sthref225][bookmark: sthref226]
Table 8-6 Pattern-matching Variables and Sample Values

	Variable
	Sample Values

	
request.method, response.method

	
MESSAGE, INVITE, ACK, BYE, CANCEL

	
request.uri.user, response.uri.user

	
guest, admin, joe

	
request.to.host, response.to.host

	
server.mydomain.com

Both request-pattern.xml and response-pattern.xml use the same Document Type Definition (DTD). See Section 8.7.6, "trace-pattern.dtd Reference" for more information.

[bookmark: sthref227]
8.7.3.2 Using Servlet Parameters to Specify Logging Criteria

Pattern-matching criteria can also be specified as initialization parameters to the logging Servlet, rather than as separate XML documents. The parameter names used to specify matching criteria are request-pattern-string and response-pattern-string. They are defined along with the logging level and destination as described in Section 8.7.2, "Configuring the Logging Level and Destination".

The value of each pattern-matching parameter must consist of a valid XML document that adheres to the DTD for standalone pattern definition documents (see Section 8.7.3.1, "Using XML Documents to Specify Logging Criteria"). Because the XML documents that define the patterns and values must not be parsed as part of the sip.xml descriptor, you must enclose the contents within the CDATA tag. Example 8-4 shows the full sip.xml entry for the sample logging Servlet, invTraceLogger. The final two init-param elements specify that the Servlet log only INVITE request methods and OPTIONS response methods.

[bookmark: i1079824]
Example 8-4 Logging Criteria Specified as init-param Elements

<servlet>
 <servlet-name>invTraceLogger</servlet-name>
 <servlet-class>com.bea.wcp.sip.engine.tracing.listener.TraceMessageListenerImpl</servlet-class>
 <init-param>
 <param-name>domain</param-name>
 <param-value>true</param-value>
 </init-param>
 <init-param>
 <param-name>level</param-name>
 <param-value>full</param-value>
 </init-param>
 <init-param>
 <param-name>request-pattern-string</param-name>
 <param-value>
Reference

Part VII

Reference

This Part contains the following appendices:

	
Appendix A, "SIP Servlet Container Configuration Reference"

	
Appendix B, "SIP Data Tier Configuration Reference"

	
Appendix C, "Diameter Configuration Reference"

	
Appendix D, "Startup Command Options"

	
Appendix E, "Supported Platforms, Protocols, RFCs and Standards"

Provisioning Users With Sash

7 Provisioning Users With Sash

This chapter describes using the Sash utility. This chapter includes the following sections:

	
Section 7.1, "Overview of Sash"

	
Section 7.2, "Launching Sash"

	
Section 7.3, "Using Sash"

	
Section 7.4, "Creating a User"

	
Section 7.5, "Provisioning the XDMS Using Sash"

	
Section 7.6, "Scripting with Sash"

	
Section 7.7, "Error Logging in Sash"

7.1 Overview of Sash

The Sapphire Shell (Sash) is a command-line utility to provision OWLCS users to the Oracle database, the XDMS (XML Document Management Server) and the RADIUS server. You can provision users from the Sash command line prompt (sash#) or by using the CommandService MBean.

See Oracle Fusion Middleware Administrator's Guide for Oracle Internet Directory for information on using Oracle Internet Database (OID) as the user provisioning repository for an OWLCS deployment.

7.2 Launching Sash

On Linux systems, the Sash launcher script (sash.sh) is located in the same folder that contains the start and stop scripts for OWLCS.

7.2.1 Launching Sash from the Command Line

OWLCS provides the following shortcuts for launching Sash from the command line:

sash.sh (UNIX)

sash.bat (Windows)

This shortcut is located at Oracle/Middleware/as11gr1wlcs1/communications/sash/bin on OWLCS installations.

7.2.2 Connecting Sash to an External OWLCS Instance

By default, Sash connects to the local instance of OWLCS. If needed, you can override this default behavior and connect Sash to external instances of OWLCS or to another instance of Oracle WebLogic Server.

7.2.2.1 Connecting to an External Instance of OWLCS

Sash connects to the OWLCS server through RMI. Example 7-1 illustrates how to connect Sash to a server with the host IP address 10.0.0.234.

Example 7-1 Connecting Sash to OWLCS

sash –-host 10.0.0.234

When you connect to OWLCS, Sash prompts you for a username and a password. The user name is the same as that for OWLCS administrator (OWLCSadmin). The password is the same as the password associated with the OWLCS administrator. Once you log in, the Sash command prompt (sash) appears. An error message displays if the login is unsuccessful.

7.3 Using Sash

There are two groups of Sash commands: commands that create, delete and update system objects and commands that query the system for information.

	
Note:

Whenever a user adds a new application usage, they must restart the server before the new application usage is available.
Whenever a user deletes an existing application usage, they must restart the server for the deleted application usage to be completely unloaded (that is, a deleted application usage will remain loaded until the server is restarted, when it is unloaded and is then completely unavailable).

If a space precedes a sash command in a file, and then that file is used as input to the sash command, it does not work. Ensure that you remove any preceding spaces in sash commands in sash input files.

7.3.1 Viewing Available Commands

Entering help displays a list of all available commands in the server (described in Table 7-1). The list of commands varies depending on the components deployed to the server.

Table 7-1 Sash Commands

	Command	Description	Aliases	Subcommands
	
privateIdentity

	
Commands for adding and removing private communication identities used for authentication.

	
None

	
Subcommands include:

	
add – Adds a new user to the system. For example:

privateIdentity add privateId=alice

	
delete – Removes a user from the system. For example:

privateIdentity delete privateId=alice

	
publicIdentity

	
Commands for adding and removing public identities associated with a private identity.

	
pubid

	
Subcommands include:

	
add – Adds a public identity to the system which is associated with a particular user. For example:

publicIdentity add publicId=sip:alice@test.company.com privateId=alice

	
delete – Deletes a communication identity from the system. For example:

publicIdentity delete publicId=sip:alice@test.company.com privateId=alice

	
account

	
Contains commands for managing user accounts. This command enables you to set the account as active, locked, or as a temporary account.

	
None

	
Subcommands include:

	
add – adds a new account to the system. The syntax is as follows:

account add uid=<string> [active=<true|false>] [locked=<true|false>] [accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>] [description=<string>] [lockExpiresAt=<lockExpiresAt>] [currentFailedLogins=<integer>]

For example: account add uid=alice active=true

	
delete – Deletes an account from the system. For example: account delete uid=<string>

	
update – Updates an account. For example:

account update uid=<string> [active=<true|false>] [locked=<true|false>] [accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>] [description=<string>] [lockExpiresAt=<lockExpiresAt>] [currentFailedLogins=<integer>]

	
info – Retrieves information for a specific account. For example: account info uid=<string>

	
role

	
Manages role types and user roles in the system. role is an additional security and authorization mechanism that is defined within the <auth-constraint> element of sip.xml. This command authorizes a group of users access to applications. The applications in turn check for a specific role. OWLCS defines one role for the Proxy Registrar application, "Location Services".

	
None

	
Subcommands include role system and role user.

	
role system (subcommand of role)

	
Manages the roles types.

