

10 Using the Oracle Enterprise Scheduler Web Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level scheduling. This functionality includes support for the Oracle Enterprise Scheduler web service (ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime functionality.

This chapter includes the following sections:

	
Section 10.1, "Introduction to the Oracle Enterprise Scheduler Web Service"

	
Section 10.2, "Developing and Using ESSWebservice Applications"

	
Section 10.3, "ESSWebservice WSDL File"

	
Section 10.4, "Use Case Using Scheduler ESSWebservice from a BPEL Process"

	
Section 10.5, "Creating the ESSWebService Application and a SOA Project"

	
Section 10.6, "Creating the ESSWebService Reference"

	
Section 10.7, "Adding the BPEL Process to Call the ESSWebService"

	
Section 10.8, "Using Additional ESSWebService Operations"

	
Section 10.9, "Securing the Oracle Enterprise Scheduler Web Service"

	
Section 10.10, "Deploying and Testing the Project"

10.1 Introduction to the Oracle Enterprise Scheduler Web Service

Oracle Enterprise Scheduler provides a rich set of functionality for enterprise level scheduling. This functionality includes support for the following operations:

	
Creating and managing Oracle Enterprise Scheduler metadata

	
Submitting and managing Oracle Enterprise Scheduler job requests

	
Configuring and managing Oracle Enterprise Scheduler

Client applications can use the Oracle Enterprise Scheduler web service (ESSWebservice) to access a subset of the Oracle Enterprise Scheduler runtime functionality. The ESSWebservice is provided primarily to support SOA integration, for example invoking Oracle Enterprise Scheduler from a BPEL process. However, any client that needs a web service to interact with Oracle Enterprise Scheduler can use ESSWebservice. ESSWebservice exposes job scheduling and management functionality for request submission and request management.

ESSWebservice is deployed within the Oracle Enterprise Scheduler application, where the application is a Java EE application within the Oracle Enterprise Scheduler runtime framework. Thus, the ESSWebservice is available on every node where Oracle Enterprise Scheduler is installed and deployed.

The ESSWebservice is a synchronous web service, such that all the operations invoked are synchronous operations. Since internally, the job execution model in Oracle Enterprise Scheduler is asynchronous, the APIs themselves do not need to be asynchronous. However, Oracle Enterprise Scheduler web service also provides the capability to retrieve the job completion events asynchronously (in a manner similar to implementing the Oracle Enterprise Scheduler EventListener contract in the core API layer).

The ESSWebservice WSDL describes the complete functionality for the ESSWebservice. Table 10-1 summarizes the operations available with ESSWebservice.

Table 10-1 Summary of Operations Available with ESSWebservice

	Operation	Communication Type	Description
	
addPPAction

	
Synchronous

	
Adds a post-processing action to a step in a job set request. This method is called prior to submitting the request. The method provides support for action previously supported by add_printer, add_notification, add_layout in concurrent processing. The parameters to these legacy routines are passed as arguments to addPPAction in the order in which they were declared in the original routine. For more information, see Section 10.8, "Using Additional ESSWebService Operations"

	
addPPActions

	
Synchronous

	
Similar to addPPAction, except that you can package multiple actions in your request.

	
cancelRequest

	
Synchronous

	
Cancels the processing of a request that is not in a terminal state.

	
deleteRequest

	
Synchronous

	
Marks a request in a terminal state for deletion. This does not physically remove any data, although the request will no longer be accessible by most methods.

For parent requests, this operation will cascade to all children.

	
getCompletionStatus

	
Asynchronous

	
Registers for an asynchronous status update when the request completes. A one-way operation with a separate asynchronous response.

	
getRequestDetail

	
Synchronous

	
Gets the runtime details of the specified request.

	
getRequestState

	
Synchronous

	
Retrieves the current state of the specified request.

	
holdRequest

	
Synchronous

	
Withholds further processing of a request that is in WAIT or READY state. For parent requests, this operation will cascade to all eligible child requests.

	
releaseRequest

	
Synchronous

	
Releases a request from the HOLD state. For parent requests, this operation will cascade to all eligible child requests.

	
setAsyncRequestStatus

	
Synchronous

	
Sets the status of an asynchronous java job.

	
setNLSOptions

	
Synchronous

	
Sets NLS environment options for a request.

	
setStepsArgs

	
Synchronous

	
Marshals arguments in the previous concurrent processing style into a Oracle Enterprise Scheduler properties for a step in a job set request. This operation is invoked prior to submitting a request. For more information, see Section 10.8, "Using Additional ESSWebService Operations".

	
setSubmitArgs

	
Synchronous

	
Marshals arguments in the previous concurrent processing style into Oracle Enterprise Scheduler properties.This operation is invoked prior to submitting the request. The key of each argument is ARGUMENT_PREFIX#, where # is the ordinal value of the argument. For example ARGUMENT_PREFIX1="firstArg" and ARGUMENT_PREFIX2="secondArg". For more information, see Section 10.8, "Using Additional ESSWebService Operations".

	
submitRecurringRequest

	
Synchronous

	
Submits a new recurring job request (a request with a schedule). For more information, see Section 10.8, "Using Additional ESSWebService Operations".

	
submitRequest

	
Synchronous

	
Submits a new job request. For more information, see Section 10.4, "Use Case Using Scheduler ESSWebservice from a BPEL Process"

10.2 Developing and Using ESSWebservice Applications

Oracle Enterprise Scheduler executes a job request, for example a Java type job request, in the context of the application that submitted the job. Typically, for development purposes, Oracle Enterprise Scheduler and client applications co-exist locally on any given node which allows Oracle Enterprise Scheduler to execute the job in the context of the target application. For the purposes of production, the client application and Oracle Enterprise Scheduler often reside on different servers.

A Java EE application that uses Oracle Enterprise Scheduler contains all the Oracle Enterprise Scheduler artifacts including the following:

	
Metadata, including a job type, a job definition, a schedule, and any other required metadata such as a job set.

	
Job implementation classes (for Java jobs).

	
A Required Oracle Enterprise Scheduler endpoint description (an MDB description in ejb-jar.xml).

Any clients interacting with Oracle Enterprise Scheduler using ESSWebservice need to provide such a Java EE application, such that Oracle Enterprise Scheduler can run jobs in the context of the correct target application. All such web service clients must know the name of the corresponding Java EE hosting application and should pass it to Oracle Enterprise Scheduler using the web service call wherever required (where this is required is defined in the WSDL).

The details for developing this hosting application are described in Chapter 3, "Use Case Oracle Enterprise Scheduler Sample Application." Such an application is a regular Oracle Enterprise Scheduler client application, but the job request submission and other Oracle Enterprise Scheduler interactions may be skipped, as these calls are generated through the ESSWebservice.

10.2.1 How to Develop and Use an ESSWebservice Java EE Application

When the Oracle Enterprise Scheduler functionality is accessed using the ESSWebservice web service, a corresponding hosting Java EE application needs to be available to Oracle Enterprise Scheduler. Even though clients can interact with Oracle Enterprise Scheduler remotely using the Oracle Enterprise Scheduler web service, the associated Java EE application must still be co-located with Oracle Enterprise Scheduler. This allows Oracle Enterprise Scheduler to execute job requests in the correct application context. Therefore ESSWebservice clients still need to develop, package and deploy a corresponding Java EE application that contains all the required Oracle Enterprise Scheduler artifacts. For information about developing an Oracle Enterprise Scheduler application, see Chapter 3, "Use Case Oracle Enterprise Scheduler Sample Application."

10.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL

For SOA clients all the SOA components such as a BPEL processor are deployed as a SOA composite. A SOA composite is not a Java EE application. The composite is executed using the SOA fabric runtime framework (within soa-infra).

For SOA components, create a separate Java EE hosting application that acts as the proxy between the composite and Oracle Enterprise Scheduler. This hosting application can either be created in a one-to-one association with one Oracle Enterprise Scheduler application for each composite deployed, or multiple composites can share a single Java EE hosting application. The Java EE hosting application contains all the desired Oracle Enterprise Scheduler artifacts.

10.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation

As shown in the ESSWebservice WSDL, if clients want to be notified asynchronously on job completion they can invoke the getCompletionStatus() operation. Upon job completion, Oracle Enterprise Scheduler will invoke the callback operation onJobCompletion() following ws-addressing where ESSWebservice captures the caller's address in the incoming call. Clients should be capable of receiving the callback at any arbitrary time in future. Such a callback depends entirely upon the time required to complete the job. This is similar to the Oracle Enterprise Scheduler functionality for invoking a client's listener (that implements Oracle Enterprise Scheduler EventListener contract) upon job completion.

When you use getCompletionStatus() clients must include certain required web service addressing headers (in particular the wsa:MessageID and wsa:ReplyTo headers). This allows the Oracle Enterprise Scheduler runtime to asynchronously notify the job completion status be sent to the correct ReplyTo address. When you use getCompletionStatus() from a BPEL process the SOA runtime automatically adds the required headers. When using getCompletionStatus() programatically on the client side, using the web service proxies, then the web service client must set these addressing headers.

10.2.4 Limitations for ESSWebservice

ESSWebservice does not support the following Oracle Enterprise Scheduler features:

	
Ad hoc Request Submission: ESSWebservice does not support ad hoc job request submission (ad hoc request submission is available using the EJB APIs). Therefore any job that is submitted using the ESSWebservice must have its corresponding definition, including a job type and job definition along with the schedule definitions created as metadata objects in the associated proxy application. The web service operation can then refer to such metadata objects using their identifier arguments as specified in the WSDL.

	
Query API: ESSWebservice does not expose the query APIs. Web service clients do not need to obtain the query information for Oracle Enterprise Scheduler requests. ESSWebservice web service clients do not provide generic monitoring and managing functionality that would require the use of query APIs.

10.2.5 ESSWebservice Implementation

The Oracle Enterprise Scheduler functionality is exposed as web service using an interface (SEI) annotated with the JAX-WS annotations. The implementation of this (SEI) web service invokes the common Oracle Enterprise Scheduler implementation layer. The ESSWebservice is exposed in Document/Literal/Wrapped mode for maximum interoperability.

Some of the data types used in ESSWebservice are not suitable to be used in web service directly. Such data types cannot be readily converted into corresponding XML representation. Therefore the Oracle Enterprise Scheduler web service layer defines wrapper classes around these data types that are exposed in the ESSWebservice, and visible in the WSDL. Otherwise in general, the web service layer reuses the existing data types where possible.

10.3 ESSWebservice WSDL File

When Oracle Enterprise Scheduler is installed and running, you can obtain the WSDL definition file from the web services page at the following type of URL:

http://host:port/ess/esswebservice?WSDL

For example,

http://system1:7001/ess/esswebservice?WSDL

10.4 Use Case Using Scheduler ESSWebservice from a BPEL Process

The following sections show use of ESSWebService from a BPEL process; in the BPEL process you use ESSWebService to submit a job request. The use case demonstrates one path for using Oracle Enterprise Scheduler for BPEL and SOA users. Experienced SOA users and designers may have other ideas for how work with Oracle Enterprise Scheduler using the web service. To submit an Oracle Enterprise Scheduler job request from a BPEL process, you need to deploy an application that provides the required Oracle Enterprise Scheduler artifacts. For this use case you can deploy the EssDemoApp described in Chapter 3, "Use Case Oracle Enterprise Scheduler Sample Application."

10.5 Creating the ESSWebService Application and a SOA Project

Using Oracle JDeveloper you create an application and the projects within the application that contain the code and support files for the application. To create the ESSWebService sample application, you do the following:

	
Create an application and an SOA project in Oracle JDeveloper

	
Configure the SOA project in Oracle JDeveloper

10.5.1 How to Create the ESSWebService Application and Project

To work with Oracle Enterprise Scheduler you first create an application and an SOA project in Oracle JDeveloper.

To create EssWebApplication:

	
Click the New... icon.

	
In the New Gallery, in the navigator, expand General and select Applications.

	
In the Items area select SOA Application.

	
Click OK.

	
Use the Name your application window to enter the name and location for the new application and to specify the application template.

	
In the Application Name field, enter an application name. For this sample application, enter EssWebApplication.

	
In the Directory field, accept the default.

	
Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project of an application.

	
Click Next.

	
In the Name your project dialog select SOA project options.

	
In the Project Name field, enter a project name or accept the default, Project1.

	
On the Project Technologies tab, the Selected shuttle should show SOA.

	
Click Finish. This creates the EssWebApplication that contains an SOA project.

10.6 Creating the ESSWebService Reference

In the SOA composite application you need to add the ESSWebservice reference to make the web service available for a partner link in the SOA composite application.

10.6.1 How to Add the ESSWebService Partner Link

You need to add the ESSWebService partner link to the SOA composite application.

To add the Oracle Enterprise Scheduler web service as a partner link:

	
In the Application Navigator open the ESSWebApplication and expand Project1 and then expand SOA Content.

	
In the Application Navigator select composite.xml.

	
Right-click and from the dropdown list select Open. This displays the composite as shown in Figure 10-1.

Figure 10-1 EssWebService Application composite.xml

[image: EssWebService Application composite.xml]

	
In the Component Palette from the SOA dropdown list, in the Service Adapters area select Web Service.

	
Drag-and-drop the web service icon to the External References lane in composite.xml. This displays the Create Web Service window, as shown in Figure 10-2.

Figure 10-2 Create Web Service Dialog

[image: Create Web Service dialog]

	
In the Name field, enter a service name, or accept the default name.

	
In the Type field, from the dropdown list select Reference.

	
In the WSDL URL text field enter the value for the WSDL URL manually, for example:

http://host:port/ess/esswebservice?WSDL

	
In the SOA Resource Lookup dialog, click OK.

	
In the Create Web Service dialog, in the Port Type field, from the dropdown list select ESSWebService.

	
In the Create Web Service dialog, in the Callback Port Type select ESSWebServiceCallback from the dropdown list, as shown in Figure 10-3.

Figure 10-3 Create Web Service with ESSWebService WSDL

[image: Create web service with ESSWebService WSDL]

Select the checkbox Copy WSDL and its dependent artifacts into the project. This allows the local copy of the Oracle Enterprise Scheduler abstract WSDL and ESSTypes.xsd files to be moved into the SOA composite project.

	
Note:

Keeping a local copy of a WSDL file may result in synchronization issues if the remote WSDL file is updated. Making a local copy of the remote WSDL file is therefore not recommended. However, doing so may be useful for certain scenarios such as offline designing.

	
Click OK. Now the External References lane in composite.xml displays the new web service, as shown in Figure 10-4.

Figure 10-4 Composite.xml with ESSWebService External Reference

[image: Composite.xml with ESSWebService external reference]

10.7 Adding the BPEL Process to Call the ESSWebService

Now you need to add a BPEL Process to call the ESSWebService operations.

10.7.1 How to Add a BPEL Process to Call the ESSWebService

You need to add a BPEL process to use the ESSWebService.

To add a BPEL process to use the ESSWebService:

	
In the Application Navigator, in Project1 select composite.xml.

	
In the Component Palette, from the SOA dropdown list in the Service Components area select BPEL Process.

	
Drag-and-drop a BPEL process to the components swim lane. This displays the Create BPEL Process dialog, as shown in Figure 10-5.

Figure 10-5 Create BPEL Process Dialog for New BPEL Process

[image: Create BPEL Process dialog for new BPEL process]

	
Click OK. This adds the BPEL process to composite.xml, as shown in Figure 10-6.

Figure 10-6 Adding a BPEL Process to the SOA Composite Application

[image: Adding a BPEL process to the SOA composite application]

	
In composite.xml, select BPELProcess1 and then select and drag the right arrow to create a reference to Service1, as shown in Figure 10-7.

Figure 10-7 Adding A Reference to the Oracle Enterprise Scheduler Web Service in composite.xml

[image: Adding a reference to the ESS web service in composite.xml]

	
Click the Save All icon to save the project files.

10.7.2 Copy Types Into BPEL Process Schema

You need to change the schema of the BPEL process by opening up the corresponding XSD file in the xsd folder under the project. This step is a shortcut for the demonstration purposes for this sample application. In your own application, you would use the schema types required for the ESSWebservice operations. This allows the clients of the BPEL process, for this example a simplified test case, to provide all the necessary inputs (this is required because clients are based on BPEL process schema). This step allows you to map, or assign inputs for the web service. This step is only required to correctly generate the sample application. In real scenarios the BPEL process designer is responsible for defining or supplying the input schema, and mapping this to the web service inputs.

	
Note:

The steps outlined require manual changes, depending on the BPEL process you are working with and the particular naming you are using for your BPEL process. You can find the types that are required for ESSWebService operations in the ESSWebService WSDL file. It is also possible to individually add these types to the schema.

To update the BPEL process schema:

	
In the Application Navigator, in Project1 expand the SOA Content folder and expand the xsd folder.

	
In the xsd folder, double-click the BPELProcess1.xsd file.

	
Select the Source tab.

	
Copy the EssWebService types so that the schema includes the contents shown in Example 10-1.

The ESSTypes.xsd file and other WSDL artifacts exposed by the Oracle Enterprise Scheduler web service are imported into the composite and renamed esswebservice_XSD_<XSD file name>.xsd.

	
Note:

The schema shown in Example 10-1 includes the application and project name. If you change the application name or the project name for this example, you also need to update the schema targetNamespace and xmlns:tns elements to reflect the names that you use.

	
In the BPELProcess1.xsd file, refer to the artifacts created in Section 10.6, "Creating the ESSWebService Reference" that have been imported into the composite. The directory path should be relative the BPELProcess1.xsd file. Example 10-1 shows the composite schema file with a reference to the web service artifacts.

Example 10-1 BPEL XSD Schema

<?xml version="1.0" encoding="UTF-8"?>
<schema attributeFormDefault="unqualified" elementFormDefault="qualified"
 xmlns:xs="http://www.w3.org/2001/XMLSchema"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-Instance"
 xmlns:ns1="http://xmlns.oracle.com/scheduler/types"
 targetNamespace="http://xmlns.oracle.com/
 EssWebApplication/Project1/BPELProcess1"
 xmlns:tns="http://xmlns.oracle.com/
 EssWebApplication/Project1/BPELProcess1"
 xmlns="http://www.w3.org/2001/XMLSchema">

<import namespace="http://xmlns.oracle.com/scheduler/types"
 schemaLocation="../esswebservice_XSD_ESSTypes.xsd" />

 <element name="process">
 <complexType>
 <xs:sequence>
 <xs:element name="description" type="xs:string"/>
 <xs:element name="jobDefinitionId" type="ns1:metadataObjectId"/>
 <xs:element name="requestedStartTime" type="xs:dateTime"/>
 <xs:element name="application" type="xs:string"/>
 <xs:element name="requestParameters" type="ns1:requestParameters"/>
 </xs:sequence>
 </complexType>
 </element>
 <element name="processResponse">
 <complexType>
 <sequence>
 <element name="result" type="string"/>
 <element name="requestId" type="long"/>
 <element name="state" type="ns1:state"/>
 </sequence>
 </complexType>
 </element>
</schema>

	
Click the Save icon.

10.7.3 How to Invoke the ESSWebService submitRequest Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise Scheduler web service submitRequest() operation. In this step you need to select the input and output for the Invoke Activity by associating values with the Input and Output variables.

To add the Invoke activity to submit the request using ESSWebService:

	
In the Application Navigator, in Project1 expand SOA Content and select the BPEL file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane as shown in Figure 10-8.

Figure 10-8 BPEL Process Before Adding Invoke Activity for ESSWebService SubmitRequest

[image: BPEL process before adding an invoke activity]

	
From the Component Palette, drag-and-drop an Invoke Activity and place the activity before callbackClient.

	
Link the invoke activity to the ESSWebService by selecting the right arrow and dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog, as shown in Figure 10-9.

Figure 10-9 Edit Invoke Dialog for BPEL Activity

[image: Edit Invoke dialog for BPEL activity]

	
In the Edit Invoke dialog, in the Operation field, select submitRequest.

	
In the Variables field, click the Add icon next to the Input field.

The Create Variable dialog displays. Accept the default value and click OK.

	
In the Edit Invoke dialog, click the Add icon next to the Output field.

The Create Variable dialog displays. Accept the default value and click OK.

The new invoke link to Service1 displays.

	
Select the Invoke activity and double-click the name Invoke_1 to select the text entry field. In the text entry field enter submitRequest, as shown in Figure 10-10.

Figure 10-10 Adding the submitRequest Invoke Activity

[image: Adding the submitRequest invoke activity.]

10.7.4 Assign Required Input Parameters for Request Submission

You add an Assign activity and then assign inputs from the BPEL process to the submitRequest Invoke activity.

	
Note:

In most cases, the input payload of the BPEL process will not directly match the input payload of the submit Request web service. Coaxing into use of CopyList will only work in the scenarios where there is a one to one mapping of the input payload to the submit Request.

For the mapping for an Assign activity with a Copy operation, the arguments correspond to the input parameters for Oracle Enterprise Scheduler submitRequest, as shown in Table 10-2. If your BPEL schema differs from the submitRequest message type, use Table 10-2 as a guide for how to populate the values manually with the Assign activity Copy operation.

Table 10-2 Submit Request Web Service Arguments for BPEL Assign Activity Mapping

	Argument	Description
	
Description

	
Context for the ad hoc submission of this job, such as the 'Order Import'.

	
Application

	
The application name can be the deployment name of the hosting Oracle Enterprise Scheduler application or it can be a logical application name.

	
JobDefinitionId

	
	
name: The name of the Oracle Enterprise Scheduler job

	
package: The name of the path containing the Oracle Enterprise Scheduler job

	
type: 'JOB_DEFINITION'

	
parameter(s)

	
dataType: Value type for this parameter (STRING, INTEGER, LONG, BOOLEAN, DATETIME)

name: String containing the name of the parameter defined in the Oracle Enterprise Scheduler job definition.

scope: String containing the named scope for this parameter - used only for job sets.

value: Element containing the parameter's value

To add an assign activity:

	
Drag-and-drop an Assign activity from the BPEL Activities area in the Component Palette to just before the Invoke Activity named submitRequest.

	
Select the Assign activity and double-click the name Assign_1 to enter new text. In the text entry box enter Job_Inputs, as shown in Figure 10-11.

Figure 10-11 Adding an Assign Activity to BPEL

[image: Adding an Assign activity to BPEL]

Add Copy for description JobDefinitionID requestedStartTime application:

	
Double click the new Assign activity named Job_Inputs to show the Assign page with the Copy Operation tab, as shown in Figure 10-12.

Figure 10-12 Copy Operation for BPEL Assign Activity

[image: Copy operation for BPEL assign activity]

	
Click the Add icon and from the dropdown list select Copy Operation, to add copy operations for variables. This displays the Create Copy Operation dialog.

	
In the Create Copy Operation dialog, expand and then navigate to select a copy operation for each input parameter (you only use a copy operation for description, jobDefinitionID, requestedStartTime, and application). This copies the input parameters to Invoke_1_submitRequest_InputVariable parameters for the invoke activity. Figure 10-13 shows one of these copy operations.

Figure 10-13 Copy Operation for Description Parameter for submitRequest

[image: Copy operation for the description parameter]

	
Click OK to add the copy operation for description.

	
In a similar manner, perform additional copy operations for the jobDefintionID, requestedStartTime, and application parameters.

To add a copy list for RequestParameters:

	
Double click the Assign activity named Job_Inputs to show the Assign page with the Copy Operation tab.

	
Click the Add icon and from the dropdown list select CopyList Operation..., to add CopyList operations for the requestParameters. This displays the Create CopyList Operation dialog.

	
In the Create CopyList Operation dialog, expand and then navigate to select a copylist operation for requestParameters. To do this you navigate and select the parameter element, as shown in Figure 10-14.

Figure 10-14 CopyList Operation for Request Parameters

[image: CopyList operation for request parameters]

	
In the Create CopyList Operation dialog, click OK.

	
In the Assign activity, click OK.

Figure 10-15 shows the BPEL Design page.

Figure 10-15 BPEL with Job_Inputs Add Activity and submitRequest Invoke

[image: BPEL with Job_Inputs Add activity and submitRequest Invoke]

When BPEL Element Does Not Have Same Type as Oracle Enterprise Scheduler web service:

If your BPEL payload is not the same element type as that of the Oracle Enterprise Scheduler web service and you need to assign values to one or more job parameters, you can use the following approach.

	
Populate the first parameter element using copy operations, as done in previous steps.

	
Add or clone additional parameter elements using the Insert-After, as shown in Figure 10-16.

Figure 10-16 Using Insert-After to Clone Parameters

[image: Using Insert-After to clone parameters]

	
Populate the additional parameter elements using XPath array subscripting.

	
This action effectively copies the entire parameter element along with all sub-element values and appends it to the end of the XML array. In order to populate the values of the second job parameter, add additional copy operations and modify the XPath expressions in the bottom right of the dialog to add the appropriate array subscript [n]. where 'n' is the # of the parameter. Note that all XML arrays start with 1, not 0.

10.7.5 Invoke the getCompletionStatus Operation

Add another Invoke activity and link it to Service1 to invoke the ESSWebService getCompletionStatus operation.

To add the Invoke activity for the getCompletionStatus operation:

	
From the Component Palette, drag-and-drop an Invoke activity and drop it after submitRequest and before callbackClient.

	
In the new Invoke activity, select the text entry area with the name Invoke_1, and enter the name, getStatusAsync.

	
Link the invoke activity to Service1 by selecting the right arrow and dragging it to the Partner Link Service1. This displays the Edit Invoke dialog.

	
In the Edit Invoke dialog for getStatusAsync, in the Operation field, from the dropdown list select getCompletionStatus.

	
In the Input Variable field select the Add icon. This displays the create variable dialog, as shown in Figure 10-17.

Figure 10-17 Create Variable Window for getStatusAsync

[image: Create Variable window for getStatusAsync]

	
In the Create Variable dialog, click OK. This displays the Edit Invoke dialog, as shown in Figure 10-18.

Figure 10-18 Edit Invoke Window for getStatusAsync

[image: Edit Invoke window for getStatusAsync]

	
In the Edit Invoke dialog, click OK. This displays the new Invoke Activity getStatusAsync and the link to Service1.

10.7.6 Assign Input to the getCompletionStatus Operation

Add a new Assign Activity after submitRequest to assign the RequestID and pass it to the getStatusAsync invoke activity.

To add the assign activity:

	
Drag-and-drop an Assign activity from the BPEL Activities area in the Component Palette to just after the Invoke Activity named submitRequest and before the Invoke Activity named getStatusAsync.

	
Select the Assign activity and double-click the name Assign_1 to select the text entry area. In the text entry area, enter RequestID. Figure 10-19 shows the Assign activity.

Figure 10-19 Adding RequestID Assign Activity

[image: Adding a RequestID Assign activity]

	
Double click the new Assign activity, RequestID to show the Assign page with the Copy Operation tab.

	
Click the Add icon and select Copy Operation... from the dropdown list.

	
In the From area expand Invoke_1_submitRequest_OutputVariable and select requestID. Map this in the To area to the requestID in getStatusAsync_getCompletionStatus_InputVariable, as shown in Figure 10-20.

Figure 10-20 Edit Copy Operation Window for Request ID Assign

[image: Edit Copy Operation window for Request ID Assign]

	
On the Edit Copy Operation dialog, click OK.

	
On the Copy Operation dialog, click OK.

	
On the BPEL Design page, click Validate Process. This displays the BPEL, as shown in Figure 10-21.

Figure 10-21 BPEL with Request ID Assign Activity Added

[image: BPEL with Request ID Assign activity added]

10.7.7 Receive the Job Completion Status

Add a Receive Activity and link it to the onJobCompletion ESSWEbService operation.

Add a receive activity:

	
Drag-and-drop a Receive activity from the BPEL Activities area in the Component Palette to a position after the getStatusAsync Invoke activity and before the callbackClient.

	
Select the text entry area in the Receive Activity named Receive_1 and enter onJobCompletion, as shown in Figure 10-22.

Figure 10-22 Adding Receive Activity to BPEL Process

[image: Adding a Receive activity to the BPEL process]

	
Drag the right arrow from the receive activity onJobCompletion to Service 1. This displays the Edit Receive dialog, as shown in Figure 10-23.

Figure 10-23 Edit Receive Window for onJobCompletion Receive Activity

[image: Edit Receive window for onJobCompletion Receive activity]

	
In the Edit Receive dialog, in the Operation field from the dropdown list select onJobCompletion.

	
In the Variable field, click the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Receive dialog, click OK. This adds an arrow from Service1 to the new Receive activity, onJobCompletion as shown in Figure 10-24.

Figure 10-24 Adding the onJobCompletion Receive Activity

[image: Adding the onJobCompletion Receive activity]

10.7.8 Return Result to Client

Add an Assign activity to copy the result output from onJobCompletion to the output for the client. Assign all the results from onJobCompletion to the callbackClient input variable.

To add the result assign activity:

	
Drag-and-drop an Assign activity from the BPEL Activities area in the Component Palette to a position after the Receive activity onJobCompletion and before the callbackClient.

	
Select the Assign activity and double-click the name Assign_1 to enter new text. Enter the value Result, as shown in Figure 10-25.

Figure 10-25 Adding Assign Activity for Output to Client

[image: Adding an Assign activity for output to the client]

	
Double click the new Result Assign activity to show the Assign page with the Copy Operation tab.

	
Click the Add icon and select Copy Operation... from the dropdown list.

	
Navigate to select the variables, for the From area for onJobCompletion_onJobCompletion_InputVariable and select resultMessage. In the To area, expand outputVariable and select client:result, shown in Figure 10-26.

Figure 10-26 Create Copy Operation for Result

[image: Create copy operation for the result]

	
In the Create Copy Operation dialog, click OK.

	
In the Assign area, click OK.

	
Click Validate Process.

The final BPEL is shown in Figure 10-27.

Figure 10-27 Result Assign Activity with callbackClient Invoke Activity

[image: Result Assign activity with callbackClient Invoke activity]

10.8 Using Additional ESSWebService Operations

You can use other EssWebService operations, including:

	
When you want to submit a request with an associated schedule, you use the submitRecurringRequest web service operation. For more information, see Section 10.8.1, "How to Invoke the ESSWebService submitRecurringRequest Operation."

	
When you want to marshal arguments in the previous concurrent processing style into Oracle Enterprise Scheduler properties, you use the setSubmitArgs operation. This operation should be invoked prior to submitting a request. The key of each argument is submit.argument#, where # is the ordinal value of the argument, for example submit.argument1="firstArg" and submit.argument2="secondArg". For more information, see Section 10.8.2, "How to Invoke the ESSWebService setSubmitArgs Operation."

	
When you want to add a post-processing action to a step in a job set request, you use the addPPAction operation. This method is called prior to submitting the request. This operation provides support for action previously supported by add_printer, add_notification and add_layout in concurrent processing. The parameters to these legacy routines are passed as arguments to addPPAction in the order in which they were declared in the original concurrent processing routine. Section 10.8.3, "How to Invoke the ESSWebService addPPActions Operation"

10.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise Scheduler web service submitRecurringRequest() operation. In this step you need to select the input and output for the Invoke Activity by associating values with the Input and Output variables. In order to submit jobs that repeat or will run at a later date that job must be submitted with an Oracle Enterprise Scheduler schedule which is constructed declaratively and stored in the metadata repository. Once the schedule has been defined, BPEL can submit jobs with that schedule through the submitRecurringRequest() operation.

To add the Invoke activity to submit the request using ESSWebService:

	
In the Application Navigator, in Project1 expand SOA Content and select the BPEL file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

	
From the Component Palette, drag-and-drop an Invoke Activity and place the activity in the process. This activity populates the request submission payload and submits it to the Oracle Enterprise Scheduler web service.

	
Select the Invoke activity and double-click the name Invoke_1 to select the text entry field. In the text entry field enter submitRecurringRequest.

	
Link the invoke activity to the ESSWebService by selecting the right arrow and dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog, as shown in Figure 10-28.

Figure 10-28 Edit Invoke Window for BPEL Activity

[image: Edit Invoke window for BPEL activity]

	
In the Edit Invoke dialog, in the Operation field, select submitRecurringRequest.

	
In the Edit Invoke dialog, in the Input field click the Add icon. This displays the Create Variable dialog and lets you create a scope-level variable to contain the request payload.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, in the Output field select the Add icon. This displays the Create Variable dialog and lets you create scope-level variable to contain the response payload.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1, as shown in Figure 10-29.

Figure 10-29 Submitting a Request with a Schedule

[image: Submitting a request with a schedule]

To assign inputs for recurring request submission:

You add an Assign activity and then assign inputs from the BPEL process to the submitRecurringRequest Invoke activity. This allows you to populate the input variable with recurring request submission parameters.

	
Note:

In most cases, the input payload of the BPEL process will not directly match the input payload of the submit recurring request web service. Coaxing into use of CopyList will only work in the scenarios where there is a one to one mapping of the input payload to the submit Request.

For the mapping for an Assign activity with a Copy operation, the arguments correspond to the input parameters for Oracle Enterprise Scheduler submitRequest, as shown in Table 10-3. If your BPEL schema differs from the submitRequest message type, use Table 10-3 as a guide for how to populate the values manually with the Assign activity Copy operation.

Table 10-3 Submit Recurring Request Web Service Arguments for BPEL Assign Activity Mapping

	Argument	Description
	
Description

	
Context for the ad hoc submission of this job, such as the 'Order Import'.

	
Application

	
The "application" name can be the deployment name of the hosting Oracle Enterprise Scheduler application or it can be a logical application name.

