Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition)
11g Release 1 (11.1.1)
E20836-01
August 2011
Oracle Fusion Middleware Metadata Repository Builder's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition), 11g Release 1 (11.1.1)
E20836-01
Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Marla Azriel
Contributing Author: Bob Ertl
Contributors: Oracle Business Intelligence development, product management, and quality assurance teams
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
The Oracle Business Intelligence Foundation Suite is a complete, open, and integrated solution for all enterprise business intelligence needs, including reporting, ad hoc queries, OLAP, dashboards, scorecards, and what-if analysis. The Oracle Business Intelligence Foundation Suite includes Oracle Business Intelligence Enterprise Edition.
Oracle Business Intelligence Enterprise Edition (Oracle BI EE) is a comprehensive set of enterprise business intelligence tools and infrastructure, including a scalable and efficient query and analysis server, an ad-hoc query and analysis tool, interactive dashboards, proactive intelligence and alerts, and an enterprise reporting engine.
The components of Oracle BI EE share a common service-oriented architecture, data access services, analytic and calculation infrastructure, metadata management services, semantic business model, security model and user preferences, and administration tools. Oracle BI EE provides scalability and performance with data-source specific optimized request generation, optimized data access, advanced calculation, intelligent caching services, and clustering.
This guide contains information about building an Oracle Business Intelligence metadata repository and includes topics on setting up and connecting to data sources, building the Physical layer, Business Model and Mapping layer, and Presentation layer, how to use the multiuser development environment, and a Logical SQL reference.
This document is intended for anyone who intends to design and build a metadata repository using the Oracle Business Intelligence Administration Tool, such as a Business Intelligence strategist, metadata provider, or ETL developer.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following documents in the Oracle Business Intelligence Enterprise Edition 11g Release 1 (11.1.1) documentation set:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This preface describes changes to metadata repository features for Oracle Business Intelligence Enterprise Edition 11g Release 1 (11.1.1). If you are upgrading to Oracle BI EE from a previous release, read the following information carefully, because there are significant differences in features, tools, and procedures.	
This preface contains the following topics:	
This section contains the following topics:	
New Features	
New metadata repository features in Oracle BI EE 11g Release 1 (11.1.1.5) include:	
Ability to Propagate Flex Object Changes to the RPD and Data Warehouse	
You can use the Import Metadata Wizard in the Administration Tool to propagate changes made to flexfields in your applications from the source OLTP system into the Physical and Business Model and Mapping layers of the repository.	
You can also use the Import Metadata Wizard to invoke the BI Extender feature to propagate flex object changes to your Informatica server mappings, DAC, and the Physical and Business Model and Mapping layer data warehouse metadata objects. See "Importing Metadata from ADF Business Component Data Sources" and "Using the BI Extender to Propagate Flex Object Changes" for more information.	
Access to Oracle OLAP Data Sources	
Oracle BI EE now supports Oracle OLAP as a data source. See "Working with Oracle OLAP Data Sources" for more information.	
Access to TimesTen Data Sources	
Oracle BI EE now supports Oracle TimesTen In-Memory Database as a data source. See "Setting Up Oracle TimesTen In-Memory Database Data Sources" for more information.	
Ability to Connect to SAP/BW Data Sources Using a Native Connection	
You can now use the SAP BW Native connection option to connect to SAP/BW data sources over BAPI. See "Setting Up SAP/BW Data Sources" for more information.	
New Diagramming Capability	
The Physical and Business Model Diagrams have enhanced capabilities in this release, including an improved look-and-feel, the ability to display columns in table objects in the diagram, and new diagram options like auto-layout, marquee zoom, and zoom to fit. See "Using the Physical and Business Model Diagrams" for more information.	
Validation Utility to Validate Metadata Objects in a Repository	
Oracle BI EE now includes a validation utility to validate metadata objects. See "Using the validaterpd Utility to Check Repository Consistency" for more information.	
Be aware of the following upgrade considerations when upgrading to Oracle BI EE 11g Release 1 (11.1.1.5):	
For example, the following image shows a join in the diagram as it was represented in previous releases:	
This join is represented as follows in 11g Release 1 (11.1.1.5):	
This new gesture direction (from many to one) matches the direction of the new join arrow, described in the previous bullet.	
For more information about upgrading to Oracle BI EE 11g, see Oracle Fusion Middleware Upgrade Guide for Oracle Business Intelligence.	
This section contains the following topics:	
New Features	
New metadata repository features in Oracle BI EE 11g Release 1 (11.1.1.3) include:	
New SampleApp.rpd Demonstration Repository	
A new demonstration repository called SampleApp.rpd is available for this release of Oracle BI EE. This repository provides best practice information about modeling many different types of objects.	
A basic version of SampleApp.rpd, called SampleAppLite.rpd, is automatically installed as the default repository when you choose the Simple Install option. The full version of SampleApp.rpd, which contains many additional examples and features, is available on the Oracle Technology Network. See "About the SampleApp.rpd Demonstration Repository" for more information.	
Hierarchy Objects in the Presentation Layer	
You can now define presentation hierarchies and presentation levels in the Presentation layer. These objects provide an explicit way to expose the multidimensional model in Oracle BI Answers and enables users to create hierarchy-based queries. Presentation hierarchies expose analytic functionality such as member selection, custom member groups, and asymmetric queries. See "Working with Presentation Hierarchies and Levels" for more information.	
Support for Unbalanced (Ragged) and Skip-Level Hierarchies	
Oracle BI EE now supports unbalanced and skip-level hierarchies. An unbalanced (or ragged) hierarchy is a hierarchy where the leaves (members with no children) do not necessarily have the same depth. A skip-level hierarchy is a hierarchy where there are members that do not have a value for a particular ancestor level. See "About Level-Based Hierarchies" for more information.	
Support for Parent-Child Hierarchies	
Oracle BI EE now supports parent-child hierarchies. Parent-child hierarchies (also called value hierarchies) contain members that all have the same type. For example, an organizational chart has a distinct parent-child hierarchy, but all members are employees. See "Creating and Managing Dimensions with Parent-Child Hierarchies" for more information.	
Creating Subject Areas for Logical Stars and Snowflakes	
You can automatically create one subject area (formerly called presentation catalog) for each logical star or logical snowflake in your business model. See "Automatically Creating Subject Areas Based on Logical Stars and Snowflakes" for more information.	
Multicurrency Support	
You can configure logical columns so that Oracle BI EE users can select the currency in which they prefer to view currency columns in analyses and dashboards. See "Configuring Logical Columns for Multicurrency Support" for more information.	
Generating and Applying XML Patch Files	
You can now generate an XML patch file that contains only the changes made to a repository. This patch can be then applied to the old (original) version of the repository to create the new version. This is very useful for development-to-production scenarios, and can also be used for Oracle BI Applications customers to upgrade their repository. See "Performing Patch Merges" for more information.	
You can also use the Oracle BI Server XML utilities to create a generic, XML-based representation of the Oracle BI repository metadata, on any supported Oracle BI Server operating system. See "About the Oracle BI Server XML API" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.	
Enhancements for Multiuser Development and Repository Lifecycle Management	
The following list summarizes improvements and new features for multiuser development and repository lifecycle management:	
Metadata Repository File Encryption	
Repositories now have a repository password that encrypts the repository contents using a strong encryption algorithm. This feature ensures that repository metadata is secure, including data source credentials in connection pool objects. See "Changing the Repository Password" for more information.	
Metadata Repository File Compression	
To reduce storage needs, repositories are now stored in a compressed format. Because of this, you may notice that the size of an RPD file opened and saved in this release is significantly smaller than the size of RPD files from previous releases. See "About the Multiuser Development Environment" for more information about using and storing multiple repositories.	
Embedded Database Functions	
Users and administrators can create requests by directly calling database functions from either Oracle BI Answers, or by using a Logical column (in the Logical Table source) within the metadata repository. These functions provide the ability to access custom written functions or procedures on the underlying database. Supported functions include EVALUATE	
, EVALUATE_AGGR	
, and EVALUATE_PREDICATE	
. See "Database Functions" for more information.	
In addition, Evaluate functions can be leveraged significantly for Essbase users. See "Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique Essbase Functions" for more information.	
SQL Functions for Time Series Calculations and Level-Based Measures	
The following new and revised SQL functions enable users to create time series calculations and level-based measures:	
PERIODROLLING	
is a new function that computes the aggregate of a measure over the period starting x units of time and ending y units of time from the current time. AGGREGATE AT	
is a new function that aggregates columns based on the level or levels specified. AGO	
is a time series aggregation function that calculates the aggregated value from the current time back to a specified time period. In this release, the time_level	
argument is optional, and there are additional syntax changes. This function was called PERIODAGO	
in a previous release. TODATE	
is a time series aggregation function that aggregates a measure attribute from the beginning of a specified time period to the currently displayed time. The syntax for this function has changed in this release. This function was called PERIODTODATE	
in a previous release. See "Aggregate Functions" for more information about these functions. See also "Modeling Time Series Data" for information about using the time series functions AGO	
, TODATE	
, and PERIODROLLING	
.	
Support for SELECT_PHYSICAL	
SELECT_PHYSICAL	
statements provide the functionality to directly query objects in the Physical layer of the metadata repository, and to nest such a statement within a query against the Business Model and Mapping layer or the Presentation layer. See "Syntax and Usage Notes for SELECT_PHYSICAL" for more information.	
Support for Calculated Members	
Calculated members are user-defined dimension members whose measure values are calculated at run time. You can define a calculated member within a dimension through a formula that references other members of the same dimension. See "Calculated Members" for more information.	
Access to Essbase Data Sources	
Oracle BI EE now supports Essbase as a data source. See "Working with Essbase Data Sources" for more information.	
Access to Hyperion Financial Management Data Sources	
Oracle BI EE now supports Hyperion Financial Management as a data source. See "Working with Hyperion Financial Management Data Sources" for more information.	
Access to ADF Business Component Data Sources	
Oracle BI EE now supports using ADF Business Components as data sources. With this feature, users can integrate operational reporting with any application that is built on top of the ADF Framework. See "Working with ADF Business Component Data Sources" for more information.	
Access to Oracle RPAS Data Store Through ODBC	
The Oracle BI Server can now access Oracle Retail Predictive Application Server (RPAS) data stores using the RPAS ODBC driver. See "Setting Up Oracle RPAS Data Sources" for more information.	
Ability to Connect to Oracle Database Through OCI	
Administrators can now use the native Oracle Call Interface (OCI) when importing physical objects from an Oracle Database. Because using OCI is faster than using an ODBC connection, administrators should always use OCI when importing from or setting up connections to an Oracle Database. See "Setting Up Oracle Database Data Sources" for more information.	
Support for Dragging and Dropping XMLA Objects	
You can now drag and drop XMLA objects (whole XMLA database or cube tables, at the same time or one by one) into the logical layer to automatically create a consistent business model. See "Creating the Business Model and Mapping Layer" and "Automatically Creating Business Model Objects for Multidimensional Data Sources" for more information.	
Support for Using a Standby Database with Oracle Business Intelligence	
You can now use a standby database with Oracle BI EE. A standby database is used mainly for its high availability and failover functions as a backup for the primary database. See "Using a Standby Database with Oracle Business Intelligence" for more information.	
Aggregate Persistence Auto-Indexing	
For greater performance, Oracle BI EE now creates indexes and statistics on relational tables when aggregates are persisted. See Chapter 12 for more information about aggregate persistence.	
Pruning Utility to Delete Unwanted Repository Objects	
Oracle BI EE now includes a pruning utility to remove unwanted objects from your repository. This utility is especially useful for Oracle BI Applications customers who only need to use a subset of the objects included in the shipped Oracle BI Applications repository. See Appendix E, "Deleting Unwanted Objects from the Repository" for more information.	
Ability to Defer Execution of Session Variable Initialization Blocks	
To improve session logon time and save resources, administrators can defer execution of selected session variable initialization blocks until the associated session variables are actually used within the session. See "Creating Initialization Blocks" for more information.	
Improved Usability in the Administration Tool	
Many Administration Tool screens, wizards, and other parts of the user interface were updated and streamlined for this release of Oracle BI EE. Updated wizards include the Create New Repository Wizard, Aggregate Persistence Wizard, and Merge Wizard. Expression Builder and the Consistency Checker also contain usability enhancements in this release.	
Additional changes include updated and improved icons, a simpler process flow to create joins, improvements to the Query Repository feature, and a simplified way to add some repository objects. Also, shortcuts were added to enable keyboard access to menu options, dialog navigation, and navigation in the Physical and Business Model Diagrams.	
Be aware of the following upgrade considerations when upgrading to Oracle BI EE 11g Release 1 (11.1.1.3):	
Note that a blank repository password is not allowed.	
Application roles are managed in an external policy store. Application role objects exist in the repository, but these objects are pointers (references) to the externally managed roles.	
See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for information about these and other security changes. See also Chapter 13, "Applying Data Access Security to Repository Objects" for additional information.	
In addition, Oracle BI EE is now deployed in a clustered configuration by default. Because of this, the default ODBC DSN for the Oracle BI Server points to the Cluster Controller by default, rather than to the Oracle BI Server.	
See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about ODBC DSNs for the Oracle BI Server.	
You can also use the BI Systems Management API to programmatically start and stop Oracle BI EE. This feature is especially helpful for automating rolling restart of Oracle BI Servers in a cluster, to enable repository upgrade with zero end-user downtime.	
For more information, see "Starting and Stopping Oracle Business Intelligence" and "Starting and Stopping Oracle Business Intelligence Using the Oracle BI Systems Management API" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.	
ORACLE_HOME/network/admin	
In the current release, in this situation, the WHERE clause filters from both logical table sources are applied to the query. Typically, this behavior produces the desired results. If you encounter errors related to this issue, you can correct them by using physical table aliases to ensure that the same physical table is not mapped to the same logical table at different levels.	
Validation Rule Example	Type
---	---
[14031] The content filter of a source for logical table: FACT_TABLE_NAME references multiple dimensions.	Error
[38126] 'Logical Table' '"Technology - WFA"."Fact WFA WO "' has name with leading or trailing space(s).	Error
[38012] Logical column DIM_Start_Date.YEAR_QUARTER_NBR does not have a physical data type mapping, nor is it a derived column. [38001] Logical column DIM_Start_Date.YEAR_QUARTER_NBR has no physical data source mapping.	Error
[39028] The features in Database 'MyDB' do not match the defaults. This can cause query problems.	Warning
[39003] Missing functional dependency association for column: DIM_Offer_End_Date.CREATE_DT.	Warning
[39009] Logical fact table MY_FACT has an aggregate source MY_FACT.YRLY_SUM that does not join to a Dimension: Hier - Time source at the proper level of detail. [39055] Fact table "HR"."FACT - HC Budget" is not joined to tables in logical dimension "HR"."DIM - HR EmployeeDim". This will cause problems when extracting project(s). [39059] Logical dimension table MY_DIM has a source MY_DIM_DAILY at level Daily that joins to a higher level fact source MY_FACT_SUM.MTHLY_SUM	Warning
[39054] Fact table "Sales - STAR"."Fact - STAR Statistics" is not joined to logical dimension table "Sales - STAR"."Dim - Plan". This will cause problems when extracting project(s).	Warning
[39057] There are physical tables mapped in Logical Table Source ""HR"."Dim - Schedule"."SCH_DEFN"" that are not used in any column mappings or expressions.	Warning
For more information about upgrading to Oracle BI EE 11g, see Oracle Fusion Middleware Upgrade Guide for Oracle Business Intelligence.	
This chapter explains how to plan and design your metadata repository, including how to plan your business model, how to work with the physical content for your business model, and general repository design guidelines.	
To effectively plan and build your metadata repository, you need to have experience with SQL queries and be familiar with reporting and analysis. You should also have experience with industry-standard data warehouse modeling practices, and be familiar with general relational entity-relationship modeling.	
This chapter contains the following topics:	
The architecture of the Oracle BI Server and the Oracle BI repository provides a layer of abstraction that lets users send simple Logical SQL queries against complex federated data sources.	
This section contains the following topics:	
The Oracle BI Server is an Oracle Business Intelligence component that processes user requests and queries underlying data sources. The Oracle BI Server maintains the logical data model and provides client access to this model through ODBC.	
The Oracle BI Server uses the metadata in the Oracle BI repository to perform the following two tasks:	
The Oracle BI Server connects to the underlying data sources through either ODBC or through native APIs, such as OCI for Oracle Database.	
The Administration Tool client is a Windows application that you can use to create and edit your Oracle BI repository. The Administration Tool can connect directly to the repository in offline mode, or it can connect to the repository through the Oracle BI Server. Some options are only available in online mode. See "Using Online and Offline Repository Modes" for more information.	
Figure 1-1 shows how the Oracle BI Server interacts with query clients, data sources, the Oracle BI repository, and the Administration Tool.	
Example 1-1 shows how the Oracle BI Server interprets and converts Logical SQL queries.	
Example 1-1 Logical Requests Are Transformed Into Complex Physical Queries	
Assume the Oracle BI Server receives the following simple client request:	
The Oracle BI Server can then convert the Logical SQL query into a sophisticated physical query, as follows:	
An Oracle BI repository has the following layers:	
Separating the logical behavior of the application from the physical model provides the ability to federate multiple physical sources to the same logical object, enabling aggregate navigation and partitioning, as well as dimension conformance and isolation from changes in the physical sources. This separation also enables the creation of portable BI Applications.	
Each column in the business model maps to one or more columns in the Physical layer. At run time, the Oracle BI Server evaluates Logical SQL requests against the business model, and then uses the mappings to determine the best set of physical tables, files, and cubes for generating the necessary physical queries. The mappings often contain calculations and transformations, and might combine multiple physical tables.	
You can create multiple subject areas in the Presentation layer that map to a single business model, effectively breaking up the business model into manageable pieces.	
Before you build any repository layers in the Administration Tool, it is important to create a high-level design of the Business Model and Mapping layer based on the analytic requirements of your users. After you have a conceptual design to work toward, you can then build your metadata objects.	
The typical order is to create the Physical layer objects first, the Business Model and Mapping layer objects next, and the Presentation layer objects last. However, you can work on each layer at any stage. After you complete all three layers, you can set up security when you are ready to begin testing the repository.	
Figure 1-2 shows how a Logical SQL query traverses the layers of an Oracle BI repository.	
Note that a single Oracle BI repository can contain two or more independent semantic models, rather than a single, integrated, enterprise-wide model. A semantic model consists of one business model, its related objects in the Presentation and Physical layers, and additional related objects like variables, initialization blocks, and application roles. A semantic model is also known as a Common Enterprise Information Model.	
See also Figure A-4 for a visual representation of multiple semantic models.	
Planning your business model is the first step in developing a usable data model for decision support. After you have followed the planning guidelines in this section, you can begin to create your repository.	
Your first task is to thoroughly understand your business model requirements. You must first understand what business model you want to build before you can determine what the Physical layer needs to have in it.	
In a decision support environment, the objective of data modeling is to design a model that presents business information in a manner that parallels business analysts' understanding of the business structure. A successful model allows the query process to become a natural process by enabling analysts to structure queries in the same intuitive fashion as they would ask business questions. This model must be one that business analysts inherently understand and that answers meaningful questions correctly.	
Unlike visual SQL tools such as Oracle BI Publisher, the business model defines the analytic behavior of your BI application. In contrast, the Physical layer only provides the components used to assemble a physical query mapped from business model logic.	
This requires breaking down your business into several components to answer the following questions:	
After you have answered these questions, you can identify and define the elements of your business model.	
To determine what content to include in your business model, you must first identify the logical columns on which users need to query. Then, to establish the role played by each column, identify whether it is a measure column or a dimensional attribute. Finally, arrange the logical columns in a dimensional model based on the relevant roles, relationships between columns, and logic.	
Businesses are analyzed by relevant dimensional criteria, and the business model is developed from these relevant dimensions. These dimensional models form the basis of the valid business models to use with the Oracle BI Server.	
Although not all dimensional models are built around a star schema, it is a best practice to use a simple star schema in the business model layer. In other words, the dimensional model should represent some measurable facts that are viewed in terms of various dimensional attributes.	
After you analyze your business model requirements, you need to identify the specific logical tables and hierarchies that you need to include in your business model.	
This section contains the following topics:	
Logical fact tables in the Business Model and Mapping layer contain measures that have aggregations built into their definitions. Logical fact tables are different from physical fact tables in relational models, which instead define facts at the lowest grain of the table.	
Measures aggregated from facts must be defined in a logical fact table. Measures are typically calculated data such as dollar value or quantity sold, and they can be specified in terms of dimensions. For example, you might want to determine the sum of dollars for a given product in a given market over a given time period.	
Each measure has its own aggregation rule such as SUM	
, AVG	
, MIN	
, or MAX	
. A business might want to compare values of a measure and need a calculation to express the comparison. Also, aggregation rules can be specific to particular dimensions. The Oracle BI Server lets you define complex, dimension-specific aggregation rules.	
You do not explicitly label tables in the Business Model and Mapping layer as fact tables or dimension tables. Rather, the Oracle BI Server treats tables at the "one" end of a join as dimension tables, and tables at the "many" end of a join as fact tables.	
Figure 1-3 illustrates the many-to-one joins to a fact table in a Business Model Diagram. In the diagram, all joins have an arrow (indicating the one side) pointing away from the Fact-Pipeline table; no joins are pointing to it. For an example of this in a business model, open a repository in the Administration Tool, right-click a fact table, and select Business Model Diagram > Whole Diagram.	
A business uses facts to measure performance by well-established dimensions, for example, by time, product, and market. Every dimension has a set of descriptive attributes. Dimension tables contain attributes that describe business entities (such as Customer Name, Region, Address, Country and so on). Dimension tables also contain primary keys that identify each member. Unlike logical fact tables, which are different from physical fact tables in relational models, logical dimension tables behave very much like relational dimension tables.	
Dimension table attributes provide context to numeric data, such as being able to categorize Service Requests. Attributes stored in this dimension might include Service Request Owner, Area, Account, Priority, and so on.	
Dimensions in the business model are conformed dimensions. In other words, even if a particular data source has five different instances of a particular Customer table, the business model should only have one table. To achieve this, all five physical source instances of Customer are mapped to a single Customer logical table, with transformations in the logical table source as necessary. Conformed dimensions hide the complexity of the Physical layer from users and enable you to combine data from multiple fact sources at different grains. They also enable you to federate multiple data sources.	
Also note that dimension and level keys in the business model should be business keys rather than generated surrogate keys. In other words, use "Customer Name" with values like "Oracle" instead of "Customer Key" with values like "1076823." Using business keys in the business model ensures that all sources for that dimension can be conformed to the same logical dimension table with the same logical key and level key.	
Although generated surrogate keys can still exist in the Physical layer, where they are useful for their query performance advantages on joins, you typically do not have surrogate key columns in the Business Model and Mapping layer at all.	
Dimensions are categories of attributes by which the business is defined. Common dimensions are time periods, products, markets, customers, suppliers, promotion conditions, raw materials, manufacturing plants, transportation methods, media types, and time of day. Within a given dimension, there may be many attributes. For example, the time period dimension can contain the attributes day, week, month, quarter, and year. Exactly what attributes a dimension contains depends on the way the business is analyzed.	
Dimensions typically contain hierarchies, which are sets top-down relationships between members within a dimension. There are two types of hierarchies: level-based hierarchies (structure hierarchies), and parent-child hierarchies (value hierarchies). Level-based hierarchies are those in which members of the same type occur only at a single level, while members in parent-child hierarchies all have the same type. Oracle Business Intelligence also supports a special type of level-based dimension, called a time dimension, that provides special functionality for modeling time series data.	
In level-based hierarchies, levels roll up from lower level to higher level; for example, months can roll up into a year. These rollups occur over the hierarchy elements and span natural business relationships.	
In parent-child hierarchies, the business relationships occur between different members of the same real-world type, such as the manager-employee relationship in an organizational hierarchy tree. Parent-child hierarchies do not have explicitly named levels. There is no limit to the number of implicit levels in a parent-child hierarchy.	
To define your hierarchies, you define the "contains" relationships in your business (geographical, product, time, and so on) to drive rollup aggregations in all calculations, as well as drill-down navigation in reports and dashboards. For example, if month rolls up into year and an aggregate table exists at the month level, that table can be used to answer questions at the year level by adding up all of the month-level data for a year.	
It is important to use the right type of hierarchy for your needs. To determine which type to use, consider the following:	
See Chapter 9, "Working with Logical Dimensions" for more information.	
Sometimes, dimensions can contain multiple hierarchies. For example, time dimensions often have one hierarchy for the calendar year, and another hierarchy for the fiscal year. Note that dimensions with multiple hierarchies must always end with the same leaf table.	
Figure 1-4 shows a dimension with multiple hierarchies in the Business Model and Mapping layer of the Administration Tool.	
When you need to display translated field information from multilingual schemas, you create a logical lookup table that corresponds to a lookup table in the Physical layer. A lookup table stores multilingual data corresponding to rows in the base tables. Before you can use a particular logical lookup table, you must designate it as a lookup table in the General tab of the Logical Table dialog. See "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about localization and lookup tables.	
In addition to localization, lookup tables can be used any time you need to display one set of values to users, while using a different, corresponding set of values in the physical query. If necessary, the human-readable value can be looked up in a completely different data source.	
After you have determined the requirements for your business model, you can look at what data source content you need in the Physical layer. Unlike the Business Model and Mapping layer, which is always dimensional, each physical model mirrors the shape of the source (for example, normalized, cube, and so on).	
This section contains the following topics:	
You can successfully model any physical schema in the Oracle BI repository, regardless of its type, because the model of any physical source can be broken down into overlapping subsets that are dimensional.	
There are four types of physical schemas (models):	
Snowflake Schemas. A snowflake schema is similar to a star schema, except that each dimension is made up of multiple tables joined together. Like star schemas, you first map the physical fact columns to one or more logical tables. Then, for each dimension, you map the snowflaked physical dimension tables to a single logical table. You can achieve this by either having multiple logical table sources, or by using a single logical table source with joins.	
After analyzing the structure, you pick a table that has fact columns and then map the physical fact columns to one or more logical fact tables. Then, for each dimension associated with that set of physical fact columns, you map the distributed physical tables containing dimensional columns to a single logical table. Like with snowflake schemas, you can achieve this by having multiple logical table sources, or by using a single logical table source with joins. Mapping normalized schemas is an iterative process because you first map a certain set of facts, then the associated dimensions, and then you move on to the next set of facts.	
Note that when a single physical table has both fact and dimension columns, you may need to create a physical alias table to handle the multiple roles played by that table.	
Cubes are made up of measures and organized by dimensions. Because they are already dimensional, each cube maps easily to the logical fact and dimension tables in the business model.	
Note the following about measures and dimensions:	
The Administration Tool provides an interface to map logical tables to the underlying physical tables in your data sources. Before you can map the tables, you need to identify the contents of the physical data sources as it relates to your business model. To do this correctly, you need to identify the following contents of the physical data source:	
SUM	
, AVG	
, MIN	
, MAX	
, or COUNT	
) For information on how to set up aggregate navigation in a repository, see Chapter 10.	
To acquire this information about the data, you could refer to any available documentation that describes the data elements created when the data source was implemented, or you might need to spend some time with the DBA for each data source to get this information. To fully understand all the data elements, you might also need to ask people in the organization who are users of the data, owners of the data, or the application developers of applications that create the data.	
After analyzing your business model needs and identifying the database content your business needs, you can complete your repository design. This section contains some design best practices that can help you implement a more efficient repository.	
Typically, you should not make performance tuning changes until you have imported and tested your databases. These tasks are performed during the final steps in completing the setup of your repository. For more information about these final steps, see Chapter 14.	
This section contains the following topics:	
Follow these recommended design strategies for structuring your Oracle BI repository:	
Most dialogs in the Administration Tool have Help that provides information about how to complete a task. To access a help topic, click the Help button in a dialog, or select Help from some menus.	
The Physical layer contains information about the physical data sources. The most common way to create the schema in the Physical layer is by importing metadata from databases and other data sources. If you import metadata, many of the properties are configured automatically based on the information gathered during the import process. You can also define other attributes of the physical data source, such as join relationships, that might not exist in the data source metadata.	
The Physical layer can contain data sources of many different types, including multidimensional, relational, and XML sources. See "System Requirements and Certification" for information about supported databases.	
For each data source, there is at least one corresponding connection pool. The connection pool contains data source name (DSN) information used to connect to a data source, the number of connections allowed, timeout information, and other connectivity-related administrative details. See "About Connection Pools" for more information.	
The following is a list of tips to use when designing the Physical layer:	
For example, say you have a Customer table that can be used to look up ship-to addresses, and using a different join, to look up bill-to addresses. Avoid the circular joins by aliasing the table in the Physical layer so that there is one instance for each purpose, with separate joins.	
If you do not eliminate circular joins, you might get erroneous report results. In addition, query performance might be negatively impacted.	
Note: To have the name of a table to which you assigned an alias appear, select Display original name for alias in diagrams in Tools > Options > General.	
SELECT	
statement) should be used only if there is no other solution to your modeling problem. Ideally, a physical table should be created, or alternatively a materialized view. Opaque views prevent the Oracle BI Server from generating its own optimized SQL, because they contain fixed SQL statements that are sent to the underlying data source. The Business Model and Mapping layer organizes information by business model. In this layer, each business model is effectively a separate application.	
The logical schema defined in each business model must contain at least two logical tables. Relationships need to be defined between all the logical tables. See "About Layers in the Oracle BI Repository" for more information about business model schemas. See Chapter 8 for more information about setting up the Business Model and Mapping layer.	
The following is a list of tips to use when designing the Business Model and Mapping layer:	
You only need to set up aggregation content in the Levels tab of the Logical Column dialog for level-based measures. For measures that are not level based, leave the Logical Level field blank.	
Reasons to have multiple logical fact tables include:	
Unlike relational fact tables, logical fact tables can contain measures of different grains. Because of this, grain is not a reason to split up logical fact tables.	
You can also define post-aggregation calculations in Answers or in Logical SQL queries.	
The following guidelines provide tips on how to model outer joins:	
For example, assume that a logical table source is mapped to physical tables A and B. When no outer joins are defined, if physical table A is not required to satisfy a request, it is not included in the physical query. However, if the logical table source has an outer join defined to table A, table A is still included in the physical query, even if only physical table B is required to satisfy the request.	
You set up the user view of a business model in the Presentation layer. The names of folders and columns in the Presentation layer can appear in localized language translations. The Presentation layer is the appropriate layer in which to set user permissions. For complete information about working in the Presentation layer, see Chapter 11.	
In this layer, you can do the following:	
The following is a list of tips to use when designing the Presentation layer:	
DEFAULT_PRIVILEGES	
configuration setting in the NQSConfig.INI file. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information. Some topics that may be of interest to metadata repository builders are covered in other guides. Table 1-1 lists these topics, and indicates where to go for more information.	
Table 1-1 Topics Covered in Other Guides	
Topic	Where to Go for More Information
---	---
Starting and stopping Oracle Business Intelligence processes	
Using the Oracle BI Server XML API to work with your repository	Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition
Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition	
Managing configuration settings that affect repository development in Fusion Middleware Control and NQSConfig.INI	
Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition	
Oracle Fusion Middleware Administrator's Guide	
Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition	
Oracle Fusion Middleware Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition	
Oracle Fusion Middleware Administrator's Guide	
Refer to the system requirements and certification documentation for information about hardware and software requirements, platforms, databases, and other information. Both of these documents are available on Oracle Technology Network (OTN).	
The system requirements document covers information such as hardware and software requirements, minimum disk space and memory requirements, and required system libraries, packages, or patches:	
http://www.oracle.com/technology/software/products/ias/files/fusion_requirements.htm	
The certification document covers supported installation types, platforms, operating systems, databases, JDKs, and third-party products:	
http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html	
This chapter provides an overview of the Administration Tool, and explains other concepts that you need to know before beginning to build your metadata repository.	
This chapter contains the following topics:	
The Oracle BI Administration Tool is a Windows application that you can use to create and edit repositories.	
This section describes the Administration Tool main window, how to set preferences, Administration Tool menus, and other related information.	
This section contains the following topics:	
To open the Administration Tool, choose Start > Programs > Oracle Business Intelligence > BI Administration.	
Note: Do not open the Administration Tool by double-clicking a repository file. The resulting Administration Tool window is not initialized to your Oracle instance, and errors will result.	
You can also launch the Administration Tool from the command line, as follows:	
The main window of the Administration Tool shows a graphical representation of the three layers of a repository (the Physical layer, Business Model and Mapping layer, and Presentation layer). See "About Layers in the Oracle BI Repository" for more information.	
The Administration Tool main window also contains the following:	
Figure 2-1 shows the Administration Tool main window.	
You can use the Options dialog to set preferences for the Administration Tool.	
To set preferences:	
Table 2-1 describes the options on the General tab.	
Table 2-1 Options on the General Tab	
Option	Action When Selected
---	---
Automatically tiles the layer panes of the repository when you resize the Administration Tool. When this option is selected, the Cascade and Tile options are not available in the Windows menu of the Administration Tool.	
Displays fully qualified names in the Physical Diagram and Business Model Diagram. For example, selecting this option displays "B - Sample Fcst Data"..."B02 Market" rather than B02 Market in the Physical Diagram. Selecting this option can help identify objects by including the name of the parent database or business model, but it can also make the diagram harder to read because the fully qualified names are longer. Note: If you choose not to select this option, you can still see fully qualified names by moving the cursor over an object in the diagram, or by selecting an object in the diagram and then viewing the text in the status bar.	
Displays the names of original physical tables rather than the names of alias tables in the Physical diagram. Select this option when you want to identify the original table rather than the alias table name.	
Displays the Calculation Wizard introduction page. The introduction page also contains an option to suppress its display in the future. Use the Calculation Wizard to create new calculation columns that compare two existing columns and to create metrics in bulk (aggregated), including existing error trapping for NULL and divide by zero logic. See "Using the Calculation Wizard" for more information.	
Automatically checks out an object when you double-click it. If you do not select this option, you are prompted to check out objects before you can edit them. This option only applies when the Administration Tool is open in online mode. See "Opening a Repository in Online Mode" for more information.	
Displays row counts for physical tables and columns in the Physical layer. Row counts are not initially displayed until they are updated. To update the counts, select Tools > Update All Row Counts. You can also right-click a table or column in the Physical layer and select the option Update Row Count. Note: Row counts are not shown for items that are stored procedure calls (from the Table Type list in the General tab of the Physical Table dialog). Row counts are not available for XML, XML Server, or multidimensional data sources. When you are working in online mode, you cannot update row counts on any new objects until you check them in.	
When selected, displays the Administration Tool toolbar.	
When selected, displays the Administration Tool status bar.	
Lets you ignore, specify an existing, or create a new logical table source for a moved column.	
Executes a utility to clean the repository of unused physical objects. It might make the resulting repository smaller.	
When selected, the Import from Repository option on the File menu becomes available. Note: By default, the Import from Repository option on the File menu is disabled and this option will not be supported in the future. It is recommended that you create projects in the repository that contain the objects that you want to import, and then use repository merge to bring the projects into your current repository. See "Merging Repositories" for more information.	
When selected, provides the capability to create logical foreign key joins with the Joins Manager. This option is provided for compatibility with previous releases and is generally not recommended.	
When selected, excludes Gen 1 levels when you drag and drop Essbase cubes or dimensions from the Physical layer to the Business Model and Mapping layer. Often, Gen 1 levels are not needed for analysis, so they can be excluded from the business model. See "Working with Essbase Data Sources" for more information.	
By default, the Replace Wizard shows all logical table sources, even ones that are not valid for replacement. When this option is selected, unusable logical table sources are hidden in the Replace Wizard screens. Click Info for details on why a logical table source that maps to that column does not appear in the list. Selecting this option might result in the Wizard page loading more quickly, especially for large repositories.	
By default, when you select a connection pool for an initialization block, the first connection pool under the database object in the Physical layer does not show up as available for selection. This behavior ensures that you cannot use the same connection pool for initialization blocks that you use for queries. If the same connection pool is used for initialization blocks and for queries, then queries might be blocked whenever initialization blocks run. Alternatively, initialization blocks used for authentication might be blocked by long-running queries, causing delayed or hanging logins. Select this option to change the default behavior and allow the first connection pool to be selected for initialization blocks. Note that selecting this option is not a best practice and might cause performance issues. See "About Connection Pools for Initialization Blocks" for more information.	
See "Setting Up Display Folders in the Physical Layer" and "Setting Up Display Folders in the Business Model and Mapping Layer" for more information about creating display folders.	
Hiding level-based measures in dimension hierarchies can reduce clutter. Note that the measures are still visible in the logical fact tables.	
See Example 9-1, "Level-Based Measure Calculations" for more information about level-based measures.	
A query logging level of 0 (the default) means no logging. Set this logging level to 2 to enable query logging for internal system processes like event polling and initialization blocks.	
See "Managing the Query Log" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about the query log and query logging levels.	
Properties for the authentication cache include:	
You need to specify some additional LDAP properties when you are using a secure connection to your LDAP server. In other words, provide the following information when you have selected SSL on the Advanced tab of the LDAP Server dialog:	
Note that the authentication cache properties and key file properties are shared for all defined LDAP server objects.	
The Administration Tool includes menus for File, Edit, View, Manage, Tools, Actions, Window, and Help. These menus are described in the following sections.	
The File menu provides options to work with repositories, like Open and Save, as well as several server-related options like Check Out All that are only active when a repository is open in online mode. The File menu also provides a list of recently opened files.	
Table 2-2 lists the options in the File menu.	
Table 2-2 File Menu Options	
Menu Option	Description
---	---
New Repository	Opens the Create New Repository Wizard and closes the currently open repository, if any. If a repository is currently open with unsaved changes, you are prompted to save them before proceeding. See "Creating New Oracle BI Repository Files" for more information.
Open	Provides options for opening a repository in either offline or online mode. See "Using Online and Offline Repository Modes" for more information.
Multiuser	Provides options to check out projects in a multiuser development environment and view multiuser development history. See Chapter 3, "Setting Up and Using the Multiuser Development Environment" for more information.
Close	Closes the currently open repository. If you have unsaved changes, you are prompted to save them.
Save	Saves your latest changes.
Save As	Opens the Save As dialog so that you can save the repository to a different file. The new file remains open in the Administration Tool.
Copy As	Opens the Save Copy As dialog so that you can copy the repository to a different file. The current file, not the new file, remains open in the Administration Tool.
Change Password	Lets you change the repository password for the currently open repository. See "Changing the Repository Password" for more information.
Import Metadata	Opens the Import Metadata Wizard. See the following sections for more information:
Compare	Prompts you to select the repository with which you want to compare the currently open repository and opens the Compare repositories dialog. See "Comparing Repositories" for more information.
Turns off any highlighted changed objects. This option is only available if you have turned on compare mode by choosing Mark in the Compare repositories dialog.	
Merge	Opens the Merge Repository Wizard. See "Merging Repositories" for more information.
Check Global Consistency	Checks the repository for consistency and opens the Consistency Check Manager. See "Checking the Consistency of a Repository or a Business Model" for more information.
Check Out All	Checks out all repository objects. This option is only available in online mode.
Check In Changes	Checks in all repository objects. This option is only available in online mode.
Undo All Changes	Rolls back all changes made since the last check-in. This option is only available in online mode.
Exit	Closes the currently open repository and then closes the Administration Tool. If you have unsaved changes, you are prompted to save them.
The Edit menu provides access to the following basic editing functions for repository objects: Cut, Copy, Paste, Duplicate, and Delete. You can also choose Properties to view and edit properties for a selected object.	
The View menu options let you hide or display the panes that show the three layers of the repository (Presentation, Business Model and Mapping, and Physical). You can also display the Business Model Diagram and Physical Diagram.	
Choose Refresh to refresh the repository view. This feature can be useful in online mode to reveal changes made by other clients. It can also be used in either online or offline mode when the repository view has become out of sync and does not display a recent change or addition. Refreshing the repository view collapses any expanded objects in the tree panes and helps reduce clutter.	
The Manage menu enables you to access the management functions described in Table 2-3.	
Table 2-3 Manage Menu Options	
Menu Option	Description
---	---
Opens the Job Manager. The Job Manager is the management interface to Oracle BI Scheduler. This option is available when a repository is open in online mode. See "Using Oracle BI Scheduler Job Manager" in Oracle Fusion Middleware Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition for more information.	
Opens the Session Manager. In the Session Manager, you can monitor activity on the system, including the current values of repository and session variables. This option is available when a repository is open in online mode. See "Managing Server Sessions" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.	
Opens the Cache Manager. The Cache Manager enables you to monitor and manage the cache. This option is available when a repository is open in online mode and caching is enabled. See "Using the Cache Manager" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about enabling the cache and using the Cache Manager.	
Opens the Cluster Manager. The Cluster Manager monitors and manages the operations and activities of the cluster. This option is available when the Oracle BI Cluster Server is installed. See "Using the Cluster Manager" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.	
Opens the Identity Manager. The Identity Manager provides access to data access security functions and other identity-related options. See Chapter 13, "Applying Data Access Security to Repository Objects" for more information.	
Opens the Joins Manager. The Joins Manager enables you to work with both physical and logical joins in a list format. The Joins Manager provides an alternative to working with joins in the Physical and Business Model Diagrams and shows all join types in one place. See "Defining Physical Joins with the Joins Manager" and "Defining Logical Joins with the Joins Manager" for more information.	
Opens the Variable Manager. The Variable Manager enables you to create, edit, or delete variables and initialization blocks. See Chapter 18, "Using Variables in the Oracle BI Repository" for more information.	
Opens the Project Manager. The Project Manager enables you to create, edit, or remove projects or project elements. Project elements include subject areas (formerly called presentation catalogs), logical fact tables, groups, users, variables, and initialization blocks. You use projects during multiuser development. See "Setting Up Projects" for more information.	
Applies to the Oracle Marketing Segmentation product. For information about using the Marketing options in Oracle Business Intelligence, see Oracle Marketing Segmentation Guide.	
The Tools menu options enable you to access the functions described in Table 2-4.	
Table 2-4 Tools Menu Options	
Menu Option	Description
---	---
Updates row counts in the Physical layer. See "Displaying and Updating Row Counts for Physical Tables and Columns" for more information.	
Opens the Consistency Check Manager. See "Checking the Consistency of a Repository or a Business Model" for more information.	
Opens the Query Repository dialog. See "Querying and Managing Repository Metadata" for more information.	
Opens the Utilities dialog, which lets you select from a list of Administration Tool utilities. See "Using Administration Tool Utilities" for more information.	
Options	Opens the Options dialog, which lets you customize Administration Tool display preferences and other options. See "Setting Preferences" for more information.
The Actions menu options are available when working with the Physical Diagram or Business Model Diagram. The options enable you to select elements, create new joins, create new tables, and perform other diagram operations. Every toolbar option for the diagrams has an Actions menu equivalent.	
The Window menu options enable you to cascade or tile open layer windows and toggle among them.	
You can use the Physical and Business Model Diagrams in the Administration Tool to see a graphical view of physical and logical tables and joins. You can choose to view tables in expanded mode, with columns visible, or in collapsed mode, where only the name of the table is displayed. This section describes the layout and navigation capabilities for both diagrams.	
After launching the Physical or Business Model Diagram, you can use toolbar options to zoom, pan, and control the layout of the tables. Table 2-5 describes the available toolbar options.	
Table 2-5 Toolbar Options for the Physical and Business Model Diagrams	
Option Name	Description
---	---
	Select this option to revert to an automatically assigned symmetric table layout. Any customizations you have made to the layout (by manually moving individual tables) will be lost.
	Select this option to show all tables in expanded view, with columns showing. Tables in expanded view appear like the following: Note the following additional features for expanded tables:
 | Select this option to show all tables in collapsed view, with only the table name showing. Tables in collapsed view appear like the following: You can double-click an individual table in collapsed view to expand only that object. |
 | Select this option to use the Marquee Zoom tool, which lets you select a particular region to which you want to zoom. To use Marquee Zoom, left-click, hold, and drag to define a rectangular region where you want to zoom. |
 | Select this option to cause the diagram view to zoom out one level. |
 | Select this option to cause the diagram view to zoom in one level. |
 | Select this option to cause the layout to dynamically adjust to the current diagram window size so that all objects fit in the window. |
 | Select this option to use the Pan tool, which lets you pan around the current layout. Left-click, hold, and drag to move the view. This option is especially useful when the diagram layout exceeds the available space. |
 | Select this option to enable the ability to select objects in the diagram. You can double-click a join or expanded table object to access the Properties dialog, or you can select a particular table and drag it to a new location. Note that location information is not saved after you close the diagram or choose Auto Layout. You can select multiple objects using the SHIFT or CTRL keys. Press SHIFT and select multiple objects, or click and drag to define an area where you want all objects selected. Press CTRL to individually add or remove particular objects to the selection set. |
 | Select this option to create a new physical or logical table while in the diagram view. Left-click the background to launch the Properties dialog for the new object, and then provide details as necessary. For physical tables, you first need to select the parent object under which the new table will be created (such as a schema, catalog, or database object). See also the following sections: |
 | Select this option to create a new join while in the diagram view. First, left-click the first table in the join (the table representing many in the one-to-many join). Then, move the cursor to the table to which you want to join (the table representing one in the one-to-many join), and then left-click the second table to select it. Provide details in the Properties dialog for the new object as necessary. Joins in the Physical and Business Model Diagrams are represented by a line with an arrow at the "one" end of the join. Note that this display is different from the line with crow's feet at the "many" end of the join that was used in previous releases. See also the following sections: |
Note the following additional features of the Physical and Business Model Diagrams:
See also the following sections for more information about using the Physical and Business Model Diagrams:
This section provides information about editing, deleting, and reordering objects.
All repository object names must follow these requirements:
Note that repository object names can include multibyte characters.
The Browse dialog appears in many situations in the Administration Tool. You use it to find and select an object.
The Browse dialog is accessible from several dialogs that let you make a selection from among existing objects.
The left pane of the Browse dialog lets you browse the tree view for a particular object. It contains the following parts:
The right pane of the Browse dialog lets you search for the object you want. It contains the following parts:
Note that in general, the left pane and the right pane of the Browse dialog are not connected. Rather, the panes provide alternate methods to locate the object you want.
The exception to this is the Synchronize Contents feature, which lets you synchronize an object from the query results list with the tree view. This feature is a helpful contextual tool that locates a particular object in the tree view.
Table 2-6 lists and describes the tasks you can perform in the Browse dialog.
Table 2-6 Tasks You Can Perform in the Browse Dialog
In the Administration Tool, you can change the icon that represents a particular object in the repository. Changing the icon for a particular object does not have any functional effect, and is not visible in Answers or other clients. This feature is intended as a useful way to visually distinguish objects for the convenience of repository developers.
For example:
You can only change the icon for individual objects. You cannot globally change the icon for all objects of a particular type.
To change the icon for a particular repository object:
Many dialogs in the Administration Tool show lists of objects, such as a list of physical columns in the Physical Table dialog, a list of logical levels for Preferred Drill Path in the Logical Level dialog, and a list of presentation hierarchies in the Presentation Table dialog.
You can click the header to sort the objects in ascending or descending order. An up arrow or down arrow icon is displayed next to the header name, indicating how the list has been sorted.
Each list also has a default order that is persisted from session to session. The default order appears when you view a list in a dialog for the first time each session. The default order is displayed when there is no ascending or descending arrow icon in the header. Click the header three times to toggle between ascending, descending, and default order. In some cases, the default order is the ascending or descending order.
Some dialogs provide the capability to move items up or down in a list. In these dialogs, if you click Up or Down while the list is sorted in ascending or descending order, the selected item moves, and the resulting order becomes the new default order. Note that clicking the header eliminates any manually determined order.
Some features and options in the Administration Tool are for use by organizations that have the Oracle Marketing Segmentation product. For information about these features and options, see Oracle Marketing Segmentation Guide.
Note that additional information about Oracle Marketing Segmentation features is provided in the Presentation Services Help.
You can use a variety of command-line utilities with the Oracle BI Server to make programmatic changes to your repository file, run sample queries, delete unwanted repository objects, and perform other tasks.
Table 2-7 describes the Oracle BI Server command-line utilities.
Table 2-7 Oracle BI Server Command-Line Utilities
Utility Name | Description | Where to Go for More Information |
---|---|---|
XML utilities (biserverxmlgen, biserverxmlexec, biserverxmlcli) | Used to leverage the Oracle BI Server XML API for metadata migration, programmatic metadata generation and manipulation, metadata patching, and other functions. The XML utilities include: | "About the Oracle BI Server XML API" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition |
nqcmd | Used to run test queries against the repository. Connects using an Oracle BI Server ODBC DSN. | "Testing and Refining the Repository" |
patchrpd | Used to generate and apply an XML patch file. This utility is especially useful for patching repository files on Linux or UNIX systems. | "Using patchrpd to Apply a Patch" |
extractprojects | Used to extract projects from a given repository. | "Using the extractprojects Utility to Extract Projects" |
equalizerpds | Used to equalize objects in two repositories that have the same name, but different upgrade IDs. Running this utility before merging repositories prevents unintended renaming during the merge. | |
prunerpd | Used to delete unwanted repository objects from your repository file, such as databases, tables, columns, initialization blocks, and variables. | "Deleting Unwanted Objects from the Repository" |
validaterpd | Used to check the consistency of a repository. | "Using the validaterpd Utility to Check Repository Consistency" |
Used to generate the information necessary for the Oracle Database SQL Access Advisor or IBM DB2 Cube Views tool to preaggregate relational data and improve query performance. | "Exchanging Metadata with Databases to Enhance Query Performance" |
Before running any of the Oracle BI Server command-line utilities, you must first run bi-init.cmd (or bi-init.sh on UNIX) to launch a command prompt or shell window that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run the appropriate command-line tool from the resulting shell window with the desired options.
Many configuration settings that affect the Administration Tool and repository development are managed in either Fusion Middleware Control, or the NQSConfig.INI configuration file. Repository developers must be familiar with Fusion Middleware Control and NQSConfig.INI configuration settings to effectively work with the Administration Tool and with their repositories.
Some of the most common configuration settings that affect repository development include:
See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information about Fusion Middleware Control and NQSConfig.INI configuration settings.
Oracle Business Intelligence provides a sample repository called SampleApp.rpd that provides best practices for modeling many different types of objects described in this guide.
A basic version of SampleApp.rpd, called SampleAppLite.rpd, is automatically installed as the default repository when you choose the Simple Install option. SampleAppLite.rpd is located in the following directory:
The full version of SampleApp.rpd contains many additional examples and features. This version can be found on the Oracle Technology Network at:
http://oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html
The default password for SampleAppLite.rpd is Admin123. For security reasons, you must immediately change this default password the first time you open SampleAppLite.rpd in the Administration Tool. See "Changing the Repository Password" for more information.
You can open a repository for editing in either online or offline mode. The tasks you can perform depend on the mode in which you opened the repository.
To open a repository, you must enter the repository password. This password is specific to each repository and is used to encrypt the repository.
This section contains the following topics:
Use offline mode to view and modify a repository while it is not loaded into the Oracle BI Server. If you attempt to open a repository in offline mode while it is loaded into the Oracle BI Server, the repository opens in read-only mode. Only one Administration Tool session at a time can edit a repository in offline mode. See "About Read-Only Mode" for more information.
You do not need to enter a user name and password to open a repository in offline mode. You only need to enter the repository password.
Note: In offline editing, remember to save your repository from time to time. You can save a repository in offline mode even though the business models might be inconsistent. |
To open a repository in offline mode:
If the server is running and the repository you are trying to open is loaded, the repository opens in read-only mode. If you want to edit the repository while it is loaded, you must open it in online mode. Also, if you open a repository in offline mode and then start the server, the repository becomes available to users. Any changes you make become available only when the server is restarted.
When you open a repository in the Administration Tool in offline mode, the titlebar displays the name of the open repository.
Use online mode to view and modify a repository while it is loaded into the Oracle BI Server. The Oracle BI Server must be running to open a repository in online mode. There are certain things you can do in online mode that you cannot do in offline mode. In online mode, you can perform the following tasks:
To open a repository in online mode:
The Oracle BI Server DSNs that have been configured on your computer are displayed in the dialog. If no additional DSNs have been configured for this version of the Oracle BI Server, you might see only the default DSN that is configured for you during installation.
See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for information about how to create an ODBC DSN for the Oracle BI Server.
You can use Repository tab of the Deployment page in Fusion Middleware Control to view the name of the current repository.
The user you provide must have the ManageRepositories permission. See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.
When you open a repository in the Administration Tool in online mode, the titlebar displays the DSN for the Oracle BI Server to which you are connected, not the name of the current repository.
Use caution when making changes to your repository in online mode, and always perform a consistency check to ensure the repository is consistent before checking in objects.
In addition, you should limit the number of concurrent online users. The best practice is to have only one user working in online mode at a time. Even when users have different objects checked out, there might be dependencies between the objects that can cause conflicts when the changes are checked in. In general, only one user should make online changes in a single business model at a time.
If you must have multiple concurrent users in online mode, do not have more than five users. For situations where you need more than five users, use the multiuser development environment. See Chapter 3, "Setting Up and Using the Multiuser Development Environment" for more information.
Even with a single user making changes, be aware that online mode is riskier than offline mode because you are working against a running server. If you check in changes that are not consistent, it might cause the Oracle BI Server to shut down. When you work in online mode, make sure to have a backup of the latest repository so that you can revert to it if needed. You can also use File > Undo All Changes to roll back all changes made since the last check-in.
When you are working in a repository open in online mode, you are prompted to check out objects when you attempt to perform various operations. Select the objects you want to check out and click Yes to check out the objects.
If you are performing a task in a wizard, the Checkout screen displays a summary of the objects that need to be checked out to complete the operation. Click Next to check out the objects and complete the task.
When you are working in a repository open in online mode, you are prompted to perform a consistency check before checking in the changes you make to a repository.
If you have made changes to a repository and then attempt to close the repository without first checking in your changes, a dialog opens automatically asking you to select an action to take. If you move an object from beneath its parent and then attempt to delete the parent, you are prompted to check in changes before the delete is allowed to proceed.
Use the Check in Changes dialog to make changes available immediately for use by other applications. Applications that query the Oracle BI Server after you have checked in the changes will recognize them immediately. Applications that are currently querying the server will recognize the changes the next time they access any items that have changed.
To make changes available and have them saved to disk immediately:
If the Administration Tool detects an invalid change, a message is displayed to alert you to the nature of the problem. Correct the problem and perform the check-in again. Note that you can select a message row and click Go To, or double-click a message row, to go directly to the affected object.
You must save changes to persist the changes to disk. You must check in changes before you can save, but you do not need to save to check in changes.
Only one component (either the Oracle BI Server, or a single Administration Tool client in offline mode) can have a repository open in read/write mode at a time. If a second component opens a repository that is already in use, the repository is opened in read-only mode.
For example, assume the Oracle BI Server loads a repository in read/write mode. Any number of Administration Tool clients connecting to that repository in online mode will also get read/write mode, because they are accessing the repository through the Oracle BI Server. However, Administration Tool clients opening that repository in offline mode will get read-only mode, because the repository is already open for read/write through the Oracle BI Server.
Alternatively, assume an Administration Tool client opens a repository offline in read/write mode. When the Oracle BI Server starts, it will get read-only mode, as will any Administration Tool clients connecting to that repository in either offline or online modes. To enable the server to load the repository in read/write mode in this situation, you must first close the Administration Tool client that has the repository locked, and then restart the Oracle BI Server.
The Administration Tool also opens a repository in read-only mode when Oracle Business Intelligence has been clustered, and the Administration Tool is connected in online mode to a slave server. This occurs because the Master BI Server holds a lock on the repository. To avoid this situation when running in a clustered environment, ensure that the Oracle BI Server ODBC DSN used by the Administration Tool has been configured to point to the Cluster Controllers rather than to a particular Oracle BI Server.
In addition, the Administration Tool opens repositories in read-only mode when the configuration setting Disallow RPD Updates has been selected in Fusion Middleware Control. See "Using Fusion Middleware Control to Disallow RPD Updates" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about this configuration setting.
Repository metadata must pass a consistency check before you can make the repository available for queries. The Consistency Check Manager lets you enable and disable rules for consistency checks, find and fix inconsistent objects, and limit the consistency check to specific objects. You can also use the validaterpd utility to check the validity of all metadata objects.
This section contains the following topics:
The Consistency Check Manager checks the validity of your repository to ensure that it can load at run time, and to identify any syntax or semantic errors that may cause queries to fail.
Each time you save the repository, a dialog asks if you want to check global consistency. You have the following options:
The Consistency Check Manager does not check the validity of objects outside the metadata using the connection. It only checks the consistency of the metadata and not any mapping to the physical objects outside the metadata. If the connection is not working or objects have been deleted in the database, the Consistency Check Manager does not report these errors.
If you use lookup tables to store translated field names with multilingual schemas, note that consistency checking rules are relaxed for the lookup tables. See "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about localization and lookup tables.
The consistency checker returns the following types of messages:
If you disable an object and it is inconsistent, a message is displayed, asking if you want to make the object unavailable for queries.
Note: After upgrading from a previous software version and checking the consistency of your repository, you might notice messages that you had not received in previous consistency checks. This typically indicates inconsistencies that had been undetected before the upgrade, not new errors. |
In the Consistency Check Manager, you can sort the rows of messages by clicking the column headings. Additionally, the status bar provides a summary of all the rows displayed.
You can use the Administration Tool to check consistency in the following ways:
To view the Consistency Check Manager without performing a global consistency check, select Tools, then select Show Consistency Checker. If you have checked consistency in the current session, the messages from the last check appear in the Messages pane.
To check the consistency of a repository:
Note: If you disable an object and it is inconsistent, a dialog appears, asking whether you want to make the object unavailable for queries. |
To check the consistency of a single object in a repository:
If the object is not consistent, a list of messages appears.
If you click Check All Objects, all objects in the repository are checked.
You can use the Oracle BI Server utility validaterpd to check the validity of all metadata objects in a repository. You can run this utility on any platform supported by the Oracle BI Server. Running this utility performs the same validation checks as the Consistency Check Manager in the Administration Tool.
Before running validaterpd, you must first run bi-init.cmd (or bi-init.sh on UNIX systems) to launch a command prompt that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run validaterpd from the resulting command prompt with the desired options. You can run the utility from this directory with no arguments or parameters to see usage information.
The utility takes the following parameters:
Where:
repository_name
is the name and path of the repository that you want to validate.
output_file_name
is the name and path of a text file where the validation results will be recorded.
repository_password
is the password for the repository that you want to validate.
Note that the repository_password
argument is optional. If you do not provide the password argument, you are prompted to enter the password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide password arguments either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.
-8 specifies UTF-8 encoding in the output file.
Example
The following example generates an output file called results.txt that contains validation information for the repository called repository.rpd:
Multiuser development (MUD) provides a mechanism for concurrent development on overlapping code bases. Oracle Business Intelligence provides a MUD environment that manages subsets of metadata, in addition to multiple users, by providing a built-in versioning system for repository development. This chapter explains how to set up and use the multiuser development environment in Oracle Business Intelligence, including defining projects, setting up the multiuser development directory, checking out and checking in projects, and merging metadata.
See also "Managing the Repository Lifecycle in a Multiuser Development Environment" for additional information about working in a multiuser development environment.
This chapter contains the following topics:
In Oracle Business Intelligence, multiuser development facilitates the development of application metadata in enterprise-scale deployments. Application metadata is stored in a centralized metadata repository (RPD) file. The Administration Tool is used to work with these repositories.
The following are examples of how you might use a multiuser development environment:
In both examples, an administrator creates projects in the repository file in the Administration Tool, then copies this repository file to a shared network directory (called the multiuser development directory). Developers are able to check out projects, make changes and then merge the changes into the master repository. When developers check out projects using the Administration Tool, files are automatically copied and overwritten in the background. Therefore, it is important for the administrator to perform setup tasks and for the developers to perform check-out and check-in procedures carefully, paying close attention to the Administration Tool messages that appear.
When developers check out projects, repository files are not automatically copied or overwritten. Instead, the Administration Tool creates two new files when projects are checked out: one to hold the original project data, and one to hold the project changes.
For example, when a repository developer checks out project A from master.rpd in the C:\multiuser development directory, the Administration Tool extracts all metadata related to project A and prompts the developer for a new file name to save the data. When the developer chooses a new file name, for example Mychanges.rpd, the Administration Tool creates two new files:
The originalMyChanges.rpd file helps determine what changes have been made by the developer in Mychanges.rpd. This information is needed during the multiuser development merge process.
Multiuser development presupposes a clear understanding of customer technical and business objectives. It also requires that you follow clearly defined development processes and adhere rigorously to those processes, including consistent merging and reconciliation practices.
The following procedure shows the general steps to follow when deploying a multiuser development environment. The first three steps are usually performed by an administrator, and the remaining steps are usually performed by one or more developers.
To deploy a multiuser development environment:
Projects are the central enabler of metadata management. A project consists of a discretely-defined subset of the repository metadata, in the form of groups of logical stars with associated metadata. A project has the following characteristics:
For projects that are just beginning, the best practice is to begin with a repository containing all the necessary physical table and join definitions. In this repository, you create a logical fact table as a placeholder in the Business Model and Mapping layer and a subject area as a placeholder in the Presentation layer. As you add business model and subject area metadata, new projects based on individual subject areas and logical facts can be created.
Note: Only one person at a time can create projects in a master repository. |
This section contains the following topics:
Projects can consist of Presentation layer subject areas and their associated business model logical facts, dimensions, groups, users, variables, and initialization blocks. Administrators can create projects so that developers and groups of developers can work on projects in their area of responsibility.
The primary reason to create projects is to support multiuser development. During the development process, you can split up the work (metadata) between different teams within your company by extracting the metadata into projects so that each project group can access a different part of the metadata.
In addition to multiuser development, you may want to create projects for licensing reasons. Before releasing a new software version, you may want to ensure that only the metadata that is relevant to the licensed application is in a project and that everything is consistent and complete. You can accomplish this by adding only the fact tables that are relevant to the application.
Project extractions are fact table centric. This ensures that project extracts are consistent and makes licensing much easier to manage.
In the Project dialog, the left pane contains objects that you can use to create a project. The objects in the right pane are all the objects you chose (directly or indirectly) that reflect the complete set of data that makes each addition consistent. For example, if you select a subject area from the top node of the left-hand tree to add to your project, underlying fact tables of other subject areas are automatically added if needed to make the extract consistent.
The following describes the left pane of the Project dialog:
Although it appears that you can add a subject area from the top node when you group facts by subject area, you are actually adding only the underlying fact tables. The subject areas only appear as choices to help you to add the elements you want in your project. Additionally, it adds any other objects that are necessary to make the extract consistent. To add an actual subject area, use the Presentation node at the bottom of the tree.
If you add presentation objects that are not related to any fact tables in the project, a warning appears when you click OK. The consistency checker also notes this discrepancy.
The right pane of the Project dialog shows the objects you select to be extracted, such as fact tables (under the Business Models folder), Presentation layer objects (under the Presentation folder), users, application roles, variables, and initialization blocks. These objects are extracted when you click OK.
Figure 3-1 shows the Project dialog.
When creating a project, you typically select a subject area or a subset of logical fact tables related to the selected subject area, and the Administration Tool automatically adds any business model and Physical layer objects that are related. An object can be part of multiple projects. Alternatively, if you choose to group facts by business model, you can select a particular business model or a set of logical fact tables that are part of a business model. You also need to explicitly add any Presentation layer objects if you want them to be part of your project.
Note that although the project definition itself does not include Physical layer objects, these objects are extracted and determined through the project definition.
After you create projects, they become part of the metadata and are available to multiple developers who need to perform development tasks on the same master repository. When defined this way, projects typically become a consistent repository after a developer checks out the projects and saves them as a new repository file.
To create a project for a multiuser development environment:
The left pane contains the objects that are available to be placed in a project. The right pane contains the objects that you select to be part of the project.
The project is defined as explicitly containing the selected logical fact tables and implicitly containing all logical dimension tables that are joined to the selected logical fact tables (even though they do not appear in the right pane).
See "About the Project Dialog" for more information about the objects that appear in the left and right panes.
Tip: You may want to add the top node for each object type (for example, Variables), then selectively remove individual objects from the right pane.
You can also remove particular presentation tables or columns from the project definition by double-clicking the object in the right pane, or selecting the object and clicking Remove.
Note: If you do not see the set of subject areas you expect after the project is created, edit the project to explicitly add the subject areas you need. |
When you upgrade a repository from Oracle Business Intelligence versions before 10.1.3.2, the project definition is upgraded. During the upgrade, the project definition, subject areas, target levels, list catalogs, and existing fact tables are automatically converted into simple fact tables in the following way:
After the upgrade, projects contain only simple fact tables. All the security objects remain unchanged.
In addition, projects in repositories from any version before 11g Release 1 (11.1.1) are upgraded so that they explicitly contain Presentation layer objects. In previous releases, Presentation layer objects were implicitly included based on the permissions of the users included in the project.
To prepare for multiuser development, an administrator performs the following tasks:
After the administrator has identified the multiuser development directory and copied the repository file, developers must set up to the Administration Tool to point to the multiuser development directory before they can check out projects.
This section contains the following topics:
After defining all projects, the administrator must identify or create a shared network directory (called the multiuser development directory) that all developers can access, and then upload the new master repository to that location. This shared network directory should be used only for multiuser development. This directory typically contains copies of repositories that need to be maintained by multiple developers. The multiuser development directory must be on a Windows system.
Developers create a pointer to the multiuser development directory when they set up the Administration Tool on their computers.
Caution: The administrator must set up a separate, shared network directory that is dedicated to multiuser development. If not set up and used as specified, critical repository files can be unintentionally overwritten and repository data can be lost. |
After the multiuser development directory is identified, the administrator must copy the master repository file to the multiuser development directory. Projects from this master repository will be extracted and downloaded by the developers who will make changes and then merge these changes back into the master repository.
After you copy the repository to the multiuser development network directory, notify developers that the multiuser development environment is ready.
Before checking out projects, each developer must set up their Administration Tool to point to the multiuser development directory on the network. The Administration Tool stores this path in a hidden Windows registry setting on the workstation of the developer and uses it when the developer checks out and checks in objects in the multiuser development directory.
Note: Until the pointer is set up, the multiuser options are not available in the Administration Tool. |
Initially, the network directory contains the master repositories. The repositories in this location are shared with other developers. Later, the network directory contains additional multiuser development history files, including historical subsets and repository versions. Do not manually delete any files in the multiuser development directory; these files are important and are used by the system.
When setting up the pointer, the developer can also complete the Full Name field. Although the field is optional, it is recommended that the developer complete this field to allow other developers to know who has locked the repository. The Full Name value is stored in HKEY_CURRENT_USER
in the registry, and is unique for each login.
To set up a pointer to the multiuser development directory:
Alternatively, click Browse, select the multiuser development directory, and then click OK.
During check-out and check-in, a copy of the master repository is temporarily copied to the developer's local repository directory (typically, ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obisn\repository by default). After checking out projects and making changes in a local repository file, each developer can check in (merge) changes into the master repository or discard the changes.
To make changes in a multiuser development environment, perform the tasks described in the following sections:
After setting up a pointer to the multiuser development default directory, a developer can check out projects, change metadata, and test the metadata. In the File > Multiuser submenu, the Checkout option is only available when there is a multiuser development directory defined in the Multiuser tab of the Options dialog.
If a developer checks out a local repository and attempts to exit the application before publishing it to the network or discarding local changes, a message appears to allow the developer to select an action. See "About Closing a Repository Before Publishing It to the Network" for more information.
This section contains the following topics:
During checkout, the Administration Tool performs the following tasks:
Note: If a repository with that name exists in this location, the developer is asked to confirm overwriting the existing repository. If the developer clicks Yes, the existing local repository is immediately overwritten in the background and after the new repository is saved, the temporary master repository file is automatically deleted. |
Caution: When the developer selects and saves the projects to a local repository file, the Administration Tool does not place a lock on the projects in the master repository on the shared network drive. Therefore, nothing physically prevents others from working on the same project. To determine if a project has been checked out, you need to look in the log file in the multiuser development directory on the shared network drive. |
This section explains how to check out projects using the Administration Tool.
To check out projects:
If there is more than one repository in the multiuser development directory, the Multiuser Development Checkout dialog appears. Select the appropriate repository, and then click OK.
This dialog does not appear if there is only one repository in the multiuser development directory.
If no projects exist in the repository, a message appears and the repository does not open.
Figure 3-2 shows the Browse dialog for selecting projects.
If only one project exists in the master repository, it is selected automatically and the Browse dialog does not appear.
A working project extract repository is saved on your local computer. The name is exactly as you specified and is opened in offline mode. A log file is also created.
Caution: A second copy of the project extract repository is saved in the same location. The name of this version contains the word "original" added to the beginning of the name that you assigned to the repository extract. Do not change the original project extract repository. It is used during the multiuser development merge process, and when you want to compare your changes to the original projects. |
You can use the Oracle BI Server utility extractprojects to extract projects from a given repository without the overhead of the MUD environment. You can run this utility on any platform supported by the Oracle BI Server.
The extractprojects utility generates an RPD file that includes the set of projects you specify. The utility does not perform other tasks that are performed when you check out projects using the Administration Tool, like saving an original repository file or tracking the extract as a check-out in the MUD directory.
Before running extractprojects, you must first run bi-init.cmd (or bi-init.sh on UNIX systems) to launch a command prompt that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run extractprojects from the resulting command prompt with the desired options. You can run the utility from this directory with no arguments or parameters to see usage information.
The utility takes the following parameters:
Where:
base_repository_name
is the name and path of the repository from which you want to extract projects.
output_repository_name
is the name and path of the repository generated by the utility.
input_project_name
is the name of a project you want to extract. You can enter multiple projects. Be sure to precede each project entry with -I (for example, -I project1 -I project2). If the project name contains spaces, enclose it in double quotes (for example, "project 1").
repository_password
is the password for the repository from which you want to extract projects.
Note that the repository_password
argument is optional. If you do not provide the password argument, you are prompted to enter the password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide password arguments either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.
- L enables logging. When logging is enabled, a log file in the format ProjExtr.YYYYMMDD.HHMMSS.xml is created in the Oracle BI Server logging directory. For example:
Example
The following example extracts project1 and project2 from my_repos.rpd and creates a new repository called extract_repos.rpd:
Note: Be sure to provide the full pathnames to your repository files, both the input file and the output file, if they are located in a different directory. |
Most types of changes that can be made to standard repository files are also supported for local repository files. Developers can add new logical columns, logical tables, change table definitions, logical table sources, and so on. Developers may also work simultaneously on the same project locally. It is important to note, however, that Oracle Business Intelligence assumes the individual developer understands the implications these changes might have on the master repository. For example, if a developer deletes an object in a local repository, this change is propagated to the master repository when local changes are merged without a warning prompt.
To ensure metadata integrity, you should not remove a physical column unless there are no logical table source mappings to that physical column. Because of this, if you are using a multiuser development environment, you cannot delete a logical column and its associated physical column at the same time. Instead, you must first delete the logical column and perform a merge. Then, you can delete the physical column and perform another merge to safely remove the object.
You should not modify physical connection settings in a local repository. These are intentionally not propagated, and developers should not test the master connection pool settings in local environments. Instead, developers should apply settings for their local test data sources to perform unit testing of their model changes.
Physical connection settings, security settings, and database feature table changes are not retained in a multiuser development merge to prevent developers from overwriting passwords and other important objects in the master repository.
After making changes to a local repository, the developer can edit the local NQSConfig.INI file, enter the name of the repository as the default repository, and test the edited metadata.
Note: DSNs specified in the metadata must exist on the developer's workstation. |
After the local developer makes changes, tests the changes, and saves the repository locally, the local developer can perform the following tasks from the File > Multiuser submenu:
Caution: If you select this option, there is no opportunity to change your mind. For example, no confirmation dialog appears. |
If you attempt to close an unpublished, locked repository without selecting an option in the File > Multiuser submenu, the Closing MUD repository dialog opens with the following options:
After changing and testing the metadata on a local computer, the developer must check the projects into the master repository in the multiuser development directory. Only one developer at a time can merge metadata from a local repository into the master repository. Therefore, the master repository is locked at the beginning of the merge process.
The Oracle BI repository development process uses a three-way merge to manage concurrent development. Metadata merges are done first on local environments and then merged with the master repository. A three-way merge identifies local changes based on the following repository characteristics:
Changes are managed by merge and reconciliation. Most of the merging process is automatic, and changes do not conflict. In case of any conflicting metadata sources, developers can locate and resolve them.
An administrator can also merge the changes from multiple repositories manually, or import objects from different repositories outside of a particular MUD environment.
Make sure to merge your changes frequently. The merge process is very complex and can become difficult if there are too many changes. See Appendix D, "Merge Rules" for more information about how objects are merged during the merge process.
This section contains the following topics:
The merge process involves the following files:
During the merge, the Administration Tool checks for added objects and if found, a warning message appears. The following list describes what happens during this step:
Caution: You must add newly created metadata to the project definition in the master repository for it to be visible in future extracted versions of the project. For example, if a developer checks out a project, adds a new object, and then checks it in, the new object is not visible in extracted versions of the project until it is explicitly added to the project definition. See "Creating Projects" for instructions. |
When a developer publishes changes to the network, the following actions occur:
The multiuser development check-in process uses the same technology as the standard repository merge process with a few important differences. See "Performing Full Repository Merges" for more information about the standard repository merge.
The following list describes the differences that occur during a multiuser development merge:
To change security settings or database features in a multiuser development environment, you must edit the master repository directly. To do this, remove the master repository from the multiuser development directory, edit it in offline mode, then move it back.
When the check-in process begins, the following actions occur:
To check in projects to the master repository:
Figure 3-3 shows the Lock Information dialog.
See "Performing Full Repository Merges" for additional information about the Define Merge Strategy screen.
A lack of conflicts does not mean that there are no differences between the repositories. Instead, it means that there are no decisions that have to be explicitly made by the developer to check in changes. See "How are Multiuser Merges Different from Standard Repository Merges?" for information about conflicts that are resolved automatically in a MUD merge.
In both cases, a CSV file is created in the local directory that contains details of the merged changes.