	
None

	
Subcommands include:

	
list – Lists the roles in the system. For example:

role system list

	
add – Adds a new role to the system. For example:

role system add name=<string> [description=<string>]

	
update – Updates a role in the system. For example:

role system update name=<string> [description=<string>]

	
delete – Deletes a role from the system. For example:

role system delete name=<string> [description=<string>]

	
role user (subcommand of role)

	
Manages the user roles

	
None

	
Subcommands include:

	
add – Adds a role to a user. For example:

role user add uid=<string> name=<string>

	
delete – Deletes a role from a user. For example:

role user delete uid=<string> name=<string>

	
list – Lists roles for a user. For example:

role user list uid=<string>

	
credentials

	
Command for managing credentials.

	
None

	
Subcommands include:

	
add – Adds credentials to a user. For example:

credentials add password=<string> realm=<string> uid=<string>

	
addAll – Adds credentials for all of the configured realms in the system to a user. For example:

credentials addAll password=<string> uid=<string>

	
delete – Deletes realm credentials for a user. For example:

credentials delete realm=<string> uid=<string>

	
deleteAll – Deletes all credentials for a user. For example:

credentials deleteall uid=<string>

	
update – Updates the credentials for a user. For example:

credentials update password=<string> realm=<string> uid=<string>

	
updateAll – Updates a user's credentials for all provisioned realms in the system. For example:

credentials updateAll password=<string> uid=<string>

	
list – Lists all of the realms for which credentials exist for a given user. For example:

credentials list uid=<string>

	
identity add

	
Enables you to create a basic user account.

	
None

	
None. See "Creating a User with the Identity Add Command".

7.3.1.1 Viewing Subcommands

To view the subcommands for a specific command, enter help <command>. For example, entering help for the account command (help account) retrieves a brief overview of the subcommands available to the account command (illustrated in Example 7-2).

Example 7-2 Retrieving Help for a Specific Command

*** Description ****
Contains commands for management of user accounts.
In an account you can set if the account is active,
locked or if it perhaps should be a temporarily account.

Aliases: [no aliases]

Syntax:
account

Sub-commands:
Adds a new account to the system
 account add uid=<string> [active=<true|false>] [locked=<true|false>] [accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>] [description=<string>] [lockExpiresAt=<lockExpiresAt>] [currentFailedLogins=<integer>]

Deletes an account
 account delete uid=<string>

Updates an account
 account update uid=<string> [active=<true|false>] [locked=<true|false>] [accountExpiresAt=<accountExpiresAt>] [tempAccount=<true|false>] [description=<string>] [lockExpiresAt=<lockExpiresAt>] [currentFailedLogins=<integer>]

Retrieve information about a particular account
 account info uid=<string>

In addition to the overview of the command group, the information displayed by entering help <command> also includes the aliases (if any) to the command. For example, the overview of the account command illustrated in Example 7-2 notes [no aliases] for the command.

	
Note:

The delete command used with account, role, role system, role user, privateIdentity, publicIdentity, and identity has the following aliases:
	
remove

	
del

	
rm

Some commands require parameters. For example, if you enter help role system add, the system informs you that the add command requires the name of the role and an optional command for setting the description as well by displaying

role system add name=<string> [description=<string>].

	
Note:

Optional commands such as [description=<string>] are enclosed within square brackets [...].

The system alerts you if you omit a mandatory parameter or if you pass in a parameter that is not recognized.

7.4 Creating a User

This section describes the publicIdentity and privateIdentity commands and how to use them in conjunction with the add, account, role, and credentials subcommands listed in Table 7-1 to provision a user account to the Oracle database.

The Private Identity (privateIdentity) uniquely identifies a user within a given authentication realm. The Public Identity (publicIdentity) is the SIP address that users enter to register devices. This address is the user's AOR (Address of Record), and the means through which users call one another. A user can have only one Private Identity, but can have several Public Identities associated with that Private Identity.

	
Note:

To enable authentication to third-party databases (such as RADIUS), user accounts that contain authentication data and are stored externally must match the Private Identity to ensure the proper functioning of the Proxy Registrar and other applications that require authentication.

To create a user, first add the user to the system by creating a private identity and then a public identity for the user using the privateIdentity and publicIdentity commands with the add privateId and add publicId subcommands, respectively.

Once you create the private and public identity for the user, create an account for the user with the account add uid command and optionally set the status of the account (such as active or locked). The role command sets the role memberships for role-based permissions. Set the level of permissions for the users using the role command, and then set user credentials by defining the user's realm and password with the credentials command.

7.4.1 Creating a User from the Sash Command-Line Prompt

This section illustrates how to create a user from the Sash command prompt (sash#, illustrated in Example 7-3) by creating an OWLCS user known as alice using the commands described in Table 7-1.

	
Create a user using the privateIdentity command as follows:

privateIdentity add privateId=alice

	
Create the public identity for alice by entering the SIP address:

publicIdentity add publicId=sip:alice@test.company.com privateId=alice

	
Add an account for alice and use one of the optional commands described in Table 7-1 to set the status of the account. To create an active account for alice, enter the following:

account add uid=alice active=true

	
Note:

OWLCS Version 10.1.3.2 requires that the uid be in lower-case. Oracle Communicator users provisioned using OWLCS Version 10.1.3.2 must also enter their account names in lower case during login. OWLCS Version 10.1.3.3 and 10.1.3.4 support mixed-case uids. However, Oracle Communicator users can only log in by entering their user name exactly as it was provisioned. For example, if you define the uid as Alice, then the user must login as Alice. If you upgrade to 10.1.3.4 from 10.1.3.2, users provisioned in 10.1.3.2 must continue to log in using lower case.

	
Use the role command to add alice to the Location Service user group. Doing so grants alice permission to the Proxy Registrar's Location Service lookup:

role user add uid=alice name="Location Service"

	
Add user authentication credentials for alice:

credentials add uid=alice realm=test.company.com password=welcome1

The credentials command is not needed for applications configured to use the RADIUS Login Module to authenticate users against RADIUS servers. Fore more information on these login modules, see Chapter 5, "Administering Security Features".

	
Note:

You must also configure realms using the SIP Servlet Container MBean before you use Sash to add authorization credentials to a user.

Example 7-3 Creating a User from the Sash Command-Line Prompt

sash# privateIdentity add privateId=alice
sash# publicIdentity add publicId=sip:alice@test.company.com privateId=alice
sash# account add uid=alice active=true
sash# role user add uid=alice name="Location Service"
sash# credentials add uid=alice realm=test.company.com password=welcome1

	
Tip:

You can create multiple users by creating Sash batch files. For more information, see "Scripting with Sash".

7.4.2 Creating a User with the Command Service MBean

You can execute Sash commands using the CommandService MBean's execute operation. The Command Service MBean is defined within the subscrdataservcommandsear application.

To create a user:

	
Select the execute operation. The Operation page for the execute operation appears.

	
Enter privateIdentity add privateId=alice in the Value field.

	
Click Invoke Operation. Repeat this process for each of the user creation commands. For example, the subsequent publicIdentity and account commands would both be followed by Invoke Operation.

