Knowledge Module Developer's Guide for Oracle Data Integrator
11g Release 1 (11.1.1)
E12645-03
April 2011
Oracle Fusion Middleware Knowledge Module Developer's Guide for Oracle Data Integrator, 11g Release 1 (11.1.1)
E12645-03
Copyright © 2011, Oracle and/or its affiliates. All rights reserved.
Primary Author: Laura Hofman Miquel
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this software or related documentation is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications which may create a risk of personal injury. If you use this software in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software in dangerous applications.
Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks of their respective owners.
This software and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual describes how to develop your own Knowledge Modules for Oracle Data Integrator.
This preface contains the following topics:.
This document is intended for developers who want to make advanced use of Oracle Data Integrator and customize Knowledge Modules for their integration processes.
Our goal is to make Oracle products, services, and supporting documentation accessible to all users, including users that are disabled. To that end, our documentation includes features that make information available to users of assistive technology. This documentation is available in HTML format, and contains markup to facilitate access by the disabled community. Accessibility standards will continue to evolve over time, and Oracle is actively engaged with other market-leading technology vendors to address technical obstacles so that our documentation can be accessible to all of our customers. For more information, visit the Oracle Accessibility Program Web site at http://www.oracle.com/accessibility/
.
Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The conventions for writing code require that closing braces should appear on an otherwise empty line; however, some screen readers may not always read a line of text that consists solely of a bracket or brace.
Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or organizations that Oracle does not own or control. Oracle neither evaluates nor makes any representations regarding the accessibility of these Web sites.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/support/contact.html
or visit http://www.oracle.com/accessibility/support.html
if you are hearing impaired.
For more information, see the following Oracle resources:
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
monospace	Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.
This chapter provides an introduction to Knowledge Modules (KM). It explains what is a knowledge module, and describes the different types of KMs.	
This chapter includes the following sections:	
Knowledge Modules (KMs) are code templates. Each KM is dedicated to an individual task in the overall data integration process. The code in the KMs appears in nearly the form that it will be executed except that it includes Oracle Data Integrator (ODI) substitution methods enabling it to be used generically by many different integration jobs. The code that is generated and executed is derived from the declarative rules and metadata defined in the ODI Designer module.	
KMs fall into 6 different categories as summarized in the table below:	
Knowledge Module	Description
---	---
Reverse-engineering KM	Retrieves metadata to the Oracle Data Integrator work repository
Check KM	Checks consistency of data against constraints
Loading KM	Loads heterogeneous data to a staging area
Integration KM	Integrates data from the staging area to a target
Journalizing KM	Creates the Change Data Capture framework objects in the source staging area
Service KM	Generates data manipulation web services
The following sections describe each type of Knowledge Module.	
The RKM role is to perform customized reverse engineering for a model. The RKM is in charge of connecting to the application or metadata provider then transforming and writing the resulting metadata into Oracle Data Integrator's repository. The metadata is written temporarily into the SNP_REV_xx tables. The RKM then calls the Oracle Data Integrator API to read from these tables and write to Oracle Data Integrator's metadata tables of the work repository in incremental update mode. This is illustrated below:	
Figure 1-1 Reverse-engineering Knowledge Modules	
A typical RKM follows these steps:	
The CKM is in charge of checking that records of a data set are consistent with defined constraints. The CKM is used to maintain data integrity and participates in the overall data quality initiative. The CKM can be used in 2 ways:	
In summary: the CKM can check either an existing table or the temporary "I$" table created by an IKM.	
The CKM accepts a set of constraints and the name of the table to check. It creates an "E$" error table which it writes all the rejected records to. The CKM can also remove the erroneous records from the checked result set.	
The following figures show how a CKM operates in both STATIC_CONTROL and FLOW_CONTROL modes.	
Figure 1-2 Check Knowledge Module (STATIC_CONTROL)	
In STATIC_CONTROL mode, the CKM reads the constraints of the table and checks them against the data of the table. Records that don't match the constraints are written to the "E$" error table in the staging area.	
Figure 1-3 Check Knowledge Module (FLOW_CONTROL)	
In FLOW_CONTROL mode, the CKM reads the constraints of the target table of the Interface. It checks these constraints against the data contained in the "I$" flow table of the staging area. Records that violate these constraints are written to the "E$" table of the staging area.	
In both cases, a CKM usually performs the following tasks:	
An LKM is in charge of loading source data from a remote server to the staging area. It is used by interfaces when some of the source datastores are not on the same data server as the staging area. The LKM implements the declarative rules that need to be executed on the source server and retrieves a single result set that it stores in a "C$" table in the staging area, as illustrated below.	
Figure 1-4 Loading Knowledge Module	
An interface may require several LKMs when it uses datastores from different sources. When all source datastores are on the same data server as the staging area, no LKM is required.	
The IKM is in charge of writing the final, transformed data to the target table. Every interface uses a single IKM. When the IKM is started, it assumes that all loading phases for the remote servers have already carried out their tasks. This means that all remote source data sets have been loaded by LKMs into "C$" temporary tables in the staging area, or the source datastores are on the same data server as the staging area. Therefore, the IKM simply needs to execute the "Staging and Target" transformations, joins and filters on the "C$" tables, and tables located on the same data server as the staging area. The resulting set is usually processed by the IKM and written into the "I$" temporary table before loading it to the target. These final transformed records can be written in several ways depending on the IKM selected in your interface. They may be simply appended to the target, or compared for incremental updates or for slowly changing dimensions. There are 2 types of IKMs: those that assume that the staging area is on the same server as the target datastore, and those that can be used when it is not. These are illustrated below:	
Figure 1-5 Integration Knowledge Module (Staging Area on Target)	
When the staging area is on the target server, the IKM usually follows these steps:	
These types of KMs do not manipulate data outside of the target server. Data processing is set-oriented for maximum efficiency when performing jobs on large volumes.	
When the staging area is different from the target server, as shown in Figure 1-6, the IKM usually follows these steps:	
This architecture has certain limitations, such as:	
JKMs create the infrastructure for Change Data Capture on a model, a sub model or a datastore. JKMs are not used in interfaces, but rather within a model to define how the CDC infrastructure is initialized. This infrastructure is composed of a subscribers table, a table of changes, views on this table and one or more triggers or log capture programs as illustrated below.	
Figure 1-7 Journalizing Knowledge Module	
SKMs are in charge of creating and deploying data manipulation Web Services to your Service Oriented Architecture (SOA) infrastructure. SKMs are set on a Model. They define the different operations to generate for each datastore's web service. Unlike other KMs, SKMs do no generate an executable code but rather the Web Services deployment archive files. SKMs are designed to generate Java code using Oracle Data Integrator's framework for Web Services. The code is then compiled and eventually deployed on the Application Server's containers.	
The first guidelines when developing your own KM is to never start from a blank page.	
Oracle Data Integrator provides a large number of knowledge modules out-of-the-box. It is recommended that you start by reviewing the existing KMs and start from an existing KM that is close to your use case. Duplicate this KM and customize it by editing the code.	
When developing your own KM, keep in mind that it is targeted to a particular stage of the integration process. As a reminder:	
Be also aware of these common pitfalls:	
Other common code writing recommendations that apply to KMs:	
This chapter provides an introduction to the Oracle Data Integrator Substitution API using examples.	
This chapter includes the following sections:	
KMs are written as templates by using the Oracle Data Integrator substitution API. The API methods are java methods that return a string value. They all belong to a single object instance named "odiRef". The same method may return different values depending on the type of KM that invokes it. That's why they are classified by type of KM.	
To understand how this API works, the following example illustrates how you would write a create table statement in a KM and what it would generate depending on the datastores it would deal with:	
The following code is entered in a KM:	
The generated code for the PRODUCT	
table is:	
The generated code for the CUSTOMER	
table is:	
As you can see, once executed with appropriate metadata, the KM has generated a different code for the product and customer tables.	
The following topics cover some of the main substitution APIs and their use within KMs. Note that for better readability the tags "<%" and "%>" as well as the "odiRef" object reference are omitted in the examples.	
The methods that are accessible from the Knowledge Modules and from the procedures are direct calls to Oracle Data Integrator methods implemented in Java. These methods are usually used to generate some text that corresponds to the metadata stored into the Oracle Data Integrator repository.	
The substitution methods are used in any text of a task of a Knowledge Module or of a procedure.	
They can be used within any text using the following syntax	
<%=java_expression%>	
In this syntax:	
<%= %>	
tags are used to output the text returned by java_expression	
. This syntax is very close to the syntax used in Java Server Pages (JSP). Java expression	
is any Java expression that returns a string. The following syntax performs a call to the getTable	
method of the odiRef	
java object using three parameters. This method call returns a string. That is written after the CREATE TABLE	
text.	
The Oracle Data Integrator Substitution API is implemented in the Java class OdiReference	
, whose instance OdiRef	
is available at any time. For example, to call a method called getFrom()	
, you have to write odiRef.getFrom()	
.	
Note: For backward compatibility, the "odiRef" API can also be referred to as "snpRef" API. "snpRef" and "odiRef" object instances are synonyms, and the legacy syntax syntaxsnpRef.<method_name> is still supported but deprecated.	
The following syntax is used in an IKM to call the execution of a check procedure (CKM).	
This syntax automatically includes all the CKM procedure commands at this point of in the processing.	
<% @ INCLUDE (CKM_FLOW	CKM_STATIC) [DELETE_ERROR] %>
The options for this syntax are:	
CKM_FLOW	
: triggers a flow control, according to the CKM choices made in the Control tab of the Interface. CKM_STATIC	
: Triggers a static control of the target datastore. Constraints defined for the datastore and selected as Static constraints will be checked. DELETE_ERRORS	
: This option causes automatic suppression of the errors detected. For example: the following call triggers a flow control with error deletion.	
Flexfields are user-defined fields enabling to customize the properties of Oracle Data Integrator' objects. Flexfields are defined on the Flexfield tab of the object window and can be set for each object instance through the Flexfield tab of the object window.	
When accessing an object properties through Oracle Data Integrator' substitution methods, if you specify the flexfield Code, Oracle Data Integrator will substitute the Code by the flexfield value for the object instance.	
For instance:	
<%=odiRef.getTable("L", "MY_DATASTORE_FIELD", "W")%>	
will return the value of the flexfield MY_DATASTORE_FIELD	
for the current table.	
<%=odiRef.getSrcTableList("", "[MY_DATASTORE_FIELD] ", ", ", "")%>	
will return the flexfield value for each of the source tables of the interface.	
It is also possible to get the value of a flexfield through the getFlexFieldValue() method.	
Note: Flexfields exist only for certain object types. Objects that do not have a Flexfield tab do not support flexfields.	
An action corresponds to a DDL operation (create table, drop reference, etc) used to generate a procedure to implement in a database the changes performed in a data integrator model (Generate DDL operation). Each action contains several Action Lines, corresponding to the commands required to perform the DDL operation (for example, dropping a table requires dropping all its constraints first).	
Action lines contain statements valid for the technology of the action group. Unlike procedures or knowledge module commands, these statements use a single connection (SELECT ... INSERT statements are not possible). In the style of the knowledge modules, action make use of the substitution methods to make their DDL code generic.	
For example, an action line may contain the following code to drop a check constraint on a table:	
The Action Calls methods are usable in the action lines only. Unlike other substitution methods, they are not used to generate text, but to generate actions appropriate for the context.	
For example, to perform the a Drop Table DDL operation, we must first drop all foreign keys referring to the table.	
In the Drop Table action, the first action line will use the dropReferringFKs() action call method to automatically generate a Drop Foreign Key action for each foreign key of the current table. This call is performed by creating an action line with the following code:	
The syntax for calling the action call methods is:	
Note: The action call methods must be alone in an action line, should be called without a preceding "=" sign, and require a trailing semi-colon.	
The following Action Call Methods are available for Actions:	
When working in Designer, you should avoid specifying physical information such as the database name or schema name as they may change depending on the execution context. The correct physical information will be provided by Oracle Data Integrator at execution time.	
The substitution API has methods that calculate the fully qualified name of an object or datastore taking into account the context at runtime. These methods are listed in the table below:	
Qualified Name Required	Method
---	---
Any object named OBJ_NAME	getObjectName("L", "OBJ_NAME", "D")
The target datastore of the current interface	getTable("L", "TARG_NAME", "A")
The integration (I$) table of the current interface.	getTable("L", "INT_NAME", "A")
The loading table (C$) for the current loading phase.	getTable("L", "COLL_NAME", "A")
The error table (E$) for the datastore being checked.	getTable("L", "ERR_NAME", "A")
The datastore being checked	getTable("L", "CT_NAME", "A")
The datastore referenced by a foreign key	getTable("L", "FK_PK_TABLE_NAME", "A")
Generating code from a list of items often requires a "while" or "for" loop. Oracle Data Integrator addresses this issue by providing powerful methods that help you generate code based on lists. These methods act as "iterators" to which you provide a substitution mask or pattern and a separator and they return a single string with all patterns resolved separated by the separator.	
All of them return a string and accept at least these 4 parameters:	
Some of them accept an additional parameter (the Selector) that acts as a filter to retrieve only part of the items of the list. For example, list only the mapped column of the target datastore of an interface.	
Some of these methods are summarized in the table below:	
Method	Description
---	---
getColList()	The most frequently-used method in Oracle Data Integrator. It returns a list of columns and expressions that need to be executed in the context where used. You can use it, for example, to generate lists like these:
This method accepts a "selector" as a 5th parameter to let you filter items as desired.	LKM, CKM, IKM, JKM, SKM
getTargetColList()	Returns the list of columns in the target datastore. This method accepts a selector as a 5th parameter to let you filter items as desired.
getAKColList()	Returns the list of columns defined for an alternate key.
getPKColList()	Returns the list of columns in a primary key. You can alternatively use getColList with the selector parameter set to "PK" .
getFKColList()	Returns the list of referencing columns and referenced columns of the current foreign key.
getSrcTablesList()	Returns the list of source tables of an interface. Whenever possible, use the getFrom method instead. The getFrom method is discussed below.
getFilterList()	Returns the list of filter expressions in an interface. The getFilter method is usually more appropriate.
getJoinList()	Returns the list of join expressions in an interface. The getJoin method is usually more appropriate.
getGrpByList()	Returns the list of expressions that should appear in the group by clause when aggregate functions are detected in the mappings of an interface. The getGrpBy method is usually more appropriate.
getHavingList()	Returns the list of expressions that should appear in the having clause when aggregate functions are detected in the filters of an interface. The getHaving method is usually more appropriate.
getSubscriberList()	Returns a list of subscribers.
The following section provide examples illustrating how these methods work for generating code:	
The following example shows how to use a column list to create a table.	
The following KM code:	
Generates the following statement:	
In this example:	
The following example shows how to use column listing to insert values into a table.	
For following KM code:	
Generates the following statement:	
In this example, the values that need to be inserted into MYTABLE are either bind variables with the same name as the target columns or constant expressions if they are executed on the target. To obtain these 2 distinct set of items, the list is split using the Selector parameter:	
The following example concatenates the list of the source tables of an interface for logging purposes.	
For following KM code:	
Generates the following statement:	
In this example, getSrcTableList generates a message containing the list of resource names used as sources in the interface to append to MYLOGTABLE. The separator used is composed of a concatenation operator (
LKMs and IKMs both manipulate a source result set. For the LKM, this result set represents the pre-transformed records according to the mappings, filters and joins that need to be executed on the source. For the IKM, however, the result set represents the transformed records matching the mappings, filters and joins executed on the staging area.	