This saves the merged repository locally, and then uploads this repository to the multiuser development directory with an incremented numeric file extension (for example, Master_Sales.000, Master_Sales.001, and so on).
At this point, the changes made by the developer are still not saved to the master repository in the multiuser development directory.
The master repository in the multiuser development directory is overwritten with the copy of the repository containing the developer's changes.
You can find a summary of the development activities on the master repository in master_repository.log. This log contains a record of the following activities:
Branching is a further refinement of the merging development process. Branching can provide higher efficiencies over large development teams that have overlapping releases, but it requires significant administrative overhead.
This section contains the following topics:
In branching, developers work on private branches to isolate their code from other developers and merge changes back to the main branch. Different strategies can be followed, depending on the size of the development team.
In the Simple Development Model, all development occurs on a single main branch. This strategy has the following characteristics:
Figure 3-4 shows the Simple Development Model.
In the Small Team Development Model, development occurs on a single Dev branch, with a separate Main branch strictly for releases. This strategy has the following characteristics:
Figure 3-5 shows the Small Team Development Model.
In the Multi-Team, Multi-Release Model, development occurs on multiple Dev branches, again with a separate Main branch strictly for releases. This strategy has the following characteristics:
Figure 3-6 shows the Multi-Team, Multi-Release Model.
Using complex branching strategies in Oracle Business Intelligence requires attentive organization of repository files, as well as altering the Multiuser setting in the Administration Tool. The following procedure provides an overview of the required steps.
To use the multi-team, multi-release model branching strategy:
For large development teams, it is a good practice to perform periodic branch synchronization as Main changes, in order to ease the ultimate Team check-in. Use the Administration Tool to synchronize repositories in a three-way merge.
To synchronize repository branches:
The RPD named in the Save merged repository as field becomes the new branch development RPD and is called the Original in future synchronizations.
You can view and delete the development history of a multiuser development repository.
This section contains the following topics:
You can view the development history of a multiuser development repository. In the Administration Tool, multiuser development history is only available when no repository is open and after the administrator sets up the shared network directory. This prevents the confusion that could occur if a user opened a history log that did not match an open, unrelated repository.
To view multiuser development history:
A list of all master repositories in the multiuser development directory appears. If directory contains only one master repository, it is selected by default, and no list appears.
Figure 3-7 shows the Multi User History dialog.
Tip: To see details for all revisions, right-click in the background with no rows selected and select View > Details.
Table 3-1 Options in the Multi User History Dialog
Action | Description |
---|---|
View > Repository | Loads the selected master version of the repository in the Administration Tool in read-only mode. |
View > Prior to Merge > Projects | Loads the selected version of a modified subset repository in the Administration Tool in read-only mode. |
View > Conflict Resolution | Loads all necessary repositories of the selected version. Also shows the Merge dialog in read-only mode with all selected decisions as they were during the Merge Local Changes activity at that time. Double-clicking a row for a version with conflict resolutions has the same effect as selecting this menu item. Note: This menu item is only enabled for versions that had conflict resolutions. |
View > Details | Displays a log with details for the selected versions, or displays details for all versions if no specific versions are selected. |
View > Prior to Merge > Changes | Compares modified subset repository of the selected version with original subset repository and shows all changes made by the user in the selected version. |
Find and Find Again | Lets you search the list. |
Select All | Selects all items displayed in the dialog. |
Delete | Available only to multiuser development administrators. |
Only multiuser development administrators can delete history. Administrators are defined in a special hidden option file in the multiuser development directory. See "Setting Multiuser Development Options" for more information.
An administrator can delete the entire MUD history, or the oldest 1 to n versions. It is not possible to delete versions in the middle of the range. For example, an administrator cannot delete version 3 if there are still versions 1 and 2. If an administrator deletes the entire MUD history, newly assigned version numbers restart at version 1.
You can create a multiuser development option file to specify options for multiuser development. The option file is a text file, in standard Windows INI format. It has the following properties and characteristics:
The following example shows a multiuser development option file:
Options that are not explicitly set are turned off by default. To turn an option on, set its value to Yes. To turn an option off, either remove it from the option file, or set its value to No.
Table 3-2 explains the options in the multiuser development option file.
Table 3-2 Options in the Multiuser Development Option File
Option | Description |
---|---|
BuildNumber | When set to Yes, the build version of the Administration Tool is displayed in the MUD history. |
Admin | Lists multiuser development administrators. Administrators must be defined in the option file before they can delete MUD history. Administrators are defined by their computer/network login names. When multiple administrators exist, administrator names are separated by semicolons. For example: Admin=jsmith;mramirez;plafleur |
Mandatory Consistency Check | When set to Yes, the publish step performs a consistency check. Publishing cannot proceed unless there are no errors in the given repository. |
Equalize During Merge | When set to Yes, the multiuser development merge process performs mandatory equalization during MUD merges. Note that setting this option to Yes affects the performance of the merge process. |
If you do not already have an Oracle BI repository file, you must create one. Then, you can import metadata from your data sources into the Physical layer of your repository. The Physical layer of the Administration Tool defines the data sources to which the Oracle BI Server submits queries, and the relationships between physical databases and other data sources that are used to process multiple data source queries.
Metadata imports to an Oracle BI repository must occur through an ODBC or native database connection to the underlying data source. Metadata can also be imported from software such as Microsoft Excel through an ODBC connection.
Importing metadata directly from each data source saves you time and effort by importing the structure for the Physical layer. Data from these sources can be displayed on Oracle BI Interactive Dashboards and other clients. You can only import metadata from supported data sources.
After you import metadata, properties in the associated database object and connection pool are typically set automatically. However, you may want to adjust database or connection pool settings. See Chapter 6, "Setting Up Database Objects and Connection Pools" for more information.
Although you can create the Physical layer manually rather than importing metadata, it is a labor-intensive and error-prone activity. It is strongly recommended that you import metadata.
This chapter contains the following topics:
You can use the Create New Repository Wizard in the Administration Tool to create new Oracle BI repository files (.rpds). You do not need to create a new repository file if you already have an existing repository.
If you have an existing repository file, you can use the existing data source settings in that file as a template to connect to different data sources. To do this, use the existing data source settings and just change the database type and connection pool information. See "Setting Up Database Objects" and "Creating or Changing Connection Pools" for details.
To create a new repository file:
If an existing repository is open, you are prompted to save your changes, and the existing repository is closed.
You enter the repository password when you open the repository in online or offline mode. It is used to encrypt the repository contents.
Refer to the following sections for information about the Import screens, according to your data source type:
Note that you many need to set up your data sources before you import information into the repository. See "Performing Data Source Preconfiguration Tasks" for more information.
Before you can import physical objects from your data sources into your repository file, or set up connection pools to your data sources, you might need to perform configuration steps so that the data sources can be accessed by Oracle Business Intelligence.
For many data sources, you need to install client components. Client components are typically installed on the computer hosting the Oracle BI Server for query access, and on the computer hosting the Administration Tool (if different) for offline operations such as import. In some cases, client components must be installed on the computer where the JavaHost is located.
Note: See also the following related topics:
|
This section contains the following topics:
Before you can import from a data source through an ODBC connection, or set up a connection pool to an ODBC data source, you must first create an ODBC Data Source Name (DSN) for that data source on the client computer. You reference this DSN in the Import Metadata Wizard when you import metadata from the data source.
You can only use ODBC DSNs for import on Windows systems.
To set up an ODBC DSN on Windows:
The remaining configuration steps are specific to the data source you want to configure. Refer to the documentation for your data source for more information.
ODBC DSNs on Windows systems are used for both initial import, and for access to the data source during query execution. On UNIX systems, ODBC DSNs are only used for data access. For information about setting up ODBC data sources on UNIX, see Chapter 15, "Setting Up Data Sources on Linux and UNIX."
You should always use OCI when importing metadata from or connecting to an Oracle Database. Before you can import schemas or set up a connection pool, you must add a TNS names entry to your tnsnames.ora file. See the Oracle Database documentation for more information.
When you import metadata from an Oracle Database data source or set up a connection pool, you can include the entire connect string for Data Source Name, or you can use the net service name defined in the tnsnames.ora file. If you choose to enter only the net service name, you must set up a tnsnames.ora file in the following location within the Oracle Business Intelligence environment, so that the Oracle BI Server can locate the entry:
ORACLE_HOME\network\admin
Before you import from an Oracle OLAP data source, ensure that the data source is a standard form Analytic Workspace.
In addition, the JavaHost process must be running to import from Oracle OLAP data sources, for both offline and online imports.
Oracle TimesTen In-Memory Database is a high-performance, in-memory data manager that supports both ODBC and JDBC interfaces. These preconfiguration instructions assume that you have already installed TimesTen; see Oracle TimesTen In-Memory Database Installation Guide for more information.
To set up TimesTen data sources:
See "Configuring Database Connections Using Native ODBC Drivers" for information about how to perform this step when the Oracle BI Server is running on Linux or UNIX.
Note that if the TimesTen database is installed on the same computer as the TimesTen client, you can specify either the Data Manager DSN or the Client DSN in the Import Metadata Wizard.
In some cases, queries to TimesTen data sources might fail with errors similar to the following:
To avoid these failures, increase the maximum number of connections for the TimesTen server, as follows:
install_dir/srv/info
Add the following line:
To determine number_of_connections, use the following formula: if there are M connections for each connection pool in the RPD, N connection pools in the RPD, and P Oracle BI Servers, then the total number of connections required is M * N * P.
The Oracle BI Server uses the Essbase client libraries to connect to Essbase data sources. You must ensure that the Essbase client libraries are installed on the computer running the Oracle BI Server before you can set up a connection to or import metadata from Essbase data sources. You also need to ensure that the Essbase client libraries are installed on any computer where you want to run the Administration Tool or the nqcmd utility. See "System Requirements and Certification" for information about supported versions of the Essbase Client for use with Oracle Business Intelligence.
After you verify that the Essbase client libraries are installed on the appropriate computers, you must ensure that the PATH
environment variable on each computer includes the location of the Essbase client driver (for example, EPM_ORACLE_HOME/products/Essbase/EssbaseClient). See "Configuring Essbase Data Sources on Linux and UNIX" for information about setting the PATH
variable on Linux.
You also need to ensure that an additional environment variable is set appropriately for each computer (either ESSBASEPATH
or ARBORPATH
, depending on your client version). For more information, see Oracle Hyperion Enterprise Performance Management System Installation and Configuration Guide (or the equivalent title for your client version).
Other system processes need the information contained in the environment variables set for the Essbase client libraries. The following sections provide additional information:
To enable connectivity, on each computer running the Oracle BI Server, you need to verify that information in opmn.xml is correct for your Essbase client version and installed location.
To include the location of the Essbase client libraries in opmn.xml:
ESSBASEPATH
. For example: ARBORPATH
if necessary, depending on your client version. PATH
. For example: ESSBASEPATH
to ARBORPATH
if necessary, depending on your client version. On Windows systems, to enable connectivity, you need to update bi-init.cmd on each computer running the Administration Tool.
See "Configuring Essbase Data Sources on Linux and UNIX" for information about setting up the environment on Linux systems.
To add Essbase environment variables to bi-init.cmd:
ESSBASEPATH
or ARBORPATH
environment variable, as appropriate for your version and installed location of the Essbase client libraries. For example: PATH
environment variable, and add the location of the Essbase client binaries. For example: Before you can import from or set up a connection to Hyperion Financial Management data sources, you must ensure that the Hyperion Financial Management win32 client is installed on the computer running the Oracle BI JavaHost process. If you are using Hyperion Financial Management version 9.3.1, you must also install the HFM Application Builder version 9.2.0.1 component on the JavaHost computer.
When you install the Hyperion Financial Management win32 client, make sure to perform the following steps in the Server/Cluster Registration tab of the client configuration utility:
In addition, you must edit the file opmn.xml on each computer running the Oracle BI JavaHost process to include environment variables required by Hyperion Financial Management. Note that the JavaHost process must be running to import from Hyperion Financial Management data sources, for both offline and online imports.
Note: You can only use Hyperion Financial Management data sources with Oracle BI EE when Oracle BI EE is running in a Windows-only deployment. |
For Hyperion Financial Management 9.3.1:
PATH
variable to include ADM_ESS_NATIVE_HOME/bin
and HFM_HOME
. For example: You should run more than one JavaHost process to ensure that the JavaHost is not a single point of failure for HFM access. To do this, scale out the JavaHost process using Fusion Middleware Control. See "Scaling Your Deployment" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about scaling out processes.
For Hyperion Financial Management 11.1.2:
PATH
variable to include ADM_HOME/bin
and the client
and common
subdirectories of HYPERION_HOME
. For example: You should run more than one JavaHost process to ensure that the JavaHost is not a single point of failure for HFM access. To do this, scale out the JavaHost process using Fusion Middleware Control. See "Scaling Your Deployment" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about scaling out processes.
You can connect to SAP/BW data sources using either the XMLA connection type, or the SAP BW Native connection type (BAPI). SAP BW Native connections might not be available on certain platforms. See "System Requirements and Certification" for more information.
To connect to SAP/BW data sources using the SAP BW Native connection type, you must first download the BAPI Adapter for OBI Package from the Bristlecone Web site at:
http://www.bristleconelabs.com/edel/OBIEE_BAPIAdaptor_download.asp
Then, follow the configuration instructions in the Readme provided with the download.
No preconfiguration steps are required to connect to SAP/BW over XMLA.
Oracle BI Server can connect to Oracle RPAS (Retail Predictive Application Server) data sources through ODBC DSNs. To set up Oracle RPAS data sources, you must first install the Oracle RPAS ODBC driver. During set up of the ODBC DSN, you must select the SQLExtendedFetch option, select DBMS from the Authentication Method list, and select No from the Normalize Dimension Tables list. See "About Importing Metadata from Oracle RPAS Data Sources" for more information.
On Windows systems, you can connect to Oracle RPAS data sources for both initial import and for access to the data source during query execution. On UNIX systems, you can only connect to Oracle RPAS data sources for data access.
See "Configuring Oracle RPAS ODBC Data Sources on AIX UNIX" for information about how to enable ODBC access to Oracle RPAS data sources when the Oracle BI Server is running on AIX UNIX.
You can import metadata for supported relational data source types by selecting one of the following import options and the appropriate connection type:
You must create a DSN for the Oracle BI Server before you can import metadata through the Oracle BI Server. In addition, the Oracle BI Server must be running. For more information about the Oracle BI Server DSN, see "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition.
Note: When it is running on a UNIX platform, the Oracle BI Server does not support importing metadata using an ODBC connection type. |
See "Importing Metadata from Multidimensional Data Sources" and Chapter 5, "Working with ADF Business Component Data Sources" for information about importing from other data sources.
When you import physical tables, be careful to limit the import to only those tables that contain data that are likely to be used in the business models you create. You can use the Find feature to locate and select the tables that you want to import. Importing large numbers of extraneous tables and other objects adds unnecessary complexity and increases the size of the repository.
When you import metadata for most data sources, the default is to import tables, primary keys, and foreign keys. It is recommended that you import primary and foreign keys along with your tables so that the keys are automatically created in the Physical layer. If you do not import keys, you must create them manually, which can be a time-consuming process.
You can also import database views, aliases, synonyms, and system tables. Import these objects only if you want the Oracle BI Server to generate queries against them.
To import metadata from a relational data source:
Note: If you have already defined an existing database and connection pool, you can right-click the connection pool in the Physical layer and select Import Metadata. The Import Metadata Wizard appears with the information on the Select Data Source screen pre-filled. |
Figure 4-1 shows the Import Metadata Wizard.
Make sure to choose OCI 10g/11g if your data source is an Oracle Database. Using OCI as your connection protocol to an Oracle Database ensures better performance and provides access to native database features that are not available through ODBC.
Note: For non-Oracle databases, it is recommended that you use ODBC 3.5 or DB2 CLI (Unicode) for importing schemas with International characters, such as Japanese table and column names. |
The remaining fields and options on the Select Data Source screen vary according to the connection type you selected:
Note that when you import through the Oracle BI Server, the DSN entries are on the Oracle BI Server, not on the local computer.
For Oracle Database data sources, the data source name is either a full connect string or a net service name from the tnsnames.ora file. If you enter a net service name, you must ensure that you have set up a tnsnames.ora file within the Oracle Business Intelligence environment, in ORACLE_HOME/network/admin.
Other data source types are described in other sections:
When you have finished providing information in the Select Data Source screen, click Next. The Select Metadata Types screen appears.
If you want to import joins, select both Keys and Foreign Keys. If you want to import system tables, you must have the system privilege for your data source. To import from Customer Relationship Management (CRM) tables, select Metadata from CRM tables.
To search for a particular item, enter a keyword in the Find box and then click Find Down or Find Up.
Select Show complete structure to view all objects, including those that have already been imported. Deselecting this option shows only the objects that are available for import. When this option is selected, objects that have already been imported appear grayed out.
If some objects could not be imported, a list of warning messages appears. In the dialog displaying the messages, you can perform the following actions:
After you import metadata, you should check to ensure that your database and connection pool settings are correct. In rare cases, the Oracle BI Server cannot determine the exact database type during import and instead assigns an approximate type to the database object. See "Setting Up Database Objects" and "Creating or Changing Connection Pools" for more information about working with these objects.
It is also a good practice to visually inspect the imported data in the Physical layer, such as physical columns and tables, to ensure that the import completed successfully.
The Map to Logical Model and Publish to Warehouse screens are available only for ADF Business Component data sources. See "Automatically Mapping Flex Object Changes to the Logical Model" and "Running the BI Extender to Update Informatica, DAC, and the RPD" for more information about these screens.
You can use the Administration Tool to import metadata from a multidimensional data source to the Physical layer of the Oracle BI repository. The ability to use multidimensional data sources enables the Oracle BI Server to connect to sources such as Essbase, Oracle OLAP, Hyperion Financial Management, Microsoft Analysis Services, and SAP/BW (SAP/Business Warehouse) to extract data. Data from these sources can be displayed on dashboards.
The primary differences between setting up multidimensional data sources and relational data sources are in the Physical layer. The setup in the Business Model and Presentation layers for multidimensional data sources and relational data sources is almost identical.
During the import process, each cube in a multidimensional data source is created as a single physical cube table. The Oracle BI Server imports the cube metadata, including its metrics, dimensions and hierarchies. After importing the cubes, you need to ensure that the physical cube columns have the correct aggregation rule and that the hierarchy type is correct. See "Working with Physical Hierarchy Objects" for more information.
Caution: Manually creating a physical schema from a multidimensional data source is labor-intensive and error prone. Therefore, it is strongly recommended that you use the import method. |
It is recommended that you remove hierarchies and columns from the Physical layer if they will not be used in the business model. This eliminates maintaining unnecessary objects in the Administration Tool and might result in better performance.
To import metadata from a multidimensional data source:
Note: If you have already defined an existing database and connection pool, you can right-click the connection pool in the Physical layer and select Import Metadata. The Import Metadata Wizard appears with the information on the Select Data Source screen pre-filled. You can also use this method to perform incremental imports. |
Figure 4-2 shows the Import Metadata Wizard.
Note that the Map to Logical Model and Publish to Warehouse screens are available only for ADF Business Component data sources. See "Automatically Mapping Flex Object Changes to the Logical Model" and "Running the BI Extender to Update Informatica, DAC, and the RPD" for more information about these screens.
The remaining fields and options on the Select Data Source screen vary according to the connection type you selected. Table 4-1 describes the multidimensional connection types.
Table 4-1 Multidimensional Connection Options
Connection Type | Description |
---|---|
ODBC 3.5 | The ODBC 3.5 connection type is used for Oracle RPAS data sources. Select the DSN entry and provide the user name and password for the selected data source. See "Setting Up ODBC Data Source Names (DSNs)" for more information. |
Provide the host name of the computer where the Essbase server is running in the Essbase Server field, then provide a valid user name and password for the data source. This information should be obtained from your data source administrator. See "Working with Essbase Data Sources" for information about how data from Essbase data sources is modeled in the Physical layer. Note: You must ensure that Essbase client libraries are installed on the computer running the Oracle BI Server before you can import metadata from Essbase data sources. See "Setting Up Essbase Data Sources" for more information. | |
The XMLA connection type is used for Microsoft Analysis Services and SAP/BW. Enter the URL of a data source from which to import the schema. Then, enter the Provider Type (such as Analysis Services 2000 or SAP/BW 3.5/7.0) and a valid user name and password for the data source. For Target Database, do one of the following:
| |
Provide the name of the data source (net service name) in the Data Source Name field, then provide a valid user name and password for the data source. The data source name is the same as the entry you created in the tnsnames.ora file. Make sure that the name you use is from the tnsnames.ora file within the Oracle Business Intelligence environment. You can also choose to enter a full connect string rather than the net service name. For Target Database, do one of the following:
The JavaHost process must be running to import from Oracle OLAP data sources, for both offline and online imports. See "Working with Oracle OLAP Data Sources" for information about how data from Oracle OLAP data sources is modeled in the Physical layer. Note: Oracle Database data sources with the OLAP option can contain both relational tables and multidimensional tables. However, you should avoid having both table types in the same database object in the Administration Tool, because you may need to specify different database feature sets for the different table types. For example, Oracle OLAP queries fail if the database feature As a best practice, create two separate database objects for relational and multidimensional tables. | |
Provide the URL for the Hyperion Financial Management server, including the driver and application name (cube name), in the following format: adm:native:HsvADMDriver:ip_or_host:application_name For example: adm:native:HsvADMDriver:130.35.40.80:UCFHFM You also need to enter a valid user name and password for your data source. Note that the JavaHost process must be running to import from Hyperion Financial Management data sources, for both offline and online imports. See "Working with Hyperion Financial Management Data Sources" for information about how data from Hyperion Financial Management data sources is modeled in the Physical layer. Note: Be sure to complete the preconfiguration steps described in "Setting Up Hyperion Financial Management Data Sources" before import. | |
Provide the following information:
The first five fields constitute the elements of the SAP/BW connect string, in the format: ashost=value:sysnr=value:client=value:lang=value:additional_param=value For example: ashost=10.30.0.19:sysnr=00:client=100:lang=EN Note: Be sure to complete the preconfiguration steps described in "Setting Up SAP/BW Data Sources" before import. |
Other data source types are described in other sections:
When you have finished providing information in the Select Data Source screen, click Next.
See "About Importing Metadata from Oracle RPAS Data Sources" for more information.
To search for a particular item, enter a keyword in the Find box and then click Find Down or Find Up.
Select Show complete structure to view all objects, including those that have already been imported. Deselecting this option shows only the objects that are available for import. When this option is selected, objects that have already been imported appear grayed out
For Essbase data sources, select Import UDAs if you want to import UDAs (user-defined attributes).
If some objects could not be imported, a list of warning messages appears. In the dialog displaying the messages, you can perform the following actions:
After you import metadata, you should check to ensure that your database and connection pool settings are correct. In rare cases, the Oracle BI Server cannot determine the exact database type during import and instead assigns an approximate type to the database object. See "Setting Up Database Objects" and "Creating or Changing Connection Pools" for more information about working with these objects.
It is also a good practice to visually inspect the imported data in the Physical layer, such as physical columns and hierarchical levels, to ensure that the import completed successfully.
For Essbase data sources, all hierarchies are imported as Unbalanced by default. Review the Hierarchy Type property for each physical hierarchy and change the value if necessary. Supported hierarchy types for Essbase are Unbalanced, Fully balanced, and Value.
This section provides important information about using the Administration Tool to import metadata from Oracle RPAS, as follows:
See "Setting Up ODBC Data Source Names (DSNs)" for more information.
Note: If you do not change the Normalize Dimension Tables setting value to No, most queries will fail with an error message similar to the following:
NULL_VALUES_SORT_FIRST
to ON
in the NQSConfig.INI file. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about setting values in NQSConfig.INI. This section describes the use of the Extensible Markup Language (XML) as a data source. XML is the universal format for structured documents and data on the Web. It can also be used as a database to store structured data.
The Oracle BI Server supports various XML access modes, including access through the Oracle BI Server XML Gateway, as well as access through an XML ODBC driver.
This section contains the following topics:
The Oracle BI Server supports the use of XML data as a data source for the Physical layer in the repository. Depending on the method used to access XML data sources, a data source may be represented by a URL pointing to one of the following sources:
tap://216.217.17.176/[DE0A48DE-1C3E-11D4-97C9-00105AA70303].XML
tap://www.aspserver.com/example.asp
d:/xmldir/example.xml
d:/htmldir/island.htm
You can also specify a directory path for local or network XML files, or you can use the asterisk (*) as a wildcard with the filenames. If you specify a directory path without a filename specification (like d:/xmldir), all files with the XML suffix are imported. For example:
d:/xmldir/
d:/xmldir/exam*.xml
d:/htmldir/exam*.htm
d:/htmldir/exam*.html
URLs can include repository or session variables, providing support for HTTP data sources that accept user IDs and passwords embedded in the URL. For example:
This functionality also lets you create an XML data source with a location that is dynamically determined by some run-time parameters. For more information about variables, see Chapter 18.
If the Oracle BI Server needs to access any nonlocal files (network files or files on the Internet, for example), you must run the Oracle BI Server using a valid user ID and password with sufficient network privileges to access these remote files.
Using the Oracle BI Server XML Gateway, the metadata import process flattens the XML document to a tabular form using the stem of the XML filename (that is, the filename without the suffix) as the table name and the second level element in the XML document as the row delimiter. All leaf nodes are imported as columns belonging to the table. The hierarchical access path to leaf nodes is also imported.
The Oracle BI Server XML Gateway uses the metadata information contained in an XML schema. The XML schema is contained within the XML document, or is referenced within the root element of the XML document.
Where there is no schema available, all XML data is imported as text data. In building the repository, you can alter the data types of the columns in the Physical layer, overriding the data types for the corresponding columns defined in the schema. The gateway converts the incoming data to the desired type as specified in the Physical layer. You can also map the text data type to other data types in the Business Model and Mapping layer of the Administration Tool, using the CAST
operator.
The Oracle BI Server XML Gateway does not support:
To import XML data using the Oracle BI Server XML Gateway:
Note: If you have already defined an existing database and connection pool, you can right-click the connection pool in the Physical layer and select Import Metadata. The Import Metadata Wizard appears with the information on the Select Data Source screen pre-filled. |
Figure 4-3 shows the Import Metadata Wizard.
Note that the Map to Logical Model and Publish to Warehouse screens are available only for ADF Business Component data sources. See "Automatically Mapping Flex Object Changes to the Logical Model" and "Running the BI Extender to Update Informatica, DAC, and the RPD" for more information about these screens.
URLs can include repository or session variables. For more information about variables, see Chapter 18.
If you click Browse, the Select XML File dialog appears, from which you can select a single file. For XML documents, the file name in the URL that you specify must have the suffix .xml
. Otherwise, the documents are treated as HTML documents.
In addition to HTTP Basic Authentication security mode, the Oracle BI Server XML Gateway also supports Secure HTTP protocol and Integrated Windows Authentication (for Windows 2000), formerly called NTLM or Windows NT Challenge/Response authentication.
When you have finished providing information in the Select Data Source screen, click Next. The Select Metadata Types screen appears.
If you want to import joins, select both Keys and Foreign Keys. If you want to import system tables, you must have the system privilege for your data source.
To search for a particular item, enter a keyword in the Find box and then click Find Down or Find Up.
Select Show complete structure to view all objects, including those that have already been imported. Deselecting this option shows only the objects that are available for import. When this option is selected, objects that have already been imported appear grayed out.
After you import XML data, you must adjust connection pool settings. See "Creating or Changing Connection Pools" for complete information. Minimally, you can do the following:
Because XML data sources are typically updated frequently and in real time, you can specify a refresh interval for Oracle BI Server XML Gateway data sources. The default timeout interval for queries (URL loading time-out) is 15 minutes. For more information, see "About the Refresh Interval for XML Data Sources" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Example 4-1 and Example 4-2 show sample XML documents and the corresponding columns that are generated by the Oracle BI Server XML Gateway.
Example 4-1 XML Schema Contained in an External File
The following sample XML data document (mytest.xml) references an XML schema contained in an external file. The schema file is shown following the data document. The generated XML schema information available for import to the repository is shown at the end.
The corresponding schema file follows:
The name of the table generated from the preceding XML data document (mytest.xml) would be mytest
and the column names would be p1
, p3
, p6
, p7
, p5
, and width
.
In addition, to preserve the context in which each column occurs in the document and to distinguish between columns derived from XML elements with identical names but appearing in different contexts, a list of fully qualified column names is generated, based on the XPath proposal of the World Wide Web Consortium, as follows:
Example 4-2 Nested Table Structures in an XML Document
The following example is a more complex example that demonstrates the use of nested table structures in an XML document. You can optionally omit references to an external schema file, in which case all elements are treated as being of the Varchar character type.
The generated XML schema consists of one table (INVOICE
) with the following column names and their corresponding fully qualified names.
Column | Fully Qualified Name |
---|---|
ADD1 | //INVOICE/CUSTOMER/ADDRESS/ADD1 |
ADD2 | //INVOICE/CUSTOMER/ADDRESS/ADD2 |
CITY | //INVOICE/CUSTOMER/ADDRESS/CITY |
STATE | //INVOICE/CUSTOMER/ADDRESS/STATE |
ZIP | //INVOICE/CUSTOMER/ADDRESS/ZIP |
CUST_ID | //INVOICE/CUSTOMER/CUST_ID |
FIRST_NAME | //INVOICE/CUSTOMER/FIRST_NAME |
LAST_NAME | //INVOICE/CUSTOMER/LAST_NAME |
CATEGORY_ID | //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_ID |
CATEGORY_NAME | //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/CATEGORY_NAME |
ITEM_ID | //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/ITEM_ID |
NAME | //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/NAME |
PRICE | //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/PRICE |
QTY | //INVOICE/CUSTOMER/PRODUCTS/CATEGORY/ITEMS/ITEM/QTY |
Only tags with values are extracted as columns. An XML query generates fully qualified tag names, to help ensure appropriate columns are retrieved.
The following shows the results of a sample query against the INVOICE
table:
The Oracle BI Server XML Gateway also supports the use of tables in HTML files as a data source. The HTML file can be identified as a URL pointing to a file on the internet (including intranet or extranet) or as a file on a local or network drive.
Even though tables, defined by the <table> and </table> tag pair, are native constructs of the HTML 4.0 specification, they are often used by Web designers as a general formatting device to achieve specific visual effects rather than as a data structure. The Oracle BI Server XML Gateway is currently the most effective in extracting tables that include specific column headers, defined by <th> and </th> tag pairs.
For tables that do not contain specific column headers, the Oracle BI Server XML Gateway employs some simple heuristics to make a best effort to determine the portions of an HTML file that appear to be genuine data tables.
The following is a sample HTML file with one table.
The table name is derived from the HTML filename, and the column names are formed by concatenating the headings (defined by the <th> and </th> tag pairs) for the corresponding columns, separated by an underscore.
Assuming that our sample file is named 18.htm, the table name would be 18_0
(because it is the first table in that HTML file), with the following column names and their corresponding fully qualified names:
Column | Fully Qualified Name |
---|---|
Transaction_Quality | \\18_0\Transaction_Quality |
Measurements_Count | \\18_0\Measurements_Count |
Measurements_Percent | \\18_0\Measurements_Percent |
If the table column headings appear in more than one row, the column names are formed by concatenating the corresponding field contents of those header rows.
For tables without any heading tag pairs, the Oracle BI Server XML Gateway assumes the field values (as delimited by the <td> and </td> tag pairs) in the first row to be the column names. The columns are named by the order in which they appear (c0, c1, and so on).
See "Importing Metadata from XML Data Sources Using XML ODBC" and "Examples of XML Documents" for additional XML examples.
Using the XML ODBC database type, you can access XML data sources through an ODBC interface. The data types of the XML elements representing physical columns in physical tables are derived from the data types of the XML elements as defined in the XML schema. In the absence of a proper XML schema, the default data type of string is used. Data Type settings in the Physical layer do not override those defined in the XML data sources. When accessing XML data without XML schema, use the CAST
operator to perform data type conversions in the Business Model and Mapping layer of the Administration Tool.
To import XML data using ODBC:
Caution: Due to XML ODBC limitations, you must select the Synonyms option in the Select Metadata Types screen, or no tables are imported. |
Example 4-3 shows an example of an XML ODBC data source in the Microsoft ADO persisted file format. Both the data and the schema could be contained inside the same document.
Example 4-3 XML ODBC Example
The following XML documents provide examples of several different situations and explain how the Oracle BI Server XML access method handles those situations.
Because the element <p3> in the preceding examples appears in two different scopes, each element is given a distinct column name by appending an index number to the second occurrence of the element during the import process. In this case, the second occurrence becomes p3_1. If <p3> occurs in additional contexts, they become p3_2, p3_3.
Example 4-4 83.xml
Example 4-5 8_sch.xml
Example 4-6 84.xml
Example 4-7 Island2.htm
A standby database is used mainly for its high availability and failover functions as a backup for the primary database. In a standby database configuration, there is regularly scheduled replication from the primary database to the secondary database. The latency of this replication must be short enough that writing to the primary database while reading from the secondary database does not cause any synchronization or data integrity problems.
Because a standby database is essentially a read-only database, it can be used as a business intelligence query server, relieving the workload of the primary database and improving query performance.
The following sections explain how to use a standby database with Oracle Business Intelligence:
In a standby database configuration, you have two databases: a primary database that handles all write operations and is the source of truth for data integrity, and a secondary database that is exposed as a read-only source. When you use a standby database configuration with Oracle Business Intelligence, all write operations are offloaded to the primary database, and read operations are sent to the standby database.
Write operations that need to be routed to the primary source may include the following:
The following list provides an overview of how to configure the Oracle BI Server to use a standby database:
Even though there are two separate physical data sources for the standby database configuration, you create only one database object in the Physical layer. Figure 4-4 shows the database object and connection pools for the standby database configuration in the Physical layer.
Use the Administration Tool to create a database object in the repository for the standby database configuration. When you create the database object, make sure that the persist connection pool is not assigned, to prevent the Oracle BI Server from creating temporary tables in the standby database.
To create a database object for the standby database configuration:
Figure 4-5 shows the Database dialog for a standby database configuration.
After you have created a database object in the repository for the standby database configuration, use the Administration Tool to create two connection pools: one that points to the standby database, and another that points to the primary database.
Because the standby connection pool is used for the majority of connections, make sure that the standby connection pool is listed first.
Note: Connection pools are used in the order listed, until the maximum number of connections is achieved. Ensure that the maximum number of connections is set in accordance with the standby database tuning.See "Creating or Changing Connection Pools" for more information about setting the maximum number of connections. |
To create a standby connection pool for the standby database configuration:
Figure 4-6 shows the Connection Pool dialog for the standby connection pool.
To create the primary connection pool for the standby database configuration:
Figure 4-7 shows the Connection Pool dialog for the primary connection pool.
If you use scripts that write to the database, such as scripts for aggregate persistence, you must update the scripts to explicitly refer to the primary connection pool. Information written through the primary connection will be automatically transferred to the standby database (through the regularly scheduled replication between the primary and secondary databases), and will become available through the standby connection pool.
The following example shows a writeback script for aggregate persistence that explicitly specifies the primary connection pool:
The Oracle BI Server supports the collection of usage tracking data. When usage tracking is enabled, the Oracle BI Server collects usage tracking data for each query and writes statistics to a usage tracking log file or inserts them directly to a database table.
If you want to enable usage tracking on a standby database configuration using direct insertion, you must create the table used to store the usage tracking data (typically S_NQ_ACCT
) on the primary database. Then, import the table into the physical layer of the repository using the Administration Tool.
You must ensure that the database object for the usage tracking table is configured with both the standby connection pool and the primary connection pool. Then, ensure that the CONNECTION_POOL
parameter for usage tracking points to the primary database. For example, in NQSConfig.ini:
CONNECTION_POOL = "StandbyDatabaseConfiguration".
"Primary Connection";
See "Managing Usage Tracking" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information about usage tracking, including how to create tables for usage tracking data and how to set parameters for usage tracking.
You can use an Oracle BI Server event polling table (event table) as a way to notify the Oracle BI Server that one or more physical tables have been updated. The event table is a physical table that resides on a database accessible to the Oracle BI Server. It is normally exposed only in the Physical layer of the Administration Tool, where it is identified in the Physical Table dialog as an Oracle BI Server event table.
The Oracle BI Server requires write access to the event polling table. Because of this, if you are using event polling in a standby database configuration, you must ensure that the database object for the event table only references the primary connection pool.
See "Cache Event Processing with an Event Polling Table" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information about event polling, including how to set up, activate, and populate event tables.
Oracle BI Scheduler is an extensible application and server that manages and schedules jobs, both scripted and unscripted. To use Oracle BI Scheduler in a standby database configuration, you must ensure that the database object for Oracle BI Scheduler only references the primary connection pool.
See "Configuration Tasks for Oracle BI Scheduler" in Oracle Fusion Middleware Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition for full information about setting up and using Oracle BI Scheduler.
Oracle Business Intelligence supports connecting to ADF Business Components as data sources. This enables Oracle Business Intelligence users to query data from any application that is built using the ADF Framework. For example, because Oracle CRM applications are developed using the ADF Framework, Oracle Business Intelligence users can report on CRM data using an ADF Business Component data source that implements the required ADF Application Programming Interface (API).
By using the ADF components as a data source to the Oracle BI Server, users can quickly integrate operational reporting with any application that is built on top of the ADF Framework.
This chapter contains the following topics:
Oracle Application Development Framework (Oracle ADF) is an object-relational framework that can be used to create J2EE business services and expose underlying database objects. This framework provides an abstraction layer that enables application developers to build applications quickly and efficiently.
When you use Oracle ADF to build service-oriented Java EE applications, you implement your core business logic as one or more business services. These back-end services provide clients with a way to query, insert, update, and delete business data as required, while enforcing appropriate business rules. ADF Business Components are prebuilt application objects that provide a ready-to-use implementation of Java EE design patterns and best practices.
The ADF model is represented through the ADF Business Component constructs called Entity Objects and View Objects, usually constructed and defined during design time:
Applications built using ADF obtain their data by querying the defined View Objects using the ADF APIs.
The ADF model also includes an application module, which is the transactional component that UI clients use to work with application data. It defines an updatable data model along with top-level procedures and functions (called service methods) related to a logical unit of work related to an end-user task.
The application module serves as a container for multiple View Objects and Entity Objects, and also contains configuration related to the JDBC data source.
You can use Oracle Business Intelligence integration with ADF Business Components to generate reports on data within your applications. For example, you can generate reports based on expense report data entered into an Expense Application.
To do this, you would first import the Expense Application metadata into the Oracle BI repository using the Administration Tool, then map the data from the Physical layer to the Business Model and Mapping layer and Presentation layer. After you restart the Oracle BI Server and reload the metadata into Oracle BI Presentation Services, you can log in to Oracle BI Answers and drag and drop the columns to generate a report on the Expense Application data. For example, you can select columns to view a report of your expenses grouped by category.
On import, the required physical tables and complex joins are automatically created. The instances (ViewObject and ViewLink) are imported into Oracle Business Intelligence. During query execution, the definitions retrieved from these instances are used to create the CompositeVO in ADF.These complex joins are 'dummy joins' and are not executed in Oracle Business Intelligence. Instead, they denote ViewLink instances that connect pairs of View Objects in the ADF model. The physical table and complex join names correspond to the fully qualified ViewObject and ViewLink instance names, respectively. This convention allows arbitrary nesting of ApplicationModules in the ADF model.
Note that the External Expression field in the Complex Join dialog for ADF data sources is populated with the join condition defined in the view link.
The name of the automatically generated joins follow a naming convention similar to ViewObjectName1_ViewObjectName2 (for example, AppModuleAM.AP_VO1_AppModuleAM_BU_VO1). The ViewLink instance name appears in the ViewLink Name field of the Complex Join dialog.
The complex joins are only created automatically if a ViewLink instance is available. They are not created for ViewLink definitions. Joins using ViewLink definitions must be created manually. To do this, specify the ViewLink definition name in the ViewLink Name field of the Complex Join dialog.
Alternatively, Oracle Business Intelligence joins between VOs in different ApplicationModules are created upon import from ADF if custom properties are defined on the ApplicationModule. Note the following:
Be sure to use the fully qualified VO instance names for the source and destination VOs, as well as the fully qualified package name for the ViewLink definition.
The Oracle BI Server can automatically create composite View Objects at run time, so that an ad-hoc BI query can reference multiple View Objects in the ADF layer. For improved performance, a SQL bypass query is generated that incorporates the projection columns, filters, and joins required by the BI query.
The SQL Bypass feature directly queries the database so that aggregations and other transformations are pushed down where possible, reducing the amount of data streamed and worked on in Oracle Business Intelligence. When using a SQL Bypass database, the Oracle BI Server gets the VO query from the ADF Business Component data source and then wraps it with the aggregations in the Logical SQL query. The query, including the aggregations, is then executed in the database. Because the database computes the aggregation and less rows are streamed back to Oracle Business Intelligence, using a SQL Bypass database can result in significant performance gains.
Multiple View Objects are modeled as separate BI physical tables and are connected with dummy complex joins. These joins only represent the ViewLinks in the ADF model and are not executed by the Oracle BI Server.
You can specify the name of the SQL Bypass database in the connection pool for the ADF Business Component data source. The SQL Bypass database must be a physical database in the Physical layer of the repository. The database object for the SQL Bypass database must have a valid connection pool, with connection information that points to the same database that is being used by the JDBC Data source defined in the Oracle WebLogic Server that runs the ADF application.
The SQL Bypass database does not need to have any tables under it. After a valid database name is supplied, the SQL Bypass feature is enabled for all queries against that ADF database.
This section explains how to configure your ADF Business Components for use with Oracle Business Intelligence.
See "System Requirements and Certification" for information about supported versions.
This section contains the following topics:
Create a WebLogic Domain for your ADF Business Components that supports WebLogic Server, Oracle Application Core (Webapp), and Oracle JRF.
To create a WebLogic domain that supports the required components:
You can start and stop the Oracle WebLogic Server for this domain using command-line scripts in the domain directory. For example, on Windows, use the following:
The OBIEEBroker shared library is installed as part of your Oracle Business Intelligence installation. You need to deploy the OBIEEBroker library as a shared library in Oracle WebLogic Server by installing it (making its physical file or directory known to Oracle WebLogic Server) and starting it. After the library has been installed and started, other deployed modules can reference the library.
To deploy OBIEEBroker as a shared library in Oracle WebLogic Server:
http://localhost:7001/console
. Follow the steps in this section to deploy the application EAR file to Oracle WebLogic Server from JDeveloper. Before beginning this procedure, ensure that the following conditions are true:
To deploy the application EAR file to Oracle WebLogic Server from JDeveloper:
Create a new Application Module configuration, as follows:
When you set up the JDBC data source in Oracle WebLogic Server in a later step, you use part of this DataSource Name as the JNDI name required by Oracle WebLogic Server. The JNDI name is the DataSource Name without the java:comp/env context prefix (for example, jdbc/ApplicationDBDS).
After the project has been deployed, two jar files are created in the deploy directory for the Model project (for example, MyApplication_Archive_Common.jar and MyApplication_Archive_MiddleTier.jar).
This value determines the URL that you use to connect to the application from Oracle Business Intelligence (for example, http://localhost:7001/MyApplication/obieebroker).
Following this step ensures that the Business Component Archives for the Model project are included in the WAR file.
Following this step ensures that the OBIEEBroker servlet will be used to access your application from Oracle Business Intelligence.
The deployment profile name is used as the name displayed in the list of deployments in Oracle WebLogic Server.
Following this step ensures that the WAR file from your Web Project is included in the EAR file.
These two Shared Library References create the following entries in the weblogic-application.xml file for the application:
You must set up a JDBC data source in Oracle WebLogic Server for your application.
To set up a JDBC data source in Oracle WebLogic Server:
http://localhost:7001/console
. The log file for the server to which your application is deployed (server_name-diagnostic.log) records information about your deployed application. You can find this file in the server-specific directory within your domain. For example, on Windows, the log file for the AdminServer is located in:
To set the logging level for your deployed application:
<loggers>
element, add the following child elements: Log levels include SEVERE
, WARNING
, INFO
, CONFIG
, FINE
, FINER
, and FINEST
. Refer to the Oracle WebLogic Server documentation for information about logger levels.
This section describes different import scenarios for ADF Business Component data sources. You must complete the steps in "Setting Up ADF Business Component Data Sources" before you can import metadata from ADF sources.
This section contains the following topics:
This section describes how to use the Import Metadata Wizard to perform an initial import from ADF Business Component data sources.
To import metadata from an ADF Business Component data source:
Note: If you have already defined an existing ADF Business Component data source and connection pool, you can right-click the connection pool in the Physical layer and select Import Metadata. The Import Metadata Wizard appears with the information on the Select Data Source screen pre-filled. |
Figure 5-1 shows the Import Metadata Wizard.
oracle.apps.fii.receivables.model.RootAppModule
, or snowflakesales.SnowflakeSalesApp
. RootAppModuleShared
or SnowflakeSalesAppLocal
. See step 3 of "Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper" for more information. For example:
The URL is case-sensitive.
When you have finished providing information in the Select Data Source screen, click Next. The Select Metadata Objects screen appears.
To search for a particular item, enter a keyword in the Find box and then click Find Down or Find Up.
Select Show complete structure to view all objects, including those that have already been imported. Deselecting this option shows only the objects that are available for import. When this option is selected, objects that have already been imported appear grayed out.
If this import is creating a new connection to the data source, when you move the items from the Data source view to the Repository View list, the Connection Pool dialog opens, showing the values that you provided in the Select Data Source screen of the Import Metadata Wizard. Optionally, click the Miscellaneous tab of the Connection Pool dialog and provide the name of a SQL Bypass database in the SQL Bypass Database field. Then, click OK. If you do not want to specify a SQL Bypass database, click Cancel.
See "About Specifying a SQL Bypass Database" for more information.
If you make changes to flexfields in your ADF applications, you can use the Import Metadata Wizard in the Administration Tool to incrementally import the changes to the Physical layer of the Oracle BI repository.
Note: See also the following resources in Oracle Fusion Applications Developer's Guide on designating flexfields as business intelligence-enabled: |
The Import Metadata Wizard includes a synchronization feature for ADF Business Component data sources that enables you to import only the changes made to objects. The synchronization feature detects the changed objects, including new joined dimensions (KFF) and new attributes (DFF), so that they can be added automatically, without you having to search for them. The synchronization feature detects the following:
Note that new tables that are joined to any existing table are only imported when you select the option Automatically include any missing joined objects on the Select Metadata Objects screen.
After import, the ADF data is modeled as shown in Table 5-1.
Table 5-1 How the ADF Metadata is Modeled in the Oracle BI Repository
ADF Metadata | Imported BI Metadata |
---|---|
Root Application Module | Database |
View Objects | Physical Tables |
View Object Attribute | Physical Column |
View Object Key | Physical Key |
View Links | Physical Joins |
Note that as data is imported incrementally, modifications to properties of attributes are detected and propagated. For example, if an attribute changes its data type, that change is propagated to the physical layer objects.
To incrementally import metadata for ADF Business Component data sources:
The Import Metadata Wizard is displayed, starting at Step 3, Select Metadata Objects.
Figure 5-2 shows the Select Metadata Objects screen of the Import Metadata Wizard.
After importing changes to flexfields in your ADF application, you can use the Map to Logical Model screen of the Import Metadata Wizard in the Administration Tool to automatically propagate the changes to the Business Model and Mapping layer.
If needed, you can override the default mapping behavior during this step by renaming logical tables, splitting a VO into multiple tables, combining multiple VOs into a single logical table, and so on.
To automatically map flex object changes to the logical model:
Note that the Column Mapping grid shows alias columns as well as regular columns, so that you can handle customized mappings that include alias columns. The Table Mapping grid enables a single physical table to map to multiple logical tables, and the reverse.
The Table Mapping grid includes a VO Type column. Options include Normal, ETL Only, and Query Only. ETL Only VOs exist only to extend the ETL mappings, and are not used for queries. Logical table sources that reference imported VOs of this type are marked as disabled in the Business Model and Mapping layer. Query Only VOs are only used for queries, and are not passed to the BI Extender for extension into the data warehouse.
The Table Mapping grid also includes a Hierarchy column. Select this option for objects that are hierarchies.
Select Create Logical Joins if the imported tables are being mapped to a new business model that will be created during the Map to Logical Model step. In other words, select this option when the imported logical joins do not already exist. Do not select this option for business models that already have the required logical joins in place. Doing so will create erroneous multiple logical joins.
Figure 5-3 shows the Map to Logical Model screen.
You can choose to skip the logical mapping step in the Import Metadata Wizard, and instead drag and drop the physical objects to the Business Model and Mapping layer. The Administration Tool supports incremental drag-and-drop for ADF Business Component data sources, which enables physical database and schema objects to be dragged and dropped into an existing business model, resulting in updates made only for the incremental changes.
Note that the behavior in previous releases was to create new logical objects for every physical object that was dragged and dropped. The new logic includes data source-specific default rules that can enable, for example, logical dimensions and hierarchies to be automatically created.
You can configure and enable the BI Extender functionality to propagate changes made on Flex objects to your data warehouse.
This section contains the following topics:
You can use the Administration Tool to propagate changes in your ADF applications to Informatica, DAC, and the Physical and Business Model and Mapping layers of the Oracle BI Repository. In this scenario, the BI Extender is the driver that coordinates the information exchange between the ADF objects and the other targets.
The BI Extender feature supports changes made to flexfields in ADF business component data sources. Flexfields are columns within tables that can be reused based on a user-specified context. There are two types of flexfields:
The BI Extender uses the JavaHost service to propagate flexfield changes. Because of this, JavaHost must be running for this feature to work, and the NQSConfig.INI file on the Administration Tool computer must be configured for the correct JavaHost location.
In Figure 5-4, numbers indicate the steps in the flexfield change propagation process. These numbers represent the following steps:
The BI Extender supports a variety of use cases for propagating changes made to flexfields. The primary use cases include:
Note: For an example of an Oracle BI Applications KFF use case, see "Configuring GL Segment and GL Account Dimensions" in Oracle Fusion Middleware Configuration Guide for Oracle Business Intelligence Applications. |
In addition to these standard use cases, some more complex, advanced use cases are supported. The following sections describe these advanced use cases.
ETL Only VO A VO that exists only to extend the ETL mappings, and that will not be used for queries. Imported VOs of this type are marked as disabled in the Business Model and Mapping layer. VOs of this type are marked as ETL Only in the Map to Logical Model screen of the Import Metadata Wizard.
Query Only VO A VO that is only to be used for queries. VOs of this type are not passed to the BI Extender. VOs of this type are marked as Query Only in the Map to Logical Model screen of the Import Metadata Wizard.
VOs that Map to Existing Dimensions This occurs when the imported VO is mapped to an existing logical dimension table that already maps to the data warehouse. In this case, the BI Extender uses the existing columns to perform the extensions. A different transformation template (from the specified XSL transform file, discussed in "Setting Up XSL Transform Files to Customize XML Output to the Oracle BI Extender") is applied for this use case, as shown in Table 5-2.
Table 5-2 Normal and Mapped to Existing Transformation Template Names
Normal Template | "Mapped to Existing" Template |
---|---|
KeyFlexCreationStandard | KeyFlexCreationExtract |
DescriptiveFlexCreationStandard | DescriptiveFlexCreationExtract |
KeyFlexHierarchyCreationStandard | KeyFlexHierarchyCreationExtract |
DescriptiveFlexExtensionStandard | DescriptiveFlexExtensionExtract |
KeyFlexExtensionStandard | KeyFlexExtensionExtract |
Hierarchy VO A special type of VO that is treated differently by the BI Extender. You can specify a Hierarchy VO in the updatehierarchy.xsl file, where you specify the HIERARCHY_NAME and DATASOURCE_NUM_ID (required attributes for Hierarchy VOs). This tells the Administration Tool which VOs are Hierarchy VOs. In the Map to Logical Model screen of the Import Metadata Wizard, the Hierarchy check box appears as selected for each Hierarchy VO.
Striping (W_GL_SEGMENT_D) Some VOs come with predefined filters. These filter definitions are automatically propagated to the appropriate logical table source content filter.
The BI Extender configures the logical table source filters for GL accounts by putting appropriate segment labels in the filters. There is a right-click option for GL-SegmentX dimension tables to pull in the synchronized custom AM properties into the logical table source filter.
To enable the BI Extender feature, you must configure a connection to Informatica, DAC, and the data warehouse in the biextension.properties file. You also need to provide configuration information in the config.xml file for JavaHost, opmn.xml, and optionally in the ContainerMapping.xml file. The following sections describe the steps needed for this configuration:
This section explains how to configure the biextension.properties file.
To configure connections to Informatica, the transactional database, and DAC in biextension.properties:
A sample biextension.properties file looks like the following:
Note that for Oracle Database, the driver parameters can use either a service name or SID. For example:
This section explains how to configure the JavaHost loaders.xml file.
To configure the IntegrationServiceCall loader in loaders.xml:
Be sure to replace the path names in each highlighted line with the appropriate path names for your deployment.
This section explains how to configure opmn.xml for the BI Extender.
Be sure to replace the path name in the highlighted line with the appropriate path name for your deployment.
If you have customized your default Oracle BI Applications Informatica ETL mappings, you might need to update your Informatica repository name in ContainerMapping.xml.
To configure ContainerMapping.xml:
Optionally, you can change the location of the BI Extender files. To do this, move the files from the default location to a new location, then create an operating system environment variable called ORACLE_BI_ETL_EXTENDER and set its value to the value of the new path. The default path for the BI Extender files is:
Because the BI Extender makes direct changes to a variety of sensitive targets, it is strongly recommended to run the entire BI Extender process in a secured environment behind a firewall.
To run the BI Extender in a secured environment:
In this example, note that:
This section explains how to use the BI Extender to propagate the flex object changes to the Informatica server, DAC, the Physical layer, and the logical model. It also explains how to use DAC to make the required schema changes in the data warehouse itself. You must complete the preconfiguration steps in "Performing Preconfiguration Tasks for the BI Extender" before performing the steps in this section.
This section contains the following topics:
This section explains how to run the BI Extender to update Informatica, DAC, and the Oracle BI repository for flex object changes. This section assumes that you have already added a new attribute in your ADF application.
To run the BI Extender to update Informatica, DAC, and the RPD:
Note that the Data Warehouse Fact Tables to Extend field is not used.
Figure 5-5 shows the Publish to Warehouse screen.
See "About Propagating Changes to Flex Objects to the Data Warehouse" for a description of what happens when you click Finish in the Publish to Warehouse screen.
After the BI Extender finishes, you need to propagate the necessary schema changes to the data warehouse. This section describes one recommended method of accomplishing this task.
To propagate the schema changes to the data warehouse:
The biextension.properties file specifies the XSL files to be used to transform and customize the default XML generated by the Administration Tool and sent to the BI Extender. By default, the following XSL files are applied:
All XSL files are located in the same directory as biextension.properties.
In rare cases, you might need to make additional customizations the default XML that is generated by the Administration Tool and sent to the BI Extender. To do this, you can create other XSL files to be applied in addition to the three default XSL files. Note the following:
To specify additional XSL files:
Sample base XML output generated by the Administration Tool might look like the following:
This section explains how to implement ADF data security in the Oracle BI Server. To implement ADF data security, you must have an application with secured View Objects and user setup.
Perform the steps in the following sections:
When you set up Oracle Business Intelligence to use ApplSession, the following occurs:
For the examples used in this section, there are three or less AOL sessions ("AOL_SESSION_ID_HCM", "AOL_SESSION_ID_CRM", "AOL_SESSION_ID_FSCM") created within a BI Session for data queries.
This section contains the following topics:
To set up the Oracle BI repository to enable ApplSession integration, you must first configure the appropriate database object and connection pools in the Physical layer.
To set up database objects and connection pools for ApplSession integration:
Figure 5-7 shows the pillar-specific database objects.
Figure 5-8 shows the Connection Scripts tab of the Connection Pool dialog.
Initialization blocks are used to initialize BI session variables. They contain SQL/XML queries that are set up to return columns of values which are then mapped to BI session variables. Initialization blocks typically execute during BI session creation.
In the Initialization Block dialog, you can choose to defer the execution of an initialization block by selecting Allowed deferred execution. A deferred initialization block runs when its target variable is used for the first time within a BI session.
To set up initialization blocks for ApplSession integration:
Properties for database objects and connection pools are typically set automatically when you import metadata from your data sources. However, in some cases you may want to adjust database or connection pool settings, or create a database object or connection pool manually. This chapter describes the properties of the database and connection pool objects in the Physical layer.
This chapter contains the following sections:
Importing metadata from a data source automatically creates a database object for the schema, but you may need to adjust the database properties.
See "System Requirements and Certification" for information about supported data sources.
The following sections provide information about how to create or edit database objects in the Physical layer:
If you import the physical schema into the Physical layer, the database type is usually assigned automatically. The following list contains additional information about automatic assignment of database types:
If you create a database object manually, you need to manually set up all database elements such as the connection pool, tables, and columns.
For multidimensional data sources, if you create the physical schema in the Physical layer of the repository, you need to create one database in the physical layer for each cube, or set of cubes, that belong to the same catalog (database) in the data source. A physical database can have more than one cube. However, all of these cubes must be in the same catalog in the data source.
Caution: It is strongly recommended that you import your physical schema. |
To create a database object:
Make sure that no object is selected when you right-click.
Table 6-1 Options in the General Tab of the Database Dialog
Option | Description |
---|---|
Data source definition: Database | The database type for your database. See "Specifying SQL Features Supported by a Data Source" for more information about using the Features tab to examine the SQL features supported by the specified database type. |
Data source definition: CRM metadata tables | This property is only available for relational data sources and is for legacy Siebel Systems sources only. When selected, indicates that the definition of physical tables and columns for Siebel CRM tables was derived from the Siebel metadata dictionary. |
Data source definition: Virtual Private Database | Identifies the physical database source as a virtual private database (VPD). When a VPD is used, returned data results are contingent on the user's authorization credentials. Therefore, it is important to identify these sources. These data results affect the validity of the query result set that is used with caching. See "Managing Performance Tuning and Query Caching" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition. Note: If you select this option, you also should select the Security Sensitive option in the Session Variable dialog. See "Creating Session Variables" for more information. |
To use a persistent connection pool, you must set up a temporary table first. See "Setting Up Persist Connection Pools" for more information. | |
Allow populate queries by default | When selected, allows everyone to execute |
Allow direct database requests by default | When selected, allows all users to execute physical queries. The Oracle BI Server sends unprocessed, user-entered, physical SQL directly to an underlying database. The returned results set can be rendered in Oracle BI Presentation Services, and then charted, rendered in a dashboard, and treated as an Oracle BI request. If you want most, but not all, users to be able to execute physical queries, select this option and then limit queries for specific users or groups. See "Setting Query Limits" for more information. Caution: If configured incorrectly, this option can expose sensitive data to an unintended audience. See "When to Allow Direct Database Requests by Default" for more information. For more information about executing physical SQL, see "Working with Direct Database Requests" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition). |
The property Allow direct database requests by default lets all users execute physical queries. If configured incorrectly, it can expose sensitive data to an unintended audience. Use the following recommended guidelines when setting this database property:
If necessary, you might want to make an exception for users with administrator permissions.
When you import metadata or specify a database type in the General tab of the Database dialog, the set of features for that database object is automatically populated with default values appropriate for the database type. These are the SQL features that the Oracle BI Server uses with this data source.
When a feature is marked as supported (checked) in the Features tab of the Database dialog, the Oracle BI Server typically pushes the function or calculation down to the data source for improved performance. When a function or feature is not supported in the data source, the calculation or processing is performed in the Oracle BI Server.
The supported features list in the Features tab uses the feature defaults defined in the DBFeatures.INI file, located in ORACLE_INSTANCE\config\OracleBIServerComponent\coreapplication_obisn. Although you should not modify this file directly, it can be useful to look at this file to compare the features supported by different data source types.
You can tailor the query features for a data source. For example, a new version of a data source may be released with updated feature support that is not reflected in the Oracle BI Server defaults. In this case, you can update the settings in the Features tab to reflect the actual features supported by the new version of the data source. Or, if a data source supports a particular feature (such as left outer join queries) but you want to prohibit the Oracle BI Server from sending such queries to a particular data source, you can change this default setting in the Features tab. A third situation is when you have federated data sources that execute functions differently. To ensure query results are consistent, you can disable the appropriate functions so that the calculations are performed in a consistent manner in the Oracle BI Server.
Caution: Be very careful when modifying the set of supported features in the Features tab. If you enable SQL features that the data source does not support, your query may return errors and unexpected results. If you disable supported SQL features, the server could issue less efficient SQL to the data source. In most cases, you should keep the default values. If you do change the defaults to mark a feature as supported in the Features tab, make sure that the feature is actually supported by the data source. |
To specify SQL features supported by a data source:
Table 6-2 Options in the Features Tab of the Database Dialog
Note: Do not change the OPTIMIZE_MDX_FILTER_QUALIFICATION feature. This parameter is reserved for a future release. |
The connection pool is an object in the Physical layer that describes access to the data source. It contains information about the connection between the Oracle BI Server and that data source.
The Physical layer in the Administration Tool contains at least one connection pool for each database. When you create the Physical layer by importing a schema for a data source, the connection pool is created automatically. You can configure multiple connection pools for a database. Connection pools allow multiple concurrent data source requests (queries) to share a single database connection, reducing the overhead of connecting to a database.
Note: It is recommended that you create a dedicated connection pool for initialization blocks. See "About Connection Pools for Initialization Blocks" for more information. |
For each connection pool, you must specify the maximum number of concurrent connections allowed. After this limit is reached, the connection request waits until a connection becomes available.
Increasing the allowed number of concurrent connections can potentially increase the load on the underlying database accessed by the connection pool. Test and consult with your DBA to make sure the data source can handle the number of connections specified in the connection pool. Also, if the data sources have a charge back system based on the number of connections, you might want to limit the number of concurrent connections to keep the charge-back costs down.
In addition to the potential load and costs associated with the database resources, the Oracle BI Server allocates shared memory for each connection upon server startup. This raises the number of connections and increases Oracle BI Server memory usage.
It is recommended that you create a dedicated connection pool for initialization blocks. This connection pool should not be used for queries.
Additionally, it is recommended that you isolate the connections pools for different types of initialization blocks. This also makes sure that authentication and login-specific initialization blocks do not slow down the login process. The following types should have separate connection pools:
Be aware of the number of these initialization blocks, their scheduled refresh rate, and when they are scheduled to run. Typically, it would take an extreme case for this scenario to affect resources. For example, refresh rates set in minutes, greater than 15 initialization blocks that refresh concurrently, and a situation in which either of these scenarios could occur during prime user access time frames.
Initialization blocks should be designed so that the maximum number of Oracle BI Server variables may be assigned by each block. For example, if you have five variables, it is more efficient and less resource intensive to construct a single initialization block containing all five variables. When using one initialization block, the values are resolved with one call to the back end tables using the initialization string. Constructing five initialization blocks, one for each variable, would result in five calls to the back end tables for assignment.
See "Working with Initialization Blocks" for more information about these objects.
Typically, database objects and connection pools are created automatically when you import physical schemas, for both relational and multidimensional data sources. If you did not import physical schemas, you must create a database object before you create a connection pool. You create or change a connection pool in the Physical layer of the Administration Tool.
If you have already defined an existing database and connection pool, you can right-click the connection pool in the Physical layer and select Import Metadata to import metadata for this data source. The Import Metadata Wizard appears with the information on the Select Data Source screen pre-filled. See Chapter 4, "Importing Metadata and Working with Data Sources" for information about the Import Wizard.
To automate connection pool changes for use in a process such as production migration, consider using the Oracle BI Server XML API. See "About the Oracle BI Server XML API" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
To create or change a connection pool:
The following sections describe how to set properties in the various tabs of the Connection Pool dialog:
This section describes the properties in the General tab of the Connection Pool dialog. The General tab is available for all data sources.
To set general properties for connection pools:
The properties listed in the General tab vary according to the data source type. For example, XMLA data sources have a connection pool property for URL, while relational and XML data sources have the option Require fully qualified table names.
This section contains the following topics:
This section describes connection pool properties in the General tab that are common among most data source types.
Figure 6-1 shows the General tab of the Connection Pool dialog, for an OCI data source.
Table 6-3 describes the properties in the General tab of the Connection Pool dialog that are common for different data source types.
Table 6-3 Connection Pool Properties in the General Tab: Common Properties
Property | Description |
---|---|
Name | The name for the connection pool. A name is assigned automatically for connection pools created upon import. |
Use this option to assign permissions for individual users or application roles to access the connection pool. For example, you can set up a privileged group of users to have its own connection pool. This feature is not intended to be used for data access security. For example, connection pool permissions do not protect cache entries. Refer to Chapter 13 for complete information on data access security in Oracle Business Intelligence. | |
Identifies the application programming interface (API) with which to access the data source. Some databases can be accessed using native APIs, some use ODBC, and some work both ways. If the call interface is XML, the XML tab is available but options that do not apply to XML data sources are not available. | |
Maximum connections | The maximum number of connections allowed for this connection pool. The default is 10. This value should be determined by the database make and model and the configuration of the hardware for the computer on which the database runs, as well as the number of concurrent users who require access. For Microsoft Analysis Services data sources, you might encounter 503 Service Not Available errors if the Max Connections setting in the connection pool (default 10) is greater than the XMLA MaxThreadsPerClient setting configured in Analysis Services (default 4). To avoid these errors, increase the MaxThreadsPerClient setting in the msmdpump.ini file, or reduce the Max Connections setting in the repository connection pool. See also "Avoiding Query Failures Due to Limited Connections with TimesTen Data Sources" for related information. Note: For deployments with Oracle BI Interactive Dashboards pages, consider estimating this value at 10% to 20% of the number of simultaneous users multiplied by the number of requests on a dashboard. This number can be adjusted based on usage. The total number of all connections in the repository should be less than 800. To estimate the maximum connections needed for a connection pool dedicated to an initialization block, you might use the number of users concurrently logged on during initialization block execution. |
Require fully qualified table names | Select this option if the database or database configuration requires fully qualified table names. This option is not available for some data source types. When this option is selected, all requests sent from the connection pool use fully qualified names to query the underlying database. The fully qualified names are based on the physical object names in the repository. If you are querying the same tables from which the Physical layer metadata was imported, you can safely select this option. If you have migrated your repository from one physical database to another physical database that has different database and schema names, the fully qualified names would be invalid in the newly migrated database. In this case, if you do not select this option, the queries will succeed against the new database objects. For some data sources, fully qualified names might be safer because they guarantee that the queries are directed to the desired tables in the desired database. For example, if the RDBMS supports a master database concept, a query against a table named Customer first looks for that table in the master database, and then looks for it in the specified database. If the table named Customer exists in the master database, that table is queried, not the table named Customer in the specified database. It is sometimes necessary to select this option when you are using an Oracle Database, and you are accessing the database with a user that is not the owner of the schema containing the tables. When the Oracle Database interprets table names in SQL, it assumes that the user that made the query is the owner if the table name is not fully qualified in the query. This can result in an incorrect qualified name. For example, if the user SAMPLE creates a table called CUSTOMER, the fully qualified table name is SAMPLE.CUSTOMER. When the SAMPLE user references the CUSTOMER table in a query, the Oracle Database assumes the fully qualified table name is SAMPLE.CUSTOMER, and the access is successful. However, if the JANEDOE user references the CUSTOMER table in a query, the Oracle Database assumes the fully qualified table name is JANEDOE.CUSTOMER, and a "Table or view not found" error can result. To enable access for JANEDOE, you must select Require fully qualified table names in the connection pool so that the Oracle BI Server specifies SAMPLE.CUSTOMER in all queries. |
The name of the data source to which you want this connection pool to connect and send physical queries. The value you enter in this field depends on the selected call interface:
| |
Select this option if you want all users whose queries use the connection pool to access the underlying database using the same user name and password. If this option is selected, then all connections to the database that use the connection pool use the user name and password specified in the connection pool, even if the user has specified a database user name and password in the DSN (or in user configuration). If this option is not selected, connections through the connection pool use the database user ID and password specified in the DSN or in the user profile. | |
Enable connection pooling | When selected, allows a single database connection to remain open for the specified time for use by future query requests. Connection pooling saves the overhead of opening and closing a new connection for every query. If you do not select this option, each query sent to the database opens a new connection. |
Timeout | Specify the amount of time and in what increment (such as minutes) that a connection to the data source remains open after a request completes. During this time, new requests use this connection rather than open a new one (up to the number specified for the maximum connections). The time is reset after each completed connection request. |
Use multithreaded connections | When this option is selected, the Oracle BI Server terminates idle physical queries (threads). When not selected, one thread is tied to one database connection (number of threads = maximum connections). Even if threads are idle, they consume memory. The parameter |
Parameters supported | If this option is not selected, and the database features table supports parameters, special code executes that allows the Oracle BI Server to push filters (or calculations) with parameters to the database. The Oracle BI Server does this by simulating parameter support within the gateway/adapter layer by sending extra SQLPrepare calls to the database. |
Isolation level | For ODBC and DB2 gateways only. The value sets the transaction isolation level on each connection to the back-end database. The isolation level setting controls the default transaction locking behavior for all statements issued by a connection. Only one option can be set at a time. It remains set for that connection until it is explicitly changed. The following options are available: Dirty read. Implements dirty read (isolation level 0 locking). This is the least restrictive isolation level. When this option is set, it is possible to read uncommitted or dirty data, change values in the data, and have rows appear or disappear in the data set before the end of the transaction. Dirty data is data that needs to be cleaned before being queried to obtain correct results (for example, duplicate records, records with inconsistent naming conventions, or records with incompatible data types). Committed read. Specifies that shared locks are held while the data is read to avoid dirty reads. However, the data can be changed before the end of the transaction, resulting in non repeatable reads or phantom data. Repeatable read. Places locks on all data that is used in a query, preventing other users from updating the data. However, new phantom rows can be inserted into the data set by another user and are included in later reads in the current transaction. Serializable. Places a range lock on the data set, preventing other users from updating or inserting rows into the data set until the transaction is complete. This is the most restrictive of the four isolation levels. Because concurrency is lower, use this option only if necessary. |
This section describes connection pool properties in the General tab that are specific to multidimensional data sources.
Figure 6-2 shows the General tab of the Connection Pool dialog, for an Essbase data source.
Table 6-4 describes the properties in the General tab of the Connection Pool dialog that are specific to multidimensional data sources. Note that some properties only appear for certain types of multidimensional data sources.
Table 6-4 Connection Pool Properties in the General Tab: Multidimensional Data Source Properties
Property | Description |
---|---|
This property is only displayed for XMLA data sources. Specify the URL to connect to the XMLA provider. This URL points to the XMLA virtual directory of the computer hosting the cube. This virtual directory must be associated with msxisapi.dll (part of the Microsoft XML for Analysis SDK installation). For example, the URL might look like the following: http://SDCDL360i101/xmla/msxisap.dll | |
Essbase Server | This property is only displayed for Essbase data sources. Specify the name of the Essbase server. |
This property is only displayed for Essbase and Hyperion Financial Management data sources. Select this option if you want to authenticate against Essbase or Hyperion Financial Management using a shared token, rather than using a set of shared credentials in the connection pool. Make sure to select either the SSO using CSS Token or Shared logon options when creating a connection pool for Essbase or Hyperion Financial Management. Do not leave both options blank. | |
Data Source Information: Data Source | Specify the vendor-specific information used to connect to the multidimensional data source. Consult your multidimensional data source administrator for setup instructions because specifications can change. For example, if you use v1.0 of the XML for Analysis SDK, then the value should be |
Data Source Information: Catalog | Specify the list of catalogs available, if you imported data from your data source. The cube tables correspond to the catalog you use in the connection pool. |
This property is only displayed for SAP/BW data sources. Provide the host name or IP address of the SAP data server. This field corresponds to the parameter | |
System Number | This property is only displayed for SAP/BW data sources. Provide the SAP system number. This is a two-digit number assigned to an SAP instance, also called Web Application Server, or WAS. This field corresponds to the parameter |
Client Number | This property is only displayed for SAP/BW data sources. Provide the SAP client number. This is a three-digit number assigned to the self-contained unit called Client in SAP. A Client can be a training, development, testing, or production client, or it can represent different divisions in a large company. This field corresponds to the parameter |
Language | This property is only displayed for SAP/BW data sources. Provide the SAP language code used when logging in to the data source (for example, EN for English or DE for German). This field corresponds to the parameter |
Additional Parameters | This property is only displayed for SAP/BW data sources. Optionally, provide additional connection string parameters in the format param=value. Delimit multiple parameters with a colon. |
Use session | An option that controls whether queries go through a common session. Consult your multidimensional data source administrator to determine whether this option should be enabled. Default is Off (not selected). |
This section describes the properties in the Connection Scripts tab of the Connection Pool dialog. The Connection Scripts tab is available for ODBC, OCI, Oracle OLAP, ADF, and DB2 data sources.
You can create connection scripts and set them to be run before the connection is established, before a query is run, after a query is run, or after the connection is disconnected. For example, you can create a connection script that, on connect, inserts the name of the user and the connection time into a table.
Connection scripts can contain any commands accepted by the database, such as a command to turn on quoted identifiers. In a mainframe environment, a script could be used to set the secondary authorization ID when connecting to DB2 to force a security exit to a mainframe security package such as RACF. This enables mainframe environments to maintain security in one central location.
Because the connection script is sent directly to the data source, the script should use native SQL or another language understood by the data source, not Oracle BI Server Logical SQL.
To create connection scripts for data sources:
To enter a new connection script, click New next to the appropriate script type. Then, enter or paste the SQL statements for the script and click OK.
You can edit existing scripts by clicking the ellipsis button to launch the Physical SQL window. Use the Up Arrow and Down Arrow buttons to reorder existing scripts.
Click Delete to remove a script.
Figure 6-3 shows the Connection Scripts tab of the Connection Pool dialog.
Table 6-5 describes the properties in the Connection Scripts tab of the Connection Pool dialog.