	
JobDefinitionId

	
	
name: The name of the Oracle Enterprise Scheduler job

	
package: The name of the path containing the Oracle Enterprise Scheduler job

	
type: 'JOB_DEFINITION'

	
parameter(s)

	
dataType: Value type for this parameter (STRING, INTEGER, LONG, BOOLEAN, DATETIME)

name: String containing the name of the parameter defined in the Oracle Enterprise Scheduler job definition.

scope: String containing the named scope for this parameter - used only for job sets.

value: Element containing the parameter's value

	
scheduleID

	
	
name: String containing the name of the schedule metadata file

	
packageName: String containing the name of the MDS package containing the metadata file (sans the 'Schedule' path)

	
type: 'SCHEDULE_DEFINITION''

It is possible to define multiple parameters to be passed to the Oracle Enterprise Scheduler job. When adding additional parameters to the Oracle Enterprise Scheduler service payload in BPEL, you must first add a new parameter element to the DOM using an 'Insert-After' of the original parameter element, then use array subscripting to populate that new parameter with the correct values. Repeat as needed.

First, copy and clone the existing parameter element back into the variable using the Insert-After operation. This creates a second parameter element in the XML array. For example, see Figure 10-30.

Figure 10-30 Copy with Insert-After Operation

[image: Copy with Insert-After operation]

Second, create a new Copy operation and choose the parameter elements in the To/From areas of the dialog in the same manner as when copying values for the first parameter. However, in the lower right corner, change the XPath path to include a [2] (XML Arrays start at 1 and not 0) and click OK. Repeat as needed for each parameter required.

10.8.2 How to Invoke the ESSWebService setSubmitArgs Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise Scheduler web service setSubmitArgs() operation.

To add the Invoke activity to use setsubmitArgs for a request using ESSWebService:

	
In the Application Navigator, in Project1 expand SOA Content and select the BPEL file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

	
From the Component Palette, drag-and-drop an Invoke Activity and place the activity before callbackClient.

	
Link the invoke activity to the ESSWebService by selecting the right arrow and dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog.

	
In the Edit Invoke dialog, in the Operation field select setSubmitArgs.

	
In the Edit Invoke dialog, in the Input field click the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, in the Output field select the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1.

	
Select the Invoke activity and double-click the name Invoke_1 to select the text entry field. In the text entry field enter setSubmitArgs.

	
From the Component Palette, drag-and-drop a Transform Activity and place the activity before the setSubmitArgs. This transformation maps the BPEL flow input variable to the setSubmitArgs input variable.

	
Open the transformation activity. On the Transformation tab, in the Source area click the Add icon. This displays the Source Variable dialog.

	
In the Source Variable dialog select inputVariable and click OK.

	
In the transformation activity, on the Transformation tab, in the Target Variable field select setSubmitArgs_setSubmitArgs_InputVariable as the target.

	
In the transformation activity, on the Transformation tab, in the Mapper File field, click Add to create a new mapper file.

	
This creates a mapper file, as shown in Figure 10-31. Note that a "for-each" construct can be inserted by dragging an item from the XSLT Constructs area of the Component Palette.

Figure 10-31 Transformation for Set Submit Arguments

[image: Transformation for set submit arguments]

	
The transformation tool does not create exactly what is needed. You need to edit the XSLT source. In the source, find the following mapping.

<xsl:for-each select="/client:BPELProcess1ProcessRequest/client:arguments">
 <arguments>
 <xsl:value-of select="."/>
 </arguments>
 </xsl:for-each>

Replace this with the following; add "tns:" as a qualifier to "arguments", resulting in the following fragment. Note that the transformation tool design tab may incorrectly complain that this is not a valid transformation:

<xsl:for-each select="/client:BPELProcess1ProcessRequest/client:arguments">
 <tns:arguments>
 <xsl:value-of select="."/>
 </tns:arguments>
 </xsl:for-each>

Example 10-2 shows the complete transformation source file.

Example 10-2 Transformation Source for Set Submit Arguments Transformation

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../BPELProcess1.wsdl"/>
 <rootElement name="BPELProcess1ProcessRequest"
 namespace="http://xmlns.oracle.com/EssWebApplication/
 Project1/BPELProcess1"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">
 <schema location="../Service1.wsdl"/>
 <rootElement name="setSubmitArgs"
 namespace="http://xmlns.oracle.com/scheduler"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI
 FEB 06 08:27:53 PST 2009]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java
 /oracle.tip.pc.services.functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/
 business-process/"
 xmlns:client="http://xmlns.oracle.com/EssWebApplication
 /Project1/BPELProcess1"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.pc.services.functions.ExtFunc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 mediator.service.common.functions
 .GetRequestHeaderExtnFunction"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/
 IdentityService/xpath"
 xmlns:tns="http://xmlns.oracle.com/scheduler"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension
 /xpath/function/xdk"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java
 /oracle.tip.xref.xpath.XRefXPathFunctions"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:ns0="http://xmlns.oracle.com/scheduler/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/
 java/oracle.tip.adapter.socket.ProtocolTranslator"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl client plnk
 xsd ns0 wsdl tns soap12 soap mime xpath20 bpws oraext
 dvm hwf med mhdr ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <tns:setSubmitArgs>
 <tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:
 requestParameters/ns0:parameter">
 <ns0:parameter>
 <ns0:dataType>
 <xsl:value-of select="ns0:dataType"/>
 </ns0:dataType>
 <ns0:name>
 <xsl:value-of select="ns0:name"/>
 </ns0:name>
 <ns0:scope>
 <xsl:value-of select="ns0:scope"/>
 </ns0:scope>
 <ns0:value>
 <xsl:value-of select="ns0:value"/>
 </ns0:value>
 </ns0:parameter>
 </xsl:for-each>
 </tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:arguments">
 <tns:arguments>
 <xsl:value-of select="."/>
 </tns:arguments>
 </xsl:for-each>
 </tns:setSubmitArgs>
 </xsl:template>
</xsl:stylesheet>

10.8.3 How to Invoke the ESSWebService addPPActions Operation

In the BPEL process you add an invoke activity to perform the Oracle Enterprise Scheduler web service addPPActions() operation.

To add the Invoke activity for addPPActions operation using ESSWebService:

	
In the Application Navigator, in Project1 expand SOA Content and select the BPEL file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

	
From the Component Palette, drag-and-drop an Invoke Activity and place the activity before callbackClient.

	
Select the Invoke activity and double-click the name Invoke_1 to select the text entry field. In the text entry field enter addPPActions.

	
Link the invoke activity to the ESSWebService by selecting the right arrow and dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog.

	
In the Edit Invoke dialog, in the Operation field select addPPActions, as shown in Figure 10-32.

Figure 10-32 Adding AddPP Actions Operation

[image: Adding AddPP Actions]

	
In the Edit Invoke dialog, in the Input field click the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, in the Output field select the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1.

	
From the Component Palette, drag-and-drop a Transform Activity and place the activity before the addPPActions. This transformation maps the BPEL flow input variable to the addPPActions input variable.

	
Open the transformation activity. On the Transformation tab, in the Source area click the Add icon. This displays the Source Variable dialog.

	
In the Source Variable dialog select inputVariable and click OK.

	
In the transformation activity, on the Transformation tab in the Target Variable field select addPPActions_addPPActions_InputVariable as the target.

	
In the transformation activity, on the Transformation tab in the Mapper File field, click Add to create a new mapper file. This displays the XSL transformation file.

	
Create mappings as shown in Example 10-3.

The requestParameters come from the addPPActions, overriding what is in the transformation. The remainder of the input still comes from the BPEL flow input variable. Assign requestParametersReturn/ns2:parameter of the addPPActions output variable to requestParameters/ns2:parameter of the addPPActions input variable, as in the previous examples.

Example 10-3 addPPActions Transformations

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../BPELProcess1.wsdl"/>
 <rootElement name="BPELProcess1ProcessRequest"
 namespace="http://xmlns.oracle.com/EssWebApplication/Project1/BPELProcess1"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">
 <schema location="../Service1.wsdl"/>
 <rootElement name="addPPActions" namespace="http://xmlns.oracle.com/scheduler"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI FEB 06 10:29:28 PST 2009]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.pc.services.functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:client="http://xmlns.oracle.com/EssWebApplication/Project1/BPELProcess1"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.
 services.functions.ExtFunc"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 mediator.service.common.functions.GetRequestHeaderExtnFunction"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:tns="http://xmlns.oracle.com/scheduler"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/
 oracle.tip.xref.xpath.XRefXPathFunctions"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:ns0="http://xmlns.oracle.com/scheduler/types"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/java/oracle.tip.
 adapter.socket.ProtocolTranslator"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl client plnk
 xsd ns0 wsdl tns soap12 soap mime xpath20 bpws oraext dvm
 hwf med mhdr ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <tns:addPPActions>
 <tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:
 requestParameters/ns0:parameter">
 <ns0:parameter>
 <ns0:dataType>
 <xsl:value-of select="ns0:dataType"/>
 </ns0:dataType>
 <ns0:name>
 <xsl:value-of select="ns0:name"/>
 </ns0:name>
 <ns0:scope>
 <xsl:value-of select="ns0:scope"/>
 </ns0:scope>
 <ns0:value>
 <xsl:value-of select="ns0:value"/>
 </ns0:value>
 </ns0:parameter>
 </xsl:for-each>
 </tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:postProcessAction">
 <tns:postProcessActions>
 <ns0:actionName>
 <xsl:value-of select="ns0:actionName"/>
 </ns0:actionName>
 <ns0:actionOrder>
 <xsl:value-of select="ns0:actionOrder"/>
 </ns0:actionOrder>
 <xsl:for-each select="ns0:arguments">
 <ns0:arguments>
 <xsl:value-of select="."/>
 </ns0:arguments>
 </xsl:for-each>
 <ns0:fileMgmtGroup>
 <xsl:value-of select="ns0:fileMgmtGroup"/>
 </ns0:fileMgmtGroup>
 <ns0:description>
 <xsl:value-of select="ns0:description"/>
 </ns0:description>
 <ns0:onError>
 <xsl:value-of select="ns0:onError"/>
 </ns0:onError>
 <ns0:onSuccess>
 <xsl:value-of select="ns0:onSuccess"/>
 </ns0:onSuccess>
 <ns0:onWarning>
 <xsl:value-of select="ns0:onWarning"/>
 </ns0:onWarning>
 </tns:postProcessActions>
 </xsl:for-each>
 </tns:addPPActions>
 </xsl:template>
</xsl:stylesheet>

10.8.4 How to Invoke the ESSWebService setStepsArgs Operation

In the BPEL process, you add an invoke activity to perform the Oracle Enterprise Scheduler web service addPPActions() operation.

As shown in Example 10-4, you can add the following to the BPELProcess1.xsd file to allow input for setStepsArgs.

Example 10-4 Enabling Input for setStepsArgs

 <xs:element name="stepArgs" type="ns1:stepArgs"
 minOccurs="0" maxOccurs="unbounded"/>

The main steps are as follows:

	
Create a transformation to map the BPEL flow input variable to the setStepsArgs input variable.

From BPEL Activities and Components, select Transform and place before setStepsArgs. Open the new transformation activity. Select inputVariable as the source and setStepsArgs_setStepsArgs_InputVariable as the target. Create a new mapper file. Create the mappings as shown in the SetStepsArgs transformation example.

	
Create an assignment activity. In this example, you want the requestParameters to come from the previous step, addPPActions, overriding what is in the transformation. The remainder of the input still comes from the BPEL flow input variable. Assign requestParametersReturn/ns2:parameter of the addPPActions output variable to requestParameters/ns2:parameter of the setStepsArgs input variable, just as in previous examples.

In the BPEL process you add an invoke activity to perform the Oracle Enterprise Scheduler web service submitRecurringRequest() operation. In this step you need to select the input and output for the Invoke Activity by associating values with the input and output variables.

To add the Invoke activity use setStepsArgs operation:

	
In the Application Navigator, in Project1 expand SOA Content and select the BPEL file. For example, select BPELProcess1.bpel. This displays the BPEL swim lane.

	
From the Component Palette, drag-and-drop an Invoke Activity and place the activity before callbackClient.

	
Select the Invoke activity and double-click the name Invoke_1 to select the text entry field. In the text entry field enter setStepsArgs.

	
Link the invoke activity to the ESSWebService by selecting the right arrow and dragging it to the Partner Link Service1. This brings up the Edit Invoke dialog.

	
In the Edit Invoke dialog, in the Operation field select setStepsArgs as shown in Figure 10-33.

Figure 10-33 Set Step Arguments Operation

[image: Set step arguments operation]

	
In the Edit Invoke dialog, in the Input field click the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, in the Output field select the Add icon. This displays the Create Variable dialog.

	
In the Create Variable dialog, click OK.

	
In the Edit Invoke dialog, click OK. This displays the new invoke link to Service1.

	
From the Component Palette, drag-and-drop a Transform Activity and place the activity before the setStepsArgs. This transformation maps the BPEL flow input variable to the setStepsArgs input variable.

	
Open the transformation activity. On the Transformation tab, in the Source area click the Add icon. This displays the Source Variable dialog.

	
In the Source Variable dialog select inputVariable and click OK.

	
In the transformation activity, on the Transformation tab in the Target Variable field select setStepsArgs_setStepsArgs_InputVariable as the target.

	
In the transformation activity, on the Transformation tab in the Mapper File field, click Add to create a new mapper file. This displays the XSL transformation file.

	
Create mappings as shown in Figure 10-34 using the mappings shown in Example 10-5.

Figure 10-34 Using the Transformation for Set Step Arguments Operation

[image: Using the transformation for the set step args operation]

	
Create an assignment activity. In this example, we want the requestParameters to come from the previous step, addPPActions, overriding what is in the transformation. There remainder of the input still comes from the BPEL flow input variable. Assign the requestParametersReturn/ns2:parameter of the addPPActions output variable to the requestParameters/ns2:parameter of the setStepsArgs input variable, just as in previous examples.

Example 10-5 Mapping Transformation for Set Steps Arguments Operation

<?xml version="1.0" encoding="UTF-8" ?>
<?oracle-xsl-mapper
 <!-- SPECIFICATION OF MAP SOURCES AND TARGETS, DO NOT MODIFY. -->
 <mapSources>
 <source type="WSDL">
 <schema location="../BPELProcess1.wsdl"/>
 <rootElement name="BPELProcess1ProcessRequest"namespace="http://xmlns.
 oracle.com/EssWebApplication/Project1/BPELProcess1"/>
 </source>
 </mapSources>
 <mapTargets>
 <target type="WSDL">
 <schema location="../Service1.wsdl"/>
 <rootElement name="setStepsArgs"
 namespace="http://xmlns.oracle.com/scheduler"/>
 </target>
 </mapTargets>
 <!-- GENERATED BY ORACLE XSL MAPPER 11.1.1.0.0(build 090113.2000.2412) AT [FRI
 FEB 06 10:56:22 PST 2009]. -->
?>
<xsl:stylesheet version="1.0"
 xmlns:xpath20="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.Xpath20"
 xmlns:bpws="http://schemas.xmlsoap.org/ws/2003/03/business-process/"
 xmlns:client="http://xmlns.oracle.com/EssWebApplication/Project1/BPELProcess1"
 xmlns:oraext="http://www.oracle.com/XSL/Transform/java/oracle.tip.pc.services.
 functions.ExtFunc"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xmlns:dvm="http://www.oracle.com/XSL/Transform/java/oracle.tip.dvm.LookupValue"
 xmlns:hwf="http://xmlns.oracle.com/bpel/workflow/xpath"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:med="http://schemas.oracle.com/mediator/xpath"
 xmlns:mhdr="http://www.oracle.com/XSL/Transform/java/oracle.tip.mediator.service.
 common.functions.GetRequestHeaderExtnFunction"
 xmlns:ids="http://xmlns.oracle.com/bpel/services/IdentityService/xpath"
 xmlns:tns="http://xmlns.oracle.com/scheduler"
 xmlns:xdk="http://schemas.oracle.com/bpel/extension/xpath/function/xdk"
 xmlns:soap12="http://schemas.xmlsoap.org/wsdl/soap12/"
 xmlns:xref="http://www.oracle.com/XSL/Transform/java/oracle.tip.xref.xpath.
 XRefXPathFunctions"
 xmlns:plnk="http://schemas.xmlsoap.org/ws/2003/05/partner-link/"
 xmlns:xsd="http://www.w3.org/2001/XMLSchema"
 xmlns:ns0="http://xmlns.oracle.com/scheduler/types"
 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"
 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"
 xmlns:mime="http://schemas.xmlsoap.org/wsdl/mime/"
 xmlns:ora="http://schemas.oracle.com/xpath/extension"
 xmlns:socket="http://www.oracle.com/XSL/Transform/java
 /oracle.tip.adapter.socket.ProtocolTranslator"
 xmlns:ldap="http://schemas.oracle.com/xpath/extension/ldap"
 exclude-result-prefixes="xsi xsl client plnk xsd ns0
 wsdl tns soap12 soap mime xpath20 bpws oraext dvm
 hwf med mhdr ids xdk xref ora socket ldap">
 <xsl:template match="/">
 <tns:setStepsArgs>
 <tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:
 requestParameters/ns0:parameter">
 <ns0:parameter>
 <ns0:dataType>
 <xsl:value-of select="ns0:dataType"/>
 </ns0:dataType>
 <ns0:name>
 <xsl:value-of select="ns0:name"/>
 </ns0:name>
 <ns0:scope>
 <xsl:value-of select="ns0:scope"/>
 </ns0:scope>
 <ns0:value>
 <xsl:value-of select="ns0:value"/>
 </ns0:value>
 </ns0:parameter>
 </xsl:for-each>
 </tns:requestParameters>
 <xsl:for-each select="/client:BPELProcess1ProcessRequest/client:stepArgs">
 <tns:stepArgsList>
 <xsl:for-each select="ns0:arguments">
 <ns0:arguments>
 <xsl:value-of select="."/>
 </ns0:arguments>
 </xsl:for-each>
 <ns0:NLSOptions>
 <ns0:language>
 <xsl:value-of select="ns0:NLSOptions/ns0:language"/>
 </ns0:language>
 <ns0:numericCharacters>
 <xsl:value-of select="ns0:NLSOptions/ns0:numericCharacters"/>
 </ns0:numericCharacters>
 <ns0:territory>
 <xsl:value-of select="ns0:NLSOptions/ns0:territory"/>
 </ns0:territory>
 </ns0:NLSOptions>
 <xsl:for-each select="ns0:PPActions">
 <ns0:PPActions>
 <ns0:actionName>
 <xsl:value-of select="ns0:actionName"/>
 </ns0:actionName>
 <ns0:actionOrder>
 <xsl:value-of select="ns0:actionOrder"/>
 </ns0:actionOrder>
 <xsl:for-each select="ns0:arguments">
 <ns0:arguments>
 <xsl:value-of select="."/>
 </ns0:arguments>
 </xsl:for-each>
 <ns0:fileMgmtGroup>
 <xsl:value-of select="ns0:fileMgmtGroup"/>
 </ns0:fileMgmtGroup>
 <ns0:description>
 <xsl:value-of select="ns0:description"/>
 </ns0:description>
 <ns0:onError>
 <xsl:value-of select="ns0:onError"/>
 </ns0:onError>
 <ns0:onSuccess>
 <xsl:value-of select="ns0:onSuccess"/>
 </ns0:onSuccess>
 <ns0:onWarning>
 <xsl:value-of select="ns0:onWarning"/>
 </ns0:onWarning>
 </ns0:PPActions>
 </xsl:for-each>
 <ns0:stepPath>
 <xsl:value-of select="ns0:stepPath"/>
 </ns0:stepPath>
 </tns:stepArgsList>
 </xsl:for-each>
 </tns:setStepsArgs>
 </xsl:template>
</xsl:stylesheet>

10.9 Securing the Oracle Enterprise Scheduler Web Service

You can secure any of the Oracle Enterprise Scheduler web service operations using an Oracle Web Services Manager security policy.

For more information, see the "Securing and Administering WebLogic Web Services" chapter in the Oracle Fusion Middleware Security and Administrator's Guide for Web Services.

10.9.1 How to Secure the Oracle Enterprise Scheduler Web Service

Securing the Oracle Enterprise Scheduler web service involves attaching one security policy to the method that calls the web service, and another to the asynchronous callback to the SOA composite.

	
Note:

Oracle Fusion Applications make use of an Oracle WSM feature called global policy attachments (GPA). Using GPA, policies are not attached locally, but are specified at a global level. At runtime, components simply inherit the global policy and Oracle WSM enforces it.
Unlike local policy attachments (LPA), which need to be added at every web service client and server, global policy attachment (GPA) can be attached at a domain level. This makes it easy for the system administrator to have a uniform policy for all web services across the domain.

For more information about global policy attachments, see the "Securing Web Services Use Cases" chapter in the Oracle Fusion Applications Developer's Guide.

To secure the Oracle Enterprise Scheduler web service:

	
Open the SOA composite that calls the Oracle Enterprise Scheduler web service.

	
In the swim lane on the right, right-click the Oracle Enterprise Scheduler web service and select Configure WS Policies > For Request.

The Configure SOA WS Policies window displays.

	
In the Security field, click the add button to attach a security policy to the client.

Select the policy oracle/wss11_saml_token_with_message_protection_client_policy or oracle/wss11_username_token_with_message_protection_client_policy as shown in Figure 10-35, and click OK.

Figure 10-35 Client Security Policy for the Oracle Enterprise Scheduler Web Service

[image: Client Security Policy for the ESS Web Service]

	
In the swim lane on the right, right-click the Oracle Enterprise Scheduler web service and select Configure WS Policies > For Callback.

The Configure SOA WS Policies window displays.

	
In the Security field, click the add button to attach a security policy to the callback method.

Select the policy oracle/wss11_saml_token_with_message_protection_service_policy, as shown in Figure 10-36, and click OK.

Figure 10-36 Callback Security Policy for the Oracle Enterprise Scheduler Web Service

[image: Callback Security Policy for the ESS Web Service]

	
Save your changes to the SOA composite file.

10.9.2 What Happens When You Secure the Oracle Enterprise Scheduler Web Service

The security policy oracle/wss11_saml_token_with_message_protection_client_policy secures the method that calls the Oracle Enterprise Scheduler web service. The security policy wss11_saml_token_with_message_protection_service_policy secures the asynchronous callback method that the web service uses to call back the SOA composite.

10.10 Deploying and Testing the Project

Next, you deploy the BPEL process to the Oracle WebLogic Server as described in "Deploying SOA Composite Applications" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. Following deployment, you can test the web service using Oracle SOA Console.

10.10.1 How to Test the Web Service

To test the web service:

	
Open a browser and go to the SOA Console at the following URL.

http://<machine>:<port>/soa-console

	
In the Applications area, select the deployed composite.

	
Click the Test dropdown and choose the service endpoint Test Client.

	
This an endpoint page where you can provide input to the BPEL process.

	
In the payload area, enter values for the job parameters.

	
Click Invoke.

	
Refresh the console page.

	
Click the latest instance ID to verify the progress of the BPEL file.

17 Managing Business and System Errors

This chapter describes how to indicate Oracle Enterprise Scheduler system and business errors as well as implement job request retries.

This chapter includes the following sections:

	
Section 17.1, "Introduction to Managing Business and System Errors"

	
Section 17.2, "Indicating Errors"

	
Section 17.3, "Configuring Retries for a Job Request"

	
Section 17.4, "Finding and Diagnosing Job Requests in Error State"

17.1 Introduction to Managing Business and System Errors

When an Oracle Enterprise Scheduler job request encounters an error during execution, Oracle Enterprise Scheduler can indicate whether the error is a business or system error.

A business error occurs when a job request must abort prematurely, but is otherwise able to exit cleanly, leaving its data in a consistent state. Examples of scenarios requiring a job to abort prematurely include a particular application setup or configuration condition, a functional conflict that requires an early exit or corrupt or inconsistent data.

A system error occurs when a job request encounters a technical error from which it cannot recover, but otherwise exits of its own volition. Alternatively, a system error occurs when the server or operating system running the job crashes. Examples of system errors include table space issues and unhandled runtime exceptions.

A job request that indicates an error is placed in the terminal state of ERROR. The error type field for a job request indicates whether the error is a business or system error. System errored job requests can be automatically retried if they are properly configured. Business errored job requests cannot be retried.

17.2 Indicating Errors

You can indicate business and system errors using specific error statuses or exit codes for each job type.

For more information about using exit codes, see the following sections:

	
Section 5.4, "Using System Properties,"

	
Section 7.2.1, "How to Create and Store a Process Job Type,"

	
Section 9.7.2, "How to Implement a SQL*Plus Job,"

	
Section 9.9.1, "How to Implement a Perl Scheduled Job,"

	
Section 9.10.3, "Scheduled C Job API,"

	
Section 9.11, "Implementing a Host Script Scheduled Job."

17.2.1 How to Indicate a Business Error

Table 17-1 shows the code used to indicate a business error for each job type. For a business error, the job request state is set to ERROR, the error type to Business and the cause to PROCESS_ERROR. For the Java jobs, the table lists different stages in running a job along with a business error indication for each.

Table 17-1 Indicating a Business Error

	Job Type or Job Stage	Business Error Indication
	
Executable.execute (Java job)

	
Throw ExecutionBizErrorException (extends ExecutionErrorException).

	
Asynchronous Java job (initiated from AsyncJava)

	
Send AsyncStatus.BIZ_ERROR.

	
Updatable.onEvent

	
Return AsyncStatus.BIZ_ERROR in the UpdateAction.

	
CJobType

	
Return FDP_BIZERR using afpend() API.

	
PlSqlJobType

	
Return retcode = '3'.

	
SqlPlusJobType

	
Set FND_JOB.BIZERR_V using FND_JOB.SET_SQLPLUS_STATUS API.

	
PerlJobType

	
Return exit code of 3.

	
HostJobType

	
Return exit code of 3.

17.2.2 How to Indicate a System Error

A system error results from an unhandled exception and may also be explicitly indicated by the job, as shown in Table 17-2. For a system error, the request state is set to ERROR and the error type to System. For the Java jobs, the table lists different stages in running a job along with a system error indication for each.

Table 17-2 Indicating System Errors

	Job Type or Job Stage	System Error Indication
	
Executable.execute (Java job)

	
Throw ExecutionErrorException.

	
Asynchronous Java job (initiated from AsyncJava)

	
Send AsyncStatus.ERROR.

	
Updatable.onEvent

	
Return AsyncStatus.ERROR in the UpdateAction.

	
CJobType

	
Return FDP_ERROR using afpend() API.

	
PlSqlJobType

	
Return retcode = '2'.

	
SqlPlusJobType

	
Set FND_JOB.FAILURE_V using FND_JOB.SET_SQLPLUS_STATUS API.

	
PerlJobType

	
Return an exit code of 1.

	
HostJobType

	
Return an exit code of 1.

17.3 Configuring Retries for a Job Request

Job requests that fail as a result of a system error can be retried, meaning they can be configured to automatically re-run from the pre-process stage.

Oracle Enterprise Scheduler uses an increasing delay algorithm to improve the chances that the system error will have been resolved when the request is retried. During the delay, the request is placed in WAIT state. On the first system error, the delay is 1 minute; on the second, 2 minutes; on the third, 5 minutes; on the fourth system error and greater, the delay is 10 minutes. For example, suppose a job request fails with a system error three times before it is successful. The job request is delayed a total of 8 minutes (1+2+5).

When a job request fails, resources such as incompatibility locks are released, and the job request goes back to the wait queue. Incompatibility locks are released only for the job request being retried and not for any parent request that is still active.

The job may have already completed some of its processing when the error occurs. On retry, the job must be able to continue its processing from the point of error., meaning it must be an idempotent job. Idempotent jobs can be configured so that the job request is automatically retried in case of a system error. An idempotent job is able to continue where it left off when it is retried.

	
Note:

Configure retries only for idempotent jobs.

17.3.1 How to Configure Retries for a Job Request

The system property SYS_retries enables configuring the maximum number of times a failed job request can be retried.

To configure retries for a job request:

	
In JDeveloper, edit the job definition.

	
Using the system property SYS_retries, enter the number of times the job request is to be automatically retried. A value of zero indicates that the job request will not be retried. The property SYS_retries has a default value of zero, and can only be defined for idempotent jobs.

	
Note:

Job requests that fail with a business error are never automatically retried. Oracle Enterprise Scheduler ignores the SYS_retries parameter in such cases.

For more information about configuring properties for a job request, see Chapter 9, "How to Create a Job Definition."

17.3.2 What Happens at Run Time: How a Job Request Is Retried

The behavior of retried job requests differs depending on the type of job request.

	
Job set retry: Job sets cannot be retried, however, the steps of a job set can be retried provided the steps themselves are job definitions. When a job set step throws a system error, Oracle Enterprise Scheduler retries the step if the job definition associated with the step is configured for retry. When retrying a step, the incompatibility locks for the step request are released, while incompatibility locks for parent job sets continue to be held. This means that the incompatibility locks for parent job sets are held across retries of a job set step. The state of the job set is unaffected by the state of the step until the step reaches a non-error terminal state or all retries for the step have been exhausted.

For serial job sets, all retries are completed for a step before any link is followed. If a job set step defines both ON_SUCCESS and ON_ERROR links, the ON_ERROR link is not followed until all retries have been exhausted and the step has reached a terminal state of ERROR.

	
Sub-request retry: Sub-requests can be retried. When a sub-request throws a system error, Oracle Enterprise Scheduler retries the sub-request as many times as specified by the retry configuration for the sub-request. The parent request remains in PAUSED state until the sub-request reaches a non-error terminal state or all retries for the sub-request have been exhausted. Neither sub-request execution nor retry affects the incompatibility locks of the parent job request, meaning the parent holds its incompatibilities across sub-request retries.

	
Recurring job request retry: A submitted recurring job request cannot be retried. However, each recurring instance can itself be retried. For example, suppose the job definition for a recurring request has SYS_retries set to 3. Each instance of the recurrence that fails with a system error can be retried up to 3 times.

17.3.3 What You Should Know about Configuring Retries for a Job Request

Following is a list of recommendations for configuring retries for a job request.

	
To minimize the amount of time and effort required to recover from a job failure, it is advisable to develop most jobs as idempotent jobs (able to continue from the point of departure when retried). Thus, if the same job request executes again after it previously failed, the job code ensures that the retry is handled properly. If a job is idempotent, it can be configured to automatically retry when encountering system errors. This is especially important for long running jobs where recovery involves manually rolling back changes and restarting the job from the beginning.

	
If the job is idempotent, set SYS_retries to a positive number so that the job can be automatically retried in case of system error.

	
If the job is not idempotent, do not set SYS_retries. This prevents the job from being run twice with unpredictable results.

	
When defining a job set, make sure the ERROR branch connects to a job set step that does not depend on the successful completion of the previous step.

	
When developing parent and sub-requests, use the APIs described in Section 17.4, "Finding and Diagnosing Job Requests in Error State" in the parent request to determine the outcome of the sub-request. The state of the sub-request determines what to do next in the context of the parent request. The APIs enable the parent request to retrieve the state of the sub-request and determine whether any errors that have occurred in the sub-request are business or system errors.

17.4 Finding and Diagnosing Job Requests in Error State

You can use APIs to determine the following:

	
The state of a job request,

	
Which job requests have ended in error,

	
The number of times a job request has been retried.

Alternatively, you can use Fusion Applications Control to search for job requests that have ended in error. For more information, see the section "Managing Logging for Oracle Enterprise Scheduler" in the chapter "Managing Oracle Enterprise Scheduler Service and Jobs" in the Oracle Fusion Applications Administrator's Guide. You can also use an Oracle ADF UI to view logging information for Oracle Enterprise Scheduler jobs. For more information, see Section 9.17.3, "How to Log Scheduled Job Requests in an Oracle ADF UI."

17.4.1 Retrieving the State of a Job Request

Use the RuntimeService.getRequestDetailBasic API to retrieve the job request state. If the job request is in error state, retrieve the ErrorType of the job request to determine the type of terminal error that occurred. Example 17-1 shows sample code illustrating the use of the API.

Example 17-1 Retrieving the State of a Job Request

RequestDetail detail = runtime.getRequestDetailBasic(handle, requestId);
State state = detail.getState();

if (state == State.ERROR) {
 ErrorType errorType = detail.getErrorType();
 if (errorType == ErrorType.System) {
 // The job request had a system error.
 } else if (errorType == ErrorType.Business) {
 // The job request had a business error.
 }
}

For PL/SQL job requests, use the get_error_type API to determine the type of terminal error that has occurred. Example 17-2 shows sample code illustrating the use of the API.

Example 17-2 Retrieving the State of a PL/SQL Job Request

v_req_state integer := null;
v_error_type integer := null;

v_req_state := ess_runtime.get_request_state(v_request_id);
if v_req_state = ERROR_STATE then
 v_error_type := ess_runtime.get_error_type(v_request_id);
 if v_error_type = ETYPE_SYSTEM then
 -- The job request had a system error.
 elsif v_error_type = ETYPE_BUSINESS then
 -- The job request had a business error.
 end if;
end if;

17.4.2 Finding Job Requests with Business Errors

Use the RuntimeService.queryRequests API and include a match for the error state and ErrorType of business. Example 17-3 shows sample code illustrating the use of the API.

Example 17-3 Finding Job Requests with Business Errors

Filter filter = new Filter(
 RuntimeService.QueryField.STATE.fieldName(),
 Filter.Comparator.EQUALS,
 new Integer(State.ERROR.value()));
filter = filter.and(
 RuntimeService.QueryField.ERROR_TYPE.fieldName(),
 Filter.Comparator.EQUALS,
 new Integer(ErrorType.Business.value()));
Enumeration requests = runtime.queryRequests(handle, filter, null, false);

17.4.3 Determining the Number of Times a Job Request Has Been Retried

Use the RuntimeService.getRequestDetailBasic API to retrieve the job request retry count. The retry count is the number of times Oracle Enterprise Scheduler automatically retries the job request due to a system error. Example 17-4 shows sample code illustrating the use of the API.