7.4.3 Creating a User with the Identity Add Command

The identity add command enables you to create a user with one command string. This command, which is an alias to the privateIdentity, publicIdentity, account, role and credentials commands, enables you to quickly create a basic user account that contains the minimum information needed for users to connect to OWLCS through a SIP client. For example, to create a basic account for user alice using this command, enter the following from either the command line or through the Command Service Mbean's execute operation:

identity add privateId=alice publicId=sip:sip.alice@company.com role="Location Service" realm=company.com password=welcome1

	
Note:

For applications configured to authenticate users against a RADIUS system (the applications with the RADIUS Login Module as the security provider), the command to create a user account is as follows:

identity add privateId=alice publicId=sip:sip.alice@company.com role="Location Service"

The identity add command only enables you to create a basic user account. Accounts that require more complex construction, such as those that associate multiple publicIds with a single privateId, must be created using multiple Sash commands as illustrated in Example 7-3.

7.4.3.1 Deleting a User Account with the identity delete Command

The identity delete command enables you to delete all of a user's roles, credentials, account information, public and private identities using a single command string. For example, to delete an account for user alice using this command, enter the following from either the command line or through the Command Service Mbean's execute operation:

identity delete privateId=alice

7.5 Provisioning the XDMS Using Sash

The commands for provisioning the XDMS are included in the xcap group. Each of these commands is preceded by xcap. The XDMS commands within the xcap group that support user provisioning are included in the user and applicationUsage subgroups. You can provision XDMS from the Sash prompt or by using the CommandService MBean that is provided with the Presence application.

7.5.1 Provisioning XDMS User Accounts Using the CommandService MBean

You can provision XDMS using the execute command provided by the CommandService MBean that is registered to the Presence application. Use the CommandService MBean's execute operation as described in "Creating a User with the Command Service MBean" to provision accounts to the XDMS. For more information on the MBean itself, see "Command Service (XDMS Provisioning)".

7.5.2 Provisioning XDMS User Accounts from the Sash Prompt

To use XDMS commands to provision users and application usages from the Sash prompt, you must first connect to an application that consumes XDMS, such as Presence.

For Windows systems, enter the following from the command prompt:

launch_sash.bat -a <application name>

On Linux, enter the following:

launch_sash.sh -a <application name>

For example, to connect to the Presence application on a Windows system:

	
From the command prompt, navigate to the sbin directory that contains the Sash executable. This file is located at MIDDLEWARE_HOME/as11gr1wlcs/communications/sash/sbin.

	
Enter the name of the Presence application using sash.bat -a presenceapplication.

	
When prompted, login to Sash using your OWLCS administrator name and password.

	
From the Sash command prompt, enter an XDMS command, such as xcap user list.

7.5.3 Using xcap Commands

This section describes how to manage user accounts and application usages using the xcap group of commands.

7.5.3.1 Provisioning XDMS User Accounts

The add, delete and list commands enable you to manage user accounts on the XDMS.

7.5.3.2 Adding XDMS Users

The xcap user add command adds an XDMS user with the given user name and application usage. For example, to add a user from the Sash prompt, enter:

sash# xcap user add userName=<string> appusage=<string>

	
Note:

Do not use the add command if the XDMS is configured to automatically create users. For more information on configuring XCAP, see Section 9.2.9, "XCapConfigManager".

7.5.3.3 Removing an XDMS User

The xcap user delete command removes an XDMS user with the given user name (and all existing documents) from the application usage. For example, to delete a user from the Sash prompt, enter:

sash# xcap user delete userName=<string> [appusages=<string>]

The application usage parameter (appusages) is optional. If no application usage is specified, then the user is removed from all application usages.

7.5.3.4 Searching for Application Usage for an XDMS User

The xcap user appusages command returns all the application usages applicable to a given user. To review the application usages assigned to a user, enter the following from the Sash prompt:

sash# xcap user appusages userName=<string>

7.5.3.5 Listing XDMS Users

The xcap user list command returns all of the XDMS users in the system, or optionally returns the XDMS users for a given application usage.

sash# xcap user list [all=<true|false>] [appusage=<string>]

If the optional all parameter is not set, then the resulting display is limited to a maximum of 100 users.

7.5.3.6 Provisioning Application Usage

The commands for provisioning of XDMS application usage are in the appusage group (xcap appusage). Three types of applications are supported: resource-lists_au.xml, pidfmanipulation_au.xml and presrules_au.xml.

The SASH command for adding application usage is:

xcap appusage create appusage=<application_usage> configurationFilename=<application>_au.xml

Three types of applications are supported as shown in.

Table 7-2 Supported Application Types

	applicationUsage	configurationFilename
	
resource-lists

	
resource-lists_au.xml

	
pidf-manipulation

	
pidfmanipulation_au.xml

	
pres-rules

	
presrules_au.xml

7.5.3.7 Listing All Application Usages

The xcap appusage list command returns all the application usages on the server. For example, enter the following from the Sash prompt:

sash# xcap appusage list

7.6 Scripting with Sash

You can construct scripts for common tasks that contain several operations. Sash can be evoked to execute a file containing a list of commands. To enable scripting, Sash provides such command-line flags as:

	
-- exec (short name: -e): When this command-line flag is followed by a command enclosed within quotation marks, Sash executes the command and then exits.

	
-- file (short name: -f): When this command-line flag is followed by a filename, Sash reads the file and executes all commands in the file as they were entered and then exits.

Example 7-4 illustrates a text file called ocsm_users.txt, which contains a group of users defined with the identity add command. You can provision these users by entering -f OWLCS_users.txt from the Sash prompt:

Example 7-4 Creating Users from a Text File (OWLCS_users.txt)

identity add privateId=candace publicId=sip:candace@doc.oracle.com role=user password=1234 realm=doc.oracle.com
identity add privateId=deirdre publicId=sip:deirdre@doc.oracle.com role=user password=1234 realm=doc.oracle.com
identity add privateId=evelyn publicId=sip:evelyn@doc.oracle.com role=user password=1234 realm=doc.oracle.com
identity add privateId=frank publicId=sip:frank@doc.oracle.com role=user password=1234 realm=doc.oracle.com

	
-- nonewline: This command-line flag facilitates parsing output by stripping returns or newlines from the messages returned from the executed commands. Although this command facilitates parsing, it makes reading messages manually more difficult.

7.7 Error Logging in Sash

Sash does not log to any files (with the default configuration), it only prints messages on the console. The log level for Sash is configured in $ORACLE _HOME/as11gr1wlcs1/communications/sash/conf.

SIP Servlet Container Configuration Reference

A SIP Servlet Container Configuration Reference

The following sections provide a complete reference to the engine tier configuration file, sipserver.xml:

	
Section A.1, "Overview of sipserver.xml"

	
Section A.2, "Editing sipserver.xml"

	
Section A.3, "XML Schema"

	
Section A.4, "Example sipserver.xml File"

	
Section A.5, "XML Element Description"

A.1 Overview of sipserver.xml

The sipserver.xml file is an XML document that configures the SIP container features provided by an Oracle WebLogic Communication Services instance in the engine tier of a server installation. sipserver.xml is stored in the DOMAIN_DIR/config/custom subdirectory where DOMAIN_DIR is the root directory of the Oracle WebLogic Communication Services domain.