Table 6-5 Connection Pool Properties in the Connection Scripts Tab
Property | Description |
---|---|
Execute on connect | Contains SQL queries that are executed before the connection is established. |
Execute before query | Contains SQL queries that are executed before the query is run. |
Execute after query | Contains SQL queries that are executed after the query is run. |
Execute on disconnect | Contains SQL queries that are executed after the connection is closed. |
This section describes the properties in the XML tab of the Connection Pool dialog. See Table 6-6 for details. The XML tab is only available for XML and XML Server data sources.
Caution: The XML tab of the Connection Pool dialog provides the same functionality as the XML tab of the Physical Table dialog. However, the properties in the XML tab of the Physical Table dialog override the corresponding settings in the Connection Pool dialog. |
To set connection pool properties for XML data sources:
Figure 6-4 shows the XML tab of the Connection Pool dialog.
Table 6-6 describes the properties in the XML tab of the Connection Pool dialog.
Table 6-6 Connection Pool Properties in the XML Tab
Property | Description |
---|---|
Connection method: Search script | This property is only displayed for XML Server data sources. Click Browse to locate the appropriate search script. |
Connection properties: | This property is used for XML data sources and is not available for XML Server data sources. The refresh interval is analogous to setting cache persistence for database tables. The URL refresh interval is the time interval after which the XML data source is queried again directly rather than using results in cache. The default setting is infinite, meaning the XML data source is never refreshed. If you specified a URL to access the data source, set the URL refresh interval.
|
Connection properties: URL loading time-out | The timeout interval for queries. The default is 15 minutes. If you specified a URL to access the data source, set the URL loading time-out as follows:
|
Connection properties: Maximum connections | The maximum number of connections. The default is 10. |
Query input supplements: Header file/Trailer file | This property is only displayed for XML Server data sources. Click Browse to locate the header and trailer files. |
Query output format | For XML data sources, choose only XML. Other output formats are available for XML Server data sources. |
This section describes the properties in the Write Back tab of the Connection Pool dialog. The Write Back tab is available for ODBC, OCI, Oracle OLAP, ADF Business Component, and DB2 data sources.
To set write-back properties for data sources:
Figure 6-3 shows the Write Back tab of the Connection Pool dialog.
Figure 6-5 Write Back Tab of the Connection Pool Dialog
Table 6-7 describes the properties in the Write Back tab of the Connection Pool dialog.
Table 6-7 Connection Pool Properties in the Write Back Tab
Property | Description |
---|---|
Temporary table: Prefix | When the Oracle BI Server creates a temporary table, these are the first two characters in the temporary table name. The default value is |
Temporary table: Owner | Table owner name used to qualify a temporary table name in a SQL statement, for example to create the table |
Temporary table: Database name | Database where the temporary table will be created. This property applies only to IBM OS/390 because IBM OS/390 requires database name qualifier to be part of the |
Temporary table: Tablespace name | Tablespace where the temporary table will be created. This property applies to OS/390 only as OS/390 requires tablespace name qualifier to be part of the |
Bulk insert: Buffer size (KB) | Used for limiting the number of bytes each time data is inserted in a database table. For optimum performance, consider setting this parameter to 128. See "About Setting the Buffer Size and Transaction Boundary" for additional information. |
Bulk insert: Transaction boundary | Controls the batch size for an insert in a database table. For optimum performance, consider setting this parameter to 1000. See "About Setting the Buffer Size and Transaction Boundary" for additional information. |
Select this option when working with columns of an explicit Unicode data type, such as
Note: Unicode and non-Unicode data types cannot coexist in a single non-Unicode database. For example, mixing the |
This section describes the properties in the Miscellaneous tab of the Connection Pool dialog. The Miscellaneous tab is only available for ADF Business Component data sources.
To set application properties for ADF Business Component data sources:
Figure 6-6 shows the Miscellaneous tab of the Connection Pool dialog.
Table 6-8 describes the properties in the Miscellaneous tab of the Connection Pool dialog.
Table 6-8 Connection Pool Properties in the Miscellaneous Tab
Property | Description |
---|---|
The fully qualified Java package name of the Root Application Module to which you want to connect, such as | |
Determines which application configuration is used in the connection, such as | |
The URL to the Oracle Business Intelligence broker servlet, in the format: http://host:port/APP_DEPLOYMENT_NAME/obieebroker For example: http://localhost:7001/SnowflakeSalesApp/obieebroker The URL is case-sensitive. | |
(Optional) The name of the SQL Bypass database. The SQL Bypass database must be a physical database in the Physical layer of the repository. The database object for the SQL Bypass database must have a valid connection pool, with connection information that points to the same database that is being used by the JDBC Data source defined in the WebLogic Server. The SQL Bypass database does not need to have any tables under it. After a valid database name is supplied, the SQL Bypass feature is enabled for all queries. The SQL Bypass feature directly queries the database so that aggregations and other transformations are pushed down where possible, reducing the amount of data streamed and worked on in Oracle Business Intelligence. See "About Specifying a SQL Bypass Database" for more information. |
A persist connection pool is a database property that is used for specific types of queries (typically used to support Marketing queries). In some queries, all of the logical query cannot be sent to the transactional database because that database might not support all of the functions in the query. This issue might be solved by temporarily constructing a physical table in the database and rewriting the Oracle BI Server query to reference the new temporary physical table.
You can use the persist connection pool in the following situations:
In these situations, the user issuing the Logical SQL query must have been granted the Populate privilege on the target database.
The persist connection pool functionality designates a connection pool with write-back capabilities for processing this type of query. You can assign one connection pool in a single database as a persist connection pool. If this functionality is enabled, the user name specified in the connection pool must have the privileges to create DDL (Data Definition Language) and DML (Data Manipulation Language) in the database.
To assign a persist connection pool:
If there is only one connection pool, it appears in the Persist connection pool field.
The selected connection pool name appears in the Persist connection pool field.
To remove a persist connection pool:
The database name is replaced by not assigned
in the Persist connection pool field.
If each row size in a result set is 1 KB and the buffer size is 20 KB, then the maximum array size is 20 KB. If there are 120 rows, there are 6 batches with each batch size limited to 20 rows.
If you set Transaction boundary to 3, the server commits twice. The first time, the server commits after row 60 (3 * 20). The second time, the server commits after row 120. If there is a failure when the server commits, the server only rolls back the current transaction. For example, if there are two commits and the first commit succeeds but the second commit fails, the server only rolls back the second commit.
For optimum performance, consider setting the buffer size to 128 and the transaction boundary to 1000.
The Physical layer of the Oracle BI repository contains objects that represent physical data constructs from back-end data sources. The Physical layer defines the objects and relationships available to the Oracle BI Server for writing physical queries. This layer encapsulates data source dependencies to enable portability and federation.
Each data source of the repository model typically has its own discrete physical model in the Physical layer. The top-level object in the Physical layer is a "database," and the type of database determines which features and rules apply to that physical model. For example, a relational database such as "Oracle 11g" has relational objects such as physical tables and joins. In contrast, a multidimensional source such as "Essbase 9" has cube tables and physical hierarchies. Therefore, some sections of this chapter apply to only certain database types.
Physical tables, cubes, joins, and other objects in the Physical layer are typically created automatically when you import metadata from your data sources. After these objects have been imported, you can perform tasks like creating additional join paths that are not in the data source, create alias tables for physical tables that need to serve in different roles, and adjust properties of physical hierarchies from multidimensional data sources.
This chapter contains the following topics:
In addition to working with Physical layer objects in the right pane of the Administration Tool, you can open the Physical Diagram view to see a graphical model of tables and joins.
Note: The Physical Diagram is typically used with relational and XML sources rather than multidimensional sources. Although the Physical Diagram view for a multidimensional source does display a denormalized table representation of a cube table, the primary means of working with a multidimensional physical model is by working in the physical tree using dimensions, hierarchies and columns. |
To access the Physical Diagram, right-click an object in the Physical layer tree view (such as a physical database or table) and select Physical Diagram. Then, select one of the following options:
Note that the Physical Diagram displays only physical tables and joins. It does not display other Physical layer objects, such as connection pools, physical hierarchies, or levels.
Figure 7-1 shows the Physical Diagram.
You can also open the Physical Diagram by selecting one or more objects in the tree view and then clicking the Physical Diagram button on the toolbar:
Only the objects you selected appear. Joins appear only if they exist between the selected objects. Joins are represented by a line with an arrow at the "one" end of the join.
To help you better understand the logical-to-physical mappings in your model, you can view the physical objects that are associated with a particular logical object by selecting one or more business models, logical tables, or logical table sources in the Business Model and Mapping layer tree view and then clicking the Physical Diagram button on the toolbar. Only physical objects that are related to the objects you selected appear. You can view the same information by right-clicking a logical object and selecting Objects and Direct Join(s) within Business Model from the Physical Diagram submenu. You can also choose one of the other Physical Diagram display options.
To add additional tables to the Physical Diagram, leave the Physical Diagram window open and then right-click the table or tables you want to add. Then, select Physical Diagram and choose one of the display options.
Additional options are available in the right-click menu for the graphical tables and joins displayed in the Physical Diagram. For example, you can delete objects or view their properties, or you can add additional related objects using the right-click options Add Direct Joins, Add Tables Joined to Whole Selection, and Add All Joins. You can also select Find in Tree View to locate a particular object in the Physical layer tree view in the right pane, or check out objects in online mode.
You can also right-click an object in the Physical Diagram view and select Hide to hide particular objects in the diagram. Note that this effect is temporary and does not persist.
See also the following sections:
This section contains the following topics:
Catalogs are optional ways to group different schemas. A catalog contains all the schemas (metadata) for a physical database object. A schema contains only the metadata information for a particular user or application. Model the Physical layer after the way your data source is structured.
Note the following:
In the Physical layer of a large repository, administrators can create physical catalogs that contain one or more physical schemas.
To create a catalog:
The schema object contains tables and columns for a physical schema. Schema objects are optional in the Physical layer of the Administration Tool.
To create a schema:
You can use a variable to specify the names of catalog and schema objects. For example, you have data for multiple clients and you structured the data source so that data for each client was in a separate catalog. You would initialize a session variable named Client, for example, that could be used to set the name for the catalog object dynamically when a user signs on to the Oracle BI Server.
You specify the session variable to use in the Dynamic Name tab of the Physical Catalog or Physical Schema dialog.
Note: The Dynamic Name tab is not active unless at least one session variable is defined. |
To specify the session variable to use in the Dynamic Name tab:
The name of the variable is displayed in the dynamic name field, and the Select button toggles to the Clear button.
To remove assignment for a session variable in the Dynamic Name tab:
The value not assigned is displayed in the dynamic name field, and the Clear button toggles to the Select button.
To sort column entries in the Dynamic Name tab:
You can create display folders to organize table objects in the Physical layer. They have no effect on query processing. After you create a display folder, the selected tables appear in the folder as a shortcut and in the Physical layer tree as an object. You can hide the objects so that you only view the shortcuts in the display folder. See the information about the Repository tab of the Options dialog in "Setting Preferences" for more information about hiding these objects.
Note: Deleting a table in a display folder deletes only the shortcut to that object. When you delete a column in a display folder, however, the column is actually deleted. |
To set up a physical display folder:
Alternatively, you can drag one or more physical tables to the display folder after you close the dialog.
This section explains how to work with physical table objects in the Physical layer of the Oracle BI repository.
Note that both physical tables from relational data sources and physical cube tables from multidimensional data sources both use the Physical Table table type. Many of the tasks described in this section apply to both relational and multidimensional data sources. See also "Working with Multidimensional Sources in the Physical Layer" for additional information specific to multidimensional data sources.
This section contains the following topics:
A physical table is an object in the Physical layer of the Oracle BI repository that corresponds to a table in a data source. Metadata for physical tables is usually imported from the data source. This metadata enables the Oracle BI Server to access the data source tables with SQL requests.
When you delete a physical table, all dependent objects are deleted (for example, columns, keys, and foreign keys). When you delete a physical cube table, hierarchies are also deleted. The deletion fails if an alias exists on the physical table.
In addition to importing data source tables into the Physical layer, you can create virtual physical tables in the Physical layer, using values in the Table Type field in the Physical Table dialog. Creating virtual tables can provide the Oracle BI Server and the underlying data sources with the proper metadata to perform some advanced query requests.
A virtual physical table can be a stored procedure, or a SELECT
statement. A virtual physical table created from a SELECT
statement is also called an opaque view. You can define an opaque view, and then deploy it in your data source to create a deployed view. See "Deploying Opaque Views" for more information.
Use the Table Type list in the General tab of the Physical Table dialog to specify the physical table object type. Table 7-1 describes the available object types.
Table 7-1 Table Types for Physical Tables
Table Type | Description |
---|---|
Physical Table | Specifies that the physical table object represents a data source table. This table type is used for both relational physical tables and multidimensional cube tables. |
Stored Proc | Specifies that the physical table object is a stored procedure. When you select this option, you type the stored procedure in the text box. Requests for this table will call the stored procedure. For stored procedures that are data source-specific, select Use database specific SQL. When you select this option, the Database column displays supported data sources by brand, with Default as the root. You can enter data source-specific initialization strings by selecting the database type on the left and entering the corresponding string on the right. The initialization string for the Default option is run when the queried database type does not have a corresponding database-specific string defined. Stored procedures within an Oracle Database do not typically return result sets. Therefore, they cannot be initiated from within Oracle Business Intelligence. You need to rewrite the procedure as an Oracle function, use it in a The following example shows a SQL initialization string using the SELECT user_id, get_roles(user_id), first_name || ' ' || last_name FROM csx_security_table WHERE user_id = ':USER' and password = ':PASSWORD' |
Select | Specifies that the physical table object is a Requests for this table will execute the For This type of table is also called an opaque view. See "Deploying Opaque Views" for more information. |
An alias table (alias) is a physical table that references a different physical table as its source (called the original table). Alias tables can be an important part of designing a Physical layer because they enable you to reuse an existing table more than once, without having to import it several times.
There are two main reasons to create an alias table:
For example, an order date and a shipping date in a fact table may both point to the same column in the time dimension data source table, but you should alias the dimension table so that each role is presented as a separately labeled alias table with a single join. These separate roles carry over into the business model, so that "Order Date" and "Ship Date" are part of two different logical dimensions. If a single logical query contains both columns, the physical query uses aliases in the SQL statement so that it can include both of them.
You can also use aliases to enable a data source table to play the role of both a fact table, and a dimension table that joins to another fact table (often called a "fan trap").
Alias table names appear in physical SQL queries. Using alias tables to provide meaningful table names can make SQL queries referencing those tables easier to read. For example:
In this query, the meaningful alias table name "A11 Revenue (Billed Time Join)" has been applied to the terse original physical table name "FACTSREV." In this case, the alias table name provides information about which role the table was playing each time it appears in SQL queries.
Alias tables can have cache properties that differ from their original tables. To set different cache properties for an alias table, select the option Override Source Table Caching Properties in the Physical Table dialog for the alias table. In alias tables, columns cannot be added, deleted, or modified. Because columns are automatically synchronized, no manual intervention is required.
Synchronization ensures that the original tables and their related alias tables have the same column definitions. For example, if you delete a column in the original table, the column is automatically removed from the alias table.
You cannot delete an original table unless you delete all its alias tables first. Alternatively, you can select the original table and all its alias tables and delete them at the same time.
You can change the original table of an alias table, if the new original table is a superset of the current original table. However, this could result in an inconsistent repository if changing the original table deletes columns that are being used. If you attempt to do this, a warning message appears to let you know that this could cause a problem and lets you cancel the action. Running a consistency check identifies orphaned aliases.
When you edit a physical table or column in online mode, all alias tables and columns must be checked out. The behavior of online checkout uses the following conventions:
Alias tables inherit some properties from their original tables. A property that is proxied is a value that is always the same as the original table, and cannot be changed. (In other words, the proxied properties are the ones that are dimmed in the alias table dialog.) If the original table changes its value for that particular property, the same change is applied on the alias table.
The following is a list of the properties that are proxied:
The following is list of the properties that are not proxied:
Note: Alias tables and original tables never share columns. Aliases and original tables have distinctly different columns that alias each other. |
Use the General tab of the Physical Table dialog to create or edit physical tables and physical cube tables in the Physical layer of the Administration Tool.
This section contains the following topics:
This section describes how to create or edit the general properties for a table, including both relational physical tables and physical cube tables.
To create a physical table or edit general properties for tables:
If your database object has physical schemas defined, right-click the physical schema and select New Physical Table.
Caution: It is strongly recommended that you import cube tables, not create them manually. |
Table 7-2 General Properties for Physical Tables
Property | Description |
---|---|
Name | The name of the physical table. |
Table Type | Physical Table values: Physical Table, Stored Proc (stored procedure), or Select. Physical Cube Table values: Physical Table or Select. See Table 7-1 for more information. |
Use Dynamic Name | Select this option to use a session variable to specify the physical table name, similar to catalog and schema objects. This option is available for non-multidimensional data source tables when you select a table type of Physical Table. You might want to choose this option if you have a multi-tenancy implementation and you want to define a separate physical table name for each customer. Another example would be to select between primary and shadow tables that are valid at different times in your ETL cycle. In both cases, you can assign session variables to dynamically select the appropriate table. |
Default Initialization String / Use database specific SQL | For non-multidimensional data source tables (not alias tables), this option appears if you choose a Table Type of Stored Proc or Select. For multidimensional data source tables, this appears if you choose a Table Type of Select. When you select this option, you can specify the data source and type the SQL statements. See Table 7-1 for more information. |
Select this option to include the table in the Oracle BI Server query cache. Typically, you should select this option for tables that do not need to be accessed in real time. When you select this option, the Cache persistence time settings become active. Note that there are additional configuration settings that affect the behavior of the query cache. See "Configuring Query Caching" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information. | |
When you select this option, cache entries do not automatically expire. This could be useful when a table is important to a large number of queries users might run. For example, if most of your queries have a reference to an account object, keeping it cached indefinitely could actually improve performance rather than compromise it. Note that selecting this option does not mean that an entry always remains in the cache. Other invalidation techniques, such as manual purging, LRU (Least Recently Used) replacement, metadata changes, or use of the cache polling table can result in entries being removed from the cache. | |
How long table entries should persist in the query cache, or in other words, the cache expiration time. Setting a cache persistence time is useful for OLTP data sources and other data sources that are updated frequently. For example, you could set this option refresh the underlying physical tables daily for a particular dashboard. If a query references multiple physical tables with different persistence times, the cache entry for the query exists for the shortest persistence time set for any of the tables referenced in the query. This makes sure that no subsequent query gets a cache hit from an expired cache entry. For more information, see "Troubleshooting Problems with Event Polling Tables" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition. | |
External name | Applies to physical cube tables from multidimensional data sources. The external name is the physical name that is used when referencing the cube table in physical SQL queries. This value must reflect the external name defined in the data source. |
Display Column | For Essbase data sources only. See "Working with Essbase Data Sources" for more information. |
Hint | Available only for some data sources. See "Using Hints" for more information. |
To create an alias table, right-click an existing physical table and select New Object, then select Alias. You can also create aliases on opaque views and stored procedures.
Table 7-3 describes properties that are specific to alias tables. Refer to Table 7-2 for information about other table properties that are shared between physical tables and alias tables.
Table 7-3 Properties Specific to Physical Alias Tables
Property | Description |
---|---|
Source Table | Applies to alias tables. Click Select to choose the original physical table from which to create an alias table. |
Override Source Table Caching Properties | Option available for alias tables. When selected, the cacheable properties become available and you can clear or select the appropriate options. |
Use the XML tab to set or edit properties for an XML data source. The XML tab of the Physical Table dialog provides the same functionality as the XML tab of the Connection Pool dialog. However, setting properties in the Physical Table dialog overrides the corresponding settings in the Connection Pool dialog. See "Setting Connection Pool Properties in the XML Tab" for more information.
The Calc Scripts tab for Essbase data sources is reserved for a future release.
Each physical table and physical cube table in the Physical layer of the Administration Tool has one or more physical columns. You can use the Columns, Keys, and Foreign Keys tabs in the Physical Table dialog to view, create new, and edit existing columns, keys, and foreign keys that are associated with the table.
The following list describes the buttons that appear in the tabs:
This section contains the following topics:
If the column is imported, the properties of the column are set automatically. The following list contains information about nullable and data type values for columns imported into the Physical layer.
If you reimport columns, you also need to remap any logical column sources that reference the remapped columns. The data type of a logical column in the business model must match the data type of its physical column source. The Oracle BI Server passes these logical column data types to client applications.
Longvarchar and longvarbinary data types are supported for writing complete Logical SQL statements into usage tracking tables for debugging purposes. They are not supported for general-purpose queries, and cannot be displayed in Presentation Services. Use direct SQL utilities to access columns with these data types.
Except when stated otherwise, the characteristics and behavior of a physical cube column are the same as for other physical columns.
Note: Creating, modifying, or deleting a column in an original physical table also creates, modifies, or deletes the same column on all its alias tables. |
To create or edit a physical column:
For XML data sources, this field stores and displays the unqualified name of a column (attribute) in an XML document.
For multidimensional data sources, if you select VARCHAR
, you need to type a value in the Length field.
STATE
) is used in multiple hierarchies.A new physical cube column is created as a measure by default. See "Working with Multidimensional Sources in the Physical Layer" for information about changing this behavior.
Use the Physical Key dialog to specify the column or columns that define the primary key of the physical table.
To specify a primary key for a physical table:
When you delete a physical column, the following occurs:
You can view the data in a physical table or an individual physical column by right-clicking the object and choosing View Data. In online editing mode, you must check in changes before you can use this option.
View Data is not available for physical cube tables or columns. See "Viewing Members in Physical Cube Tables" for more information.
Because the View Data feature issues a row count, it is not available for data sources that do not support row counts. See "Displaying and Updating Row Counts for Physical Tables and Columns" for more information.
Caution: View Data does not work in online mode if you set the user name and password for connection pools to :USER and :PASSWORD . In offline mode, the Set values for variables dialog appears so that you can populate :USER and :PASSWORD as part of the viewing process. |
This section provides information about physical cube tables, dimensions, and hierarchies from multidimensional data sources.
Each cube from a multidimensional data source is set up as a physical cube table, a type of physical table. It has all the capabilities of a table, such as physical cube columns and keys (optional) and foreign keys (optional). It also has cube-specific metadata such as hierarchies and levels.
When you import the physical schema, the Oracle BI Server imports the metadata for the cube, including its metrics, hierarchies, and levels. Expanding the hierarchy object in the Physical layer reveals the levels in the hierarchy. In the Physical Cube Table dialog, the Hierarchies tab lists the dimensional hierarchies in the cube.
Each multidimensional catalog in the data source can contain multiple physical cubes. You can import the metadata for one or more of these cubes into your Oracle BI repository. Although it is possible to create a cube table manually, it is recommended that you import metadata for cube tables and their components.
If you do create cubes manually, be sure to build each cube one hierarchy at a time and test each one before building another. For example, create the time hierarchy and a measure, and then test it. When it is correct, create the geography hierarchy and test it. This helps ensure that you have set up each cube correctly, and makes it easier to identify any setup errors.
You need to select the aggregation rule for a physical cube column carefully to make sure your measures are correct. Setting it correctly might improve performance.
Always verify aggregation rules after importing cube metadata. Typically, aggregation rules are assigned correctly when you import cube metadata. However, if a measure is a calculated measure, the aggregation rule is reported as None. Therefore, you should examine the aggregation rule for all measures after importing a cube to verify that the aggregation rule has been assigned correctly.
For all measures assigned an aggregation rule value of None, contact the multidimensional data source administrator to verify that the value of the aggregation rule is accurate. If you need to change the aggregation rule, you can change it in the Physical Cube Column dialog.
Use the following guidelines to assign the correct aggregation rule:
SUM(revenue)
, then set that function as the aggregation rule. With this setting, the Oracle BI Server typically pushes the aggregation to the database in the query, but might also perform aggregations itself in certain situations.In a multidimensional data source, some cubes contain very complex, multi-level based measures. If you assign an aggregation rule of External Aggregation, the Oracle BI Server bypasses its internal aggregation mechanisms and uses the pre-aggregated measures. When imported, these measures are assigned an aggregate value of None.
The following are some guidelines for working with pre-aggregated measures:
Most dimensions and hierarchies are imported into the Physical layer from multidimensional data sources, rather than created manually. If a particular hierarchy is not imported, any columns associated with that hierarchy are also not imported. If users need access to columns that are not imported, first add these columns to the Physical layer by manually creating them, and then associate them with a level in a hierarchy.
Each level in a hierarchy has a level key. The first cube column associated with (added to) the level of a hierarchy is the level key. This must match with the data source definition of the cube. The icon for the column that you select first changes to the key icon after it is associated with the level of a hierarchy.
Oracle Business Intelligence supports unbalanced hierarchies for all multidimensional data sources. In general, you can configure unbalanced hierarchies in the Physical layer by changing the hierarchy type.
You can view and edit properties for physical dimensions and hierarchies by double-clicking physical dimension and physical hierarchy objects in the Physical layer of the Administration Tool. You can also view and edit these objects from the Dimensions and Hierarchies tabs of the Cube Table dialog.
This section contains the following topics:
In the Physical Dimension dialog, you can view and edit the name and description of the dimension. You can also add, remove, or edit hierarchies for that dimension, as well as add, remove, or edit columns that represent dimension properties.
When you select columns to add to a hierarchy, it is recommended that you select them in hierarchical order, starting with the highest level. If you select multiple columns and bring them into the hierarchy at the same time, the order of the selected group of columns remains the same. After adding columns to the hierarchy, you can change the order of the columns in the Browse dialog.
In the Physical Hierarchy dialog, you can view and edit the name and description of the hierarchy, along with the properties described in Table 7-4. For level-based hierarchies, you can add, remove, edit, or reorder levels. For value-based hierarchies, click the Column tab to add, remove, or edit columns. To specify a key column, double-click a column name.
In the Physical Level dialog, you can view and edit the name, external name, and description of the level. You can also add, remove, or edit columns for that level. To designate a column as a level key, double-click a column name.
You should always review the hierarchy type after import to ensure that it is set appropriately. The way this parameter is set upon import depends on the data source. For example, all Essbase hierarchies are initially set to Unbalanced. Review the hierarchy type for each hierarchy and change it as appropriate.
Typically, you always need to manually set the hierarchy type for parent-child (value) hierarchies, except for Hyperion Financial Management hierarchies, which are always set to Value by default upon import. Review the hierarchy type and change the type to Value as appropriate. Parent-child (value) hierarchies are those in which a business transaction, or a cube refresh, can change the number of levels.
For parent-child hierarchies, you must manually set the physical hierarchy type to Value before dragging metadata to the Business Model and Mapping layer. The hierarchy type in the Business Model and Mapping layer is set automatically based on the physical hierarchy setting. For all other types, you can determine the hierarchy type later, without needing to rebuild the logical model.
You must also ensure that the corresponding logical dimension properties are correct for queries to work. See Chapter 9, "Working with Logical Dimensions" for more information.
For SAP/BW data sources, all hierarchies default to fully balanced hierarchies on import. The hierarchy type for two-level hierarchies (which typically correspond to characteristic primary hierarchies) should not be changed. Review all SAP/BW multi-level (external) hierarchies to determine whether any are parent-child hierarchies, and set them to Value as needed.
Table 7-4 Options in the Physical Hierarchy Dialog
Property | Description |
---|---|
External Name | The physical name that is used when referencing the hierarchy in physical MDX queries. This value must reflect the external name defined in the data source. |
Dimension Name | (Dimension Unique Name) Dimension to which the hierarchy belongs. |
Dimension Type | Identifies whether this hierarchy belongs to a time dimension, measure dimension, or other type of dimension. |
Identifies the type of hierarchy, as follows:
Note: For level-based hierarchies with both unbalanced and skip-level characteristics, choose either Unbalanced or Ragged balanced as the physical hierarchy type. Then, ensure that both Ragged and Skipped Levels are selected for the corresponding logical dimension in the Business Model and Mapping layer. | |
Default member type ALL | This option is not used. |
Use unqualified member name for better performance | Select this option when member names (including aliases) are unique in a given hierarchy so that the Oracle BI Server can take advantage of specific MDX syntax to optimize performance. |
After importing a hierarchy, you may need to add or remove a column. If you remove a cube column from a hierarchy, it is deleted from the hierarchy but remains in the cube table and is available for selection to add to other levels.
To add or remove a cube column in an existing hierarchy:
In SAP/BW data sources, cube variables are used as a means of parameterizing queries. Cube variable objects are imported into the Physical layer when metadata is imported from Querycubes/Bex Queries in SAP/BW data sources. Typically, you do not edit these objects directly except to keep them synchronized with the Bex queries in the data source, and except to specify overrides for key characteristics values.
The Cube Variables tab of the Cube Table dialog lists the cube variables for the given cube table, along with the cube variable caption. Double-click a cube variable to see more detailed information, or click the Add button to define a new cube variable.
Table 7-5 describes the properties of cube variables for SAP/BW data sources. See your SAP/BW documentation for additional information.
Table 7-5 Cube Variable Properties
Property | Description |
---|---|
Name | Name of the cube variable. |
Caption | A description (label or caption) associated with the cube variable, mainly used for display purposes. |
Variable Type | The type of cube variable. Variable types include:
|
Selection Type | The selection type of the cube variable, for cube variables of type SAP_VAR_TYPE_MEMBER. Selection types include:
|
Entry Type | Indicates whether replacing variables is optional or mandatory. Entry types include:
|
Reference Dimension | This column contains a DIMENSION_UNIQUE_NAME for the parameter type SAP_VAR_TYPE_HIERARCHY. |
Reference Hierarchy | This column contains a HIERARCHY_UNIQUE_NAME for the variable type SAP_VAR_TYPE_MEMBER. |
Default Low | This property contains a default value for the variable or is zero. |
Default High | This property contains a default value for the variable or is zero. This property is only important for variables with the selection type SAP_VAR_SEL_TYPE_INTERVAL and SAP_VAR_SEL_TYPE_SELECTION. |
Override Default Low | Provide a default value for the cube variable in this field if the Default Low is zero. You must specify a value for this property for mandatory variables that do not specify a default value. |
Override Default High | Provide a default value for the cube variable in this field if the Default High is zero. You must specify a value for this property for mandatory variables that do not specify a default value. |
You can view members of hierarchies or levels in the Physical layer of repositories. To view members, the repository must be open in online mode. The list of members by level in the hierarchy can help you determine if the connection pool is set up properly. You might want to reduce the time it takes to return data or the size of the returned data by specifying a starting point (Starting from option) and the number of rows you want returned (Show option).
A window opens showing the number of members in the hierarchy and a list of the levels. You might need to enlarge the window and the columns to view all the returned data.
This section describes how Essbase data is modeled by default in the Physical layer of the Oracle BI repository, and describes the tasks you can perform to model the data in different ways.
This section contains the following topics:
When you import metadata from Essbase data sources, the cube metadata is mapped to the Physical layer in a way that supports the Oracle Business Intelligence logical model. Metadata that applies to all members of the dimension, such as aliases, are modeled as dimension properties by default. Level-based properties, such as outline sort/memnor information, are mapped as separate physical cube columns in the dimension.
The following physical column types are used for Essbase metadata:
The column types Outline Sort, Ancestor Reference, Member Key, Leaf, Root, and Parent Reference are used internally by the system and should not be changed.
Figure 7-2 shows Essbase data that has been imported into the Physical layer.
There are different options in the Physical layer that let you control how you want to model certain types of metadata. Choose the option that best meets the needs of your user base. For example, many types of Essbase metadata are modeled as dimension properties by default in the Physical layer. This multidimensional structure works best with the new hierarchical reporting style introduced in the current release.
Alternatively, you can choose to flatten the Essbase metadata in the Physical layer for ease of use with the attribute-style reporting supported in previous releases of Oracle Business Intelligence.
The following list summarizes some of these modeling options:
Note the following additional information about using Essbase data sources with Oracle Business Intelligence:
Server instance scope: server_name
:
var_name
Application scope: server_name
:
app_name
:
var_name
Cube scope: server_name
:
app_name
:
cube_name
:
var_name
A single initialization block is also created in the repository for the Essbase variables. Set the appropriate refresh interval in the initialization block to reflect anticipated update cycles for Essbase variables.
AGO
, TODATE
, and PERIODROLLING
are pushed down to Essbase to take advantage of the native capabilities of the Essbase server.EVALUATE
and EVALUATE_AGGREGATE
to leverage functions specific to Essbase data sources. See "Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique Essbase Functions" for more information.Note that EVALUATE_PREDICATE
is not supported for use with Essbase data sources.
You can choose to incrementally import Essbase metadata. In other words, you can perform an initial import, and then import again. You might want to import incrementally when information in the data source has changed, or when your first import only included a subset of the metadata. Note the following about incremental import:
Essbase cubes support the concept of aliases, which are alternate names for members or shared members. For example, the member name might be a product code (100), with a default alias for the product name (Cola) and an additional alias for the long name (Cherry Cola). Often, members have separate aliases for each user language to enable users to view member names in their own language.
In the Essbase cube, aliases are stored in alias tables that map a specific set of alias names to member names. Typically, a Default alias table exists for each cube.
This section contains the following topics:
When you import metadata from Essbase into the Oracle BI repository, the Essbase cube table object in the Physical layer has a property that determines which value to display for members: the member name, the default alias name, or some other alias name. By default, the columns display the default alias name.
To change the value to display for members:
Aliases are modeled as dimension properties in the Physical layer after import. If you want to work with more than one alias, such as when you want to flatten attributes for reporting purposes or externalize strings for translation, you can explicitly define columns for each alias. You can define alias columns at the cube, dimension, or hierarchy level.
To explicitly define columns for each alias:
Note that the Fetch button is not used.
If you want to externalize strings for translation based on the alias columns, see "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
Essbase supports the concept of user-defined attributes (UDAs). A UDA is essentially any arbitrary textual string that can be associated with any member from a dimension. A member can have multiple strings associated to it.
You can choose whether to import UDAs in the Import Metadata Wizard. If you choose to import UDAs, then by default, each UDA is modeled as a dimension property in the Physical layer of the repository.
You can also choose to model each UDA as a separate physical column. To do this, perform one of the following tasks:
Member attributes are not automatically associated to corresponding dimensions and levels during the import process. To manually create the association, map the member attribute to the appropriate logical table. In other words, drag and drop the columns from the attribute dimension in the Physical layer to the appropriate logical tables in the Business Model and Mapping layer.
By default, alternate hierarchies are modeled as separate hierarchies in the Physical layer. You can choose to view them as separate hierarchies (called the multi-hierarchy view), or as a single hierarchy.
To view alternate hierarchies as a single hierarchy, right-click the dimension object containing the alternate hierarchies and select Convert to single hierarchy view. To return to the multi-hierarchy view, right-click the dimension object again and select Convert to multi-hierarchy view.
For example, Figure 7-3 shows the multi-hierarchy view for an alternate hierarchy.
Figure 7-4 shows the single-hierarchy view for the same alternate hierarchy.
By default, measures are imported as measure hierarchies. In other words, the cube contains a single measure column that represents all the measures.
Alternatively, you can choose to flatten the measure hierarchy to view each measure as an individual column. To do this, right-click the cube object and select Convert measure dimension to flat measures.
When member names (including aliases) are unique in a given hierarchy, the Oracle BI Server can take advantage of specific MDX syntax to optimize performance. To enable this capability, select Use unqualified member name for better performance in the Hierarchy dialog.
The import process cannot identify that member names are unique for a given hierarchy, so it is the responsibility of the administrator to confirm uniqueness. Note that query errors may result if a hierarchy is specified as having unique members when it does not.
Note: If you find that the Oracle BI Server is generating incorrect queries for Essbase, check to see whether there are duplicate member names in a given hierarchy. If there are, ensure that the option Use unqualified member name for better performance is not selected for that hierarchy, or perform the following steps:
|
When you import data from Hyperion Financial Management data sources, both measures and dimensions are imported into the Physical layer. The Hyperion Financial Management hypercube model is exposed in the Physical layer in the following ways:
Figure 7-5 shows how Hyperion Financial Management data is modeled in the Physical layer.
All Hyperion Financial Management dimensions are modeled as parent-child hierarchies in the Physical layer. Shared members, alternate hierarchies, and unbalanced hierarchies are supported.
Dimension member properties are exposed as columns (such as Name, Description, ShortName, and so on). An additional column called Sort Order is also displayed for each dimension. This column contains custom sort information retrieved from the Hyperion Financial Management data source.
Each Hyperion Financial Management dimension has a corresponding Point of View (POV) value that provides customized information for different users. This POV value is exposed as the Default Member in the Hierarchies tab of the Dimension dialog. Although the Default Member field is populated upon import, note that the default values may need to be updated according to the needs of the user base.
Note: Do not select the Default member type ALL option for Hyperion Financial Management hierarchies. |
Both member queries (dimensional browsing) and data queries (measure analysis) are supported for Hyperion Financial Management data sources.
Most Logical SQL functions are performed in the Oracle BI Server. However, you should use EVALUATE_PREDICATE
to access the following functions specific to Hyperion Financial Management:
PeriodOffset
(used to access prior or future periods through an offset)SuppressDerived
, SuppressInvalidIntersection
, SuppressMissing
, SuppressNoAccess
, SuppressZero
, SuppressError
)Base
function (returns the leaf members below a given ancestor member)CommonChildren
See "EVALUATE_PREDICATE" for detailed information about syntax and usage.
Note that there is no native support for time series functions. Time series functions are only supported through data modeling.
Oracle Database has an OLAP Option that provides an embedded, full-featured online analytical processing server. The OLAP Option is used in the following roles:
Oracle Business Intelligence supports Oracle OLAP as a data source. When you import metadata from an Oracle OLAP source, the Oracle OLAP objects appear in the Physical layer of the Administration Tool. This section provides information about the Physical layer Oracle OLAP objects.
See Oracle OLAP User's Guide for more information about Oracle OLAP.
This section contains the following topics:
This section provides important information about using the Administration Tool to import metadata from Oracle OLAP, as follows:
In some cases, you may want to set the aggregation rule for a measure to something other than External Aggregation. For example, you may have federated multiple data sources, or you may want to perform higher-level aggregation along dimension attributes that are not represented by a level in Oracle OLAP. In both of these cases, you can change the default aggregation rule to match the rule in the underlying data source or sources. Note that the aggregation is still performed in the Oracle OLAP data source where possible.
See "System Requirements and Certification" for the latest information about the versions of Oracle OLAP supported by Oracle Business Intelligence.
You can view Oracle OLAP Analytic Workspace (AW) objects in the Physical layer of the Administration Tool. These objects correspond to the analytic workspace object in the Oracle OLAP metadata, and are similar to physical catalog and physical schema objects. Analytic workspaces are containers for storing related cubes. You create dimensions, cubes, and other dimensional objects within the context of an analytic workspace.
Oracle OLAP Analytic Workspace objects have properties for Name, Description, and Dynamic Name. You can use the Dynamic Name tab to provide a variable that specifies the name of the Analytic Workspace object. Note that the Dynamic Name tab is not active unless at least one session variable is defined. See "Using a Variable to Specify the Name of a Catalog or Schema" for more information.
Oracle OLAP dimensions are lists of unique values that identify and categorize data. They form the edges of a cube, and thus of the measures within the cube. In a report, the dimension values (or their descriptive attributes) provide labels for the rows and columns. There are three types of Oracle OLAP dimensions:
Note: Oracle Business Intelligence does not support dimensions that have no hierarchies (flat dimensions). Importing flat dimensions from an Oracle OLAP data source will result in an error. If you have flat dimensions, replace them with single-level hierarchies in the data source before importing them into Oracle Business Intelligence. |
On the General tab of the Oracle OLAP Dimension dialog, you can view and edit the name and description of the dimension, along with the following dimension properties:
The Columns and Hierarchies tabs of the Oracle OLAP Dimension dialog list the dimension members and hierarchies that belong to the dimension. In the Columns tab, you can add or remove columns, as well as edit particular columns. In the Hierarchies tab, you can add, remove, or edit hierarchies. You can also use the type (key) button to select the default hierarchy for the dimension.
Dimensions can contain one or more hierarchies. Most hierarchies are level-based and consist of one or more levels of aggregation. Members roll up into the next higher level in a many-to-one relationship, and these members roll up into the next higher level, and so forth to the top level. Ragged and skip-level hierarchies are also supported.
Dimensions can also contain value-based hierarchies, which are parent-child hierarchies that do not support levels. For example, an employee dimension might have a parent-child relationship that identifies each employee's supervisor. However, levels that group together first-, second-, and third-level supervisors and so forth may not be meaningful for analysis.
Multiple hierarchies for a dimension typically share the base-level dimension members and then branch into separate hierarchies. They can share the top level if they use all the same base members and use the same aggregation operators. Otherwise, they need different top levels to store different aggregate values.
In the Oracle OLAP Hierarchy dialog, you can view and edit the name, external name, and description of the hierarchy. For level-based hierarchies, you can add, remove, edit, or reorder levels. For value-based hierarchies, you can add, remove, or edit columns. To specify a key column, double-click a column name.
In the Oracle OLAP Level dialog, you can view and edit the name, external name, and description of the level. You can also add, remove, or edit columns for that level. To designate a column as a level key, double-click a column name.
Oracle OLAP cubes are informational objects that identify measures with the exact same dimensions and thus are candidates for being processed together at all stages: data loading, aggregation, storage, and querying. Cubes define the shape of your business measures. They are defined by a set of ordered dimensions. The dimensions form the edges of a cube, and the measures are the cells in the body of the cube.
Oracle OLAP cubes have properties similar to other cubes. On the General tab of the Oracle OLAP Cube dialog, you can view and edit the name and description of the cube, along with the following cube properties:
If you set these options, make sure that you set them to reflect the actual properties of the data source. Do not specify that the data is sparse and fully materialized unless this is true for your data source.
You do not need to set these values for Oracle OLAP 11g cubes. For these objects, optimization happens automatically.
The Columns tab of the Oracle OLAP Cube dialog lists the columns that belong to the cube. You can add or remove columns, as well as edit particular columns.
Oracle OLAP columns can be measures, calculated measures, attributes, or level keys. Oracle OLAP columns have the same properties as other physical columns. See "Creating and Editing a Column in a Physical Table" for more information about physical column properties like Type, Length, and Nullable.
You can create physical foreign keys and complex joins using either the Physical Diagram, or the Joins Manager. Note that you do not create joins for multidimensional data sources.
This section contains the following topics:
All valid physical joins need to be configured in the Physical layer of the Administration Tool.
When you import keys in a physical schema, the primary key-foreign key joins are automatically defined. Any other joins within each data source or between data sources have to be explicitly defined to express relationships between tables in the Physical layer.
Imported key and foreign key joins do not have to be used in metadata. Joins that are defined to enforce referential integrity constraints can result in incorrect joins being specified in queries. For example, joins between a multipurpose lookup table and several other tables can result in unnecessary or invalid circular joins in the SQL queries issued by the Oracle BI Server.
This section contains the following topics:
A primary key and foreign key relationship defines a one-to-many relationship between two tables. A foreign key is a column or a set of columns in one table that references the primary key columns in another table. The primary key is defined as a column or set of columns where each value is unique and identifies a single row of the table.
Note that there are two cases where multiple foreign key columns in a table point to the same table:
You can specify primary key and foreign keys in the Physical Diagram, or by using the Keys and Foreign Keys tabs of the Physical Table dialog. Also refer to "Defining Physical Joins with the Physical Diagram" and "Creating and Managing Columns and Keys for Relational and Cube Tables" for more information.
In the Physical layer of the repository, complex joins are joins over nonforeign key and primary key columns. In other words, physical complex joins are joins that use an expression rather than key column relationships. When you create a complex join in the Physical layer, you specify the expression for the join.
For most data sources, foreign key joins are preferred for performance reasons. Complex joins are usually not as performant because they do not use key column relationships to form the join. The exception is ADF business component data sources, which use physical complex joins exclusively to denote ViewLink instances that connect pairs of View Objects in the ADF model.
A multi-database join is defined as a table under one metadata database object that joins to a table under a different metadata database object. You need to specify multi-database joins to combine the data from different databases. Use the Physical Diagram to specify multi-database joins. See "Defining Physical Joins with the Physical Diagram" for more information.
Multi-database joins can be created between tables in most types of databases and are performed within the Oracle BI Server. Note that you cannot create multi-database joins to tables in Oracle OLAP data sources.
While the Oracle BI Server has several strategies for optimizing the performance of multi-database joins, these joins are significantly slower than joins between tables within the same database. For this reason, you should avoid them whenever possible.
Fragmented data is data from a single domain that is split between multiple tables. For example, a data source might store sales data for customers with last names beginning with the letter A through M in one table and last names from N through Z in another table. With fragmented tables, you need to define all of the join conditions between each fragment and all the tables to which it relates. Figure 7-6 shows the physical joins with a fragmented sales table and a fragmented customer table where they are fragmented the same way (A through M and N through Z).
In some cases, you might have a fragmented fact table and a fragmented dimension table, but the fragments might be across different values. In this case, in addition to the joins created in Figure 7-6, you need to define a one-to-many join from Customer A to F and from Customer G to Z to Sales A to M, as shown in Figure 7-7.
Note: Avoid adding join conditions where they are not necessary (for example, between Sales A to M and Customer N to Z in Figure 7-6). Extra join conditions can cause performance degradations. |
You can define foreign keys and complex joins between tables, whether or not the tables are in the same data source. When you use the Physical Diagram to create joins, the Administration Tool determines what type of join to create based on the selected object types and the join expression.
If you do not want the Administration Tool to automatically determine what type of join to create, use the Joins manager to explicitly create the join. See "Defining Physical Joins with the Joins Manager" for more information.
To define a physical foreign key join or a complex join with the Physical Diagram:
The Physical Foreign Key dialog appears. Although physical foreign key joins are the default join type, the object type might change to a complex join after you define the join and click OK, depending on the join information.
The SQL join conditions appear in the expression pane.
The driving table option is shown in this dialog, but it is not available for selection because the Oracle BI Server implements driving tables only in the Business Model and Mapping layer. See "Specifying a Driving Table" for more information about driving tables.
To set the cardinality to unknown, you only need to select Unknown for one side of the join. For example, choosing unknown-to-1 is equivalent to unknown-to-unknown and appears as such the next time you open the dialog for this join.
The default join expression for ViewObject or ViewLink instances is arbitrary and has no meaning.
In the Physical Diagram, the join is represented by a line between the two selected tables, with an arrow at the "one" end of the join. Figure 7-8 shows a join in the Physical Diagram.
You can use the Joins Manager to view join relationships and to create physical foreign key joins and complex joins.
To define a physical foreign key join or complex join with the Joins Manager:
The Complex Join dialog appears.
To set the cardinality to unknown, you only need to select Unknown for one side of the join. For example, choosing unknown-to-1 is equivalent to unknown-to-unknown and appears as such the next time you open the dialog for this join.
The default join expression for ViewObject or ViewLink instances is arbitrary and has no meaning.
An opaque view is a Physical layer table that consists of a SELECT
statement. When you need a new table, you should create a physical table or a materialized view. An opaque view should be used only if there is no other solution. See Appendix F, "Exchanging Metadata with Databases to Enhance Query Performance" for more information about materialized views.
This section contains the following topics:
In the repository, opaque views appear as view tables in the data source, but the view does not actually exist until you deploy it. You deploy an opaque view in the data source using the Deploy Views utility. After deploying an opaque view, it is called a deployed view. Opaque views can be used without deploying them, but the Oracle BI Server has to generate a more complex query when an opaque view is encountered.
Note: Data sources such as XLS and nonrelational data sources do not support opaque views and cannot run the view deployment utility. |
To verify that opaque views are supported by a data source, check whether the CREATE_VIEW_SUPPORTED
SQL feature is selected in the Database dialog, in the Features tab. See "Specifying SQL Features Supported by a Data Source" for instructions.
In offline mode, the Deploy Views utility is available when importing from data sources with ODBC and DB2 CLI data sources. Oracle Native (client) drivers are also supported in the offline mode for deploying views. In online mode, view deployment is available for supported data sources using Import through server (the settings on the client are ignored).
The SQL statement for deploying opaque views in the Physical layer of the repository is available for supported data sources. To determine which of your data sources support opaque views, contact your system administrator or consult your data source documentation.
Only repository variables can be used in the definition. An error is generated if a session variable is used in the view definition.
Syntax
Where:
select_statement
is the user-entered SQL in the opaque view object. If SQL is invalid, the create view statement fails during view deployment.view_name
is one of the two following formats: schema.viewname
, or viewname
. The connection pool settings determine if the schema name is added.For opaque view objects, the right-click menu contains the Deploy View(s) option. When you select Deploy View(s), the Create View SQL statement executes and attempts to create the deployed view objects. The following list describes the ways you can initiate view deployment and the results of each method:
During deployment, names are assigned to the views. If you change the preassigned name, the new name must be alphanumeric and no more than 18 characters. If these guidelines are not followed, the object name is automatically transformed to a valid name using the following Name Transform algorithm:
All non-alphanumeric characters are removed.
After the deployment process completes, the following occurs:
If you change the type back to Select, the associated opaque views are dropped from the data source, or an error message appears. See "When to Delete Opaque Views or Deployed Views" for information about deleting deployed views.
To deploy an opaque view:
If the change does not conform to the naming rules, a new name is assigned and the dialog appears again so that you can accept or change it. This action repeats until all names pass validation.
The SQL statement (CREATE VIEW
) executes, and the View Deployment Messages dialog appears.
Running the Undeploy Views utility against a deployed view deletes the views and converts the table back to an opaque view with its original SELECT
statement.
To undeploy a deployed view:
If a deployed view exists that is related to the selected object, the right-click menu contains the Undeploy View(s) option.
A list of views to be undeployed appears.
A message appears if the undeployment was successful.
Use the following guidelines to remove opaque or deployed view objects in the repository:
SELECT
statement of the object in the Physical layer of repository.Caution: Do not manually delete the view table in the data source. If deleted, the Oracle BI Server cannot query the view object. When you undeploy the view, it is removed automatically from the data source. |
After removing an opaque view, you can choose to redeploy it. The Administration Tool does not distinguish between a first-time deployment and a redeployment. Make sure that you remove a deployed view before deploying the opaque view again. Failure to do this causes the deploy operation to fail, and an error message is returned from the data source.
Hints are instructions placed within a SQL statement that tell the data source query optimizer the most efficient way to execute the statement. Hints override the optimizer's execution plan, so you can use hints to improve performance by forcing the optimizer to use a more efficient plan. Hints are only supported for Oracle Database data sources.
Using the Administration Tool, you can add hints to a repository, in both online and offline modes, to optimize the performance of queries. When you add a hint to the repository, you associate it with Physical layer objects. When the object associated with the hint is queried, the Oracle BI Server inserts the hint into the SQL statement.
Table 7-6 shows the physical objects with which you can associate hints. It also shows the Administration Tool dialog that corresponds to the physical object. Each of these dialogs contains a Hint field, into which you can type a hint to add it to the repository.
Table 7-6 Physical Layer Objects That Accept Hints
Database Object | Dialog |
---|---|
Complex join | Complex Join |
Physical foreign key | Physical Foreign Key |
Physical table | Physical Table - General tab |
Hints are only supported when the Table Type is set to Physical Table. For other table types, the hint text is ignored. For physical tables with a table type of Select, you can provide the hint text as part of the SQL statement entered in the Default Initialization String field.
This section provides a few examples of how to use Oracle hints with the Oracle BI Server. For more information about Oracle hints, see Oracle Database SQL Language Reference for the version of the Oracle Database that you use.
The Index hint instructs the optimizer to scan a specified index rather than a table. Example 7-1 explains how you would use the Index hint.
Example 7-1 Index Hint
You find queries against the ORDER_ITEMS
table to be slow. You review the execution plan of the query optimizer and find the FAST_INDEX
index is not being used. You create an Index hint to force the optimizer to scan the FAST_INDEX
index rather than the ORDER_ITEMS
table. The syntax for the Index hint is index(
table_name
,
index_name
)
. To add this hint to the repository, go to the Physical Table dialog in the Administration Tool and type the following text in the Hint field:
The Leading hint forces the optimizer to build the join order of a query with a specified table. The syntax for the Leading hint is leading(
table_name
)
. If you were creating a foreign key join between the Products table and the Sales Fact table and wanted to force the optimizer to begin the join with the Products table, you would go to the Physical Foreign Key dialog in the Administration Tool and type the following text in the Hint field:
Hints that are well researched and planned can result in significantly better query performance. However, hints can also negatively affect performance if they result in a suboptimal execution plan. Follow these guidelines to create hints to optimize query performance:
The following procedure explains how to add hints to the repository using the Administration Tool.
To create a hint:
For a description of available Oracle hints and hint syntax, see Oracle Database SQL Language Reference for the version of the Oracle Database that you use.
When you request row counts, the Administration Tool retrieves the number of rows from the data source for all or selected tables and columns (distinct values are retrieved for columns) and stores those values in the repository. The time this process takes depends upon the number of row counts retrieved.
When updating all row counts, the Updating Row Counts window appears while row counts are retrieved and stored. If you click Cancel, the retrieve process stops after the in-process table (and its columns) have been retrieved. Row counts include all tables and columns for which values were retrieved before the cancel operation.
Updating all row counts for a large repository might take a long time to complete. Therefore, you sometimes might want to update only selected table and column counts.
Row counts are not available for the following:
COUNTDISTINCT
function, such as Microsoft Access and Microsoft Excel, or data sources for which COUNT_STAR_SUPPORTED
has been disabled in the database features table:USER
and :PASSWORD
are set as the user name and password.In offline mode, the Set values for variables dialog appears so that you can populate the session variables :USER
and :PASSWORD
.
To display row counts in the Physical layer:
To update selected row counts in the Physical layer:
To update all row counts in the Physical layer:
Any row counts that have changed since the last update are refreshed.
The Business Model and Mapping layer of the Oracle BI repository defines the business, or logical, model of the data and specifies the mapping between the business model and the Physical layer schemas. Business models are always dimensional, unlike objects in the Physical layer, which reflect the organization of the data sources. The Business Model and Mapping layer can contain one or more business models. Each business model contains logical tables, columns, and joins.
Even though similar terminology is used for logical table and physical table objects, such as the concept of keys, logical tables and joins in the Business Model and Mapping layer have their own set of rules that differ from those of relational models. For example, logical fact tables are not required to have keys, and logical joins can represent many possible physical joins.
Logical tables, joins, mappings, and other objects in the Business Model and Mapping layer are typically created automatically when you drag and drop objects from the Physical layer to a particular business model. After these objects have been created, you can perform tasks like creating additional logical joins, performing calculations and transformations on columns, and adding and removing keys from dimension and fact tables.
This chapter contains the following sections:
After creating all of the elements of the Physical layer, you can drag tables or columns from the Physical layer to a business model in the Business Model and Mapping layer to create logical objects in the metadata.
This section contains the following topics:
The Business Model and Mapping layer of the Administration Tool can contain one or more business models. A business model contains the business model definitions and the mappings from logical to physical tables for the business model.
When you work in a repository in offline mode, remember to save your repository from time to time. You can save a repository in offline mode even though the business models may be inconsistent.
To create a business model:
Note: The business model should be consistent before you deselect this option. |
After you create a business model, you can create business model objects by dragging and dropping objects from the Physical layer. See the next section for more information.
To automatically map objects in the Business Model and Mapping layer to sources in the Physical layer, you can drag and drop Physical layer objects to a particular business model in the logical layer. When you drag a physical table to the Business Model and Mapping layer, a corresponding logical table is created. For each physical column in the table, a corresponding logical column is created. If you drag multiple tables at once, a logical join is created for each physical join, but only the first time the tables are dragged onto a new business model.
Setting up objects in the Business Model and Mapping layer for multidimensional data sources is similar to setting up logical layer objects for a relational data source. To create the business model layer, you can drag and drop the Physical layer cube to the logical layer. Oracle Business Intelligence automatically creates a fully configured and consistent business model that retains metrics, attributes and dimensions.
Note: For Essbase data sources, it is recommended that you create a separate business model for each Essbase cube. To do this, drag each cube individually to the Business Model and Mapping layer. |
This feature lets you select a business model and its corresponding subject area (or a subject area and its corresponding business model), make a copy, and assign new names to the duplicates. Note that aliases are not copied.
To copy a business model and subject area:
The copied business model appears in the Business Model and Mapping layer, and the copied subject area appears in the Presentation layer.
In addition to working with Business Model and Mapping layer objects in the middle pane of the Administration Tool, you can open the Business Model Diagram to see a graphical model of logical tables and joins.
To access the Business Model Diagram, right-click an object in the Business Model and Mapping layer (such as a dimension or fact table) and select Business Model Diagram. Then, select one of the following options:
Note that the Business Model Diagram displays only logical tables and joins. It does not display other Business Model and Mapping layer objects, such as business models, dimensions, or hierarchies. Joins are represented by a line with an arrow at the "one" end of the join.
Figure 8-1 Business Model Diagram
To add additional tables to the Business Model Diagram, leave the Business Model Diagram window open and then right-click the table or tables you want to add. Then, select Business Model Diagram and choose one of the display options.
Additional options are available in the right-click menu for the graphical tables and joins displayed in the Business Model Diagram. For example, you can delete objects or view their properties, or you can add additional related objects using the right-click options Add Direct Joins, Add Tables Joined to Whole Selection, and Add All Joins. You can also select Find in Tree View to locate a particular object in the Business Model and Mapping layer view in the middle pane, or check out objects in online mode.
You can also right-click an object in the Business Model Diagram view and select Hide to hide particular objects in the diagram. Note that this effect is temporary and does not persist.
See also the following sections:
Logical tables exist in the Business Model and Mapping layer. The logical schema defined in each business model must contain at least two logical tables, and you must define relationships between them.
Each logical table has one or more logical columns and one or more logical table sources associated with it. You can change the logical table name, reorder the logical table sources, and configure the logical keys, both primary and foreign.
This section contains the following topics:
Typically, you create logical tables by dragging and dropping a physical table from the Physical layer to a business model in the Business Model and Mapping layer. If a table does not exist in your physical schema, you need to create the logical table manually.
Drag and drop operations are usually the fastest method for creating objects in the Business Model and Mapping layer. If you drag and drop physical tables from the Physical layer to the Business Model and Mapping layer, the columns belonging to the table are also copied. After you drag and drop objects into the Business Model and Mapping layer, you can modify them in any way necessary without affecting the objects in the Physical layer.
When you drag physical tables (with key and foreign key relationships defined) to a business model, logical keys and joins are created that mirror the keys and joins in the Physical layer. This occurs only if the tables that you drag include the table with the foreign keys. Additionally, if you create new tables or subsequently drag additional tables from the Physical layer to the Business Model and Mapping layer, the logical mappings between the new or newly dragged tables and the previously dragged tables must be created manually.
See "Defining Logical Joins with the Joins Manager" and "Defining Logical Joins with the Business Model Diagram" for more information about joins.
To create a logical table by dragging and dropping:
You must include the table with the foreign keys if you want to preserve the keys and joins from the Physical layer.
When you drop them, the table objects, including the physical source mappings, are created automatically in the Business Model and Mapping layer.
To create a logical table manually:
The Logical Table dialog appears.
After creating a logical table manually, you must create all keys and joins manually.
You can add a new logical table source, edit or delete an existing table source, create or change mappings to the table source, and define when to use logical tables sources and how content is aggregated. See Chapter 10, "Managing Logical Table Sources (Mappings)" for instructions about how to perform these tasks.
After creating tables in the Business Model and Mapping layer, you specify a primary key for each dimension table. Logical dimension tables must have a logical primary key. Logical keys can be composed of one or more logical columns.
Note: It is recommended that you do not specify logical keys for logical fact tables. |
To specify a primary key in a logical table:
It is recommended that you do not use foreign key joins in logical tables. If you must create these joins, you must first enable the option Allow logical foreign key join creation in the Options dialog. See "Creating Logical Foreign Key Joins with the Joins Manager" for more information.
The Foreign Keys tab of the Logical Table dialog exists so that you can view logical foreign keys you might have had in a previous release of Oracle Business Intelligence.
Relationships between logical tables are expressed by logical joins. Logical joins are conceptual, rather than physical, joins. In other words, they do not join to particular keys or columns. A single logical join can correspond to many possible physical joins.
A key property of a logical join is cardinality. Cardinality expresses how rows in one table are related to rows in the table to which it is joined. A one-to-many cardinality means that for every row in the first logical dimension table, there are 0, 1, or many rows in the second logical table. The Administration Tool considers a table to be a logical fact table if it is at the Many end of all logical joins that connect it to other logical tables.
Specifying the logical table joins is required so that the Oracle BI Server can have the necessary metadata to translate a logical request against the business model to SQL queries against the physical data sources. The logical join information provides the Oracle BI Server with the many-to-one relationships between the logical tables. This logical join information is used when the Oracle BI Server generates queries against the underlying databases.
You do not need to create logical joins in the Business Model and Mapping layer if both of the following statements are true:
However, you will probably have to create some logical joins in the Business Model and Mapping layer, because you will rarely drag and drop all physical tables simultaneously except in very simple models.
You can create logical joins using either the Joins Manager or the Business Model Diagram. When you create a complex join in the Physical layer, you can specify expressions and the specific columns on which to create the join. When you create a logical join in the Business Model and Mapping layer, you cannot specify expressions or columns on which to create the join. The existence of a join in the Physical layer does not require a matching join in the Business Model and Mapping layer.
This section contains the following topics:
The Business Model Diagram shows logical tables and any defined joins between them. You can use the Business Model Diagram to define logical joins between tables.
To define a logical join with the Business Model Diagram:
The Logical Join dialog appears.
This option is useful for optimizing the manner in which the Oracle BI Server processes multi-database inner joins when one table is very small and the other table is very large. Do not select a driving table unless multi-database joins are going to occur. See "Specifying a Driving Table" for more information about driving tables.
Caution: Use extreme caution in deciding whether to specify a driving table. Driving tables are used for query optimization only under rare circumstances and when the driving table is extremely small (fewer than 1000 rows). Choosing a driving table incorrectly can lead to severe performance degradation. |
In the Business Model Diagram, the join is represented by a line between the two selected tables, with an arrow at the "one" end of the join. Figure 8-2 shows a join in the Business Model Diagram.
You can use the Joins Manager to view logical join relationships and to create logical joins. You can also use the Joins Manager to create logical foreign key joins if you select Allow logical foreign key join creation in the Options dialog, although this is not recommended.
This section contains the following topics:
Logical joins are recommended over logical foreign key joins in the Business Model and Mapping layer.
To create a logical join with the Joins Manager:
The Joins Manager dialog appears.
The Logical Join dialog appears.
This option is useful for optimizing the manner in which the Oracle BI Server processes multi-database inner joins when one table is very small and the other table is very large. Do not select a driving table unless multi-database joins are going to occur. See "Specifying a Driving Table" for more information about driving tables.
Caution: Use extreme caution in deciding whether to specify a driving table. Driving tables are used for query optimization only under rare circumstances and when the driving table is extremely small, that is, less than 1000 rows. Choosing a driving table incorrectly can lead to severe performance degradation. |
Logical foreign key joins might be needed if the Oracle BI Server is to be used as an ODBC data source for certain third-party query and reporting tools. Typically, you should not create logical foreign keys. This capability is in the Administration Tool to provide compatibility with previous releases.
To create a logical foreign key join with the Joins Manager:
This option is useful for optimizing the manner in which the Oracle BI Server processes multi-database inner joins when one table is very small and the other table is very large. Do not select a driving table unless multi-database joins are going to occur. See "Specifying a Driving Table" for more information about driving tables.
Caution: Use extreme caution in deciding whether to specify a driving table. Driving tables are used for query optimization only under rare circumstances and when the driving table is extremely small, that is, less than 1000 rows. Choosing a driving table incorrectly can lead to severe performance degradation. |
You can specify a driving table for logical joins from the Logical Joins window. Driving tables are useful for optimizing the manner in which the Oracle BI Server processes cross-database joins when one table is very small and the other table is very large. Specifying driving tables leads to query optimization only when the number of rows being selected from the driving table is much smaller than the number of rows in the table to which it is being joined.
Caution: To avoid problems, only specify driving tables when the driving table is extremely small - less than 1000 rows. |
When you specify a driving table, the Oracle BI Server uses it if the query plan determines that its use will optimize query processing. The small table (the driving table) is scanned, and parameterized queries are issued to the large table to select matching rows. The other tables, including other driving tables, are then joined together.
Caution: If large numbers of rows are being selected from the driving table, specifying a driving table could lead to significant performance degradation or, if the MAX_QUERIES_PER_DRIVE_JOIN limit is exceeded, the query terminates. |
In general, driving tables can be used with inner joins, and for outer joins when the driving table is the left table for a left outer join, or the right table for a right outer join. Driving tables are not used for full outer joins. See "Defining Logical Joins" for instructions on specifying a driving table.
There are two entries in the database features table that control and tune driving table performance.
MAX_PARAMETERS_PER_DRIVE_JOIN
This is a performance tuning parameter. In general, the larger its value, the fewer parameterized queries need to be generated. Values that are too large can result in parameterized queries that fail due to back-end database limitations. Setting the value to 0 (zero) turns off drive table joins.
MAX_QUERIES_PER_DRIVE_JOIN
This is used to prevent runaway drive table joins. If the number of parameterized queries exceeds its value, the query is terminated and an error message is returned to the user.
The Physical Diagram shows the physical tables that map to the selected logical object and the physical joins between each table.
One of the joins options, Object(s) and Direct Joins within Business Model, is unique to the logical layer. It creates a physical diagram of the tables that meet both of the following conditions:
To open the Physical Diagram for a logical object:
Many logical columns are automatically created by dragging tables from the Physical layer to the Business Model and Mapping layer. Other logical columns, especially ones that involve calculations based on other logical columns, can be created later.
Logical columns are displayed in a tree structure expanded out from the logical table to which they belong. If the column is a primary key column or participates in a primary key, the column is displayed with a key icon. If the column has an aggregation rule, it is displayed with a ruler icon. You can also reorder logical columns in the Business Model and Mapping layer.
This section contains the following topics:
The following procedure explains how to create logical columns in the Business Model and Mapping layer.
To create a logical column:
The name of the business model and the associated logical table appear in the Belongs to Table field.
For a logical column, you can specify a different column on which to base the sort. This changes the sort order of a column when you do not want to order the values lexicographically. Lexicographical sort arranges the results in alphabetic order such as in a dictionary. In this type of sort, numbers are ordered by their alphabetic spelling and not divided into a separate group.
For example, if you sorted on month (using a column such as MONTH_NAME
), the results would be returned as February, January, March, and so on, in lexicographical sort order. However, you might want months to be sorted in chronological order. Therefore, your table should have a month key (such as MONTH_KEY
) with values of 1 (January), 2 (February), 3 (March), and so on. To achieve the desired sort, you set the Sort order column field for the MONTH_NAME
column to be MONTH_KEY
. Then, a request to order by MONTH_NAME
would return January, February, March, and so on.
To assign a different column on which to base the sort order for a column:
You can make some changes in this dialog. If you make changes, click OK to accept the changes instead of Cancel.
When multilingual columns are based on a lookup function, it is common to specify the non-translated lookup key column as the descriptor ID column of the translated column. Assigning a descriptor ID column enables Double Column Support, a feature which helps in defining language-independent filters. For example, in Answers, users see the display column, but the query filters on the hidden descriptor ID column.
For more information, see "Supporting Multilingual Data" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Note that double columns are also used for other purposes, like modeling spatial columns.
To assign a Descriptor ID column to a display column:
You can make some changes in this dialog. If you make changes, click OK to accept the changes instead of Cancel.
Some columns are derived from other logical columns as a way to apply post-aggregation calculations to measures. To do this, you specify the derived column expression in the Column Source tab of the Logical Column dialog.
You can also create a set of derived columns using the Calculation Wizard. See "Using the Calculation Wizard" for more information.
Note that if the parameter PREVENT_DIVIDE_BY_ZERO
is set to YES
in NQSConfig.INI, the Oracle BI Server prevents errors in divide-by-zero situations, even for Answers column calculations. The Oracle BI Server creates a divide-by-zero prevention expression using nullif()
or a similar function when it writes the physical SQL. Because of this, you do not have to use CASE
statements to avoid divide-by-zero errors, as long as PREVENT_DIVIDE_BY_ZERO
is set to YES
(the default value).See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about NQSConfig.INI settings.
You can also apply calculations pre-aggregation. See "Defining Physical to Logical Table Source Mappings and Creating Calculated Items" for more information.
To specify a derived column:
Note: To optimize performance, do not define aggregations in Expression Builder. Instead, use the Aggregation tab of the Logical Column dialog. See "Setting Default Levels of Aggregation for Measure Columns" for more information. |
Note that you can display data from multilingual database schemas by using Expression Builder to create a lookup function. For more information, see "Supporting Multilingual Data" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
You can configure logical columns so that Oracle Business Intelligence users can select the currency in which they prefer to view currency columns in analyses and dashboards. You can set up this feature so that all users see the same static list of currency options, or you can provide a dynamic list of currency options that changes based on a Logical SQL statement you specify.
To configure logical columns for multicurrency support:
PREFERRED_CURRENCY
, along with an initialization block to use in the variable. Make sure to select Enable any user to set the value when you create the session variable. Note that when you use session variables in an expression for Oracle BI Presentation Services, you must preface their names with NQ_SESSION
.See "Creating Session Variables" and "Creating Initialization Blocks" for detailed information about setting up session variables and initialization blocks.
PREFERRED_CURRENCY
session variable. To do this, double-click the appropriate logical column in the Business Model and Mapping layer, select the Column Source tab, and create a derived expression that uses the PREFERRED_CURRENCY
variable.For example, the following logical column expression uses the value of the NQ_SESSION.PREFERRED_CURRENCY
variable to switch between different currency columns. Note that the currency columns are expected to have the appropriate converted values.
PREFERRED_CURRENCY
. Each value in this column is a string that uniquely identifies the currency (for example, gc2).currency.userPreference
. Each value in this column is a string that identifies the currency (for example, Global Currency 2). If you omit this column, then the values for the displayMessage attributes for the corresponding currency tags in the currencies.xml file are used.Table 8-1 shows a sample table with user-preferred currency entries.
Table 8-1 Sample Table for Dynamically Displaying the Preferred Currency
UserPreference | CurrencyTag | UserPreferenceName |
---|---|---|
char | char | char |
orgc1 | loc:en-BZ | Org currency |
gc2 | int:euro-1 | Global currency 2 |
lc1 | int:DEM | Ledger currency |
gc1 | int:USD | Global Currency 1 |
Additional configuration is required in Oracle BI Presentation Services to enable this feature. For full information about the Oracle BI Presentation Services configuration, see "Defining User-Preferred Currency Options" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
You need to specify aggregation rules for mapped logical columns that are measures. Aggregation should only be performed on measure columns, with the possible exception of the aggregation COUNT
and COUNTDISTINCT
. Measure columns should exist only in logical fact tables.
You can optionally select different aggregation rules for different dimensions that are associated with this logical column. For example, if someone queries the aggregate column along with one dimension, you may want to use one type of aggregation rule, whereas with another dimension, you may want to use a different aggregation rule.
When the default aggregation rule is Count Distinct, you can optionally specify an override aggregation expression for specific logical table sources. For example, you may want to specify override aggregation expressions when you are querying different aggregate table sources that already contain some level of aggregation. If you do not specify any override, then the default rule prevails.
You can choose the aggregation rule Evaluate_Aggr to enable queries to call custom functions in the data source. For information about this function and other aggregation rules, see Appendix C. See also "Defining Aggregation Rules for Multidimensional Data Sources" for additional information about setting aggregation for multidimensional sources.
By default, data is considered sparse. However, on rare occasions you might have a logical table source with dense data. A logical table source is considered to have dense data if it has a row for every combination of its associated dimension levels. When setting up aggregate rules for a measure column, you can specify that data is dense only if all the logical table sources to which it is mapped are dense.
To specify a default aggregation rule for a measure column:
The function you select is always applied when a user or an application requests the column in a query, unless an override aggregation expression has been specified.
When you select Count Distinct as the default aggregation rule, you can specify an override aggregation expression for specific logical table sources. Choose this option when you have more than one logical table source mapped to a logical column and you want to apply a different aggregation rule to each source.
Click the Add button to select logical table sources for which you want to specify individual aggregation rules. In the Browse dialog, select the logical table source you want to add, and click OK. Then, in the Formula list for that logical table source, select the aggregation rule you want to use.
Click the Add button to select additional dimensions for which you want to specify aggregation rules. In the Browse dialog, select the dimension you want to add, and then click OK. Then, in the Formula list for that dimension, select the aggregation rule you want to use, or click the Expression Builder button to build the aggregation rule using Expression Builder.
The Data is dense option appears when you select Based on dimensions. Select this option only if all the logical table sources to which this column is mapped are dense.
The majority of measures have the same aggregation rule for each dimension. However, some measures can have different aggregation rules for different dimensions. For example, bank balances might be averaged over time but summed over the individual accounts. The Oracle BI Server lets you configure dimension-specific aggregation rules. You can specify one aggregation rule for a given dimension and specify other rules to apply to other dimensions.
You need to configure dimensions in the Business Model and Mapping layer to set up dimension-specific aggregation. For more information about setting up aggregate navigation, see Chapter 10.
To specify dimension-specific aggregation rules for a single logical column:
After selecting rules for specified dimensions, set the aggregation rule for any remaining dimensions by using the dimension labeled Other.
When calculating the measure, aggregation rules are applied in the order (top to bottom) established in the dialog.
To specify dimension-specific aggregation rules for multiple logical fact columns:
You must select more than one column to see the Set Aggregation menu item. Also note that Set Aggregation does not appear if one or more of the columns you select is a derived column.
This option is selected by default. When selected, you can set aggregation rules that apply to all selected columns. If you clear this option, you can set aggregation rules separately for each selected column.
After setting up the rule for a dimension, specify aggregation rules for any other dimensions in the entry labeled Other.
When calculating the measure, aggregation rules are applied in the order (top to bottom) established in the dialog.
This section describes best practices for defining aggregation rules for logical measures sourced from Essbase, Oracle OLAP, and other multidimensional data sources, like Microsoft Analysis Services and SAP/BW.
