

Index

A B C D E F G H I J K L M N O P Q R S T U V W X

A

	access control
	
	encryption, problems not solved by, 8.1.1
	enforcing, 10.9.1
	object privileges, 4.5.1
	password encryption, 3.2.1

	access control list (ACL)
	
	examples
	
	external network connection for e-mail alert, 9.5.9.1
	external network connections, 4.11.6
	wallet access, 4.11.6

	external network services
	
	about, 4.11.1
	adding more users or privileges, 4.11.4.1
	advantages, 4.11
	affect of upgrade from earlier release, 4.11.3
	creating ACL, 4.11.4
	DBMS_NETWORK_ACL_ADMIN package, general process, 4.11.4
	e-mail alert for audit violation tutorial, 9.5.9.1
	finding information about, 4.11.12
	hosts, assigning, 4.11.4.2
	network hosts, using wildcards to specify, 4.11.7
	ORA-24247 errors, 4.11.3
	order of precedence, hosts, 4.11.8
	port ranges, 4.11.9
	privilege assignments, about, 4.11.10
	privilege assignments, database administrators checking, 4.11.10.1
	privilege assignments, users checking, 4.11.10.2
	setting precedence, multiple roles, 4.11.11
	setting precedence, multiple users, 4.11.11
	syntax for creating, 4.11.4.1

	hosts
	
	local host, 4.11.4.2

	localhost setting, 4.11.4.2
	wallet access
	
	about, 4.11.2
	advantages, 4.11.2
	client certificate credentials, using, 4.11.5
	finding information about, 4.11.12
	non-shared wallets, 4.11.5
	password credentials, 4.11.5
	password credentials, using, 4.11.5
	shared database session, 4.11.5
	wallets with sensitive information, 4.11.5
	wallets without sensitive information, 4.11.5

	account locking
	
	example, 3.2.3.5
	explicit, 3.2.3.5
	password management, 3.2.3.5
	PASSWORD_LOCK_TIME initialization parameter, 3.2.3.5

	ad hoc tools
	
	database access, security problems of, 4.4.7.1

	ADM_PARALLEL_EXECUTE_TASK role
	
	about, 4.4.2

	ADMIN OPTION
	
	about, 4.6.1.1
	revoking privileges, 4.7.1
	revoking roles, 4.7.1
	roles, 4.4.5.1
	system privileges, 4.3.4

	administrative user passwords
	
	default, importance of changing, 10.5

	administrator privileges
	
	access, 10.9.2
	operating system authentication, 3.3.2
	passwords, 3.3.3, 10.5
	SYSDBA and SYSOPER access, centrally controlling, 3.3.1, 3.3.1
	write, on listener.ora file, 10.9.2

	adump audit files directory, 9.6.2
	adx_SID.txt file from XML audit trail
	
	about, 9.3.2.2

	alerts, used in fine-grained audit policy, 9.5.9.1
	"all permissions", 10.3
	ALTER privilege statement
	
	SQL statements permitted, 5.8.2

	ALTER PROCEDURE statement
	
	used for compiling procedures, 4.5.6.6

	ALTER PROFILE statement
	
	password management, 3.2.3.1

	ALTER RESOURCE COST statement, 2.4.4.2
	ALTER ROLE statement
	
	changing authorization method, 4.4.3

	ALTER SESSION statement
	
	schema, setting current, 5.7.1

	ALTER USER privilege, 2.3
	ALTER USER statement
	
	AUTHENTICATION USER PASSWORD clause deprecated, Preface
	default roles, 4.10.2
	explicit account unlocking, 3.2.3.5
	GRANT CONNECT THROUGH clause, 3.10.1.3
	passwords, changing, 2.3.1
	passwords, expiring, 3.2.3.7
	profiles, changing, 3.2.3.7
	REVOKE CONNECT THROUGH clause, 3.10.1.3
	user profile, 3.2.3.1

	altering users, 2.3
	ANSI operations
	
	Oracle Virtual Private Database affect on, 7.5.3

	ANY system privilege
	
	guidelines for security, 10.6

	application contexts
	
	about, 6.1.1
	as secure data cache, 6.1.4
	benefits of using, 6.1.4
	bind variables, 7.1.4
	components, 6.1.2
	DBMS_SESSION.SET_CONTEXT procedure, 6.3.3.6, 6.3.3.6
	driving context, 6.6
	editions, affect on, 6.1.5
	finding errors by checking trace files, 6.6
	finding information about, 6.6
	global application contexts
	
	authenticating user for multiple applications, 6.4.3.5
	creating, 6.4.2

	logon trigger, creating, 6.3.4
	Oracle Virtual Private Database, used with, 7.1.4
	performance, 7.4.2.8
	policy groups, used in, 7.3.5.1
	returning predicate, 7.1.4
	session information, retrieving, 6.3.3.2
	support for database links, 6.3.6
	types, 6.2
	users, nondatabase connections, 6.4.1, 6.4.3.6
	where values are stored, 6.1.3
	See also client session-based application contexts, database session-based application contexts, global application contexts

	application developers
	
	CONNECT role change, 10.11.3.2

	application security
	
	restricting wallet access to current application, 4.11.5
	sharing wallet with other applications, 4.11.5
	specifying attributes, 6.3.2

	application users who are database users
	
	Oracle Virtual Private Database, how it works with, 7.5.8

	applications
	
	about security policies for, 5.1
	database users, 5.2.1
	enhancing security with, 4.4.1.2
	object privileges, 5.8.1
	object privileges permitting SQL statements, 5.8.2
	One Big Application User authentication
	
	security considerations, 5.2.2
	security risks of, 5.2.1

	Oracle Virtual Private Database, how it works with, 7.5.4
	password handling, guidelines, 5.3.1.2
	password protection strategies, 5.3
	privileges, managing, 5.4
	roles
	
	multiple, 4.4.1.3.1
	privileges, associating with database roles, 5.6

	security, 4.4.7, 5.2.2
	security considerations for use, 5.2
	security limitations, 7.5.4
	security policies, 7.3.5.3
	validating with security policies, 7.3.5.5

	AQ_ADMINISTRATOR_ROLE role
	
	about, 4.4.2

	AQ_USER_ROLE role
	
	about, 4.4.2

	archiving
	
	operating system audit files, 9.8.3.4
	standard audit trail, 9.8.2.5
	timestamping audit trail, 9.9.3.4

	attacks
	
	See security attacks

	AUDIT EXECUTE PROCEDURE statement, 9.3.12.2
	audit files
	
	activities always written to, 9.1.5
	directory, 9.6.2
	file names, form of, 9.6.2
	operating system audit trail
	
	archiving, setting timestamp, 9.9.3.4
	audited actions in common with database audit trail, 9.3.3

	operating system file
	
	advantages of using, 9.3.4.3
	appearance of text file, 9.3.4.2
	appearance of XML file, 9.3.4.2
	archiving, 9.8.3.4
	contents, 9.3.4.1
	directory location, 9.3.4.5
	how it works, 9.3.4.4
	if becomes too full, 9.8.3.1

	standard audit trail
	
	archiving, setting timestamp, 9.9.3.4
	audited actions in common with operating system audit trail, 9.3.3
	records, archiving, 9.8.2.5

	where written to, 9.6.2

	AUDIT statement
	
	about, 9.3.1.1
	schema objects, 9.3.10.5

	audit trail
	
	about, 9.8.1
	archiving, 9.8.2.5
	deleting views, 9.10.3
	finding information about, 9.10.1
	interpreting, 9.10.2
	types of, 9.8.1
	See also standard audit trail, SYS.AUD$ table, SYS.FGA_LOG$ table

	AUDIT_FILE_DEST initialization parameter
	
	about, 9.3.4.5
	setting for OS auditing, 9.3.4.5

	AUDIT_SYS_OPERATIONS initialization parameter
	
	auditing SYS, 9.6.2

	AUDIT_SYSLOG_LEVEL initialization parameter
	
	how it affects mandatory audit records, 9.1.5

	AUDIT_TRAIL initialization parameter
	
	about, 9.3.2.1
	auditing SYS, 9.6.2
	database, starting in read-only mode, 9.3.2.2
	DB (database) setting, 9.3.2.2
	DB, EXTENDED setting, 9.3.2.2
	disabling, 9.3.2.2
	OS (operating system) setting, 9.3.2.2
	setting, 9.3.2.1
	values, 9.3.2.2
	XML setting, 9.3.2.2
	XML, EXTENDED setting, 9.3.2.2

	auditing
	
	administrators
	
	See standard auditing

	audit options, 9.2
	audit records, 9.8.1
	audit trail, sensitive data in, 10.10.1
	audit trails, 9.8.1
	before-and-after changes, recording with triggers, 9.7
	committed data, 9.3.6.2, 10.10.3
	database user names, 3.5
	default auditing, enabling, 9.4.1
	distributed databases and, 9.1.6
	finding information about, 9.10.1
	fine-grained
	
	See fine-grained auditing

	functions, 9.3.12.1
	functions, Oracle Virtual Private Database, 9.3.12.1
	general steps for, 9.2
	guidelines for security, 10.10
	historical information, 10.10.3
	keeping information manageable, 10.10.2
	LOBs, auditing
	
	user-defined columns, 9.5.2

	logon and logoff events, 9.3.7.3
	middle-tier systems, real user actions, 3.10.1.10
	multitier environments
	
	See standard auditing

	network
	
	See standard auditing

	object columns, 9.5.2
	objects
	
	See standard auditing

	One Big Application User authentication, compromised by, 5.2.1
	operating system files
	
	appearance, 9.3.4.2
	configuring, 9.3.2.2
	managing, 9.8.3

	operating-system user names, 3.5
	Oracle Virtual Private Database policy functions, 9.3.12.1
	packages, 9.3.12.1
	performance, 9.1.7
	PL/SQL packages, 9.3.12.1
	privileges
	
	See standard auditing

	procedures, 9.3.12.1
	range of focus, 9.2
	recommended settings, 10.10.5
	Sarbanes-Oxley Act
	
	auditing, meeting compliance through, 9.1.1

	schema objects
	
	See standard auditing

	schema objects created in the future, 9.3.10.5
	SQL statements
	
	See standard auditing

	standard
	
	See standard audit trail, standard auditing

	statements
	
	See standard auditing

	STMT_AUDIT_OPTION_MAP table, 9.3.3
	suspicious activity, 10.10.4
	SYS user, 9.6.2
	SYS.FGA_LOG$ table, 9.5.4
	SYSTEM user, 9.6.1
	SYSTEM_PRIVILEGE_MAP table, 9.3.3
	triggers, 9.3.12.1
	triggers used for, 9.7
	UNIX syslog, 9.1.5
	views
	
	active object options, 9.10.2.3
	active privilege options, 9.10.2.2
	active statement options, 9.10.2.1
	default object options, 9.10.2.4

	when audit options take effect, 9.3.1.3
	XML files
	
	appearance, 9.3.4.2
	configuring, 9.3.2.2

	See also SYS.AUD$ table, SYS.FGA_LOG$ table, standard auditing, standard audit trail, fine-grained auditing

	auditing, purging records
	
	about, 9.9.1
	cancelling archive timestamp, 9.9.6.7
	clearing database audit trail batch size, 9.9.6.8
	creating audit trail
	
	purge job, 9.9.3

	creating the purge job, 9.9.3.5
	database audit trail
	
	purging subset of records, 9.9.5

	deleting a purge job, 9.9.6.6
	disabling purge jobs, 9.9.6.4
	enabling purge jobs, 9.9.6.4
	example, 9.9.7
	general steps for, 9.9.2
	initializing
	
	cancelling, 9.9.6.3

	initializing cleanup operation, 9.9.3.3
	initializing, checking if done, 9.9.6.1
	purging audit trail manually, 9.9.4
	purging records in batched groups, 9.9.3.6
	roadmap, 9.9.2
	scheduling the purge job, 9.9.3.5
	setting archive timestamp, 9.9.3.4
	time interval for all purge jobs, 9.9.6.2
	time interval for named purge job, 9.9.6.5

	AUTHENTICATEDUSER role, 4.4.2
	authentication
	
	about, 3.1
	administrators
	
	operating system, 3.3.2
	passwords, 3.3.3
	SYSDBA and SYSOPER access, centrally controlling, 3.3.1

	by database, 3.4
	by SSL, 3.7.1.1
	client, 10.9.1
	client-to-middle tier process, 3.10.1.5
	database administrators, 3.3
	databases, using
	
	about, 3.4.1
	advantages, 3.4.2
	procedure, 3.4.3

	directory service, 3.7.1
	directory-based services, 3.6.2
	external authentication
	
	about, 3.8.1
	advantages, 3.8.2
	operating system authentication, 3.8.4
	user creation, 3.8.3

	global authentication
	
	about, 3.7
	advantages, 3.7.2
	user creation for private schemas, 3.7.1.1
	user creation for shared schemas, 3.7.1.2

	middle-tier authentication
	
	proxies, example, 3.10.1.7

	multitier, 3.9
	network authentication
	
	Secure Sockets Layer, 3.6.1
	third-party services, 3.6.2

	One Big Application User, compromised by, 5.2.1
	operating system authentication
	
	about, 3.5
	advantages, 3.5
	disadvantages, 3.5

	proxy user authentication
	
	about, 3.10.1
	expired passwords, 3.10.1.3

	public key infrastructure, 3.6.2
	RADIUS, 3.6.2
	remote, 10.9.1, 10.9.1
	specifying when creating a user, 2.2.3
	strong, 10.5
	SYSDBA on Windows systems, 3.3.2
	Windows native authentication, 3.3.2
	See also passwords, proxy authentication

	AUTHID DEFINER clause
	
	used with Oracle Virtual Private Database functions, 7.1.3

	authorization
	
	about, 4
	changing for roles, 4.4.3
	global
	
	about, 3.7
	advantages, 3.7.2

	multitier, 3.9
	omitting for roles, 4.4.3
	operating system, 4.4.4.3.1
	roles, about, 4.4.4

	automatic reparse
	
	Oracle Virtual Private Database, how it works with, 7.5.5

	Automatic Storage Management (ASM)
	
	SYSASM privilege, Preface

B

	banners
	
	auditing user actions, configuring, 5.9.5
	unauthorized access, configuring, 5.9.5

	batch jobs, authenticating users in, 3.2.5.1
	BFILEs
	
	guidelines for security, 10.6

	bind variables
	
	application contexts, used with, 7.1.4
	information captured in audit trail, 9.3.2.2

	BLOBS
	
	encrypting, 8.2.6

	BY ACCESS clause
	
	about, 9.3.6.5
	benefits of using, 9.3.6.5
	finding statement audit options, 9.10.2.1
	NOAUDIT statement non-support of, 9.3.6.7
	using, 9.3.6.5

C

	CAPI_USER_ROLE role, 4.4.2
	cascading revokes, 4.7.3
	CATNOAUD.SQL script
	
	about, 9.10.3
	audit trail views, deleting with, 9.10.3

	certificate key algorithm
	
	Secure Sockets Layer, 10.9.3

	change_on_install default password, 10.5
	character sets
	
	role names, multibyte characters in, 4.4.3
	role passwords, multibyte characters in, 4.4.4.1

	cipher suites
	
	Secure Sockets Layer, 10.9.3

	client connections
	
	guidelines for security, 10.9.1
	secure external password store, 3.2.5.3
	securing, 10.9.1

	client identifier
	
	setting for applications that use JDBC, 3.10.2.3

	client identifiers
	
	about, 3.10.2
	auditing users, 9.3.9
	consistency between DBMS_SESSION.SET_IDENTIFIER and DBMS_APPLICATION_INFO.SET_CLIENT_INFO, 3.10.2.4
	global application context, independent of, 3.10.2.3
	setting with DBMS_SESSION.SET_IDENTIFIER procedure, 6.4.1
	See also nondatabase users

	client session-based application contexts
	
	about, 6.5.1
	CLIENTCONTEXT namespace, clearing value from, 6.5.4
	CLIENTCONTEXT namespace, setting value in, 6.5.2
	retrieving CLIENTCONTEXT namespace, 6.5.3
	See also application contexts

	CLIENT_IDENTIFIER USERENV attribute
	
	setting and clearing with DBMS_SESSION package, 3.10.2.4
	setting with OCI user session handle attribute, 3.10.2.3
	See also USERENV namespace

	CLIENTID_OVERWRITE event, 3.10.2.4
	column masking behavior, 7.3.4.3
	
	column specification, 7.3.4.3
	restrictions, 7.3.4.3

	columns
	
	granting privileges for selected, 4.6.2.3
	granting privileges on, 4.6.2.3
	INSERT privilege and, 4.6.2.3
	listing users granted to, 4.12.3
	privileges, 4.6.2.3
	pseudo columns
	
	USER, 4.5.5.3

	revoking privileges on, 4.7.2.2

	command line recall attacks, 5.3.1.1, 5.3.1.4
	committed data
	
	auditing, 9.3.6.2, 10.10.3

	configuration
	
	guidelines for security, 10.8

	configuration files
	
	listener.ora, 10.9.2
	sample listener.ora file, 10.9.2
	server.key encryption file, 10.9.3
	tsnames.ora, 10.9.3
	typical directory, 10.9.3, 10.9.3

	CONNECT role
	
	about, 10.11
	applications
	
	account provisioning, 10.11.2.2
	affects of, 10.11.2
	database upgrades, 10.11.2.1
	installation of, 10.11.2.3

	script to create, 4.4.2
	users
	
	application developers, impact, 10.11.3.2
	client-server applications, impact, 10.11.3.3
	general users, impact, 10.11.3.1
	how affects, 10.11.3

	why changed, 10.11.1

	CONNECT role, privilege available to, 4.4.1.1
	connection pooling
	
	about, 3.9
	global application contexts, 6.4.1
	nondatabase users, 6.4.3.6
	proxy authentication, 3.10.1.5

	connections
	
	SYS privilege, 10.3

	CPU time limit, 2.4.2.3
	CREATE ANY PROCEDURE system privilege, 4.5.6.5
	CREATE ANY TABLE statement
	
	non-administrative users, 10.3

	CREATE CONTEXT statement
	
	about, 6.3.2
	example, 6.3.2

	CREATE PROCEDURE system privilege, 4.5.6.5
	CREATE PROFILE statement
	
	account locking period, 3.2.3.5
	failed login attempts, 3.2.3.5
	password aging and expiration, 3.2.3.7
	password management, 3.2.3.1
	passwords, example, 3.2.3.7

	CREATE ROLE statement
	
	IDENTIFIED EXTERNALLY option, 4.4.4.3

	CREATE SCHEMA statement
	
	securing, 5.7.1

	CREATE SESSION statement, 4.4.1.1
	
	CONNECT role privilege, 10.4
	securing, 5.7.1

	CREATE USER statement
	
	explicit account locking, 3.2.3.5
	IDENTIFIED BY option, 2.2.3
	IDENTIFIED EXTERNALLY option, 2.2.3
	passwords, expiring, 3.2.3.7
	user profile, 3.2.3.1

	CSW_USR_ROLE role, 4.4.2
	CTXAPP role, 4.4.2
	cursors
	
	reparsing, for application contexts, 6.3.4
	shared, used with Virtual Private Database, 7.1.4

	custom installation, 10.8, 10.8
	CWM_USER role, 4.4.2

D

	data definition language (DDL)
	
	roles and privileges, 4.4.1.6
	standard auditing, 9.3.7.2

	data dictionary
	
	protecting, 10.6
	securing with O7_DICTIONARY_ACCESSIBILITY, 4.3.2.1

	data dictionary views
	
	See views

	data files, 10.6
	
	guidelines for security, 10.6

	data manipulation language (DML)
	
	privileges controlling, 4.5.4.1
	standard auditing, 9.3.7.2

	data security
	
	encryption, problems not solved by, 8.1.3

	database administrators (DBAs)
	
	access, controlling, 8.1.2
	authentication, 3.3
	malicious, encryption not solved by, 8.1.2

	database audit trail
	
	audited actions in common with operating system audit trail, 9.3.3
	batch size for records during purging, 9.9.3.6
	protecting, 9.1.3
	tablespace, moving to one other than SYSTEM, 9.8.2.3

	Database Configuration Assistant (DBCA)
	
	default passwords, changing, 10.5
	user accounts, automatically locking and expiring, 10.3

	database links
	
	application context support, 6.3.6
	application contexts, 6.3.3.5
	auditing, 9.3.10.2
	authenticating with Kerberos, 3.6.2
	authenticating with third-party services, 3.6.2
	global user authentication, 3.7.2
	object privileges, 4.5.3
	operating system accounts, care needed, 3.5
	session-based application contexts, accessing, 6.3.3.5

	database session-based application contexts
	
	about, 6.3.1
	cleaning up after user exits, 6.3.1
	components, 6.3.1
	creating, 6.3.2
	database links, 6.3.3.5
	dynamic SQL, 6.3.3.3
	externalized, using, 6.3.8
	how to use, 6.3
	initializing externally, 6.3.6
	initializing globally, 6.3.7.1
	ownership, 6.3.2
	parallel queries, 6.3.3.4
	PL/SQL package creation, 6.3.3
	session information, setting, 6.3.3.6
	SYS_CONTEXT function, 6.3.3.2
	trusted procedure, 6.1.2
	tutorial, 6.3.5.1
	See also application contexts

	database upgrades and CONNECT role, 10.11.2.1
	databases
	
	access control
	
	password encryption, 3.2.1

	additional security resources, 1.2
	authentication, 3.4
	database user and application user, 5.2.1
	default audit settings
	
	about, 9.4.1
	DBCA-created databases, 9.4.1
	manually-created databases, 9.4.1

	default password security settings, 3.2.3.4
	
	DBCA-created databases, 3.2.3.4
	manually-created databases, 3.2.3.4

	default security features, summary, 1.1
	granting privileges, 4.6
	granting roles, 4.6
	limitations on usage, 2.4.1
	read-only mode, starting in, 9.3.2.2
	security and schemas, 5.7
	security embedded, advantages of, 5.2.2
	security policies based on, 7.1.2.1

	DATAPUMP_EXP_FULL_DATABASE role, 4.4.2
	DATAPUMP_IMP_FULL_DATABASE role, 4.4.2
	DB_EXTENDED setting in AUDIT_TRAIL initialization parameter, Preface
	DBA role
	
	about, 4.4.2

	DBA_NETWORK_ACL_PRIVILEGES view, 4.11.10
	DBA_ROLE_PRIVS view
	
	application privileges, finding, 5.4

	DBMS_APPLICATION.SET_CLIENT_INFO procedure
	
	DBMS_SESSION.SET_IDENTIFIER value, overwriting, 3.10.2.4

	DBMS_CRYPTO package
	
	about, 8.3
	encryption algorithms supported, 8.3
	examples, 8.5.1

	DBMS_FGA package
	
	about, 9.5.8.1
	ADD_POLICY procedure, 9.5.8.2
	DISABLE_POLICY procedure, 9.5.8.3
	DROP_POLICY procedure, 9.5.8.4
	ENABLE_POLICY procedure, 9.5.8.3

	DBMS_OBFUSCATION_TOOLKIT package
	
	backward compatibility, 8.3
	See also DBMS_CRYPTO package

	DBMS_RLS package
	
	about, 7.3.1

	DBMS_RLS.ADD_CONTEXT procedure, 7.3.1
	DBMS_RLS.ADD_GROUPED_POLICY procedure, 7.3.1
	DBMS_RLS.ADD_POLICY
	
	sec_relevant_cols parameter, 7.3.4.1
	sec_relevant_cols_opt parameter, 7.3.4.3

	DBMS_RLS.ADD_POLICY procedure
	
	about, 7.3.1

	DBMS_RLS.CREATE_POLICY_GROUP procedure, 7.3.1
	DBMS_RLS.DELETE_POLICY_GROUPS procedure, 7.3.1
	DBMS_RLS.DISABLE_GROUPED_POLICY procedure, 7.3.1
	DBMS_RLS.DROP_CONTEXT procedure, 7.3.1
	DBMS_RLS.DROP_GROUPED_POLICY procedure, 7.3.1
	DBMS_RLS.DROP_POLICY procedure, 7.3.1
	DBMS_RLS.ENABLE_GROUPED_POLICY procedure, 7.3.1
	DBMS_RLS.ENABLE_POLICY procedure, 7.3.1
	DBMS_RLS.REFRESH_GROUPED_POLICY procedure, 7.3.1
	DBMS_RLS.REFRESH_POLICY procedure, 7.3.1
	DBMS_SESSION package
	
	client identifiers, using, 3.10.2.4
	global application context, used in, 6.4.3
	SET_CONTEXT procedure
	
	about, 6.3.3.6
	application context name-value pair, setting, 6.3.3.1

	DBMS_SESSION.SET_CONTEXT procedure
	
	about, 6.3.3.6
	syntax, 6.3.3.6
	username and client_id settings, 6.4.3.3

	DBMS_SESSION.SET_IDENTIFIER procedure
	
	client session ID, setting, 6.4.1
	DBMS_APPLICATION.SET_CLIENT_INFO value, overwritten by, 3.10.2.4

	DBMS_SQLHASH encryption package
	
	about, 8.4.1
	GETHASH function, 8.4.2

	DBSNMP user account
	
	password usage, 10.5

	DDL
	
	See data definition language

	default passwords, 10.5, 10.5, 10.5, 10.5
	
	change_on_install or manager passwords, 10.5
	changing, importance of, 3.2.3.2
	finding, 3.2.3.2

	default permissions, 10.6
	default profiles
	
	about, 3.2.3.3

	default roles
	
	setting for user, 2.2.8
	specifying, 4.10.2

	default users
	
	accounts, 10.3, 10.3
	Enterprise Manager accounts, 10.3
	passwords, 10.5

	defaults
	
	tablespace quota, 2.2.5
	user tablespaces, 2.2.4

	definer's rights
	
	about, 4.5.6.3
	procedure privileges, used with, 4.5.6.3
	procedure security, 4.5.6.3
	secure application roles, 5.5.2
	used with Oracle Virtual Private Database functions, 7.1.3

	DELETE privilege
	
	SQL statements permitted, 5.8.2

	DELETE_CATALOG_ROLE role
	
	about, 4.4.2
	SYS schema objects, enabling access to, 4.3.2.2

	denial-of-service (DoS) attacks
	
	bad packets, preventing, 5.9.1
	networks, securing, 10.9.2

	denial-of-service attacks
	
	about, Glossary

	denial-of-service(DoS) attacks
	
	audit trail, writing to operating system file, 9.3.4.3

	deprecated security features, Preface
	dictionary protection mechanism, 4.3.2.1
	directory authentication, configuring for SYSDBA or SYSOPER access, 3.3.1.1
	directory object auditing
	
	configuring, 9.3.11.2
	removing, 9.3.11.3

	directory objects
	
	auditing, 9.3.11.1
	granting EXECUTE privilege on, 4.6.1

	directory-based services authentication, 3.6.2
	disabling unnecessary services
	
	FTP, TFTP, TELNET, 10.9.2

	dispatcher processes (Dnnn)
	
	limiting SGA space for each session, 2.4.2.5

	distributed databases
	
	auditing and, 9.1.6

	DML
	
	See data manipulation language

	driving context, 6.6
	DROP PROFILE statement
	
	example, 2.4.4.2

	DROP ROLE statement
	
	example, 4.4.6
	security domain, affected, 4.4.6

	DROP USER statement
	
	about, 2.5
	schema objects of dropped user, 2.5

	DUAL table
	
	about, 6.3.3.2

	dynamic Oracle Virtual Private Database policy types, 7.3.6.2
	DYNAMIC policy type, 7.3.6.2

E

	editions
	
	application contexts, how affects, 6.1.5
	fine-grained auditing packages, results in, 6.4.3.2
	global application contexts, how affects, 6.4.3.2
	Oracle Virtual Private Database packages, results in, 6.4.3.2

	EJBCLIENT role, 4.4.2
	e-mail alert example, 9.5.9.1
	encryption
	
	access control, 8.1.1
	backup media, reason why to encrypt, 3.2.4
	BLOBS, 8.2.6
	challenges, 8.2
	data security, problems not solved by, 8.1.3
	data transfer, 10.9.2
	DBMS_CRYPTO package, 8.3, 8.3
	deleted encrypted data, 10.6
	examples, 8.5.1
	finding information about, 8.6
	indexed data, 8.2.1
	key generation, 8.2.2
	key storage, 8.2.4
	key transmission, 8.2.3
	keys, changing, 8.2.5
	malicious database administrators, 8.1.2
	network traffic, 10.9.2
	problems not solved by, 8.1
	transparent data encryption, 8.2.4.4
	transparent tablespace encryption, 8.2.4.4

	enterprise directory service, 4.4.4.4
	Enterprise Edition, 10.5
	Enterprise Manager
	
	granting roles, 4.4.5
	statistics monitor, 2.4.3

	enterprise roles, 3.7, 4.4.4.4
	enterprise user management, 5.2.1
	Enterprise User Security
	
	application context, globally initialized, 6.3.7.3
	proxy authentication
	
	Oracle Virtual Private Database, how it works with, 7.5.8

	enterprise users
	
	centralized management, 3.7
	global role, creating, 4.4.4.4
	One Big Application User authentication, compromised by, 5.2.1
	proxy authentication, 3.10.1
	shared schemas, protecting users, 5.7.2

	errors
	
	ORA-01720, 4.5.5.2
	ORA-06512, 9.5.9.6
	ORA-24247, 4.11.3, 9.5.9.6
	ORA-28009, 4.3.2.1
	ORA-28031, 4.10.2
	ORA-28040, 3.4.1
	ORA-28132, Preface

	examples
	
	access control lists
	
	external network connections, 4.11.6
	wallet access, 4.11.6

	account locking, 3.2.3.5
	audit trail, purging, 9.9.7
	audit trigger to record before-and-after values, 9.7
	data encryption
	
	encrypting and decrypting BLOB data, 8.5.3
	encrypting and decrypting procedure with AES 256-Bit, 8.5.2

	directory objects, granting EXECUTE privilege on, 4.6.1
	encrypting procedure, 8.5.1
	Java code to read passwords, 5.3.4
	locking an account with CREATE PROFILE, 3.2.3.5
	login attempt grace period, 3.2.3.7
	nondatabase user authentication, 6.4.3.6
	O7_DICTIONARY_ACCESSIBILITY initialization parameter, setting, 4.3.2.1
	passwords
	
	aging and expiration, 3.2.3.7
	changing, 2.3.1
	creating for user, 2.2.3

	privileges
	
	granting ADMIN OPTION, 4.6.1.1
	views, 4.12

	procedure privileges affecting packages, 4.5.6.7, 4.5.6.7
	profiles, assigning to user, 2.2.7
	roles
	
	altering for external authorization, 4.4.3
	creating for application authorization, 4.4.4.2
	creating for external authorization, 4.4.4.3
	creating for password authorization, 4.4.3
	default, setting, 4.10.2
	using SET ROLE for password-authenticated roles, 4.4.4.1
	views, 4.12

	secure external password store, 3.2.5.2
	session ID of user
	
	finding, 2.5
	terminating, 2.5

	system privilege and role, granting, 4.6.1
	tablespaces
	
	assigning default to user, 2.2.4
	quota, assigning to user, 2.2.5
	temporary, 2.2.6

	type creation, 4.5.7.5
	users
	
	account creation, 2.2.1
	creating with GRANT statement, 4.6.1.2
	dropping, 2.5
	middle-tier server proxying a client, 3.10.1.3
	naming, 2.2.2
	object privileges granted to, 4.6.2
	proxy user, connecting as, 3.10.1.3

	See also tutorials

	exceptions
	
	WHEN NO DATA FOUND, used in application context package, 6.3.5.4
	WHEN OTHERS, used in triggers
	
	development environment (debugging) example, 6.3.4
	production environment example, 6.3.4

	exclusive mode
	
	SHA-1 password hashing algorithm, enabling, 3.2.4

	EXECUTE privilege
	
	SQL statements permitted, 5.8.2

	EXECUTE_CATALOG_ROLE role
	
	about, 4.4.2
	SYS schema objects, enabling access to, 4.3.2.2

	execution time for statements, measuring, 7.3.6.2
	EXEMPT ACCESS POLICY privilege
	
	Oracle Virtual Private Database enforcements, exemption, 7.5.7.2

	EXP_FULL_DATABASE role
	
	about, 4.4.2

	expiring a password
	
	explicitly, 3.2.3.7

	exporting data
	
	direct path export impact on Oracle Virtual Private Database, 7.5.7.2
	policy enforcement, 7.5.7.2

	external authentication
	
	about, 3.8.1
	advantages, 3.8.2
	network, 3.8.5
	operating system, 3.8.4, 3.8.4
	user creation, 3.8.3

	external network services, fine-grained access to
	
	See access control list (ACL)

	external tables, 10.6

F

	failed login attempts
	
	account locking, 3.2.3.5
	password management, 3.2.3.5
	resetting, 3.2.3.5

	features, new security
	
	See new features, security

	files
	
	adx_SID.txt
	
	about, 9.3.2.2

	BFILEs
	
	operating system access, restricting, 10.6

	BLOB, 8.2.6
	data
	
	operating system access, restricting, 10.6

	external tables
	
	operating system access, restricting, 10.6

	keys, 8.2.4.2
	listener.ora file
	
	guidelines for security, 10.9.2, 10.9.3

	log
	
	audit file location for Windows, 9.6.2
	audit file locations, 9.3.4.5
	operating system access, restricting, 10.6

	restrict listener access, 10.9.2
	server.key encryption file, 10.9.3
	symbolic links, restricting, 10.6
	tnsnames.ora, 10.9.3
	trace
	
	operating system access, restricting, 10.6

	fine-grained access control
	
	See Oracle Virtual Private Database (VPD)

	fine-grained auditing
	
	about, 9.5.1
	activities always recorded, 9.5.4
	advantages, 9.5.2, 9.5.2
	alerts, adding to policy, 9.5.9.1
	archiving audit trail, 9.8.2.5
	columns, specific, 9.5.8.2
	creating audit trail for, 9.5.6
	DBMS_FGA package, 9.5.8.1
	edition-based redefinitions, 9.5.5
	editions, results in, 6.4.3.2
	finding errors by checking trace files, 9.10
	how audit records are generated, 9.5.7
	how to use, 9.5.1
	non-SYS activities audited, 9.1.4
	policies
	
	adding, 9.5.8.2
	disabling, 9.5.8.3
	dropping, 9.5.8.4
	enabling, 9.5.8.3
	modifying, 9.5.8.2
	where created, 9.5.8.2

	privileges needed, 9.5.3
	records
	
	archiving, 9.8.2.5

	See also SYS.FGA_LOG$ table

	firewalls
	
	advice about using, 10.9.2
	database server location, 10.9.2
	ports, 10.9.3
	supported types, 10.9.2

	flashback query
	
	auditing, used with, 9.8.2.1
	Oracle Virtual Private Database, how it works with, 7.5.6

	foreign keys
	
	privilege to use parent key, 4.5.4.2

	FTP service, 10.9.2
	functions
	
	auditing, 9.3.12.1
	Oracle Virtual Private Database
	
	components of, 7.2.1
	privileges used to run, 7.1.3

	privileges for, 4.5.6.1
	roles, 4.4.1.5

G

	GATHER_SYSTEM_STATISTICS role, 4.4.2
	global application contexts
	
	about, 6.4.1
	authenticating nondatabase users, 6.4.3.6
	components, 6.4.1
	editions, affect on, 6.4.3.2
	example of authenticating nondatabase users, 6.4.3.6
	example of authenticating user moving to different application, 6.4.3.5
	example of setting values for all users, 6.4.3.4
	Oracle RAC instances, 6.4.1
	ownership, 6.4.2
	PL/SQL package creation, 6.4.3.1
	process, lightweight users, 6.4.6.2
	process, standard, 6.4.6.1
	sharing values globally for all users, 6.4.3.4
	system global area, 6.4.1
	tutorial for client session IDs, 6.4.5.1
	used for One Big Application User scenarios, 7.5.8
	user name retrieval with USER function, 6.4.3.3
	uses for, 7.5.8
	See also application contexts

	global authentication
	
	about, 3.7
	advantages, 3.7.2
	user creation for private schemas, 3.7.1.1
	user creation for shared schemas, 3.7.1.2

	global authorization
	
	about, 3.7
	advantages, 3.7.2
	role creation, 4.4.4.4
	roles, 3.7

	global roles
	
	about, 4.4.4.4

	global users, 3.7
	GLOBAL_AQ_USER_ROLE role, 4.4.2
	grace period for login attempts
	
	example, 3.2.3.7

	grace period for password expiration, 3.2.3.7
	GRANT ALL PRIVILEGES statement
	
	SELECT ANY DICTIONARY privilege, exclusion of, 10.6

	GRANT ANY OBJECT PRIVILEGE system privilege, 4.6.2.2, 4.7.2.1
	GRANT ANY PRIVILEGE system privilege, 4.3.4
	GRANT CONNECT THROUGH clause
	
	consideration when setting FAILED_LOGIN_ATTEMPTS parameter, 3.2.3.3
	for proxy authorization, 3.10.1.3

	GRANT statement, 4.6.1
	
	ADMIN OPTION, 4.6.1.1
	creating a new user, 4.6.1.2
	object privileges, 4.6.2, 5.8.1
	system privileges and roles, 4.6
	when takes effect, 4.10
	WITH GRANT OPTION, 4.6.2.1

	granting privileges and roles
	
	about, 4.3.3
	finding information about, 4.12
	specifying ALL, 4.5.2

	guidelines for security
	
	auditing, 10.10
	custom installation, 10.8, 10.8
	data files and directories, 10.6
	encrypting sensitive data, 10.6
	installation and configuration, 10.8
	networking security, 10.9
	operating system accounts, limiting privileges, 10.6
	operating system users, limiting number of, 10.6
	Oracle home default permissions, disallowing modification, 10.6
	ORACLE_DATAPUMP access driver, 10.7
	passwords, 10.5
	Secure Sockets Layer
	
	mode, 10.9.3
	TCPS protocol, 10.9.3

	symbolic links, restricting, 10.6
	user accounts and privileges, 10.3

H

	hackers
	
	See security attacks

	HS_ADMIN_EXECUTE_ROLE role
	
	about, 4.4.2

	HS_ADMIN_ROLE role
	
	about, 4.4.2

	HS_ADMIN_SELECT_ROLE role
	
	about, 4.4.2

	HTTP authentication
	
	See access control lists (ACL), wallet access

	HTTPS
	
	port, correct running on, 10.9.3

I

	IMP_FULL_DATABASE role
	
	about, 4.4.2

	INDEX privilege
	
	SQL statements permitted, 5.8.2

	indexed data
	
	encryption, 8.2.1

	indirectly granted roles, 4.4.1.1
	initialization parameters
	
	application protection, 5.9
	AUDIT_FILE_DEST, 9.1.5, 9.6.2
	AUDIT_SYS_OPERATIONS, 9.6.2
	AUDIT_SYSLOG_LEVEL, 9.3.5.4
	AUDIT_TRAIL
	
	about, 9.3.2.1
	using, 9.3.2.2

	current value, checking, 9.3.2.1
	FAILED_LOGIN_ATTEMPTS, 3.2.3.3
	MAX_ENABLED_ROLES, 4.10.3
	O7_DICTIONARY_ACCESSIBILITY, 4.3.2.1
	OS_AUTHENT_PREFIX, 3.8.1
	OS_ROLES, 4.4.4.3.1
	PASSWORD_GRACE_TIME, 3.2.3.3, 3.2.3.7
	PASSWORD_LIFE_TIME, 3.2.3.3, 3.2.3.7
	PASSWORD_LOCK_TIME, 3.2.3.3, 3.2.3.5
	PASSWORD_REUSE_MAX, 3.2.3.3, 3.2.3.6
	PASSWORD_REUSE_TIME, 3.2.3.3, 3.2.3.6
	REMOTE_OS_AUTHENT, 10.9.1
	RESOURCE_LIMIT, 2.4.4
	SEC_CASE_SENSITIVE_LOGIN, 3.2.3.9
	SEC_MAX_FAILED_LOGIN_ATTEMPTS, 5.9.3
	SEC_PROTOCOL_ERROR_FURTHER_ACTION, 5.9.2
	SEC_PROTOCOL_ERROR_TRACE_ACTION, 5.9.1
	SEC_RETURN_SERVER_RELEASE_BANNER, 5.9.4
	SEC_USER_AUDIT_ACTION_BANNER, 5.9.5
	SEC_USER_UNAUTHORIZED_ACCESS_BANNER, 5.9.5

	INSERT privilege
	
	granting, 4.6.2.3
	revoking, 4.7.2.2
	SQL statements permitted, 5.8.2

	installation
	
	guidelines for security, 10.8

	intruders
	
	See security attacks

	invoker's rights
	
	about, 4.5.6.4
	procedure privileges, used with, 4.5.6.3
	procedure security, 4.5.6.4
	secure application roles, 5.5.2
	secure application roles, requirement for enabling, 5.5.2

	IP addresses
	
	falsifying, 10.9.2

J

	JAVA_ADMIN role, 4.4.2
	JAVA_DEPLOY role, 4.4.2
	JAVADEBUGPRIV role, 4.4.2
	JAVAIDPRIV role, 4.4.2
	JAVASYSPRIV role, 4.4.2
	JAVAUSERPRIV role, 4.4.2
	JDBC connections
	
	JDBC Thin Driver proxy authentication
	
	configuring, 3.10.1
	with real user, 3.10.1.5

	JDBC/OCI proxy authentication, 3.10.1
	
	multiple user sessions, 3.10.1.5
	Oracle Virtual Private Database, 7.5.8

	JMXSERVER role, 4.4.2

K

	Kerberos authentication, 3.6.2
	
	configuring for SYSDBA or SYSOPER access, 3.3.1.2
	password management, 10.5

	key generation
	
	encryption, 8.2.2

	key storage
	
	encryption, 8.2.4

	key transmission
	
	encryption, 8.2.3

L

	LBAC_DBA role, 4.4.2
	least privilege principle, 10.3
	
	about, 10.3
	granting user privileges, 10.3
	middle-tier privileges, 3.10.1.6

	lightweight users
	
	example using a global application context, 6.4.5.1
	Lightweight Directory Access Protocol (LDAP), 7.4.2.8

	listener
	
	not an Oracle owner, 10.9.2
	preventing online administration, 10.9.2
	restrict privileges, 10.9.2, 10.9.2
	secure administration, 10.9.2

	listener.ora file
	
	administering remotely, 10.9.2, 10.9.2
	default location, 10.9.3
	online administration, preventing, 10.9.2
	TCPS, securing, 10.9.3

	LOBS
	
	auditing, 9.5.2

	lock and expire
	
	default accounts, 10.3
	predefined user accounts, 10.3

	log files
	
	auditing, default location, 9.3.4.5
	owned by trusted user, 10.6
	Windows Event Viewer, 9.6.2

	logical reads limit, 2.4.2.4
	logon triggers
	
	auditing current session, 9.3.7.3
	examples, 6.3.4
	externally initialized application contexts, 6.3.4
	secure application roles, 4.4.8

	LOGSTDBY_ADMINISTRATOR role, 4.4.2

M

	malicious database administrators
	
	See also security attacks

	manager default password, 10.5
	mandatory auditing
	
	about, 9.1.5
	syslog, written to, 9.1.5

	memory
	
	users, viewing, 2.6.5

	MERGE INTO statement, affected by DBMS_RLS.ADD_POLICY statement_types parameter, 7.3.3
	methods
	
	privileges on, 4.5.7

	MGMT_USER role, 4.4.2
	middle-tier systems
	
	auditing real user actions, 3.10.1.10
	client identifiers, 3.10.2.1
	enterprise user connections, 3.10.1.9.2
	password-based proxy authentication, 3.10.1.9.1
	privileges, limiting, 3.10.1.6
	proxies authenticating users, 3.10.1.7
	proxying but not authenticating users, 3.10.1.8
	reauthenticating user to database, 3.10.1.9
	USERENV namespace attributes, accessing, 6.3.6.3

	monitoring user actions
	
	See also auditing, standard auditing, fine-grained auditing

	multiplex multiple-client network sessions, 10.9.2
	My Oracle Support
	
	security patches, downloading, 10.2.1

N

	Net8
	
	See Oracle Net

	network auditing
	
	about, 9.3.13.1
	removing, 9.3.13.3

	network authentication
	
	external authentication, 3.8.5
	guidelines for securing, 10.5
	roles, granting using, 4.9
	Secure Sockets Layer, 3.6.1
	smart cards, 10.5
	third-party services, 3.6.2
	token cards, 10.5
	X.509 certificates, 10.5

	network connections
	
	denial-of-service (DoS) attacks, addressing, 10.9.2
	guidelines for security, 10.9, 10.9.1, 10.9.2
	securing, 10.9.2

	network IP addresses
	
	guidelines for security, 10.9.2

	new features, security, Preface
	NOAUDIT statement
	
	audit options, removing, 9.3.6.7
	default object audit options, disabling, 9.3.10.6
	network auditing, removing, 9.3.13.3
	object auditing, removing, 9.3.10.6
	privilege auditing, removing, 9.3.8.4
	statement auditing, removing, 9.3.7.4, 9.3.7.4

	nondatabase users
	
	about, 6.4.1
	audit record information, 9.8.1
	auditing, 9.5.10.1
	clearing session data, 6.4.3.7
	creating client session-based application contexts, 6.5.1
	global application contexts
	
	package example, 6.4.3.6
	reason for using, 6.4.1
	setting, 6.4.3.6
	tutorial, 6.4.5.1

	One Big Application User authentication
	
	about, 7.5.8
	features compromised by, 5.2.1
	security risks, 5.2.1

	Oracle Virtual Private Database
	
	how it works with, 7.5.8
	tutorial for creating a policy group, 7.4.3.1

	See also application contexts, client identifiers

O

	O7_DICTIONARY_ACCESSIBILITY initialization parameter
	
	about, 4.3.2.1
	auditing privileges on SYS objects, 9.1.3, 9.3.1.2
	data dictionary protection, 10.6
	default setting, 10.6
	securing data dictionary with, 4.3.2.1

	object columns
	
	auditing, 9.5.2

	object privileges, 10.3
	
	about, 4.5.3
	granting on behalf of the owner, 4.6.2.2
	managing, 5.8
	revoking, 4.7.2
	revoking on behalf of owner, 4.7.2.1
	schema object privileges, 4.5.3
	See also schema object privileges

	objects
	
	applications, managing privileges in, 5.8
	granting privileges, 5.8.2
	privileges
	
	applications, 5.8.1
	managing, 4.5.7

	protecting in shared schemas, 5.7.2
	protecting in unique schemas, 5.7.1
	SYS schema, access to, 4.3.2.2

	OEM_ADVISOR role, 4.4.2
	OEM_MONITOR role, 4.4.2
	OLAP_DBA role, 4.4.2
	OLAP_USER role, 4.4.2
	OLAP_XS_ADMIN role, 4.4.2
	OLAPI_TRACE_USER role, 4.4.2
	One Big Application User authentication
	
	See nondatabase users

	operating system audit trail
	
	age, controlling, 9.8.3.3
	audited actions in common with database audit trail, 9.3.3
	size, controlling, 9.8.3.2

	operating systems
	
	accounts, 4.9.2
	authentication
	
	about, 3.5
	advantages, 3.5
	disadvantages, 3.5
	roles, using, 4.9

	authentication, external, 3.8.4
	default permissions, 10.6
	enabling and disabling roles, 4.9.5
	operating system account privileges, limiting, 10.6
	role identification, 4.9.2
	roles and, 4.4.1.7
	roles, granting using, 4.9
	users, limiting number of, 10.6

	ORA-01720 error, 4.5.5.2
	ORA-06512 error, 9.5.9.6
	ORA-1536 error, 2.2.5.1
	ORA-24247 error, 4.11.3, 9.5.9.6
	ORA-28009 error, 4.3.2.1
	ORA-28031 error, 4.10.2
	ORA-28040 error, 3.4.1
	ORA-28132 error, Preface
	Oracle Advanced Security
	
	network authentication services, 10.5
	network traffic encryption, 10.9.2
	user access to application schemas, 5.7.2

	Oracle Call Interface (OCI)
	
	application contexts, client session-based, 6.5.1
	proxy authentication, 3.10.1
	
	Oracle Virtual Private Database, how it works with, 7.5.8

	proxy authentication with real user, 3.10.1.5
	security-related initialization parameters, 5.9

	Oracle Connection Manager
	
	securing client networks with, 10.9.2

	Oracle Enterprise Security Manager
	
	role management with, 3.6.2

	Oracle home
	
	default permissions, disallowing modification, 10.6

	Oracle Internet Directory (OID)
	
	authenticating with directory-based service, 3.6.2
	SYSDBA and SYSOPER access, controlling, 3.3.1

	Oracle Java Virtual Machine (OJVM)
	
	permissions, restricting, 10.3

	Oracle Label Security (OLS)
	
	Oracle Virtual Private Database, using with, 7.5.7.1

	Oracle Net
	
	firewall support, 10.9.2

	Oracle Real Application Clusters
	
	archive timestamp for audit records, 9.9.3.4
	global contexts, 6.4.1

	Oracle Technology Network
	
	security alerts, 10.2.1

	Oracle Virtual Private Database
	
	edition-based redefinitions, 7.5.1

	Oracle Virtual Private Database (VPD)
	
	about, 7.1.1
	ANSI operations, 7.5.3
	application contexts
	
	tutorial, 7.4.2.1
	used with, 7.1.4

	applications
	
	how it works with, 7.5.4
	users who are database users, how it works with, 7.5.8

	applications using for security, 5.2.2
	automatic reparsing, how it works with, 7.5.5
	benefits, 7.1.2
	column level, 7.3.4.1
	column masking behavior
	
	enabling, 7.3.4.3
	restrictions, 7.3.4.3

	column-level display, 7.3.4.1
	components, 7.2
	configuring, 7.3
	cursors, shared, 7.1.4
	editions, results in, 6.4.3.2
	Enterprise User Security proxy authentication, how it works with, 7.5.8
	exporting data, 7.5.7.2
	finding information about, 7.6
	flashback query, how it works with, 7.5.6
	function
	
	auditing, 9.3.10.2
	components, 7.2.1
	how it is executed, 7.1.3

	JDBC proxy authentication, how it works with, 7.5.8
	MERGE INTO, ORA-28132 error, Preface
	nondatabase user applications, how works with, 7.5.8
	OCI proxy authentication, how it works with, 7.5.8
	Oracle Label Security
	
	exceptions in behavior, 7.5.7.2
	using with, 7.5.7.1

	outer join operations, 7.5.3
	performance benefit, 7.1.2.2
	policies, Oracle Virtual Private Database
	
	about, 7.3.1
	applications, validating, 7.3.5.5
	attaching to database object, 7.3.2
	column display, 7.3.4.1
	column-level display, default, 7.3.4.2
	dynamic, 7.3.6.2
	multiple, 7.3.5.4
	optimizing performance, 7.3.6.1
	privileges used to run, 7.1.3
	SQL statements, specifying, 7.3.3

	policy groups
	
	about, 7.3.5.1
	benefits, 7.3.5.1
	creating, 7.3.5.2
	default, 7.3.5.3
	tutorial, implementation, 7.4.3.1

	policy types
	
	context sensitive, about, 7.3.6.6
	context sensitive, when to use, 7.3.6.8
	context-sensitive, audited, 9.3.12.1
	DYNAMIC, 7.3.6.2
	dynamic, audited, 9.3.12.1
	shared context sensitive, about, 7.3.6.7
	shared context sensitive, when to use, 7.3.6.8
	shared static, about, 7.3.6.4
	shared static, when to use, 7.3.6.5
	static, about, 7.3.6.3
	static, audited, 9.3.12.1
	static, when to use, 7.3.6.5
	summary of features, 7.3.6.9

	SELECT FOR UPDATE statements in policies, 7.5.2
	tutorial, simple, 7.4.1.1
	user models, 7.5.8
	Web-based applications, how it works with, 7.5.8

	Oracle Wallet Manager
	
	X.509 Version 3 certificates, 3.6.2

	Oracle wallets
	
	authentication method, 3.6.2

	Oracle Warehouse Builder
	
	roles, predefined, 4.4.2

	ORACLE_DATAPUMP access driver
	
	guidelines for security, 10.7

	OracleMetaLink
	
	See My Oracle Support

	ORAPWD password utility
	
	case sensitivity in passwords, 3.2.3.9
	password file authentication, 3.3.3
	permissions to run, 3.3.3

	ORDADMIN role, 4.4.2
	OS_ROLES initialization parameter
	
	operating system role grants, 4.9.5
	operating-system authorization and, 4.4.4.3.1
	REMOTE_OS_ROLES and, 4.9.6
	using, 4.9.2

	outer join operations
	
	Oracle Virtual Private Database affect on, 7.5.3

	OWB$CLIENT role, 4.4.2
	OWB_DESIGNCENTER_VIEW role, 4.4.2
	OWB_USER role, 4.4.2

P

	packages
	
	auditing, 9.3.12.1
	examples, 4.5.6.7
	examples of privilege use, 4.5.6.7
	privileges
	
	divided by construct, 4.5.6.7
	executing, 4.5.6.1, 4.5.6.7

	parallel execution servers, 6.3.3.4
	parallel query, and SYS_CONTEXT, 6.3.3.4
	pass phrase
	
	read and parse server.key file, 10.9.3

	password files
	
	case sensitivity, effect on SEC_CASE_SENSITIVE_LOGON parameter, 3.2.3.9
	how used to authenticate administrators, 3.3.3