A.2 Editing sipserver.xml

You should never move, modify, or delete the sipserver.xml file during normal operations.

Oracle recommends using the Administration Console to modify sipserver.xml indirectly, rather than editing the file by hand. Using the Administration Console ensures that the sipserver.xml document always contains valid XML. See also Configuring Container Properties Using WLST (JMX) in the Configuration Guide.

You may need to manually view or edit sipserver.xml to troubleshoot problem configurations, repair corrupted files, or to roll out custom configurations to a large number of machines when installing or upgrading Oracle WebLogic Communication Services. When you manually edit sipserver.xml, you must reboot Oracle WebLogic Communication Services instances to apply your changes.

	
Caution:

Always use the SipServer node in the Administration Console or the WLST utility to make changes to a running Oracle WebLogic Communication Services deployment.

A.2.1 Steps for Editing sipserver.xml

If you need to modify sipserver.xml on a production system, follow these steps:

	
Use a text editor to open the DOMAIN_DIR/config/custom/sipserver.xml file, where DOMAIN_DIR is the root directory of the Oracle WebLogic Communication Services domain.

	
Modify the sipserver.xml file as necessary. See Section A.3, "XML Schema" for a full description of the XML elements.

	
Save your changes and exit the text editor.

	
Reboot or start servers to have your changes take effect:

	
Caution:

Always use the SipServer node in the Administration Console or the WLST utility to make changes to a running Oracle WebLogic Communication Services deployment.

	
Test the updated system to validate the configuration.

A.3 XML Schema

The schema file for sipserver.xml, wcp-sipserver.xsd, is installed inside the wlss-descriptor-binding.jar library, located in the WLSS_HOME/server/lib/wlss directory.

A.4 Example sipserver.xml File

The following shows a simple example of a sipserver.xml file:

<?xml version="1.0" encoding="UTF-8"?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300">
 <overload>
 <threshold-policy>queue-length</threshold-policy>
 <threshold-value>200</threshold-value>
 <release-value>150</release-value>
 </overload>
</sip-server>

A.5 XML Element Description

The following sections describe each element used in the sipserver.xml configuration file. Each section describes an XML element that is contained within the main sip-server element shown in Figure A-0.

A.5.1 enable-timer-affinity

The enable-timer-affinity element determines the way in which engine tier servers process expired timers. By default (when enable-timer-affinity is omitted from sipserver.xml, or is set to "false"), an engine tier server that polls the SIP data tier for expired timers processes all available expired timers. When enable-timer-affinity is set to "true," engine tier servers polling the SIP data tier process only those expired timers that are associated with call states that the engine last modified (or expired timers for call states that have no owner).

A.5.2 overload

The overload element enables you to throttle incoming SIP requests according to a configured overload condition. When an overload condition occurs, Oracle WebLogic Communication Services destroys new SIP requests by responding with "503 Service Unavailable" until the configured release value is observed, or until the size of the server's capacity constraints is reduced (see Section A.5.2.3, "Overload Control Based on Capacity Constraints").

User-configured overload controls are applied only to initial SIP requests; SIP dialogues that are already active when an overload condition occurs may generate additional SIP requests that are not throttled.

To configure an overload control, you define the three elements described in Table A-1.

Table A-1 Nested overload Elements

	Element	Description
	

threshold-policy

	
A String value that identifies the type of measurement used to monitor overload conditions:

	
session-rate measures the rate at which new SIP requests are generated. Oracle WebLogic Communication Services determines the session rate by calculating the number of new SIP application connections that were created in the last 5 seconds of operation. See Section A.5.2.2, "Overload Control Based on Session Generation Rate".

	
queue-length measures the sum of the sizes of the capacity constraint work manager components that processes SIP requests and SIP timers. See Section A.5.2.3, "Overload Control Based on Capacity Constraints".

	
Note: Execute queues are deprecated and no longer used in Oracle WebLogic Communication Services. Capacity constraints are used in place of execute queues. The policy name "queue-length" was kept for backward compatibility.

You must use only one of the above policies to define an overload control. See Section A.5.2.1, "Selecting an Appropriate Overload Policy" for more information.

	

threshold-value

	
Specifies the measured value that causes Oracle WebLogic Communication Services to recognize an overload condition and start throttling new SIP requests:

	
When using the session-rate threshold policy, threshold-value specifies the number of new SIP requests per second that trigger an overload condition. See Section A.5.2.2, "Overload Control Based on Session Generation Rate".

	
When using the queue-length threshold policy, threshold-value specifies the size of the combined number of requests in the SIP transport and SIP timer capacity constraint components that triggers an overload condition. See Section A.5.2.3, "Overload Control Based on Capacity Constraints".

	
After the threshold-value is observed, Oracle WebLogic Communication Services recognizes an overload condition for a minimum of 512 milliseconds during which time new SIP requests are throttled. If multiple overloads occur over a short period of time, the minimum overload of 512 ms is dynamically increased to avoid repeated overloads.

	
After the minimum overload recognition period expires, the overload condition is terminated only after the configured release-value is observed.

	

release-value

	
Specifies the measured value that causes Oracle WebLogic Communication Services to end an overload condition and stop throttling new SIP requests:

	
When using the session-rate threshold policy, release-value specifies the number of new SIP requests per second that terminates session throttling. See Section A.5.2.2, "Overload Control Based on Session Generation Rate".

	
When using the queue-length threshold policy, release-value specifies the combined number of requests in the capacity constraints that terminates session throttling. See Section A.5.2.3, "Overload Control Based on Capacity Constraints".

A.5.2.1 Selecting an Appropriate Overload Policy

Oracle WebLogic Communication Services provides two different policies for throttling SIP requests:

	
The session-rate policy throttles sessions when the volume new SIP sessions reaches a configured rate (a specified number of sessions per second).

	
The queue-length policy throttles requests after the sum of the requests in the wlss.connect work manager and wlss.timer.capacity capacity constraint components reaches a configured size.

Note that you must select only one of the available overload policies. You cannot use both policies simultaneously.

The session-rate policy is generally used when a back-end resource having a known maximum throughput (for example, an RDBMS) is used to set up SIP calls. In this case, the session-rate policy enables you to tie the Oracle WebLogic Communication Services overload policy to the known throughput capabilities of the back-end resource.

With the queue-length policy, Oracle WebLogic Communication Services monitors both CPU and I/O bottlenecks to diagnose an overload condition. The queue-length policy is generally used with CPU-intensive SIP applications in systems that have no predictable upper bound associated with the call rate.

The following sections describe each policy in detail.

A.5.2.2 Overload Control Based on Session Generation Rate

Oracle WebLogic Communication Services calculates the session generation rate (sessions per second) by monitoring the number of application sessions created in the last 5 seconds. When the session generation rate exceeds the rate specified in the threshold-value element, Oracle WebLogic Communication Services throttles initial SIP requests until the session generation rate becomes smaller than the configured release-value.