By default, when you import Essbase and some other multidimensional cubes into the Physical layer, Oracle Business Intelligence cannot read the aggregation rules set within the data source. Because of this, the measures are imported automatically with the default aggregation rule of External Aggregation. Note that this rule is only available for multidimensional data sources.
External Aggregation means that the Oracle BI Server is not aware of the underlying aggregation rule for the specific measure and will not compute it internally. Instead, the Oracle BI Server will always ship the query to the underlying multidimensional data source for aggregation.
Because the underlying data sources are extremely efficient, pushing the aggregation rules down to the data source ensures that the Oracle BI Server returns the results without adding any additional overhead in processing. However, it is recommended that you update the aggregation rule for each measure in Oracle Business Intelligence with the corresponding aggregation rule defined in the data source. Doing so ensures that the Oracle BI Server can do additional computations when needed. There is no query performance impact, since the Oracle BI Server still pushes down optimized queries wherever possible.
Note: If the Oracle BI Server needs to do additional aggregation for a particular query, and the aggregation rule is set to the default of External Aggregation, the server returns the following error: An external aggregate is found in an outer query block. This error occurs because the Oracle BI Server cannot read the aggregation rule in the underlying data source. To ensure that correct results are returned for these queries, you should change the aggregation rules set in the Oracle BI repository to match the aggregation rules set in the underlying data source. |
You must ensure that the aggregation rule defined in Oracle Business Intelligence matches the rule in the underlying data source. Also, you must set the appropriate aggregation rule in both the Physical layer and Business Model and Mapping layer, as shown in Figure 8-3.
Figure 8-3 Setting Aggregation Rules in the Physical and Business Model and Mapping Layers for Multidimensional Sources
For custom aggregations or aggregations which do not have a corresponding function within the Oracle BI Server, it is recommended to leave the aggregation as External Aggregation for both the physical measure column and its corresponding logical measure column.
Note: For Oracle OLAP data sources, you do not explicitly set Physical layer aggregation rules for Oracle OLAP columns. Because of this, you only need to set the aggregation rule for Oracle OLAP columns in the Business Model and Mapping layer. In addition, if a query requests an aggregate that does not exist in the Oracle OLAP data source, and the aggregation rule is set to External Aggregation, then the Oracle BI Server returns an error. To avoid this error, make sure to explicitly set the aggregation rule for the Oracle OLAP column in the Business Model and Mapping layer. If you do not explicitly set the aggregation rule for Oracle OLAP columns to something other than External Aggregation, requests from Oracle BI Presentation Services custom groups will fail, because custom groups always request aggregates that do not exist in the data source. |
Attributes can be associated with a logical level by selecting the dimensional level on the Levels tab. Measures can be associated with levels from multiple dimensions and always aggregate to the levels specified.
Dimensions appear in the Dimensions list. If this attribute is associated with a logical level, the level appears in the Levels list.
Another way to associate a measure with a level in a dimension is to expand the dimension tree in the Business Model and Mapping layer, and then use drag-and-drop to drop the column on the target level. For more information about level-based measures, see Example 9-1.
To associate a measure with a logical level in a dimension:
In the Levels tab, in the levels list, you can sort the rows (toggle between ascending order and descending order) by clicking a column heading.
To remove the association between a dimension and a measure:
By default, dragging and dropping a logical column from one table to another moves the logical column. If a column with the same name already exists, the new column is renamed (for example, mycolumn#1).
You can also choose the option Prompt when moving logical columns in the Options dialog to cause the Sources for moved columns dialog to be displayed when you drag and drop a logical column. This dialog gives you options about the drag and drop behavior.
See "Setting Preferences" for more information about selecting the Prompt when moving logical columns option.
To move or copy logical columns using the Sources for moved columns dialog:
The column that you moved or copied is associated with this logical source.
You can configure individual logical columns so that users in Oracle BI Presentation Services can update column data and write the changes back to the data source. To enable write back on a particular column, you must select the Writeable option for the logical column, and enable the Read/Write permission for the corresponding presentation column. You must also disable caching on the corresponding physical table.
Additional tasks to enable write back need to be performed in Oracle BI Presentation Services. See "Configuring for Write Back in Analyses and Dashboards" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information.
To enable write back for a particular column:
Figure 8-4 shows the Logical Column dialog.
Figure 8-5 shows the Permissions dialog.
You can create display folders to organize objects in the Business Model and Mapping layer. They have no effect on query processing. After you create a display folder, the selected tables and dimensions appear in the folder as a shortcut and in the business model tree as the object. You can hide the objects so that you only view the shortcuts in the display folder. See the information about the Repository tab of the Options dialog in "Setting Preferences" for more information about hiding these objects.
Note: Deleting a table in a display folder deletes only the shortcut to that object. When you delete a column in a display folder, however, the column is actually deleted. |
To set up a logical display folder:
Alternatively, you can drag one or more logical tables to the display folder after you close the dialog.
Alternatively, you can drag one or more dimensions to the display folder after you close the dialog.
A bridge table enables you to resolve many-to-many relationships between tables. For example, you might hold information about employees in an Employees table, and information about the jobs they do in a Jobs table. However, an organization's employees can have multiple jobs, and the same job can be performed by multiple employees. This situation would result in a many-to-many relationship between the Employees table and the Jobs table.
To resolve the many-to-many relationship, you can create a bridge table (or intermediate table) called Assignments. Each row in the Assignments table is unique, representing one employee doing one job. If an employee has several jobs, there are several rows in the Assignments table for that employee. If a job is done by several employees, there are several rows in the Assignments table for that job. The primary key of the Assignments table is a composite key, made up of a column containing the employee ID and a column containing the job ID.
By acting as a bridge table between the Job and Employee tables, the Assignments table enables you to resolve the many-to-many relationship between Employees and Jobs into:
Figure 8-6 shows a Physical layer view of the example bridge and associated dimension tables described in the preceding paragraphs.
Note that "Weight Factor" should be included as an additional column in the bridge table and calculated during ETL for efficient query processing.
The following sections explain how to model bridge tables in the Physical and Business Model and Mapping layers:
To model bridge tables in the Physical layer, create joins between the bridge table and the associated dimension tables.
To create physical joins for a bridge table and its associated tables:
Figure 8-7 shows joins between the example Physical tables in the Physical Diagram.
In the Business Model and Mapping layer, you can choose to model the two dimension tables associated with a bridge table in a single dimension, or in two separate dimensions. To model the associated dimension tables in one dimension, create a second logical table source that maps to the bridge table and the other dimension table, and then add columns from the other dimension table.
Providing two separate logical table sources makes queries more efficient, because it ensures that queries against a single dimension table do not involve the bridge table.
To model the dimension tables associated with a bridge table in a single dimension:
Figure 8-8 shows the Logical Table Source dialog for the bridge table source.
You can now create dimensions based on your logical tables, including the logical table with the bridge table source.
As an alternative to modeling the two dimension tables associated with a bridge table in a single dimension, you can choose to model them in separate dimensions. To do this, create a logical join between the fact table and the dimension table that is not physically joined to the fact table, and then modify the logical table source for that same dimension table to add the other table mappings.
To model the dimension tables associated with a bridge table in separate dimensions:
Figure 8-9 shows joins between the example logical tables in the Business Model Diagram.
Figure 8-10 shows the Logical Table Source dialog for the modified dimension table source.
You can now create dimensions based on your logical tables, including both logical tables associated with the bridge table.
In the Business Model and Mapping layer, a dimension object represents a hierarchical organization of logical columns (attributes). One or more logical dimension tables can be associated with at most one dimension object. Common dimensions might be time periods, products, markets, customers, suppliers, promotion conditions, raw materials, manufacturing plants, transportation methods, media types, and time of day. Note that dimensions exist in the Business Model and Mapping (logical) layer and in the Presentation layer.
In each dimension, you organize logical columns into the structure of the hierarchy. This structure represents the organization rules and reporting needs required by your business. It also provide the metadata that the Oracle BI Server uses to drill into and across dimensions to get more detailed views of the data.
There are two types of logical dimensions: dimensions with level-based hierarchies (structure hierarchies), and dimensions with parent-child hierarchies (value hierarchies). Level-based hierarchies are those in which members are of several types, and members of the same type occur only at a single level. In parent-child hierarchies, members all have the same type. Oracle Business Intelligence also supports a special type of level-based dimension, called a time dimension, that provides special functionality for modeling time series data.
Because dimensions for multidimensional data sources are defined in the source, they do not require as much work compared with dimensions in other data sources. For example, you do not create dimension level keys. A dimension is specific to a particular multidimensional data source (it cannot be used by more than one) and cannot be created and manipulated individually. Additionally, each cube in the data source should have at least one dimension and one measure in the Business Model and Mapping layer.
You can expose logical dimensions to Oracle BI Answers users by creating presentation hierarchy objects that are based on particular logical dimensions. Creating hierarchies in the Presentation layer enables users to create hierarchy-based queries. See "Working with Presentation Hierarchies and Levels" for more information.
Note that you can also expose dimension hierarchies by adding one or more columns from each hierarchy level to a subject area in the Presentation layer. Oracle BI Answers supports drill-down on these hierarchical columns.
This chapter contains the following topics:
Each business model can have one or more dimensions, each dimension can have one or more logical levels, and each logical level has one or more attributes (columns) associated with it.
The following sections explain how to create dimensions:
A dimension contains two or more logical levels. The recommended sequence for creating logical levels is to create a Grand Total level and then create child levels, working down to the lowest level. The following are the parts of a dimension:
For example, a time dimension might contain a fiscal hierarchy and a calendar hierarchy, with a common leaf level of Day. Day has two named parent levels called Fiscal Year and Calendar Year, which are both children of the All root level.
In the Business Model and Mapping layer, logical hierarchies are not defined as independent metadata objects, unlike hierarchies in the Presentation layer. Rather, logical hierarchies exist implicitly through the relationships between levels.
A logical level can have multiple level keys. When that is the case, specify the key that is the primary key of that level. All dimension sources which have an aggregate content at a specified level need to contain the column that is the primary key of that level. Each logical level should have one level key that is displayed when an Oracle BI Presentation Services user clicks to drill down. This may or may not be the primary key of the level. To set the level key to display, select the Use for display option in the Level Key dialog.
Be careful using level keys such as Month whose domain includes the values January, February, and so on (or in other words, values that are not unique to a particular month, repeating every year). To define Month as a level key, you also need to include an attribute from a higher level (for example, Year). To add Year, click Add in this dialog and select the logical column from the dialog that is presented.
Level keys should be meaningful business keys (like Month_name='2010 July') rather than generated surrogate keys (like time_key='1023793'), because surrogate keys are physical artifacts that only apply to a single instance of a source table. The business name, in contrast, can map to any physical instance for that logical column. For example, month_name might map to a detailed table, an aggregate table from an aggregate star, and a column in a federated spreadsheet. Note that the Physical layer still uses the surrogate keys in the joins, so there is no performance or flexibility penalty for using business keys in the business model.
AGO
, TODATE
, and PERIODROLLING
functions must be on time levels. AGO
, TODATE
, and PERIODROLLING
aggregates are created as derived logical columns. See "About Time Series Functions" for more information.AGO
, TODATE
, and PERIODROLLING
functionality is not supported either on fragmented dimensional logical table sources, or on fact sources fragmented on the same time dimension. Fact sources may be fragmented on other dimensions.See "About Time Series Functions" for more information.User applications can use the ISLEAF
function to determine whether to allow drilldown from any particular member. See "ISLEAF" for more information.
A missing member is implemented in the data source with a null value for the member value. All computations treat the null value as a unique child within its parent. Level-based measures and aggregate-by calculations group all missing nodes together.
Note that unbalanced hierarchies are not necessarily the same as parent-child hierarchies. Parent-child hierarchies are unbalanced by nature, but level-based hierarchies can be unbalanced also.
In a query, skipped levels are not displayed, and do not affect computations. When sorted hierarchically, members appear under their nearest ancestors.
A missing member at a particular level is implemented in the data source with a null value for the member value. All computations treat the null value as a unique child within its parent. Level-based measures and aggregate-by calculations group all skip-level nodes together.
Figure 9-1 shows a hierarchy with both unbalanced and skip-level characteristics. For example, A-Brand 4, B-LOB 3, and Type 5 are unbalanced branches, while skips are present between A-Brand 2 and Type 3, B-LOB 2 and Product 6, and others.
Dimension hierarchical levels can be used to perform the following actions:
To create and manage dimension hierarchy levels in level-based hierarchies, perform the tasks described in the following sections:
After creating a dimension, each dimension can be associated with attributes (columns) from one or more logical dimension tables and level-based measures from logical fact tables. After you associate logical columns with a dimension level, the tables in which these columns exist appear in the Tables tab of the Dimension dialog.
To create a dimension with a level-based hierarchy:
Note that this option is only available when there is at least one dimension table that has no dimension associated with it.
The Default root level field is automatically populated after you associate logical columns with a dimension level.
Note: It is a best practice to ensure that the physical hierarchy type set in the Physical layer matches the dimension properties you select in the Business Model and Mapping layer. See "Working with Physical Hierarchy Objects" for more information. In addition, you must ensure that the Ragged and Skipped Levels dimension properties are set correctly for queries to work. |
When creating logical levels in a dimension, you also create the hierarchy by identifying the type of level and defining child levels. See "Automatically Creating Business Model Objects for Multidimensional Data Sources" for more information about creating hierarchies for a multidimensional data source.
To define general properties for a logical level in a dimension:
The number does not have to be exact, but ratios of numbers from one logical level to another should be accurate. For relational sources, you can retrieve the row count for the level key and use that number as the number of elements. For multidimensional sources, you can use the number of members at that level.
The Oracle BI Server uses this number when selecting which aggregate source to use. For example, when aggregate navigation is used, multiple fact sources exist at different grains. The Oracle BI Server multiplies the number of elements at each level for each qualified source as a way to estimate the total number of rows for that source. Then, the Oracle BI Server compares the result for each source and selects the source with the lowest number of total elements to answer the query. The source with the lowest number of total elements is assumed to be the fastest.
The child levels appear in the Child Levels pane.
The child level and all of its child levels are deleted from the Child Levels pane.
After you create all logical levels within a dimension, you need to drag and drop one or more columns from the dimension table to each logical level except the Grand Total level. The first time you drag a column to a dimension it associates the logical table to the dimension. It also associates the logical column with that level of the dimension. To change the logical level to be associated with that logical column, you can drag a column from one logical level to another.
The logical column or columns that comprise the logical key of a dimension table must be associated with the lowest level of the dimension.
After you associate a logical column with a dimension level, the tables in which these columns exist appear in the Tables tab of the Dimensions dialog.
For time dimensions, ensure that all time-related logical columns in the source table are defined in the time dimension. For example, if a time-related logical table contains the columns Month Name and Month Code, you must ensure that both columns are dragged to the appropriate level within the dimension. Figure 9-2 shows how to associate logical columns with a logical level.
To verify tables that are associated with a dimension:
The tables list contains tables that you associated with that dimension. This list of tables includes only one logical dimension table and one or more logical fact tables (if you created level-based measures).
Example 9-1 and Example 9-2 show how to associate measures to different levels of level-based dimension hierarchies.
Example 9-1 Level-Based Measure Calculations
A level-based measure is a column whose values are always calculated to a specific level of aggregation. For example, a company might want to measure its revenue based on the country, based on the region, and based on the city. You can set up columns to measure CountryRevenue, RegionRevenue, and CityRevenue.
When a query includes a level-based measure column, and the query grain is higher than the level of aggregation specific to the column, the query results return null. Note that in previous releases, results were returned for this situation, but they were not deterministic.
The measure AllProductRevenue is an example of a level-based measure at the Grand Total level. Level-based measures allow a single query to return data at multiple levels of aggregation. They are also useful in creating share measures, that are calculated by taking some measure and dividing it by a level-based measure to calculate a percentage. For example, you can divide salesperson revenue by regional revenue to calculate the share of the regional revenue each salesperson generates.
To set up these calculations, you need to build a dimensional hierarchy in your repository that contains the levels Grandtotal, Country, Region, and City. This hierarchy contains the metadata that defines a one-to-many relationship between Country and Region and a one-to-many relationship between Region and City. For each country, there are many regions, but each region is in only one country. Similarly, for each region, there are many cities, but each city is in only one region.
Next, you need to create three logical columns (CountryRevenue, RegionRevenue, and CityRevenue). Each of these columns uses the logical column Revenue as its source. The Revenue column has a default aggregation rule of SUM
and has sources in the underlying databases.
You then drag the CountryRevenue, RegionRevenue, and CityRevenue columns into the Country, Region, and City levels, respectively. Each query that requests one of these columns returns the revenue aggregated to its associated level.
Figure 9-3 shows what the business model in the Business Model and Mapping layer looks like for this example.
In the Geography Dimension, the CountryRevenue and RegionRevenue columns are attributes of the Country and Region levels. In the Sales Facts table, the Revenue column has a default aggregation rule of SUM
and is mapped to physical detail data or physical aggregate data. CountryRevenue and RegionRevenue columns use the Revenue column as their source.
Example 9-2 Grand Total Dimension Hierarchy
You might have a product dimensional hierarchy with levels TotalProducts (Grand Total level), Brands, and Products. Additionally, there might be a column called Revenue that is defined with a default aggregation rule of Sum. You can then create a logical column, AllProductRevenue, that uses Revenue as its source (as specified in the General tab of the Logical Column dialog). Now, drag AllProductRevenue to the Grand Total level. Each query that includes this column returns the total revenue for all products. The value is returned regardless of any constraints on Brands or Products. If you have constraints on columns in other tables, the grand total is limited to the scope of the query. For example, if the scope of the query asks for data from 1999 and 2000, the grand total product revenue is for all products sold in 1999 and 2000.
If you have three products, A, B, and C with total revenues of 100, 200, and 300 respectively, then the grand total product revenue is 600 (the sum of each product's revenue). If you have set up a repository as described in this example, the following query produces the results listed:
The results are as follows:
In this example, the AllProductRevenue column always returns a value of 600, regardless of the products on which the query constrains.
Use the Keys tab in the Logical Level dialog to identify the primary key for a level.
To specify a primary key for a dimension level:
Double-click a logical level below the Grand Total level.
If only one level key exists, it is the primary key by default.
The column you selected appears in the Columns list of the Logical Level Key dialog and is automatically selected.
Note: You cannot use a derived logical column that is the result of a LOOKUP function as part of a primary logical level key. This limitation exists because the LOOKUP operation is applied after aggregates are computed, but level key columns must be available before the aggregates are computed because they define the granularity at which the aggregates are calculated.You can use a derived logical column that is the result of a |
(Optional) Type a description for the key and then click OK.
At least one level of a time dimension must have a chronological key. Although you can select one or more chronological keys for any level and then sort keys in the level, only the first chronological key is used.
To select and sort chronological keys for a time dimension:
Note: For a dimension to be recognized as a time dimension, you must select Time on the General tab of the Dimension dialog. |
You can use the Preferred Drill Path tab to identify the drill path to use when Oracle BI Presentation Services users drill down in their data requests. You should use this only to specify a drill path that is outside the normal drill path defined by the dimensional level hierarchy. It is most commonly used to drill from one dimension to another. You can delete a logical level from a drill path or reorder a logical level in the drill path.
To add a dimension level to the preferred drill path:
The names of the levels are added to the Names pane.
You can set up a dimension automatically from a logical dimension table if a dimension for that table does not exist. To create a dimension automatically, the Administration Tool examines the logical table sources and the column mappings in those sources and uses the joins between physical tables in the logical table sources to determine logical levels and level keys. Therefore, it is best to create a dimension in this way after all the logical table sources have been defined for a dimension table.
The following rules apply:
To create a dimension automatically:
The new dimension is displayed in the Business Model and Mapping layer.
Estimate Levels enables administrators to automatically populate level counts for one or more dimension hierarchies. Level counts are utilized by the query engine to determine the most optimal query plan and optimizes overall system performance.
The repository must be opened in online mode and the business model must be available for queries. Then, in the Business Model and Mapping layer, you can select any of the following logical layer elements, and then execute the Estimate Levels command:
When run, the Estimate Levels command also launches a consistency check on the level counts as described in the following list:
Set the log level at 4 or higher to write this information to the log file. For more information about logging, see "Diagnosing and Resolving Issues in Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
To populate logical level counts automatically:
If you click No, the action terminates because you must check out items to run Estimate Levels.
In the Administration Tool dialog, a list of the dimension level counts and any errors or warning messages appear.
When you check in the objects, you can check the global consistency of your repository.
A parent-child hierarchy is a hierarchy of members that all have the same type. This contrasts with level-based hierarchies, where members of the same type occur only at a single level of the hierarchy.
This section contains the following topics:
The most common real-life occurrence of a parent-child hierarchy is an organizational reporting hierarchy chart, where the following all apply:
These conditions illustrate the basic features that define a parent-child hierarchy, namely:
Figure 9-4 shows an example of a multi-level parent-child hierarchy.
The following table shows how this parent-child hierarchy could be represented by the rows and key values in an Employees table.
Emp_ID | Mgr_ID |
---|---|
Andrew | null |
Barbara | Andrew |
Carlos | Andrew |
Dawn | Barbara |
Emre | Barbara |
You can expose logical dimensions with parent-child hierarchies to Oracle BI Answers users by creating presentation hierarchies that are based on particular logical dimensions. Creating hierarchies in the Presentation layer enables users to create hierarchy-based queries. See "Working with Presentation Hierarchies and Levels" for more information.
This section contains the following topics:
Unlike the situation with level-based hierarchies, all the dimension members of a parent-child hierarchy occur in a single logical column. In a parent-child hierarchy, the parent of a member is in another row in the same logical column, pointed to by the parent key. This is unlike a level-based hierarchy, where the parent of a member is in a different logical column in the same row. In other words, navigation in a parent-child hierarchy follows data values, while navigation in a level-based hierarchy follows the metadata structure.
In level-based hierarchies, each level is named, and occupies a position in the hierarchy that corresponds to a real-word attribute or category that is deemed useful for analysis. Unlike level-based hierarchies, where the number of levels is fixed at design time, there is no limit to the depth of a parent-child hierarchy, and the depth can change at run time due to new data."
Every Oracle BI Server parent-child hierarchy has two system-generated entities, "Total" and "Detail," that are automatically defined for each parent-child hierarchy when the logical dimension is created. The "Detail" entity contains all the hierarchy members.
These two system-generated entities are different from the implicit, inter-member levels between ancestors and descendants in a parent-child hierarchy. These implicit levels are referred to as parent-child hierarchical levels in this section.
Closely associated with levels is the concept of distance in parent-child hierarchies. The distance of one member from another is the number of parent-child hierarchical levels from the member to an ancestor or to a descendant. For example, the distance from a member to its parent is always 1, and the distance from Andrew to Emre in Figure 9-4 is 2.
In relational tables, the relationships between different members in a parent-child hierarchy are implicitly defined by the identifier key values in the associated base table.
However, for each Oracle BI Server parent-child hierarchy defined on a relational table, you must also explicitly define the inter-member relationships in a separate parent-child relationship table.
The parent-child relationship table must include four columns, as follows:
Note: The ancestor may be the parent of the member, or a higher-level ancestor. |
The column names can be user defined. The data types of the columns must satisfy the following conditions:
Note that the example shown in Table 9-1 uses text strings for readability, but you normally use integer surrogate keys for member_key and ancestor_key, if they exist in the source dimension table.
INTEGER
columns.Note the following about the rows in a parent-child relationship table:
Table 9-1 shows an example of a parent-child relationship table with rows that represent the inter-member relationships for the employees shown in Figure 9-4.
Table 9-1 Example Parent-Child Relationship Table
Member_Key | Ancestor_Key | Distance | Isleaf |
---|---|---|---|
Andrew | Andrew | 0 | 0 |
Barbara | Barbara | 0 | 0 |
Carlos | Carlos | 0 | 0 |
Dawn | Dawn | 0 | 0 |
Emre | Emre | 0 | 0 |
Andrew | null | null | 0 |
Barbara | Andrew | 1 | 0 |
Carlos | Andrew | 1 | 1 |
Dawn | Barbara | 1 | 1 |
Dawn | Andrew | 2 | 1 |
Emre | Barbara | 1 | 1 |
Emre | Andrew | 2 | 1 |
Typically, you generate scripts to create and populate the parent-child relationship table through a wizard that you can invoke when you define the parent-child hierarchy. Note the following about the create and load scripts:
If you do not choose to use the wizard, then you must create the parent-child relationship table manually and then import it into the Physical layer before associating it with the parent-child hierarchy. In this latter case, it is also your responsibility to populate the table with the data required to describe the inter-member relationships in the parent-child hierarchy.
Some parent-child hierarchies contain preaggregated data that is populated for all nodes of the hierarchy. For example, a root node might be populated with the aggregation of the data for all of its descendent nodes. It is important to ensure that queries do not aggregate the members from this dimension to avoid erroneous results.
To correctly model this type of parent-child hierarchy, you must still create a parent-child relationship table to support hierarchical filter functions like IsAncestor and IsDescendant. However, you can join the parent-child dimension table directly with the fact table rather than joining through the parent-child relationship table. Doing so ensures that the preaggregated member value is returned, rather than rolling up all the descendants.
Note: Do not modify the parent-child relationship table script to only include the "self" rows, because doing so would break the IsAncestor and IsDescendant functions. |
To achieve the correct aggregation for dimensions of this type, you must first determine what you want to see as a grand total when the parent-child hierarchy is aggregated. For example, assume that your hierarchy contains a single root member, and you want to display the preaggregated value for this root member. In this case, you first create an additional fact logical table source mapped at the Total level of the parent-child hierarchy. Then, in the logical table source, create a WHERE clause filter that selects only the root member.
With this model in place, for queries that are at the Total level of the parent-child hierarchy, the Oracle BI Server selects the aggregate logical table source and applies the root member WHERE clause filter. For queries that are at the Detail level, the Oracle BI Server selects the detailed logical table source and returns the preaggregated member values. In either case, it does not matter how the aggregation rule is set, because there is a preaggregated source at each level.
Note that this approach only works if the queries are either at the Total or Detail level of the parent-child dimension. However, for queries that group by some non-unique attribute of the parent-child dimension, the aggregation might not be correct. For example, if an Employee dimension has a Location attribute, and a query groups by Employee.Location, then there will likely be some double counting because an employee often reports to other employees at the same location. Because of this, when fact tables contain preaggregated member values, you should avoid grouping by non-unique attributes of the parent-child dimension. If grouping by those attributes is unavoidable, then you should model them as separate dimensions.
The key elements that you must define for a parent-child hierarchy are the identifier columns for the member and the parent of the member. This basic principle applies to all parent-child hierarchies, regardless of the data source from which the hierarchy is derived.
Parent-child hierarchies that are based on relational tables must have an accompanying parent-child relationship table. See "About Parent-Child Relationship Tables" for more information.
To create dimensions with a parent-child hierarchy:
The Browse window shows the logical dimension tables in the business model, each with their primary keys.
Select a Member Key for the parent-child hierarchy and click OK.
The Browse window shows the columns, other than the primary key, in the logical table that you selected in step 4.
If the logical table you selected in step 4 is from a relational table source, you must continue the dimension definition process by setting up the parent-child relationship table for the hierarchy. See "Defining Parent-Child Relationship Tables" for details.
For parent-child hierarchies based on relational tables, you must define a parent-child relationship table. See "About Parent-Child Relationship Tables" for more information.
When you create the parent-child relationship table, you must choose one of the following options:
To define parent-child relationship tables:
The Parent-Child Relationship Table Settings windows appears, with the Logical Table and Logical Table Source values filled in.
Figure 9-5 shows the Parent-Child Relationship Table Settings dialog.
Click the Select Parent-Child Relationship Table button to start the manual process of defining the parent-child relationship table for the parent-child hierarchy.
The parent-child relationship table must have at least four columns that describe how the inter-member relationships are derived in the logical table selected for the hierarchy. See "About Parent-Child Relationship Tables" for more information.
Click the Create Parent-Child Relationship Table button to start the wizard.
The Generate Parent-Child Relationship Table Wizard generates SQL scripts for creating and populating the parent-child relationship table. At the end of the wizard, the Oracle BI Server stores the scripts into directories chosen during the wizard session. The scripts, when executed, will make the parent-child relationship table available to the metadata repository.
The wizard contains the following three main windows:
After you have created a parent-child relationship table and imported it into the Physical layer (either manually or using the Generate Parent-Child Relationship Table Wizard), you must edit Physical layer joins to include the parent-child relationship table. You also need to add the parent-child relationship table to the appropriate logical table source.
To add the parent-child relationship table to the model:
Figure 9-6 shows joins from a dimension table to fact tables that go through a parent-child relationship table.
For parent-child hierarchies based on relational tables, you must ensure that the data in the parent-child relationship table accurately reflects the inter-member relationships in the dimension.
You may have created scripts manually to create and populate the parent-child relationship table, or you may have used the Generate Parent-Child Relationship Table Wizard to create the scripts. You must run these scripts, adapting them if necessary, as often as required to guarantee the integrity of the parent-child relationships in the hierarchy. You typically want to add the Populate script to your ETL process so that it runs after the dimension table is updated.
Time series functions provide the ability to compare business performance with previous time periods, allowing you to analyze data that spans multiple time periods. For example, time series functions enable comparisons between current sales and sales a year ago, a month ago, and so on.
Because SQL does not provide a direct way to make time comparisons, you must model time series data in the Oracle BI repository. First, set up time dimensions based on the period table in your data warehouse. Then, you can define measures that take advantage of this time dimension to use the AGO
, TODATE
, and PERIODROLLING
functions. At query time, the Oracle BI Server then generates highly optimized SQL that pushes the time offset processing down to the database whenever possible, resulting in the best performance and functionality.
This section contains the following topics:
Time series functions operate on time-oriented dimensions. To use these functions on a particular dimension, you must designate the dimension as a Time dimension and set one or more keys at one or more levels as chronological keys. These keys identify the chronological order of the members within a dimension level.
Time series functions include AGO
, TODATE
, and PERIODROLLING
. These functions let you use Expression Builder to call a logical function to perform time series calculations instead of aliasing physical tables and modeling logically. The time series functions calculate AGO
, TODATE
, and PERIODROLLING
functions based on the calendar tables in your data warehouse, not on standard SQL date manipulation functions.
Figure 9-7 shows a sample report that includes several measures derived using time series functions.
Several different grains may be used in the time query, such as:
AGO
and TODATE
functions. In the report example shown in Figure 9-7, the time series grain is Quarter. Time series queries are valid only if the time series grain is at the query grain or longer. Note that the PERIODROLLING
function does not have a time series grain; instead, you specify a start and end period in the function.Note that queries against time series data must be an exact match to hit the query cache. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about the Oracle BI Server query cache.
The following sections describe the time series conversion functions:
The AGO
function offsets the time dimension to display data from a past period. This function is useful for comparisons, such as Dollars compared to Dollars a Quarter Ago. Note that the value of "Dollars Qago" for month 2008/08 equals the value of "Dollars" for month 2008/05.
Figure 9-8 shows example values for the Dollars and Dollars Qago measures.
In the example shown in Figure 9-8, the Dollars Qago measure is derived from the Dollars measure.
In Expression Builder, the AGO
function has the following template:
<<Measure>>
represents the logical measure column from which you want to derive. In this example, you would select the measure "Dollars" from your existing logical fact tables.
<<Level>>
is the optional time series grain you want to use. In this example, you would select "Quarter" from your time dimension.
<<Number of Periods>>
is the size of the offset, measured in the grain you provided in the <<Level>>
argument. For example, if the <<Level>>
is Quarter and the <<Number of Periods>>
is 2, the function displays dollars from two quarters ago.
Using this function template, you can create an expression for a One Quarter Ago measure, as follows:
The <<Level>>
parameter is optional. If you do not want to specify a time series grain in the AGO
function, the function uses the query grain as the time series grain.
For example, you could define Dollars_Ago as Ago(Dollars, 1)
. Then, you could perform the following logical query:
The result is the same as if you defined Dollars_Ago as Ago(Dollars, Month, 1)
. Alternatively, you could perform the following logical query:
The result is the same as if you defined Dollars_Ago as Ago(Dollars, Quarter, 1)
.
See "AGO" for additional information about the AGO
function syntax.
The TODATE
function accumulates the measure from the beginning of the time series grain period to the current displayed query grain period. For example, Figure 9-9 shows a report with the measure "Dollars QTD," which is the Quarter To Date version of the "Dollars" measure.
In the example shown in Figure 9-9, Dollars QTD for Month 2008/05 is the sum of Dollars for 2008/04 and 2008/05. In other words, Dollars QTD is the sum of the values for all the query grain periods (month) for the current time series grain period (quarter). The accumulation starts over for the next quarter.
In the example shown in Figure 9-9, the Dollars QTD measure is derived from the Dollars measure.
In Expression Builder, the TODATE
function has the following template:
<<Measure>>
represents the logical measure column from which you want to derive. In this example, you would select the measure "Dollars" from your existing logical fact tables.
<<Level>>
is the time series grain you want to use. In this example, you would select "Quarter" from your time dimension.
Using this function template, you can create the following expression for the measure:
Note that the query grain is specified in the query itself at run time. For example, this measure can display Quarter To Date at the Day grain, but still accumulates up to the end of the Quarter.
See "TODATE" for additional information about TODATE
function syntax.
The PERIODROLLING
function lets you perform an aggregation across a specified set of query grain periods, rather than within a fixed time series grain. The most common use is to create rolling averages, such as "13-week Rolling Average."
Note that because this function has no time series grain, the length of the rolling sequence is determined by the query grain. For example, "Dollars 3-Period Rolling Average" averages the last 3 months if the query grain is Month, but averages the last 3 years if the query grain is Year.
This section describes how to build two measures using the PERIODROLLING
function: "Dollars 3-Period Rolling Sum," and "Dollars 3-Period Rolling Average." Figure 9-10 shows a report with these two measures.
Figure 9-10 Example Dollars, Dollars 3-Period Rolling Sum, and Dollars 3-Period Rolling Avg Measures
In the example shown in Figure 9-10, the Dollars 3-Period Rolling Sum and Dollars 3-Period Rolling Avg measures are derived from the Dollars measure.
In Expression Builder, the PERIODROLLING
function has the following template:
<<Measure>> represents the logical measure column from which you want to derive. To create the measure Dollars 3-Period Rolling Sum, you would select the measure "Dollars" from your existing logical fact tables.
<<Starting Period Offset>>
and <<Ending Period Offset>>
identify the first period and last period used in the rolling aggregation, respectively. The integer is the relative number of periods from the displayed period. In the example shown in Figure 9-10, the query grain is month, and the 3-month rolling sum starts 2 periods in the past and includes the current period. That is, for month 2008/07, the rolling sum includes 2008/05, 2008/06 and 2008/07. Therefore, to create the measure Dollars 3-Period Rolling Sum, the integers to indicate these offsets are -2 and 0.
Using this function template, you can create the following expression for the measure:
The example shown in Figure 9-10 also shows a 3-month rolling average. To compute this measure, you can divide the rolling sum that you previously created by 3 to get a 3-period rolling average. We know to divide the rolling sum by 3 because the <<Starting Period Offset>>
and <<Ending Period Offset>>
fields for the rolling sum are -2 and 0.
The expression for the 3-month rolling average is:
It is usually a mistake to use the AVG
function to create a rolling average. AVG
computes the average of the database rows accessed at the storage grain, but you need an average where the denominator is the number of rolling periods at the query grain.
Note that the PERIODROLLING
function includes a fourth optional hierarchy argument that lets you specify the name of a hierarchy in a time dimension, such as yr, mon, day
, that you want to use to compute the time window. This option is useful when there are multiple hierarchies in a time dimension, or when you want to distinguish between multiple time dimensions. See "PERIODROLLING" for more information about the hierarchy argument and for details on the function syntax.
Compared to modeling an ordinary dimension, the time dimension requires just two additional steps: selecting the Time option in the Logical Dimension dialog, and designating a chronological key for every level of every dimension hierarchy.
Follow these additional guidelines when modeling time series data:
However, a somewhat common source schema pattern is a fully denormalized relational table or flat file, where the time dimension columns are in the same table as the facts and other dimensions. This cannot qualify as a time dimension, because the time dimension table is combined with the fact table.In this case, if you cannot change the model in the source, the best practice is to create an Opaque View of the physical table containing the time columns, which acts as the distinct physical time dimension table. This Opaque View time dimension must then be joined to the physical table that contains the facts.
Select the Time option in the General tab of the Logical Dimension dialog to enable time series functions on this dimension. Only logical dimensions with the Time option selected can be used as the time dimension for the time series functions AGO
, TODATE
, and PERIODROLLING
.
Figure 9-11 shows the Time option in the Logical Dimension dialog.
Designate a chronological key for every level of each dimension hierarchy. This key must meet the requirements of being sequential (the members have a natural order), cardinal (all members are spaced the same distance apart at a given level, such as day or month), and complete (no members missing).
The Oracle BI Server uses the chronological key to create mathematically correct time series predictions, such as Jan + 2 months = Mar. You should set a chronological key for every level (except for the Grand Total level) so that you can perform time series operations on all levels with good performance. This enables you to use an AGO
, TODATE
, or PERIODROLLING
function for any level of any time dimension hierarchy, such as fiscal month ago, calendar year ago, and day ago.
Theoretically, time series functions operate correctly if only the bottom level key in the Logical Dimension is chronological. In practice, however, this causes performance problems because it forces the physical query to use the lowest grain, causing joins of orders of magnitude more rows (for example, 365 times more rows for a "year ago" joining at the "day" grain). It also means higher-level aggregate tables are never selected by the query planner when using the time series functions, which again significantly slows the query.
As with any level key, be sure the key is unique at its level. For example, a column containing simple month names such as "January" is not unique unless it is concatenated to a column containing year names.
Figure 9-12 shows how to designate a chronological key in the Logical Level dialog.
You can build time series measures by creating derived expressions from base measures. To do this, create a new logical column and select Derived from existing columns using an expression, then open Expression Builder to build the appropriate time series function.
Follow these guidelines when modeling time series functions:
Example 9-3 shows how to build the AGO
measure. See Appendix C, "Logical SQL Reference" for detailed syntax for the other time series functions, TODATE
and PERIODROLLING
.
Example 9-3 Creating the AGO Measure
This example explains how to create one of the derived AGO
measures in the Sampleapp demonstration repository.
Figure 9-13 shows the AGO
function in Expression Builder.
Figure 9-14 shows the Month level in Expression Builder.
Logical table sources define the mappings from a single logical table to one or more physical tables. The physical to logical mapping can also be used to specify transformations that occur between the Physical layer and the Business Model and Mapping layer, as well as to enable aggregate navigation and fragmentation.
One logical table source folder exists for each logical table. The folder contains one or more logical table sources. You can also view logical table sources from the Sources tab of the Logical Table dialog.
Logical tables can have many physical table sources. A single logical column might map to many physical columns from multiple physical tables, including aggregate tables that map to the column if a query asks for the appropriate level of aggregation on that column.
This chapter contains the following topics:
When you create logical tables and columns by dragging and dropping from the Physical layer, the logical table sources are generated automatically. If you create the logical tables manually, you need to also create the sources manually.
You also add new logical table sources when multiple physical tables can be the source of information. For example, many tables could hold information for revenue. You might have three different business units (each with its own order system) where you get revenue information. In another example, you might periodically summarize revenue from an orders system or a financial system and use this table for high-level reporting.
Use the General tab of the Logical Table Source dialog to define general properties for the logical table source.
To create a logical table source:
You can set priority group numbers to determine which logical table source should be used for queries for which there is more than one logical table source that can satisfy the requested set of columns.
For example, you might have user queries that can be fulfilled by both a data warehouse and an OLTP source. Often, access to an operational system is "expensive," while access to a data warehouse is "cheap." In this situation, you can assign a higher priority to the data warehouse to ensure that all queries are fulfilled by the data warehouse if possible.
Note that the priority group of a given logical table source does not always ensure that a particular query will be fulfilled by that source. Priority group assignments are only one of many factors used by the Oracle BI Server to determine which logical table source to select for a given query. However, the logical table source priority is the most significant metric and is considered before any other cost metric.
To assign priority group numbers, rank your logical table sources in numeric order, with 0 being the highest-priority source. You can assign the same number to multiple sources. For example, you can have two logical table sources in priority group 0, two logical table sources in priority group 1, and so on. Often, only two priority groups are necessary (0 and 1).
Assigning priority groups is optional. All logical table sources are set to priority 0 by default.
In some situations, you might want to allow users to reverse the normal logical table source priority ranking at query time. To accomplish this, you can use a combination of session variables and request variables with logical table source priority groups. This feature provides a way to dynamically select a source at run time, depending on user preference.
To enable this dynamic selection, you must first create the REVERSIBLE_LTS_PRIORITY_SA_VEC
session variable in the repository. Create this variable as a string vector session variable that uses a row-wise session initialization block. REVERSIBLE_LTS_PRIORITY_SA_VEC
should list the subject areas for which you want to allow users to reverse the logical table source priority ranking. You must define this variable to enable priority ranking reversal.
After you have defined the set of subject areas for which you want to allow priority ranking reversal, users can include the request variable REVERSE_LTS_PRIORITY
with their queries to reverse the logical table source priority ranking. This request variable can be set to 1 to reverse the logical table source priority, or 0 to keep the normal logical table source priority.
As an alternative to using a request variable at query time, you can also define a predetermined set of subject areas for which the logical table source priority should be permanently reversed. To do this, create the session variable REVERSED_LTS_PRIORITY_SA_VEC
in the repository. Create this variable as a string vector session variable that uses a row-wise session initialization block. REVERSED_LTS_PRIORITY_SA_VEC
should list the subject areas for which you want the logical table source priority to be permanently reversed.
See "Creating Session Variables" for more information about how to define session variables in the Administration Tool.
Example of REVERSIBLE_LTS_PRIORITY_SA_VEC
You could create a table called SA_TABLE that contains two columns: SUBJECT_AREA_NAME and REVERSIBLE. This table could contain rows mapping subject area names to their reversible values (1 or 0), as follows:
SUBJECT_AREA_NAME | REVERSIBLE |
---|---|
my_sa_1 | 1 |
my_sa_2 | 0 |
Then, you would create a string vector session variable called REVERSIBLE_LTS_PRIORITY_SA_VEC with a row-wise session initialization block. The initialization string for this initialization block could be similar to the following:
Figure 10-1 shows the Session Variable Initialization Block dialog for this example.
Use the Column Mapping tab of the Logical Table Source dialog to map logical columns to physical columns. The physical to logical mapping can also be used to specify transformations that occur between the Physical layer and the Business Model and Mapping layer. The transformations can be simple, such as changing an integer data type to a character, or more complex, such as applying a formula to find a percentage of sales per unit of population. Applying these transformations is typically referred to as creating calculated items.
The data type of a logical column is determined by its logical table source mappings. For example, if a logical column has one physical source with a data type of VARCHAR(50) not-nullable, and another physical source with a data type of VARCHAR(20), nullable, then the data type of the logical column is VARCHAR(50) nullable. This final type is called a promoted type. Because of the rules governing logical table source mappings, you cannot map physical sources with data types that cannot be promoted (such as an INT with a VARCHAR).
To map logical columns to physical columns:
In the Column Mapping tab, in the Logical column to physical column mapping area, you can sort the rows (toggle among ascending order, descending order, and then restore original order) by clicking a column heading.
When you select a cell in the Physical Table column, a list appears. It contains a list of tables currently included in this logical table source.
When you select a cell in the Expression column, a list appears. It contains a list of physical columns currently included in this logical table source.
All columns used in creating physical expressions must be in tables included in the logical table source. You cannot create expressions involving columns in tables outside the source.
You can use Expression Builder to create calculated items, in which formulas are applied pre-aggregation. For example, to create the measure "tons sold" using the columns units_sold and unit_weight, you apply a pre-aggregation formula (fact.units_sold*product.unit_weight), and then apply the aggregation rule SUM
in the measure object. Another example is using CAST
to transform a column of type TIMESTAMP
to type DATE
for faster display in Answers and other clients (for example, CAST("DB"."."TABLE"."COL" AS DATE)
).
You can also conform sources by creating expressions that perform transformations on physical data. For example, you can use the CAST
function to transform a column with a character data type to an integer data type, to match data coming from a second logical table source. Other examples include using CONCATENATE
or math functions to make similar transformations on physical data.
See "Creating Derived Columns" for calculations that need to occur post-aggregation.
In the Logical Column dialog, the Column Source tab contains information about the logical column. You can edit the logical table sources from which the column derives its data, or unmap it from its sources.
To unmap a logical column from its source:
To use a source correctly, the Oracle BI Server has to know what each source contains in terms of the business model. Therefore, you need to define aggregation content for each logical table source of a fact table. The aggregation content rule defines at what level of granularity the data is stored in this fact table. For each dimension that relates to this fact logical table, define the level of granularity, making sure that every related dimension is defined. See "Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data" for more information.
If a logical table is sourced from a set of fragments, it is not required that every individual fragment maps the same set of columns. However, the server returns different answers depending on how columns are mapped.
Note: It is recommended that all the fragments map the same set of columns. |
Use the Content tab of the Logical Table Source dialog to define any aggregate table content definitions, fragmented table definitions for the source, and WHERE
clauses (if you want to limit the number of rows returned). See "Setting Up Fragmentation Content for Aggregate Navigation" for additional information.
This source content information tells the Oracle BI Server what it needs to know to send queries to the appropriate physical aggregate fact tables, joined to and constrained by values in the appropriate physical aggregate dimension tables. Be sure that joins exist between the aggregate fact tables and the aggregate dimension tables in the Physical layer.
One recommended way to verify joins is to select a fact logical table and open a Business Model Diagram (Selected Tables and Direct Joins). Only the dimension logical tables that are directly joined to this fact logical table appear in the diagram. It does not show dimension tables if the same physical table is used in logical fact and dimension sources.
Figure 10-3 shows an example of how the Fact - Assess fact logical table appears in a Business Model Diagram (Selected Tables and Direct Joins) view.
Table 10-1 contains a list of the logical level for each dimension table that is directly joined the Fact - Assess fact table shown in Figure 10-3.
Table 10-1 Dimension and Logical Level as Shown in Content Tab
Dimension | Logical Level |
---|---|
Account Geography | Postal Code Detail |
Person Geography | Postal Code Detail |
Time | Day Detail |
Account Organization | Account Detail |
Opportunity | Opty Detail |
Primary Visibility Organization | Detail |
Employee | Detail |
Assessment | Detail |
Contact (W_PERSON_D) | Detail |
FINS Time | Day |
Positions | Details |
To create logical table source content definitions:
You should specify a logical level for each dimension, unless you are specifying the Grand Total level. Dimensions with no level specified are interpreted as being at the most detailed level.
Caution: Although you have the option to specify aggregate content by logical level or column, it is recommended that you use logical levels exclusively. If you must define content by columns, do the following:
Do not mix aggregation by logical level and column in the same business model. |
You can type the formula directly into the box, or click the Expression Builder button to the right of the box. In the Expression Builder for Fragmentation Content, you can specify content in terms of existing logical columns. See "Setting Up Fragmentation Content for Aggregate Navigation" for additional information.
This option is only for multiple sources that are at the same level of aggregation. For example, one logical table source might point to records for people with last names A-M, while a second logical table source might point to records for people with last names N-Z.
WHERE
clause filters in the box labeled Use this "WHERE clause" filter to limit rows returned (exclude the "WHERE"). You can enter the WHERE
clause directly, or you can click the Expression Builder button to open the Expression Builder, create the WHERE
clause, and click OK.See "About WHERE Clause Filters" for more information.
Table 10-2 Content Tab Options for Logical Table Source
Options | Description |
---|---|
Aggregation content, group by | How the content is aggregated. |
More button | When you click More, the following options appear:
|
Fragmentation content | A description of the contents of a data source in business model terms. Data is fragmented when information at the same level of aggregation is split into multiple tables depending on the values of the data. A common situation would be to have data fragmented by time period. See "Setting Up Fragmentation Content for Aggregate Navigation" for additional information. |
This source should be combined with other sources at this level | Select this option when data sources at the same level of aggregation do not contain overlapping information. In this situation, all sources must be combined to get a complete picture of information at this level of aggregation. |
Select distinct values | Used if the values for the source are unique. |
The WHERE
clause filter is used to constrain the physical tables referenced in the logical table source. If there are no constraints on the aggregate source, leave the WHERE
clause filter blank.
Each logical table source should contain data at a single intersection of aggregation levels. You would not want to create a source, for example, that had sales data at both the Brand and Manufacturer levels. If the physical tables include data at multiple levels, add an appropriate WHERE
clause constraint to filter values to a single level.
Any constraints in the WHERE
clause filter are made on the physical tables in the source.
Sometimes, a logical table is part of a dimension with a parent-child hierarchy that is based on relational tables. When this is the case, the logical table includes both a physical source and a source for the parent-child relationship table required for the parent-child hierarchy. Parent-child relationship tables explicitly define the inter-member relationships for parent-child hierarchies.
Typically, logical table sources for parent-child relationship tables are created automatically when you run the scripts created by the Generate Parent-Child Table Wizard. You access this wizard from the Parent-Child Table Settings dialog, available in the dimension object.
Note: The Generate Parent-Child Table Wizard feature is not available from the Logical Table Source dialog. You must go to the dimension object to create scripts to generate the parent-child relationship table. |
You can view details for the parent-child relationship table source in the Parent-Child Settings tab of the Logical Table Source dialog. The following information appears in the tab:
See "Creating Dimensions with Parent-Child Hierarchies" for more information about parent-child relationship tables.
Aggregate tables store precomputed results from measures that have been aggregated over a set of dimensional attributes. Each aggregate table column contains data at a given set of levels. For example, a monthly sales table might contain a precomputed sum of the revenue for each product in each store during each month. You configure this metadata in the Content tab of the Logical Table Source dialog.
When you create a logical table source for an aggregate fact table, you should create corresponding logical dimension table sources at the same levels of aggregation.
You need to have at least one logical dimension table source for each level of aggregation. If the sources at each level already exist, you do not need to create new ones.
For example, you might have a monthly sales fact table containing a precomputed sum of the revenue for each product in each store during each month. You need to have the following three other dimension sources, one for each of the logical dimension tables referenced in the example:
At query time, the Oracle BI Server first determines which sources have enough detail to answer the query. Out of these sources, the Oracle BI Server chooses the most aggregated source to answer the query, because it is assumed to be the fastest. The most aggregated source is the one with the lowest multiplied number of elements. See "Creating Logical Levels in a Dimension" for more information about specifying the number of elements at each level.
When a logical table source does not contain the entire set of data at a given level, you need to specify the portion, or fragment, of the set that it does contain. You describe the content in terms of logical columns in the Fragmentation content box in the Content tab of the Logical Table Source dialog.
The examples in this section illustrate techniques and rules for specifying the fragmentation content of sources.
This section contains the following topics:
The IN
predicates can be replaced with either an equality predicate or multiple equality predicates separated by the OR
connective.
Fragment 1:
Fragment n:
Fragment 1:
Fragment 2:
Fragment n:
Pick your start point, midpoints, and endpoint carefully.
Note: Use >= and < predicates to make sure the fragment content descriptions do not overlap. For each fragment, the upper value must be expressed as <. You will get an error if you use <=. Likewise, you cannot use the BETWEEN predicate to describe fragment range content. |
The valueof
referenced here is the value of a repository variable. If you use repository values in your expression, note that the following construct does not work for Fragment 2:
Use another repository variable instead of valueof(MID_VALUE1)+1
.
The same variables, for example, valueof(MID_VALUE1)
, do not have to appear in the content of both fragments. You could set another variable, and create statements of the following form:
Fragment 1:
Fragment 2:
For more information about variables, see Chapter 18.
An arbitrary number of predicates on different columns can be included in each content filter. Each column predicate can be value-based or range-based.
Fragment 1:
Fragment n:
Ideally, all fragments will have predicates on the same M columns. If there is no predicate constraint on a logical column, the Oracle BI Server assumes that the fragment contains data for all values in that logical column. See "Specifying Parallel Content Descriptions" for exceptions using the OR
predicate.
Unfortunately, the preceding techniques are still not sufficient to handle dates because of the multiple hierarchical relationships across logical columns, such as year > year month > date; month > year month > date. For example, consider fragments delineated by different points in time, such as year and month. Constraining sufficiently far back on year should be enough to drive the selection of just the historical fragment. The parallel OR
technique supports this, as shown in the next example. This example assumes that the snapshot month was April 1, 12:00 a.m. in the year 1999.
Fragment 1 (Historical):
Fragment 2 (Current):
If the logical model does not go down to the date level of detail, then omit the predicate on EnterpriseModel.Period."Day"
in the preceding example.
Notice the use of the OR
connective to support parallel content description tracks.
In this section, the Track n labels in the examples are shown to help relate the examples to the discussion that follows. You would not include these labels in the actual fragmentation content statement.
Example 10-1 Fragment 1 (Historical)
For example, consider the first track on EnterpriseModel.Period."Day."
In the historical fragment, the < predicate tells the Oracle BI Server that any queries that constrain on Day before the Snapshot Date fall within the historical fragment. Conversely, the >= predicate in the current fragment on Day indicates that the current fragment does not contain data before the Snapshot Date.
The second track on MonthCode
(for example, 199912) is similar to Day. It uses the < and >= predicates, as there is a nonoverlapping delineation on month (because the snapshot date is April 1). The key rule to remember is that each additional parallel track must reference a different column set. Common columns can be used, but the overall column set must be unique. The Oracle BI Server uses the column set to select the most appropriate track.
The third track on Year
(< in the historical fragment and > in the current fragment) tells the Oracle BI Server that optimal (single) fragment selections can be made on queries that just constrain on year. For example, a logical query on Year IN (1997, 1998) should only hit the historical fragment. Likewise, a query on Year = 2000 should only hit the current fragment. However, a query that hits the year 1999 cannot be answered by the content described in this track, and therefore hits both fragments, unless additional information can be found in subsequent tracks.
The fourth track describes the fragment set for Year and Month in Year (month integer). Notice the use of the multicolumn content description technique, described previously. Notice the use of < and >= predicates, as there is no ambiguity or overlap for these two columns.
The fifth track describes fragment content in terms of Year and Monthname. It uses the value-based IN
predicate technique.
As an embellishment, suppose the snapshot date fell on a specific day within a month: therefore, multicolumn content descriptions on just year and month would overlap on the specific snapshot month. To specify this ambiguity, <= and >= predicates are used.
Fragment 1 (Historical):
Fragment 2 (Current):
In an order entry application, time-based fragmentation between historical and current fragments is typically insufficient. For example, records might still be volatile, even though they are historical records entered into the database before the snapshot date.
Assume, in the following example, that open orders can be directly updated by the application until the order is shipped or canceled. After the order has shipped, however, the only change that can be made to the order is to type a separate compensating return order transaction.
There are two parallel tracks in the following content descriptions. The first track uses the multicolumn, parallel track techniques described in the preceding section. Notice the parentheses nesting the parallel calendar descriptions within the Shipped-or-Canceled order status multicolumn content description.
The second parallel track is present only in the Current fragment and specifies that all Open records are in the Current fragment only.
Fragment 1 (Historical):
Fragment 2 (Current):
The overlapping Year and Month descriptions in the two fragments do not cause a problem, as overlap is permissible when there are parallel tracks. The rule is that at least one of the tracks has to be nonoverlapping. The other tracks can have overlap.
Information at a given level of aggregation is sometimes stored in multiple physical tables. When individual sources at a given level contain information for a portion or fragment of the domain, the Oracle BI Server needs to know the content of the sources in order to pick the appropriate source for the query.
For example, suppose you have a database that tracks the sales of soft drinks in all stores. The detail level of data is at the store level. Aggregate information, as described in Figure 10-4, is stored at the city level for the sales of Coke and Pepsi, but there is no aggregate information for the sales of 7-Up or any other of the sodas.
The goal of this type of configuration is to maximize the use of the aggregate table. If a query asks for sales figures for Coke and Pepsi, the data should be returned from the aggregate table. If a query asks for sales figures for all soft drinks, the aggregate table should be used for Coke and Pepsi and the detail data for the other brands.
The Oracle BI Server handles this type of partial aggregate navigation. To configure a repository to use aggregate fragments for queries whose domain spans multiple fragments, you need to define the entire domain for each level of aggregate data, even if you must configure an aggregate fragment as being based on a less summarized physical source.
This section contains the following topics:
You configure the aggregate table navigation in the logical table source mappings. In the soft drink example, the aggregate table contains data for Coke and Pepsi sales at the city level. Its Aggregate content specification (in the Content tab of the Logical Table Source window) is similar to the following:
Group by logical level:
Its Fragmentation content specification (also in the Content tab of the Logical Table Source dialog) is similar to the following:
This content specification tells the Oracle BI Server that the source table has data at the city and product level for two of the products. Additionally, because this source is a fragment of the data at this level, you must select This source should be combined with other sources at this level, in the Content tab of the Logical Table Source dialog, to indicate that the source combines with other sources at the same level.
The data for the rest of the domain (the other types of sodas) is all stored at the store level. To define the entire domain at the aggregate level (city and product, in this example), you need to have a source that contains the rest of the domain at this level. Because the data at the store level is at a lower (that is, more detailed) level than at the city level, it is possible to calculate the city and product level detail from the store and product detail by adding up the product sales data of all of the stores in a city. This can be done in a query involving the store and product level table.
One way to do this is to define a table in the Physical layer with a Select statement that returns the store level calculations. To define the table, create a table in the Physical layer by right-clicking the physical schema object that the SELECT
statement will be querying and selecting New Physical Table. Choose Select from the Table Type list, and type the SQL statement in the Default Initialization String box.
The SQL statement must define a virtual table that completes the domain at the level of the other aggregate tables. In this case, there is one existing aggregate table, and it contains data for Coke and Pepsi by city. Therefore, the SQL statement has to return all of the data at the city level, except for the Coke and Pepsi data.
Next, create a new logical table source for the Sales column that covers the remainder of the domain at the city and product level. This source contains the virtual table created in the previous section. Map the Dollars logical column to the USDollars physical column in this virtual table.
The Aggregate content specification (in the Content tab of the Logical Table Source dialog) for this source is:
Group by logical level:
This tells the Oracle BI Server this source has data at the city and product level.
The Fragmentation content specification might be:
Additionally, because it combines with the aggregate table containing the Coke and Pepsi data at the city and product level to complete the domain, you need to select the option in the Content tab of the Logical Table Source dialog indicating that the source is combined with other sources at the same level.
Construct the correct physical joins for the virtual table. Notice that CityProductSales2 joins to the Cities and Products tables in Figure 10-5.
In this example, the two sources comprise the whole domain for soda sales. A domain can have many sources. The sources have to all follow the rule that each level must contain sources that, when combined, comprise the whole domain of values at that level. Setting up the entire domain for each level helps ensure that queries asking for Coke, Pepsi, and 7-Up do not leave out 7-Up. It also helps ensure that queries requesting information that has been precomputed and stored in aggregate tables can retrieve that information from the aggregate tables, even if the query requests other information that is not stored in the aggregate tables.
The Presentation layer provides a way to present customized, secure, role-based views of a business model to users. Role-based views provide object security and also provide a way to hide some of the complexity of the business model. The Presentation layer also provides some of the functionality of the metadata model, such as the ability to set an implicit fact column.
Presentation layer views are called subject areas (formerly called presentation catalogs). You can have a subject area that is identical to your business model, or you can provide smaller, role-based subject areas that show a single subject, or that support a particular business role. Create subject areas that help you organize your content in a way that makes sense for your users.
After you have created the Business Model and Mapping layer, you can drag and drop entire business models to the Presentation layer in the Administration Tool. Alternatively, you can create subject areas and other Presentation layer objects manually.
This chapter explains how to use the Administration Tool to create and edit objects in the Presentation layer of a repository.
This chapter contains the following topics:
The Presentation layer provides a way to present customized views of a business model to users. Subject areas in the Presentation layer appear as catalogs to client tools that use the Oracle BI Server as an ODBC data source. Subject areas contain presentation tables, columns, hierarchies, and levels.
Even though the Logical SQL requests from Answers and other clients query the presentation tables and columns, the real logic for entities, relationships, joins, and so on is in the Business Model and Mapping layer. The primary function of the Presentation layer is to provide custom names, dictionary entries, organization, and security for different groups of users.
This section contains the following topics:
There are several ways to create subject areas in the Presentation layer. The recommended method is to drag and drop a business model from the Business Model and Mapping layer to the Presentation layer, and then modify the Presentation layer based on what you want users to see. You can move columns between presentation tables, remove columns that do not need to be seen by the users, or even present all of the data in a single presentation table. You can create presentation tables to organize and categorize measures in a way that makes sense to your users.
You can also duplicate an existing subject area and its corresponding business model. See "Duplicating a Business Model and Subject Area" for more information.
Although each subject area must be populated with contents from a single business model, you can create multiple subject areas for one business model. For very large business models, you may want to do this to help users work with the content. Users in Oracle BI Answers can create queries that span multiple subject areas, as long as the subject areas correspond to the same business model.
There are many ways to create multiple subject areas from a single business model. One method is to drag a particular business model to the Presentation layer multiple times, then edit the properties or objects of the resulting subject areas as needed.
For example, if you have a business model called ABC
that contains the Geography
and Products
dimensions, you can drag it to the Presentation layer twice. Two subject areas are created, with the default names ABC
and ABC#1
. You can then edit the subject areas as follows:
ABC
subject area to DEF
, then delete the Geography
presentation hierarchyABC#1
subject area to XYZ
, then delete the Products
presentation hierarchyUsers in Oracle BI Answers can then run queries that span both the DEF
subject area (containing the Products
hierarchy), and the XYZ
subject area (containing the Geography
hierarchy).
You can automatically create one subject area for each logical star or logical snowflake in your business model. Logical stars and logical snowflakes are both composed of a centralized fact table connected to multiple dimension tables. This feature provides another way to create multiple subject areas from a single business model.
To create a subject area for each fact table that is part of a logical star or snowflake, right-click the business model and select Create Subject Areas for Logical Stars and Snowflakes. The new subject areas are automatically created, each containing a fact table and only the dimension tables with which it is associated. This option is available for any business model that contains logical stars or logical snowflakes.
For example, if you choose this option for the SampleApp business model with nine fact tables, nine corresponding subject areas are created, each with one fact table and its associated dimension tables. Subject areas are also created for lookup tables. Figure 11-1 shows exactly how the logical fact tables and dimension tables are modeled in the Presentation layer.
One important reason to use a custom Presentation layer is to make the schema as easy to use and understand as possible. Therefore, users should not be able to view columns that have no meaning to them. The following columns are examples of columns that you might want to remove from the Presentation layer:
By default, presentation columns have the same name as the corresponding logical column in the Business Model and Mapping layer. It is recommended to keep presentation column names and their source logical column names synchronized to reduce maintenance. To do this, ensure that Use Logical Column Name is selected in the Presentation Column dialog.
In some cases, however, you may want a different presentation column name to be shown to users. To do this, change the name of the presentation column in the Presentation Column dialog.
When you change the name of a presentation column, an alias is automatically created for the old name, so compatibility to the old name remains. See "Creating Aliases (Synonyms) for Presentation Layer Objects" for more information about aliases.
Note that you cannot rename a Presentation layer object to a name that is already in use as an alias for an object of the same type.
For each subject area in the Presentation layer, you can decide whether to export any logical keys as key columns to tools that access it. Exporting logical keys is irrelevant to users of Oracle BI Presentation Services, but it may be advantageous for some query and reporting tools. If you decide to export logical keys, make sure that the logical key columns exist in the table folders. In this situation, your business model should use logical key/foreign key joins.
When you select the option Export logical keys in the Subject Area dialog, any columns in the Presentation layer that are key columns in the Business Model and Mapping layer are listed as key columns to any ODBC client. This is the default selection. In most situations, this option should be selected.
Note: If you are using a tool that issues parameterized SQL queries, such as Microsoft Access, do not select the option Export logical keys. This stops the tool from issuing parameterized queries. |
For each subject area in the Presentation layer, you can set an implicit fact column. The implicit fact column is added to a query when it contains columns from two or more dimension tables and no measures. The column is not visible in the results. It is used to specify a default join path between dimension tables when there are several possible alternatives or contexts.
There is no automatic way to synchronize all changes between the Business Model and Mapping layer and the Presentation layer. For example, if you add logical columns to an existing logical table, or edit existing columns, you must manually update the corresponding Presentation layer objects.
However, the Administration Tool can automatically synchronize the name of presentation columns with their corresponding logical column names. To take advantage of this feature, ensure that Use Logical Column Name is selected in the Presentation Column dialog.
In some cases, if there are many changes to a logical table or even to an entire business model, it is easiest to delete the corresponding presentation table or subject area, and then and drag and drop the updated logical objects to the Presentation layer. For this reason, it is best to wait until the Business Model and Mapping layer is relatively stable before adding customizations in the Presentation layer.
In the Presentation layer, subject areas enable you to show different views of a business model to different sets of users. Subject areas have to be populated with contents from a single business model. They cannot span business models.
Typically, subject areas are created automatically by dragging and dropping business models from the logical layer.
To edit the properties of a subject area:
Also, a subject area cannot have the same name as any of its child presentation tables. For example, you cannot have a subject area called Customer that has a Customer table within it.
In most situations, this option should be selected. Many client tools differentiate between key and nonkey columns, and the option Export logical keys provides client tools access to the key column metadata. Any join conditions the client tool adds to the query, however, are ignored, because the Oracle BI Server uses the joins defined in the repository.
Presentation tables and presentation columns appear as folders and columns in Oracle BI Answers. You can customize presentation tables and presentation columns to help users craft queries based on their business needs.
This section contains the following topics:
You can use presentation tables to organize columns into categories that make sense to the user community. A presentation table can contain columns from one or more logical tables. The names and object properties of the presentation tables are independent of the logical table properties.
Typically, presentation tables are created automatically by dragging and dropping logical tables from the logical layer.
To edit the properties of a presentation table:
Also, a presentation table cannot have the same name as its parent subject area. For example, you cannot have a subject area called Customer that has a Customer table within it.
To reorder a table or sort all tables in a subject area:
You can use the Administration Tool to update Presentation layer metadata to give the appearance of nested folders in Answers. To do this, open the Properties dialog for the presentation table that corresponds to the folder you want to nest and add -> to the beginning of the Description field.
For example, to nest the Sales Facts folder in the Facts folder in Answers, place the Sales Facts presentation table directly after the Facts presentation table in the metadata and add -> to the Description field in the Presentation Table - Sales Facts dialog. To nest a second folder called Marketing Facts in the Facts folder, add -> to the Description field for the Marketing Facts presentation table and place it directly after Sales Facts. Only two levels of nesting are supported.
Alternatively, you can prefix the name of the presentation table to be nested with a hyphen and a space and then place the table after the presentation table in which it nests. For example, to nest Sales Facts within Facts, place Sales Facts directly after Facts and change its name to - Sales Facts. When Answers displays the folder name in the left pane, it omits the hyphen and space from the folder name. However, the hyphen and space are visible to ODBC clients.
Note that these techniques do not provide true folder nesting. If you move the parent presentation table, the "child" presentation tables do not move with it. These techniques only provide the appearance of nesting in Answers.
The presentation column names are, by default, identical to the logical column names in the Business Model and Mapping layer. However, you can present a different name by clearing both the Use Logical Column Name and the Custom display name options in the Presentation Column dialog.
To provide a convenient organization for your users, you can drag and drop a column from a single logical table in the Business Model and Mapping layer onto multiple presentation tables. This lets you create categories that make sense to the users. For example, you can create several presentation tables that contain different classes of measures: one containing volume measures, one containing share measures, one containing measures from a year ago, and so on.
Caution: When you drag columns to presentation tables, make sure that columns with the same name or an alias of the same name do not already exist. |
Typically, presentation columns are created automatically by dragging and dropping logical columns from the logical layer.
To edit the properties of a presentation column:
Note: You can also use the Custom display name and Custom description fields to propagate UI hints (labels and tooltips) from an ADF data source to display in Oracle BI Answers. See "Propagating Labels and Tooltips from ADF Business Component Data Sources" for more information about how to set up ADF data source UI hints. |
To reorder a presentation column:
Presentation hierarchies and presentation levels provide an explicit way to expose the multidimensional model in Oracle BI Answers. When presentation hierarchies and levels are defined in the Presentation layer, roll-up information is displayed in the Oracle BI Answers navigation pane, providing users with important contextual information.
Be aware that members in a presentation hierarchy are not visible in the Presentation layer. Instead, you can see hierarchy members in Answers.
Most importantly, users can create hierarchy-based queries using these objects. Presentation hierarchies expose analytic functionality such as member selection, custom member groups, and asymmetric queries.
As with other Presentation layer objects, you can also provide localization information and apply fine-grained access control to presentation hierarchies and levels.
If you have a repository from a previous release, note that presentation hierarchies do not appear in the Presentation layer automatically as part of the RPD upgrade process. You must manually create these objects by dragging logical dimensions from the Business Model and Mapping layer to the appropriate presentation tables.
This section contains the following topics:
To create a presentation hierarchy, you can drag a logical dimension hierarchy from the Business Model and Mapping layer to a table in the Presentation layer. The presentation hierarchy object must be located within a presentation table, unlike in the Business Model and Mapping layer, where logical dimensions are peer objects of tables. Presentation hierarchies are also displayed within their associated tables in Oracle BI Answers, providing a conceptually simpler model.
If a logical dimension spans multiple logical tables in the Business Model and Mapping layer, it is a best practice to model the separate logical tables as a single presentation table in the Presentation layer.
There are several ways to create presentation hierarchies:
You can also drag an individual logical level from the Business Model and Mapping layer to a presentation table to create a presentation hierarchy that is a subset of the logical dimension hierarchy.
For example, suppose a logical dimension has the levels All Markets, Total US, Region, District, Market, and Market Key. Dragging and dropping the entire logical dimension to the corresponding presentation table appears as follows:
However, dragging and dropping the Region level to the same presentation table appears as follows:
For logical dimensions that contain multiple logical hierarchies, multiple separate presentation hierarchies are created. For example, the following logical dimension called Product contains the two hierarchies Category and Country:
In the Business Model and Mapping layer, this logical dimension is modeled as a single dimension object that contains multiple hierarchies. In contrast, the Presentation layer models this dimension as two separate objects: one that displays the drill path through the Category level, and another that shows the drill path through the Country level, as follows:
You can edit presentation hierarchy properties, including setting permissions to apply role-based access control, setting a custom display name for localization purposes, and changing the levels in a hierarchy.
To edit the properties of a presentation hierarchy:
You can add, delete, or reorder display columns. You can also click the Edit button to edit properties for a particular column.
Presentation levels are displayed within hierarchical columns in Oracle BI Answers. Presentation levels are typically created automatically when presentation hierarchies are created.
To edit the properties of a presentation level:
You can add, delete, or reorder display columns. You can also click the Edit button to edit properties for a particular column.
As an alternative to defining display columns in this tab, you can drag a presentation column directly onto the presentation level in the Presentation layer of the Administration Tool. Doing this automatically adds the column as a display column for the presentation level.
Note that the display columns that appear by default when a presentation level is created are based on which key columns for the corresponding logical level have the Use for display option selected.
You can apply access control to restrict which individual users or application roles (groups) can access particular presentation layer objects. For example, you can provide read-only access to a set of presentation tables for a particular application role, read-write access for a second application role, and no access for a third application role.
You can also use the Identity Manager to set up privileges and permissions. The Identity Manager is useful for setting permissions for individual application roles to many objects at once, unlike permissions in the Presentation layer, which you can only set for one object at a time. See "Setting Up Object Permissions" for information about setting up object permissions in the Identity Manager. For a full description of data access security in Oracle Business Intelligence, see Chapter 13.
You can control what level of privilege is granted by default to users and application roles for repository objects without explicit permissions set. To do this, set the DEFAULT_PRIVILEGES parameter in the NQSConfig.INI file. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
To set permissions for presentation layer objects:
Figure 11-2 shows the Permissions dialog.
In online mode only, by default, no users are retrieved, even when Show all users/application roles is selected. Click Set online user filter to specify the set of users you want to retrieve.
The filter is empty by default, which means that no users are retrieved. Enter * to retrieve all users, or enter a combination of characters for a specific set of users, such as A* to retrieve all users whose names begin with the letter A. The filter is not case-sensitive.
Note that any permissions applied to a presentation object also apply to its child objects. For example, permissions applied to a presentation table also apply to any presentation columns, hierarchies, and levels in that table.
You can generate a permission report for individual presentation layer objects to see a summary of how permissions have been applied for that object. To do this, right-click any presentation object and select Permission Report. The Permission Report dialog displays the name and a description of the presentation object, along with a list of users/application roles and their permissions.
There are six ways that you can sort the types and User/Application Role names in the Permissions dialog. To change the sort, click the heading of the first or second column. The first column has no heading and contains an icon that represents the type of user or application role. The second column contains the name of the User/Application Role object. Note that you cannot sort on the columns for individual object permissions (like Read, Read/Write, and so on).
There are three ways to sort by type, and two ways to sort the list of user and application role names. This results in a total of six possible sort results (3 x 2 = 6). The following list shows the sort results available by clicking the type column:
The following list shows the sort results available by clicking the User/Application Role column:
Each presentation object can have a list of aliases (synonyms) for its name that can be used in Logical SQL queries. To create the list of aliases, use the Alias tab in the Properties dialog for the appropriate presentation object (subject area, presentation table, presentation hierarchy, presentation level, or presentation column).
Because Presentation layer objects are often deleted and then re-created during the repository development process, it is best to wait until your logical business model is relatively stable before creating aliases for presentation objects.
You can use this feature to rename presentation objects without breaking references that any existing requests have to the old names, including requests from Answers, Oracle BI Publisher, or other Logical SQL clients. If you are still developing a new repository, you might want to wait until the repository is stable before renaming objects.
For example, consider a subject area called "Sample Sales Reduced" that contains a presentation table called "Facts Other." If you rename the presentation column called "# of Customers" to "Number of Customers," any requests that use "# of Customers" fail. However, if you add "# of Customers" to the list of synonyms in the Alias tab for the "Number of Customers" column, then queries containing both "# of Customers" and "Number of Customers" succeed and return the same results.