Example 17-4 Determining the Number of Times a Job Request Has Been Retried

RequestDetail detail = runtime.getRequestDetailBasic(handle, requestId);
int retriedCount = detail.getRetriedCount();
if (retriedCount > 0) {
 // The job request has been retried the number of times indicated by
 // retriedCount.
} else {
 // The job request has not been retried.
}

For PL/SQL job requests, use the get_retried_count API to determine the number of times Oracle Enterprise Scheduler has automatically retried the job request. Example 17-5 shows sample code illustrating the use of the API.

Example 17-5 Determining the Number of Times a PL/SQL Job Request Has Been Retried

v_rcount integer := null;

v_rcount := ess_runtime.get_retried_count(v_request_id);
if v_rcount > 0 then
 -- The job request has beem retried the number of times indicated by v_rcount.
else
 -- The job request has not been retried.
end if;

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 Introduction to Oracle Enterprise Scheduler

	1.1 About Oracle Enterprise Scheduler
	1.2 Oracle Enterprise Scheduler Overview for Application Developers
	1.2.1 Introduction to Working with Oracle Enterprise Scheduler at Design-time
	1.2.2 Introduction to Working with Oracle Enterprise Scheduler at Runtime
	1.2.3 Oracle Enterprise Scheduler Job Requests
	1.2.4 Overview of Integration Steps

	1.3 Fixed-Rate Scheduling with Oracle Enterprise Scheduler

2 Verifying the Oracle Enterprise Scheduler Installation

	2.1 Introduction to Verifying the Oracle Enterprise Scheduler Installation
	2.2 How to Verify the Oracle Enterprise Scheduler Installation Using a Browser
	2.3 How to Programmatically Verify the Oracle Enterprise Scheduler Installation
	2.4 What Happens When You Verify the Oracle Enterprise Scheduler Installation
	2.5 What Happens at Runtime: How the Oracle Enterprise Scheduler Installation is Verified

3 Use Case Oracle Enterprise Scheduler Sample Application

	3.1 Introduction to the Scheduler Sample Application
	3.2 Creating the Application and Projects for Scheduler Sample Application
	3.2.1 How to Create the EssDemoApp Application
	3.2.2 How to Create a Project in the Scheduler Sample Application
	3.2.3 How to Set Project Properties for Enterprise Scheduler

	3.3 Creating a Java Implementation Class for the Sample Application
	3.3.1 How to Create a Java Class Using the Executable Interface
	3.3.2 What Happens When You Create a Java Class That Implements the Executable Interface
	3.3.3 What You Need to Know About the Executable Interface

	3.4 Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests
	3.4.1 How to Add Required Libraries to Project
	3.4.2 How to Create the EssDemo Servlet

	3.5 Creating Metadata for Scheduler Sample Application
	3.5.1 How to Create a Job Type for Java
	3.5.2 How to Create a Job Definition for Java

	3.6 Assembling the Scheduler Sample Application
	3.6.1 How to Assemble the EJB Jar Files for Scheduler Sample Application
	3.6.2 How to Assemble the MAR File for User Metadata
	3.6.3 How to Assemble the EAR File for Scheduler Sample Application
	3.6.4 Add oracle.ess Library Weblogic Application Descriptor

	3.7 Deploying and Running the Scheduler Sample Application
	3.7.1 How to Deploy the EssDemoApp Application
	3.7.2 How to Run the Scheduler Sample Application
	3.7.3 How to Purge Jobs in the Scheduler Sample Application

	3.8 Troubleshooting the Oracle Enterprise Scheduler Sample Application
	3.8.1 How to Create the Oracle Enterprise Scheduler Database Schema
	3.8.2 How to Drop the Oracle Enterprise Scheduler Runtime Schema

	3.9 Using Submitting and Hosting Split Applications
	3.9.1 How to Create the Backend Hosting Application for Scheduler
	3.9.1.1 Creating the Backend Hosting Application
	3.9.1.2 Configuring Security for the Backend Hosting Application
	3.9.1.3 Defining the Deployment Descriptors for the Backend Hosting Application
	3.9.1.4 Creating a Java Implementation Class in the Backend Hosting Application
	3.9.1.5 Creating Metadata for the Backend Hosting Application
	3.9.1.6 Assembling the Backend Hosting Application for Oracle Enterprise Scheduler
	3.9.1.7 Deploying the Backend Hosting Application

	3.9.2 How to Create the Frontend Submitter Application for Oracle Enterprise Scheduler
	3.9.2.1 Creating the Frontend Submitter Application
	3.9.2.2 Configuring the ejb-jar.xml File for the Frontend Submitter Application
	3.9.2.3 Creating the SuperWeb Project
	3.9.2.4 Configuring Security for the Frontend Submitter Application
	3.9.2.5 Creating the HTTP Servlet for the Frontend Submitter Application
	3.9.2.6 Editing the web.xml File for the Frontend Submitter Application
	3.9.2.7 Editing the weblogic-application.xml file for the Frontend Submitter Application
	3.9.2.8 Editing the adf-config file for the Frontend Submitter Application
	3.9.2.9 Assembling the Frontend Submitter Application for Oracle Enterprise Scheduler
	3.9.2.10 Deploying the Backend Hosting Application

4 Using the Metadata Service

	4.1 Introduction to Using the Metadata Service
	4.1.1 Introduction to Metadata Service Namespaces
	4.1.2 Introduction to Metadata Service Operations
	4.1.3 Introduction to Metadata Service Transactions

	4.2 Accessing the Metadata Service
	4.2.1 How to Access the Metadata Service with a Stateless Session EJB

	4.3 Accessing the Metadata Service with Oracle JDeveloper
	4.4 Querying Metadata Using the Metadata Service
	4.4.1 How to Create a Filter
	4.4.2 How to Query Metadata Objects

5 Using Parameters and System Properties

	5.1 Introduction to Using Parameters and System Properties
	5.1.1 What You Need to Know About Parameter and System Property Naming
	5.1.2 What You Need to Know About Parameter Conflict Resolution and Parameter Materialization
	5.1.2.1 What You Need to Know About Job Definition Parameter Materialization
	5.1.2.2 What You Need to Know About Job Set Level Parameter Materialization

	5.2 Using Parameters with the Metadata Service
	5.2.1 How to Use Parameters and System Properties in Metadata Objects

	5.3 Using Parameters with the Runtime Service
	5.3.1 How to Use Parameters with the Runtime Service
	5.3.2 How to Use Parameters with a Step ID for Job Set Steps

	5.4 Using System Properties

6 Creating and Using PL/SQL Jobs

	6.1 Introduction to Using PL/SQL Stored Procedure Job Definitions
	6.2 Creating a PL/SQL Stored Procedure for Oracle Enterprise Scheduler
	6.2.1 How to Define a PL/SQL Stored Procedure with the Correct Signature
	6.2.2 Handling Runtime Exceptions in an Oracle Enterprise Scheduler PL/SQL Stored Procedure
	6.2.3 How to Access Job Request Information In PL/SQL Stored Procedures
	6.2.4 What You Need to Know When You Define a PL/SQL Stored Procedure

	6.3 Performing Oracle Database Tasks for PL/SQL Stored Procedures
	6.3.1 How to Grant PL/SQL Stored Procedure Permissions
	6.3.2 What You Need to Know About Granting PL/SQL Stored Procedure Permissions

	6.4 Creating and Storing Job Definitions for PL/SQL Job Types
	6.4.1 How to Create a PL/SQL Job Type
	6.4.2 How to Create and Store a Job Definition for PL/SQL Job Type
	6.4.3 Using a PL/SQL Stored Procedure with an Oracle Enterprise Scheduler Application

7 Creating and Using Process Jobs

	7.1 Introduction to Creating Process Job Definitions
	7.2 Creating and Storing Job Definitions for Process Job Types
	7.2.1 How to Create and Store a Process Job Type
	7.2.2 How to Create and Store a Process Type Job Definition

	7.3 Using a Perl Agent Handler for Process Jobs

8 Defining and Using Schedules

	8.1 Introduction to Schedules
	8.2 Defining a Recurrence
	8.2.1 How to Define a Recurrence with a Recurrence Fields Helper
	8.2.2 How to Define a Recurrence with an iCalendar RFC 2445 Specification
	8.2.3 What You Need to Know When You Use a Recurrence Fields Helper
	8.2.4 What You Need to Know When You Use an iCalendar Expression

	8.3 Defining an Explicit Date
	8.3.1 How to Define an Explicit Date
	8.3.2 What You Need to Know About Explicit Dates

	8.4 Defining and Storing Exclusions
	8.4.1 How to Define an Exclusion
	8.4.2 How to Create an Exclusions Definition

	8.5 Defining and Storing Schedules
	8.5.1 How to Define and Store a Schedule
	8.5.2 What Happens When You Define and Store a Schedule
	8.5.3 What You Need to Know About Handling Time Zones with Schedules

	8.6 Identifying Job Requests That Use a Particular Schedule
	8.7 Updating and Deleting Schedules

9 Working with Extensions to Oracle Enterprise Scheduler

	9.1 Introduction to Oracle Enterprise Scheduler Extensions
	9.2 Standards and Guidelines
	9.3 Creating and Implementing a Scheduled Job in JDeveloper
	9.3.1 How to Create and Implement a Scheduled Job in JDeveloper
	9.3.2 What Happens at Runtime: How a Scheduled Job Is Created and Implemented in JDeveloper

	9.4 Creating a Job Definition
	9.4.1 How to Create a Job Definition
	9.4.2 How to Define File Groups for a Job
	9.4.3 What Happens When You Create a Job Definition
	9.4.4 What Happens at Runtime: How Job Definitions Are Created

	9.5 Configuring a Spawned Job Environment
	9.5.1 How to Create an Environment File for Spawned Jobs
	9.5.2 How to Configure an Oracle Wallet for Spawned Jobs
	9.5.3 What Happens When You Configure a Spawned Job Environment

	9.6 Implementing a PL/SQL Scheduled Job
	9.6.1 Standards and Guidelines for Implementing a PL/SQL Scheduled Job
	9.6.2 How to Define Metadata for a PL/SQL Scheduled Job
	9.6.3 How to Implement a PL/SQL Scheduled Job
	9.6.4 What Happens When You Implement a PL/SQL Job
	9.6.5 What Happens at Runtime: How a PL/SQL Job is Implemented

	9.7 Implementing a SQL*Plus Scheduled Job
	9.7.1 Standards and Guidelines for Implementing a SQL*Plus Scheduled Job
	9.7.2 How to Implement a SQL*Plus Job
	9.7.3 How to Use the SQL*Plus Runtime API
	9.7.4 What Happens When You Implement a SQL*Plus Job
	9.7.5 What Happens at Runtime: How a SQL*Plus Job Is Implemented

	9.8 Implementing a SQL*Loader Scheduled Job
	9.8.1 How to Implement a SQL*Loader Scheduled Job
	9.8.2 What Happens When You Implement a SQL*Loader Scheduled Job

	9.9 Implementing a Perl Scheduled Job
	9.9.1 How to Implement a Perl Scheduled Job
	9.9.2 What Happens When You Implement a Perl Scheduled Job

	9.10 Implementing a C Scheduled Job
	9.10.1 How to Define Metadata for a C Scheduled Job
	9.10.2 How to Implement a C Scheduled Job
	9.10.3 Scheduled C Job API
	9.10.4 How to Test a C Scheduled Job
	9.10.5 What Happens When You Implement a C Scheduled Job
	9.10.6 What Happens at Runtime: How a C Scheduled Job Is Implemented

	9.11 Implementing a Host Script Scheduled Job
	9.12 Implementing a Java Scheduled Job
	9.12.1 How to Define Metadata for a Scheduled Java Job
	9.12.2 How to Use the Java Runtime API
	9.12.3 How to Cancel a Scheduled Java Job
	9.12.4 What Happens at Runtime: How a Java Scheduled Job Is Implemented

	9.13 Elevating Access Privileges for a Scheduled Job
	9.13.1 How to Elevate Access Privileges for a Scheduled Job
	9.13.2 How Access Privileges Are Elevated for a Scheduled Job
	9.13.3 What Happens When Access Privileges Are Elevated for a Scheduled Job

	9.14 Creating an Oracle ADF User Interface for Submitting Job Requests
	9.14.1 How to Create an Oracle ADF User Interface for Submitting Job Requests
	9.14.2 How to Add a Custom Task Flow to an Oracle ADF User Interface for Submitting Job Requests
	9.14.3 How to Enable Support for Context-Sensitive Parameters in an Oracle ADF User Interface for Submitting Job Requests
	9.14.4 How to Save and Schedule a Job Request Using an Oracle ADF UI
	9.14.5 How to Submit a Job Using a Saved Schedule in an Oracle ADF UI
	9.14.6 How to Notify Users or Groups of the Status of Executed Jobs
	9.14.7 What Happens When You Create an Oracle ADF User Interface for Submitting Job Requests
	9.14.8 What Happens at Runtime: How an Oracle ADF User Interface for Submitting Job Requests Is Created

	9.15 Submitting Job Requests Using the Request Submission API
	9.16 Defining Oracle Business Intelligence Publisher Post-Processing Actions for a Scheduled Job
	9.16.1 How to Define Oracle BI Publisher Post-Processing for a Scheduled Job
	9.16.2 How to Define Oracle BI Publisher Post-Processing Actions for a Scheduled PL/SQL Job
	9.16.3 What Happens When You Define Oracle BI Publisher Post-Processing Actions for a Scheduled Job
	9.16.4 What Happens at Runtime: How Oracle BI Publisher Post-Processing Actions are Defined for a Scheduled Job
	9.16.5 Invoking Post-Processing Actions Programmatically

	9.17 Monitoring Scheduled Job Requests Using an Oracle ADF UI
	9.17.1 How to Monitor Scheduled Job Requests
	9.17.2 How to Embed a Table of Search Results as a Region on a Page
	9.17.3 How to Log Scheduled Job Requests in an Oracle ADF UI
	9.17.4 How to Troubleshoot an Oracle ADF UI Used to Monitor Scheduled Job Requests

	9.18 Using a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.1 How to Use a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.2 How to Extend the Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.3 What Happens When you Use a Task Flow Template for Submitting Scheduled Requests through an Oracle ADF UI
	9.18.4 What Happens at Runtime: How a Task Flow Template Is Used to Submit Scheduled Requests through an Oracle ADF UI

	9.19 Securing Oracle ADF UIs
	9.20 Integrating Scheduled Job Logging with Fusion Applications
	9.21 Logging Scheduled Jobs
	9.21.1 Using the Request Log
	9.21.2 Using the Output File
	9.21.3 Debugging and Error Logging

10 Using the Oracle Enterprise Scheduler Web Service

	10.1 Introduction to the Oracle Enterprise Scheduler Web Service
	10.2 Developing and Using ESSWebservice Applications
	10.2.1 How to Develop and Use an ESSWebservice Java EE Application
	10.2.2 How to Develop and Use an ESSWebservice SOA Application with BPEL
	10.2.3 Setting Web Service Addressing Headers for getCompletionStatus() Operation
	10.2.4 Limitations for ESSWebservice
	10.2.5 ESSWebservice Implementation

	10.3 ESSWebservice WSDL File
	10.4 Use Case Using Scheduler ESSWebservice from a BPEL Process
	10.5 Creating the ESSWebService Application and a SOA Project
	10.5.1 How to Create the ESSWebService Application and Project

	10.6 Creating the ESSWebService Reference
	10.6.1 How to Add the ESSWebService Partner Link

	10.7 Adding the BPEL Process to Call the ESSWebService
	10.7.1 How to Add a BPEL Process to Call the ESSWebService
	10.7.2 Copy Types Into BPEL Process Schema
	10.7.3 How to Invoke the ESSWebService submitRequest Operation
	10.7.4 Assign Required Input Parameters for Request Submission
	10.7.5 Invoke the getCompletionStatus Operation
	10.7.6 Assign Input to the getCompletionStatus Operation
	10.7.7 Receive the Job Completion Status
	10.7.8 Return Result to Client

	10.8 Using Additional ESSWebService Operations
	10.8.1 How to Invoke the ESSWebService submitRecurringRequest Operation
	10.8.2 How to Invoke the ESSWebService setSubmitArgs Operation
	10.8.3 How to Invoke the ESSWebService addPPActions Operation
	10.8.4 How to Invoke the ESSWebService setStepsArgs Operation

	10.9 Securing the Oracle Enterprise Scheduler Web Service
	10.9.1 How to Secure the Oracle Enterprise Scheduler Web Service
	10.9.2 What Happens When You Secure the Oracle Enterprise Scheduler Web Service

	10.10 Deploying and Testing the Project
	10.10.1 How to Test the Web Service

11 Defining and Using Job Sets

	11.1 Introduction to Defining and Using Job Sets
	11.2 Defining Job Sets
	11.2.1 How to Define a Job Set
	11.2.2 How to Define Serial Job Set Steps
	11.2.3 How to Define Parallel Job Set Steps
	11.2.4 What Happens When You Define a Job Set
	11.2.5 What You Need to Know About Serial Job Sets
	11.2.6 What You Need to Know About Job Set Parameters and System Properties
	11.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

	11.3 Cross Application Job Sets
	11.3.1 Overview of Cross Application Job Sets
	11.3.2 Requirements for Cross Application Job Sets

	11.4 Using Input and Output Forwarding
	11.4.1 Supporting Input and Output Forwarding in Job Sets

12 Defining and Using a Job Incompatibility

	12.1 Introduction to Using a Job Incompatibility
	12.1.1 Job Self Incompatibility

	12.2 Defining Incompatibility with Oracle JDeveloper
	12.2.1 How to Define a Global Incompatibility
	12.2.2 How to Define a Domain Incompatibility

	12.3 What Happens at Runtime to Handle Job Incompatibility
	12.3.1 What Happens to Subrequests with an Incompatible Parent Request
	12.3.2 What Happens to the Scope of Request Incompatibility

13 Using the Runtime Service

	13.1 Introduction to the Runtime Service
	13.2 Accessing the Runtime Service
	13.2.1 How to Access the Runtime Service and Obtain a Runtime Service Handle

	13.3 Submitting Job Requests
	13.3.1 How to Submit a Request to the Runtime Service
	13.3.2 What You Should Know About Default System Properties When You Submit a Request
	13.3.3 What You Should Know About Metadata When You Submit a Request

	13.4 Managing Job Requests
	13.4.1 How to Get Job Request Information with getRequestDetail
	13.4.2 How to Change Job Request State
	13.4.3 How to Update Job Request Priority and Job Request Parameters

	13.5 Querying Job Requests
	13.6 Submitting Ad Hoc Job Requests
	13.6.1 How to Create an Ad Hoc Request
	13.6.2 What Happens When You Create an Ad Hoc Request
	13.6.3 What You Need to Know About Ad Hoc Requests

14 Using Subrequests

	14.1 Introduction to Using Subrequests
	14.2 Sample Subrequest
	14.3 Creating and Managing Subrequests
	14.3.1 How to Submit Subrequests
	14.3.2 How to Cancel Subrequests
	14.3.3 How to Hold Subrequests
	14.3.4 How to Delete Subrequests
	14.3.5 How to Submit Multiple Subrequests
	14.3.6 How to Manage Paused Subrequests
	14.3.6.1 Indicating Paused Status
	14.3.6.2 Storing the Paused State for a Parent Request

	14.3.7 How Subrequests Are Processed
	14.3.8 How to Identify Subrequests
	14.3.9 How to Manage Subrequests and Incompatibility

	14.4 Creating a Java Procedure that Submits a Subrequest
	14.5 Creating a PL/SQL Procedure that Submits a Subrequest

15 Working with Asynchronous Java Jobs

	15.1 Introduction to Working with Asynchronous Java Jobs
	15.2 Creating an Asynchronous Java Job
	15.2.1 Implementing the Asynchronous Java Job Asynchronous Interface
	15.2.2 Asynchronous Java Job execute() Method
	15.2.3 Invoking a Remote Job from an Asynchronous Java Job
	15.2.4 Calling Back to Oracle Enterprise Scheduler with Status Updates
	15.2.5 Updating the Asynchronous Java Job
	15.2.6 Notifying Oracle Enterprise Scheduler When an Asynchronous Job Completes
	15.2.6.1 Using the Web Service to Notify When an Asynchronous Job Completes
	15.2.6.2 Using EJB to Notify When an Asynchronous Job Completes

	15.2.7 Asynchronous Java Job AsyncCancellable Interface
	15.2.8 Sample Asynchronous Java Job Invoking a BPEL Process Through Event Delivery Network
	15.2.8.1 Sample BPEL Process Design Time with Oracle Enterprise Scheduler

	15.3 A Use Case Illustrating the Implementation of a BPEL Process as an Asynchronous Job
	15.3.1 Introduction to the Recommended Design Pattern
	15.3.2 Potential Approaches
	15.3.3 Use Case Summary

	15.4 How to Implement BPEL with an Asynchronous Job
	15.4.1 Use Case: Add Oracle JDeveloper Libraries
	15.4.2 Use Case: Create the Asynchronous Job Definition
	15.4.3 Use Case: Design the Event Payload Schema and Event Definition Files
	15.4.4 Programmatically Raise a Business Event from the Asynchronous Job Methods
	15.4.5 Design the SOA Composite with Meditator and BPEL
	15.4.6 Add Fault Handling and Correlated onMessage Branch for Error and Cancel Job
	15.4.6.1 Create Correlation Set and Define Initiate Activity
	15.4.6.2 Create the onMessage Branch with Use of Correlation Set
	15.4.6.3 Create the Fault Branch
	15.4.6.4 Populate the onMessage and Fault Branch

	15.4.7 Validating the Deployment
	15.4.8 Troubleshooting the Use Case

	15.5 Handling Time Outs and Recovery for Asynchronous Jobs
	15.5.1 Asynchronous Request Time Outs
	15.5.1.1 Setting the TIme Out Value
	15.5.1.2 Discovering the Asynchronous Job Requests that Have Timed Out
	15.5.1.3 Completing Asynchronous Requests without a Time Out
	15.5.1.4 What Happens When an Asynchronous Job Request Times Out

	15.5.2 Handling Asynchronous Jobs Marked for Manual Recovery
	15.5.3 Using RecoverRequest to Manually Recover a Job Request

	15.6 Oracle Enterprise Scheduler Interfaces and Classes

16 Oracle Enterprise Scheduler Security

	16.1 Introduction to Oracle Enterprise Scheduler Security
	16.1.1 Oracle Enterprise Scheduler Metadata Access Control
	16.1.2 Oracle Enterprise Scheduler Job Execution Security

	16.2 Configuring Metadata Security for Oracle Enterprise Scheduler
	16.2.1 How to Enable Application Security with Oracle ADF Security Wizard
	16.2.2 How to Define Principals for Security
	16.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages
	16.2.4 How to Create Grants with Oracle ADF Security Wizard
	16.2.5 About MetadataPermission APIs
	16.2.6 What Happens When You Configure Metadata Security

	16.3 Configuring Web Service Security for Oracle Enterprise Scheduler
	16.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler
	16.5 Elevating Privileges for Oracle Enterprise Scheduler Jobs
	16.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler
	16.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler
	16.6.2 What Happens When You Configure a Single Policy Stripe
	16.6.3 What Happens at Runtime

	16.7 Configuring Oracle Fusion Data Security for Job Requests
	16.7.1 Oracle Fusion Data Security Artifacts
	16.7.2 How to Apply Oracle Fusion Data Security Policies
	16.7.3 How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler Components

17 Managing Business and System Errors

	17.1 Introduction to Managing Business and System Errors
	17.2 Indicating Errors
	17.2.1 How to Indicate a Business Error
	17.2.2 How to Indicate a System Error

	17.3 Configuring Retries for a Job Request
	17.3.1 How to Configure Retries for a Job Request
	17.3.2 What Happens at Run Time: How a Job Request Is Retried
	17.3.3 What You Should Know about Configuring Retries for a Job Request

	17.4 Finding and Diagnosing Job Requests in Error State
	17.4.1 Retrieving the State of a Job Request
	17.4.2 Finding Job Requests with Business Errors
	17.4.3 Determining the Number of Times a Job Request Has Been Retried

14 Using Subrequests

This chapter describes how to use Oracle Enterprise Scheduler subrequests, and includes the following sections:

	
Section 14.1, "Introduction to Using Subrequests"

	
Section 14.2, "Sample Subrequest"

	
Section 14.3, "Creating and Managing Subrequests"

	
Section 14.4, "Creating a Java Procedure that Submits a Subrequest"

	
Section 14.5, "Creating a PL/SQL Procedure that Submits a Subrequest"

14.1 Introduction to Using Subrequests

Oracle Enterprise Scheduler subrequests are useful when you want to process data in parallel. A request submitted from a running job is called a subrequest. You can submit multiple subrequests from a single parent request. The customary method of parallel execution in Oracle Enterprise Scheduler is the job set concept but there might be cases where the number of parallel processes may not be fixed in number. For example, when you want to allocate one request per million rows and in the last week 9.7 million rows have accumulated to process. In this case, you would allocate ten requests as opposed to 5 for a week that accumulated 4.6 million rows.

Oracle Enterprise Scheduler supports subrequest functionality so that a given running request (Job Request) can submit a subrequest and wait for the completion of such a request before it continues.

Oracle Enterprise Scheduler supports subrequests by exposing an overloaded subrequest method submitRequest(). An application that submits a job request can invoke this API to submit a subrequest.

The following restrictions apply to subrequests:

	
A subrequest can be submitted only for onetime execution. No schedule can be specified. The subrequest is always treated as a "run now" request.

	
Ad hoc subrequests are not supported. A subrequest must be submitted for an existing JobDefinition object in the application.

	
Job sets are not supported for subrequests. A subrequest can only be submitted to a JobDefinition object. However, any running job (which may be part of a job set) can submit a subrequest.

These restrictions simplify the execution of subrequests and avoid any complications and delays in the execution of the submitting request itself.

There are different kinds of parent requests in Oracle Enterprise Scheduler, for the description in this chapter, a parent request refers to the request that is submitting a subrequest.

A subrequest follows the normal flow of a regular one-time request. However the processing of a subrequest starts only when the parent request pauses its execution. To indicate this, Oracle Enterprise Scheduler uses the PAUSED state. This state implies that the parent request is paused and waiting for the subrequest to finish.

Once a parent request submits a subrequest, that parent must return control back to Oracle Enterprise Scheduler, in the manner appropriate for its job type, indicating that it has paused execution. Oracle Enterprise Scheduler then sets the parent state to PAUSED and starts processing the subrequest. Once the subrequest finishes, Oracle Enterprise Scheduler places the parent request on the ready queue, where it remains PAUSED, until it is picked up by an appropriate request processor. The parent is then set to RUNNING state and re-run as a resumed request.

14.2 Sample Subrequest

Example 14-1 is a sample PL/SQL job that submits five subrequests. The subrequests are submitted one at a time. Each time a subrequest is submitted, the parent exits to a paused state, so that it does not consume any resources while waiting for the child request to complete. When the child completes the parent is restarted.

Example 14-1 PL/SQL Procedure Subrequest

procedure fusion_plsql_subreq_sample(
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 no_requests in varchar2 default '5',
) is
 req_cnt number := 0;
 sub_reqid number;
 submitted_requests varchar2(100);
 request_prop_table_t jobProp;
 begin
 -- Write log file content using FND_FILE API
 FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program with sub-request functionality");

 -- Requesting the PAUSED_STATE property set by job identifies request as
 -- having started for the first time or restarting after being paused.
 if (ess_runtime.get_reqprop_varchar(fnd_job.job_request_id, 'PAUSED_STATE')) is null)
 -- first time start
 then
 -- Implement the business logic of the job here.
 FND_FILE.PUT_LINE(FND_FILE.OUT, " About to submit sub-requests : " || no_requests);

 -- Loop through all the sub-requests.
 for req_cnt 1..no_requests loop
 -- Retrieve the request handle and submit the subrequest.
 sub_reqid := ess_runtime.submit_subrequest(request_handle => fnd_job.request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => jobProp);
 submitted_requests := sub_reqid || ',';
 end loop;

 -- Pause the parent request.
 ess_runtime.update_reqprop_varchar(fnd_job.request_id, 'STATE', ess_job.PAUSED_STATE);

 -- Update the parent request with the state of the sub-request, enabling
 -- the job to retrieve the status during restart.
 ess_runtime.update_reqprop_int(fnd_job.request_id, 'PAUSED_STATE', submitted_requests);

 else
 -- Restart the request, retrieve job completion status and return the
 -- status to Oracle Enterprise Scheduler Service.
 errbuf := fnd_message.get("FND", "COMPLETED NORMAL");
 retcode := 0;
 end if;
 end;

14.3 Creating and Managing Subrequests

	
Section 14.3.1, "How to Submit Subrequests"

	
Section 14.3.2, "How to Cancel Subrequests"

	
Section 14.3.3, "How to Hold Subrequests"

	
Section 14.3.4, "How to Delete Subrequests"

	
Section 14.3.5, "How to Submit Multiple Subrequests"

	
Section 14.3.6, "How to Manage Paused Subrequests"

	
Section 14.3.7, "How Subrequests Are Processed"

	
Section 14.3.8, "How to Identify Subrequests"

	
Section 14.3.9, "How to Manage Subrequests and Incompatibility"

14.3.1 How to Submit Subrequests

A subrequest can be submitted by calling the submitRequest API. The subrequest is set to WAIT state, but Oracle Enterprise Scheduler will not process the request while the parent request is running. A subrequest can be processed only once the parent request has paused.

14.3.2 How to Cancel Subrequests

There are two main ways a subrequest can be cancelled, either by the user cancelling the subrequest directly or as a result of the parent request being cancelled. For either method, the cancellation process of the subrequest is handled in the same manner as any other executable request. The difference lies in how Oracle Enterprise Scheduler treats the parent request once all pending subrequests have completed and reached a terminal state.

Oracle Enterprise Scheduler sets a subrequest that is in WAIT or READY state directly to CANCELLED. If a subrequest is currently running, then the subrequest is set to CANCELLING and Oracle Enterprise Scheduler then attempts to cancel the running executable in the manner appropriate for its job type. Usually, the subrequest ends up in CANCELLED state, but it may end in some other terminal state depending on the life cycle stage where the subrequest was at. The parent request remains in PAUSED or CANCELLING state until all subrequests have reached a terminal state.

If the user cancels a subrequest, then Oracle Enterprise Scheduler cancels that subrequest, as described previously. The parent request remains in PAUSED state until all subrequests are complete, at which point Oracle Enterprise Scheduler resumes or restarts the parent request. This enables the parent request to handle the completion of the subrequest, possibly as cancelled, in an appropriate fashion. Cancellation of subrequests is thus not propagated upwards.

If the user cancels the parent request, Oracle Enterprise Scheduler sets the parent request to CANCELLING state, and then initiates a cancellation for all pending subrequests in the manner described previously. Once all subrequests have completed, Oracle Enterprise Scheduler sets the parent request to CANCELLED, and the parent request does not resume. Cancellation of a parent request is propagated down to its subrequests.

14.3.3 How to Hold Subrequests

A subrequest has the same life cycle as an ordinary request, and can be held when it is in WAIT or READY state. The parent request remains in PAUSED state while the subrequest is on hold.

14.3.4 How to Delete Subrequests

The delete operation will not be allowed on a subrequest, since it might lead to ambiguous data where the information about the subrequest will get lost. A subrequest is automatically purged when its parent request is purged.

14.3.5 How to Submit Multiple Subrequests

Oracle Enterprise Scheduler allows requests to submit multiple subrequests. A running request may submit more than one subrequest. All of these subrequests are processed by Oracle Enterprise Scheduler when the parent request pauses and goes to PAUSED state.

In case of multiple such subrequests, the parent request will be resumed only when all the subrequests finish.

Also it is possible to submit subrequests up to any depth. This creates nested subrequests. As such there are no restrictions on the depth of such subrequest submissions. This is kind of similar to stack push and pop operations.

14.3.6 How to Manage Paused Subrequests

	
Section 14.3.6.1, "Indicating Paused Status"

	
Section 14.3.6.2, "Storing the Paused State for a Parent Request"

14.3.6.1 Indicating Paused Status

A Java executable can submit subrequests using RuntimeService.submitRequest. After the subrequest has been submitted, the parent request must indicate to Oracle Enterprise Scheduler that it is pausing to allow the subrequest to be processed. This is accomplished by the parent throwing an ExecutionPausedExcpetion which causes the request to transition to PAUSED state.Once the subrequests have completed, the parent request is runs again as a resumed request. The RequestExecutionContext can be used to determine if the executable is being run as a resumed request.

14.3.6.2 Storing the Paused State for a Parent Request

When a job execution pauses after submitting a subrequest, Oracle Enterprise Scheduler regards its execution as complete, for all intents and purposes, as implementation-wise there is no notion of pausing an execution thread. Therefore, to resume such a paused job, Oracle Enterprise Scheduler must restart the job. In such cases, the job execution restarts from the beginning, whereas the desired behavior is to continue from the point at which execution was paused. This requires the job execution to store some kind of execution state that would represent the paused point. On resuming, the job can retrieve such a state and jump to the paused point to continue from there.

In general, it is incumbent on individual jobs to define an execution state that would allow it to resume in a deterministic way from each pause point throughout the business logic (jobs can have multiple pause points). In some cases, it can be as simple as storing the step number and jumping to that particular step on resuming, while in other cases it can be a huge data set that stores critical state for the business logic when it pauses. Oracle Enterprise Scheduler cannot provide a complete solution or framework to store the entire state.

Oracle Enterprise Scheduler provides a simplistic means for jobs to store their pause point in the form of a string that can be specified when the parent job pauses its execution. Upon resuming the parent job, the paused state value can be obtained by the parent to use as required.