	PASSWORD statement
	
	about, 2.3.1

	PASSWORD_LIFE_TIME initialization parameter, 3.2.3.7
	PASSWORD_LOCK_TIME initialization parameter, 3.2.3.5
	PASSWORD_REUSE_MAX initialization parameter, 3.2.3.6
	PASSWORD_REUSE_TIME initialization parameter, 3.2.3.6
	passwords
	
	about managing, 3.2.3.1
	account locking, 3.2.3.5, 3.2.3.5
	administrator
	
	authenticating with, 3.3.3
	guidelines for securing, 10.5

	aging and expiration, 3.2.3.7
	ALTER PROFILE statement, 3.2.3.1
	altering, 2.3.1
	application design guidelines, 5.3.1.2
	applications, strategies for protecting passwords, 5.3
	brute force attacks, 3.2.1
	case sensitivity setting, SEC_CASE_SENSITIVE_LOGIN, 3.2.3.9
	case sensitivity, configuring, 3.2.3.9
	changing for roles, 4.4.3
	complexity verification
	
	about, 3.2.3.8
	guidelines for security, 10.5

	complexity, guidelines for enforcing, 10.5
	connecting without, 3.5
	CREATE PROFILE statement, 3.2.3.1
	danger in storing as clear text, 10.5
	database user authentication, 3.4.1
	default profile settings
	
	about, 3.2.3.3

	default user account, 10.5
	default, finding, 3.2.3.2
	delays for incorrect passwords, 3.2.1
	duration, 10.5
	encrypting, 3.2.1, 10.5
	examples of creating, 3.2.2
	expiring
	
	explicitly, 3.2.3.7
	procedure for, 3.2.3.7
	proxy account passwords, 3.10.1.3
	with grace period, 3.2.3.7

	failed logins, resetting, 3.2.3.5
	grace period, example, 3.2.3.7
	guidelines for security, 10.5
	history, 3.2.3.6, 3.2.3.6, 10.5
	Java code example to read passwords, 5.3.4
	length, 10.5
	lifetime for, 3.2.3.7
	lock time, 3.2.3.5
	management rules, 10.5
	managing, 3.2.3
	maximum reuse time, 3.2.3.6
	ORAPWD password utility, 3.2.3.9
	password complexity verification, 3.2.3.8
	password file risks, 3.3.3
	PASSWORD_LOCK_TIME initialization parameter, 3.2.3.5
	PASSWORD_REUSE_MAX initialization parameter, 3.2.3.6
	PASSWORD_REUSE_TIME initialization parameter, 3.2.3.6
	policies, 3.2.3
	privileges for changing for roles, 4.4.3
	privileges to alter, 2.3
	protections, built-in, 3.2.1
	proxy authentication, 3.10.1.9.1
	requirements, 3.2.2
	reusing, 3.2.3.6, 10.5
	reusing passwords, 3.2.3.6
	roles authenticated by passwords, 4.4.3
	roles enabled by SET ROLE statement, 4.4.4.1
	secure external password store, 3.2.5.1
	security risks, 3.3.3
	SYS and SYSTEM, 10.5, 10.5
	used in roles, 4.4.1.2
	UTLPWDMG.SQL password script
	
	password management, 3.2.3.8

	verified using SHA-1 hashing algorithm, 3.2.4, 3.2.4
	See also authentication, and access control list (ACL), wallet access

	performance
	
	application contexts, 6.1.3
	auditing, 9.1.7
	database audit trail, moving to different tablespace, 9.8.2.3
	Oracle Virtual Private Database policies, 7.1.2.2
	Oracle Virtual Private Database policy types, 7.3.6.1
	resource limits and, 2.4.1

	permissions
	
	default, 10.6
	run-time facilities, 10.3

	PKI
	
	See public key infrastructure (PKI)

	PL/SQL
	
	auditing of statements within, 9.3.1.3
	roles in procedures, 4.4.1.5

	PL/SQL functions
	
	auditing, 9.3.12.2

	PL/SQL packages
	
	auditing, 9.3.12.1, 9.3.12.2

	PL/SQL procedures
	
	auditing, 9.3.12.2
	setting application context, 6.3.3.1

	PMON background process
	
	application contexts, cleaning up, 6.3.1

	positional parameters
	
	security risks, 5.3.1.4

	principle of least privilege, 10.3
	
	about, 10.3
	granting user privileges, 10.3
	middle-tier privileges, 3.10.1.6

	privileges
	
	about, 4.1
	access control lists, checking for external network services, 4.11.10
	altering
	
	passwords, 2.3.1
	users, 2.3

	altering role authentication method, 4.4.3
	applications, managing, 5.4
	audited when default auditing is enabled, 9.4.2
	auditing use of, 9.3.8.1, 9.3.8.3
	auditing, recommended settings for, 10.10.5
	cascading revokes, 4.7.3
	column, 4.6.2.3
	compiling procedures, 4.5.6.6
	creating or replacing procedures, 4.5.6.5
	creating users, 2.2.1
	dropping profiles, 2.4.4.2
	finding information about, 4.12
	granting
	
	about, 4.3.3, 4.6
	examples, 4.5.6.7, 4.5.6.7
	object privileges, 4.5.3.1, 4.6.2
	system, 4.6.1
	system privileges, 4.6

	grants, listing, 4.12.1
	grouping with roles, 4.4
	managing, 5.8
	middle tier, 3.10.1.6
	object, 4.5.1, 4.5.2, 5.8.2
	
	granting and revoking, 4.5.3.1

	on selected columns, 4.7.2.2
	procedures, 4.5.6.1
	
	creating and replacing, 4.5.6.5
	executing, 4.5.6.1
	in packages, 4.5.6.7

	reasons to grant, 4.2
	revoking privileges
	
	about, 4.3.3
	object, 4.7.2
	object privileges, cascading effect, 4.7.3.2
	object privileges, requirements for, 4.7.2
	schema object, 4.5.3.1

	revoking system privileges, 4.7.1
	roles
	
	creating, 4.4.3
	dropping, 4.4.6
	restrictions on, 4.4.1.6

	roles, why better to grant, 4.2
	schema object, 4.5.3
	
	DML and DDL operations, 4.5.4
	packages, 4.5.6.7
	procedures, 4.5.6.1

	SQL statements permitted, 5.8.2
	system
	
	granting and revoking, 4.3.3
	SELECT ANY DICTIONARY, 10.6

	SYSTEM and OBJECT, 10.3
	system privileges
	
	about, 4.3.1

	trigger privileges, 4.5.6.3
	used for Oracle Virtual Private Database policy functions, 7.1.3
	view privileges
	
	creating a view, 4.5.5.2
	using a view, 4.5.5.3

	views, 4.5.5.1
	See also access control list (ACL) and system privileges.

	procedures
	
	auditing, 9.3.10.4, 9.3.12.1
	compiling, 4.5.6.6
	definer's rights
	
	about, 4.5.6.3
	roles disabled, 4.4.1.5.1

	examples of, 4.5.6.7
	examples of privilege use, 4.5.6.7
	invoker's rights
	
	about, 4.5.6.4
	roles used, 4.4.1.5.2

	privileges for procedures
	
	create or replace, 4.5.6.5
	executing, 4.5.6.1
	executing in packages, 4.5.6.7

	privileges required for, 4.5.6.5
	security enhanced by, 4.5.6.3

	process monitor process (PMON)
	
	cleans up timed-out sessions, 2.4.2.5

	PRODUCT_USER_PROFILE table, 4.4.7.2
	
	SQL commands, disabling with, 4.4.7.2

	products and options
	
	install only as necessary, 10.8

	profiles, 2.4.4
	
	about, 2.4.4
	creating, 2.4.4.1
	dropping, 2.4.4.2, 2.4.4.2
	finding information about, 2.6.1
	managing, 2.4.4
	password management, 3.2.3.1
	privileges for dropping, 2.4.4.2
	specifying for user, 2.2.7
	viewing, 2.6.4

	proxy authentication
	
	about, 3.10.1, 3.10.1.1
	advantages, 3.10.1.2
	auditing actions on behalf of real user, 3.10.1.10
	auditing operations, 3.9.1
	auditing users, 9.3.9
	client-to-middle tier sequence, 3.10.1.5
	middle-tier
	
	authorizing but not authenticating users, 3.10.1.8
	authorizing to proxy and authenticate users, 3.10.1.7
	limiting privileges, 3.10.1.6
	reauthenticating users, 3.10.1.9

	passwords, expired, 3.10.1.3
	secure external password store, used with, 3.10.1.4
	security benefits, 3.10.1.2
	users, passing real identity of, 3.10.1.5

	PROXY_USER attribute, 6.3.6.3
	PROXY_USERS view, 3.10.1.3
	pseudo columns
	
	USER, 4.5.5.3

	PUBLIC
	
	procedures and, 4.8
	user group, 4.8

	public key infrastructure (PKI)
	
	about, 3.6.2

	PUBLIC user group
	
	about, 4.4.1.4
	granting and revoking privileges to, 4.8
	security domain of users, 4.4.1.4

	PUBLIC_DEFAULT profile
	
	profiles, dropping, 2.4.4.2

Q

	quotas
	
	tablespace, 2.2.5
	temporary segments and, 2.2.5
	unlimited, 2.2.5.2
	viewing, 2.6.3

R

	RADIUS authentication, 3.6.2
	read-only mode, affect on AUDIT_TRAIL parameter, 9.3.2.2
	reads
	
	limits on data blocks, 2.4.2.4

	RECOVERY_CATALOG_OWNER role
	
	about, 4.4.2

	redo log files
	
	auditing committed and rolled back transactions, 10.10.3

	REFERENCES privilege
	
	CASCADE CONSTRAINTS option, 4.7.2.3
	revoking, 4.7.2.2, 4.7.2.3
	SQL statements permitted, 5.8.2

	remote authentication, 10.9.1, 10.9.1
	REMOTE_OS_AUTHENT initialization parameter
	
	guideline for securing, 10.9.1
	setting, 3.8.4

	remote_os_authentication, 10.9.1
	REMOTE_OS_ROLES initialization parameter
	
	OS role management risk on network, 4.9.6
	setting, 4.4.4.3.2

	resource limits
	
	about, 2.4.1
	call level, limiting, 2.4.2.2
	connection time for each session, 2.4.2.5
	CPU time, limiting, 2.4.2.3
	determining values for, 2.4.3
	idle time in each session, 2.4.2.5
	logical reads, limiting, 2.4.2.4
	private SGA space for each session, 2.4.2.5
	profiles, 2.4.4, 2.4.4
	session level, limiting, 2.4.2.1
	sessions
	
	concurrent for user, 2.4.2.5
	elapsed connection time, 2.4.2.5
	idle time, 2.4.2.5
	SGA space, 2.4.2.5

	types, 2.4.2

	RESOURCE privilege
	
	CREATE SCHEMA statement, needed for, 5.7.1

	RESOURCE role, 4.5.7.1
	
	about, 4.4.2

	REVOKE CONNECT THROUGH clause
	
	revoking proxy authorization, 3.10.1.3

	REVOKE statement
	
	system privileges and roles, 4.7.1
	when takes effect, 4.10

	revoking privileges and roles
	
	cascading effects, 4.7.3
	on selected columns, 4.7.2.2
	REVOKE statement, 4.7.1
	specifying ALL, 4.5.2
	when using operating-system roles, 4.9.4

	role identification
	
	operating system accounts, 4.9.2

	ROLE_SYS_PRIVS view
	
	application privileges, 5.4

	ROLE_TAB_PRIVS view
	
	application privileges, finding, 5.4

	roles
	
	about, 4.1, 4.4.1
	ADM_PARALLEL_EXECUTE_TASK role, 4.4.2
	ADMIN OPTION and, 4.6.1.1
	advantages in application use, 5.4
	application, 4.4.1.3.1, 4.4.7, 5.6, 5.6, 5.8
	application privileges, 5.4
	applications, for user, 5.6
	AQ_ADMINISTRATOR_ROLE role, 4.4.2
	AQ_USER_ROLE role, 4.4.2
	AUTHENTICATEDUSER role, 4.4.2
	authorization, 4.4.4
	authorized by enterprise directory service, 4.4.4.4
	CAPI_USER_ROLE role, 4.4.2
	changing authorization for, 4.4.3
	changing passwords, 4.4.3
	CONNECT, 4.4.1.1
	CONNECT role
	
	about, 4.4.2

	create your own, 10.4
	CSW_USR_ROLE role, 4.4.2
	CTXAPP role, 4.4.2
	CWM_USER role, 4.4.2
	database role, users, 5.6.1
	DATAPUMP_EXP_FULL_DATABASE role, 4.4.2
	DATAPUMP_IMP_FULL_DATABASE role, 4.4.2
	DBA role, 4.4.2
	DDL statements and, 4.4.1.6
	default, 4.10.2
	default, setting for user, 2.2.8
	definer's rights procedures disable, 4.4.1.5.1
	DELETE_CATALOG_ROLE role, 4.4.2
	dependency management in, 4.4.1.6
	disabling, 4.10.1
	dropping, 4.4.6
	EJBCLIENT role, 4.4.2
	enabled or disabled, 4.4.1.1, 4.4.5
	enabling, 4.10.1, 5.6
	enterprise, 3.7, 4.4.4.4
	EXECUTE_CATALOG_ROLE role, 4.4.2
	EXP_FULL_DATABASE role, 4.4.2
	finding information about, 4.12
	functionality, 4.2, 4.4.1.1
	functionality of, 4.4.1.1
	GATHER_SYSTEM_STATISTICS role, 4.4.2
	global authorization, 4.4.4.4
	
	about, 4.4.4.4

	global roles
	
	about, 3.7
	creating, 4.4.4.4
	external sources, and, 4.4.4.3

	GLOBAL_AQ_USER_ROLE role, 4.4.2
	GRANT statement, 4.9.5
	granted to other roles, 4.4.1.1
	granting roles
	
	about, 4.6
	methods for, 4.4.5
	system, 4.6.1
	system privileges, 4.3.3

	guidelines for security, 10.4
	HS_ADMIN_EXECUTE_ROLE role, 4.4.2
	HS_ADMIN_ROLE role, 4.4.2
	HS_ADMIN_SELECT_ROLE role, 4.4.2
	IMP_FULL_DATABASE role, 4.4.2
	in applications, 4.4.1.2
	indirectly granted, 4.4.1.1
	invoker's rights procedures use, 4.4.1.5.2
	JAVA_ADMIN role, 4.4.2
	JAVA_DEPLOY role, 4.4.2
	JAVADEBUGPRIV role, 4.4.2
	JAVAIDPRIV role, 4.4.2
	JAVASYSPRIV role, 4.4.2
	JAVAUSERPRIV role, 4.4.2
	JMXSERVER role, 4.4.2
	job responsibility privileges only, 10.4
	LBAC_DBA role, 4.4.2
	listing grants, 4.12.2
	listing privileges and roles in, 4.12.6
	listing roles, 4.12.5
	LOGSTDBY_ADMINISTRATOR role, 4.4.2
	management using the operating system, 4.9
	managing roles
	
	about, 4.4
	categorizing users, 5.8

	managing through operating system, 4.4.1.7
	maximum number a user can enable, 4.10.3
	MGMT_USER role, 4.4.2
	multibyte characters in names, 4.4.3
	multibyte characters in passwords, 4.4.4.1
	naming, 4.4.1
	network authorization, 4.4.4.3.2
	network client authorization, 4.4.4.3.2
	OEM_ADVISOR role, 4.4.2
	OEM_MONITOR role, 4.4.2
	OLAP_DBA role, 4.4.2
	OLAP_USER role, 4.4.2
	OLAP_XS_ADMIN role, 4.4.2
	OLAPI_TRACE_USER role, 4.4.2
	One Big Application User, compromised by, 5.2.1
	operating system, 4.9.2
	operating system authorization, 4.4.4.3.1
	operating system granting of, 4.9.5
	operating system identification of, 4.9.2
	operating system management and the shared server, 4.9.6
	operating system-managed, 4.9.3, 4.9.4
	operating-system authorization, 4.4.4.3
	ORDADMIN role, 4.4.2
	OWB$CLIENT role, 4.4.2
	OWB_DESIGNCENTER_VIEW role, 4.4.2
	OWB_USER role, 4.4.2
	predefined, 4.4.2
	privileges for creating, 4.4.3
	privileges for dropping, 4.4.6
	privileges, changing authorization method for, 4.4.3
	privileges, changing passwords, 4.4.3
	RECOVERY_CATALOG_OWNER role, 4.4.2
	RESOURCE role, 4.4.2
	restricting from tool users, 4.4.7
	restrictions on privileges of, 4.4.1.6
	REVOKE statement, 4.9.5
	revoking, 4.4.5, 4.7.1
	revoking ADMIN option, 4.7.1
	SCHEDULER_ADMIN role, 4.4.2
	schemas do not contain, 4.4.1
	security domains of, 4.4.1.4
	SELECT_CATALOG_ROLE role, 4.4.2
	SET ROLE statement, 4.9.5
	setting in PL/SQL blocks, 4.4.1.5.2
	SNMPAGENT role, 4.4.2
	SPATIAL_CSW_ADMIN role, 4.4.2
	SPATIAL_WFS_ADMIN role, 4.4.2
	unique names for, 4.4.3
	use of passwords with, 4.4.1.2
	user, 4.4.1.3.2, 5.8
	users capable of granting, 4.4.5.1
	uses of, 4.4.1.1, 4.4.1.3
	WFS_USR_ROLE role, 4.4.2
	WITH GRANT OPTION and, 4.6.2.1
	without authorization, 4.4.3
	WKUSER role, Preface
	WM_ADMIN_ROLE role, 4.4.2
	XDB_SET_INVOKER roles, 4.4.2
	XDB_WEBSERVICES role, 4.4.2
	XDB_WEBSERVICES_OVER_HTTP role, 4.4.2
	XDB_WEBSERVICES_WITH_PUBLIC role, 4.4.2
	XDBADMIN role, 4.4.2
	See also secure application roles

	root file paths
	
	for files and packages outside the database, 10.3

	row-level security
	
	See fine-grained access control, Oracle Virtual Private Database (VPD)

	RSA private key, 10.9.3
	run-time facilities, 10.3
	
	restriction permissions, 10.3

S

	Sample Schemas
	
	remove or relock for production, 10.8
	test database, 10.8

	sample schemas, 10.8
	Sarbanes-Oxley Act
	
	auditing to meet compliance, 9.1.1

	SCHEDULER_ADMIN role
	
	about, 4.4.2

	schema object auditing
	
	enabling, 9.3.10.5
	removing, 9.3.10.6

	schema object privileges, 4.5.3
	schema objects
	
	audit options, removing, 9.3.10.6
	auditing, 9.3.10.1
	auditing procedures or functions, 9.3.10.5
	cascading effects on revoking, 4.7.3.2
	default audit options, 9.3.10.5
	default tablespace for, 2.2.4
	dropped users, owned by, 2.5
	enabling audit options on, 9.3.10.5
	granting privileges, 4.6.2
	privileges
	
	DML and DDL operations, 4.5.4
	granting and revoking, 4.5.3.1
	view privileges, 4.5.5.1

	privileges on, 4.5.3
	privileges to access, 4.5.2
	privileges with, 4.5.2
	removing audit options, 9.3.8.4
	revoking privileges, 4.7.2

	schema-independent users, 5.7.2
	schemas
	
	auditing, recommended settings for, 10.10.5
	private, 3.7.1.1
	shared among enterprise users, 3.7.1.2
	shared, protecting objects in, 5.7.2
	unique, 5.7
	unique, protecting objects in, 5.7.1

	SCOTT user account
	
	restricting privileges of, 10.4

	script files
	
	audit trail views, removing, 9.10.3
	CATNOAUD.SQL, 9.10.3

	scripts, authenticating users in, 3.2.5.1
	SEC_CASE_SENSITIVE_LOGIN initialization parameter, 3.2.3.9
	SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter, 5.9.3
	SEC_PROTOCOL_ERROR_FURTHER_ACTION initialization parameter, 5.9.2
	SEC_PROTOCOL_ERROR_TRACE_ACTION initialization parameter, 5.9.1
	sec_relevant_cols_opt parameter, 7.3.4.3
	SEC_RETURN_SERVER_RELEASE_BANNER initialization parameter, 5.9.4
	SEC_USER_AUDIT_ACTION_BANNER initialization parameter, 5.9.5
	SEC_USER_UNAUTHORIZED_ACCESS_BANNER initialization parameter, 5.9.5
	secconf.sql script
	
	audit settings, 9.4.3
	password settings, 3.2.3.4

	secure application roles
	
	about, 4.4.8
	creating, 5.5.1
	creating PL/SQL package, 5.5.2
	finding with DBA_ROLES view, 4.12
	invoker's rights, 5.5.2
	invoker's rights requirement, 5.5.2
	package for, 5.5.2
	SET ROLE statement, 5.5.2
	user environment information from SYS_CONTEXT SQL function, 5.5.2, 5.5.2
	using to ensure database connection, 4.4.8

	secure external password store
	
	about, 3.2.5.1
	client configuration, 3.2.5.3
	examples, 3.2.5.2
	how it works, 3.2.5.2
	proxy authentication, used with, 3.10.1.4

	Secure Sockets Layer (SSL)
	
	about, 3.6.1
	certificate key algorithm, 10.9.3
	cipher suites, 10.9.3
	configuration files, securing, 10.9.3
	configuring for SYSDBA or SYSOPER access, 3.3.1.3
	global users with private schemas, 3.7.1.1
	guidelines for security, 10.9.3, 10.9.3
	listener, administering, 10.9.2
	mode, 10.9.3
	pass phrase, 10.9.3
	RSA private key, 10.9.3
	securing SSL connection, 10.9.3
	server.key file, 10.9.3
	TCPS, 10.9.3
	version support, Preface

	security
	
	application enforcement of, 4.4.1.2
	default user accounts
	
	locked and expired automatically, 10.3
	locking and expiring, 10.3

	domains, enabled roles and, 4.4.5
	enforcement in application, 5.2.2
	enforcement in database, 5.2.2
	multibyte characters in role names, 4.4.3
	multibyte characters in role passwords, 4.4.4.1
	passwords, 3.4.1
	policies
	
	applications, 5.1
	SQL*Plus users, restricting, 4.4.7
	tables or views, 7.1.2.1

	procedures enhance, 4.5.6.3
	resources, additional, 1.2
	roles, advantages in application use, 5.4
	See also security risks

	security alerts, 10.2.1
	security attacks
	
	access to server after protocol errors, preventing, 5.9.2
	application context values, attempts to change, 6.3.2
	application design to prevent attacks, 5.3
	command line recall attacks, 5.3.1.1, 5.3.1.4
	denial of service, 10.9.2
	denial-of-service
	
	bad packets, addressing, 5.9.1

	denial-of-service attacks through listener, 10.9.2
	disk flooding, preventing, 5.9.1
	eavesdropping, 10.9.1
	encryption, problems not solved by, 8.1.2
	falsified IP addresses, 10.9.1
	falsified or stolen client system identities, 10.9.1
	hacked operating systems or applications, 10.9.1
	intruders, 8.1.2
	non-SYS activities audited, 9.1.4
	password cracking, 3.2.1
	password protections against, 3.2.1
	preventing malicious attacks from clients, 5.9
	preventing password theft with proxy authentication and secure external password store, 3.10.1.4
	session ID, need for encryption, 6.4.4.3
	shoulder surfing, 5.3.1.4
	SQL injection attacks, 5.3.1.2
	unlimited authenticated requests, preventing, 5.9.3
	user session output, hiding from intruders, 6.3.4
	See also security risks

	security domains
	
	enabled roles and, 4.4.1.1

	security patches
	
	about, 10.2.1
	downloading, 10.2.1

	security policies
	
	See Oracle Virtual Private Database, policies

	security risks
	
	ad hoc tools, 4.4.7.1, 4.4.7.1
	application users not being database users, 5.2.1
	applications enforcing rather than database, 5.2.2
	audit records being tampered with, 9.3.5.1
	bad packets to server, 5.9.1
	database audit trail, protecting, 9.1.3
	database version displaying, 5.9.4
	encryption keys, users managing, 8.2.4.3
	password files, 3.3.3
	passwords exposed in large deployments, 3.2.5.1
	passwords, exposing in programs or scripts, 5.3.1.4
	positional parameters in SQL scripts, 5.3.1.4
	privileges carelessly granted, 4.3.5
	privileges granted to PUBLIC user group, 4.3.5
	remote user impersonating another user, 4.4.4.3.2
	sensitive data in audit trail, 10.10.1
	server falsifying identities, 10.9.3
	users with multiple roles, 5.6.1
	See also security attacks

	security settings scripts
	
	audit settings
	
	secconf.sql, 9.4.3

	password settings
	
	secconf.sql, 3.2.3.4

	undoaud.sql, 9.4.3
	undopwd.sql, 3.2.3.4

	SELECT ANY DICTIONARY privilege
	
	data dictionary, accessing, 10.6
	exclusion from GRANT ALL PRIVILEGES privilege, 10.6

	SELECT FOR UPDATE statement in Virtual Private Database policies, 7.5.2
	SELECT privilege
	
	SQL statements permitted, 5.8.2

	SELECT_CATALOG_ROLE role
	
	about, 4.4.2
	SYS schema objects, enabling access to, 4.3.2.2

	separation of duty concepts, Glossary
	sequences
	
	auditing, 9.3.10.2

	server.key file
	
	pass phrase to read and parse, 10.9.3

	service-oriented architecture (SOA)
	
	security enhancements for Oracle XML DB, Preface

	SESSION_ROLES view
	
	queried from PL/SQL block, 4.4.1.5.1

	sessions
	
	listing privilege domain of, 4.12.4
	memory use, viewing, 2.6.5
	time limits on, 2.4.2.5
	when auditing options take effect, 9.3.1.3

	SET ROLE statement
	
	application code, including in, 5.6.2
	associating privileges with role, 5.6.1
	disabling roles with, 4.10.1
	enabling roles with, 4.10.1
	secure application roles, 5.5.2
	when using operating-system roles, 4.9.5

	SGA
	
	See System Global Area (SGA)

	SHA-1 hashing algorithm
	
	about, 3.2.4
	enabling exclusive mode, 3.2.4
	how it increases password safety, 3.2.4
	recommended by Oracle, 3.2.4

	Shared Global Area (SGA)
	
	See System Global Area (SGA)

	shared server
	
	limiting private SQL areas, 2.4.2.5
	operating system role management restrictions, 4.9.6

	shoulder surfing, 5.3.1.4
	SHOW PARAMETER command, 9.3.2.1
	smart cards
	
	guidelines for security, 10.5

	SNMPAGENT role
	
	about, 4.4.2

	SOA
	
	See service-oriented architecture

	SPATIAL_CSW_ADMIN role, 4.4.2
	SPATIAL_WFS_ADMIN role, 4.4.2
	SQL injection attacks, 5.3.1.2
	SQL statements
	
	audited when default auditing is enabled, 9.4.2
	auditing
	
	about, 9.3.7.1
	configuring, 9.3.7.3
	removing, 9.3.7.4
	when records generated, 9.3.1.3

	dynamic, 6.3.3.3
	object privileges permitting in applications, 5.8.2
	privileges required for, 4.5.3, 5.8.2
	resource limits and, 2.4.2.2
	restricting ad hoc use, 4.4.7.1, 4.4.7.1

	SQL*Net
	
	See Oracle Net

	SQL*Plus
	
	connecting with, 3.5
	restricting ad hoc use, 4.4.7.1, 4.4.7.1
	statistics monitor, 2.4.3

	SSL
	
	See Secure Sockets Layer

	standard audit trail
	
	activities always recorded, 9.1.5
	AUDIT SQL statement, 9.3.6.1
	auditing standard audit trail, 9.8.2.4
	controlling size of, 9.8.2.2
	disabling, 9.3.2.1
	enabling, 9.3.2.1
	maximum size of, 9.8.2.2
	NOAUDIT SQL statement, 9.3.6.7
	records, purging, 9.8.3.4
	size, reducing, 9.9.5
	transaction independence, 9.3.1.3
	when created, 9.3.1.3

	standard auditing
	
	about, 9.3.1.1
	administrative users on all platforms, 9.6.2
	affected by editions, 9.3.10.3
	archiving audit trail, 9.8.2.5
	audit option levels, 9.3.6.1
	audit trails
	
	database, 9.8.2.1

	auditing
	
	default auditing, enabling, 9.4.1

	cursors, affect on auditing, 9.3.6.4
	database audit trail records, 9.8.2.1
	DDL statement auditing, 9.3.7.2
	default options, 9.3.10.5
	default options, disabling, 9.3.10.6
	directory object auditing
	
	about, 9.3.11.1
	configuring, 9.3.11.2
	removing, 9.3.11.3

	disabling options versus auditing, 9.3.6.7
	DML statements, 9.3.7.2
	information stored in operating system file, 9.3.4.1
	mandatory auditing, 9.1.5
	network auditing
	
	about, 9.3.13.1
	configuring, 9.3.13.2
	error types recorded, 9.3.13.1
	removing, 9.3.13.3

	non-SYS activities audited, 9.1.4
	object auditing
	
	See standard auditing, schema object

	operating system audit trail, 9.3.4.1
	
	file location, 9.3.4.5

	operating system audit trail using, 9.3.4.3
	privilege auditing
	
	about, 9.3.8.1
	configuring, 9.3.8.3
	multitier environment, 9.3.9
	options, 9.3.8.3
	removing, 9.3.8.4
	types, 9.3.8.2

	privileges needed, 9.3.1.2
	procedures or functions, 9.3.10.5
	range of focus, 9.3.6
	records
	
	archiving, 9.8.2.5

	removing, 9.3.6.7
	schema object auditing
	
	about, 9.3.10.1
	enabling, 9.3.10.5
	example, 9.3.10.5
	options, 9.3.10.4
	removing, 9.3.10.6
	types, 9.3.10.2

	SQL statement
	
	See standard auditing, statement auditing

	statement auditing
	
	about, 9.3.7.1
	all statements for individual users, 9.3.7.3
	all statements for the current session, 9.3.7.3
	configuring, 9.3.7.3
	multitier environment, 9.3.9
	removing, 9.3.7.4
	SQL statement shortcuts by individual users, 9.3.7.3
	statement level, 9.3.7.3
	types you can audit, 9.3.7.2

	statement executions, number of, 9.3.6.3
	successful or unsuccessful, 9.3.6.2
	
	setting, 9.3.6.2

	SYS users, 9.6.2, 9.6.2
	syslog audit trail on UNIX systems, 9.3.5
	user, 9.3.6.6
	See also auditing, standard audit trail, SYS.AUD$ table

	standard auditing, schema object
	
	objects created in the future, 9.3.10.7

	statement_types parameter of DBMS_RLS.ADD_POLICY procedure, 7.3.3
	STMT_AUDIT_OPTION_MAP table, 9.3.3
	storage
	
	quotas and, 2.2.5
	unlimited quotas, 2.2.5.2

	stored procedures
	
	using privileges granted to PUBLIC, 4.8

	strong authentication
	
	centrally controlling SYSDBA and SYSOPER access to multiple databases, 3.3.1
	guideline, 10.5

	symbolic links
	
	restricting, 10.6

	synonyms
	
	inheriting privileges from object, 4.5.3.3

	SYS account
	
	policy enforcement, 7.5.7.2

	SYS and SYSTEM
	
	passwords, 10.5, 10.5

	SYS schema
	
	objects, access to, 4.3.2.2

	SYS_CONTEXT function
	
	about, 6.3.3.1
	auditing current session, 9.3.7.3
	auditing nondatabase users with, 9.5.10.3
	database links, 6.3.3.5
	dynamic SQL statements, 6.3.3.3
	example, 6.3.3.6
	parallel query, 6.3.3.4
	STATIC policies, 7.3.6.5
	syntax, 6.3.3.2, 6.3.3.2
	validating users, 5.5.2

	SYS_DEFAULT Oracle Virtual Private Database policy group, 7.3.5.3
	SYSASM privilege, Preface
	SYS.AUD$ table
	
	about, 9.8.2.1
	archiving, 9.8.2.5
	audit records, writing to, 9.3.2.2
	contents, 9.8.2.1
	data values in audited statement, 9.8.2.1
	location in Oracle Database Vault environment, 9.1.3
	modifying manually, dangers of, 9.7
	non-SYS actions audited, 9.1.4
	purging, 9.8.2.5
	too full or unavailable, 9.8.2.1
	See also standard auditing

	SYSAUX tablespace
	
	moving database audit trail tables to, 9.8.2.3

	SYS.FGA_LOG$
	
	fine-grained auditing, 9.5.4

	SYS.FGA_LOG$ table
	
	about, 9.8.2.1
	archiving, 9.8.2.5
	contents, 9.8.2.1
	data values in audited statement, 9.8.2.1
	non-SYS actions audited, 9.1.4
	purging, 9.8.2.5
	too full or unavailable, 9.8.2.1

	SYS.FGA_LOGS$ table
	
	See also fine-grained auditing

	syslog audit trail
	
	about, 9.3.5.1
	appearance, 9.3.5.3
	configuring, 9.3.5.4
	format, 9.3.5.2
	format when AUDIT_TRAIL is set to XML, 9.3.2.2
	mandatory audit records written to, 9.1.5

	SYSMAN user account, 10.5, 10.5
	SYS-privileged connections, 10.3
	System Global Area (SGA)
	
	application contexts, storing in, 6.1.3
	global application context information location, 6.4.1
	limiting private SQL areas, 2.4.2.5

	system privileges, 10.3
	
	about, 4.3.1
	ADMIN OPTION, 4.3.4
	ANY
	
	guidelines for security, 10.6

	ANY system privileges, 4.3.2
	GRANT ANY OBJECT PRIVILEGE, 4.6.2.2, 4.7.2.1
	GRANT ANY PRIVILEGE, 4.3.4
	granting, 4.6.1
	granting and revoking, 4.3.3
	power of, 4.3.1
	restriction needs, 4.3.2
	revoking, cascading effect of, 4.7.3.1
	SELECT ANY DICTIONARY, 10.6
	SYSASM privilege, Preface

	SYSTEM_PRIVILEGE_MAP table, 9.3.3

T

	tables
	
	auditing, 9.3.10.2
	privileges on, 4.5.4

	tablespaces
	
	assigning defaults for users, 2.2.4
	default quota, 2.2.5
	quotas for users, 2.2.5
	quotas, viewing, 2.6.3
	temporary
	
	assigning to users, 2.2.6

	unlimited quotas, 2.2.5.2

	TCPS protocol
	
	Secure Sockets Layer, used with, 10.9.2
	tnsnames.ora file, used in, 10.9.3

	TELNET service, 10.9.2
	TFTP service, 10.9.2
	time measurement for statement execution, 7.3.6.2
	token cards, 10.5
	top-level SQL statements, 9.2
	trace files
	
	access to, importance of restricting, 10.6
	bad packets, 5.9.1
	location of, finding, 6.6

	transparent data encryption, 8.2.4.4
	transparent tablespace encryption, 8.2.4.4
	triggers
	
	audit data, recording, 9.7
	auditing, 9.3.10.4, 9.3.12.1, 9.3.12.2
	CREATE TRIGGER ON, 5.8.2
	logon
	
	examples, 6.3.4
	externally initialized application contexts, 6.3.4

	privileges for executing, 4.5.6.3
	
	roles, 4.4.1.5

	WHEN OTHERS exception, 6.3.4

	troubleshooting
	
	finding errors by checking trace files, 6.6

	trusted procedure
	
	database session-based application contexts, 6.1.2

	tsnames.ora configuration file, 10.9.3
	tutorials
	
	application context, database session-based, 6.3.5.1
	auditing
	
	creating policy to audit nondatabase users, 9.5.10.1
	creating policy using e-mail alert, 9.5.9.1

	external network services, using e-mail alert, 9.5.9.1
	global application context with client session ID, 6.4.5.1
	nondatabase users
	
	creating Oracle Virtual Private Database policy group, 7.4.3.1
	global application context, 6.4.5.1

	Oracle Virtual Private Database
	
	policy groups, 7.4.3.1
	policy implementing, 7.4.2.1
	simple example, 7.4.1.1

	See also examples

	types
	
	creating, 4.5.7.5
	privileges on, 4.5.7
	user defined
	
	creation requirements, 4.5.7.4

U

	UDP and TCP ports
	
	close for ALL disabled services, 10.9.2

	UGA
	
	See User Global Area (UGA)

	Ultra Search
	
	deprecated role and schemas, Preface

	undoaud.sql script, 9.4.3
	undopwd.sql script, 3.2.3.4
	UNIX systems
	
	audit data written to syslog, 9.1.5

	UNIX systems, auditing users on, 9.3.5
	UNLIMITED TABLESPACE privilege, 2.2.5.2, 2.2.5.2
	UPDATE privilege
	
	revoking, 4.7.2.2

	user accounts
	
	administrative user passwords, 10.5
	default user account, 10.5
	password guidelines, 10.5
	passwords, encrypted, 10.5

	USER function
	
	global application contexts, 6.4.3.3

	User Global Area (UGA)
	
	application contexts, storing in, 6.1.3

	user names
	
	schemas, 5.7

	USER pseudo column, 4.5.5.3
	user sessions, multiple within single database connection, 3.10.1.5
	user-defined columns
	
	auditing, 9.5.2

	USERENV function, 6.3.3.2, 8.3
	USERENV namespace
	
	about, 6.3.3.2
	client identifiers, 3.10.2
	See also CLIENT_IDENTIFIER USERENV attribute

	users
	
	administrative option (ADMIN OPTION), 4.6.1.1
	altering, 2.3
	application users not known to database, 3.10.2
	assigning unlimited quotas for, 2.2.5.2
	auditing, 9.3.6.6
	database role, current, 5.6.1
	default roles, changing, 2.2.8
	default tablespaces, 2.2.4
	dropping, 2.5, 2.5
	dropping profiles and, 2.4.4.2
	dropping roles and, 4.4.6
	enabling roles for, 5.6
	enterprise, 3.7, 4.4.4.4
	enterprise, shared schema protection, 5.7.2
	external authentication
	
	about, 3.8.1
	advantages, 3.8.2
	operating system, 3.8.4
	user creation, 3.8.3

	finding information about, 2.6.1
	finding information about authentication, 3.11
	global, 3.7
	hosts, connecting to multiple
	
	See external network services, fine-grained access to

	information about, viewing, 2.6.2
	listing roles granted to, 4.12.2
	memory use, viewing, 2.6.5
	network authentication, external, 3.8.5
	nondatabase, 6.4.1, 6.4.3.6
	objects after dropping, 2.5
	operating system external authentication, 3.8.4
	password encryption, 3.2.1
	privileges
	
	for changing passwords, 2.3
	for creating, 2.2.1
	granted to, listing, 4.12.1
	of current database role, 5.6.1

	profiles
	
	creating, 2.4.4.1
	specifying, 2.2.7

	proxy authentication, 3.10.1
	proxy users, connecting as, 3.10.1.1
	PUBLIC group, 4.8
	PUBLIC user group, 4.4.1.4
	quota limits for tablespace, 2.2.5.1
	restricting application roles, 4.4.7
	roles and, 4.4.1.2
	
	for types of users, 4.4.1.3.2

	schema-independent, 5.7.2
	schemas, private, 3.7.1.1
	security domains of, 4.4.1.4
	security, about, 2.1
	tablespace quotas, 2.2.5
	tablespace quotas, viewing, 2.6.3
	user accounts, creating, 2.2.1
	user models and Oracle Virtual Private Database, 7.5.8
	user name, specifying with CREATE USER statement, 2.2.2
	views for finding information about, 2.6

	UTLPWDMG.SQL
	
	about, 3.2.3.8
	guidelines for security, 10.5

V

	V$LOGMNR_CONTENTS data dictionary view, 9.8.2.1
	valid node checking, 10.9.2
	views
	
	about, 4.5.5.1
	access control list data
	
	external network services, 4.11.12
	wallet access, 4.11.12

	application contexts, 6.6
	audit trail, 9.10.1, 9.10.1
	auditing, 9.3.10.2, 9.3.10.4
	authentication, 3.11
	DBA_COL_PRIVS, 4.12.3
	DBA_NETWORK_ACL_PRIVILEGES, 4.11.10, 4.11.12
	DBA_NETWORK_ACLS, 4.11.12
	DBA_ROLE_PRIVS, 4.12.2
	DBA_ROLES, 4.12.5
	DBA_SYS_PRIVS, 4.12.1
	DBA_TAB_PRIVS, 4.12.3
	DBA_USERS_WITH_DEFPWD, 3.2.3.2
	DBA_WALLET_ACLS, 4.11.12
	encrypted data, 8.6
	Oracle Virtual Private Database policies, 7.6
	privileges, 4.5.5.1, 4.12
	profiles, 2.6.1
	ROLE_ROLE_PRIVS, 4.12.6
	ROLE_SYS_PRIVS, 4.12.6
	ROLE_TAB_PRIVS, 4.12.6
	roles, 4.12
	security applications of, 4.5.5.3
	SESSION_PRIVS, 4.12.4
	SESSION_ROLES, 4.12.4
	USER_NETWORK_ACL_PRIVILEGES, 4.11.12
	users, 2.6.1

	Virtual Private Database
	
	See Oracle Virtual Private Database

	VPD
	
	See Oracle Virtual Private Database

	vulnerable run-time call, 10.3
	
	made more secure, 10.3

W

	Wallet Manager
	
	See Oracle Wallet Manager

	wallets
	
	authentication method, 3.6.2
	See also access control lists (ACL), wallet access

	Web applications
	
	user connections, 6.4.1, 6.4.3.6

	Web services
	
	security enhancements for Oracle XML DB, Preface

	Web-based applications
	
	Oracle Virtual Private Database, how it works with, 7.5.8

	WFS_USR_ROLE role, 4.4.2
	WHEN OTHERS exceptions
	
	logon triggers, used in, 6.3.4

	WHERE clause, dynamic SQL, 7.2.1
	Windows native authentication, 3.3.2
	WKUSER role, Preface
	WM_ADMIN_ROLE role, 4.4.2

X

	X.509 certificates
	
	guidelines for security, 10.5

	XDB_SET_INVOKER role, 4.4.2
	XDB_WEBSERVICES role, 4.4.2
	XDB_WEBSERVICES_OVER_HTTP role
	
	about, 4.4.2

	XDB_WEBSERVICES_WITH_PUBLIC role, 4.4.2
	XDBADMIN role, 4.4.2
	XML
	
	adx_SID.txt file
	
	about, 9.3.2.2

	AUDIT_TRAIL XML setting, 9.3.2.2
	AUDIT_TRAIL XML, EXTENDED setting, 9.3.2.2

	XML, EXTENDED AUDIT_TRAIL setting
	
	used with DB in AUDIT_TRAIL, 9.3.2.2
	used with XML in AUDIT_TRAIL, 9.3.2.2

Contents

List of Examples

List of Figures

List of Tables

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Database Security?

	Oracle Database 11g Release 2 (11.2.0.2) New Security Features
	Oracle Database 11g Release 2 (11.2.0.1) New Security Features
	Oracle Database 11g Release 1 (11.1) New Security Features

1 Introducing Oracle Database Security

	About Oracle Database Security
	Additional Database Security Resources

2 Managing Security for Oracle Database Users

	About User Security
	Creating User Accounts
	Creating a New User Account
	Specifying a User Name
	Assigning the User a Password
	Assigning a Default Tablespace for the User
	Assigning a Tablespace Quota for the User
	Restricting the Quota Limits for User Objects in a Tablespace
	Granting Users the UNLIMITED TABLESPACE System Privilege

	Assigning a Temporary Tablespace for the User
	Specifying a Profile for the User
	Setting a Default Role for the User

	Altering User Accounts
	Changing the User Password

	Configuring User Resource Limits
	About User Resource Limits
	Types of System Resources and Limits
	Limiting the User Session Level
	Limiting Database Call Levels
	Limiting CPU Time
	Limiting Logical Reads
	Limiting Other Resources

	Determining Values for Resource Limits of Profiles
	Managing Resources with Profiles
	Creating Profiles
	Dropping Profiles

	Deleting User Accounts
	Finding Information About Database Users and Profiles
	Using Data Dictionary Views to Find Information About Users and Profiles
	Listing All Users and Associated Information
	Listing All Tablespace Quotas
	Listing All Profiles and Assigned Limits
	Viewing Memory Use for Each User Session

3 Configuring Authentication

	About Authentication
	Configuring Password Protection
	What Are the Oracle Database Built-in Password Protections?
	Minimum Requirements for Passwords
	Using a Password Management Policy
	About Managing Passwords
	Finding User Accounts That Have Default Passwords
	Configuring Password Settings in the Default Profile
	Disabling and Enabling the Default Password Security Settings
	Automatically Locking a User Account After a Failed Login
	Controlling User Ability to Reuse Old Passwords
	Controlling Password Aging and Expiration
	Enforcing Password Complexity Verification
	Enabling or Disabling Password Case Sensitivity

	Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm
	Managing the Secure External Password Store for Password Credentials
	About the Secure External Password Store
	How Does the External Password Store Work?
	Configuring Clients to Use the External Password Store
	Managing External Password Store Credentials

	Authenticating Database Administrators
	Strong Authentication and Centralized Management for Database Administrators
	Configuring Directory Authentication for Administrative Users
	Configuring Kerberos Authentication for Administrative Users
	Configuring Secure Sockets Layer Authentication for Administrative Users

	Authenticating Database Administrators by Using the Operating System
	Authenticating Database Administrators by Using Their Passwords

	Using the Database to Authenticate Users
	About Database Authentication
	Advantages of Database Authentication
	Creating a User Who Is Authenticated by the Database

	Using the Operating System to Authenticate Users
	Using the Network to Authenticate Users
	Authentication Using Secure Sockets Layer
	Authentication Using Third-Party Services

	Configuring Global User Authentication and Authorization
	Creating a User Who Is Authorized by a Directory Service
	Creating a Global User Who Has a Private Schema
	Creating Multiple Enterprise Users Who Share Schemas

	Advantages of Global Authentication and Global Authorization

	Configuring an External Service to Authenticate Users and Passwords
	About External Authentication
	Advantages of External Authentication
	Creating a User Who Is Authenticated Externally
	Authenticating User Logins Using the Operating System
	Authentication User Logins Using Network Authentication

	Using Multitier Authentication and Authorization
	Administration and Security in Clients, Application Servers, and Database Servers

	Preserving User Identity in Multitiered Environments
	Using a Middle Tier Server for Proxy Authentication
	About Proxy Authentication
	Advantages of Proxy Authentication
	Altering a User Account to Connect Through a Proxy
	Using Proxy Authentication with the Secure External Password Store
	Passing Through the Identity of the Real User by Using Proxy Authentication
	Limiting the Privilege of the Middle Tier
	Authorizing a Middle Tier to Proxy and Authenticate a User
	Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
	Reauthenticating the User Through the Middle Tier to the Database
	Auditing Actions Taken on Behalf of the Real User

	Using Client Identifiers to Identify Application Users Not Known to the Database
	How Client Identifiers Work in Middle Tier Systems
	Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity
	Using CLIENT_IDENTIFIER Independent of Global Application Context
	Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier

	Finding Information About User Authentication

4 Configuring Privilege and Role Authorization

	About Privileges and Roles
	Who Should Be Granted Privileges?
	Managing System Privileges
	About System Privileges
	Why Is It Important to Restrict System Privileges?
	Restricting System Privileges by Securing the Data Dictionary
	Allowing Access to Objects in the SYS Schema

	Granting and Revoking System Privileges
	Who Can Grant or Revoke System Privileges?
	About ANY and PUBLIC Privileges

	Managing User Roles
	About User Roles
	The Functionality of Roles
	Properties of Roles and Why They Are Advantageous
	Common Uses of Roles
	How Roles Affect the Scope of a User's Privileges
	How Roles Work in PL/SQL Blocks
	How Roles Aid or Restrict DDL Usage
	How Operating Systems Can Aid Roles
	How Roles Work in a Distributed Environment

	Predefined Roles in an Oracle Database Installation
	Creating a Role
	Specifying the Type of Role Authorization
	Authorizing a Role by Using the Database
	Authorizing a Role by Using an Application
	Authorizing a Role by Using an External Source
	Global Role Authorization by an Enterprise Directory Service

	Granting and Revoking Roles
	Who Can Grant or Revoke Roles?

	Dropping Roles
	Restricting SQL*Plus Users from Using Database Roles
	Potential Security Problems of Using Ad Hoc Tools
	Limiting Roles Through the PRODUCT_USER_PROFILE Table
	Using Stored Procedures to Encapsulate Business Logic

	Securing Role Privileges by Using Secure Application Roles

	Managing Object Privileges
	About Object Privileges
	Granting or Revoking Object Privileges
	Managing Object Privileges
	Granting and Revoking Object Privileges
	Who Can Grant Object Privileges?
	Using Privileges with Synonyms

	Managing Table Privileges
	How Table Privileges Affect Data Manipulation Language Operations
	How Table Privileges Affect Data Definition Language Operations

	Managing View Privileges
	About View Privileges
	Privileges Required to Create Views
	Increasing Table Security with Views

	Managing Procedure Privileges
	Using the EXECUTE Privilege for Procedure Privileges
	Procedure Execution and Security Domains
	How Procedure Privileges Affect Definer's Rights
	How Procedure Privileges Affect Invoker's Rights
	System Privileges Required to Create or Replace a Procedure
	System Privileges Required to Compile a Procedure
	How Procedure Privileges Affect Packages and Package Objects

	Managing Type Privileges
	System Privileges for Named Types
	Object Privileges
	Method Execution Model
	Privileges Required to Create Types and Tables Using Types
	Example of Privileges for Creating Types and Tables Using Types
	Privileges on Type Access and Object Access
	Type Dependencies

	Granting a User Privileges and Roles
	Granting System Privileges and Roles
	Granting the ADMIN Option
	Creating a New User with the GRANT Statement

	Granting Object Privileges
	Specifying the GRANT OPTION Clause
	Granting Object Privileges on Behalf of the Object Owner
	Granting Privileges on Columns
	Row-Level Access Control

	Revoking Privileges and Roles from a User
	Revoking System Privileges and Roles
	Revoking Object Privileges
	Revoking Object Privileges on Behalf of the Object Owner
	Revoking Column-Selective Object Privileges
	Revoking the REFERENCES Object Privilege

	Cascading Effects of Revoking Privileges
	Cascading Effects When Revoking System Privileges
	Cascading Effects When Revoking Object Privileges

	Granting to and Revoking from the PUBLIC User Group
	Granting Roles Using the Operating System or Network
	About Granting Roles Using the Operating System or Network
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES Is Set to TRUE
	Enabling and Disabling Roles When OS_ROLES Is Set to TRUE
	Using Network Connections with Operating System Role Management

	When Do Grants and Revokes Take Effect?
	How the SET ROLE Statement Affects Grants and Revokes
	Specifying Default Roles
	The Maximum Number of Roles That a User Can Enable

	Managing Fine-Grained Access in PL/SQL Packages and Types
	About Fine-Grained Access Control to External Network Services
	About Access Control to Wallets
	Upgrading Applications That Depend on Packages That Use External Network Services
	Creating an Access Control List for External Network Services
	Step 1: Create the Access Control List and Its Privilege Definitions
	Step 2: Assign the Access Control List to One or More Network Hosts

	Configuring Access Control to a Wallet
	Step 1: Create an Oracle Wallet
	Step 2: Create an Access Control List that Grants the Wallet Privileges
	Step 3: Assign the Access Control List to the Wallet
	Step 4: Make the HTTP Request with the Passwords and Client Certificates

	Examples of Creating Access Control Lists
	Example of an Access Control List for a Single Role and Network Connection
	Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts
	Example of an Access Control List for Using Passwords in a Non-Shared Wallet
	Example of an Access Control List for Wallets in a Shared Database Session

	Specifying a Group of Network Host Computers
	Precedence Order for a Host Computer in Multiple Access Control List Assignments
	Precedence Order for a Host in Access Control List Assignments with Port Ranges
	Checking Privilege Assignments That Affect User Access to a Network Host
	How a DBA Can Check User Network Connection and Domain Privileges
	How Users Can Check Their Network Connection and Domain Privileges

	Setting the Precedence of Multiple Users and Roles in One Access Control List
	Finding Information About Access Control Lists Configured for User Access

	Finding Information About User Privileges and Roles
	Listing All System Privilege Grants
	Listing All Role Grants
	Listing Object Privileges Granted to a User
	Listing the Current Privilege Domain of Your Session
	Listing Roles of the Database
	Listing Information About the Privilege Domains of Roles

5 Managing Security for Application Developers

	About Application Security Policies
	Considerations for Using Application-Based Security
	Are Application Users Also Database Users?
	Is Security Better Enforced in the Application or in the Database?