Note the following:
To add or delete an alias for a presentation object:
Most data warehouse practitioners create aggregated data tables to dramatically improve the performance of highly summarized queries. These aggregate tables store precomputed results that are aggregated measures (typically summed) over a set of dimensional attributes. Using aggregate tables is a typical technique used to improve query response times in decision support systems.
If you write SQL queries or use a tool that only understands what physical tables exist and not their meaning, then using aggregate tables becomes more complex as the number of aggregate tables increases. The aggregate navigation capability of the Oracle BI Server allows queries to use the information stored in aggregate tables automatically. The Oracle BI Server lets you concentrate on asking the right business question, and then the server decides which tables provide the fastest answers.
Oracle Business Intelligence has an aggregate navigation feature to take advantage of those aggregates in source databases (for more information, see Chapter 10). However, it can be time consuming to create and maintain the data aggregation, as well as load database scripts and the corresponding metadata mappings. For that reason, Oracle Business Intelligence provides an aggregate persistence feature that automates the creation and loading of the aggregate tables and their corresponding Oracle Business Intelligence metadata mappings.
This chapter explains how to set up and use aggregate persistence in Oracle Business Intelligence.
This chapter contains the following topics:
Use the Aggregate Persistence feature to create aggregates for Oracle BI Server queries. The Aggregate Persistence Wizard lets you automate the creation of the aggregate specification script. When you run this script against a live Oracle BI Server, aggregate tables are created and are mapped into the metadata for navigation. When aggregates are persisted, indexes and statistics are created on relational tables for greater performance.
The Aggregate Persistence Wizard creates a SQL script that you can run on a scheduled basis against the Oracle BI Server. In the Aggregate Persistence Wizard, you specify the measures, dimensionality, and other parameters of each star or cube based on your performance design. The script should run after each load of the base-level tables, so that the aggregates are always synchronized with the detail-level data when the load window completes and users begin to run queries.
Aggregate creation runs against the master server in a cluster. It takes some time for the metadata changes to propagate to the slaves. The cluster refresh time is a user-controlled option and results might be incorrect if a query hits a slave server before it is refreshed. It is the administrator's responsibility to set an appropriate cluster refresh interval.
Aggregate persistence requires a dedicated connection pool to create tables or cubes in the target database that will hold the aggregates. Because the Oracle BI repository enables federation, the aggregated target can be on the same database as the detailed source, or in a completely different database. This dedicated connection pool must be created before you run the Aggregate Persistence Wizard, so it can be selected during the appropriate step of the wizard.
The default prefix SA_
is automatically added to dimension (level) aggregates. You can change this default prefix by updating the AGGREGATE_PREFIX
parameter in the AGGREGATE_PERSISTENCE
section of the NQSConfig.INI file:
The target schema used to store aggregates must be appropriately secured and should not allow public access. The schema should have privileges to connect, create, and drop tables and indexes. By default, only users who belong to the BIAdministrators group can manage aggregates.
Do not use aggregate persistence against tables with active Virtual Private Database (VPD) security filters. There is a possibility that the aggregate information might be persisted without the VPD filter, posing a security risk.
When creating aggregates, you must identify which queries would benefit substantially from aggregated data. You will achieve the best results by aggregating to the highest level possible. To identify slow-running queries, perform the following tasks:
Note: It is strongly recommended that you use the direct insertion into a database method for usage tracking. See "Managing Usage Tracking" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information about usage tracking. |
You can use the Aggregate Persistence Wizard to create the SQL file that will be used to create and load aggregate tables and map them into the metadata. The resulting SQL file must be executed against a running Oracle BI Server.
Note: It is strongly recommended that you use the Aggregate Persistence Wizard because it automatically enforces many of the constraints necessary when generating the aggregate specification. However, you can manually write the aggregate Logical SQL as an alternative to using the wizard. Make sure to follow the guidelines described in "Writing the Create Aggregates Specification Manually" if you choose to write your own aggregates specification. |
To use the Aggregate Persistence Wizard:
Typically, when you run the SQL script against the Oracle BI Server, it creates DDL and runs it against the target database schema to create the aggregate tables, then loads them from the source, and finally creates the Oracle BI Server metadata so the aggregate navigation feature can use the new tables.
Alternatively, you can select Generate target DDL in a separate file if you want the DDL to be stored in a separate file from the Oracle BI Server SQL script. When you select this option, two SQL scripts are generated:
Both files are stored in the following location:
Selecting Generate target DDL in a separate file gives you the flexibility to alter the auto-generated DDL and run it independently of the Oracle BI Server. For example, you may want to alter the storage parameter or index settings. When you select this option, you first make manual updates to the DDL file, then you run the DDL file (prepare aggregates), then you run the create aggregates script.
Click Next after you have finished specifying options on the Select File Location screen.
Note that the View Script button is not available during the creation of the first aggregate table block.
Figure 12-1 shows the Select Business Measures screen.
Click Next after you have selected the appropriate measures.
The default join option between the aggregated fact and dimension tables is the primary key defined in the logical level you selected. If the primary key of the level is large and complex, the join to the fact table is expensive, so using a surrogate key is recommended in this case. A surrogate key is an artificially generated key, usually a number. For example, a surrogate key in the level aggregate table would simplify this join, removing unnecessary (level primary key) columns from the fact table and resulting in a leaner fact table.
Using a surrogate key only changes the query response time, not the logical results of the queries. However, generating the surrogate keys can have the side effect of increasing the aggregate table load time. Therefore, the recommended setting is as follows:
See "Adding Surrogate Keys to Dimension Aggregate Tables" for additional information about surrogate keys.
Figure 12-2 shows the Select Levels screen.
Click Next after you have selected the appropriate level of aggregation.
A default aggregate table name is provided, and a prefix is added to the table name. The default prefix for the generated fact table is ag
. For tables created for dimension (level) aggregates, the default prefix is SA_
and can be changed by updating the AGGREGATE_PREFIX
property in NQSConfig.INI. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about changing configuration settings.
Figure 12-3 shows the Select Connection Pool screen.
Click Next after you have provided connection pool information.
See "Running the Aggregate Specification Against the Oracle BI Server" for information about using the SQL file to create aggregate tables.
If you choose not to use the Aggregate Persistence Wizard to create the script file, you can write the file manually. It is recommended that you use the Aggregate Persistence Wizard.
If you do not want the Oracle BI Server to modify your databases during aggregate creation, then you can specify this in the Aggregate Persistence Wizard by selecting the option Generate target DDL in a separate file. The Aggregate Persistence Wizard will create a DDL file (the "prepare aggregates" script) that you can use to create the empty aggregate tables. After this, you need to run the "create aggregates" script to populate the aggregate tables. This option provides some flexibility in case the database access to create tables is restricted. Note that you must run the prepare aggregates script before you run the create aggregates script.
This section contains the following topics:
The following constraints are imposed during the create process:
If the above constraints are not met, then the entire aggregate specification is discarded. In addition, a measure is ignored by the create process if any of the following conditions are true:
Measures that are ignored do not necessarily affect the aggregate specification. The remaining measures are used to create the aggregate.
An aggregate specification is ignored if the name already exists in the output container because level aggregates are scoped by the entire database. However, if different catalogs or schemas are specified for the same fact aggregate name, it is allowed to have multiple facts with the same name but different scope in the same database.
Note that the aggregate specification is discarded if any dimension is not joined to a fact.
All metadata names (except for logical fact columns) are fully qualified. There are two modes of operation: Create and Delete. It is strongly recommended that you place all aggregate specifications under a single Create Aggregates statement.
Follow these guidelines when writing the aggregate specification:
Caution: Any aggregate scripts that are run after the first one should not have a Delete Aggregates statement, or all previously created aggregates are removed. |
For information about creating aggregates with surrogate keys, see the following section.
The join option default between fact and level aggregate tables uses primary keys from the level aggregate. If the primary key of the level is large and complex (composite of many columns), then the join to the fact table is expensive. A surrogate key is an artificially generated key, usually a number. A surrogate key, in the level aggregate table, simplifies this join and removes unnecessary columns (level primary key) from the fact table, resulting in a smaller-sized fact table. Adding surrogate keys to the dimension (level) aggregate tables can simplify joins to the fact tables and might improve query performance. Additionally, a surrogate key makes sure that each aggregate table has a unique identifier.
There might be cases in which a level is shared among multiple fact tables. One fact might use surrogate keys, and another might use primary keys from the dimension aggregate. The following are some options for resolving this issue:
An alternative to specifying the join type for each dimension is to specify if surrogate keys should be used for the entire star. This would result in simpler syntax, but would also restrict the available user options and slow the aggregate creation process.
The following syntax for create/prepare aggregates contains the change for [Using_Surrogate_Key]. The surrogate key option can be specified for each level. If unspecified, the fact and dimension tables are joined using the primary key from the level aggregate.
The changes to the current process are restricted to the physical metadata layer in the repository and the database.
When you use the Using_Surrogate_Key
join option, the following describes the results:
levelName_upgradeID
SK
(check for collisions). This is the surrogate key column for the dimension aggregate. Note that levelName
is truncated if the total number of characters exceeds 18.SMALLUINT
.levelName_upgradeID
SK
. Again, levelName
is truncated if the total number of characters exceeds 18.RCOUNT()
.Before you run the aggregate specification against the Oracle BI Server, you should set an appropriate logging level. Trace logs are be logged to nqquery.log if the logging level is at least 2. The logging events include the aggregate execution plan and the order in which the aggregates are created and deleted. Higher logging levels provide more details about the query and execution plans. Error logs are logged to nqquery.log if the logging level is at least 1, and to nqserver.log regardless of the logging level.
After generating the SQL script file and setting the logging levels, you can run the SQL script using nqcmd. The SQL file must be executed against a running Oracle BI Server. See "Testing and Refining the Repository" for more information about running nqcmd.
After executing the SQL script, aggregates are created and persisted in the Oracle BI Server metadata, as well as in the back-end databases.
The following is a list of some reasons errors can occur:
If there is an error in the creation of any aggregate, then the entire aggregate request is terminated and subsequent aggregates are not created. Aggregates that are already created and checked in remain checked in. If there are errors, you must remove them at the time of the error or at the next ETL run in one of the following ways:
Data access security controls rights to view and modify data. You can use several different methods of data access security with Oracle Business Intelligence: row-level security (implemented either in the repository or in the database), object permissions, and query limits. This chapter provides information about the different types of data access security and explains how to set them up.
Other security tasks, including setting up SSL connections, managing users, groups, and application roles, setting up custom LDAP servers, and managing custom authenticators, are covered in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition. Note that you must create users and application roles before you can implement data access security.
You should plan to implement data access security in the Administration Tool in online mode. If you must perform data access security tasks in offline mode, be sure to read "About Applying Data Access Security in Offline Mode" first.
Data access security auditing is covered by the Oracle Business Intelligence usage tracking feature. See "Managing Usage Tracking" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
This chapter contains the following topics:
After developing your metadata repository, you need to set up your data security architecture to control access to source data. Data access security accomplishes the following goals:
Oracle Business Intelligence supports three types of data security: row-level security, object permissions, and query limits (governors). Object permissions and query limits are set up in the repository and are enforced only by the Oracle BI Server. Row-level data security, however, can be implemented and enforced in both the repository, and in the database.
Even if you choose to implement row-level security in the database, you should still set up object permissions and query limits in the repository. Although it is possible to provide database-level object restrictions on individual tables or columns, objects to which users do not have access are still visible in all clients, even though queries against them will fail. It is better to set up object permissions in the repository, so that objects to which users do not have access are hidden in all clients.
Because a variety of clients can connect to the Oracle BI Server, you cannot implement or enforce data security in Oracle BI Presentation Services. Oracle BI Presentation Services provides an extensive set of security controls that let you set up privileges to access functionality in the Oracle Business Intelligence user interface, as well as dashboards and analyses objects. However, Oracle BI Presentation Services does not provide data access security. If you only implement security controls in Oracle BI Presentation Services, you will be exposed to SQL injection hacker attacks and other security vulnerabilities. You must provide object-level security in the repository to create rules that apply to all incoming clients.
See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information about the security controls available in Oracle BI Presentation Services.
Oracle Business Intelligence security tasks are covered in this guide, in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition, and in other sources. Table 13-1 summarizes the Oracle Business Intelligence security tasks and where to go for more information.
Table 13-1 Security Tasks in Oracle Business Intelligence
You can choose to set up row-level security in the repository, or in the database. Implementing row-level security in the repository provides many benefits, including the following:
Implementing row-level security in the database, in contrast, is good for situations where multiple applications share the same database. Note that even when you design and implement row-level security in the database, you should still define and apply object permissions in the repository.
Although it is possible to set up row-level security in both the repository and in the database, you typically do not enforce row-level security in both places unless you have a particular need to do so.
This section contains the following topics:
Data filters are a security feature that provide a way to enforce row-level security rules in the repository. Data filters are set up in the repository using the Administration Tool and are applied for a particular application role. You typically do not set up data filters if you have implemented row-level security in the database, because in this case, your row-level security policies are being enforced by the database rather than the Oracle BI Server.
Data filters can be set for objects in both the Business Model and Mapping layer and the Presentation layer. Applying a filter on a logical object impacts all Presentation layer objects that use the object. If you set a filter on a Presentation layer object, it is applied in addition to any filters that might be set on the underlying logical objects.
Figure 13-1 illustrates how data filter rules are enforced in the Oracle BI Server. The security rules are applied to all incoming clients and cannot be breached, even when the Logical SQL query is modified.
In this example, a filter has been applied to an application role. When Anne Green, who is a member of that role, sends a request, the return results are limited based on the filter. Because no filters have been applied to the application roles for the Administrator user, all results are returned. The Oracle BI Server-generated SQL takes into account any data filters that have been defined.
You should always set up data filters for particular application roles rather than for individual users.
To set up data filters to apply row-level authorization rules for queries:
Note that if you are in offline mode, no application roles appear in the list unless you have first modified them in online mode. See "About Applying Data Access Security in Offline Mode" for more information.
To create filters, you first add objects on which you want to apply the filters. Then, you provide the filter expression information for the individual objects.
For example, you might want to define a filter like "Sample Sales"."D2 Market"."M00 Mkt Key" > 5
to restrict results based on a range of values for another column in the table.
You can also use repository and session variables in filter definitions. Use Expression Builder to include these variables to ensure the correct syntax.
Table 13-2 Data Filters Tab: Buttons and Options
Option Name | Description |
---|---|
Subject Area | Select a subject area to only view data filters for that individual subject area, or select All to view all filters. |
Total Filters | Lists the total number of data filters that have been defined for this particular user or application role. |
Add | Click Add to open the Browse dialog to add objects on which you want to apply data filters. |
Delete | Select a row and click Delete to remove a filter. |
Browse | Select a row and click Browse to change the object on which the filter is applied. |
Edit Expression (Expression Builder) | Select a row and click Edit Expression to add or change a filter expression for a particular object. You must first add an object before you can apply a filter expression to the row. |
Find | Enter text in the Find field and click Find Down or Find Up to find a particular string. |
To set up Oracle Business Intelligence for row-level security that has been implemented in the database, you can configure your connection pools so that the Oracle BI Server passes the credentials for each user to the database. The database then uses the credentials to apply its own row-level security rules to user queries.
Note that the row-level database security described in this section is different from database authentication, a topic discussed in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition. Rather, row-level database security provides database authorization. In other words, it applies access security to particular rows in the database.
Figure 13-2 illustrates how row-level security is enforced in the database for Oracle Business Intelligence queries. The security rules are applied to all incoming clients and cannot be breached, even when the Logical SQL query is modified. In this example, the results returned are different depending on which user generated the query, even though the SQL query generated by the Oracle BI Server is the same. The returned results are based on rules created and enforced in the database.
In addition to setting up Oracle Business Intelligence for row-level security in the database, you must define your set of users, permissions, and security policies in the database itself. Refer to your database documentation for more information.
To set up Oracle Business Intelligence for row-level access security in the database:
:USER
and :PASSWORD
in the User name and Password fields. The :USER
and :PASSWORD
syntax automatically passes the value of user credentials upon login to the database. Note that the :USER
and :PASSWORD
syntax does not refer to session variables.Figure 13-3 shows the General tab of the Connection Pool dialog.
Note: Alternatively, you can use the database session context to pass end user identity to the database. Use a connection pool script to set up session context. Note that this approach does not rely on database authentication. |
After you have set up row-level security in the database, you still need to set up object permissions in the repository for Presentation layer or other objects. You can also set query limits (governors). See "Setting Up Object Permissions" and "Setting Query Limits" for more information.
You can set up object permissions in your repository to control access to Presentation layer and Business Model and Mapping layer objects. You set object permissions using the Administration Tool. There are two approaches to setting object permissions: you can set permissions for particular application roles in the Identity Manager, or you can set permissions for individual objects in the Presentation layer.
This section explains how to set up object permissions for application roles in the Identity Manager. See "Setting Permissions for Presentation Layer Objects" for information about setting object permissions for individual Presentation layer objects.
Setting up object permissions for particular application roles is useful when you want to define permissions for a large set of objects at one time. You should always set up object permissions for particular application roles rather than for individual users.
Figure 13-4 shows how object permissions restrict what users can see. The security rules are applied to all incoming clients and cannot be breached, even when the Logical SQL query is modified. In this example, an application role to which the Administrator belongs has been granted access to the Booked Amount column, so the Administrator can view the returned results. The user Anne Green is not a member of an application role with access to this object and cannot see the column in the Subject Area pane in Answers. Even if the request SQL is modified, results are not returned for this column because of the application role-based object permissions that have been set.
Note the following:
To set up object permissions for individual application roles:
Note that if you are in offline mode, no application roles appear in the list unless you have first modified them in online mode. See "About Applying Data Access Security in Offline Mode" for more information.
Users can have explicitly granted permissions. They can also have permissions granted through membership in application roles, that in turn can have permissions granted through membership in other application roles, and so on. Permissions granted explicitly to a user have precedence over permissions granted through application roles, and permissions granted explicitly to the application role take precedence over any permissions granted through other application roles.
If there are multiple application roles acting on a user or application role at the same level with conflicting security attributes, the user or application role is granted the least restrictive security attribute. Any explicit permissions acting on a user take precedence over any permissions on the same objects granted to that user through application roles.
Filter definitions, however, are always inherited. For example, if User1 is a member of Role1 and Role2, and Role1 includes a filter definition but Role2 does not, the user inherits the filter definition defined in Role1.
Note that you should always define object permissions for application roles rather than for individual users.
Example 13-1 Permission Inheritance 1
You might have a user (User1) who is explicitly granted permission to read a given table (TableA). Suppose also that User1 is a member of Role1, and Role1 explicitly denies access to TableA. The resultant permission for User1 is to read TableA, as shown in Figure 13-5.
Because permissions granted directly to the user take precedence over those granted through application roles, User1 has the permission to read TableA.
These are the resulting permissions:
READ
permission granted through Role2. The result is that Role2 provides READ
permission on TableA.NO ACCESS
for TableA, READ
for TableB, and READ
for TableC.READ
access to TableA.READ
access for TableA, TableB, and TableC.You can manage the query environment by setting query limits (governors) in the repository for particular application roles. You can limit queries by the number of rows received, by maximum run time, and by restricting to particular time periods. You can also allow or disallow direct database requests or the Populate privilege.
You should always set query limits for particular application roles rather than for individual users.
This section contains the following topics:
Follow the steps in this section to access the Query Limits tab of the User/Application Role Permissions dialog.
To access the query limits functionality in the Administration Tool for a particular application role:
Note that if you are in offline mode, no application roles appear in the list unless you have first modified them in online mode. See "About Applying Data Access Security in Offline Mode" for more information.
You can control runaway queries by limiting queries to a specific number of rows.
To limit queries by the number of rows received:
You can forbid queries during certain time periods, or you can specify the maximum time a query can run on a database.
If you do not select a particular time period, access rights remain unchanged. If you allow or disallow access explicitly in one or more application roles, users are granted the least restrictive access for the defined time periods. For example, if a user is a member of an application role that is explicitly allowed access all day on Mondays, but that user also belongs to another application role that is disallowed access during all hours of every day, then the user has access on Mondays only.
To limit queries by maximum run time, or restrict queries to particular time periods:
You can allow or disallow the ability to execute direct database requests for a particular application role. For the selected role, this privilege overrides the property Allow direct database requests by default for the database object in the Physical layer.
To set the ability to execute direct database requests:
When a criteria block is cached, the Populate stored procedure writes the Cache/Saved Result Set value to the database. You can grant or deny this privilege to particular application roles. For the selected application role, this privilege overrides the property Allow populate queries by default for the database object in the Physical layer.
Any Oracle Marketing Segmentation user who writes a cache entry or saves a result set must be a member of an application role that has been assigned the POPULATE
privilege for the target database. For more information about marketing cache, see the topic about setting up cache for target levels in the documentation for the Oracle Marketing Segmentation application.
To allow or disallow the Populate privilege:
It is strongly recommended that you perform data access security tasks in the Administration Tool in online mode. If you must apply data access security in offline mode, be aware that users and application roles do not appear in the Administration Tool in offline mode unless you have first modified them in the Administration Tool in online mode.
For example, if you open the Administration Tool in offline mode without first making any changes in online mode, you will see zero users and application roles defined. However, if you first modify the users and application roles in online mode (for example, applying object permissions or setting query limits), they will subsequently be available in the Administration Tool in offline mode.
Application roles are created and managed in the policy store using the Oracle WebLogic Administration Console and Fusion Middleware Control. These application roles are displayed in the Administration Tool in online mode so that you can use them to set data filters, object permissions, and query limits for particular roles. The application roles in the policy store are retrieved by the Oracle BI Server when it starts.
In some cases, you may want to proceed with setting up data access security in your repository for application roles that have not yet been defined in the policy store. You can do this by creating placeholder application roles in the Administration Tool, then proceeding with setting up data access security in the repository.
If you create placeholder application roles in the Administration Tool, you must eventually add them to the policy store. Run the Consistency Checker to identify application roles that have been defined in the Administration Tool, but that have not yet been added to the policy store. Be sure to use the same name in the policy store that you used for the placeholder role in the Administration Tool.
Note: Use caution when defining and using placeholder roles. If make changes to a role in offline mode that also exists in the policy store, the changes will be overwritten the next time you connect to the Oracle BI Server. |
To create placeholder application roles in the Administration Tool:
To check for application roles that need to be added to the policy store:
Alternatively, you can check an individual application role by right-clicking the application role in the Identity Manager dialog and then selecting Check Consistency.
The Identity Manager in the Administration Tool provides a list of users that have been defined for your system. The list of users is retrieved from your authentication provider. The set of users is refreshed when the Oracle BI Server is restarted. To see the user list, select BI Repository in the Identity Manager navigation tree, and then select the Users tab in the right pane.
In online mode, by default, no users are retrieved, because the list of users might be very large. Select Action, then select Set Online User Filter to specify the set of users you want to retrieve.
The filter is empty by default, which means that no users are retrieved. Enter * to retrieve all users, or enter a combination of characters for a specific set of users, such as A* to retrieve all users whose names begin with the letter A. The filter is not case-sensitive.
In offline mode, users do not appear in the list unless you have first modified them in the Administration Tool in online mode. Because of this, you might not see any users in the Administration Tool in offline mode.
Double-click a user in the Users list to open the User dialog. You can do the following in this dialog:
This feature is used when you set up a data source connection with no shared connection pool, so that individual user names are passed directly to data sources. Rather than passing the Oracle Business Intelligence user credentials to the data source, you can map individual users to separate data source-specific credentials.
Important: Do not set object permissions, data filters, or query limits for individual users using the Permissions button. Always use application roles rather than individual users to secure data. |
After you have created the repository file, the Physical layer, Business Model and Mapping layer, and Presentation layer, you need to perform several tasks to complete the initial repository setup. These tasks include saving the repository and checking consistency, adding an entry in NQSConfig.INI, and creating data source connections to the Oracle BI Server for client applications. This chapter provides information about these final setup tasks.
This chapter contains the following topics:
If your organization licensed Oracle Scorecard and Strategy Management and if you have the appropriate privileges, then you can use this functionality as part of a default installation with no additional configuration. Oracle Scorecard and Strategy Management also provides the capability to add comments (that is, annotations) or to override the status that is associated with specific dimension values for KPIs, Objectives, and Initiatives. KPI Watchlists offer the capability to add comments or to override statuses for KPIs. To enable these features, you must configure the repository to include a database object for storing the comment and status override information.
The database that you installed for use with Oracle Business Intelligence contains the Business Intelligence Platform schema, which includes required Oracle Scorecard and Strategy Management schema tables. For more information about installing a database for Oracle Business Intelligence and running the Repository Creation Assistant (RCU) to create the required schemas, see Oracle Fusion Middleware Installation Guide for Oracle Business Intelligence.
To configure Oracle Scorecard and Strategy Management for comments and status overrides:
Online mode is strongly recommended for performing data access security tasks, such as the task described in Step 12 of this procedure.
When connecting to an Oracle Database data source, you can include the entire connect string, or you can use the net service name defined in the tnsnames.ora file. If you choose to enter only the net service name, then you must set up a tnsnames.ora file in the following location within the Oracle Business Intelligence environment, so that the Oracle BI Server can locate the entry:
Ensure that the user that you provide has read/write privileges for the ANNOTATIONS and ASSESSMENT_OVERRIDES tables in the Business Intelligence Platform schema.
Use the Identity Manager in the Administration Tool to allow the BISystem application role to execute direct database requests by default for the BSC database object. See "Allowing or Disallowing Direct Database Requests" for more information.
In offline editing, remember to save your repository from time to time. You can save a repository in offline mode even though the business models may be inconsistent.
To determine if business models are consistent, use the Check Consistency command to check for compilation errors. You can check for errors in the whole repository by choosing File > Check Global Consistency, or in a particular logical business model by selecting a business model and then selecting Check Consistency from the right-click menu.
The consistency check analyzes the repository for certain kinds of errors and inconsistencies. For example, the consistency check finds any logical tables that do not have logical sources configured or any logical columns that are not mapped to physical sources, checks for undefined logical join conditions, determines whether any physical tables referenced in a business model are not joined to the other tables referenced in the business model, and checks for existence of a subject area for each business model.
Note: Passing a consistency check does not guarantee that a business model is constructed correctly, but it does rule out many common problems. |
When you check for consistency, any errors or warnings that occur are displayed in a dialog. Correct any errors and check for consistency again, repeating this process until there are no more errors. An error message indicates a problem that must be corrected. A warning message identifies a possible problem. Refer to "Checking the Consistency of a Repository or a Business Model" for more information.
After upgrading from a previous software version and checking the consistency of your repository, you might observe messages that you had not received in previous consistency checks. This typically indicates inconsistencies that had been undetected before the upgrade, not new errors.
When your repository is complete, you can run sample queries against it to test that it is created properly. Correct any problems you find and test again, repeating this process until you are satisfied with the results.
You can use the Oracle BI Server utility nqcmd to run test queries against the repository. The utility connects using an Oracle BI Server ODBC DSN. The Oracle BI Server must be running to use nqcmd.
The nqcmd utility is available on both Windows and UNIX systems.
This utility is intended for sanity testing. For heavier load testing, use Answers or another client. Queries with many thousands of rows will not work with nqcmd.
Although you can use nqcmd to run queries against other ODBC data sources, this section only describes how to use this utility to query the Oracle BI Server.
Before running nqcmd, you must first run bi-init.cmd (or bi-init.sh on UNIX) to launch a command prompt or shell window that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run nqcmd from the resulting shell window with the desired options. For example:
You can pass a text file with SQL statements to the utility (script mode), or you can enter SQL at the command line (interactive mode). Queries are run against the default subject area, unless the object names used in the query are fully qualified.
Table 14-1 lists the command-line arguments for nqcmd.
Table 14-1 Command-line Arguments for nqcmd
Argument | Description |
---|---|
-? | Lists the available command-line arguments. |
-ddata_source_name | The ODBC data source name for the Oracle BI Server to which you want to connect. If you omit this parameter, you are prompted at the command line to enter the DSN. Tip: On Windows, you can see the available local ODBC data source names by going to Control Panel > Administrative Tools > Data Sources (ODBC). Click the System DSN tab to see a list of the available DSNs (for example, AnalyticsWeb_coreapplication). |
-uuser_name | A valid Oracle Business Intelligence user name. |
-ppassword | The corresponding Oracle Business Intelligence user password. The password argument is optional. If you do not provide a password argument, you are prompted to enter a password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide a password argument either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release. |
-ssql_input_file_name | The name and path of a text file that includes your test SQL queries. |
-ooutput_result_file_name | The name and path of a file to which the utility will write the query results. This option is only used with -s. |
-Ddelimiter | The delimiter used in the SQL input file (for example, semicolon (;) or colon (:)). This option is only used with -s. |
-a | Enables asynchronous processing. This option is typically used with -s, when you are passing a SQL input file with multiple SQL statements. |
-z | Enables UTF8 output instead of ACP in the output result file. You might need to include this option to display international characters in query results. |
-utf16 | Enables UTF16 instead of ACP for communication between nqcmd and the Oracle BI ODBC driver. You might need to include this option to display international characters in query results. |
-NotForwardCursor | Disables the ODBC forward only cursor. Including this argument overrides the setting specified in the ODBC DSN. |
-v | Displays the version of the nqcmd utility. |
-SessionVar session_variable_name=session_variable_value | Includes the specified session variable and sets it to the specified value. |
Although -C, -R, -f, -H, -q, and -NoFetch are listed by the utility as available arguments, these options are not typically used.
If you run nqcmd in interactive mode rather than script mode (or in other words, if you do not pass a SQL input file), nqcmd shows a menu of options after you provide the data source name and user credentials. Although many options are shown, you typically only use Q, T, and C against the Oracle BI Server.
Enter Q to type a query at the command line. You must enter the query on a single line, and you cannot use a semicolon as a delimiter. Pressing Enter sends the SQL to the Oracle BI Server.
Enter T to browse presentation tables, or C to browse presentation columns. The utility prompts you for catalog pattern, user pattern, table pattern, and table type pattern before returning results.
For catalog pattern, enter the subject area that contains the tables you want to see. For table pattern, enter the specific table. You can enter percent (%) to see all subject areas or all tables, use % with other characters to replace a set of characters, or use underscore (_) with other characters to replace a single character.
User pattern and table type pattern are not used in queries against the Oracle BI Server, so enter % for these options.
You can also enter D to view a static list of data types supported by the Oracle BI Server.
After you build a repository and it is consistent, you need to upload the repository using Fusion Middleware Control so that all Oracle BI Server instances can access it. Uploading the repository allows the Oracle BI Server to load the repository into memory upon startup and makes the repository available for queries.
See "Configuring Repositories" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for information about how to perform this task.
When the repository is uploaded and you can connect to it, run sample queries against it to test that it is created properly. Correct any problems you find and test again, repeating this process until you are satisfied with the results.
If you want to enable end user client applications to connect to the new repository, you must define an ODBC data source connection to the Oracle BI Server for each application. Note that Oracle BI Presentation Services has the same relationship to the Oracle BI Server as any other client application.
See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for information about creating ODBC data source connections for the Oracle BI Server.
After testing is complete, notify the user community that the data sources are available for querying. Presentation Services users only need to know the URL to type in their browser. Client/server users (for example, users accessing the Oracle BI Server with a query tool or report writer client application) need to know the subject area names, the computer on which the server is running, and their user IDs and passwords. They also need to have the ODBC DSN for the Oracle BI Server installed on their computers, and they may need to know the logical names of repositories if multiple repositories are used and the data source name (DSN) being created does not point to the default repository.
Most repository development is performed on Windows, because the Administration Tool runs only on Windows. When you move to a production system, however, you can choose to run the Oracle BI Server on a Linux or UNIX platform. This chapter describes how to set up data sources for use with Oracle Business Intelligence when the Oracle BI Server is running on Linux or UNIX.
See "System Requirements and Certification" for information about supported Linux and UNIX platforms.
This chapter contains the following topics:
When the Oracle BI Server is running on Linux or UNIX, most data source connections are for query-only access. The Administration Tool is used for importing objects and is a Windows-only tool. Because of this, data source connections for import must be set up on Windows.
Note that some data source connections on Linux and UNIX do support write operations for special functions, like data source connections for write-back, usage tracking, and annotations for Oracle Scorecard and Strategy Management.
When the Oracle BI Server is running on Linux or UNIX and you need to update database object settings (such as the database type) or connection pool settings, you can copy the repository file to a Windows computer, make the changes using the Administration Tool on Windows, and then copy the repository file back to the Linux or UNIX computer.
There are three types of data source connections on Linux and UNIX platforms:
Note that you cannot have a single repository that contains both DataDirect Connect ODBC connections and native ODBC connections.
You can connect to both Oracle Database and DB2 using native gateways (OCI and DB2 CLI, respectively). To configure these connections, install the appropriate database client on the computer running the Oracle BI Server, then edit the user.sh file to set environment variables for the database client.
For Oracle Database, ensure the following:
When connecting to an Oracle Database data source, you can include the entire connect string, or you can use the net service name defined in the tnsnames.ora file. If you choose to enter only the net service name, you must set up a tnsnames.ora file in the following location within the Oracle Business Intelligence environment, so that the Oracle BI Server can locate the entry:
ORACLE_HOME/network/admin
Only certain versions of the Oracle Database Client are supported. See "System Requirements and Certification" for more information.
To connect to Oracle Database or DB2 using native connections:
For an Oracle database using an OCI connection, establish the Web client before you input the tnsnames entry.
Example 15-1 Sample user.sh Entries for Oracle Database and DB2 (32-Bit)
This example shows sample entries in user.sh for Oracle Database and DB2 on various platforms.
Note that the shell script excerpts shown are examples only and are not recommendations for particular software platforms. See "System Requirements and Certification" for information about supported software platforms.
If you are having trouble connecting to an Oracle Database using OCI, check to ensure that the following conditions are true:
ORACLE_HOME/network/admin
For example, in the following example of a tnsnames.ora entry, the corresponding Oracle BI repository connection pool Data Source Name is ITQA2.
The following procedure shows how to check repository database and connection pool settings against the Oracle tnsnames.ora settings.
To check that the repository database and connection pool settings are correct:
Change the values if necessary, then click OK.
ORACLE_HOME/network/admin
This topic applies if both of the following are true:
When using the Update Rowcount functionality in offline mode, the Administration Tool uses local data sources on the client computer, not the server data sources. Therefore, Oracle Database or DB2 clients must be configured on the Windows computer running the Administration Tool so that the following conditions are true:
If these conditions are not true, and if the server and client data sources are pointing at different databases, then erroneous updated row counts or incorrect results appear.
Oracle Business Intelligence provides DataDirect Connect ODBC drivers and driver managers for Linux and UNIX operating systems for connectivity to Microsoft SQL Server, Sybase ASE, and Informix databases.
After Oracle Business Intelligence is installed, the DataDirect Connect ODBC 32-bit drivers are installed in ORACLE_HOME/odbc/lib. The 64-bit drivers are installed in ORACLE_HOME/odbc/lib64.
Note that communication between database clients and servers is typically independent of the widths and data paths. In other words, the 32-bit database drivers can communicate with 64-bit database servers, and vice versa.
You do not need to set the ODBCINI environment variable to set up the DataDirect Connect ODBC drivers. This variable is set automatically during installation.
Refer to "System Requirements and Certification" for information about supported operating systems, databases, and driver versions for the DataDirect Connect ODBC drivers.
This section contains the following topics:
The name of the DataDirect ODBC driver file to connect to a Microsoft SQL Server database is SEmsss23.so (SEmsss23.sl on HP-UX PA-RISC). See "System Requirements and Certification" for supported versions of Microsoft SQL Server.
To configure the DataDirect Connect ODBC Driver to connect to Microsoft SQL Server:
LD_LIBRARY_PATH
.SHLIB_PATH
.LIBPATH
.For example, to set the library path variable for the 32-bit driver on Linux:
IDENTIFIER_QUOTE_CHAR
parameter. Then, replace the value for this parameter with ' ' (single quotes). The default value is double quotes (" ").The name of the DataDirect ODBC driver file to connect to a Sybase ASE database is SEase23.so. See "System Requirements and Certification" for information about supported versions of Sybase ASE.
To configure the DataDirect Connect ODBC Driver to connect to Sybase ASE Database:
LD_LIBRARY_PATH
.SHLIB_PATH
.LIBPATH
.For example, to set the library path variable for the 32-bit driver on Linux:
In the following example, the Driver parameter is set to the 64-bit DataDirect Connect driver, and the data source name is SybaseASE_DB.
The name of the DataDirect ODBC driver file to connect to an Informix database is SEifcl23.so. See "System Requirements and Certification" for information about supported versions of Informix.
To configure the DataDirect Connect ODBC Driver to connect to Informix:
LD_LIBRARY_PATH
.SHLIB_PATH
.LIBPATH
.For example, to set the library path variable for the 32-bit driver on Linux:
In the following example, the Driver parameter is set to the 64-bit DataDirect Connect driver, and the data source name is Informix_DB.
Oracle Business Intelligence bundles UNIX ODBC drivers for some data sources, but not all. For these data sources, including Teradata, you must install your own ODBC driver, then update the user.sh and odbc.ini files to configure the data source.
To configure a database connection using a native ODBC driver:
LD_LIBRARY_PATH
.SHLIB_PATH
.LIBPATH
.For example, to set the library path variable for Teradata on Linux:
Note that for Teradata in particular, you need to put /usr/odbc/lib at the beginning of the library path variable before all other entries. This step is only required for Teradata.
.so
for Solaris and AIX, or .sl
for HP-UX).The following example provides details for a Teradata data source on Solaris, with a data source name of Terav502.
Note that the DefaultDatabase parameter can be left empty only if you have selected the option Require fully qualified table names in the General tab of the Connection Pool dialog for this data source in the Administration Tool.
You can access Oracle RPAS ODBC data sources when the Oracle BI Server is running on an AIX UNIX platform. To configure this database connection, first update the odbc.ini file to configure the Oracle RPAS ODBC data source, then use the rdaadmin tool to define dimension tables as not normalized at run time.
See "Setting Up Oracle RPAS Data Sources" for information about configuring Oracle RPAS ODBC data sources on Windows.
To configure Oracle RPAS ODBC as a data source on AIX UNIX:
The Data Source Name
you provide must match the value entered for DATABASE:
in Step 3 of the following procedure. Also, you must add the line DriverUnicodeType=1
as shown in the preceding example.
To use the rdaadmin client tool to define dimension tables as not normalized at run time:
/bin/rdaadmin
rdaadmin
DATABASE: [
Oracle_RPAS_database_name
]
The database name must match the name given for the Data Source Name in the previous task (for example, RPAS Sample).
ADDRESS:
[ip_address
]
PORT:
[port_number
]
An example port number value is 1707.
CONNECT_STRING: [NORMALIZE_DIM_TABLES=NO
]
This value treats dimension tables as not normalized at run time.
TYPE: []
SCHEMA_PATH: []
REMARKS: []
OPENRDA
should be declared in the Oracle BI Server session on UNIX. For example, declare the variable as follows using the 64 bit rdaadmin client tool:The Oracle BI Server uses the Essbase client libraries to connect to Essbase data sources. You must ensure that the Essbase client libraries are installed on the computer running the Oracle BI Server before you can set up a connection to Essbase data sources. See "System Requirements and Certification" for information about supported versions of the Essbase Client for use with Oracle Business Intelligence.
After you install the Essbase client libraries, ensure that the PATH
environment variable includes the location of the Essbase client driver. For example, to configure access to Essbase client libraries on Linux 32-bit, add the Essbase Client Libraries directory to LD_LIBRARY_PATH
:
For example:
Set the appropriate variable for your operating system, using the appropriate syntax. For example, update LIBPATH
on AIX, SHLIB_PATH
on HP-UX Itanium, and LD_LIBRARY_PATH_64
on Solaris 64-bit.
Note: The following additional steps are required for HP-UX Itanium systems:
|
You also need to ensure that an additional environment variable is set appropriately (either ESSBASEPATH
or ARBORPATH
, depending on your client version). For more information, see Oracle Hyperion Enterprise Performance Management System Installation and Configuration Guide (or the equivalent title for your client version).
Finally, you need to update opmn.xml with the appropriate Essbase client library information. See "Updating Essbase Information in opmn.xml" for more information.
IBM DB2 Connect does not support the option of automatically disconnecting when an application using it receives an interrupt request.
When the native database uses DB2 Connect workstation, then you must change the setting of the parameter INTERRUPT_ENABLED
. This parameter must be changed on any Oracle Business Intelligence computer if the database or any data source resides on IBM DB2 on a mainframe running z/OS or s/390 platforms.
Note: If IBM DB2 is used, DB2 Connect must be installed on the Oracle BI Server computer. The version of DB2 Connect must match the most recent DB2 instance that was configured as a data source. |
To configure the INTERRUPT_ENABLED parameter:
INTERRUPT_ENABLED
parameter using the following syntax:where:
local_dcsname
represents the local name of the host or database (database alias name)target_dbname
represents the name of database on the host or database systemNote: Be sure to use backslashes to pass the quotation marks as part of the string. |
The following example uses an OS390 DB2 instance:
This chapter provides information about topics related to managing your repository files, including comparing and merging repositories, equalizing objects, and querying and managing metadata.
This chapter contains the following topics:
This section explains how to use the Compare repositories dialog in the Administration Tool. This feature enables you to compare all repository objects in two different repositories.
If you are using an Oracle BI Applications repository and have customized its content, you can use this option to compare your customized repository to a new version of the repository received with Oracle BI Applications.
See "Merging Repositories" for more information about merging your customized Oracle BI Applications repository with a new version of the repository.
To compare two repositories:
The repository that you open in this step is referred to as the current repository. See "Using Online and Offline Repository Modes" for instructions on opening a repository.
Table 16-1 lists and describes the values in the Change column.
Table 16-1 Compare Repositories Dialog: Change Column
Change | Description |
---|---|
Created | Object was created in the current repository and does not exist in the original repository. |
Deleted | Object exists in the original repository but has been deleted from the current repository. |
Modified | Object exists in the original repository but has been modified in the current repository. |
Table 16-2 lists and describes some of the buttons in the Compare repositories dialog.
Table 16-2 Compare Repositories Dialog: Buttons
Button | Description |
---|---|
Filter | Opens the Comparison Filter dialog to enable you to filter the objects that appear in the Compare repositories dialog by type of change and type of object. You can specify what you want to appear and what you want to be hidden. If you select Group created and deleted objects, the tool filters out the child objects of created and deleted objects, so that only the parent objects are shown. By default, all items are shown. |
Find | Search by an object Name and Type (such as Initialization Block). |
Select | Enables you to select a repository to compare with the current repository. |
Find Again | Search again for the most recent Find value. |
Diff | Differences between the current repository and the original repository. |
Save | Saves a list of the differences between the two repositories. |
Stats | Provides the number of changes by Change type. |
View 1 | Opens an object in the original repository in read-only mode. |
Edit 2 | Opens an object in the current repository in read/write mode. |
Equalize | Opens the Equalize Objects dialog so that you can model changes to the upgrade ID of the objects. See "Equalizing Objects" for more information. |
Create Patch | Creates a patch file that contains the differences between the repositories. See "Performing Patch Merges" for more information. |
Mark | Marks the object you select. Boxes appear around created and modified objects. To remove marks, from the File menu, choose Turn off Compare Mode. |
This option enables you to remove marks applied to objects while using the Compare Repositories and Merge Repositories options. The Turn off Compare Mode option is only available after you have clicked Mark during the File > Compare action. If no repository object is marked, this option is not available.
To enable the Turn off Compare Mode option:
If you have objects in two repositories that have the same name but different upgrade IDs, you may want to treat them as the same object. To accomplish this, you can use the equalizerpds utility to equalize the objects by giving them both the same upgrade ID. Alternatively, you can equalize objects as part of the merge process.
You can also use the Equalize Objects dialog (available from the Compare repositories dialog) to preview what the repository will look like after you run the equalizerpds utility.
This section contains the following topics:
Objects may need to be equalized because the Administration Tool tracks the history of each repository object using the upgrade ID of the object. The upgrade ID is a unique identifier for each object. Sometimes, the upgrade ID can change because of user actions or during merge. When this occurs, and a subsequent comparison is done, the Administration Tool treats the new upgrade ID as a new object, and the missing original upgrade ID as a deleted object.
For example, assume you have two identical repositories. In one repository, delete a presentation column, then re-create it again. When you compare the two repositories using the Compare repositories dialog, there are two entries for the presentation column: one that shows the old object as deleted, and one that shows the new object as created. Without using the Compare repositories dialog, it is hard to tell that this action occurred, because the Administration Tool typically shows only the object name and properties, not the underlying upgrade ID.
It is very useful run the equalizerpds utility on your repositories before merging them to equalize your changes. Equalizing any opposing changes (such as a column that has been duplicated, and then renamed) cleans up the underlying upgrade IDs and prevents unintended renaming during the merge.
When you equalize objects, you can lose track of object renames because legitimate object renames become different objects. In other words, intentional renames you did in the repository might be changed to different upgrade IDs, so subsequent merges erroneously treat the renamed object as a new object. To avoid this situation, enter the before and after names of intentionally renamed objects in a rename map file that you then pass to the utility. The equalizerpds utility uses the information in the file to ensure that the original IDs are used in the renamed current objects.
Tip: You can view the upgrade ID for repository objects using the Query Repository dialog. To do this, follow these steps:
|
The Equalize Objects dialog gives you a preview of what your repository will look like if you run the equalizerpds utility on it. The Equalize Objects dialog provides a convenient way to compare changes related to objects that have the same name, but it does not persist any of the changes. Note that using the Equalize Objects dialog can be a very slow process for larger repositories.
To view and use the Equalize Objects dialog:
If no changes can be automatically equalized, nothing appears in the table, and the OK button remains disabled.
After you make a manual selection, the Automatic button is disabled.
The Automatic button is enabled after all manual selections are removed.
Figure 16-2 Equalize Objects Dialog
You can use the equalizerpds utility to equalize the upgrade ID of objects in two separate repositories. If objects have the same upgrade ID, they are considered to be the same object. The utility compares upgrade IDs from the first repository (typically the original repository) with upgrade IDs from the second repository (typically the modified repository). Then, the utility equalizes the upgrade IDs of objects with the same name, using the upgrade ID from the original repository.
Before running equalizerpds, you must first run bi-init.cmd (or bi-init.sh on UNIX systems) to launch a command prompt that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run equalizerpds from the resulting command prompt with the desired options. You can run the utility from this directory with no arguments or parameters to see usage information.
The utility takes the following parameters:
Where:
rename_map_file
is a text file containing a list of objects that were renamed and that you want to equalize. The format is a tab-separated file with the following columns:
For example, to include a logical column in the map file that was renamed from Name1 to Name2, provide the following:
Do not cut and paste this example as the foundation for your own file, because the tab separators might not get copied properly. Create a new file with proper tabs.
See "About Values for TypeName" for more information about valid TypeName values.
equalStringSet
is a set of characters that you want to treat as equal.
Note that the original_repository_password
and modified_repository_password
arguments are optional. If you do not provide these password arguments, you are prompted to enter the passwords when you run the command (password1 and password2). To minimize the risk of security breaches, Oracle recommends that you do not provide password arguments either on the command line or in scripts. Note that the password arguments are supported for backward compatibility only, and will be removed in a future release.
For example:
In this example, original.rpd is compared with modified.rpd, the upgrade IDs are equalized using the upgrade IDs from original.rpd, and the final result is written to modified_equalized.rpd.
Note: Be sure to provide the full pathnames to your repository files, both the input files and the output file, if they are located in a different directory. |
Table 16-3 shows the available object types and their corresponding values for TypeName.
Table 16-3 TypeName Values
Object Type | Value for TypeName |
---|---|
Database | DATABASE |
Connection Pool | CONNECTION POOL |
Physical Catalog | CATALOG |
Physical Schema | SCHEMA |
Physical Display Folder | PHYSICAL DISPLAY FOLDER |
Physical Table | TABLE |
Physical Key | TABLE KEY |
Physical Foreign Key | FOREIGN KEY |
Physical Column | COLUMN |
Physical Complex Join | JOIN |
Physical Hierarchy | HIERARCHY |
Physical Level | PHYSICAL LEVEL |
Cube Column | COLUMN |
Cube Table | CUBE TABLE |
LDAP Server | LDAP SERVER |
Custom Authenticator | CUSTOM AUTHENTICATOR |
Variable | VARIABLE |
Application Role | SECURITY ROLE |
User | USER |
User Database Signon | USER DATABASE SIGNON |
Project | PROJECT |
Business Model | SUBJECT AREA |
Logical Dimension | DIMENSION |
Logical Level | LEVEL |
Logical Display Folder | LOGICAL DISPLAY FOLDER |
Logical Table | LOGICAL TABLE |
Logical Source Folder | LOGICAL SOURCE FOLDER |
Logical Table Source | LOGICAL TABLE SOURCE |
Logical Column | ATTRIBUTE |
Logical Join | ROLE RELATIONSHIP |
Logical Key | LOGICAL KEY |
Logical Foreign Key | LOGICAL FOREIGN KEY |
Presentation Catalog | CATALOG FOLDER |
Presentation Table | ENTITY FOLDER |
Presentation Column | FOLDER ATTRIBUTE |
Presentation Hierarchy | PRESENTATION HIERARCHY |
Presentation Level | PRESENTATION LEVEL |
Catalog Link | CATALOG LINK |
Target Level | CUSTOMER TYPE |
List Catalog | LIST CATALOG |
Qualified Item | QUALIFIED ITEM |
Qualifying Key | QUALIFYING KEY |
Sampling Table | SAMPLING TABLE |
Segmentation Catalog | SEGMENTATION CATALOG |
You can use the Merge Repository Wizard in the Administration Tool to merge repositories (RPD files). There are three types of merges:
See also Appendix D, "Merge Rules" for additional information about how repository objects are merged.
This section contains the following topics:
You can use the Administration Tool to merge different repositories. This section describes how to use the full (standard) repository merge feature in the Administration Tool.
This section contains the following topics:
The merge process typically involves three versions of an Oracle BI repository: the original repository, modified repository, and current repository. The original repository is the original unedited file (the parent repository), while the modified and current repository are the two changed files you want to merge. The current repository is the one currently open in the Administration Tool.
During the merge process, the Administration Tool compares the original repository with the modified repository and the original repository with the current repository. Conflicts occur when there are conflicting changes resulting from the two comparisons. For example, a conflict occurs if you rename object A to B in the modified repository, but you rename object A to C in the current repository.
The Merge Repository feature lets you decide on an object-by-object basis which changes you want to keep in the final merged repository. If there are no conflicts, merging is automatic.
There are two types of full merge:
This section explains how to use the Administration Tool to perform a full repository merge with a common parent. Typically, this approach is used when you have an original parent repository and would like to merge the changes made to objects in two modified repository versions (current and modified). Objects that do not exist in the current repository are created as new objects.
To merge two versions of an Oracle BI repository file with a common parent:
Figure 16-5 shows the Merge Repository Wizard.
See "Equalizing Objects" for more information about equalizing.
Figure 16-6 shows the Define Merge Strategy screen.
To make decisions about whether to include or exclude objects from the merged repository, choose Current or Modified from the Decision list. Choose Current to keep the change for the selected object in the current repository, or choose Modified to keep the change for the selected object in the modified repository.
When you select an object in the decision table, the read-only text box below the decision table describes what changes were made to that object in the current repository. In addition, the tree panels at the bottom of the dialog show the affected objects for the selected row. Alternatively, you can select an object in one of the tree views to automatically highlight the corresponding row in the decision table.
The Modified option in the Decision list displays a suffix that indicates whether the object in question will be added to or deleted from the merged repository. Modified (A) indicates that the object will be added, and Modified (D) indicates that the object will be deleted.
The type of conflict is displayed in the Description column of the Conflicts table. The decision choices you can make depend on the type of conflict shown in this column. The following list shows example results for different types of conflicts:
Click the option for the value you want to retain in the merged version of the repository. For some properties, such as aliases, you can choose the Merge Choices option to merge the properties rather than choose one over the other. This option is only available if the properties can be merged.
Note: You typically do not need to make merge decisions regarding objects that have been added to or deleted from the Modified repository. However, you can view change statistics for this merge to see a summary of changes, including objects that have been added to or deleted from Modified. See Table 16-4 for more information about this feature. |
After you make a merge decision, the row for that decision in the table changes from red to black. When all rows have a value in the Decision field, the Finish button is enabled.
Click Finish.
Table 16-4 lists and describes the elements in the Define Merge Strategies screen.
Table 16-4 Elements in the Define Merge Strategies Screen
Element | Description |
---|---|
Conflicts table | The Conflicts table includes the following columns:
For objects with properties that are modified in each repository, a sub-table (grid) is displayed with details of the changed properties. The grid includes the following columns:
|
Show qualified names | When selected, shows fully qualified names for objects in the decision table (for example, "Paint"..."Month Year Ago fact"). Note: When the Show qualified names option is selected, some of the object names can be too long to fit into the cells of the decision table. Use the mouse to hover over the truncated name to see the full name of the object or property. Alternatively, you can manually resize columns, or double click the column separator to expand the column to the width of the object name. |
Check consistency of the merged RPD | When selected, runs a consistency check before saving the merged file. |
 | Saves a file containing interim changes in the Repository subdirectory so that you can stop work on the merge and continue it later. After saving the changes (decisions), close the Merge repositories dialog by clicking Cancel. Note: If there are a large number of decisions, you can save time by saving the merge decisions to a CSV file, opening the file in Excel or a text editor, and then modifying the merge decisions manually. Then, you can load the updated merge decisions file in the Define Merge Strategies screen. |
 | Loads a saved decisions file from the Repository subdirectory so that you can continue processing a repository merge. |
Find by Name or Type | Searches by an object Name and Type (such as Initialization Block). |
Find Again | Searches again for the most recent Find value. |
View Change Statistics | Shows statistics for this merge, such as the number of objects deleted from the Modified repository, the number of objects that were changed in both repositories, and so on. |
Details | Shows the text in the read-only text box below the decision table in a separate window. |
View Original/Modified/ Current repository | Shows properties for the affected object in the selected repository. |
This section explains how to use the Administration Tool to perform a full repository merge without a common parent. Use this method when you want to import objects from one repository (the modified repository) into another (the current repository).
Note: In the repository you choose to define as current, make sure that the Presentation layer references any Physical layer or Business Model and Mapping layer objects that you want to keep. Objects like business models, databases, and connection pools in the current repository that are not referenced by any Presentation layer objects are discarded during the merge. If necessary, you might want to add a placeholder subject area that references the objects before you perform the merge to ensure the desired objects are kept. See Appendix D, "Merge Rules" for more information about which objects are retained or discarded during the merge process. |
To merge two versions of an Oracle BI repository file without a common parent:
Refer to Figure 16-6 to see the Define Merge Strategy screen. Refer to Table 16-4 for information about additional options in the Define Merge Strategy screen, such as saving merge decisions to a comma-separated values (.csv) file.
After you make a merge decision, the row for that decision in the table changes from red to black. When all rows have a value in the Decision field, the Finish button is enabled.
Oracle Business Intelligence provides the capability of generating an XML patch file that contains only the changes made to a repository. This patch can be then applied to the old (original) version of the repository to create the new version. This is very useful for development-to-production scenarios, and can also be used for Oracle BI Applications customers to upgrade their repository.
This section explains how to generate a patch that contains the differences between two repositories, and then apply the patch to a repository file.
This section contains the following topics:
In a patch merge, you create a patch that contains the differences between the current repository file and the original repository file. Then, you apply the patch file to the modified repository file.
In a development-to-production scenario, you have an original parent file, a current file that contains the latest development changes, and a modified file that is the deployed copy of the original file.
To generate a patch, you open the current file and select the original file, then create the patch. Figure 16-7 shows how to create a patch in a development-to-production scenario.
To apply the patch, you open the modified file and select the original file, then apply the patch. Figure 16-8 shows how to apply a patch in a development-to-production scenario.
In an Oracle BI Applications repository upgrade scenario, the current file is the latest version of the repository shipped by Oracle, and the original file is the original repository shipped by Oracle. The modified file is the file that contains the customizations you made to the original file.
To generate a patch, you open the current file and select the original file, then create the patch. Figure 16-7 shows how to create a patch in an Oracle BI Applications repository upgrade scenario.
Figure 16-9 Oracle BI Applications Repository Upgrade: Creating the Patch
To apply the patch, you open the modified file and select the original file, then apply the patch. Figure 16-10 shows how to apply a patch in an Oracle BI Applications repository upgrade scenario.
Use the Administration Tool to generate a patch that contains the differences between two repositories.
To generate a patch using the Administration Tool:
Use the Administration Tool to apply a patch that contains the differences between two repositories.
Note that you can apply patches from a larger multiuser repository to a smaller subset extract repository. In this case, only the changes in the subset are applied from the patch.
To apply a patch:
Figure 16-11 shows the Merge Repository Wizard.
You can also apply a patch using the patchrpd utility. This feature is especially useful when you want to patch repositories on Linux and UNIX systems where the Administration Tool is not available.
Note that unlike the Administration Tool patch feature, patchrpd does not display or resolve conflicts. If a conflict is detected, patchrpd displays a warning and exits.
Before running patchrpd, you must first run bi-init.cmd (or bi-init.sh on UNIX) to launch a command prompt or shell window that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run patchrpd from the resulting shell window with the desired options, as follows:
Where:
modified_rpd_password
is the repository password for the modified repository, also called the customer or customized repository.
The password argument for the modified repository is optional. If you do not provide a password argument for the modified repository, you are prompted to enter a password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide a password argument either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.
modified_rpd_pathname
is the name and location of the modified repository.
original rpd_password
is the repository password for the original repository.
The password argument for the original repository is optional. If you do not provide a password argument for the original repository, you are prompted to enter a password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide a password argument either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.
original_rpd_pathname
is the name and location of the original repository.
xml_patch_file_pathname
is the name and location of the XML patch file you want to apply.
output_rpd_pathname
is the name and location of the RPD output file you want to generate.
schema_location
is the name and location of the Oracle BI Server XML schema. If you do not specify a location, patchrpd assumes the schema file is in the default location of ORACLE_HOME/bifoundation/server/bin/xudml1.xsd.
-8 specifies UTF-8 encoding.
For example:
This example applies a patch called patch.xml to the customer.rpd repository, and then generates an output repository called patched.rpd.
You can use repository queries to help manage repository metadata in the following ways:
For example, you might want to run a report before making any physical changes in a database that might affect the repository. You can save the report to a file in comma-separated value (CSV) or tab-delimited format.
This section contains the following topics:
You can query for objects in the repository using the Query Repository tool. You can also construct a filter to filter the results, save a query, run a previously saved query, or create new repository objects.
To query a repository:
Table 16-5 lists the options available in the Query Repository dialog.
Table 16-5 Query Repository Options
Option | Description |
---|---|
Name | Use this option to search by object name. You can use an asterisk (*) wildcard character to specify any characters. The wildcard character can represent the first or last characters in the search string. Searches are not case sensitive. |
Type | Select a type from the list to narrow your search to a particular type of object, or select All Types to query all objects. The list does not contain objects such as aggregate rules, logical source folders, privilege packages, and other objects that are considered internal objects. |
Filter | Click Filter to create or edit a filter for your query. After you create a filter, the filter criteria appear in the box to the left of the button. See "Constructing a Filter for Query Results" for more information. |
Query | Click Query when you are ready to submit your query. |
Save Query As | Click Save Query As to save your query to run again later. Enter the name of the saved query in the Save query as field, then click Save. |
Saved Queries | Click Saved Queries to view or run previously saved queries. You can also delete saved queries. To run a previously saved query, select the row that contains the query you want to run and click Select, or double-click the row. The Saved Queries option is only available if you have previously saved queries. |
Edit | After executing a query, select an object from the Results list and click Edit to edit an object in the list of query results. Not all repository objects can be edited from the results list (for example, privilege objects and user database sign-on objects). If an object cannot be edited from the results list, Edit is not available. |
Delete | After executing a query, select one or more objects in the Results list and click Delete to delete the objects. After you confirm the deletion, the objects are deleted from your metadata repository. |
New | Use this option to create new repository objects. First, select the type of object you want to create from the Type list, then click New. This option is not available when All Types is selected. The dialogs that appear depend on the object type that you select. For more information, refer to the sections that describe how to create that object. Note that if you choose to create a new logical dimension, you must choose whether to create a dimension with a level-based hierarchy, or a parent-child-hierarchy. Similarly, if you choose to create a new Oracle OLAP hierarchy, you must select whether you want to create a level-based or value-based hierarchy. |
Show Parent | After executing a query, select an object in the Results list and click Show Parent to view the parent hierarchy of an object. If the object does not have a parent, a message appears. You cannot use Show Parent with users or application roles. In the Parent Hierarchy dialog, you can edit or delete objects. Note that if you delete an object from this dialog, any child objects of the selected object are also deleted. |
Mark | After executing a query, select one or more objects in the Results list and click Mark to mark the selected objects. To unmark the objects, select them and click Mark again. Marking objects makes them easier to visually identify as you develop metadata. |
Set Icon | After executing a query, select one or more objects in the Results list and click Set Icon to select a different icon for the objects. You can set special icons for objects to help visually identify them as having common characteristics. For example, you might want to pick a special icon to identify columns that will be used only by a certain user group. To change the icons back to the original icons, select the objects and click Set Icon again. Then, select Remove associated icon and click OK. |
GoTo | After executing a query, select one or more objects in the Results list and click GoTo to go to the objects in the Administration Tool view of the repository. The selected objects appear highlighted in the Physical, Business Model and Mapping, or Presentation layer. Note that the Query Repository dialog closes when you choose this option. |
Save | After executing a query, click Save to save query results to an external file. Then, in the Save As dialog, provide a name, file type, and encoding value for the file, then click Save. |
Columns | Click Columns to add additional columns of information to the results. Then, select the columns you want from the list and click OK. Note that in the Select Columns dialog, you can re-order the columns by selecting a checked column and clicking Up or Down. |
Show Qualified Name | Use this option to display the fully qualified name of the objects found by the query. For example, if you query for logical columns, the default value in the Name column of the Results list is the column name. However, if you select Show Qualified Names, the value in the Name list changes to |
Use the Query Repository Filter dialog to filter the results in the Results list of the Query Repository dialog.
The Query Repository Filter dialog contains five columns: an Item column and its operator or selection column, a Value column and its operator or selection column, and a Delete column that lets you delete the selected filter.
To construct a filter:
In the Query Repository dialog, select an item in the Results list or select an item from the Type list, and then click Filter.
You can construct multiple filters. When you do, the Operator field becomes active. When the Operator field is active, you can set AND
and OR
conditions.
Note: If you are constructing a complex filter, you might want to click OK after adding each constraint to verify that the filter construction is valid for each constraint. |
Example 16-1 and Example 16-2 show how to create different kinds of filters.
Example 16-1 Viewing All Databases Referenced In a Business Model
The following example shows how to create a filter that lets you view all databases referenced in a particular business model.
In the Query Repository dialog, select Database from the Type list, and then click Filter.
Example 16-2 Viewing All Presentation Columns Mapped to a Logical Column
The following example shows how to create a filter that lets you view all presentation columns mapped to a particular logical column.
Example 16-3 Nested Queries
The following example shows nested queries, where the filter itself is another query.
The Query Related Objects feature enables you to query objects related to one or more objects that you select from the Physical, Business Model and Mapping, or Presentation layer.
You can only use this feature with objects selected from the same layer. For example, you cannot query objects related to both a Physical layer object and a Business Model and Mapping layer object.
To query objects related to a selected object:
After you select an object type, the Query Related Objects dialog is displayed, showing the objects related to your source objects in the Name list.
Table 16-6 lists the options available in the Query Repository dialog.
Table 16-6 Query Related Objects Options
Option | Description |
---|---|
Mark | Select one or more objects in the Name list and click Mark to mark the selected objects. To unmark the objects, select them and click Mark again. Marking objects makes them easier to visually identify as you develop metadata. |
Set Icon | Select one or more objects in the Name list and click Set Icon to select a different icon for the objects. You can set special icons for objects to help visually identify them as having common characteristics. For example, you might want to pick a special icon to identify columns that will be used only by a certain user group. To change the icons back to the original icons, select the objects and click Set Icon again. Then, select Remove associated icon and click OK. |
Show Qualified Name | Use this option to display the fully qualified name of the objects found by the query. For example, if you query for logical columns, the default value in the Name list is the column name. However, if you select Show Qualified Names, the value in the Name list changes to |
Show Parent | Select an object in the Name list and click Show Parent to view the parent hierarchy of an object. If the object does not have a parent, a message appears. You cannot use Show Parent with users or application roles. In the Parent Hierarchy dialog, you can edit or delete objects. Note that if you delete an object from this dialog, any child objects of the selected object are also deleted. |
GoTo | Select one or more objects in the Name list and click GoTo to go to the objects in the Administration Tool view of the repository. The selected objects appear highlighted in the Physical, Business Model and Mapping, or Presentation layer. Note that the Query Related Objects dialog closes when you choose this option. |
Each repository has a password that is used to encrypt its contents. You create the repository password when you create a new repository file, or when you upgrade a repository from a previous release of Oracle Business Intelligence.
You can change the repository password using the Administration Tool in offline mode. You cannot change the repository password when the repository is open in online mode.
After you change the repository password in the Administration Tool, you must also publish the updated repository and specify the new password in Fusion Middleware Control. Specifying the repository password in Fusion Middleware Control enables the password to be stored in an external credential store, so that the Oracle BI Server can retrieve it to load the repository.
Note: If you are using the SampleAppLite.rpd sample repository, you must change the default password the first time you open it in the Administration Tool, for security reasons. See "About the SampleApp.rpd Demonstration Repository" for more information about the sample repository. |
To change the repository password in the Administration Tool and Fusion Middleware Control:
Make sure to specify the password that has been set in the repository. If the passwords do not match, the Oracle BI Server fails to start, and an error is logged in nqserver.log.
See "Configuring Repositories" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about the repository options in Fusion Middleware Control.
This chapter describes Expression Builder and provides instructions for creating constraints, aggregations, and other definitions within a repository. It also describes the various utilities and wizards contained in the Administration Tool.
This chapter contains the following topics:
You can use the Expression Builder dialogs in the Administration Tool to create constraints, aggregations, and other definitions within a repository. Expression Builder provides automatic color highlighting and other formatting enhancements to make expressions easier to build and to read.
The expressions you create with Expression Builder are similar to expressions created with SQL. Except where noted, you can use all expressions constructed with Expression Builder in SQL queries against the Oracle BI Server.
For information about using SQL with Expression Builder, and for information about the SQL functions supported by the Oracle BI Server, see Appendix C, "Logical SQL Reference."
This section contains the following topics:
You can access Expression Builder from the following dialogs:
Figure 17-1 shows Expression Builder.
The dialog contains the following sections:
You can use the Find field below the middle pane to display specific values in the middle pane.
You can use the Find field below the lower pane to display specific values in the lower pane.
When creating expressions in Expression Builder, you select a category from the Category pane and values are displayed in the lower panes depending on the value selected in the Category pane. When you type a value into a Find field, it filters out the non-matching strings and displays matching strings only. After typing search criteria in a Find field, you can move up and down the list using the scroll bar, and use the tab key to move between the Find fields. To return to the full list of results, delete the string from the Find field.
Note that you can only enter text in the Find field that matches the text of one of the available strings. For example, if the available string options begin with A11, A12, and A13, the text you enter in the Find field must begin with A.
When you locate the building block you want to insert into the expression, select it and do one of the following:
The building block you selected appears in the expression in the edit pane.
When you first open Expression Builder, the items are not sorted. When selected, the Sort Panes option sorts all items in the panes. As soon as you select this option, the panes are automatically redrawn without changing the contents of the panes or your filtering criteria.
The toolbar is located at the bottom of Expression Builder. Table 17-1 describes each button and its function in an expression.
Table 17-1 Expression Builder Toolbar
Operator | Description |
---|---|
+ | Plus sign for addition. |
- | Minus sign for subtraction. |
* | Multiply sign for multiplication. |
/ | Divide by sign for division. |
|| | Character string concatenation. |
(| Open parenthesis. |
) | Close parenthesis. |
> | Greater than sign, indicating values higher than the comparison. |
< | Less than sign, indicating values lower than the comparison. |
= | Equal sign, indicating the same value. |
<= | Less than or equal to sign, indicating values the same or lower than the comparison. |
>= | Greater than or equal to sign, indicating values the same or higher than the comparison. |
<> | Not equal to, indicating values higher or lower, but different. |
AND |
|
OR |
|
NOT |
|
, | Comma, used to separate elements in a list. |
The categories that appear in the Category pane vary, depending on the dialog from which you accessed Expression Builder. Table 17-2 describes the categories that may appear.
Table 17-2 Expression Builder Categories in the Category Pane
Category Name | Description |
---|---|
Aggregate Content | Contains the available aggregate functions. Aggregate sources must use one of the functions listed here to specify the level of their content. |
Time Dimensions | Contains the time dimensions configured in the business model. If no time dimensions exist in a business model, or if time dimensions are not pertinent to a particular Expression Builder, the Time Dimensions category is not displayed. When you select the Time Dimensions category, each configured time dimension appears in the middle pane, and each level for the selected dimension appears in the lower pane. |
Logical Tables | Contains the logical tables configured in the business model. If logical tables are not pertinent to a particular Expression Builder, the Logical Tables category is not displayed. When you select the Logical Tables category, each logical table in the business model appears in the middle pane, and each column for the selected logical table appears in the lower pane. |
Value Based Dimensions | Contains the dimensions with parent-child hierarchies configured in the business model. If no dimensions with parent-child hierarchies exist in a business model, or if dimensions with parent-child hierarchies are not pertinent to a particular Expression Builder, the Value Based Dimensions category is not displayed. When you select the Value Based Dimensions category, the configured dimensions with parent-child hierarchies appear in the middle pane. No lower pane exists for this category. |
Logical Levels | Contains the related logical levels. If level-based dimensions are not pertinent to a particular Expression Builder, the Logical Levels category is not displayed. When you select the Logical Levels category, you can then select the appropriate logical dimension (level-based) in the middle pane, and the level itself in the lower pane. |
Physical Tables | Contains the related physical tables. If physical tables are not pertinent to a particular Expression Builder, the Physical Tables category is not displayed. |
Operators | Contains the available SQL logical operators. |
Expressions | Contains the available expressions. |
Functions | Contains the available functions. The functions that appear depend on the object you selected. |
Constants | Contains the available constants. |
Types | Contains the available data types. |
Repository Variables | Contains the available repository variables. If no repository variables are defined, this category does not appear. |
Session Variables | Contains the available system session and non-system session variables. If no session variables are defined, this category does not appear. |
Figure 17-2 shows the Expression Builder dialog for a derived logical column.
To set up an expression, select Functions from the Category pane, select a function type from Functions pane, then select a function from the lower pane. Double-click the function you want to use to paste it in the edit pane. Then, in the edit pane, click once between the parentheses of the function to select that area as the insertion point for adding the argument of the function.
To paste a logical column at the insertion point, select Logical Tables from the Category pane, select the table you want to use in the Logical Tables pane, and then double-click the logical column in the lower pane to paste the logical column at the insertion point as the argument of the function in the edit pane. Figure 17-3 shows where the expression appears in the edit pane.
Use the following procedure to navigate within Expression Builder.
To navigate within Expression Builder:
The available expression types for the selected category appear in the middle pane.
The available building blocks for the selected item appear in the lower pane.
Use this procedure to build an expression in Expression Builder.
To build an expression:
The Syntax bar at the bottom of the Expression Builder dialog shows the syntax for the expression.
For example: BETWEEN <<Upper Bound>> AND <<Lower Bound>>
The Administration Tool displays a message for any syntax errors in the expression. When the expression is syntactically correct, the Administration Tool adds the expression to the dialog from which you accessed Expression Builder.
Note that if the parameter PREVENT_DIVIDE_BY_ZERO
is set to YES
in NQSConfig.INI, the Oracle BI Server prevents errors in divide-by-zero situations, even for Answers column calculations. The Oracle BI Server creates a divide-by-zero prevention expression using nullif()
or a similar function when it writes the physical SQL. Because of this, you do not have to use CASE
statements to avoid divide-by-zero errors, as long as PREVENT_DIVIDE_BY_ZERO
is set to YES
(the default value).
See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about configuration settings.
The INDEXCOL
function enables you to build a derived logical column. Selecting INDEXCOL
automatically generates the following function template:
Note: The argument integer literal
can also be a session variable, an arithmetic expression, or a CASE WHEN
statement (evaluation must be possible without reference to back-end data).
See "INDEXCOL" for more information.
In addition to Expression Builder, the Administration Tool provides several utilities and wizards that perform functions like renaming objects, persisting aggregates, and externalizing strings.
This section contains the following topics:
The Replace Column or Table Wizard automates the process of replacing physical columns or tables in logical table sources. For example, if you have purchased Oracle BI Applications, you can update your logical table sources to map to a different database type. You can also use this utility to change logical table source mappings from a development table to a production table.
You can use the Replace Column or Table Wizard to replace a single column (within the same table), or to replace an entire table. If you replace a table, you must map all the columns in the table.
To replace a physical column in logical table sources:
If you select an invalid logical table source, or in other words, one that cannot be used for replacement, a message appears explaining why that source cannot be used, and the check box for that source is disabled.
Note that invalid logical table sources do not appear in the list when Hide unusable logical table sources in Replace wizard has been selected in the General tab of the Options dialog. Instead, the Info button is displayed when a logical table source that maps to that column does not appear in the list. Click Info to see details on why the physical objects could not be replaced in the logical table source or sources.
The Select Sources screen only appears if there are multiple logical table sources that map to the physical column you selected.
Click Next after you have selected logical table sources.
To replace a physical table in logical table sources:
If you select an invalid logical table source, or in other words, one that cannot be used for replacement, a message appears explaining why that source cannot be used, and the check box for that source is disabled.
Note that invalid logical table sources do not appear in the list when Hide unusable logical table sources in Replace wizard has been selected in the General tab of the Options dialog. Instead, the Info button is displayed when a logical table source that maps to that column does not appear in the list. Click Info to see details on why the physical objects could not be replaced in the logical table source or sources.