The following example configures Oracle WebLogic Communication Services to begin throttling SIP requests when the new sessions are created at a rate higher than 50 sessions per second. Throttling is discontinued when the session rate drops to 40 sessions per second:

<overload>
 <threshold-policy>session-rate</threshold-policy>
 <threshold-value>50</threshold-value>
 <release-value>40</release-value>
</overload>

A.5.2.3 Overload Control Based on Capacity Constraints

By default, SIP messages are handled by a work manager named wlss.connect and SIP timers are processed by a work manager named wlss.timer.Each work manager has an associated capacity constraint component that sets the number of requests allotted for SIP message handling and timer processing. Work managers are configured in the config.xml file for your Oracle WebLogic Communication Services. You can also allocate additional threads to the server at boot time using the startup option -Dweblogic.threadpool.MinPoolSize=number_of_threads.

Oracle WebLogic Communication Services performs queue-length overload control by monitoring the combined lengths of the configured capacity constraints. When the sum of the requests in the two constraints exceeds the length specified in the threshold-value element, Oracle WebLogic Communication Services throttles initial SIP requests until the total requests are reduced to the configured release-value.

Example A-1 shows a sample overload configuration from sipserver.xml. Here, Oracle WebLogic Communication Services begins throttling SIP requests when the combined size of the constraints exceeds 200 requests. Throttling is discontinued when the combined length returns to 200 or fewer simultaneous requests.

Example A-1 Sample overload Definition

<overload>
 <threshold-policy>queue-length</threshold-policy>
 <threshold-value>200</threshold-value>
 <release-value>150</release-value>
</overload>

A.5.2.4 Two Levels of Overload Protection

User-configured overload controls (defined in sipserver.xml) represent the first level of overload protection provided by Oracle WebLogic Communication Services. They mark the onset of an overload condition and initiate simple measures to avoid dropped calls (generating 503 responses for new requests).

If the condition that caused the overload persists or worsens, then the work manager component used to perform work in the SIP Servlet container may itself become overloaded. At this point, the server no longer utilizes threads to generate 503 responses, but instead begins to drop messages. In this way, the configured size of the SIP container's work manager components represent the second and final level of overload protection employed by the server.

Always configure overload controls in sipserver.xml conservatively, and resolve the circumstances that caused the overload in a timely fashion.

A.5.3 message-debug

The message-debug element is used to enable and configure access logging with log rotation for Oracle WebLogic Communication Services. This element should be used only in a development environment, because access logging logs all SIP requests and responses.

A.5.4 proxy—Setting Up an Outbound Proxy Server

RFC 3261 defines an outbound proxy as "A proxy that receives requests from a client, even though it may not be the server resolved by the Request-URI. Typically, a UA is manually configured with an outbound proxy, or can learn about one through auto-configuration protocols."

In Oracle WebLogic Communication Services an outbound proxy server is specified using the proxy element in sipserver.xml. The proxy element defines one or more proxy server URIs. You can change the behavior of the proxy process by setting a proxy policy with the proxy-policy tag. Example A-0 describes the possible values for the proxy elements.

The default behavior is as if proxy policy is in effect. The proxy policy means that the request is sent out to the configured outbound proxy and the route headers in the request preserve any routing decision taken by Oracle WebLogic Communication Services. This enables the outbound proxy to send the request over to the intended recipient after it has performed its actions on the request. The proxy policy comes into effect only for the initial requests. As for the subsequent request the Route Set takes precedence over any policy in a dialog. (If the outbound proxy wants to be in the Route Set it can turn record routing on).

Also if a proxy application written on Oracle WebLogic Communication Services wishes to override the configured behavior of outbound proxy traversal, then it can add a special header with name "X-BEA-Proxy-Policy" and value "domain". This header is stripped from the request while sending, but the effect is to ignore the configured outbound proxy. The X-BEA-Proxy-Policy custom header can be used by applications to override the configured policy on a request-by-request basis. The value of the header can be "domain" or "proxy". Note, however, that if the policy is overridden to "proxy," the configuration must still have the outbound proxy URIs in order to route to the outbound proxy.

Table A-2 Nested proxy Elements

	Element	Description
	

routing-policy

	
An optional element that configures the behavior of the proxy. Valid values are:

	
domain - Proxies messages using the routing rule defined by RFC 3261, ignoring any outbound proxy that is specified.

	
proxy - Sends the message to the downstream proxy specified in the default proxy URI. If there are multiple proxy specifications they are tried in the order in which they are specified. However, if the transport tries a UDP proxy, the settings for subsequent proxies are ignored.

	

uri

	
The TCP or UDP URI of the proxy server. You must specify at least one URI for a proxy element. Place multiple URIs in multiple uri elements within the proxy element.

Example A-2 shows the default proxy configuration for Oracle WebLogic Communication Services domains. The request in this case is created in accordance with the SIP routing rules, and finally the request is sent to the outbound proxy "sipoutbound.oracle.com".

Example A-2 Sample proxy Definition

<proxy>
 <routing-policy>proxy</routing-policy>
 <uri>sip:sipoutbound.oracle.com:5060</uri>
 <!-- Other proxy uri tags can be added. - >
</proxy>

A.5.5 t1-timeout-interval

This element sets the value of the SIP protocol T1 timer, in milliseconds. Timer T1 also specifies the initial values of Timers A, E, and G, which control the retransmit interval for INVITE requests and responses over UDP.

Timer T1 also affects the values of timers F, H, and J, which control retransmit intervals for INVITE responses and requests; these timers are set to a value of 64*T1 milliseconds. See the SIP: Session Initiation Protocol for more information about SIP timers.

If t1-timeout-interval is not configured, Oracle WebLogic Communication Services uses the SIP protocol default value of 500 milliseconds.

A.5.6 t2-timeout-interval

This elements sets the value of the SIP protocol T2 timer, in milliseconds. Timer T2 defines the retransmit interval for INVITE responses and non-INVITE requests. See the SIP: Session Initiation Protocol for more information about SIP timers.

If t2-timeout-interval is not configured, Oracle WebLogic Communication Services uses the SIP protocol default value of 4 seconds.

A.5.7 t4-timeout-interval

This elements sets the value of the SIP protocol T4 timer, in milliseconds. Timer T4 specifies the maximum length of time that a message remains in the network. Timer T4 also specifies the initial values of Timers I and K, which control the wait times for retransmitting ACKs and responses over UDP.

If t4-timeout-interval is not configured, Oracle WebLogic Communication Services uses the SIP protocol default value of 5 seconds.

A.5.8 timer-b-timeout-interval

This elements sets the value of the SIP protocol Timer B, in milliseconds. Timer B specifies the length of time a client transaction attempts to retry sending a request.

If timer-b-timeout-interval is not configured, the Timer B value is derived from timer T1 (64*T1, or 32000 milliseconds by default).

A.5.9 timer-f-timeout-interval

This elements sets the value of the SIP protocol Timer F, in milliseconds. Timer F specifies the timeout interval for retransmitting non-INVITE requests.

If timer-f-timeout-interval is not configured, the Timer F value is derived from timer T1 (64*T1, or 32000 milliseconds by default).

A.5.10 max-application-session-lifetime

This element sets the maximum amount of time, in minutes, that a SIP application session can exist before Oracle WebLogic Communication Services invalidates the session. max-application-session-lifetime acts as an upper bound for any timeout value specified using the session-timeout element in a sip.xml file, or using the setExpires API.

A value of -1 (the default) specifies that there is no upper bound to application-configured timeout values.