	Securing Passwords in Application Design
	General Guidelines for Securing Passwords in Applications
	Platform-Specific Security Threats
	Designing Applications to Handle Password Input
	Configuring Password Formats and Behavior
	Handling Passwords in SQL*Plus and SQL Scripts

	Securing Passwords Using an External Password Store
	Securing Passwords Using the orapwd Utility
	Example of Reading Passwords in Java

	Managing Application Privileges
	Creating Secure Application Roles to Control Access to Applications
	Step 1: Create the Secure Application Role
	Step 2: Create a PL/SQL Package to Define the Access Policy for the Application

	Associating Privileges with User Database Roles
	Why Users Should Only Have the Privileges of the Current Database Role
	Using the SET ROLE Statement to Automatically Enable or Disable Roles

	Protecting Database Objects by Using Schemas
	Protecting Database Objects in a Unique Schema
	Protecting Database Objects in a Shared Schema

	Managing Object Privileges in an Application
	What Application Developers Need to Know About Object Privileges
	SQL Statements Permitted by Object Privileges

	Parameters for Enhanced Security of Database Communication
	Reporting Bad Packets Received on the Database from Protocol Errors
	Terminating or Resuming Server Execution After Receiving a Bad Packet
	Configuring the Maximum Number of Authentication Attempts
	Controlling the Display of the Database Version Banner
	Configuring Banners for Unauthorized Access and Auditing User Actions

6 Using Application Contexts to Retrieve User Information

	About Application Contexts
	What Is an Application Context?
	Components of the Application Context
	Where Are the Application Context Values Stored?
	Benefits of Using Application Contexts
	How Editions Affects Application Context Values

	Types of Application Contexts
	Using Database Session-Based Application Contexts
	About Database Session-Based Application Contexts
	Creating a Database Session-Based Application Context
	Creating a PL/SQL Package to Set the Database Session-Based Application Context
	About the Package That Manages the Database Session-Based Application Context
	Using SYS_CONTEXT to Retrieve Session Information
	Using Dynamic SQL with SYS_CONTEXT
	Using SYS_CONTEXT in a Parallel Query
	Using SYS_CONTEXT with Database Links
	Using DBMS_SESSION.SET_CONTEXT to Set Session Information

	Creating a Logon Trigger to Run a Database Session Application Context Package
	Tutorial: Creating and Using a Database Session-Based Application Context
	About This Tutorial
	Step 1: Create User Accounts and Ensure the User SCOTT Is Active
	Step 2: Create the Database Session-Based Application Context
	Step 3: Create a Package to Retrieve Session Data and Set the Application Context
	Step 4: Create a Logon Trigger for the Package
	Step 5: Test the Application Context
	Step 6: Remove the Components for This Tutorial

	Initializing Database Session-Based Application Contexts Externally
	Obtaining Default Values from Users
	Obtaining Values from Other External Resources
	Initializing Application Context Values from a Middle-Tier Server

	Initializing Database Session-Based Application Contexts Globally
	About Initializing Database Session-Based Application Contexts Globally
	Using Database Session-Based Application Contexts with LDAP
	How Globally Initialized Database Session-Based Application Contexts Work
	Example of Initializing a Database Session-Based Application Context Globally

	Using Externalized Database Session-Based Application Contexts

	Using Global Application Contexts
	About Global Application Contexts
	Creating a Global Application Context
	Creating a PL/SQL Package to Manage a Global Application Context
	About the Package That Manages the Global Application Context
	How Editions Affects the Results of a Global Application Context PL/SQL Package
	Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters
	Sharing Global Application Context Values for All Database Users
	Setting a Global Context for Database Users Who Move Between Applications
	Setting a Global Application Context for Nondatabase Users
	Clearing Session Data When the Session Closes

	Embedding Calls in Middle-Tier Applications to Manage the Client Session ID
	About Managing Client Session IDs Using a Middle-Tier Application
	Retrieving the Client Session ID Using a Middle-Tier Application
	Setting the Client Session ID Using a Middle-Tier Application
	Clearing Session Data Using a Middle-Tier Application

	Tutorial: Creating a Global Application Context That Uses a Client Session ID
	About This Tutorial
	Step 1: Create User Accounts
	Step 2: Create the Global Application Context
	Step 3: Create a Package for the Global Application Context
	Step 4: Test the Global Application Context
	Step 5: Remove the Components for This Tutorial

	Global Application Context Processes
	Simple Global Application Context Process
	Global Application Context Process for Lightweight Users

	Using Client Session-Based Application Contexts
	About Client Session-Based Application Contexts
	Setting a Value in the CLIENTCONTEXT Namespace
	Retrieving the CLIENTCONTEXT Namespace
	Clearing a Setting in the CLIENTCONTEXT Namespace
	Clearing All Settings in the CLIENTCONTEXT Namespace

	Finding Information About Application Contexts

7 Using Oracle Virtual Private Database to Control Data Access

	About Oracle Virtual Private Database
	What Is Oracle Virtual Private Database?
	Benefits of Using Oracle Virtual Private Database Policies
	Basing Security Policies on Database Objects Rather Than Applications
	Controlling How Oracle Database Evaluates Policy Functions

	Which Privileges Are Used to Run Oracle Virtual Private Database Policy Functions?
	Using Oracle Virtual Private Database with an Application Context

	Components of an Oracle Virtual Private Database Policy
	Creating a Function to Generate the Dynamic WHERE Clause
	Creating a Policy to Attach the Function to the Objects You Want to Protect

	Configuring an Oracle Virtual Private Database Policy
	About Oracle Virtual Private Database Policies
	Attaching a Policy a Database Table, View, or Synonym
	Enforcing Policies on Specific SQL Statement Types
	Controlling the Display of Column Data with Policies
	Adding Policies for Column-Level Oracle Virtual Private Database
	Displaying Only the Column Rows Relevant to the Query
	Using Column Masking to Display Sensitive Columns as NULL Values

	Working with Oracle Virtual Private Database Policy Groups
	About Oracle Virtual Private Database Policy Groups
	Creating a New Oracle Virtual Private Database Policy Group
	Designating a Default Policy Group with the SYS_DEFAULT Policy Group
	Establishing Multiple Policies for Each Table, View, or Synonym
	Validating the Application Used to Connect to the Database

	Optimizing Performance by Using Oracle Virtual Private Database Policy Types
	About Oracle Virtual Private Database Policy Types
	Using the Dynamic Policy Type to Automatically Rerun Policy Functions
	Using a Static Policy to Prevent Policy Functions from Rerunning for Each Query
	Using a Shared Static Policy to Share a Policy with Multiple Objects
	When to Use Static and Shared Static Policies
	Using a Context-Sensitive Policy for Predicates That Do Not Change After Parsing
	Using a Shared Context Sensitive Policy to Share a Policy with Multiple Objects
	When to Use Context-Sensitive and Shared Context-Sensitive Policies
	Summary of the Five Oracle Virtual Private Database Policy Types

	Tutorials: Creating Oracle Virtual Private Database Policies
	Tutorial: Creating a Simple Oracle Virtual Private Database Policy
	About This Tutorial
	Step 1: Ensure That the OE User Account Is Active
	Step 2: Create a Policy Function
	Step 3: Create the Oracle Virtual Private Database Policy
	Step 4: Test the Policy
	Step 5: Remove the Components for This Tutorial

	Tutorial: Implementing a Policy with a Database Session-Based Application Context
	About This Tutorial
	Step 1: Create User Accounts and Sample Tables
	Step 2: Create a Database Session-Based Application Context
	Step 3: Create a PL/SQL Package to Set the Application Context
	Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package
	Step 5: Create a PL/SQL Policy Function to Limit User Access to Their Orders
	Step 6: Create the New Security Policy
	Step 7: Test the New Policy
	Step 8: Remove the Components for This Tutorial

	Tutorial: Implementing an Oracle Virtual Private Database Policy Group
	About This Tutorial
	Step 1: Create User Accounts and Other Components for This Tutorial
	Step 2: Create the Two Policy Groups
	Step 3: Create PL/SQL Functions to Control the Policy Groups
	Step 4: Add the PL/SQL Functions to the Policy Groups
	Step 5: Create the Driving Application Context
	Step 6: Test the Policy Groups
	Step 7: Remove the Components for This Tutorial

	How Oracle Virtual Private Database Works with Other Oracle Features
	Using Oracle Virtual Private Database Policies with Editions
	Using SELECT FOR UPDATE in User Queries on VPD-Protected Tables
	How Oracle Virtual Private Database Policies Affect Outer or ANSI Join Operations
	How Oracle Virtual Private Database Security Policies Work with Applications
	Using Automatic Reparsing for Fine-Grained Access Control Policy Functions
	Using Oracle Virtual Private Database Policies and Flashback Query
	Using Oracle Virtual Private Database and Oracle Label Security
	Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies
	Oracle Virtual Private Database and Oracle Label Security Exceptions

	User Models and Oracle Virtual Private Database

	Finding Information About Oracle Virtual Private Database Policies

8 Developing Applications Using the Data Encryption API

	Security Problems That Encryption Does Not Solve
	Principle 1: Encryption Does Not Solve Access Control Problems
	Principle 2: Encryption Does Not Protect Against a Malicious Database Administrator
	Principle 3: Encrypting Everything Does Not Make Data Secure

	Data Encryption Challenges
	Encrypting Indexed Data
	Generating Encryption Keys
	Transmitting Encryption Keys
	Storing Encryption Keys
	Storing the Encryption Keys in the Database
	Storing the Encryption Keys in the Operating System
	Users Managing Their Own Encryption Keys
	Using Transparent Database Encryption and Tablespace Encryption

	Changing Encryption Keys
	Encrypting Binary Large Objects

	Storing Data Encryption by Using the DBMS_CRYPTO Package
	Verifying Data Integrity with the DBMS_SQLHASH Package
	About the DBMS_SQLHASH Package
	Using the DBMS_SQLHASH.GETHASH Function
	Syntax
	Parameters

	Examples of Using the Data Encryption API
	Example of a Data Encryption Procedure
	Example of AES 256-Bit Data Encryption and Decryption Procedures
	Example of Encryption and Decryption Procedures for BLOB Data

	Finding Information About Encrypted Data

9 Verifying Security Access with Auditing

	About Auditing
	What Is Auditing?
	Why Is Auditing Used?
	Protecting the Database Audit Trail
	Activities That Are Always Written to the Standard and Fine-Grained Audit Records
	Activities That Are Always Audited for All Platforms
	Auditing in a Distributed Database
	Best Practices for Auditing

	Selecting an Auditing Type
	Auditing General Activities with Standard Auditing
	About Standard Auditing
	What Is Standard Auditing?
	Who Can Perform Standard Auditing?
	When Are Standard Audit Records Created?

	Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter
	Enabling or Disabling the Standard Audit Trail
	Settings for the AUDIT_TRAIL Initialization Parameter

	What Do the Operating System and Database Audit Trails Have in Common?
	Using the Operating System Audit Trail
	About the Operating System Trail
	What Do Operating System Audit Trail Records Look Like?
	Advantages of the Operating System Audit Trail
	How the Operating System Audit Trail Works
	Specifying a Directory for the Operating System Audit Trail

	Using the Syslog Audit Trail on UNIX Systems
	About the Syslog Audit Trail
	Format of the Information Stored in the Syslog Audit Trail
	What Does the Syslog Audit Trail Look Like?
	Configuring Syslog Auditing

	How the AUDIT and NOAUDIT SQL Statements Work
	Enabling Standard Auditing with the AUDIT SQL Statement
	Auditing Statement Executions: Successful, Unsuccessful, or Both
	How Standard Audit Records Are Generated
	How Do Cursors Affect Standard Auditing?
	Benefits of Using the BY ACCESS Clause in the AUDIT Statement
	Auditing Actions Performed by Specific Users
	Removing the Audit Option with the NOAUDIT SQL Statement

	Auditing SQL Statements
	About SQL Statement Auditing
	Types of SQL Statements That Are Audited
	Configuring SQL Statement Auditing
	Removing SQL Statement Auditing

	Auditing Privileges
	About Privilege Auditing
	Types of Privileges That Can Be Audited
	Configuring Privilege Auditing
	Removing Privilege Auditing

	Auditing SQL Statements and Privileges in a Multitier Environment
	Auditing Schema Objects
	About Schema Object Auditing
	Types of Schema Objects That Can Be Audited
	Using Standard Auditing with Editioned Objects
	Schema Object Audit Options for Views, Procedures, and Other Elements
	Configuring Schema Object Auditing
	Removing Object Auditing
	Setting Audit Options for Objects That May Be Created in the Future

	Auditing Directory Objects
	About Directory Object Auditing
	Configuring Directory Object Auditing
	Removing Directory Object Auditing

	Auditing Functions, Procedures, Packages, and Triggers
	About Auditing Functions, Procedures, Packages, and Triggers
	Configuring the Auditing of Functions, Procedures, Packages, and Triggers
	Removing the Auditing of Functions, Procedures, Packages, and Triggers

	Auditing Network Activity
	About Network Auditing
	Configuring Network Auditing
	Removing Network Auditing

	Using Default Auditing for Security-Relevant SQL Statements and Privileges
	About the Default Auditing Settings
	Privileges That Oracle Database Audits by Default
	Disabling and Enabling Default Audit Settings

	Auditing Specific Activities with Fine-Grained Auditing
	About Fine-Grained Auditing
	Advantages of Fine-Grained Auditing
	What Permissions Are Needed to Create a Fine-Grained Audit Policy?
	Activities That Are Always Audited in Fine-Grained Auditing
	Using Fine-Grained Audit Policies with Editions
	Creating an Audit Trail for Fine-Grained Audit Records
	How the Fine-Grained Audit Trail Generates Records
	Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies
	About the DBMS_FGA PL/SQL Package
	Creating a Fine-Grained Audit Policy
	Disabling and Enabling a Fine-Grained Audit Policy
	Dropping a Fine-Grained Audit Policy

	Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy
	About This Tutorial
	Step 1: Install and Configure the UTL_MAIL PL/SQL Package
	Step 2: Create User Accounts
	Step 3: Configure an Access Control List File for Network Services
	Step 4: Create the E-Mail Security Alert PL/SQL Procedure
	Step 5: Create and Test the Fine-Grained Audit Policy Settings
	Step 6: Test the Alert
	Step 7: Remove the Components for This Tutorial

	Tutorial: Auditing Nondatabase Users
	About This Tutorial
	Step 1: Create the User Account and Ensure the User HR Is Active
	Step 2: Create the Fine-Grained Audit Policy
	Step 3: Test the Policy
	Step 4: Remove the Components for This Tutorial

	Auditing SYS Administrative Users
	Auditing User SYSTEM
	Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER

	Using Triggers to Write Audit Data to a Separate Table
	Managing Audit Trail Records
	About Audit Records
	Managing the Database Audit Trail
	Database Audit Trail Contents
	Controlling the Size of the Database Audit Trail
	Moving the Database Audit Trail to a Different Tablespace
	Auditing the Database Audit Trail
	Archiving the Database Audit Trail

	Managing the Operating System Audit Trail
	If the Operating System Audit Trail Becomes Full
	Setting the Size of the Operating System Audit Trail
	Setting the Age of the Operating System Audit Trail
	Archiving the Operating System Audit Trail

	Purging Audit Trail Records
	About Purging Audit Trail Records
	Selecting an Audit Trail Purge Method
	Scheduling an Automatic Purge Job for the Audit Trail
	Step 1: If Necessary, Tune Online and Archive Redo Log Sizes
	Step 2: Plan a Timestamp and Archive Strategy
	Step 3: Initialize the Audit Trail Cleanup Operation
	Step 4: Optionally, Set an Archive Timestamp for Audit Records
	Step 5: Create and Schedule the Purge Job
	Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches

	Manually Purging the Audit Trail
	Purging a Subset of Records from the Database Audit Trail
	Other Audit Trail Purge Operations
	Verifying That the Audit Trail Is Initialized for Cleanup
	Setting the Default Audit Trail Purge Interval for Any Audit Trail Type
	Cancelling the Initialization Cleanup Settings
	Enabling or Disabling an Audit Trail Purge Job
	Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job
	Deleting an Audit Trail Purge Job
	Clearing the Archive Timestamp Setting
	Clearing the Database Audit Trail Batch Size

	Example: Directly Calling a Database Audit Trail Purge Operation

	Finding Information About Audited Activities
	Using Data Dictionary Views to Find Information About the Audit Trail
	Using Audit Trail Views to Investigate Suspicious Activities
	Listing Active Statement Audit Options
	Listing Active Privilege Audit Options
	Listing Active Object Audit Options for Specific Objects
	Listing Default Object Audit Options
	Listing Audit Records
	Listing Audit Records for the AUDIT SESSION Option

	Deleting the Audit Trail Views

10 Keeping Your Oracle Database Secure

	About the Security Guidelines in This Chapter
	Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities
	Applying Security Patches and Workaround Solutions
	Contacting Oracle Security Regarding Vulnerabilities in Oracle Database

	Guidelines for Securing User Accounts and Privileges
	Guidelines for Securing Roles
	Guidelines for Securing Passwords
	Guidelines for Securing Data
	Guidelines for Securing the ORACLE_LOADER Access Driver
	Guidelines for Securing a Database Installation and Configuration
	Guidelines for Securing the Network
	Securing the Client Connection
	Securing the Network Connection
	Securing a Secure Sockets Layer Connection

	Guidelines for Auditing
	Auditing Sensitive Information
	Keeping Audited Information Manageable
	Auditing Typical Database Activity
	Auditing Suspicious Database Activity
	Recommended Audit Settings

	Addressing the CONNECT Role Change
	Why Was the CONNECT Role Changed?
	How the CONNNECT Role Change Affects Applications
	How the CONNECT Role Change Affects Database Upgrades
	How the CONNECT Role Change Affects Account Provisioning
	How the CONNECT Role Change Affects Applications Using New Databases

	How the CONNECT Role Change Affects Users
	How the CONNECT Role Change Affects General Users
	How the CONNECT Role Change Affects Application Developers
	How the CONNECT Role Change Affects Client Server Applications

	Approaches to Addressing the CONNECT Role Change
	Approach 1: Create a New Database Role
	Approach 2: Restore CONNECT Privileges
	Approach 3: Conduct Least Privilege Analysis

Glossary

Index

This graphic illustrates the use of roles. From left to right, top to bottom, there are four categoroies, which are as follows:

	
The top row shows groups of users.

	
Following the groups of users, are user roles, which are assigned to each group.

	
Following the user roles, there are application roles, which point to the appropriate user roles.

	
Following the application roles are application privileges, which point to each corresponding application role.

Surrounding text describes this figure.

This figure illustrates the environment in which you can audit proxy users. In this figure, from left to right, top to bottom, are the following components:

	
A client connects to a mid-tier application called AppHR.

	
The AppHR mid-tier application passes the user's authentication to the database server.

	
Within the database is the audit trail. To find information about this user's activities, you can query the following columns from the DBA_AUDIT_TRAIL data dictionary view:

	
DBA_AUDIT_TRAIL.COMMENT_TEXT = 'Authenticated by: PROXY; …'

	
DBA_AUDIT_TRAIL.PROXY_SESSIONID = XYZABC

	
DBA_AUDIT_TRAIL.ACTION_NAME = 'LOGON'

	
DBA_AUDIT_TRAIL.SESSIONID = XYZABC

	
DBA_AUDIT_TRAIL.USERNAME = 'APPHR'

	
DBA_AUDIT_TRAIL.ACTION_NAME = 'PROXY AUTHENTICATION ONLY'

Surrounding text describes this figure.

This figure illustrates an environment in which you can audit the client identifier of a user. From left to right, top to bottom, top to bottom, are the following components:

	
A client connects to a mid-tier application called AppHR.

	
The AppHR mid-tier application passes the user's authentication to the first database, Database 1. The AppHR application sets the client identifier to CLIENT_A.

	
From Database 1, you can audit the client identifier CLIENT_A by querying the CLIENT_ID column of the DBA_AUDIT_TRAIL view.

	
A database link connects Database 1 to a second database, Database 2. The user now has connected to Database 2.

	
From Database 2, you can audit the client identifer again, by querying the CLIENT_ID column of the DBA_AUDIT_TRAIL view.

This figure illustrates the process flow for multier authentication. The text in the following section describes each of the steps that take place in this process.

List of Examples

	2-1 Creating a User Account with the CREATE SESSION Privilege
	2-2 Altering a User Account
	2-3 Querying V$SESSION for the Session ID of a User
	2-4 Killing a User Session
	2-5 Finding Objects Owned by a User
	2-6 Dropping a User Account
	3-1 Password Creation SQL Statements
	3-2 Locking an Account with the CREATE PROFILE Statement
	3-3 Setting Password Aging and Expiration with the CREATE PROFILE Statement
	3-4 Enabling Password Case Sensitivity
	3-5 Sample SQLNET.ORA File with Wallet Parameters Set
	3-6 Altering a User Account to Connect Through a Proxy User Account
	4-1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE
	4-2 Creating a User Role Authorized by a Password
	4-3 Altering a Role to be Authorized by an External Source
	4-4 Using SET ROLE for a Password-Authenticated Role
	4-5 Creating a Role Authorized by a PL/SQL Package for an Application
	4-6 Creating a Role Authorized by an External Source
	4-7 Creating a Global Role
	4-8 Revoking All Object Privileges Using CASCADE CONSTRAINTS
	4-9 Compiling a Procedure
	4-10 Package Objects Affected by Procedure Privileges
	4-11 Granting a System Privilege and a Role to a User
	4-12 Granting the EXECUTE Privilege on a Directory Object
	4-13 Granting the ADMIN Option
	4-14 Creating a New User with the GRANT Statement
	4-15 Granting Object Privileges to Users
	4-16 Using SET ROLE to Grant a Role and Specify a Password
	4-17 Using SET ROLE to Disable All Roles
	4-18 Using ALTER USER to Set Default Roles
	4-19 Creating an Access Control List for a Single Role and Network Connection
	4-20 Creating an Access Control List for Multiple Roles and Network Connections
	4-21 Using the DBA_NETWORK_ACL_PRIVILEGES View to Show Granted Privileges
	4-22 Using the DBA_NETWORK_ACLS View to Show Host Assignments
	4-23 Configuring ACL Access Using Passwords in a Non-Shared Wallet
	4-24 Configuring ACL Access for a Wallet in a Shared Database Session
	4-25 Administrator Checking User Permissions for Network Host Connections
	4-26 Administrator Checking Permissions for Domain Name Resolution
	4-27 User Checking Permissions for Network Host Connections
	4-28 User Checking Privileges for Domain Name Resolution
	5-1 Java Code for Reading Passwords
	6-1 Creating a Database Session-Based Application Context
	6-2 Finding SYS_CONTEXT Values
	6-3 Simple Procedure to Create an Application Context Value
	6-4 Creating a Simple Logon Trigger
	6-5 Creating a Logon Trigger for a Production Environment
	6-6 Creating a Logon Trigger for a Development Environment
	6-7 Package to Retrieve Session Data and Set a Database Session Context
	6-8 Creating an Externalized Database Session-based Application Context
	6-9 Creating a Global Application Context
	6-10 Package to Manage Global Application Values for All Database Users
	6-11 Package to Manage Global Application Context Values for a User Moving Between Applications
	6-12 Package to Manage Global Application Context Values for Nondatabase Users
	6-13 Using OCIStmtExecute to Retrieve a Client Session ID Value
	6-14 Retrieving a Client Session ID Value for Client Session-Based Contexts
	7-1 Attaching a Simple Oracle Virtual Private Database Policy to a Table
	7-2 Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY
	7-3 Creating a Column-Level Oracle Virtual Private Database Policy
	7-4 Adding a Column Masking to an Oracle Virtual Private Database Policy
	7-5 Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY
	7-6 Creating a STATIC Policy with DBMS_RLS.ADD_POLICY
	7-7 Creating a SHARED_STATIC Policy with DBMS_RLS.ADD_POLICY
	7-8 Creating a CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY
	7-9 Creating a SHARED_CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY
	9-1 Checking the Current Value of the AUDIT_TRAIL Initialization Parameter
	9-2 Enabling the Standard Audit Trail
	9-3 Text File Operating System Audit Trail
	9-4 XML File Operating System Audit Trail
	9-5 Syslog Audit Trail for SYS User
	9-6 Using AUDIT to Audit User Actions
	9-7 Using AUDIT to Enable SQL Statement Auditing
	9-8 Using NOAUDIT to Remove Session and SQL Statement Auditing
	9-9 Using NOAUDIT to Remove ALL STATEMENTS Auditing
	9-10 Using AUDIT to Configure Privilege Auditing
	9-11 Auditing Unsuccessful Statements and Privileges
	9-12 Using AUDIT to Audit a SQL Statement for a User
	9-13 Configuring Auditing for a Schema Table
	9-14 Auditing Successful Statements on a Schema Table
	9-15 Configuring Auditing for Any New Objects Using the DEFAULT Clause
	9-16 Auditing the Execution of a Procedure or Function
	9-17 Auditing a Directory Object
	9-18 Auditing All Functions, Procedures, Packages, and Triggers
	9-19 Auditing a User's Execution of Functions, Procedures, Packages, and Triggers
	9-20 Auditing the Execution of a Procedure or Function within a Schema
	9-21 Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy
	9-22 Disabling a Fine-Grained Audit Policy
	9-23 Enabling a Fine-Grained Audit Policy
	9-24 Dropping a Fine-Grained Audit Policy
	9-25 Auditing Table Insert Operations by User SYSTEM
	9-26 Audit Trigger to Record Before and After Changes to a Table
	9-27 Directly Calling a Database Audit Trail Purge Operation

4 Configuring Privilege and Role Authorization

This chapter contains:

	
About Privileges and Roles

	
Who Should Be Granted Privileges?

	
Managing System Privileges

	
Managing User Roles

	
Managing Object Privileges

	
Granting a User Privileges and Roles

	
Revoking Privileges and Roles from a User

	
Granting to and Revoking from the PUBLIC User Group

	
Granting Roles Using the Operating System or Network

	
When Do Grants and Revokes Take Effect?

	
Managing Fine-Grained Access in PL/SQL Packages and Types

	
Finding Information About User Privileges and Roles

About Privileges and Roles

Authorization includes primarily two processes:

	
Permitting only certain users to access, process, or alter data.

	
Applying varying limitations on user access or actions. The limitations placed on (or removed from) users can apply to objects such as schemas, tables, or rows or to resources such as time (CPU, connect, or idle times).

A user privilege is the right to run a particular type of SQL statement, or the right to access an object that belongs to another user, run a PL/SQL package, and so on. The types of privileges are defined by Oracle Database.

Roles are created by users (usually administrators) to group together privileges or other roles. They are a way to facilitate the granting of multiple privileges or roles to users.

This section describes the following general categories:

	
System privileges. These privileges allow the grantee to perform standard administrator tasks in the database. Restrict them only to trusted users. "Managing System Privileges" describes system privileges in detail.

	
User roles. A role groups several privileges and roles, so that they can be granted to and revoked from users simultaneously. You must enable the role for a user before the user can use it. See "Managing User Roles" for more information.

	
Object privileges. Each type of object has privileges associated with it. "Managing Object Privileges" describes how to manage privileges for different types of objects.

Who Should Be Granted Privileges?

You grant privileges to users so they can accomplish tasks required for their jobs. You should grant a privilege only to a user who requires that privilege to accomplish the necessary work. Excessive granting of unnecessary privileges can compromise security. For example, you never should grant SYSDBA or SYSOPER privilege to users who do not perform administrative tasks.

A user can receive a privilege in two ways:

	
You can grant privileges to users explicitly. For example, you can explicitly grant to user psmith the privilege to insert records into the employees table.

	
You can grant privileges to a role (a named group of privileges), and then grant the role to one or more users. For example, you can grant the privileges to select, insert, update, and delete records from the employees table to the role named clerk, which in turn you can grant to users psmith and robert.

Because roles allow for easier and better management of privileges, you should usually grant privileges to roles and not to specific users.

	
See Also:

	
"Guidelines for Securing User Accounts and Privileges" for best practices to follow when granting privileges

	
Oracle Database SQL Language Reference for the complete list of system privileges and their descriptions

Managing System Privileges

This section contains:

	
About System Privileges

	
Why Is It Important to Restrict System Privileges?

	
Granting and Revoking System Privileges

	
Who Can Grant or Revoke System Privileges?

	
About ANY and PUBLIC Privileges

About System Privileges

A system privilege is the right to perform a particular action or to perform an action on any schema objects of a particular type. For example, the privileges to create tablespaces and to delete the rows of any table in a database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to perform a particular database operation or class of database operations. Remember that system privileges are very powerful. Only grant them when necessary to roles and trusted users of the database. You can find a complete list of system privileges and their descriptions in Oracle Database SQL Language Reference. To find the system privileges that have been granted to a user, you can query the DBA_SYS_PRIVS data dictionary view.

Why Is It Important to Restrict System Privileges?

Because system privileges are so powerful, by default the database is configured to prevent typical (non-administrative) users from exercising the ANY system privileges (such as UPDATE ANY TABLE) on the data dictionary. See "Guidelines for Securing User Accounts and Privileges" for additional guidelines about restricting system privileges.

	
Restricting System Privileges by Securing the Data Dictionary

	
Allowing Access to Objects in the SYS Schema

Restricting System Privileges by Securing the Data Dictionary

To secure the data dictionary, set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE, which is the default value. This feature is called the dictionary protection mechanism.

The O7_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions on system privileges when you upgrade from Oracle Database release 7 to Oracle8i and later releases. If the parameter is set to TRUE, then access to objects in the SYS schema is allowed (Oracle Database release 7 behavior). Because the ANY privilege applies to the data dictionary, a malicious user with ANY privilege could access or alter data dictionary tables.

To set the O7_DICTIONARY_ACCESSIBILTY initialization parameter, modify it in the initSID.ora file. Alternatively, you can log on to SQL*Plus as user SYS with the SYSDBA privilege and then enter an ALTER SYSTEM statement, assuming you have started the database using a server parameter file (SPFILE).

Example 4-1 shows how to set the O7_DICTIONARY_ACCESSIBILTY initialization parameter to FALSE by issuing an ALTER SYSTEM statement in SQL*Plus.

Example 4-1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE

ALTER SYSTEM SET O7_DICTIONARY_ACCESSIBILITY=FALSE SCOPE=SPFILE;

When you set O7_DICTIONARY_ACCESSIBILITY to FALSE, system privileges that enable access to objects in any schema (for example, users who have ANY privileges, such as CREATE ANY PROCEDURE) do not allow access to objects in the SYS schema. This means that access to the objects in the SYS schema (data dictionary objects) is restricted to users who connect using the SYSDBA privilege. Remember that the SYS user must log in with either the SYSDBA or SYSOPER privilege; otherwise, an ORA-28009: connection as SYS should be as SYSDBA or SYSOPER error is raised. If you set O7_DICTIONARY_ACCESSIBILITY to TRUE, then you would be able to log in to the database as user SYS without having to specify the SYSDBA or SYSOPER privilege.

System privileges that provide access to objects in other schemas do not give other users access to objects in the SYS schema. For example, the SELECT ANY TABLE privilege allows users to access views and tables in other schemas, but does not enable them to select dictionary objects (base tables of dynamic performance views, regular views, packages, and synonyms). You can, however, grant these users explicit object privileges to access objects in the SYS schema.

See Oracle Database Reference for more information about the O7_DICTIONARY_ACCESSIBILITY initialization parameter.

Allowing Access to Objects in the SYS Schema

Users with explicit object privileges or those who connect with administrative privileges (SYSDBA) can access objects in the SYS schema.

Table 4-1 lists roles that you can grant to users who need access to objects in the SYS schema.

Table 4-1 Roles to Allow Access to SYS Schema Objects

	Role	Description
	
SELECT_CATALOG_ROLE

	
Grant this role to allow users SELECT privileges on data dictionary views.

	
EXECUTE_CATALOG_ROLE

	
Grant this role to allow users EXECUTE privileges for packages and procedures in the data dictionary.

	
DELETE_CATALOG_ROLE

	
Grant this role to allow users to delete records from the system audit tables SYS.AUD$ and SYS.FGA_LOG$.

Additionally, you can grant the SELECT ANY DICTIONARY system privilege to users who require access to tables created in the SYS schema. This system privilege allows query access to any object in the SYS schema, including tables created in that schema. It must be granted individually to each user requiring the privilege. It is not included in GRANT ALL PRIVILEGES, but it can be granted through a role.

	
Caution:

You should grant these roles and the SELECT ANY DICTIONARY system privilege with extreme care, because the integrity of your system can be compromised by their misuse.

Granting and Revoking System Privileges

You can grant or revoke system privileges to users and roles. If you grant system privileges to roles, then you can use the roles to exercise system privileges. For example, roles permit privileges to be made selectively available. Ensure that you follow the separation of duty guidelines described in "Guidelines for Securing Roles".

Use either of the following methods to grant or revoke system privileges to or from users and roles:

	
GRANT and REVOKE SQL statements

	
Oracle Enterprise Manager Database Control

	
See Also:

	
"Granting a User Privileges and Roles"

	
"Revoking Privileges and Roles from a User"

	
"When Do Grants and Revokes Take Effect?"

	
"Finding Information About User Privileges and Roles"

	
Oracle Database 2 Day DBA for more information about Database Control

Who Can Grant or Revoke System Privileges?

Only two types of users can grant system privileges to other users or revoke those privileges from them:

	
Users who were granted a specific system privilege with the ADMIN OPTION

	
Users with the system privilege GRANT ANY PRIVILEGE

For this reason, only grant these privileges to trusted users.

About ANY and PUBLIC Privileges

System privileges that use the ANY keyword enable you to set privileges for an entire category of objects in the database. For example, the CREATE ANY PROCEDURE system privilege allows a user to create a procedure anywhere in the database. The behavior of an object created by users with the ANY privilege is not restricted to the schema in which it was created. For example, if user MALCOEUR has the CREATE ANY PROCEDURE privilege and creates a procedure in the schema JONES, then the procedure will run as JONES. However, JONES may not be aware that the procedure MALCOEUR created is running as him (JONES). If JONES has DBA privileges, letting MALCOEUR run a procedure as JONES could pose a security violation.

You can grant privileges to the PUBLIC role, which then makes the privileges available to every user in the Oracle database. Be careful about granting privileges to the PUBLIC role, particularly powerful privileges such as the ANY privileges and system privileges. For example, if MALCOEUR has the CREATE PUBLIC SYNONYM privilege, he could redefine an interface that he knows everyone else uses, and then point to it with the PUBLIC SYNONYM that he created. Instead of accessing the correct interface, users would access the interface of MALCOEUR, which could possibly perform illegal activities such as stealing the login credentials of users.

These types of privileges are very powerful and could pose a security risk if given to the wrong person. Be careful about granting privileges using ANY or PUBLIC. As with all privileges, you should follow the principles of "least privilege" when granting these privileges to users.

To protect the data dictionary (the contents of the SYS schema) against users who have one or more of the powerful ANY system privileges, set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE. You can set this parameter by using an ALTER SYSTEM statement (see Example 4-1, "Setting O7_DICTIONARY_ACCESSIBILITY to FALSE") or by modifying the initSID.ora file. See "Guidelines for Securing a Database Installation and Configuration" for additional guidelines.

Managing User Roles

This section contains:

	
About User Roles

	
Predefined Roles in an Oracle Database Installation

	
Creating a Role

	
Specifying the Type of Role Authorization

	
Dropping Roles

	
Restricting SQL*Plus Users from Using Database Roles

	
Securing Role Privileges by Using Secure Application Roles

About User Roles

Managing and controlling privileges is easier when you use roles, which are named groups of related privileges that you grant as a group to users or other roles. Within a database, each role name must be unique, different from all user names and all other role names. Unlike schema objects, roles are not contained in any schema. Therefore, a user who creates a role can be dropped with no effect on the role.

This section contains:

	
The Functionality of Roles

	
Properties of Roles and Why They Are Advantageous

	
Common Uses of Roles

	
How Roles Affect the Scope of a User's Privileges

	
How Roles Work in PL/SQL Blocks

	
How Roles Aid or Restrict DDL Usage

	
How Operating Systems Can Aid Roles

	
How Roles Work in a Distributed Environment

The Functionality of Roles

Roles are useful for quickly and easily granting permissions to users. Although you can use Oracle Database-defined roles, you have more control and continuity if you create your own roles that contain only the privileges pertaining to your requirements. Oracle may change or remove the privileges in an Oracle Database-defined role, as it has with the CONNECT role, which now has only the CREATE SESSION privilege. Formerly, this role had eight other privileges.

Roles have the following functionality:

	
A role can be granted system or object privileges.

	
Any role can be granted to any database user.

	
Each role granted to a user is, at a given time, either enabled or disabled. A user's security domain includes the privileges of all roles currently enabled for the user and excludes the privileges of any roles currently disabled for the user. Oracle Database allows database applications and users to enable and disable roles to provide selective availability of privileges.

	
A role can be granted to other roles. However, a role cannot be granted to itself and cannot be granted circularly. For example, role role1 cannot be granted to role role2 if role role2 has previously been granted to role role1.

	
If a role is not password authenticated or a secure application role, then you can grant the role indirectly to the user. An indirectly granted role is a role granted to the user through another role that has already been granted to this user. For example, suppose you grant user psmith the role1 role. Then you grant the role2 and role3 roles to the role1 role. Roles role2 and role3 are now under role1. This means psmith has been indirectly granted the roles role2 and role3, in addition to the direct grant of role1. Enabling the direct role1 for psmith enables the indirect roles role2 and role3 for this user as well.

	
Optionally, you can make a directly granted role a default role. You enable or disable the default role status of a directly granted role by using the DEFAULT ROLE clause of the ALTER USER statement. Ensure that the DEFAULT ROLE clause refers only to roles that have been directly granted to the user. To find the directly granted roles for a user, query the DBA_ROLE_PRIVS data dictionary view. This view does not include the user's indirectly granted roles. To find roles that are granted to other roles, query the ROLE_ROLE_PRIVS view.

	
If the role is password authenticated or a secure application role, then you cannot grant it indirectly to the user, nor can you make it a default role. You only can grant this type of role directly to the user. Typically, you enable password authenticated or secure application roles by using the SET ROLE statement.

Properties of Roles and Why They Are Advantageous

Table 4-2 describes the properties of roles that enable easier privilege management within a database.

Table 4-2 Properties of Roles and Their Description

	Property	Description
	
Reduced privilege administration

	
Rather than granting the same set of privileges explicitly to several users, you can grant the privileges for a group of related users to a role, and then only the role must be granted to each member of the group.

	
Dynamic privilege management

	
If the privileges of a group must change, then only the privileges of the role need to be modified. The security domains of all users granted the group's role automatically reflect the changes made to the role.

	
Selective availability of privileges

	
You can selectively enable or disable the roles granted to a user. This allows specific control of a user's privileges in any given situation.

	
Application awareness

	
The data dictionary records which roles exist, so you can design applications to query the dictionary and automatically enable (or disable) selective roles when a user attempts to execute the application by way of a given user name.

	
Application-specific security

	
You can protect role use with a password. Applications can be created specifically to enable a role when supplied the correct password. Users cannot enable the role if they do not know the password.

Database administrators often create roles for a database application. You should grant a secure application role all privileges necessary to run the application. You then can grant the secure application role to other roles or users. An application can have several different roles, each granted a different set of privileges that allow for more or less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the privileges granted to the role. Typically, an application is designed so that when it starts, it enables the proper role. As a result, an application user does not need to know the password for an application role.

	
See Also:

"How Roles Aid or Restrict DDL Usage" for information about restrictions for procedures

Common Uses of Roles

In general, you create a role to serve one of two purposes:

	
To manage the privileges for a database application (see "Common Uses of Application Roles")

	
To manage the privileges for a user group (see "Common Uses of User Roles")

Figure 4-1 and the sections that follow describe the two uses of roles.

Figure 4-1 Common Uses for Roles

[image: Common Uses for Roles]

Common Uses of Application Roles

Grant an application role all privileges necessary to run a given database application. Then, grant the secure application role to other roles or to specific users. An application can have several different roles, with each role assigned a different set of privileges that allow for more or less data access while using the application.

Common Uses of User Roles

Create a user role for a group of database users with common privilege requirements. You can manage user privileges by granting secure application roles and privileges to the user role and then granting the user role to appropriate users.

How Roles Affect the Scope of a User's Privileges

Each role and user has its own unique security domain. The security domain of a role includes the privileges granted to the role plus those privileges granted to any roles that are granted to the role.

The security domain of a user includes privileges on all schema objects in the corresponding schema, the privileges granted to the user, and the privileges of roles granted to the user that are currently enabled. (A role can be simultaneously enabled for one user and disabled for another.) This domain also includes the privileges and roles granted to the user group PUBLIC. The PUBLIC user group represents all users in the database.

How Roles Work in PL/SQL Blocks

The use of roles in a PL/SQL block depends on whether it is an anonymous block or a named block (stored procedure, function, or trigger), and whether it executes with definer's rights or invoker's rights.

Roles Used in Named Blocks with Definer's Rights

All roles are disabled in any named PL/SQL block (stored procedure, function, or trigger) that executes with definer's rights. Roles are not used for privilege checking and you cannot set roles within a definer's rights procedure.

The SESSION_ROLES view shows all roles that are currently enabled. If a named PL/SQL block that executes with definer's rights queries SESSION_ROLES, then the query does not return any rows.

	
See Also:

Oracle Database Reference

Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL Blocks

Named PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL blocks are executed based on privileges granted through enabled roles. Current roles are used for privilege checking within an invoker's rights PL/SQL block. You can use dynamic SQL to set a role in the session.

	
See Also:

	
Oracle Database PL/SQL Language Reference for an explanation of how invoker's and definer's rights can be used for name resolution and privilege checking

	
Oracle Database PL/SQL Language Reference for information about dynamic SQL in PL/SQL

How Roles Aid or Restrict DDL Usage

A user requires one or more privileges to successfully execute a DDL statement, depending on the statement. For example, to create a table, the user must have the CREATE TABLE or CREATE ANY TABLE system privilege. To create a view of a table that belongs to another user, the creator requires the CREATE VIEW or CREATE ANY VIEW system privilege and either the SELECT object privilege for the table or the SELECT ANY TABLE system privilege.

Oracle Database avoids the dependencies on privileges received by way of roles by restricting the use of specific privileges in certain DDL statements. The following rules describe these privilege restrictions concerning DDL statements:

	
All system privileges and object privileges that permit a user to perform a DDL operation are usable when received through a role. For example:

	
System privileges: CREATE TABLE, CREATE VIEW, and CREATE PROCEDURE privileges

	
Object privileges: ALTER and INDEX privileges for a table

You cannot use the REFERENCES object privilege for a table to define the foreign key of a table if the privilege is received through a role.

	
All system privileges and object privileges that allow a user to perform a DML operation that is required to issue a DDL statement are not usable when received through a role. The security domain does not contain roles when a CREATE VIEW statement is used. For example, a user who is granted the SELECT ANY TABLE system privilege or the SELECT object privilege for a table through a role cannot use either of these privileges to create a view on a table that belongs to another user. This is because views are definer's rights objects, so when creating them you cannot use any privileges (neither system privileges or object privileges) granted to you through a role. If the privilege is granted directly to you, then you can use the privilege. However, if the privilege is revoked at a later time, then the view definition becomes invalid ("contains errors") and must recompiled before it can be used again.

The following example further clarifies the permitted and restricted uses of privileges received through roles.

Assume that a user is:

	
Granted a role that has the CREATE VIEW system privilege

	
Directly granted a role that has the SELECT object privilege for the employees table

	
Directly granted the SELECT object privilege for the departments table

Given these directly and indirectly granted privileges:

	
The user can issue SELECT statements on both the employees and departments tables.

	
Although the user has both the CREATE VIEW and SELECT privilege for the employees table through a role, the user cannot create a view on the employees table, because the SELECT object privilege for the employees table was granted through a role.

	
The user can create a view on the departments table, because the user has the CREATE VIEW privilege through a role and the SELECT privilege for the departments table directly.

How Operating Systems Can Aid Roles

In some environments, you can administer database security using the operating system. The operating system can be used to grant and revoke database roles and to manage their password authentication. This capability is not available on all operating systems.

	
See Also:

Your operating system-specific Oracle Database documentation for details about managing roles through the operating system

How Roles Work in a Distributed Environment

When you use roles in a distributed database environment, ensure that all needed roles are set as the default roles for a distributed (remote) session. These roles cannot be enabled when the user connects to a remote database from within a local database session. For example, the user cannot execute a remote procedure that attempts to enable a role at the remote site.

	
See Also:

Oracle Database Heterogeneous Connectivity Administrator's Guide

Predefined Roles in an Oracle Database Installation

Oracle Database provides a set of predefined roles to help in database administration. These roles, listed in Table 4-3, are automatically defined for Oracle databases when you run the standard scripts that are part of database creation. If you install other options or products, then other predefined roles may be created. You can grant privileges and roles to, and revoke privileges and roles from, these predefined roles in the same way as you do with any role you define.

Table 4-3 Oracle Database Predefined Roles

	Predefined Role	Description
	
ADM_PARALLEL_EXECUTE_TASK

	
Provides privileges to update table data in parallel by using the DBMS_PARALLEL_EXECUTE PL/SQL package.

See Also: Oracle Database PL/SQL Packages and Types Reference for more information about the DBMS_PARALLEL_EXECUTE PL/SQL package.

	
AQ_ADMINISTRATOR_ROLE

	
Provides privileges to administer Advanced Queuing. Includes ENQUEUE ANY QUEUE, DEQUEUE ANY QUEUE, and MANAGE ANY QUEUE, SELECT privileges on Advanced Queuing tables and EXECUTE privileges on Advanced Queuing packages.

	
AQ_USER_ROLE

	
Obsolete, but kept mainly for release 8.0 compatibility. Provides EXECUTE privileges on the DBMS_AQ and DBMS_AQIN packages.

	
AUTHENTICATEDUSER

	
Used by the XDB protocols to define any user who has logged in to the system.

	
CAPI_USER_ROLE

	
Provides access to packages used for implementing Information Lifecycle Management (ILM) and hierarchical storage and other applications.

See Also: Oracle Database SecureFiles and Large Objects Developer's Guide

	
CONNECT

	
Provides the CREATE SESSION system privilege.

This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS view

	
CSW_USR_ROLE

	
Provides user privileges to manage the Catalog Services for the Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
CTXAPP

	
Provides privileges to create Oracle Text indexes and index preferences, and to use PL/SQL packages. This role should be granted to Oracle Text users.

See Also: Oracle Text Application Developer's Guide for more information

	
CWM_USER

	
Provides privileges to manage Common Warehouse Metadata (CWM), which is a repository standard used by Oracle data warehousing and decision support.

See Also: Oracle Database Data Warehousing Guide for more information

	
DATAPUMP_EXP_FULL_DATABASE

	
Provides privileges to export data from an Oracle database using Oracle Data Pump.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.

See Also: Oracle Database Utilities for more information

	
DATAPUMP_IMP_FULL_DATABASE

	
Provides privileges to import data into an Oracle database using Oracle Data Pump.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.

See Also: Oracle Database Utilities for more information

	
DBA

	
Provides all system privileges that were created with the ADMIN option.

This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS view

	
DELETE_CATALOG_ROLE

	
Provides the DELETE privilege on the system audit table (AUD$).

	
EJBCLIENT

	
Provides privileges to connect to EJBs from a Java stored procedure.

	
EXECUTE_CATALOG_ROLE

	
Provides EXECUTE privileges on objects in the data dictionary.

	
EXP_FULL_DATABASE

	
Provides the privileges required to perform full and incremental database exports using the Export utility (later replaced with Oracle Data Pump). It includes these privileges: SELECT ANY TABLE, BACKUP ANY TABLE, EXECUTE ANY PROCEDURE, EXECUTE ANY TYPE, ADMINISTER RESOURCE MANAGER, and INSERT, DELETE, and UPDATE on the tables SYS.INCVID, SYS.INCFIL, and SYS.INCEXP. Also the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.

See Also: Oracle Database Utilities for more information

	
GATHER_SYSTEM_STATISTICS

	
Provides privileges to update system statistics, which are collected using the DBMS_STATS.GATHER_SYSTEM_STATISTICS procedure

See Also: Oracle Database Performance Tuning Guide for more information about managing optimizer statistics

	
GLOBAL_AQ_USER_ROLE

	
Provides privileges to establish a connection to an LDAP server, for use with Oracle Streams AQ.

See Also: Oracle Streams Advanced Queuing User's Guide for more information

	
HS_ADMIN_EXECUTE_ROLE

	
Provides the EXECUTE privilege for users who want to use the Heterogeneous Services (HS) PL/SQL packages.

See Also: Oracle Database Heterogeneous Connectivity Administrator's Guide for more information

	
HS_ADMIN_ROLE

	
Provides privileges to both use the Heterogeneous Services (HS) PL/SQL packages and query the HS-related data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity Administrator's Guide for more information

	
HS_ADMIN_SELECT_ROLE

	
Provides privileges to query the Heterogeneous Services data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity Administrator's Guide for more information

	
IMP_FULL_DATABASE

	
Provides the privileges required to perform full database imports using the Import utility (later replaced with Oracle Data Pump). Includes an extensive list of system privileges (use view DBA_SYS_PRIVS to view privileges) and the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import utilities.

Caution: This is a very powerful role because it provides a user access to any data in any schema in the database. Use caution when granting this role to users.s.

See Also: Oracle Database Utilities for more information

	
JAVADEBUGPRIV

	
Provides privileges to run the Oracle Database Java applications debugger.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVAIDPRIV

	
Deprecated for this release.

	
JAVASYSPRIV

	
Provides major permissions to use Java2, including updating Oracle JVM-protected packages.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVAUSERPRIV

	
Provides limited permissions to use Java2.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVA_ADMIN

	
Provides administrative permissions to update policy tables for Oracle Database Java applications.

See Also: Oracle Database Java Developer's Guide for more information about managing security for Oracle Java applications

	
JAVA_DEPLOY

	
Provides privileges to deploy ncomp DLLs into the javavm/admin directory using the ncomp and deployns utilities. Without this role, the javavm/deploy and javavm/admin directories can be accessible.

See Also: Oracle Database Advanced Application Developer's Guide for more information

	
JMXSERVER

	
Provides privileges to start and maintain a JMX agent in a database session.

See Also: Oracle Database Java Developer's Guide for more information about managing Oracle Java applications

	
LBAC_DBA

	
Provides permissions to use the SA_SYSDBA PL/SQL package.

See Also: Oracle Label Security Administrator's Guide for more information

	
LOGSTDBY_ADMINISTRATOR

	
Provides administrative privileges to manage the SQL Apply (logical standby database) environment.

See Also: Oracle Data Guard Concepts and Administration for more information

	
MGMT_USER

	
Grants the SELECT privilege on the different views used for the SYSMAN schema.

	
OEM_ADVISOR

	
Provides privileges to create, drop, select (read), load (write), and delete a SQL tuning set through the DBMS_SQLTUNE PL/SQL package, and to access to the Advisor framework using the ADVISOR PL/SQL package.

See Also: Oracle Database Performance Tuning Guide for more information

	
OEM_MONITOR

	
Provides privileges needed by the Management Agent component of Oracle Enterprise Manager to monitor and manage the database.

See Also: Oracle Database Performance Tuning Guide for more information

	
OLAPI_TRACE_USER

	
Provides privileges to perform OLAP API tracing. Contact Oracle Support for more information.

	
OLAP_DBA

	
Provides administrative privileges to create dimensional objects in different schemas for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

	
OLAP_USER

	
Provides application developers privileges to create dimensional objects in their own schemas for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

	
OLAP_XS_ADMIN

	
Provides privileges to administer security for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

	
ORDADMIN

	
Provides privileges to administer Oracle Multimedia DICOM.

See Also: Oracle Multimedia DICOM Developer's Guide

	
OWB$CLIENT

	
Provides privileges to perform standard client-related tasks for Oracle Warehouse Builder, such as creating projects, modules, tables, views, maps, and so on. Warehouse Builder automatically grants this role to all workspace owners and users. (That is, you do not need to explicitly grant it to anyone who must use Warehouse Builder.) For security reasons, the OWB$CLIENT role is not a default role for Warehouse Builder users: Oracle Warehouse Builder enables this role only when it is needed.

See Also: Oracle Warehouse Builder Installation and Administration Guide for more information

	
OWB_DESIGNCENTER_VIEW

	
Provides privileges from the database level for any registered Oracle Warehouse Builder user to query the Warehouse Builder public views, such as ALL_IV_PROJECTS. A Warehouse Builder administrator can use the ACCESS_PUBLICVIEW_BROWSER system privilege from the Warehouse Builder security level to control an Warehouse Builder user's access to those public views.

See Also: Oracle Warehouse Builder Installation and Administration Guide for more information

	
OWB_USER

	
Provides privileges to create and own an Oracle Warehouse Builder workspace. When a workspace owner registers other database users to this workspace, Oracle Database grants this role to these users. Users with this role also have access to Warehouse Builder Control Center public views and other Control Center utilities. Oracle Warehouse Builder grants this role to all Warehouse Builder users.

See Also: Oracle Warehouse Builder Installation and Administration Guide for more information

	
RECOVERY_CATALOG_OWNER

	
Provides privileges for owner of the recovery catalog. Includes: CREATE SESSION, ALTER SESSION, CREATE SYNONYM, CREATE VIEW, CREATE DATABASE LINK, CREATE TABLE, CREATE CLUSTER, CREATE SEQUENCE, CREATE TRIGGER, and CREATE PROCEDURE

	
RESOURCE

	
Provides the following system privileges: CREATE CLUSTER, CREATE INDEXTYPE, CREATE OPERATOR, CREATE PROCEDURE, CREATE SEQUENCE, CREATE TABLE, CREATE TRIGGER, CREATE TYPE.

This role is provided for compatibility with previous releases of Oracle Database. You can determine the privileges encompassed by this role by querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database security rather than relying on this role. This role may not be created automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS view

	
SCHEDULER_ADMIN

	
Allows the grantee to execute the procedures of the DBMS_SCHEDULER package. It includes all of the job scheduler system privileges and is included in the DBA role.

See Also: Oracle Database Administrator's Guide for more information about the DBMS_SCHEDULER package

	
SELECT_CATALOG_ROLE

	
Provides SELECT privilege on objects in the data dictionary.

	
SNMPAGENT

	
Used by the Enterprise Manager Management Agent.

	
SPATIAL_CSW_ADMIN

	
Provides administrative privileges to manage the Catalog Services for the Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
SPATIAL_WFS_ADMIN

	
Provides administrative privileges to manage the Web Feature Service (WFS) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
WFS_USR_ROLE

	
Provides user privileges for the Web Feature Service (WFS) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

	
WM_ADMIN_ROLE

	
Provides administrative privileges for Oracle Workspace Manage. This enables users to run any DBMS_WM procedures on all version enabled tables, workspaces, and savepoints regardless of their owner. It also enables the user to modify the system parameters specific to Workspace Manager.

See Also: Oracle Database Workspace Manager Developer's Guide for more information

	
XDBADMIN

	
Allows the grantee to register an XML schema globally, as opposed to registering it for use or access only by its owner. It also lets the grantee bypass access control list (ACL) checks when accessing Oracle XML DB Repository.

See Also: Oracle XML DB Developer's Guide for information about XML schemas and the XML DB Repository

	
XDB_SET_INVOKER

	
Allows the grantee to define invoker's rights handlers and to create or update the resource configuration for XML repository triggers. By default, Oracle Database grants this role to the DBA role but not to the XDBADMIN role.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database XML repository triggers

	
XDB_WEBSERVICES

	
Allows the grantee to access Oracle Database Web services over HTTPS. However, it does not provide the user access to objects in the database that are public. To allow public access, you need to grant the user the XDB_WEBSERVICES_WITH_PUBLIC role. For a user to use these Web services, SYS must enable the Web service servlets.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services

	
XDB_WEBSERVICES_OVER_HTTP

	
Allows the grantee to access Oracle Database Web services over HTTP. However, it does not provide the user access to objects in the database that are public. To allow public access, you need to grant the user the XDB_WEBSERVICES_WITH_PUBLIC role.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services

	
XDB_WEBSERVICES_WITH_PUBLIC

	
Allows the grantee access to public objects through Oracle Database Web services.