The Select Sources screen only appears if there are multiple logical table sources that map to the physical table you selected.
Click Next after you have selected logical table sources.
To add a column mapping to the list of mapped columns, first select a source column in the left pane. Then, select a replacement column in the right pane and click Add.
To remove a column mapping from the list of mapped columns, select a row of mapped columns from the list and click Remove.
Figure 17-4 shows the Select Columns screen.
This utility lets you identify a table as an Oracle BI event polling table. An event polling table is a way to notify the Oracle BI Server that one or more physical tables have been updated. Each row that is added to an event table describes a single update event. The cache system reads rows from, or polls, the event table, extracts the physical table information from the rows, and purges cache entries that reference those physical tables.
For more information about event polling tables, see "Cache Event Processing with an Event Polling Table" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
To start the Oracle BI Event Tables utility:
You can use the Externalize Strings utility to localize the names of Presentation layer subject areas, tables, hierarchies, columns, and their descriptions. You can save these text strings to an external file with ANSI, Unicode, and UTF-8 encoding options.
Before you can use the Externalize Strings utility, you must externalize strings in the Presentation layer. Note the following about externalizing strings in the Presentation layer:
For example, if you right-click a subject area and choose one of the externalization options, the externalization flag is set on all presentation tables, columns, hierarchies, and levels within that subject area.
For full information about using the Externalize Strings utility, see "Localizing Metadata Names in the Repository" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
To start the Externalize Strings utility:
You can use the Rename Wizard to rename tables and columns in the Presentation layer and Business Model and Mapping layer. It provides a convenient way to transform physical names to user-friendly names.
It is a best practice to rename objects in the Business Model and Mapping layer rather than the Presentation layer, for better maintainability. Giving user-friendly names to logical objects rather than presentation objects ensures that the names can be reused in multiple subject areas. Also, it ensures that the names persist even when you need to delete and re-create subject areas to incorporate changes to your business model.
Be aware that when you use the Rename Wizard to rename presentation columns, the Use Logical Column Name property gets set to false.
To use the Rename Wizard:
You can also access the Rename Wizard by right-clicking an object or set of objects in the Business Model and Mapping layer or Presentation layer, and then selecting Rename Wizard. The wizard starts in the Select Rules screen and only applies to the logical or presentation objects you selected.
Click Next after you have selected the objects you want to rename.
The renaming rules are applied in the order in which they appear in the list. Select a rule that you have added and click Up or Down to change the order in which the rules will be applied.
For example, say you want to rename the logical columns GlobalGROUP, GlobalSales, and GlobalCustomerName to Group, Sales, and Customer Name. To achieve this, you can apply the following rules in the given order:
Click Next after you have selected renaming rules.
Figure 17-5 shows the Rename Wizard.
You can use the Update Physical Layer Wizard to update database objects in the Physical layer of a repository, based on their current definitions in the back-end database. This wizard is not available for repositories that are open in read-only mode, because they are not available for updating.
When the wizard processes the update, the Oracle BI Server connects to each back-end database. The objects in the Physical layer are compared with those in the back-end database. Explanatory text alerts you to differences between objects as defined in the database in the Physical layer and as defined the back-end database, such as data type-length mismatches and objects that are no longer found in the back-end database. For example, if an object exists in the database in the Physical layer of the repository but not in the back-end database, the following text is displayed:
The wizard does not add columns or tables to the repository that exist in the back-end database, but not in the repository. Additionally, the wizard does not update column key assignments. It checks that there is a column in the repository that matches the column in the database, and then, if the values do not match, the wizard updates the type and length of the column in the repository.
The connection pool settings for each database need to match the connection pool settings used when the objects were last imported into the Physical layer from the back-end database. See "Creating or Changing Connection Pools" for more information about connection pool settings.
To update objects in the Physical layer:
The databases in the Physical layer of the repository are listed in the left pane of the wizard.
The wizard updates the objects in the Physical layer, and then closes automatically. Objects that do not exist in the database are deleted.
The Repository Documentation utility documents the mapping from the presentation columns to the corresponding logical and physical columns. The documentation also includes conditional expressions associated with the columns. The documentation can be saved in comma separated (CSV), XML, or tab delimited (TXT) format.
You can use the Repository Documentation utility to extract Oracle Business Intelligence metadata to a flat file so that it can be loaded into Excel and RDBMS. You can query the resulting file to answer questions such as "If I delete physical column X, what logical columns will be affected?" or "How many places in the business model refer to the physical table W_SRVREQ_F?" Then, you can establish dependency relationships among elements in the repository.
Excel only allows data sets of 1,000,000 rows. You might exceed this in a large repository. Therefore, you might want to run the Repository Documentation utility on a subset of the repository by extracting relevant business models into a new project. For more information, see Chapter 3.
The Repository Documentation utility creates a comma-separated values file or a tab-separated values file that shows the connections between the Presentation and Physical layers in the current repository. This file can be imported into a repository as a Physical layer. Note that the file does not include information about repository variables and marketing objects.
To run the Repository Documentation utility:
You can generate a metadata dictionary to help Oracle Business Intelligence users obtain more information about metrics or attributes for repository objects. For example, users might need to resolve issues caused by confusing metadata object names, or to obtain more details when an attribute is derived in a complicated way.
A metadata dictionary is a static set of XML documents. Each XML document describes a metadata object, such as a column, including its properties and relationships with other metadata objects. These XML documents can be viewed within the Oracle BI Presentation Services user interface, or they can be viewed directly in a browser.
Use the Administration Tool to generate a metadata dictionary for your repository. Because the dictionary does not change dynamically as repository changes are made, you must generate the dictionary periodically to update the content.
The metadata dictionary files need to be hosted on a Web server, such as Oracle HTTP Server or Apache HTTP Server. When you generate the dictionary, you can set the output location to the final location on the Web server, or to a temporary location. If you generate the dictionary in a temporary location, you must then copy the files to the location on the Web server.
Note that some large repositories can contain tens of thousands of objects. Generating a dictionary for a large repository can take a significant period of time.
To generate a metadata dictionary:
For example, if you select J:\BI_DataDictionary and your repository name is demo1.rpd, the dictionary files, including the style sheets, will be located in J:\BI_DataDictionary\demo1.
The location where the metadata dictionary files can be viewed is dependent on the host name and port number of your Web server, along with the directory location where you store the files.
After you generate a metadata dictionary, style sheets and index files are created for that dictionary. The related style sheets (XSL files) are created and stored in a directory named xsl within the repository directory.
A name index and tree index are created and stored in the [drive]:\[path]\[repository name] root directory. The index files are associated with each other so that you can quickly switch views.
For additional information about viewing metadata dictionary information from the Oracle BI Presentation Services user interface, see "Viewing Metadata Information from the Subject Areas Pane" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).
Large repositories use more memory on the server and are harder to maintain. Additionally, development activities take longer on a large repository. This utility enables you to remove objects that you no longer need in your repository. You can remove databases, initialization blocks, physical catalogs, and variables.
To remove unused physical objects:
Below the list of objects, the number of selected objects and the total number of objects appears.
You can use the Aggregate Persistence Wizard to create the SQL file that will be used to create aggregate tables and map them into the metadata. See "Using the Aggregate Persistence Wizard to Generate the Aggregate Specification" for more information.
You can use the Calculation Wizard to create new calculation columns that compare two existing columns, and also to create metrics in bulk. It has a built-in mechanism to handle divide-by-zero and null cases, as well as other difficult situations. The Calculation Wizard provides an automated way to calculate the sales by quarter, the percentage of revenue, minimum and maximum values, and so on.
To start the Calculation Wizard, right-click any logical fact or dimension column in the Business Model and Mapping layer of data type numeric, and then select the option Calculation Wizard. The wizard starts with the column on which you right-clicked as the source column, and then displays the other columns in that table for comparison.
To use the Calculation Wizard:
Click Next to display the Select Columns screen.
You can remove items from the Selected Columns list by selecting a column and clicking Remove.
Click Next when you have finished selecting comparison columns.
You can optionally change the calculation name. This name becomes the name of the resulting calculation column.
The following calculations are available:
NULL
or some other value when the comparison column is NULL
.Select a calculation in the upper right pane to view and set special cases for that calculation.
Figure 17-6 New Calculations Screen of Calculation Wizard
You can use variables in a repository to streamline administrative tasks and dynamically modify metadata content to adjust to a changing data environment. There are two classes of variables: repository variables and session variables.
Initialization blocks are used to initialize dynamic repository variables, system session variables, and nonsystem session variables.
You can use the Variable Manager in the Administration Tool to define variables. The Variable Manager dialog has two panes. The left pane displays a tree that shows variables and initialization blocks, and the right pane displays details of the item you select in the left pane. Repository variables and system and nonsystem session variables are represented by a question mark icon. The icon for an initialization block is a cube labeled i.
Caution: Values in repository and session variables are not secure, because object permissions do not apply to variables. Anybody who knows or can guess the name of the variable can use it in an expression in Answers or in a Logical SQL query. Because of this, do not put sensitive data like passwords in session or repository variables. |
This chapter contains the following topics:
A repository variable has a single value at any point in time. Repository variables can be used instead of literals or constants in Expression Builder in the Administration Tool. The Oracle BI Server substitutes the value of the repository variable for the variable itself in the metadata.
This section contains the following topics:
The value of a static repository variable is initialized in the Variable dialog. This value persists, and does not change until an administrator decides to change it.
For example, suppose you want to create an expression to group times of day into different day segments. If Prime Time were one of those segments and corresponded to the hours between 5:00 PM and 10:00 PM, you could create a CASE
statement like the following:
where Hour is a logical column, perhaps mapped to a timestamp physical column using the date-and-time Hour(<<timeExpr>>)
function.
Rather than entering the numbers 17 and 23 into this expression as constants, you could use the Variable tab of the Variable dialog to set up a static repository variable named prime_begin
and initialize it to a value of 17
, and create another variable named prime_end
and initialize it to a value of 23
.
Static repository variables must have default initializers that are either numeric or character values. In addition, you can use Expression Builder to insert a constant as the default initializer, such as Date, Time, and TimeStamp. You cannot use any other value or expression as the default initializer for a static repository variable.
In previous releases, the Administration Tool did not limit the values of default initializers for static repository variables. Because of this, if your repository has been upgraded from a previous release, you may see warnings in the Consistency Checker similar to the following:
If you see warnings similar to this, update the relevant static repository variables so that the default initializers have constant values.
You initialize dynamic repository variables in the same way as static variables, but the values are refreshed by data returned from queries. When defining a dynamic repository variable, you create an initialization block or use a preexisting one that contains a SQL query. You also set up a schedule that the Oracle BI Server will follow to execute the query and periodically refresh the value of the variable.
When the value of a dynamic repository variable changes, all cache entries associated with a business model that reference the value of that variable are purged automatically.
Each query can refresh several variables: one variable for each column in the query. You schedule these queries to be executed by the Oracle BI Server.
Dynamic repository variables are useful for defining the content of logical table sources. For example, suppose you have two sources for information about orders. One source contains recent orders and the other source contains historical data.
You need to describe the content of these sources on the Content tab of the Logical Table Source dialog. Without using dynamic repository variables, you would describe the content of the source containing recent data with an expression such as:
This content statement becomes invalid as new data is added to the recent source and older data is moved to the historical source. To accurately reflect the new content of the recent source, you would have to modify the fragmentation content description manually. Dynamic repository values can be set up to do it automatically.
Another suggested use for dynamic repository values is in WHERE
clause filters of logical table sources, defined on the Content tab of the Logical Table Source dialog.
A common use of these variables is to set filters for use in Oracle BI Presentation Services. For example, to filter a column on the value of the dynamic repository variable CurrentMonth, set the filter to the variable CurrentMonth.
This section explains how to create repository variables.
To create a repository variable:
Names for all variables should be unique. The names of system session variables are reserved and cannot be used for other types of variables.
To create a new initialization block, click New. See "Creating Initialization Blocks" for more information.
For static repository variables, the value you specify in the Default initializer window persists. It will not change unless you change it. If you initialize a variable using a character string, enclose the string in single quotes ('). Static repository variables must have default initializers that are constant values.
After they are created, variables are available for use in Expression Builder. In Expression Builder, click the Repository Variables folder in the left pane to display all repository variables (both static and dynamic) in the middle pane by name.
To use a repository variable in an expression, select it and double-click. Expression Builder pastes it into the expression at the active cursor insertion point.
Variables should be used as arguments of the function VALUEOF()
. This happens automatically when you double-click the variables to paste them into the expression.
For example, the following CASE
statement is identical to the one explained in the preceding example, except that variables have been substituted for the constants:
Note: You cannot use variables to represent columns or other repository objects. |
Session variables are similar to dynamic repository variables in that they obtain their values from initialization blocks. Unlike dynamic repository variables, however, the initialization of session variables is not scheduled. When a user begins a session, the Oracle BI Server creates new instances of session variables and initializes them.
Unlike a repository variable, there are as many instances of a session variable as there are active sessions on the Oracle BI Server. Each instance of a session variable could be initialized to a different value.
Session variables are primarily used when authenticating users against external sources such as database tables or LDAP servers. If a user is authenticated successfully, session variables can be used to set filters and permissions for that session. For information about using session variables when setting up security, see "Managing Session Variables" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition.
This section contains the following topics:
System session variables are session variables that the Oracle BI Server and Oracle BI Presentation Services use for specific purposes. System session variables have reserved names that cannot be used for other kinds of variables (such as static or dynamic repository variables and nonsystem session variables).
When you use these variables for Oracle BI Presentation Services, preface their names with NQ_SESSION
. For example, to filter a column on the value of the variable LOGLEVEL
, set the filter to the variable NQ_SESSION.LOGLEVEL
.
Table 18-1 describes the available system session variables.
Table 18-1 System Session Variables
Variable | Description |
---|---|
Holds the value the user enters as his or her logon name. This variable is typically populated from the LDAP profile of the user. | |
Holds the name of the proxy user. A proxy user is a user that has been authorized to act for another user. See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information about the PROXY system session variable. | |
Contains the groups to which the user belongs. Exists only for compatibility with previous releases. Legacy groups are mapped to application roles automatically. | |
Specifies the Catalog groups (Presentation Services groups) to which the user belongs, if any. Note that the recommended practice is to use application roles rather than Catalog groups. | |
Contains the global unique identifier (GUID) of the user, typically populated from the LDAP profile of the user. | |
Contains the application roles to which the user belongs. | |
Contains the global unique identifiers (GUIDs) for the application roles to which the user belongs. GUIDs for application roles are the same as the application role names. | |
Contains the permissions held by the user, such as oracle.bi.server.impersonateUser or oracle.bi.server.manageRepositories. | |
Used for Oracle BI Presentation Services. It contains the name that is displayed to the user in the greeting in the Oracle BI Presentation Services user interface. It is also saved as the author field for catalog objects. This variable is typically populated from the LDAP profile of the user. | |
Used for Oracle BI Presentation Services. It identifies the default dashboard the user sees when logging in (the user can override this preference after logged on). | |
The value of This system session variable overrides a variable defined in the Users object in the Administration Tool. If the administrator user (defined upon install) has a Logging level defined as 4 and the session variable | |
Used for Oracle BI Presentation Services. Any users with the same nonblank request key share the same Oracle BI Presentation Services cache entries. This tells Oracle BI Presentation Services that these users have identical content filters and security in the Oracle BI Server. Sharing Oracle BI Presentation Services cache entries is a way to minimize unnecessary communication with the Oracle BI Server. | |
Determines certain elements of the look and feel of the Oracle BI Presentation Services user interface. The user can alter some elements of the user interface by picking a style when logged on to Oracle BI Presentation Services. The | |
Contains a description of the user, typically populated from the LDAP profile of the user. | |
Contains the locale of the user, typically populated from the LDAP profile of the user. | |
Used to enable or disable Oracle BI Server result cache hits. This variable has a possible value of 0 or 1. | |
Used to enable or disable Oracle BI Server result cache seeding. This variable has a possible value of 0 or 1. | |
Used to enable or disable Oracle BI Server subrequest cache hits and seeding. This variable has a possible value of 0 or 1. | |
Identifies the query as a SELECT_PHYSICAL query. See "Syntax and Usage Notes for SELECT_PHYSICAL" for more information. | |
Used to enable or disable Oracle BI Server plan cache hits. This variable has a possible value of 0 or 1. | |
Used to enable or disable Oracle BI Server plan cache seeding. This variable has a possible value of 0 or 1. | |
Contains the time zone of the user, typically populated from the LDAP profile of the user. |
You use the same procedure to define nonsystem session variables as for system session variables.
A common use for nonsystem session variables is setting user filters. For example, you could define a nonsystem variable called SalesRegion that would be initialized to the name of the sales region of the user.
You could then set a security filter for all members of a group that would allow them to view only data pertinent to their region.
When you use these variables for Oracle BI Presentation Services, preface their names with NQ_SESSION
. For example, to filter a column on the value of the variable SalesRegion
, set the filter to the variable NQ_SESSION.SalesRegion
.
This section explains how to create session variables.
To create a session variable:
Names for all variables should be unique. The names of system session variables are reserved and cannot be used for other types of variables.
NQSSetSessionValue()
. For example, this option lets non-administrators to set this variable for sampling.To create a new initialization block, click New. See "Creating Initialization Blocks" for more information.
Initialization blocks are used to initialize dynamic repository variables, system session variables, and nonsystem session variables. For example, the NQ_SYSTEM
initialization block is used to refresh system session variables.
This section contains the following topics:
An initialization block contains the SQL statement that will be executed to initialize or refresh the variables associated with that block. The SQL statement must reference physical tables that can be accessed using the connection pool specified in the Connection Pool field in the Initialization Block dialog.
If you want the query for an initialization block to have database-specific SQL, you can select a database type for that query. If a SQL initialization string for that database type has been defined when the initialization block is instantiated, this string is used. Otherwise, a default initialization SQL string is used.
Caution: By default, when you open the Initialization Block dialog for editing in online mode, the initialization block object is automatically checked out. While the initialization block is checked out, the Oracle BI Server may continue to refresh the value of dynamic variables refreshed by this initialization block, depending on the refresh intervals that are set. When you check in the initialization block, the value of the dynamic variables is reset to the values shown in the Default initializer. If you do not want this to occur, use the Undo Check Out option. |
This section contains the following topics:
The values of dynamic repository variables are set by queries defined in the Default initialization string field of the Initialization Block dialog. You also set up a schedule that the Oracle BI Server will follow to execute the query and periodically refresh the value of the variable. If you stop and restart the Oracle BI Server, the server automatically executes the SQL statements in repository variable initialization blocks, reinitializing the repository variables.
The Oracle BI Server logs all SQL queries issued to retrieve repository variable information in nqquery.log when the logging level for the administrator account (set upon installation) is set to 2 or higher. You should set the logging level to 2 for the administrator to provide the most useful level of information. You can find the nqquery.log file in:
For more information about user-level logging, see "Managing the Query Log" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
As with dynamic repository variables, session variables obtain their values from initialization blocks. Unlike dynamic repository variables, session variables are not updated at scheduled time intervals. Instead, the Oracle BI Server creates new instances of those variables whenever a user begins a new session. The values remain unchanged for the duration of the session.
Execution of session variable initialization blocks during session logon can be deferred until their associated session variables are actually accessed within the session. See "Creating Initialization Blocks" for more information.
The Oracle BI Server logs all SQL queries issued to retrieve session variable information if the logging level is set to 2 or higher in the Identity Manager User object, or the LOGLEVEL
system session variable is set to 2 or higher in the Variable Manager.
The default location for the nqquery.log file is:
For more information about user-level logging, see "Managing the Query Log" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
You can use the row-wise initialization option to create session variables dynamically and set their values when a session begins. The names and values of the session variables reside in an external database that you access through a connection pool. The variables receive their values from the initialization string that you type in the Initialization Block dialog.
For example, suppose you want to create session variables using values contained in a table named RW_SESSION_VARS
. The table contains three columns:
USERID
, containing values that represent the unique identifiers of the usersNAME
, containing values that represent session variable namesVALUE
, containing values that represent session variable valuesTable 18-2 shows the table in this example.
Table 18-2 Sample Session Variables Database Table
USERID | NAME | VALUE |
---|---|---|
JOHN | LEVEL | 4 |
JOHN | STATUS | FULL-TIME |
JANE | LEVEL | 8 |
JANE | STATUS | FULL-TIME |
JANE | GRADE | AAA |
To use row-wise initialization, create an initialization block and select the Row-wise initialization option (refer to "Creating Initialization Blocks"). For this example, you would provide the following SQL statement for the initialization string:
Note that NQ_SESSION.USERID
has already been initialized using another initialization block.
The following session variables would be created:
LEVEL
, containing the value 4
, and STATUS
, containing the value FULL_TIME
.LEVEL
, containing the value 8
; STATUS
, containing the value FULL-TIME
; and GRADE
, containing the value AAA
.You can also use the row-wise initialization option to initialize a variable with a list of values. You can then use the SQL IN
operator to test for values in a specified list.
For example, using the table values in the previous example, you would type the following SQL statement for the initialization string:
This SQL statement populates the variable LIST_OF_USERS
with a list, separated by colons, of the values JOHN
and JANE
(for example, JOHN:JANE
). You can then use this variable in a filter, as shown in the following WHERE
clause:
The variable LIST_OF_USERS
contains a list of values, that is, one or more values. This logical WHERE
clause expands into a physical IN
clause, as shown in the following statement:
See "About Using Initialization Blocks with Variables" for more information about initialization blocks.
To create initialization blocks, perform the steps in the following sections:
For repository variables, you can specify the day, date, and time for the start date, as well as a refresh interval.
To assign a name and schedule to initialization blocks:
NQ_SYSTEM
initialization block name is reserved.)You can also right-click an existing initialization block in the Variable Manager and choose Disable or Enable. This option enables you to change this property without opening the initialization block dialog.
This option prevents execution of all session variable initialization blocks during the session logon stage, giving a shorter logon time. Session variables that are not needed during the session do not have their initialization blocks executed. This saves the resources which would have been used to execute these unnecessary initialization blocks.
The deferred execution of an initialization block also triggers the execution of all unexecuted predecessor initialization blocks. All associated variables of the initialization block and its unexecuted predecessors are updated with the values returned from the deferred execution.
Note: The Allow deferred execution option is unavailable in some circumstances. See "When Execution of Session Variable Initialization Blocks Cannot Be Deferred" for more information.
Note that this requirement is waived for internal processes (like Delivers) that use impersonation, if a single user session variable has been associated with the initialization block. In this case, the trusted internal process can connect regardless of whether the initialization block succeeds or fails.
The next step is to select the data source and connection pool.
If you select Database as the data source type for an initialization block, the values returned by the database for the columns in your SQL statement are assigned to variables that you associate with the initialization block. For session variable initialization blocks, you can also select LDAP Server or Custom Authenticator.
It is recommended that you create a dedicated connection pool for initialization blocks where you select Database as the data source type. See "About Connection Pools for Initialization Blocks" for more information.
If you select Database as the data source type:
The SQL statement used to refresh the variable must reference physical tables that can be accessed through the connection pool specified in the Connection Pool field. The tables do not have to be included in the Physical layer of the metadata. At run time, if an initialization string for the database type has been defined, this string is used. Otherwise, the default initialization SQL for the database type is used. You can overtype this string.
When you create SQL and submit it directly to the database (for example, when using database-specific SQL in initialization blocks), the SQL statement bypasses the Oracle BI Server. The order of the columns in the SQL statement and the order of the variables associated with the initialization block determine which columns are assigned to each variable.
You should test this SQL using the Test button in the [Repository|Session] Variable Initialization Block Data Source dialog. If the SQL statement contains an error, the database returns an error message. See "Testing Initialization Blocks" for more information.
The SQL statement you use to refresh the variable might be written for a specific database. However, it will still work with other data sources because the SQL statement is processed by the Oracle BI Server. The Oracle BI Server can also provide functions (such as PI
) that might not be available in the data source, and the SQL statement will work with other data sources supported by the Oracle BI Server (for example, ADF, SQL Server, Oracle, and XML files). When you select the Use OBI EE Server option, there is no need for a connection pool, because the SQL statement is sent to the Oracle BI Server and not directly to the underlying database.
You can only test this SQL statement using the Test button in the [Repository|Session] Variable Initialization Block Data Source dialog when in online mode. If the SQL statement contains an error, the database returns an error message. See "Testing Initialization Blocks" for more information.
To select a data source and connection pool for initialization blocks:
By default, the first connection pool under the database object in the Physical layer is not available for selection. This behavior ensures that you cannot use the same connection pool for initialization blocks that you use for queries. See "About Connection Pools for Initialization Blocks" for more information
You can change this behavior so that the first connection pool is available for selection by selecting Allow first Connection Pool for Init Blocks in the Options dialog, although this is not recommended. See "Setting Preferences" for more information.
Otherwise, in the Default initialization string box, type the SQL initialization string needed to populate the variables. See "Examples of Initialization Strings" for examples.
The string you enter here is processed by the Oracle BI Server, and therefore as long as it is supported by the Oracle BI Server, the string will work with different data sources.
For example, an initialization block might use the function pi()
, which is specific to SQL Server. However, if you select Use OBI EE Server, the query is rewritten by the Oracle BI Server for the appropriate database. In other words, if you change the SQL Server back-end database to Oracle, the query will still work.
See "Examples of Initialization Strings" for additional examples.
The LDAP server name and the associated domain identifier appear in the Name and Domain identifier columns.
This section contains the following initialization string examples:
Example 18-1 A SQL Statement When Site Uses Delivers
This SQL contains two constraints in the WHERE
clause:
':USER'
(note the colon and single quotes) is the ID the user types when logging in.
':PASSWORD'
(note the colon and single quotes) is the password the user enters. This is another system variable whose presence is always assumed when the USER
system session variable is used. You do not need to set up the PASSWORD
variable, and you can use this variable in a database connection pool to allow passthrough login using the user ID and password of the user. You can also use this variable in a SQL statement.
When using external table authentication with Delivers, the portion of the SQL statement that makes up the :PASSWORD
constraint must be embedded between NQS_PASSWORD_CLAUSE
clauses.
The query returns data only if the user ID and password match values found in the specified table. You should test the SQL statement outside of the Oracle BI Server, substituting valid values for the USER
and PASSWORD
variables and removing the NQS_PASSWORD_CLAUSE
clause.
For more information, see Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Example 18-2 A SQL Statement When Site Does Not Use Delivers
This SQL statement contains two constraints in the WHERE
clause:
':USER'
(note the colon and the single quotes) is the ID the user types when logging in.
':PASSWORD'
(note the colon and the single quotes) is the password the user enters. This is another system variable whose presence is always assumed when the USER
system session variable is used. You do not need to set up the PASSWORD
variable, and you can use this variable in a database connection pool to allow passthrough login using the user ID and password of the user. You can also use this variable in a SQL statement.
The query returns data only if the user ID and password match values found in the specified table. You should test the SQL statement outside of the Oracle BI Server, substituting valid values for the USER
and PASSWORD
variables.
Example 18-3 A SQL Statement Joining Tables From Multiple Data Sources - When Using the 'OBI EE Server' Setting
The above query example in the initialization block uses a join query with multiple tables from different data sources (for example, SQLServer, Oracle and XML Files). The query works because when you select the Use OBI EE Server option, the query is rewritten by the BI Server for the specified data sources.
You should test the SQL statement using the Test button or a SQL tool such as the Oracle BI Client utility. If you use a SQL tool, be sure to use the same DSN or one set up identically to the DSN in the specified connection pool.
In online mode, Initialization Block tests do not work with connection pools set to use :USER
and :PASSWORD
as the user name and password. In offline mode, the Set values for variables dialog is displayed so that you can populate :USER
and :PASSWORD
.
To test initialization blocks (optional):
Note: The Test button is disabled when the Use OBI EE Server option is selected in offline mode.
The Results dialog lists the variables and their values.
The next step is to associate variables with the initialization block.
The SQL SELECT
statement in the Default initializer list can contain multiple columns. The order of the columns in the SQL statement and order of the variables associated with the initialization block determine the column value that is assigned to each variable. Therefore, when you associate variables with an initialization block, the value returned in the first column is assigned to the first variable in the list.
For repository variable initialization blocks, when you open a repository in online mode, the value shown in the Default initialization string field of the Initialization Block dialog is the current value of that variable as known to the Oracle BI Server. The number of associated variables can be different from the number of columns being retrieved. If there are fewer variables than columns, extra column values are ignored. If there are more variables than columns, the additional variables are not refreshed (they retain their original values, whatever they may be). Any legal SQL can be executed using an initialization block, including SQL that writes to the database or alters database structures, assuming the database permits the user ID associated with the connection pool to perform these actions.
If you stop and restart the Oracle BI Server, the server automatically executes the SQL statement in the repository variable initialization blocks, re-initializing the repository variables.
For session variable initialization blocks, you can select Row-wise initialization. The Use caching option is automatically selected when you select the Row-wise initialization option. Selecting the Use caching option directs the Oracle BI Server to store the results of the query in a main memory cache. See "About Row-Wise Initialization" for more information.
The Oracle BI Server uses the cached results for subsequent sessions. This can reduce session startup time. However, the cached results might not contain the most current session variable values. If every new session needs the most current set of session variables and their corresponding values, you should clear this option.
See "About Using Initialization Blocks with Variables" for more information.
To associate variables with initialization blocks:
Note: For the Custom Authenticator data source type (Session variables only), the variable USER is required. |
The next step is to establish execution precedence.
When a repository has multiple initialization blocks, you can set the order (establish the precedence) in which the blocks will be initialized.
First, you open the block that you want to be executed last and then add the initialization blocks that you want to be executed before the block you have open. For example, suppose a repository has two initialization blocks, A and B. You open initialization block B, and then specify that block A will execute before block B. This causes block A to execute according to block B's schedule, in addition to its own.
To establish execution precedence:
Add is only available if there are initialization blocks that have not yet been selected.
Note: When you select the Use OBI EE Server option for an initialization block:
|
Execution of session variable initialization blocks cannot be deferred in some circumstances, including when row-wise initialization is being used and when the Required for authentication option has been selected. When the execution of session variable initialization blocks cannot be deferred, a message is displayed that explains why. See "Assigning a Name and Schedule to Initialization Blocks" for more information.
The following list summarizes the scenarios in which execution of session variable initialization blocks cannot be deferred:
Example message: "The execution of init block 'A_blk' cannot be deferred as it is using row-wise initialization."
Example message: "The execution of init block 'A_blk' cannot be deferred as it is required for authentication."
Example message: "The execution of init block 'A_blk' cannot be deferred as it does not have a connection pool."
PROXY
or USER
.Example message: "The execution of init block 'A_blk' cannot be deferred as it is used by session variable 'PROXY'."
Example message: "The execution of init block 'A_blk' cannot be deferred as it is used by session variable 'A' which is security sensitive."
Example message: "One of the successors for init block 'A_blk' does not have "Allow deferred execution" flag set. Init block 'B_blk' does not have "Allowed deferred execution" flag set.
You can use the Variable Manager in the Administration Tool to enable and disable initialization blocks.
To enable or disable an initialization block:
The script content on this page is for navigation purposes only and does not alter the content in any way.
This appendix provides best practice information for managing the lifecycle of the Oracle BI repository when you are using a multiuser development environment.
Building your Oracle BI repository using the multiuser development environment enables you to do the following:
This appendix covers the development lifecycle of the Oracle BI repository (RPD). It does not cover the development lifecycle of the Oracle BI Presentation Catalog used by Presentation Services. This appendix also does not cover how to use the multiuser development environment for Independent Software Vendor (ISV) organizations building portable BI applications for sale as products.
See also Appendix B, "MUD Case Study: Eden Corporation" for detailed examples of how the multiuser development environment is used in a typical business scenario.
This appendix contains the following topics:
This section describes tasks you need to perform as part of the planning phase before beginning multiuser development.
This section contains the following topics:
You need to provide a strong, effective governance process to make decisions about shared resources and to resolve conflicts among the many stake-holders. As in any business process, you must have a strong business sponsor, and the steering committee must be staffed with strong business people who can negotiate effectively and make good decisions that will not change over time. Having an effective governance process has proven to be the single most important factor in achieving successful multiuser development with Oracle Business Intelligence.
Before you begin your multiuser development project, you must first lay out the business value, priorities, roadmap, and requirements, as well as lower level details of the design, as described in Table A-1.
Table A-1 Tasks to Accomplish During the Planning Phase
For... | You must... |
---|---|
Strategic requirements |
|
Business requirements for repository objects |
|
Security requirements |
|
Development |
|
Project management |
|
Operations |
|
This section describes the hands-on roles involved in repository development and its lifecycle. Depending on the size of your company and team, some of these roles might be served by one person.
Repository development roles include:
People in other roles outside the repository development team are also involved. These include people administering the test environment and running the tests, and also the Oracle BI Presentation Catalog developers.
Before you can understand best practices for MUD and repository lifecycle management, you need to understand the architecture of the development environment.
This section contains the following topics:
This section explains fundamental concepts related to developing and deploying systems for multiuser development.
Repository (RPD)
The repository, or RPD file, is the fundamental artifact under development. It defines all the metadata used by the Oracle BI Server for interpreting user requests, applying role-based security, generating queries to data sources, and post-processing the results.
Application Roles and the Policy Store
A secondary artifact under development is the set of application roles. User object permissions, data access filters, and query limits (governors) are defined against these application roles in the repository logic. Presentation Services also uses application roles for assigning its privileges and permissions.
You can use the default policy store embedded in Oracle WebLogic Server, or you can use a separate external policy store. If you are using the embedded policy store, you define application roles in Fusion Middleware Control, which persists them in the Policy Store in Oracle WebLogic Server. You can then use the Administration Tool in online mode to add application roles from your policy store to your repository at design time. At run time, the Oracle BI Server uses the application roles provisioned to each user to apply the correct security privileges to user requests.
Sandboxes, Projects, and Branches
An instance of the repository is usually edited by only one repository developer at a time. Multiple developers work in parallel on subset instances of the repository, called "projects." They work in separate sandbox environments, and merge their changes into a master repository instance frequently to distribute changes and pick up changes made by others in the team. This approach enables the creation of very large enterprise applications. It also enables independent semantic models to be developed by separate teams and merged into the master repository for production hosting in a single Oracle BI Server cluster. Finally, it enables branching and merging so that teams can work on major projects in parallel, and can even make emergency fixes to the main code line in production without disrupting ongoing development projects.
You typically use the Simple install type when installing a development sandbox.
Single, Shared Repository
Presentation Services connects to just one repository that has been uploaded to the Oracle BI Server. The metadata for all semantic models must reside in this single repository, even if the semantic models share no objects. See "About Multiuser Development Styles" for more information about semantic models in a repository.
Repository Password
The repository file is protected by the repository password. The Oracle BI Server needs this password to open and load the repository at startup. It stores the repository password in the secure Credential Store. You must also enter this password when you open the repository in the Administration Tool or other utilities and line commands. Note that user logon credentials are stored in the identity store, not the credential store.
Oracle BI Presentation Catalog
The Oracle BI Presentation Catalog is an important BI application artifact that contains the metadata that defines reports, dashboards, KPIs, scorecards, and other reporting layer objects. The Oracle BI Presentation Catalog is outside the scope of this document. See "Managing Objects in the Oracle BI Presentation Catalog" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information about Oracle BI Presentation Catalog development.
The completed repository is migrated to test and production systems using Fusion Middleware Control. No downtime is necessary, because you can refresh clustered production Oracle BI Servers with a rolling restart.
Deployment Parameters During Migration
Some repository parameters must change when migrating a repository between development, test, and production systems, such as connection pool settings. These parameters must change because they are based on the deployment, not the application logic. You can automate these updates using the Oracle BI Server XML API (biserverxmlexec.exe -B). During multiuser development, developers merging in content are automatically prevented from overwriting the master repository test connection pool and database parameters with their local unit test parameters.
Application Role (Policy Store) Migration
There are several options for migrating application roles between development, test, and production systems. For simplicity, this document assumes you will re-key a small number of application role names by hand. For full information about migrating application roles, and other migration considerations, see "Moving Oracle Business Intelligence Components to a Production System" in Oracle Fusion Middleware Administrator's Guide.
Users and the Identity Store
As a best practice, users are not represented by metadata objects in the repository at design time. Also, the repository does not manage or store their credentials. Instead, users must always be provisioned to application roles in the run-time environment to receive privileges. Their credentials, as well as their mapping to application roles through groups, are managed in an external Identity Store. See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.
Setting the Environment for the Administration Tool and Utilities
The current directory structure generalizes the location of metadata, data, and configuration files. For this reason, each program or utility you launch requires an initial setup of the configuration for the Oracle instance to which that program belongs. For command-line utilities, you must first launch the bi-init utility to set the parameters, and then launch the utility from a command line inside the bi-init window. Most Oracle BI Server tools, including the Administration Tool, run the bi-init utility transparently. If you run a command without setting the instance environment first, the program will typically fail to find external files.
Choose your style of development based on the size of your team, the number of teams and parallel initiatives, and your requirements for security and availability. Table A-2 shows the multiuser development styles.
Table A-2 Styles of Multiuser Development
Style | Description |
---|---|
Serial Development (Figure A-1) | You can use this method if you have a small number of developers and low concurrency. Development users share a repository file through e-mail, a shared directory, or on a shared development system, and only one of them makes changes at a time. They must coordinate with each other on the development schedule. |
Serial Development with Patch Files (Figure A-1) | As a variation on serial development, you can share a base binary repository, and ship changes only between users using patch files. |
Shared Online Development (Figure A-2) | The best practice is for only one developer at a time to develop metadata in online mode against a single Oracle BI Server and its repository. However, multiple online users are an option for development situations where communication among the team members is frequent, a higher risk of conflicts is acceptable, and minimum administrative overhead is a goal. |
MUD (Figure A-3) | The Multiuser Development feature enables over one hundred development users to work in parallel on a shared, enterprise repository. Each user can develop and unit test in a separate sandbox environment, using only manageable-sized subsets of the metadata. When a unit of work is complete, they can automatically merge it into the branch, where other users can pick up those changes and integrate them with their own metadata. When a project phase is ready for promotion, the MUD administrator migrates it to the test environment, and eventually, production. The MUD administrator manages branches and sub-branches to enable parallel development of independent initiatives or fixes, and merges them into the main branch to incrementally migrate them to test and production environments. The MUD administrator also manages fine-grained "projects," which are the manageable-sized repository subsets individual developers check out to their local sandbox environments. See "Understanding the Multiuser Development Environment" for additional information. |
MUD with Multiple, Independent Semantic Models (Figure A-3 and Figure A-4) | There might be cases where you need two or more independent semantic models, rather than a single, integrated, enterprise-wide model. This is common due to security requirements, or when unrelated divisions of a business share a common Oracle Business Intelligence infrastructure. The MUD administrator creates a branch for each model, which enables parallel development and integrated testing for each team's semantic model. When an independent semantic model's branch is ready for promotion to production, the MUD administrator simply merges the branch into main. The MUD administrator can set security on the branches so that each developer can only see the semantic model to which they are assigned, and so that only the MUD administrator and selected production operations staff can access the integrated main model. |
MUD with Delegated Administration (Figure A-3 and Figure A-4) | When the independent semantic models are developed by different organizations on different schedules, a centralized MUD administrator might not provide the desired level of local control. In this case, you can provide a dedicated MUD administrator for each independent semantic model's branch. The branch administrator operates in the same way as an ordinary MUD administrator. In this scenario, the MUD super-administrator defines a branch for each organization, checks out the subset repository, and provides it to the branch administrator. When the model is ready for promotion to production, the branch administrator passes the repository back to the super-administrator, who merges it into the main branch for promotion, and then migrates the combined repository to production. |
Figure A-1 the serial development style of multiuser development.
Figure A-2 shows the shared online development style of multiuser development.
Figure A-3 shows true multiuser development with branching.
Figure A-4 shows the architecture for a repository with multiple, independent semantic models.
Table A-3 shows which multiuser development styles meet various requirements for security and availability.
Table A-3 Requirements Met by Multiuser Development Styles
Requirement | Serial | Shared Online | MUD with Single Semantic Model | MUD with Multiple Semantic Models | MUD with Delegated Administration |
---|---|---|---|---|---|
No administrator | Yes | No | No | No | No |
Up to five concurrent developers | No | Yes | Yes | Yes | Yes |
More than five concurrent developers | No | No | Yes | Yes | Yes |
Work on manageable subsets of a large repository, such as Oracle BI Applications | No | No | Yes | Yes | Yes |
Built-in checkout, merge, and rollback | No | No | Yes | Yes | Yes |
Host independent semantic models in single repository | Yes | Yes | No | Yes | Yes |
Incremental migration of units of work to production | No | No | Yes | Yes | Yes |
Developers of independent semantic models cannot see each others' metadata | No | No | No | YesFoot 1 | YesFootref 1 |
Each independent semantic model has its own MUD administrator | No | No | No | No | Yes |
Footnote 1 Requires secure MUD Directory. An overall MUD administrator must still have access to all metadata from all teams.
When using MUD, each developer works on their own, fully dedicated sandbox Oracle Business Intelligence system. You should set up your sandbox to contain all the components you need for development and unit testing.
First, you need to decide whether to use a UNIX or Windows server for your Oracle Business Intelligence stack. Follow these guidelines:
Note: The Client install type does not include Catalog Manager, so if you plan to develop the Oracle BI Presentation Catalog in this environment, you should use the Simple install type on the Windows computer rather than the Client install type. |
In online mode, the Oracle BI Server loads the repository from its local repository directory on the UNIX system in:
Note that the Administration Tool on Windows also points to a local /repository directory by default, but you can use any directory for offline development.
You also need to install a development database. This database can be a dedicated, personal database, or it can be shared among multiple repository developers. Note the following considerations about the development database
Note that for Oracle Database connectivity, Oracle Business Intelligence requires an instance of TNSnames.ora in ORACLE_HOME/network/admin.
Figure A-5 shows the architecture of the multiuser development sandbox.
Note: Most developers prefer to disable caching in the development sandbox. This makes it easier to validate and debug physical queries using the log. When the cache is enabled, the physical SQL might not appear in the log, because the request might get fulfilled by the cache. In this release, you must disable caching using Fusion Middleware Control. See "Using Fusion Middleware Control to Enable and Disable Query Caching" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information. |
The overall MUD architecture contains the developer sandbox systems described in the previous section, as well as any test and production systems. In addition, there are several additional major components, as follows:
Figure A-6 shows a sample deployment architecture for the repository lifecycle using the multiuser development environment.
MUD is a set of features that enables teams of developers to work in parallel on projects of any size, despite the complex interrelationships and dependencies in the repository model. With MUD, you can:
The multiuser development feature also provides the following other useful capabilities:
This section contains the following topics:
The basic flow of working with multiple users is as follows:
The multiuser development feature is built around a metadata object called a project. The project is the unit of check-out from the master repository, and the subsequent check-in merge and publish. When a master repository becomes very large, a project is a manageable-sized subset that a developer can check out to work on. It is also designed to be self-consistent, so that you can run the consistency checker (analogous to compile-time code checking) and then test it on the Oracle BI Server with a client such as Answers at run time. When you are satisfied with the results, you can merge it back into the master repository so that it becomes part of the larger application. Meanwhile, history is logged and repository backups are automatically created at key points.
MUD features in the Administration Tool streamline this flow for fine-grained developer projects. Similarly, superset projects streamline the management and merging of branches.
The project subset contains a set of metadata objects. You define a project to include a minimum set of objects explicitly, but many others are included implicitly. Having objects implicitly added to projects simplifies your project management task.
The following objects are explicitly specified by the MUD administrator as members of a project:
All other objects are implicitly included in a project and are found by the Administration Tool during the check-out process. For example:
Note that objects that are in the list of explicitly defined objects are sometimes included implicitly. For example, if a logical column contains an expression that includes a variable, the variable is implicitly included in the project, even if the MUD administrator does not explicitly add it.
It is normal for projects to overlap. An object that appears in one project can also appear in another project. For example, some customers prefer to create an overall project for each independent semantic model, as well as smaller projects within each independent model for checking out individual units of development work. You can also check out multiple projects simultaneously to work on a larger set of metadata.
[placeholder for diagram of how a project draws in some dimensions and physical objects]
See also "Setting Up Projects" for additional information.
This section explains how to create main branches, side branches, and delegated administration branches.
This section contains the following topics:
The ultimate master repository is usually source-controlled in the main branch, out of which all branches and ultimately all development projects check out. The main branch usually stages the repository in production. That is, to migrate content to production, you merge it into the main branch, and then migrate the main repository to the production system.
Similarly, to fix a production bug, a developer typically checks out of the main branch. The developer then fixes the bug, and then merges it back into the main branch for migration to test and production. Meanwhile, parallel development in side branches is not affected.
To create the main branch as the MUD administrator, you must first create a shared directory and copy the master repository file to it. The directory can be on either Windows or UNIX, but the UNIX share must be accessible by Windows users.
Set the security on the share to only allow access by the appropriate developers. Depending on your requirements, you might only allow developers to access the side branch master repositories, not the main branch master repository.
If this is a new project, you typically have a developer seed the repository with initial content that can be easily split into branch projects.
The best practice for branching is to start with a superset MUD project, and then use the MUD check-out, merge, and publish features. Then, individual users or sub-branches use finer-grained projects and check out of the branch master. Using MUD for this functionality provides automatic back-ups at the check-out points, tracks original repositories to ensure correct merges, uses more optimistic merge assumptions that require less user intervention, and provides history and roll-backs.
To create a side branch as the MUD administrator:
Use the Oracle BI Server XML API to automate connection pool changes required during migrations to production and other environments. See "Moving from Test to Production Environments" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
Note that you can use branch permissions combined with project subsetting to prevent developers from seeing metadata that belongs to other teams. Design the projects carefully so that they only extract metadata related to one team. This goal is easiest to achieve if the teams use different business models, subject areas, physical models, variables, initialization blocks, and application roles.
It is also a best practice to use a consistent system of naming and numbering your branches.
You can use a branch to delegate local control of a metadata subset to the organization that is developing and maintaining it. To do this, you assign a branch MUD administrator to the branch, who performs the same roles as the main MUD administrator. This approach works best with an independent semantic model, so that you can ensure that there is no metadata overlapping with other groups.
The delegated branch MUD administrator performs the same tasks as the main branch administrator, including defining projects for further branches and creating fine-grained projects for developers.
To create a delegated administration branch as the main MUD administrator:
There are several different merge tools that are optimized for various situations and environments. When deciding which merge approach and utility to use, you should consider whether you need to perform the task on Windows or UNIX systems. You should also consider your other requirements, such as whether you need to merge changes you made to a semantic model, or whether you need to combine two semantic models from different development efforts.
Table A-4 shows which merge approaches and tools meet various requirements.
Table A-4 Requirements Met by Different Merge Approaches
Requirement | Merge Approach | Tools Used | Platform |
---|---|---|---|
| Three-way merge |
| Windows |
| Three-way merge |
| Windows |
| Three-way merge |
|
|
| Two-way merge |
| Windows |
| Insert-Update-Delete |
| All |
| Insert-Update-Delete |
| Windows |
See "Merging Repositories" for more information about merging.
This section provides tips and best practices for working in a multiuser development environment.
This section contains the following topics:
Follow these guidelines for creating side branches:
Follow these guidelines for setting up projects:
Tip: Presentation layer objects, including subject areas, presentation tables, and presentation hierarchies, are now objects that you explicitly include in the project. Unlike in previous releases, the security settings of the Administration Tool user have no impact on which subject areas, presentation tables, or presentation columns are included in a project when checking it out. Instead, the set of Presentation layer objects determines the scope of the project. |
See also "Setting Up Projects" for more information.
Follow these guidelines when performing three-way merges:
Note that this step is done for you automatically in a MUD merge.
Follow these guidelines when performing MUD merges:
You can also open the repository in offline mode so that other users are locked out by the Windows file system. Note that you should only use this method when you are sure you will finish all your work in one atomic session.
See also "Equalizing Objects" for full information about the importance of equalizing objects.
Tip: Presentation object aliases receive special treatment in merges. Their purpose is to hold historical names of objects, so that when names change, old reports do not break. If you changed any names during development, new aliases were added. During merge, you have the option whether to keep any new aliases you have created, or not. You also have the option to keep any or all past aliases, because the historical reports might still exist. |
See also "About the Multiuser Development Merge Process" for more information.
Use two-way merge when you need to combine two repositories that were developed separately into a single repository. This situation usually occurs when you need to host two semantic models in a single repository.
Follow these guidelines when performing two-way merges:
To create a blank repository, open a new repository, and save it without importing a source or creating any objects. Although this repository contains default security objects, these do not impact your merges.
Caution: Do not use features like Import from Repository or copy/paste in the Administration Tool to move metadata incrementally. These approaches do not correctly merge changes. Using these features might produce the results you expect most of the time, but this is just good luck. The rest of the time, values of the upgrade IDs in the metadata objects will clash, effectively causing overwrites of random objects. However, you might not notice the problem until much later when you do regression testing. Because upgrade IDs are assigned sequentially, and are only unique within one repository, clashes are very likely. You should also use caution when using the biserverxmlcli and biserverxmlexec -b utilities. Be sure to fully understand the information about managing IDs described in "About Using the Oracle BI Server XML API to Merge and Append Objects" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition. |
See also "Performing Full Repository Merges Without a Common Parent" for more information about two-way merges.
Follow these guidelines when moving from test to production:
For more information, see "Starting and Stopping Oracle Business Intelligence" and "Starting and Stopping Oracle Business Intelligence Using the Oracle BI Systems Management API" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.
Follow these guidelines when working with application roles and users:
This section describes common problems and how to resolve them.
Orphan Lock Held on Master RPD
If a user sets a lock by issuing the command to merge local changes, it is not cleared until the user publishes or discards their changes. If the user forgets and leaves for a two-week vacation, the MUD administrator can release the lock.
The lock is stored in a hidden system file in the master directory. If you cannot see the lock file, in Windows Explorer, select Tools, then select Folder Options. In the View menu, ensure that the option Show hidden files and folders is selected.
The lock file has the same name of the master RPD with a .lck extension. Delete the lock file to release the lock on the repository.
Figure A-7 shows a repository lock file.
Object Deleted By Other User
If another MUD developer deletes an object that you need, you can choose one of the following options:
See "Viewing and Deleting History for Multiuser Development" for more information.
Project Missing Needed Physical Tables and Joins After Checkout
Physical objects do not explicitly belong to a project. Instead, the physical objects mapped to the logical fact tables in your project are extracted at the time of check out.
To get needed physical objects into your local extract, check out an additional project that does have mappings to the physical objects you need. If there is no such project, then the entire repository must be edited to create mappings to a logical fact table in your project. The MUD administrator can take the repository off line to make that change. Then, your next check out should include the physical objects.
Objects Added in the Last Session Missing from Checked Out Repository
If recently added objects are missing from your checked out repository, you might have forgotten to add the objects to your project before you merged and published. Only objects in your project, or inferred from your project (like dimensions and physical objects), are included in your extracted repository.
To resolve this issue, ask the MUD administrator to add the objects to your project in the master repository, and then check out again.
Object Renamed by Appending #1
This situation occurs when two objects are merged with the same fully qualified name, but with different internal upgrade IDs. The merge logic in this situation determines that the objects are semantically different objects, and changes the name of the object to preserve uniqueness.
To resolve this issue, run the equalizerpds utility, which reassigns upgrade IDs so that objects with the same fully qualified names in the two repositories have the same Upgrade IDs. Then, try the merge again. The two objects should be merged instead of causing a rename.
See "Equalizing Objects" for more information.
Rolling Back to Previous Versions
The multiuser development environment stores backup copies of RPDs at appropriate checkpoints. Each time a potentially destructive operation is performed, a new backup is stored in the master directory. It has the name of the RPD, and the extension is a three-digit incrementing integer. Individual developers can also make copies of their RPD files at any time during development.
In the developer's sandbox, the original version of a checked-out project is stored with the name originalrpd_name.rpd. This version is automatically used if the developer discards changes.
You can also view and roll back to an older version by following these steps:
Example
This example explains how to copy an older version to replace the latest version. Assume you are at version 1000 and want to roll back to version 900. In this situation, you have three files: repository.900, repository.1000, and repository.rpd, the current version. To perform the roll back, make a copy of repository.900 and rename it to repository.1001. (This lets you keep repository.1000 in your version history.) Then, copy repository.900 to repository.rpd.
This appendix describes a fictional case study that shows how the multiuser development environment might be used for a particular business case.
This appendix contains the following topics:
Eden Corporation (a fictional company) recently purchased Oracle Business Intelligence. They have two divisions that are licensed and plan to use the product. Because of this, the company has two separate initiatives:
Note that the Sales developers and the HR developers are not allowed to see each others' data or metadata. The metadata administrator is the only person who has security privileges for all the metadata.
As in all organizations, there will also be a steady stream of urgent requests and occasional bugs from production. The developers will need to deliver fixes for these within days, even though the longer-term initiatives S and H are in development at the same time.
About the Technical Team Roles and Responsibilities
Eden Corporation has staffed the team as follows:
About the Eden Corporation Development Phases
Eden Corporation plans to deploy RPDs to production based on the following timeline:
About the Eden Corporation Topology
Eden Corporation plans to use the following systems for their multiuser development environment:
About the Repository Architecture
Because of Eden Corporation's business structure and initiatives, they need to have two independent semantic models in their repository: one for Sales and one for HR. Each of these models can have multiple projects.
Planning the Repository Structure
Eden Corporation knows that it is important to plan the structure of their repository file so that it will be able to support the multiuser development needs of their organization. They assigned owners to major objects, so the developers know who to go to when conflicts arise, and which objects they should not modify on their own.
Tip: When hosting multiple independent semantic models, be sure to itemize the names of top-level objects to prevent duplicate names.
Table B-1 and Table B-2 show the high-level repository objects in main.rpd for both Initiative S and Initiative H, mapped to projects and owners. Note that Adam is the overall owner of both Initiative S and Initiative H.
Table B-1 Initiative S Repository Objects Mapped to Projects and Owners
Object Type | Object | Owner | ProjRevenue | ProjQuota | ProjTarget |
---|---|---|---|---|---|
physical database | Sample App Data | Sally | Yes | Yes | Yes |
business model | Sales | Sally | n/a | n/a | n/a |
logical fact table 1 | F10 Billed Rev | Sally | Yes | Yes | No |
logical fact table 2 | F30 Facts Targets | Scott | No | No | Yes |
logical fact table 3 | F50 Facts Quotas | Scott | No | Yes | No |
logical dimension | (various) | Sally | Yes | Yes | Yes |
subject area (1) | Sales Quota | Scott | No | Yes | No |
subject area (2) | Sales Revenue | Sally | Yes | No | No |
subject area (3) | Sales Target | Scott | No | No | Yes |
variable | S_Last_Load | Sally | Yes | Yes | Yes |
initialization block | S_Last_Load | Sally | Yes | Yes | Yes |
application role (1) | Sales Management | Sally | Yes | Yes | Yes |
application role (2) | Sales Rep | Sally | Yes | Yes | Yes |
Table B-2 Initiative H Repository Objects Mapped to Projects and Owners
Object Type | Object | Owner | ProjHR |
---|---|---|---|
physical database | Human Resources Data | Helen | Yes |
business model | HR | Helen | n/a |
logical fact table (1) | Payroll Facts | Helen | Yes |
logical fact table (2) | Medical Ins Facts | Helen | Yes |
logical dimension | (various) | Helen | Yes |
subject area (1) | HR Payroll | Helen | Yes |
subject area (2) | HR Medical | Helen | Yes |
variable | H_Last_Load | Helen | Yes |
initialization block | H_Last_Load | Helen | Yes |
application role (1) | HR Management | Helen | Yes |
application role (2) | HR Rep | Helen | Yes |
In the first phase, both Sally Andre and Scott Baker will develop in parallel. Sally will create the starter content, which Adam Straight will divide into projects. He will then create the MUD directory so that Sally and Scott can check out and perform their development. After unit testing, they merge and publish their changes, and then Adam migrates the repository to the test environment. After a bug fix cycle, Adam promotes the repository to production.
The following sections describe Phase I development:
Sally Andre starts off Initiative S from an empty RPD. Because it is easier to divide the repository into MUD projects if you define some logical stars and subject areas first, she begins by developing the physical model needed for Phase I. She includes connection pool details for her own local test data sources.
Tip: The physical model should include the physical tables, the best practice of aliasing all the physical tables to give them meaningful names, and joins.
Figure B-1 shows the physical model for Initiative S.
Sally drags the Physical layer to the Business Model and Mapping layer to create some starter content. She removes unneeded tables, and ensures that the star joins are correct. She also ensures that all the physical tables that will be needed during development have mappings from the starter logical tables, so that they will be included in the projects when they are checked out. For Sally, these steps create two logical fact tables, F10 Revenue and F50 Quotas, that can act as the basis for the projects.
Sally also needs to have some subject areas to map to the projects in the business model. She could drag the entire business model, but a convenient way to accomplish this is to instead right-click the business model and select Create Subject Areas for Logical Stars and Snowflakes. This feature creates a subject area from each logical fact table.
Sally does not need to be concerned about the contents of the subject areas yet. All that matters is that each subject area maps to the logical fact table for the same project. However, she does name the subject areas based on the plan agreed to in the governance meeting: Sales Quota and Sales Revenue.
Sally now has enough content for the MUD administrator to create the first two projects based on the Revenue and Quota fact tables. To review, Sally has made sure that she meets the following criteria at a minimum:
The MUD administrator for Eden Corporation, Adam Straight, now handles the next few steps to create the projects and get them ready for checkout.
First, he creates the MUD directory, RPD_main, where the master RPD will be stored. This master RPD contains the superset of content for the developers. The users will check their projects out of the master, and merge them back in when they want to share their changes. Sally copies her started RPD to the master folder so that Adam can create the first two projects, ProjRevenue and ProjQuota.
First, Adam opens the master RPD in the Administration Tool and selects Manage > Projects. Then, in the Project Manager, he selects Action > New Project. Adam names the project "ProjRevenue" and proceeds to pick the logical fact tables at the center of the project. The top object in the list expands to show the logical fact tables, but he has a choice of seeing them grouped by the Business Model to which they belong, or by Subject Area.
Figure B-2 shows the different ways Adam can view the logical fact tables.
Adam decides to group facts by Business Model for convenience, although he could have used the Subject Area grouping to select the same fact table. He adds the fact table, plus the default application roles and subject areas specified for this project. Because there are no custom-defined application roles, users, variables, or initialization blocks yet, he cannot yet add them to the project. Adam repeats this process for ProjQuota, the second project.
Tip: Note that some of the explicit objects are the same in both projects, because both projects share application roles. Similarly, many of the implicit project objects are shared, particularly dimension tables in both the logical and physical models. Keep in mind that projects are a convenience for creating small subsets that are easy to work with; they are not for security. It is critical in your governance process that the owner of each top-level object is assigned and documented for the whole team, because this enables developers to avoid conflicts.
Adam included the logical fact table F10 Bill Rev in the project, even though it is owned by Sally Andre, not by Scott Baker, the owner of this project. He did this because Scott needs to create a measure that derives from measures in both fact tables (Sales percent of quota). Again, the point is to provide the user with the subset of content they need to implement their requirements, not just the objects they own.
Adam saves the master RPD to the shared drive, RPD_Main, as "sales.rpd". It is now ready for users to check out projects and begin working in parallel.
Now, the two developers will set up their Administration Tool clients for the master repository, check out their projects, and begin working. Sally starts by setting up her Administration Tool client to use the master repository. To do this, she selects Tools > Options, and then selects the Multiuser tab. There, she sets up the pointer to the master repository directory. She also enters her full name, which will be useful in logs and locks. Now, she can check out her project and begin working on it.
Meanwhile, in the Master Repository directory, two new files have been created: sales.000 and sales.mhl. Figure B-3 shows the new files.
The sales.000 file is an automatic backup created for sales.rpd when Sally checked it out. This file can be used to roll back if problems occur. The sales.mhl file tracks her checkout status and parameters, including project, computer, and user.
Meanwhile, three files have been created in Sally's local repository directory:
Figure B-4 shows the three files in the local repository directory.
Now, Sally begins to work on the model for her application. She does not need to change her connection pool settings because she used her own test data source connection pool details when she created the starter content.
Sally starts by opening her fact table and deleting the unused keys based on the modeling best practice. Then, she adds SUM
aggregation rules to three measures, Discnt_Value, Revenue, and Units. She also changes the name of Discnt_Value to "Discount Amount," Units to "Units Sold," and Revenue to "Sales Revenue."
Sally also needs to add a new column to the D10 Product table, an upper-case version of the Prod_Dsc column called "PRODUCT DESCRIPTION." It uses the following expression: Upper("Sales"."D10 Product (Dynamic Table)"."Prod_Dsc"). She also adds dimension hierarchies, creates a variable called "Constant One", and initializes it to the value 1. She uses it to create a new measure, Constant One.
Sally starts her sandbox Oracle Business Intelligence stack so that she can add application roles, and then test her repository using Answers. She follows these steps to start her components in the right order and to configure her system environment:
Start the Oracle WebLogic Server Administration Server. For example, on Windows, select Start > Programs > Oracle WebLogic > User Projects > bifoundation_domain > Start Admin Server for WebLogic Server Domain and enter the user and password created during installation when prompted.
Note that if you used an Enterprise or Software-Only install type, you must also start the Oracle WebLogic Server Managed Server using the Oracle WebLogic Server Administration Console. Typically, you use the Simple install type when installing development sandboxes.
Still in Fusion Middleware Control, start the system components from the Business Intelligence Overview page.
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition provides more information about steps 2 - 5.
Because Sally's Oracle BI Server is on a Linux system, she must set up ODBC connectivity on her Windows computer so that her Administration Tool client can access the BI Server there.
Sally manually adds an Oracle BI Server ODBC DSN pointing to the Oracle BI Server on the Linux computer. See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for information about how to create an ODBC DSN for the Oracle BI Server.
Sally is using the Oracle WebLogic Server embedded policy store and needs to add two application roles, "Sales Management" and "Sales Rep." To add the roles, she opens a Web browser on her Windows computer and logs in to Fusion Middleware Control (pointing to her Oracle Business Intelligence stack on Linux). She uses Fusion Middleware Control to create the new roles, maps it to the appropriate users, groups, or other roles, and grants the appropriate permissions to the role.
Tip: See "Creating an Application Role" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.
Next, Sally needs to add the new application roles to her repository, and then use them for object permissions and data access filters. To accomplish this, Sally does the following:
For the new variable and application roles to be in Sally's project the next time she checks it out, she must add them to the project before she checks in her changes. To do this, she performs the same steps that Adam did when he created the projects: She selects Manage > Projects, selects her project, selects the new objects in the left pane, and clicks Add.
While Sally Andre is working on the ProjRevenue project, Scott Baker is getting started on ProjQuota. He set up his Administration Tool options for MUD, checked out his project, and started working.
Scott prefers to work in online mode. Doing this tightens the development/unit test loop, because he is modifying the repository while it is running in the Oracle BI Server. Every time he clicks Check In Changes in the Administration Tool toolbar, his changes are applied to the running server. He can then immediately move to Answers and test the changes there. Note that when he adds, deletes, renames, or reorganizes Presentation layer objects, he must reload metadata in the Answers criteria tab to refresh the tree visible there.
First, Scott starts his Oracle Business Intelligence stack, and uploads his checked-out repository using Fusion Middleware Control. He restarts the Oracle BI Server, opens the Administration Tool, and opens his repository in online mode.
Scott must change the connection pool settings to point to his local test database, because the master repository contains Sally's settings. Note that in the merge process, these connection pool changes will be overridden by the connection pools already in the master repository. Therefore, the next time Scott checks out, he will need to apply his local test connection pool changes again.
Tip: Use the Oracle BI Server XML API to automate connection pool changes required during migrations to production and other environments. See "Moving from Test to Production Environments" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
Scott's next task is to clean up his logical fact table by removing keys. He also gives a measure a SUM
aggregation rule and a business-friendly name (Quota Amount).
Scott does not change anything in the F10 logical table because it is owned by Sally. After she checks in, merges, and publishes her changes to the master RPD, he will do the same. Then he will check out again, picking up her changes.
Next, Scott adds a new measure called "Sales percent of quota" to the F50 table. It derives from both fact tables with the following expression:
Note that even if Sally changes the name of Revenue in her project, the merge will identify it as the same object and use the new name in Scott's expression. The merge logic can identify the name change because the upgrade ID of the object is still the same as the original.
Finally, Scott forgets what he learned in the Governance Committee meeting, that all the dimensions are owned by Sally. He has a requirement for an all-capitals version of the D10 Product.Prod_Dsc column called PRODUCT DESCRIPTION. He creates a column identical to the one Sally created. This mistake will be detected and resolved through the check-in merge process in a few moments.
Scott does not need to upload his repository and restart his system because he is working in online mode. Instead, he unit tests his changes immediately after making them. Meanwhile, Sally has finished testing her changes.
Sally has finished creating and unit testing her first batch of changes, so she saves her work and prepares to merge it into the master repository. She chooses File > Multiuser > Merge Local Changes. If she forgot to add any new objects to a project, a detailed warning is displayed so that she can add the objects to her project and try the merge again. Otherwise, the objects are not extracted the next time she checks out the project.
Next, the Administration Tool locks the master repository so that Sally can merge her changes without any chance of corruption from other users' merges.
Tip: For logging purposes, it is a best practice to use the comment field to provide a description of the changes you are checking in. Checking in frequently also makes it easier to keep track of changes, and easier to audit the history later. Finally, it is a best practice in Administration Tool modeling to work incrementally, which simplifies testing and reduces the complexity of each task.
Sally's changes cause no conflicts, so they do not appear in the Define Merge Strategy step that is displayed next. However, aliases for presentation objects are a special case where you can choose to keep either the modified (your local version) or current (the master), or merge the two. The aliases were automatically created when Sally changed the column names, so that reports written to the old names would not break when she put the new names into production. Because Eden Corporation has no reports yet, Sally keeps the aliases empty by selecting Current. She does this for "Sales Revenue," "Units Sold," and "Discount Amount."
Tip: Sometimes, there can be a series of aliases if names change more than once. Because there might be a set of reports using the older names, you can select Merge Choices in the Define Merge Strategy screen to keep any aliases already in Current as well as the new ones in Modified.
After the merge completes, Sally tests one more time, to ensure that no functionality has been broken by the merge with other content. However, Sally is careful not to test too long, because the lock on the master repository is not released until she publishes the repository to the master directory, or discards her changes.
Finally, Sally selects File > Multiuser > Publish to Network. This first copies the master sales.rpd to a backup (sales.001), and then overwrites sales.rpd with the changes from Sally. A merge log is also stored.
Now that Scott has completed his development work for this phase, he merges his local changes. The Define Merge Strategy screen asks whether to keep the alias created on the presentation column "Quota Amount." Like Sally, Scott chooses to keep the current repository value, which does not use the alias.
After the local merge, Scott unit tests again briefly, although he is aware that he holds the lock on the master repository. Upon inspection, he also notices his mistake of creating the same PRODUCT DESCRIPTION column that Sally did. Because Scott's column was created separately, its internal upgrade ID is different than the one in Sally's. Therefore, even though the name is the same, the merge logic knows it is a different column, and renames it rather than overwriting it by appending #1 (PRODUCT DESCRIPTION#1).
Because Scott has completed the merge, he now has the entire repository open and locked. He deletes the extra column, connects his logic to Sally's PRODUCT DESCRIPTION column, tests again briefly, and publishes his changes to the network master repository.
Note that if Scott had deleted or modified a different user's object, the error might have been more difficult to resolve. It might have required re-creating and equalizing the object, or rolling back to a backup version of the repository and re-creating his own changes.
To prepare the repository for the test environment, the MUD administrator, Adam Straight, must now perform several tasks directly on the master repository. In other words, he will use File > Open > Offline rather than File > Multiuser > Checkout.
Adam begins by opening the Administration Tool and then opening sales.rpd in offline mode. As soon as he does this, other users are locked out, and will get Windows permissions errors if they try to check out projects. If Adam needed to open and close the file several times, he would need to remove the RPD from the shared directory while modifying it elsewhere, so that other users would not be able to check out between his changes.
Adam changes the connection pool settings to match the test environment. Note that when Administration Tool users check out projects, connection pool parameters are not included in the checkout. Usually, the master repository in the MUD directory contains the test connection pools, but each individual developer might need different settings for connecting to their own test databases. At check-in and publish, the connection pools in the master repository are not overwritten by developer changes, so that they can continue to point at the shared test databases.
Adam must also ensure that the new application roles are migrated to the test system. Because there are only two, he decides to reenter them in Fusion Middleware Control on the test system. Adam also provisions some test users or groups to the new application roles so the security filters, permissions, and query limits can be tested.
Finally, Adam uploads the repository to the test system using Fusion Middleware Control and restarts the Oracle BI Server. Using his local Administration Tool, he connects to the test Oracle BI Server in online mode and runs the consistency checker. If any application roles referenced by this repository are missing or incorrect, the consistency checker will list errors for them.
The test team can now test the repository. During testing, the test team discovers a bug: "Sales"."F50 Facts Quotas"."Sales percent of quota" was erroneously created with the expression quota/sales instead of sales/quota. The test team writes a bug report, and Scott Baker is assigned to fix the bug.
Scott opens the Administration Tool, checks out ProjQuota, makes the change, changes the connection pool to point to his local test database, and tests on his own sandbox. Then he merges his changes and publishes them to the shared MUD directory. He informs Adam that the bug is fixed and that the repository is ready for him to send to test again.
Adam notes that the connection pools are still pointed at the correct test system, because the MUD feature isolates the master repository from connection pool changes in checked out projects. Adam opens Fusion Middleware Control on the test computer, uploads the repository, and restarts the Oracle BI Server.
The test team tests to completion, and the repository is cleared for production.
After the repository has passed the testing phase, it needs its database connection parameters updated and can then be uploaded to production. Also, the application roles must be migrated and provisioned.
Based on the plan provided by the governance team, the production operations team knows the new application roles needed. They create them as Adam did for the test environment. They also provision users or groups to those application roles, based on the security specification from the governance team.
Before migrating to production, Adam has to change the connection pool parameters to the values needed for the production database. In Eden Corporation, Adam has the privilege to see the production connection pools, but the repository developers do not. Therefore, Adam cannot change from the test to production connection pools and leave the repository in the master directory, because the developers have Windows permissions to read and write to it. Instead, he creates an XML patch of the connection pools needed for Production. Then, he copies sales.rpd to a secure directory and applies the patch, and then tests to be sure it really does connect to the production data sources. He then uploads the repository to the production system, and starts the production cluster of servers.
Tip: Use the Oracle BI Server XML API to automate connection pool changes required during migrations to production and other environments. See "Moving from Test to Production Environments" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
Because the master repository still points to the test databases, the Administration Tool users can still be allowed to see it. Meanwhile, new versions of the production repository can be built at any time by applying the connection pool changes in the XML patch file.
Production validations are now performed. Similar to the migration to the test system, an important validation is to run the consistency checker in online mode to ensure that the application roles are all correct. When this validation is complete, Phase I is in production.
In Phase II, development will continue on a new Phase II branch, while a Main branch will track the production application. To manage this work, Adam will add a branch project, and set up a second master repository shared directly, one for Main, and one for the new Phase II branch.
Sally will add more content to ProjRevenue. While she works on that, Scott will add brand new content. After Scott merges and publishes, Adam will create the new project, ProjTarget, and move Scott's new content into it. Meanwhile, they will have to handle any bugs that occur in production, which is still on the main sales.rpd branch.
The following sections describe Phase II development:
Adam begins by creating another MUD directory to hold the master for the new branch. He sets the Windows share security so that Sally and Scott can read or write to it.
Next, Adam places the main repository into the main MUD directory. He adds a new project for the branch, which encompasses all the existing functionality. Then, he closes the repository, and checks out the branch project in his local Administration Tool repository folder. He copies it to the branch MUD directory, where it now serves as the master for the branch.
Sally and Scott check out their projects again, and begin developing Sales Initiative Phase II in parallel with each other, and in parallel with Phase I being in production. Because Scott is adding new content that will become a new project, he needs to check out one or more other projects that will provide the shared objects to which he needs to map or join in the new content. He chooses to check out ProjQuota.
While Sally and Scott are developing Phase II, an urgent CEO request is escalated to them. The CEO wants the key sales managers to see a new measure called "Sales Quota Variance" on their dashboards within two days.Scott closes his work on the new project on the Phase II branch; it will stay checked out. Then, he checks out the project that will contain the new measure, ProjQuote, from the main branch master repository (sales.rpd). He creates the new measure and corresponding presentation column, tests it locally, merges it locally, and publishes it back to the main branch.Scott then reopens the checked-out Phase II repository from his local drive and continues development.Meanwhile, Adam sends the new sales.rpd to the test environment, where the test team validates the fix.Next, Adam prepares to send the fixed repository to Production. Rather than send the entire repository, however, he sends a patch of the change.To create the patch, Adam compares the modified repository to the one that is currently running in production. The repository running in production is the same as the main repository just before the new changes were merged in, so it is one of the backup repositories in the MUD directory. The current repository running in production is the backup called sales.006, the same one he identified as the original for the upcoming branch merge. He copies this to sales.006.rpd so the Administration Tool can see and open the file. (He cannot simply rename it, because it may be needed for another merge later.)
Figure B-6 shows the files in the MUD directory, including sales.rpd and sales.006.
Next, Adam opens the repository containing the update, sales.rpd. He selects File > Compare, and chooses the sales.006.rpd as the old version to compare. The Compare repositories dialog shows the differences between versions that will be included in the patch.
Figure B-7 shows the Compare repositories dialog.
Next, Adam clicks Create Patch and saves the result as Patch_variance.xml. The patch contains just the objects needed to apply the two new columns, and their associated interconnections.
Tip: More complex patches might also delete objects, or overwrite objects to merge in new property values.
Adam's patch appears as follows:
The Oracle BI Server accepts SQL SELECT
statements from client tools. Additionally, the Administration Tool enables you to define logical columns with complex expressions. This appendix explains the syntax and semantics for the SELECT
statement and for the expressions you can use in the Administration Tool to create derived columns.