A.5.11 enable-local-dispatch

enable-local-dispatch is a server optimization that helps avoid unnecessary network traffic when sending and forwarding messages. You enable the optimization by setting this element "true." When enable-local-dispatch enabled, if a server instance needs to send or forward a message and the message destination is the engine tier's cluster address or the local server address, then the message is routed internally to the local server instead of being sent via the network. Using this optimization can dramatically improve performance when chained applications process the same request.

You may want to disable this optimization if you feel that routing internal messages could skew the load on servers in the engine tier, and you prefer to route all requests via a configured load balancer.

By default enable-local-dispatch is set to "false."

A.5.12 cluster-loadbalancer-map

The cluster-loadbalancer-map element is used only when upgrading Oracle WebLogic Communication Services software, or when upgrading a production SIP Servlet to a new version. It is not required or used during normal server operations.

During a software upgrade, multiple engine tier clusters are defined to host the older and newer software versions. A cluster-loadbalancer-map defines the virtual IP address (defined on your load balancer) that correspond to an engine tier cluster configured for an upgrade. Oracle WebLogic Communication Services uses this mapping to ensure that engine tier requests for timers and call state data are received from the correct "version" of the cluster. If a request comes from an incorrect version of the software, the cluster-loadbalancer-map entries are used to forward the request to the correct cluster.

Each cluster-loadbalancer-map entry contains the two elements described in Table A-1.

Table A-3 Nested cluster-loadbalancer-map Elements

	Element	Description
	

cluster-name

	
The configured name of an engine tier cluster.

	

sip-uri

	
The internal SIP URI that maps to the engine tier cluster. This corresponds to a virtual IP address that you have configured in your load balancer. The internal URI is used to forward requests to the correct cluster version during an upgrade.

Example A-3 shows a sample cluster-loadbalancer-map entry used during an upgrade.

Example A-3 Sample cluster-loadbalancer-map Entry

<cluster-loadbalancer-map>
 <cluster-name>EngineCluster</cluster-name>
 <sip-uri>sip:172.17.0.1:5060</sip-uri>
</cluster-loadbalancer-map>
<cluster-loadbalancer-map>
 <cluster-name>EngineCluster2</cluster-name>
 <sip-uri>sip:172.17.0.2:5060</sip-uri>
</cluster-loadbalancer-map>

See Upgrading Software in the Operations Guide for more information.

A.5.13 default-behavior

This element defines the default behavior of the Oracle WebLogic Communication Services instance if the server cannot match an incoming SIP request to a deployed SIP Servlet (or if the matching application has been invalidated or timed out). Valid values are:

	
proxy—Act as a proxy server.

	
ua—Act as a User Agent.

proxy is used as the default if you do not specify a value.

When acting as a User Agent (UA), Oracle WebLogic Communication Services acts in the following way in response to SIP requests:

	
ACK requests are discarded without notice.

	
CANCEL or BYE requests receive response code 481 - Transaction does not exist.

	
All other requests receive response code 500 - Internal server error.

When acting as a proxy requests are automatically forwarded to an outbound proxy (see Section A.5.4, "proxy—Setting Up an Outbound Proxy Server") if one is configured. If no proxy is defined, Oracle WebLogic Communication Services proxies to a specified Request URI only if the Request URI does not match the IP and port number of a known local address for a SIP Servlet container, or a load balancer address configured for the server. This ensures that the request does not constantly loop to the same servers. When the Request URI matches a local container address or load balancer address, Oracle WebLogic Communication Services instead acts as a UA.

A.5.14 default-servlet-name

This element specifies the name of a default SIP Servlet to call if an incoming initial request cannot be matched to a deployed Servlet (using standard servlet-mapping definitions in sip.xml). The name specified in the default-servlet-name element must match the servlet-name value of a deployed SIP Servlet. For example:

<default-servlet-name>myServlet</default-servlet-name>

If the name defined in default-servlet-name does not match a deployed Servlet, or no value is supplied (the default configuration), Oracle WebLogic Communication Services registers the name com.bea.wcp.sip.engine.BlankServlet as the default Servlet. The BlankServlet name is also used if a deployed Servlet registered as the default-servlet-name is undeployed from the container.

BlankServlet's behavior is configured with the default-behavior element. By default the Servlet proxies all unmatched requests. However, if the default-behavior element is set to "ua" mode, BlankServlet is responsible for returning 481 responses for CANCEL and BYE requests, and 500/416 responses in all other cases. BlankServlet does not respond to ACK, and it always invalidates the application session.

A.5.15 retry-after-value

Specifies the number of seconds used in the Retry-After header for 5xx responses. This value can also include a parameter or a reason code, such as "Retry-After: 18000;duration=3600" or "Retry-After: 120 (I'm in a meeting)."

If the this value is not configured, Oracle WebLogic Communication Services uses the default value of 180 seconds.

A.5.16 sip-security

Oracle WebLogic Communication Services enables you to configure one or more trusted hosts for which authentication is not performed. When Oracle WebLogic Communication Services receives a SIP message, it calls getRemoteAddress() on the SIP Servlet message. If this address matches an address defined in the server's trusted host list, no further authentication is performed for the message.

The sip-security element defines one or more trusted hosts, for which authentication is not performed. The sip-security element contains one or more trusted-authentication-host or trusted-charging-host elements, each of which contains a trusted host definition. A trusted host definition can consist of an IP address (with or without wildcard placeholders) or a DNS name. Example A-4 shows a sample sip-security configuration.

Example A-4 Sample Trusted Host Configuration

<sip-security>
 <trusted-authentication-host>myhost1.mycompany.com</trusted-authentication-host>
 <trusted-authentication-host>172.*</trusted-authentication-host>
</sip-security>

A.5.17 route-header

3GPP TS 24.229 Version 7.0.0 (http://www.3gpp.org/ftp/Specs/archive/24_series/24.229/24229-700.zip) requires that IMS Application Servers generating new requests (for example, as a B2BUA) include the S-CSCF route header. In Oracle WebLogic Communication Services, the S-CSCF route header must be statically defined as the value of the route-header element in sipserver.xml. For example:

<route-header>
 <uri>Route: sip:wlss1.bea.com</uri>
</route-header>

A.5.18 engine-call-state-cache-enabled

Oracle WebLogic Communication Services provides the option for engine tier servers to cache a portion of the call state data locally, as well as in the SIP data tier, to improve performance with SIP-aware load balancers. When a local cache is used, an engine tier server first checks its local cache for existing call state data. If the cache contains the required data, and the local copy of the data is up-to-date (compared to the SIP data tier copy), the engine locks the call state in the SIP data tier but reads directly from its cache.

By default the engine tier cache is enabled. To disable caching, set engine-call-state-cache-enabled to false:

<engine-call-state-cache-enabled>false</engine-call-state-cache-enabled>

A.5.19 server-header

Oracle WebLogic Communication Services enables you to control when a Server header is inserted into SIP messages. You can use this functionality to limit or eliminate Server headers to reduce the message size for wireless networks, or to increase security.

By default, Oracle WebLogic Communication Services inserts no Server header into SIP messages. Set the server-header to one of the following string values to configure this behavior:

	
none (the default) inserts no Server header.

	
request inserts the Server header only for SIP requests generated by the server.

	
response inserts the Server header only for SIP responses generated by the server.

	
all inserts the Server header for all SIP requests and responses.