See Also: Oracle XML DB Developer's Guide for information about Oracle Database Web services

	
Note:

Each installation should create its own roles and assign only those privileges that are needed, thus retaining detailed control of the privileges in use. This process also removes any need to adjust existing roles, privileges, or procedures whenever Oracle Database changes or removes roles that Oracle Database defines. For example, the CONNECT role now has only one privilege: CREATE SESSION. Both CONNECT and RESOURCE roles will be deprecated in future Oracle Database releases.

Creating a Role

You can create a role using the CREATE ROLE statement, but you must have the CREATE ROLE system privilege to do so. Typically, only security administrators have this system privilege.

After you create a role, the role has no privileges associated with it. Your next step is to grant either privileges or other roles to the new role.

You must give each role you create a unique name among existing user names and role names of the database. Roles are not contained in the schema of any user. In a database that uses a multibyte character set, Oracle recommends that each role name contain at least one single-byte character. If a role name contains only multibyte characters, then the encrypted role name and password combination is considerably less secure. See Guideline 1 in "Guidelines for Securing Passwords" for password guidelines.

Example 4-2 creates the clerk role.

Example 4-2 Creating a User Role Authorized by a Password

CREATE ROLE clerk IDENTIFIED BY password;

The IDENTIFIED BY clause specifies how the user must be authorized before the role can be enabled for use by a specific user to which it has been granted. If you do not specify this clause, or if you specify NOT IDENTIFIED, then no authorization is required when the role is enabled. Roles can be specified to be authorized by:

	
The database using a password

	
An application using a specified package

	
Externally by the operating system, network, or other external source

	
Globally by an enterprise directory service

These authorizations are discussed in the following sections.

You can set or change the authorization method for a role using the ALTER ROLE statement. Remember that you can only directly grant secure application roles or password-authenticated roles to a user.

Example 4-3 shows how to alter the clerk role to specify that the user must have been authorized by an external source before enabling the role.

Example 4-3 Altering a Role to be Authorized by an External Source

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

To alter the authorization method for a role, you must have the ALTER ANY ROLE system privilege or have been granted the role with ADMIN option.

	
See Also:

Oracle Database SQL Language Reference for syntax, restrictions, and authorization information about the SQL statements used to manage roles and privileges

Specifying the Type of Role Authorization

The methods of authorizing roles are presented in this section. A role must be enabled for you to use it.

This section contains:

	
Authorizing a Role by Using the Database

	
Authorizing a Role by Using an Application

	
Authorizing a Role by Using an External Source

	
See Also:

"When Do Grants and Revokes Take Effect?" for a discussion about enabling roles

Authorizing a Role by Using the Database

You can protect a role authorized by the database by assigning the role a password. If a user is granted a role protected by a password, then you can enable or disable the role by supplying the proper password for the role in the SET ROLE statement. You cannot authenticate a password-authenticated role on logon, even if you add it to the list of default roles. You must explicitly enable it with the SET ROLE statement using the required password.

Example 4-4 shows how to set a password-authenticated role by using the SET ROLE statement.

Example 4-4 Using SET ROLE for a Password-Authenticated Role

SET ROLE clerk IDENTIFIED BY password;

Example 4-2, "Creating a User Role Authorized by a Password" shows a CREATE ROLE statement that creates a role called clerk. When it is enabled, the password must be supplied.

	
Note:

In a database that uses a multibyte character set, passwords for roles must include only single-byte characters. Multibyte characters are not accepted in passwords. See Guideline 1 in "Guidelines for Securing Passwords" for password guidelines.

Authorizing a Role by Using an Application

An application role (secure application role) can be enabled only by applications using an authorized PL/SQL package. Application developers do not need to secure a role by embedding passwords inside applications. Instead, they can create an application role and specify which PL/SQL package is authorized to enable the role.

To create a role enabled by an authorized PL/SQL package, use the IDENTIFIED USING package_name clause in the CREATE ROLE SQL statement.

Example 4-5 indicates that the role admin_role is an application role and the role can only be enabled by any module defined inside the PL/SQL package hr.admin.

Example 4-5 Creating a Role Authorized by a PL/SQL Package for an Application

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

See the following for more information about secure application roles:

	
"Securing Role Privileges by Using Secure Application Roles"

	
"Creating Secure Application Roles to Control Access to Applications"

	
Oracle Database 2 Day + Security Guide

Authorizing a Role by Using an External Source

You can define the external role locally in the database, but you cannot grant the external role to global users, to global roles, or to any other roles in the database. You can create roles that are authorized by the operating system or network clients.

Example 4-6 creates a role named accts_rec and requires that the user is authorized by an external source before it can be enabled:

Example 4-6 Creating a Role Authorized by an External Source

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

Authorizing a Role by Using the Operating System

Role authentication through the operating system is useful only when the operating system is able to dynamically link operating system privileges with applications. When a user starts an application, the operating system grants an operating system privilege to the user. The granted operating system privilege corresponds to the role associated with the application. At this point, the application can enable the application role. When the application is terminated, the previously granted operating system privilege is revoked from the operating system account of the user.

If a role is authorized by the operating system, then you must configure information for each user at the operating system level. This operation is operating system dependent.

If roles are granted by the operating system, then you do not need to have the operating system authorize them also.

	
See Also:

"Granting Roles Using the Operating System or Network" for more information about roles granted by the operating system

Authorizing a Role by Using a Network Client

If users connect to the database over Oracle Net, then by default, the operating system cannot authenticate their roles. This includes connections through a shared server configuration, as this connection requires Oracle Net. This restriction is the default because a remote user could impersonate another operating system user over a network connection. Oracle recommends that you set REMOTE_OS_ROLES to FALSE, which is the default.

If you are not concerned with this security risk and want to use operating system role authentication for network clients, then set the initialization parameter REMOTE_OS_ROLES in the database initialization parameter file to TRUE. The change will take effect the next time you start the instance and mount the database.

Global Role Authorization by an Enterprise Directory Service

A role can be defined as a global role, where a (global) user can only be authorized to use the role by an enterprise directory service. You define the global role locally in the database by granting privileges and roles to it, but you cannot grant the global role itself to any user or other role in the database. When a global user attempts to connect to the database, the enterprise directory is queried to obtain any global roles associated with the user.

Example 4-7 creates a global role.

Example 4-7 Creating a Global Role

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

Global roles are one component of enterprise user security. A global role only applies to one database, but you can grant it to an enterprise role defined in the enterprise directory. An enterprise role is a directory structure that contains global roles on multiple databases and can be granted to enterprise users.

See "Configuring Global User Authentication and Authorization" for a general discussion of global authentication and authorization of users, and its role in enterprise user management.

	
See Also:

Oracle Database Enterprise User Security Administrator's Guide for information about implementing enterprise user management

Granting and Revoking Roles

You can grant system or object privileges to a role, and any role can be granted to any database user or to another role (but not to itself). However, a role cannot be granted circularly, that is, role X cannot be granted to role Y if role Y has previously been granted to role X.

To provide selective availability of privileges, Oracle Database permits applications and users to enable and disable roles. Each role granted to a user is, at any given time, either enabled or disabled. The security domain of a user includes the privileges of all roles currently enabled for the user and excludes the privileges of any roles currently disabled for the user.

A role granted to a role is called an indirectly granted role. You can explicitly enable or disable it for a user. However, whenever you enable a role that contains other roles, you implicitly enable all indirectly granted roles of the directly granted role.

You grant roles to (or revoke roles from) users or other roles by using either of the following methods:

	
Oracle Enterprise Manager Database Control

	
The GRANT and REVOKE SQL statements

Privileges are granted to and revoked from roles using the same options.

	
See Also:

	
"Granting a User Privileges and Roles"

	
"Revoking Privileges and Roles from a User"

	
"When Do Grants and Revokes Take Effect?"

	
"Finding Information About User Privileges and Roles"

	
Oracle Database 2 Day DBA for more information about Database Control

Who Can Grant or Revoke Roles?

Any user with the GRANT ANY ROLE system privilege can grant or revoke any role except a global role to or from other users or roles of the database. (A global role is managed in a directory, such as Oracle Internet Directory, but its privileges are contained within a single database.) By default, the SYS or SYSTEM user has this privilege. You should grant this system privilege conservatively because it is very powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to or from other users or roles of the database. This option allows administrative powers for roles to be granted on a selective basis.

	
See Also:

Oracle Database Enterprise User Security Administrator's Guide for information about global roles

Dropping Roles

In some cases, it may be appropriate to drop a role from the database. The security domains of all users and roles granted a dropped role are immediately changed to reflect the absence of the dropped role privileges. All indirectly granted roles of the dropped role are also removed from affected security domains. Dropping a role automatically removes the role from all user default role lists.

Because the existence of objects is not dependent on the privileges received through a role, tables and other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must have the DROP ANY ROLE system privilege or have been granted the role with the ADMIN option.

The following statement drops the role CLERK:

DROP ROLE clerk;

Restricting SQL*Plus Users from Using Database Roles

This section describes features that you can use to restrict SQL*Plus users from using database roles and thus, prevent serious security problems.

	
Potential Security Problems of Using Ad Hoc Tools

	
Limiting Roles Through the PRODUCT_USER_PROFILE Table

	
Using Stored Procedures to Encapsulate Business Logic

Potential Security Problems of Using Ad Hoc Tools

Prebuilt database applications explicitly control the potential actions of a user, including the enabling and disabling of user roles while using the application. By contrast, ad hoc query tools such as SQL*Plus, permit a user to submit any SQL statement (which may or may not succeed), including enabling and disabling a granted role.

Potentially, an application user can exercise the privileges attached to that application to issue destructive SQL statements against database tables by using an ad hoc tool.

For example, consider the following scenario:

	
The Vacation application has a corresponding vacation role.

	
The vacation role includes the privileges to issue SELECT, INSERT, UPDATE, and DELETE statements against the emp_tab table.

	
The Vacation application controls the use of privileges obtained through the vacation role.

Now, consider a user who has been granted the vacation role. Suppose that, instead of using the Vacation application, the user executes SQL*Plus. At this point, the user is restricted only by the privileges granted to him explicitly or through roles, including the vacation role. Because SQL*Plus is an ad hoc query tool, the user is not restricted to a set of predefined actions, as with designed database applications. The user can query or modify data in the emp_tab table as he or she chooses.

Limiting Roles Through the PRODUCT_USER_PROFILE Table

You can use the PRODUCT_USER_PROFILE table, which is in the SYSTEM schema, to disable certain SQL and SQL*Plus commands in the SQL*Plus environment for each user. SQL*Plus, not the Oracle Database, enforces this security. You can even restrict access to the GRANT, REVOKE, and SET ROLE commands to control user ability to change their database privileges.

The PRODUCT_USER_PROFILE table enables you to list roles that you do not want users to activate with an application. You can also explicitly disable the use of various commands, such as SET ROLE.

For example, you could create an entry in the PRODUCT_USER_PROFILE table to:

	
Disallow the use of the clerk and manager roles with SQL*Plus

	
Disallow the use of SET ROLE with SQL*Plus

Suppose user Marla connects to the database using SQL*Plus. Marla has the clerk, manager, and analyst roles. As a result of the preceding entry in PRODUCT_USER_PROFILE, Marla is only able to exercise her analyst role with SQL*Plus. Also, when Ginny attempts to issue a SET ROLE statement, she is explicitly prevented from doing so because of the entry in the PRODUCT_USER_PROFILE table prohibiting use of SET ROLE.

Be aware that the PRODUCT_USER_PROFILE table does not completely guarantee security, for multiple reasons. In the preceding example, while SET ROLE is disallowed with SQL*Plus, if Marla had other privileges granted to her directly, then she could exercise these using SQL*Plus.

	
See Also:

SQL*Plus User's Guide and Reference for more information about the PRODUCT_USER_PROFILE table

Using Stored Procedures to Encapsulate Business Logic

Stored procedures encapsulate the use of privileges with business logic so that privileges are only exercised in the context of a well-formed business transaction. For example, an application developer can create a procedure to update the employee name and address in the employees table, which enforces that the data can only be updated in normal business hours. Also, rather than grant a human resources clerk the UPDATE privilege on the employees table, a security administrator may grant the privilege on the procedure only. Then, the human resources clerk can exercise the privilege only in the context of the procedures, and cannot update the employees table directly.

Securing Role Privileges by Using Secure Application Roles

A secure application role is a role that can be enabled only by an authorized PL/SQL package (or procedure). The PL/SQL package itself reflects the security policies needed to control access to the application.

This method of role creation restricts the enabling of this type of role to the invoking application. For example, the application can perform authentication and customized authorization, such as checking whether the user has connected through a proxy.

This type of role strengthens security because passwords are not embedded in application source code or stored in a table. This way, the actions the database performs are based on the implementation of your security policies, and these definitions are stored in one place, the database, rather than in your applications. If you need to modify the policy, you do so in one place without having to modify your applications. No matter how users connect to the database, the result is always the same, because the policy is bound to the role.

To enable the secure application role, you must execute its underlying package by invoking it directly from the application when the user logs in, before the user exercises the privileges granted by the secure application role. You cannot use a logon trigger to enable a secure application role, nor can you have this type of role be a default role.

When you enable the secure application role, Oracle Database verifies that the authorized PL/SQL package is on the calling stack, that is, it verifies that the authorized PL/SQL package is issuing the command to enable the role.

You can use secure application roles to ensure the existence of a database connection. Because a secure application role is a role implemented by a package, the package can validate that users can connect to the database through a middle tier or from a specific IP address. In this way, the secure application role prevents users from accessing data outside an application. They are forced to work within the framework of the application privileges that they have been granted.

	
See Also:

	
"Creating Secure Application Roles to Control Access to Applications"

	
Oracle Database 2 Day + Security Guide

Managing Object Privileges

This section contains:

	
About Object Privileges

	
Granting or Revoking Object Privileges

	
Managing Object Privileges

	
Managing Table Privileges

	
Managing View Privileges

	
Managing Procedure Privileges

	
Managing Type Privileges

About Object Privileges

An object privilege is a right that you grant to a user on a database object. Some examples of object privileges include the right to:

	
Use an edition

	
Update a table

	
Select rows from another user's table

	
Execute a stored procedure of another user

	
See Also:

Oracle Database SQL Language Reference for a list of object privileges and the operations they authorize

Granting or Revoking Object Privileges

Each type of object has different privileges associated with it.

You can specify ALL [PRIVILEGES] to grant or revoke all available object privileges for an object. ALL is not a privilege; rather, it is a shortcut, or a way of granting or revoking all object privileges with one GRANT and REVOKE statement. If all object privileges are granted using the ALL shortcut, then individual privileges can still be revoked.

Similarly, you can revoke all individually granted privileges by specifying ALL. However, if you REVOKE ALL, and revoking causes integrity constraints to be deleted (because they depend on a REFERENCES privilege that you are revoking), then you must include the CASCADE CONSTRAINTS option in the REVOKE statement.

Example 4-8 revokes all privileges on the orders table in the HR schema using CASCADE CONSTRAINTS.

Example 4-8 Revoking All Object Privileges Using CASCADE CONSTRAINTS

REVOKE ALL
 ON orders FROM hr
 CASCADE CONSTRAINTS;

Managing Object Privileges

An object privilege grants permission to perform a particular action on a specific schema object.

Different object privileges are available for different types of schema objects. The privilege to delete rows from the departments table is an example of an object privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not have associated object privileges. Their use is controlled with system privileges. For example, to alter a cluster, a user must own the cluster or have the ALTER ANY CLUSTER system privilege.

The following sections discuss granting and revoking such privileges:

	
"Granting and Revoking Object Privileges"

	
"Who Can Grant Object Privileges?"

	
"Using Privileges with Synonyms"

The following sections discuss object privileges that apply to specific schema objects:

	
"Managing Table Privileges"

	
"Managing View Privileges"

	
Sequences (see Oracle Database Administrator's Guide for information about managing sequences)

	
"Managing Procedure Privileges"

	
Functions and Packages(Oracle Database Administrator's Guide for information about managing object dependencies)

	
"Managing Type Privileges"

Granting and Revoking Object Privileges

Object privileges can be granted to and revoked from users and roles. If you grant object privileges to roles, then you can make the privileges selectively available.

You can grant or revoke object privileges to or from users and roles using the following methods:

	
The GRANT and REVOKE SQL statements

	
Oracle Enterprise Manager Database Control

	
See Also:

Oracle Database 2 Day DBA for more information about Database Control

Who Can Grant Object Privileges?

A user automatically has all object privileges for schema objects contained in his or her schema. A user with the GRANT ANY OBJECT PRIVILEGE can grant any specified object privilege to another user with or without the WITH GRANT OPTION clause of the GRANT statement. A user with the GRANT ANY OBJECT PRIVILEGE can also use that privilege to revoke any object privilege that was granted either by the object owner or by some other user with the GRANT ANY OBJECT PRIVILEGE privilege. Otherwise, the grantee can use the privilege, but cannot grant it to other users.

	
See Also:

Oracle Database SQL Language Reference for information about GRANT and GRANT ANY OBJECT PRIVILEGE

Using Privileges with Synonyms

A schema object and its synonym are equivalent with respect to privileges. That is, the object privileges granted on a table, view, sequence, procedure, function, or package apply whether referencing the base object by name or by using a synonym.

For example, assume there is a table jward.emp with a synonym named jward.employee. The user jward issues the following statement:

GRANT SELECT ON emp TO swilliams;

The user swilliams can query jward.emp by referencing the table by name or by using the synonym jward.employee:

SELECT * FROM jward.emp;
SELECT * FROM jward.employee;

If you grant object privileges on a table, view, sequence, procedure, function, or package by referring to the object through a synonym for the object, then the effect is the same as if no synonym were used. For example, if jward wanted to grant the SELECT privilege for the emp table to swilliams, then jward could issue either of the following statements:

GRANT SELECT ON emp TO swilliams;
GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, then all grants for the underlying schema object remain in effect, even if the privileges were granted by specifying the dropped synonym.

Managing Table Privileges

Object privileges for tables enable table security at the DML (data manipulation language) or DDL (data definition language) level of operation.

The following sections discuss table privileges and DML and DDL operations:

	
How Table Privileges Affect Data Manipulation Language Operations

	
How Table Privileges Affect Data Definition Language Operations

How Table Privileges Affect Data Manipulation Language Operations

You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML operations on a table or view. Grant these privileges only to users and roles that need to query or manipulate data in a table.

You can restrict INSERT and UPDATE privileges for a table to specific columns of the table. With a selective INSERT privilege, a privileged user can insert a row with values for the selected columns. All other columns receive NULL or the default value of the column. With a selective UPDATE privilege, a user can update only specific column values of a row. You can use selective INSERT and UPDATE privileges to restrict user access to sensitive data.

For example, if you do not want data entry users to alter the salary column of the employees table, then selective INSERT or UPDATE privileges can be granted that exclude the salary column. Alternatively, a view that excludes the salary column could satisfy this need for additional security.

	
See Also:

Oracle Database SQL Language Reference for more information about DML operations

How Table Privileges Affect Data Definition Language Operations

The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be performed on a table. Because these privileges allow other users to alter or create dependencies on a table, you should grant these privileges conservatively.

A user attempting to perform a DDL operation on a table may need additional system or object privileges. For example, to create a trigger on a table, the user requires both the ALTER TABLE object privilege for the table and the CREATE TRIGGER system privilege.

As with the INSERT and UPDATE privileges, you can grant the REFERENCES privilege on specific columns of a table. The REFERENCES privilege enables the grantee to use the table on which the grant is made as a parent key to any foreign keys that the grantee wishes to create in his or her own tables. This action is controlled with a special privilege because the presence of foreign keys restricts the data manipulation and table alterations that can be done to the parent key. A column-specific REFERENCES privilege restricts the grantee to using the named columns (which, of course, must include at least one primary or unique key of the parent table).

	
See Also:

"Data Integrity" in Oracle Database Concepts for more information about primary keys, unique keys, and integrity constraints

Managing View Privileges

This section contains:

	
About View Privileges

	
Privileges Required to Create Views

	
Increasing Table Security with Views

About View Privileges

A view is a presentation of data selected from one or more tables, possibly including other views. A view shows the structure of the underlying tables. Its selected data can be thought of as the result of a stored query. A view contains no actual data but rather derives what it shows from the tables and views on which it is based. You can query a view, and change the data it represents. Data in a view can be updated or deleted, and new data inserted. These operations directly alter the tables on which the view is based, and are subject to the integrity constraints and triggers of the base tables.

You can apply DML object privileges to views, similar to tables. Object privileges for a view allow various DML operations, which as noted affect the base tables from which the view is derived.

Privileges Required to Create Views

To create a view, you must meet the following requirements:

	
You must have been granted one of the following system privileges, either explicitly or through a role:

	
The CREATE VIEW system privilege (to create a view in your schema)

	
The CREATE ANY VIEW system privilege (to create a view in the schema of another user)

	
You must have been explicitly granted one of the following privileges:

	
The SELECT, INSERT, UPDATE, or DELETE object privileges on all base objects underlying the view

	
The SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or DELETE ANY TABLE system privileges

	
In addition, before you can grant other users access to you view, you must have object privileges to the base objects with the GRANT OPTION clause or appropriate system privileges with the ADMIN OPTION clause. If you do not have these privileges, then you cannot to grant other users access to your view. If you try, an ORA-01720: grant option does not exist for object_name error is raised, with object_name referring to the view's underlying object for which you do not have the sufficient privilege.

	
See Also:

Oracle Database SQL Language Reference

Increasing Table Security with Views

To use a view, the user must have the appropriate privileges but only for the view itself, not its underlying objects. However, if access privileges for the underlying objects of the view are removed, then the user no longer has access. This behavior occurs because the security domain that is used when a user queries the view is that of the definer of the view. If the privileges on the underlying objects are revoked from the view's definer, then the view becomes invalid, and no one can use the view. Therefore, even if a user has been granted access to the view, the user may not be able to use the view if the definer's rights have been revoked from the view's underlying objects.

For example, suppose User A creates a view. User A has definer's rights on the underlying objects of the view. User A then grants the SELECT privilege on that view to User B so that User B can query the view. But if User A no longer has access to the underlying objects of that view, then User B no longer has access either.

Views add two more levels of security for tables, column-level security and value-based security, as follows:

	
A view can provide access to selected columns of base tables. For example, you can define a view on the employees table to show only the employee_id, last_name, and manager_id columns:

CREATE VIEW employees_manager AS
 SELECT last_name, employee_id, manager_id FROM employees;

	
A view can provide value-based security for the information in a table. A WHERE clause in the definition of a view displays only selected rows of base tables. Consider the following two examples:

CREATE VIEW lowsal AS
 SELECT * FROM employees
 WHERE salary < 10000;

The lowsal view allows access to all rows of the employees table that have a salary value less than 10000. Notice that all columns of the employees table are accessible in the lowsal view.

CREATE VIEW own_salary AS
 SELECT last_name, salary
 FROM employees
 WHERE last_name = USER;

In the own_salary view, only the rows with an last_name that matches the current user of the view are accessible. The own_salary view uses the user pseudo column, whose values always refer to the current user. This view combines both column-level security and value-based security.

Managing Procedure Privileges

This section contains:

	
Using the EXECUTE Privilege for Procedure Privileges

	
Procedure Execution and Security Domains

	
How Procedure Privileges Affect Definer's Rights

	
How Procedure Privileges Affect Invoker's Rights

	
System Privileges Required to Create or Replace a Procedure

	
System Privileges Required to Compile a Procedure

	
How Procedure Privileges Affect Packages and Package Objects

Using the EXECUTE Privilege for Procedure Privileges

The EXECUTE privilege is the only object privilege for procedures, including standalone procedures and functions, and for those within packages. Grant this privilege only to users who need to run a procedure or to compile another procedure that calls a desired procedure.

Procedure Execution and Security Domains

A user with the EXECUTE object privilege for a specific procedure can execute the procedure or compile a program unit that references the procedure. Oracle Database performs a run-time privilege check when any PL/SQL unit is called. A user with the EXECUTE ANY PROCEDURE system privilege can execute any procedure in the database. Privileges to run procedures can be granted to a user through roles.

	
See Also:

Oracle Database PL/SQL Language Reference for more information about how Oracle Database checks privileges at run-time

How Procedure Privileges Affect Definer's Rights

The owner of a procedure, called the definer, must have all the necessary object privileges for referenced objects. If the procedure owner grants to another user the right to use that procedure, then the privileges of the procedure owner (on the objects referenced by the procedure) apply to the grantee user's exercise of the procedure. The privileges of the procedure's definer must be granted directly to the user, not granted through roles. These are termed definer's rights.

The user of a procedure who is not its owner is called the invoker. Additional privileges on referenced objects are required for invoker's rights procedures, but not for definer's rights procedures.

	
See Also:

"How Roles Work in PL/SQL Blocks"

A user of a definer's rights procedure requires only the privilege to execute the procedure and no privileges on the underlying objects that the procedure accesses. This is because a definer's rights procedure operates under the security domain of the user who owns the procedure, regardless of who is executing it. The owner of the procedure must have all the necessary object privileges for referenced objects. Fewer privileges have to be granted to users of a definer's rights procedure. This results in stronger control of database access.

You can use definer's rights procedures to control access to private database objects and add a level of database security. By writing a definer's rights procedure and granting only EXECUTE privilege to a user, the user can be forced to access the referenced objects only through the procedure.

At run time, Oracle Database checks whether the privileges of the owner of a definer's rights stored procedure allow access to that procedure's referenced objects, before the procedure is executed. If a necessary privilege on a referenced object was revoked from the owner of a definer's rights procedure, then the procedure cannot be run by the owner or any other user.

	
Note:

Trigger processing follows the same patterns as definer's rights procedures. The user runs a SQL statement, which that user is privileged to run. As a result of the SQL statement, a trigger is fired. The statements within the triggered action temporarily execute under the security domain of the user that owns the trigger. For more information, see "Overview of Triggers" in Oracle Database Concepts.

How Procedure Privileges Affect Invoker's Rights

An invoker's rights procedure executes with all of the invoker's privileges. Oracle Database enables the privileges that were granted to the invoker through any of the invoker's enabled roles to take effect, unless a definer's rights procedure calls the invoker's rights procedure directly or indirectly. A user of an invoker's rights procedure needs privileges (granted to the user either directly or through a role) on objects that the procedure accesses through external references that are resolved in the schema of the invoker.

The invoker needs privileges at run time to access program references embedded in DML statements or dynamic SQL statements, because they are effectively recompiled at run time.

For all other external references, such as direct PL/SQL function calls, Oracle Database checks the privileges of the owner at compile time, but does not perform a run-time check. Therefore, the user of an invoker's rights procedure does not need privileges on external references outside DML or dynamic SQL statements. Alternatively, the developer of an invoker's rights procedure must only grant privileges on the procedure itself, not on all objects directly referenced by the invoker's rights procedure.

You can create a software bundle that consists of multiple program units, some with definer's rights and others with invoker's rights, and restrict the program entry points (controlled step-in). A user who has the privilege to run an entry-point procedure can also execute internal program units indirectly, but cannot directly call the internal programs. For very precise control over query processing, you can create a PL/SQL package specification with explicit cursors.

	
See Also:

	
"Configuring an Oracle Virtual Private Database Policy"

	
Oracle Database PL/SQL Language Reference for information about how Oracle Database handles name resolution and privilege checking at runtime using invoker's and definer's rights

	
Oracle Database PL/SQL Language Reference for information about defining explicit cursors in the CREATE PACKAGE statement

System Privileges Required to Create or Replace a Procedure

To create or replace a procedure in your own schema, you must have the CREATE PROCEDURE system privilege. To create or replace a procedure in another user's schema, you must have the CREATE ANY PROCEDURE system privilege.

The user who owns the procedure also must have privileges for schema objects referenced in the procedure body. To create a procedure, you need to have been explicitly granted the necessary privileges (system or object) on all objects referenced by the procedure. You cannot obtain the required privileges through roles. This includes the EXECUTE privilege for any procedures that are called inside the procedure being created.

	
Note:

Triggers require that privileges on referenced objects be granted directly to the owner of the trigger. Anonymous PL/SQL blocks can use any privilege, whether the privilege is granted explicitly or through a role.

System Privileges Required to Compile a Procedure

To compile a standalone procedure, run the ALTER PROCEDURE statement with the COMPILE clause. To compile a procedure that is part of a package, run the ALTER PACKAGE statement.

Example 4-9 shows how to compile a standalone procedure.

Example 4-9 Compiling a Procedure

ALTER PROCEDURE psmith.remove_emp COMPILE;

If the standalone or packaged procedure is in another user's schema, you must have the ALTER ANY PROCEDURE privilege to recompile it. You can recompile procedures in your own schema without any privileges.

How Procedure Privileges Affect Packages and Package Objects

A user with the EXECUTE object privilege for a package can execute any public procedure or function in the package, and can access or modify the value of any public package variable. You cannot grant specific EXECUTE privileges for individual constructs in a package. Therefore, you may find it useful to consider two alternatives for establishing security when developing procedures, functions, and packages for a database application. The following examples describe these alternatives.

Procedure Privileges and Packages and Package Objects: Example 1

Example 4-10 shows four procedures created in the bodies of two packages.

Example 4-10 Package Objects Affected by Procedure Privileges

CREATE PACKAGE BODY hire_fire AS
 PROCEDURE hire(...) IS
 BEGIN
 INSERT INTO employees . . .
 END hire;
 PROCEDURE fire(...) IS
 BEGIN
 DELETE FROM employees . . .
 END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
 PROCEDURE give_raise(...) IS
 BEGIN
 UPDATE employees SET salary = . . .
 END give_raise;
 PROCEDURE give_bonus(...) IS
 BEGIN
 UPDATE employees SET bonus = . . .
 END give_bonus;
END raise_bonus;

The following GRANT EXECUTE statements enable the big_bosses and little_bosses roles to run the appropriate procedures:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

	
Note:

Granting EXECUTE privilege for a package provides uniform access to all package objects.

Procedure Privileges and Packages and Package Objects: Example 2

This example shows four procedure definitions within the body of a single package. Two additional standalone procedures and a package are created specifically to provide access to the procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
 PROCEDURE change_salary(...) IS BEGIN ... END;
 PROCEDURE change_bonus(...) IS BEGIN ... END;
 PROCEDURE insert_employee(...) IS BEGIN ... END;
 PROCEDURE delete_employee(...) IS BEGIN ... END;
END employee_changes;

CREATE PROCEDURE hire
 BEGIN
 employee_changes.insert_employee(...)
 END hire;

CREATE PROCEDURE fire
 BEGIN
 employee_changes.delete_employee(...)
 END fire;

PACKAGE raise_bonus IS
 PROCEDURE give_raise(...) AS
 BEGIN
 employee_changes.change_salary(...)
 END give_raise;

 PROCEDURE give_bonus(...)
 BEGIN
 employee_changes.change_bonus(...)
 END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the employee_changes package) are defined in a single package and can share declared global variables, cursors, on so on. By declaring top-level procedures, hire and fire, and an additional package, raise_bonus, you can grant selective EXECUTE privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Managing Type Privileges

The following sections describe the use of privileges for types, methods, and objects:

	
System Privileges for Named Types

	
Object Privileges

	
Method Execution Model

	
Privileges Required to Create Types and Tables Using Types

	
Example of Privileges for Creating Types and Tables Using Types

	
Privileges on Type Access and Object Access

	
Type Dependencies

System Privileges for Named Types

Table 4-4 lists system privileges for named types (object types, VARRAYs, and nested tables).

Table 4-4 System Privileges for Named Types

	Privilege	Enables you to ...
	
CREATE TYPE

	
Create named types in your own schemas

	
CREATE ANY TYPE

	
Create a named type in any schema

	
ALTER ANY TYPE

	
Alter a named type in any schema

	
DROP ANY TYPE

	
Drop a named type in any schema

	
EXECUTE ANY TYPE

	
Use and reference a named type in any schema

The RESOURCE role includes the CREATE TYPE system privilege. The DBA role includes all of these privileges.

Object Privileges

The only object privilege that applies to named types is EXECUTE. If the EXECUTE privilege exists on a named type, then a user can use the named type to:

	
Define a table

	
Define a column in a relational table

	
Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the methods in the type, including the type constructor. This is similar to the EXECUTE privilege on a stored PL/SQL procedure.

Method Execution Model

Method execution is the same as any other stored PL/SQL procedure.

	
See Also:

"Managing Procedure Privileges"

Privileges Required to Create Types and Tables Using Types

To create a type, you must meet the following requirements:

	
You must have the CREATE TYPE system privilege to create a type in your schema or the CREATE ANY TYPE system privilege to create a type in the schema of another user. These privileges can be acquired explicitly or through a role.

	
The owner of the type must be explicitly granted the EXECUTE object privileges to access all other types referenced within the definition of the type, or have been granted the EXECUTE ANY TYPE system privilege. The owner cannot obtain the required privileges through roles.

	
If the type owner intends to grant access to the type to other users, then the owner must receive the EXECUTE privileges to the referenced types with the GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If not, then the type owner has insufficient privileges to grant access on the type to other users.

To create a table using types, you must meet the requirements for creating a table and the following additional requirements:

	
The owner of the table must have been directly granted the EXECUTE object privilege to access all types referenced by the table, or has been granted the EXECUTE ANY TYPE system privilege. The owner cannot exercise the required privileges if these privileges were granted through roles.

	
If the table owner intends to grant access to the table to other users, then the owner must have the EXECUTE privilege to the referenced types with the GRANT OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If not, then the table owner has insufficient privileges to grant access on the table.

	
See Also:

"Managing Table Privileges" for the requirements for creating a table

Example of Privileges for Creating Types and Tables Using Types

Assume that three users exist with the CONNECT and RESOURCE roles:

	
user1

	
user2

	
user3

The following DDL is run in the schema of user1:

CREATE TYPE type1 AS OBJECT (
 attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
 attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

The following DDL is performed in the schema of user2:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
 attr3 user1.type2);
CREATE TABLE tab2 (
 col1 user1.type2);

The following statements succeed because user2 has EXECUTE privilege on user1.type2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails because user2 does not have EXECUTE privilege on user1.type1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;

The following statements can be successfully run by user3:

CREATE TYPE type4 AS OBJECT (
 attr4 user2.type3);
CREATE TABLE tab3 OF type4;

	
Note:

Customers should discontinue using the CONNECT and RESOURCE roles, as they will be deprecated in future Oracle Database releases. The CONNECT role presently retains only the CREATE SESSION privilege.

Privileges on Type Access and Object Access

Existing column-level and table-level privileges for DML statements apply to both column objects and row objects.

Table 4-5 lists the privileges for object tables.

Table 4-5 Privileges for Object Tables

	Privilege	Enables you to...
	
SELECT

	
Access an object and its attributes from the table

	
UPDATE

	
Modify the attributes of the objects that make up the rows in the table

	
INSERT

	
Create new objects in the table

	
DELETE

	
Delete rows

Similar table privileges and column privileges apply to column objects. Retrieving instances does not in itself reveal type information. However, clients must access named type information to interpret the type instance images. When a client requests type information, Oracle Database checks for the EXECUTE privilege on the type.

Consider the following schema:

CREATE TYPE emp_type (
 eno NUMBER, ename CHAR(31), eaddr addr_t);
CREATE TABLE emp OF emp_t;

In addition, consider the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle Database checks the SELECT privilege of the user for the emp table. For the first query, the user must obtain the emp_type type information to interpret the data. When the query accesses the emp_type type, Oracle Database checks the EXECUTE privilege of the user.

The second query, however, does not involve named types, so Oracle Database does not check type privileges.

In addition, by using the schema from the previous section, user3 can perform the following queries:

SELECT tab1.col1.attr2 FROM user2.tab1 tab1;
SELECT attr4.attr3.attr2 FROM tab3;

Note that in both SELECT statements, user3 does not have explicit privileges on the underlying types, but the statement succeeds because the type and table owners have the necessary privileges with the GRANT OPTION.

Oracle Database checks privileges on the following events, and returns an error if the client does not have the privilege for the action:

	
Pinning an object in the object cache using its REF value causes Oracle Database to check for the SELECT privilege on the containing object table.

	
Modifying an existing object or flushing an object from the object cache causes Oracle Database to check for the UPDATE privilege on the destination object table.

	
Flushing a new object causes Oracle Database to check for the INSERT privilege on the destination object table.

	
Deleting an object causes Oracle Database to check for the DELETE privilege on the destination table.

	
Pinning an object of a named type causes Oracle Database to check EXECUTE privilege on the object.

Modifying the attributes of an object in a client third-generation language application causes Oracle Database to update the entire object. Therefore, the user needs the UPDATE privilege on the object table. Having the UPDATE privilege on only certain columns of the object table is not sufficient, even if the application only modifies attributes corresponding to those columns. Therefore, Oracle Database does not support column-level privileges for object tables.

Type Dependencies

As with stored objects, such as procedures and tables, types being referenced by other objects are called dependencies. There are some special issues for types on which tables depend. Because a table contains data that relies on the type definition for access, any change to the type causes all stored data to become inaccessible. Changes that can cause this are when necessary privileges required to use the type are revoked, or the type or dependent types are dropped. If these actions occur, then the table becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges can automatically become valid and accessible if the required privileges are granted again. A table that is invalid because a dependent type was dropped can never be accessed again, and the only permissible action is to drop the table.

Because of the severe effects that revoking a privilege on a type or dropping a type can cause, the SQL statements REVOKE and DROP TYPE, by default, implement restricted semantics. This means that if the named type in either statement has table or type dependents, then an error is received and the statement cancels. However, if the FORCE clause for either statement is used, then the statement always succeeds. If there are depended-upon tables, then they are invalidated.

	
See Also:

Oracle Database Reference for details about using the REVOKE, DROP TYPE, and FORCE clauses

Granting a User Privileges and Roles

This section contains:

	
Granting System Privileges and Roles

	
Granting Object Privileges

	
Granting Privileges on Columns

It is also possible to grant roles to a user connected through a middle tier or proxy. This is discussed in "Using a Middle Tier Server for Proxy Authentication".

Granting System Privileges and Roles

You can use the GRANT SQL statement to grant system privileges and roles to users and roles. The following privileges are required:

	
To grant a system privilege, a user must be granted the system privilege with the ADMIN option or must be granted the GRANT ANY PRIVILEGE system privilege.

	
To grant a role, a user must be granted the role with the ADMIN option or was granted the GRANT ANY ROLE system privilege.

Example 4-11 grants the system privilege CREATE SESSION and the accts_pay role to the user jward.

Example 4-11 Granting a System Privilege and a Role to a User

GRANT CREATE SESSION, accts_pay TO jward;

Example 4-11 grants the EXECUTE privilege on the exec_dir directory object to the user jward.

Example 4-12 Granting the EXECUTE Privilege on a Directory Object

GRANT EXECUTE ON DIRECTORY exec_dir TO jward;

	
Note:

Object privileges cannot be granted along with system privileges and roles in the same GRANT statement.

Granting the ADMIN Option

If you specify the WITH ADMIN OPTION clause when you grant a privilege or role to a user or role, then the privilege grant has the following expanded capabilities:

	
The grantee can grant or revoke the system privilege or role to or from any other user or role in the database. Users cannot revoke a role from themselves.

	
The grantee can grant the system privilege or role with the ADMIN option.

	
The grantee of a role can alter or drop the role.

Example 4-13 grants the new_dba role with the WITH ADMIN OPTION clause to user michael.

Example 4-13 Granting the ADMIN Option

GRANT new_dba TO michael WITH ADMIN OPTION;

User michael is able to not only use all of the privileges implicit in the new_dba role, but he can also grant, revoke, and drop the new_dba role as deemed necessary. Because of these powerful capabilities, use caution when granting system privileges or roles with the ADMIN option. These privileges are usually reserved for a security administrator, and are rarely granted to other administrators or users of the system.

	
Note:

When a user creates a role, the role is automatically granted to the creator with the ADMIN option.

Creating a New User with the GRANT Statement

Oracle Database enables you to create a new user with the GRANT statement. If you specify a password using the IDENTIFIED BY clause, and the user name does not exist in the database, then a new user with that user name and password is created.

Example 4-14 creates psmith as a new user while granting psmith the CREATE SESSION system privilege.

Example 4-14 Creating a New User with the GRANT Statement

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;

	
See Also:

	
"Creating User Accounts"

	
"Minimum Requirements for Passwords"

Granting Object Privileges

You can use the GRANT statement to grant object privileges to roles and users. To grant an object privilege, you must fulfill one of the following conditions:

	
You own the object specified.

	
You have been granted the GRANT ANY OBJECT PRIVILEGE system privilege. This privilege enables you to grant and revoke privileges on behalf of the object owner.

	
The WITH GRANT OPTION clause was specified when you were granted the object privilege.

	
Note:

System privileges and roles cannot be granted along with object privileges in the same GRANT statement.

Example 4-15 grants the SELECT, INSERT, and DELETE object privileges for all columns of the emp table to the users jfee and tsmith.

Example 4-15 Granting Object Privileges to Users

GRANT SELECT, INSERT, DELETE ON emp TO jfee, tsmith;

To grant all object privileges on the salary view to user jfee, use the ALL keyword as shown in the following example:

GRANT ALL ON salary TO jfee;

	
Note:

A grantee cannot regrant access to objects unless the original grant included the GRANT OPTION. Thus in the example just given, jfee cannot use the GRANT statement to grant object privileges to anyone else.

Specifying the GRANT OPTION Clause

Specify the WITH GRANT OPTION clause with the GRANT statement to enable the grantee to grant the object privileges to other users. The user whose schema contains an object is automatically granted all associated object privileges with the GRANT OPTION. This special privilege allows the grantee several expanded privileges:

	
The grantee can grant the object privilege to any user in the database, with or without the GRANT OPTION, and to any role in the database.

	
If both of the following conditions are true, then the grantee can create views on the table, and grant the corresponding privileges on the views to any user or role in the database:

	
The grantee receives object privileges for the table with the GRANT OPTION.

	
The grantee has the CREATE VIEW or CREATE ANY VIEW system privilege.

	
Note:

The GRANT OPTION is not valid when granting an object privilege to a role. Oracle Database prevents the propagation of object privileges through roles so that grantees of a role cannot propagate object privileges received by means of roles.

Granting Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRIVILEGE system privilege enables users to grant and revoke any object privilege on behalf of the object owner. This privilege provides a convenient means for database and application administrators to grant access to objects in any schema without requiring that they connect to the schema. Login credentials do not need to be maintained for schema owners who have this privilege, which reduces the number of connections required during configuration.

This system privilege is part of the Oracle Database supplied DBA role and is thus granted (with the ADMIN option) to any user connecting AS SYSDBA (user SYS). As with other system privileges, the GRANT ANY OBJECT PRIVILEGE system privilege can only be granted by a user who possesses the ADMIN option.

The recorded grantor of access rights to an object is either the object owner or the person exercising the GRANT ANY OBJECT PRIVILEGE system privilege. If the grantor with GRANT ANY OBJECT PRIVILEGE does not have the object privilege with the GRANT OPTION, then the object owner is shown as the grantor. Otherwise, when that grantor has the object privilege with the GRANT OPTION, then that grantor is recorded as the grantor of the grant.

	
Note:

The audit record generated by the GRANT statement always shows the actual user who performed the grant.

For example, consider the following scenario. User adams possesses the GRANT ANY OBJECT PRIVILEGE system privilege. He does not possess any other grant privileges. He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO blake WITH GRANT OPTION;

If you examine the DBA_TAB_PRIVS view, then you will see that hr is shown as the grantor of the privilege:

SELECT GRANTEE, GRANTOR, PRIVILEGE, GRANTABLE
 FROM DBA_TAB_PRIVS
 WHERE TABLE_NAME = 'EMPLOYEES' and OWNER = 'HR';

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES

Now assume that user blake also has the GRANT ANY OBJECT PRIVILEGE system. He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO clark;

In this case, when you query the DBA_TAB_PRIVS view again, you see that blake is shown as being the grantor of the privilege:

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- -------- --------- ----------
BLAKE HR SELECT YES
CLARK BLAKE SELECT NO

This occurs because blake already possesses the SELECT privilege on HR.EMPLOYEES with the GRANT OPTION.

	
See Also:

"Revoking Object Privileges on Behalf of the Object Owner"

Granting Privileges on Columns

You can grant INSERT, UPDATE, or REFERENCES privileges on individual columns in a table.

	
Caution:

Before granting a column-specific INSERT privilege, determine if the table contains any columns on which NOT NULL constraints are defined. Granting selective insert capability without including the NOT NULL columns prevents the user from inserting any rows into the table. To avoid this situation, ensure that each NOT NULL column can either be inserted into or has a non-NULL default value. Otherwise, the grantee will not be able to insert rows into the table and will receive an error.

The following statement grants the INSERT privilege on the acct_no column of the accounts table to user psmith:

GRANT INSERT (acct_no) ON accounts TO psmith;

In the following example, object privilege for the ename and job columns of the emp table are granted to the users jfee and tsmith:

GRANT INSERT(ename, job) ON emp TO jfee, tsmith;

Row-Level Access Control

You can also provide access control at the row level, that is, within objects, using Virtual Private Database (VPD) or Oracle Label Security (OLS).

	
See Also:

	
Chapter 7, "Using Oracle Virtual Private Database to Control Data Access"

	
"Adding Policies for Column-Level Oracle Virtual Private Database"

	
Oracle Label Security Administrator's Guide

Revoking Privileges and Roles from a User

This section contains:

	
Revoking System Privileges and Roles

	
Revoking Object Privileges

	
Cascading Effects of Revoking Privileges

Revoking System Privileges and Roles

You can revoke system privileges and roles using the SQL statement REVOKE. Any user with the ADMIN option for a system privilege or role can revoke the privilege or role from any other database user or role. The revoker does not have to be the user that originally granted the privilege or role. Users with GRANT ANY ROLE can revoke any role.

The following statement revokes the CREATE TABLE system privilege and the accts_rec role from user psmith:

REVOKE CREATE TABLE, accts_rec FROM psmith;

	
Note:

The ADMIN option for a system privilege or role cannot be selectively revoked. Instead, revoke the privilege or role, and then grant the privilege or role again but without the ADMIN option.

Revoking Object Privileges

To revoke an object privilege, you must fulfill one of the following conditions:

	
You previously granted the object privilege to the user or role.

	
You possess the GRANT ANY OBJECT PRIVILEGE system privilege that enables you to grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the person who granted the privilege, directly authorized. You cannot revoke grants that were made by other users to whom you granted the GRANT OPTION. However, there is a cascading effect. If the object privileges of the user who granted the privilege are revoked, then the object privilege grants that were propagated using the GRANT OPTION are revoked as well.

Assuming you are the original grantor of the privilege, the following statement revokes the SELECT and INSERT privileges on the emp table from users jfee and psmith:

REVOKE SELECT, INSERT ON emp FROM jfee, psmith;

The following statement revokes all object privileges for the dept table that you originally granted to the human_resource role:

REVOKE ALL ON dept FROM human_resources;

	
Note:

The GRANT OPTION for an object privilege cannot be selectively revoked. Instead, revoke the object privilege and then grant it again but without the GRANT OPTION. Users cannot revoke object privileges from themselves.

Revoking Object Privileges on Behalf of the Object Owner

The GRANT ANY OBJECT PRIVILEGE system privilege enables you to revoke any specified object privilege where the object owner is the grantor. This occurs when the object privilege is granted by the object owner, or on behalf of the owner by any user holding the GRANT ANY OBJECT PRIVILEGE system privilege.

In a situation where the object privilege was granted by both the owner of the object and the user executing the REVOKE statement (who has both the specific object privilege and the GRANT ANY OBJECT PRIVILEGE system privilege), Oracle Database only revokes the object privilege granted by the user issuing the REVOKE statement. This can be illustrated by continuing the example started in "Granting Object Privileges on Behalf of the Object Owner".

At this point, user blake granted the SELECT privilege on HR.EMPLOYEES to clark. Even though blake possesses the GRANT ANY OBJECT PRIVILEGE system privilege, he also holds the specific object privilege, thus this grant is attributed to him. Assume that user HR also grants the SELECT privilege on HR.EMPLOYEES to user clark. A query of the DBA_TAB_PRIVS view shows that the following grants are in effect for the HR.EMPLOYEES table:

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES
CLARK BLAKE SELECT NO
CLARK HR SELECT NO

User blake now issues the following REVOKE statement:

REVOKE SELECT ON HR.EMPLOYEES FROM clark;

Only the object privilege for user clark granted by user blake is removed. The grant by the object owner, HR, remains.

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES
CLARK HR SELECT NO

If blake issues the REVOKE statement again, then this time the effect is to remove the object privilege granted by adams (on behalf of HR), using the GRANT ANY OBEJCT PRIVILEGE system privilege.

	
See Also:

"Granting Object Privileges on Behalf of the Object Owner"

Revoking Column-Selective Object Privileges

Although users can grant column-specific INSERT, UPDATE, and REFERENCES privileges for tables and views, they cannot selectively revoke column-specific privileges with a similar REVOKE statement. Instead, the grantor must first revoke the object privilege for all columns of a table or view, and then selectively repeat the grant of the column-specific privileges that the grantor intends to keep in effect.

For example, assume that role human_resources was granted the UPDATE privilege on the deptno and dname columns of the table dept. To revoke the UPDATE privilege on just the deptno column, issue the following two statements:

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes the UPDATE privilege on all columns of the dept table from the role human_resources. The GRANT statement then repeats, restores, or reissues the grant of the UPDATE privilege on the dname column to the role human_resources.

Revoking the REFERENCES Object Privilege

If the grantee of the REFERENCES object privilege has used the privilege to create a foreign key constraint (that currently exists), then the grantor can revoke the privilege only by specifying the CASCADE CONSTRAINTS option in the REVOKE statement:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES privilege are dropped when the CASCADE CONSTRAINTS clause is specified.

Cascading Effects of Revoking Privileges

Depending on the type of privilege, there may be cascading effects when a privilege is revoked. This is discussed in the following sections:

	
Cascading Effects When Revoking System Privileges

	
Cascading Effects When Revoking Object Privileges

Cascading Effects When Revoking System Privileges

There are no cascading effects when revoking a system privilege related to DDL operations, regardless of whether the privilege was granted with or without the ADMIN option. For example, assume the following:

	
The security administrator grants the CREATE TABLE system privilege to user jfee with the ADMIN option.

	
User jfee creates a table.

	
User jfee grants the CREATE TABLE system privilege to user tsmith.

	
User tsmith creates a table.

	
The security administrator revokes the CREATE TABLE system privilege from user jfee.

	
The table created by user jfee continues to exist. User tsmith still has the table and the CREATE TABLE system privilege.

You can observe cascading effects when you revoke a system privilege related to a DML operation. If the SELECT ANY TABLE privilege is revoked from a user, then all procedures contained in the users schema relying on this privilege can longer be executed successfully until the privilege is reauthorized.

Cascading Effects When Revoking Object Privileges

Revoking an object privilege can have cascading effects. Remember the following:

	
Object definitions that depend on a DML object privilege can be affected if the DML object privilege is revoked. For example, assume that the body of the test procedure includes a SQL statement that queries data from the emp table. If the SELECT privilege on the emp table is revoked from the owner of the test procedure, then the procedure can no longer be executed successfully.

	
When a REFERENCES privilege for a table is revoked from a user, any foreign key integrity constraints that are defined by the user and require the dropped REFERENCES privilege are automatically dropped. For example, assume that user jward is granted the REFERENCES privilege for the deptno column of the dept table. This user now creates a foreign key on the deptno column in the emp table that references the deptno column of the dept table. If the REFERENCES privilege on the deptno column of the dept table is revoked, then the foreign key constraint on the deptno column of the emp table is dropped in the same operation.

	
The object privilege grants propagated using the GRANT OPTION are revoked if the object privilege of a grantor is revoked. For example, assume that user1 is granted the SELECT object privilege with the GRANT OPTION, and grants the SELECT privilege on emp to user2. Subsequently, the SELECT privilege is revoked from user1. This REVOKE statement is also cascaded to user2. Any objects that depend on the revoked SELECT privilege of user1 and user2 can also be affected, as described earlier.

Object definitions that require the ALTER and INDEX DDL object privileges are not affected if the ALTER or INDEX object privilege is revoked. For example, if the INDEX privilege is revoked from a user that created an index on a table that belongs to another user, then the index continues to exist after the privilege is revoked.

Granting to and Revoking from the PUBLIC User Group

You can grant and revoke privileges and roles from the user group PUBLIC. Because PUBLIC is accessible to every database user, all privileges and roles granted to PUBLIC are accessible to every database user.

Security administrators and database users should grant a privilege or role to PUBLIC only if every database user requires the privilege or role. This recommendation reinforces the general rule that, at any given time, each database user should have only the privileges required to accomplish the current group tasks successfully.

Revoking a privilege from PUBLIC can cause significant cascading effects. If any privilege related to a DML operation is revoked from PUBLIC (for example, SELECT ANY TABLE or UPDATE ON emp), then all procedures in the database, including functions and packages, must be reauthorized before they can be used again. Therefore, be careful when you grant and revoke DML-related privileges to or from PUBLIC.

	
See Also:

	
Managing Object Dependencies in Oracle Database Administrator's Guide for more information about object dependencies

	
"Guidelines for Securing Data"

Granting Roles Using the Operating System or Network

This section contains:

	
About Granting Roles Using the Operating System or Network

	
Using Operating System Role Identification

	
Using Operating System Role Management

	
Granting and Revoking Roles When OS_ROLES Is Set to TRUE

	
Enabling and Disabling Roles When OS_ROLES Is Set to TRUE

	
Using Network Connections with Operating System Role Management

About Granting Roles Using the Operating System or Network

Instead of a security administrator explicitly granting and revoking database roles to and from users using GRANT and REVOKE statements, the operating system on which Oracle Database runs can grant roles to users at connect time. Roles can be administered using the operating system and passed to Oracle Database when a user creates a session. As part of this mechanism, the default roles of a user and the roles granted to a user with the ADMIN option can be identified. If the operating system is used to authorize users for roles, then all roles must be created in the database and privileges assigned to the role with GRANT statements.