This reference provides syntax and usage information for the Logical SQL statements understood by the Oracle BI Server. Oracle BI Server Logical SQL includes standard SQL, plus special functions (SQL extensions) like AGO
, TODATE
, EVALUATE
, and others. Logical SQL queries resolve to Presentation layer objects.
The abstraction provided by the Presentation layer and Business Model and Mapping layer enables clients to query data with Logical SQL only, so that the interaction with actual physical sources is handled by the Oracle BI Server. The complexity of the multiple source languages needed to communicate with each data source type is hidden from users and clients.
In Answers, you can view the Logical SQL queries issued by Oracle BI Presentation Services for particular analyses by viewing the SQL Issued section of the Advanced tab of the Analysis editor. If you have the appropriate privileges, then you can also view SQL by displaying the Manage Sessions page in the Administration tab. Click View Log from the Manage Sessions page to see further details.
In Answers, there are also several places where you can issue Logical SQL. If you have the appropriate privileges, then you can use the Issue SQL page in the Administration tab to enter any SQL code to send to the Oracle BI Server. If an analysis does not contain hierarchical columns, member selections, or groups, then you can use the Advanced SQL Clauses fields in the Advanced tab of the Analysis editor. You can also enter SQL in the New Filter dialog.
In the Administration Tool, Logical SQL appears mostly in the form of expressions related to objects in the Business Model and Mapping layer. You typically create SQL functions in Expression Builder; see "About the Expression Builder Dialogs" for a summary of the places in the Administration Tool where you can build Logical SQL expressions.
Other clients, like Oracle BI Publisher, Oracle's Hyperion Interactive Reporting, Smart View, the Oracle BI Add-in for Microsoft Office, and Essbase, also provide their own interfaces to view and issue Logical SQL to the Oracle BI Server.
This appendix contains the following topics:
This section explains SQL syntax and semantics. The following topics are included:
The SELECT
statement, or query specification, is the way to query a decision support system through the Oracle BI Server. A SELECT
statement returns a table to the client that matches the query. It is a table in the sense that the results are in the form of rows and columns.
The SELECT
statement is the basis for querying any structured query language (SQL) database. The Oracle BI Server accepts logical requests to query objects in a repository, and users (or query tools) make those logical requests with ordinary SQL SELECT
statements. The server then translates the logical requests into physical queries against one or more data sources, combines the results to match the logical request, and returns the answer to the end user.
The SELECT
statement in Logical SQL differs from standard SQL in that tables do not need to be joined. Any join conditions supplied in the query are ignored because the join conditions are predefined in the Oracle BI repository.
This section provides the basic syntax for the SELECT
statement, as well as definitions for individual clauses. The syntax descriptions cover only basic syntax and features unique to the Oracle BI Server. For a more comprehensive description of SQL syntax, see a third-party reference book on SQL or a reference manual on SQL from your database vendors. For Oracle Database, see Oracle Database SQL Language Reference.
This section contains the following topics:
Syntax for the SELECT
statement is as follows:
Where:
select_list
is the list of columns specified in the request. See "SELECT List Syntax" for more information.
FROM
from_clause
is the list of tables in the request. Optionally includes certain join information for the request. See "FROM Clause Syntax" for more information.
WHERE
search_condition
specifies any combination of conditions to form a conditional test. A WHERE
clause acts as a filter that lets you constrain a request to obtain results that answer a particular question. Together with the columns you select, filters determine what your results will contain. See "WHERE Clause Syntax" for more information.
GROUP BY
column
{,
column
}
specifies a column (or alias) belonging to a table defined in the data source. See for more information.
HAVING
search_condition
specifies any combination of conditions to form a conditional test. The syntax is identical to that for the WHERE
clause.
ORDER BY
column
{,
column
}
specifies the columns to order the results by. See "ORDER BY Clause Syntax" for more information.
The Oracle BI Server treats the SELECT
statement as a logical request. If aggregated data is requested in the SELECT
statement, a GROUP BY
clause is automatically assumed by the server. Any join conditions supplied in the query are ignored because the join conditions are all predefined in the Oracle BI repository.
The Oracle BI Server accepts the following SQL syntaxes for comments:
The Oracle BI Server supports certain subqueries, as well as UNION
, UNION ALL
, INTERSECT
, and EXCEPT
operations in logical requests. This functionality increases the range of business questions that can be answered, eases the formulation of queries, and provides some ability to query across multiple business models.
The Oracle BI Server supports the following subquery predicates in any conditional expression (for example, within WHERE
, HAVING
, or CASE
statements):
In Answers, advanced users and developers can use the Advanced SQL Clauses fields in the Advanced tab of the Analysis editor to specify various SQL clauses, such as GROUP BY
, HAVING
, and DISTINCT
, to include in the SQL queries that are sent to the Oracle BI Server. If an analysis contains hierarchical columns, selections, or groups, then certain Advanced SQL Clauses fields are not available.
The select_list
lists the columns in the request. All columns need to be from a single business model. Table names can be included (as Table.Column), but are optional unless column names are not unique within a business model. If column names contain spaces, enclose column names in double quotes. The DISTINCT
keyword does not need to be included, because the Oracle BI Server always does a distinct query. Columns that are being aggregated do not need to include the aggregation function (such as SUM
), as aggregation rules are known to the server and aggregation is performed automatically.
Syntax
Where:
*
Indicates all columns in the resultant table in the FROM
clause.
column
is a column (or alias) belonging to a table defined in the data source.
expr
is any valid SQL expression.
The Oracle BI Server accepts any valid SQL FROM
clause syntax. To simplify FROM
clause creation, you can specify the name of a subject area instead of a list of tables. The Oracle BI Server determines the proper tables and the proper join specifications based on the columns the request asks for and the configuration of the Oracle BI repository.
The Oracle BI Server accepts any valid SQL WHERE
clause syntax. There is no need to specify any join conditions in the WHERE
clause, because the joins are all configured within the Oracle BI repository. Any join conditions specified in the WHERE
clause are ignored.
The Oracle BI Server also supports the following subquery predicates in any conditional expression (WHERE
, HAVING
or CASE
statements):
With auto aggregation on the Oracle BI Server, there is no need to submit a GROUP BY
clause. When no GROUP BY
clause is specified, the GROUP BY
specification defaults to all of the nonaggregation columns in the SELECT
list. If you explicitly use aggregation functions in the select list, you can specify a GROUP BY
clause with different columns and the Oracle BI Server computes the results based on the level specified in the GROUP BY
clause.
See "Rules for Queries with Aggregate Functions" for additional details, as well as some examples of using the GROUP BY
clause in queries against the Oracle BI Server.
The Oracle BI Server accepts any valid SQL ORDER BY
clause syntax, including referencing columns by their order in the select list (such as ORDER BY
3, 1, 5).
In addition, you can use the following syntax to alter the sort order for nulls in the query:
The SELECT_PHYSICAL
command provides the functionality to directly query objects in the Physical layer of the metadata repository, and to nest such a statement within a query against the Business Model and Mapping layer or the Presentation layer.
Though a SELECT_PHYSICAL
query bypasses the Presentation layer and the Business Model and Mapping layer, the Oracle BI Server still performs parsing, interpretation, and query generation on a SELECT_PHYSICAL
query before passing it to the database.
A SELECT_PHYSICAL
command can contain any element allowed in standard Oracle BI Server SQL with the following constraints:
SELECT_PHYSICAL
command does not explicitly reference structures in the repository Business Model and Mapping layer or the Presentation layerSELECT_PHYSICAL
command does not require implicit logical transformationSELECT_PHYSICAL
command cannot contain certain aggregate functions - see "Aggregate Functions Not Supported in SELECT_PHYSICAL Queries" for detailsNote: SELECT_PHYSICAL statements are not cached. |
You can set up an ODBC connection to the Oracle BI Server to be a dedicated physical connection over which all SELECT
queries are treated as SELECT_PHYSICAL
queries. To do this, select Route Requests To Physical Layer in the ODBC data source for the Oracle BI Server. See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.
SELECT_PHYSICAL
statements are logged as Physical Request entries.
The topics in this section are the following:
Basic syntax for SELECT_PHYSICAL
queries is equivalent to "Basic Syntax for the SELECT Statement" with the term SELECT_PHYSICAL
replacing the word SELECT
, namely:
Notes: The SELECT_PHYSICAL statement is close to the standard ANSI SQL SELECT statement. For example, you cannot omit the GROUP BY clause nor, where relevant, the HAVING clause in a SELECT_PHYSICAL aggregate query. |
In SELECT_PHYSICAL
queries, you must fully qualify the table names in the FROM
list. Each fully qualified table name must match a table name in the physical layer of the repository.
A fully qualified table name consists of up to four components, database name, catalog name, schema name, and table name. Each component is surrounded by double quotes (") with a period (.) separator between components. For example, "SQL_DB"."My_Catalog"."My_Schema"."Customers" for a SQL Server table, and "FoodMart"..."Sales" for a cube table.
Refer to the corresponding topics in "Basic Syntax for the SELECT Statement" for more information about the different clauses and sub-clauses of the SELECT_PHYSICAL
command.
The following aggregate functions are not supported in SELECT_PHYSICAL
queries:
AGO
BOTTOMN
FILTER
FIRST
LAST
RCOUNT
RMAX
RMIN
RSUM
TODATE
TOPN
The Oracle BI Server supports the use of SELECT_PHYSICAL
for the following types of logical query:
Standard non-aggregate SELECT_PHYSICAL
commands follow the same rules as standard non-aggregate SELECT
commands. They can also include scalar functions, such as String, Math, and Calendar Date/Time functions. For example:
In general, all aggregate functions supported in SELECT
queries are also supported in SELECT_PHYSICAL
queries. See "Aggregate Functions Not Supported in SELECT_PHYSICAL Queries" for a list of the exceptions to this rule.
For aggregates supported in SELECT_PHYSICAL
commands, each aggregate must have an explicitly specified aggregation level, using the GROUP
BY
clause or the BY
clause. For example:
The Oracle BI Server supports the following types of query:
SELECT_PHYSICAL
SELECT
and subquery uses SELECT_PHYSICAL
Subqueries are supported on both filters and on projections embedded in a Case statement.
For example:
SELECT
CASE WHEN
b.categoryid INSELECT_PHYSICAL
a.categoryid Both SELECT
and SELECT_PHYSICAL
queries can have derived tables in their FROM
clause. The tables can be derived using either SELECT
or SELECT_PHYSICAL
. For example:
You can use SELECT_PHYSICAL
to join tables in different databases. For example:
SELECT_PHYSICAL
queries support the NATURAL JOIN
syntax, which enables you to use predefined join expressions. For ADF Business Component data sources, the ViewLink in ADF becomes active. The NATURAL JOIN
join type, however, is not exposed for use in Logical Table Sources (for example, LEFT OUTER JOIN
).
You can only use the NATURAL JOIN
keyword in SELECT_PHYSICAL
queries. The NATURAL JOIN
behavior in Oracle Business Intelligence is different from the ANSI NATURAL JOIN
. The following examples illustrate how joins are executed with and without the NATURAL JOIN
syntax:
In this example, no join is executed between A and B (even if one is defined in the metadata).
In this example, the physical join between A and B is executed. For ADF Business Component data sources, the join expression defined by the underlying ViewLink is used.
In this example, even if C is joined to A in the metadata, only the A-B join is active. The C-A join is not used.
You can use session variables and the INDEXCOL
function in a SELECT_PHYSICAL
command, as in the following examples:
The Oracle BI Server simplifies the SQL statements needed to craft aggregate queries. This section outlines the rules that the Oracle BI Server follows for whether a query contains a GROUP BY
clause and, if a GROUP BY
clause is specified, what results you should expect from the query. The rules outlined in this section apply to all aggregates used in SQL statements (SUM
, AVG
, MIN
, MAX
, COUNT(*)
, and COUNT
).
A baseline column is a column that has no aggregation rule defined in the Aggregation tab of the Logical Column dialog in the repository. Baseline columns map to nonaggregated data at the level of granularity of the logical table to which they belong. If you perform aggregation (SUM
, AVG
, MIN
, MAX
, or COUNT
) on a baseline column through a SQL request, the Oracle BI Server calculates the aggregation at the level based on the following rules:
GROUP BY
clause specified, the level of aggregation is grouped by all of the nonaggregate columns in the SELECT
list.GROUP BY
clause specified, the level of aggregation is based on the columns specified in the GROUP BY
clause.For example, consider the following query, where the column revenue is defined in the repository as a baseline column (no aggregation rules specified in the Logical Column > Aggregation tab):
The results appear in the following list by year, products, and then sum of revenue.
YEAR	PRODUCT	SUM(REVENUE)
1998 | Coke | 500 |
1998 | Pepsi | 600 |
1999 | Coke | 600 |
1999 | Pepsi | 550 |
2000 | Coke | 800 |
2000 | Pepsi | 600 |
This query returns results grouped by year and product, or in other words, it returns one row for each product and year combination. The sum calculated for each row is the sum of all the sales for that product in that year. It is logically the same query as the following:
If you change the GROUP BY
clause to only group by year, then the sum calculated is the sum of all products for the year, as follows:
The results appear in the following list by year, products, and then sum of revenue:
YEAR | PRODUCT | SUM(REVENUE) |
---|---|---|
1998 | Coke | 1100 |
1998 | Pepsi | 1100 |
1999 | Coke | 1150 |
1999 | Pepsi | 1150 |
2000 | Coke | 1400 |
2000 | Pepsi | 1400 |
If you add a column to the query requesting the COUNT
of revenue, the Oracle BI Server calculates the number of records used to calculate the results for each group. In this case, it is a year, as shown in the following example:
The results appear in the following list by year, products, sum of revenue, and then revenue count:
YEAR | PRODUCT | SUM(REVENUE) | COUNT(REVENUE) |
---|---|---|---|
1998 | Coke | 1100 | 6000 |
1998 | Pepsi | 1100 | 6000 |
1999 | Coke | 1150 | 6500 |
1999 | Pepsi | 1150 | 6500 |
2000 | Coke | 1400 | 8000 |
2000 | Pepsi | 1400 | 8000 |
A measure column is a column that has a default aggregation rule defined in the Aggregation tab of the Logical Column dialog in the repository. Measure columns always calculate the aggregation with which they are defined. If you perform explicit aggregation (SUM
, AVG
, MIN
, MAX
, or COUNT
) on a measure column through a SQL request, you are actually asking for an aggregate of an aggregate. For these nested aggregates, the Oracle BI Server calculates the aggregation based on the following rules:
SELECT
list, regardless of whether the query specifies a GROUP BY
clause.GROUP BY
clause specified, the nested aggregate is a grand total of each group determined by all of the nonaggregate columns in the SELECT
list.GROUP BY
clause specified, the nested aggregation calculates the total for each group as specified in the GROUP BY
clause.For example, consider the following query, where the column SumOfRevenue is defined in the repository as a measure column with a default aggregation rule of SUM
(SUM
aggregation rule specified in the Aggregation tab of the Logical Column dialog):
The following query results are grouped by year and product, or in other words, it returns one row for each product and year combination. The sum calculated for each row in the SumOfRevenue column is the sum of all the sales for that product in that year because the measure column is always at the level defined by the nonaggregation columns in the query.
YEAR | PRODUCT | SUMofREVENUE | SUM(SUMofREVENUE) |
---|---|---|---|
1998 | Coke | 500 | 3650 |
1998 | Pepsi | 600 | 3650 |
1999 | Coke | 600 | 3650 |
1999 | Pepsi | 550 | 3650 |
2000 | Coke | 800 | 3650 |
2000 | Pepsi | 600 | 3650 |
If you set the GROUP BY
clause to only group by year, then the sum calculated in the SumOfRevenue
column is the sum of each product for the year, and the sum calculated in the SUM(SumOfRevenue)
column is total sales of all products for the given year. The following is the query:
In the following result set, the sum calculated for each row in the SumOfRevenue
column is the sum of all the sales for that product in that year because the measure column is always at the level defined by the nonaggregation columns in the query. The SUM(SumOfRevenue)
is the same for each row corresponding to a given year, and that sum represents the total sales for that year. In this case, it is the sales of Coke plus the sales of Pepsi.
YEAR | PRODUCT | SUMofREVENUE | SUM(SUMofREVENUE) |
---|---|---|---|
1998 | Coke | 500 | 1100 |
1998 | Pepsi | 600 | 1100 |
1999 | Coke | 600 | 1150 |
1999 | Pepsi | 550 | 1150 |
2000 | Coke | 800 | 1400 |
2000 | Pepsi | 600 | 1400 |
A display function is a function that operates on the result set of a query. The display functions the Oracle BI Server supports (RANK
, TOPN
, BOTTOMN
, PERCENTILE
, NTILE
, MAVG
, MEDIAN
, and varieties of standard deviation) are specified in the SELECT
list of a SQL query. Queries that use display functions conform to the following rules:
GROUP BY
clause is specified, the display function operates across the entire result set, or in other words, the grouping level for the display function matches that of the query.GROUP BY
clause specified, the display function resets its values for each group as specified in the GROUP BY
clause.For example, in the following query, SumOfRevenue
is defined as a measure column with the default aggregation rule of SUM
:
In the following query result set, there is no GROUP BY
clause specified, so the rank is calculated across the entire result set:
YEAR | PRODUCT | SUMofREVENUE | RANK(SUMofREVENUE) |
---|---|---|---|
1998 | Coke | 500 | 6 |
1998 | Pepsi | 600 | 2 |
1999 | Coke | 600 | 2 |
1999 | Pepsi | 550 | 5 |
2000 | Coke | 800 | 1 |
2000 | Pepsi | 600 | 2 |
If you change the GROUP BY
clause to group by year and product, then the rank is reset for each year, as follows:
In the following result set, the rank is reset each time the year changes, and because there are two rows for each year, the value of the rank is always 1 or 2:
YEAR | PRODUCT | SUMofREVENUE | RANK(SUM(REVENUE) by year) |
---|---|---|---|
1998 | Coke | 500 | 2 |
1998 | Pepsi | 600 | 1 |
1999 | Coke | 600 | 1 |
1999 | Pepsi | 550 | 2 |
2000 | Coke | 800 | 1 |
2000 | Pepsi | 600 | 2 |
When using an aggregate function, you can calculate a specified level of aggregation using BY
within the aggregate function. If you do this, you do not need a GROUP BY
clause.
For example, the following query returns the column year_revenue that displays revenue aggregated by year:
The same syntax can be used with display functions. The following query calculates overall rank of revenue for each product for each year (each row in the entire result set), and also the rank of each product's revenue within each year:
In SQL query language, traditional aggregates, such as SUM
, COUNT
, MIN
, and MAX
are evaluated on a group of tuples (an ordered list of objects, each of a specified type), determined by the GROUP BY
clause. All the aggregates specified in the SELECT
clause of a query are evaluated over the same subset of tuples. Conditional aggregates extend SQL by restricting their input using a predicate.
FILTER
is an operator that restricts the set of rows used to compute its aggregate argument to rows that satisfy the USING
condition. The FILTER
operator is a Logical SQL construct. It may be used in logical queries referring to the metadata, or in logical columns that use existing logical columns as the source.
Syntax
Conditional aggregates are only notational concepts and they do not represent executable operators. Conditional aggregates are expressed in the form of a function as shown in the following statement:
Where:
measure_expr
is an expression that contains at least one measure. The following is a list of examples:
boolean_expr
is a boolean expression (evaluates to TRUE
or FALSE
) that does not contain any measures. This expression may not contain any nested queries.
Example
The following is a simple example of the FILTER
function:
After navigation, this query is executed as follows:
Error Handling
In the example FILTER(x USING y)
, error messages are returned in the following situations:
FILTER
is used in outer query block.FILTER(COUNT(product), C)
.There are two types of operators: SQL logical operators, and mathematical operators.
The following SQL logical operators are used to specify comparisons between expressions.
BETWEEN
can be preceded with NOT
to negate the condition.Mathematical operators are used to combine expression elements to make certain types of comparisons in an expression.
Table C-1 lists operators and describes their use in an expression.
Table C-1 Operators
Operator | Description |
---|---|
+ | Plus sign for addition. |
- | Minus sign for subtraction. |
* | Multiply sign for multiplication. |
/ | Divide by sign for division. |
|| | Character string concatenation. |
(| Open parenthesis. |
) | Closed parenthesis. |
> | Greater than sign, indicating values higher than the comparison. |
< | Less than sign, indicating values lower than the comparison. |
= | Equal sign, indicating the same value. |
<= | Less than or equal to sign, indicating values the same or lower than the comparison. |
>= | Greater than or equal to sign, indicating values the same or higher than the comparison. |
<> | Not equal to, indicating values higher or lower, but different. |
|
|
|
|
|
|
, | Comma, used to separate elements in a list. |
Expressions are building blocks for creating conditional expressions that convert a value from one form to another. Expressions include:
This form of the CASE
statement is also referred to as the CASE(Lookup)
form. The value of expr1
is examined, then the WHEN
expressions. If expr1
matches any WHEN
expression, it assigns the value in the corresponding THEN
expression.
If none of the WHEN
expressions match, it assigns the default value specified in the ELSE
expression. If no ELSE
expression is specified, the system automatically adds an ELSE NULL
.
If expr1
matches an expression in multiple WHEN
clauses, only the expression following the first match is assigned.
Note: In a CASE statement, AND has precedence over OR . |
Syntax
Where:
CASE
starts the CASE
statement. Must be followed by an expression and one or more WHEN
and THEN
statements, an optional ELSE
statement, and the END
keyword.
WHEN
specifies the condition to be satisfied.
THEN
specifies the value to assign if the corresponding WHEN
expression is satisfied.
ELSE
specifies the value to assign if none of the WHEN
conditions are satisfied. If omitted, ELSE NULL
is assumed.
END
ends the CASE
statement.
Example
In this example, the WHEN
statements must reflect a strict equality. For example, a WHEN
condition of WHEN < 0 THEN 'Under Par'
is illegal because comparison operators are not allowed.
This form of the CASE
statement evaluates each WHEN
condition and if satisfied, assigns the value in the corresponding THEN
expression.
If none of the WHEN
conditions are satisfied, it assigns the default value specified in the ELSE
expression. If no ELSE
expression is specified, the system automatically adds an ELSE NULL
.
Note: In a CASE statement, AND has precedence over OR . |
Syntax
Where:
CASE
starts the CASE
statement. Must be followed by one or more WHEN
and THEN
statements, an optional ELSE
statement, and the END
keyword.
WHEN
specifies the condition to be satisfied.
THEN
specifies the value to assign if the corresponding WHEN
expression is satisfied.
ELSE
specifies the value to assign if none of the WHEN
conditions are satisfied. If omitted, ELSE NULL
is assumed.
END
ends the CASE
statement.
Example
Unlike the Switch form of the CASE
statement, the WHEN
statements in the If form allow comparison operators. For example, a WHEN
condition of WHEN < 0 THEN 'Under Par'
is legal.
A literal is a nonnull value corresponding to a given data type. Literals are typically constant values, or in other words, they are values that are taken as they are. A literal value must comply with the data type that it represents.
SQL provides mechanisms for expressing literals in SQL statements. This following topics describe how to express each type of literal in SQL:
A character literal represents a value of CHARACTER
or VARCHAR
data type. To express a character literal, enclose the character string in single quotes ('). The number of characters enclosed between the single quotes implies the length of the literal.
Examples
The SQL 92 standard defines three kinds of 'typed' datetime literals, in the following formats:
To express a typed datetime literal, use the keywords DATE
, TIME
, or TIMESTAMP
followed by a datetime string enclosed in single quotation marks, as in the preceding example. Two digits are required for all nonyear components even if the value is a single digit.
These formats are fixed and are not affected by the format specified in the NQSConfig.INI file for the parameters DATE_DISPLAY_FORMAT
, TIME_DISPLAY_FORMAT
, or DATE_TIME_DISPLAY_FORMAT
.
Examples
A numeric literal represents a value of a numeric data type (such as INTEGER
, DECIMAL
, or FLOAT
). To express a numeric literal, type the number as part of a SQL statement.
Do not surround numeric literals with single quotes. Doing so expresses the literal as a character literal.
Numeric literals include:
To express an integer constant as a literal, specify the integer as part of a SQL statement (for example, in the SELECT
list). Precede the integer with a plus sign (+) to indicate the integer is positive, or a minus sign (-) to indicate the integer is negative. Unsigned integers are assumed to be positive.
Examples
To express a decimal literal, specify a decimal number. Precede the number with a plus sign (+) to indicate the number is positive, or a minus sign (-) to indicate the number is negative. Unsigned numbers are assumed to be positive.
Examples
To express floating point numbers as literal constants, enter a decimal literal followed by the letter E (either uppercase or lowercase), followed by the plus sign (+) to indicate a positive exponent, or the minus sign (-) to indicate a negative exponent. No spaces are allowed between the integer, the letter E, and the sign of the exponent.
Examples
A calculated member is a user-defined dimension member whose measure values are calculated at run time.
You define a calculated member within a dimension through a formula that references other members of the same dimension. If a dimension has multiple hierarchies, all members referenced in the formula must belong to one hierarchy.
Within a calculated member, the members do not have to be at the same level in the hierarchy. For example, in a Geography hierarchy, you can create a calculated member to enable you to add together measure values for the Country member France and the City member Budapest.
The three standard components of a calculated member are:
This section contains the following topics:
Where:
presentation_hierarchy
identifies the fully qualified presentation hierarchy in the presentation layer on which the calculated member is based, as follows:
Note: When qualifying presentation hierarchies and presentation hierarchy levels in both the CALCULATEDMEMBER expression and the Member clause within the calculated_member_formula parameter, the following rule applies:
|
member_identifier
is the string or numeric literal that identifies the calculated member. The type of literal depends on the data type of the dimension level-keys.
calculated_member_formula
consists of one or more examples of a "member clause" connected by the standard arithmetic operators + - * / (). The syntax of the member clause depends on whether the presentation hierarchy is level-based or parent-child. See "Syntax for the Member Clause in Level-Based Hierarchies" and "Syntax for the Member Clause in Parent-Child Hierarchies" for details.
solve_order
(optional) is a positive integer, used to determine the order of evaluation when there are calculated members from different dimensions in the same query. See "Using Solve Order to Control Formula Evaluation Sequence" for details.
Syntax for the Member Clause in Level-Based Hierarchies
Where:
presentation_hierarchy_level
identifies the fully qualified hierarchy level in the presentation_hierarchy
, as follows:
member_value
is the string or numeric literal that identifies the member in the presentation_hierarchy_level
.
Syntax for the Member Clause in Parent-Child Hierarchies
Where:
presentation_hierarchy
identifies the fully qualified presentation hierarchy in the presentation layer on which the calculated member is based, as follows:
member_value
is the string or numeric literal that identifies the member in the presentation_hierarchy
.
The rules for calculated members relate to the CALCULATEDMEMBER
expression itself and the use of the CALCULATEDMEMBER
expression in queries.
CALCULATEDMEMBER
expression must belong to the same dimension hierarchy.CALCULATEDMEMBER
expressions may only appear in the SELECT
list of a query.CALCULATEDMEMBER
expression is allowed for each dimension for each SELECT
list of a query block. However, CALCULATEDMEMBER
expressions based on other dimensions may exist in the same query.SELECT
listWHERE
clauseHAVING
clauseHowever, you may reference columns from the calculated member dimension in subqueries.
CALCULATEDMEMBER
expressions on those dimensions.By default, when the CALCULATEDMEMBER
expression does not contain a solve order, the calculated members are evaluated in the order in which they appear in the SELECT
list.
When there are calculated members from different dimensions in the same query block, the order in which the Oracle BI Server evaluates the calculated members may be significant.
Example C-1 illustrates how the wrong solve order can lead to incorrect results.
Example C-1 Using Solve Order
Assume you have the following account and time data:
Kwik Grains | Profit | Sales |
---|---|---|
2007 Q3 | 300 | 1000 |
2007 Q4 | 600 | 1500 |
You want to calculate the percentage profit (Profit / Sales * 100) for each time period and the totals for the two quarters.
If the solve order for your calculations is the following:
then the percentage profit for '2007 Second Half' is calculated incorrectly by adding the 2007 Q3 profit to the 2007 Q4 profit:
with the following results:
Kwik Grains | Profit | Sales | Profit% |
---|---|---|---|
2007 Q3 | 300 | 1000 | 30 |
2007 Q4 | 600 | 1500 | 40 |
2007 Second Half | 900 | 2500 | 70 (incorrect result) |
If the solve order for your calculations is the following:
then the percentage profit for '2007 Second Half' is calculated correctly by adding the 2007 Q3 and 2007 Q4 profits and sales first, then dividing the total Profit by the total Sales:
with the following results:
Kwik Grains | Profit | Sales | Profit% |
---|---|---|---|
2007 Q3 | 300 | 1000 | 30 |
2007 Q4 | 600 | 1500 | 40 |
2007 Second Half | 900 | 2500 | 36 (correct result) |
See Example C-3, "Using Calculated Members from Different Dimensions" for an example of a query that explicitly specifies the solve order.
The examples in this section show the use of calculated members in queries, and the base data on which the calculations are performed.
Example C-2 Single Calculated Member Query
This example shows two queries, each with corresponding results.
The first query contains a calculated member.
Result:
The second query verifies the results of the first query. It shows the base data on which the calculation in the first query is performed.
Result:
Example C-3 Using Calculated Members from Different Dimensions
The requirement in this example is to determine the percentage increase over time in Revenue and Quantity Sold for US and Canada combined.
To achieve the correct results, the solve order is significant. You must first add Revenue and Quantity Sold for the two countries across the time periods, then perform the percentage calculation. See "Using Solve Order to Control Formula Evaluation Sequence" for more information about solve order significance.
This example shows two queries, each with corresponding results.
The first query contains the calculated members from the two dimensions Product - Region and Time, with the "addition" formula calculated first, then the "percentage" formula.
Result:
Note that in the preceding query, the sequence of the calculated members in the SELECT
list is sufficient for correct results, even without the explicit solve orders. The solve orders are included for completeness.
The second query verifies the results of the first query. It shows the base data on which the calculations in the first query are performed.
Result:
You can include and set variables in SQL statements. To do this, include the variable at the beginning of the SQL statement.
Syntax
If you are executing a query from the nqcmd utility, use a colon as a delimiter. Otherwise, you can use either a semicolon or a colon.
Examples
This section contains information about aggregate functions, running aggregate functions, and time series functions:
Aggregate functions perform operations on multiple values to create summary results.
The aggregate functions cannot be used to form nested aggregation in expressions on logical columns that have a default aggregation rule defined in the Aggregation tab of the Logical Column dialog. To specify nested aggregation, you must define a column with a default aggregation rule and then request the aggregation of the column in a SQL statement.
Aggregate functions include:
This function aggregates columns based on the level or levels you specify. Using AGGREGATE AT
guarantees that the aggregate for the measure always occurs at the levels specified after the keyword AT
, regardless of the WHERE
clause.
Syntax
Where:
expr
is any expression that references at least one measure column
level
is the level at which you want to aggregate. You can optionally specify multiple levels.
You cannot specify a level from a dimension that contains levels that are being used as the measure level for the measure you specified in the first argument. For example, you cannot write the function as AGGREGATE(yearly_sales AT month)
because "month" is from the same time dimension that is being used as the measure level for "yearly_sales."
Example
The following example shows the AGGREGATE AT
function and example results:
Result:
Because the AGGREGATE AT
operator is always executed before the predicates, it always returns the correct total for the time level specified after the keyword AT
.
This function calculates the average (mean) value of an expression in a result set. It must take a numeric expression as its argument.
Note that the denominator of AVG
is the number of rows aggregated. For this reason, it is usually a mistake to use AVG(
x
)
in a calculation in Oracle Business Intelligence. Instead, write the expression manually so that you can control both the numerator and denominator (x/y).
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the average (mean) of all distinct values of an expression. It must take a numeric expression as its argument.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function ranks the lowest n values of the expression argument from 1 to n, 1 corresponding to the lowest numeric value. The BOTTOMN
function operates on the values returned in the result set. A request can contain only one BOTTOMN
expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
integer
is any positive integer. Represents the bottom number of rankings displayed in the result set, 1 being the lowest rank.
This function calculates the number of rows having a nonnull value for the expression. The expression is typically a column name, in which case the number of rows with nonnull values for that column is returned.
Syntax:
Where:
expr
is any expression.
This function adds distinct processing to the COUNT
function.
Syntax
Where:
expr
is any expression.
This function counts the number of rows.
Syntax
Example
For example, if a table named Facts contained 200,000,000 rows, the sample request would return the results shown:
Result:
This function selects the first returned value of the expression argument. For example, the FIRST
function can calculate the value of the first day of the year.
The FIRST
function is limited to defining dimension-specific aggregation rules in a repository. You cannot use it in SQL statements.
The FIRST
function operates at the most detailed level specified in your explicitly defined dimension. For example, if you have a time dimension defined with hierarchy levels day, month, and year, the FIRST
function returns the first day in each level.
You should not use the FIRST
function as the first dimension-specific aggregate rule. It might cause queries to bring back large numbers of rows for processing in the Oracle BI Server, causing poor performance.
When a measure is based on dimensions, and data is dense, the Oracle BI Server optimizes the SQL statements sent to the database to improve performance. See "Setting Default Levels of Aggregation for Measure Columns" for more information about dense data.
Note that you cannot nest PERIODROLLING
, FIRST
, and LAST
functions.
Syntax
Where:
expr
is any expression that references at least one measure column.
Example
For use in setting up aggregate navigation. It specifies the logical columns that define the level of the aggregate data existing in a physical aggregate table.
For example, if an aggregate table contains data grouped by store and by month, specify the following syntax in the content filter (General tab of Logical Source dialog):
The GROUPBYCOLUMN
function is only for use in configuring a repository. You cannot use it to form SQL statements.
For use in setting up aggregate navigation. It specifies the dimension levels that define the level of the aggregate data existing in a physical aggregate table.
For example, if an aggregate table contains data at the store and month levels, and if you have defined dimensions (Geography and Customers) containing these levels, specify the following syntax in the content filter (General tab of Logical Source dialog):
The GROUPBYLEVEL
function is only for use in configuring a repository. You cannot use it to form SQL statements.
This function selects the last returned value of the expression. For example, the LAST
function can calculate the value of the last day of the year.
The FIRST
function is limited to defining dimension-specific aggregation rules in a repository. You cannot use it in SQL statements.
The LAST
function operates at the most detailed level specified in your explicitly defined dimension. For example, if you have a time dimension defined with hierarchy levels day, month, and year, the LAST
function returns the last day in each level.
You should not use the LAST
function as the first dimension-specific aggregate rule. It might cause queries to bring back large numbers of rows for processing in the Oracle BI Server, causing poor performance.
When a measure is based on dimensions, and data is dense, the Oracle BI Server optimizes the SQL statements sent to the database to improve performance. See "Setting Default Levels of Aggregation for Measure Columns" for more information about dense data.
Note that you cannot nest PERIODROLLING
, FIRST
, and LAST
functions.
Syntax
Where:
expr
is any expression that references at least one measure column.
Example
This function calculates the maximum value (highest numeric value) of the rows satisfying the numeric expression argument.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The MAX
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function calculates the median (middle) value of the rows satisfying the numeric expression argument. When there are an even number of rows, the median is the mean of the two middle rows. This function always returns a double.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The MEDIAN
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function calculates the minimum value (lowest numeric value) of the rows satisfying the numeric expression argument.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The MIN
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function determines the rank of a value in terms of a user-specified range. It returns integers to represent any range of ranks. In other words, the resulting sorted data set is broken into several tiles where there are roughly an equal number of values in each tile.
NTile
with numTiles
= 100 returns what is commonly called the "percentile" (with numbers ranging from 1 to 100, with 100 representing the high end of the sort). This value is different from the results of the Oracle BI PERCENTILE
function, which conforms to what is called "percent rank" in SQL 92 and returns values from 0 to 1.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
numTiles
is a positive, nonnull integer that represents the number of tiles.
If the numExpr
argument is not null, the function returns an integer that represents a rank within the requested range.
This function calculates a percent rank for each value satisfying the numeric expression argument. The percentile rank ranges are from 0 (1st percentile) to 1 (100th percentile), inclusive.
The percentile is calculated based on the values in the result set.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The PERCENTILE
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function calculates the rank for each value satisfying the numeric expression argument. The highest number is assigned a rank of 1, and each successive rank is assigned the next consecutive integer (2, 3, 4,...). If certain values are equal, they are assigned the same rank (for example, 1, 1, 1, 4, 5, 5, 7...).
The rank is calculated based on the values in the result set.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The RANK
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function returns the standard deviation for a set of values. The return type is always a double. STDEV_SAMP
is a synonym for STDDEV
.
Syntax
numExpr
)Where:
numExpr
is any expression that evaluates to a numeric value.
If ALL
is specified, the standard deviation is calculated for all data in the set.
If DISTINCT
is specified, all duplicates are ignored in the calculation.
If nothing is specified (the default), all data is considered.
The STDDEV
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function returns the standard deviation for a set of values using the computational formula for population variance and standard deviation.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
If ALL
is specified, the standard deviation is calculated for all data in the set.
If DISTINCT
is specified, all duplicates are ignored in the calculation.
If nothing is specified (the default), all data is considered.
This function calculates the sum obtained by adding up all values satisfying the numeric expression argument.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The SUM
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function calculates the sum obtained by adding all of the distinct values satisfying the numeric expression argument.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function ranks the highest n values of the expression argument from 1 to n, 1 corresponding to the highest numeric value. The TOPN
function operates on the values returned in the result set. A request can contain only one TOPN
expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
integer
is any positive integer. Represents the top number of rankings displayed in the result set, 1 being the highest rank.
The TOPN
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
Running aggregate functions are similar to functional aggregates in that they take a set of records as input, but instead of outputting the single aggregate for the entire set of records, they output the aggregate based on records encountered so far.
This section describes the running aggregate functions supported by the Oracle BI Server. Functions include:
This function calculates a moving average (mean) for the last n rows of data in the result set, inclusive of the current row.
The average for the first row is equal to the numeric expression for the first row. The average for the second row is calculated by taking the average of the first two rows of data. The average for the third row is calculated by taking the average of the first three rows of data, and so on until you reach the nth row, where the average is calculated based on the last n rows of data.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
integer
is any positive integer. Represents the average of the last n rows of data.
The MAVG
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
This function calculates a moving sum for the last n rows of data, inclusive of the current row.
The sum for the first row is equal to the numeric expression for the first row. The sum for the second row is calculated by taking the sum of the first two rows of data. The sum for the third row is calculated by taking the sum of the first three rows of data, and so on. When the nth row is reached, the sum is calculated based on the last n rows of data.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
integer
is any positive integer. Represents the average of the last n rows of data.
The MSUM
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
Example
This example shows a query that uses the MSUM
function, along with example query results.
Result:
This function calculates a running sum based on records encountered so far. The sum for the first row is equal to the numeric expression for the first row. The sum for the second row is calculated by taking the sum of the first two rows of data. The sum for the third row is calculated by taking the sum of the first three rows of data, and so on.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
The RSUM
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
Example
This example shows a query that uses the RSUM
function, along with example query results.
Result:
This function takes a set of records as input and counts the number of records encountered so far.
Syntax
Where:
expr
is an expression of any data type.
The RCOUNT
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
Example
This example shows a query that uses the RCOUNT
function, along with example query results.
Result:
This function takes a set of records as input and shows the maximum value based on records encountered so far. The specified data type must be one that can be ordered.
Syntax
Where:
expr
is an expression of any data type. The data type must be one that has an associated sort order.
The RMAX
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
Example
This example shows a query that uses the RMAX
function, along with example query results.
Result:
This function takes a set of records as input and shows the minimum value based on records encountered so far. The specified data type must be one that can be ordered.
Syntax
Where:
expr
is an expression of any data type. The data type must be one that has an associated sort order.
The RMIN
function resets its values for each group in the query according to specific rules. See "Display Function Reset Behavior" for more information.
Example
This example shows a query that uses the RMIN
function, along with example query results.
Result:
Time series functions operate on time-oriented dimensions. The time series functions calculate AGO
, TODATE
, and PERIODROLLING
functions based on user supplied calendar tables, not on standard SQL date manipulation functions.
These functions let you use Expression Builder to call a logical function to perform time series calculations instead of aliasing physical tables and modeling logically.
To use time series functions on a particular dimension, you must designate the dimension as a Time dimension and set one or more keys at one or more levels as chronological keys. See "Modeling Time Series Data" for more information.
Functions include:
This function is a time series aggregation function that calculates the aggregated value from the current time back to a specified time period. For example, AGO
can produce sales for every month of the current quarter and the corresponding quarter-ago sales.
Time series functions operate on members of time dimensions which are at or below the level of the function. Because of this, one or more columns that uniquely identify members at or below the given level must be projected in the query. Alternatively, you can apply a filter to the query that specifies a single member at or below the given level. See "Determining the Level Used by the AGO Function" for more information about the level of the function.
If unsupported metrics are requested, NULL values are returned and a warning entry is written to the nqquery.log file when the logging level equals three or above.
Multiple AGO
functions can be nested if all the AGO
functions have the same level argument. You can nest exactly one TODATE
and multiple AGO
functions if they each have the same level argument.
Syntax
Where:
expr
is an expression that references at least one measure column.
time_level
is an optional argument that specifies the type of time period, such as quarter, month, or year.
offset
is an integer literal that represents the time shift amount.
Example
The following example returns last year's sales:
The unit of time (offset) used in the AGO
function is called the level of the function. This value is determined by the measure level of the measures in its first argument, the AGO
level (optionally specified within the function), and the query level of the query to which the function belongs.
AGO
level can be optionally specified as the second argument of the function. If a measure level has not been set in the Administration Tool, but an AGO
level has been specified, the AGO
level is used as the level of the function. The AGO
level is also called the time series grain of the function.AGO
level has been set explicitly in the function, the query level is used as the level of the function. The query level is also called the query grain of the function.This function computes the aggregate of a measure over the period starting x units of time and ending y units of time from the current time. For example, you can use PERIODROLLING
to compute sales for a period that starts at a certain quarter before and ends at a certain quarter after the current quarter.
Time series functions operate on members of time dimensions which are at or below the level of the function. Because of this, one or more columns that uniquely identify members at or below the given level must be projected in the query. Alternatively, you can apply a filter to the query that specifies a single member at or below the given level. See "Determining the Level Used by the PERIODROLLING Function" for more information about the level of the function.
You cannot nest AGO
and TODATE
functions within a PERIODROLLING
function. Also, you cannot nest PERIODROLLING
, FIRST
, and LAST
functions.
If you embed other aggregate functions (like RANK
, TOPN
, PERCENTILE
, FILTER
, or RSUM
) inside PERIODROLLING
, the PERIODROLLING
function is pushed inward. For example, PERIODROLLING(TOPN(
measure
))
is executed as TOPN(PERIODROLLING(
measure
))
.
Syntax
Where:
measure
is the name of a measure column.
x
is an integer that specifies the offset from the current time. Precede the integer with a minus sign (-) to indicate an offset into the past.
y
specifies the number of time units over which the function will compute. To specify the current time, enter 0.
hierarchy
is an optional argument that specifies the name of a hierarchy in a time dimension, such as yr, mon, day
, that you want to use to compute the time window. This option is useful when there are multiple hierarchies in a time dimension, or when you want to distinguish between multiple time dimensions.
If you want to roll back or forward the maximum possible amount, use the keyword UNBOUND
. For example, the function PERIODROLLING (
measure
, -UNBOUND, 0)
sums over the period starting from the beginning of time until now.
You can combine PERIODROLLING
and AGGREGATE AT
functions to specify the level of the PERIODROLLING
function explicitly. For example, if the query level is day but you want to find the sum of the previous and current months, use the following:
Examples
The unit of time (offset) used in the PERIODROLLING
function is called the level of the function. This value is determined by the measure level of the measures in its first argument and the query level of the query to which the function belongs. The measure level for the measure can be set in the Administration Tool. If a measure level has been set for the measure used in the function, the measure level is used as the level of the function. The measure level is also called the storage grain of the function.
If a measure level has not been set in the Administration Tool, then the query level is used. The query level is also called the query grain of the function. In the following example, the query level is month, and the PERIODROLLING
function computes the sum of the last, current, and next month for each city for the months of March and April:
When there are multiple hierarchies in the time dimension, you must specify the hierarchy
argument in the PERIODROLLING
function. For example:
In this example, the level of the PERIODROLLING
function is fiscal_year
.
This function is a time series aggregation function that aggregates a measure from the beginning of a specified time period to the currently displayed time. For example, this function can calculate Year to Date sales.
Time series functions operate on members of time dimensions which are at or below the level specified in the function. Because of this, one or more columns that uniquely identify members at or below the given level must be projected in the query. Alternatively, you can apply a filter to the query that specifies a single member at or below the given level.
If unsupported metrics are requested, NULL values are returned and a warning entry is written to the nqquery.log file when the logging level equals three or above.
A TODATE
function may not be nested within another TODATE
function. You can nest exactly one TODATE
and multiple AGO
functions if they each have the same level argument.
TODATE
is different from the TO_DATE
SQL function supported by some databases. Do not use TO_DATE
to change to a DATE
data type. Instead, use the CAST
function. See "CAST" for more information.
Syntax
Where:
expr
is an expression that references at least one measure column.
time_level
is the type of time period, such as quarter, month, or year.
Example
The following example returns the year-to-month sales:
String functions perform various character manipulations, and they operate on character strings. Functions include:
This function converts a single character string to its corresponding ASCII code, between 0 and 255. If the character expression evaluates to multiple characters, the ASCII code corresponding to the first character in the expression is returned.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
This function returns the length, in bits, of a specified string. Each Unicode character is 2 bytes in length (equal to 16 bits).
Syntax
Where:
strExpr
is any expression that evaluates to character string.
This function converts a numeric value between 0 and 255 to the character value corresponding to the ASCII code.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value between 0 and 255.
This function returns the length, in number of characters, of a specified string. Leading and trailing blanks are not counted in the length of the string.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
There are two forms of this function. The first form concatenates two character strings. The second form uses the character string concatenation character to concatenate more than two character strings.
Syntax for Form 1 (To Concatenate Two Strings)
Where:
strExprs
are expressions that evaluate to character strings, separated by commas.
Example
This example request returns the results shown.
Result:
Syntax for Form 2 (To Concatenate More Than Two Strings)
Where:
strExprs
are expressions that evaluate to character strings, separated by commas and the character string concatenation operator || (double vertical bars). First, strExpr2
is concatenated with strExpr3
to produce an intermediate string, then both strExpr1
and the intermediate string are concatenated by the CONCAT
function to produce the final string.
Example
This example request returns the results shown.
Result:
This function inserts a specified character string into a specified location in another character string.
Syntax
Where:
strExpr1
is any expression that evaluates to a character string. Identifies the target character string.
integer1
is any positive integer that represents the number of characters from the beginning of the target string where the second string is to be inserted.
integer2
is any positive integer that represents the number of characters in the target string to be replaced by the second string.
strExpr2
is any expression that evaluates to a character string. Identifies the character string to be inserted into the target string.
Example
In the first string, starting at the second position (occupied by the number 2
), three characters (the numbers 2
, 3
, and 4
) are replaced by the string abcd
.
Result:
Returns a specified number of characters from the left of a string.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
integer
is any positive integer that represents the number of characters from the left of the string to return.
Example
This example returns the three leftmost characters from the character string 123456:
Result:
This function returns the length, in number of characters, of a specified string. The length is returned excluding any trailing blank characters.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
This function returns the numeric position of a character string in another character string. If the character string is not found in the string being searched, the function returns a value of 0.
If you want to specify a starting position to begin the search, use the LOCATEN
function instead. See "LOCATEN" for details.
Syntax
Where:
strExpr1
is any expression that evaluates to a character string. Identifies the string for which to search.
strExpr2
is any expression that evaluates to a character string. Identifies the string to be searched.
Examples
This example returns 4 as the numeric position of the letter d in the character string abcdef:
This example returns 0, because the letter g is not found within the string being searched.
This function returns the numeric position of a character string in another character string. LOCATEN
is identical to the LOCATE
function, except that the search begins at the position specified by an integer argument. If the character string is not found in the string being searched, the function returns a value of 0. The numeric position to return is determined by counting the first character in the string as occupying position 1, regardless of the value of the integer argument.
Syntax
Where:
strExpr1
is any expression that evaluates to a character string. Identifies the string for which to search.
strExpr2
is any expression that evaluates to a character string. Identifies the string to be searched.
integer
is any positive (nonzero) integer that represents the starting position to begin to look for the character string.
Examples
This example returns 4 as the numeric position of the letter d in the character string abcdef. The search begins with the letter c, the third character in the string. The numeric position to return is determined by counting the letter 'a' as occupying position 1.
This example returns 0, because the letter b occurs in the string before the starting position to begin the search.
This function converts a character string to lowercase.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
This function returns the number of bits, in base 8 units (number of bytes), of a specified string.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
This function returns the numeric position of strExpr1
in a character expression. If strExpr1
is not found, the function returns 0. See also "LOCATE" and "LOCATEN" for related information.
Syntax
Where:
strExpr1
is any expression that evaluates to a character string. Identifies the string to search for in the target string.
strExpr2
is any expression that evaluates to a character string. Identifies the target string to be searched.
Examples
This example returns 4 as the position of the letter d in the character string abcdef:
This example returns 0 as the position of the number 9 in the character string 123456, because the number 9 is not found.
This function repeats a specified expression n times.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
integer
is any positive integer that represents the number of times to repeat the character string.
Example
This example repeats abc four times:
This function replaces one or more characters from a specified character expression with one or more other characters.
Syntax
Where:
strExpr1
is any expression that evaluates to a character string. This is the string in which characters are to be replaced.
strExpr2
is any expression that evaluates to a character string. This second string identifies the characters from the first string that are to be replaced.
strExpr3
is any expression that evaluates to a character string. This third string specifies the characters to substitute into the first string.
Example
In the character string abcd1234, the characters 123 are replaced by the character string zz:
Result:
This function returns a specified number of characters from the right of a string.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
integer
is any positive integer that represents the number of characters from the right of the string to return.
Example
This example returns the three rightmost characters from the character string 123456:
Result:
This function inserts blank spaces.
Syntax
Where:
integer
is any positive integer that indicates the number of spaces to insert.
This function creates a new string starting from a fixed number of characters into the original string.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
starting_position
is any positive integer that represents the number of characters from the start of the left side of the string where the result is to begin.
This function strips specified leading and trailing characters from a character string.
Syntax
Where:
character
is any single character. If you omit this specification (and the required single quotes), a blank character is used as the default.
strExpr
is any expression that evaluates to a character string.
This function strips specified leading characters from a character string.
Syntax
Where:
character
is any single character. If you omit this specification (and the required single quotes), a blank character is used as the default.
strExpr
is any expression that evaluates to a character string.
This function strips specified trailing characters from a character string.
Syntax
Where:
character
is any single character. If you omit this specification (and the required single quotes), a blank character is used as the default.
strExpr
is any expression that evaluates to a character string.
This function converts a character string to uppercase.
Syntax
Where:
strExpr
is any expression that evaluates to a character string.
The math functions perform mathematical operations. Functions include:
This function calculates the absolute value of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the arc cosine of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the arc sine of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the arc tangent of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the arc tangent of y/x, where y is the first numeric expression and x is the second numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function rounds a noninteger numeric expression to the next highest integer. If the numeric expression evaluates to an integer, the CEILING
function returns that integer.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the cosine of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the cotangent of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function converts an expression from radians to degrees.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function sends the value to the power specified.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function retrieves a bit at a particular position in an integer. It returns an integer of either 0 or 1 corresponding to the position of the bit. The primary use case for this function is to extract 'cell status' in the Hyperion Financial Management cube source. The EXTRACTBIT
function cannot be pushed into any database, and is always internally executed (in the Oracle BI Server).
Syntax
Where:
Arg1 is an expression of the following types: INT
, SMALLINT
, UNIT
, SMALLUNIT
, TINYINT
, TINYUNIT
. If Arg1 is of double type, it is necessary to cast the column to an INT
first.
Arg2 is an expression of type integer. The value should range from 1 to length_of_Arg1. 1 retrieves the Least Significant Bit. If the Arg2 is beyond the length of the integer, then 0 is returned. An error message is triggered when the Arg2 is less than 1.
This function rounds a noninteger numeric expression to the next lowest integer. If the numeric expression evaluates to an integer, the FLOOR
function returns that integer.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the natural logarithm of an expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the base 10 logarithm of an expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function divides the first numeric expression by the second numeric expression and returns the remainder portion of the quotient.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
Examples
This example request returns a value of 0:
This example request returns a value of 1:
This function returns the constant value of pi (the circumference of a circle divided by its diameter).
Syntax
This function takes the first numeric expression and raises it to the power specified in the second numeric expression.
Syntax
Where:
numExpr1
is any expression that evaluates to a numeric value.
This function converts an expression from degrees to radians.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
Returns a pseudo-random number based on a seed value. For a given seed value, the same set of random numbers are generated.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function rounds a numeric expression to n digits of precision.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
integer
is any positive integer that represents the number of digits of precision.
Example
This example returns 2.17 as the result.
This function returns the following:
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the sine of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function calculates the square root of the numeric expression argument. The numeric expression must evaluate to a nonnegative number.
Syntax
Where:
numExpr
is any expression that evaluates to a nonnegative numeric value.
This function calculates the tangent of a numeric expression.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
This function truncates a decimal number to return a specified number of places from the decimal point.
Syntax
Where:
numExpr
is any expression that evaluates to a numeric value.
integer
is any positive integer that represents the number of characters to the right of the decimal place to return.
Examples
This example returns 45.12:
This example returns 25.12:
The calendar date/time functions manipulate data of the data types DATE
and DATETIME
based on a calendar year. You must select these functions with another column; they cannot be selected alone. Functions include:
This function returns the current date. The date is determined by the system in which the Oracle BI Server is running.
Syntax
This function returns the current time. The time is determined by the system in which the Oracle BI Server is running.
Syntax
Where:
integer
is any integer representing the number of digits of precision with which to display the fractional second. The argument is optional; the function returns the default precision when no argument is specified.
This function returns the current date/timestamp. The timestamp is determined by the system in which the Oracle BI Server is running.
Syntax
Where:
integer
is any integer representing the number of digits of precision with which to display the fractional second. The argument is optional; the function returns the default precision when no argument is specified.
This function returns a number (between 1 and 92) corresponding to the day of the quarter for the specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the name of the day of the week for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the number corresponding to the day of the month for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns a number between 1 and 7 corresponding to the day of the week, Sunday through Saturday, for a specified date. For example, the number 1 corresponds to Sunday, and the number 7 corresponds to Saturday.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the number (between 1 and 366) corresponding to the day of the year for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns a number (between 0 and 23) corresponding to the hour for a specified time. For example, 0 corresponds to 12 a.m. and 23 corresponds to 11 p.m.
Syntax
Where:
timeExpr
is any expression that evaluates to a time.
This function returns a number (between 0 and 59) corresponding to the minute for a specified time.
Syntax
Where:
timeExpr
is any expression that evaluates to a time.
This function returns the number (between 1 and 12) corresponding to the month for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the number (between 1 and 3) corresponding to the month in the quarter for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the name of the month for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the current timestamp. The NOW
function is equivalent to the CURRENT_TIMESTAMP
function.
Syntax
This function returns the number (between 1 and 4) corresponding to the quarter of the year for a specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the number (between 0 and 59) corresponding to the seconds for a specified time.
Syntax
Where:
timeExpr
is any expression that evaluates to a time.
This function adds a specified number of intervals to a specified timestamp, and returns a single timestamp.
In the simplest scenario, this function adds the specified integer value to the appropriate component of the timestamp, based on the interval. Adding a week translates to adding seven days, and adding a quarter translates to adding three months. A negative integer value results in a subtraction (such as going back in time).
An overflow of the specified component (such as more than 60 seconds, 24 hours, 12 months, and so on) necessitates adding an appropriate amount to the next component. For example, when adding to the day component of a timestamp, this function considers overflow and takes into account the number of days in a particular month (including leap years when February has 29 days).
When adding to the month component of a timestamp, this function verifies that the resulting timestamp has enough days for the day component. For example, adding 1 month to 2000-05-31 does not result in 2000-06-31 because June does not have 31 days. This function reduces the day component to the last day of the month, 2000-06-30 in this example.
A similar issue arises when adding to the year component of a timestamp having a month component of February and a day component of 29 (that is, last day of February in a leap year). If the resulting timestamp does not fall on a leap year, the function reduces the day component to 28.
These actions conform to the behavior of Microsoft SQL Server and the native OCI interface for Oracle Database.
Syntax
Where:
interval
is the specified interval. Valid values are:
SQL_TSI_SECOND
SQL_TSI_MINUTE
SQL_TSI_HOUR
SQL_TSI_DAY
SQL_TSI_WEEK
SQL_TSI_MONTH
SQL_TSI_QUARTER
SQL_TSI_YEAR
intExpr
is any expression that evaluates to an integer value.
timestamp
is any valid timestamp. This value is used as the base in the calculation.
A null integer expression or a null timestamp passed to this function results in a null return value.
Examples
The following query asks for the resulting timestamp when 3 days are added to 2000-02-27 14:30:00. Since February, 2000 is a leap year, the query returns a single timestamp of 2000-03-01 14:30:00.
The following query asks for the resulting timestamp when 7 months are added to 1999-07-31 0:0:0. The query returns a single timestamp of 2000-02-29 00:00:00. Notice the reduction of day component to 29 because of the shorter month of February.
The following query asks for the resulting timestamp when 25 minutes are added to 2000-07-31 23:35:00. The query returns a single timestamp of 2000-08-01 00:00:00. Notice the propagation of overflow through the month component.
Caution: The TIMESTAMPADD function is turned on by default for Microsoft SQL Server, ODBC, IBM DB2, and Oracle databases. Because DB2 and Oracle semantics do not fully support this function, the answers from this function might not match with what the Oracle BI Server computes. |
This function returns the total number of specified intervals between two timestamps.
This function first determines the timestamp component that corresponds to the specified interval parameter, and then looks at the higher order components of both timestamps to calculate the total number of intervals for each timestamp. For example, if the specified interval corresponds to the month component, the function calculates the total number of months for each timestamp by adding the month component and twelve times the year component. Then the function subtracts the first timestamp's total number of intervals from the second timestamp's total number of intervals.
The TIMESTAMPDIFF
function rounds up to the next integer whenever fractional intervals represent a crossing of an interval boundary. For example, the difference in years between 1999-12-31 and 2000-01-01 is one year because the fractional year represents a crossing from one year to the next (such as 1999 to 2000). By contrast, the difference between 1999-01-01 and 1999-12-31 is zero years because the fractional interval falls entirely within a particular year (that is, 1999). Microsoft SQL Server exhibits the same rounding behavior, but IBM DB2 does not; it always rounds down.
When calculating the difference in weeks, the function calculates the difference in days and divides by seven before rounding. Additionally, the function takes into account how the parameter FIRST_DAY_OF_THE_WEEK
has been configured in the NQSConfig.INI file. For example, with Sunday as the start of the week, the difference in weeks between 2000-07-06 (a Thursday) and 2000-07-10 (the following Monday) results in a value of 1 week. With Tuesday as the start of the week, however, the function would return zero weeks since the fractional interval falls entirely within a particular week. When calculating the difference in quarters, the function calculates the difference in months and divides by three before rounding.
The Oracle BI Server pushes down the TIMESTAMPADD
and TIMESTAMPDIFF
functions to Microsoft SQL Server, Oracle Database, IBM DB2, and ODBC databases by default.
Syntax
Where:
interval
is the specified interval. Valid values are:
timestamp1
and timestamp2
are any valid timestamps.
A null timestamp parameter passed to this function results in a null return value.
Example
The following example query asks for a difference in days between timestamps 1998-07-31 23:35:00 and 2000-04-01 14:24:00. It returns a value of 610. Notice that the leap year in 2000 results in an additional day.
Caution: The TIMESTAMPDIFF function is turned on by default for Microsoft SQL Server, ODBC, IBM DB2, and Oracle databases. Because DB2 and Oracle semantics do not fully support this function, the answers from this function might not match with what the Oracle BI Server computes. |
This function returns a number (between 1 and 13) corresponding to the week of the quarter for the specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns a number (between 1 and 53) corresponding to the week of the year for the specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
This function returns the year for the specified date.
Syntax
Where:
dateExpr
is any expression that evaluates to a date.
The conversion functions convert a value from one form to another. You can also use the VALUEOF
function in a filter to reference the value of an Oracle BI system variable. Functions include:
This function changes the data type of an expression or a null literal to another data type. For example, you can cast a customer_name (a data type of Char or Varchar) or birthdate (a datetime literal). The following are the supported data types to which the value can be changed:
Depending on the source data type, some destination types are not supported. For example, if the source data type is a BIT
string, the destination data type must be a character string or another BIT
string.
Use CAST
to change to a DATE
data type. Do not use TO_DATE
.
The following describes unique characteristics of the CHAR
and VARCHAR
data types:
For example:
For example:
CAST(companyname AS CHAR)
Note: If you use this syntax, the Oracle BI Server explicitly converts and stores as CAST(expr |NULL AS CHAR(30)) |
Examples
This function takes an arbitrary number of parameters and returns the first item in the list that the user has permission to see. However, administrators must model the column permissions in the Administration Tool to enable this behavior. See "INDEXCOL" for an alternate method.
Syntax
For example, a single query can be written to return security-based revenue numbers for the entire organization. The function could look like the following:
If the user issuing this function has access to the column L1-Revenue, then that column value would be returned. If the user does not have visibility to the column L1-Revenue but does have visibility to L2-Revenue, then L2-Revenue is returned.
This function tests if an expression evaluates to a null value, and if it does, assigns the specified value to the expression.
Syntax
Where:
expr
is the expression to evaluate.
value
is the value to assign if the expression evaluates to a null value.
This function can use external information to return the appropriate column for the logged-in user to see. The Oracle BI Server handles this function in the following ways:
NQSGetLevelDrillability
and NQSGenerateDrillDownQuery
return the context-specific drill-down information based on the expression translated from INDEXCOL
. This applies to both INDEXCOL
expressions specified in the Logical SQL query and INDEXCOL
expressions specified in a derived logical column.INDEXCOL
function appears in the SQL string in the query log. But the logical request does not show the INDEXCOL
function because the Oracle BI Server translates INDEXCOL
to one of the expressions in its expression list in the logical request generator.The query cache uses the resulting translated expression for cache hit detection.
INDEXCOL
function.INDEXCOL
, then the query executes.When the first argument to INDEXCOL
is a session variable and if a default expression is expected to be returned even if the initialization block fails, then you should set a default value for the session variable. Otherwise, the query fails because the session variable has no value definition.
Syntax
Where:
expr_list
equals the following:
The INDEXCOL
function takes in an integer literal value as its first argument, followed by a variable length expression list and translates to a single expression from the expression list. The literal value is the 0-based index of the expression in the expression list to translate to. Consider the following expression:
If the literal value is 0, the above expression is equivalent to expr1
. If the literal value is 1, then the value is equivalent to expr2
, and so on.
The primary use case for INDEXCOL
is for the first argument to contain a session variable. Specifying a constant literal would result in INDEXCOL
always choosing the same expression.
Company ABC has a geography dimension with the hierarchy Country, State, City. The CEO can access the Country level down to the City level, and the sales manager can access the State and City levels, and the sales people can only access the City level. Table C-2 shows the back-end database for Company ABC.
Table C-2 IndexCol Example of Back-End Database
USER_NAME | TITLE | GEO_LEVEL | CURRENCY | CURRENCY_COL |
---|---|---|---|---|
Bob | CEO | 0 | US Dollars | 0 |
Harriet | Sales Manager | 1 | Japanese Yen | 1 |
Jackson | Sales Manager | 1 | Japanese Yen | 1 |
Mike | Sales Person | 2 | Japanese Yen | 1 |
Jim | Sales Person | 2 | US Dollars | 0 |
The following steps illustrate one way to create a single query where each user sees the top level to which they have access:
GEOOGRAPHY_LEVEL
that is populated by the following initialization block: SELECT GEO_LEVEL from T where USER_NAME = ':USER'
.This assumes that the Oracle BI Server instance has the same user names.
SELECT INDEXCOL(VALUEOF(NQ_SESSION.GEOGRAPHY_LEVEL), Country, State, City), Revenue FROM Sales
, the following occurs:INDEXCOL
translates to the Country column because the GEOGRAPHY_LEVEL
session variable is 0. He gets the same result and can drill down on Country to State as if he had used SELECT Country, Revenue FROM Sales
.INDEXCOL
translates to the State column because the GEOGRAPHY_LEVEL
session variable for Jackson is 1. He gets the same result and can drill down on State to City as if he had used SELECT State, Revenue FROM Sales
.INDEXCOL
translates to the City column because the GEOGRAPHY_LEVEL
session variable for Mike is 2. He gets the same result and cannot drill down on City as if he had used SELECT City, Revenue FROM Sales
.This function converts string literals of dateTime format to a DateTime data type.
Syntax
Where:
string1
is the string literal you want to convert
DateTime_formatting_string
is the DateTime format you want to use, such as yyyy.mm.dd hh:mi:ss. For this argument, yyyy represents year, mm represents month, dd represents day, hh represents hour, mi represents minutes, and ss represents seconds.
Examples
Use the VALUEOF
function to reference the value of a repository variable. Repository variables are defined using the Administration Tool. You can use the VALUEOF
function both in Expression Builder in the Administration Tool, and when you edit the SQL statements for an analysis from the Advanced tab of the Analysis editor in Answers.
Syntax
Variables should be used as arguments of the VALUEOF
function. Refer to static repository variables by name. Note that variable names are case sensitive. For example, to use the value of a static repository variables named prime_begin
and prime_end
:
You must refer to a dynamic repository variable by its fully qualified name. If you are using a dynamic repository variable, the names of the initialization block and the repository variable must be enclosed in double quotes ("), separated by a period, and contained within parentheses. For example, to use the value of a dynamic repository variable named REGION
contained in an initialization block named Region Security, use the following syntax:
The names of session variables must be preceded by NQ_SESSION
, separated by a period, and contained within parentheses, including the NQ_SESSION
portion. If the variable name contains a space, enclose the name in double quotes ("). For example, to use the value of a session variable named REGION
, use the following syntax in Expression Builder or a filter:
Although using initialization block names with session variables (just as with other repository variables) may work, you should use NQ_SESSION
. NQ_SESSION
acts like a wildcard that matches all initialization block names. This lets you change the structure of the initialization blocks in a localized manner without impacting requests.
Users and administrators can create requests by directly calling database functions from either Oracle BI Answers, or by using a logical column (in the logical table source) within the metadata repository. Key uses for these functions include the ability to pass through expressions to get advanced calculations, as well as the ability to access custom written functions or procedures on the underlying database.
Support for database functions does not currently extend across all multidimensional sources. Also, you cannot use these functions with XML data sources.
Functions include:
This function passes the specified database function with optional referenced columns as parameters to the back-end data source for evaluation. This function is intended for scalar calculations, and is useful when you want to use a specialized database function that is not supported by the Oracle BI Server, but that is understood by the underlying data source.
The embedded database function may require one or more columns. These columns are referenced by %1 ... %N within the function. The actual columns must be listed after the function.
Syntax
Where:
db_function
is any valid database function understood by the underlying data source.
data_type
is an optional parameter that specifies the data type of the return result. Use this parameter whenever the return data type cannot be reliably predicted from the input arguments. However, do not use this parameter for type casting; if the function needs to return a particular data type, add an explicit cast. You can typically omit this parameter when the database-specific function has a return type not supported by the Oracle BI Server, but is used to generate an intermediate result that does not need to be returned to the Oracle BI Server.
column1
through columnN
is an optional, comma-delimited list of columns.
Examples
This example shows an embedded database function.
Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique Essbase Functions
The following examples use the EVALUATE_AGGREGATE
and EVALUATE
functions. Note that expressions are applied to columns in the logical table source that refers to the physical cube.Use EVALUATE_AGGREGATE
to implement custom aggregations. For example, you may want to compare overall regional profit to profits for the top three products in the region. You can define a new measure to represent the profits for top three products resulting in the Logical SQL statement:
The Oracle BI Server generates the following expression for the custom aggregation:
Use the EVALUATE
function on projected dimensions to implement scalar functions that are computed post-aggregation. EVALUATE
may change the grain of the query, if its definition makes explicit references to dimensions (or attributes) that are not in the query.
For example, if you would like to see the Profits for the top five products ranked by Sales sold in a Region, after creating the applicable measure, the resulting Logical SQL statement is as follows
The Oracle BI Server generates the following expression to retrieve the top five products:
This function passes the specified database analytic function with optional referenced columns as parameters to the back-end data source for evaluation.
The embedded database function may require one or more columns. These columns are referenced by %1 ... %N within the function. The actual columns must be listed after the function.
Syntax
Where:
db_function
is any valid database analytic function understood by the underlying data source.
data_type
is an optional parameter that specifies the data type of the return result. Use this parameter whenever the return data type cannot be reliably predicted from the input arguments. However, do not use this parameter for type casting; if the function needs to return a particular data type, add an explicit cast. You can typically omit this parameter when the database-specific analytic function has a return type not supported by the Oracle BI Server, but is used to generate an intermediate result that does not need to be returned to the Oracle BI Server.
column1
through columnN
is an optional, comma-delimited list of columns.
Examples
This example shows an embedded database analytic function.
If the preceding example needs to return a double, then an explicit cast should be added, as follows:
This function passes the specified database function with optional referenced columns as parameters to the back-end data source for evaluation. This function is intended for aggregate functions with a GROUP BY
clause.
The embedded database function may require one or more columns. These columns are referenced by %1 ... %N within the function. The actual columns must be listed after the function.
Syntax
Where:
db_agg_function
is any valid aggregate database function understood by the underlying data source.
data_type
is an optional parameter that specifies the data type of the return result. Use this parameter whenever the return data type cannot be reliably predicted from the input arguments. However, do not use this parameter for type casting; if the function needs to return a particular data type, add an explicit cast. You can typically omit this parameter when the database-specific function has a return type not supported by the Oracle BI Server, but is used to generate an intermediate result that does not need to be returned to the Oracle BI Server.
column1
through columnN
is an optional, comma-delimited list of columns.
Example
This function passes the specified database function with optional referenced columns as parameters to the back-end data source for evaluation. This function is intended for functions with a return type of Boolean.
The embedded database function may require one or more columns. These columns are referenced by %1 ... %N within the function. The actual columns must be listed after the function.
Note that EVALUATE_PREDICATE
is not supported for use with Essbase data sources.
Syntax
Where:
db_function
is any valid database function with a return type of Boolean that is understood by the underlying data source.
column1
through columnN
is an optional, comma-delimited list of columns.
If you want to model a database function for comparison purposes, you should not use EVALUATE_PREDICATE
. Instead, use EVALUATE
and put the comparison outside the function. For example, do not use EVALUATE_PREDICATE
as follows:
Instead, use EVALUATE
, as follows:
Example
The hierarchy navigation functions enable you to identify relationships between members of hierarchies. The hierarchy navigation functions include:
The ISLEAF
function applies to both level-based and parent-child hierarchies, while the other functions apply only to parent-child hierarchies.
See Chapter 9, "Working with Logical Dimensions" for information about level-based and parent-child hierarchies, including information about creating parent-child relationship tables (closure tables) for relational sources.
The ISANCESTOR
function enables you to find the ancestors of a member of a parent-child hierarchy, either all the ancestors of a member, or the ancestors at a specified hierarchical distance from the member.
Each member of the parent-child hierarchy is compared with the specified member to determine if it is an ancestor. The ISANCESTOR
function returns the Boolean value True for each ancestor of the specified member, else it returns False.
You can use the ISANCESTOR
function in a query both within CASE
statements and in WHERE
clause conditions.
You can use the ISANCESTOR
function in both Presentation layer queries, and in the Business Model and Mapping layer (for example, when creating a derived column). Note that the syntax of the function depends on where you are using it.
Presentation Layer Syntax
Where:
pc_presentation_hierarchy
identifies the fully qualified parent-child presentation hierarchy, as follows:
The qualification term ("subject_area".)
is optional unless there are multiple presentation tables or presentation hierarchies with the same name in different subject areas.
member_identifier
is the string or numeric literal that identifies the member in pc_presentation_hierarchy
. The type of literal depends on the data type of the dimension level keys.
distance
(optional) is a positive integer that identifies the distance from the specified member to the parent-child hierarchy level at which to search for ancestors.
By default, if distance
is not specified, the ISANCESTOR
function searches the current parent-child level containing member_identifier
and all levels above.
Business Model and Mapping Layer Syntax
Where:
logical_dimension
identifies the fully qualified dimension containing the parent-child hierarchy, as follows:
The qualification term ("business_model".)
is optional unless there are multiple dimensions with the same name in different business models.
member_identifier
is the string or numeric literal that identifies the member in logical_dimension
. The type of literal depends on the data type of the dimension level keys.
distance
(optional) is a positive integer that identifies the distance from the specified member to the parent-child hierarchy level at which to search for ancestors.
By default, if distance
is not specified, the ISANCESTOR
function searches the current parent-child level containing member_identifier
and all levels above.
Example
The following example selects all the ancestor employees of the employee Joe in a parent-child hierarchy. The returned list includes the employee Joe.
The ISCHILD
function enables you to find the children of a member of a parent-child hierarchy, that is, all the members that are one hierarchical level below the specified member.
Note: The ISCHILD function is the same as the ISDESCENDANT function with a distance parameter of 1. |
The ISCHILD
function returns the Boolean value True for each child of the specified member, else it returns False.
You can use the ISCHILD
function in a query both within CASE
statements and in WHERE
clause conditions.
You can use the ISCHILD
function in both Presentation layer queries, and in the Business Model and Mapping layer (for example, when creating a derived column). Note that the syntax of the function depends on where you are using it.
Presentation Layer Syntax
Where:
pc_presentation_hierarchy
identifies the fully qualified parent-child presentation hierarchy, as follows:
The qualification term ("subject_area".)
is optional unless there are multiple presentation tables or presentation hierarchies with the same name in different subject areas.
member_identifier
is the string or numeric literal that identifies the member in pc_presentation_hierarchy
. The type of literal depends on the data type of the dimension level-keys.