To build these result sets, you will usually use a SELECT statement in your KMs. Oracle Data Integrator has some advanced substitution methods, including getColList, that help you generate this code:	
Method	Description
---	---
getFrom()	Returns the FROM clause of a SELECT statement with the appropriate source tables, left, right and full outer joins. This method uses information from the topology to determine the SQL capabilities of the source or target technology. The FROM clause is built accordingly with the appropriate keywords (INNER, LEFT etc.) and parentheses when supported by the technology.
LKM, IKM	
getFilter()	Returns filter expressions separated by an "AND" operator.
LKM, IKM	
getJrnFilter()	Returns the special journal filter expressions for the journalized source datastore. This method should be used with the CDC framework.
getGrpBy()	Returns the GROUP BY clause when aggregation functions are detected in the mappings. The GROUP BY clause includes all mapping expressions referencing columns that do not contain aggregation functions. The list of aggregation functions are defined by the language of the technology in the topology.
getHaving()	Returns the HAVING clause when aggregation functions are detected in filters. The having clause includes all filters expressions containing aggregation functions. The list of aggregation functions are defined by the language of the technology in the topology.
To obtain the result set from any SQL RDBMS source server, you would use the following SELECT statement in your LKM:	
To obtain the result set from any SQL RDBMS staging area server to build your final flow data, you would use the following SELECT statement in your IKM. Note that the getColList is filtered to retrieve only expressions that are not executed on the target and that are mapped to writable columns.	
As all filters and joins start with an AND, the WHERE clause of the SELECT statement starts with a condition that is always true (1=1).	
Oracle Data Integrator supports datasets. Each dataset represents a group of joined and filtered sources tables, with their mappings. Datasets are merged into the target datastore using set-based operators (UNION, INTERSECT, etc) at the integration phase.	
During the loading phase, the LKM always works on one dataset. Duringthe integration phase, when all datasets need to merged, certain odiRef APIs that support working on a specific dataset are called using an index that identifies the dataset.	
The following example explains how this dataset merging is done.	
A Java For loop iterates over the datasets. The number of datasets is retrieved using the getDataSetCount method. For each dataset, a SELECT statement is issued, each statement separated from the previous one by the dataset's set-based operator retrieved using the getDataSet method.	
The select statement is build as in Generating the Source Select Statement, except that each method call is parameterized with i, the index of the dataset being processed. For example, getFrom(i) generates the from statement for the dataset identified by the value of i.	
All the methods that support a parameter for the dataset index also support a syntax without this index value. Outside an IKM, then should be used without the dataset index. Within an IKM, if used without the dataset index, these method address the first dataset. This syntax is backward compatible with previous Oracle Data Integrator interfaces and knowledge modules.	
The following methods provide additional information which may be useful:	
Method	Description
---	---
getPop()	Returns information about the current interface.
getInfo()	Returns information about the source or target server.
getSession()	Returns information about the current running session
getOption()	Returns the value of a particular option
getFlexFieldValue()	Returns information about a flex field value. Not that with the "List" methods, flex field values can be specified as part of the pattern parameter.
getJrnInfo()	Returns information about the CDC framework
getTargetTable()	Returns information about the target table of an interface
getModel()	Returns information about the current model during a reverse-engineering process.
getPop()	Returns information about the current interface.
You can use conditional branching and advanced programming techniques to generate code. The code generation in Oracle Data Integrator is able to interpret any Java code enclosed between "<%" and "%>" tags.	
The following examples illustrate how you can use these advanced techniques.	
Using Java Variables and String Functions	
The following KM Code creates a string variable and uses it in a substitution method call :	
Generates the following:	
Using a KM Option to Generate Code Conditionally	
The following KM code generates code depending on the OPT001 option value.	
If OPT001 is set to TRUE, then the following is generated:	
Otherwise the following is generated	
This chapter explains the customized reverse-engineering process and the strategies used in the Reverse-engineering Knowledge Modules for retrieving advanced metadata.	
This chapter contains the following sections:	
Oracle Data Integrator Standard Reverse-Engineering relies on the capabilities of the driver used to connect a given data server to return rich metadata describing the data strucuture.	
When this metadata is not accurate, or needs to be enriched with some metadata retrieved from the data server, customized reverse-engineering can be used.	
The Oracle Data Integrator repository contains a set of metadata staging tables, called the SNP_REV tables.	
These SNP_REV tables content is managed using the following tools:	
See Appendix B, "SNP_REV Tables Reference" for a reference of the SNP_REV table, and the Developer's Guide for Oracle Data Integrator for more information for a reference of the reverse-engineering tools.	
Customized Reverse-Engineering strategy follows a pattern common to all RKMs.	
This patterns includes the following steps:	
In an RKM, the source and target commands work are follow:	
This section provides examples of reverse-egineering strategies.	
The RKM Oracle is a typical example of a reverse-engineering process using a database dictionnary as the metadata provider.	
The commands below are extracted from the RKM for Oracle and provided as examples. You can review the code of this knowledge module by editing it in Oracle Data Intagrator Studio.	
This task resets the content of the SNP_REV tables for the current model.	
Command on Target (ODI Tools)	
This task retreives the list of tables from the Oracle system tables and loads this content into the SNP_REV tables.	
Command on Source	
Command on Target	
This chapter explains the data integrity strategies used for performing flow and static checks. These strategies are implemented in the Check Knowledge Modules.	
This chapter contains the following sections:	
Data Integrity Check Process checks is activated in the following cases:	
In both those cases, a CKM is in charge of checking the data quality of data according to a predefined set of constraints. The CKM can be used either to check existing data when used in a "static control" or to check flow data when used in a "flow control". It is also in charge of removing the erroneous records from the checked table if specified.	
In the case of a static control, the CKM used is defined in the model. In the case of a flow control, it is specified for the interface.	
Standard CKMs maintain 2 different types of tables:	
A standard CKM is composed of the following steps:	
CKM commands should be tagged to indicate how the code should be generated. The tags can be:	
This section describes the typical structure of the Error and Summary Tables.	
The E$ error table has the list of columns described in the following table:	
Columns	Description
---	---
[Columns of the checked table]	The error table contains all the columns of the checked datastore.
ERR_TYPE	Type of error:
ERR_MESS	Error message related to the violated constraint
CHECK_DATE	Date and time when the datastore was checked
ORIGIN	Origin of the check operation. This column is set either to the datastore name or to an interface name and ID depending on how the check was performed.
CONS_NAME	Name of the violated constraint.
CONS_TYPE	Type of the constraint:
The SNP_CHECK table has the list of columns described in the following table:	
Column	Description
---	---
ODI_CATALOG_NAME	Catalog name of the checked table, where applicable
ODI_SCHEMA_NAME	Schema name of the checked table, where applicable
ODI_RESOURCE_NAME	Resource name of the checked table
ODI_FULL_RES_NAME	Fully qualified name of the checked table. For example <catalog>.<schema>.<table>
ODI_ERR_TYPE	Type of error:
ODI_ERR_MESS	Error message
ODI_CHECK_DATE	Date and time when the datastore was checked
ODI_ORIGIN	Origin of the check operation. This column is set either to the datastore name or to an interface name and ID depending on how the check was performed.
ODI_CONS_NAME	Name of the violated constraint.
ODI_CONS_TYPE	Type of constraint:
ODI_ERR_COUNT	Total number of records rejected by this constraint during the check process
ODI_SESS_NO	ODI session number
ODI_PK	Unique identifier for this table, where appicable
This section provides examples of data integrity check strategies.	
The CKM Oracle is a typical example of a data integrity check.	
The commands below are extracted from the CKM for Oracle and provided as examples. You can review the code of this knowledge module by editing it in Oracle Data Integrator Studio.	
This task drops the error summary table. This command runs only if the DROP_CHECK_TABLE is set to Yes, and has the Ignore Errors flag activated. It will not stop the CKM if the summary table is not found.	
Command on Target (Oracle)	
This task creates the error summary table. This command always runs and has the Ignore Errors flag activated. It will not stop the CKM if the summary table already exist.	
Command on Target (Oracle)	
This task creates the error (E$) table. This command always runs and has the Ignore Errors flag activated. It will not stop the CKM if the error table already exist.	
Note the use of the getCollist method to add the list of columns from the checked to this table structure.	
Command on Target (Oracle)	
This task inserts into the error (E$) table the errors detected while checking a primary key. This command always runs, has the Primary Key checkbox active and has Log Counter set to Error to count these records as errors.	
Note: When using a CKM to perform flow control from an interface, you can define the maximum number of errors allowed. This number is compared to the total number of records returned by every command in the CKM of which the Log Counter is set to Error.	
Note the use of the getCollist method to insert into the error table the whole record being checked and the use of the getPK and getInfo method to retrieve contextual information.	
Command on Target (Oracle)	
This task removed from the controlled table (static control) or integration table (flow control) the rows detected as erroneous.	
This task is always executed and has the Remove Errors option selected.	
Command on Target (Oracle)	
The following use case describes an example of customization that can be performed on top of an existing CKM.	
When loading a data warehouse, you may have records referencing data from other tables, but the referenced records do not yet exist.	
Suppose, for example, that you receive daily sales transactions records that reference product SKUs. When a product does not exist in the products table, the default behavior of the standard CKM is to reject the sales transaction record into the error table instead of loading it into the data warehouse. However, to meet the requirements of your project you want to load this sales record into the data warehouse and create an empty product on the fly to ensure data consistency. The data analysts would then simply analyze the error tables and complete the missing information for products that were automatically added to the products table.	
The following sequence illustrates this example:	
In the sequence above, steps 3 and 4 differ from the standard CKM and need to be customized.	
To implement such a CKM, you will notice that some information is missing in the Oracle Data Integrator default metadata. We would need the following:	
Now that we have all the required metadata, we can start enhancing the default CKM to meet our requirements. The steps of the CKM will therefore be (changes are highlighted in bold font):	
The following command modifications are performed to implement the required changes to the CKM. The changes are highlighted in bold in the code.	
The task is modified to create the new ODI_AUTO_CREATE_REFS column into the error table.	
Command on Target (Oracle)	
The task is modified to take into account the new ODI_AUTO_CREATE_REFS column and load it with the content of the flexfield defined on the FK to indicate whether this constraint should automatically create missing references. Note the use of the getFK method to retrieve the value of the AUTO_CREATE_REFS flexfield.	
Command on Target (Oracle)	
The new task is added after the insert FK errors task. It has the Join option checked.	
Note the following:	
Command on Target (Oracle)	
This task is modified to avoid deleting the foreign key records for which a reference have been created. These can remain in the controlled table.	
Command on Target (Oracle)	
This chapter explains the loading strategies used for loading data into the staging area. These strategies are implemented in the Loading Knowledge Modules.	
This chapter contains the following sections:	
A loading process is required when source data needs to be loaded into the staging area. This loading is needed when some transformation take place in the staging area and the source schema is not located in the same server as the staging area. The staging area is the target of the loading phase.	
A typical loading process works in the following way:	
Action 1 and 2 are repeated for all the source data that needs to be moved to the staging area.	
The data is used in the integration phase to load the integration table.	
The loading process creates in the staging area a loading table. This loading table is typically prefixed with a C$	
.	
A loading table represent a source set and not a source datastore. There is no direct mapping between the sources datastore and the loading table. Source sets appear in the flow tab of the interface editor.	
The following cases illustrate the notion of source set:	
The loading method is the key to optimal performance when loading data from a source to the staging area. There are several loading methods, which can be grouped in the following categories:	
The run-time agent is able to read a result set using JDBC on a source server and write this result set using JDBC to the loading table in the staging area. To use this method, the knowledge module needs to include a command with a SELECT on the source with a corresponding INSERT on the target.	
This method may not be suited for large volumes as data is read row-by-row in arrays, using the array fetch feature, and written row-by-row, using the batch update feature.	
When the interface contains a flat file as a source, you may want to use a strategy that leverages the most efficient loading utility available for the staging area technology, rather than the standard LKM File to SQL that uses the ODI built-in driver for files. Most RDBMSs have fast loading utilities to load flat files into tables, such as Oracle's SQL*Loader, Microsoft SQL Server bcp, Teradata FastLoad or MultiLoad.	
Such LKM will load the source file into the staging area, and all transformations will take place in the staging area afterwards.	
A typical LKM using a loading utility will include the following sequence of steps:	
When the source result set is on a remote database server, an alternate solution to using the agent to transfer the data is to unload it to a file and then load that file into the staging area.	
This is usually the most efficient method when dealing with large volumes across heterogeneous technologies. For example, you can unload data from a Microsoft SQL Server source using bcp and load this data into an Oracle staging area using SQL*Loader.	
The steps of LKMs that follow this strategy are often as follows:	
When using an unload/load strategy, data needs to be staged twice: once in the temporary file and a second time in the loading table, resulting in extra disk space usage and potential efficiency issues. A more efficient alternative would be to use pipelines between the "unload" and the "load" utility. Unfortunately, not all the operating systems support file-based pipelines (FIFOs).	
Certain RDBMSs have a mechanism for transferring data across servers. For example:	
Other databases implement specific mechanisms for loading files into a table, such as Oracle's External Table feature.	
These loading strategies are implemented into specific KM that create the appropriate objects (views, dblinks, etc.) and implement the appropriate commands for using these features.	
This section provides example of loading strategies.	
The LKM SQL to SQL is a typical example of the loading phase using the agent.	
The commands below are extracted from this KM and are provided as examples. You can review the code of this knowledge module by editing it in Oracle Data Integrator Studio.	
This task drops the loading table. This command is always executed and has the Ignore Errors flag activated. It will not stop the LKM if the loading table is not found.	
Command on Target	
This task drops the loading table. This command is always executed.	
Note the use of the property COLL_NAME of the getTable method that returns the name of the loading table.	
Command on Target	
This task reads data on the source connection and loads it into the loading table. This command is always executed.	
Note: The loading phase is always using auto commit, as ODI temporary tables do not contain unrecoverable data.	
Command on Source	
Note the use of the getFilter, getJoin, getFrom, etc. methods. these methods are shortcuts that return contextual expressions. For example, getFilter returns all the filter expressions executed on the source. Note also the use of the EXPRESSION property of getColList, that will return the source columns and the expressions executed on the source. These expressions and source columns are aliases after CX_COL_NAME, which is the name of their corresponding column in the loading table.	
This select statement will cause the correct transformation (mappings, joins, filters, etc.) to be executed by the source engine.	
Command on Target	
Note here the use of the biding using :[CX_COL_NAME]	
. The CX_COL_NAME binded value will match the alias on the source column.	
This chapter explains the integration strategies used in integration interfaces. These strategies are implemented in the Integration Knowledge Modules.	
This chapter contains the following sections:	
An integration process is always needed in an interface. This process integrates data from the source or loading tables into the target datastore, using a temporary integration table.	
An integration process uses an integration strategy which defines the steps required in the integration process. Example of integration strategies are:	
This phase may involve one single server, when the staging area and the target are located in the same data server, on two servers when the staging area and target are on different servers.	
The integration process depends strongly on the strategy being used.	
The following elements are used in the integration process:	
A typical integration process works in the following way:	
The following sections explain some of the integration strategies used in Oracle Data Integrator. They are grouped into two families:	
These strategies are used when the staging area schema is located in the same data server as the target table schema. In this configuration, complex integration strategies can take place	
This strategy simply inserts the incoming data flow into the target datastore, possibly deleting the content of the target beforehand.	