Roles can also be granted through a network service.

The advantage of using the operating system to identify the database roles of a user is that privilege management for an Oracle database can be externalized. The security facilities offered by the operating system control user privileges. This option may offer advantages of centralizing security for several system activities, such as the following situation:

	
MVS Oracle administrators want RACF groups to identify database user roles.

	
UNIX Oracle administrators want UNIX groups to identify database user roles.

	
VMS Oracle administrators want to use rights identifiers to identify database user roles.

The main disadvantage of using the operating system to identify the database roles of a user is that privilege management can only be performed at the role level. Individual privileges cannot be granted using the operating system, but they can still be granted inside the database using GRANT statements.

A second disadvantage of using this feature is that, by default, users cannot connect to the database through the shared server or any other network connection if the operating system is managing roles. However, you can change this default as described in "Using Network Connections with Operating System Role Management".

	
Note:

The features described in this section are available only on some operating systems. See your operating system-specific Oracle Database documentation to determine if you can use these features.

Using Operating System Role Identification

To cause a database to use the operating system to identify the database roles of each user when a session is created, set the initialization parameter OS_ROLES to TRUE (and restart the instance, if it is currently running). When a user tries to create a session with the database, Oracle Database initializes the user security domain using the database roles identified by the operating system.

To identify database roles for a user, the operating system account for each Oracle Database user must have operating system identifiers (these may be called groups, rights identifiers, or other similar names) that indicate which database roles are to be available for the user. Role specification can also indicate which roles are the default roles of a user and which roles are available with the ADMIN option. No matter which operating system is used, the role specification at the operating system level follows the format:

ora_ID_ROLE[[_d][_a][_da]]

In this specification:

	
ID has a definition that varies on different operating systems. For example, on VMS, ID is the instance identifier of the database; on VMS, it is the computer type; and on UNIX, it is the system ID.

	
Note:

ID is case-sensitive to match your ORACLE_SID. ROLE is not case-sensitive.

	
ROLE is the name of the database role.

	
d is an optional character that indicates this role is to be a default role of the database user.

	
a is an optional character that indicates this role is to be granted to the user with the ADMIN option. This allows the user to grant the role to other roles only. Roles cannot be granted to users if the operating system is used to manage roles.

	
Note:

If either the d or a character is specified, then precede that character by an underscore (_).

For example, an operating system account might have the following roles identified in its profile:

ora_PAYROLL_ROLE1
ora_PAYROLL_ROLE2_a
ora_PAYROLL_ROLE3_d
ora_PAYROLL_ROLE4_da

When the corresponding user connects to the payroll instance of Oracle Database, role3 and role4 are defaults, while role2 and role4 are available with the ADMIN option.

Using Operating System Role Management

When you use operating system-managed roles, remember that database roles are being granted to an operating system user. Any database user to which the operating system user is able to connect will have the authorized database roles enabled. For this reason, you should consider defining all Oracle Database users as IDENTIFIED EXTERNALLY if you are using OS_ROLES = TRUE, so that the database accounts are tied to the operating system account that was granted privileges.

Granting and Revoking Roles When OS_ROLES Is Set to TRUE

If the OS_ROLES parameter is set to TRUE, then the operating system completely manages the granting and revoking of roles to users. Any previous granting of roles to users using GRANT statements do not apply. However, they are still listed in the data dictionary. Only the role grants to users made at the operating system level apply. Users can still grant privileges to roles and users.

	
Note:

If the operating system grants a role to a user with the ADMIN option, then the user can grant the role only to other roles.

Enabling and Disabling Roles When OS_ROLES Is Set to TRUE

If the OS_ROLES initialization parameter is set to TRUE, then any role granted by the operating system can be dynamically enabled using the SET ROLE statement. This still applies, even if the role was defined to require a password or operating system authorization. However, any role not identified in the operating system account of a user cannot be specified in a SET ROLE statement, even if a role was granted using a GRANT statement when OS_ROLES = FALSE. (If you specify such a role, then Oracle Database ignores it.)

When OS_ROLES is set to TRUE, then the user can enable up to 148 roles. Remember that this number includes other roles that may have been granted to the role.

Using Network Connections with Operating System Role Management

If you have the operating system manage roles, then, by default, users cannot connect to the database through the shared server. This restriction is the default because a remote user could impersonate another operating system user over an unsecure connection.

If you are not concerned with this security risk and want to use operating system role management with the shared server, or any other network connection, then set the initialization parameter REMOTE_OS_ROLES to TRUE. The change takes effect the next time you start the instance and mount the database. The default setting of this parameter is FALSE.

When Do Grants and Revokes Take Effect?

Depending on what is granted or revoked, a grant or revoke takes effect at different times:

	
All grants and revokes of system and object privileges to anything (users, roles, and PUBLIC) take immediate effect.

	
All grants and revokes of roles to anything (users, other roles, PUBLIC) take effect only when a current user session issues a SET ROLE statement to reenable the role after the grant and revoke, or when a new user session is created after the grant or revoke.

You can see which roles are currently enabled by examining the SESSION_ROLES data dictionary view.

How the SET ROLE Statement Affects Grants and Revokes

During the user session, the user or an application can use the SET ROLE statement any number of times to change the roles currently enabled for the session. The user must already be granted the roles that are named in the SET ROLE statement.

Example 4-16 enables the role clerk, which you have already been granted, and specifies the password.

Example 4-16 Using SET ROLE to Grant a Role and Specify a Password

SET ROLE clerk IDENTIFIED BY password;

Replace password with a password that is secure. "Minimum Requirements for Passwords" describes the minimum requirements for passwords.

Example 4-17 shows how to use SET ROLE to disable all roles.

Example 4-17 Using SET ROLE to Disable All Roles

SET ROLE NONE;

Specifying Default Roles

When a user logs on, Oracle Database enables all privileges granted explicitly to the user and all privileges in the default roles of the user.

You can set and alter a list of default roles for a user by using the ALTER USER SQL statement. The ALTER USER statement specifies roles that are to be enabled when a user connects to the database. The user must have been directly granted the roles with a GRANT statement, or the roles must have been created by the user with the CREATE ROLE privilege. For information about the restrictions of the DEFAULT ROLE clause of the ALTER USER statement, see Oracle Database SQL Language Reference.

Example 4-18 sets the default roles payclerk and pettycash for user jane:

Example 4-18 Using ALTER USER to Set Default Roles

ALTER USER jane DEFAULT ROLE payclerk, pettycash;

You cannot set default roles for a user in the CREATE USER statement. When you first create a user, the default user role setting is ALL, which causes all roles subsequently granted to the user to be default roles. Use the ALTER USER statement to limit the default user roles.

	
Caution:

When you create a role (other than a global role or an application role), it is granted implicitly to you, and your set of default roles is updated to include the new role. You can grant as many roles as you want to a user, but remember that the user can have no more than 148 roles enabled by default. Otherwise, the user will be unable to log in to the database and an ORA-28031: maximum of 148 enabled roles exceeded error is raised. When aggregate roles, such as the DBA role, are granted to a user, the roles granted to the role are included in the number of roles the user has. For example, if a role has 20 roles granted to it and you grant that role to the user, then the user now has 21 additional roles. Therefore, when you grant new roles to a user, use the DEFAULT ROLE clause of the ALTER USER statement to ensure that not too many roles are specified as that user's default roles.

The Maximum Number of Roles That a User Can Enable

A user can enable no more than 148 roles.You can grant a user as many roles as you want, but you should restrict the number of roles granted to a user to the minimum roles the user needs. See "Guidelines for Securing Roles" for additional guidelines on granting roles to users.

Managing Fine-Grained Access in PL/SQL Packages and Types

You can configure user access control to external network services and wallets through the UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR PL/SQL packages, the DBMS_LDAP PL/SQL package, and the HttpUriType type.

	
Configuring fine-grained access control for users and roles that need to access external network services from the database. This way, specific groups of users can connect to one or more host computers, based on privileges that you grant them. Typically, you use this feature to control access to applications that run on specific host addresses.

	
Configuring fine-grained access control to Oracle wallets to make HTTP requests that require password or client-certificate authentication. This feature enables you to grant privileges to users who are using passwords and client certificates stored in Oracle wallets to access external protected HTTP resources through the UTL_HTTP package. For example, you can configure applications to use the credentials stored in the wallets instead of hard-coding the credentials in the applications. For more information about how you can use wallets to store passwords and credentials, see Oracle Database Advanced Security Administrator's Guide.

This section contains:

	
About Fine-Grained Access Control to External Network Services

	
About Access Control to Wallets

	
Upgrading Applications That Depend on Packages That Use External Network Services

	
Creating an Access Control List for External Network Services

	
Configuring Access Control to a Wallet

	
Examples of Creating Access Control Lists

	
Specifying a Group of Network Host Computers

	
Precedence Order for a Host Computer in Multiple Access Control List Assignments

	
Precedence Order for a Host in Access Control List Assignments with Port Ranges

	
Checking Privilege Assignments That Affect User Access to a Network Host

	
Setting the Precedence of Multiple Users and Roles in One Access Control List

	
Finding Information About Access Control Lists Configured for User Access

About Fine-Grained Access Control to External Network Services

To configure fine-grained access control to external network services, you create an access control list (ACL), which is stored in Oracle XML DB. You can create the access control list by using Oracle XML DB itself, or by using the DBMS_NETWORK_ACL_ADMIN and DBMS_NETWORK_ACL_UTILITY PL/SQL packages. This guide explains how to use these packages to create and manage the access control list. To create an access control list by using Oracle XML DB and for general conceptual information about access control lists, see Oracle XML DB Developer's Guide.

This feature enhances security for network connections because it restricts the external network hosts that a database user can connect to using the PL/SQL network utility packages UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR, the DBMS_LDAP PL/SQL package, and the HttpUriType type. Otherwise, an intruder who gained access to the database could maliciously attack the network, because, by default, the PL/SQL utility packages are created with the EXECUTE privilege granted to PUBLIC users. These PL/SQL network utility packages, and the DBMS_NETWORK_ACL_ADMIN and DBMS_NETWORK_ACL_UTILITY packages, support both IP Version 4 (IPv4) and IP Version 6 (IPv6) addresses. This guide explains how to manage access control to both versions. For detailed information about how the IPv4 and IPv6 notation works with Oracle Database, see Oracle Database Net Services Administrator's Guide.

	
See Also:

"Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy" for an example of configuring access control to external network services for e-mail alerts

About Access Control to Wallets

When a user accesses Web pages that are protected by a remote Web server, the user can authenticate himself or herself by supplying the passwords and client certificates that are stored in an Oracle wallet. The Oracle wallet provides secure storage of user passwords and client certificates.

To configure access control to a wallet, you need the following components:

	
An Oracle wallet. You can create the wallet using the Oracle Database mkstore utility or Oracle Wallet Manager. The HTTP request will use the external password store or the client certificate in the wallet to authenticate the user

	
An access control list to grant privileges to the user to use the wallet. To create the access control list, you use the DBMS_NETWORK_ACL_ADMIN PL/SQL package.

	
A way to associate the wallet with the access control list. To do so, use the DBMS_NETWORK_ACL_ADMIN PL/SQL package.

The use of wallets is beneficial because it provides secure storage of passwords and client certificates necessary to access protected Web pages.

	
See Also:

"Configuring Access Control to a Wallet"

Upgrading Applications That Depend on Packages That Use External Network Services

If you have upgraded from a release before Oracle Database 11g Release 1 (11.1), and your applications depend on PL/SQL network utility packages UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR, the DBMS_LDAP PL/SQL package, or the HttpUriType type, then the following error may occur when you try to run the application:

ORA-24247: network access denied by access control list (ACL)

Use the procedures in this section to reconfigure the network access for the application. See also Oracle Database Upgrade Guide for compatibility issues for applications that depend on the PL/SQL network utility packages. For detailed information about the network utility packages, see Oracle Database PL/SQL Packages and Types Reference.

Creating an Access Control List for External Network Services

When you create access control lists for network connections, you should create one access control list dedicated to a group of common users, for example, users who need access to a particular application that resides on a specific host computer. For ease of administration and for good system performance, do not create too many access control lists. Network hosts accessible to the same group of users should share the same access control list.

To create the access control list by using the DBMS_NETWORK_ACL_ADMIN package, follow these steps:

	
Step 1: Create the Access Control List and Its Privilege Definitions

	
Step 2: Assign the Access Control List to One or More Network Hosts

Step 1: Create the Access Control List and Its Privilege Definitions

Use the DBMS_NETWORK_ACL_ADMIN.CREATE_ACL procedure to create the content of the access control list. It contains a name of the access control list, a brief description, and privilege settings for one user or role that you want to associate with the access control list. In an access control list, privileges for each user or role are grouped together as an access control entry (ACE). An access control list must have the privilege settings for at least one user or role.

	
Note:

You cannot import or export the access control list settings by using the Oracle Database import or export utilities such as Oracle Data Pump.

for example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'file_name.xml',
 description => 'file description',
 principal => 'user_or_role',
 is_grant => TRUE|FALSE,
 privilege => 'connect|resolve',
 start_date => null|timestamp_with_time_zone,
 end_date => null|timestamp_with_time_zone);
END;

In this specification:

	
acl: Enter a name for the access control list XML file. Oracle Database creates this file relative to the /sys/acls directory in the XML DB Repository in the database. Include the .xml extension. For example:

acl => 'us-example-com-permissions.xml',

	
description: Enter a brief description of the purpose of this file. For example:

description => 'Network connection permission for ACCT_MGR role',

	
principal: Enter the first user account or role being granted or denied permissions. For example:

principal => 'ACCT_MGR',

Enter the name of the user account or role in case sensitive characters. For example, if the database stores the role name ACCT_MGR in all capital letters, entering it in mixed or lower case will not work. You can find the user accounts and roles in the current database instance by querying the DBA_USERS and DBA_ROLES data dictionary views. Typically, user names and roles are stored in upper-case letters.

If you want to enter multiple users or grant additional privileges to this user or role, use the DBMS_NETWORK_ACL.ADD_PRIVILEGE procedure (described next) after you have created this access control list XML file.

	
is_grant: Enter either TRUE or FALSE, to indicate whether the privilege is to be granted or denied. For example:

is_grant => TRUE,

	
privilege: Enter either connect or resolve. This setting is case sensitive, so always enter it in lowercase. For example:

privilege => 'connect',

The connect privilege grants the user permission to connect to a network service at an external host. The resolve privilege grants the user permission to resolve a network host name or an IP address.

A database user needs the connect privilege to an external network host computer if he or she is connecting using the UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, the DBMS_LDAP package, and the HttpUriType type. To resolve the host name that was given a host IP address, or the IP address that was given a host name, with the UTL_INADDR package, grant the database user the resolve privilege instead.

You can use the data dictionary views described in "Finding Information About Access Control Lists Configured for User Access" to find more information about existing privileges and network connections.

	
start_date: (Optional) Enter the start date for the access control entry (ACE), in TIMESTAMP WITH TIME ZONE format (YYYY-MM-DD HH:MI:SS.FF TZR). When specified, the access control entry will be valid only on or after the specified date. The default is null. For example, to set a start date of February 28, 2008, at 6:30 a.m. in San Francisco, California, U.S., which is in the Pacific time zone:

start_date => '2008-02-28 06:30:00.00 US/Pacific',

The NLS_TIMESTAMP_FORMAT initialization parameter sets the default timestamp format. See Oracle Database Reference for more information.

	
end_date: (Optional) Enter the end date for the access control entry (ACE), in TIMESTAMP WITH TIME ZONE format (YYYY-MM-DD HH:MI:SS.FF TZR). When specified, the access control entry expires after the specified date. The end_date setting must be greater than or equal to the start_date setting. The default is null.

For example, to set an end date of December 10, 2008, at 11:59 p.m. in San Francisco, California, U.S., which is in the Pacific time zone:

end_date => '2008-12-10 23:59:00.00 US/Pacific');

To add more users or roles to the access control list, or grant additional privileges to one user or role, use the DBMS_NETWORK_ACL.ADD_PRIVILEGE procedure. The syntax is as follows:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'file_name.xml',
 principal => 'user_or_role',
 is_grant => TRUE|FALSE,
 privilege => 'connect|resolve',
 position => null|value,
 start_date => null|timestamp_with_time_zone,
 end_date => null|timestamp_with_time_zone);
END;

As you can see, the parameters to add the privilege are the similar to those in the CREATE_ACL procedure, except that description is not included and the position parameter, which sets the order of precedence for multiple users or roles, was added. Because you now are adding more than one user or role, you may want to consider setting their precedence. "Setting the Precedence of Multiple Users and Roles in One Access Control List" provides more information.

Other DBMS_NETWORK_ACL_ADMIN procedures that are available for this step are DELETE_PRIVILEGE and DROP_ACL.

At this stage, you have created an access control list that defines the privileges needed to connect to a network host. However, the access control list has no effect until you complete Step 2: Assign the Access Control List to One or More Network Hosts.

Step 2: Assign the Access Control List to One or More Network Hosts

After you create the access control list, then you are ready to assign it to one or more network host computers. You can use the DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL procedure to do so.

For example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'file_name.xml',
 host => 'network_host',
 lower_port => null|port_number,
 upper_port => null|port_number);
END;

In this specification:

	
acl: Enter the name of the access control list XML file (from Step 1: Create the Access Control List and Its Privilege Definitions) to assign to the network host. Oracle Database creates this file relative to the /sys/acls directory in the XML DB Repository in the database. Include the .xml extension. For example:

acl => 'us-example-com-permissions.xml',

	
host: Enter the network host to which this access control list will be assigned. This setting can be a name or IP address of the network host. Host names are case insensitive. For example:

host => 'us.example.com',

If you specify localhost, and if the host name has not been specified with the UTL_INADDR and UTL_HTTP PL/SQL packages in situations in which the local host is assumed, then these packages will search for and use the ACL that has been assigned localhost for the host setting.

See the following sections for more information about how network host computers in access control list assignments work:

	
"Specifying a Group of Network Host Computers"

	
"Checking Privilege Assignments That Affect User Access to a Network Host"

	
"Precedence Order for a Host Computer in Multiple Access Control List Assignments"

	
"Precedence Order for a Host in Access Control List Assignments with Port Ranges"

	
lower_port: (Optional) For TCP connections, enter the lower boundary of the port range. Use this setting for the connect privilege only; omit it for the resolve privilege. The default is null, which means that there is no port restriction (that is, the ACL applies to all ports). The range of port numbers is between 1 and 65535.

For example:

lower_port => 80,

	
upper_port: (Optional) For TCP connections, enter the upper boundary of the port range. Use this setting for connect privileges only; omit it for resolve privileges. The default is null, which means that there is no port restriction (that is, the ACL applies to all ports). The range of port numbers is between 1 and 65535

For example:

upper_port => 3999);

If you enter a value for the lower_port and leave the upper_port at null (or just omit it), Oracle Database assumes the upper_port setting is the same as the lower_port. For example, if you set lower_port to 80 and omit upper_port, the upper_port setting is assumed to be 80.

The resolve privilege in the access control list takes no effect when a port range is specified in the access control list assignment.

Only one access control list can be assigned to any host computer, domain, or IP subnet, and if specified, the TCP port range. When you assign a new access control list to a network target, Oracle Database unassigns the previous access control list that was assigned to the same target. However, Oracle Database does not drop the access control list. You can drop the access control list by using the DROP_ACL procedure. To remove an access control list assignment, use the UNASSIGN_ACL procedure.

Depending on how you create and maintain the access control list, the two steps may overlap. For example, you can create an access control list that has privileges for five users in it, and then apply it to two host computers. Later on, you can modify this access control list to have different or additional users and privileges, and assign it to different or additional host computers.

All access control list changes, including the assignment to network hosts, are transactional. They do not take effect until the transaction is committed.

You can find information about existing privileges and network connections by using the data dictionary views described in Table 4-6, "Data Dictionary Views That Display Information about Access Control Lists".

For information about using the DBMS_NETWORK_ACL_ADMIN package, see Oracle Database PL/SQL Packages and Types Reference.

Configuring Access Control to a Wallet

This method lets you grant access to the passwords and client certificates that are stored in an Oracle wallet to users to authenticate themselves to an external Web server. This enables the user to retrieve protected Web pages from the Web server.

This section contains:

	
Step 1: Create an Oracle Wallet

	
Step 2: Create an Access Control List that Grants the Wallet Privileges

	
Step 3: Assign the Access Control List to the Wallet

	
Step 4: Make the HTTP Request with the Passwords and Client Certificates

Step 1: Create an Oracle Wallet

To create the wallet, you can use either the mkstore command-line utility or the Oracle Wallet Manager user interface. To store passwords in the wallet, you must use mkstore. You can use both standard and PKCS11 wallet types, and the wallet can be an auto-login wallet if you want. For detailed information about creating wallets, see Oracle Database Advanced Security Administrator's Guide.

When you create the wallet, do the following:

	
Ensure that you have exported the wallet to a file.

	
Make a note of the directory in which you created the wallet. You will need this directory path when you complete the procedures in this section.

	
See Also:

	
"Example of an Access Control List for Using Passwords in a Non-Shared Wallet"

	
"Example of an Access Control List for Wallets in a Shared Database Session"

Step 2: Create an Access Control List that Grants the Wallet Privileges

After you have created the wallet, you are ready to create the access control list that will assign the password or client certificate privilege the user needs to use password credentials in the wallet for HTTP authentication.

For example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'file_name.xml',
 description => 'description',
 principal => 'user_or_role',
 is_grant => TRUE|FALSE,
 privilege => 'privilege';
...
END;

In this specification:

	
acl: Enter a name for the ACL, and make a note of this name. You will need this name in Step 3: Assign the Access Control List to the Wallet, next. Oracle Database creates this file relative to the /sys/acls directory in the XML DB Repository in the database. Include the .xml extension. For example:

acl => 'hr_access_wallet_acl.xml',

	
description: Enter a brief description of the purpose of this file. For example:

description => 'Wallet ACL for the hr_access application',

	
principal: Enter the user account or role being granted or denied privileges. For example:

principal => 'HR_CLERK',

Enter this name using case sensitive characters. For example, if the database stores the role name HR_CLERK in all capital letters, entering it in mixed or lower-case letters will not work. You can find the user accounts and roles in the current database instance by querying the DBA_USERS and DBA_ROLES data dictionary views. Typically, user names and roles are stored in upper-case letters.

If you want to add multiple users, or if you want to grant this user an additional privilege, you can use the DBMS_NETWORK_ACL.ADD_PRIVILEGE procedure after you have created this access control list XML file.

	
is_grant: Enter either TRUE or FALSE, to indicate whether the privilege is to be granted or denied. For example:

is_grant => TRUE,

	
privilege: Enter one of the following settings using lowercase letters and hyphens. Remember that the privilege name is case-sensitive.

	
use-passwords to give the user permission to use passwords in the wallet

	
use-client-certificates to authenticate the user with a client certificate in the wallet

For example:

privilege => 'use-client-certificates');

Step 3: Assign the Access Control List to the Wallet

In this step, you assign this access control list to the wallet you created earlier. Afterward, you can check your settings by querying the DBA_WALLET_ACLS data dictionary view.

For example:

BEGIN
...
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL (
 acl => 'file_name.xml',
 wallet_path => 'file:path_to_directory_containing_wallet');
END;

In this specification:

	
acl: Enter the name that you created for this wallet in Step 2: Create an Access Control List that Grants the Wallet Privileges, in the previous section. For example:

acl => 'hr_access_wallet_acl.xml',

	
wallet_path: Enter the path to the directory that contains the wallet. When you specify the wallet path, you must use an absolute path and include file: before this directory path. Do not use environment variables, such as $ORACLE_HOME, nor insert a space after file: and before the path name. For example:

wallet_path => 'file:/oracle/wallets/hr_access_access'

Step 4: Make the HTTP Request with the Passwords and Client Certificates

In this step, you use the UTL_HTTP PL/SQL package to create a request context object that is used privately with the HTTP request and its response. For detailed information about the UTL_HTTP package, see Oracle Database PL/SQL Packages and Types Reference.

For example:

DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;
BEGIN
 req_context := UTL_HTTP.CREATE_REQUEST_CONTEXT (
 wallet_path => 'file:path_to_directory_containing_wallet',
 wallet_password => 'wallet_password'|NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'URL_to_application',
 request_context => 'request_context'|NULL);
 ...
END;

In this specification:

	
req_context: Use the UTL_HTTP.CREATE_REQUEST_CONTEXT_KEY datatype to create the request context object. This object stores a randomly-generated numeric key that Oracle Database uses to identify the request context. The UTL_HTTP.CREATE_REQUEST_CONTEXT function creates the request context itself.

	
req: Use the UTL_HTTP.REQ datatype to create the object that will be used to begin the HTTP request. You will refer to this object later on, when you set the user name and password from the wallet to access a password-protected Web page.

	
wallet_path: Enter the path to the directory that contains the wallet. Ensure that this path is the same path you specified when you created access control list in Step 3: Assign the Access Control List to the Wallet in the previous section.You must include file: before the directory path. Do not use environment variables, such as $ORACLE_HOME.

For example:

wallet_path => 'file:/oracle/wallets/hr_access_access',

	
wallet_password: Enter the password used to open the wallet. The default is NULL, which is used for auto-login wallets. For example:

wallet_password => NULL);

	
url: Enter the URL to the application that uses the wallet.

For example:

url => 'www.hr_access.example.com',

	
request_context: Enter the name of the request context object that you created earlier in this section. This object prevents the wallet from being shared with other applications in the same database session.

For example:

request_context => req_context);

Using a Request Context to Hold the Wallet When Sharing the Session with Other Applications

You should use a request context to hold the wallet when the database session is shared with other applications. If your application has exclusive use of the database session, you can hold the wallet in the database session by using the SET_WALLET procedure instead.

For example:

DECLARE
 req UTL_HTTP.REQ;
BEGIN
 UTL_HTTP.SET_WALLET(
 path => 'file:path_to_directory_containing_wallet',
 password => 'wallet_password'|NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'URL_to_application');
 ...
END;

If the protected URL being requested requires the user name and password to authenticate, then use the SET_AUTHENTICATION_FROM_WALLET procedure to set the user name and password from the wallet to authenticate.

Using Only a Client Certificate to Authenticate

If the protected URL being requested requires only the client certificate to authenticate, the BEGIN_REQUEST function sends the necessary client certificate from the wallet. assuming the user has been granted the use-client-certificates privilege in the ACL assigned to the wallet. The authentication should succeed at the remote Web server and the user can proceed to retrieve the HTTP response by using the GET_RESPONSE function.

Using the Password to Authenticate

If the protected URL being requested requires the username and password to authenticate, you should use the SET_AUTHENTICATION_FROM_WALLET procedure to set the username and password from the wallet to authenticate.

For example:

DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;
BEGIN
...
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r => HTTP_REQUEST,
 alias => 'alias_to_retrieve_credentials_stored_in_wallet',
 scheme => 'AWS|Basic',
 for_proxy => TRUE|FALSE);
END;

In this specification:

	
r: Enter the HTTP request defined in the UTL_HTTP.BEGIN_REQUEST procedure that you created above, in the previous section. For example:

r => req,

	
alias: Enter the alias used to identify and retrieve the user name and password credential stored in the Oracle wallet. For example, assuming the alias used to identify this user name and password credential is hr_access.

alias => 'hr_access',

	
scheme: Enter one of the following:

	
AWS: Specifies the Amazon Simple Storage Service (S3) scheme. Use this scheme only if you are configuring access to the Amazon.com Web site. (Contact Amazon for more information about this setting.)

	
Basic: Specifies HTTP basic authentication. The default is Basic.

For example:

scheme => 'Basic',

	
for_proxy: Specify whether the HTTP authentication information is for access to the HTTP proxy server instead of the Web server. The default is FALSE.

For example:

for_proxy => TRUE);

The use of the user name and password in the wallet requires the use-passwords privilege to be granted to the user in the ACL assigned to the wallet.

Examples of Creating Access Control Lists

The following examples demonstrate how to create access control lists.

	
Example of an Access Control List for a Single Role and Network Connection

	
Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts

	
Example of an Access Control List for Using Passwords in a Non-Shared Wallet

	
Example of an Access Control List for Wallets in a Shared Database Session

	
See Also:

Oracle Database Vault Administrator's Guide for a tutorial that demonstrates how to use an access control list when an administrator must use the UTL_MAIL PL/SQL package to configure an e-mail alert

Example of an Access Control List for a Single Role and Network Connection

Example 4-19 shows how you would create an access control list called us-example-com-permissions.xml to grant users who have the ACCT_MGR role access to network services that run on the host us.example.com.

Example 4-19 Creating an Access Control List for a Single Role and Network Connection

-- 1. Create the access control list, which includes one role:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'us-example-com-permissions.xml',
 description => 'Network connection permission for ACCT_MGR',
 principal => 'ACCT_MGR', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'connect');
END;
/

-- 2. Assign the access control list a network host:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'us-example-com-permissions.xml',
 host => 'www.us.example.com',
 lower_port => 80,
 upper_port => 80);
END;
/

This example creates the us-example-com-permissions.xml file in the /sys/acls directory, which is the default location. The XML file appears as follows:

<acl description="Network connection permission for ACCT_MGR"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:plsql="http://xmlns.oracle.com/plsql"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd">
 <security-class>plsql:network</security-class>
 <ace>
 <grant>true</grant>
 <principal>ACCT_MGR</principal>
 <privilege><plsql:connect/></privilege>
 </ace>
</acl>

The xmlns and xsi elements are fixed and should not be modified, for example, in a text editor.

You can check the contents of the access control list in SQL*Plus. See Oracle XML DB Developer's Guide for examples.

Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts

Example 4-20 shows how to create a slightly more complex version of the us-example-com-permissions.xml access control list. In this example, you specify multiple role privileges and their precedence position, and assigned to multiple host computers.

See"Specifying a Group of Network Host Computers" and "Precedence Order for a Host Computer in Multiple Access Control List Assignments" for more information about host names. See also "Setting the Precedence of Multiple Users and Roles in One Access Control List" to determine the order of multiple ACE elements in the access control list XML file.

Example 4-20 Creating an Access Control List for Multiple Roles and Network Connections

-- 1. Create the access control list:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'us-example-com-permissions.xml',
 description => 'Network connection permission for ACCT_MGR and ACCT_CLERK',
 principal => 'ACCT_MGR', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'resolve');
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (-- Creates the second role privilege
 acl => 'us-example-com-permissions.xml',
 principal => 'ACCT_CLERK',
 is_grant => TRUE,
 privilege => 'connect',
 position => null);
END;
/

-- 2. Assign the access control list to hosts:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (-- Creates the first target host
 acl => 'us-example-com-permissions.xml',
 host => '*.us.example.com');
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (-- Creates the second target host
 acl => 'us-example-com-permissions.xml',
 host => '*.uk.example.com',
 lower_port => 80,
 upper_port => 99);
END;
/

The us-example-com-permissions.xml appears as follows:

<acl description="Network connection permission for ACCT_MGR and ACCT_CLERK"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:plsql="http://xmlns.oracle.com/plsql"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd http://xmlns.oracle.com/xdb/acl.xsd">
 <security-class>plsql:network</security-class>
 <ace>
 <grant>true</grant>
 <principal>ACCT_MGR</principal>
 <privilege><plsql:resolve/></privilege>
 </ace>
 <ace>
 <grant>true</grant>
 <principal>ACCT_CLERK</principal>
 <privilege><plsql:connect/></privilege>
 </ace>
</acl>

Example 4-21 shows how the DBA_NETWORK_ACL_PRIVILEGES data dictionary view displays the privilege granted in the previous access control list.

Example 4-21 Using the DBA_NETWORK_ACL_PRIVILEGES View to Show Granted Privileges

ACL
ACLID PRINCIPAL PRIVILEGE IS_GRANT INVERT
START_DATE END_DATE
--
-------------------------------- ---------- ------- -------- -------
---------- ----------
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250 ACCT_
MGR resolve true false
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250 ACCT_
CLERK connect true false

Example 4-22 shows how the DBA_NETWORK_ACLS data dictionary view displays the host assignment of the access control list.

Example 4-22 Using the DBA_NETWORK_ACLS View to Show Host Assignments

HOST LOWER_PORT UPPER_PORT
ACL
ACLID
-------------------- ---------- ----------
--

*.us.example.com
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250
*.uk.example.com 80 99
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250

In these examples, the ACCT_MGR role has the resolve privilege to the first host, and the ACCT_CLERK role has the connect privilege to the first and second target hosts. The ACCT_MGR role does not have the resolve privilege to the second host because a port range is specified in the assignment to the second host.

To check the contents of the access control list in SQL*Plus, see Oracle XML DB Developer's Guide for examples.

Example of an Access Control List for Using Passwords in a Non-Shared Wallet

Example 4-23 configures wallet access for two Human Resources department roles, hr_clerk and hr_manager. These roles use the use-passwords privilege to access passwords stored in the wallet. In this example, the wallet will not be shared with other applications within the same database session.

Example 4-23 Configuring ACL Access Using Passwords in a Non-Shared Wallet

/* 1. At a command prompt, create the wallet. The following example uses the
 user name hr_access as the alias to identify the user name and password
 stored in the wallet. You must use this alias name when you call the
 SET_AUTHENTICATION_FROM_WALLET procedure later on. */
$ mkstore -wrl $ORACLE_HOME/wallets/hr_access_access -create
Enter password: password
Enter password again: password
$ mkstore -wrl $ORACLE_HOME/wallets/hr_access_access -createCredential hr_access hr_usr
Your secret/Password is missing in the command line
Enter your secret/Password: password
Re-enter your secret/Password: password
Enter wallet password: password

/* 2. In SQL*Plus, create an access control list to grant privileges for the
 wallet. The following example grants the use-passwords privilege to the
 hr_clerk and hr_manager roles, and then it assigns this ACL to the wallet.*/
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'hr_access_wallet_acl.xml',
 description => 'Wallet ACL for hr_access application',
 principal => 'HR_CLERK', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'use-passwords');

 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'hr_access_wallet_acl.xml',
 principal => 'HR_MANAGER',
 is_grant => TRUE,
 privilege => 'use-passwords');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL(
 acl => 'hr_access_wallet_acl.xml',
 wallet_path => 'file:/oracle/wallets/hr_access_access');
END;
/
COMMIT;

/* 3. Create a request context and request object, and then set the
 authentication for the wallet. */
DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;

BEGIN
 req_context := UTL_HTTP.CREATE_REQUEST_CONTEXT(
 wallet_path => 'file:/oracle/wallets/hr_access_access',
 wallet_password => NULL,
 enable_cookies => TRUE,
 max_cookies => 300,
 max_cookies_per_site => 20);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'www.hr_access.example.com',
 request_context => req_context);
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r => req,
 alias => 'hr_access'),
 scheme => 'Basic',
 for_proxy => FALSE);
END;
/

Example of an Access Control List for Wallets in a Shared Database Session

Example 4-24 is almost the same as Example 4-23, except that it configures the wallet to be used for a shared database session; that is, all applications within the current database session will have access to this wallet.

Example 4-24 Configuring ACL Access for a Wallet in a Shared Database Session

/* Follow these steps:
 1. Use Oracle Wallet Manager to create the wallet and add the client
 certificate. See Oracle Database Advanced Security Administrator's Guide
 for detailed information about using Oracle Wallet Manager.

 2. In SQL*Plus, create an access control list to grant privileges for the
 wallet. The following example grants the use-client-certificates privilege
 to the hr_clerk and hr_manager roles, then it assigns this ACL to the
 wallet. */
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'hr_access_wallet_acl.xml',
 description => 'Wallet ACL for hr_access application',
 principal => 'HR_CLERK', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'use-client-certificates');

 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'hr_access_wallet_acl.xml',
 principal => 'HR_MANAGER',
 is_grant => TRUE,
 privilege => 'use-client-certificates');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL(
 acl => 'hr_access_wallet_acl.xml',
 wallet_path => 'file:/oracle/wallets/hr_access_access');
END;
/
COMMIT;

/* 3. Create a request object to handle the HTTP authentication for the wallet.*/
DECLARE
 req UTL_HTTP.req;
BEGIN
 UTL_HTTP.SET_WALLET(
 path => 'file: $ORACLE_HOME/wallets/hr_access_access',
 password => NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'www.hr_access.example.com',
 method => 'POST',
 http_version => NULL,
 request_context => NULL);
END;
/

Specifying a Group of Network Host Computers

If you want to assign an access control list to a group of network host computers, you can use the asterisk (*) wildcard character. For example, enter *.example.com for host computers that belong to a domain or 192.0.2.* for IPv4 addresses that belong to an IP subnet. The asterisk wildcard must be at the beginning, before a period (.) in a domain, or at the end, after a period (.), in an IP subnet. For example, *.example.com is valid, but *example.com and *.example.* are not. Be aware that the use of wildcard characters affects the order of precedence for multiple access control lists that are assigned to the same host computer. You cannot use wildcard characters for IPv6 addresses.

The Classless Inter-Domain Routing (CIDR) notation defines how IPv4 and IPv6 addresses are categorized for routing IP packets on the internet. The DBMS_NETWORK_ACL_ADMIN package supports CIDR notation for both IPv4 and IPv6 addresses. This package considers an IPv4-mapped IPv6 address or subnet equivalent to the IPv4-native address or subnet it represents. For example, ::ffff:192.0.2.1 is equivalent to 192.0.2.1, and ::ffff:192.0.2.1/120 is equivalent to 192.0.2.*.

Precedence Order for a Host Computer in Multiple Access Control List Assignments

For multiple access control lists that are assigned to the host computer and its domains, the access control list that is assigned to the host computer takes precedence over those assigned to the domains. The access control list assigned to a domain has a lower precedence than those assigned to the subdomains.

For example, Oracle Database first selects the access control list assigned to the host server.us.example.com, ahead of other access control lists assigned to its domains. If additional access control lists were assigned to the sub domains, their order of precedence is as follows:

	
server.us.example.com

	
*.us.example.com

	
*.example.com

	
*.com

	
*

Similarly, for multiple access control lists that are assigned to the IP address (both IPv4 and IPv6) and the subnets it belongs to, the access control list that is assigned to the IP address takes precedence over those assigned to the subnets. The access control list assigned to a subnet has a lower precedence than those assigned to the smaller subnets it contains.

For example, Oracle Database first selects the access control list assigned to the IP address 192.0.2.3, ahead of other access control lists assigned to the subnets it belongs to. If additional access control lists were assigned to the subnets, their order of precedence is as follows:

	
192.0.2.3 (or ::ffff:192.0.2.3)

	
192.0.2.3/31 (or ::ffff:192.0.2.3/127)

	
192.0.2.3/30 (or ::ffff:192.0.2.3/126)

	
192.0.2.3/29 (or ::ffff:192.0.2.3/125)

	
...

	
192.0.2.3/24 (or ::ffff:192.0.2.3/120 or 192.0.2.*)

	
...

	
192.0.2.3/16 (or ::ffff:192.0.2.3/112 or 192.0.*)

	
...

	
192.0.2.3/8 (or ::ffff:192.0.2.3/104 or 192.*)

	
...

	
::ffff:192.0.2.3/95

	
::ffff:192.0.2.3/94

	
...

	
*

Precedence Order for a Host in Access Control List Assignments with Port Ranges

When an access control list is assigned to a host computer, a domain, or an IP subnet with a port range, it takes precedence over the access control list assigned to the same host, domain, or IP subnet without a port range.

For example, for TCP connections to any port between port 80 and 99 at server.us.example.com, Oracle Database first selects the access control list assigned to port 80 through 99 at server.us.example.com, ahead of the other access control list assigned to server.us.example.com that is without a port range.

Checking Privilege Assignments That Affect User Access to a Network Host

Database administrators can use the DBA_NETWORK_ACL_PRIVILEGES data dictionary view to query network privileges that have been granted to or denied from database users and roles in the access control lists, and whether those privileges take effect during certain times only. Using the information provided by the view, you may need to combine the data to determine if a user is granted the privilege at the current time, the roles the user has, the order of the access control entries, and so on. To simplify this privilege evaluation, you can use the following DBMS_NETWORK_ACL_ADMIN functions to check the privilege granted to a user in an access control list:

	
CHECK_PRIVILEGE: Checks if the specified privilege is granted to or denied from the specified user in an access control list. This procedure identifies the access control list by its path in the XML DB Repository. Use CHECK_PRIVILEGE if you want to evaluate a single access control list with a known path.

	
CHECK_PRIVILEGE_ACLID: Similar to the CHECK_PRIVILEGE procedure, except that it enables you to specify the object ID of the access control list. Use CHECK_PRIVILEGE_ACLID if you need to evaluate multiple access control lists, when you query the DBA_NETWORK_ACLS data dictionary view. For better performance, call CHECK_PRIVILEGE_ACLID on multiple access control lists rather than using CHECK_PRIVILEGE on each one individually.

Users without database administrator privileges do not have the privilege to access the access control lists or to invoke those DBMS_NETWORK_ACL_ADMIN functions. However, they can query the USER_NETWORK_ACL_PRIVILEGES data dictionary view to check their privileges instead.

Database administrators and users can use the following DBMS_NETWORK_ACL_UTILITY functions to determine if two hosts, domains, or subnets are equivalent, or if a host, domain, or subnet is equal to or contained in another host, domain, or subnet:

	
EQUALS_HOST: Returns a value to indicate if two hosts, domains, or subnets are equivalent

	
CONTAINS_HOST: Returns a value to indicate if a host, domain, or subnet is equal to or contained in another host, domain, or subnet, and the relative order of precedence of the containing domain or subnet for its ACL assignments

If you do not use IPv6 addresses, database administrators and users can use the following DBMS_NETWORK_ACL_UTILITY functions to generate the list of domains or IPv4 subnet a host belongs to and to sort the access control lists by their order of precedence according to their host assignments:

	
DOMAINS: Returns a list of the domains or IP subnets whose access control lists may affect permissions to a specified network host, subdomain, or IP subnet

	
DOMAIN_LEVEL: Returns the domain level of a given host

The following sections explain how database administrators and users can check permissions for the user to connect to a network host or to perform domain name resolutions:

	
How a DBA Can Check User Network Connection and Domain Privileges

	
How Users Can Check Their Network Connection and Domain Privileges

How a DBA Can Check User Network Connection and Domain Privileges

A database administrator can query the DBA_NETWORK_ACLS view to determine which access control lists are present for a specified host computer. This view shows the access control lists that determine the access to the network connection or domain, and then determines if each access control list grants (GRANTED), denies (DENIED), or does not apply (NULL) to the access privilege of the user. Only the database administrator can query this view.

The following sections provide examples that demonstrate how the database administrator can check user privileges for network connections and domain name resolution.

	
Database Administrator Checking User Connection Privileges

	
Database Administrator Checking User Privileges for Domain Name Resolution

Database Administrator Checking User Connection Privileges

Example 4-25 shows how a database administrator can check the privileges for user preston to connect to www.us.example.com. Remember that the user name you enter for the user parameter in the CHECK_PRIVILEGE_ACLID procedure is case sensitive. In this example, entering the user name preston is correct, but entering Preston or preston is incorrect.

You can find the users in the current database instance by querying the DBA_USERS data dictionary view, for example:

SELECT USERNAME FROM DBA_USERS;

Example 4-25 Administrator Checking User Permissions for Network Host Connections

SELECT HOST, LOWER_PORT, UPPER_PORT, ACL,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(ACLID, 'PRESTON',
 'connect'),
 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
 FROM (SELECT HOST, LOWER_PORT, UPPER_PORT, ACL, ACLID,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM DBA_NETWORK_ACLS)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC,
 LOWER_PORT NULLS LAST,
 UPPER_PORT NULLS LAST;

 HOST LOWER_PORT UPPER_PORT ACL PRIVILEGE
 -------------------- ---------- ---------- -------------------- ---------
 www.us.example.com 80 80 /sys/acls/www.xml GRANTED
 www.us.example.com 3000 3999 /sys/acls/www.xml GRANTED
 www.us.example.com /sys/acls/www.xml GRANTED
 *.example.com /sys/acls/all.xml
 * /sys/acls/all.xml

In this example, user preston was granted privileges for all the network host connections found for www.us.example.com. However, suppose preston had been granted access to a host connection on port 80, but then denied access to the host connections on ports 3000–3999. In this case, you need to create one access control list for the host connection on port 80, and a separate access control list for the host connection on ports 3000–3999.

Database Administrator Checking User Privileges for Domain Name Resolution

Example 4-26 shows how a database administrator can check the privileges of user preston to perform domain name resolution for the host www.us.example.com. In this example, only the access control lists assigned to hosts without a port range because the resolve privilege has no effect to those with a port range. (Remember that the user name you enter for the user parameter in CHECK_PRIVILEGE_ACLID is case sensitive.)

Example 4-26 Administrator Checking Permissions for Domain Name Resolution

SELECT HOST, ACL,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(ACLID, 'PRESTON',
 'resolve'),
 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
 FROM (SELECT HOST, LOWER_PORT, UPPER_PORT, ACL, ACLID,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM DBA_NETWORK_ACLS
 WHERE LOWER_PORT IS NULL AND UPPER_PORT IS NULL)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC;

 HOST ACL PRIVILEGE
 -------------------- -------------------- ---------

 www.us.example.com /sys/acls/www.xml GRANTED
 *.example.com /sys/acls/all.xml
 * /sys/acls/all.xml

How Users Can Check Their Network Connection and Domain Privileges

Users can query the USER_NETWORK_ACL_PRIVILEGES view to check their network and domain permissions. The USER_NETWORK_ACL_PRIVILEGES view is PUBLIC, so all users can select from it.

This view hides the access control lists from the user. It evaluates the permission status for the user (GRANTED or DENIED) and filters out the NULL case because the user does not need to know when the access control lists do not apply to him or her. In other words, Oracle Database only shows the user on the network hosts that explicitly grant or deny access to him or her. Therefore, the output does not display the *.example.com and * that appear in the output from the database administrator-specific DBA_NETWORK_ACLS view.

The following sections provide examples that demonstrate how a database administrator can check user permissions for network connections and domain name resolution.

	
User Checking His or Her Network Connection Privileges

	
User Checking Own Privileges for Domain Name Resolution

User Checking His or Her Network Connection Privileges

Example 4-27 shows how user preston can check her privileges to connect to www.us.example.com.

Example 4-27 User Checking Permissions for Network Host Connections

SELECT HOST, LOWER_PORT, UPPER_PORT, STATUS PRIVILEGE
 FROM (SELECT HOST, LOWER_PORT, UPPER_PORT, STATUS,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM USER_NETWORK_ACL_PRIVILEGES
 WHERE PRIVILEGE = 'connect')
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC,
 LOWER_PORT NULLS LAST,
 UPPER_PORT NULLS LAST;

 HOST LOWER_PORT UPPER_PORT ACL PRIVILEGE
 -------------------- ---------- ---------- -------------------- ---------
 www.us.example.com 80 80 /sys/acls/www.xml GRANTED
 www.us.example.com 3000 3999 /sys/acls/www.xml GRANTED
 www.us.example.com /sys/acls/www.xml GRANTED

User Checking Own Privileges for Domain Name Resolution

Example 4-26 shows how the user preston can check her privileges to perform domain name resolution for www.us.example.com:

Example 4-28 User Checking Privileges for Domain Name Resolution

SELECT HOST, STATUS PRIVILEGE
 from (SELECT HOST, STATUS,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM USER_NETWORK_ACL_PRIVILEGES
 WHERE PRIVILEGE = 'resolve' AND
 LOWER_PORT IS NULL AND UPPER_PORT IS NULL)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC;

 HOST PRIVILEGE
 -------------------- ---------
 www.us.example.com GRANTED

Setting the Precedence of Multiple Users and Roles in One Access Control List

By default, Oracle Database grants or denies privileges to users and roles based on their physical position in the access control list. The first user or role listed is granted or denied privileges first, followed the second user or role, and so on. For instance, suppose the code in Example 4-20 defined one role, ACCT_MGR, and two users, sebastian and preston, and the access control list XML file ordered these three as follows:

<acl ...>
 ...
 <ace>
 <principal>ACCT_MGR</principal>
 <grant>true</grant>
 <privilege><plsql:connect/></privilege>
 </ace>
 <ace>
 <principal>SEBASTIAN</principal>
 <grant>false</grant>
 <privilege><plsql:connect/></privilege>
 </ace>
 <ace>
 <principal>PRESTON</principal>
 <grant>false</grant>
 <privilege><plsql:connect/></privilege>
 </ace>
</acl>

ACCT_MGR is granted permissions first, followed by permission denials for sebastian and then preston. However, if sebastian and preston have been granted the ACCT_MGR role, they still could log in, because the ACCT_MGR role appears first in the list.

Even though these two users were granted the acct_mgr role, their specific jobs do not require them to have access to the www.example.com host. If the positions were reversed—the acct_mgr role listed after sebastian and preston—they would be denied the privilege of connecting to the network. To set the order of precedence of the ACE elements irrespective of their physical location in the CREATE_ACL and ADD_PRIVILEGE statements, you can use the position attribute.

For example, the following statements set the ACE elements in the resultant XML file in this order:

	
The ACE element for sebastian appears first.

	
The ACE element for preston appears second.

	
The acct_mgr role appears last.

In this case, neither of these users will be able to connect, because their grant privileges, which are set to FALSE, are evaluated before the acct_mgr role.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'us-example-com-permissions.xml',
 description => 'Network connection permission for ACCT_MGR and users',
 principal => 'ACCT_MGR',
 is_grant => TRUE,
 privilege => 'connect');
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'us-example-com-permissions.xml',
 principal => 'SEBASTIAN',
 is_grant => FALSE,
 privilege => 'connect',
 position => 1);
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'us-example-com-permissions.xml',
 principal => 'PRESTON',
 is_grant => FALSE,
 privilege => 'connect',
 position => 2);
END;
/

Finding Information About Access Control Lists Configured for User Access

Table 4-6 lists data dictionary views that you can use to find information about existing access control lists. See Oracle Database Reference for more information about these views.

Table 4-6 Data Dictionary Views That Display Information about Access Control Lists

	View	Description
	
DBA_NETWORK_ACLS

	
Shows the access control list assignments to the network hosts. The SELECT privilege on this view is granted to the SELECT_CATALOG_ROLE role only.

	
DBA_NETWORK_ACL_PRIVILEGES

	
Shows the network privileges defined in all access control lists that are currently assigned to network hosts. The SELECT privilege on this view is granted to the SELECT_CATALOG_ROLE role only.

	
DBA_WALLET_ACLS

	
Lists wallets that have been assigned access control lists.

	
USER_NETWORK_ACL_PRIVILEGES

	
Shows the status of the network privileges for the current user to access network hosts. The SELECT privilege on the view is granted to PUBLIC.

Finding Information About User Privileges and Roles

Table 4-7 lists data dictionary views that you can query to access information about grants of privileges and roles. See Oracle Database Reference for detailed information about these views.

Table 4-7 Data Dictionary Views That Display Information about Privileges and Roles

	View	Description
	
ALL_COL_PRIVS

	
Describes all column object grants for which the current user or PUBLIC is the object owner, grantor, or grantee

	
ALL_COL_PRIVS_MADE

	
Lists column object grants for which the current user is object owner or grantor.

	
ALL_COL_PRIVS_RECD

	
Describes column object grants for which the current user or PUBLIC is the grantee

	
ALL_TAB_PRIVS

	
Lists the grants on objects where the user or PUBLIC is the grantee

	
ALL_TAB_PRIVS_MADE

	
Lists the all object grants made by the current user or made on the objects owned by the current user.

	
ALL_TAB_PRIVS_RECD

	
Lists object grants for which the user or PUBLIC is the grantee

	
DBA_COL_PRIVS

	
Describes all column object grants in the database

	
DBA_EPG_DAD_AUTHORIZATION

	
Describes the database access descriptors (DAD) that are authorized to use a different user's privileges.

	
DBA_TAB_PRIVS

	
Lists all grants on all objects in the database

	
DBA_ROLES

	
Lists all roles that exist in the database, including secure application roles

	
DBA_ROLE_PRIVS

	
Lists roles directly granted to users and roles

	
DBA_SYS_PRIVS

	
Lists system privileges granted to users and roles

	
ROLE_ROLE_PRIVS

	
Lists roles granted to other roles. Information is provided only about roles to which the user has access.

	
ROLE_SYS_PRIVS

	
Lists system privileges granted to roles. Information is provided only about roles to which the user has access.

	
ROLE_TAB_PRIVS

	
Lists object privileges granted to roles. Information is provided only about roles to which the user has access.

	
USER_COL_PRIVS

	
Describes column object grants for which the current user is the object owner, grantor, or grantee

	
USER_COL_PRIVS_MADE

	
Describes column object grants for which the current user is the grantor

	
USER_COL_PRIVS_RECD

	
Describes column object grants for which the current user is the grantee

	
USER_EPG_DAD_AUTHORIZATION

	
Describes the database access descriptors (DAD) that are authorized to use a different user's privileges.

	
USER_ROLE_PRIVS

	
Lists roles directly granted to the current user

	
USER_TAB_PRIVS

	
Lists grants on all objects where the current user is the grantee

	
USER_SYS_PRIVS

	
Lists system privileges granted to the current user

	
USER_TAB_PRIVS_MADE

	
Lists grants on all objects owned by the current user

	
USER_TAB_PRIVS_RECD

	
Lists object grants for which the current user is the grantee

	
SESSION_PRIVS

	
Lists the privileges that are currently enabled for the user

	
SESSION_ROLES

	
Lists the roles that are currently enabled to the user

This section provides some examples of using these views. For these examples, assume the following statements were issued:

CREATE ROLE security_admin IDENTIFIED BY password;

GRANT CREATE PROFILE, ALTER PROFILE, DROP PROFILE,
 CREATE ROLE, DROP ANY ROLE, GRANT ANY ROLE, AUDIT ANY,
 AUDIT SYSTEM, CREATE USER, BECOME USER, ALTER USER, DROP USER
 TO security_admin WITH ADMIN OPTION;

GRANT SELECT, DELETE ON SYS.AUD$ TO security_admin;

GRANT security_admin, CREATE SESSION TO swilliams;

GRANT security_admin TO system_administrator;

GRANT CREATE SESSION TO jward;

GRANT SELECT, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;

	
See Also:

Oracle Database Reference for a detailed description of these data dictionary views

Listing All System Privilege Grants

The following query returns all system privilege grants made to roles and users:

SELECT * FROM DBA_SYS_PRIVS;

GRANTEE PRIVILEGE ADM
-------------- --------------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES
SWILLIAMS CREATE SESSION NO
JWARD CREATE SESSION NO

See Oracle Database Reference for detailed information about the DBA_SYS_PRIVS view.