For example, the following element configures Oracle WebLogic Communication Services to insert a Server header for all generated SIP messages:

<server-header>all</server-header>

See also Section A.5.20, "server-header-value".

A.5.20 server-header-value

Oracle WebLogic Communication Services enables you to control the text that is inserted into the Server header of generated messages. This provides additional control over the size of SIP messages and also enables you to mask the server entity for security purposes. By default, Oracle WebLogic Communication Services does not insert a Server header into generated SIP messages (see Section A.5.19, "server-header"). If Server header insertion is enabled but no server-header-value is specified, Oracle WebLogic Communication Services inserts the value "WebLogic SIP Server." To configure the header contents, enter a string value. For example:

<server-header-value>MyCompany Application Server</server-header-value>

A.5.21 persistence

The persistence element defines enables or disables writing call state data to an RDBMS and/or to a remote, geographically-redundant Oracle WebLogic Communication Services installation. For sites that utilize geographically-redundant replication features, the persistence element also defines the site ID and the URL at which to persist call state data.

The persistence element contains the sub-elements described in Table A-1.

Table A-4 Nested persistence Elements

	Element	Description
	

default-handling

	
Determines whether or not Oracle WebLogic Communication Services observes persistence hints for RDBMS persistence and/or geographical-redundancy. This element can have one of the following values:

	
all—Specifies that call state data may be persisted to both an RDBMS store and to a geographically-redundant Oracle WebLogic Communication Services installation. This is the default behavior. Note that actual replication to either destination also requires that the available resources (JDBC datasource and remote JMS queue) are available.

	
db—Specifies that long-lived call state data is replicated to an RDBMS if the required JDBC datasource and schema are available.

	
geo—Specifies that call state data is persisted to a remote, geographically-redundant site if the configured site URL contains the necessary JMS resources.

	
none—Specifies that only in-memory replication is performed to other replicas in the SIP data tier cluster. Call state data is not persisted in an RDBMS or to an external site.

	

geo-site-id

	
Specifies the site ID of this installation. All installations that participate in geographically-redundant replication require a unique site ID.

	

geo-remote-t3-url

	
Specifies the remote Oracle WebLogic Communication Services installation to which this site replicates call state data. You can specify a single URL corresponding to the engine tier cluster of the remote installation. You can also specify a comma-separated list of addresses corresponding to each engine tier server. The URLs must specify the t3 protocol.

Example A-5 shows a sample configuration that uses RDBMS storage for long-lived call state as well as geographically-redundant replication. Call states are replicated to two engine tier servers in a remote location.

Example A-5 Sample persistence Configuration

<persistence>
 <default-handling>all</default-handling>
 <geo-site-id>1</geo-site-id>
 <geo-remote-t3-url>t3://remoteEngine1:7050,t3://remoteEngine2:7051</geo-remote-t3-url>
</persistence>

A.5.22 use-header-form

This element configures the server-wide, default behavior for using or preserving compact headers in SIP messages. You can set this element to one of the following values:

	
compact—Oracle WebLogic Communication Services uses the compact form for all system-generated headers. However, any headers that are copied from an originating message (rather than generated) use their original form.

	
force compact—Oracle WebLogic Communication Services uses the compact form for all headers, converting long headers in existing messages into compact headers as necessary.

	
long—Oracle WebLogic Communication Services uses the long form for all system-generated headers. However, any headers that are copied from an originating message (rather than generated) use their original form.

	
force long—Oracle WebLogic Communication Services uses the long form for all headers, converting compact headers in existing messages into long headers as necessary.

A.5.23 enable-dns-srv-lookup

This element enables or disables Oracle WebLogic Communication Services DNS lookup capabilities. If you set the element to "true," then the server can use DNS to:

	
Discover a proxy server's transport, IP address, and port number when a request is sent to a SIP URI.

	
Resolve an IP address and/or port number during response routing, depending on the contents of the Sent-by field.

For proxy discovery, Oracle WebLogic Communication Services uses DNS resolution only once per SIP transaction to determine transport, IP, and port number information. All retransmissions, ACKs, or CANCEL requests are delivered to the same address and port using the same transport. For details about how DNS resolution takes place, see RFC 3263: Session Initiation Protocol (SIP): Locating SIP Servers (http://www.ietf.org/rfc/rfc3263.txt).

When a proxy needs to send a response message, Oracle WebLogic Communication Services uses DNS lookup to determine the IP address and/or port number of the destination, depending on the information provided in the sent-by field and via header.

By default, DNS resolution is not used ("false").

	
Note:

Because DNS resolution is performed within the context of SIP message processing, any DNS performance problems result in increased latency performance. Oracle recommends using a caching DNS server in a production environment to minimize potential performance problems.

A.5.24 connection-reuse-pool

Oracle WebLogic Communication Services includes a connection pooling mechanism that can be used to minimize communication overhead with a Session Border Control (SBC) function or Serving Call Session Control Function (S-CSCF). You can configure multiple, fixed pools of connections to different addresses.

Oracle WebLogic Communication Services opens new connections from the connection pool on demand as the server makes requests to a configured address. The server then multiplexes new SIP requests to the address using the already-opened connections, rather than repeatedly terminating and recreating new connections. Opened connections are re-used in a round-robin fashion. Opened connections remain open until they are explicitly closed by the remote address.

Note that connection re-use pools are not used for incoming requests from a configured address.

To configure a connection re-use pool, you define the four nested elements described in Table A-1.

Table A-5 Nested connection-reuse-pool Elements

	Element	Description
	

pool-name

	
A String value that identifies the name of this pool. All configured pool-name elements must be unique to the domain.

	

destination

	
Specifies the IP address or host name of the destination SBC or S-CSCF. Oracle WebLogic Communication Services opens or re-uses connection in this pool only when making requests to the configured address.

	

destination-port

	
Specifies the port number of the destination SBC or S-CSCF.

	

maximum-connections

	
Specifies the maximum number of opened connections to maintain in this pool.

Example A-6 shows a sample connection-reuse-pool configuration having two pools.

Example A-6 Sample connection-reuse-pool Configuration

<connection-reuse-pool>
 <pool-name>SBCPool</pool-name>
 <destination>MySBC</destination>
 <destination-port>7070</destination-port>
 <maximum-connections>10</maximum-connections>
</connection-reuse-pool>
<connection-reuse-pool>
 <pool-name>SCSFPool</pool-name>
 <destination>192.168.1.6</destination>
 <destination-port>7071</destination-port>
 <maximum-connections>10</maximum-connections>
</connection-reuse-pool>

A.5.25 globally-routable-uri

This element enables you to specify a Globally-Routable User Agent URI (GRUU) that Oracle WebLogic Communication Services automatically inserts into Contact and Route-Set headers when communicating with network elements. The URI specified in this element should be the GRUU for the entire Oracle WebLogic Communication Services cluster. (In a single-server domain, use a GRUU for the server itself.)