Java jobs can specify a paused state string using a special ExecutionPausedException constructor. The state parameter represents the paused state string saved by Oracle Enterprise Scheduler when it sets the parent request to PAUSED state.

public ExecutionPausedException(String message, String state)

The resumed parent can retrieve the paused state value by calling getPausedState() on the RequestExecutionContext passed to the parent executable.

In case a single string value is not sufficient, the parent job can write any number of properties back into Oracle Enterprise Scheduler using setRequestParameter(), and retrieve those properties on resuming using getRequestParameter().

14.3.7 How Subrequests Are Processed

When a subrequest is submitted, Oracle Enterprise Scheduler sets the request state to WAIT but in a deferred mode so it will not be dispatched until the parent request pauses.

The parent request of a Java job indicates that it is ready for subrequests to be processed by throwing ExecutionPausedException. When the Oracle Enterprise Scheduler receives such an exception, it sets the parent request state to PAUSED, publishes a system event message that the parent has paused, and then dispatches all waiting subrequests for that parent to the ready queue.

Subrequest execution follows the normal life cycle within Oracle Enterprise Scheduler. Once all subrequests for a given parent request are finished, the parent request can be resumed.

When a parent is ready to resume, Oracle Enterprise Scheduler places the parent request in the ready queue. The parent state remains as PAUSED while it is waiting to be picked up. Once Oracle Enterprise Scheduler picks up the parent request from the ready queue, the request state will be set to RUNNING and the request executable called as a resumed request.

If a request is paused without submitting any subrequests, it will be treated as if all subrequests had finished. That is, it will be placed in the ready queue, at PAUSED state, to be picked up for processing as a resumed request.

The final state of a subrequest does not influence how Oracle Enterprise Scheduler handles the parent request or the final state of the parent request once that parent executable has completed. When the parent request resumes, the parent request job logic can retrieve information about the subrequest, using this data as needed to determine subsequent actions. The final state of the parent request is based entirely on the state in which the parent request completed: succeeded, error, warning or cancelled.

14.3.8 How to Identify Subrequests

In Oracle Enterprise Scheduler, each request has a RequestType attribute. That attribute indicates whether the request is a singleton, part of a job set, a recurring request, a subrequest, and so on.

A subrequest has a RequestType of SUB_REQUEST or UNVALIDATED_SUB_REQUEST. An UNVALIDATED_SUB_REQUEST represents a subrequest that was submitted via the Oracle Enterprise Scheduler PL/SQL interface but has not yet been validated. The RequestType of the parent request is either SINGLETON, RECUR_CHILD, JOBSET_STEP, or SUBREQUEST. All other request types represent requests that can never be the parent of a subrequest.

The parent request ID attribute for a subrequest is the request that submitted the subrequest.

14.3.9 How to Manage Subrequests and Incompatibility

In general, a request acquires incompatibility locks when the request transition from READY to RUNNING state. Those locks are not released until the request finishes and is set to a terminal state; for example, SUCCEEDED, ERROR, WARNING, CANCELLED.

Incompatibility locks acquired by a subrequest parent remain in effect even while a parent request is in a PAUSED state. Any requests that were blocked by a subrequest parent remain blocked while the subrequests execute and until the parent request is resumed and finishes.

Subrequests follow all the rules of incompatibility. A subrequest therefore may get blocked if any incompatible requests are currently running when Oracle Enterprise Scheduler is ready to execute the subrequest. During such time windows, the parent request remains in PAUSED state while the subrequest transitions to BLOCKED state.

14.4 Creating a Java Procedure that Submits a Subrequest

This is an example of the Java class for a Java job type that submits subrequests. The procedure submits two subrequests, pausing between each one. Each subrequest uses the same JobDefinition but specifies a different value for the request parameter named SubRequestData. The oracle.as.scheduler.Executable.execute method of the parent request is called a total of three times for a given Oracle Enterprise Scheduler request and the following summaries the expected conditions and actions for each.

In the first call to execute method as a non-resumed request:

Entry condition:

RequestExecutionContext.isResumed() will be false

RequestExecutionContext.getPausedState() will be null

Method Action:

·Submit a subrequest with request parameter value of 'MyData1'

Throw ExecutionPausedException with pausedState of 'MyPausedState1"

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the subrequest, and then resume the request once the subrequest has completed.

First call to execute method as resumed request:

Entry condition:

RequestExecutionContext.isResumed() will be true

RequestExecutionContext.getPausedState() will be 'MyPausedState1'

Method Action:

Submit a subrequest with request parameter value of 'MyData2'

Throw ExecutionPausedException with pausedState of 'MyPausedState2"

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the subrequest, and then resume the request once the subrequest has completed.

Second call to execute method as resumed request:

Entry condition:

RequestExecutionContext.isResumed() will be true

RequestExecutionContext.getPausedState() will be 'MyPausedState2'

Method Action:

Exit normally, no exception.

Oracle Enterprise Scheduler will transition the request to SUCCEEDED state.

Example 14-2 shows a Java procedure with a subrequest.

Example 14-2 Java Procedure with Subrequest

// constants for the pausedState values
private final static String PAUSED_STATE_1 = "MyPausedState1";
private final static String PAUSED_STATE_2 = "MyPausedState2";

public class SubRequestSubmittor implements Executable {

 // method called by Oracle Enterprise Scheduler when the request is executed
 public void execute(RequestExecutionContext execCtx,
 RequestParameters props)
 throws ExecutionWarningException,
 ExecutionErrorException,
 ExecutionPausedException,
 ExecutionCancelledException {

 long requestId = execCtx.getRequestId();
 boolean isResumed = execCtx.isResumed();
 String pausedState = execCtx.getPausedState();

 if (!isResumed) {

 // Method being called for first time, as non-resumed request.
 // Submit first subrequest.
 submitSubRequest(execCtx, "MyData1");
 throw new ExecutionPausedException("first subrequest", PAUSED_STATE_1);

 } else if (PAUSED_STATE_1.equals(pausedState)) {

 // Method being called for a resumed request.
 // Submit next subrequest.
 submitSubRequest(execCtx, "MyData2");
 throw new
 ExecutionPausedException("second subrequest", PAUSED_STATE_2);

 } else if (PAUSED_STATE_2.equals(pausedState)) {

 // Method being called for a resumed request.
 // All done, just return.

 } else {

 // Method being called for a resumed request.
 // Unknown paused state (should never happen).
 String msg = "Request " + requestId +
 " was resumed with unexpected pause state " + pausedState;
 throw new ExecutionErrorException(msg);

 }
 }

 // Submit subrequest with request parameter having the given value.
 private void submitSubRequest(RequestExecutionContext execCtx,
 String paramValue)
 throws ExecutionErrorException{

 RuntimeService rs = null;
 RuntimeServiceHandle rh = null;

 try {
 rs = getRuntimeService();

 // Retrieve MetadataObjectId of the subrequest job definition
 String jobDef = "MySubRequestJobDef";
 MetadataObjectId jobDefId = getJobDefinition(jobDef);

 // Set value for the request parameter used by subrequest.
 RequestParameters rp = new RequestParameters();
 rp.add("SubRequestData", paramValue);

 // Submit the subrequest
 rh = rs.open();

 long subReqId = rs.submitRequest(rh, execCtx,
 "subrequest submitter",
 jobDefId, rp);

 } catch (Exception e) {

 String msg = "Error while submitting subrequest for request " +
 ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);

 } finally {

 if (null != rh) {
 try {
 rs.close(rh);
 } catch (Exception e) {
 String msg = "Error while submitting subrequest for request "
 + ExecCtx.getRequestId();
 throw new ExecutionErrorException(msg, e);
 }
 }
 }
 }

 // Get RuntimeService.
 private RuntimeService getRuntime()
 throws ExecutionErrorException {
 // implementation not shown
 }

 // Retrieve MetadataObjectId for a given job definition name.
 private MetadataObjectId getJobDefinition(String jobDef)
 throws ExecutionErrorException {
 // implementation not shown
 }

}

14.5 Creating a PL/SQL Procedure that Submits a Subrequest

The ESS_RUNTIME PL/SQL package is used by an SQL job request to submit a subrequest. It also contains support to determine if the request procedure is being executed as a resumed request and retrieve the paused state string.

For a Java request, the parent request submits a subrequest using a RuntimeService.submitRequest method and then throws ExecutionPausedException when it is ready to be paused to allow the subrequest to execute.

For a SQL request, ess_runtime.submit_subrequest is used to submit the subrequest. The parent request must call ess_runtime.mark_paused when it is ready for the subrequest to run, commit the transaction and return successfully, without rasing an exception. The mark_paused method informs Oracle Enterprise Scheduler that, upon successful return from the parent request procedure, the parent request should be set to PAUSED and the subrequest allowed to execute. The mark_paused method supports an optional argument by which the paused state string can be specified.

It is important to note that subrequest will not be executed until the parent request has called mark_paused, commits, and returns normally, without raising an exception. If an exception is raised, Oracle Enterprise Scheduler will not set parent request to PAUSED state, but instead, it the parent state will be set to ERROR or WARNING depending on the SQL error code. Furthermore, the subrequests will be automatically CANCELLED and will not be executed.

Once the subrequest has finished, PL/SQL procedure for the parent request will be re-executed again as resumed request, similar to what occurs for a Java Executable.

For a Java executable, the RequestExecutionContext indicates if the request is being resumed and has the paused state string specified via the ExecutionPausedException thrown when the parent request paused.

For an SQL request, ess_runtime.is_resumed indicates whether the request procedure is being executed for a resumed request. The method ess_runtime.get_paused_state returns the paused state string specified via the ess_runtime.mark_paused procedure when the request was paused.

This is an example of the PL/SQL stored procedure for a SQL job type that submits subrequests using the ESS_RUNTIME package. The procedure submits two subrequests, pausing between each one. Each subrequest uses the same JobDefinition but specifies a different value for the request parameter named SubRequestData. The PL/SQL stored procedure would be called a total of three times for a given Oracle Enterprise Scheduler request and the following summaries the expected conditions and actions for each.

First call to procedure as non-resumed request:

Entry condition:

ess_runtime.is_resumed will be false

ess_runtime.get_paused_state will be null

Procedure Action:

Submit a subrequest with request parameter value of 'MyData1'

Mark request as paused using paused state of 'MyPausedState1'

Exit normally, no exception

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the subrequest, and then resume the request once the subrequest has completed.

First call to procedure as resumed request:

Entry condition:

ess_runtime.is_resumed will be true

ess_runtime.get_paused_state will be 'MyPausedState1'

Procedure Action:

Submit a subrequest with request parameter value of 'MyData2'

Mark request as paused using paused state of 'MyPausedState2'

Exit normally, no exception

Oracle Enterprise Scheduler will transition the request to PAUSED state, execute the subrequest, and then resume the request once the subrequest has completed.

Second call to procedure as resumed request:

Entry condition:

ess_runtime.is_resumed will be true

ess_runtime.get_paused_state will be 'MyPausedState2'

Procedure Action:

Exit normally, no exception.

Oracle Enterprise Scheduler will transition the request to SUCCEEDED state.

Example 14-3 shows a PL/SQL procedure with a subrequest.

Example 14-3 PL/SQL Procedure with Subrequest

procedure fusion_plsql_subreq_sample(
 errbuf out NOCOPY varchar2,
 retcode out NOCOPY varchar2,
 no_requests in varchar2 default '5',
) is
 req_cnt number := 0;
 sub_reqid number;
 submitted_requests varchar2(100);
 request_prop_table_t jobProp;
 begin
 -- Write log file content using FND_FILE API
 FND_FILE.PUT_LINE(FND_FILE.LOG, "About to run the sample program with
 sub-request functionality");

 -- Requesting the PAUSED_STATE property set by job identifies request as
 -- having started for the first time or restarting after being paused.
 if (ess_runtime.get_reqprop_varchar(fnd_job.job_request_id,
 'PAUSED_STATE')) is null)
 -- first time start
 then
 -- Implement the business logic of the job here.
 FND_FILE.PUT_LINE(FND_FILE.OUT, " About to submit sub-requests : " ||
 no_requests);

 -- Loop through all the sub-requests.
 for req_cnt 1..no_requests loop
 -- Retrieve the request handle and submit the subrequest.

 v_idx := v_idx + 1;
 v_req_props.extend;
 v_req_props(v_idx).prop_name := 'SubRequestData';
 v_req_props(v_idx).prop_datatype := ess_runtime.STRING_DATATYPE;
 v_req_props(v_idx).prop_value := 'MyData1';

 ess_runtime.set_submit_args(v_req_props, 'MyData1', 'MyData12',
 '1998-11-29')

 sub_reqid := ess_runtime.submit_subrequest(request_handle =>
 fnd_job.request_handle,
 definition_name => 'sampleJob',
 definition_package => 'samplePkg',
 props => jobProp);
 submitted_requests := sub_reqid || ',';
 end loop;

 -- Pause the parent request.
 ess_runtime.update_reqprop_varchar(fnd_job.request_id, 'STATE',
 ess_job.PAUSED_STATE);

 -- Update the parent request with the state of the sub-request, enabling
 -- the job to retrieve the status during restart.
 ess_runtime.update_reqprop_int(fnd_job.request_id, 'PAUSED_STATE',
 submitted_requests);

 else
 -- Restart the request, retrieve job completion status and return the
 -- status to Oracle Enterprise Scheduler Service.
 errbuf := fnd_message.get("FND", "COMPLETED NORMAL");
 retcode := 0;
 end if;
 end;

4 Using the Metadata Service

This chapter describes how to use the Oracle Enterprise Scheduler Metadata Service. The Metadata Service allows you to save schedules, job definitions, and other Oracle Enterprise Scheduler metadata to a repository. You can also use the Metadata Service query methods to list objects stored in metadata.

This chapter includes the following sections:

	
Section 4.1, "Introduction to Using the Metadata Service"

	
Section 4.2, "Accessing the Metadata Service"

	
Section 4.3, "Accessing the Metadata Service with Oracle JDeveloper"

	
Section 4.4, "Querying Metadata Using the Metadata Service"

For information about how to create job definitions, see the following chapters: Chapter 3, "Use Case Oracle Enterprise Scheduler Sample Application", Chapter 6, "Creating and Using PL/SQL Jobs", and Chapter 7, "Creating and Using Process Jobs".

4.1 Introduction to Using the Metadata Service

Oracle Enterprise Scheduler provides the Metadata Service and exposes it to your application program as a Stateless Session Enterprise Java Bean (EJB). The Metadata Service allows you to save Oracle Enterprise Scheduler application level metadata objects. The Metadata Service uses Oracle Metadata Services (MDS) to save metadata objects to a repository (the repository can be either database based or file based). The Metadata Service allows you to reuse application-level metadata across multiple job request submissions.

Oracle Enterprise Scheduler metadata objects include the following:

	
Application Level Metadata: You use the Metadata Service to store job type, job definition, job set, and other application-level metadata object definitions for job requests.

	
Default (global) Oracle Enterprise Scheduler Metadata: The global Oracle Enterprise Scheduler metadata includes administrative objects such as schedules, workshifts and work assignments. Oracle Enterprise Scheduler provides MetadataServiceMXBean and the MetadataServiceMXBeanProxy to access and store default administrative objects

	
Note:

Oracle Enterprise Scheduler Schedule objects are used both in application level metadata and in global metadata.

Access to application level metadata objects is exposed only with the MetadataService interface. The MetadataService is exposed as a stateless session EJB. External clients must access the service only through the corresponding EJB. Clients should not interact with the internal API layer directly. When an application client uses the metadata service through the stateless session EJB, all the methods in this interface accept a reference to a MetadataServiceHandle argument, which stores state across multiple calls, for example when multiple methods are to be called within a user transaction. The MBeanProxy interface does not require a handler.

In an Oracle Enterprise Scheduler application you do not need to access or manipulate the MetadataServiceHandle. The application just needs to hold on to the reference created by the open method and pass it in methods being called. Finally the handle must explicitly be closed by calling the close method. Only upon calling the close method, any changes made using a given handle are committed (or aborted).

Metadata object names must be unique within the scope of a given package or namespace. Within a given package, two metadata objects with the same name, and of the same type cannot be created.

4.1.1 Introduction to Metadata Service Namespaces

Each Oracle WebLogic Server domain generally includes one metadata repository. A metadata repository is divided into a number of partitions, where each partition is independent and isolated from the others in the repository.

Each application can choose which partition to use. Two applications can also choose to share a partition.

Within a partition, you can organize the data in any way. Usually, the data is organized hierarchically like the file system of an operating system. Where a file system uses folders or directories, the Metadata Service uses namespaces or package names which form a unique name used to locate a file. In the context of Oracle Fusion Applications, all data related to Oracle Enterprise Scheduler must be stored in a partition called globalEss with the namespace /oracle/apps/ess.

Each Fusion Applications product family—SCM, HCM, CRM, and so on—has a separate namespace under /oracle/apps/ess, such as /oracle/apps/ess/scm, /oracle/apps/ess/hcm, /oracle/apps/ess/crm, and so on.

For all other Oracle Enterprise Scheduler applications, the application name and an optional package name containing the application level metadata displays under the namespace /oracle/apps/ess. For example, the metadata repository for an application named application1 can be divided into packages with the names dev, test, and production.

The metadata repository for this application has the following structure:

/oracle/apps/ess/application1/dev/metadata
/oracle/apps/ess/application1/test/metadata
/oracle/apps/ess/application1/production/metadata

Each Metadata Service method that creates a metadata object takes a required packageName argument that specifies the package part of the directory structure.

4.1.2 Introduction to Metadata Service Operations

After you access an Oracle Enterprise Scheduler metadata repository you can perform different types of Metadata Service operations, including:

	
Add, Update, Delete: These operations have transactional characteristics.

	
Copy: These operations have transactional characteristics.

	
Query: These operations have read-only characteristics and let you list metadata objects in the metadata repository.

	
Get: These operations have either read-only or transactional characteristics, depending on the value of the forUpdate flag.

4.1.3 Introduction to Metadata Service Transactions

Because clients access the Metadata Service through a Stateless Session EJB, each method uses a reference to a MetadataServiceHandle argument; this argument stores state for Metadata Service operations. The Metadata Service open() method begins each Oracle Enterprise Scheduler metadata repository user transaction. In an Oracle Enterprise Scheduler application client you obtain a MetadataServiceHandle reference with the open() method and you pass the reference to subsequent Metadata Service methods. The MetadataServiceHandle reference provides a connection to the metadata repository for the calling application.

In a client application that uses the Metadata Service you must explicitly close a Metadata Service transaction by calling close(). This ends the transaction and causes the transaction to be committed or rolled back (undone). The close() not only controls the transactional behavior within the Metadata Service, but it also allows Oracle Enterprise Scheduler to release certain resources. Thus, the close() is also required for Metadata Service read-only query() and get() operations.

	
Note:

The Metadata Service does not support JTA global transactions, but you can still make Metadata Service calls in the boundary of your transactions. While you can make Metadata Service calls in bean/container managed transactions, the calls will not be part of your transaction.

4.2 Accessing the Metadata Service

There are several ways to access the Metadata Service, including:

	
Stateless Session EJB access: Use this type of access with Oracle Enterprise Scheduler user applications.

	
MBean access: This access is intended for use by administrative applications that perform administrative functions using the oracle.as.scheduler.management APIs.

	
MBean proxy access: This access is intended for use by administrative applications that perform administrative functions using the oracle.as.scheduler.management APIs. Use the MBean proxy if the administrative client is remote to the Oracle Enterprise Scheduler.

4.2.1 How to Access the Metadata Service with a Stateless Session EJB

User applications use a Stateless Session EJB to access the Metadata Service for application level metadata operations. Using JNDI you can lookup the Metadata Service associated with an Oracle Enterprise Scheduler application.

Example 4-1 shows the JNDI lookup for the Oracle Enterprise Scheduler Metadata Service that allows you to use application level metadata. Note that the getMetadataServiceEJB() method looks up the metadata service using the name "ess/metadata". By convention, Oracle Enterprise Scheduler applications use "ess/metadata" for the EJB reference to the MetadataServiceBean.

Example 4-1 JNDI Lookup for Stateless Session EJB Access to Metadata Service

// Demonstration on how to lookup metadata service from a Java EE application
// JNDI lookup on the metadata service EJB

import oracle.as.scheduler.core.JndiUtil;

MetadataService ms = JndiUtil.getMetadataServiceEJB();

4.3 Accessing the Metadata Service with Oracle JDeveloper

Using Oracle JDeveloper at design time you can create, view, and update application level metadata objects.

4.4 Querying Metadata Using the Metadata Service

The Metadata Service query methods let you view objects in the metadata repository. You can query job types with the queryJobTypes() method, query job definitions with queryJobDefinitions() method, and likewise you can query other metadata objects using the corresponding MetadataService query method.

Associated with a query you can use a filter to restrict the output to obtain only items of interest (in a manner similar to using a SQL WHERE clause).

4.4.1 How to Create a Filter

A filter specifies a comparison or a criteria for a query. You create a filter by creating a comparison that includes a field argument (String), a comparator, and an associated value (Object). In a filter, you can use the filter methods to combine comparisons to form filter expressions.

Table 4-1 lists the comparison operators (comparator argument).

Table 4-1 Filter Comparison Operators

	Comparison Operator	Description
	
CONTAINS

	
Field contains the specified value

	
ENDS_WITH

	
Field ends with the specified value

	
EQUALS

	
Field equals the specified value

	
GREATER_THAN

	
Field is greater than the specified value

	
GREATER_THAN_EQUALS

	
Field is greater than or equal to the specified value

	
LESS_THAN

	
Field is less than the specified value

	
LESS_THAN_EQUALS

	
Field is less than or equal to the specified value

	
NOT_CONTAINS

	
Field does not contain the specified value

	
NOT_EQUALS

	
Field does not equal the specified value

	
STARTS_WITH

	
Field starts with the specified value

Example 4-2 shows code that creates a new filter.

Example 4-2 Creating a Filter with a Filter Comparator for a Query

Filter filter =
 new Filter(MetadataService.QueryField.PACKAGE.fieldName(),
 Filter.Comparator.NOT_EQUALS, null);

Table 4-2 MetadataService Query Fields

	Query Field	Description
	
MetadataService.QueryField.PACKAGE

	
The name of the package.

	
MetadataService.QueryField.NAME

	
The job definition name.

	
MetadataService.QueryField.JOBTYPE

	
The job type associated with the job definition.

	
MetadataService.QueryField.EXECUTIONTYPE

	
The type of job execution, synchronous or asynchronous.

	
MetadataService.QueryField.EXECUTIONMODE

	
The mode of job set execution, parallel or serial.

	
MetadataService.QueryField.FIRSTSTEP

	
The first step in a job set.

	
MetadataService.QueryField.ACTIVE

	
Indicates whether a work assignment is active.

	
MetadataService.QueryField.PRODUCT

	
Indicates the name of the product with which the job is associated.

	
MetadataService.QueryField.EFFECTIVEAPPLICATION

	
The name of the hosting application wherein this job should run.

4.4.2 How to Query Metadata Objects

A MetadataService query returns an enumeration list of MetadataObjectIDs of the form:

java.util.Enumeration<MetadataObjectId>

Example 4-3 shows a sample routine that queries for a list of job types in the metadata.

Example 4-3 Using Metadata Service Query Methods

Enumeration<MetadataObjectId> qryResults
 = m_service.queryJobTypes(handle, filter, null, false);

Example 4-3, shows the following important steps for using the queryJobTypes() method:

	
You need to supply a reference to a metadata repository by obtaining an instance of MetadataServiceHandle.

	
You need to create a filter for the query. The filter contains the fields, comparators, and values to search for.

	
You determine the field to sort by in the query using the orderBy argument, or you set the orderBy argument to null to indicate that no specific ordering is applied.

	
You set the ascending argument for the query. When ordering is applied setting the ascending argument to true indicates ascending order or false indicates descending order for the result list.

11 Defining and Using Job Sets

This chapter describes how to define and submit a job set. Oracle Enterprise Scheduler job sets provide for collections of job definitions that can be grouped together to run as a single unit.

This chapter includes the following sections:

	
Section 11.1, "Introduction to Defining and Using Job Sets"

	
Section 11.2, "Defining Job Sets"

	
Section 11.3, "Cross Application Job Sets"

	
Section 11.4, "Using Input and Output Forwarding"

11.1 Introduction to Defining and Using Job Sets

Oracle Enterprise Scheduler provides for collections of job definitions that can be grouped together to run as a single unit called a job set. A job set may be nested; thus a job set may contain a collection of job definitions or one or more child job sets. Each job definition or job set included within a job set is called a job set step.

A job set is defined as either a serial job set or a parallel job set. At runtime, Oracle Enterprise Scheduler runs parallel job set steps together, in parallel. When a serial job set runs, Oracle Enterprise Scheduler runs the steps one after another in a specific sequence. Using a serial job set Oracle Enterprise Scheduler supports conditional branching between steps based on the execution status of a previous step.

You can define a serial job set to include a parallel job set, or a parallel job set to include a serial job set. job sets that include a mix of parallel and serial job sets are called complex job sets. For example, when a serial job set contains a child parallel job set, the serial job set runs serially until it reaches the child parallel job set. Then, all the job definitions or job set definitions in the child parallel job set run in parallel. Upon completion of the child parallel job set the serial job set continues running its remaining steps serially. Nested parallel job sets behave the same as non-nested parallel job sets.

For every step in a job set Oracle Enterprise Scheduler supports properties that provide runtime flexibility for how a particular step affects the entire job set. These properties are defined on a per step basis. Table 11-1 shows properties that are useful for job set steps. Any property can be defined on a job set step.

Table 11-1 Job Set Step Properties

	Property	Description
	
EFFECTIVE_APPLICATION

	
Specifies if the step is a job, the job will execute in the effective application. If the step is a nested job set, the jobs in the nested job set will execute in the effective application. The effective application becomes the application for the request for the step and for any child requests of the step.

This property can be defined for job definitions and job types as well as job sets.

	
SELECT_STATE

	
Specifies whether the result state of a job set step should be included when determining the state of the job set. Specifies whether the execution state of the step affects the eventual state of entire job set.

By default, all job set steps affect the job set state. To prevent the state of a particular job set step from affecting the state of the job set, set SELECT_STATE to false for that step. To allow the state of a job set step to affect the overall state of the job set, set SELECT_STATE to true for that step.

Oracle Enterprise Scheduler provides the capability for a job set to execute across multiple applications. A job set runs in its hosting application and by default all job set steps also run in this application. A job set step can be associated with a different application by defining the EFFECTIVE_APPLICATION system property on the step. If the step is a job definition, the job definition executes in the effective application. If the step is a nested job set definition, the job definitions or job set definitions in the nested job set execute in the effective application. The effective application becomes the application for the request for the step and for any child requests of the step. For more information, see Section 11.3, "Cross Application Job Sets".

11.2 Defining Job Sets

You can define a job set in Oracle JDeveloper by specifying the following:

	
The name, package, and description for the job set

	
The parameters for the job set

	
The system properties for the job set

	
Specifying the job set steps

The contents of a job set are specified when you define the job set steps. For example, for a serial job set you specify the name and the execution mode and then you add the job set steps to define the sequence of job definitions or child job sets that run when the job set runs.

11.2.1 How to Define a Job Set

An Oracle Enterprise Scheduler job set is defined by a name, a package, a job set execution mode, step definitions, parameters, and system properties.

To create a job set:

	
In Oracle JDeveloper, right-click in the project to view the New Gallery.

	
Under Categories, expand Business Tier and select Enterprise Scheduler Metadata.

	
Under Items, select job set and click OK. This displays the Create Job Set window.

	
In the Create Job Set window, specify the following:

	
In the Name field, enter a name for the job set or accept the default name.

	
In the Package field, optionally enter a package name for the job set.

	
The Location field displays the full path of the directory where the job set file is stored.

	
Click OK. This creates the job set and displays the Job Set Definition page, as shown in Figure 11-1.

Figure 11-1 Job Set Editor with Serial Job Set

[image: Job Set Editor with serial job set]

	
In the Job Set Editor pane, in the Description field enter a description for the job set.

	
In the Job Set Steps area, select the Parallel or Serial radio button to specify parallel or serial execution mode for the job set.

	
In the Job Set Editor pane add the job set steps. For more information on adding job set steps, see Section 11.2.2, "How to Define Serial Job Set Steps" or Section 11.2.3, "How to Define Parallel Job Set Steps".

	
In the Parameters area, click Add to add parameters associated with the job set. You use parameters to represent an application-specific parameter for the job set or a step specific parameter for the job set. For more information on using parameters, see Section 5.1, "Introduction to Using Parameters and System Properties". For more information, see Section 5.1.2.2, "What You Need to Know About Job Set Level Parameter Materialization".

	
In the System Properties area, click Add to add system properties associated with the job set. For more information on using system properties, see Section 5.4, "Using System Properties".

	
Save the job set.

11.2.2 How to Define Serial Job Set Steps

To define serial job set steps you select the serial execution mode and then add job set steps. Job set steps are created from the available job definitions and job sets defined in the current project. You define serial job set steps when you specify a step ID and a job definition child job set definition associated with the step. You also define links from a job set step terminal states to specify the next step. Table 11-2 lists the possible terminal states that you can specify using JDeveloper.

Table 11-2 Job Set Serial Execution Step Terminal States

	Terminal State	Description
	
SUCCEEDED

	
Oracle JDeveloper indicates this state with a checkmark icon. This path represents a child step or child job set was successfully processed by the system.

	
WARNING

	
Oracle JDeveloper indicates this step with a warning icon. A child step or child job set resulted in a warning.

	
ERROR

	
Oracle JDeveloper indicates this step with an error icon. Some aspect of the request to run the child step or child job set processing resulted in an error.

To add serial job set steps:

	
First, define the appropriate job definitions or job sets and define the parent job set to contain the steps.

	
In the Job Set Editor pane, in the Job Set Steps area, select Serial execution mode.

	
Click the Add icon to add a job set step. This displays the Add Step window.

	
In the Step ID field, enter the step ID. For example, enter step1.

	
In the Job field, from the dropdown list select a job definition or a job set to associate with the step. For example, select Job1.

	
If you need to define step level parameters, then select the Parameters tab and add job set step parameters for the step.

	
If you need to define step level system properties, then select the System Properties tab and add job set step system properties for the step.

	
Select a destination for the step. The step can be added as part of the job set by selecting Insert into main diagram. To make the step available for use in another step, for either error or warning states, select Add to list of available steps.

	
Click OK, this adds the job set step, as shown in Figure 11-2.

Figure 11-2 Job Set with a Step Added

[image: Job set with a step added]

	
From the dropdown list next to the error icon, select Stop or select the step for the ERROR terminal state for the step. For example, from the dropdown list select Step_error (Step_error needs to be defined).

	
From the dropdown list next to the warning icon, select Stop or select the step for the WARNING terminal state for the step. For example, from the dropdown list select Step_warning (Step_warning needs to be defined).

	
Click the Add icon and add additional steps as needed.

	
Click OK, as shown in Figure 11-3.

Figure 11-3 Job Set with Two Steps Added

[image: Job set with two steps added]

11.2.3 How to Define Parallel Job Set Steps

You can add parallel job set steps to a job set.

To add parallel job set steps:

	
First, define the appropriate job definitions and job set definitions and the parent job set.

	
In the Job Set Editor, select the Parallel execution mode.

	
Click the Add icon to add a job set step to the job set.

The Add Step window displays.

	
In the Job field, select a job definition or a job set.

	
If you need to define step level parameters, then select the Parameters tab and add job set step parameters for the step.

	
If you need to define step level system properties, then select the System Properties tab and add job set step system properties for the step.

	
Click OK, this adds the job set step.

	
Click the Add icon.

	
In the Add Step dialog, select the job set or job definition to use for next job in the parallel job set.

	
Click OK. The job set step displays in the job set, as shown in Figure 11-4.

Figure 11-4 Adding Job Set Steps to a Parallel Job Set

[image: Adding job set steps to a parallel job set]

11.2.4 What Happens When You Define a Job Set

When you define a job set with Oracle JDeveloper, Oracle JDeveloper creates an XML file containing elements that represent the steps that you define.

When you define a parallel job set you specify a set of job set steps that run together. A parallel job set only contains steps, and does not contain links between steps, as all the steps execute together and do not depend on each other or upon the order in which each step runs.

When you define a job set Oracle JDeveloper creates an XML document that conforms to the Oracle Enterprise Scheduler job step schema.

11.2.5 What You Need to Know About Serial Job Sets

When you define a serial job set the associated XML document includes job set steps and links. Oracle Enterprise Scheduler enforces the following limitations for serial job set definitions:

	
To prevent looping within a job set, job set definitions should not contain circular execution paths. A circular execution path, or a loop, is defined at the job set level as follows: loop is a path from one job set step along the links of any number of other steps back to the same job set step. For example, in a job set with a flow from Job_A, to Job_B, to Job_C defined, Oracle Enterprise Scheduler does not allow you to define an execution path from Job_B or Job_C back to Job_A. For example you could a create circular execution path, or a loop, if one of the links in a job set step for success, error, or warning links back to the same job set step. Thus, each job set step can link to any of the available job definitions or job sets, or they could all use the same job definition or job set as a link for the success, error and warning case. There is only a possible loop based on the path through the job set steps, as identified by the job set step ID. Oracle Enterprise Scheduler validates job sets at submission time to try to prevent job set step level looping. Also, Oracle JDeveloper does not allow you to create a job set containing a job set step level loop.

	
To prevent looping within a job set, job set definitions should not contain self-referencing execution paths. For example, in a job set with Job_B defined, Oracle Enterprise Scheduler does not allow you to define an execution path from Job_B to Job_B itself if Job_B ends up with a terminal state of ERROR. However using the RETRIES property available for a job definition or a job set, you can have multiple executions up to the configured RETRIES number.