Listing All Role Grants

The following query returns all the roles granted to users and other roles:

SELECT * FROM DBA_ROLE_PRIVS;

GRANTEE GRANTED_ROLE ADM
------------------ ------------------------------------ ---
SWILLIAMS SECURITY_ADMIN NO

See Oracle Database Reference for detailed information about the DBA_ROLE_PRIVS view.

Listing Object Privileges Granted to a User

The following query returns all object privileges (not including column-specific privileges) granted to the specified user:

SELECT TABLE_NAME, PRIVILEGE, GRANTABLE FROM DBA_TAB_PRIVS
 WHERE GRANTEE = 'jward';

TABLE_NAME PRIVILEGE GRANTABLE
----------- ------------ ----------
EMP SELECT NO
EMP DELETE NO

To list all the column-specific privileges that have been granted, use the following query:

SELECT GRANTEE, TABLE_NAME, COLUMN_NAME, PRIVILEGE
 FROM DBA_COL_PRIVS;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
----------- ------------ ------------- --------------
SWILLIAMS EMP ENAME INSERT
SWILLIAMS EMP JOB INSERT
JWARD EMP NAME INSERT
JWARD EMP JOB INSERT

See Oracle Database Reference for detailed information about the DBA_TAB_PRIVS view.

Listing the Current Privilege Domain of Your Session

The following query lists all roles currently enabled for the issuer:

SELECT * FROM SESSION_ROLES;

If user swilliams has the security_admin role enabled and issues the previous query, then Oracle Database returns the following information:

ROLE

SECURITY_ADMIN

The following query lists all system privileges currently available in the security domain of the issuer, both from explicit privilege grants and from enabled roles:

SELECT * FROM SESSION_PRIVS;

If user swilliams has the security_admin role enabled and issues the previous query, then Oracle Database returns the following results:

PRIVILEGE
--
AUDIT SYSTEM
CREATE SESSION
CREATE USER
BECOME USER
ALTER USER
DROP USER
CREATE ROLE
DROP ANY ROLE
GRANT ANY ROLE
AUDIT ANY
CREATE PROFILE
ALTER PROFILE
DROP PROFILE

If the security_admin role is disabled for user swilliams, then the first query would return no rows, while the second query would only return a row for the CREATE SESSION privilege grant.

See Oracle Database Reference for detailed information about the SESSION_ROLES view.

Listing Roles of the Database

You can use the DBA_ROLES data dictionary view to list all roles of a database and the authentication used for each role. For example, the following query lists all the roles in the database:

SELECT * FROM DBA_ROLES;

ROLE PASSWORD
---------------- --------
CONNECT NO
RESOURCE NO
DBA NO
SECURITY_ADMIN YES

See Oracle Database Reference for detailed information about the DBA_ROLES view.

Listing Information About the Privilege Domains of Roles

The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data dictionary views contain information about the privilege domains of roles. For example, the following query lists all the roles granted to the system_admin role:

SELECT GRANTED_ROLE, ADMIN_OPTION
 FROM ROLE_ROLE_PRIVS
 WHERE ROLE = 'SYSTEM_ADMIN';

GRANTED_ROLE ADM
---------------- ----
SECURITY_ADMIN NO

The following query lists all the system privileges granted to the security_admin role:

SELECT * FROM ROLE_SYS_PRIVS WHERE ROLE = 'SECURITY_ADMIN';

ROLE PRIVILEGE ADM
----------------------- ----------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the security_admin role:

SELECT TABLE_NAME, PRIVILEGE FROM ROLE_TAB_PRIVS
 WHERE ROLE = 'SECURITY_ADMIN';

TABLE_NAME PRIVILEGE
--------------------------- ----------------
AUD$ DELETE
AUD$ SELECT

See Oracle Database Reference for detailed information about the ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS views.

1 Introducing Oracle Database Security

This chapter contains:

	
About Oracle Database Security

	
Additional Database Security Resources

About Oracle Database Security

You can use the default Oracle Database features to configure security in the following areas for your Oracle Database installation:

	
User accounts. When you create user accounts, you can secure them in a variety of ways. You can also create password profiles to better secure password policies for your site. Chapter 2, "Managing Security for Oracle Database Users," describes how to manage user accounts.

	
Authentication methods. Oracle Database provides several ways to configure authentication for users and database administrators. For example, you can authenticate users on the database level, from the operating system, and on the network. Chapter 3, "Configuring Authentication," describes how authentication in Oracle Database works.

	
Privileges and roles. You can use privileges and roles to restrict user access to data. Chapter 4, "Configuring Privilege and Role Authorization," describes how to create and manage user privileges and roles.

	
Application security. The first step to creating a database application is to ensure that it is properly secure. Chapter 5, "Managing Security for Application Developers," discusses how to incorporate application security into your application security policies.

	
User session information using application context. An application context is a name-value pair that holds the session information. You can retrieve session information about a user, such as the user name or terminal, and restrict database and application access for that user based on this information. Chapter 6, "Using Application Contexts to Retrieve User Information," describes how to use application context.

	
Database access on the row and column level using Virtual Private Database. A Virtual Private Database policy dynamically imbeds a WHERE predicate into SQL statements the user issues. Chapter 7, "Using Oracle Virtual Private Database to Control Data Access," describes how to create and manage Virtual Private Database policies.

	
Encryption. You can disguise data on the network to prevent unauthorized access to that data. Chapter 8, "Developing Applications Using the Data Encryption API," explains how to use the DBMS_CRYPTO and DBMS_SQLHASH PL/SQL packages to encrypt data.

	
Auditing database activities. You can audit database activities in general terms, such as auditing all SQL statements, SQL privileges, schema objects, and network activity. Or, you can audit in a granular manner, such as when the IP addresses from outside the corporate network is being used. This chapter also explains how to purge the database audit trail. Chapter 9, "Verifying Security Access with Auditing," describes how to enable and configure database auditing.

In addition, Chapter 10, "Keeping Your Oracle Database Secure," provides guidelines that you should follow when you secure your Oracle Database installation.

Additional Database Security Resources

In addition to the security resources described in this guide, Oracle Database provides the following database security products:

	
Advanced security features. See Oracle Database Advanced Security Administrator's Guide for information about advanced features such as transparent data encryption, wallet management, network encryption, and the RADIUS, Kerberos, Secure Sockets Layer authentication.

	
Oracle Label Security. Oracle Label Security secures database tables at the row level, allowing you to filter user access to row data based on privileges. See Oracle Label Security Administrator's Guide for detailed information about Oracle Label Security.

	
Oracle Database Vault. Oracle Database Vault provides fine-grained access control to your sensitive data, including protecting data from privileged users. Oracle Database Vault Administrator's Guide describes how to use Oracle Database Vault.

	
Oracle Audit Vault. Oracle Audit Vault collects database audit data from sources such as Oracle Database audit trail tables, database operating system audit files, and database redo logs. Using Oracle Audit Vault, you can create alerts on suspicious activities, and create reports on the history of privileged user changes, schema modifications, and even data-level access. Oracle Audit Vault Administrator's Guide explains how to administer Oracle Audit Vault.

	
Oracle Enterprise User Security. Oracle Enterprise User Security enables you to manage user security at the enterprise level. Oracle Database Enterprise User Security Administrator's Guide explains how to configure Oracle Enterprise User Security.

In addition to these products, you can find the latest information about Oracle Database security, such as new products and important information about security patches and alerts, by visiting the Security Technology Center on Oracle Technology Network at

http://www.oracle.com/technology/deploy/security/index.html

[image: Oracle Corporation]

2 Managing Security for Oracle Database Users

This chapter contains:

	
About User Security

	
Creating User Accounts

	
Altering User Accounts

	
Configuring User Resource Limits

	
Deleting User Accounts

	
Finding Information About Database Users and Profiles

About User Security

Each Oracle database has a list of valid database users. To access a database, a user must run a database application, and connect to the database instance using a valid user name defined in the database. Oracle Database enables you to set up security for your users in a variety of ways. When you create user accounts, you can specify limits to the user account. You can also set limits on the amount of various system resources available to each user as part of the security domain of that user. Oracle Database provides a set of database views that you can query to find information such as resource and session information. This chapter also describes profiles. A profile is collection of attributes that apply to a user. It enables a single point of reference for any of multiple users that share those exact attributes.

Another way to manage user security is to assign users privileges and roles. Chapter 4, "Configuring Privilege and Role Authorization," provides detailed information.

Creating User Accounts

This section contains:

	
Creating a New User Account

	
Specifying a User Name

	
Assigning the User a Password

	
Assigning a Default Tablespace for the User

	
Assigning a Tablespace Quota for the User

	
Assigning a Temporary Tablespace for the User

	
Specifying a Profile for the User

	
Setting a Default Role for the User

For guidelines about creating and managing user accounts and passwords, see the following sections:

	
"Guidelines for Securing User Accounts and Privileges"

	
"Guidelines for Securing Passwords"

Creating a New User Account

You create a database user with the CREATE USER statement. To create a user, you must have the CREATE USER system privilege. Because it is a powerful privilege, a database administrator or security administrator is usually the only user who has the CREATE USER system privilege.

Example 2-1 creates a user and specifies the user password, default tablespace, temporary tablespace where temporary segments are created, tablespace quotas, and profile. It also grants the user the minimum privilege, CREATE SESSION, to log in to the database session.

Example 2-1 Creating a User Account with the CREATE SESSION Privilege

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;
GRANT CREATE SESSION TO jward;

Replace password with a password that is secure. See "Minimum Requirements for Passwords" for more information.

A newly created user cannot connect to the database until you grant the user the CREATE SESSION system privileges. So, immediately after you create the user account, use the GRANT SQL statement to grant the user these privileges. If the user must access Oracle Enterprise Manager, you should also grant the user the SELECT ANY DICTIONARY privilege.

	
Note:

As a security administrator, you should create your own roles and assign only those privileges that are needed. For example, many users formerly granted the CONNECT privilege did not need the additional privileges CONNECT used to provide. Instead, only CREATE SESSION was actually needed, and in fact, that is the only privilege CONNECT presently retains.
Creating organization-specific roles gives an organization detailed control of the privileges it assigns, and protects it in case Oracle Database changes the roles that it defines in future releases. For example, both CONNECT and RESOURCE roles will be deprecated in future Oracle Database releases. Chapter 4, "Configuring Privilege and Role Authorization," discusses how to create and manage roles.

Specifying a User Name

Within each database, a user name must be unique with respect to other user names and roles. A user and role cannot have the same name. Furthermore, each user has an associated schema. Within a schema, each schema object must have a unique name. In the following, the text in bold shows how to create the user name.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Assigning the User a Password

In Example 2-1, the new user is to be authenticated using the database. In this case, the connecting user must supply the correct password to the database to connect successfully. To specify a password for the user, use the IDENTIFIED BY clause in the CREATE USER statement.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

	
See Also:

	
"Minimum Requirements for Passwords" for the minimum requirements for creating passwords

	
"Guidelines for Securing Passwords" for additional ways to secure passwords

	
Chapter 3, "Configuring Authentication," for information about authentication methods that are available for Oracle Database users

Assigning a Default Tablespace for the User

Each user should have a default tablespace. When a schema object is created in the user's schema and the DDL statement does not specify a tablespace to contain the object, Oracle Database stores the object in the default user's tablespace.

The default setting for the default tablespaces of all users is the SYSTEM tablespace. If a user does not create objects, and has no privileges to do so, then this default setting is fine. However, if a user is likely to create any type of object, then you should specifically assign the user a default tablespace, such as the USERS tablespace. Using a tablespace other than SYSTEM reduces contention between data dictionary objects and user objects for the same data files. In general, do not store user data in the SYSTEM tablespace.

You can use the CREATE TABLESPACE SQL statement to create a permanent default tablespace other than SYSTEM at the time of database creation, to be used as the database default for permanent objects. By separating the user data from the system data, you reduce the likelihood of problems with the SYSTEM tablespace, which can in some circumstances cause the entire database to become nonfunctional. This default permanent tablespace is not used by system users, that is, SYS, SYSTEM, and OUTLN, whose default permanent tablespace is SYSTEM. A tablespace designated as the default permanent tablespace cannot be dropped. To accomplish this goal, you must first designate another tablespace as the default permanent tablespace. You can use the ALTER TABLESPACE SQL statement to alter the default permanent tablespace to another tablespace. Be aware that this will affect all users or objects created after the ALTER DDL statement commits.

You can also set a user default tablespace during user creation, and change it later with the ALTER USER statement. Changing the user default tablespace affects only objects created after the setting is changed.

When you specify the default tablespace for a user, also specify a quota on that tablespace.

In the following CREATE USER statement, the default tablespace for user jward is data_ts, and his quota on that tablespace is 500K:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Assigning a Tablespace Quota for the User

You can assign each user a tablespace quota for any tablespace (except a temporary tablespace). Assigning a quota accomplishes the following:

	
Users with privileges to create certain types of objects can create those objects in the specified tablespace.

	
Oracle Database limits the amount of space that can be allocated for storage of a user's objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the privilege to create a schema object, then you must assign a quota to allow the user to create objects. At a minimum, assign users a quota for the default tablespace, and additional quotas for other tablespaces in which they can create objects.

The following CREATE USER statement assigns the following quotas for the test_ts and data_ts tablespaces:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

You can assign a user either individual quotas for a specific amount of disk space in each tablespace or an unlimited amount of disk space in all tablespaces. Specific quotas prevent a user's objects from using too much space in the database.

You can assign quotas to a user tablespace when you create the user, or add or change quotas later. (You can find existing user quotas by querying the USER_TS_QUOTAS view.) If a new quota is less than the old one, then the following conditions remain true:

	
If a user has already exceeded a new tablespace quota, then the objects of a user in the tablespace cannot be allocated more space until the combined space of these objects is less than the new quota.

	
If a user has not exceeded a new tablespace quota, or if the space used by the objects of the user in the tablespace falls under a new tablespace quota, then the user's objects can be allocated space up to the new quota.

Restricting the Quota Limits for User Objects in a Tablespace

You can restrict the quota limits for user objects in a tablespace by using the ALTER USER SQL statement to change the current quota of the user to zero. After a quota of zero is assigned, the objects of the user in the tablespace remain, and the user can still create new objects, but the existing objects will not be allocated any new space. For example, you could not insert data into one of this user's exiting tables. The operation will fail with an ORA-1536 space quota exceeded for tables error.

Granting Users the UNLIMITED TABLESPACE System Privilege

To permit a user to use an unlimited amount of any tablespace in the database, grant the user the UNLIMITED TABLESPACE system privilege. This overrides all explicit tablespace quotas for the user. If you later revoke the privilege, then you must explicitly grant quotas to individual tablespaces. You can grant this privilege only to users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, you must consider the consequences of doing so.

Advantage:

You can grant a user unlimited access to all tablespaces of a database with one statement.

Disadvantages:

	
The privilege overrides all explicit tablespace quotas for the user.

	
You cannot selectively revoke tablespace access from a user with the UNLIMITED TABLESPACE privilege. You can grant selective or restricted access only after revoking the privilege.

Assigning a Temporary Tablespace for the User

You should assign each user a temporary tablespace. When a user executes a SQL statement that requires a temporary segment, Oracle Database stores the segment in the temporary tablespace of the user. These temporary segments are created by the system when performing sort or join operations. Temporary segments are owned by SYS, which has resource privileges in all tablespaces.

In the following, the temporary tablespace of jward is temp_ts, a tablespace created explicitly to contain only temporary segments.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

To create a temporary tablespace, use the CREATE TEMPORARY TABLESPACE SQL statement.

If you do not explicitly assign the user a temporary tablespace, then Oracle Database assigns the user the default temporary tablespace that was specified at database creation, or by an ALTER DATABASE statement at a later time. If there is no default temporary tablespace explicitly assigned, then the default is the SYSTEM tablespace or another permanent default established by the system administrator. Do not store user data in the SYSTEM tablespace. Assigning a tablespace to be used specifically as a temporary tablespace eliminates file contention among temporary segments and other types of segments.

	
Note:

If your SYSTEM tablespace is locally managed, then users must be assigned a specific default (locally managed) temporary tablespace. They may not be allowed to default to using the SYSTEM tablespace because temporary objects cannot be placed in locally managed permanent tablespaces.

You can set the temporary tablespace for a user at user creation, and change it later using the ALTER USER statement. If you are logged in as user SYS, you can set a quota for the temporary tablespace, and other space allocations. (Only user SYS can do this, because all space in the temporary tablespace belongs to user SYS.) You can also establish tablespace groups instead of assigning individual temporary tablespaces.

	
See Also:

	
"Temporary Tablespaces" in Oracle Database Administrator's Guide

	
"Multiple Temporary Tablespaces: Using Tablespace Groups" in Oracle Database Administrator's Guide

Specifying a Profile for the User

You can specify a profile when you create a user. A profile is a set of limits on database resources and password access to the database. If you do not specify a profile, then Oracle Database assigns the user a default profile.

The following example demonstrates how to assign a user a profile.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

	
See Also:

"Managing Resources with Profiles"

Setting a Default Role for the User

A role is a named group of related privileges that you grant as a group to users or other roles. A default role is automatically enabled for a user when the user creates a session. You can assign a user zero or more default roles.

You cannot set default roles for a user in the CREATE USER statement. When you first create a user, the default role setting for the user is ALL, which causes all roles subsequently granted to the user to be default roles. Use the ALTER USER statement to change the default roles for the user. For example:

GRANT USER jward clerk_role;

ALTER USER jward DEFAULT ROLE clerk_role;

Before a role can be made the default role for a user, that user must have been already granted the role.

	
See Also:

"Managing User Roles"

Altering User Accounts

Users can change their own passwords. However, to change any other option of a user security domain, you must have the ALTER USER system privilege. Security administrators are typically the only users that have this system privilege, as it allows a modification of any user security domain. This privilege includes the ability to set tablespace quotas for a user on any tablespace in the database, even if the user performing the modification does not have a quota for a specified tablespace.

You can alter user security settings with the ALTER USER SQL statement. Changing user security settings affects the future user sessions, not current sessions.

Example 2-2 shows how to use the ALTER USER statement to alter the security settings for the user avyrros:

Example 2-2 Altering a User Account

ALTER USER avyrros
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON data_ts
 QUOTA 0 ON test_ts
 PROFILE clerk;

The ALTER USER statement here changes the security settings for the user avyrros as follows:

	
Authentication is changed to use the operating system account of the user avyrros.

	
The default and temporary tablespaces are explicitly set for user AVYRROS.

	
The user avyrros is given a 100M quota for the DATA_TS tablespace.

	
The quota on the test_ts is revoked for the user avyrros.

	
The user avyrros is assigned the clerk profile.

Changing the User Password

Most users can change their own passwords with the PASSWORD statement, as follows:

PASSWORD andy
Changing password for andy
New password: password
Retype new password: password

No special privileges (other than those to connect to the database and create a session) are required for a user to change his or her own password. Encourage users to change their passwords frequently. "Guidelines for Securing Passwords" provides advice on the best ways to secure passwords. You can find existing users for the current database instance by querying the ALL_USERS view.

Users can also use the ALTER USER SQL statement change their passwords. For example:

ALTER USER andy
 IDENTIFIED BY password

However, for better security, use the PASSWORD statement to change the account's password. The ALTER USER statement displays the new password on the screen, where it can be seen by any overly curious coworkers. The PASSWORD command does not display the new password, so it is only known to you, not to your co-workers. In both cases, the password is encrypted on the network.

Users must have the PASSWORD and ALTER USER privilege to switch between methods of authentication. Usually, only an administrator has this privilege.

	
See Also:

	
"Minimum Requirements for Passwords" for the minimum requirements for creating passwords

	
"Guidelines for Securing Passwords" for additional ways to secure passwords

	
Chapter 3, "Configuring Authentication," for information about authentication methods that are available for Oracle Database users

Configuring User Resource Limits

This section contains:

	
About User Resource Limits

	
Types of System Resources and Limits

	
Determining Values for Resource Limits of Profiles

	
Managing Resources with Profiles

About User Resource Limits

You can set limits on the amount of various system resources available to each user as part of the security domain of that user. By doing so, you can prevent the uncontrolled consumption of valuable system resources such as CPU time. To set resource limits, you use Database Resource Manager, which is described in Oracle Database Administrator's Guide.

This resource limit feature is very useful in large, multiuser systems, where system resources are very expensive. Excessive consumption of these resources by one or more users can detrimentally affect the other users of the database. In single-user or small-scale multiuser database systems, the system resource feature is not as important, because user consumption of system resources is less likely to have a detrimental impact.

You manage user resource limits by using Database Resource Manager. You can set password management preferences using profiles, either set individually or using a default profile for many users. Each Oracle database can have an unlimited number of profiles. Oracle Database allows the security administrator to enable or disable the enforcement of profile resource limits universally.

Setting resource limits causes a slight performance degradation when users create sessions, because Oracle Database loads all resource limit data for each user upon each connection to the database.

	
See Also:

Oracle Database Administrator's Guide for detailed information about managing resources

Types of System Resources and Limits

Oracle Database can limit the use of several types of system resources, including CPU time and logical reads. In general, you can control each of these resources at the session level, call level, or both, as discussed in the following sections:

	
Limiting the User Session Level

	
Limiting Database Call Levels

	
Limiting CPU Time

	
Limiting Logical Reads

	
Limiting Other Resources

Limiting the User Session Level

Each time a user connects to a database, a session is created. Each session uses CPU time and memory on the computer that runs Oracle Database. You can set several resource limits at the session level.

If a user exceeds a session-level resource limit, then Oracle Database terminates (rolls back) the current statement and returns a message indicating that the session limit has been reached. At this point, all previous statements in the current transaction are intact, and the only operations the user can perform are COMMIT, ROLLBACK, or disconnect (in this case, the current transaction is committed). All other operations produce an error. Even after the transaction is committed or rolled back, the user cannot accomplish any more work during the current session.

Limiting Database Call Levels

Each time a user runs a SQL statement, Oracle Database performs several steps to process the statement. During this processing, several calls are made to the database as a part of the different execution phases. To prevent any one call from using the system excessively, Oracle Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, then Oracle Database halts the processing of the statement, rolls back the statement, and returns an error. However, all previous statements of the current transaction remain intact, and the user session remains connected.

Limiting CPU Time

When SQL statements and other types of calls are made to Oracle Database, a certain amount of CPU time is necessary to process the call. Average calls require a small amount of CPU time. However, a SQL statement involving a large amount of data or a runaway query can potentially use a large amount of CPU time, reducing CPU time available for other processing.

To prevent uncontrolled use of CPU time, you can set fixed or dynamic limits on the CPU time for each call and the total amount of CPU time used for Oracle Database calls during a session. The limits are set and measured in CPU one-hundredth seconds (0.01 seconds) used by a call or a session.

Limiting Logical Reads

Input/output (I/O) is one of the most expensive operations in a database system. SQL statements that are I/O-intensive can monopolize memory and disk use and cause other database operations to compete for these resources.

To prevent single sources of excessive I/O, you can limit the logical data block reads for each call and for each session. Logical data block reads include data block reads from both memory and disk. The limits are set and measured in number of block reads performed by a call or during a session.

Limiting Other Resources

Oracle Database provides for limiting several other resources at the session level:

	
You can limit the number of concurrent sessions for each user. Each user can create only up to a predefined number of concurrent sessions.

	
You can limit the idle time for a session. If the time between calls in a session reaches the idle time limit, then the current transaction is rolled back, the session is terminated, and the resources of the session are returned to the system. The next call receives an error that indicates that the user is no longer connected to the instance. This limit is set as a number of elapsed minutes.

	
Note:

Shortly after a session is terminated because it has exceeded an idle time limit, the process monitor (PMON) background process cleans up after the terminated session. Until PMON completes this process, the terminated session is still counted in any session or user resource limit.

	
You can limit the elapsed connect time for each session. If the duration of a session exceeds the elapsed time limit, then the current transaction is rolled back, the session is dropped, and the resources of the session are returned to the system. This limit is set as a number of elapsed minutes.

	
Note:

Oracle Database does not constantly monitor the elapsed idle time or elapsed connection time. Doing so reduces system performance. Instead, it checks every few minutes. Therefore, a session can exceed this limit slightly (for example, by 5 minutes) before Oracle Database enforces the limit and terminates the session.

	
You can limit the amount of private System Global Area (SGA) space (used for private SQL areas) for a session. This limit is only important in systems that use the shared server configuration. Otherwise, private SQL areas are located in the Program Global Area (PGA). This limit is set as a number of bytes of memory in the SGA of an instance. Use the characters K or M to specify kilobytes or megabytes.

	
See Also:

For instructions about enabling or disabling resource limits:
	
"Finding Information About Database Users and Profiles"

	
"Managing User Roles"

	
Oracle Database Administrator's Guide for detailed information about managing resources

Determining Values for Resource Limits of Profiles

Before creating profiles and setting the resource limits associated with them, you should determine appropriate values for each resource limit. You can base these values on the type of operations a typical user performs. For example, if one class of user does not usually perform a high number of logical data block reads, then use the ALTER RESOURCE COST SQL statement to set the LOGICAL_READS_PER_SESSION setting conservatively.

Usually, the best way to determine the appropriate resource limit values for a given user profile is to gather historical information about each type of resource usage. For example, the database or security administrator can use the AUDIT SESSION clause to gather information about the limits CONNECT_TIME, LOGICAL_READS_PER_SESSION.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise Manager (or SQL*Plus), specifically the Statistics monitor.

	
See Also:

	
"Using Data Dictionary Views to Find Information About Users and Profiles"

	
Chapter 9, "Verifying Security Access with Auditing"

	
Oracle Database 2 Day DBA for more information about Database Control

	
Enterprise Manager online Help for more information about the Monitor feature

Managing Resources with Profiles

A profile is a named set of resource limits and password parameters that restrict database usage and instance resources for a user. You can assign a profile to each user, and a default profile to all others. Each user can have only one profile, and creating a new one supersedes an earlier version.

You need to create and manage user profiles only if resource limits are a requirement of your database security policy. To use profiles, first categorize the related types of users in a database. Just as roles are used to manage the privileges of related users, profiles are used to manage the resource limits of related users. Determine how many profiles are needed to encompass all types of users in a database and then determine appropriate resource limits for each profile.

In general, the word profile refers to a collection of attributes that apply to a user, enabling a single point of reference for any of multiple users that share those exact attributes. User profiles in Oracle Internet Directory contain attributes pertinent to directory usage and authentication for each user. Similarly, profiles in Oracle Label Security contain attributes useful in label security user administration and operations management. Profile attributes can include restrictions on system resources. You can use Database Resource Manager to set these types of resource limits.

Profile resource limits are enforced only when you enable resource limitation for the associated database. Enabling this limitation can occur either before starting up the database (using the RESOURCE_LIMIT initialization parameter) or while it is open (using the ALTER SYSTEM statement).

Though password parameters reside in profiles, they are unaffected by RESOURCE_LIMIT or ALTER SYSTEM and password management is always enabled. In Oracle Database, Database Resource Manager primarily handles resource allocations and restrictions.

	
See Also:

	
Oracle Database Administrator's Guide for detailed information on managing resources

	
"Finding Information About Database Users and Profiles" for viewing resource information

	
Oracle Database SQL Language Reference for information about ALTER SYSTEM or RESOURCE_LIMIT

Creating Profiles

Any authorized database user can create, assign to users, alter, and drop a profile at any time (using the CREATE USER or ALTER USER statement). Profiles can be assigned only to users and not to roles or other profiles. Profile assignments do not affect current sessions, instead, they take effect only in subsequent sessions. To find information about current profiles, query the DBA_PROFILES view.

	
See Also:

	
Oracle Database SQL Language Reference for more information about the SQL statements used for managing profiles, such as CREATE PROFILE, and for information about how to calculate composite limits.

	
Oracle Database Administrator's Guide for detailed information about managing resources

	
"Creating User Accounts"

	
"Altering User Accounts"

Dropping Profiles

To drop a profile, you must have the DROP PROFILE system privilege. You can drop a profile (other than the default profile) using the SQL statement DROP PROFILE.To successfully drop a profile currently assigned to a user, use the CASCADE option.

The following statement drops the profile clerk, even though it is assigned to a user:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically assigned to the DEFAULT profile. The DEFAULT profile cannot be dropped. When a profile is dropped, the drop does not affect currently active sessions. Only sessions created after a profile is dropped use the modified pro file assignments.

Deleting User Accounts

When you drop a user account, Oracle Database removes the user account and associated schema from the data dictionary. It also immediately drops all schema objects contained in the user schema, if any.

	
Notes:

	
If a user schema and associated objects must remain but the user must be denied access to the database, then revoke the CREATE SESSION privilege from the user.

	
Do not attempt to drop the SYS or SYSTEM user. Doing so corrupts your database.

A user that is currently connected to a database cannot be dropped. To drop a connected user, you must first terminate the user sessions using the SQL statement ALTER SYSTEM with the KILL SESSION clause. You can find the session ID (SID) by querying the V$SESSION view.

Example 2-3 shows how to query V$SESSION and displays the session ID, serial number, and user name for user ANDY.

Example 2-3 Querying V$SESSION for the Session ID of a User

SELECT SID, SERIAL#, USERNAME FROM V$SESSION;

 SID SERIAL# USERNAME
------- --------------- ----------------------
 127 55234 ANDY
...

Example 2-4 shows how to stop the session for user andy.

Example 2-4 Killing a User Session

ALTER SYSTEM KILL SESSION '127, 55234';

You can drop a user from a database using the DROP USER statement. To drop a user and all the user schema objects (if any), you must have the DROP USER system privilege. Because the DROP USER system privilege is powerful, a security administrator is typically the only type of user that has this privilege.

If the schema of the user contains any dependent schema objects, then use the CASCADE option to drop the user and all associated objects and foreign keys that depend on the tables of the user successfully. If you do not specify CASCADE and the user schema contains dependent objects, then an error message is returned and the user is not dropped.

Before dropping a user whose schema contains objects, thoroughly investigate which objects the schema contains and the implications of dropping them. You can find the objects owned by a particular user by querying the DBA_OBJECTS view.

Example 2-5 shows how to find the objects owned by user andy.

Example 2-5 Finding Objects Owned by a User

SELECT OWNER, OBJECT_NAME FROM DBA_OBJECTS WHERE OWNER LIKE 'ANDY';

(Enter the user name in capital letters.) Pay attention to any unknown cascading effects. For example, if you intend to drop a user who owns a table, then check whether any views or procedures depend on that particular table.

Example 2-6 drops the user andy and all associated objects and foreign keys that depend on the tables owned by andy.

Example 2-6 Dropping a User Account

DROP USER andy CASCADE;

	
See Also:

Oracle Database Administrator's Guide for more information about terminating sessions

Finding Information About Database Users and Profiles

This section contains:

	
Using Data Dictionary Views to Find Information About Users and Profiles

	
Listing All Users and Associated Information

	
Listing All Tablespace Quotas

	
Listing All Profiles and Assigned Limits

	
Viewing Memory Use for Each User Session

Using Data Dictionary Views to Find Information About Users and Profiles

Table 2-1 lists data dictionary views that contain information about database users and profiles. For detailed information about these views, see Oracle Database Reference.

Table 2-1 Data Dictionary Views That Display Information about Users and Profiles

	View	Description
	
ALL_OBJECTS

	
Describes all objects accessible to the current user

	
ALL_USERS

	
Lists users visible to the current user, but does not describe them

	
DBA_PROFILES

	
Displays all profiles and their limits

	
DBA_TS_QUOTAS

	
Describes tablespace quotas for users

	
DBA_OBJECTS

	
Describes all objects in the database

	
DBA_USERS

	
Describes all users of the database

	
DBA_USERS_WITH_DEFPWD

	
Lists all user accounts that have default passwords

	
PROXY_USERS

	
Describes users who can assume the identity of other users

	
RESOURCE_COST

	
Lists the cost for each resource in terms of CPUs for each session, reads for each session, connection times, and SGA

	
USER_PASSWORD_LIMITS

	
Describes the password profile parameters that are assigned to the user

	
USER_RESOURCE_LIMITS

	
Displays the resource limits for the current user

	
USER_TS_QUOTAS

	
Describes tablespace quotas for users

	
USER_OBJECTS

	
Describes all objects owned by the current user

	
USER_USERS

	
Describes only the current user

	
V$SESSION

	
Lists session information for each current session, includes user name

	
V$SESSTAT

	
Lists user session statistics

	
V$STATNAME

	
Displays decoded statistic names for the statistics shown in the V$SESSTAT view

The following sections present examples of using these views. These examples assume that the following statements have been run:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 1
 IDLE_TIME 30
 CONNECT_TIME 600;

CREATE USER jfee
 IDENTIFIED BY password
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA 500K ON users
 PROFILE clerk;

CREATE USER dcranney
 IDENTIFIED BY password
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA unlimited ON users;

CREATE USER userscott
 IDENTIFIED BY password;

Listing All Users and Associated Information

To find all users and their associated information as defined in the database, query the DBA_USERS view. For detailed information on the DBA_USERS view, see Oracle Database Reference.

For example:

SELECT USERNAME, PROFILE, ACCOUNT_STATUS, AUTHENTICATION_TYPE FROM DBA_USERS;

USERNAME PROFILE ACCOUNT_STATUS AUTHENTICATION_TYPE
--------------- --------------- --------------- -------------------
SYS DEFAULT OPEN PASSWORD
SYSTEM DEFAULT OPEN PASSWORD
USERSCOTT DEFAULT OPEN PASSWORD
JFEE CLERK OPEN GLOBAL
DCRANNEY DEFAULT OPEN EXTERNAL

Listing All Tablespace Quotas

Use the DBA_TS_QUOTAS view to list all tablespace quotas specifically assigned to each user. (For detailed information on this view, see Oracle Database Reference.) For example:

SELECT * FROM DBA_TS_QUOTAS;

TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
---------- --------- -------- ---------- ------- ----------
USERS JFEE 0 512000 0 250
USERS DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the MAX_BYTES column. This number is always a multiple of the database block size, so if you specify a tablespace quota that is not a multiple of the database block size, then it is rounded up accordingly. Unlimited quotas are indicated by -1.

Listing All Profiles and Assigned Limits

The DBA_PROFILE view lists all profiles in the database and associated settings for each limit in each profile. (For detailed information on this view, see Oracle Database Reference.) For example:

SELECT * FROM DBA_PROFILES
 ORDER BY PROFILE;

PROFILE RESOURCE_NAME RESOURCE LIMIT
----------------- --------------- ---------- --------------
CLERK COMPOSITE_LIMIT KERNEL DEFAULT
CLERK FAILED_LOGIN_ATTEMPTS PASSWORD DEFAULT
CLERK PASSWORD_LIFE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_MAX PASSWORD DEFAULT
CLERK PASSWORD_VERIFY_FUNCTION PASSWORD DEFAULT
CLERK PASSWORD_LOCK_TIME PASSWORD DEFAULT
CLERK PASSWORD_GRACE_TIME PASSWORD DEFAULT
CLERK PRIVATE_SGA KERNEL DEFAULT
CLERK CONNECT_TIME KERNEL 600
CLERK IDLE_TIME KERNEL 30
CLERK LOGICAL_READS_PER_CALL KERNEL DEFAULT
CLERK LOGICAL_READS_PER_SESSION KERNEL DEFAULT
CLERK CPU_PER_CALL KERNEL DEFAULT
CLERK CPU_PER_SESSION KERNEL DEFAULT
CLERK SESSIONS_PER_USER KERNEL 1
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
32 rows selected.

Viewing Memory Use for Each User Session

To find the memory use for each user session, query the V$SESSION view. (For detailed information on this view, see Oracle Database Reference. The following query lists all current sessions, showing the Oracle Database user and current User Global Area (UGA) memory use for each session:

SELECT USERNAME, VALUE || 'bytes' "Current UGA memory"
 FROM V$SESSION sess, V$SESSTAT stat, V$STATNAME name
WHERE sess.SID = stat.SID
 AND stat.STATISTIC# = name.STATISTIC#
 AND name.NAME = 'session uga memory';

USERNAME Current UGA memory
------------------------------ ---
 18636bytes
 17464bytes
 19180bytes
 18364bytes
 39384bytes
 35292bytes
 17696bytes
 15868bytes
USERSCOTT 42244bytes
SYS 98196bytes
SYSTEM 30648bytes

11 rows selected.

To see the maximum UGA memory allocated to each session since the instance started, replace 'session uga memory' in the preceding query with 'session uga memory max'.

The script content on this page is for navigation purposes only and does not alter the content in any way.

9 Verifying Security Access with Auditing

This chapter contains:

	
About Auditing

	
Selecting an Auditing Type

	
Auditing General Activities with Standard Auditing

	
Using Default Auditing for Security-Relevant SQL Statements and Privileges

	
Auditing Specific Activities with Fine-Grained Auditing

	
Auditing SYS Administrative Users

	
Using Triggers to Write Audit Data to a Separate Table

	
Managing Audit Trail Records

	
Purging Audit Trail Records

	
Finding Information About Audited Activities

	
See Also:

"Guidelines for Auditing" for general guidelines to follow for auditing your system

About Auditing

This section contains:

	
What Is Auditing?

	
Why Is Auditing Used?

	
Protecting the Database Audit Trail

	
Activities That Are Always Written to the Standard and Fine-Grained Audit Records

	
Activities That Are Always Audited for All Platforms

	
Auditing in a Distributed Database

	
Best Practices for Auditing

	
See Also:

Oracle Audit Vault Administrator's Guide for information about Oracle Audit Vault, which provides advanced auditing features

What Is Auditing?

Auditing is the monitoring and recording of selected user database actions, from both database users and nondatabase usersFoot 1 . You can base auditing on individual actions, such as the type of SQL statement executed, or on combinations of data that can include the user name, application, time, and so on. You can audit both successful and failed activities. To use auditing, you enable it, and then configure what must be audited. The actions that you audit are recorded in either data dictionary tables or in operating system files.

Oracle recommends that you enable and configure auditing. Auditing is an effective method of enforcing strong internal controls so that your site can meet its regulatory compliance requirements, as defined in the Sarbanes-Oxley Act. This enables you to monitor business operations, and find any activities that may deviate from company policy. Doing so translates into tightly controlled access to your database and the application software, ensuring that patches are applied on schedule and preventing ad hoc changes. By enabling auditing by default, you can generate an audit record for audit and compliance personnel. Be selective with auditing and ensure that it meets your business compliance needs.

Why Is Auditing Used?

You typically use auditing to perform the following activities:

	
Enable accountability for actions. These include actions taken in a particular schema, table, or row, or affecting specific content.

	
Deter users (or others, such as intruders) from inappropriate actions based on their accountability.

	
Investigate suspicious activity. For example, if a user is deleting data from tables, then a security administrator might decide to audit all connections to the database and all successful and unsuccessful deletions of rows from all tables in the database.

	
Notify an auditor of the actions of an unauthorized user. For example, an unauthorized user could be changing or deleting data, or the user has more privileges than expected, which can lead to reassessing user authorizations.

	
Monitor and gather data about specific database activities. For example, the database administrator can gather statistics about which tables are being updated, how many logical I/Os are performed, or how many concurrent users connect at peak times.

	
Detect problems with an authorization or access control implementation. For example, you can create audit policies that you expect will never generate an audit record because the data is protected in other ways. However, if these policies generate audit records, then you will know the other security controls are not properly implemented.

	
Address auditing requirements for compliance. Regulations such as the following have common auditing-related requirements:

	
Sarbanes-Oxley Act

	
Health Insurance Portability and Accountability Act (HIPAA)

	
International Convergence of Capital Measurement and Capital Standards: a Revised Framework (Basel II)

	
Japan Privacy Law

	
European Union Directive on Privacy and Electronic Communications

Protecting the Database Audit Trail

When auditing for suspicious database activity, you should protect the integrity of the audit trail records to guarantee the accuracy and completeness of the auditing information.

Oracle Database writes the database audit trail to the SYS.AUD$ and SYS.FGA_LOG$ tables. Audit records generated as a result of object audit options set for the SYS.AUD$ and SYS.FGA_LOG$ tables can only be deleted from the audit trail by someone who has connected with administrator privileges. Remember that administrators are also audited for unauthorized use. See "Auditing SYS Administrative Users" for more information.

Other ways to protect the database audit trail are as follows:

	
Set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE (the default). This way, only users who have the SYSDBA privilege can perform DML actions on the audit data in the SYS.AUD$ and SYS.FGA_LOG$ tables. In a default installation, O7_DICTIONARY_ACCESSIBILITY is set to FALSE.

	
If you have Oracle Database Vault installed, create a realm around the SYSTEM.AUD$ and SYS.FGA_LOG$ tables. In an Oracle Database Vault environment, when Oracle Label Security is enabled, the AUD$ table is moved to the SYSTEM schema. The synonym SYS.AUD$ is created to refer to the SYSTEM.AUD$ table. See Oracle Database Vault Administrator's Guide for more information about realms in Oracle Database Vault.

	
See Also:

	
"Auditing General Activities with Standard Auditing"

	
"Auditing Specific Activities with Fine-Grained Auditing"

Activities That Are Always Written to the Standard and Fine-Grained Audit Records

When standard auditing is enabled (that is, you set AUDIT_TRAIL to DB or DB,EXTENDED), Oracle Database audits all data manipulation language (DML) operations, such as INSERT, UPDATE, MERGE, and DELETE on the SYS.AUD$ and SYS.FGA_LOG$ tables by non-SYS users. (It performs this audit even if you have not set audit options for the AUD$ and FGA_LOGS$ tables.) Typically, non-SYS users do not have access to these tables, except if they have been explicitly granted access. If a non-SYS user tampers with the data in the SYS.FGA_LOG$ and SYS.AUD$ tables, then Oracle Database writes an audit record for each action.

	
See Also:

	
"Auditing General Activities with Standard Auditing"

	
"Auditing Specific Activities with Fine-Grained Auditing"

Activities That Are Always Audited for All Platforms

Oracle Database always audits certain database-related operations and writes them to the operating system audit files. It includes the actions of any user who is logged in with the SYSDBA or SYSOPER privilege. This is called mandatory auditing. Even if you have enabled the database audit trail (that is, setting the AUDIT_TRAIL parameter to DB), Oracle Database still writes mandatory records to operating system files.

By default, the operating system files are in the $ORACLE_HOME/admin/$ORACLE_SID/adump directory on UNIX systems. On Windows systems, Oracle Database writes this information to the Windows Event Viewer. You can change the location of this directory by setting the AUDIT_FILE_DEST initialization parameter, which is described in "Specifying a Directory for the Operating System Audit Trail".

Mandatory auditing includes the following operations:

	
Database startup. An audit record is generated that lists the operating system user starting the instance, the user terminal identifier, and the date and time stamp. This data is stored in the operating system audit trail because the database audit trail is not available until after the startup has successfully completed.

	
SYSDBA and SYSOPER logins. Oracle Database records all SYSDBA and SYSOPER connections.

	
Database shutdown. An audit record is generated that lists the operating system user shutting down the instance, the user terminal identifier, and the date and time stamp.

	
Note:

If you set the AUDIT_SYSLOG_LEVEL initialization parameter, mandatory actions are written the to the UNIX syslog. See "Using the Syslog Audit Trail on UNIX Systems" for more information about the syslog audit trail. See also your operating system-specific Oracle Database documentation for more information about the operating system and syslog audit trail.

Auditing in a Distributed Database

Auditing is site autonomous. An instance audits only the statements issued by directly connected users. A local Oracle Database node cannot audit actions that take place in a remote database.

Best Practices for Auditing

Follow these best practices guidelines:

	
As a general rule, design your auditing strategy to collect the amount of information that you need to meet compliance requirements, but being sure to focus on activities that cause the greatest security concerns. For example, auditing every table in the database is not practical, but auditing table columns that contain sensitive data, such as salaries, is. With both standard and fine-grained auditing, there are mechanisms you can use to design audit policies that focus on specific activities to audit.

	
Periodically archive and purge the audit trail data. See "Purging Audit Trail Records" for more information.

	
See Also:

"Guidelines for Auditing" for general guidelines to follow for auditing your system

Selecting an Auditing Type

Table 9-1 provides a roadmap for selecting and using the different audit options available.

Table 9-1 Selecting an Auditing Type

	What Do You Want to Audit?	About This Type of Auditing
	
General activities

	
You can audit SQL statements, privileges, schema objects, functions, procedures, packages, triggers, and network activity. For example, you can audit each time a particular user performs an UPDATE or a DELETE SQL statement.

Location of audit records: Oracle Database writes these audit records to the location based on the AUDIT_TRAIL initialization parameter. See also "About Audit Records".

General steps:

	
See "Auditing General Activities with Standard Auditing" to understand more about auditing general activities.

	
Decide whether you want to write audit records to the database audit trail or to an operating system file. See "Managing the Database Audit Trail".

	
Set the AUDIT_TRAIL initialization parameter to enable auditing and to select the audit trail destination (database audit trail or operating system audit trail). See "Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter".

	
Use the AUDIT and NOAUDIT SQL statements to audit the general activities. See the relevant categories under "Auditing General Activities with Standard Auditing".

	
To monitor audit activities, periodically check the operating system records you configured, or query the audit trail data dictionary views. See "Finding Information About Audited Activities".

	
Perform maintenance on the audit trail. See "Managing Audit Trail Records".

	
Periodically archive and purge the contents of the audit trail. See "Purging Audit Trail Records".

	
Default, security-relevant SQL statements and privileges

	
Oracle Database provides a set of default audit settings that you can enable for commonly used security-relevant SQL statements and privileges.

Location of audit records: Oracle Database writes these audit records to the location based on the AUDIT_TRAIL initialization parameter. See also "About Audit Records".

General steps:

	
Follow the instructions in "Using Default Auditing for Security-Relevant SQL Statements and Privileges" to enable default auditing.

To understand more about the database audit trail, see "Managing Audit Trail Records".

	
To monitor audit activities, periodically query the database audit trail data dictionary views. See "Finding Information About Audited Activities".

	
Perform maintenance on the database audit trail. See "Managing the Database Audit Trail".

	
Periodically archive and purge the contents of the audit trail. See "Purging Audit Trail Records".

	
Specific, fine-grained activities

	
You can audit at the most granular level, data access, and actions based on content, using Boolean measures, such as value > 7800 or the IP address from which an action occurred.

Location of audit records: You can write the audit records to either the database audit trail or an operating system audit trail in XML format. See also "About Audit Records".

General steps:

	
See "Auditing Specific Activities with Fine-Grained Auditing" to understand more about auditing specific activities.

	
Decide whether you want to write audit records to the database audit trail or to an operating system file. See "Managing the Database Audit Trail".

	
Use the DBMS_FGA PL/SQL package to configure fine-grained auditing policies. The DBMS_FGA.ADD_POLICY procedure provides the audit_trail parameter, which you use to select the audit trail type. You can choose between a database audit trail or an operating system audit trail using XML files. See the following sections:

"Creating an Audit Trail for Fine-Grained Audit Records"

"Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies"

	
To monitor audit activities, periodically check the operating system records you configured, or query the audit trail data dictionary views. See "Finding Information About Audited Activities".

	
Perform maintenance on the audit trail. See "Managing Audit Trail Records".

	
Periodically archive and purge the contents of the audit trail. See "Purging Audit Trail Records".

	
SYS administrative users

	
You can audit the top-level SQL statements issued by users who have connected using the SYSDBA or SYSOPER privilege. (Top-level refers to statements directly issued by a user. Statements run from a PL/SQL procedure or function are not considered top-level.)

Location of audit records: Oracle Database writes these audit records to an operating system audit trail only. On Windows, Oracle Database writes the SYS audit records to the Windows Event log by default. For UNIX systems, you can write records to a syslog file. See also "About Audit Records".

General steps:

	
See "Auditing SYS Administrative Users" to configure administrative auditing.

	
To understand more about the operating system audit trail, see Managing the Operating System Audit Trail.

	
To monitor audit activities, periodically check the operating system or syslog records you configured. If you are writing to an XML file, you can query the V$XML_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL views. See "Finding Information About Audited Activities".

	
Perform maintenance on the audit trail. See "Managing Audit Trail Records"

	
Periodically archive and purge the contents of the audit trail. See "Purging Audit Trail Records".

Auditing General Activities with Standard Auditing

This section contains:

	
About Standard Auditing

	
Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter

	
What Do the Operating System and Database Audit Trails Have in Common?

	
Using the Operating System Audit Trail

	
Using the Syslog Audit Trail on UNIX Systems

	
How the AUDIT and NOAUDIT SQL Statements Work

	
Auditing SQL Statements

	
Auditing Privileges

	
Auditing SQL Statements and Privileges in a Multitier Environment

	
Auditing Schema Objects

	
Auditing Directory Objects

	
Auditing Functions, Procedures, Packages, and Triggers

	
Auditing Network Activity

	
See Also:

	
"Auditing SYS Administrative Users" to learn how to use standard auditing to audit SYS users

	
Oracle Database 2 Day + Security Guide for a tutorial on creating a standard audit trail

About Standard Auditing

This section contains:

	
What Is Standard Auditing?

	
Who Can Perform Standard Auditing?

	
When Are Standard Audit Records Created?

What Is Standard Auditing?

In standard auditing, you audit SQL statements, privileges, schema objects, and network activity. You configure standard auditing by using the AUDIT SQL statement and NOAUDIT to remove this configuration. You can write the audit records to either the database audit trail or to operating system audit files.

Who Can Perform Standard Auditing?

Any user can configure auditing for the objects in his or her own schema, by using the AUDIT statement. To undo the audit configuration for this object, the user can use the NOAUDIT statement. No additional privileges are needed to perform this task. Users can run AUDIT statements to set auditing options regardless of the AUDIT_TRAIL parameter setting. If auditing has been disabled, the next time it is enabled, Oracle Database will record the auditing activities set by the AUDIT statements. "Enabling or Disabling the Standard Audit Trail" explains how to enable standard auditing.

Note the following:

	
To audit objects in another schema, the user must have the AUDIT ANY system privilege.

	
To audit system privileges, the user must have the AUDIT SYSTEM privilege.

	
If the O7_DICTIONARY_ACCESSIBILITY initialization parameter has been set to FALSE (the default), then only users who have the SYSDBA privilege can perform DML actions on the audit data in the SYS.AUD$ and SYS.FGA_LOG$ tables. For greater security, set the O7_DICTIONARY_ACCESSIBILITY parameter to FALSE so that non-SYSDBA users cannot audit SYS objects.

	
See Also:

	
GRANT in Oracle Database SQL Language Reference for a listing of available system and object privileges

	
AUDIT in Oracle Database SQL Language Reference for a full listing of audit options

When Are Standard Audit Records Created?

You, as the security administrator, enable or disable standard auditing for the entire database. If it is disabled, then no audit records are created. Configuring audit options is described in the previous section, "Who Can Perform Standard Auditing?"

When auditing is enabled in the database and an action configured to be audited occurs, Oracle Database generates an audit record during or after the execution phase of the SQL statement. Oracle Database individually audits SQL statements inside PL/SQL program units, as necessary, when the program unit is run.

The generation and insertion of an audit trail record is independent of a user transaction being committed. That is, even if a user transaction is rolled back, the audit trail record remains committed.

Statement and privilege audit options in effect at the time a database user connects to the database remain in effect for the duration of the session. When the session is already active, setting or changing statement or privilege audit options does not take effect in that session. The modified statement or privilege audit options take effect only when the current session ends and a new session is created.

In contrast, changes to schema object audit options become immediately effective for current sessions.

	
See Also:

Oracle Database Concepts for information about the different phases of SQL statement processing and shared SQL

Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter

This section contains:

	
Enabling or Disabling the Standard Audit Trail

	
Settings for the AUDIT_TRAIL Initialization Parameter

Enabling or Disabling the Standard Audit Trail

You enable the standard audit trail by setting the AUDIT_TRAIL initialization parameter. This setting determines whether to create the audit trail in the database audit trail, write the audit activities to an operating system file, or to disable auditing.

To enable or disable the standard audit trail, log in to SQL*Plus with administrative privileges, and use the ALTER SYSTEM statement. Afterwards, you need to restart the database instance.

To check the current value of the AUDIT_TRAIL parameter, use the SHOW PARAMETER command in SQL*Plus.

Example 9-1 shows how to check the AUDIT_TRAIL parameter setting.

Example 9-1 Checking the Current Value of the AUDIT_TRAIL Initialization Parameter

SHOW PARAMETER AUDIT_TRAIL

NAME TYPE VALUE
------------------------------------ ----------- -------
audit_trail string DB

Example 9-2 shows how to log onto SQL*Plus, enable the standard audit trail, and then restart the database instance.

Example 9-2 Enabling the Standard Audit Trail

CONNECT SYSTEM
Enter password: password

ALTER SYSTEM SET AUDIT_TRAIL=DB SCOPE=SPFILE;
System altered.

CONNECT SYS/AS SYSOPER
Enter password: password

SHUTDOWN
Database closed.
Database dismounted.
ORACLE instance shut down.

STARTUP
ORACLE instance started.

This example uses the SCOPE clause because the database instance had been started using a server parameter file (SPFILE). Starting the database with a server parameter file is the preferred way of starting a database instance. See Oracle Database Administrator's Guide for information about creating configuring server parameter files.