Business Model and Mapping Layer Syntax
Where:
logical_dimension
identifies the fully qualified dimension containing the parent-child hierarchy, as follows:
The qualification term ("business_model".)
is optional unless there are multiple dimensions with the same name in different business models.
member_identifier
is the string or numeric literal that identifies the member in logical_dimension
. The type of literal depends on the data type of the dimension level keys.
Example
The following example selects all the children of the employee Joe in a parent-child hierarchy.
The ISDESCENDANT
function enables you to find the descendants of a member of a parent-child hierarchy, either all the descendants of a member, or the descendants at a specified hierarchical distance from the member.
Each member of the parent-child hierarchy is compared with the specified member to determine if it is a descendant. The ISDESCENDANT
function returns the Boolean value True for each descendant of the specified member, else it returns False.
You can use the ISDESCENDANT
function in a query both within CASE
statements and in WHERE
clause conditions.
You can use the ISDESCENDANT
function in both Presentation layer queries, and in the Business Model and Mapping layer (for example, when creating a derived column). Note that the syntax of the function depends on where you are using it.
Presentation Layer Syntax
Where:
pc_presentation_hierarchy
identifies the fully qualified parent-child presentation hierarchy, as follows:
The qualification term ("subject_area".)
is optional unless there are multiple presentation tables or presentation hierarchies with the same name in different subject areas.
member_identifier
is the string or numeric literal that identifies the member in pc_presentation_hierarchy
. The type of literal depends on the data type of the dimension level-keys.
distance
(optional) is a positive integer, that identifies the distance from the specified member to the parent-child hierarchy level at which to search for descendants.
By default, if distance
is not specified, the ISDESCENDANT
function searches the current parent-child level containing member_identifier
and all levels below.
Business Model and Mapping Layer Syntax
Where:
logical_dimension
identifies the fully qualified dimension containing the parent-child hierarchy, as follows:
The qualification term ("business_model".)
is optional unless there are multiple dimensions with the same name in different business models.
member_identifier
is the string or numeric literal that identifies the member in logical_dimension
. The type of literal depends on the data type of the dimension level-keys.
distance
(optional) is a positive integer that identifies the distance from the specified member to the parent-child hierarchy level at which to search for descendants.
By default, if distance
is not specified, the ISDESCENDANT
function searches the current parent-child level containing member_identifier
and all levels below.
Example
The following example selects all the descendant employees of the employee Joe in a parent-child hierarchy. The returned list includes the employee Joe.
The ISLEAF
function applies to both level-based and parent-child hierarchies. For both types of hierarchy, a leaf member is defined as a member that has no child members.
Each member of the hierarchy is examined to determine if it is a leaf member. The ISLEAF
function returns the Boolean value True for each leaf member, else it returns False.
You can use the ISLEAF
function in a query both within CASE
statements and in WHERE
clause conditions.
You can use the ISLEAF
function in both Presentation layer queries, and in the Business Model and Mapping layer (for example, when creating a derived column). Note that the syntax of the function depends on where you are using it.
Presentation Layer Syntax
Where:
presentation_hierarchy
identifies the fully qualified presentation hierarchy, either level-based or parent-child, as follows:
The qualification term ("subject_area".)
is optional unless there are multiple presentation tables or presentation hierarchies with the same name in different subject areas.
Business Model and Mapping Layer Syntax
Where:
logical_dimension
identifies the fully qualified dimension containing the hierarchy you want to navigate, either level-based or parent-child, as follows:
The qualification term ("business_model".)
is optional unless there are multiple dimensions with the same name in different business models.
Example
The following example selects all the employees in a hierarchy that are leaf members, that is, the employees who have no members below them in the hierarchy.
The ISPARENT
function enables you to find the parents of a member of a parent-child hierarchy, that is, all the members that are one hierarchical level above the specified member.
Note: The ISPARENT function is the same as the ISANCESTOR function with a distance parameter of 1. |
The ISPARENT
function returns the Boolean value True for each parent of the specified member, else it returns False.
You can use the ISPARENT
function in a query both within CASE
statements and in WHERE
clause conditions.
You can use the ISPARENT
function in both Presentation layer queries, and in the Business Model and Mapping layer (for example, when creating a derived column). Note that the syntax of the function depends on where you are using it.
Presentation Layer Syntax
Where:
pc_presentation_hierarchy
identifies the fully qualified parent-child presentation hierarchy, as follows:
The qualification term ("subject_area".)
is optional unless there are multiple presentation tables or presentation hierarchies with the same name in different subject areas.
member_identifier
is the string or numeric literal that identifies the member in pc_presentation_hierarchy
. The type of literal depends on the data type of the dimension level keys.
Business Model and Mapping Layer Syntax
Where:
logical_dimension
identifies the fully qualified dimension containing the parent-child hierarchy, as follows:
The qualification term ("business_model".)
is optional unless there are multiple dimensions with the same name in different business models.
member_identifier
is the string or numeric literal that identifies the member in logical_dimension
. The type of literal depends on the data type of the dimension level keys.
Example
The following example selects all the parents of the employee Joe in a parent-child hierarchy.
A presentation hierarchy member is defined as a root member if it has no ancestors above it in a parent-child presentation hierarchy.
Each member of the parent-child hierarchy is examined to determine if it is a root member. The ISROOT
function returns the Boolean value True for each root member, else it returns False.
You can use the ISROOT
function in a query both within CASE
statements and in WHERE
clause conditions.
You can use the ISROOT
function in both Presentation layer queries, and in the Business Model and Mapping layer (for example, when creating a derived column). Note that the syntax of the function depends on where you are using it.
Presentation Layer Syntax
Where:
pc_presentation_hierarchy
identifies the fully qualified parent-child presentation hierarchy, as follows:
The qualification term ("subject_area".)
is optional unless there are multiple presentation tables or presentation hierarchies with the same name in different subject areas.
Business Model and Mapping Layer Syntax
Where:
logical_dimension
identifies the fully qualified dimension containing the parent-child hierarchy, as follows:
The qualification term ("business_model".)
is optional unless there are multiple dimensions with the same name in different business models.
Example
The following example selects all the employees in a parent-child hierarchy that are root members, that is, the employees who have no ancestors above them in the hierarchy.
The system functions return values relating to the session. Functions include:
This function returns the user name for the Oracle BI repository to which you are logged on.
Syntax
The script content on this page is for navigation purposes only and does not alter the content in any way.
When you use the Merge Repository Wizard in the Administration Tool, sophisticated rules determine how objects are merged. Some decisions about merging objects are made automatically by the wizard, while other decisions appear as prompts in the Define Merge Strategy screen. This appendix describes some of the merge rules and behavior of the Merge Repository Wizard.
There are three types of merges:
This appendix contains the following topics:
The merge process typically involves three versions of an Oracle BI repository: the original repository, modified repository, and current repository. The original repository is the original unedited file (the parent repository), while the modified and current repository are the two changed files you want to merge. The current repository is the one currently open in the Administration Tool.
The original, modified, and current repository may mean different things, depending on your situation. For example:
Note that patch merge can be used with both of these situations. In a patch merge, you open the current file and select the original file, then generate the patch. To apply the patch, you open the modified file and select the original file, then apply the patch. See "Performing Patch Merges" for more information.
Regardless of which merge scenario you want to perform, and regardless of the merge type (full, patch, or multiuser development merge), the following general rules are applied:
In general, the Merge Repository Wizard tries to ensure that you have the minimum set of objects necessary to service your queries. During a merge, there might be objects introduced by the current repository that are not needed in the merged repository. To address this issue, the Merge Repository Wizard asks whether new Presentation layer objects in the current repository are needed in the final merged result. If you choose to keep the new presentation objects, all the dependent logical and physical objects are added as well. However, if you choose not to keep the new presentation objects, then the dependent logical and physical objects are not kept, because no queries will require the use of these objects. The Merge Repository Wizard discards these objects to ensure that the merged repository does not get populated with unused objects.
For example, assume you change the data source of Init Block B from a connection pool to Custom Authenticator A. In addition to the data source property change to the initialization block object, a corresponding property change occurs in the custom authenticator object (because the value of the initialization block property for Custom Authenticator A is now Init Block B).
Because the decisions made for these properties must be synchronized, if you select Current as the decision for the data source property of Init Block B, then the decision for the initialization block property of Custom Authenticator A will also be Current. See Figure D-1 shows what this example looks like in the Merge Repository Wizard.
In the Merge Repository Wizard, any decisions that require user input are displayed on the Define Merge Strategy screen. Figure D-1 shows the Define Merge Strategy screen.
Some other rules are dependent on the type of merge you want to perform. For example, if you are performing a patch merge to upgrade a repository, you want to retain the security settings and database feature table changes in your customized (modified) repository. If you are performing a multiuser development (MUD) merge, however, you do not want to retain security settings and database feature table changes, to prevent developers from overwriting passwords and other important objects in the master repository. Because of this, changes to security settings and database features are not retained when you perform a MUD merge.
To change security settings or database features in a multiuser development environment, you must edit the master repository directly. To do this, remove the master repository from the multiuser development directory, edit it in offline mode, then move it back.
In addition to the general rules governing how objects are merged and which situations require prompting, there are special rules for certain types of objects and situations.
This section contains the following topics:
Some objects, such as levels, application roles, and object permissions, use a vector merge algorithm that determines the parent/child relationships between objects.
Objects that use the vector merge algorithm include:
The Oracle BI Server determines the initial state of object relationships in each repository during the merge process. For example, the following list shows the different possibilities for object permissions and how they relate to users and application roles:
The Merge Repository Wizard determines the appropriate relationship for the merged repository depending on the state of the object permission relationships in each repository. For example:
Example D-1 provides a detailed explanation of how object relationships are merged for application role objects.
Example D-1 Vector Merge Example: Merging Application Roles
The following list shows the different possibilities for user and application role relationships:
Table D-1 shows the merged result for different combinations of object relationships in the merging repositories.
Table D-1 Results for Merging Application Roles Based on Object Relationships
Original Repository | Modified Repository | Current Repository | Result |
---|---|---|---|
M | M | M | NFoot 1 |
M | M | Y | Y |
M | M | N | N |
M | Y | M | Y |
M | Y | Y | ImpossibleFoot 2 |
M | Y | N | Impossible |
M | N | M | N |
M | N | Y | Impossible |
M | N | N | Impossible |
Y | M | M | Y |
Y | M | Y | Y |
Y | M | N | N |
Y | Y | M | Y |
Y | Y | Y | Y |
Y | Y | N | N |
Y | N | M | N |
Y | N | Y | N |
Y | N | N | N |
N | M | M | N |
N | M | Y | Y |
N | M | N | N |
N | Y | M | Y |
N | Y | Y | Y |
N | Y | N | Y |
N | N | M | N |
N | N | Y | Y |
N | N | N | N |
Footnote 1 This situation can happen if neither the application role nor the user are present in the original repository, but the user is present in the modified repository and the application role is present in the current repository. In this case, no membership can be assumed.
Footnote 2 M in original implies that either the user or application role is not present. The missing object added in both cannot be considered the same object.
Special rules govern how to merge column mappings in logical table source objects. Each column mapping is merged individually. For each column, if the mapping has changed in either the modified or current repository, the change is kept. If the mapping has changed in both repositories, the Oracle BI Server attempts to merge the mappings automatically.
Note that the deletion of a column is not considered to be a change in its mapping. If a column is not present in the modified repository, then the mapping in the current repository is used instead.
If there are differences in aggregation content, then the aggregation content specified by level has priority. In other words, if the aggregation content in one repository is by level and the aggregation content in another repository is by column, then the aggregation content by level is retained.
If a filter for an application role has changed in only one repository, then the change is kept. If the filter has changed in both repositories, the Oracle BI Server attempts to merge the filters automatically.
If an object is required for merging a particular filter (such as a presentation column) and is not present, then that filter is considered invalid and does not appear in the merged repository. Note, however, that this rule does not apply to variables. If a variable is required for merging a particular filter, the Oracle BI Server ensures that the variable is retained in the merged repository.
Presentation columns have both a Name property and a Use Logical Column Name property. In some cases, these properties can come into conflict. For example, Table D-2 shows a scenario where this situation could occur.
Table D-2 Conflicting Presentation Column Name and Use Logical Column Name Properties
Repository | Presentation Column Name | Logical Column Name | Use Logical Column Name |
---|---|---|---|
Original | Sales | GroupSales | No |
Current | Sales | Sales | Yes |
Modified | GroupSales | GroupSales | Yes |
If the regular merge rules for the objects in Table D-2 are applied, the merged repository contains a presentation column called GroupSales and a logical column called Sales, with the Use Logical Column Name property set to Yes. However, this result is incorrect, because the name of the presentation column is different from the name of the logical column.
To avoid this situation, the Oracle BI Server infers the value of the Use Logical Column Name property. Using this logic, the merged repository for the example in Table D-2 has a presentation column called GroupSales, a logical column called Sales, and a Use Logical Column Name property set to No.
During the full merge process, users are not prompted to make decisions about aliases. Aliases from the current and modified repositories are merged automatically.
In multiuser development merges, however, users are prompted to choose whether to keep aliases from the current repository, keep aliases from the modified repository, or merge choices to keep aliases from both repositories.
Also note the following:
If your repository contains many objects that you do not need, you can use the command-line pruning utility to delete the unwanted objects. This appendix explains how to the pruning utility works and how to use it.
This appendix contains the following topics:
If you have a large number of extraneous or unwanted objects in your repository, you can delete the unwanted objects using the prunerpd command-line utility. You can use prunerpd on both Windows and UNIX systems.
You can delete unwanted repository objects such as databases, tables, columns, initialization blocks, and variables. However, note that the pruning utility does not remove objects from the Oracle BI Presentation Catalog.
Deleting objects from the repository has a cascading effect. For example, if a physical column is deleted, then any mapped logical columns are deleted, as well as any associated presentation columns. See "Deletion Rules for the Object Pruning Utility" for more information.
You must first create the input file that contains the list of repository objects to be deleted. Then, you must run the utility at the command line, passing the input file as an argument
This section contains the following topics:
The prune utility accepts the list of repository objects you want to delete as a text file. The utility can accept multiple input files at a time. The syntax rules for the input file are shown in Table E-1.
Note: Object names in the input file must match the fully qualified name that is used in the repository. Wildcards (such as "*" and "?") are not supported in the object name. |
Table E-1 Syntax Rules for Input File
Object Type | Example | Action |
---|---|---|
Database | D "Paint" | Deletes the database named "Paint." |
Table |
|
|
Column | C "W_AGREE_MD"."AGREE_CD" | Deletes the column named "AGREE_CD" located in a table or alias named "W_AGREE_D" from the Physical layer. |
Initialization block | I "External Metadata Strings" | Deletes the initialization block named "External Metadata Strings." |
Variable | V CURR_USER | Deletes the variable named "CURR_USER." |
For example, a text file that contains instructions to delete a database named "Stock Quotes" and a physical column named "S_NQ_ACCT"."USER_NAME" would include the following entry:
Use white space as a delimiter in the input file (a single space, tab, or multiple spaces).
Before running prunerpd, you must first run bi-init.cmd (or bi-init.sh on UNIX systems) to launch a command prompt that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run prunerpd from the resulting command prompt window with the desired options. The prune utility accepts the following parameters:
Provide the location of the source repository file.
Provide the repository password.
The password argument is optional. If you do not provide a password argument, you are prompted to enter a password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide a password argument either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.
Provide the input file name (in text format) that contains the list of repository objects to be removed. Separate multiple file names by spaces. Enclose spaces within a filename with double quotes (" ").
Provide the name and location of the output repository file, also known as the pruned repository.
Provide the name and location of the output log file. All actions performed on the repository are written to this file, including descriptions.
Provide the name and location of the error log file. The pruning utility writes exceptions and errors to this log.
Input is in UTF-8 format.
Example E-1 Prune Utility Usage Example
The log file includes a list of actions performed on the repository file and is in XML format. Other messages, such as progress indicators, are sent to the standard output stream.
The error log file includes a list of errors encountered while processing the contents of the input file and is in XML format. Other errors are sent to the standard output error stream.
Deleting repository objects has a cascading effect. This section describes the deletion rules.
Physical Layer Rules
Logical Table Rules
Presentation Layer Rules
Security Rules
Variable Rules
Marketing Rules
If your organization has installed either Oracle Database or IBM DB2, then you can use these databases to enhance the data warehouse performance and functionality of queries that run on the Oracle BI Server.
This appendix contains the following topics:
By exchanging Oracle Business Intelligence metadata from the Oracle BI Server with your Oracle Database or IBM DB2 database, you enable the database to accelerate the performance of data warehouse queries.
You use the Oracle BI Server utility sametaexport to exchange the metadata. When you run this utility to generate cube views for DB2, the utility is called the DB2 Cube Views Generator. When you run this utility to generate metadata for Oracle Database, the utility is called the Oracle Database Metadata Generator.
The Oracle BI Server export utility works with the following tools:
The sametaexport utility generates the information necessary for the SQL Access Advisor or IBM DB2 Cube Views tool to preaggregate the relational data and improve query performance.
Both the Oracle Database Metadata Generator and the DB2 Cube Views Generator create the files that are needed to import metadata from the Oracle BI Server into the SQL Access Advisor or an IBM DB2 database.
This section contains the following topics that are common to the two generators:
The Oracle Database Metadata Generator and the DB2 Cube Views Generator are invoked from the command line or embedded in a batch file. The command-line executable is named sametaexport.
Before running the utility, you must first run bi-init.cmd (or bi-init.sh on UNIX) to launch a command prompt or shell window that is initialized to your Oracle instance. You can find this utility in:
ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup
Then, run sametaexport with the desired options, as follows:
Table F-1 contains descriptions of the parameters in the command-line executable file.
Table F-1 Parameters for sametaexport
Parameter | Definition | Additional Information |
---|---|---|
-r | Repository file name and full path | Quotation marks are required for the file name and path only if the file path is in long format or has spaces. Use the full path if the file is not in the current directory. |
-p | Repository password | The password for the given repository. The password argument is optional. If you do not provide a password argument, you are prompted to enter a password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide a password argument either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release. |
-f | Input file name and full path | Quotation marks are required for the file name and path only if the file path is in long format or has spaces. Use the full path if the file is not in the current directory. You specify input files so that you do not have to type all the required information at the command line, and so that you can type international characters. See "About the Metadata Input File" for more information. |
You can include some additional parameters in the input file or at the command line to change various defaults for the Oracle Database Metadata Generator and the DB2 Cube Views Generator. Parameters specified in the input file take precedence over parameters specified at the command line. You must include these parameters only if you want to change the default values.
Table F-2 and Table F-3 describe these optional parameters.
Table F-2 Optional Parameters and Defaults for the Oracle Database Metadata Generator
Parameter Definition | Additional Information | Input File Usage Example | Command Line Usage Example |
---|---|---|---|
Use schema name from RPD | When set to | USE_SCHEMA_NAME_FROM_RPD = NO | -schemafrom rpd NO |
Default schema name | The default schema name is used as the table schema name if the value of | DEFAULT_SCHEMA_NAME = ORACLE | -defaultschema ORACLE |
Oracle schema name | The metadata from Oracle Database Metadata Generator is created under this schema. The default value is | ORA_DIM_SCHEMA_NAME = ORACLE | -orclschema ORACLE |
Logging enabled | Indicates whether to keep a log of the metadata export process. Valid values are | LOGGING = DEBUG | -logging DEBUG |
Log file name | The path to the log file. If you provide an invalid path, an error occurs. If you do not provide this parameter, the default log file path is used. The default path is: ORACLE_INSTANCE\diagnostics\logs\OracleBIServerComponent\coreapplication_obisn\OraDimExp.log | LOG_FILE_NAME = C:\bea_default\instances | -logfile C:\bea_default\instances\ |
Table F-3 Optional Parameters and Defaults for the DB2 Cube Views Generator
Parameter Definition | Additional Information | Input File Usage Example | Command Line Usage Example |
---|---|---|---|
Distinct count supported | When set to | DISTINCT_COUNT_SUPPORTED = YES | -distinct YES |
Statistical functions supported | When set to | STATISTICAL_FUNCTIONS_SUPPORTED = YES | -stat YES |
Use schema name | When set to | USE_SCHEMA_NAME = NO | -useschema NO |
Use schema name from RPD | When set to | USE_SCHEMA_NAME_FROM_RPD = NO | -schemafromrpd NO |
Default schema name | The default schema name is used as the table schema name if the value of | DEFAULT_SCHEMA_NAME = ORACLE | -defaultschema ORACLE |
Cube views schema name | The name of the schema under which the Cube Views metadata is created. The default value is | CUBE_VIEWS_SCHEMA_NAME = ORACLE | -cubeschema ORACLE |
Log file name | The path to the log file. If you provide an invalid path, an error occurs. If you do not provide this parameter, the default log file path is used. The default path is: ORACLE_INSTANCE\diagnostics\logs\OracleBIServerComponent\coreapplication_obisn\CubeViews.log | LOG_FILE_NAME = C:\bea_default\instances\instance1\diagnostics\logs\generator\logfile.log | -logfile C:\bea_default\instances\instance1\diagnostics\logs\generator\logfile.log |
Log failures | When set to | LOG_FAILURES = NO | -logfail NO |
Log success | When set to | LOG_SUCCESS = YES | -logsuccess YES |
The input file is a text file that contains the parameters that are described in Table F-4.
Table F-4 Cube Metadata Input File Parameters
Input File Name | Description |
---|---|
BUSINESS_MODEL | The name of the business model in the logical layer of the Oracle Business Intelligence repository that contains the metadata to export. If the business model is not found in the repository, then an error message is displayed. You can only specify one business model name in the input file. To generate metadata for multiple business models, create another input file and run the Oracle Database Metadata Generator or DB2 Cube Views Generator again. |
PHYSICAL_DATABASE | The name of the database in the physical layer of the Oracle Business Intelligence repository that contains the metadata to export. When the business model derives from multiple databases, then it eliminates metadata from all databases other than the one specified here. When the physical database is not found in the repository, an error message is displayed. |
RUN_AS_USER | The user name of the database user whose visibility must be duplicated for the metadata export. This parameter cannot be empty. This user must exist as a user reference in the repository. |
OUTPUT_FOLDER | The full path and file name of the folder to which the SQL file will be written. If the folder does not exist when you run the Oracle Database Metadata Generator, then it will be created. See "About the Output Files" for more information. |
The following text shows a sample metadata input file:
Each Generator creates different types of output files, as described in the following list:
The name of the XML file matches the business model name, without spaces, followed by the XML extension (for example, SalesResults.xml).
Error messages indicate that the Generator was unable to complete some or all of its tasks. After starting the Generator, you might observe the following error messages:
Unable to write to Log file:
log_file_name
.
The log file specified in the input file or at the command line might contain the wrong path, the user might not have write permissions to that folder, or the disk could be out-of-space.
Run_as_user,
user_name
, is invalid.
The user name is incorrect.
Repository,
repository_name.rpd
, is invalid or corrupt.
The repository name might be incorrect, it might not exist in the given path, or the user might not have permission to read it.
Physical Database,
database_name
, is invalid.
The physical database name does not match a valid physical database object in the repository.
Business Model,
model_name
, is invalid.
The business model name does not match a valid business model object in the repository.
Authentication information provided is invalid.
The repository password provided at the command line is incorrect.
Path: "
path_name
" is invalid.
The path or file name is incorrect, or the current user does not have read access.
When the Generator creates the output files, it also maps the metadata objects in the Oracle Business Intelligence repository to similar objects in the metadata of the Oracle Database or the IBM DB2 database.
This section explains the rules used to identify Oracle Business Intelligence metadata that cannot be translated (converted) into either SQL or XML format. These rules are necessary because Oracle Database and IBM Cube Views do not support some of the metadata constructs that are allowed by Oracle Business Intelligence.
Dimensional metadata in the SQL or XML file will be generated at the logical fact table source level. If a logical fact table source has an invalid logical dimension table source, then the logical dimension table source will be invalidated. If the logical fact table source is invalid, then all the logical dimension table sources that are mapped to it will also be invalidated. Invalid Oracle Business Intelligence repository metadata elements will not be converted to cubes in the SQL or XML file.
When a rule is violated, the Generator writes the error messages and the metadata that violated the rule to the log file.
The following list provides the rules for converting Oracle Business Intelligence metadata into objects in the Oracle Database:
Oracle Database prohibits the use of columns as keys in multiple levels. This prohibition requires the Oracle Database Metadata Generator to eliminate one of the two joins, usually the join that is encountered first. Therefore, the other joins are lost, which prevents them from being exported.
Table F-5 lists the rules used to validate Oracle Business Intelligence repository metadata elements, error messages that are written to the log file if the rule is violated, and an explanation of what caused the rule violation. The error messages help you determine why a particular Oracle Business Intelligence metadata object was not exported to the XML file.
Table F-5 Validation Rules for Metadata Elements
Rule | Message | Explanation |
---|---|---|
ComplexJoinFactsRule | [Fact Logical Table Source]Complex Physical Joins not supported %qn has a complex Join %qn between Physical Tables %qn and %qn | If the physical fact tables are connected through complex joins, then the join is not supported. A complex join is defined as any join between two tables that do not have a foreign key relationship. |
ComplexJoinDimsRule | [Dimension Logical Table Source]Complex Physical Joins not supported %qn has a complex Join %qn between Physical Tables %qn and %qn | If the dimension physical tables are connected through a complex join, then that join is not supported. |
ComplexJoinFactDimRule | [Fact Logical Table Source -> Dimension Logical Table Source] Complex Physical Joins not supported. %qn has a complex Join %qn between Physical Tables %qn and %qn. | If a dimension physical table and a fact physical table are connected through a complex join, then that join is not supported and the dimension table source is invalidated. |
OpaqueViewFactRule | [Fact Logical table Source] Physical SQL Select Statements not supported. %qn uses the SQL Select Statement %qn. | When the physical fact table is generated by a SQL select statement, the logical fact table source that contains the table is invalidated. All logical dimension table sources connected to this logical fact table source are also invalidated. This construct allows subquery processing. |
OpaqueViewDimRule | [Dimension Logical table Source] Physical SQL Select Statements not supported. %qn uses the SQL Select Statement %qn. | When a physical dimension table is generated by a SQL select statement, the logical dimension table source containing that table is invalidated. |
OuterJoinFactRule | [Fact Logical Table Source] Physical Outer Joins not supported. %qn has an outer join %qn between physical tables %qn and %qn. | If the logical fact table source has an outer join mapping, then that logical fact table source is invalidated and all logical dimension table sources mapped to this source will also be invalidated. |
OuterJoinDimRule | [Dimension Logical Table Source] Physical Outer Joins not supported. %qn has an outer join %qn between physical tables %qn and %qn. | If the logical dimension table source has an outer join mapping, then that logical dimension table source is invalidated. |
WhereClauseFactRule | [Fact Logical Table Source] WHERE clauses are not supported. %qn has a where condition %s. | If the fact table source uses a |
WhereClauseDimRule | [Dimension Logical Table Source] WHERE clauses are not supported. %qn has a where condition %s. | If the dimension table source uses a |
TwoJoinFactDimRule | [Fact Logical Table Source -> Dimension Logical Table Source] Multiple Joins between sources not supported. %qn and %qn have at least the following joins : %qn, %qn. | If a physical fact table is mapped to two dimension tables from the same dimension source (if the fact table is not exclusively mapped to the most detailed table in the table source), then the dimension table source is invalidated. |
HiddenManyManyRule | [Fact Logical Table Source -> Dimension Logical Table Source] Join between (physical or logical?) fact and dimension is not on the most detailed table. %qn between %qn and %qn is not on the most detailed table %qn {Join name, facttable, dimtable). | This is related to the TwoJoinFactDimRule. If the fact table is joined to a dimension table that is not the most detailed table in the table source, then the dimension table source is invalidated. |
ComplexMeasureRule | [Column] Complex Aggregation Rules not supported. %qn uses an aggregation rule of %s which is not supported. | The supported aggregations are typically |
CountDistMeasureRule | [Column] COUNT-DISTINCT Aggregation Rule not supported. %qn uses an aggregation rule of %s which is not supported. |
|
InvalidColumnLevelRule | [Level] Some columns that are part of the Primary Level Key are invalid. %qn has %qn as part of its primary key, when %qn has already been marked invalid. | The level key for this level has one or more columns that are invalid. |
VariableBasedColumnRule | [Logical Table Source -> Column] Column uses a Variable in the Expression Column %qn uses a variable in its mapping. | The logical column uses repository and session variables in the expression. |
OneFactToManyDimRule | [Fact Logical Table Source -> Dimension Logical Table Source] There must be a unique join path between the most detailed tables in the (logical or physical?) fact and the dimension. No join paths found between %qn and %qn (both physical table names). Found at least the following join paths: (%qn->%qn....), (%qn->%qn....) | Same as in TwoJoinFactDimRule or HiddenManyManyRule. |
ManyMDTinFactRule | [Fact Logical Table Source] Fact Logical Table Source must have a unique most detailed table. %qn has at least the following most detailed tables : %qn,%qn. | A fact that has more than one table that is the most detailed table. |
NoMeasureFactRule | [Fact Logical Table Source] Fact Logical Table Source does not have any Measures. %qn does not have any deployable measures. | A fact table does not have any measures because all the measures have been invalidated. |
NoInActiveFactRule | [Fact Logical Table Source] Fact Logical Table Source is not marked Active. | A fact source is not active. |
NoInActiveDimRule | [Dimension Logical Table Source] Dimension Logical Table Source is not marked Active. | A dimension source is not active. |
NoAttributeInFactRule | [Fact Logical Table Source -> Column] Attribute found in Fact. %qn in a fact source %qn does not have an aggregation rule. | No attributes in the fact source. |
NoMeasureInDimRule | [Dimension Logical Table Source -> Column] Measure found in Dimension. %qn in a dimension source %qn has an aggregation rule. | No measures in the dimension source. |
VisibleColumnsAttrRule | [Column] -> The run_as_user does not have visibility to this Logical Column. %qn is not accessible to the run_as_user %qn due to visibility rules. | A column does not have visibility for this user. |
VisibleColumnsMeasRule | [Column] -> The run_as_user does not have visibility to this Logical Column. %qn is not accessible to the run_as_user %qn due to visibility rules. | A column does not have visibility for this user. |
MultiplePrimaryKeysDimRule | [Dimension Logical Table Source] A Join uses an alternate key in the Dimension Logical Table Source. %qn between %qn and %qn in %qn uses the alternate key %qn. | A dimension physical table can contain only one primary key. It is joined to another dimension physical table using a different unique key and that join is invalid. IBM Cube Views does not accept any unique keys to be used for foreign joins and always requires the primary key. |
MultiplePrimaryKeysFactRule | [Dimension Logical Table Source] A Join uses an alternate key in the Dimension Logical Table Source. %qn between %qn and %qn in %qn uses the alternate key %qn. | A fact physical table can contain only one primary key. It is joined to another fact physical table using a different unique key and that join is invalid. IBM Cube Views does not accept any unique keys to be used for foreign joins and always requires the primary key. |
MultiplePrimaryKeysFactDimRule | [Fact Logical Table Source -> Dim Logical Table Source] A Join uses an alternate key between the Logical Table sources. %qn between %qn and %qn for sources %qn and %qn uses the alternate key %qn. | A fact physical table can contain only one primary key. It is joined to a dimension physical table using a different unique key and is invalid. IBM Cube Views does not accept any unique keys to be used for foreign joins and always requires the primary key. |
NotDB2ExpressionAttrRule | [Dimension Logical Table Source -> Column] The Column contains an Expression not supported. %qn has expression %s which is not supported. | The attribute contains an expression not supported by IBM Cube Views. This includes metadata expressions that use DateTime functions (for example, |
NotDB2ExpressionMeasRule | [Fact Logical Table Source -> Column] The Column contains an Expression not supported. %qn has expression %s which is not supported. | A measure contains an expression not supported by IBM Cube Views. This includes metadata expressions that use DateTime functions (for example,. |
NoAttributeDimRule | [Dimension Logical Table Source] Dimension Logical Table Source does not have any attributes visible to the run_as_user. %qn can not be queried by user %qn since none of its attributes are visible. | A dimension does not have any attributes. |
This section explains how to export metadata from Oracle Business Intelligence into the SQL Access Advisor and create materialized views using the Oracle Database Metadata Generator.
This section contains the following topics:
This feature enhances the data warehouse performance and functionality of a database. It enables the SQL Access Advisor to store metadata about the logical relationships of the data that resides in the database. Additionally, it accelerates data warehouse queries by using more efficient Oracle materialized views. These materialized views preaggregate the relational data and improve query performance. Once the metadata is stored in the SQL Access Advisor, the database administrator can optimize the database objects and improve query performance.
When processing queries, Oracle Database routes queries to tables that hold materialized views when possible. Because these tables of materialized views are smaller than the underlying base tables and the data has been pre aggregated, the queries that are rerouted to them might run faster.
Oracle Database Metadata Generator works as a metadata bridge to convert the Oracle Business Intelligence proprietary metadata into a SQL file that contains PL/SQL commands to generate dimensions in the SQL Access Advisor. After converting metadata into a SQL file, you use a tool such as SQL*Plus to import the translated metadata into the SQL Access Advisor and store it in metadata catalog tables. After importing the metadata, you create materialized views, which are used by to optimize incoming application queries.
You can use this feature with Oracle Database 9i and higher. See "System Requirements and Certification" for information about platform compatibility.
Note that in database releases prior to 10g, the SQL Access Advisor was called the Oracle Database Summary Advisor and was documented in Oracle9i Data Warehousing Guide.
Become familiar with the Oracle Database and its tools before attempting to deploy metadata in the Oracle Database. For more information, see "SQL Access Advisor" in Oracle Database Performance Tuning Guide.
Ensure that you complete the steps in "Running the Generator" before deploying metadata. To deploy cube metadata, perform the tasks described in the following sections:
Before executing the SQL file for importing into the SQL Access Advisor, ensure that you are familiar with Oracle Database import tools. See the Oracle Database documentation set for information.
Use a tool such as SQL*Plus to execute the SQL file that the Oracle Database Metadata Generator generated. You might see error messages if the dimensions already exist or if the database schema differs from that in the RPD file. When the script executes successfully, you can see the dimensions that were created by using the database web console or the Oracle Enterprise Manager Database Control. In the Oracle Enterprise Manager Database Control, expand the following nodes: Network, Databases, database-name, Warehouse, Summary Management, Dimensions, System.
After you execute the SQL file, be aware of the following:
For more information on this topic, see the Oracle Database documentation set.
You must ensure that Oracle Database knows about the joins between the dimension tables and the fact tables. To do so, you create constraints in SQL*Plus or the Oracle Enterprise Manager Database Control. In the Oracle Enterprise Manager Database Control, you select the table on which you must create a constraint, then select the Constraint tab.
You create a different type of constraint for each kind of table, as follows:
UNIQUE
key constraint.FOREIGN
key constraint and specify the referenced schema and referenced table. In the Constraint Definition area, include the foreign key columns in the fact table and the corresponding unique keys in the dimension table. An attempt to create a foreign key on a fact table can fail if the foreign key column data does not match the unique key column data on the dimension table.See the Oracle Database documentation set for detailed information about creating the query workload.
A query workload is a sample set of physical queries to optimize. Before you create the workload, you generate a Trace file with information on the slowest-running queries.
To generate the Trace file:
You can generate the Trace file of the slowest-running queries using a tool that is appropriate to your database version, as described in the following list:
DBMS_MONITOR
package. Once you enable the Trace feature, you use a script to create a Trace file to capture the SQL code for queries in a query workload table.Note: The capabilities that are described in the following sections are available in Oracle Database, rather than as part of Oracle Business Intelligence. |
To analyze the information in the Trace file:
To load queries into the workload:
USER_WORKLOAD
table.Table F-6 describes the columns of the USER_WORKLOAD
table.
INSERT
statements to populate the QUERY
column with the SQL statements for the slowest physical queries and the OWNER
column with the appropriate owner names.Table F-6 Columns in USER_WORKLOAD Table
Column | Data Type | Required | Description |
---|---|---|---|
QUERY | Any LONG or VARCHAR type (all character types) | YES | SQL statement for the query. |
OWNER | VARCHAR2 (30) | YES | User who last executed the query. |
APPLICATION | VARCHAR2 (30) | NO | Application name for the query. |
FREQUENCY | NUMBER | NO | Number of times that the query was executed. |
LASTUSE | DATE | NO | Last date on which the query was executed. |
PRIORITY | NUMBER | NO | User-supplied ranking of the query. |
RESPONSETIME | NUMBER | NO | Execution time of the query in seconds. |
RESULTSIZE | NUMBER | NO | Total number of bytes that the query selected. |
SQL_ADDR | NUMBER | NO | Cache address of the query. |
SQL_HASH | NUMBER | NO | Cache hash value of the query. |
After you populate the query workload table, use the appropriate tool for the Oracle Database version to create materialized views. In Oracle Database 10g, use the SQL Access Advisor in the Oracle Enterprise Manager Database Control and specify the query workload table that you created.
The SQL Access Advisor generates recommendations on improving the performance of the fact tables that you specify. The SQL Access Advisor displays the SQL code with which it will create the appropriate materialized views. Before indicating that the SQL Access Advisor should create the materialized views, review the following tips:
CAST
statement.CREATE MATERIALIZED VIEW
statement does not specify the same query that you provided as a workload table. If the statement does specify the same query, then the materialized views will likely not reflect the true performance gain. However, if the query is executed frequently, then creating a materialized view might still be worthwhile.CREATE MATERIALIZED VIEW
statement after the SQL statement. Otherwise, the SQL*Plus worksheet will not recognize it as a valid statement.Note: The SQL Access Advisor can also help determine appropriate indexing schemes. |
This section explains how to export metadata from Oracle Business Intelligence into IBM DB2 using the DB2 Cube Views Generator.
This section contains the following topics:
The term IBM DB2 Cube Views is a registered trademark of IBM. See "System Requirements and Certification" for information about platform compatibility.
This feature enhances the data warehouse performance and functionality of a database. It enables the DB2 database to store metadata about the logical relationships of the data residing in the database. Additionally, it accelerates data warehouse queries by using more efficient DB2 materialized query tables (MQTs). These MQTs preaggregate the relational data and improve query performance.
When processing queries, the DB2 Query Rewrite functionality routes queries to the MQTs when possible. Because these tables are smaller than the underlying base tables and the data has been pre aggregated, the queries that are rerouted to them might run faster.
DB2 Cube Views Generator works as a metadata bridge to convert the Oracle Business Intelligence proprietary metadata into an IBM Cube Views XML file. After converting metadata into an XML file, you use IBM Cube Views to import the translated metadata into the DB2 database and store it in IBM Cube Views metadata catalog tables. After importing the metadata, you use the IBM Optimization Advisor to generate scripts to create materialized query tables (MQT) and their indexes. The deployed MQTs are used by the DB2 Query Reroute Engine to optimize incoming application queries.
DB2 provides an API (implemented as a stored procedure) that passes XML documents as arguments to create, modify, delete, or read the metadata objects. For more information about IBM Cube Views, see the IBM DB2 documentation.
The alias-SQL file generated by the DB2 Cube Views Generator should be executed before importing the XML file. The XML file generated by the DB2 Cube Views Generator contains the cube metadata in XML format. After importing the XML file into your DB2 database, you must create materialized query tables.
Note: It is strongly recommended that you become familiar with IBM Cube Views and its tools before attempting to import the XML file. For more information, see the IBM documentation. |
Ensure that you complete the steps in "Running the Generator" before deploying metadata. To deploy cube metadata, perform the tasks described in the following sections:
You must execute the alias-SQL file before you import the XML file into your DB2 database. For more information, see the IBM documentation.
The alias-SQL file that is generated by the DB2 Cube Views Generator must be executed by a SQL client on the database where the data warehouse is located. When executed, it creates aliases (synonyms) for tables in the database.
After you execute the alias-SQL file, you can import the XML file into the database. For more information, see the IBM documentation.
Note: It is strongly recommended that you become familiar with IBM Cube Views and its tools before attempting to import the XML file. For more information, see the IBM documentation. |
You can import this file using the following IBM tools:
Using the IBM OLAP Center, you can import cube metadata into DB2. The IBM OLAP Center provides wizards to help you import the file. For more information, see the IBM documentation.
To import the XML file, use the following guidelines:
After you import the XML file, you might need to perform the following actions:
For more information, see the IBM documentation.
For more information, see the IBM documentation.
After you import the cube metadata into the database, you must run the IBM Optimization Advisor to generate SQL scripts and then execute those scripts to create the MQTs. You must provide certain parameters to the IBM Optimization Advisor to get optimal results from the implementation. The IBM Optimization Advisor wizard analyzes your metadata and recommends how to build summary tables that store and index aggregated data for SQL queries. Running the IBM Optimization Advisor can help you keep the MQTs current. Additionally, you must refresh your database after each ETL.
To create MQTs, use the following guidelines:
When asked for: | Choose: |
---|---|
Summary Tables | Choose Deferred (or Immediate) and provide a tablespace for the tables |
Limitations | Choose an appropriate value for the optimization parameters. You should turn on the Data-sampling option. |
SQL Scripts | Creation of the scripts needed to run to create the Summary tables. Choose the filename and locations |
This appendix provides keyboard shortcut information for the Administration Tool. The following sections list Administration Tool menu items and their corresponding keyboard shortcuts, keyboard shortcuts for navigating dialogs, and Physical Diagram and Business Model Diagram keyboard shortcuts.
This appendix contains the following topics:
The following sections describe keyboard shortcuts for Administration Tool menu options.
File Menu Shortcuts
Edit Menu Shortcuts
View Menu Shortcut
Tools Menu Shortcuts
General Menu Shortcuts
Table G-1 lists the general keyboard shortcuts available in the Administration Tool menus. Note that you can use the Window menu options to change the focus from the menus to the navigation panes.
Table G-1 Menu Keyboard Shortcuts
Action | Keyboard Shortcut |
---|---|
Quit the application | Alt+ F4 |
Move cursor to the menu option | Alt + Underlined letter |
Open application's control menu | Alt+ Spacebar |
View the shortcut menu for the selected item | Shift + F10 |
Move through the menu bar | Left arrow key Right arrow key |
Open a menu option | Down arrow key |
Move through a menu list | Up arrow Down arrow |
Close the current menu | Esc |
Select or deselect items in a check box or list | Spacebar |
Make noncontinguous selections | Ctrl + Up arrow + Spacebar |
Table G-2 lists the keyboard shortcuts available in Administration Tool dialogs.
Table G-2 Dialog Keyboard Shortcuts
Action | Keyboard Shortcut |
---|---|
Move forward through options | Tab |
Move backward through options | Shift + Tab |
Select or deselect an item in a list | Shift + Up arrow Shift + Down arrow |
Close the current dialog | Esc |
Go to the top of a list | Home |
Go to the bottom of a list | End |
Refresh | F5 |
For dialogs with up arrow buttons: Move selected item up in the list | Alt + Up arrow Note: Select a list item before using this shortcut. |
For dialogs with down arrow buttons: Move selected item down in the list | Alt + Down arrow Note: Select a list item before using this shortcut. |
For dialogs with plus (add) buttons: Insert item from list | Alt + Insert |
For dialogs with x (delete) buttons: Delete item from list | Alt + Delete |
For dialogs with pencil (edit) buttons: Edit item from list | Alt + Enter |
Browse dialog: Move focus between trees located in left pane | F5, F6, Shift + Tab, Tab |
When a table row has a child row (grid): Expand the child row from the cell displaying the plus icon This situation occurs in the Define Merge Strategy page of the Merge Repository Wizard. | Spacebar Note: Move the focus to the cell displaying the plus icon before using this shortcut. |
When a table row has a check box: Select or deselect the check box This situation occurs in the Define Merge Strategy page of the Merge Repository Wizard. | Spacebar Note: Move the focus to the cell displaying the check box before using this shortcut. |
Table G-3 lists the keyboard shortcuts available in the Physical and Business Model Diagrams. Note that the Physical and Business Model Diagram toolbar options are also available from the Actions menu.
Table G-3 Diagram Keyboard Shortcuts
Action | Keyboard Shortcut |
---|---|
Pan around the diagram when no diagram objects are selected | Arrow keys |
Select a diagram object: use the arrow keys to move an object under the pointer, then press the spacebar to select the object | Spacebar + Arrow keys |
Open the property dialog for a selected diagram object | Enter |
Cancel current operation | Esc |
Resume default mode (Select) after using Pan or Marquee Zoom | Esc |
Deselect an object | Use one of the following methods: Esc Press the spacebar when the mouse cursor is not over an object |
Zoom in | + |
Zoom out | - |
Select the pan tool | P Note that you can also use the arrow keys to pan around the diagram. |
Revert to auto-layout | S |
Create a new join | J This shortcut selects the New Join option. |
Create a new table | N This shortcut selects the New Table option. After using this shortcut, you can use the arrow keys and spacebar to pan around the diagram and open the Logical Table dialog for the new table. |
Select the Marquee Zoom tool | Z This shortcut selects the Marquee Zoom tool. |
Zoom to fit all objects in the current view | F |
Show all tables in Expanded View, with columns visible | 1 |
Show all tables in Collapsed View, with columns hidden and only the table name displayed | 2 |
This glossary defines terms for Oracle Business Intelligence Enterprise Edition. See also the Oracle Fusion Middleware Master Glossary for additional terms and definitions.
action
Provides functionality to navigate to related content or to invoke operations, functions or processes in external systems. You can include actions in analyses, dashboard pages, agents, scorecard objectives, scorecard initiatives, and KPIs.
See also action link.
Action Framework
The Action Framework is a component of the Oracle BI EE architecture and includes a J2EE application called the Action Execution Service (AES) and actions-specific JavaScript functionality deployed as part of Oracle BI EE. The action framework also includes client-side functionality for creating actions and invoking certain action types directly from the browser.
action link
A link to an action that you have embedded in an analysis, dashboard page, scorecard objective, scorecard initiative, or KPI that, when clicked, runs an associated action.
See also action.
ADF Business Intelligence Component
Provides the developer the ability to include Oracle BI Presentation Catalog objects in ADF Applications. This component uses a SOAP connection to access the catalog.
Administration Server
Part of the WebLogic server domain and runs the processes that manage Oracle Business Intelligence components. The Administration Server includes the Oracle WebLogic Server Administration Console, Oracle Fusion Middleware Control, and JMX MBeans. For a Simple Install type, the Administration Server also includes Java components for Oracle Business Intelligence such as Oracle BI Publisher and Oracle Real-Time Decisions.
See also Fusion Middleware Control, Java components and Managed Server.
agent
Enables you to automate your business processes. You can use agents to provide event-driven alerting, scheduled content publishing, and conditional event-driven action execution.
Agents can dynamically detect information-based problems and opportunities, determine the appropriate individuals to notify, and deliver information to them through a wide range of devices (e-mail, phones, and so on).
aggregate persistence
A feature that automates the creation and loading of aggregate tables and their corresponding Oracle Business Intelligence metadata mappings to enable aggregate navigation.
aggregate table
A table that stores precomputed results from measures that have been aggregated over a set of dimensional attributes. Each aggregate table column contains data at a given set of levels. For example, a monthly sales table might contain a precomputed sum of the revenue for each product in each store during each month. Using aggregate tables optimizes performance.
aggregation rule
In an Oracle BI repository, a rule applied to a logical column or physical cube column that specifies a particular aggregation function to be applied to the column data, such as SUM
.
In Presentation Services, users can see the rules that have been applied in the repository. Users can also change the default aggregation rules for measure columns.
alias table
A physical table that references a different physical table as its source. You can use alias tables to set up multiple tables, each with different keys, names, or joins, when a single physical table must serve in different roles. Because alias table names are included in physical SQL queries, you can also use alias tables to provide meaningful table names, making the SQL statements easier to read.
analysis
A query that a user creates on the Criteria tab in Presentation Services. An analysis can optionally contain one or more filters or selection steps to restrict the results.
See also filter and selection step.
analysis criteria
Consists of the columns, filters, and selection steps that you specify for an analysis.
See also analysis.
analysis prompt
A prompt that is added to an analysis. When the user selects a prompt value, that value then determines the content that displays in the analysis that contains the prompt, only.
See dashboard prompt and prompt.
attribute
The details of a dimension in an Oracle BI repository. Attributes usually appear as columns of a dimension table.
attribute column
In Presentation Services, a column that holds a flat list of values that are also known as members. No hierarchical relationship exists between these members, as is the case for members of a hierarchical column. Examples include ProductID or City.
See hierarchical column.
BI Composer
BI Composer is a simple-to-use wizard that enables you to quickly and easily create, edit, or view analyses without the complexities of the Analysis editor.
BI domain
Contains configurable system components (the coreapplication) and Java components (the WebLogic server domain), and includes the Web-based management tools and applications that use resources.
A BI domain can be a set of middleware homes spread across one or more physical servers.
See also BI instance.
BI object
A piece of business intelligence content that is created with Presentation Services and saved to the Oracle BI Presentation Catalog. Examples of BI objects include analyses, dashboards, dashboard pages, scorecards, and KPIs.
BI Search
A search tool that resides outside of Presentation Services. BI Search is available from the Home Page after the administrator adds a link to the BI Search URL. BI Search provides a mechanism for searching for objects in the Oracle BI Presentation Catalog that is similar to a full-text search engine.
bookmark link
Captures the path to a dashboard page and all aspects of the page state.
See prompted link.
bridge table
A table that enables you to resolve many-to-many relationships between two other tables.
business model
Contains the business model definitions and the mappings from logical to physical tables. Business models are always dimensional, unlike objects in the Physical layer, which reflect the organization of the data sources. Each business model contains logical tables, columns, and joins.
Business Model and Mapping layer
A layer of the Oracle BI repository that defines the business, or logical, model of the data and specifies the mapping between the business model and the Physical layer schemas. This layer can contain one or more business models.
The Business Model and Mapping layer determines the analytic behavior that is seen by users, and defines the superset of objects available to users. It also hides the complexity of the source data models.
business owner
The person responsible for managing and improving the business value and performance of a KPI or scorecard object, such as an objective, cause & effect map, and so on.
cause & effect map
A component of a scorecard that lets you illustrate the cause and effect relationships of an objective or KPI.
See also Oracle Scorecard and Strategy Management.
chronological key
A column in a time dimension that identifies the chronological order of the members within a dimension level. The key must be unique at its level.
Cluster Controller
A process that serves as the first point of contact for new requests from Presentation Services and other clients. The Cluster Controller determines which Oracle BI Server in the cluster to direct the request to based on Oracle BI Server availability and load. It monitors the operation of servers in the cluster, including the Oracle BI Scheduler instances. The Cluster Controller is deployed in active-passive configuration.
column
In an Oracle BI repository, columns can be physical columns, logical columns, or presentation columns.
In Presentation Services, indicates the pieces of data that an analysis returns. Together with filters and selection steps, columns determine what analyses contain. Columns also have names that indicate the types of information that they contain, such as Account and Contact.
See also analysis, attribute column, hierarchical column, and measure column.
column prompt
A type of filter that enables you to build specific value prompts on a data column to either exist alone on the dashboard or analysis or to expand or refine existing dashboard and analysis filters.
See also prompt.
complex join
A join in the Physical layer of an Oracle BI repository that uses an expression other than equals.
condition
Objects that return a single Boolean value based on the evaluation of an analysis or of a key performance indicator (KPI). You use conditions to determine whether agents deliver their content and execute their actions, whether actions links are displayed in dashboard pages, or whether sections and their content are displayed in dashboard pages.
See also action, action link, agent and key performance indicator (KPI).
connection pool
An object in the Physical layer of an Oracle BI repository that contains the connection information for a data source.
See also Physical layer.
content designer
The user who creates business intelligence objects such as analyses, dashboards, and scorecards.
contextual event action
A predelivered action that uses the Action Framework to pass content from the business intelligence object to another region on an ADF page.
See also action, Action Framework, and action link.
cube
An OLAP (online analytical processing) data structure that lets data be analyzed more quickly and with greater flexibility than structures in relational databases. Cubes are made up of measures and organized by dimensions. Cubes in multidimensional data sources roughly correspond to star schemas in relational database models.
currency prompt
A prompt that enables the user to change the currency type that displays in the currency columns on an analysis or dashboard.
See also prompt.
custom view
A component of a scorecard that lets you show a customized view of your business and strategy data.
See also Oracle Scorecard and Strategy Management.
dashboard
An object that provides personalized views of corporate and external information. A dashboard consists of one or more pages. Pages can display anything that you can access or open with a Web browser, such as results of analyses, images, alerts from agents, and so on.
dashboard prompt
A prompt that is added to the dashboard. When the user selects a prompt value, that value then determines the content that displays in all analyses that are included on the dashboard.
See analysis prompt and prompt.
Dashboard URL
Used for incorporating or referencing the content of a specific dashboard in external portals or applications. It has several forms and optional arguments that you can use to control its behavior.
data source name (DSN)
A data structure that contains the information about a specific database, typically used by an ODBC driver to connect to the database. The DSN contains information such as the name, directory, and driver of the database.
Connection pool objects in the Physical layer of the Oracle BI repository contain DSN information for individual data sources.
database hint
Instructions placed within a SQL statement that tell the database query optimizer the most efficient way to execute the statement. Hints override the optimizer's execution plan, so you can use hints to improve performance by forcing the optimizer to use a more efficient plan. Hints are supported only for Oracle Database data sources.
dimension
A hierarchical organization of logical columns (attributes). One or more logical dimension tables might be associated with at most one dimension.
A dimension might contain one or more (unnamed) hierarchies. There are two types of logical dimensions: dimensions with level-based hierarchies (structure hierarchies), and dimensions with parent-child hierarchies (value hierarchies).
A particular type of level-based dimension, called a time dimension, provides special functionality for modeling time series data.
See also hierarchy.
dimension table
A logical table that contains columns used by a particular dimension. A dimension table cannot be a fact table.
See also fact table.
driving table
A mechanism used to optimize the manner in which the Oracle BI Server processes multi-database joins when one table is very small (the driving table) and the other table is very large.
event polling table
Event polling tables (also called event tables) provide information to the Oracle BI Server about which physical tables have been updated. They are used to keep the query cache up-to-date. The Oracle BI Server cache system polls the event table, extracts the physical table information from the rows, and purges stale cache entries that reference those physical tables.
Essbase
A multidimensional database management system available from Oracle that provides a multidimensional database platform upon which to build business intelligence applications. Also referred to as Oracle's Hyperion Essbase.
fact table
In an Oracle BI repository, a logical table in the Business Model and Mapping layer that contains measures and has complex join relationships with dimension tables.
See also dimension table.
filter
Criteria that are applied to attribute and measure columns to limit the results that are displayed when an analysis is run. For measure columns, filters are applied before the query is aggregated and affect the query and thus the resulting values.
See also prompt and selection step.
foreign key
A column or a set of columns in one table that references the primary key columns in another table.
fragmentation content
The portion, or fragment, of the set of data specified in a logical table source when the logical table source does not contain the entire set of data at a given level. Fragmentation content is defined by the logical columns that are entered in the Fragmentation content box in the Content tab of the Logical Table Source dialog box.
Fusion Middleware Control
Provides Web-based management tools that enable you to monitor and configure Fusion Middleware components.
global header
An object in the user interface for Oracle BI Presentation Services that contains links and options that enable the user to quickly begin a task or locate a specific object within the Oracle BI Presentation Catalog. The global header always displays in the Presentation Services user interface, thus enabling users to quickly access links and search the catalog without having to navigate to the Home Page or Catalog page.
Go URL
Used to incorporate specific business intelligence results into external portals or applications. The Go URL is used when you add a result to your favorites or add a link to a request to a dashboard or external Web site. It has several forms and optional arguments that you can use to control its behavior.
hierarchical column
In Presentation Services, a column that holds data values that are organized using both named levels and parent-child relationships. This column is displayed using a tree-like structure. Individual members are shown in an outline manner, with lower-level members rolling into higher-level members. For example, a specific day belongs to a particular month, which in turn is within a particular year. Examples include Time or Geography.
See also attribute column.
hierarchy
In an Oracle BI repository, a system of levels in a logical dimension that are related to each other by one-to-many relationships. All hierarchies must have a common leaf level and a common root (all) level.
Hierarchies are not modeled as separate objects in the metadata. Instead, they are an implicit part of dimension objects.
See also dimension, logical level, and presentation hierarchy.
hierarchy level
In Presentation Services, an object within a hierarchical column that either rolls up or is rolled up from other levels. Corresponds to a presentation level in an Oracle BI repository.
See also presentation level.
home page
Provides an intuitive, task-based entry way into the functionality of Presentation Services. The Home page is divided into sections that enable you to quickly begin specific tasks, locate an object, or access technical documentation.
image prompt
A prompt that provides an image with different areas mapped to specific values. The user clicks an image area to select the prompt value that populates the analysis or dashboard.
See also prompt.
initialization block
Used to initialize dynamic repository variables, system session variables, and nonsystem session variables. An initialization block contains the SQL statements that are executed to initialize or refresh the variables that are associated with that block.
initiative
Used in a scorecard, an initiative is a time-specific task or project that is necessary to achieve objectives. As such, you can use initiatives that support objectives as milestones as they reflect progress toward strategy targets.
See also objective and Oracle Scorecard and Strategy Management.
Java components
Fusion Middleware Control components that are deployed as one or more Java EE applications (and a set of resources) and are managed by Node Manager.
See also Node Manager.
key performance indicator (KPI)
A measurement that defines and tracks specific business goals and strategic objectives. KPIs often times roll up into larger organizational strategies that require monitoring, improvement, and evaluation. KPIs have measurable values that usually vary with time, have targets to determine a score and performance status, include dimensions to allow for more precise analysis, and can be compared over time for trending purposes and to identify performance patterns.
See also Oracle Scorecard and Strategy Management.
KPI watchlist
A method of distributing KPIs to end users. A watchlist is a collection of KPIs that are built by adding the KPIs that are stored in the Oracle BI Presentation Catalog. After a KPI watchlist is built and saved, it is stored as a catalog object and can be added to dashboards and scorecards.
See also key performance indicator (KPI).
logical display folder
Folders used to organize objects in the Business Model and Mapping layer. They have no metadata meaning.
logical join
Joins that express relationships between logical tables. Logical joins are conceptual, rather than physical, joins. In other words, they do not join to particular keys or columns. A single logical join can correspond to many possible physical joins.
logical level
In an Oracle BI repository, a component of a level-based hierarchy that either rolls up or is rolled up from other levels.
Parent-child hierarchies have implicit, inter-member levels between ancestors and descendants that are not exposed as logical level objects in the metadata. Although parent-child hierarchies also contain logical level objects, these levels are system generated and exist to enable aggregation across all members only.
See also dimension and hierarchy.
Logical SQL
The SQL statements that are understood by the Oracle BI Server. The Oracle BI Server Logical SQL includes standard SQL, plus special functions (SQL extensions) like AGO
, TODATE
, EVALUATE
, and others.
Clients like Presentation Services send Logical SQL to the Oracle BI Server when a user makes a request. In addition, Logical SQL is used in the Business Model and Mapping layer to enable heterogeneous database access and portability. The Oracle BI Server transforms Logical SQL into physical SQL that can be understood by source databases.
logical table
A table object in the Business Model and Mapping layer of an Oracle BI repository. A single logical table can map to one or more physical tables. Logical tables can be either fact tables or dimension tables.
See also dimension table and fact table.
logical table source
Objects in the Business Model and Mapping layer of an Oracle BI repository that define the mappings from a single logical table to one or more physical tables. The physical to logical mapping can also be used to specify transformations that occur between the Physical layer and the Business Model and Mapping layer, and to enable aggregate navigation and fragmentation.
Managed Server
An individual J2EE application container (JMX MBean container). It provides local management functions on individual hosts for Java components and system components contained within the local middleware home, and refers to the Administration Server for all of its configuration and deployment information.
See also Administration Server and Fusion Middleware Control.
measure column
A column that can change for each record and can be added up or aggregated. Typical measures are sales dollars and quantity ordered. Measures are calculated from data sources at query time.
Measure columns are displayed in the Oracle BI repository, usually in fact tables, or in Presentation Services.
metadata
Data about data. Metadata objects include the descriptions of schemas (such as tables, columns, data types, primary keys, foreign keys, and so on) and logical constructs (like fact tables, dimensions, and logical table source mappings).
The Oracle BI repository is made up of the metadata used by the Oracle BI Server to process queries.
metadata dictionary
A static set of XML documents that describe metadata objects, such as a column, including its properties and relationships with other metadata objects. A metadata dictionary can help users obtain more information about metrics or attributes for repository objects.
mission statement
A statement in a scorecard that specifies the key business goals and priorities that are required to achieve your vision.
See also Oracle Scorecard and Strategy Management and vision statement.
multi-database join
A join between two tables in an Oracle BI repository, where each table resides in a different database.
Node Manager
A daemon process that provides remote server start, stop, and restart capabilities when Java processes become unresponsive or terminate unexpectedly.
See also Java components.
object properties
Information about an object and attributes that the owner can assign to an object. Examples of properties include name, description, date stamps, read-only access, and do not index flag.
See also permissions.
objective
A required or desired outcome in a scorecard that forms your corporate strategy.
See also initiative and Oracle Scorecard and Strategy Management.
offline mode
In the Oracle BI Administration Tool, a mode where a repository builder can edit a repository that is not loaded into the Oracle BI Server.
online mode
In the Oracle BI Administration Tool, a mode where a repository builder can edit a repository while it is available for query operations. Online mode also allows user session monitoring for users connected to the subject areas in the repository.
opaque view
A Physical layer table that consists of a SELECT
statement. In the Oracle BI repository, opaque views appear as view tables in the physical databases, but the view does not actually exist.
Open Database Connectivity (ODBC)
A standard interface used to access data in both relational and nonrelational databases. Database applications can use ODBC to access data stored in different types of database management systems, even if each database uses a different data storage format and programming interface.
Oracle BI Administration Tool
A Windows application that is used to create and edit Oracle BI repositories. The Administration Tool provides a graphical representation of the three parts of a repository: the Physical layer, the Business Model and Mapping layer, and the Presentation layer.
Oracle BI Briefing Books
A collection of static or updatable snapshots of dashboard pages, individual analyses, and BI Publisher reports. You can download briefing books in PDF or MHTML format for printing and viewing. You also can update, schedule, and deliver briefing books using agents.
Oracle BI JavaHost
A service that gives Presentation Services the ability to use functionality that is provided in Java libraries to support components such as graphs. The services are provided based on a request-response model.
Oracle BI Logical SQL View Object
Provides the developer the ability to create a Logical SQL statement to access the Oracle BI Server and fetch business intelligence data and bind it to native ADF components for inclusion on an ADF page. This view object uses a BI JDBC connection to the Oracle BI Server.
Oracle BI Presentation Catalog
Stores business intelligence objects, such as analyses and dashboards, and provides an interface where users create, access, and manage objects, and perform specific object-based tasks (for example, export, print, and edit). The catalog is organized into folders that are either shared or personal.
Oracle BI Presentation Services
Provides the framework and interface for the presentation of business intelligence data to Web clients. It maintains a Presentation Catalog service on the file system for the customization of this presentation framework. It is a standalone process and communicates with the Oracle BI Server using ODBC over TCP/IP. It consists of components that are known as Answers, Delivers, and Interactive Dashboards.
See also ODBC; Oracle BI Server; Oracle BI Presentation Catalog; Oracle BI Presentation Services server.
Oracle BI Presentation Services server
The Oracle BI Web server that exchanges information and data with the Oracle BI Server.
Oracle BI Publisher
A J2EE application that provides enterprise-wide publishing services in Oracle Business Intelligence. It generates highly formatted, pixel-perfect reports.
See also report.
Oracle BI repository
A file that stores Oracle Business Intelligence metadata. The metadata defines logical schemas, physical schemas, physical-to-logical mappings, aggregate table navigation, and other constructs. The repository file has an extension of .rpd. Oracle BI repositories can be edited using the Oracle BI Administration Tool.
See also metadata and Oracle BI Administration Tool.
Oracle BI Scheduler
An extensible scheduling application for scheduling results to be delivered to users at specified times. It is the engine behind the Oracle BI Delivers feature.
See also results.
Oracle BI Server
A standalone process that maintains the logical data model that it provides to Presentation Services and other clients through ODBC. Metadata is maintained for the data model in a local proprietary file called the repository file. The Oracle BI Server processes user requests and queries underlying data sources.
Oracle BI Server XML API
Provides utilities to create a generic, XML-based representation of the Oracle BI repository metadata. You can use this XML file version of the repository to programmatically modify the metadata. The Oracle BI Server XML API objects correspond to metadata repository objects in an RPD file. These objects differ from XML objects in the Oracle BI Presentation Catalog.
Oracle Business Intelligence Mobile
Oracle Business Intelligence Mobile allows you to view Oracle BI EE content on supported mobile devices such as the Apple iPhone and Apple iPad.
Using Oracle Business Intelligence Mobile, you can view and analyze BI content such as analyses and dashboards, BI Publisher content, scorecard content, and content delivered by agents.
Oracle Business Intelligence Web Services
See Oracle Business Intelligence Session-Based Web Services and Oracle Business Intelligence Web Services for SOA.
Oracle Business Intelligence Session-Based Web Services
An API that implements SOAP. These Web services are designed for programmatic use, where a developer uses one Web service to invoke many different business intelligence objects. These Web services provide functionality on a wide range of Presentation Services operations. These Web services enable the developer to extract results from Oracle BI Presentation Services and deliver them to external applications, perform Presentation Services management functions, and execute Oracle Business Intelligence alerts (known as Intelligent Agents).
See also Oracle Business Intelligence Web Services for SOA.
Oracle Business Intelligence Web Services for SOA
Contains three Web services, ExecuteAgent, ExecuteAnalysis, and ExecuteCondition, which are hosted by the bimiddleware J2EE application. These web services are designed to enable developers to use third-party Web services clients (for example, Oracle SOA Suite) to browse for and include business intelligence objects in service oriented architecture components.
See also Oracle Business Intelligence Session-Based Web Services.
Oracle Call Interface (OCI)
A connection interface that the Oracle BI Server can use to connect to Oracle Database data sources. You should always use OCI when importing metadata from or connecting to an Oracle Database.
Oracle OLAP
Oracle Database has an OLAP Option that provides an embedded, full-featured online analytical processing server.
Oracle Business Intelligence supports Oracle OLAP as a data source. When you import metadata from an Oracle OLAP source, the Oracle OLAP objects appear in the Physical layer of the Administration Tool. Oracle OLAP objects include Analytic Workspaces, which are containers for storing related cubes.
Oracle Process Manager and Notification Server (OPMN)
A process management tool that manages all system components (server processes), and supports both local and distributed process management, automatic process recycling and the communication of process state (up, down, starting, stopping). OPMN detects process unavailability and automatically restarts processes).
See also system components.
Oracle Scorecard and Strategy Management
A performance management tool that lets you describe and communicate your business strategy. You can drive and assess your corporate strategy and performance from the top of your organization down, or from the bottom up.
Oracle Technology Network (OTN)
A repository of technical information about Oracle's products where you can search for articles, participate in discussions, ask the user community technical questions, and search for and download Oracle products and documentation.
parent-child hierarchy
A hierarchy of members that all have the same type. All the dimension members of a parent-child hierarchy occur in a single data source. In a parent-child hierarchy, the inter-member relationships are parent-child relationships between dimension members.
See also dimension.
parent-child relationship table
A table with values that explicitly define the inter-member relationships in a parent-child hierarchy. Also called a closure table.
pass-through calculation
A calculation that is not computed by the Oracle BI Server but instead is passed to another data source. Enables advanced users to leverage data source features and functions without the need to modify the Oracle BI repository.
permissions
Specify which users can access an object, and limit how users can interact with an object. Examples of permissions include write, delete, and change permissions.
See object properties.
perspective
A category in your organization with which to associate initiatives, objectives, and KPIs in a scorecard. A perspective can represent a key stakeholder (such as a customer, employee, or shareholder/financial) or a key competency area (such as time, cost, or quality).
See also initiative, key performance indicator (KPI), objective, and Oracle Scorecard and Strategy Management.
physical catalog
An object in the Physical layer of a repository that groups different schemas. A catalog contains all the schemas (metadata) for a database object.
physical display folder
Folders that organize objects in the Physical layer of an Oracle BI repository. They have no metadata meaning.
physical join
Joins between tables in the Physical layer of an Oracle BI repository.
Physical layer
A layer of the Oracle BI repository that contains objects that represent physical data constructs from back-end data sources. The Physical layer defines the objects and relationships available for writing physical queries. This layer encapsulates source dependencies to enable portability and federation.
physical schema
An object in the Physical layer of an Oracle BI repository that represents a schema from a back-end database.
physical table
An object in the Physical layer of an Oracle BI repository, usually corresponding to a table that exists in a physical database.
See also Physical layer.
presentation hierarchy
An object in the Presentation layer of an Oracle BI repository that provides an explicit way to expose the multidimensional model in Presentation Services and other clients. Presentation hierarchies expose analytic functionality such as member selection, custom member groups, and asymmetric queries. Users can create hierarchy-based queries using presentation hierarchies.
In Presentation Services, presentation hierarchies are displayed as hierarchical columns.
See also hierarchical column and presentation level.
Presentation layer
Provides a way to present customized, secure, role-based views of a business model to users. It adds a level of abstraction over the Business Model and Mapping layer in the Oracle BI repository. The Presentation layer provides the view of the data seen by users who build analyses in Presentation Services and other client tools and applications.
See also Business Model and Mapping layer.
presentation level
In the Oracle BI repository, a component of a presentation hierarchy that either rolls up or is rolled up from other levels. Presentation levels are displayed as levels within hierarchical columns in Presentation Services.
See also hierarchy level and presentation hierarchy.
presentation table
An object in the Presentation layer of an Oracle BI repository that is used to organize columns into categories that make sense to the user community. A presentation table can contain columns from one or more logical tables. The names and object properties of the presentation tables are independent of the logical table properties.
primary key
A column (or set of columns) where each value is unique and identifies a single row of a table.
process instance
A unique process on an individual workstation that is associated with a BI instance.
See also BI instance.
prompt
A type of filter that enables the content designer to build and specify data values or the end user to choose specific data values to provide a result sets for an individual analysis or multiple analyses included on a dashboard or dashboard page. A prompt expands or refines existing dashboard and analysis filters.
The types of prompts are column prompts, currency prompts, image prompts, and variable prompts.
See also column prompt, currency prompt, filter, image prompt, and variable prompt.
prompted link
Captures the path to a dashboard page and a simplified presentation of the dashboard prompt.
See bookmark link.
query
Contains the underlying SQL statements that are issued to the Oracle BI Server. You do not have to know a query language to use Oracle Business Intelligence.
query cache
A facility to store query results for use by other queries.
report
The response returned to the user from the execution of a query created using Oracle BI Publisher. Reports can be formatted, presented on a dashboard page, saved in the Oracle BI Presentation Catalog, and shared with other users.
See also analysis.
selection step
A choice of values that is applied after the query is aggregated that affects only the members displayed, not the resulting aggregate values. Along with filters, selection steps restrict the results for an analysis.
skip-level hierarchy
A hierarchy where some members do not have a value for a particular ancestor level. For example, in the United States, the city of Washington in the District of Columbia does not belong to a state. The expectation is that users can still navigate from the country level (United States) to Washington and below without the need for a state.
See also hierarchy.
snowflake schema
A dimensional schema where one or more of the dimensions are partially or completely normalized.
star schema
A relational schema that allows dimensional analysis of historical information. Star schemas have one-to-many relationships between the logical dimension tables and the logical fact table. Each star consists of a single fact table joined to a set of denormalized dimension tables.
strategy map
A component of a scorecard that shows how the objectives that have been defined for a scorecard and the KPIs that measure their progress are aligned by perspectives. It also shows cause and effect relationships.
See also Oracle Scorecard and Strategy Management.
strategy tree
A component of a scorecard that shows an objective and its supporting child objectives and KPIs hierarchically in a tree diagram.
See also Oracle Scorecard and Strategy Management.
structured query language (SQL)
A standard programming language for querying and modifying data. Oracle Business Intelligence supports standard SQL-92 with several value-added proprietary extensions.
See also Logical SQL.
subject area
In an Oracle BI repository, an object in the Presentation layer that organizes and presents data about a business model. It is the highest-level object in the Presentation layer and represents the view of the data that users see in Presentation Services. Oracle BI repository subject areas contain presentation tables, presentation columns, and presentation hierarchies.
In Presentation Services, subject areas contain folders, measure columns, attribute columns, hierarchical columns, and levels.
system components
Server processes (not Java applications) that are managed by the Oracle Process Manager and Notification server (OPMN).
See also Oracle Process Manager and Notification Server (OPMN).
transformation
Work that is performed on data when moving from a database to another location (sometimes another database). Some transformations are typically performed on data when it is moved from a transaction system to a data warehouse system.
unbalanced hierarchy
A hierarchy where the leaves do not have the same depth. For example, an organization might choose to have data for the current month at the day level, data for the previous at the month level, and data for the previous five years at the quarter level.
See also hierarchy.
variable
Objects in an Oracle BI repository that are used to streamline administrative tasks and dynamically modify metadata content to adjust to a changing data environment.
Variables are of the following types:
variable prompt
Enables the user to select a value specified in the variable prompt to display on the dashboard. A variable prompt is not dependent upon column data, but enables you to manipulate, for example add or multiply, the column data on an analysis.
See also prompt.
virtual physical table
A physical table that is made from a stored procedure or a SELECT
statement. Creating virtual tables can provide the Oracle BI Server and the underlying databases with the proper metadata to perform some advanced query requests.
vision statement
A short statement in a scorecard that describes what your organization wants to become sometime in the future. For example, it might be to become the most successful business in the South America Polypropylene Market.
See also mission statement and Oracle Scorecard and Strategy Management.
WebLogic server domain
Contains Java components that are configured to participate in the servicing of SOAP, HTTP, and other forms of requests.
WebLogic Scripting Tool (WLST)
A command-line scripting interface that enables you to configure, manage, and persist changes to WebLogic Server instances and domains and to monitor and manage server run-time events.
 Copyright © 2010, 2011, Oracle and/or its affiliates. All rights reserved. |