	
When there is no job set link defined for a terminal state of a step, it implies that the job set should stop if the step ends with the unspecified terminal state. For example if there is no link defined for a step Job_D for the state WARNING, and if the step Job_D ends up with the state of WARNING, the job set stops execution.

Each job set step can be defined to use any of the available job definitions or job sets, and multiple steps may use the same job definition or job set.

11.2.6 What You Need to Know About Job Set Parameters and System Properties

There are cases where job set parameters or system properties may conflict with parameters or system properties set either in metadata or when a job request is submitted. For more information on how job set parameters and system properties are handled, see Section 5.2, "Using Parameters with the Metadata Service" and Section 5.3, "Using Parameters with the Runtime Service".

11.2.7 What Happens at Runtime for Job Set State Priorities and State Transitions

At runtime, the individual steps in a job set can end up with different terminal states, as indicated in Table 11-2. When a job set step is a job set, the job set step also ends with one of these terminal states. Oracle Enterprise Scheduler provides a priority hierarchy for the terminal states of job set steps. This means that when there are multiple steps in a job set, the job set terminal state is applied the terminal state of the step with the highest priority terminal state. Thus, the highest priority terminal state of the steps determines the resulting state for the entire job set.

The resulting state of a job set affects all subsequent state dependent processing within the system. A job set always follows the basic rule of transitioning to a terminal state based on the terminal states of its child requests, only after the completion of all child requests. As a rule, the job set transitions to one of the computed terminal states only after all child requests have finished and transitioned to terminal states. For example, if a given job set is actually a step within another job set, then the way in which the state of the inner job set request is computed affects the conditional execution within the outer job set.

Table 11-3 shows the possible job set terminal states with the level indicated in the Priority column.

Table 11-3 Job Set Terminal State Transitions

	Terminal State	Description	Priority
	
ERROR

	
If any step in a job set finishes with the terminal state of ERROR, the entire job set is marked with the terminal state of ERROR no matter what the state of the other steps.

For serial job sets, if one step goes to ERROR, subsequent steps will not execute. For parallel job sets, all steps begin at the same time, and the job set state is not determined until the job set steps reach a terminal state.

	
The ERROR state has the highest priority.

	
WARNING

	
If any step in a job set ends up with the terminal state of WARNING, and there is no step with the terminal state of ERROR then the job set is marked with the terminal state WARNING. When the terminal state is WARNING, post processing will begin.

	
Lower than ERROR

	
EXPIRED

	
The job set transitions to EXPIRED state if at least one of the child requests expires while there is no step that ends with the terminal state of ERROR or WARNING.

	
Lower than ERROR and WARNING

	
CANCELLED

	
Based on the actual outcome of a cancellation attempt, the job set can transition to CANCELLED if at least one child request successfully processes the cancellation attempt and transitions to CANCELLED state. The cancellation might have been requested on the entire job set or just a specific child request.

Further the transition to CANCELLED follows the priorities of terminal states. Therefore the job set transitions to CANCELLED terminal state only if there is no step that ends with the state of ERROR, WARNING, or EXPIRED and there is at least one step with terminal state of CANCELLED.

When a job set is cancelled, steps that have not been added or run are considered to be CANCELLED for the purpose of final state.

	
Lower than ERROR, WARNING, and EXPIRED

	
SUCCEEDED

	
The job set is considered as SUCCEEDED if and only if all child requests completed with the terminal state of SUCCEEDED.

	
The SUCCEEDED state has the lowest priority among all terminal states

Table 11-4 lists additional possible states for a job set:

Table 11-4 Possible Job Set Runtime States

	State	Description
	
WAIT

	
This is the initial state of the submitted job set request. Once the job set request transitions to RUNNING state, however, all generated child requests transition directly to READY state rather than WAIT state.

	
READY

	
Job sets never go to READY state. The submitted job set request transitions from WAIT to RUNNING state. Nested job sets are generated in RUNNING state. The only job set steps that begin in READY state are steps composed of job definitions.

	
RUNNING

	
The submitted job set transitions from WAIT to RUNNING state when it begins to be processed. Nested job sets start in RUNNING state and remain in RUNNING state as long as at least one child is in a non-terminal state.

	
CANCELLING

	
A job set transitions to CANCELLING when the user requests a cancellation for the entire job set. This can be done by calling cancelRequest() with the request ID of the parent request representing the job set. Passing the parent request ID indicates that the user wants to cancel entire job set irrespective of its current, non-terminal, state and the states of its child requests.

In such cases, a cancellation will be attempted on all child requests that are still active and have not already transitioned to a terminal state.

On the other hand if cancellation is attempted only on a specific child request in the job set, there won't be any state change for the parent request and only the particular child request will transition to CANCELLING if possible.

If the cancel happens during post-processing, the state is set to WARNING rather than CANCELLED. If the job set finishes before the cancel is issued, the job set can have state SUCCEEDED.

	
COMPLETED

	
This state indicates that the job set or job set step has finished executing and post-processing will begin.

	
BLOCKED

	
The BLOCKED state is not a terminal state. However any request can remain in a BLOCKED state for a long period until the blocking condition is eliminated (such as incompatibility).

In the case of a job set, any individual step might be BLOCKED while other steps either complete or may be running. The job set itself, however, remains in a RUNNING state. Eventually if all steps in the job set complete except the ones that are in the BLOCKED state, the job set cannot continue further until the blocking step is ready to run. When the blocked step unblocks and completes, the job set can proceed. After the steps complete, the job set eventually goes to the appropriate terminal state.

For a serial job set, the job set may stop at a step that is in BLOCKED state. In such cases, all previous steps are complete and the job set cannot continue until the blocked step executes.

However for a parallel job set, multiple steps can remain in BLOCKED state. Further, while some steps are blocked, other steps can still continue to run.

	
HOLD

	
The HOLD state is very similar to the BLOCKED state. Following the same rules for the BLOCKED state, a job set cannot continue running while a step is in HOLD state. A serial job set cannot continue if the current step in the execution flow is stuck at HOLD state. In the case of a parallel job set, if at least one step is stuck in HOLD state while all other steps have completed, the job set can complete when the step is no longer in HOLD state.

11.3 Cross Application Job Sets

Oracle Enterprise Scheduler provides the capability for a job or a job set to execute across multiple applications as shown in Figure 11-5:

	
Job set FIN has three steps, two of which are defined to execute in different applications.

	
Job set FIN is submitted to the GL application.

	
Step 1 has the EFFECTIVE_APPLICATION system property set to ODI, so Step 1 executes in the ODI application.

	
Step 2 does not have an effective application set, so it executes in the GL application.

	
Step 3 has the EFFECTIVE_APPLICATION system property set to INV, so Step 3 executes in the INV application.

Figure 11-5 Cross Application Job Set Steps

[image: Cross application job set steps]

11.3.1 Overview of Cross Application Job Sets

A job set runs in its hosting application and by default, all job set steps also run in this application. A job set step can be associated with a different application by defining the EFFECTIVE_APPLICATION system property on the step. If the step is a job, the job will execute in the effective application. If the step is a nested job set, the jobs in the nested job set execute in the effective application. When EFFECTIVE_APPLICATION is defined for a step, the request for the step and any child requests of the step are associated with the effective application, meaning the APPLICATION system property for those requests will be set to the effective application.

The EFFECTIVE_APPLICATION system property may only be defined in metadata, specifically job set, job set step, job type, and job. The property EFFECTIVE_APPLICATION is not supported in the request parameters. The effective application must be in the same cluster as the hosting application, or an error will result. If a submitted job set defines the effective application, that value must be the same as the hosting application, or the job set submission will be rejected.

Subrequests created by a job set step must run in the same application as the job set step. In other words, EFFECTIVE_APPLICATION is not supported for subrequests. If the job for a subrequest defines the effective application, that value must be the same as the application of the job submitting the subrequest, or the subrequest submission will be rejected.

For a job set that executes across multiple applications, querying for requests by application is not sufficient to retrieve all children. Oracle Enterprise Scheduler supports absolute parent id as a query field, making it possible to query for all requests in a job set regardless of the application. The absolute parent id is the request id of the job set that was submitted to the hosting application.

11.3.2 Requirements for Cross Application Job Sets

Oracle Enterprise Scheduler supports cross-application job set subject to the following requirements:

	
All applications for a given job set must be deployed in the same cluster.

	
All applications in the job set must share the same enterprise security.

	
All request metadata must be accessible from the application the job set is submitted to, referred to as the hosting application. All metadata for the request are persisted to the runtime store for the hosting application. The persisted metadata include all metadata used by the submitted job set and any nested job set.

	
Metadata for subrequests must be accessible from the application that submits the subrequest, unless the metadata used by the subrequest were already persisted to the runtime store at job set submission time.

11.4 Using Input and Output Forwarding

Oracle Enterprise Scheduler configures a USER_FILE_DIR parameter to specify the directory for all jobs to store their input and output files. This parameter is populated by the property RequestFileDirectory in the connections.xml file. When this parameter is set, Oracle Enterprise Scheduler set the system property USER_FILE_DIR for all job requests. When a job request is processed, in the pre- or post-processor or its execution the job can read, write, create, delete and manage files and sub-directories based this property. Oracle Enterprise Scheduler does not impose any structure on the user file directory nor support any file or directory operations.

The purpose of this file support is to allow job implementation to reference files relative to a configurable location so that the job implementation is not tied to a particular environment. It de-couples job implementation with file input and output from the job execution environment.

The USER_FILE_DIR property allows job requests to dynamically change the file.

11.4.1 Supporting Input and Output Forwarding in Job Sets

Sometimes a step in a job set needs input from the previous step in the job set. Oracle Enterprise Scheduler uses two system properties INPUT_LIST and OUTPUT_LIST to facilitate forwarding the output from one step to the input of the next step.

When a job produces information, such as a list of output files, that needs to be passed on to the next step in a job set, the job adds the information to the OUTPUT_LIST property. Upon completion of the job request execution, Oracle Enterprise Scheduler forwards the OUTPUT_LIST property of the request so that it becomes the INPUT_LIST property of the next step before it executes. The next step takes as its input the output of the previous step.

A job set step can be a single job or a job set, Oracle Enterprise Scheduler supports forwarding with nested job sets as well. For a serial job set, Oracle Enterprise Scheduler defines the output of the job set as the output of the last step of the job set, meaning that only the OUTPUT_LIST property of the last step is forwarded to the next step. Similarly, the input to a serial job set is forwarded only to the first step of the job set; that is, only the first step of a serial job set has the INPUT_LIST property set to the value of the OUTPUT_LIST property of the previous step.

For a parallel job set, Oracle Enterprise Scheduler specifies that the output of the job set is the concatenation of the OUTPUT_LIST property of every job in the job set, separated by a delimiter (with no order guaranteed). The input to a parallel job set is forwarded to every job in the job set, meaning that every job in the parallel job set has the same INPUT_LIST property. The system property OUTPUT_LIST_DELIMITER specifies the delimiter used when listing output files.

Suppose a job set has two jobs, each job producing its own output file, file1.txt and file2.txt. The system property OUTPUT_LIST for that job set will have the values file1.txt;file2.txt, assuming the value of OUTPUT_LIST_DELIMITER is a semi-colon. The concatenated list of output files enables the next job step in the job set to access output files generated by previous steps within the job set.

The InputFile class provides access to files as input to a job definition. There is currently no mechanism for accepting a file as an input to a job request.

Except for forwarding the value of the OUTPUT_LIST property of a step to the value of the INPUT_LIST property of the next step, Oracle Enterprise Scheduler treats the two properties like any other system properties. Oracle Enterprise Scheduler does not define the format for the value of the properties (except for the semicolon delimiter in case of parallel job set). It is the responsibility of the job to define the syntax and semantics for the properties; for example using a fully qualified name or relative path name and a comma or space as a delimiter.

[image: Oracle Corporation]

16 Oracle Enterprise Scheduler Security

Oracle Enterprise Scheduler Security features provide access control for Oracle Enterprise Scheduler resources and application identity propagation for job execution.

	
Section 16.1, "Introduction to Oracle Enterprise Scheduler Security"

	
Section 16.2, "Configuring Metadata Security for Oracle Enterprise Scheduler"

	
Section 16.3, "Configuring Web Service Security for Oracle Enterprise Scheduler"

	
Section 16.4, "Configuring PL/SQL Job Security for Oracle Enterprise Scheduler"

	
Section 16.5, "Elevating Privileges for Oracle Enterprise Scheduler Jobs"

	
Section 16.6, "Configuring a Single Policy Stripe in Oracle Enterprise Scheduler"

	
Section 16.7, "Configuring Oracle Fusion Data Security for Job Requests"

16.1 Introduction to Oracle Enterprise Scheduler Security

Oracle Enterprise Scheduler Security includes the following:

	
Protected operations on MetadataService; protected by MetadataPermission, which enforces metadata access control. Access control on metadata objects. Only privileged user may create, delete, and update job and schedule metadata. For more information see Section 16.1.1, "Oracle Enterprise Scheduler Metadata Access Control."

	
Access control for job requests, enforced by Oracle Fusion Data Security policies. For more information about using Oracle Fusion Data Security policies, see Section 16.7, "Configuring Oracle Fusion Data Security for Job Requests."

	
Support for the use of an application identity. Using an application identity enables elevated privileges for completing a job that requires higher privileges than those allotted to the submitting user. For more information, see Section 16.1.2, "Oracle Enterprise Scheduler Job Execution Security."

16.1.1 Oracle Enterprise Scheduler Metadata Access Control

At design time the Metadata creator needs to decide which job functions can access which Metadata objects. This is expressed by associating each Metadata object with one or more roles and specifying one or more actions for each role. Figure 16-1 shows the metadata security summary.

Figure 16-1 Design Time Metadata Security for Oracle Enterprise Scheduler

[image: Design time metadata security for ESS]

16.1.2 Oracle Enterprise Scheduler Job Execution Security

During job submission, the user under whose permissions the job request is submitted is called the submitting user. At request execution time all user Java code including pre-processing, post-processing, Java jobs, and substitution, is run as the submitting user, retaining all roles and credentials.

If the job metadata specifies SYS_RUNAS_APPLICAITONID, however, the job runs under the elevated privileges of an application ID. For more information, see Section 16.5, "Elevating Privileges for Oracle Enterprise Scheduler Jobs."

16.2 Configuring Metadata Security for Oracle Enterprise Scheduler

When a user accesses Oracle Enterprise Scheduler services using the RuntimeService or MetadataService, the identity of the user is acquired and Oracle Enterprise Scheduler checks if the user has the required permissions to access resources (for example Metadata objects). For example, if a user named teller1 needs to call getJobDefinition to access a Metadata object named caclulateFees, Oracle Enterprise Scheduler ensures that teller1 has READ permission for the Metadata object caclulateFees before returning the object.

At design time the Metadata creator needs to decide which job functions can access which Metadata objects. This is expressed by associating each Metadata object with one or more roles and specifying one or more actions for each role.

There are two options for Metadata role assignments:

	
Using Oracle JDeveloper Tools Oracle ADF Security Wizard

	
Using Oracle JDeveloper Oracle Enterprise Scheduler add-in Metadata pages

Oracle JDeveloper ADF Security wizard creates the roles you use; the roles must be created before you can register roles with a metadata object.

16.2.1 How to Enable Application Security with Oracle ADF Security Wizard

These steps describe a minimal, validated security setup for an application using Oracle Enterprise Scheduler.

Follow these steps to create a working jps-config.xml and a partially-populated jazn-data.xml. Use these steps to configure servlets to work with JPS.

To enable security using the ADF Security wizard:

	
In Oracle JDeveloper, with an application open, from the Application menu select Secure.

	
From the dropdown list, select Configure ADF Security. The Configure ADF Security wizard displays.

	
In the Enable ADF Security page, select either ADF Authentication and Authorization or ADF Authentication and click Next.

	
In the Select authentication type page, select either HTTP Basic Authentication or Form-Based Authentication and click Next.

	
In the Enable automatic policy grants page, select the appropriate options from the Enable Automatic Grant area, and click Next.

	
In the Specify authenticated welcome page, select options as needed and click Next.

	
In the Summary page verify the options and click Finish.

	
In the Security Infrastructure Created dialog, click OK.

Next, to enable security and to ensure that the jazn-data.xml is included in the application deployment, perform the following steps after assembling the EAR file for the application. For more information, see Section 3.6.3, "How to Assemble the EAR File for Scheduler Sample Application."

Ensure the security related files are included with EAR file:

	
In Oracle JDeveloper, select Application > Application Properties.

	
In the Application Properties page, in the Navigator select Deployment.

	
In the Deployment Profiles area, select the EAR file Deployment descriptor. For example, for the sample application this is shown in Section 3.6.3, "How to Assemble the EAR File for Scheduler Sample Application".

	
Click Edit. This displays the Edit EAR Deployment Profile Properties page.

	
In the Edit EAR Deployment Profile Properties page, expand File Groups > Application Descriptors > Filters.

	
In the Filters area, select the Files tab.

	
Ensure that the files jazn-data.xml, jps-config.xml, and weblogic-application.xml are selected under the META-INF folder.

	
Click OK to save the descriptor.

16.2.2 How to Define Principals for Security

You need to define roles before the roles are used in Oracle Enterprise Scheduler security. There are two types of roles that may be defined:

	
Enterprise roles: These are defined directly in Oracle WebLogic Server either using the Oracle WebLogic Server console, using the WLST scripts, or using the ADF Security Wizard in Oracle JDeveloper.

	
Application roles: These can be defined in the jazn-data.xml file or using the ADF Security Wizard.

To define principals security:

	
In Oracle JDeveloper, open the application and expand Application Resources in the Application Navigator.

	
In the Application Resources area, expand Descriptors and META-INF.

	
In META-INF, double-click to open jazn-data.xml.

	
In the page showing jazn-data.xml, select the Overview tab. Note, if the Overview tab is not shown, try closing jazn-data.xml and then opening it again.

	
Click Application Roles...(Manage Users and Roles).

	
On the Edit JPS Identity and Policy Store page, in the navigator expand Identity Store and jazn.com.

	
In the navigator, select Roles and click Add.... This displays the Add Role dialog.

	
In the Add Role dialog, enter a name in the Name field.

	
Click OK.

	
On the Edit JPS Identity and Policy Store page, in the navigator select Application Policy Store. If there is a sub-element with the same name as the application, go to the next step, Otherwise, do the following:

	
Select Application Policy Store.

	
Click New... . This displays the Create Application Policy dialog.

	
In the Create Application Dialog the Display Name field should contain the application name.

	
Click OK to accept the default Display Name.

	
On the Edit JPS Identity and Policy Store page, in the navigator expand Application Policy Store and expand the application name.

	
In the navigator, select Application Roles. This displays the Application Roles page.

	
In the Application Roles page, click Add... to add roles. For correct functionality at least one enterprise role must be mapped to the application role by adding enterprise roles in the Member Roles tab.

	
Click OK.

16.2.3 How to Create Grants with Oracle Enterprise Scheduler Metadata Pages

Access to all Metadata is controlled by grants. In order to ensure access by the right identities, you need to give the correct grants. It is expected that most Metadata grants will be done using the Oracle Enterprise Scheduler Oracle JDeveloper add-in.

First, create any required Oracle Enterprise Scheduler Metadata in an application using File > New > Business Tier > Enterprise Scheduler Metadata. For more information on creating Metadata, see Section 3.5, "Creating Metadata for Scheduler Sample Application."

Using Oracle JDeveloper, you can add security grants to Oracle Enterprise Scheduler metadata objects.

To secure Oracle Enterprise Scheduler metadata objects:

	
Open the Editor page for any Oracle Enterprise Scheduler Metadata object.

	
In the Access Control area, click Add to add a new access control item.

	
In the Add Access Control dialog, select a Role from the dropdown list. This selects a role to grant access privileges.

	
Select one or more actions from the list, Read, Execute, Update, or Delete.

	
Click OK. This displays the updated role, as shown in Figure 16-2.

	
Repeat for as many roles as needed.

Figure 16-2 Security Roles for Oracle Enterprise Scheduler Metadata

[image: Security roles for Oracle Enterprise Scheduler metadata]

16.2.4 How to Create Grants with Oracle ADF Security Wizard

There may be occasions where you want to create grants explicitly, for example when using wildcards. These steps show how to set up grants using the ADF Security wizard.

Note that these steps assume you have already created application roles.

To specify grants with the ADF Security wizard:

	
In the Application Navigator, expand the Application Resources panel.

	
Expand Descriptors and META-INF, as shown in Figure 16-3.

Figure 16-3 Security Configuration Files Including jazn-data.xml in META-INF

[image: Security configuration files]

	
Double-click jazn-data.xml to open the file. In the editor panel for jazn-data.xml, select the Overview tab, and click Application Roles... (Manage Users and Roles). This displays the JPS Identity & Policy Store dialog. Note, if the Overview tab is not shown, try closing jazn-data.xml and then opening it again.

	
In the JPS Identity & Policy Store dialog, in the navigator expand Application Policy Store.

	
Expand application-name, and select Application Roles.

	
Click New.

	
Enter the display name you wish for this grant, and click OK.

	
Select the Principals tab, and click Add... .

	
Enter the name of the application role which will receive the grant; this should be one of the role names created. Leave the Class field as is.

	
Click OK.

	
With the new role selected in the Principals tab, make sure the Type is role.

	
Select the Permissions tab, and click Add....

	
For the Name field, enter a full permission string or a partial string with wildcards; see Table 16-1 for examples. In the Class field, enter oracle.as.scheduler.security.MetadataPermission. Click OK.

	
With the new permission selected in the Permissions tab, enter the desired actions in the Actions Field.

	
Click OK to save the grant.

	
Note:

If necessary, use the following workaround:
	
Right-click the jazn-data.xml file and select Open.

	
Click the Source tab.

	
Under <jazn-policy><grant><grantee>, remove the elements <display-name> and <type>.

Table 16-1 Sample Permission Grants for Security Using Oracle ADF

	Name	Actions	Effect
	
package-part.JobDefinition.MyJavaSucJobDef

	
EXECUTE

	
Grants the ability to submit requests for a single Metadata item.

	
mypackage.subpackage.*

	
CREATE,EXECUTE

	
Grants to ability to create and execute any new Metadata items in /mypackage/subpackage

	
JobDefinition.SYS_AdHocRequest

	
CREATE,EXECUTE

	
Grants ad hoc submission permission

	
mypackage.*

	
CREATE,EXECUTE,DELETE

	
Grants wide-open permissions

16.2.5 About MetadataPermission APIs

Grants for Metadata are part of the class oracle.as.scheduler. security.MetadataPermission. The name, or target of the permission is based on the package, Metadata object type, and name of the Metadata object being protected; this identifier can be retrieved from MetdataObjectId#toPermissionString().

Table 16-2 lists the actions for the grants. The notation <Type> is a placeholder for all of the metadata object types. For example, get<Type>() refers to the methods getJobDefinition(), getJobType(), getJobSet().

Table 16-2 Grant Actions for Metadata Security

	Action	Implies	Metadata Functions
	
READ

	
None

	
get<Type>(), query<Type>()

	
EXECUTE

	
READ

	
submitRequest()

	
CREATE

	
READ

	
add<Type>()

	
UPDATE

	
READ

	
update<Type>()

	
DELETE

	
READ

	
delete<Type>()

If you are submitting ad-hoc requests, you can have full wildcard ("*") permission with both EXECUTE and CREATE actions. When submitting ad-hoc requests, that is, using submitRequest() without certain MetadataObjectIds, you can grant permissions with the full wildcard ("*") name using the EXECUTE and CREATE actions.

16.2.6 What Happens When You Configure Metadata Security

Each time a user application calls a MetdataService or RuntimeService method, Oracle Enterprise Scheduler checks the current subject for privileges on the metadata accessed by the methods. For example, submitting a request requires EXECUTE permissions on the job definition or job set metadata object associated with the submission. Methods that change metadata, for example calling updateJobDefinition(), require UPDATE permissions.

For all MetadataService methods except queries, an exception is thrown when the user tries to access a Metadata object for which the user does not have permission.

The MetadataService query methods have different behavior. When a user performs a query Oracle Enterprise Scheduler only returns Metadata objects that have READ permission. Thus a user who has no permissions on Metadata objects receives an empty list for all queries, but this user would not see an exception thrown due to lack of permissions.

The value of SystemProperty.USER_NAME is overwritten at submission time; the user cannot spoof an identity at submission time using SystemProperty.USER_NAME.

16.3 Configuring Web Service Security for Oracle Enterprise Scheduler

For information about securing the Oracle Enterprise Scheduler web service, see Section 10.9, "Securing the Oracle Enterprise Scheduler Web Service."

16.4 Configuring PL/SQL Job Security for Oracle Enterprise Scheduler

For standalone cases, implement the application user session using Java or the PL/SQL API as described in the chapter "Implementing Application User Sessions" in Oracle Fusion Applications Developer's Guide.

16.5 Elevating Privileges for Oracle Enterprise Scheduler Jobs

When a user accesses Oracle Enterprise Scheduler services using the RuntimeService or MetadataService interfaces, the identity of the user calling the methods is acquired. This identity is used to check whether the user has the required permissions to access certain resources such as metadata objects. For example, if user teller1 calls the method getJobDefinition for metadata object caclulateFees, Oracle Enterprise Scheduler ensures that teller1 has read permissions for metadata object caclulateFees before returning the object.

The caller identity is also used to run jobs requested by the user. For example, if user teller1 calls the method submitRequest() for a Java job, the requested jobs run under teller1 and retain all roles and credentials assigned to that user.

Oracle Enterprise Scheduler supports the use of an application identity. Using an application identity enables elevated privileges for completion of a job that requires higher privileges than those allotted to the submitting user.

For more information about enabling elevating privileges, see Section 9.13, "Elevating Access Privileges for a Scheduled Job."

16.6 Configuring a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Platform Security policy store serves as the repository for authorization policies. Authorization policies load at run time into the Java Virtual Machine, and are used to make decisions regarding authorization. Authorization policies comprise a hierarchy of application roles, the mapping of enterprise roles to application roles and permissions grants to application roles. Application roles can also be hierarchical.

Aside from authorization policies, Oracle Platform Security policy store also stores administrative constructs that help in maintaining these authorization policies, including resource catalogs (with associated resource types), permission sets and role categories. The authorization polices and administrative components are scoped to an application. This is known as an application stripe.

An application stripe is a collection of JAAS policies applicable to the application with which it is associated. Out of the box, an application stripe maps to an Oracle Java EE application. Oracle Platform Security also supports mapping multiple Java EE applications to one application stripe. The application ID string identifies the name of the application or applications.

16.6.1 How to Configure a Single Policy Stripe in Oracle Enterprise Scheduler

Oracle Enterprise Scheduler allows specifying an applicationStripe name and mapping it to a JPS policy context ID. You can assign multiple Oracle Enterprise Scheduler hosting applications to a single policy context.

To configure an Oracle Enterprise Scheduler hosting application to a specific applicationStripe:

	
Open the ejb-jar.xml file.

	
Under the message-driven element, add an activation-config-properties element with the value applicationStripe.

	
Under the jpsinterceptor-class element, configure the JpsInterceptor.

Make sure to match the value of applicationStripe under the <message-driven> element with the application.name value under the <interceptor> element.

Example 16-1 shows an applicationStripe configuration for the policy context ESS_FUNCTIONAL_TEST_APP_STRIPE.

Example 16-1 Configuring the applicationStripe and the JpsInterceptor

<ejb-jar>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>

 <activation-config-property>
 <activation-config-property-name>applicationStripe</activation-config-property-name>
 <activation-config-property-value>ESS_FUNCTIONAL_TESTS_APP_
 STRIPE</activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 </enterprise-beans>

 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</env-entry-value>
 <injection-target>
 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor
 </injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

	
If your application has a web module, configure the web module JpsFilter to use the same applicationStripe in the file web.xml. Example 16-2 shows a code sample.

Example 16-2 Configuring the Web Module in web.xml

<web-app>
 <filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
 ...
 <init-param>
 <param-name>application.name</param-name>
 <param-value>ESS_FUNCTIONAL_TESTS_APP_STRIPE</param-value>
 </init-param>
 </filter>

</web-app>

16.6.2 What Happens When You Configure a Single Policy Stripe

At design time, an application stripe manifests as:

	
An <application> element under the <policystore> element in the jazn-data.xml file.

	
A node under the node cn=<Weblogic.domain.name>,cn=JPSContext,cn=<root.node>, such as cn=ATGDemo,cn=base_domain,cn=JPSContext,cn=MY_Node.

16.6.3 What Happens at Runtime

At run time, an application stripe manifests as an instance of the class oracle.security.jps.service.policystore.ApplicationPolicy.

16.7 Configuring Oracle Fusion Data Security for Job Requests

Oracle Fusion Data Security for Oracle Fusion Applications enforces security authorizations for access and modification of specific data records. Oracle Fusion Data Security integrates with Oracle Platform Security Services (OPSS) by granting actions to OPSS principals. The grant defines who (the principals) can do what (the actions) on a given resource. A grant in Oracle Fusion Data Security can use any enterprise user or enterprise group as principals. For more information about implementing Oracle Fusion Data Security, see the chapter "Implementing Oracle Fusion Data Security" in Oracle Fusion Applications Developer's Guide.

In the context of Oracle Enterprise Scheduler, a job request access control data security policy comprises a grant, a grantee and a set of ESS_REQUEST privileges for a set of job requests as follows:

	
A grantee, represented by grantee ID such as a user or application role, the ID should match the user GUID or application role GUID retrieved from Oracle Fusion Middleware.

	
A set of ESS_REQUEST privileges represented by a menu ID mapped to a set of form functions.

	
A set of data represented by an INSTANCE_SET ID. An INSTANCE_SET is typically represented by a predicate which can be appended to a query to the job request data exposed to Oracle Fusion Applications (see Section 16.7.1, "Oracle Fusion Data Security Artifacts").

The job request access control data security policy can be managed using Oracle Authorization Policy Manager as are other Oracle Fusion Data Security policies. If Oracle Authorization Policy Manager is not available, you can use SQL scripts to manipulate the Oracle Fusion Data Security artifacts.

16.7.1 Oracle Fusion Data Security Artifacts

To use Oracle Enterprise Scheduler job request access control feature in the context of Oracle Fusion Applications, the Oracle Fusion Applications schema and Oracle Enterprise Scheduler schema must be located in a single database.

Oracle Enterprise Scheduler implements job request data security on top of the request_history and request_property tables. It exposes Oracle Enterprise Scheduler job request related data to the Oracle Fusion Applications schema through the following views: request_history_view and request_property_view. Two synonyms are created in the Oracle Fusion Applications schema which are linked to the Oracle Enterprise Scheduler schema.

The request_history_view contains all columns that correspond to RuntimeService.QueryField, which is used when constructing the filter for queryRequest() operations, as well as two other columns: submitter and submitterguid. Be sure to define your INSTANCE_SET based on these columns only.

Table 16-3 lists the Oracle Fusion Applications schema tables and their Oracle Enterprise Scheduler synonyms, as well as the columns used to define data security policies.

Table 16-3 Mapping Oracle Fusion Applications Schema Synonyms to Oracle Enterprise Scheduler Schema Views and Relevant Columns

	Oracle Fusion Applications Schema Synonym	Link to Oracle Enterprise Scheduler Schema View	Columns
	
ess_request_history

	
request_history_view

	
See table for the QueryField and View Column mapping.

	
ess_request_property

	
request_property_view

	
create or replace view request_property_view

as

select

requestid,

name,

scope,

datatype,

value,

lobvalue,

lobflag

from request_property

with read only;

Table 16-4 shows the mapping of RuntimeService.QueryField columns to the Oracle Enterprise Scheduler request_history_view columns.

Table 16-4 Mapping RuntimeService.QueryField Columns to request_history_view Columns

	RuntimeService.QueryField Columns	Request_history_view Columns
	
QueryField.REQUESTID

	
requestid

	
QueryField.APPLICATION

	
application

	
QueryField.USERNAME

	
userName

	
QueryField.PRODUCT

	
product

	
QueryField.REQUEST_CATEGORY

	
requestCategory

	
QueryField.PRIORITY

	
priority

	
QueryField.NAME

	
name

	
QueryField.ABSPARENTID

	
absParentId

	
QueryField.TYPE

	
type

	
QueryField.DEFINITION

	
definition

	
QueryField.STATE

	
state

	
QueryField.SCHEDULE

	
schedule

	
QueryField.PROCESSSTART

	
processStart

	
QueryField.PROCESSEND

	
processEnd

	
QueryField.REQUESTEDSTART

	
requestedStart

	
QueryField.REQUESTEDEND

	
requestedEnd

	
QueryField.SUBMISSION

	
submission

	
QueryField.PARENTREQUESTID

	
parentRequestId

	
QueryField.WORKASSIGNMENT

	
workAssignment

	
QueryField.SCHEDULE

	
scheduled

	
QueryField.REQUESTTRIGGER

	
requesttrigger

	
QueryField.PROCESSOR

	
processor

	
QueryField.CLASSNAME

	
classname

	
QueryField.ELAPSEDTIME

	
elapsedtime

	
QueryField.WAITTIME

	
waittime

	
QueryField.SUBMITTER

	
submitter

	
QueryField.SUBMITTERGUID

	
submitterguid

Table 16-5 maps FND_MENUS to FND_FORM_FUNCTIONS as reflected in FND_MENU_ENTRIES.