Settings for the AUDIT_TRAIL Initialization Parameter

Table 9-2 lists the settings you can use for the AUDIT_TRAIL initialization parameter.

Table 9-2 AUDIT_TRAIL Initialization Parameter Settings

	AUDIT_TRAIL Value	Description
	
DB

	
Directs audit records to the database audit trail (the SYS.AUD$ table), except for mandatory and SYS audit records, which are always written to the operating system audit trail. (Table 9-1 describes the location of the audit records for each type of auditing.) Use this setting for a general database for manageability. DB is the default setting for the AUDIT_TRAIL parameter.

If the database was started in read-only mode with AUDIT_TRAIL set to DB, then Oracle Database internally sets AUDIT_TRAIL to OS. Check the alert log for details.

See also "Managing the Database Audit Trail".

	
DB, EXTENDED

	
Behaves the same as AUDIT_TRAIL=DB, but also populates the SQL bind and SQL text CLOB-type columns of the SYS.AUD$ table, when available.

DB,EXTENDED enables you to capture the SQL statement used in the action that was audited. You can capture both the SQL statement that caused the audit, and any associated bind variables. However, be aware that you only can capture data from the following column datatypes: CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, NUMBER, FLOAT, BINARY_FLOAT, BINARY_DOUBLE, LONG, ROWID, DATE, TIMESTAMP, and TIMESTAMP WITH TIMEZONE. Also be aware that DB, EXTENDED can capture sensitive data, such as credit card information. See also "Auditing Sensitive Information".

If the database was started in read-only mode with AUDIT_TRAIL set to DB, EXTENDED, then Oracle Database internally sets AUDIT_TRAIL to OS. Check the alert log for details.

You can specify DB,EXTENDED in either of the following ways:

ALTER SYSTEM SET AUDIT_TRAIL=DB, EXTENDED SCOPE=SPFILE;
ALTER SYSTEM SET AUDIT_TRAIL='DB','EXTENDED' SCOPE=SPFILE;

However, do not enclose DB, EXTENDED in quotes, for example:

ALTER SYSTEM SET AUDIT_TRAIL='DB, EXTENDED' SCOPE=SPFILE;

	
OS

	
Directs all audit records to an operating system file.

Oracle recommends that you use the OS setting, particularly if you are using an ultra-secure database configuration. See "Advantages of the Operating System Audit Trail" for more information. See also Example 9-3, "Text File Operating System Audit Trail".

If you set AUDIT_TRAIL to OS, then set the following additional initialization parameters:

	
AUDIT_FILE_DEST, which specifies the location of the operating system audit record file. On UNIX systems, the default location is $ORACLE_HOME/admin/$ORACLE_SID/adump. For better performance on UNIX systems, set the AUDIT_FILE_DEST parameter to a directory on a disk that is locally attached to the host running the Oracle Database instance. On Windows, the OS setting writes the audit trail to the Application area of the Windows Event Viewer.

	
AUDIT_SYS_OPERATIONS, if you want to audit the top-level SQL statements directly issued by users who have connected with the SYSDBA or SYSOPER privilege. To enable this auditing, set AUDIT_SYS_OPERATIONS to TRUE.

If you set AUDIT_SYS_OPERATIONS to TRUE and AUDIT_TRAIL to XML or XML,EXTENDED, then Oracle Database writes SYS audit records operating system files in XML format.

	
AUDIT_SYSLOG_LEVEL, which writes SYS and standard OS audit records to the system audit log using the SYSLOG utility. This option only applies to UNIX environments. See "Configuring Syslog Auditing" for more information.

See also "Managing the Operating System Audit Trail".

	
XML

	
Writes to the operating system audit record file in XML format. Records all elements of the AuditRecord node given by the XML schema in http://xmlns.oracle.com/oracleas/schema/dbserver_audittrail-11_2.xsd except Sql_Text and Sql_Bind to operating system XML audit files. (This .xsd file represents the schema definition of the XML audit file. An XML schema is a document written in the XML Schema language.)

See also "Advantages of the Operating System Audit Trail" and Example 9-4, "XML File Operating System Audit Trail".

If you set the XML value, then also set the AUDIT_FILE_DEST parameter. For all platforms, including Windows, the default location for XML audit trail records is $ORACLE_HOME/admin/$ORACLE_SID/adump.

In addition to XML files, Oracle Database creates a text index file that lists the XML files that were generated by the XML auditing. The file is named adx_$ORACLE_SID.txt (for example, adx_ORCL.txt). The adx_$ORACLE_SID.txt is only used when you query the V$XML_AUDIT_TRAIL data dictionary view. Deleting this file does not interfere with auditing, except that you will not see the audit records from the files that are not present in adx_$ORACLE_SID.txt at the time of the query.

The XML AUDIT_TRAIL value does not affect syslog audit file. In other words, if you have set the AUDIT_TRAIL parameter to XML, then the syslog audit records will still be in text format, not XML file format.

You can control the output for SYS and mandatory audit records as follows:

	
To write SYS and mandatory audit files to operating system files in XML format: Set AUDIT_TRAIL to XML or XML,EXTENDED, set AUDIT_SYS_OPERATIONS to TRUE, but do not set the AUDIT_SYSLOG_LEVEL parameter.

	
To write SYS and mandatory audit records to syslog audit files and standard audit records to XML audit files: Set AUDIT_TRAIL to XML or XML,EXTENDED, set AUDIT_SYS_OPERATIONS to TRUE, and set the AUDIT_SYSLOG_LEVEL parameter.

	
XML, EXTENDED

	
Behaves the same as AUDIT_TRAIL=XML, but also includes SQL text and SQL bind information in the operating system XML audit files.

You can specify XML,EXTENDED in either of the following ways:

ALTER SYSTEM SET AUDIT_TRAIL=XML, EXTENDED SCOPE=SPFILE;
ALTER SYSTEM SET AUDIT_TRAIL='XML','EXTENDED' SCOPE=SPFILE;

However, do not enclose XML, EXTENDED in quotes, for example:

ALTER SYSTEM SET AUDIT_TRAIL='XML, EXTENDED' SCOPE=SPFILE;

See also the following sections:

	
"Advantages of the Operating System Audit Trail"

	
"Auditing Sensitive Information"

	
NONE

	
Disables standard auditing.

Note the following:

	
You do not need to restart the database after you run the AUDIT or NOAUDIT statements. You only need to restart the database if you made a universal change, such as changing the AUDIT_TRAIL initialization parameter.

	
You do not need to set AUDIT_TRAIL to enable either fine-grained auditing or SYS auditing. For fine-grained auditing, you add and remove fine-grained audit policies as necessary, applying them to the specific operations or objects you want to monitor. To enable SYS auditing, set the AUDIT_SYS_OPERATIONS parameter to TRUE.

What Do the Operating System and Database Audit Trails Have in Common?

The operating system and database audit trails both capture many of the same types of actions. Table 9-3 lists the operating system audit trail records. Most map to equivalent columns in the DBA_AUDIT_TRAIL view. For a description of these columns, see Oracle Database Reference.

Table 9-3 Common Audited Actions in the Operating System and Database Audit Trails

	Operating System Audit Record	Equivalent DBA_AUDIT_TRAIL View Column
	
SESSIONID

	
SESSIONID

	
ENTRYID

	
ENTRYID

	
STATEMENT

	
STATEMENTID

	
USERID

	
USERNAME

	
USERHOST

	
USERHOST

	
TERMINAL

	
TERMINAL

	
ACTION

	
ACTION

	
SYS$OPTIONS

	
Indicates what audit option was set with AUDIT or NOAUDIT, or what privilege was granted or revoked.Foot 1

	
RETURNCODE

	
RETURNCODE

	
OBJ$CREATOR

	
OWNER

	
OBJ$NAME

	
OBJ_NAME

	
OBJ$PRIVILEGES

	
OBJ_PRIVILEGE

	
AUTH$GRANTEE

	
GRANTEE

	
NEW$OWNER

	
NEW_OWNER

	
NEW$NAME

	
NEW_NAME

	
SES$ACTIONS

	
SES_ACTIONS

	
LOGOFF$PREAD

	
LOGOFF_PREAD

	
LOGOFF$LWRITE

	
LOGOFF_LWRITE

	
COMMENT$TEXT

	
COMMENT_TEXT

	
OS$USERID

	
OS_USERNAME

	
PRIV$USED

	
PRIV_USED

	
SES$LABEL

	
CLIENT_ID

	
SES$TID

	
Does not have an equivalent in the DBA_AUDIT_TRAIL view, but it does appear in the SYS.AUD$ table

	
SPARE2

	
Does not have an equivalent in the DBA_AUDIT_TRAIL view, but it does appear in the SYS.AUD$ table

Footnote 1 For example, if the ACTION value is 104 (for AUDIT) or 105 (for NOAUDIT), then the SYS$OPTIONS number represents an audit option listed in the STMT_AUDIT_OPTION_MAP table. If the ACTION value is 108 (for GRANT) or 109 (for REVOKE), then the number represents a privilege listed in the SYSTEM_PRIVILEGE_MAP table.

Using the Operating System Audit Trail

This section contains:

	
About the Operating System Trail

	
What Do Operating System Audit Trail Records Look Like?

	
Advantages of the Operating System Audit Trail

	
How the Operating System Audit Trail Works

	
Specifying a Directory for the Operating System Audit Trail

About the Operating System Trail

As an alternative to creating standard audit records in the DBA_AUDIT_TRAIL (SYS.AUD$ table), you can create standard audit records in operating system files. The operating system file that contains the audit trail can include any of the following data:

	
Database audit trail records

	
Mandatory audit records (that is, database actions that are always audited)

	
Audit records for administrative users (SYS)

You can write the operating system audit records to either a text file or an XML file.

What Do Operating System Audit Trail Records Look Like?

The operating system audit trail files are in either text or XML file format. Be aware that the contents of the text and XML operating system files have some differences, and that the formats may change across different releases. With each release of Oracle Database, new enhancements, such as the audit type, have been made to the XML file, but not the text file. The text operating system file has a different presentation for the timestamp, for example:

Wed May 6 00:57:36 2009 -07:00

However, this timestamp does not appear in the event log or syslog, which have their own format for timestamps. The timestamp string only appears in the text operating system audit files.

Example 9-3 shows a typical text operating system audit trail for a logon operation on an Oracle database that is installed on Microsoft Windows. (The text in the actual record wraps around, but for this manual, each item is separated onto its own line for easier readability.)

Example 9-3 Text File Operating System Audit Trail

Audit trail:
LENGTH: "349"
SESSIONID:[5] "43464"
ENTRYID:[1] "1"
STATEMENT:[1] "1"
USERID:[6] "DBSNMP"
USERHOST:[7] "SHOBEEN"
TERMINAL:[3] "MAU"
ACTION:[3] "100"
RETURNCODE:[1] "0"
COMMENT$TEXT:[97] "Authenticated by: DATABASE; Client address: (ADDRESS=(PROTOCOL=tcp)(HOST=192.0.2.4)(PORT=2955))"
OS$USERID:[19] "NT AUTHORITY\SYSTEM"
DBID:[10] "1212547373"
PRIV$USED:[1] "5"

In this example:

	
LENGTH refers to the total number of bytes used in this audit record. This number includes the trailing newline bytes (\n), if any, at the end of the audit record.

	
[] brackets indicate the length of each value for each audit entry. For example, the USERID entry, DBSNMP, is 6 bytes long.

	
SESSIONID indicates the audit session ID number. You can also find the session ID by querying the AUDSID column in the V$SESSION data dictionary view.

	
ENTRYID indicates the current audit entry number, assigned to each audit trail record. The audit ENTRYID sequence number is shared between fine-grained audit records and regular audit records.

	
STATEMENT is a numeric ID assigned to the statement the user runs. It appears for each statement issued during the user session, because a statement can result in multiple audit records.

	
ACTION is a numeric value representing the action the user performed. The corresponding name of the action type is in the AUDIT_ACTIONS table. For example, action 100 refers to LOGON.

	
RETURNCODE indicates if the audited action was successful. 0 indicates success. If the action fails, the return code lists the Oracle Database error number. For example, if you try to drop a non-existent table, the error number is ORA-00903 invalid table name, which in turn translates to 903 in the RETURNCODE setting.

	
COMMENT$TEXT indicates additional comments about the audit record. For example, for LOGON audit records, it can indicate the authentication method.It corresponds to the COMENT_TEXT column of the DBA_COMMON_AUDIT_TRAIL data dictionary view.

	
DBID is a database identifier calculated when the database is created. It corresponds to the DBID column of the V$DATABASE data dictionary view.

	
ECONTEXT_ID indicates the application execution context identifier.

	
PRIVS$USED refers to the privilege that was used to perform an action. To find the privilege, query the SYSTEM_PRIVILEGE_MAP table. For example, privilege 5 refers to -5 in this table, which means CREATE SESSION. PRIVS$USED corresponds to the PRIV_USED column in the DBA_COMMON_AUDIT_TRAIL, which lists the privilege by name.

Other possible values are as follows:

	
SCN (for example, SCN:8934328925) indicates the System Change Number (SCN). Use this value if you want to perform a flashback query to find the value of a setting (for example, a column) at a time in the past. For example, to find the value of the ORDER_TOTAL column of the OE.ORDERS table based on the SCN number, use the following SELECT statement:

SELECT ORDER_TOTAL
FROM OE.ORDERS
AS OF SCN = 8934328925
WHERE ORDER_TOTAL = 86;

	
SES_ACTIONS indicates the actions that took place during the session. This field is present only if the event was audited with the BY SESSION clause. Because this field does not explain in detail the actions that occurred during the session, you should configure the audit event with the BY ACCESS clause.

The SES_ACTIONS field contains 16 characters. Positions 14, 15, and 16 are reserved for future use. In the first 12 characters, each position indicates the result of an action. They are: ALTER, AUDIT, COMMENT, DELETE, GRANT, INDEX, INSERT, LOCK, RENAME, SELECT, UPDATE, and FLASHBACK. For example, if the user had successfully run the ALTER statement, the SES_ACTIONS setting is as follows:

S---------------

The S, in the first position (for ALTER), indicates success. Had the ALTER statement failed, the letter F would have appeared in its place. If the action resulted in both a success and failure, then the letter is B.

	
SES$TID indicates the ID of the object affected by the audited action.

	
SPARE2 indicates whether the user modified SYS.AUD$ table. 0 means the user modified SYS.AUD$; otherwise, the value is NULL.

Similarly, Example 9-4 shows how an XML audit trail record appears. The text wraps around in the actual record, but for this manual, each element appears on its own line for easier readability. To find all the tags that appear in the XML audit file, you can view its schema in a Web browser at

http://www.oracle.com/technology/oracleas/schema/dbserver_audittrail-11_2.xsd

Example 9-4 XML File Operating System Audit Trail

<?xml version="1.0" encoding="UTF-8"?>
 <Audit xmlns="http://xmlns.oracle.com/oracleas/schema/dbserver_audittrail-11_2.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/dbserver_audittrail-11_2.xsd">
 <Version>11.2</Version>
 <AuditRecord>
 <Audit_Type>1</Audit_Type>
 <Session_Id>43535</Session_Id>
 <StatementId>1</StatementId>
 <EntryId>1</EntryId>
 <Extended_Timestamp>2009-04-29T18:32:26.062000Z</Extended_Timestamp>
 <DB_User>SYSMAN</DB_User>
 <OS_User>SYSTEM</OS_User>
 <Userhost>shobeen</Userhost>
 <OS_Process>3164:3648</OS_Process>
 <Terminal>mau</Terminal>
 <Instance_Number>0</Instance_Number>
 <Action>100</Action>
 <TransactionId>0000000000000000</TransactionId>
 <Returncode>0</Returncode>
 <Comment_Text>Authenticated by: DATABASE; Client address: (ADDRESS=(PROTOCOL=tcp)(HOST=192.0.2.4)(PORT=3536))</Comment_Text>
 <Priv_Used>5</Priv_Used>
</AuditRecord>
</Audit>

In this example:

	
AuditRecord element contains the entire audit record. (See Example 9-3 for more information about the elements within the Audit_Record element.)

	
Audit_Type indicates the type of audit trail. Possible values are as follows:

	
1: Standard audit record

	
2: Fine-grained audit record

	
4: SYS audit record

	
8: Mandatory audit record

This field only appears in the XML audit files, not the OS text audit files.

	
Extended_Timestamp indicates the time of the audited operation (timestamp of user login for entries created by AUDIT SESSION), in Coordinated Universal Time (UTC) or Greenwich Mean Time (GMT). This field only appears in the XML audit files, not the OS text audit files.

	
Instance_Number indicates the instance number to which the user is connected, for an Oracle Real Application Clusters environment. In this example, the number is 0, which is used for single-instance database installations. The INSTANCE_NUMBER initialization parameter specifies this number.

The following values can appear if you set the AUDIT_TRAIL parameter to XML, EXTENDED. Both are listed in the DBA_COMMON_AUDIT_TRAIL data dictionary view.

	
Sql_Bind (for example, <Sql_Bind>#1(5):89</Sql_Bind>) shows the value of the bind variable. The syntax is as follows:

VariablePosition(LengthOfVariableValue):ValueofBindVariable

The example #1(5):89 indicates that there is 1 bind variable; its value is 5 characters long; and the value of the bind variable is 89.

	
Sql_Text (for example, <Sql_Text>begin procedure_one(:num); end; </Sql_Text>) appears if you have set the AUDIT_TRAIL parameter to XML, EXTENDED. It shows the SQL text that the user entered.

Advantages of the Operating System Audit Trail

Using the operating system audit trail offers these advantages:

	
It reduces the likelihood of a denial-of-service (DoS) attack.

	
It makes it easier to secure the audit trail. If the auditor is distinct from the database administrator, then you must use the OS, XML, or XML, EXTENDED setting. Otherwise, a database administrator can view and modify any auditing information that is stored in the database.

	
Because you are writing the audit trail to a specific location that you can restrict to specific users, the operating system audit trail enforces separation of duty concepts.

	
Writing the audit trail to an operating system file results in the least amount of overhead on the database. For this reason, it is excellent for very large databases.

	
Audit records stored in operating system files can be more secure than database-stored audit records because access can require file permissions that database administrators do not have. Greater availability is another advantage to operating system storage for audit records, because they remain available even if the database is temporarily inaccessible.

	
If the AUDIT_TRAIL initialization parameter is set to XML (or XML, EXTENDED), then Oracle Database writes audit records to the operating system as XML files. You can use the V$XML_AUDIT_TRAIL view to make XML audit records available to database administrators through a SQL query, providing enhanced usability.

	
The DBA_COMMON_AUDIT_TRAIL view includes the standard and fine grained audit trails written to database tables, XML-format audit trail records, and the contents of the V$XML_AUDIT_TRAIL dynamic view (standard, fine grained, SYS and mandatory).

	
Using your operating system audit trail can enable you to consolidate audit records from multiple sources, including Oracle Database and other applications. Examining system activity can be more efficient with all audit records in one place. If you use XML audit records, then you can use of any standard XML editing tool to review or extract information from those records.

How the Operating System Audit Trail Works

The operating system audit trail writes the audit data to an operating system file. You can enable this feature by setting the AUDIT_TRAIL initialization parameter to one of the following values:

	
OS: Writes the audit trail records to a text operating system file on UNIX systems and to the applications Event Viewer on Microsoft Windows.

	
XML: Writes the audit trail records to an XML file.

	
XML, EXTENDED: Writes the audit trail records to an XML file and includes SQL text and SQL bind information in the operating system XML audit files.

The AUDIT_FILE_DEST initialization parameter sets the location of the operating system audit file. If you want to audit top-level statements issued by users who log in to the database with the SYSDBA or SYSOPER privilege, then set the AUDIT_SYS_OPERATIONS parameter to TRUE. See Table 9-2, "AUDIT_TRAIL Initialization Parameter Settings" for more information about these settings.

The records that are written to an operating system file are not recorded to the SYS.AUD$ and SYS.FGA_LOG$ tables. You can still view the contents of the XML operating system audit files by querying the DBA_COMMON_AUDIT_TRAIL data dictionary views. Querying this view parses all XML files (all files with an .xml extension) in the AUDIT_FILE_DEST directory, and then presents them in relational table format. Because XML is a standard document format, many utilities are available to parse and analyze XML data. Consult the operating system-specific Oracle Database documentation to find if this feature has been implemented on your operating system.

Specifying a Directory for the Operating System Audit Trail

Use the AUDIT_FILE_DEST initialization parameter to specify an operating system directory into which the audit trail is written, when the AUDIT_TRAIL initialization parameter is set to OS, XML, or XML, EXTENDED. You must set AUDIT_FILE_DEST to a valid directory with permissions restricted to the owner of the Oracle software and the DBA group. Mandatory auditing information also goes into that directory, as do audit records for user SYS if the AUDIT_SYS_OPERATIONS initialization parameter is specified. You can change the AUDIT_FILE_DEST parameter by using the following ALTER SYSTEM statement, which enables the new destination to be effective for all subsequent sessions.

ALTER SYSTEM SET AUDIT_FILE_DEST = directory_path DEFERRED;

To find the current setting of the AUDIT_FILE_DEST parameter, issue the following command:

SHOW PARAMETER AUDIT_FILE_DEST

The location of the operating system files depends on the following:

	
If the database is not running and you have not set the AUDIT_FILE_DEST parameter, then the operating system files are placed in the first default location $ORACLE_BASE/admin/$ORACLE_SID/adump directory.

	
If the database is not running and the first default location, the $ORACLE_BASE/admin/$ORACLE_SID/adump directory, is inaccessible or cannot be written to, or the Oracle process cannot identify the environment variables, then the second default location, $ORACLE_HOME/rdbms/audit is used.

	
When the database is open and Oracle Database reads the initialization file (initSID.ora) for the database instance, the value of AUDIT_FILE_DEST parameter is used as the operating system audit file directory.

	
For UNIX and Solaris systems, all operating system files are written to a directory in the operating system. For Windows, the operating system text records are available from the Windows Event Viewer, but operating system XML files are available from an operating system directory, as explained in the preceding bulleted items.

	
Notes:

For platforms other than UNIX, Solaris, and Windows, check the platform documentation to learn the correct target directory for operating system files.

Using the Syslog Audit Trail on UNIX Systems

On UNIX systems, you can audit the activities of users, including privileged users, and record these activities in a syslog file by creating a syslog audit trail.

This section contains:

	
About the Syslog Audit Trail

	
Format of the Information Stored in the Syslog Audit Trail

	
What Does the Syslog Audit Trail Look Like?

	
Configuring Syslog Auditing

About the Syslog Audit Trail

A potential security vulnerability for the operating system audit trail is that a privileged user, such as a database administrator, can modify or delete database audit records. To minimize this risk, you can use a syslog audit trail. Syslog is a standard protocol on UNIX-based systems for logging information from different components of a network. Applications call the syslog() function to log information to the syslog daemon, which then determines where to log the information. You can configure syslog to log information to a file or to a dedicated host by editing the syslog.conf file. You can also configure syslog to alert a specified set of users when information is logged.

Because applications, such as an Oracle process, use the syslog() function to log information to the syslog daemon, a privileged user would not have permissions to the file system where syslog messages are logged. For this reason, audit records stored using a syslog audit trail can be more secure than audit records stored using an operating system audit trail. In addition to restricting permissions to a file system for a privileged user, for a syslog audit trail to be secure, neither privileged users nor the Oracle process should have root access to the system where the audit records are written.

	
Caution:

You should have a strong understanding of how to work with syslog before enabling syslog auditing. See the following references for more information about syslog:
	
Oracle Database Reference for information about the AUDIT_SYSLOG_LEVEL initialization parameter

	
The UNIX man page for the syslogd utility for more information about the facility.priority settings and their directory paths

Format of the Information Stored in the Syslog Audit Trail

Similar to the operating system audit trail records, Oracle Database encodes the syslog records to ensure greater security. If you have Oracle Audit Vault installed, you can use its Syslog Collector to extract and transfer syslog audit records to centralized Oracle Audit Vault server.

What Does the Syslog Audit Trail Look Like?

Example 9-5 shows how the syslog audit trail can appear. (For this example, the text has been reformatted for easier readability. In reality, the text is all on one line.) As with other Oracle Database audit trails, the brackets indicate the length of the value that was audited. For syslog audit trails, the text from (and including) LENGTH: is Oracle Database audit record. The prepended text (the date and Oracle Audit [10085] line) is added by the syslog utility.

Example 9-5 Syslog Audit Trail for SYS User

May 14 23:40:15 shobeen
Oracle Audit[10085]:
LENGTH : '171'
ACTION :[18] 'select * from aud$'
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[6] 'pts/12'
STATUS:[1] '0'
DBID:[9] '562317007'

Configuring Syslog Auditing

To enable syslog auditing, follow these steps:

	
Assign the value of OS to the AUDIT_TRAIL initialization parameter, as described in "Enabling or Disabling the Standard Audit Trail".

For example:

ALTER SYSTEM SET AUDIT_TRAIL=OS SCOPE=SPFILE;

	
Manually set the AUDIT_SYSLOG_LEVEL parameter to the initialization parameter file, initsid.ora.

Set the AUDIT_SYSLOG_LEVEL parameter to specify a facility and priority in the format AUDIT_SYSLOG_LEVEL=facility.priority.

	
facility: Describes the part of the operating system that is logging the message. Accepted values are user, local0–local7, syslog, daemon, kern, mail, auth, lpr, news, uucp, and cron.

The local0–local7 values are predefined tags that enable you to sort the syslog message into categories. These categories can be log files or other destinations that the syslog utility can access. To find more information about these types of tags, refer to the syslog utility MAN page.

	
priority: Defines the severity of the message. Accepted values are notice, info, debug, warning, err, crit, alert, and emerg.

The syslog daemon compares the value assigned to the facility argument of the AUDIT_SYSLOG_LEVEL parameter with the syslog.conf file to determine where to log information.

For example, the following statement identifies the facility as local1 with a priority level of warning:

AUDIT_SYSLOG_LEVEL=local1.warning

See Oracle Database Reference for more information about AUDIT_SYSLOG_LEVEL.

	
Log in to the computer that contains the syslog configuration file, /etc/syslog.conf, with the superuser (root) privilege.

	
Add the audit file destination to the syslog configuration file syslog.conf.

For example, assuming you had set the AUDIT_SYSLOG_LEVEL to local1.warning, enter the following:

local1.warning /var/log/audit.log

This setting logs all warning messages to the /var/log/audit.log file.

	
Restart the syslog logger:

$/etc/rc.d/init.d/syslog restart

Now, all audit records will be captured in the file /var/log/audit.log through the syslog daemon.

	
Restart the database instance:

CONNECT SYS / AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

How the AUDIT and NOAUDIT SQL Statements Work

This section contains:

	
Enabling Standard Auditing with the AUDIT SQL Statement

	
Auditing Statement Executions: Successful, Unsuccessful, or Both

	
How Standard Audit Records Are Generated

	
How Do Cursors Affect Standard Auditing?

	
Benefits of Using the BY ACCESS Clause in the AUDIT Statement

	
Auditing Actions Performed by Specific Users

	
Removing the Audit Option with the NOAUDIT SQL Statement

	
See Also:

Oracle Database SQL Language Reference for a description of the AUDIT statement syntax

Enabling Standard Auditing with the AUDIT SQL Statement

To configure the standard auditing option, use the AUDIT SQL statement.

Table 9-4 lists the categories in which you can use the AUDIT statement.

Table 9-4 Standard Auditing Levels and Their Effects

	Level	Effect
	
Statement

	
Audits specific SQL statements or groups of statements that affect a particular type of database object. For example, AUDIT TABLE audits the CREATE TABLE, TRUNCATE TABLE, COMMENT ON TABLE, and DELETE [FROM] TABLE statements.

	
Privilege

	
Audits SQL statements that are authorized by the specified system privilege. For example, AUDIT CREATE ANY TRIGGER audits statements issued using the CREATE ANY TRIGGER system privilege.

	
Object

	
Audits specific statements on specific objects, such as ALTER TABLE on the HR.EMPLOYEES table.

	
Network

	
Audits unexpected errors in network protocol or internal errors in the network layer.

Auditing Statement Executions: Successful, Unsuccessful, or Both

For statement, privilege, and schema object auditing, Oracle Database permits the selective auditing of successful executions of statements, unsuccessful attempts to execute statements, or both. This enables you to monitor actions even if the audited statements do not complete successfully. Monitoring unsuccessful SQL statement can expose users who are snooping or acting maliciously, though most unsuccessful SQL statements are neither.

This method of auditing is also useful in that it reduces the audit trail, helping you to focus on specific actions. This can aid in maintaining good database performance.

The options are as follows:

	
WHENEVER SUCCESSFUL clause: This clause audits only successful executions of the audited statement.

	
WHENEVER NOT SUCCESSFUL clause: This clause audits only unsuccessful executions of the audited statement.

Auditing an unsuccessful statement execution generates an audit report only if a valid SQL statement is issued but fails, because it lacks proper authorization or references a nonexistent schema object. Statements that fail to execute because they were not valid cannot be audited.

For example, an enabled privilege auditing option set to audit unsuccessful statement executions audits statements that use the target system privilege but failed for other reasons. One example is when a CREATE TABLE auditing condition is set, but some CREATE TABLE statements fail due to insufficient quota for the specified tablespace.

	
Omitting WHENEVER SUCCESSFUL or WHENEVER NOT SUCCESSFUL: If you omit these clauses, then Oracle Database audits both successful and unsuccessful executions of the audited statement.

For example:

AUDIT CREATE TABLE BY ACCESS WHENEVER NOT SUCCESSFUL;

How Standard Audit Records Are Generated

Oracle Database generates an audit record for each execution of an audited statement or operation, as follows:

	
Each time the SQL statement for which auditing was configured is executed. This also includes the execution of the statements within PL/SQL procedures.

	
Each time the privilege for which auditing was configured is used

	
Each time the object for which auditing was configured is operated upon

How Do Cursors Affect Standard Auditing?

For each execution of an auditable operation within a cursor, Oracle Database inserts one audit record into the audit trail. Events that cause cursors to be reused include the following:

	
An application, such as Oracle Forms, holding a cursor open for reuse

	
Subsequent execution of a cursor using new bind variables

	
Statements executed within PL/SQL loops where the PL/SQL engine optimizes the statements to reuse a single cursor

Auditing is not affected by whether or not a cursor is shared. Each user creates her or his own audit trail records on first execution of the cursor.

Benefits of Using the BY ACCESS Clause in the AUDIT Statement

By default, Oracle Database writes a new audit record for every audited event, using the BY ACCESS clause functionality. To use this functionality, either include BY ACCESS in the AUDIT statement, or if you want, you can omit it because it is the default. (As of Oracle Database 11g Release 2 (11.2.0.2), the BY ACCESS clause is the default setting.)

Oracle recommends that you audit BY ACCESS and not BY SESSION in your AUDIT statements. The benefits of using the BY ACCESS clause in the AUDIT statement are as follows:

	
The audit records generated through the BY ACCESS audit option have more information, such as execution status (return code), date and time of execution, the privileges used, the objects accessed, the SQL text itself and its bind values. In addition, the BY ACCESS audit option captures the SCN for each execution and this can help flashback queries.

	
Oracle Database records separately each execution of a SQL statement, the use of a privilege, and access to the audited object. Given that the values for the return code, timestamp, SQL text recorded are accurate for each execution, this can help you find how many times the action was performed.

	
The BY ACCESS audit records have separate LOGON and LOGOFF entries, each with fine-grained timestamps.

For example:

AUDIT SELECT TABLE BY ACCESS;

In this scenario:

	
The user jward connects to the database and issues five SELECT statements against the table named departments and then disconnects from the database.

	
The user swilliams connects to the database and issues three SELECT statements against the departments table and then disconnects from the database.

The audit trail contains eight records, one recorded for each SELECT statement.

Auditing Actions Performed by Specific Users

Statement and privilege audit options can audit statements issued by any user or statements issued by a specific list of users. By focusing on specific users, you can minimize the number of audit records generated.

Example 9-6 shows how to audit statements by users scott and blake when they query or update a table or view.

Example 9-6 Using AUDIT to Audit User Actions

AUDIT SELECT TABLE, UPDATE TABLE BY scott, blake BY ACCESS;

See Oracle Database SQL Language Reference for additional information about auditing by user.

Removing the Audit Option with the NOAUDIT SQL Statement

The NOAUDIT statement removes the audit option. Use it to reset statement and privilege audit options, and object audit options. A NOAUDIT statement that sets statement and privilege audit options can include the BY user clause to specify a list of users to limit the scope of the statement and privilege audit options.

You can use the NOAUDIT statement to disable an audit option selectively using the WHENEVER clause. If the clause is not specified, then the auditing option is disabled entirely, for both successful and unsuccessful cases.

The NOAUDIT statement does not support the BY ACCESS clause. You can remove audit options, no matter how they were turned on, by using an appropriate NOAUDIT statement.

	
See Also:

Oracle Database SQL Language Reference for a description of the NOAUDIT statement syntax

Auditing SQL Statements

This section contains:

	
About SQL Statement Auditing

	
Types of SQL Statements That Are Audited

	
Configuring SQL Statement Auditing

	
Removing SQL Statement Auditing

About SQL Statement Auditing

SQL statement auditing is the selective auditing of related groups of SQL statements regarding a particular type of database structure or schema object, but not a specifically named structure or schema object.

Types of SQL Statements That Are Audited

The statements that you can audit are in the following categories:

	
DDL statements. For example, AUDIT TABLE audits all CREATE and DROP TABLE statements

	
DML statements. For example, AUDIT SELECT TABLE audits all SELECT ... FROM TABLE/VIEW statements, regardless of the table or view

Statement auditing can be broad or focused, for example, by auditing the activities of all database users or of only a select list of activities.

Configuring SQL Statement Auditing

Use the AUDIT statement to configure SQL statement auditing. You must have the AUDIT SYSTEM system privilege before you can enable auditing. Typically, only the security administrator is granted this system privilege.

Example 9-7 shows how to audit the SELECT TABLE SQL statement.

Example 9-7 Using AUDIT to Enable SQL Statement Auditing

AUDIT SELECT TABLE BY ACCESS;

If you plan to audit all SQL statements, individual user connections, or references to non-existent objects, follow these guidelines:

	
Auditing all SQL statements for individual users. You can use the ALL STATEMENTS clause to audit only the top-level SQL statements. The behavior of this audit option is different from other statement audit options. If the SQL statement is issued from inside a PL/SQL procedure, then the ALL STATEMENTS audit option does not audit it. This audit option does not affect any other AUDIT options that you may have already set.

For example, to audit all successful statements issued by users jward and jsmith, enter the following:

AUDIT ALL STATEMENTS BY jward, jsmith BY ACCESS WHENEVER SUCCESSFUL;

	
Auditing all the SQL statement shortcut activities performed by individual users. You can use the ALL clause to audit all the SQL statement shortcuts listed in Table 13-1 and Table 13-2 in Oracle Database SQL Language Reference.

For example:

AUDIT ALL BY jward BY ACCESS;

	
Auditing all SQL statements for the current session, regardless of user. You can use the IN SESSION CURRENT clause for ALL STATEMENTS audit option to audit top-level SQL statements in the lifetime of the user session. You cannot use the IN SESSION CURRENT clause for a specific user. You cannot use the NOAUDIT statement to cancel it, but the auditing lasts only as long as the user session lasts. When the user ends the session, the auditing ends.

For example, to audit all unsuccessful statements in any current user session:

AUDIT ALL STATEMENTS IN SESSION CURRENT BY ACCESS WHENEVER NOT SUCCESSFUL;

You can use the AUDIT ALL STATEMENTS audit option with the IN SESSION CURRENT clause in a database logon trigger. The database logon trigger can use SYS_CONTEXT function to configure this auditing only under certain conditions, such as the time a user logs in between 6:30 p.m. to 9:00 a.m. This would enable you to capture SQL statements performed by users who log in to the database during non-work hours.

This type of auditing is useful to increase the collection of audit activity when you suspect this connection may not be secure or could pose an internal threat. For example, by using a database logon trigger, you can query contents of the connection context using the SYS_CONTEXT function.

The logon trigger functionality can establish that this connection should be audited more fully. Issue the following SQL command:

AUDIT ALL STATEMENTS IN SESSION CURRENT;

This type of auditing remains in effect until this session is terminated.

	
Auditing login and logoff connections and disconnections. The AUDIT SESSION statement generates an independent audit record for every login and logoff event. This enables you to audit all successful and unsuccessful connections to and disconnections from the database, regardless of user.

For example:

AUDIT SESSION BY ACCESS;

You can set this option selectively for individual users also, as in the following example:

AUDIT SESSION BY jward, jsmith BY ACCESS;

	
Auditing statements that fail because an object does not exist. The NOT EXISTS option of the AUDIT statement specifies auditing of all SQL statements that fail because the target object does not exist.

For example:

AUDIT NOT EXISTS;

See Oracle Database SQL Language Reference for detailed information about the AUDIT SQL statement.

Removing SQL Statement Auditing

To remove SQL statement auditing, use the use the NOAUDIT SQL statement. (Privilege auditing will still be enabled.) You must have the AUDIT SYSTEM system privilege before you can remove SQL statement auditing. If you have configured the AUDIT ALL STATEMENTS option, then issuing the NOAUDIT AUDIT STATEMENTS statement does not affect other audit options you may have set. If you included the IN SESSION CURRENT clause in the AUDIT statement, you cannot remove this AUDIT statement using the NOAUDIT statement. (The audit setting discontinues when the user's session ends.)

Example 9-8 shows examples of using the NOAUDIT statement to remove auditing.

Example 9-8 Using NOAUDIT to Remove Session and SQL Statement Auditing

NOAUDIT session;
NOAUDIT session BY preston, sebastian;
NOAUDIT DELETE ANY TABLE;
NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE;

Example 9-9 shows how to remove all statement auditing by using the NOAUDIT statement.

Example 9-9 Using NOAUDIT to Remove ALL STATEMENTS Auditing

NOAUDIT ALL STATEMENTS;

See Oracle Database SQL Language Reference for detailed information about the NOAUDIT statement.

Auditing Privileges

This section contains:

	
About Privilege Auditing

	
Types of Privileges That Can Be Audited

	
Configuring Privilege Auditing

	
Removing Privilege Auditing

About Privilege Auditing

Privilege auditing audits statements that use a system privilege, such as SELECT ANY TABLE. In this kind of auditing, SQL statements that require the audited privilege to succeed are recorded.

Types of Privileges That Can Be Audited

You can audit the use of any system privilege. Similar to statement auditing, privilege auditing audits the activities of all database users or only a specified list.

If you set similar audit options for both statement and privilege auditing, then only a single audit record is generated. For example, if the statement clause TABLE and the system privilege CREATE TABLE are both audited, then only a single audit record is generated each time a table is created.

Privilege auditing does not occur if the action is already permitted by the existing owner and object privileges. Privilege auditing is triggered only if the privileges are insufficient, that is, only if what makes the action possible is a system privilege. For example, suppose that user SCOTT has been granted the SELECT ANY TABLE privilege and the SELECT ANY TABLE is being audited. If SCOTT selects his own table (for example, SCOTT.EMP), then the SELECT ANY TABLE privilege is not used. Because he performed the SELECT statement within his own schema, no audit record is generated. On the other hand, if SCOTT selects from another schema (for example, the HR.EMPLOYEES table), then an audit record is generated. Because SCOTT selected a table outside his own schema, he needed to use the SELECT ANY TABLE privilege.

Privilege auditing is more focused than statement auditing, because each privilege auditing option audits only specific types of statements, not a related list of statements. For example, the statement auditing clause, TABLE, audits CREATE TABLE, ALTER TABLE, and DROP TABLE statements. However, the privilege auditing option, CREATE TABLE, audits only CREATE TABLE statements, because only the CREATE TABLE statement requires the CREATE TABLE privilege.

See the listing of system privileges in the GRANT SQL statement section of Oracle Database SQL Language Reference.

Configuring Privilege Auditing

Privilege audit options are the same as their corresponding system privileges. For example, the option to audit use of the DELETE ANY TABLE privilege is DELETE ANY TABLE.

Example 9-10 shows how to audit the DELETE ANY TABLE privilege.

Example 9-10 Using AUDIT to Configure Privilege Auditing

AUDIT DELETE ANY TABLE BY ACCESS WHENEVER NOT SUCCESSFUL;

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system privilege, enter the following statement:

AUDIT DELETE ANY TABLE BY ACCESS;

Example 9-11 shows how to audit all unsuccessful SELECT, INSERT, and DELETE statements on all tables and unsuccessful uses of the EXECUTE PROCEDURE system privilege, by all database users, and by individual audited statement.

Example 9-11 Auditing Unsuccessful Statements and Privileges

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Removing Privilege Auditing

The following statement removes all privilege audit options:

NOAUDIT ALL PRIVILEGES;

This example disables the audit settings from Example 9-11:

NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE;

To disable privilege auditing options, you must have the AUDIT SYSTEM system privilege. Usually, only the security administrator is granted this system privilege.

Auditing SQL Statements and Privileges in a Multitier Environment

You can use the AUDIT statement to audit the activities of a client in a multitier environment. In a multitier environment, Oracle Database preserves the identity of a client through all tiers. Thus, you can audit actions taken on behalf of the client by a middle-tier application, by using the BY user clause in your AUDIT statement. The audit applies to all user sessions, including proxy sessions.

The middle tier can also set the user client identity in a database session, enabling the auditing of end-user actions through the middle-tier application. The end-user client identity then shows up in the audit trail.

Example 9-12 shows how to audit SELECT TABLE statements issued by the user jackson.

Example 9-12 Using AUDIT to Audit a SQL Statement for a User

AUDIT SELECT TABLE BY jackson;

You can audit user activity in a multitier environment. Once audited, you can verify these activities by querying the DBA_AUDIT_TRAIL data dictionary view.

Figure 9-1 illustrates how you can audit proxy users by querying the COMMENT_TEXT, PROXY_SESSIONID, ACTION_NAME, and SESSION_ID columns of the DBA_AUDIT_TRAIL view. In this scenario, both the database user and proxy user accounts are known to the database. Session pooling can be used.

Figure 9-1 Auditing Proxy Users

[image: Description of Figure 9-1 follows]

Figure 9-2 illustrates how you can audit client identifier information across multiple database sessions by querying the CLIENT_ID column of the DBA_AUDIT_TRAIL data dictionary view. In this scenario, the client identifier has been set to CLIENT_A. As with the proxy user-database user scenario described in Figure 9-1, session pooling can be used.

Figure 9-2 Auditing Client Identifier Information Across Sessions

[image: Description of Figure 9-2 follows]

	
See Also:

"Preserving User Identity in Multitiered Environments" for more information about user authentication in a multitiered environment

Auditing Schema Objects

This section contains:

	
About Schema Object Auditing

	
Types of Schema Objects That Can Be Audited

	
Using Standard Auditing with Editioned Objects

	
Schema Object Audit Options for Views, Procedures, and Other Elements

	
Configuring Schema Object Auditing

	
Removing Object Auditing

	
Setting Audit Options for Objects That May Be Created in the Future

About Schema Object Auditing

Schema object auditing monitors actions performed on the audited schema objects, such as tables or views. Object auditing applies to all users but is limited to the audited object only. Users can use the AUDIT and NOAUDIT statements on objects in their own schemas.

Types of Schema Objects That Can Be Audited

You can audit statements that refer to tables, views, sequences, standalone stored procedures or functions, and packages, but not individual procedures within packages. (See "Auditing Functions, Procedures, Packages, and Triggers" for more information about auditing these types of objects.)

You cannot directly audit statements that reference clusters, database links, indexes, or synonyms. However, you can indirectly audit access to these schema objects, by auditing the operations that affect the base table.

When you audit a schema object, the auditing applies to all users of the database. You cannot set these options for a specific list of users. You can set default schema object audit options for all auditable schema objects.

	
See Also:

Oracle Database SQL Language Reference for information about auditable schema objects

Using Standard Auditing with Editioned Objects

When an editioned object has an audit policy, then it applies in all editions in which the object is visible. When an editioned object is actualized, any audit policies that are attached to it are newly attached to the new actual occurrence. When you newly apply an audit policy to an inherited editioned object, this action will actualize it.

You can find the editions in which audited objects appear by querying the OBJECT_NAME and OBJ_EDITION_NAME columns in the DBA_COMMON_AUDIT_TRAIL and V$XML_AUDIT_TRAIL data dictionary views.

	
See Also:

Oracle Database Advanced Application Developer's Guide for detailed information about editions

Schema Object Audit Options for Views, Procedures, and Other Elements

The definitions for views and procedures (including stored functions, packages, and triggers) reference underlying schema objects. Because of this dependency, some unique characteristics apply to auditing views and procedures, such as the likelihood of generating multiple audit records.

Views and procedures are subject to the enabled audit options on the base schema objects, including the default audit options. These options also apply to the resulting SQL statements.

Consider the following series of SQL statements:

AUDIT SELECT ON HR.EMPLOYEES BY ACCESS;

CREATE VIEW employees_departments AS
 SELECT employee_id, last_name, department_id
 FROM employees, departments
 WHERE employees.department_id = departments.department_id;

AUDIT SELECT ON employees_departments BY ACCESS;

SELECT * FROM employees_departments;

As a result of the query on the employees_departments view, two audit records are generated: one for the query on the employees_departments view and one for the query on the base table employees (indirectly through the employees_departments view). The query on the base table departments does not generate an audit record because the SELECT audit option for this table is not enabled. All audit records pertain to the user that queried the employees_departments view.

In the given example, if the AUDIT SELECT ON HR.EMPLOYEES; statement is omitted, then using the employees_departments view does not generate an audit record for the EMPLOYEES table.

Configuring Schema Object Auditing

You can use the AUDIT statement to configure object auditing in the current edition. Oracle Database SQL Language Reference lists valid object audit options for AUDIT and the schema object types for which each option is available.

A user can set any object audit option for the objects contained in his or her schema. The AUDIT ANY system privilege is required to set an object audit option for an object contained in another user schema or to set the default object auditing option. Usually, only the security administrator is granted the AUDIT ANY privilege.

Figure 9-2 shows how to audit all successful and unsuccessful DELETE statements on the laurel.emp table.

Example 9-13 Configuring Auditing for a Schema Table

AUDIT DELETE ON laurel.emp BY ACCESS;

Example 9-14 shows how to audit all successful SELECT, INSERT, and DELETE statements on the dept table owned by user jward.

Example 9-14 Auditing Successful Statements on a Schema Table

AUDIT SELECT, INSERT, DELETE
 ON jward.dept
 BY ACCESS
 WHENEVER SUCCESSFUL;

Example 9-15 shows how you can use the ON DEFAULT clause to apply to any new objects (tables, views, and sequences) that are created after you set the AUDIT statement. In this example, new objects that are created in the future will be audited for all unsuccessful SELECT statements:

Example 9-15 Configuring Auditing for Any New Objects Using the DEFAULT Clause

AUDIT SELECT
 ON DEFAULT
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Example 9-16 shows how to audit the execution of PL/SQL procedure or function.

Example 9-16 Auditing the Execution of a Procedure or Function

AUDIT EXECUTE ON sec_mgr.auth_orders BY ACCESS;

Removing Object Auditing

Use the NOAUDIT statement to remove object auditing. The following statements turn off the corresponding auditing options:

NOAUDIT DELETE
 ON emp;
NOAUDIT SELECT, INSERT, DELETE
 ON jward.dept;

To remove all object audit options on the emp table, enter the following statement:

NOAUDIT ALL ON emp;

To remove all default object audit options, enter the following statement:

NOAUDIT ALL ON DEFAULT;

All schema objects that are created before this NOAUDIT statement is issued continue to use the default object audit options in effect at the time of their creation, unless overridden by an explicit NOAUDIT statement after their creation.

To remove object audit options for a specific object, you must be the owner of the schema object. To remove the object audit options of an object in the schema of another user or to remove default object audit options, you must have the AUDIT ANY system privilege. A user with privileges to remove object audit options of an object can override the options set by any user.

Setting Audit Options for Objects That May Be Created in the Future

You can create audit settings for objects that do not exist yet, such as the insertion and deletion of tables to be created. There are two approaches that you can take. One approach is to use the statement audit options in the AUDIT statement. For example, to audit all inserts on future tables, enter the following SQL statement:

AUDIT INSERT TABLE BY ACCESS;

The second approach is to invoke the AUDIT statement using the ON DEFAULT clause. For example:

AUDIT ALL ON DEFAULT BY ACCESS;

This statement audits by default all subsequent object creation statements. The ON keyword specifies object auditing. The ON DEFAULT clause configures auditing for subsequently created objects that are affected by the following statements:

	ALTER	EXECUTE	INSERT	SELECT
	AUDIT	GRANT	LOCK	UPDATE
	COMMENT	FLASHBACK	READ	
	DELETE	INDEX	RENAME	

To restrict ON DEFAULT to a specific action, enter a statement similar to the following:

AUDIT ALTER, DELETE ON DEFAULT BY ACCESS;

For more information about the audit options and the ON DEFAULT clause of the AUDIT SQL statement, see Oracle Database SQL Language Reference. To find objects audited by default, query the ALL_DEF_AUDIT_OPTS data dictionary view.

Auditing Directory Objects

This section contains:

	
About Directory Object Auditing

	
Configuring Directory Object Auditing

	
Removing Directory Object Auditing

About Directory Object Auditing

You can audit directory objects. For example, suppose you create a directory object that contains a preprocessor program that the ORACLE_LOADER access driver will use. You can audit anyone who runs this program within this directory object.

Configuring Directory Object Auditing

Use the AUDIT statement to enable object auditing. Example 9-17 shows how to audit the EXECUTE privilege on the directory object my_exec.

Example 9-17 Auditing a Directory Object

AUDIT EXECUTE ON DIRECTORY my_exec BY ACCESS;

Removing Directory Object Auditing

Use the NOAUDIT statement to disable directory object auditing. For example:

NOAUDIT EXECUTE ON DIRECTORY my_exec;

Auditing Functions, Procedures, Packages, and Triggers

This section contains:

	
About Auditing Functions, Procedures, Packages, and Triggers

	
Configuring the Auditing of Functions, Procedures, Packages, and Triggers

	
Removing the Auditing of Functions, Procedures, Packages, and Triggers

About Auditing Functions, Procedures, Packages, and Triggers

You can audit functions, procedures, PL/SQL packages, and triggers. The areas that you can audit are as follows:

	
You can individually audit standalone functions, standalone procedures, and PL/SQL packages.

	
If you audit a PL/SQL package, Oracle Database audits all functions and procedures within the package.

	
If you enable auditing for all executions, Oracle Database audits all triggers in the database, as well as all the functions and procedures within PL/SQL packages.

	
You cannot audit individual functions or procedures within a PL/SQL package.

If you want to audit functions that are associated with Oracle Virtual Private database policies, note the following:

	
Dynamic policies: Oracle Database evaluates the policy function twice, once during SQL statement parsing and again during execution. As a result, two audit records are generated for each evaluation.

	
Static policies: Oracle Database evaluates the policy function once and then caches it in the SGA. As a result, only one audit record is generated.

	
Context-sensitive policies: Oracle Database executes the policy function once, during statement parsing. As a result, only one audit record is generated.

Configuring the Auditing of Functions, Procedures, Packages, and Triggers

Example 9-18 shows how to audit the execution of any function, procedure, package, or trigger, by any user in the database.

Example 9-18 Auditing All Functions, Procedures, Packages, and Triggers

AUDIT EXECUTE PROCEDURE BY ACCESS;

Example 9-19 shows how to audit user psmith's successful and unsuccessful executions of functions, procedures, packages, and triggers.

Example 9-19 Auditing a User's Execution of Functions, Procedures, Packages, and Triggers

AUDIT EXECUTE PROCEDURE BY psmith BY ACCESS;

Example 9-20 shows how to audit a standalone procedure entitled check_work that is in the sales_data schema. This idea applies to standalone functions as well.

Example 9-20 Auditing the Execution of a Procedure or Function within a Schema

AUDIT EXECUTE ON sales_data.check_work BY ACCESS WHENEVER SUCCESSFUL;

Removing the Auditing of Functions, Procedures, Packages, and Triggers

Use the NOAUDIT statement to remove the auditing of functions, procedures, and triggers. For example:

NOAUDIT EXECUTE PROCEDURE;

NOAUDIT EXECUTE PROCEDURE BY psmith;

NOAUDIT EXECUTE ON sales_data.checkwork;

Auditing Network Activity

This section contains:

	
About Network Auditing

	
Configuring Network Auditing

	
Removing Network Auditing

About Network Auditing

You can use the AUDIT statement to audit unexpected errors in network protocol or internal errors in the network layer. Network auditing captures errors that occur during communication with the client on the network. These are errors thrown by the SQL*Net driver. There can be several causes of network errors. For example, an internal event set by a database engineer for testing purposes can cause a network error. Other causes include conflicting configuration settings for encryption, such as the network not finding the information required to create or process expected encryption. The errors that network auditing uncovers (such as ACTION 122 Network Error) are not connection failures: network auditing is only concerned with data as it travels across the network.

The audit record for network auditing lists the authentication type and SQL*Net address of the client (if available) in the COMMENT_TEXT field of the audit record, using the following format:

Authenticated by: authentication_type; Client Address: SQLNetAddress_of_client

The Client Address: SQLNetAddress_of_client portion only appears if this information is available.

Table 9-5 shows how to remedy four common error conditions.

Table 9-5 Auditable Network Error Conditions

	Error	Cause	Action
	
TNS-02507

Encryption algorithm not installed

	
After picking an algorithm, the server was unable to find an index for it in its table of algorithms. This should be impossible because the algorithm was chosen (indirectly) from that list.

	
Turn on tracing for further details, and then rerun the operation. (Note that this error is not normally visible to the user.) If the error persists, then contact Oracle Support Services.

	
TNS-12648

Encryption or data integrity algorithm list empty

	
An Oracle Advanced Security list-of-algorithms parameter was empty.

	
Change the list to contain the name of at least one installed algorithm, or remove the list entirely if every installed algorithm is not acceptable.