This integration strategy includes the following steps:	
The same integration strategy can be obtained by using the Control Append strategy and not choosing to activate flow control.	
In the Append strategy, flow data is simply inserted in the target table without any flow control. This approach can be improved by adding extra steps that will store the flow data in an integration table ("I$"), then call the CKM to isolate erroneous records in the error table ("E$").	
This integration strategy includes the following steps:	
After the CKM completes, the integration table will only contain valid records. Inserting them in the target table can then be done safely.	
Error Recycling	
In some cases, it is useful to recycle errors from previous runs so that they are added to the flow and applied again to the target. This method can be useful for example when receiving daily sales transactions that reference product IDs that may not exist. Suppose that a sales record is rejected in the error table because the referenced product ID does not exist in the product table. This happens during the first run of the interface. In the meantime the missing product ID is created by the data administrator. Therefore the rejected record becomes valid and should be re-applied to the target during the next execution of the interface.	
This mechanism is implement IKMs by an extra task that inserts all the rejected records of the previous executions of this interface from the error table into integration table. This operation is made prior to calling the CKM to check the data quality, and is conditioned by a KM option usually called RECYCLE_ERRORS.	
The Incremental Update strategy is used to integrate data in the target table by comparing the records of the flow with existing records in the target according to a set of columns called the "update key". Records that have the same update key are updated when their associated data is not the same. Those that don't yet exist in the target are inserted. This strategy is often used for dimension tables when there is no need to keep track of the records that have changed.	
The challenge with such IKMs is to use set-oriented SQL based programming to perform all operations rather than using a row-by-row approach that often leads to performance issues. The most common method to build such strategies often relies on the integration table ("I$") which stores the transformed source sets. This method is described below:	
IND_UPDATE	
column that is used to flag the records that should be inserted ("I") and those that should be updated ("U"). IND_UPDATE	
column is set by default to "I". IND_UPDATE	
flag to "U" for all the records that have the same update key values as the target ones. Therefore, records that already exist in the target will have a "U" flag. This step is usually an UPDATE/SELECT statement. IND_UPDATE	
column to "N" for all records that are already flagged as "U" and for which the column values are exactly the same as the target ones. As these flow records match exactly the target records, they don't need to be used to update the target data. After this step, the integration table is ready for applying the changes to the target as it contains records that are flagged:	
Optimization	
This approach can be optimized depending on the underlying database. The following examples illustrate such optimizations:	
IND_UPDATE	
column already set properly. Update Key	
The update key should always be unique. In most cases, the primary key will be used as an update key. The primary key cannot be used, however, when it is automatically calculated using an increment such as an identity column, a rank function, or a sequence. In this case an update key based on columns present in the source must be used.	
Comparing Nulls	
When comparing data values to determine what should not be updated, the join between the integration table and the target table is expressed on each column as follow:	
<target_table>.ColumnN = <loading_table>.ColumnN or (<target_table> is null and <loading_table>.ColumnN is null)	
This is done to allow comparison between null values, so that a null value matches another null value. A more elegant way of writing it would be to use the coalesce function. Therefore the WHERE predicate could be written this way:	
<%=odiRef.getColList("","coalesce(" + odiRef.getTable("L", "INT_NAME", "A") + ".[COL_NAME], 0) = coalesce(T.[COL_NAME], 0)", " \nand\t", "", "((UPD and !TRG) and !UK) ")%>	
Column-Level Insert/Update Behavior	
Columns updated by the UPDATE statement are not the same as the ones used in the INSERT statement. The UPDATE statement uses selector "UPD and not UK" to filter only mappings marked as "Update" in the interface and that do not belong to the update key. The INSERT statement uses selector "INS" to retrieve mappings marked as "insert" in the interface.	
Transaction	
It is important that the UPDATE and the INSERT statements on the target belong to the same transaction. Should any of them fail, no data will be inserted or updated in the target.	
Type 2 Slowly Changing Dimension (SCD) is a strategy used for loading data warehouses. It is often used for loading dimension tables, in order to keep track of changes on specific columns. A typical slowly changing dimension table would contain the flowing columns:	
The following example illustrate the Slowly Changing Dimension behavior.	
In the operational system, a product is defined by its ID that acts as a primary key. Every product has a name, a size, a supplier and a family. In the Data Warehouse a new version of this product is stored whenever the supplier or the family is updated in the operational system.	
Figure 6-1 Type 2 Slow Changing Dimensions Example	
In this example, the product dimension is first initialized in the Data Warehouse on March 12, 2006. All the records are inserted and are assigned a calculated surrogate key as well as a fake ending date set to January 1, 2400. As these records represent the current state of the operational system, their current record flag is set to 1. After the first load, the following changes happen in the operational system:	
These updates have the following impact on the data warehouse dimension:	
To create a Knowledge Module that implements this behavior, it is necessary to know which columns act as a surrogate key, a natural key, a start date etc. Oracle Data Integrator stores this information in Slowly Changing Dimension Behavior field in the Description tab for every column in the model.	
When populating such a datastore in an interface, the IKM has access to this metadata using the SCD_xx selectors on the getColList() substitution method.	
The way Oracle Data Integrator implements Type 2 Slowly Changing Dimensions is described below:	
Again, this approach can be adapted. There may be some cases where the SQL produced requires further tuning and optimization.	
These strategies are used when the staging area cannot be located on the same data server as the target datastore. This configuration is mainly used for data servers with no transformation capabilities (Files, for example). In this configuration, only simple integration strategies are possible	
There are some cases when the source is a single file that can be loaded directly into the target table using the most efficient method. By default, Oracle Data Integrator suggests to locate the staging area on the target server, use a LKM to stage the source file in a loading table and then use an IKM to integrate the loaded data to the target table.	
If the source data is not transformed, the loading phase is not necessary.	
In this situation you would use an IKM that directly loads the file data to the target: This requires setting the staging area on the source file logical schema. By doing this, Oracle Data Integrator will automatically suggest to use a "Multi-Connection" IKM that moves data between a remote staging area and the target.	
Such an IKM would use a loader, and include the following steps:	
An example of such KM is the IKM File to Teradata (TTU).	
When using a staging area different from the target and when setting this staging area to an RDBMS, it is possible to use an IKM that moves the transformed data from the staging area to the remote target. This type of IKM is similar to a LKM and follows the same rules.	
The steps when using the agent are usually:	
The IKM SQL to SQL Append is a typical example of such KM.	
Variation of this strategy use loaders or database specific methods for loading data from the staging area to the target instead of the agent.	
When the target datastore is a file or JMS queue or topic the staging area is set on a different location than the target. Therefore, if you want to target a file or queue datastore you will have to use a "Multi-Connection" IKM that will integrate the transformed data from your staging area to this target. The method to perform this data movement depends on the target technology. For example, it is possible to use the agent or specific features of the target (such as a Java API)	
Typical steps of such an IKM will include:	
This section provides example of integration strategies and customizations.	
The simplest strategy for integrating data in an existing target table, provided that all source data is already in the staging area is to replace and insert the records in the target. Therefore, the simplest IKM would be composed of 2 steps:	
The following example gives you the details of these steps:	
This task deletes the data from the target table. This command runs in a transaction and is not committed. It is executed if the DELETE_ALL Knowledge Module option is selected.	
Command on Target	
This task insert rows from the staging table into the target table. This command runs in the same transaction as all operations made on the target and is not committed. A final Commit transaction command triggers the commit on the target.	
Note that this commands selects the data from the different datasets defined for the interface. Using a for loop, it goes through all the datasets, generates for each dataset a SELECT query. These queries are merged using set-based operations (UNION, INTERSECT, etc.) and the resulting data flow is inserted into the target table.	
Command on Target	
A project requirements is to backup every data warehouse table prior to loading the current data. This can help restoring the data warehouse to its previous state in case of a major problem. The backup tables are called like the data table with a "_BCK" suffix.	
A first solution to this requirement would be to develop interfaces that would duplicate data from every target datastore to its corresponding backup one. These interfaces would be triggered prior to the ones that would populate the data warehouse. Unfortunately, this solution would lead to significant development and maintenance effort as it requires the creation of an additional interface for every target datastore. The number of interfaces to develop and maintain would be at least doubled!	
A simple solution would be to implement this behavior in the IKM used to populate the target datastores. This would be done using a single CREATE AS SELECT statement that creates and populates to the backup table right before modifying the target. Therefore, the backup operation becomes automatic and the developers would no longer need to worry about it.	
This example shows how this behavior could be implemented in the IKM Oracle Incremental Update.	
Before the Update Existing Rows and Insert New Rows tasks that modify the target, the following tasks are added.	
Some data warehousing projects could require keeping track of every insert or update operation done to target tables for regulatory compliance. This could help business analysts understand what happened to their data during a certain period of time.	
Even if you can achieve this behavior by using the slowly changing dimension Knowledge Modules, it can also be done by simply creating a copy of the flow data before applying it to the target table.	
Suppose that every target table has a corresponding tracking table with a "_RGG" suffix with all the data columns plus some additional regulatory compliance columns such as:	
You would populate this table directly from the integration table after applying the inserts and updates to the target, and before the end of the IKM.	
For example, in the case of the Oracle Incremental Update IKM, you would add the following tasks just after the Update Existing Rows and Insert New Rows tasks that modify the target.	
This task loads data in the tracking table.	
Command on Target	
This customization could be extended of course by creating automatically the tracking table using the IKM if it does not exist yet.	
This appendix provides a list of the Oracle Data Integrator odiRef API.	
See Chapter 2, "Introduction to the Substitution API" for introductory information about using this API.	
The substitution are listed below depending on the type of knowledge module into which they can be used. The "Global Methods" list lists the methods that can be used in any situation.	
Refer to the description of a given method itself for more information about its behavior in a given knowledge module or action.	
This section contains the following topics:	
The following methods can be used in all knowledge module and actions:	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Journalizing Knowledge Modules (JKM):	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Loading Knowledge Modules (LKM):	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Check Knowledge Modules (CKM):	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Integration Knowledge Modules IKM):	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Reverse-engineering Knowledge Modules (RKM):	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Service Knowledge Modules (SKM):	
In addition to the methods from in the "Global Methods" list, the following methods can be used specifically in Actions.	
This section provides an alphabetical list of the substitution methods. Each method is detailed with usage, description, parameters and example code.	
Use to return information about an alternate key.	
Usage	
Description	
This method returns information relative to the alternate key of a datastore during a check procedure. It is only accessible from a Check Knowledge Module if the current task is tagged "alternate key".	
In an action, this method returns information related to the alternate key currently handled by the DDL command.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Values	Description
---	---
ID	Internal number of the AK constraint.
KEY_NAME	Name of the alternate key
MESS	Error message relative to the constraint of the alternate key
FULL_NAME	Full name of the AK generated with the local object mask.
<flexfield code>	Value of the flexfield for this AK.
Examples	
Use to return information about the columns of an alternate key.	
Usage	
Alternative syntax:	
Description	
Returns a list of columns and expressions for the alternate key currently checked.	
The pPattern parameter is interpreted and then repeated for each element of the list. It is separated from its predecessor by the pSeparator parameter. The generated string starts with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains an element for each column of the current alternate key. It is accessible from a Check Knowledge Module if the current task is tagged as an "alternate key".	
In an action, this method returns the list of the columns of the alternate key handled by the DDL command, ordered by their position in the key.	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameters	Type
---	---
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as their associated description.	
Parameter Value	Description
---	---
Parameter value	Description
I_COL	Column internal identifier
COL_NAME	Name of the key column
COL_HEADING	Header of the key column
COL_DESC	Column description
POS	Position of the column
LONGC	Length (Precision) of the column
SCALE	Scale of the column
FILE_POS	Beginning position of the column (fixed file)
BYTES	Number of physical bytes of the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column:
CHECK_FLOW	Flow control flag of the column:
CHECK_STAT	Static control flag of the column:
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol for the column
REC_CODE_LIST	List of the record codes retained for the column
COL_NULL_IF_ERR	Processing flag for the column:
DEF_VALUE	Default value for the column
EXPRESSION	Not used
CX_COL_NAME	Not used
ALIAS_SEP	Grouping symbol used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
<flexfield code>	Flexfield value for the current column.
Examples	
If the CUSTOMER table has an alternate key AK_CUSTOMER (CUST_ID, CUST_NAME) and you want to generate the following code:	
You can use the following code:	
Explanation: the getAKColList function will be used to generate the (CUST_ID numeric(10) not null, CUST_NAME varchar(50) not null)	
part, which starts and stops with a parenthesis and repeats the pattern (column, a data type, and not null) separated by commas for each column of the alternate key. Thus	
Use to return a catalog name from the topology.	
Usage	
Description	
Allows you to retrieve the name of a physical data catalog or work catalog, from its logical schema.	
If the first syntax is used, the returned catalog name matches the current context.	
If the second syntax is used, the returned catalog name is that of the context specified in the pContextCode parameter.	
The third syntax returns the name of the data catalog (D) or work catalog (W) for the current logical schema in the current context.	
The fourth syntax returns the name of the data catalog (D) for the current logical schema in the current context.	
Parameters	
Parameter	Type
---	---
pLogicalSchemaName	String
pContextCode	String
pLocation	String
Examples	
If you have defined the physical schema Pluton.db_odi.dbo	
Data catalog:	db_odi
Data schema:	dbo
Work catalog:	tempdb
Work schema:	temp_owner
that you have associated with this physical schema: MSSQL_ODI in the context CTX_DEV	
The Call To	Returns
---	---
<%=odiRef.getCatalogName("MSSQL_ODI", "CTX_DEV", "W")%>	tempdb
<%=odiRef.getCatalogName("MSSQL_ODI", "CTX_DEV", "D")%>	db_odi
Use to return a catalog name for the default physical schema from the topology.	
Usage	
Description	
Allows you to retrieve the name of the default physical data catalog or work catalog for the data server to which is associated the physical schema corresponding to the tuple (logical schema, context). If no context is specified, the current context is used. If no logical schema name is specified, then the current logical schema is used. If no pLocation is specified, then the data catalog is returned.	
Parameters	
Parameter	Type
---	---
pLogicalSchemaName	String
pContextCode	String
pLocation	String
Examples	
If you have defined the physical schema Pluton.db_odi.dbo	
Data catalog:	db_odi
Data schema:	dbo
Work catalog:	tempdb
Work schema:	temp_odi
Default Schema	Yes
that you have associated with this physical schema: MSSQL_ODI in the context CTX_DEV, and Pluton.db_doc.doc	
Data catalog:	db_doc
Data schema:	doc
Work catalog:	tempdb
Work schema:	temp_doc
Default Schema	No
that you have associated with this physical schema: MSSQL_DOC in the context CTX_DEV.	
The Call To	Returns
---	---
<%=odiRef.getCatalogNameDefaultPSchema("MSSQL_DOC", "CTX_DEV", "W")%>	tempdb
<%=odiRef.getCatalogNameDefaultPSchema("MSSQL_DOC", "CTX_DEV", "D")%>	db_odi
Use to return information about a condition.	
Usage	
Description	
This method returns information relative to a condition of a datastore during a check procedure. It is accessible from a Check Knowledge Module only if the current task is tagged as "condition".	
In an action, this method returns information related to the check constraint currently handled by the DDL command.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different values accepted by pPropertyName:	
Parameter Value	Description
---	---
ID	Internal number of the check constraint.