Table 16-5 Mapping FND_MENUS to FND_FORM_FUNCTIONS

	FND_MENUS in the Oracle Fusion Applications Schema	FND_FORM_FUNCTIONS
	
ESS_REQUEST_ADMIN

	
ESS_REQUEST_READ

ESS_REQUEST_UPDATE

ESS_REQUEST_HOLD

ESS_REQUEST_CANCEL

ESS_REQUEST_LOCK

ESS_REQUEST_RELEASE

ESS_REQUEST_DELETE

ESS_REQUEST_PURGE

	
ESS_REQUEST_VIEW

	
ESS_REQUEST_READ

	
ESS_REQUEST_OPERATE

	
ESS_REQUEST_READ

ESS_REQUEST_HOLD

ESS_REQUEST_CANCEL

ESS_REQUEST_LOCK

ESS_REQUEST_RELEASE

	
ESS_REQUEST_OUTPUT_ADMIN

	
ESS_REQUEST_OUTPUT_VIEW

ESS_REQUEST_OUTPUT_DELETE

Table 16-6 lists the required data privilege (form_function) for a user to perform an Oracle Enterprise Scheduler runtimeService operation.

Table 16-6 Data Privileges Needed to Execute runtimeService Operations

	RuntimeService API Operation	Data Privilege (FND_FORM_FUNCTIONS)	Notes
	
open

	
none

	

	
close

	
none

	
Two overloaded methods.

	
submitRequest

	
none

	
Five overloaded methods, which are secured by metadata security, not data security.

	
getRequestParameter

	
ESS_REQUEST_READ

	

	
getRequestState

	
ESS_REQUEST_READ

	

	
getRequests

	
ESS_REQUEST_READ

	

	
getRequestDetail

	
ESS_REQUEST_READ

	

	
getRequestDetailBasic

	
ESS_REQUEST_READ

	

	
lockRequest

	
ESS_REQUEST_LOCK

	

	
updateRequestParameter

	
ESS_REQUEST_UPDATE

	

	
queryRequests

	
ESS_REQUEST_READ

	

	
holdRequest

	
ESS_REQUEST_HOLD

	

	
releaseRequest

	
ESS_REQUEST_RELEASE

	

	
cancelRequest

	
ESS_REQUEST_CANCEL

	

	
deleteRequest

	
ESS_REQUEST_DELETE

	

	
purgeRequest

	
ESS_REQUEST_PURGE

	

	
publishEvent

	
none

	
Not targeted to a request.

	
isHandleRollbackOnly

	
none

	
Not targeted to a request.

	
setHandleRollbackOnly

	
none

	
Not targeted to a request.

	
replaceSchedule

	
none

	

Table 16-7 displays the INSTANCE_SET conditions provided by Oracle Authorization Policy Manager.

Table 16-7 INSTANCE_SET Conditions Provided by Oracle Authorization Policy Manager

	INSTANCE_SET Condition	Description
	
REQS_SUBMITTEDBY_SESSIONUSER

	
Oracle Enterprise Scheduler requests that the submitter is the current session user.

	
REQS_RUNAS_SESSIONUSER

	
Oracle Enterprise Scheduler requests that the RunAs user is the current session user.

	
REQS_SUBREQS_BY_SUBMITTER

	
Oracle Enterprise Scheduler requests and subrequests are all submitted by the submitter.

	
REQS_ALL_OF_ONE_APP

	
Indicates all Oracle Enterprise Scheduler requests related to a product within a logical application. This condition takes two parameters that match the job request parameter values of SYS_application and SYS_product.

	
ESS_REQS_BY_NAME_VALUE_PARAM

	
Oracle Enterprise Scheduler job request whose RequestParameter name value pair is specified in data security grants. This condition takes two parameters that match the one job request parameter's name and value.

Table 16-8 lists the Oracle Fusion Data Security policies available for use with Oracle Enterprise Scheduler out of the box.

Table 16-8 Oracle Fusion Data Security Policies for Oracle Enterprise Scheduler

	Oracle Fusion Data Security Policy	Description
	
ESS_REQUEST_SUBMITTER_ADMIN_SUBMITTED_REQUESTS

	
The submitter of the job request is permitted to view and administer the requests they submitted.

	
ESS_REQUEST_SUBMITTER_ADMIN_SUBMITTED_REQUESTS_SUBREQS

	
The submitter of the job requests and subrequests is permitted to view and administer on the requests they submitted.

	
ESS_REQUEST_RUNASUSER_ADMIN_EXECUTED_REQUESTS

	
The runAs user is permitted to view and administer the requests they execute.

	
ESS_REQUEST_RUNASUSER_VIEWOUTPUT_EXECUTED_REQUESTS

	
The runAs user is permitted to view the output of the job requests they executed.

For more information about the runAs user, or elevating access privileges, see Section 9.13, "Elevating Access Privileges for a Scheduled Job."

16.7.2 How to Apply Oracle Fusion Data Security Policies

The Oracle Fusion Data Security components described in Section 16.7.1, "Oracle Fusion Data Security Artifacts" can be applied as follows.

To apply Oracle Fusion Data Security policies:

	
Examine the policies described in Table 16-8 and determine whether you can use any of them in your application.

	
If you can use one of these policies, skip to the last step.

	
If the policies do not apply, continue on to the next step.

	
Determine whether any of the FND_MENUS listed in Table 16-5 suit the out-of-the-box Oracle Fusion Data security policy you selected for your application. If you cannot apply any of the FND_MENUS listed in Table 16-5, create your own FND_MENUS and FND_MENUS_ENTRIES as described in the chapter "Implementing Oracle Fusion Data Security" in the Oracle Fusion Applications Developer's Guide.

	
Determine whether you can use the INSTANCE_SET conditions in Table 16-7 and the Oracle Fusion Data Security policies in your application. If you cannot use the conditions, create your own FND_INSTANCE_SET. For more information about creating an FND_INSTANCE_SET, see the chapter "Implementing Oracle Fusion Data Security" in the Oracle Fusion Applications Developer's Guide.

	
Create an Oracle Fusion Data Security policy, as described in Section 16.7.3, "How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler Components."

	
Note:

If developing an Oracle Fusion application, do not grant an Oracle Enterprise Scheduler access policy to the grantee of an authenticated-role or anonymous-role, as doing so may affect the behavior of Oracle Enterprise Scheduler or other products.

	
Test your application.

16.7.3 How to Create Functional and Data Security Policies for Oracle Enterprise Scheduler Components

You can use Oracle Authorization Policy Manager to create functional and data security policies for Oracle Enterprise Scheduler.

For more information about creating policies in Oracle Authorization Policy Manager, see the chapter "Managing Security Artifacts" in Oracle Fusion Middleware Oracle Authorization Policy Manager Administrator's Guide (Oracle Fusion Applications Edition).

To create functional and data security policies for Oracle Enterprise Scheduler:

	
Create a resource.

	
From the list of policies, expand the fcsm policy stripe and select fcsm > Resource Catalog > Resources.

	
From the Actions menu, click New.

	
Define a resource with the resource type ESSMetadataResourceType, as well as the name and display name of the Oracle Enterprise Scheduler component using the following syntax: oracle.apps.ess.applicationName.JobDefintitionName.JobName.

	
Save the resource.

	
Define a resource policy.

	
Select the resource you just created and click Create Policy.

	
Add principals (grantees) by clicking the Add button.

	
In the Add Principal window, search for the relevant application role or roles. Select the roles and click Add.

	
In the Actions field, select the relevant actions and click Apply.

	
Create an authorization condition.

	
In the Authorization Management tab, select Global and search for the database resource you want to use. TABLE XY lists the database resources related to Oracle Enterprise Scheduler.

	
Select the resource and click Edit.

	
Click the Conditions tab and select Actions > New.

	
Enter a name, display name and SQL predicate for the condition.

	
Define a data policy.

	
From the Actions menu, select New Policy.

	
In the New Policy window, use the Role and Database Resource fields to add the relevant roles and resources.

	
Select the role you defined. In Database Resource Details region, select the condition name you just created and choose the actions you require.

3 Use Case Oracle Enterprise Scheduler Sample Application

This chapter describes how to create and run an application that uses Oracle Enterprise Scheduler to run job requests and demonstrates how to work with Oracle JDeveloper to create an application using Oracle Enterprise Scheduler. It then shows a variation on the sample application using two split applications — a job submission application, a submitter, and a job execution application, a hosting application.

This chapter includes the following sections:

	
Section 3.1, "Introduction to the Scheduler Sample Application"

	
Section 3.2, "Creating the Application and Projects for Scheduler Sample Application"

	
Section 3.3, "Creating a Java Implementation Class for the Sample Application"

	
Section 3.4, "Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests"

	
Section 3.5, "Creating Metadata for Scheduler Sample Application"

	
Section 3.6, "Assembling the Scheduler Sample Application"

	
Section 3.7, "Deploying and Running the Scheduler Sample Application"

	
Section 3.8, "Troubleshooting the Oracle Enterprise Scheduler Sample Application"

	
Section 3.9, "Using Submitting and Hosting Split Applications"

3.1 Introduction to the Scheduler Sample Application

The scheduler sample application includes a complete application that you build with Oracle JDeveloper using Oracle Enterprise Scheduler APIs. Oracle Enterprise Scheduler lets you run different types of job requests, including: Java classes, PL/SQL procedures, and process type jobs. To create an application that schedules job requests you need to do the following:

	
Create the Java classes, PL/SQL procedures, or executable processes that specify the routine you want to schedule and run with Oracle Enterprise Scheduler.

	
Specify Oracle Enterprise Scheduler metadata and the characteristics for job requests.

	
Define the Java application that uses Oracle Enterprise Scheduler APIs to specify and submit job requests.

	
Assemble and deploy the Java application that uses Oracle Enterprise Scheduler APIs.

	
Run the Java application that uses Oracle Enterprise Scheduler APIs.

	
Note:

The instructions in this chapter assume that you are using a new Oracle JDeveloper that you install without previously saved projects or other saved Oracle JDeveloper state. If you have previously used Oracle JDeveloper, some of the instructions may not match the exact steps shown in this chapter, or you may be able to shorten procedures or perform the same action in fewer steps. In some cases Oracle JDeveloper does not show certain dialogs based on your past use of Oracle JDeveloper.

When you use Oracle Enterprise Scheduler the application Metadata is stored with MDS. To use MDS you need to have access to a database with MDS user and schema configured.

3.2 Creating the Application and Projects for Scheduler Sample Application

Using Oracle JDeveloper you create an application and the projects within the application contain the code and support files for the application. To create the scheduler sample application you need to do the following:

	
Create an application in Oracle JDeveloper.

	
Create a project in Oracle JDeveloper.

	
Create the application code that uses the Oracle Enterprise Scheduler APIs. For the scheduler sample application you create the EssDemo servlet in the EssDemoApp application.

3.2.1 How to Create the EssDemoApp Application

To work with Oracle Enterprise Scheduler, you first create an application and a project in Oracle JDeveloper.

To create the EssDemo application:

	
In the Application Navigator, select New Application....

	
In the Name your application window enter the name and location for the new application.

	
In the Application Name field, enter an application name. For this sample application, enter EssDemoApp.

	
In the Directory field, accept the default.

	
Enter an application package prefix or accept the default, no prefix.

The prefix, followed by a period, applies to objects created in the initial project of an application.

	
In the Application Template area, select Fusion Web Application (ADF).

	
Click Next.

	
Click Finish.

	
This displays the File Summary page, as shown in Figure 3-1.

Figure 3-1 Sample Application File Summary Page

[image: Sample application file summary page]

3.2.2 How to Create a Project in the Scheduler Sample Application

When you create an application using the Fusion Web Application (ADF) template, Oracle JDeveloper adds two projects in the application named Model and ViewController (Oracle ADF is based on the MVC design pattern that includes these areas). To organize an Oracle Enterprise Scheduler application you add another project and use this project to add the Oracle Enterprise Scheduler metadata and the Oracle Enterprise Scheduler implementation for the Java classes that you want to run with Oracle Enterprise Scheduler.

To create a scheduler project:

	
From the Application Menu for the EssDemoApp application select New Project....

	
In the New Gallery, under Categories expand General and select Projects.

	
In the Items area select ADF Model Project, as shown in Figure 3-2.

Figure 3-2 Adding an Empty Project for Sample Application

[image: Adding an Empty Project for Sample Application]

	
Click OK.

	
On the Name Your Project page enter a project name. For example, enter EssDemo as the project name, as shown in Figure 3-3.

Figure 3-3 Adding the EssDemo Project to the Sample Application

[image: Adding the EssDemo Project to the Sample Application]

	
Click Finish.

Configure Oracle JDeveloper resource options for project:

	
In the Application Navigator, select the EssDemo project.

	
Right-click and from the dropdown list select Project Properties....

	
In the Project Properties window, in the navigator expand Project Source Paths and select Resources.

	
Select the Included tab and then select the Include Content From Subfolders checkbox, as shown in Figure 3-4.

	
Click OK.

Figure 3-4 Updating Project Resources for Sample Project

[image: Updating Project Resources for Sample Project]

3.2.3 How to Set Project Properties for Enterprise Scheduler

You need to add the Oracle Enterprise Scheduler extensions to the project before you use the Oracle Enterprise Scheduler APIs.

To allow Oracle JDeveloper to use Oracle Enterprise Scheduler extensions:

	
In Oracle JDeveloper, in the Application Navigator select the EssDemo project.

	
Right-click and from the dropdown list select Project Properties....

	
In the Project Properties navigator, select Libraries and Classpath.

	
In the Libraries and Classpath area, click Add Library....

	
In the Add Library dialog, in the Libraries area select Enterprise Scheduler Extensions.

	
In the Add Library dialog click OK. This adds the appropriate libraries, as shown in Figure 3-5.

Figure 3-5 Adding Oracle Enterprise Scheduler Extensions to Project

[image: Adding Enterprise Scheduler Extensions to Project]

	
Click OK to dismiss the Project Properties dialog.

3.3 Creating a Java Implementation Class for the Sample Application

To define an application that runs a Java class under control of Oracle Enterprise Scheduler you need to create the Java class that implements the Oracle Enterprise Scheduler Executable interface. The Executable interface specifies the contract that allows you to use Oracle Enterprise Scheduler to invoke a Java class.

3.3.1 How to Create a Java Class Using the Executable Interface

A Java class that implements the Executable interface must provide an empty execute() method.

To create a Java class that implements the executable interface:

	
In the Application Navigator, select the EssDemo project.

	
In the Overview area, select the Java Class navigation tab as shown in Figure 3-6.

Figure 3-6 Add a Java Class to the EssDemo Project

[image: Add a Java Class to the EssDemo Project]

	
In the Overview area in the Java Files area, select New and from the dropdown list select Java Class.

	
In the Select a Project dialog, select the EssDemo.jpr project.

	
Click OK. This displays the Create Java Class dialog.

	
In the Create Java Class dialog, in the Name field, enter HelloWorld.

	
In the Create Java Class window, in the Package field, enter essdemo.

	
In other fields accept the defaults as shown in Figure 3-7.

Figure 3-7 Adding a Java Implementation Class to the Sample Application

[image: Adding a Java Implementation Class to the Sample Application]

	
Click OK.

	
Replace the generated contents of the HelloWorld.java file with the contents of the HelloWorld.java supplied with the scheduler sample, as shown in Example 3-1. This code is also shown in Figure 3-8.

Figure 3-8 Java Class That Implements Executable for Sample Application

[image: Java Class That Implements Executable for Sample Application]

Example 3-1 shows HelloWorld(), the Java class that implements the interface oracle.as.scheduler.Executable.

Example 3-1 Oracle Enterprise Scheduler HelloWorld Java Class

package essdemo;

import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.Executable;
import oracle.as.scheduler.ExecutionCancelledException;
import oracle.as.scheduler.ExecutionErrorException;
import oracle.as.scheduler.ExecutionPausedException;
import oracle.as.scheduler.ExecutionWarningException;
import oracle.as.scheduler.RequestExecutionContext;

public class HelloWorld implements Executable {
 public HelloWorld() {
 }

 public void execute(RequestExecutionContext ctx, RequestParameters params)
 throws ExecutionErrorException,
 ExecutionWarningException,
 ExecutionCancelledException,
 ExecutionPausedException
 {
 System.out.println("**** Sample Job Running, Request ID: " +
 ctx.getRequestId());
 }
}

3.3.2 What Happens When You Create a Java Class That Implements the Executable Interface

You need to create a Java class to use Oracle Enterprise Scheduler. The Oracle Enterprise Scheduler Executable interface provides a hook for using the Java class that you supply with Oracle Enterprise Scheduler. A Java class that implements the Executable interface can be submitted to Oracle Enterprise Scheduler for execution.

3.3.3 What You Need to Know About the Executable Interface

When you create a class that implements the Executable interface you should follow certain practices to make sure that your code performs correctly. These practices allow you to handle Oracle Enterprise Scheduler exceptions.

	
Note:

Every time a job request executes, Oracle Enterprise Scheduler calls the execute() method. All of the business logic associated with a job request should be implemented through this method. Thus, the Java implementation should not rely on instance or static member variables for maintaining state. The Java implementation can use static variables but their use is not recommended to manage state.

In Example 3-1, note the following:

	
The routine should throw the ExecutionErrorException to signal to the Oracle Enterprise Scheduler runtime that an unrecoverable error occurred during execution. For example, you can wrap your exception generated during execution with this exception. Upon this exception, Oracle Enterprise Scheduler transitions the request to the ERROR state.The routine should throw the ExecutionWarningException when the implementation detects a failure condition that it needs to communicate to Oracle Enterprise Scheduler. Upon this exception, Oracle Enterprise Scheduler transitions the request to the WARNING state. The routine should throw the ExecutionCancelledException when the implementation detects a condition for request cancellation that it needs to communicate to Oracle Enterprise Scheduler. Upon this exception, Oracle Enterprise Scheduler transitions the request to the CANCELLED state.

	
The routine should throw the ExecutionPausedException to indicate that the class implementing the Executable interface should pause for the completion of a subrequest. Upon this exception, Oracle Enterprise Scheduler transitions the request to the PAUSED state.

3.4 Adding Application Code to Submit Oracle Enterprise Scheduler Job Requests

In an Oracle Enterprise Scheduler application you use the Oracle Enterprise Scheduler APIs to submit job requests from any component in the application. The EssDemoApp sample application provides a Java servlet for a servlet based user interface for submitting job requests (using Oracle Enterprise Scheduler).

3.4.1 How to Add Required Libraries to Project

You need to add the EJB3.0 libraries and the Oracle Enterprise Scheduler extensions to the ViewController project before you use the Oracle Enterprise Scheduler APIs in a servlet.

To add Oracle JDeveloper EJB3.0 and Enterprise Scheduler libraries:

	
In the Application Navigator select the ViewController project.

	
Right-click and from the dropdown list select Project Properties....

	
In the Project Properties navigator, select Libraries and Classpath.

	
In the Libraries and Classpath area, click Add Library....

	
In the Add Library dialog select Enterprise Scheduler Extensions.

	
In the Add Library dialog also select EJB 3.0.

	
Click OK. This action adds the libraries as shown in Figure 3-9.

Figure 3-9 Adding Enterprise Scheduler Extensions to ViewController Project

[image: Adding Extensions to ViewController Project]

	
Click OK to dismiss the Project Properties dialog.

3.4.2 How to Create the EssDemo Servlet

Using MVC design pattern you create the EssDemo servlet in the ViewController project.

To create the sample servlet:

	
In Application Navigator select the ViewController project.

	
Click the New... icon to open the New Gallery.

	
In the New Gallery, in the Categories area expand Web Tier and select Servlets.

	
In the New Gallery, in the Items area select HTTP Servlet.

	
Click OK. This starts the Create HTTP Servlet Wizard.

	
On the create HTTP Servlet Page - Welcome, click Next.

	
On the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter the class name in the Class field. For this example in the Class field, enter EssDemo.

	
Enter the package name in the Package field. For this example, in the Package field, enter demo.

	
In the Generate Content Type field, from the dropdown list select HTML.

	
In the Implement Methods area, select the doGet() and doPost() checkboxes, as shown in Figure 3-10.

Figure 3-10 Using the Create HTTP Servlet Wizard to Create the Sample Servlet

[image: Creating the Sample Servlet]

	
Click Next.

	
In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the Name field, enter: EssDemo

	
In the Create HTTP Servlet - Step 2 of 3: Mapping Information dialog, in the URL Pattern field, enter: /essdemo/*, as shown in Figure 3-11.

Figure 3-11 Using the Create HTTP Servlet Wizard: Step 2 of 3 Dialog

[image: Create HTTP Servlet Wizard: Step 2 of 3 Dialog]

	
Click Finish.

	
The supplied EssDemo application includes the completed servlet. You need to copy the source code into your project. To do this, in Oracle JDeveloper replace the contents of the servlet with the contents of the file EssDemo.java supplied with the sample application, as shown in Figure 3-12. The EssDemo.java sample code includes several hundred lines, so it is not included in this text in an example.

Figure 3-12 Adding the Sample Servlet to the ViewController Project

[image: Adding the Sample Servlet to the ViewController Project]

3.5 Creating Metadata for Scheduler Sample Application

To use the Oracle Enterprise Scheduler sample application to submit a job request you need to create metadata that defines a job request, including the following:

	
A job type: this specifies an execution type and defines a common set of parameters for a job request.

	
A job definition: this is the basic unit of work that defines a job request in Oracle Enterprise Scheduler.

3.5.1 How to Create a Job Type for Java

An Oracle Enterprise Scheduler job type specifies an execution type and defines a common set of parameters for a job request.

To create a job type:

	
In the Application Navigator, select the EssDemo project.

	
Press Ctrl-N. This displays the New Gallery.

	
In the New Gallery, select the All Technologies tab.

	
In the New Gallery, in the Categories area expand Business Tier and select Enterprise Scheduler Metadata.

	
In the New Gallery, in the Items area select Job Type as shown in Figure 3-13.

Figure 3-13 Adding Job Type Metadata to the Sample Application

[image: Adding Job Type Metadata to the Sample Application]

	
Click OK. This displays the Create Job Type dialog.

	
In the Create Job Type dialog, specify the following:

	
In the Name field, enter a name for the job type. For this example, enter the name: Jobtype_essdemo1.

	
In the Package field, enter a package name. For example, enter mypackage.

	
In the Execution Type field, from the dropdown list select JAVA_TYPE as shown in Figure 3-14.

Figure 3-14 Creating a Job Type with the Job Type Creation Wizard

[image: Creating a Job Type]

	
Click OK. This creates the Jobtype_essdemo1.xml file and Oracle JDeveloper displays the Job Type page.

	
In the Job Type page, in the Description field enter a description for the job type. For this example enter: Sample Java Job Type.

	
In the Class Name field, click the Browse icon.

	
Click the Hierarchy tab and then navigate to select the appropriate class. For this sample application, select essdemo.HelloWorld. Click OK.

The Job Type page displays, as shown in Figure 3-15.

	
Tip:

You can add the job class at either the job type level or the job definition level.

Figure 3-15 Adding Sample Job Type Metadata

[image: Adding Sample Job Type Metadata]

3.5.2 How to Create a Job Definition for Java

To use a Java class with Oracle Enterprise Scheduler you need to create a job definition. A job definition is the basic unit of work that defines a job request in Oracle Enterprise Scheduler.

When you create a job definition you specify a name, select a job type, and specify system properties.

To create a job definition:

	
In the Application Navigator, select the EssDemo project.

	
Press Ctrl-N. This displays the New Gallery.

	
In the New Gallery in the Categories area expand Business Tier and select Enterprise Scheduler Metadata.

	
In the New Gallery in the Items area select Job Definition.

	
Click OK. Oracle JDeveloper displays the Create Job Definition dialog.

	
Use the Create Job Definition dialog to specify the following:

	
Enter a name for the job definition or accept the default name. For example, for the scheduler sample application, enter Job_essdemo1.

	
In the Package field, enter a package name. For example, enter mypackage.

	
In the JobType field, from the dropdown list select a value. For example for the scheduler sample application select the job type you previously created, Jobtype_essdemo1, as shown in Figure 3-16.

Figure 3-16 Using the Job Definition Creation Dialog

[image: Using the Job Definition Creation Dialog]

	
Click OK. This creates the job definition Job_essdemo1.xml and the jobs folder in mypackage and shows the Job Definition page, as shown in Figure 3-17.

Figure 3-17 Job Definition Page for Sample Application

[image: Job Definition Page for Sample Application]

	
In the System Properties field, click the add button and create a system property called EffectiveApplication. Set its value to that used in Section 3.6.1, "How to Assemble the EJB Jar Files for Scheduler Sample Application."

3.6 Assembling the Scheduler Sample Application

After you create the scheduler sample application you use Oracle JDeveloper to assemble the application.

To assemble the application you do the following:

	
Create the EJB Jar files

	
Create the application MAR File

	
Create the application EAR file

	
Update WAR File options

3.6.1 How to Assemble the EJB Jar Files for Scheduler Sample Application

The sample application needs to contain the required EJB descriptors. You need to create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB JAR so that Oracle Enterprise Scheduler can find its entry point in the application while running job requests on behalf of the application. This EJB jar should have its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java class implementations that are going to be submitted to Oracle Enterprise Scheduler. The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the Oracle Enterprise Scheduler EJBs and should not be modified.

To prepare for the assembly of the scheduler sample application, do the following to add the EJB jar files:

	
Create the ejb-jar.xml file: this provides the description for the Oracle Enterprise Scheduler EJBs and associated resources. The context of Oracle Enterprise Scheduler request submission, processing, metadata, and runtime data for an application is specified as the name of an Oracle Enterprise Scheduler client application using the deployment name. You can also specify the context using the applicationName property, as shown in Example 3-4.

	
Create the weblogic-ejb-jar.xml file: this provides the Oracle WebLogic Server specific descriptions for the Oracle Enterprise Scheduler EJBs and associated resources.

	
Create the EJB JAR archive: this includes descriptors for the Java Job implementations.

To create the ejb-jar.xml file in the Java implementation project:

	
In Application Navigator select the EssDemo project.

	
Click the New... icon.

	
In the New Gallery, in the navigator expand General and select Deployment Descriptors.

	
In the New Gallery in the Items area select Java EE Deployment Descriptor.

	
Click OK.

	
In the Select Descriptor page select ejb-jar.xml.

	
Click Next.

	
In the Select Version page select 3.0.

	
Click Finish.

	
This creates ejb-jar.xml file and the META-INF directory in the EssDemo project, as shown in Figure 3-18.

Figure 3-18 Adding the ejb-jar.xml File to the Sample Application

[image: Adding the ejb-jar.xml File to the Sample Application]

	
Replace the entire contents of the ejb-jar.xml file that you just created with a copy of the scheduler ejb-jar.xml supplied with the scheduler sample application. This sample ejb-jar.xml file is shown in Example 3-2.

Example 3-2 EJB Contents to Copy to ejb-jar.xml

<?xml version="1.0" encoding="UTF-8"?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/j2ee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/j2ee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <display-name>ESS</display-name>
 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 </message-driven>

 <session>
 <description>Async Request Bean</description>
 <ejb-name>AsyncRequestBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
 </session>

 <session>
 <description>Runtime Session Bean</description>
 <ejb-name>RuntimeServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
 </session>

 <session>
 <description>Metadata Session Bean</description>
 <ejb-name>MetadataServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
 </session>
 </enterprise-beans>

To create the weblogic-ejb-jar.xml file in the Java implementation project:

	
In Application Navigator select the EssDemo project.

	
Click New... icon.

	
Under Categories expand General and select Deployment Descriptors.

	
In the Items area select Weblogic Deployment Descriptor.

	
Click OK.

	
In the Select Descriptor dialog, select weblogic-ejb-jar.xml.

	
Click Next.

	
Click Next.

	
Click Finish. This creates weblogic-ejb-jar.xml file.

	
Replace the entire contents of the weblogic-ejb-jar.xml file with the sample weblogic-ejb-jar.xml supplied with the scheduler sample application. This file is shown in Example 3-3.

Example 3-3 EJB Descriptor Contents to Copy to weblogic-ejb-jar.xml File

<?xml version="1.0" encoding="US-ASCII" ?>
<weblogic-ejb-jar xmlns="http://www.bea.com/ns/weblogic/10.0"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/10.0 http://www.bea.com/ns/weblogic/10.0/weblogic-ejb-jar.xsd">
 <weblogic-enterprise-bean>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
 </message-driven-descriptor>
 <dispatch-policy>ESSRAWM</dispatch-policy>
 </weblogic-enterprise-bean>

 <run-as-role-assignment>
 <role-name>essSystemRole</role-name>
 <run-as-principal-name>weblogic</run-as-principal-name>
 </run-as-role-assignment>
</weblogic-ejb-jar>

To create the EJB JAR archive:

	
In Application Navigator select the EssDemo project.

	
Right-click and from the dropdown list, select Make EssDemo.jpr. In the Messages Log you should see a successful compilation message, for example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

	
In Application Navigator select the EssDemo project.

	
Select the New... icon.

	
In the New Gallery, in the Categories area expand General and select Deployment Profiles.

	
In the New Gallery, in the Items area select EJB JAR File.

	
Click OK. This displays the Create Deployment Profile - EJB JAR File dialog.

	
In the Create Deployment Profile - EJB JAR File dialog, in the Deployment Profile Name field enter ess-ejb.

	
Click OK. This displays the Edit EJB JAR Deployment Profile Properties dialog.

	
In the Edit EJB JAR Deployment Profile Properties dialog, in the Enterprise Application Name field enter EssDemoApp, as shown in Figure 3-19.

Figure 3-19 EJB JAR Deployment Profile for Sample Application

[image: EJB JAR Deployment Profile for Sample Application]

	
In the EJB JAR Deployment Profile Properties dialog, in the Navigator expand File Groups and expand Project Output, and select Contributors.

	
In the Contributors area select Project Output Directory and Project Dependencies as shown in Figure 3-20.

Figure 3-20 Selecting EJB Contributors for the EJB JAR Deployment

[image: Selecting EJB Contributors for the EJB JAR Deployment]

	
In the EJB JAR Deployment Properties dialog, in the Navigator expand File Groups and Project Output, and select Filters.

	
Select the META-INF folder and the essdemo folder as shown in Figure 3-21.

Figure 3-21 EJB JAR Deployment Profile File Groups Filters

[image: EJB JAR Deployment Profile File Groups Filters]

	
On the EJB JAR Deployment Profile Properties page, click OK.

	
On the Project Properties page, click OK.

To update WAR archive options:

	
In the Application Navigator, select the ViewController project.

	
Right-click and select Project Properties....

	
In the Navigator, select Deployment.

	
In the Deployment page, in the Deployment Profiles area select the WAR File.

	
Click Edit.... This displays the Edit WAR Deployment Profile Properties dialog.

	
In the Edit War Deployment Profile Properties dialog, select General and configure the General page as follows, as shown in Figure 3-22:

	
Set the WAR File: path_to_mywork /mywork/EssDemoApp/ViewController/deploy/EssDemoApp_ViewController_webapp1.war

	
In the Web Application Context Root area, select Specify Java EE Web Context Root:

	
In the Specify Java EE Web Context Root: text entry area, enter EssDemoApp.

	
In the Deployment Client Maximum Heap Size (in Megabytes): dropdown list select Auto

Figure 3-22 WAR Deployment Configuration Options

[image: WAR Deployment Configuration Options]

	
In the Edit WAR Deployment Profile Properties dialog, click OK.

Oracle JDeveloper updates the deployment profile.

	
In the Project Properties dialog, click OK.

	
An application either uses the deployment name as the default value for its application name or you can set the application name using the property applicationName in the ejb-jar.xml. The default application name is the deployment name if the applicationName is not specified.

To set the applicationName edit the ejb-jar.xml file to set the value of the <activation-config-property> named applicationName, as shown in Example 3-4.

Example 3-4 Setting applicationName in ejb-jar.xml

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>
 <activation-config-property>
 <activation-config-property-name>
 applicationName
 </activation-config-property-name>
 <activation-config-property-value>
 MY_APPLICATION_NAME
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>
 <enterprise-beans>

3.6.2 How to Assemble the MAR File for User Metadata

The sample application needs to contain the required MAR profile.

To create the MAR file:

	
Open the EssDemoApp application and from the Application Menu select Application Properties...

	
In the Application Properties dialog, in the navigator select Deployment.

	
Select and delete the default deployment profile.

	
Click New.... This displays the Create Deployment Profile page.

	
In the Archive Type field, from the dropdown list select MAR File as shown in Figure 3-23.

Figure 3-23 Create Deployment Profile Page for New MAR

[image: Create Deployment Profile Page for New MAR]

	
In the Create Deployment Profile dialog, in the Name field enter a name, for example enter essMAR.

	
In the Create Deployment Profile dialog, click OK.

	
On the Edit MAR Deployment Profile dialog, in the navigator expand Metadata File Groups and select User Metadata.

	
Click Add.... This displays the Add Contributor dialog.

	
On the Add Contributor dialog click Browse to add the essmeta metadata that contains the namespace for the Jobs and JobTypes directory, as shown in Figure 3-24. Note, you select the path that you need to include in the Add Contributor dialog by double-clicking the essmeta directory.

Figure 3-24 Adding User Metadata to MAR Profile

[image: Adding User Metadata to MAR Profile]

	
On the Add Contributor dialog, click OK.

	
In the navigator expand Metadata File Groups and User Metadata and select Directories.

	
Select the mypackage directory. This selects all the appropriate information for Oracle Enterprise Scheduler application user metadata for the application.

Select the bottom most directory in the tree. This is the directory from which the namespace is created. For example, when selecting oracle, the namespace is oracle. When selecting the product directory, the namespace is oracle/apps/product. For example, to create the namespace oracle/apps/product/component/ess, click the ess directory.

The folder you select in this dialog determines the top level namespace in adf-config.xml. For more information, see Section 3.6.3, "How to Assemble the EAR File for Scheduler Sample Application." This namespace should be the same as the package defined in job and job type definition. For more information, see Section 3.5, "Creating Metadata for Scheduler Sample Application."

	
Note:

If your namespace is too generic, then your Oracle ADF application might fail. Make sure to use proper package structure and map only the required namespaces.