Note that User Agents (UAs) deployed on Oracle WebLogic Communication Services typically obtain GRUUs via a registration request. In this case, the application code is responsible both for requesting and subsequently handling the GRUU. To request a GRUU the UA would include the "+sip.instance" Contact header field parameter in each Contact for which GRUU is required. Upon receiving a GRUU, the UA would use the GRUU as the URI for the contact header field when generating new requests.

A.5.26 domain-alias-name

This element defines one or more domains for which Oracle WebLogic Communication Services is responsible. If a message has a destination domain that matches a domain specified with a domain-alias-name element, Oracle WebLogic Communication Services processes the message locally, rather than forwarding it.

The sipserver.xml configuration file can have multiple main-alias-name elements. Each element can specify either:

	
an individual, fully-qualified domain name, such as myserver.mycompany.com, or

	
a domain name starting with an initial wildcard character, such as *.mycompany.com, used to represent all matching domains. Note that only a single wildcard character is supported, and it must be used as the first element of the domain name.

	
Note:

You can also identify these domain names using the Domain Aliases field in the Configuration > General tab of the SipServer Administration Console extension.

A.5.27 enable-rport

This element determines whether or not Oracle WebLogic Communication Services automatically adds an rport parameter to Via headers when acting as a UAC. By default, the server does not add the rport parameter; set the element to "true" to automatically add rport to requests generated by the server.

	
Note:

You can also set this parameter to "true" by selecting the Symmetric Response Routing option on the Configuration > General tab of the SipServer Administration console extension.

The rport parameter is used for symmetric response routing as described in RFC 3581 (http://www.ietf.org/rfc/rfc3581.txt). When a message is received by an RFC 3581-compliant server, such as Oracle WebLogic Communication Services, the server responds using the remote UDP port number from which the message was received, rather than the port number specified in the Via header. This behavior is frequently used when servers reside behind gateway devices that perform Network Address Translation (NAT). The NAT devices maintain a binding between the internal and external port numbers, and all communication must be initiated via the gateway port.

Note that Oracle WebLogic Communication Services is compliant with RFC 3581, and will honor the rport parameter even if you set the enable-rport element to "false." The enable-rport element only specifies whether the server automatically adds rport to the requests it generates when acting as a UAC. To disable rport handling completely (disable RFC 3581 support), you must start the server with the command-line option, -Dwlss.udp.uas.rport=false.

	
Note:

rport support as described in RFC 3581 requires that SIP responses include the source port of the original SIP request. Because source port information is frequently treated as sensitive data, Oracle recommends using the TLS transport.

A.5.28 image-dump-level

This element specifies the level of detail to record in Oracle WebLogic Communication Services diagnostic image files. You can set this element to one of two values:

	
basic—Records all diagnostic data except for call state data.

	
full—Records all diagnostic data including call state data.

	
Note:

Recording call state data in the image file can be time consuming. By default, image dump files are recorded using the basic option.
You can also set this parameter using the Configuration > General tab of the SipServer Administration console extension.

A.5.29 stale-session-handling

Oracle WebLogic Communication Services uses encoded URIs to identify the call states and application sessions associated with a message. When an application is undeployed or upgraded to a new version, incoming requests may have encoded URIs that specify "stale" or nonexistent call or session IDs. The stale-session-handling element enables you to configure the action that Oracle WebLogic Communication Services takes when it encounters stale session data in a request. The following actions are possible:

	
drop—Drops the message without logging an error. This setting is desirable for systems that frequently upgrade applications using Oracle WebLogic Communication Services's in-place upgrade feature. Using the drop action ensures that messages intended for older, incompatible versions of a deployed application are dropped.

	
error—Responds with an error, so that a UAC might correct the problem. This is the default action. Messages having a To: tag cause a 481 Call/Transaction Does Not Exist error, while those without the tag cause a 404 Not Found error.

	
continue—Ignores the stale session data and continues processing the request.

	
Note:

When it encounters stale session data, Oracle WebLogic Communication Services applies the action specified by stale-session-handling before considering the value of the default-behavior element. This means that the default-behavior is performed only when you have configured stale-session-handling to perform the continue action.

A.5.30 enable-contact-provisional-response

By default Oracle WebLogic Communication Services does not place a Contact header in non-reliable provisional (1xx) responses that have a To header. If you deploy applications that expect the Contact header to be present in such 1xx responses, set this element to true:

<enable-contact-provisional-response>true</enable-contact-provisional-response>

Note that setting this element to true does not affect 100 Trying responses.

A.5.31 app-router

The app-router stanza contains several elements that configure SIP Servlet v1.1 application router behavior. See Section A.5.32, "use-custom-app-router", Section A.5.33, "app-router-config-data", Section A.5.34, "custom-app-router-jar-file-name", and Section A.5.35, "default-application-name".

A.5.32 use-custom-app-router

The use-custom-app-router element determines whether Oracle WebLogic Communication Services uses the default, built-in Application AR (AR), or a custom AR that you specify with the custom-app-router-jar-file-name element. The default value, "false," configures the server to use the default AR.

A.5.33 app-router-config-data

The app-router-config-data element defines properties to pass to the default or custom Application Router (AR) in the init method. All configuration properties must conform to the Java Properties format, and each individual property must be entered on a separate, single line without line breaks or spaces. DAR properties must conform to the detailed property format described in Appendix C of http://jcp.org/en/jsr/detail?id=289. Example A-7 shows an example configuration.

Example A-7 Sample app-router-config-data element

<?xml version='1.0' encoding='UTF-8'?>
<sip-server xmlns="http://www.bea.com/ns/wlcp/wlss/300" xmlns:sec="http://www.bea.com/ns/weblogic/90/security" xmlns:wls="http://www.bea.com/ns/weblogic/90/security/wls" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance">
 <app-router>
 <use-custom-app-router>false</use-custom-app-router>
 <app-router-config-data>INVITE:("OriginatingCallWaiting","DAR:From","ORIGINATING","","NO_ROUTE","0"),("CallForwarding","DAR:To","TERMINATING","","NO_ROUTE","1")
SUBSCRIBE:("CallForwarding","DAR:To","TERMINATING","","NO_ROUTE","1")</app-router-config-data>
 <custom-app-router-jar-file-name></custom-app-router-jar-file-name>
 <default-application-name></default-application-name>
 </app-router>
</sip-server>

You can optionally specify AR initialization properties when starting the Oracle WebLogic Communication Services instance by including the -Djavax.servlet.sip.ar.dar.configuration Java option. (To specify a property file, rather than a URI, include the prefix file:///) If you specify the Java startup option, the container ignores any configuration properties defined in app-router-config-data. You can modify the properties in at any time, but the properties are not passed to the AR until the server is restarted with the -Djavax.servlet.sip.ar.dar.configuration option omitted.

A.5.34 custom-app-router-jar-file-name

The custom-app-router-jar-file-name element specifies the filename of the custom Application Router (AR), packaged as a JAR file, to use. The custom AR implementation must reside in the $DOMAIN_HOME/approuter subdirectory.

A.5.35 default-application-name

The default-application-name element specifies the name of a default application that the container should call when the custom Application Router (AR) cannot find an application to process an initial request. If no default application is specified, the container returns a 500 error if the AR cannot select an application.

	
Note:

You must first deploy an application before specifying its name as the value of Default application name.