COND_ALIAS	Alias of the table used in the SQL statement
COND_NAME	Name of the condition
COND_TYPE	Type of the condition
COND_SQL	SQL statement of the condition
MESS	Error message relative to the check constraint
FULL_NAME	Full name of the check constraint generated with the local object mask.
COND_SQL_DDL	SQL statement of the condition with no table alias.
<flexfield code>	Flexfield value for this check constraint.
Examples	
Use to return the default value of a mapped column.	
Usage	
Description	
Returns the default value of the target column of the mapping.	
This method can be used in a mapping expression without the <%%> tags. This method call will insert in the generate code the default value set in the column definition. Depending on the column type, this value should be protected with quotes.	
Parameters	
None.	
Examples	
Use to return properties for each column from a filtered list of columns. The properties are organized according to a string pattern.	
Usage	
Alternative syntaxes:	
Description	
Returns a list of columns and expressions for a given dataset. The columns list depends on the phase during which this method is called.	
In IKMs only, In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The pPattern parameter is interpreted and then repeated for each element of the list (selected according to pSelector parameter) and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
In the alternative syntax, any parameters not set are set to an empty string.	
Note that this method automatically generates lookups with no specific code required.	
Loading (LKM)	
All active mapping expressions that are executed in the current source set, as well as all the columns from the current source set used in the mapping, filters and joins expressions executed in the staging area appear in this list. The list is sorted by POS, FILE_POS.	
If there is a journalized datastore in the source of the interface, the three journalizing pseudo columns JRN_FLAG	
, JRN_DATE	
, and JRN_SUBSCRIBER	
are added as columns of the journalized source datastore.	
Integration (IKM)	
All current active mapping expressionsin the current interface appear in the list.	
The list contains one element for each column that is loaded in the target table of the current interface. The list is sorted by POS, FILE_POS, except when the target table is temporary. In this case it is not sorted.	
If there is a journalized datastore in the source of the interface, and it is located in the staging area, the three journalizing pseudo columns JRN_FLG	
, JRN_DATE	
,and JRN_SUBSCRIBER	
are added as columns of the journalized source datastore.	
Check (CKM)	
All the columns of the target table (with static or flow control) appear in this list.	
To distinguish columns mapped in the current interface, you must use the MAP	
selector.	
Actions	
All the columns of the table handles by the DDL command appear in this list.	
In the case of modified, added or deleted columns, the NEW and OLD selectors are used to retrieve either the new version of the old version of the modified column being processed by the DDL command. The list is sorted by POS, FILE_POS when the table loaded is not temporary.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
pStart	String
pPattern	String
pSeparator	String
pEnd	String
pSelector	String
Example: (INS AND UPD) OR TRG The description of valid selectors is provided below.	
Pattern Attributes List	
The following table lists different parameters values as well as their associated description.	
Parameter Value	Description
---	---
I_COL	Internal identifier of the column
COL_NAME	Name of the column
COL_HEADING	Header of the column
COL_DESC	Description of the column
POS	Position of the column
LONGC	Column length (Precision)
SCALE	Scale of the column
FILE_POS	Beginning (index) of the column
BYTES	Number of physical bytes in the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are:
CHECK_FLOW	Flow control flag of the column. Valid values are:
CHECK_STAT	Static control flag of the column. Valid values are:
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol of the column
REC_CODE_LIST	List of the record codes retained in the column
COL_NULL_IF_ERR	Processing flag of the column. Valid values are:
DEF_VALUE	Default value of the column
EXPRESSION	Text of the expression executed on the source (expression as typed in the mapping or column name making an expression executed on the staging area).
CX_COL_NAME	Computed name of the column used as a container for the current expression on the staging area
ALIAS_SEP	Separator used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
MANDATORY_CLAUSE	Returns NOT NULL is the column is mandatory. Otherwise, returns the null keyword for the technology.
DEFAULT_CLAUSE	Returns DEFAULT <default value> if any default value exists. Otherwise, returns and empty string.
JDBC_TYPE	Data Services - JDBC Type of the column returned by the driver.
<flexfield code>	Flexfield value for the current column.
Selectors Description	
Parameter Value	Description
---	---
INS	
UPD	
TRG	
NULL	
PK	
UK	
REW	
UD1	
UD2	
UD3	
UD4	
UD5	
MAP	
Flow control: All columns of the target table loaded with expressions in the current interface Static control: All columns of the target table	
SCD_SK	LKM, CKM, IKM: All columns marked SCD Behavior: Surrogate Key in the data model definition.
SCD_NK	LKM, CKM, IKM: All columns marked SCD Behavior: Natural Key in the data model definition.
SCD_UPD	LKM, CKM, IKM: All columns marked SCD Behavior: Overwrite on Change in the data model definition.
SCD_INS	LKM, CKM, IKM: All columns marked SCD Behavior: Add Row on Change in the data model definition.
SCD_FLAG	LKM, CKM, IKM: All columns marked SCD Behavior: Current Record Flag in the data model definition.
SCD_START	LKM, CKM, IKM: All columns marked SCD Behavior: Starting Timestamp in the data model definition.
SCD_END	LKM, CKM, IKM: All columns marked SCD Behavior: Ending Timestamp in the data model definition.
NEW	Actions: the column added to a table, the new version of the modified column of a table.
OLD	Actions: The column dropped from a table, the old version of the modified column of a table.
WS_INS	SKM: The column is flagged as allowing INSERT using Data Services.
WS_UPD	SKM: The column is flagged as allowing UDATE using Data Services.
WS_SEL	SKM: The column is flagged as allowing SELECT using Data Services.
Note: Using certain selectors in an LKM - indicated in the previous table with an * - is possible but not recommended. Only columns mapped on the source in the interface are returned. As a consequence, the result could be incorrect depending on the interface. For example, for the UK selector, the columns of the key that are not mapped or that are not executed on the source will not be returned with the selector.	
Examples	
If the CUSTOMER table contains the columns (CUST_ID, CUST_NAME, AGE) and we want to generate the following code:	
The following code is sufficient:	
Explanation: the getColList function will be used to generate (CUST_ID numeric(10) null, CUST_NAME varchar(50) null, AGE numeric(3) null). It will start and end with a parenthesis and repeat a pattern (column, data type, and null) separated by commas for each column. Thus,	
Use to return information about a specific column handled by an action.	
Usage	
Description	
In an action, returns information on a column being handled by an the action.	
Parameters	
Parameters	Type
---	---
pPattern	String
pSelector	String
If the selector is omitted, it is set to OLD for all drop actions. Otherwise, it is set to NEW.	
Pattern Attributes List	
The following table lists different parameters values as well as their associated description.	
Parameter Value	Description
---	---
I_COL	Internal identifier of the column
COL_NAME	Name of the column
COL_HEADING	Header of the column
COL_DESC	Description of the column
POS	Position of the column
LONGC	Column length (Precision)
SCALE	Scale of the column
FILE_POS	Beginning (index) of the column
BYTES	Number of physical bytes in the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are:
CHECK_FLOW	Flow control flag of the column. Valid values are:
CHECK_STAT	Static control flag of the column. Valid values are:
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol of the column
REC_CODE_LIST	List of the record codes retained in the column
COL_NULL_IF_ERR	Processing flag of the column. Valid values are:
DEF_VALUE	Default value of the column
EXPRESSION	Text of the expression executed on the source (expression as typed in the mapping or column name making an expression executed on the staging area).
CX_COL_NAME	Computed name of the column used as a container for the current expression on the staging area
ALIAS_SEP	Separator used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
MANDATORY_CLAUSE	Returns NOT NULL if the column is mandatory. Otherwise, returns the null keyword for the technology.
DEFAULT_CLAUSE	Returns DEFAULT <default value> if any default value exists. Otherwise, returns and empty string.
<flexfield code>	Flexfield value for the current column.
Use to return information about the current context.	
Usage	
Description	
This method returns information about to the current execution context.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
ID	Internal ID of the context.
CTX_NAME	Name of the context.
CTX_CODE	Code of the context.
CTX_DEFAULT	Returns 1 for the default context, 0 for the other contexts.
<flexfield code>	Flexfield value for this reference.
Examples	
Use to return information about a given dataset of an interface.	
Usage	
Description	
Retrieves information about for a given dataset of an interface.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
OPERATOR	Operator that applies to the selected dataset. For the first dataset, an empty value is returned.
NAME	Dataset Name.
HAS_JRN	Returns "1" if the dataset one journalized datastore, "0" otherwise.
Examples	
Use to return the number of datasets of an interface.	
Usage	
Description	
Returns the number of datasets of an interface.	
Parameters	
None	
Examples	
Use to return the syntax creating a column of a given datatype.	
Usage	
Description	
Returns the creation syntax of the following SQL data types: varchar, numeric or date according to the parameters associated to the source or target technology.	
Parameters	
Parameters	Type
---	---
Parameter	Type
pDataTypeName	String
pDataTypeLength	String
pDataTypePrecision	String
The following table lists all possible values for pDataTypeName.	
Parameter Value	Description
---	---
SRC_VARCHAR	Returns the syntax to the source data type varchar
SRC_NUMERIC	Returns the syntax to the source data type numeric
SRC_DATE	Returns the syntax to the source data type date
DEST_VARCHAR	Returns the syntax to the target data type varchar
DEST_NUMERIC	Returns the syntax to the target data type numeric
DEST_DATE	Returns the syntax to the target data type date
Examples	
Given the following syntax for these technologies:	
Technology	Varchar
---	---
Oracle	varchar2(%L)
Microsoft SQL Server	varchar(%L)
Microsoft Access	Text(%L)
Here are some examples of call to getDataType:	
Call	Oracle
---	---
<%=odiRef.getDataType("DEST_VARCHAR", "10", "")%>	varchar2(10)
<%=odiRef.getDataType("DEST_VARCHAR", "10", "5")%>	varchar2(10)
<%=odiRef.getDataType("DEST_NUMERIC", "10", "")%>	number(10)
<%=odiRef.getDataType("DEST_NUMERIC", "10", "2")%>	number(10,2)
<%=odiRef.getDataType("DEST_NUMERIC", "", "")%>	number
<%=odiRef.getDataType("DEST_DATE", "", "")%>	date
<%=odiRef.getDataType("DEST_DATE", "10", "2")%>	date
Use to return the entire WHERE clause section generated for the filters of an interface.	
Usage	
Description	
Returns the SQL filters sequence (on the source while loading, on the staging area while integrating) for a given dataset.	
In IKMs only, In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
None	
Examples	
Use to return properties for each filter of an interface. The properties are organized according to a string pattern.	
Usage	
Alternative syntax:	
Description	
Returns a list of occurrences of the SQL filters of a given dataset of an interface.	
In IKMs only, In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The parameter pPattern is interpreted and repeated for each element of the list and separated from its predecessor with parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains an element for each filter expression executed on the source or target (depending on the Knowledge Module in use).	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as the associated description.	
Parameter Value	Description
---	---
ID	Filter internal identifier
EXPRESSION	Text of the filter expression.
Examples	
Explanation: the getFilterList function will be used to generate the filter of the SELECT clause that must begin with "and" and repeats the pattern (expression of each filter) separated with "and" for each filter. Thus	
Use to return information about a foreign key.	
Usage	
Description	
This method returns information relative to the foreign key (or join or reference) of a datastore during a check procedure. It is accessible from a Knowledge Module only if the current task is tagged as a "reference".	
In an action, this method returns information related to the foreign key currently handled by the DDL command.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
ID	Internal number of the reference constraint.
FK_NAME	Name of the reference constraint.
FK_TYPE	Type of the reference constraint.
FK_ALIAS	Alias of the reference table (only used in case of a complex expression)
PK_ALIAS	Alias of the referenced table (only used in case of a complex expression)
ID_TABLE_PK	Internal number of the referenced table.
PK_I_MOD	Number of the referenced model.
PK_CATALOG	Catalog of the referenced table in the current context.
PK_SCHEMA	Physical schema of the referenced table in the current context.
PK_TABLE_NAME	Name of the referenced table.
COMPLEX_SQL	Complex SQL statement of the join clause (if appropriate).
MESS	Error message of the reference constraint
FULL_NAME	Full name of the foreign key generated with the local object mask.
<flexfield code>	Flexfield value for this reference.
Examples	
Use to return information about the columns of a foreign key.	
Usage	
Alternative syntax:	
Description	
Returns a list of columns part of a reference constraint (foreign key).	
The parameter pPattern in interpreted and repeated for each element of the list, and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains one element for each column of the current foreign key. It is accessible from a Check Knowledge Module only if the current task is tagged as a "reference".	
In an action, this method returns the list of the columns of the foreign key handled by the DDL command, ordered by their position in the key.	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameter	Type
---	---
Parameter	Type
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as the associated description.	
Parameter Value	Description
---	---
I_COL	Column internal identifier
COL_NAME	Name of the column of the key
COL_HEADING	Header of the column of the key
COL_DESC	Description of the column of the key
POS	Position of the column of the key
LONGC	Length (Precision) of the column of the key
SCALE	Scale of the column of the key
FILE_POS	Beginning (index) of the column
BYTES	Number of physical octets of the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are:
CHECK_FLOW	Flow control flag of the column. Valid values are:
CHECK_STAT	Static control flag of the column. Valid values are:
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol for the column
REC_CODE_LIST	List of the record codes for the column
COL_NULL_IF_ERR	Column processing flag. Valid values are:
DEF_VALUE	Default value of the column
EXPRESSION	Not used
CX_COL_NAME	Not used
ALIAS_SEP	Separator used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
PK_I_COL	Internal identifier of the referenced column
PK_COL_NAME	Name of the referenced key column
PK_COL_HEADING	Header of the referenced key column
PK_COL_DESC	Description of the referenced key column
PK_POS	Position of the referenced column
PK_LONGC	Length of the referenced column
PK_SCALE	Precision of the referenced column
PK_FILE_POS	Beginning (index) of the referenced column
PK_BYTES	Number of physical octets of the referenced column
PK_FILE_END_POS	End of the referenced column (FILE_POS + BYTES)
PK_IND_WRITE	Write right flag of the referenced column
PK_COL_MANDATORY	Mandatory character of the referenced column. Valid values are:
PK_CHECK_FLOW	Flow control flag of the referenced column. Valid values are:
PK_CHECK_STAT	Static control flag of the referenced column. Valid values are:
PK_COL_FORMAT	Logical format of the referenced column
PK_COL_DEC_SEP	Decimal separator for the referenced column
PK_REC_CODE_LIST	List of record codes retained for the referenced column
PK_COL_NULL_IF_ERR	Processing flag of the referenced column. Valid values are:
PK_DEF_VALUE	Default value of the referenced column
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
<flexfield code>	Flexfield value for the current column of the referencing table.
Examples	
If the CUSTOMER table references the CITY table on CUSTOMER.COUNTRY_ID = CITY.ID_COUNT and CUSTOMER.CITY_ID = CITY.ID_CIT	
the clause:	
can also be written:	
Explanation: the getFKColList function will be used to loop on each column of the foreign key to generate the clause that begins and ends with a parenthesis and that repeats a pattern separated by and for each column in the foreign key. Thus	
Use to return the value of a flexfield.	
Usage	
Description	
This method returns the value of an Object Instance's Flexfield.	
Parameters	
Parameter	Type
---	---
pI_Instance	String
pI_Object	String
pPropertyName	String
Examples	
Returns the value of the flexfield MY_DATASTORE_FIELD, for the object instance of type datastore (Internal ID for datastores is 2400), with the internal ID 32001.	