	
On the Edit MAR Deployment Profile Properties page, click OK.

	
On the Application Properties page, in the navigator expand Run and select MDS.

	
Select the MAR profile you just created, essMAR, as shown in Figure 3-25.

	
Click OK.

Figure 3-25 Setting Application Properties Run MDS MAR Profile

[image: Setting Application Properties Run MDS MAR Profile]

3.6.3 How to Assemble the EAR File for Scheduler Sample Application

You need to prepare an EAR file that assembles the scheduler sample application. The EAR archive consists of the following:

	
EJB JAR including the Oracle Enterprise Scheduler Java job implementation.

	
WAR archive with the EssDemo servlet.

To create the EAR file for the application:

	
In the Application Navigator, select the EssDemoApp application.

	
From the Application Menu, select Application Properties....

	
In the Application Properties Navigator, select Deployment.

	
Click New... to create a new deployment descriptor.

	
In the Archive Type dropdown list, select EAR File.

	
In the Create Deployment Profile dialog in the Name field enter the application name. For the scheduler application, enter EssDemoApp.

	
Click OK.

	
In the Edit EAR Deployment Profile Properties dialog, in the navigator select Application Assembly.

	
In the Application Assembly page in the Java EE Modules area select the appropriate checkboxes, including the following: essMAR, the WEB module in the ViewController project and the EJB module, ess-ejb, in the EssDemo project as shown in Figure 3-26.

Figure 3-26 Setting Application Assembly Options for EAR File

[image: Setting application assembly options for the EAR file.]

	
Click OK.

	
On the Application Properties page, click OK.

3.6.4 Add oracle.ess Library Weblogic Application Descriptor

You need to update the weblogic-application.xml file to include the oracle.ess library.

	
In the Application Navigator expand Application Resources.

	
In the navigator expand Descriptors and expand META-INF, as shown in Figure 3-27.

Figure 3-27 Viewing weblogic-application.xml in Application Resources

[image: Viewing weblogic-application.xml in Application Resources.]

	
Double-click to open the weblogic-application.xml file.

	
Add the following to the weblogic-application.xml file. Example 3-5 shows a complete weblogic-application.xml file, including this <library-ref> element.

 <library-ref>
 <library-name>oracle.ess</library-name>
 </library-ref>

Example 3-5 Contents of Sample weblogic-application.xml File with oracle.ess

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd" xmlns="http://www.bea.com/ns/weblogic/weblogic-application">
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>
 <listener>
 <listener-class>oracle.adf.share.weblogic.listeners.ADFApplicationLifecycleListener</listener-class>
 </listener>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 <implementation-version>11.1.1.1.0</implementation-version>
 </library-ref>

 <library-ref>
 <library-name>oracle.ess</library-name>
 </library-ref>

</weblogic-application>

3.7 Deploying and Running the Scheduler Sample Application

After you complete the steps to build and assemble the scheduler sample application you need to deploy the application to Oracle WebLogic Server. After you successfully deploy an application you can run the application. For the scheduler sample application you use a browser to run the EssDemo servlet to submit job requests to Oracle Enterprise Scheduler running on Oracle WebLogic Server.

3.7.1 How to Deploy the EssDemoApp Application

To deploy the EssDemoApp application you need a properly configured and running Oracle WebLogic Server, and you need an active metadata server. When you deploy the application Oracle JDeveloper brings up the Deployment Configuration page. Select your repository from the dropdown list and Enter a partition name (the partition name defaults to application name).

To deploy the EssDemoApp application:

	
Check the Run Manager to make sure the Oracle WebLogic Server is up and running. If the Oracle WebLogic Server is not running, start the server. To start the server, from the Run menu click Start Server Instance.

	
In the Application Navigator, select the EssDemoApp application.

	
In the Application Navigator from the Application Menu select Deploy > EssDemoApp > to > IntegratedWLSConnection, as shown in Figure 3-28.

Figure 3-28 Deploying the EssDemoApp Application

[image: Deploying the EssDemoApp Application.]

	
Oracle JDeveloper shows the Deployment Configuration page, as shown in Figure 3-29. Select the appropriate options for your Metadata Repository.

Figure 3-29 Deployment Configuration Page with Metadata Repository Options

[image: Deployment configuration page with MDS options]

	
Click Deploy.

	
Verify the deployment using the Deployment Log.

3.7.2 How to Run the Scheduler Sample Application

To run the scheduler sample application you access the EssDemo servlet in a browser.

To access the EssDemo servlet:

	
Enter the following URL in a browser:

http://host:http-port/context-root/essdemo

For example,

http://myserver.us.oracle.com:7101/EssDemoApp/essdemo

This shows the EssDemo servlet, as shown in Figure 3-30.

Figure 3-30 Running EssDemo Servlet for Oracle Enterprise Scheduler Sample Application

[image: Running EssDemo servlet for the sample application]

	
Select a job definition from the Job drop-down menu.

	
Select a value from the Schedule drop-down menu.

	
Click Submit.

	
Refresh the browser to see the progress of the job in the Request Status area, as shown in Figure 3-31.

Figure 3-31 Running EssDemo Servlet with Request Status for Submitted Requests

[image: Running EssDemo servlet with request status]

3.7.3 How to Purge Jobs in the Scheduler Sample Application

Using the scheduler sample application and the EssDemo servlet you can remove completed jobs from the Request Status list.

To remove completed jobs:

	
Click Purge to purge a request.

	
Click Cancel to cancel a request that is either RUNNING or WAITING.

3.8 Troubleshooting the Oracle Enterprise Scheduler Sample Application

This section covers common problems and solutions for these problems.

	
Problem: sqlplus: Command not found.

Solution: Run the Oracle Database commands in an environment that includes Oracle Database.

	
Problem: SP2-0310: unable to open file "createuser_ess_oracle.sql"

Solution: Change to the /rcu/integration/ess/sql directory before running sqlplus scripts.

	
Problem:

404 Not Found
Resource /EssDemoApp-ViewController-context-root/essdemo not found on this server

Solution: This and similar problems can be due to not using a URL that matches the root URL that you specify when set the context-root on the URL to access the application. To use a context-root that matches the deployed application, use the value that you specified.

To check and set the context-root value in the WAR archive:

	
Select the ViewController project.

	
Right-click and from the dropdown list select Project Properties.

	
In the navigator, select Deployment.

	
In the Deployment Profiles area, select essdemoapp and click Edit.

	
Choose the desired context-root, this forms the context-root on the URL to access the application.

	
In the General area, select Specify Java EE Web Context Root.

	
For the Java EE Web Context Root: text entry area, enter EssDemoApp.

	
In the WAR Deployment Profile Properties window, click OK.

	
In the Project Properties window, click OK.

	
Problem: Unresolved application library references, defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false]..

Deployment fails with errors. For example:

09:30:59 AM] Building...
[09:31:00 AM] Deploying 2 profiles...
[09:31:01 AM] Wrote Web Application Module to /scratch/sched7/mywork/EssDemoApp/ViewController/deploy/EssDemoApp_ViewController_webapp1.war
[09:31:01 AM] removed bundleresolver.jar from APP-INF because it cannot be part of an EJB deployment[09:31:01 AM] Wrote Enterprise Application Module to /scratch/sched7/mywork/EssDemoApp/deploy/EssDemoApp_application1.ear
[09:31:02 AM] Deploying Application...
[09:31:04 AM] [Deployer:149193]Deployment of application 'EssDemoApp_application1' has failed on 'DefaultServer'
[09:31:04 AM] [Deployer:149034]An exception occurred for task [Deployer:149026]deploy application EssDemoApp_application1 on DefaultServer.: [J2EE:160149]Error while processing library references. Unresolved application library references, defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false]..
[09:31:05 AM] Weblogic Server Exception: weblogic.management.DeploymentException: [J2EE:160149]Error while processing library references. Unresolved application library references, defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false].
[09:31:05 AM] See server logs or server console for more details.
[09:31:05 AM] weblogic.management.DeploymentException: [J2EE:160149]Error while processing library references. Unresolved application library references, defined in weblogic-application.xml: [Extension-Name: oracle.ess, exact-match: false].
[09:31:05 AM] #### Deployment incomplete. ####
[09:31:05 AM] Deployment Failed

Solution: This deployment error can be seen when the application is correct, but the Oracle WebLogic Server configuration is not correct. The configuration includes the step, 3.1.4, "Create WLS domain". This configuration step is required.

3.8.1 How to Create the Oracle Enterprise Scheduler Database Schema

You need to create the Oracle Enterprise Scheduler Oracle Database schema. Oracle Enterprise Scheduler uses this schema to maintain information about job requests.

	
Note:

In the Oracle Fusion Applications environment, this step is not required. In this environment the database is installed with the Oracle Enterprise Scheduler schema pre-configured. Thus, in this environment you can skip this step.

In order to create the Oracle Enterprise Scheduler database schema, you need to install Oracle JDeveloper for use with Oracle Enterprise Scheduler. For more information, see the Oracle Fusion Applications Installation Guide.

3.8.2 How to Drop the Oracle Enterprise Scheduler Runtime Schema

If you have been running with previous version of the Oracle Enterprise Scheduler runtime schema, or if for any reason you need to drop the schema, you can do this using the dropschema_ess_oracle.sql script.

Use these steps only to drop the Oracle Enterprise Scheduler runtime schema. These steps clean up certain database objects and then drop the schema user. Note that simply dropping the Oracle Enterprise Scheduler schema is not sufficient to correctly drop and remove an existing schema.

	
Note:

For a first time installation you do not need to perform these steps. Only use these steps if you need to drop the database schema due to a previous installation error or to clean up your database after a previous use of Oracle Enterprise Scheduler.

To drop the database schema:

	
Terminate any container that is using Oracle Enterprise Scheduler schema.

	
Change to the ess/sql directory with the following command:

% cd JDEV_install_dir/rcu/integration/ess/sql

	
Do the following, when connected as SYS or as SYSDBA. In the text, ess_schema represents Oracle Enterprise Scheduler schema being removed:

@dropschema_ess_oracle.sql ess_schema
alter session set current_schema=sys;
drop user ess_schema cascade;

Example in which ess_schema is oraess:

> @dropschema_ess_oracle.sql oraess
> alter session set current_schema=sys;
> drop user oraess cascade;
> exit

3.9 Using Submitting and Hosting Split Applications

When you build and deploy Oracle Enterprise Scheduler applications, you can use two split applications — a job submission application, a submitter, and a job execution application, a hosting application. Using this design you need to configure and deploy each application with options that support such a split configuration. In addition, some Oracle Enterprise Scheduler deployments use a separate Oracle WebLogic Server for the hosting and the submitting applications; for this deployment option the submitting application and the hosting application are deployed to separate Oracle WebLogic Servers. When the submitter application and the hosting application for Oracle Enterprise Scheduler run on separate Oracle WebLogic Servers, you need to configure the Oracle WebLogic Server for the hosting application so that the submitting application can find the hosting application.

To build the sample split applications, you do the following:

	
Build a backend hosting application that includes the code to be scheduled and run.

	
Build a frontend submitter application initiates the job requests.

3.9.1 How to Create the Backend Hosting Application for Scheduler

Using Oracle JDeveloper you create the backend application. To create the scheduler backend sample application you do the following:

	
Create a backend application and project.

	
Configure security.

	
Define the deployment descriptors.

	
Create the Java class that implements the Oracle Enterprise Scheduler executable interface.

	
Create the Oracle Enterprise Scheduler metadata to describe the job

	
Assemble the application.

	
Deploy the application.

3.9.1.1 Creating the Backend Hosting Application

To work with Oracle Enterprise Scheduler with a split application you use Oracle JDeveloper to create the backend application and project, and to add Oracle Enterprise Scheduler extensions to the project.

To create the backend hosting application:

	
From JDeveloper choose File > New from the main menu.

	
In the New Gallery, expand General, select Applications and then Generic Application, and click OK.

	
In the Name your application page of the Create Generic Application wizard, set the Application Name field to EssDemoApp.

	
In the Name your project page, set the Project Name to SuperEss.

This project is where you will create and save the Oracle Enterprise Scheduler metadata.

	
Add the EJB technology to the project.

	
In the Project Java Settings page, change the default package to oracle.apss.ess.howto.

	
In the Configure EJB Settings page, select Generate ejb-jar.xml in this project and click Finish.

	
In the Application Navigator, right-click the SuperEss project and select Project Properties.

	
In the Project Properties dialog, expand Project Source Paths and click the Resources navigation tab.

	
Select Include Content from Subfolders.

	
Click the Libraries and Classpath navigation tab.

	
Click Add Library, select Enterprise Scheduler Extensions, and click OK.

3.9.1.2 Configuring Security for the Backend Hosting Application

You need to create a user that is assigned to the EssDempAppRole role.

To configure security for the backend hosting application:

	
Select Application > Secure > Configure ADF Security from the main menu.

	
In the ADF Security page of the Configure ADF Security wizard, select ADF Authentication.

	
In the Authentication Type page, accept the default values as this application will not have a web module to secure.

	
Click Finish.

A file named jps-config.xml is generated. You can find this file in the Application Resources panel by expanding Descriptors, and expanding META-INF. This file contains a security context or security stripe named after the application.

	
Select Application > Secure > Users from the main menu.

A file named jps-config.xml is generated.

	
In the overview editor for the jps-config.xml file, click the Add icon in the Users list.

	
Set the name to EssDemoAppUser and set the password to welcome1.

	
Click the Application Roles navigation tab.

	
Click the Add icon in the Roles list and choose Add New Role.

	
Set the name to EssDemoAppRole.

	
Click the Add icon in the Mappings tab and choose Add User.

	
Select EssDemoAppUser and click OK.

3.9.1.3 Defining the Deployment Descriptors for the Backend Hosting Application

The sample application needs to contain the required EJB descriptors. You need to create the ejb-jar.xml and weblogic-ejb-jar.xml files and include these files with any Java implementation class that you create.

Oracle Enterprise Scheduler requires an application to assemble and provide an EJB JAR so that Oracle Enterprise Scheduler can find its entry point in the application while running job requests on behalf of the application. This EJB jar should have its required EJB descriptors in ejb-jar.xml and weblogic-ejb-jar, as well as any Java class implementations that are going to be submitted to Oracle Enterprise Scheduler. The descriptor files ejb-jar.xml and weblogic-ejb-jar must contain descriptions for the Oracle Enterprise Scheduler EJBs.

The Oracle Enterprise Scheduler backend application is deployed to Oracle WebLogic Server. You need to create a deployment profile in Oracle JDeveloper to deploy the EssDemoApp application.

The EssDemoApp application is a standalone application that contains an Oracle Enterprise Scheduler Java job and includes the required Oracle Enterprise Scheduler metadata, an Oracle Enterprise Scheduler message-driven bean (MDB), and the EJB descriptors for the application. This application does not perform Oracle Enterprise Scheduler submit API; in this hosting application the submission occurs in the frontend submitter application. In the hosting application, EssDemoApp, the weblogic-ejb-jar.xml exposes the EJB remote interface through JNDI (using the EJB remote interface allows for the job submission to occur in the frontend application).

You also need to create the weblogic-application.xml file to include the oracle.ess library, to add an Oracle Enterprise Scheduler listener, and to indicate which stripe to use to upload the jazn-data.xml policy.

To define the deployment descriptors for the backend hosting application:

	
In the Application Navigator, expand SuperEss, expand Application Sources, expand META-INF, and double-click ejb-jar.xml.

	
Replace the contents of the file with the XML shown in Example 3-6

Example 3-6 Contents to Copy to ejb-jar.xml for a Backend Hosting Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee
 http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <display-name>ESS</display-name>

 <enterprise-beans>
 <message-driven>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.EssAppEndpointBean</ejb-class>
 <activation-config>
 <activation-config-property>
 <!-- The "applicationName" property specifies the logical name used
 - by Oracle Enterprise Scheduler to identify this application.
 - This name is independent of the application name used when
 - deploying the application to the container. This decoupling
 - allows applications to safely hardcode the logical application
 - name in source code without having to worry about the more
 - frequently changed deployment name.
 -
 - Note: The name given here must also be specified in the
 - SYS_effectiveApplication property of each job definition and
 - job set of this application.
 -->
 <activation-config-property-name>applicationName</activation-config-property-name>
 <activation-config-property-value>EssDemoApp</activation-config-property-value>
 </activation-config-property>
 <activation-config-property>
 <!-- The "applicationStripe" property specifies which JPS security
 - stripe or "security context" Oracle Enterprise Scheduler should
 - use to perform security checks.
 -
 - The value here must be the same as the "injection-target-name"
 - value used by the "oracle.security.jps.ee.ejb.JpsInterceptor"
 - interceptor descriptor below.
 -
 - Note: When creating jps-config.xml through JDev, it will create
 - default security context using the JDev workspace name. In
 - order to simplify things, we will use the JDev workspace name
 - as our value. Otherwise, you will have to rename the security
 - context created by JDev or create your own.
 -->
 <activation-config-property-name>applicationStripe
 </activation-config-property-name>
 <activation-config-property-value>EssDemoApp
 </activation-config-property-value>
 </activation-config-property>
 </activation-config>
 </message-driven>

 <!-- The AsyncBean allows asynchronous Java jobs to notify
 - Oracle Enterprise Scheduler of its status through Java EE EJB APIs.
 - It is recommended to use the WebService callback pattern
 - instead of the EJB callbacks wherever possible.
 -->
 <session>
 <description>Async Request Bean</description>
 <ejb-name>AsyncRequestBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
 </session>

 <!-- The Runtime Service allows users to interact with an Executable.
 - Operations include submitting, cancelling, querying, etc.
 -->
 <session>
 <description>Runtime Session Bean</description>
 <ejb-name>RuntimeServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
 </session>

 <!-- The Metadata Service allows user to interact with
 - Oracle Enterprise Scheduler, metadata including job definitions,
 - job sets, job types, schedules, and so on. Operations include reading,
 - writing, querying, copying, deleting, and so on.
 -->
 <session>
 <description>Metadata Session Bean</description>
 <ejb-name>MetadataServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
 </session>

 </enterprise-beans>

 <!--
 - The JPS interceptor is used by JPS (Java Platform Security) in order to
 - perform security checks. The "stripe name" is usually associated with
 - the application name but some groups split their security permissions
 - between Oracle ADF grants and Oracle Enterprise Scheduler grants, creating
 - two stripes.
 - For example, the Oracle ADF grants would live in the "MyApp" stripe while
 - the Oracle Enterprise Scheduler grants would live in the "MyAppEss".
 -
 - Note: For this example, we will use only 1 stripe.
 -
 - Note: When creating jps-config.xml through JDev, it will create
 - default security context using the JDev workspace name. In
 - order to simplify things, we will use the JDev workspace name
 - as our value. Otherwise, you will have to rename the security
 - context created by JDev or create your own.
 -->
 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>EssDemoApp</env-entry-value>
 <injection-target>
 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

	
In Application Navigator, right-click the SuperEss project and select New.

	
In the New Gallery, expand General, select Deployment Descriptors and then Weblogic Deployment Descriptor, and click OK.

	
In the Select Descriptor page select weblogic-ejb-jar.xml.

	
Click Next, click Next again, and click Finish.

	
In the source editor, replace the contents of the weblogic-ejb-jar.xml file that you just created with the XML shown in Example 3-7.

This XML associates the MDB in the ejb-jar.xml file with the Oracle Enterprise Scheduler Resource Adapter. Without this XML, the application would not know what to talk to.

Example 3-7 Contents to Copy to weblogic-ejb-jar.xml for a Backend Hosting Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-ejb-jar xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-ejb-jar
 http://www.bea.com/ns/weblogic/weblogic-ejb-jar/1.0/weblogic-ejb-jar.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-ejb-jar">

 <weblogic-enterprise-bean>
 <ejb-name>ESSAppEndpoint</ejb-name>
 <message-driven-descriptor>
 <resource-adapter-jndi-name>ess/ra</resource-adapter-jndi-name>
 </message-driven-descriptor>
 <dispatch-policy>ESSRAWM</dispatch-policy>
 </weblogic-enterprise-bean>

</weblogic-ejb-jar>

	
In Application Navigator, right-click the SuperEss project and select New.

	
In the New Gallery, expand General, select Deployment Descriptors and then Weblogic Deployment Descriptor, and click OK.

	
In the Select Descriptor page select weblogic-application.xml.

	
Click Next, click Next again, and click Finish.

	
In the source editor, replace the contents of the weblogic-application.xml file that you just created with the XML shown in Example 3-8.

Example 3-8 Contents to Copy to weblogic-application.xml for a Backend Hosting Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it will use the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoApp</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe
 -->
 <listener>
 <listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduler to configure itself
 -->
 <listener>
 <listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleListener</listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduler classes
 -->
 <library-ref>
 <library-name>oracle.ess</library-name>
 </library-ref>
</weblogic-application>

3.9.1.4 Creating a Java Implementation Class in the Backend Hosting Application

To define an application that runs a Java class under control of Oracle Enterprise Scheduler you need to create the Java class that implements the Oracle Enterprise Scheduler Executable interface. The Executable interface specifies the contract that allows you to use Oracle Enterprise Scheduler to invoke a Java class.

A Java class that implements the Executable interface must provide an empty execute() method.

To create a Java class that implements the executable Interface:

	
In the Application Navigator, right-click the SuperEss project and choose New.

	
In the New Gallery, expand General, select Java and then Java Class, and click OK.

	
In the Create Java Class dialog, set the name to HelloWorldJob.

	
Set the package to oracle.apps.ess.howto.

	
Click the Add icon, add the oracle.as.scheduler.Executable interface, and click OK.

	
In other fields accept the defaults.

	
Click OK.

	
In the source editor, replace the generated contents of the HelloWorldJob.java file with the code shown in Example 3-9.

Example 3-9 Oracle Enterprise Scheduler HelloWorldJob Java Class

package oracle.apps.ess.howto;import java.util.logging.Logger;import oracle.as.scheduler.Executable;import oracle.as.scheduler.ExecutionCancelledException;import oracle.as.scheduler.ExecutionErrorException;import oracle.as.scheduler.ExecutionPausedException;import oracle.as.scheduler.ExecutionWarningException;import oracle.as.scheduler.RequestExecutionContext;import oracle.as.scheduler.RequestParameters;public class HelloWorldJob implements Executable { public HelloWorldJob() { super(); } public void execute(RequestExecutionContext requestExecutionContext, RequestParameters requestParameters) throws ExecutionErrorException, ExecutionWarningException, ExecutionCancelledException, ExecutionPausedException { printBanner(requestExecutionContext, requestParameters); } protected void printBanner(RequestExecutionContext requestExecutionContext, RequestParameters requestParameters) { StringBuilder sb = new StringBuilder(1000); sb.append("\n=================================="); sb.append("\n= EssDemoApp request is now running"); long myRequestId = requestExecutionContext.getRequestId(); sb.append("\n= Request Id = " + myRequestId); sb.append("\n= Request Properties:"); for (String paramKey : requestParameters.getNames()) { Object paramValue = requestParameters.getValue(paramKey); sb.append("\n=\t(" + paramKey + ", " + paramValue + ")"); } sb.append("\n="); sb.append("\n=================================="); Logger logger = Logger.getLogger("oracle.apps.ess.howto"); logger.info(sb.toString()); }}

3.9.1.5 Creating Metadata for the Backend Hosting Application

To use the Oracle Enterprise Scheduler split application to submit a job request you need to create metadata that defines a job request, including the following:

	
A job type: this specifies an execution type and defines a common set of parameters for a job request.

	
A job definition: this is the basic unit of work that defines a job request in Oracle Enterprise Scheduler.

	
Note:

For Oracle Fusion Applications use cases, use the prepackaged Oracle Enterprise Scheduler job types instead of creating your own. For demonstration purposes, you will create your own job type.

To create metadata for the backend hosting application:

	
In the Application Navigator, right-click the SuperEss project and choose New.

	
In the New Gallery, select the All Technologies tab.

	
Expand Business Tier, select Enterprise Scheduler Metadata and then Job Type, and click OK.

	
In the Create Job Type dialog, specify the following:

	
In the Name field, enter HelloWorldJobType.

	
In the Package field, enter /oracle/apps/ess/howto/.

	
Select JAVA_TYPE from the Execution Type dropdown list.

	
Click OK. This creates the HelloWorldJobType.xml file and Oracle JDeveloper displays the file in the editor.

	
In the editor window, set the description to HelloWorld Example.

	
Set the class name to oracle.apps.ess.howto.HelloWorldJob.

	
In the Application Navigator, right-click the SuperEss project and choose New.

	
Expand Business Tier, select Enterprise Scheduler Metadata and then Job Definition, and click OK.

	
In the Create Job Definition dialog, specify the following:

	
Set the name to HelloWorldJobDef.

	
Set the package to /oracle/apps/ess/howto/.

	
Set the job type to /oracle/apps/ess/howto/HelloWorldJobType.

	
Click OK. This creates the HelloWorldJobDef.xml file and Oracle JDeveloper displays the file in the editor.

	
In the editor window, set the description to HelloWorld Example.

	
Click the Add icon in the System Properties section.

	
In the Add System Property dialog, select SYS_effectiveApplication from the Name dropdown list.

	
Set the initial value to EssDemoApp and click OK.

	
Click the Add icon in the Access Control section.

	
In the Add Access Control dialog, ensure that EssDemoApp role is selected in the Role dropdown list.

This is the role that you created in Section 3.9.1.2, "Configuring Security for the Backend Hosting Application."

	
Select Read and select Execute.

	
Click OK.

3.9.1.6 Assembling the Backend Hosting Application for Oracle Enterprise Scheduler

After you create the backend sample application you use ­Oracle JDeveloper to assemble the application.

To assemble the backend application you do the following:

	
Create the EJB Java Archive

	
Create the application MAR and EAR files

3.9.1.6.1 How to Assemble the EJB JAR File for the Backend Hosting Application

The EJB Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR file for the backend hosting application:

	
In Application Navigator, right-click the SuperEss project and select Rebuild SuperEss.jpr.

In the Messages Log you should see a successful compilation message, for example:

[3:40:22 PM] Successful compilation: 0 errors, 0 warnings.

	
In Application Navigator, right-click the SuperEss project and choose New.

	
In the New Gallery, expand General, select Deployment Profiles and then EJB JAR File, and click OK.

	
In the Create Deployment Profile dialog, set the Deployment Profile Name to JAR_SuperEssEjbJar.

	
Optionally, in the Edit EJB JAR Deployment Profile Properties dialog, expand File Groups, expand Project Output, and select Filters and clear the essmeta checkbox.

Clearing this checkbox prevents the JAR file from being cluttered with unnecessary XML files and reduces the overall memory footprint.

	
On the EJB JAR Deployment Profile Properties dialog, click OK.

	
On the Project Properties dialog, click OK.

3.9.1.6.2 How to Assemble the MAR and EAR Files for the Backend Hosting Application

The sample application needs to contain the MAR profile and the EAR file that assembles the scheduler backend application.

To create the MAR and EAR files for the backend hosting application:

	
From the main menu, choose Application Menu > Application Properties...

	
In the Application Properties dialog, click the Deployment navigation tab and click New.

	
In the Create Deployment Profile dialog, select MAR File from the Archive Type dropdown list.

	
In the Name field, enter MAR_EssDemoAppMar and click OK.

	
In the Edit MAR Deployment Profile dialog, expand Metadata File Groups and click User Metadata.

	
Click Add.

	
In the Add Contributor dialog add the essmeta directory.

For example, if your work space is at /tmp/EssDemoApp, then the directory to add is /tmp/EssDemoApp/SuperEss/essmeta.

	
On the Add Contributor dialog, click OK.

	
In the navigator expand Metadata File Groups and User Metadata and select Directories.

	
Expand the directories and select the deepest directory of the package name, which is the howto directory.

The directory that you select forms the MDS namespace. In order to avoid conflicts, you must select the most specific namespace.

	
Click OK.

	
In the Deployment page of the Application Properties dialog, click New.

	
In the Create Deployment Profile dialog, select EAR File from the Archive Type dropdown list.

	
In the Name field, enter EAR_EssDemoAppEar and click OK.

	
In the Edit EAR Deployment Profile dialog, click the General navigation tab and enter EssDemoApp in the Application Name field.

	
Click the Application Assembly navigation tab, then select MAR_ESSDemoAppMar and select JAR_SuperEssEjbJar.

	
Click OK.

	
In the Application Properties dialog, click OK.

3.9.1.7 Deploying the Backend Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the backend hosting application:

	
From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

	
Set up and deploy the application to a container.

	
When the Deployment Configuration dialog appears, make a note of the default values, but do not change them.

3.9.2 How to Create the Frontend Submitter Application for Oracle Enterprise Scheduler

In an Oracle Enterprise Scheduler split application you use the Oracle Enterprise Scheduler APIs to submit job requests from a frontend application. The EssDemoAppUI application provides a Java servlet for a servlet based user interface for submitting job requests (using Oracle Enterprise Scheduler).

To create the frontend submitter sample application you do the following:

	
Create a frontend application and project.

	
Configure the ejb-jar.xml file.

	
Create the web project

	
Configure security.

	
Create the HTTP servlet.

	
Edit the web.xml file.

	
Edit the weblogic-application.xml file.

	
Edit the adf-config file.

	
Assemble the application.

	
Deploy the application.

3.9.2.1 Creating the Frontend Submitter Application

You use JDeveloper to build the frontend submitter application using similar steps as you used for the backend hosting application.

To create the frontend submitter application:

	
Complete the steps in Section 3.9.1.1, "Creating the Backend Hosting Application" but this time use ESSDemoAppUI as the name of the application.

	
In the Application Navigator, right-click the SuperEss project and choose New.

	
In the New Gallery, select General, select Folder, and click OK.

	
Set the folder name to essmeta and click OK.

3.9.2.2 Configuring the ejb-jar.xml File for the Frontend Submitter Application

You need to add entries to the ejb-jar.xml file to enable asynchronous Java jobs to notify the Oracle Enterprise Scheduler of its status and to enable users to interact with executable operations, such as submitting operations, and with Oracle Enterprise Scheduler metadata, such as job definitions. You also need to indicate which stripe to use.

To define the deployment descriptors for the frontend submitter application:

	
In the Application Navigator, expand SuperEss, expand Application Sources, expand META-INF, and double-click ejb-jar.xml.

	
Replace the contents of the file with the XML shown in Example 3-10

Example 3-10 Contents to Copy to ejb-jar.xml for a Frontend Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<ejb-jar xmlns="http://java.sun.com/xml/ns/javaee"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://java.sun.com/xml/ns/javaee http://java.sun.com/xml/ns/javaee/ejb-jar_3_0.xsd"
 version="3.0">
 <display-name>ESS</display-name>

 <enterprise-beans>

 <!-- Note that the UI application does NOT have a message driven bean.
 - This is because the UI application does not run any jobs. The UI
 - application does have the other EJBs.
 -->

 <!-- The AsyncBean allows asynchronous Java jobs to notify
 - Oracle Enterprise Scheduler of its status through Java EE EJB APIs.
 - It is recommended to instead use the WebService callback pattern
 - instead of the EJB callbacks wherever possible.
 -->
 <session>
 <description>Async Request Bean</description>
 <ejb-name>AsyncRequestBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.AsyncRequestBean</ejb-class>
 </session>

 <!-- The Runtime Service allows users to interact with an Executable.
 - Operations include submitting, cancelling, querying, etc.
 -->
 <session>
 <description>Runtime Session Bean</description>
 <ejb-name>RuntimeServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.RuntimeServiceBean</ejb-class>
 </session>

 <!-- The Metadata Service allows users to interact with
 - Oracle Enterprise Scheduler, metadata, including job definitions,
 - job sets, job types, schedules, and so on.
 - Operations include reading, writing, querying, copying, deleting,
 - and so on.
 -->
 <session>
 <description>Metadata Session Bean</description>
 <ejb-name>MetadataServiceBean</ejb-name>
 <ejb-class>oracle.as.scheduler.ejb.MetadataServiceBean</ejb-class>
 </session>

 </enterprise-beans>

 <!--
 - The JPS interceptor is used by JPS (Java Platform Security) in order to
 - perform security checks. The "stripe name" is usually associated with
 - the application name but some groups split their security permissions
 - between Oracle ADF grants and Oracle Enterprise Scheduler grants, thereby
 - creating two stripes. For example, the Oracle ADF grants would live
 - in the "MyApp" stripe while the Oracle Enterprise Scheduler
 - grants would live in the "MyAppEss".
 -
 - Note: For this example, we will use only 1 stripe.
 -
 - Note: When creating jps-config.xml through JDev, it will create
 - default security context using the JDev workspace name. In
 - order to simplify things, we will use the JDev workspace name
 - as our value. Otherwise, you will have to rename the security
 - context created by JDev or create your own.
 -->
 <interceptors>
 <interceptor>
 <interceptor-class>oracle.security.jps.ee.ejb.JpsInterceptor</interceptor-class>
 <env-entry>
 <env-entry-name>application.name</env-entry-name>
 <env-entry-type>java.lang.String</env-entry-type>
 <env-entry-value>EssDemoApp</env-entry-value>
 <injection-target>
 <injection-target-class>oracle.security.jps.ee.ejb.JpsInterceptor</injection-target-class>
 <injection-target-name>application_name</injection-target-name>
 </injection-target>
 </env-entry>
 </interceptor>
 </interceptors>
</ejb-jar>

3.9.2.3 Creating the SuperWeb Project

You need to create a web project for the servlet.

To create the SuperWeb project:

	
Right-click the SuperEss project and choose New.

	
In the New Gallery, expand General, select Projects and then Generic Project, and click OK.

	
In the Name your application page of the Create Generic Application wizard, set the Application Name field to SuperWeb.

	
In the Name your project page, set the Project Name to SuperEss.

	
Add the JSP and Servlets technology to the project.