	
TNS-12649

Unknown encryption or data integrity algorithm

	
An Oracle Advanced Security list-of-algorithms parameter included an algorithm name that was not recognized.

	
Remove that algorithm name, correct it if it was misspelled, or install the driver for the missing algorithm.

	
TNS-12650

No common encryption or data integrity algorithm

	
The client and server have no algorithm in common for either encryption or data integrity or both.

	
Choose sets of algorithms that overlap. In other words, add one of the client algorithm choices to the server list, or add one of the server list choices to the client algorithm.

Configuring Network Auditing

To configure network auditing, use the AUDIT statement. For example:

AUDIT NETWORK BY ACCESS;

Removing Network Auditing

To remove network auditing:

NOAUDIT NETWORK;

Using Default Auditing for Security-Relevant SQL Statements and Privileges

This section contains:

	
About the Default Auditing Settings

	
Privileges That Oracle Database Audits by Default

	
Disabling and Enabling Default Audit Settings

About the Default Auditing Settings

When you use Database Configuration Assistant (DBCA) to create a new database, Oracle Database configures the database to audit the most commonly used security-relevant SQL statements and privileges. It also sets the AUDIT_TRAIL initialization parameter to DB. If you decide to use a different audit trail type (for example, OS if you want to write the audit trail records to operating system files), then you can do that: Oracle Database continues to audit the privileges that are audited by default. If you disable auditing by setting the AUDIT_TRAIL parameter to NONE, then no auditing takes place.

If you manually create a database, then you should run the secconf.sql script to apply the default audit settings to your database. See "Disabling and Enabling Default Audit Settings" for more information.

To individually control the auditing of SQL statements and privileges, use the AUDIT and NOAUDIT statements. For more information, see "Auditing SQL Statements" and "Auditing Privileges".

Privileges That Oracle Database Audits by Default

Oracle Database audits the following privileges by default:

	ALTER ANY PROCEDURE	CREATE ANY LIBRARY	DROP ANY TABLE
	ALTER ANY TABLE	CREATE ANY PROCEDURE	DROP PROFILE
	ALTER DATABASE	CREATE ANY TABLE	DROP USER
	ALTER PROFILE	CREATE EXTERNAL JOB	EXEMPT ACCESS POLICY
	ALTER SYSTEM	CREATE PUBLIC DATABASE LINK	GRANT ANY OBJECT PRIVILEGE
	ALTER USER	CREATE SESSION	GRANT ANY PRIVILEGE
	AUDIT SYSTEM	CREATE USER	GRANT ANY ROLE
	CREATE ANY JOB	DROP ANY PROCEDURE	

Oracle Database audits the following SQL shortcuts by default:

	ROLE	SYSTEM AUDIT	PUBLIC SYNONYM
	DATABASE LINK	PROFILE	SYSTEM GRANT

	
See Also:

	
Oracle Database SQL Language Reference for detailed information about the SQL statements described in this section

sql_statement_shortcut in Oracle Database SQL Language Reference for a list of accepted SQL shortcuts you can use with the AUDIT statement

Disabling and Enabling Default Audit Settings

If your applications use the default audit settings from Oracle Database 10g Release 2 (10.2), then you can revert to these audit settings until you modify the applications to use the Release 11g audit settings. To do so, run the undoaud.sql script.

After you have modified your applications to conform to the Release 11g audit settings, then you can manually update your database to use the audit configuration that suits your business needs, or you can run the secconf.sql script to apply the Release 11g default audit settings. You can customize this script to have different security settings if you like, but remember that the settings listed in the original script are Oracle-recommended settings.

If you created your database manually, then you should run the secconf.sql script to apply the Release 11g default audit settings to the database. Databases that have been created with Database Configuration Assistant will have these settings, but manually created databases do not.

The undoaud.sql and secconf.sql scripts are in the $ORACLE_HOME/rdbms/admin directory. The undoaud.sql script affects audit settings only, and the secconf.sql script affects both audit and password settings. They have no effect on other security settings.

Auditing Specific Activities with Fine-Grained Auditing

This section contains:

	
About Fine-Grained Auditing

	
Advantages of Fine-Grained Auditing

	
What Permissions Are Needed to Create a Fine-Grained Audit Policy?

	
Activities That Are Always Audited in Fine-Grained Auditing

	
Using Fine-Grained Audit Policies with Editions

	
Creating an Audit Trail for Fine-Grained Audit Records

	
How the Fine-Grained Audit Trail Generates Records

	
Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies

	
Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy

	
Tutorial: Auditing Nondatabase Users

About Fine-Grained Auditing

Fine-grained auditing enables you to create policies that define specific conditions that must take place for the audit to occur. This enables you to monitor data access based on content. It provides granular auditing of queries, and INSERT, UPDATE, and DELETE operations. For example, a central tax authority must track access to tax returns to guard against employee snooping, with enough detail to determine what data was accessed. It is not enough to know that SELECT privilege was used by a specific user on a particular table. Fine-grained auditing provides this deeper functionality.

In general, fine-grained audit policies are based on simple, user-defined SQL predicates on table objects as conditions for selective auditing. During fetching, whenever policy conditions are met for a row, the query is audited.

You can use fine-grained auditing to audit the following types of actions:

	
Accessing a table between 9 p.m. and 6 a.m. or on Saturday and Sunday

	
Using an IP address from outside the corporate network

	
Selecting or updating a table column

	
Modifying a value in a table column

Fine-grained auditing records are stored in the SYS.FGA_LOG$ table. To find the records have been generated for the audit policies that are in effect, you can query the DBA_FGA_AUDIT_TRAIL view. The DBA_COMMON_AUDIT_TRAIL view combines both standard and fine-grained audit log records. In addition, you can use the V$XML_AUDIT_TRAIL view to find fine-grained audit records that were written in XML formatted files. For detailed information about these views, see Oracle Database Reference.

	
Note:

	
Fine-grained auditing is supported only with cost-based optimization. For queries using rule-based optimization, fine-grained auditing checks before applying row filtering, which could result in an unnecessary audit event trigger.

	
Policies currently in force on an object involved in a flashback query are applied to the data returned from the specified flashback snapshot (based on time or system change number (SCN).

Advantages of Fine-Grained Auditing

Fine-grained auditing creates a more meaningful audit trail, one that includes only very specific actions that you want to audit. It excludes unnecessary information that occurs if each table access was recorded. Fine-grained auditing has the following advantages over standard auditing:

	
It performs a Boolean condition check. If the Boolean condition you specify is met, for example, a table being accessed on a Saturday, then the audit takes place.

	
It captures the SQL that triggered the audit. You can capture both the SQL statement that caused the audit, and any associated bind variables. Be aware that you can only capture data from scalar column types. You cannot capture data from object columns, LOBs, or user-defined column types. For example, suppose you have the following query:

SELECT NAME FROM EMPLOYEE WHERE SSN = :1

If :1 is of integer type and the value for SSN is 987654321, then the audit trail can capture this information. However, the audit trail cannot capture this information if :1 is a BLOB, CLOB, object, or user-defined type.

This feature is available if you create the fine grained audit policy with the audit_trail parameter of the DBMS_FGA.ADD_POLICY PL/SQL procedure to DB+EXTENDED or XML+EXTENDED.

	
It adds extra protection to sensitive columns. You can audit specific relevant columns that may hold sensitive information, such as salaries or Social Security numbers.

	
It provides an event handler feature. For example, you can write a function that sends an e-mail alert to a security administrator when an audited column that should not be changed at midnight is updated.

	
You do not need to set initialization parameters to enable fine-grained auditing. Instead of setting initialization parameters such as AUDIT_TRAIL, you use the DBMS_FGA PL/SQL package to add and remove fine-grained auditing policies as necessary applying them to the specific operations or objects you want to monitor.

What Permissions Are Needed to Create a Fine-Grained Audit Policy?

To create a fine-grained audit policy, you must have EXECUTE privileges on the DBMS_FGA PL/SQL package. The package is owned by the SYS user.

Activities That Are Always Audited in Fine-Grained Auditing

The SYS.AUD$ table records all data manipulation language (DML) statements, such as INSERT, UPDATE, MERGE, and DELETE, that are performed on the SYS.FGA_LOG$ table by non-SYS users. Oracle Database performs the audit even if auditing has not been configured for the SYS.FGA_LOG$ table, which is the table in which these activities occur. You can check these activities by querying the DBA_FGA_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL views. See also "Activities That Are Always Written to the Standard and Fine-Grained Audit Records".

Using Fine-Grained Audit Policies with Editions

If you are preparing an application for edition-based redefinition, and you cover each table that the application uses with an editioning view, then you must move the fine-grained audit polices that protect these tables to the editioning view.

Creating an Audit Trail for Fine-Grained Audit Records

You designate the audit trail format for fine-grained auditing by setting the audit_trail parameter for the DBMS_FGA.ADD_POLICY policy (not to be confused with the AUDIT_TRAIL initialization parameter) when you create the audit policy. Setting this parameter to XML or XML+EXTENDED writes the records to the operating system files in XML format. If you prefer to write the fine-grained audit records to the SYS.FGA_LOG$ table, then set the audit_trail parameter for the DBMS_FGA.ADD_POLICY parameter to DB or DB+EXTENDED. For a list of reasons why writing audit records to operating system files is beneficial, see "Advantages of the Operating System Audit Trail".

You can use the V$XML_AUDIT_TRAIL data dictionary view to make audit records from XML files available to DBAs through a SQL query, providing enhanced usability. Querying this view causes all XML files (all files with an .xml extension) in the AUDIT_FILE_DEST directory to be parsed and presented in relational table format.

The DBA_COMMON_AUDIT_TRAIL view includes the contents of the V$XML_AUDIT_TRAIL dynamic view for standard and fine-grained audit records.

Because the audit XML files are stored in files with the .xml extension on all platforms, the dynamic view presents audit information similarly on all platforms. See Oracle Database Reference for detailed information about the V$XML_AUDIT_TRAIL view contents.

	
Note:

If you audit tables that have sensitive data, remember that DB+EXTENDED and XML+EXTENDED settings for the DBMS_FGA.ADD_POLICY audit_trail parameter will capture this data. See "Auditing Sensitive Information" for ways to handle this scenario.

How the Fine-Grained Audit Trail Generates Records

The fine-grained audit trail captures an audit record for each reference of a table or a view within a SQL statement. For example, if you run a UNION statement that references the HR.EMPLOYEES table twice, then an audit policy for statement generates two audit records, one for each access of the HR.EMPLOYEES table.

Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies

This section contains:

	
About the DBMS_FGA PL/SQL Package

	
Creating a Fine-Grained Audit Policy

	
Disabling and Enabling a Fine-Grained Audit Policy

	
Dropping a Fine-Grained Audit Policy

About the DBMS_FGA PL/SQL Package

To manage a fine-grained audit policy, you use the DBMS_FGA PL/SQL package. This package enables you to add all combinations of SELECT, INSERT, UPDATE, and DELETE statements to one policy. You also can audit MERGE statements, by auditing the underlying actions of INSERT and UPDATE. To audit MERGE statements, configure fine-grained access on the INSERT and UPDATE statements. Only one record is generated for each policy for successful MERGE operations. To administer fine-grained audit policies, you must have the EXECUTE privilege on the DBMS_FGA package.

The audit policy is bound to the table for which you created it. This simplifies the management of audit policies because the policy only must be changed once in the database, not in each application. In addition, no matter how a user connects to the database—from an application, a Web interface, or through SQL*Plus or Oracle SQL Developer—Oracle Database records any actions that affect the policy.

If any rows returned from a query match the audit condition that you define, then Oracle Database inserts an audit entry into the fine-grained audit trail. This entry excludes all the information that is reported in the regular audit trail. In other words, only one row of audit information is inserted into the audit trail for every fine-grained audit policy that evaluates to true.

For detailed information about the syntax of the DBMS_FGA package, see Oracle Database PL/SQL Packages and Types Reference. See also Oracle Database Advanced Application Developer's Guide.

	
Note:

If you plan to use the DBMS_FGA package policy across different editions, then you can control the results of the policy: whether the results are uniform across all editions, or specific to the edition in which the policy is used. See "How Editions Affects the Results of a Global Application Context PL/SQL Package" for more information.

Creating a Fine-Grained Audit Policy

To create a fine-grained audit policy, use the DBMS_FGA.ADD_POLICY procedure. This procedure creates an audit policy using the supplied predicate as the audit condition. Oracle Database executes the policy predicate with the privileges of the user who created the policy. The maximum number of fine-grained policies on any table or view object is 256. Oracle Database stores the policy in the data dictionary table, but you can create the policy on any table or view that is not in the SYS schema.

After you create the fine-grained audit policy, it does not reside in any specific schema, although the definition for the policy is stored in the SYS.FGA$ data dictionary table.

You cannot modify a fine-grained audit policy after you have created it. If you need to modify the policy, drop it and then recreate it.

The syntax for the ADD_POLICY procedure is:

DBMS_FGA.ADD_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 audit_condition VARCHAR2,
 audit_column VARCHAR2,
 handler_schema VARCHAR2,
 handler_module VARCHAR2,
 enable BOOLEAN,
 statement_types VARCHAR2,
 audit_trail BINARY_INTEGER IN DEFAULT,
 audit_column_opts BINARY_INTEGER IN DEFAULT);

In this specification:

	
object_schema: Specifies the schema of the object to be audited. (If NULL, the current log-on user schema is assumed.)

	
object_name: Specifies the name of the object to be audited.

	
policy_name: Specifies the name of the policy to be created. Ensure that this name is unique.

	
audit_condition: Specifies a Boolean condition in a row. NULL is allowed and acts as TRUE. See "Auditing Specific Columns and Rows" for more information. If you specify NULL or no audit condition, then any action on a table with that policy creates an audit record, whether or not rows are returned

	
audit_column: Specifies one or more columns to audit, including hidden columns. If set to NULL or omitted, all columns are audited. These can include Oracle Label Security hidden columns or object type columns. The default, NULL, causes audit if any column is accessed or affected.

	
handler_schema: If an alert is used to trigger a response when the policy is violated, specifies the name of the schema that contains the event handler. The default, NULL, uses the current schema. See also "Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy".

	
handler_module: Specifies the name of the event handler. Include the package the event handler is in. This function is invoked only after the first row that matches the audit condition in the query is processed. If the procedure fails with an exception, then the user SQL statement fails as well.

	
enable: Enables or disables the policy using true or false. If omitted, the policy is enabled. The default is TRUE.

	
statement_types: Specifies the SQL statements to be audited: INSERT, UPDATE, DELETE, or SELECT only.

	
audit_trail: Specifies the destination (DB or XML) of fine-grained audit records. Also specifies whether to populate LSQLTEXT and LSQLBIND in FGA_LOG$. However, be aware that sensitive data, such as credit card information, can be recorded in clear text. See "Auditing Sensitive Information" for how you can handle this scenario.

If you set the audit_trail parameter to XML, then the XML files are written to the directory specified by the AUDIT_FILE_DEST initialization parameter.

For read-only databases, Oracle Database writes the fine-grained audit trail to XML files, regardless of the audit_trail setting.

	
audit_column_opts: If you specify more than one column in the audit_column parameter, then this parameter determines whether to audit all or specific columns. See "Auditing Specific Columns and Rows" for more information.

See Oracle Database PL/SQL Packages and Types Reference for additional details about the ADD_POLICY syntax.

Example 9-21 shows how to audit statements INSERT, UPDATE, DELETE, and SELECT on table HR.EMPLOYEES. Note that this example omits the audit_column_opts parameter, because it is not a mandatory parameter.

Example 9-21 Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy

BEGIN
 DBMS_FGA.ADD_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees',
 policy_owner => 'SEC_MGR',
 enable => TRUE,
 statement_types => 'INSERT, UPDATE, SELECT, DELETE',
 audit_trail => DBMS_FGA.DB);
END;
/

At this point, if you query the DBA_AUDIT_POLICIES view, you will find the new policy listed:

SELECT POLICY_NAME FROM DBA_AUDIT_POLICIES;

POLICY_NAME

CHK_HR_EMPLOYEES

Afterwards, any of the following SQL statements log an audit event record.

SELECT COUNT(*) FROM HR.EMPLOYEES WHERE COMMISSION_PCT = 20 AND SALARY > 4500;

SELECT SALARY FROM HR.EMPLOYEES WHERE DEPARTMENT_ID = 50;

DELETE FROM HR.EMPLOYEES WHERE SALARY > 1000000;

Auditing Specific Columns and Rows

You can fine-tune the audit behavior by targeting a specific column, referred to as a relevant column, to be audited if a condition is met. To accomplish this, you use the audit_column parameter to specify one or more sensitive columns. In addition, you can audit data in specific rows by using the audit_condition parameter to define a Boolean condition.

Example 9-21 performs an audit if anyone in Department 50 tries to access the salary and commission_pct columns.

audit_condition => 'DEPARTMENT_ID = 50',
audit_column => 'SALARY,COMMISSION_PCT,'

As you can see, this feature is enormously beneficial. It not only enables you to pinpoint particularly important types of data to audit, but it provides increased protection for columns that contain sensitive data, such as Social Security numbers, salaries, patient diagnoses, and so on.

If the audit_column lists more than one column, you can use the audit_column_opts parameter to specify whether a statement is audited when the query references any column specified in the audit_column parameter or only when all columns are referenced. For example:

audit_column_opts => DBMS_FGA.ANY_COLUMNS,

audit_column_opts => DBMS_FGA.ALL_COLUMNS,

If you do not specify a relevant column, then auditing applies to all columns.

For more information about the audit_condition, audit_column, and audit_column_opts parameters in the DBMS_FGA.ADD_POLICY procedure, see Oracle Database PL/SQL Packages and Types Reference. See also the usage notes for the ADD_POLICY procedure in that section.

Disabling and Enabling a Fine-Grained Audit Policy

You can disable a fine-grained audit policy by using the DBMS_FGA.DISABLE_POLICY procedure. The syntax for DISABLE_POLICY is:

DBMS_FGA.DISABLE_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

Example 9-22 shows how to disable the fine-grained audit policy created in Example 9-21.

Example 9-22 Disabling a Fine-Grained Audit Policy

DBMS_FGA.DISABLE_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees');
/

For detailed information about the DISABLE_POLICY syntax, see Oracle Database PL/SQL Packages and Types Reference.

Example 9-23 show how to reenable the chk_hr_emp policy by using the DBMS_FGA.ENABLE_POLICY procedure:

Example 9-23 Enabling a Fine-Grained Audit Policy

DBMS_FGA.ENABLE_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees',
 enable => TRUE);
/

For detailed information about the ENABLE_POLICY syntax, see Oracle Database PL/SQL Packages and Types Reference.

Dropping a Fine-Grained Audit Policy

Oracle Database automatically drops the audit policy if you remove the object specified in the object_name parameter of the DBMS_FGA.ADD_POLICY procedure, or if you drop the user who created the audit policy.

Example 9-24 shows how to drop a fine-grained audit policy manually by using the DBMS_FGA.DROP_POLICY procedure.

Example 9-24 Dropping a Fine-Grained Audit Policy

DBMS_FGA.DROP_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees');

See Oracle Database PL/SQL Packages and Types Reference for detailed information about the DROP_POLICY syntax.

Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy

This section contains:

	
About This Tutorial

	
Step 1: Install and Configure the UTL_MAIL PL/SQL Package

	
Step 2: Create User Accounts

	
Step 3: Configure an Access Control List File for Network Services

	
Step 4: Create the E-Mail Security Alert PL/SQL Procedure

	
Step 5: Create and Test the Fine-Grained Audit Policy Settings

	
Step 6: Test the Alert

	
Step 7: Remove the Components for This Tutorial

About This Tutorial

You can add an e-mail alert to a fine-grained audit policy that goes into effect when a user (or an intruder) violates the policy. To accomplish this, you first must create a procedure that generates the alert, and then use the following DBMS_FGA.ADD_POLICY parameters to call this function when someone violates this policy:

	
handler_schema: The schema in which the handler event is stored

	
handler_module: The name of the event handler

The alert can come in any form that best suits your environment: an e-mail or pager notification, updates to a particular file or table, and so on. Creating alerts also helps to meet certain compliance regulations, such as California Senate Bill 1386. In this tutorial, you will create an e-mail alert.

In this tutorial, you create an e-mail alert that notifies a security administrator that a Human Resources representative is trying to select or modify salary information in the HR.EMPLOYEES table. The representative is permitted to make changes to this table, but to meet compliance regulations, we want to create a record of all salary selections and modifications to the table.

Step 1: Install and Configure the UTL_MAIL PL/SQL Package

	
Log on as user SYS with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

	
Install the UTL_MAIL package.

@$ORACLE_HOME/rdbms/admin/utlmail.sql
@$ORACLE_HOME/rdbms/admin/prvtmail.plb

The UTL_MAIL package enables you to manage e-mail. See Oracle Database PL/SQL Packages and Types Reference for more information about UTL_MAIL.

Be aware that currently, the UTL_MAIL PL/SQL package does not support SSL servers.

	
Check the current value of the SMTP_OUT_SERVER initialization parameter, and make a note of this value so that you can restore it when you complete this tutorial.

For example:

SHOW PARAMETER SMTP_OUT_SERVER

If the SMTP_OUT_SERVER parameter has already been set, then output similar to the following appears:

NAME TYPE VALUE
----------------------- ----------------- ----------------------------------
SMTP_OUT_SERVER string some_imap_server.example.com

	
Issue the following ALTER SYSTEM statement:

ALTER SYSTEM SET SMTP_OUT_SERVER="imap_mail_server.example.com";

Replace imap_mail_server with the name of your SMTP server, which you can find in the account settings in your e-mail tool. Enclose these settings in quotation marks. For example:

ALTER SYSTEM SET SMTP_OUT_SERVER="my_imap_server.example.com"

	
Connect as SYS using the SYSOPER privilege and then restart the database.

CONNECT SYS/AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

	
Ensure that the SMTP_OUT_SERVER parameter setting is correct.

CONNECT SYS/AS SYSDBA
Enter password: password

SHOW PARAMETER SMTP_OUT_SERVER

Output similar to the following appears:

NAME TYPE VALUE
----------------------- ----------------- ----------------------------------
SMTP_OUT_SERVER string my_imap_server.example.com

Step 2: Create User Accounts

	
Ensure that you are connected as SYS using the SYSDBA privilege, and then create the sysadmin_fga account, who will create the fine-grained audit policy.

For example:

CONNECT SYS/AS SYSDBA
Enter password: password

GRANT CREATE SESSION, DBA TO sysadmin_fga IDENTIFIED BY password;
GRANT EXECUTE ON DBMS_FGA TO sysadmin_fga;
GRANT CREATE PROCEDURE, DROP ANY PROCEDURE TO sysadmin_fga;
GRANT EXECUTE ON UTL_TCP TO sysadmin_fga;
GRANT EXECUTE ON UTL_SMTP TO sysadmin_fga;
GRANT EXECUTE ON UTL_MAIL TO sysadmin_fga;
GRANT EXECUTE ON DBMS_NETWORK_ACL_ADMIN TO sysadmin_fga;

Replace password with a password that is secure. See "Minimum Requirements for Passwords" for more information.

The UTL_TCP, UTL_SMTP, UTL_MAIL, and DBMS_NETWORK_ACL_ADMIN PL/SQL packages are used by the e-mail security alert that you create.

	
Connect as user SYSTEM.

CONNECT SYSTEM
Enter password: password

	
Ensure that the HR schema account is unlocked and has a password. If necessary, unlock HR and grant this user a password.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'HR';

If the DBA_USERS view lists user HR as locked and expired, then enter the following statement to unlock the HR account and create a new password:

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

Enter a password that is secure. For greater security, do not give the HR account the same password from previous releases of Oracle Database. "Minimum Requirements for Passwords" for the minimum requirements for creating passwords.

	
Create a user account for Susan Mavris, who is an HR representative, and then grant this user access to the HR.EMPLOYEES table.

GRANT CREATE SESSION TO smavris IDENTIFIED BY password;
GRANT SELECT, INSERT, UPDATE, DELETE ON HR.EMPLOYEES TO SMAVRIS;

Step 3: Configure an Access Control List File for Network Services

Before you can use PL/SQL network utility packages such as UTL_MAIL, you must configure an access control list (ACL) file that enables fine-grained access to external network services. For detailed information about this topic, see "Managing Fine-Grained Access in PL/SQL Packages and Types".

To configure an access control list for the e-mail alert:

	
Connect to SQL*Plus as user sysadmin_fga.

CONNECT sysadmin_fga
Enter password: password

	
Create the following access control list and its privilege definitions.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'email_server_permissions.xml',
 description => 'Enables network permissions for the e-mail server',
 principal => 'SYSADMIN_FGA',
 is_grant => TRUE,
 privilege => 'connect');
END;
/

Ensure that you enter your exact user name for the principal setting, in upper-case letters. For this tutorial, enter SYSADMIN_FGA for the name of the principal.

	
Assign the access control list to the outgoing SMTP network host for your e-mail server.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'email_server_permissions.xml',
 host => 'SMTP_OUT_SERVER_setting',
 lower_port => port);
END;
/

In this example:

	
SMTP_OUT_SERVER_setting: Enter the SMTP_OUT_SERVER setting that you set for the SMTP_OUT_SERVER parameter in "Step 1: Install and Configure the UTL_MAIL PL/SQL Package". This setting should match exactly the setting that your e-mail tool specifies for its outgoing server.

	
port: Enter the port number that your e-mail tool specifies for its outgoing server. Typically, this setting is 25. Enter this value for the lower_port setting. (Currently, the UTL_MAIL package does not support SSL. If your e-mail server is an SSL server, then enter 25 for the port number, even if the e-mail server uses a different port number.)

Step 4: Create the E-Mail Security Alert PL/SQL Procedure

As user sysadmin_fga, create the following procedure. (You can copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE in the first line.)

	

1
2
3
4
5
6
7
8
9
10
11
12

	

CREATE OR REPLACE PROCEDURE email_alert (sch varchar2, tab varchar2, pol varchar2)
AS
msg varchar2(20000) := 'HR.EMPLOYEES table violation. The time is: ';
BEGIN
 msg := msg||TO_CHAR(SYSDATE, 'Day DD MON, YYYY HH24:MI:SS');
UTL_MAIL.SEND (
 sender => 'youremail@example.com',
 recipients => 'recipientemail@example.com',
 subject => 'Table modification on HR.EMPLOYEES',
 message => msg);
END email_alert;
/

In this example:

	
Lines 1 and 2: In the CREATE PROCEDURE statement, you must include a signature that describes the schema name (sch), table name (tab), and the name of the audit procedure (pol) that you will define in audit policy in the next step.

	
Lines 9 and 10: Replace youremail@example.com with your e-mail address, and recipientemail@example.com with the e-mail address of the person you want to receive the notification.

Step 5: Create and Test the Fine-Grained Audit Policy Settings

	
As user sysadmin_fga, create the chk_hr_emp policy fine-grained audit policy as follows.

BEGIN
 DBMS_FGA.ADD_POLICY (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'CHK_HR_EMP',
 audit_column => 'SALARY',
 handler_schema => 'SYSADMIN_FGA',
 handler_module => 'EMAIL_ALERT',
 enable => TRUE,
 statement_types => 'SELECT, UPDATE',
 audit_trail => DBMS_FGA.DB + DBMS_FGA.EXTENDED);
END;
/

	
Commit the changes you have made to the database.

COMMIT;

	
Test the settings that you have created so far.

EXEC email_alert ('hr', 'employees', 'chk_hr_emp');

SQL*Plus should display a PL/SQL procedure successfully completed message, and in a moment, depending on the speed of your e-mail server, you should receive the e-mail alert.

If you receive an ORA-24247: network access denied by access control list (ACL) error followed by ORA-06512: at stringline string errors, then check the settings in the access control list file.

Step 6: Test the Alert

	
Connect to SQL*Plus as user smavris, check your salary, and give yourself a nice raise.

CONNECT smavris
Enter password: password

SELECT SALARY FROM HR.EMPLOYEES WHERE LAST_NAME = 'Mavris';

SALARY

6500

UPDATE HR.EMPLOYEES SET SALARY = 13000 WHERE LAST_NAME = 'Mavris';

	
Now select from a column other than SALARY in the HR.EMPLOYEES table.

SELECT FIRST_NAME, LAST_NAME FROM HR.EMPLOYEES WHERE LAST_NAME = 'Raphaely';

The following output should appear:

FIRST_NAME LAST_NAME
-------------------- --------------------
Den Raphaely

By now, depending on the speed of you e-mail server, you (or your recipient) should have received an e-mail with the subject header Table modification on HR.EMPLOYEES notifying you of the tampering of the HR.EMPLOYEES table.

	
As user sysadmin_fga, query the DBA_FGA_AUDIT_TRAIL data dictionary view, which contains the Susan Mavris's audited activities.

CONNECT sysadmin_fga
Enter password: password

col dbuid format a10
col lsqltext format a66
col ntimestamp# format a15

SELECT DBUID, LSQLTEXT, NTIMESTAMP# FROM SYS.FGA_LOG$ WHERE POLICYNAME='CHK_HR_EMP';

Output similar to the following appears:

DBUID LSQLTEXT
---------- --
NTIMESTAMP#
--
SMAVRIS SELECT SALARY FROM HR.EMPLOYEES WHERE LAST_NAME = 'Mavris'
23-JUN-09 03.48.59.111000 PM

SMAVRIS UPDATE HR.EMPLOYEES SET SALARY = 13000 WHERE LAST_NAME = 'Mavris'
23-JUN-09 03.49.07.330000 PM

The audit trail captures the two SQL statements that Susan Mavris ran that affected the SALARY column in the HR.EMPLOYEES table. The third statement she ran, in which she asked about Den Raphaely, was not recorded because it was not affected by the audit policy. This is because Oracle Database executes the audit function as an autonomous transaction, committing only the actions of the handler_module setting and not any user transaction. The function has no effect on any user SQL transaction.

Step 7: Remove the Components for This Tutorial

	
Connect to SQL*Plus as user SYSTEM privilege, and then drop users sysadmin_fga (including the objects in the sysadmin_fga schema) and smavris.

CONNECT SYSTEM
Enter password: password

DROP USER sysadmin_fga CASCADE;
DROP USER smavris;

	
Connect as user HR and remove the loftiness of Susan Mavris's salary.

CONNECT HR
Enter password: password

UPDATE HR.EMPLOYEES SET SALARY = 6500 WHERE LAST_NAME = 'Mavris';

	
If you want, lock and expire HR, unless other users want to use this account:

ALTER USER HR PASSWORD EXPIRE ACCOUNT LOCK;

	
Connect as user SYS with the SYSDBA privilege, and drop the email_server_permissions.xml access control list.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.DROP_ACL(
 acl => 'email_server_permissions.xml');
END;
/

Access control lists reside in the SYS schema, not the schema of the user who created them.

	
Issue the following ALTER SYSTEM statement to restore the SMTP_OUT_SERVER parameter to the previous value, from Step 4 under "Step 1: Install and Configure the UTL_MAIL PL/SQL Package":

ALTER SYSTEM SET SMTP_OUT_SERVER="previous_value";

Enclose this setting in quotation marks. For example:

ALTER SYSTEM SET SMTP_OUT_SERVER="some_imap_server.example.com"

	
Restart the database instance.

Tutorial: Auditing Nondatabase Users

This section contains:

	
About This Tutorial

	
Step 1: Create the User Account and Ensure the User HR Is Active

	
Step 2: Create the Fine-Grained Audit Policy

	
Step 3: Test the Policy

	
Step 4: Remove the Components for This Tutorial

About This Tutorial

This tutorial shows how to create a fine-grained audit policy that audits a nondatabase user's actions, based on the identity set in the client identifier.

Step 1: Create the User Account and Ensure the User HR Is Active

	
Log on as user SYS with the SYSDBA privilege.

sqlplus SYS AS SYSDBA
Enter password: password

	
Create the sysadmin_fga account, who will create the fine-grained audit policy.

GRANT CREATE SESSION, DBA TO sysadmin_fga IDENTIFIED BY password;
GRANT SELECT ON OE.ORDERS TO sysadmin_fga;
GRANT EXECUTE ON DBMS_FGA TO sysadmin_fga;
GRANT SELECT ON SYS.FGA_LOG$ TO sysadmin_fga;

Replace password with a password that is secure. See "Minimum Requirements for Passwords" for more information.

	
The sample user OE will also be used in this tutorial, so query the DBA_USERS data dictionary view to ensure that OE is not locked or expired.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'OE';

If the DBA_USERS view lists user OE as locked and expired, log in as user SYSTEM and then enter the following statement to unlock the OE account and create a new password:

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Enter a password that is secure. For greater security, do not give the OE account the same password from previous releases of Oracle Database. "Minimum Requirements for Passwords" for the minimum requirements for creating passwords.

Step 2: Create the Fine-Grained Audit Policy

	
Connect to SQL*Plus as user sysadmin_fga.

CONNECT sysadmin_fga
Enter password: password

	
Create the following policy:

BEGIN
 DBMS_FGA.ADD_POLICY(OBJECT_SCHEMA => 'OE',
 OBJECT_NAME => 'ORDERS',
 POLICY_NAME => 'ORDERS_FGA_POL',
 AUDIT_CONDITION => 'SYS_CONTEXT(''USERENV'', ''CLIENT_IDENTIFIER'') = ''Robert''',
 HANDLER_SCHEMA => NULL,
 HANDLER_MODULE => NULL,
 ENABLE => True,
 STATEMENT_TYPES => 'INSERT,UPDATE,DELETE,SELECT',
 AUDIT_TRAIL => DBMS_FGA.DB + DBMS_FGA.EXTENDED,
 AUDIT_COLUMN_OPTS => DBMS_FGA.ANY_COLUMNS);
END;
/

In this example, the AUDIT_CONDITION parameter assumes the nondatabase user is named Robert. The policy will monitor any INSERT, UPDATE, DELETE, and SELECT statements Robert will attempt.

Step 3: Test the Policy

	
Connect as user OE and select from the OE.ORDERS table.

CONNECT OE
Enter password: password

SELECT COUNT(*) FROM ORDERS;

The following output appears:

 COUNT(*)

 105

	
Connect as user sysadmin_fga and then check if any audit records were generated.

CONNECT sysadmin_fga
Enter password: password

SELECT DBUID, LSQLTEXT FROM SYS.FGA_LOG$ WHERE POLICYNAME='ORDERS_FGA_POL';

The following output appears:

no rows selected

Because no nondatabase users were logged in to query the OE.ORDERS table, the audit trail is empty.

	
Reconnect as user OE, set the client identifier to Robert, and then reselect from the OE.ORDERS table.

CONNECT OE
Enter password: password

EXEC DBMS_SESSION.SET_IDENTIFIER('Robert');

SELECT COUNT(*) FROM ORDERS;

The following output should appear:

 COUNT(*)

 105

	
Reconnect as user sysadmin_fga and then check the audit trail again.

CONNECT sysadmin_fga
Enter password: password

SELECT DBUID, LSQLTEXT FROM SYS.FGA_LOG$ WHERE POLICYNAME='ORDERS_FGA_POL';

This time, because Robert has made his appearance and queried the OE.ORDERS table, the audit trail captures his actions:

DBUID LSQLTEXT
---------------- ----------------------------
OE SELECT COUNT(*) FROM ORDERS;

Step 4: Remove the Components for This Tutorial

	
Connect to SQL*Plus as user SYSTEM, and then drop user sysadmin_fga (including the objects in the sysadmin_fga schema).

CONNECT SYSTEM
Enter password: password

DROP USER sysadmin_fga CASCADE;

	
If you want, lock and expire OE, unless other users want to use this account:

ALTER USER OE PASSWORD EXPIRE ACCOUNT LOCK;

Auditing SYS Administrative Users

This section contains:

	
Auditing User SYSTEM

	
Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER

Auditing User SYSTEM

You can audit the SYSTEM user by using all the standard and fine-grained audit features. Insofar as auditing is concerned, user SYSTEM is a typical database user (such as HR or OE) and requires no special configuration to be audited.

Example 9-25 shows how to audit any table insert operations issued by user SYSTEM.

Example 9-25 Auditing Table Insert Operations by User SYSTEM

AUDIT INSERT ANY TABLE BY SYSTEM BY ACCESS;

Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER

You can fully audit sessions for users who connect as SYS, including all users connecting using the SYSDBA or SYSOPER privileges. This enables you to write the actions of administrative users to an operating system file, even if the AUDIT_TRAIL parameter is set to NONE, DB, or DB, EXTENDED. Writing the actions of administrator users to an operating system audit file is safer than writing to the SYS.AUD$ table, because administrative users can remove rows from this table that indicate their bad behavior.

To configure audit settings for SYSDBA and SYSOPER users:

	
Set the AUDIT_SYS_OPERATIONS initialization parameter to TRUE.

ALTER SYSTEM SET AUDIT_SYS_OPERATIONS=TRUE SCOPE=SPFILE;

This setting records the top-level operations directly issued by users who have connected to the database using the SYSDBA or SYSOPER privilege. It writes the audit records to the operation system audit trail. The SQL text of every statement is written to the ACTION field in the operating system audit trail record.

	
If you want to write system administrator activities to XML files, then set the AUDIT_TRAIL initialization parameter to either XML or XML, EXTENDED.

For example:

ALTER SYSTEM SET AUDIT_TRAIL=XML, EXTENDED SCOPE=SPFILE;

In all operating systems, if you set AUDIT_TRAIL to either XML or XML,EXTENDED, then audit records are written as XML files in the directory specified by the AUDIT_FILE_DEST initialization parameter. By default, Oracle Database writes the audit records to operating system files.

See Table 9-2, "AUDIT_TRAIL Initialization Parameter Settings" for more information about these settings. See also "Enabling or Disabling the Standard Audit Trail".

	
Restart the database.

After you restart the database, Oracle Database audits all successful actions performed by SYSDBA and SYSOPER users, and writes these audit records to the operating system audit trail, and not to the SYS.AUD$ table.

In Windows, if you have set the AUDIT_TRAIL initialization parameter OS, then Oracle Database writes audit records as events to the Event Viewer log file.

	
Note:

The $ORACLE_BASE/admin/$ORACLE_SID/adump directory is the first default location used if the AUDIT_FILE_DEST initialization parameter is not set or does not point to a valid directory. If writing to that first default location fails or the database is closed, then Oracle Database uses the $ORACLE_HOME/rdbms/audit directory as the backup default location. If that attempt fails, then the audited operation fails and a message is written to the alert log.
When AUDIT_TRAIL is set to OS, audit file names continue to be in the following form:

$ORACLE_SID_short_form_process_name_processid_sequence_number.aud

The sequence number starts from number 1.

For example, the short process name ora is used for dedicated server processes, and the names s001, s002, and so on are used for shared server processes.

When AUDIT_TRAIL is set to XML or XML, EXTENDED, the same audit file names have the extension xml instead of aud.

If you do not specify the AUDIT_FILE_DEST initialization parameter, then the default location is $ORACLE_BASE/admin/$ORACLE_SID/adump in Linux and Solaris, and %ORACLE_BASE%\admin\%ORACLE_SID%\adump for Microsoft Windows. For other operating systems, refer to their audit trail documentation.

Oracle Database audits all SYS-issued SQL statements indiscriminately and regardless of the setting of the AUDIT_TRAIL initialization parameter.

Consider the following SYS session:

CONNECT SYS/AS SYSDBA;
Enter password: password

ALTER SYSTEM FLUSH SHARED_POOL;
UPDATE salary SET base=1000 WHERE name='laurel';

When SYS auditing is enabled, both the ALTER SYSTEM and UPDATE statements are displayed in the operating system audit file, similar to the following output. (Be aware that this format may change in different Oracle Database releases.)

Tue May 5 04:53:37 2009 -07:00
LENGTH : '159'
ACTION :[7] 'CONNECT'
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[5] 'pts/0'
STATUS:[1] '0'
DBID:[9] '561542328'

Tue May 5 04:53:40 2009 -07:00
LENGTH : '183'
ACTION :[30] 'ALTER SYSTEM FLUSH SHARED_POOL'
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[5] 'pts/0'
STATUS:[1] '0'
DBID:[9] '561542328'

Tue May 5 04:53:49 2009 -07:00
LENGTH : '200'
ACTION :[47] 'UPDATE salary SET base=1000 WHERE name='laurel''
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[5] 'pts/0'
STATUS:[1] '0'
DBID:[9] '561542328'

The brackets indicate the length of the value. For example, PRIVILEGE is set to SYSDBA, which uses 6 characters. In addition, the values are in single quotes for SYS and mandatory audit records.

Because of the superuser privileges available to users who connect as SYSDBA, Oracle recommends that database administrators rarely use this connection and only when necessary. Database administrators can usually perform normal day-to-day maintenance activity. These database administrators are typical database users with the DBA role, or have been granted privileges that are the equivalent of a DBA role (for example, mydba or jr_dba) that your organization customizes.

Using Triggers to Write Audit Data to a Separate Table

You can use triggers to supplement the built-in auditing features of Oracle Database. The trigger that you create records user actions to a separate database table. When an activity fires the trigger, the trigger records the action in this table. Triggers are useful when you want to record customized information such as before-and-after changes to a table. For detailed information about creating triggers, see Oracle Database PL/SQL Language Reference.

You do not need to have auditing enabled for the trigger to work, nor does it matter what type of auditing you do have enabled. The trigger works outside of the database audit functionality.

Follow these guidelines if you want to create audit triggers:

	
Never write the trigger so that it writes data to the SYS.AUD$ table. In fact, you should never modify the SYS.AUD$ table contents. If you try to write values to SYS.AUD$ and the trigger does not work as expected, then it could adversely affect standard auditing. The SYS.AUD$ table is an Oracle Database-owned table, and only Oracle Database should write to it.

	
If possible, create the trigger as an AFTER trigger. The triggering statement is subjected to any applicable constraints. If no records are found, then the AFTER trigger does not fire, and audit processing is not carried out unnecessarily.

	
Create the trigger as either an AFTER row or AFTER statement trigger. Choosing between AFTER row and AFTER statement triggers depends on the information being audited. For example, row triggers provide value-based auditing for each table row. Triggers can also require you to supply a reason code for issuing the audited SQL statement, which can be useful in both row and statement-level auditing situations.

Table 9-6 provides a comparison of trigger-based auditing and the built-in database auditing features.

Table 9-6 Comparison of Built-in Auditing and Trigger-Based Auditing

	Audit Feature	Description
	
DML and DDL auditing

	
Standard auditing options permit auditing of DML and DDL statements regarding all types of schema objects and structures. Comparatively, triggers permit auditing of DML statements entered against tables, and DDL auditing at SCHEMA or DATABASE level.

	
Centralized audit trail

	
All database audit information is recorded centrally and automatically using the auditing features of the database.

	
Declarative method

	
Auditing features enabled using the standard database features are easier to declare and maintain, and less prone to errors, when compared to auditing functions defined by triggers.

	
Auditing options can be audited

	
Any changes to existing auditing options can also be audited to guard against malicious database activity.

	
Session and execution time auditing

	
Using the database auditing features, records are generated once every time an audited statement is entered. With triggers, an audit record is generated each time a trigger-audited table is referenced.

	
Auditing of unsuccessful data access

	
Database auditing can be set to audit when unsuccessful data access occurs. However, unless autonomous transactions are used, any audit information generated by a trigger is rolled back if the triggering statement is rolled back. For more information about autonomous transactions, see Oracle Database Concepts.

	
Sessions can be audited

	
Connections, disconnections, and session activity (physical I/Os, logical I/Os, deadlocks, and so on) can be recorded using standard database auditing.

In Example 9-26, a trigger audits modifications to the emp_tab table for specific rows. The trigger writes the old and new values to the emp_audit_tab table, including the user who performed the update and the time the update took place.

Example 9-26 Audit Trigger to Record Before and After Changes to a Table

/* 1. Create the following table: */
CREATE TABLE emp_tab (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(8,2),
 deptno NUMBER(2));

/* 2. Create a table to capture the audit data. */
CREATE TABLE emp_audit_tab (
 oldname VARCHAR2(10),
 oldjob VARCHAR2(9),
 oldsal NUMBER (8,2),
 newname VARCHAR2(10),
 newjob VARCHAR2(9),
 newsal NUMBER(8,2),
 user1 varchar2(10),
 systemdate TIMESTAMP);

/* 3. Create a trigger to record the old and new values, the author of the change,
 and when the change took place. */
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR DELETE OR UPDATE ON emp_tab
 FOR EACH ROW
BEGIN
 INSERT INTO emp_audit_tab (
 oldname, oldjob, oldsal,
 newname, newjob, newsal,
 user1, systemdate
)
 VALUES (
 :OLD.ename, :OLD.job, :OLD.sal,
 :NEW.ename, :NEW.job, :NEW.sal,
 user, sysdate
);
END;
/

To test this trigger, add a row to the emp_tab table, and then change the value the ename, job, or sal column in the emp_tab table. Then query the emp_audit_tab table to find the audit data.

Managing Audit Trail Records

This section contains:

	
About Audit Records

	
Managing the Database Audit Trail

	
Managing the Operating System Audit Trail

About Audit Records

Audit records include information about the operation that was audited, the user who performed the operationFoot 2 , and the date and time of the operation. Depending on the type of auditing you choose, you can write audit records to data dictionary tables, called the database audit trail, or in operating system files, called the operating system audit trail.

If you choose to write audit records to the database audit trail, Oracle Database writes the audit records to the SYS.AUD$ table for default and standard auditing, and to the SYS.FGA_LOG$ table for fine-grained auditing. Both of these tables reside in the SYSTEM tablespace and are owned by the SYS schema. You can check the contents of these tables by querying the following data dictionary views:

	
DBA_AUDIT_TRAIL for the SYS.AUD$ contents

	
DBA_FGA_AUDIT_TRAIL for the SYS.FGA_LOG$ contents

	
DBA_COMMON_AUDIT_TRAIL for both SYS.AUD$ and SYS.FGA_LOG$ contents

"Finding Information About Audited Activities" describes more data dictionary views that you can use to view to contents of the SYS.AUD$ and SYS.FGA_LOG$ tables.

If you choose to write audit records to an operating system file, you can write them to either a text file or to an XML file. You can check the contents of the audit XML files by querying the V$XML_AUDIT_TRAIL data dictionary view.

Managing the Database Audit Trail

This section contains:

	
Database Audit Trail Contents

	
Controlling the Size of the Database Audit Trail

	
Moving the Database Audit Trail to a Different Tablespace

	
Protecting the Database Audit Trail

	
Auditing the Database Audit Trail

	
Archiving the Database Audit Trail

	
See Also:

"Purging Audit Trail Records"

Database Audit Trail Contents

The database audit trail is a pair of tables, AUD$ (for standard auditing) and FGA_LOG$ (for fine-grained auditing), in the SYS schema of each Oracle Database data dictionary. It records both standard and fine-grained audit activities. Several data dictionary views can help you use the information in this table. "Finding Information About Audited Activities" lists all the auditing-related views.

The database audit trail record contains different types of information, depending on the events audited and the auditing options set. For example, if you have set the AUDIT_TRAIL initialization parameter to DB, EXTENDED or XML, EXTENDED, then the SQL_BIND and SQL_TEXT columns show any SQL bind variables used for a SQL statement and SQL text that triggered the audit, respectively. For full details about the contents of these views, refer to Oracle Database Reference. However, be aware that the format and columns of the DBA_AUDIT_TRAIL view may change across Oracle Database releases.

	
Note:

If the AUDIT_TRAIL initialization parameter is set to XML or XML, EXTENDED, then Oracle Database sends standard audit records to operating system files in XML format. Because XML is a standard document format, many utilities are available to parse and analyze XML data.

If the database destination for audit records becomes full or unavailable, and, therefore, unable to accept new records, then an audited action cannot complete. Instead, Oracle Database generates an error message and does not audit the action. You can control the size of the audit trail to make it more manageable. (In fact, Oracle strongly recommends that you do so.) See "Controlling the Size of the Database Audit Trail" for more information. See also "Keeping Audited Information Manageable".

The audit trail does not store information about any data values that might be involved in the audited statement. For example, old and new data values of updated rows are not stored when an UPDATE statement is audited. However, you can perform this specialized type of auditing by using fine-grained auditing methods.

You can use the Flashback Query feature to show the old and new values of the updated rows, subject to any auditing policy presently in force. The current policies are enforced even if the flashback is to an old query that was originally subject to a different policy. Current business access rules always apply.

	
See Also:

	
"Auditing Specific Activities with Fine-Grained Auditing" for more information about methods of fine-grained auditing

	
Oracle Database Administrator's Guide for information about auditing table changes by using Flashback Transaction Query

	
Flashback entries in the table of system privileges listed in the GRANT SQL statement section of Oracle Database SQL Language Reference

	
Note:

You can find information about the log history by querying the V$LOGMNR_CONTENTS data dictionary view. The CLIENT_ID column of this view records changes to the session client identifier. To query this view, you must have the SELECT ANY TRANSACTION system privilege.

Controlling the Size of the Database Audit Trail

If the database audit trail is full and no more audit records can be inserted, then underlying statement cannot complete successfully until you purge the audit trail. Oracle Database issues errors to all users who issue statements that cause the audit. Therefore, you must control the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the audit trail increases according to two factors:

	
The number of audit options turned on

	
The frequency of execution of audited statements

To control the growth of the audit trail, you can use the following methods:

	
Enable and disable database auditing. If it is enabled, then audit records are generated and stored in the audit trail. If it is disabled, then audit records are not generated. (Remember that some activities are always audited.)

	
Be selective about the audit options that are turned on. If more selective auditing is performed, then useless or unnecessary audit information is not generated and stored in the audit trail. You can use fine-grained auditing to selectively audit only certain conditions.

	
Tightly control the ability to perform object auditing. You can accomplish this in the following ways:

	
A security administrator owns all objects and never grants the AUDIT ANY system privilege to any other user. Alternatively, all schema objects can belong to a schema for which the corresponding user does not have CREATE SESSION privilege.

	
All objects are contained in schemas that do not correspond to real database users (that is, the CREATE SESSION privilege is not granted to the corresponding user). The security administrator is the only user granted the AUDIT ANY system privilege.

In both scenarios, a security administrator controls entirely object auditing.

The maximum size of the database audit trail tables (AUD$ and FGA_LOG$) is determined by the default storage parameters of the SYSTEM tablespace, in which it is stored by default. If you are concerned that a too-large database audit trail will affect the SYSTEM table performance, then consider moving the database audit trail tables to a different tablespace.

	
See Also:

Operating system-specific Oracle Database documentation for more information about managing the operating system audit trail when directing audit records to that location

Moving the Database Audit Trail to a Different Tablespace

By default, the SYSTEM tablespace stores the database audit trail SYS.AUD$ and SYS.FGA_LOG$ tables. You can change this default location to another tablespace, such as the SYSAUX tablespace or a user-created tablespace. You may want to move the database audit trail tables to a different tablespace if the SYSTEM tablespace is too busy. Another reason for moving these audit trail tables to a different tablespace is if you plan to purge them by using the DBMS_AUDIT_MGMT PL/SQL package procedures.

Be aware that moving the database audit trail tables to a different tablespace can take a long time, depending on the amount of audit data in the audit tables, so you may want to do this during a time when database activity is slow.

To move the database audit trail from SYSTEM to a different tablespace:

	
Log in to SQL*Plus as an administrator who has the EXECUTE privilege on the DBMS_AUDIT_MGMT PL/SQL package.

For more information about the DBMS_AUDIT_MGMT PL/SQL package, see Oracle Database PL/SQL Packages and Types Reference.

	
Check the tablespace to which you want to move the database audit trail tables.

You may need to optimize and allocate more space to this tablespace, including the SYSAUX auxiliary tablespace. For more information, see Oracle Database Performance Tuning Guide.

	
Run the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION PL/SQL procedure to specify the name of the destination tablespace.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_LOCATION_VALUE => 'AUD_AUX');
END;

In this example:

	
AUDIT_TRAIL_TYPE: Refers to the database audit trail type. Enter one of the following values:

	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table, AUD$.

	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail table, FGA_LOG$.

	
DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and fine-grained audit trail tables.

	
AUDIT_TRAIL_LOCATION_VALUE: Specifies the destination tablespace. This example specifies a tablespace named AUD_AUX.

Auditing the Database Audit Trail

At times an application must give the SYS.AUD$ system table access to regular users (non-SYSDBA users). For example, an audit report generator needs access to AUD$ table to generate daily reports on possible violations. Also, many installations have a distinct auditor role to achieve separation of duty.

In this case, be aware that DML statements such as INSERT, UPDATE, MERGE, and DELETE are always audited and recorded in the SYS.AUD$ table. You can check these activities by querying the DBA_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL views.

If a user has SELECT, UPDATE, INSERT, and DELETE privileges on SYS.AUD$ and executes a SELECT operation, then the audit trail will have a record of that operation. That is, SYS.AUD$ will have a row identifying the SELECT action on itself, as for example row 1.

If a user later tries to delete this row from SYS.AUD$, then the DELETE operation succeeds, because the user has the privilege to perform this action. However, this DELETE action on SYS.AUD$ is also recorded in the audit trail. Setting up this type of auditing acts as a safety feature, potentially revealing unusual or unauthorized actions.

	
Note:

DELETE, INSERT, UPDATE, and MERGE operations on SYS.AUD$ table are always audited. These audit records are not allowed to be deleted.

	
See Also:

"Auditing Sensitive Information"

Archiving the Database Audit Trail

You should periodically archive and then purge the audit trail to prevent it from growing too large. Archiving and purging both frees audit trail space and facilitates the purging of the database audit trail. See "Purging Audit Trail Records" for different ways of purging the audit trail records.

You can create an archive of the database audit trail by using one of the following methods:

	
Oracle Audit Vault. You install Oracle Audit Vault separately from Oracle Database. For more information, see Oracle Audit Vault Administrator's Guide.

	
Oracle Data Warehouse. Oracle Data Warehouse is automatically installed with Oracle Database. For more information, see Oracle Warehouse Builder Installation and Administration Guide.

After you complete the archive, you can purge the database audit trail contents. See "Purging Audit Trail Records" for more information.

To archive standard and fine-grained audit records, you c