Use to return the SQL FROM clause in the given context.	
Usage	
Description	
Allows the retrieval of the SQL string of the FROM in the source SELECT clause for a given dataset. The FROM statement is built from tables and joins (and according to the SQL capabilities of the technologies) that are used in this dataset.	
For a technology that supports ISO outer joins and parenthesis, getFrom() could return a string such as:	
In IKMs only, In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
If there is a journalized datastore in source of the interface, the source table in the clause is replaced by the data view linked to the journalized source datastore.	
If one of the source datastores is a temporary datastore with the Use Temporary Interface as Derived Table (Sub-Select) box selected then a sub-select statement will be generated for this temporary source by the getFrom method.	
If partitioning is used on source datastores, this method automatically adds the partitioning clauses when returning the object names.	
Note that this method automatically generates lookups with no specific code required.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
Examples	
Use to return the entire SQL GROUP BY clause in the given context.	
Usage	
Description	
Allows you to retrieve the SQL GROUP BY string (on the "source" during the loading phase, on the staging area during the integration phase) for a given dataset. This statement is automatically computed from the aggregation transformations detected in the mapping expressions.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
Examples	
Use to return properties for each GROUP BY clause for a given dataset in an interface. The properties are organized according to a string pattern.	
Usage	
Alternative syntax:	
Description	
Returns a list of occurrences of SQL GROUP BY for a given dataset of an interface.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The pPattern parameter is interpreted, then repeated for each element of the list and separated from its predecessor with the pSeparator parameter. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains an element for each GROUP BY statement on the source or target (according to the Knowledge Module that used it).	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as their associated description.	
Parameter Value	Description
---	---
ID	Internal identifier of the clause
EXPRESSION	Text of the grouping statement
Examples	
Explanation: the getGrpByList function will be used to generate the group by clause of the select order that must start with "group by" and that repeats a pattern (each grouping expression) separated by commas for each expression.	
Use to return the entire SQL HAVING clause in the given context.	
Usage	
Description	
Allows the retrieval of the SQL statement HAVING (on the source during loading, on the staging area during integration) for a given dataset. This statement is automatically computed from the filter expressions containing detected aggregation functions.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
Examples	
Use to return properties for each HAVING clause of an interface. The properties are organized according to a string pattern.	
Usage	
Alternative syntax:	
Description	
Returns a list of the occurrences of SQL HAVING of a given dataset in an interface.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The parameter pPattern is interpreted and repeated for each element of the list, and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains one element for each HAVING expression to execute on the source or target (depends on the Knowledge module that uses it).	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameters	Type
---	---
pDSIndex	Int
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as the associated description.	
Parameter Value	Description
---	---
Parameter value	Description
ID	Internal identifier of the clause
EXPRESSION	Text of the having expression
Examples	
Explanation: The getHavingList function will be used to generate the having clause of the select order that must start with "having" and that repeats a pattern (each aggregated filtered expression) separated by "and" for each expression.	
Use to return information about a specific index handled by an action.	
Usage	
Description	
In an action, this method returns information related to the index currently handled by the DDL command.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
ID	Internal number of the index.
KEY_NAME	Name of the index
FULL_NAME	Full name of the index generated with the local object mask.
<flexfield code>	Value of the flexfield for this index.
Use to return information about the columns of an index handled by an action.	
Usage	
Description	
In an action, this method returns the list of the columns of the index handled by the DDL command, ordered by their position in the index.	
The pPattern parameter is interpreted and then repeated for each element of the list. It is separated from its predecessor by the pSeparator parameter. The generated string starts with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains an element for each column of the current index.	
Parameters	
Parameters	Type
---	---
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as their associated description.	
Parameter Value	Description
---	---
I_COL	Column internal identifier
COL_NAME	Name of the index column
COL_HEADING	Header of the index column
COL_DESC	Column description
POS	Position of the column
LONGC	Length (Precision) of the column
SCALE	Scale of the column
FILE_POS	Beginning position of the column (fixed file)
BYTES	Number of physical bytes of the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are:
CHECK_FLOW	Flow control flag for of the column. Valid values are:
CHECK_STAT	Static control flag of the column. Valid values are:
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol for the column
REC_CODE_LIST	List of the record codes retained for the column
COL_NULL_IF_ERR	Processing flag for the column. Valid values are:
DEF_VALUE	Default value for the column
EXPRESSION	Not used
CX_COL_NAME	Not used
ALIAS_SEP	Grouping symbol used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
<flexfield code>	Flexfield value for the current column.
Use to return information about the current task.	
Usage	
Description	
This method returns information about the current task. The list of available information is described in the pPropertyName values table.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different values possible for pPropertyName:	
Parameter Value	Description
---	---
I_SRC_SET	Internal identifier of the current Source Set if the task belongs to a Loading Knowledge Module
SRC_SET_NAME	Name of the current Source Set if the task belongs to a Loading Knowledge Module
COLL_NAME	Name of the current loading resource (C$) if the task belongs to a Loading Knowledge Module
INT_NAME	Name of the current integration resource (I$) if the task belongs to a string Loading, Integration or Check Knowledge Module.
ERR_NAME	Name of the current error resource (E$) if the task is part of a Loading, Integration or Check Knowledge Module
TARG_NAME	Name of the target resource if the task is part of a Loading, Integration or Check Knowledge Module
SRC_CATALOG	Name of the data catalog in the source environment
SRC_SCHEMA	Name of the data schema in the source environment
SRC_WORK_CATALOG	Name of the work catalog in the source environment
SRC_WORK_SCHEMA	Name of the work schema in the source environment
DEST_CATALOG	Name of the data catalog in the target environment
DEST_SCHEMA	Name of the data schema in the target environment
DEST_WORK_CATALOG	Name of the work catalog in the target environment
DEST_WORK_SCHEMA	Name of the work schema in the target environment
SRC_TECHNO_NAME	Name of the source technology
SRC_CON_NAME	Name of the source connection
SRC_DSERV_NAME	Name of the data server of the source machine
SRC_CONNECT_TYPE	Connection type of the source machine
SRC_IND_JNDI	JNDI URL flag
SRC_JAVA_DRIVER	Name of the JDBC driver of the source connection
SRC_JAVA_URL	JDBC URL of the source connection
SRC_JNDI_AUTHENT	JNDI authentication type
SRC_JNDI_PROTO	JNDI source protocol
SRC_JNDI_FACTORY	JNDI source Factory
SRC_JNDI_URL	Source JNDI URL
SRC_JNDI_RESSOURCE	Accessed source JNDI resource
SRC_JNDI_USER	User name for JNDI authentication on the source.
SRC_JNDI_ENCODED_PASS	Encrypted password for JNDI authentication on the source.
SRC_USER_NAME	User name of the source connection
SRC_ENCODED_PASS	Encrypted password of the source connection
SRC_FETCH_ARRAY	Size of the source array fetch
SRC_BATCH_UPDATE	Size of the source batch update
SRC_EXE_CHANNEL	Execution canal of the source connection
SRC_COL_ALIAS_WORD	Term used to separated the columns from their aliases for the source technology
SRC_TAB_ALIAS_WORD	Term used to separated the tables from their aliases for the source technology
SRC_DATE_FCT	Function returning the current date for the source technology
SRC_DDL_NULL	Returns the definition used for the keyword NULL during the creation of a table on the source
SRC_MAX_COL_NAME_LEN	Maximum number of characters for the column name on the source technology
SRC_MAX_TAB_NAME_LEN	Maximum number of characters for the table name on the source technology
SRC_REM_OBJ_PATTERN	Substitution model for a remote object on the source technology.
SRC_LOC_OBJ_PATTERN	Substitution model for a local object name on the source technology.
DEST_TECHNO_NAME	Name of the target technology
DEST_CON_NAME	Name of the target connection
DEST_DSERV_NAME	Name of the data server of the target machine
DEST_CONNECT_TYPE	Connection type of the target machine
DEST_IND_JNDI	Target JNDI URL flag
DEST_JAVA_DRIVER	Name of the JDBC driver of the target connection
DEST_JAVA_URL	JDBC URL of the target connection
DEST_JNDI_AUTHENT	JNDI authentication type of the target
DEST_JNDI_PROTO	JNDI target protocol
DEST_JNDI_FACTORY	JNDI target Factory
DEST_JNDI_URL	JNDI URL of the target
DEST_JNDI_RESSOURCE	Target JNDI resource that is accessed
DEST_JNDI_USER	User name for JNDI authentication on the target.
DEST_JNDI_ENCODED_PASS	Encrypted password for JNDI authentication on the target.
DEST_USER_NAME	Name of the user for the target connection
DEST_ENCODED_PASS	Encrypted password for the target connection
DEST_FETCH_ARRAY	Size of the target array fetch
DEST_BATCH_UPDATE	Size of the target batch update
DEST_EXE_CHANNEL	Execution canal of the target connection
DEST_COL_ALIAS_WORD	Term used to separate the columns from their aliases on the target technology
DEST_TAB_ALIAS_WORD	Term used to separate the tables from their aliases on the target technology
DEST_DATE_FCT	Function returning the current date on the target technology
DEST_DDL_NULL	Function returning the definition used for the keyword NULL during the creation on a table on the target
DEST_MAX_COL_NAME_LEN	Maximum number of characters of the column in the target technology
DEST_MAX_TAB_NAME_LEN	Maximum number of characters of the table name on the target technology
DEST_REM_OBJ_PATTERN	Substitution model for a remote object on the target technology
DEST_LOC_OBJ_PATTERN	Substitution model for a local object name on the target technology
CT_ERR_TYPE	Error type (F: Flow, S: Static). Applies only in the case of a Check Knowledge Module
CT_ERR_ID	Error identifier (Table # for a static control or interface number for flow control. Applies only in the case of a Check Knowledge Module
CT_ORIGIN	Name that identifies the origin of an error (Name of a table for static control, or name of an interface prefixed with the project code). Applies only in the case of a Check Knowledge Module
JRN_NAME	Name of the journalized datastore.
JRN_VIEW	Name of the view linked to the journalized datastore.
JRN_DATA_VIEW	Name of the data view linked to the journalized datastore.
JRN_TRIGGER	Name of the trigger linked to the journalized datastore.
JRN_ITRIGGER	Name of the Insert trigger linked to the journalized datastore.
JRN_UTRIGGER	Name of the Update trigger linked to the journalized datastore.
JRN_DTRIGGER	Name of the Delete trigger linked to the journalized datastore.
SUBSCRIBER_TABLE	Name of the datastore containing the subscribers list.
CDC_SET_TABLE	Full name of the table containing list of CDC sets.
CDC_TABLE_TABLE	Full name of the table containing the list of tables journalized through CDC sets.
CDC_SUBS_TABLE	Full name of the table containing the list of subscribers to CDC sets.
CDC_OBJECTS_TABLE	Full name of the table containing the journalizing parameters and objects.
SRC_DEF_CATALOG	Default catalog for the source data server.
SRC_DEF_SCHEMA	Default schema for the source data server.
SRC_DEFW_CATALOG	Default work catalog for the source data server.
SRC_DEFW_SCHEMA	Default work schema for the source data server.
DEST_DEF_CATALOG	Default catalog for the target data server.
DEST_DEF_SCHEMA	Default schema for the target data server.
DEST_DEFW_CATALOG	Default work catalog for the target data server.
DEST_DEFW_SCHEMA	Default work schema for the target data server.
SRC_LSCHEMA_NAME	Source logical schema name.
DEST_LSCHEMA_NAME	Target logical schema name.
SRC_I_CONNECT	Internal ID of the source data server.
SRC_I_PSCHEMA	Internal ID of the source physical schema.
SRC_I_LSCHEMA	Internal ID of the source logical schema.
SRC_I_TECHNO	Internal ID of the source technology.
DEST_I_CONNECT	Internal ID of the target data server.
DEST_I_PSCHEMA	Internal ID of the target physical schema.
DEST_I_LSCHEMA	Internal ID of the target logical schema.
DEST_I_TECHNO	Internal ID of the target technology.
Examples	
Use to return the source or target JDBC connection.	
Usage	
Description	
This method returns the source or target JDBC connection for the current task.	
Note: This method does not return a string, but a JDBC connection object. This object may be used in your Java code within the task.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different values possible for pPropertyName:	
Parameter Value	Description
---	---
SRC	Source connection for the current task.
DEST	Target connection for the current task.
WORKREP	Work Repository connection.
Examples	
Gets the source connection and creates a statement for this connection.	
Use to return a JDBC connection for a given logical schema.	
Usage	
Description	
Returns a JDBC connection for a given logical schema. The pLogicalSchemaName identifies the logical schema.	
The first syntax resolves the logical schema in the context provided in the pContextName parameter.	
The second syntax resolves the logical schema in the current context.	
Parameters	
Parameter	Type
---	---
pLogicalSchemaName	String
pContextName	String
Note: This method does not return a string, but a JDBC connection object. This object may be used in your Java code within the task.	
Use to return the entire WHERE clause section generated for the joins of an interface.	
Usage	
Description	
Retrieves the SQL join string (on the source during the loading, on the staging area during the integration) for a given dataset of an interface.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
Examples	
Use to return properties for each join of an interface. The properties are organized according to a string pattern.	
Usage	
Alternative syntax:	
Description	
Returns a list of the occurrences of the SQL joins in a given dataset of an interface for the WHERE clause.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The pPattern parameter is interpreted and then repeated for each element in the list and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends up with pEnd.	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as the associated description.	
Parameter Value	Description
---	---
ID	Internal identifier of the join
EXPRESSION	Text of the join expression
Examples	
Explanation: the getJoinList function will be used to generate join expressions to put in the WHERE part of the SELECT statement that must start with "and" and that repeats a pattern (the expression of each join) separated by " and " for each join. Thus:	
Use to return the journalizing filter of an interface.	
Usage	
Description	
Returns the SQL Journalizing filter for a given dataset in the current interface. If the journalized table in the source, this method can be used during the loading phase. If the journalized table in the staging area, this method can be used while integrating.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
Examples	
Use to return journalizing information about a datastore.	
Usage	
Description	
Returns information about a datastore's journalizing for a JKM while journalizing a model/datastore, or for a LKM/IKM in an interface.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different values possible for pPropertyName:	
Parameter Value	Description
---	---
FULL_TABLE_NAME	Full name of the journalized datastore.
JRN_FULL_NAME	Full name of the journal datastore.
JRN_FULL_VIEW	Full name of the view linked to the journalized datastore.
JRN_FULL_DATA_VIEW	Full name of the data view linked to the journalized datastore.
JRN_FULL_TRIGGER	Full name of the trigger linked to the journalized datastore.
JRN_FULL_ITRIGGER	Full name of the Insert trigger linked to the journalized datastore.
JRN_FULL_UTRIGGER	Full name of the Update trigger linked to the journalized datastore.
JRN_FULL_DTRIGGER	Full name of the Delete trigger linked to the journalized datastore.
SNP_JRN_SUBSCRIBER	Name of the subscriber table in the work schema.
JRN_NAME	Name of the journalized datastore.
JRN_VIEW	Name of the view linked to the journalized datastore.
JRN_DATA_VIEW	Name of the data view linked to the journalized datastore.
JRN_TRIGGER	Name of the trigger linked to the journalized datastore.
JRN_ITRIGGER	Name of the Insert trigger linked to the journalized datastore.
JRN_UTRIGGER	Name of the Update trigger linked to the journalized datastore.