	
In the Project Java Settings page, change the default package to oracle.apss.ess.howto and click Finish.

	
In the Application Navigator, right-click the SuperWeb project and choose Project Properties.

	
Click the Libraries and Classpath navigation tab.

	
Click Add Library, select ADF Web Runtime and Enterprise Scheduler Extensions, and click OK.

3.9.2.4 Configuring Security for the Frontend Submitter Application

You need to configure security for the application. You do not have to create any users or roles as the EssDemoAppUI application will simply share the users and roles created by the EssDemoApp application.

To configure security for the frontend submitter application:

	
Select Application > Secure > Configure ADF Security from the main menu.

	
In the ADF Security page of the Configure ADF Security wizard, select ADF Authentication.

	
In the Authentication Type page, select SuperWeb.jpr from the Web Project dropdown list.

	
Select HTTP Basic Authentication.

	
Click Finish.

A file named jps-config.xml is generated. You can find this file in the Application Resources panel by expanding Descriptors, and expanding META-INF.

3.9.2.5 Creating the HTTP Servlet for the Frontend Submitter Application

Normally, more complex user interfaces that are built on heavy weight frameworks such as Oracle Application Development Framework are employed, but for the sake of simplicity, you use a basic HTTP servlet for the submitter application.

To create the HTTP Servlet for the frontend submitter application:

	
Right-click the SuperEss project and choose New.

	
In the New Gallery, expand Web Tier, select Servlets and then HTTP Servlet, and click OK.

	
In the Web Application page of the Web Application wizard, select Servlet 2.5\JSP 2.1 (Java EE 1.5).

	
In the Create HTTP Servlet - Step 1 of 3: Servlet Information page, enter EssDemoAppServlet in the Class field.

	
Enter oracle.apps.ess.howto in the Package field and click Next.

	
Click Finish.

	
In the source editor, replace the contents of ESSDemoAppServlet.java with the code in Example 3-11.

Example 3-11 HTTP Servlet Code for the Frontend Submitter Application

package oracle.apps.ess.howto;

import java.io.IOException;
import java.io.PrintWriter;
import java.io.StringWriter;

import java.util.ArrayList;
import java.util.Calendar;
import java.util.Enumeration;
import java.util.HashSet;
import java.util.Iterator;
import java.util.List;
import java.util.ListIterator;
import java.util.Map;
import java.util.Set;
import java.util.SortedSet;
import java.util.TreeSet;
import java.util.logging.Level;
import java.util.logging.Logger;
import java.util.regex.Pattern;

import javax.servlet.ServletConfig;
import javax.servlet.ServletException;
import javax.servlet.http.HttpServlet;
import javax.servlet.http.HttpServletRequest;
import javax.servlet.http.HttpServletResponse;
import javax.servlet.http.HttpSession;

import oracle.as.scheduler.MetadataObjectId;
import oracle.as.scheduler.MetadataObjectId.MetadataObjectType;
import oracle.as.scheduler.MetadataService;
import oracle.as.scheduler.MetadataService.QueryField;
import oracle.as.scheduler.MetadataServiceHandle;
import oracle.as.scheduler.RequestDetail;
import oracle.as.scheduler.RequestParameters;
import oracle.as.scheduler.RuntimeService;
import oracle.as.scheduler.RuntimeServiceHandle;
import oracle.as.scheduler.State;
import oracle.as.scheduler.core.JndiUtil;

public class EssDemoAppServlet extends HttpServlet {
 @SuppressWarnings("compatibility:4685800289380934682")
 private static final long serialVersionUID = 1L;

 private static final String CONTENT_TYPE = "text/html; charset=UTF-8";
 private static final String MESSAGE_KEY = "Message";
 private static final String PATH_SUBMIT = "/submitRequest";
 private static final String PATH_ALTER = "/alterRequest";
 private static final String MDO_SEP = ";";
 private static final String ACTION_CANCEL = "Cancel";
 private static final String ESS_UNAVAIL_MSG =
 "<p>Enterprise Scheduler Service is currently unavailable. Cause: %s</p>";

 private enum PseudoScheduleChoices {
 Immediately(0),
 InTenSeconds(10),
 InTenMinutes(10 * 60);

 @SuppressWarnings("compatibility:-5637079380819677366")
 private static final long serialVersionUID = 1L;

 private int m_seconds;

 private PseudoScheduleChoices(int seconds) {
 m_seconds = seconds;
 }

 public int getSeconds() {
 return m_seconds;
 }
 }

 public EssDemoAppServlet() throws ServletException {
 super();
 }

 @Override
 public void init(ServletConfig config) throws ServletException {
 super.init(config);
 }

 @Override
 public void doGet(HttpServletRequest request, HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);

 HttpSession session = request.getSession(true);
 String lastMessage = String.valueOf(session.getAttribute(MESSAGE_KEY));

 if ("null".equals(lastMessage)) {
 lastMessage = "";
 }

 try {
 RuntimeLists runtimeLists = getRuntimeLists();
 MetadataLists metadataLists = getMetadataLists();
 renderResponse(metadataLists, runtimeLists,
 request, response, lastMessage);
 } catch (ServletException se) {
 throw se;
 } catch (Exception e) {
 throw new ServletException(e);
 }
 }

 @Override
 public void doPost(HttpServletRequest request,
 HttpServletResponse response)
 throws ServletException, IOException
 {
 response.setContentType(CONTENT_TYPE);
 request.setCharacterEncoding("UTF-8");

 HttpSession session = request.getSession(true);
 String pathInfo = request.getPathInfo();

 // Clear the message on every post request
 StringBuilder message = new StringBuilder("");

 try {
 // Select each handler based on the form action
 if ("".equals(pathInfo)) {
 // No processing
 } else if (PATH_SUBMIT.equals(pathInfo)) {
 postSubmitRequest(request, message);
 } else if (PATH_ALTER.equals(pathInfo)) {
 postAlterRequest(request, message);
 } else {
 message.append(String.format("<p>No handler for pathInfo=%s</p>",
 pathInfo));
 }
 }
 catch (ServletException se) {
 Throwable t = se.getCause();
 String cause = (t == null) ? se.toString() : t.toString();
 message.append (String.format(ESS_UNAVAIL_MSG, cause));
 }

 // Storing the messages in the session allows them to persist
 // through the redirect and across refreshes.
 session.setAttribute(MESSAGE_KEY, message.toString());

 // render the page by redirecting to doGet(); this intentionally
 // strips the actions and post data from the request.
 response.sendRedirect(request.getContextPath() +
 request.getServletPath());
 }

 /**
 * Handle the job submission form.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postSubmitRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String jobDefName = request.getParameter("job");
 String scheduleDefName = request.getParameter("schedule");

 // Various required args for submission
 Calendar start = Calendar.getInstance();
 start.add(Calendar.SECOND, 2);

 // Launch the job based on form contents
 if (jobDefName == null || scheduleDefName == null) {
 message.append("Both a job name and a schedule name must be specified\n");
 } else {
 PseudoScheduleChoices pseudoSchedule = null;

 // See if schedule given is actually a pseudo schedule
 try {
 pseudoSchedule = PseudoScheduleChoices.valueOf(scheduleDefName);
 } catch (IllegalArgumentException e) {
 // The string is not a valid member of the enum
 pseudoSchedule = null;
 }

 MetadataObjectId scheduleDefId = null;
 String scheduleDefNamePart = null;
 MetadataObjectId jobDefId = stringToMetadataObjectId(jobDefName);

 // Don't look up schedules that aren't real
 if (pseudoSchedule != null) {
 scheduleDefNamePart = scheduleDefName;
 start.add(Calendar.SECOND, pseudoSchedule.getSeconds());
 } else {
 scheduleDefId = stringToMetadataObjectId(scheduleDefName);
 scheduleDefNamePart = scheduleDefId.getNamePart();
 }

 String jobDefNamePart = jobDefId.getNamePart();
 String requestDesc = jobDefNamePart + "@" + scheduleDefNamePart;

 Logger logger = getLogger();
 long requestId = submitRequest(pseudoSchedule, requestDesc,
 jobDefId, scheduleDefId, start, logger);

 // Populate the message block based on results
 message.append(String.format("<p>New request %d launched using %s</p>",
 requestId, requestDesc));
 }
 }

 private Long submitRequest(final PseudoScheduleChoices pseudoSchedule,
 final String requestDesc,
 final MetadataObjectId jobDefId,
 final MetadataObjectId scheduleDefId,
 final Calendar start,
 final Logger logger)
 throws ServletException
 {
 RuntimeServicePayload<Long> myPayload = new RuntimeServicePayload<Long>() {
 @Override
 Long execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 RequestParameters params = new RequestParameters();
 return (null != pseudoSchedule)
 ? service.submitRequest(handle, requestDesc, jobDefId,
 start, params)
 : service.submitRequest(handle, requestDesc, jobDefId,
 scheduleDefId, null,
 start, null, params);
 }
 };
 try {
 return performOperation(myPayload, logger);
 } catch (Exception e) {
 throw new ServletException("Error submitting request using job: " +
 jobDefId + " and schedule: " +
 scheduleDefId, e);
 }
 }

 /**
 * Handle the "Cancel" and "Purge" actions from the form enclosing
 * the Request Status table.
 * @param request
 * @param message
 * @throws ServletException
 */
 private void postAlterRequest(HttpServletRequest request,
 StringBuilder message)
 throws ServletException
 {
 String cancelID = null;

 /*
 * there are a few assumptions going on here...
 * the HTTP button being used to transmit the action and
 * request is backwards from its normal usage (eg. the name
 * should be invariable, and the value variable). Because we
 * want to display either "Purge" or "Cancel" on the button, and
 * transmit the reqId with it, we are reversing the map entry
 * to get the key (which in this case will be the reqID), and
 * match it to the value (Purge or Cancel).
 * Assumptions are that there will be only one entry in the map
 * per request (one purge or cancel). Also, that the datatypes
 * for the key and value willl be those documented for
 * ServletRequest (<K,V> = <String, String[]>).
 */
 Map requestMap = request.getParameterMap();
 Iterator mapIter = requestMap.entrySet().iterator();
 while (mapIter.hasNext()) {
 Map.Entry entry = (Map.Entry)mapIter.next();
 String key = (String)entry.getKey();
 String[] values = (String[])entry.getValue();
 if (ACTION_CANCEL.equals(values[0])) {
 cancelID = key;
 }
 }

 if (cancelID != null) {
 try {
 final String cancelId2 = cancelID;
 RuntimeServicePayload<Void> myPayload = new RuntimeServicePayload<Void>() {
 @Override
 Void execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 service.cancelRequest(handle, Long.valueOf(cancelId2));
 return null;
 }
 };

 Logger logger = getLogger();
 performOperation(myPayload, logger);
 message.append
 (String.format("<p>Cancelled request %s</p>", cancelID));
 } catch (Exception e) {
 throw new ServletException
 ("Error canceling or purging request", e);
 }
 } else {
 message.append("<p>No purge or cancel action specified</p>");
 }
 }

 private String metadataObjectIdToString(MetadataObjectId mdoID)
 throws ServletException {

 String mdoString =
 mdoID.getType().value() + MDO_SEP + mdoID.getPackagePart() +
 MDO_SEP + mdoID.getNamePart();

 return mdoString;
 }

 private MetadataObjectId stringToMetadataObjectId(String mdoString)
 throws ServletException {
 String[] mdoStringParts = mdoString.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of components %d found " +
 "when converting %s to MetadataObjectID",
 mdoStringParts.length,
 mdoString));
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(mdoStringParts[0]);
 String mdPackage = mdoStringParts[1];
 String mdName = mdoStringParts[2];

 MetadataObjectId mdoID =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return mdoID;
 }

 /**
 * this changes the format used in this class for job definitions to the one
 * which will be used in the runtime query.
 * @param strMetadataObject
 * @return string representing object in runtime store
 * @throws ServletException
 */
 private String fixMetadataString(String strMetadataObject)
 throws ServletException {
 String fslash = "/";
 String[] mdoStringParts =
 strMetadataObject.split(Pattern.quote(MDO_SEP));
 if (mdoStringParts.length != 3) {
 throw new ServletException(String.format("Unexpected number of components %d found " +
 "when converting %s to MetadataObjectID",
 mdoStringParts.length,
 strMetadataObject));
 }
 String[] trimStringParts = new String[mdoStringParts.length];
 for (int i = 0; i < mdoStringParts.length; i++) {
 String mdoStringPart = mdoStringParts[i];
 trimStringParts[i] = mdoStringPart.replaceAll(fslash, " ").trim();
 }

 MetadataObjectType mdType =
 MetadataObjectType.getMOType(trimStringParts[0]);
 String mdPackage = fslash + trimStringParts[1];
 String mdName = trimStringParts[2];
 MetadataObjectId metadataObjId =
 MetadataObjectId.createMetadataObjectId(mdType, mdPackage, mdName);
 return metadataObjId.toString();
 }

 private Set<String> getSetFromMetadataEnum(Enumeration<MetadataObjectId> enumMetadata)
 throws ServletException {
 Set<String> stringSet = new HashSet<String>();

 while (enumMetadata.hasMoreElements()) {
 MetadataObjectId objId = enumMetadata.nextElement();
 String strNamePart = objId.getNamePart();
 stringSet.add(strNamePart);
 }
 return stringSet;
 }

 //**
 //
 // HTML Rendering Methods
 //
 //**

 /**
 * Rendering code for the page displayed.
 * In a real application this would be done using JSP, but this approach
 * keeps everything in one file to make the example easier to follow.
 * @param response The response object from the main request.
 * @param message Text that will appear in the message panel, may contain HTML
 * @throws IOException
 */
 private void renderResponse(MetadataLists ml,
 RuntimeLists rl,
 HttpServletRequest request,
 HttpServletResponse response,
 String message)
 throws IOException, ServletException
 {
 response.setContentType(CONTENT_TYPE);
 PrintWriter out = response.getWriter();

 String urlBase = request.getContextPath() + request.getServletPath();

 // Indents maintained for clarity
 out.println("<html>");
 out.println("<head><title>EssDemo</title></head>");
 out.println("<body>");
 out.println("<table align=\"center\"><tbody>");
 out.println(" <tr><td align=\"center\"><h1>Enterprise Scheduler Service Tutorial</h1></td></tr>");
 out.println(" <tr><td align=\"center\"><table cellspacing=6><tr>");

 // Job launch form
 out.println(" <td align=\"center\">");
 out.println(" <h2>Launch Job</h2>");
 renderLaunchJobForm(ml, out, urlBase);
 out.println(" </td>");

 out.println(" <td align=\"center\" bgcolor=\"blue\" width=\"2\"/>");

 out.println(" </tr></table></td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Message panel
 out.println(" <tr><td align=\"center\"><h3>Messages</h3></td></tr>");
 out.println(" <tr><td>");
 out.println(message);
 out.println(" </td></tr>");

 out.println(" <tr><td bgcolor=\"red\"/></tr>");

 // Request status
 out.println(" <tr><td align=\"center\">");
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_ALTER + "\" method=\"post\">");
 out.println(" <h2>Request Status</h2>");
 out.println(" <table border=2><tbody>");
 out.println(" <th>reqID</th>");
 out.println(" <th>Description</th>");
 out.println(" <th>Scheduled time</th>");
 out.println(" <th>State</th>");
 out.println(" <th>Action</th>");

 renderStatusTable(out, rl.requestDetails);

 out.println(" </tbody></table>");
 out.println(" </form>");
 out.println(" </td></tr>");
 out.println("</tbody></table>");
 out.println("</body></html>");
 out.close();
 }

 private void renderLaunchJobForm(MetadataLists ml, PrintWriter out, String urlBase)
 throws ServletException {
 out.println(" <form name=\"attrs\" action=\"" + urlBase +
 PATH_SUBMIT + "\" method=\"post\">");
 out.println(" <table><tbody>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Job:");
 out.println(" <select name=\"job\">");

 renderMetadataChoices(out, ml.jobDefList, false);
 renderMetadataChoices(out, ml.jobSetList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"right\">");
 out.println(" Schedule:");
 out.println(" <select name=\"schedule\">");

 renderPseudoScheduleChoices(out);
 renderMetadataChoices(out, ml.scheduleList, false);

 out.println(" </select>");
 out.println(" </td></tr>");
 out.println(" <tr><td align=\"center\">");
 out.println(" <input name=\"submit\" value=\"Submit\" type=\"submit\">");
 out.println(" </td></tr>");
 out.println(" </tbody></table>");
 out.println(" </form>");
 }

 /**
 *
 * @param out - printwriter
 * @param jobChoices -- metadata to be displayed
 * @param bBlankFirst -- blank first (so that this param is not required)
 * @throws ServletException
 */
 private void renderMetadataChoices(PrintWriter out,
 Enumeration<MetadataObjectId> jobChoices,
 boolean bBlankFirst)
 throws ServletException
 {
 if (jobChoices == null)
 return;

 boolean bFirst = true;
 while (jobChoices.hasMoreElements()) {
 MetadataObjectId job = jobChoices.nextElement();
 String strJob = metadataObjectIdToString(job);
 String strNamePart = job.getNamePart();
 if (strNamePart.compareTo("BatchPurgeJob") == 0) {
 continue;
 } else {
 if (bFirst && bBlankFirst) {
 out.printf("<option value=\"%s\">%s</option>", "", "");
 bFirst = false;
 }
 out.printf("<option value=\"%s\">%s</option>", strJob,
 strNamePart);
 }
 }
 }

 /**
 * helper method for rendering choices based on strings, adding an empty
 * string to the beginning of the list
 * @param out
 * @param choices
 */
 private void renderStringChoices(PrintWriter out, Set<String> choices) {
 if (choices == null)
 return;

 choices.add("");
 SortedSet<String> sorted = new TreeSet<String>(choices);
 Iterator choiceIter = sorted.iterator();
 while (choiceIter.hasNext()) {
 String choice = (String)choiceIter.next();

 out.printf("<option value=\"%s\">%s</option>", choice, choice);
 }
 }

 private void renderPseudoScheduleChoices(PrintWriter out) {
 for (PseudoScheduleChoices c : PseudoScheduleChoices.values()) {
 out.printf("<option value=\"%s\">%s</option>", c, c);
 }
 }

 private void renderStatusTable
 (PrintWriter out, List<RequestDetail> reqDetails)
 {
 if (reqDetails == null) {
 return;
 }

 for (RequestDetail reqDetail : reqDetails) {
 State state = reqDetail.getState();

 Calendar scheduledTime = reqDetail.getScheduledTime();
 String scheduledTimeString = null;

 if (scheduledTime == null) {
 scheduledTimeString = "null scheduled time";
 } else {
 scheduledTimeString = String.valueOf(scheduledTime.getTime());
 }

 final String actionButton;
 if (!state.isTerminal()) {
 String action = ACTION_CANCEL;
 String reqId = String.valueOf(reqDetail.getRequestId());
 actionButton = String.format
 ("<button type=submit value=%s name=\"%s\">%s</button>",
 action, reqId, action);
 } else {
 actionButton = " ";
 }

 out.printf("<tr><td>%d</td><td>%s</td><td>%s</td><td>%s</td><td>%s</td></tr>\n",
 reqDetail.getRequestId(), reqDetail.getDescription(),
 scheduledTimeString, state, actionButton);
 }
 }

 private MetadataService getMetadataService() throws Exception {
 return JndiUtil.getMetadataServiceEJB();
 }

 private RuntimeService getRuntimeService() throws Exception {
 return JndiUtil.getRuntimeServiceEJB();
 }

 private abstract class Payload<SERVICE, HANDLE, RETURN> {
 abstract SERVICE getService() throws Exception;
 abstract HANDLE getHandle(SERVICE service) throws Exception;
 abstract void closeHandle(SERVICE service,
 HANDLE handle,
 boolean abort)
 throws Exception;
 abstract RETURN execute(SERVICE service, HANDLE handle, Logger logger)
 throws Exception;
 }

 private abstract class MetadataServicePayload<T>
 extends Payload<MetadataService, MetadataServiceHandle, T>
 {
 @Override
 MetadataService getService() throws Exception {
 return getMetadataService();
 }

 @Override
 MetadataServiceHandle getHandle(MetadataService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(MetadataService service,
 MetadataServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private abstract class RuntimeServicePayload<T>
 extends Payload<RuntimeService, RuntimeServiceHandle, T>
 {
 @Override
 RuntimeService getService() throws Exception {
 return getRuntimeService();
 }

 @Override
 RuntimeServiceHandle getHandle(RuntimeService service)
 throws Exception
 {
 return service.open();
 }

 @Override
 void closeHandle(RuntimeService service,
 RuntimeServiceHandle handle,
 boolean abort)
 throws Exception
 {
 service.close(handle, abort);
 }
 }

 private <S, H, R> R performOperation
 (Payload<S, H, R> payload, Logger logger)
 throws Exception
 {
 S service = payload.getService();
 H handle = payload.getHandle(service);

 Exception origException = null;
 try {
 return payload.execute(service, handle, logger);
 } catch (Exception e2) {
 origException = e2;
 throw e2;
 } finally {
 if (null != handle) {
 try {
 boolean abort = (null != origException);
 payload.closeHandle(service, handle, abort);
 } catch (Exception e2) {
 if (null != origException) {
 logger.log(Level.WARNING, "An error occurred while " +
 "closing handle, however, a previous failure was " +
 "detected. The following error will be logged " +
 "but not reported: " + stackTraceToString(e2));
 }
 }
 }
 }
 }

 private final String stackTraceToString(Exception e) {
 StringWriter sw = new StringWriter();
 PrintWriter pw = new PrintWriter(sw);
 e.printStackTrace(pw);
 pw.flush();
 pw.close();
 return sw.toString();
 }

 private Logger getLogger() {
 return Logger.getLogger(this.getClass().getName());
 }

 private class MetadataLists {
 private final Enumeration<MetadataObjectId> jobDefList;
 private final Enumeration<MetadataObjectId> jobSetList;
 private final Enumeration<MetadataObjectId> scheduleList;
 private final Enumeration<MetadataObjectId> jobTypeList;

 private MetadataLists(Enumeration<MetadataObjectId> jobDefList,
 Enumeration<MetadataObjectId> jobSetList,
 Enumeration<MetadataObjectId> scheduleList,
 Enumeration<MetadataObjectId> jobTypeList)
 {
 this.jobDefList = jobDefList;
 this.jobSetList = jobSetList;
 this.scheduleList = scheduleList;
 this.jobTypeList = jobTypeList;
 }
 }

 private class RuntimeLists {
 private final List<RequestDetail> requestDetails;
 private final Set<String> applicationChoices;
 private final Set<String> stateChoices;
 private final Set<MetadataObjectId> jobDefMDOChoices;

 private RuntimeLists(List<RequestDetail> requestDetails,
 Set<String> applicationChoices,
 Set<String> stateChoices,
 Set<MetadataObjectId> jobDefMDOChoices)
 {
 super();
 this.requestDetails = requestDetails;
 this.applicationChoices = applicationChoices;
 this.stateChoices = stateChoices;
 this.jobDefMDOChoices = jobDefMDOChoices;
 }
 }

 /**
 * Retrieve lists of jobs, schedules, and status for use by the renderer
 * @throws ServletException
 */
 private MetadataLists getMetadataLists() throws Exception {
 Logger logger = getLogger();

 MetadataServicePayload<MetadataLists> myPayload =
 new MetadataServicePayload<MetadataLists>()
 {
 @Override
 MetadataLists execute(MetadataService service,
 MetadataServiceHandle handle,
 Logger logger)
 throws Exception
 {
 Enumeration<MetadataObjectId> jobDefs =
 service.queryJobDefinitions(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobSets =
 service.queryJobSets(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> schedules =
 service.querySchedules(handle, null, QueryField.NAME, true);
 Enumeration<MetadataObjectId> jobTypes =
 service.queryJobTypes(handle, null, QueryField.NAME, true);

 return new MetadataLists(jobDefs, jobSets, schedules, jobTypes);
 }
 };
 MetadataLists ml = performOperation(myPayload, logger);
 return ml;
 }

 private RuntimeLists getRuntimeLists() throws Exception {
 Logger logger = getLogger();

 RuntimeServicePayload<List<RequestDetail>> myPayload2 =
 new RuntimeServicePayload<List<RequestDetail>>()
 {
 @Override
 List<RequestDetail> execute(RuntimeService service,
 RuntimeServiceHandle handle,
 Logger logger)
 throws Exception
 {
 List<RequestDetail> reqDetails =
 new ArrayList<RequestDetail>(10);
 Enumeration requestIds = service.queryRequests
 (handle, null, RuntimeService.QueryField.REQUESTID, true);

 while (requestIds.hasMoreElements()) {
 Long reqId = (Long)requestIds.nextElement();
 RequestDetail detail = service.getRequestDetail(handle, reqId);
 reqDetails.add(detail);
 }

 return reqDetails;
 }
 };
 List<RequestDetail> reqDetails = performOperation(myPayload2, logger);
 RuntimeLists rl = getRuntimeLists(reqDetails);
 return rl;
 }

 private RuntimeLists getRuntimeLists(List<RequestDetail> reqDetails) {
 Set<String> applicationSet = new HashSet<String>(10);
 Set<String> stateSet = new HashSet<String>(10);
 Set<MetadataObjectId> jobDefMOSet = new HashSet<MetadataObjectId>(10);

 if (reqDetails != null) {
 ListIterator detailIter = reqDetails.listIterator();
 while (detailIter.hasNext()) {
 RequestDetail detail = (RequestDetail)detailIter.next();
 applicationSet.add(detail.getDeployedApplication());
 State state = detail.getState();
 if (state.isTerminal())
 stateSet.add(state.name());
 jobDefMOSet.add(detail.getJobDefn());
 }
 }

 RuntimeLists rl = new RuntimeLists
 (reqDetails, applicationSet, stateSet, jobDefMOSet);
 return rl;
 }

}

3.9.2.6 Editing the web.xml File for the Frontend Submitter Application

You need to edit the web.xml file to and Oracle Enterprise Scheduler metadata and runtime EJB references.

To edit the web.xml file for the frontend submitter application:

	
In the Application Navigator, expand SuperWeb, expand Web Content, expand WEB-INF and double-click web.xml.

	
In the overview editor, click the References navigation tab and expand the EJB References section.

	
Add two EJB resources with the information shown in Table 3-1.

Table 3-1 EJB Resources for the Frontend Submitter Application

	EJB Name	Interface Type	EJB Type	Local/Remote Interface
	
ess/metadata

	
Local

	
Session

	
oracle.as.scheduler.MetadataServiceLocal

	
ess/runtime

	
Local

	
Session

	
oracle.as.scheduler.RuntimeServiceLocal

	
Click the Servlets navigation tab and click the Servlet Mappings tab.

	
Change the /essdemoappservlet URL pattern to /essdemoappservlet/*.

3.9.2.7 Editing the weblogic-application.xml file for the Frontend Submitter Application

You need to create and edit the weblogic-application.xml file.

To edit the weblogic-application.xml file for the frontend submitter application:

	
In Application Navigator, right-click the SuperEss project and select New.

	
In the New Gallery, expand General, select Deployment Descriptors and then Weblogic Deployment Descriptor, and click OK.

	
In the Select Descriptor page select weblogic-application.xml.

	
Click Next, click Next again, and click Finish.

	
In the source editor, replace the contents of the weblogic-application.xml file that you just created with the XML shown in Example 3-12.

Example 3-12 Contents to Copy to weblogic-application.xml for a Frontend Submitter Application

<?xml version = '1.0' encoding = 'UTF-8'?>
<weblogic-application xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://www.bea.com/ns/weblogic/weblogic-application

http://www.bea.com/ns/weblogic/weblogic-application/1.0/weblogic-application.xsd"
 xmlns="http://www.bea.com/ns/weblogic/weblogic-application">

 <!-- The following application parameter tells JPS which stripe it should
 - use to upload the jazn-data.xml policy. If this parameter is not
 - specified, it will use the Java EE deployment name plus the version
 - number (e.g. EssDemoApp#V2.0).
 -->
 <application-param>
 <param-name>jps.policystore.applicationid</param-name>
 <param-value>EssDemoAppUI</param-value>
 </application-param>

 <!-- This listener allows JPS to configure itself and upload the
 - jazn-data.xml policy to the appropriate stripe
 -->
 <listener>
 <listener-class>oracle.security.jps.wls.listeners.JpsApplicationLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows MDS to configure itself and upload any metadata
 - as defined by the MAR profile and adf-config.xml
 -->
 <listener>
 <listener-class>oracle.mds.lcm.weblogic.WLLifecycleListener</listener-class>
 </listener>

 <!-- This listener allows Oracle Enterprise Scheduler to configure itself
 -->
 <listener>
 <listener-class>oracle.as.scheduler.platform.wls.deploy.ESSApplicationLifecycleListener</listener-class>
 </listener>

 <!-- This shared library contains all the Oracle Enterprise Scheduler classes
 -->
 <library-ref>
 <library-name>oracle.ess.client</library-name>
 </library-ref>
 <library-ref>
 <library-name>adf.oracle.domain</library-name>
 </library-ref>
</weblogic-application>

3.9.2.8 Editing the adf-config file for the Frontend Submitter Application

You need to edit the adf-config.xml file to tell the application to share the metadata that was created in the hosting application.

To edit the adf-config.xml file for the frontend submitter application:

	
From the Application Resources panel, expand Descriptors, expand ADF META-INF, and double-click adf-config.xml.

	
In the source editor, replace the contents of the adf-config.xml file with the XML shown in Example 3-13.

Example 3-13 Contents to Copy to adf-config.xml for a Frontend Submitter Application

<?xml version="1.0" encoding="UTF-8" ?>
<adf-config xmlns="http://xmlns.oracle.com/adf/config">
 <adf-security-child xmlns="http://xmlns.oracle.com/adf/security/config">
 <JaasSecurityContext initialContextFactoryClass="oracle.adf.share.security.JAASInitialContextFactory"
 jaasProviderClass="oracle.adf.share.security.providers.jps.JpsSecurityContext"
 authorizationEnforce="false"
 authenticationRequire="true"/>
 </adf-security-child>
 <adf-mds-config xmlns="http://xmlns.oracle.com/adf/mds/config">
 <mds-config xmlns="http://xmlns.oracle.com/mds/config" version="11.1.1.000">
 <persistence-config>
 <metadata-namespaces>
 <namespace metadata-store-usage="ess_shared_metadata" path="/oracle/apps/ess/howto"/>
 </metadata-namespaces>
 <metadata-store-usages>
 <metadata-store-usage default-cust-store="false" deploy-target="false" id="ess_shared_metadata"/>
 </metadata-store-usages>
 </persistence-config>
 </mds-config>
 </adf-mds-config>
</adf-config>

3.9.2.9 Assembling the Frontend Submitter Application for Oracle Enterprise Scheduler

After you create the frontend sample application you use ­Oracle JDeveloper to assemble the application.

To assemble the backend application you do the following:

	
Create the EJB Java Archive

	
Create the WAR file

	
Create the application MAR and EAR files

3.9.2.9.1 How to Assemble the EJB JAR File for the Frontend Submitter Application

The EJB Java archive file includes descriptors for the Java job implementations.

To assemble the EJB JAR File for the frontend submitter application:

	
In Application Navigator, right-click the SuperEss project and choose New.

	
In the New Gallery, expand General, select Deployment Profiles and then EJB JAR File, and click OK.

	
In the Create Deployment Profile dialog, set the Deployment Profile Name to JAR_SuperEssEjbJar.

	
On the Edit EJB JAR Deployment Profile Properties dialog, click OK.

	
On the Project Properties dialog, click OK.

3.9.2.9.2 How to Assemble the WAR File for the Frontend Submitter Application

You need to create a web archive file for the web application.

To assemble the WAR file for the frontend submitter application

	
In Application Navigator, right-click the SuperWeb project and choose New.

	
In the New Gallery, expand General, select Deployment Profiles and then WAR File, and click OK.

	
In the Create Deployment Profile dialog, set the Deployment Profile Name to WAR_SuperWebWar.

	
On the Edit WAR Deployment Profile Properties dialog, click the General navigation tab, select Specify Java EE Web Context Root, and enter ESSDemoApp.

	
Click OK.

	
On the Project Properties dialog, click OK.

3.9.2.9.3 How to Assemble the MAR and EAR Files for the Frontend Hosting Application

The sample application needs to contain the MAR profile and the EAR file that assembles the scheduler backend application.

To create the MAR and EAR files for the frontend submitter application:

	
From the main menu, choose Application Menu > Application Properties...

	
In the Application Properties dialog, click the Deployment navigation tab and click New.

	
In the Create Deployment Profile dialog, select MAR File from the Archive Type dropdown list.

	
In the Name field, enter MAR_EssDemoAppUIMar and click OK.

	
Click OK.

	
In the Deployment page of the Application Properties dialog, click New.

	
In the Create Deployment Profile dialog, select EAR File from the Archive Type dropdown list.

	
In the Name field, enter EAR_EssDemoAppUIEar and click OK.

	
In the Edit EAR Deployment Profile dialog, click the General navigation tab and enter EssDemoAppUI in the Application Name field.

	
Click the Application Assembly navigation tab, then select MAR_ESSDemoAppUIMar and select JAR_SuperEssEjbJar.

	
Click OK.

	
In the Application Properties dialog, click OK.

3.9.2.10 Deploying the Backend Hosting Application

After assembling the application, you can deploy it to the server.

To deploy the backend hosting application:

	
From the main menu, choose Application > Deploy > EAR_EssDemoAppEar...

	
Set up and deploy the application to a container.

	
On the Deployment Configuration dialog, there should be two entries in the Shared Metadata Repositories panel. Find the shared repository mapped to the /oracle/apps/ess/howto namespace. Change its partition to the partition used when deploying EssDemoApp. If you used the default value, this should be EssDemoApp_V2.0.

	
Click OK.