JRN_DTRIGGER	Name of the Delete trigger linked to the journalized datastore.
JRN_SUBSCRIBER	Name of the subscriber.
JRN_COD_MOD	Code of the journalized data model.
JRN_METHOD	Journalizing Mode (consistent or simple).
CDC_SET_TABLE	Full name of the table containing list of CDC sets.
CDC_TABLE_TABLE	Full name of the table containing the list of tables journalized through CDC sets.
CDC_SUBS_TABLE	Full name of the table containing the list of subscribers to CDC sets.
CDC_OBJECTS_TABLE	Full name of the table containing the journalizing parameters and objects.
Examples	
Use to return the Load Plan instance information.	
Usage	
Description	
This method returns the current execution instance information for a Load Plan.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the possible values for pPropertyName:	
Parameter Value	Description
---	---
BATCH_ID	Load Plan instance identifier (also Instance ID). Every time a Load Plan is started, a new Load Plan instance with a unique identifier is created
RESTART_ATTEMPTS	Number of execution attempts of this Load Plan instance (also Run #). It starts at 1 when the Load Plan instance is first executed, and is incremented each time the Load Plan instance is restarted.
LOAD_PLAN_NAME	Name of the Load Plan
START_DATE	Starting date and time of the current Load Plan instance run
Examples	
The current Load Plan <%=odiRef.getLoadPlanInstance("LOAD_PLAN_NAME")%>	
started execution at <%=odiRef.getLoadPlanInstance("START_DATE")%>	
Use to return information about a model.	
Usage	
Description	
This method returns information on the current data model during the processing of a personalized reverse engineering. The list of available data is described in the pPropertyName values table.	
Note: This method may be used on the source connection (data server being reverse-engineered) as well as on the target connection (repository). On the target connection, only the properties independent from the context can be specified (for example, the schema and catalog names cannot be used).	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the possible values for pPropertyName:	
Parameter Value	Description
---	---
ID	Internal identifier of the current model
MOD_NAME	Name of the current model
LSCHEMA_NAME	Name of the logical schema of the current model
MOD_TEXT	Description of the current model
REV_TYPE	Reverse engineering type: S for standard reverse, C for customize
REV_UPDATE	Update flag of the model
REV_INSERT	Insert flag for the model
REV_OBJ_PATT	Mask for the objects to reverse.
REV_OBJ_TYPE	List of object types to reverse-engineer for this model. This is a semicolon separated list of object types codes. Valid codes are:
TECH_INT_NAME	Internal name of the technology of the current model.
LAGENT_NAME	Name of the logical execution agent for the reverse engineering.
REV_CONTEXT	Execution context of the reverse
REV_ALIAS_LTRIM	Characters to be suppressed for the alias generation
CKM	Check Knowledge Module
RKM	Reverse-engineering Knowledge Module
SCHEMA_NAME	Physical Name of the data schema in the current reverse context
WSCHEMA_NAME	Physical Name of the work schema in the current reverse context
CATALOG_NAME	Physical Name of the data catalog in the current reverse context
WCATALOG_NAME	Physical Name of the work catalog in the current reverse context
<flexfield code>	Value of the flexfield for the current model.
Examples	
Retrieve the list of tables that are part of the mask of objects to reverse:	
Use to get the number of inserted, updated, deleted or erroneous rows for the current task.	
Usage	
Description	
These methods get for the current task the values for:	
These numbers can be set independently from the real number of lines processed using the setNbInsert(), setNbUpdate(), setNbDelete(), setNbErrors() and setNbRows() Methods.	
Examples	
In the Jython example below, we set the number of inserted rows to the constant value of 50, and copy this value in the number of errors.	
Use to return the new comment for a specific column handled by an action.	
Usage	
Description	
In an action, this method returns the new comment for the column being handled by the DDL command, in a Modify column comment action.	
Use to return the new comment for a specific table handled by an action.	
Usage	
Description	
In an action, this method returns the new comment for the table being handled by the DDL command, in a Modify table comment action.	
Use to return information about a column that is checked for not null.	
Usage	
Description	
This method returns information relative to a not null column of a datastore during a check procedure. It is accessible from a Check Knowledge Module if the current task is tagged as "mandatory".	
Parameters	
Parameter	Type
---	---
Parameter	Type
pPropertyName	String
The following table lists the different possible values for pPropertyName:	
Parameter Value	Description
---	---
ID	Internal identifier for the current column.
COL_NAME	Name of the Not null column.
MESS	Standard error message.
<flexfield code>	Flexfield value for the current not null column.
Examples	
Use to return the fully qualified named of an object.	
Usage	
Description	
Returns the fully qualified name of a physical object, including its catalog and schema. The pMode parameter indicates the substitution mask to use.	
Note: The getObjectName methods truncates automatically object names to the maximum object length allowed for the technology. In versions before ODI 11g, object names were not trucated. To prevent object names truncation and reproduce the 10g behavior, add in the properties tab of the data server a property called OBJECT_NAME_LENGTH_CHECK_OLD and set its value totrue .	
The first syntax builds the object name according to the current logical schema in the current context.	
The second syntax builds the name of the object according to the logical schema indicated in the pLogicalSchemaName parameter in the current context.	
The third syntax builds the name from the logical schema and the context indicated in the pLogicalSchemaName and pContextName parameters.	
The fourth syntax builds the object name according to the current logical schema in the current context, with the local object mask (pMode = "L").	
The fifth syntax is equivalent to the fourth with pLocation = "D".	
The last syntax is equivalent to the third syntax but qualifies the object name specifically on a given partition, using the pPartitionType and pPartitionName parameters.	
Parameters	
Parameter	Type
---	---
pMode	String
pObjectName	String
pLogicalSchemaName	String
pContextName	String
pLocation	String
pPartitionType	String
pPartitionName	String
Prefixes	
It is possible to prefix the resource name specified in the pObjectName parameter by a prefix code to generate a Oracle Data Integrator temporary object name (Error or Integration table, journalizing trigger, etc.).	
The list of prefixes are given in the table below.	
Prefix	Description
---	---
Prefix	Description
%INT_PRF	Prefix for integration tables (default value is "I$_").
%COL_PRF	Prefix for Loading tables (default value is "C$_").
%ERR_PRF	Prefix for error tables (default value is "E$_").
%JRN_PRF_TAB	Prefix for journalizing tables (default value is "J$_").
%INT_PRF_VIE	Prefix for journalizing view (default value is "JV$_").
%JRN_PRF_TRG	Prefix for journalizing triggers (default value is "T$_").
%IDX_PRF	Prefix for temporary indexes (default value is "IX$_").
Note: Temporary objects are usually created in the work physical schema. Therefore, pLocation should be set to "W" when using a prefix to create or access a temporary object.	
Examples	
You have defined a physical schema as shown below.	
Data catalog:	db_odi
Data schema:	dbo
Work catalog:	tempdb
Work schema:	temp_owner
You have associated this physical schema to the logical schema MSSQL_ODI in the context CTX_DEV.	
A Call To	Returns
---	---
<%=odiRef.getObjectName("L", "EMP", "MSSQL_ODI", "CTX_DEV", "W")%>	tempdb.temp_owner.EMP
<%=odiRef.getObjectName("L", "EMP", "MSSQL_ODI", "CTX_DEV", "D")%>	db_odi.dbo.EMP
<%=odiRef.getObjectName("R", "%ERR_PRFEMP", "MSSQL_ODI", "CTX_DEV", "W")%>	MyServer.tempdb.temp_owner.E$_EMP
<%=odiRef.getObjectName("R", "EMP", "MSSQL_ODI", "CTX_DEV", "D")%>	MyServer.db_odi.dbo.EMP
Use to return the fully qualified named of an object in the default physical schema for the data server.	
Usage	
Description	
The method is similar to the getObjectName method. However, the object name is computed for the default physical schema of the data server to which the physical schema is attached. In getObjectName, the object name is computed for the physical schema itself.	
For more information, see "getObjectName() Method".	
Use to return the value of a KM or procedure option.	
Usage	
Description	
Returns the value of a KM or procedure option.	
The getUserExit syntax is deprecated and is only kept for compatibility reasons.	
Parameters	
Parameter	Type
---	---
pOptionName	String
Examples	
Use to return information about the current package.	
Usage	
Description	
This method returns information about the current package. The list of available properties is described in the pPropertyName values table.	
Parameters	
Parameters	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName:	
Parameter Value	Description
---	---
I_PACKAGE	Internal ID of the package
PACKAGE_NAME	Name of the package
<flexfield code>	Value of the flexfield for this package.
Examples	
Use to return the parent Load Plan step instance of this session.	
Usage	
Description	
This method returns the step execution instance information of the parent of the current step for a Load Plan instance. It will return an empty string if the parent step is the root step.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
BATCH_ID	Load Plan instance identifier (also Instance ID). Every time a Load Plan is started, a new Load Plan instance with a unique identifier is created.
RESTART_ATTEMPTS	Number of execution attempts of this Load Plan parent step instance. It starts at 1 when the Load Plan parent step instance is first started, and is incremented each time the Load Plan parent step instance is restarted.
STEP_NAME	Name of the Load Plan parent step
STEP_TYPE	Type of the Load Plan parent step
START_DATE	Starting date and time of the parent step instance of the current step of the current Load Plan instance run.
Examples	
Step <%=odiRef.getParentLoadPlanStepInstance("STEP_NAME")%>	
has been executed <%=odiRef.getParentLoadPlanStepInstance("RESTART_ATTEMPTS")%>	
times	
Use to return information about a primary key.	
Usage	
Description	
This method returns information relative to the primary key of a datastore during a check procedure.	
In an action, this method returns information related to the primary key currently handled by the DDL command.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
ID	Internal number of the PK constraint.
KEY_NAME	Name of the primary key
MESS	Error message relative to the primary key constraint.
FULL_NAME	Full name of the PK generated with the local object mask.
<flexfield code>	Flexfield value for the primary key.
Examples	
Use to return information about the columns of a primary key.	
Usage	
Description	
Returns a list of columns and expressions for the primary key being checked.	
The pPattern parameter is interpreted and then repeated for each element of the list. It is separated from its predecessor by the pSeparator parameter. The generated string starts with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains an element for each column of the current primary key. It is accessible from a Check Knowledge Module if the current task is tagged as an "primary key".	
In an action, this method returns the list of the columns of the primary key handled by the DDL command, ordered by their position in the key.	
Parameters	
Parameter	Type
---	---
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as their associated description.	
Parameter Value	Description
---	---
I_COL	Column internal identifier
COL_NAME	Name of the key column
COL_HEADING	Header of the key column
COL_DESC	Column description
POS	Position of the column
LONGC	Length (Precision) of the column
SCALE	Scale of the column
FILE_POS	Beginning position of the column (fixed file)
BYTES	Number of physical bytes of the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are:
CHECK_FLOW	Flow control flag for of the column. Valid values are:
CHECK_STAT	Static control flag of the column. Valid values are:
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol for the column
REC_CODE_LIST	List of the record codes retained for the column
COL_NULL_IF_ERR	Processing flag for the column. Valid values are:
DEF_VALUE	Default value for the column
EXPRESSION	Not used
CX_COL_NAME	Not used
ALIAS_SEP	Grouping symbol used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
<flexfield code>	Flexfield value for the current column.
Examples	
If the CUSTOMER table has an primary key PK_CUSTOMER (CUST_ID, CUST_NAME) and you want to generate the following code:	
You can use the following code:	
Explanation: the getPKColList function will be used to generate the (CUST_ID numeric(10) not null, CUST_NAME varchar(50) not null)	
part, which starts and stops with a parenthesis and repeats the pattern (column, a data type, and not null) separated by commas for each column of the primary key. Thus	
Use to return information about an interface.	
Usage	
Description	
This method returns information about the current interface. The list of available information is described in the pPropertyName values table.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName:	
Parameter Value	Description
---	---
I_POP	Internal number of the interface.
FOLDER	Name of the folder of the interface
POP_NAME	Name of the interface
IND_WORK_TARG	Position flag of the staging area.
LSCHEMA_NAME	Name of the logical schema which is the staging area of the interface
DESCRIPTION	Description of the interface
WSTAGE	Flag indicating the nature of the target datastore:
TABLE_NAME	Target table name
KEY_NAME	Name of the update key
DISTINCT_ROWS	Flag for doubles suppression
OPT_CTX	Name of the optimization context of the interface
TARG_CTX	Name of the execution context of the interface
MAX_ERR	Maximum number of accepted errors
MAX_ERR_PRCT	Error indicator in percentage
IKM	Name of the Integration Knowledge Module used in this interface.
LKM	Name of the Loading Knowledge Module specified to load data from the staging area to the target if a single-technology IKM is selected for the staging area.
CKM	Name of the Check Knowledge Module used in this interface.
HAS_JRN	Returns 1 if there is a journalized table in source of the interface, 0 otherwise.
PARTITION_NAME	Name of the partition or sub-partition selected for the target datastore. If no partition is selected, returns an empty string.
PARTITION_TYPE	Type of the partition or sub-partition selected for the target datastore. If no partition is selected, returns an empty string.
<flexfield code>	Flexfield value for the interface.
Examples	
Use to return information about the previous step executed in the package.	
Usage	
Description	
Returns information about the most recently executed step in a package. The information requested is specified through the pPropertyName parameter. If there is no previous step (for example, if the getPrevStepLog step is executed from outside a package), the exception "No previous step" is raised.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName:	
Parameter Value	Description
---	---
SESS_NO	The number of the session.
NNO	The number of the step within a package. The first step executed is 0.
STEP_NAME	The name of the step.
STEP_TYPE	A code indicating the type of step. The following values may be returned:
CONTEXT_NAME	The name of the context in which the step was executed.
MAX_ERR	The maximum number or percentage of errors tolerated.
MAX_ERR_PRCT	Returns 1 if the maximum number of errors is expressed as a percentage, 0 otherwise.
RUN_COUNT	The number of times this step has been executed.
BEGIN	The date and time that the step began.
END	The date and time that the step terminated.
DURATION	Time the step took to execute in seconds.
STATUS	Returns the one-letter code indicating the status with which the previous step terminated. The state R (Running) is never returned.
RC	Return code. 0 indicates no error.
MESSAGE	Error message returned by previous step, if any. Blank string if no error.
INSERT_COUNT	Number of rows inserted by the step.
DELETE_COUNT	Number of rows deleted by the step.
UPDATE_COUNT	Number of rows updated by the step.
ERROR_COUNT	Number of erroneous rows detected by the step, for quality control steps.
Examples	
Use to return a quoted string.	
Usage	
Description	
This method returns a string surrounded with quotes. It preserves quotes and escape characters such as \n, \t that may appear in the string.	
This method is useful to protect a string passed as a value in Java, Groovy or Jython code.	
Parameters	
Parameter	Type
---	---
Parameter	Type
pString	String
Examples	
In the following Java code, the getQuotedString method is used to generate a valid string value.	
If the message for the condition is "Error:\n Zero is not a valid value", the generated code is as shown below. Without the getQuotedString, the code is incorrect, as the \n is not preserved and becomes a carriage return.	
Use to return a schema name from the topology.	
Usage	
Description	
Retrieves the physical name of a data schema or work schema from its logical schema.	
If the first syntax is used, the returned schema corresponds to the current context.	
If the second syntax is used, the returned schema corresponds to context specified in the pContextCode parameter.	
The third syntax returns the name of the data schema (D) or work schema (W) for the current logical schema in the current context.	
The fourth syntax returns the name of the data schema (D) for the current logical schema in the current context.	
Parameters	
Parameter	Type
---	---
pLogicalSchemaName	String
pContextCode	String
pLocation	String
Examples	
If you have defined the physical schema: Pluton.db_odi.dbo	
Data catalog:	db_odi
Data schema:	dbo
Work catalog:	tempdb
Work schema:	temp_owner
and you have associated this physical schema to the logical schema: MSSQL_ODI in the context CTX_DEV	
The Call To	Returns
---	---
<%=odiRef.getSchemaName("MSSQL_ODI", "CTX_DEV", "W")%>	temp_owner
<%=odiRef.getSchemaName("MSSQL_ODI", "CTX_DEV", "D")%>	dbo
Use to return a catalog name for the default physical schema from the topology.	
Usage	
Description	
Allows you to retrieve the name of the default physical data schema or work schema for the data server to which is associated the physical schema corresponding to the tuple (logical schema, context). If no context is specified, the current context is used. If no logical schema name is specified, then the current logical schema is used. If no pLocation is specified, then the data schema is returned.	
Parameters	
Parameter	Type
---	---
pLogicalSchemaName	String
pContextCode	String
pLocation	String
Examples	
If you have defined the physical schemas: Pluton.db_odi.dbo	
Data catalog:	db_odi
Data schema:	dbo
Work catalog:	tempdb
Work schema:	temp_odi
Default Schema	Yes
that you have associated with this physical schema: MSSQL_ODI	
in the context CTX_DEV	
, and Pluton.db_doc.doc	
Data catalog:	db_doc
Data schema:	doc
Work catalog:	tempdb
Work schema:	temp_doc
Default Schema	No
that you have associated with this physical schema: MSSQL_DOC in the context CTX_DEV	
The Call To	Returns
---	---
<%=odiRef.getSchemaNameDefaultPSchema("MSSQL_DOC", "CTX_DEV", "W")%>	temp_odi
<%=odiRef.getSchemaNameDefaultPSchema("MSSQL_DOC", "CTX_DEV", "D")%>	dbo
Use to return information about the current session.	
Usage	
Description	
This method returns information about the current session. The list of available properties is described in the pPropertyName values table.	
Parameters	
Parameters	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName:	
Parameter Value	Description
---	---
SESS_NO	Internal number of the session
SESS_NAME	Name of the session
SCEN_NAME	Name of the scenario
SCEN_VERSION	Current scenario version
CONTEXT_NAME	Name of the execution context
CONTEXT_CODE	Code of the execution context
AGENT_NAME	Name of the physical agent in charge of the execution
SESS_BEG	Date and time of the beginning of the session
USER_NAME	ODI User running the session.
Examples	
Reserved for future use.	
Usage	
Description	
Reserved for future use.	
Parameters	
Reserved for future use.	
Examples	
Reserved for future use.	
Use to return properties for each column from a filtered list of source columns involved in a loading or integration phase. The properties are organized according to a string pattern.	
Usage	
Description	
This method available in LKMs and IKMs, returns properties for a list of columns in a given dataset. This list includes all the columns of the sources processed by the LKM (from the source) or the IKM (from the staging area). The list is sorted by the column position in the source tables.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The properties displayed depend on whether the column is mapped or not. If the column is mapped, the properties returned are defined in the pMappedPattern	
pattern. If the column is not mapped, the properties returned are defined in the pUnMappedPattern	
pattern.	
The attributes usable in a pattern are detailed in "Pattern Attributes List". Each occurrence of the attributes in the pattern string is replaced by its value. Attributes must be between brackets ([and]). Example: "My string [COL_NAME] is a column".	
The pMappedPattern	
or pUnMappedPattern	
parameter is interpreted and then repeated for each element of the list. Patterns are separated with pSeparator	
. The generated string begins with pStart	
and ends with pEnd	
.	
If there is a journalized datastore in the source of the interface, the three journalizing pseudo columns JRN_FLG	
, JRN_DATE	
and JRN_SUBSCRIBER	
are added as columns of the journalized source datastore.	
Parameters	
Parameter	Type
---	---
pDSIndex	Int
pStart	String
pUnMappedPattern	String
pMappedPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists different parameters values as well as their associated description.	
Parameter Value	Description
---	---
I_COL	Internal identifier of the column
COL_NAME	Name of the column
ALIAS_NAME	Name of the column. Unlike COL_NAME, this attribute returns the column name without the optional technology delimiters. These delimiters appear when the column name contains for instance spaces.
COL_HEADING	Header of the column
COL_DESC	Description of the column
POS	Position of the column
LONGC	Column length (Precision)
SCALE	Scale of the column
FILE_POS	Beginning (index) of the column
BYTES	Number of physical bytes in the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are: (0: null authorized, 1: not null)
CHECK_FLOW	Flow control flag of the column. Valid values are: (0: do not check, 1: check)
CHECK_STAT	Static control flag of the column. Valid values are: (0: do not check, 1: check)
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol of the column
REC_CODE_LIST	List of the record codes retained in the column
COL_NULL_IF_ERR	Processing flag of the column. Valid values are:
DEF_VALUE	Default value of the column
EXPRESSION	Text of the expression (as typed in the mapping field) executed on the source (LKM) or the staging area (IKM). If the column is not mapped, this parameter returns an empty string.
CX_COL_NAME	Not supported.
ALIAS_SEP	Separator used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target (IKM) or staging area (LKM) technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
MANDATORY_CLAUSE	Returns NOT NULL if the column is mandatory. Otherwise, returns the null keyword for the technology.
DEFAULT_CLAUSE	Returns DEFAULT <default value> if any default value exists. Otherwise, returns and empty string.
<flexfield code>	Flexfield value for the current column.
Examples	
To create a table similar to a source file:	
Use to return properties for each source table of an interface. The properties are organized according to a string pattern.	
Usage	
Alternative syntax:	
Description	
Returns a list of source tables of a given dataset in an interface. This method can be used to build a FROM clause in a SELECT order. However, it is advised to use the getFrom() method instead.	
In IKMs only, the pDSIndex parameter identifies which of the datasets is taken into account by this command.	
Note: The pDSIndex parameter can be omitted when this method is used in an LKM. It can be also omitted for IKMs. In this case, the dataset taken into account is the first one.	
The pPattern pattern is interpreted and then repeated for each element of the list and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameters	Type
---	---
pDSIndex	Int
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as the associated description.	
Attribute	Description
---	---
I_TABLE	Internal identifier of the current source table if available.
MODEL_NAME	Name of the model of the current source table, if available.
SUB_MODEL_NAME	Name of the sub-model of the current source table, if available
TECHNO_NAME	Name of the technology of the source datastore
LSCHEMA_NAME	Logical schema of the source table
TABLE_NAME	Logical name of the source datastore
RES_NAME	Physical access name of the resource (file name or JMS queue, physical name of the table, etc.). If there is a journalized datastore in source of the interface, the source table is the clause is replaced by the data view linked to the journalized source datastore.
CATALOG	Catalog of the source datastore (resolved at runtime)
WORK_CATALOG	Work catalog of the source datastore
SCHEMA	Schema of the source datastore (resolved at runtime)
WORK_SCHEMA	Work schema of the source datastore
TABLE_ALIAS	Alias of the datastore as it appears in the tables list, if available
POP_TAB_ALIAS	Alias of the datastore as it appears in the current interface, if available.
TABLE_TYPE	Type of the datastore source, if available.
DESCRIPTION	Description of the source datastore, if available.
R_COUNT	Number of records of the source datastore, if available.
FILE_FORMAT	File format, if available.
FILE_SEP_FIELD	Field separator (file)
XFILE_SEP_FIELD	Hexadecimal field separator (file)
SFILE_SEP_FIELD	Field separator string (file)
FILE_ENC_FIELD	Field beginning and ending character (file)
FILE_SEP_ROW	Record separator (file)
XFILE_SEP_ROW	Hexadecimal record separator (file)
SFILE_SEP_ROW	Record separator string (file)
FILE_FIRST_ROW	Number of header lines to ignore, if available.
FILE_DEC_SEP	Default decimal separator for the datastore, if available.
METADATA	Description in ODI format of the metadata of the current resource, if available.
OLAP_TYPE	OLAP type specified in the datastore definition
IND_JRN	Flag indicating that the datastore is including in CDC.
JRN_ORDER	Order of the datastore in the CDC set for consistent journalizing.
PARTITION_NAME	Name of the partition or sub-partition selected for the source datastore. If no partition is selected, returns an empty string.
PARTITION_TYPE	Type of the partition or sub-partition selected for the source datastore. If no partition is selected, returns an empty string.
<flexfield code>	Flexfield value for the current table.
Examples	
Explanation: the getSrcTablesList function will be used to generate the FROM clause of the SELECT STATEMENT that repeats the pattern (CATALOG.SCHEMA.TABLE_NAME as POP_TAB_ALIAS) separated by commas for each table in source.	
Use to return information about the current step.	
Usage	
Description	
This method returns information about the current step. The list of available information is described in the pPropertyName values table.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the possible values for pPropertyName:	
Parameter Value	Description
---	---
SESS_NO	Number of the session to which the step belongs.
NNO	Number of the step in the session
NB_RUN	Number of execution attempts
STEP_NAME	Step name
STEP_TYPE	Step type
CONTEXT_NAME	Name of the execution context
VAR_INCR	Step variable increment
VAR_OP	Operator used to compare the variable
VAR_VALUE	Forced value of the variable
OK_EXIT_CODE	Exit code in case of success
OK_EXIT	End the package in case of success
OK_NEXT_STEP	Next step in case of success.
OK_NEXT_STEP_NAME	Name of the next step in case of success
KO_RETRY	Number of retry attempts in case of failure.
KO_RETRY_INTERV	Interval between each attempt in case of failure
KO_EXIT_CODE	Exit code in case of failure.
KO_EXIT	End the package in case of failure.
KO_NEXT_STEP	Next step in case of failure.
KO_NEXT_STEP_NAME	Name of the next step in case of failure
Examples	
Use to return properties for each of the subscribers of a journalized table. The properties are organized according to a string pattern.	
Usage	
Alternative syntax:	
Description	
Returns a list of subscribers for a journalized table. The pPattern parameter is interpreted and then repeated for each element of the list, and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
In the alternative syntax, any parameters not set are set to an empty string.	
Parameters	
Parameter	Type
---	---
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists different parameters values as well as their associated description.	
Parameter Value	Description
---	---
SUBSCRIBER	Name of the Subscriber
Examples	
Use to return the system date of the machine running the session in a given format.	
Usage	
Description	
This method returns the system date of the machine running the session.	
Parameters	
Parameter	Type
---	---
pDateFormat	String
Examples	
Use to return the fully qualified named of a table. This table may be a source or target table, or one of the temporary or infrastructure table handled by Oracle Data Integrator.	
Usage	
Description	
Allows the retrieval of the fully qualified name of temporary and permanent tables handled by Oracle Data Integrator.	
Parameters	
Parameters	Type
---	---
pMode	String
pProperty	String
pLocation	String
Examples	
If you have defined a physical schema called Pluton.db_odi.dbo as shown below:	
Data catalog:	db_odi
Data schema:	dbo
Work catalog:	tempdb
Work schema:	temp_owner
Local Mask:	%CATALOG.%SCHEMA.%OBJECT
Remote mask:	%DSERVER:%CATALOG.%SCHEMA.%OBJECT
Loading prefix:	CZ_
Error prefix:	ERR_
Integration prefix:	I$_
You have associated this physical schema to the logical schema called MSSQL_ODI in the context CTX_DEV and your working with a table is named CUSTOMER.	
A Call To	Returns
---	---
<%=odiRef.getTable("L", "COLL_NAME", "W")%>	tempdb.temp_owner.CZ_0CUSTOMER
<%=odiRef.getTable("R", "COLL_NAME", "D")%>	MyServer:db_odi.dbo.CZ_0CUSTOMER
<%=odiRef.getTable("L", "INT_NAME", "W")%>	tempdb.temp_owner.I$_CUSTOMER
<%=odiRef.getTable("R", "ERR_NAME", "D")%>	MyServer:db_odi.dbo.ERR_CUSTOMER
Use to return information about the columns of the target table of an interface.	
Usage	
Alternative syntaxes:	
Description	
Provides a list of columns for the interface's target table.	
The pPattern parameter is interpreted and then repeated for each element of the list (selected according to pSelector parameter) and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
In the alternative syntaxes, any parameters not set are set to an empty string.	
Parameters	
Parameters	Type
---	---
pStart	String
pPattern	String
pSeparator	String
pEnd	String
pSelector	String
Example: (INS AND UPD) OR TRG The description of valid selectors is provided below.	
Pattern Attributes List	
The following table lists different parameters values as well as their associated description.	
Parameter Value	Description
---	---
I_COL	Internal identifier of the column
COL_NAME	Name of the column
COL_HEADING	Header of the column
COL_DESC	Description of the column
POS	Position of the column
LONGC	Column length (Precision)
SCALE	Scale of the column
FILE_POS	Beginning (index) of the column
BYTES	Number of physical bytes in the column
FILE_END_POS	End of the column (FILE_POS + BYTES)
IND_WRITE	Write right flag of the column
COL_MANDATORY	Mandatory character of the column. Valid values are:
CHECK_FLOW	Flow control flag of the column. Valid values are: (0: do not check, 1: check)
CHECK_STAT	Static control flag of the column. Valid values are: (0: do not check, 1: check)
COL_FORMAT	Logical format of the column
COL_DEC_SEP	Decimal symbol of the column
REC_CODE_LIST	List of the record codes retained in the column
COL_NULL_IF_ERR	Processing flag of the column. Valid values are: (0 = Reject, 1 = Set to null active trace, 2= set to null inactive trace)
DEF_VALUE	Default value of the column
ALIAS_SEP	Separator used for the alias (from the technology)
SOURCE_DT	Code of the column's datatype.
SOURCE_CRE_DT	Create table syntax for the column's datatype.
SOURCE_WRI_DT	Create table syntax for the column's writable datatype.
DEST_DT	Code of the column's datatype converted to a datatype on the target technology.
DEST_CRE_DT	Create table syntax for the column's datatype converted to a datatype on the target technology.
DEST_WRI_DT	Create table syntax for the column's writable datatype converted to a datatype on the target technology.
SCD_COL_TYPE	Behavior defined for the Slowly Changing Dimensions for this column in the data model.
MANDATORY_CLAUSE	Returns NOT NULL is the column is mandatory. Otherwise, returns the null keyword for the technology.
DEFAULT_CLAUSE	Returns DEFAULT <default value> if any default value exists. Otherwise, returns and empty string.
JDBC_TYPE	Data Services - JDBC Type of the column returned by the driver.
<flexfield code>	Flexfield value for the current column.
Selectors Description	
Parameter Value	Description
---	---
INS	
UPD	
TRG	
NULL	
PK	
UK	
REW	
MAP	
Flow control: All columns of the target table loaded with expressions in the current interface Static control: All columns of the target table	
SCD_SK	LKM, CKM, IKM: All columns marked SCD Behavior: Surrogate Key in the data model definition.
SCD_NK	LKM, CKM, IKM: All columns marked SCD Behavior: Natural Key in the data model definition.
SCD_UPD	LKM, CKM, IKM: All columns marked SCD Behavior: Overwrite on Change in the data model definition.
SCD_INS	LKM, CKM, IKM: All columns marked SCD Behavior: Add Row on Change in the data model definition.
SCD_FLAG	LKM, CKM, IKM: All columns marked SCD Behavior: Current Record Flag in the data model definition.
SCD_START	LKM, CKM, IKM: All columns marked SCD Behavior: Starting Timestamp in the data model definition.
SCD_END	LKM, CKM, IKM: All columns marked SCD Behavior: Ending Timestamp in the data model definition.
WS_INS	SKM: The column is flagged as allowing INSERT using Data Services.
WS_UPD	SKM: The column is flagged as allowing UDATE using Data Services.
WS_SEL	SKM: The column is flagged as allowing SELECT using Data Services.
Examples	
Use to return the name of the loading or integration table.	
Usage	
Description	
This method returns the name of the temporary table used for loading or integration. This name is not qualified.	
Parameters	
Parameters	Type
---	---
pProperty	String
Examples	
Use to return information about the target table of an interface.	
Usage	
Description	
This method returns information about the current target table. The list of available data is described in the pPropertyName values table.	
In an action, this method returns information on the table being processed by the DDL command.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the possible values for pPropertyName:	
Parameter Value	Description
---	---
I_TABLE	Internal identifier of the datastore
MODEL_NAME	Name of the model of the current datastore.
SUB_MODEL_NAME	Name of the sub-model of the current datastore.
TECHNO_NAME	Name of the target technology.
LSCHEMA_NAME	Name of the target logical schema.
TABLE_NAME	Name of the target datastore.
RES_NAME	Physical name of the target resource.
CATALOG	Catalog name.
WORK_CATALOG	Name of the work catalog.
SCHEMA	Schema name
WORK_SCHEMA	Name of the work schema.
TABLE_ALIAS	Alias of the current datastore.
TABLE_TYPE	Type of the datastore.
DESCRIPTION	Description of the current interface.
TABLE_DESC	Description of the current interface's target datastore. For a DDL command, description of the current table.
R_COUNT	Number of lines of the current datastore.
FILE_FORMAT	Format of the current datastore (file)
FILE_SEP_FIELD	Field separator (file)
XFILE_SEP_FIELD	Hexadecimal field separator (file)
SFILE_SEP_FIELD	Field separator string (file)
FILE_ENC_FIELD	Field beginning and ending character (file)
FILE_SEP_ROW	Record separator (file)
XFILE_SEP_ROW	Hexadecimal record separator (file)
SFILE_SEP_ROW	Record separator string (file)
FILE_FIRST_ROW	Number of lines to ignore at the beginning of the file (file)
FILE_DEC_SEP	Decimal symbol (file)
METADATA_DESC	Description of the metadata of the datastore (file)
OLAP_TYPE	OLAP type specified in the datastore definition
IND_JRN	Flag indicating that the datastore is including in CDC.
JRN_ORDER	Order of the datastore in the CDC set for consistent journalizing.
WS_NAME	Data Services - Name of the Web service generated for this datastore's model.
WS_NAMESPACE	Data Services - XML namespace of the web Service.
WS_JAVA_PACKAGE	Data Services - Java package generated for the web Service.
WS_ENTITY_NAME	Data Services - Entity name used for this datastore in the web service.
WS_DATA_SOURCE	Data Services - Datasource specified for this datastore's web service.
PARTITION_NAME	Name of the partition or sub-partition selected for the target datastore. If no partition is selected, returns an empty string.
PARTITION_TYPE	Type of the partition or sub-partition selected for the target datastore. If no partition is selected, returns an empty string.
<flexfield code>	Flexfield value for the current table.
Examples	
Use to return information about a temporary index defined for optimizing a join or a filter in an interface.	
Usage	
Description	
This method returns information relative to a temporary index being created or dropped by an interface.	
It can be used in a Loading or Integration Knowledge Module task if the Create Temporary Index option is set to On Source or On Target for this task.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName.	
Parameter Value	Description
---	---
IDX_NAME	Name of the index. This name is computed and prefixed with the temporary index prefix defined for the physical schema.
FULL_IDX_NAME	Fully qualified name of the index. On the target tab, this name is qualified to create the index in the work schema of the staging area. On the source tab, this name is qualified to create the index in the source default work schema (LKM) or in the work schema of the staging area (IKM).
COLL_NAME	Fully qualified name of the loading table for an LKM. This property does not apply to IKMs.
CATALOG	Catalog containing the table to be indexed.
SCHEMA	Schema containing the table to be indexed.
WORK_CATALOG	Work catalog for the table to be indexed.
WORK_SCHEMA	Work schema for the table to be indexed.
DEF_CATALOG	Default catalog containing the table to be indexed.
DEF_SCHEMA	Default schema containing the table to be indexed.
DEF_WORK_CATALOG	Default work catalog for the table to be indexed.
DEF_WORK_SCHEMA	Default work schema for the table to be indexed.
DEF_WORK_SCHEMA	Default work schema for the table to be indexed.
LSCHEMA_NAME	Logical schema of the table to be indexed.
TABLE_NAME	Name of the table to be indexed.
FULL_TABLE_NAME	Fully qualified name of the table to be indexed.
INDEX_TYPE_CODE	Code representing the index type.
INDEX_TYPE_CLAUSE	Clause for creating an index of this type.
POP_TYPE_CLAUSE	Type of the clause for which the index is generated:
EXPRESSION	Expression of the join or filer clause. Use for debug purposes.
Examples	
Use to return information about the columns of a temporary index for an interface.	
Usage	
Description	
Returns a list of columns of a temporary index.	
The parameter pPattern in interpreted and repeated for each element of the list, and separated from its predecessor with the parameter pSeparator. The generated string begins with pStart and ends with pEnd. If no element is selected, pStart and pEnd are omitted and an empty string is returned.	
This list contains one element for each column of the temporary index.	
It can be used in a Loading or Integration Knowledge Module task if the Create Temporary Index option is set to On Source or On Target for this task.	
Parameters	
Parameter	Type
---	---
Parameter	Type
pStart	String
pPattern	String
pSeparator	String
pEnd	String
Pattern Attributes List	
The following table lists the different values of the parameters as well as the associated description.	
Parameter Value	Description
---	---
CX_COL_NAME	Computed name of the column used as a container for the current expression on the staging area
COL_NAME	Name of the column participating to the index.
POS	Position of the first occurrence of this column in the join or filter clause this index optimizes.
Examples	
Use to return information about the user running the current session.	
Usage	
Description	
This method returns information about the user executing the current session. The list of available properties is described in the pPropertyName values table.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName:	
Parameter Value	Description
---	---
Parameter Value	Description
I_USER	User identifier
USER_NAME	User name
IS_SUPERVISOR	Boolean flag indicating if the user is supervisor (1) or not (0).
Examples	
Use to return whether if the current datastore has a primary key.	
Usage	
Description	
This method returns a boolean. The returned value is true if the datastore for which a web service is being generated has a primary key.	
This method can only be used in SKMs.	
Examples	
Use to return whether a column attribute or comment is changed.	
Usage	
Description	
This method is usable in a column action for altering a column attribute or comment. It returns a boolean indicating if the column attribute passed as a parameter has changed.	
Parameters	
Parameter	Type
---	---
pPropertyName	String
The following table lists the different possible values for pPropertyName	
Parameter Value	Description
---	---
DATATYPE	Column datatype, length or precision change,
LENGTH	Column length change (for example, VARCHAR(10) changes to VARCHAR(12)).
PRECISION	Column precision change (for example, DECIMAL(10,3) changes to DECIMAL(10,4)).
COMMENT	Column comment change.
NULL_TO_NOTNULL	Column nullable attribute change from NULL to NOT NULL.
NOTNULL_TO_NULL	Column nullable attribute change from NOT NULL to NULL.
NULL	Column nullable attribute change.
DEFAULT	Column default value change.
Examples	
Use to move to the next alternate key for a datastore.	
Usage	
Description	
This method moves to the next alternate key (AK) of the datastore for which a Web service is being generated.	
When first called, this method returns true and positions the current AK to the first AK of the datastore. If there is no AK for the datastore, it returns false.	
Subsequent calls position the current AK to the next AKs of the datastore, and return true. If the is no next AK, the method returns false.	
This method can be used only in SKMs.	
Examples	
In the example below, we iterate of all the AKs of the datastore. In each iteration of the while loop, the getAK	
and getAKColList	
methods return information on the various AKs of the datastore.	
Use to move to the next condition for a datastore.	
Usage	
Description	
This method moves to the next condition (check constraint) of the datastore for which a Web service is being generated.	
When first called, this method returns true and positions the current condition to the first condition of the datastore. If there is no condition for the datastore, it returns false.	
Subsequent calls position the current condition to the next conditions of the datastore, and return true. If the is no next condition, the method returns false.	
This method can be used only in SKMs.	
Examples	
In the example below, we iterate of all the conditions of the datastore. In each iteration of the while loop, the getCK method return information on the various conditions of the datastore.	
Use to move to the next foreign key for a datastore.	
Usage	
Description	
This method moves to the next foreign key (FK) of the datastore for which a Web service is being generated.	
When first called, this method returns true and positions the current FK to the first FK of the datastore. If there is no FK for the datastore, it returns false.	
Subsequent calls position the current FK to the next FKs of the datastore, and return true. If the is no next FK, the method returns false.	
This method can be used only in SKMs.	
Examples	
In the example below, we iterate of all the FKs of the datastore. In each iteration of the while loop, the getFK	
and getFKColList	
methods return information on the various FKs of the datastore.	
Use to set the number of inserted, updated, deleted or erroneous rows for the current task.	
Usage	
Description	
These methods set for the current task report the values for:	
These numbers can be set independently from the real number of lines processed.	
Note: This method can be used only within scripting engine commands, such as in Jython code, and should not be enclosed in <%%> tags.	
Examples	
In the Jython example below, we set the number of inserted rows to the constant value of 50, and the number of erroneous rows to a value coming from an ODI variable called #DEMO.NbErrors	
.	
Use to set the name of the loading or integration table.	
Usage	
Description	
This method sets the name of temporary table used for loading or integration. this name can be any value.	
When using the method, the loading or integration table name is no longer generated by ODI and does not follow the standard naming convention (for example, a loading table will not be prefixed with a C$ prefix). Yet, other methods using this table name will return the newly set value.	
The fist parameter pProperty indicates the temporary table name to set. The second parameter can be any valid table name.	
Parameters	
Parameters	Type
---	---
pProperty	String
pTableName	String
Examples	
Use to set the name of a session task in a Knowledge Module, Procedure, or action.	
Usage	
Description	
This method sets the name of a task to the taskName	
value. This value is set at run-time. This method is available in all Knowledge Modules, procedures, and actions (Global Methods).	
Parameters	
Parameters	Type
---	---
taskName	String
Examples	
This appendix provides a description of the Oracle Data Integrator SNP_REV tables. These tables are stored in a design-time repository and are used as staging tables for model metadata.	
Customized Reverse-engineering processes load these tables before integrating their content into the repository tables describing the models.	
See Chapter 3, "Reverse-Engineering Strategies" for more information.	
SNP_REV_SUB_MODEL describes the sub-models hierarchy to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
SMOD_CODE	varchar(35)
SMOD_NAME	varchar(400)
SMOD_PARENT_CODE	varchar(35)
IND_INTEGRATION	varchar(1)
TABLE_NAME_PATTERN	varchar(35)
REV_APPY_PATTERN	varchar(1)
REV_PATTERN_ORDER	varchar(10)
SNP_REV_TABLE describes the datastores (tables, views, etc.) to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
TABLE_NAME	varchar(128)
RES_NAME	varchar(400)
TABLE_ALIAS	varchar(128)
TABLE_TYPE	varchar(2)
TABLE_DESC	varchar(250)
IND_SHOW	varchar(1)
R_COUNT	numeric(10)
FILE_FORMAT	varchar(1)
FILE_SEP_FIELD	varchar(24)
FILE_ENC_FIELD	varchar(2)
FILE_SEP_ROW	varchar(24)
FILE_FIRST_ROW	numeric(10)
FILE_DEC_SEP	varchar(1)
SMOD_CODE	varchar(35)
OLAP_TYPE	varchar(2)
WS_NAME	varchar(400)
WS_ENTITY_NAME	varchar(400)
SUB_PARTITION_METH	varchar(1)
PARTITION_METH	varchar(1)
SNP_REV_COL lists the datastore columns to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
TABLE_NAME	varchar(128)
COL_NAME	varchar(128)
COL_HEADING	varchar(128)
COL_DESC	varchar(250)
DT_DRIVER	varchar(35)
POS	numeric(10)
LONGC	numeric(10)
SCALEC	numeric(10)
FILE_POS	numeric(10)
BYTES	numeric(10)
IND_WRITE	varchar(1)
COL_MANDATORY	varchar(1)
CHECK_FLOW	varchar(1)
CHECK_STAT	varchar(1)
COL_FORMAT	varchar(35)
COL_DEC_SEP	varchar(1)
REC_CODE_LIST	varchar(250)
COL_NULL_IF_ERR	varchar(1)
DEF_VALUE	varchar(100)
SCD_COL_TYPE	varchar(2)
IND_WS_SELECT	varchar(2)
IND_WS_UPDATE	varchar(2)
IND_WS_INSERT	varchar(2)
SNP_REV_KEY describes the datastore primary keys, alternate keys and indexes to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
TABLE_NAME	varchar(128)
KEY_NAME	varchar(128)
CONS_TYPE	varchar(2)
IND_ACTIVE	varchar(1)
CHECK_FLOW	varchar(1)
CHECK_STAT	varchar(1)
SNP_REV_KEY_COL lists the columns participating to the primary keys, alternate keys and indexes to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
TABLE_NAME	varchar(128)
KEY_NAME	varchar(128)
COL_NAME	varchar(128)
POS	numeric(10)
SNP_REV_JOIN describes the datastore references (foreign keys) to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
FK_NAME	varchar(128)
TABLE_NAME	varchar(128)
FK_TYPE	varchar(1)
PK_CATALOG	varchar(128)
PK_SCHEMA	varchar(128)
PK_TABLE_NAME	varchar(128)
IND_ACTIVE	varchar(1)
CHECK_FLOW	varchar(1)
CHECK_STAT	varchar(1)
DEFER	varchar(1)
Not that this field is not used.	
UPD_RULE	varchar(1)
DEL_RULE	varchar(1)
SNP_REV_JOIN_COL lists the matching columns participating to the references (foreign keys) to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
FK_NAME	varchar(128)
FK_COL_NAME	varchar(128)
FK_TABLE_NAME	varchar(128)
PK_COL_NAME	varchar(128)
PK_TABLE_NAME	varchar(128)
POS	numeric(10)
SNP_REV_COND describes the datastore condition and filters to reverse-engineer.	
Column	Type
---	---
I_MOD	numeric(10)
TABLE_NAME	varchar(128)
COND_NAME	varchar(128)
COND_TYPE	varchar(1)
COND_SQL | varchar(250) | No | SQL expression for applying this condition or filter |
COND_MESS | varchar(250) | No | Error message for this condition |
IND_ACTIVE | varchar(1) | No | 0/1 to indicate whether this constraint is active. |
CHECK_FLOW | varchar(1) | No | 1/0 to indicate whether to include this constraint check by default in the flow control. |
CHECK_STAT | varchar(1) | No | 1/0 to indicate whether to include this constraint check by default in the static control. |
 Copyright © 2011, Oracle and/or its affiliates. All rights reserved. |