

Oracle® Database
Security Guide

11g Release 2 (11.2)

E16543-04

October 2010

Oracle Database Security Guide 11g Release 2 (11.2)

E16543-04

Copyright © 2006, 2010, Oracle and/or its affiliates. All rights reserved.

Primary Author: Patricia Huey

Contributors: Priya Badkar, Tammy Bednar, Naveen Gopal, Don Gosselin, Sumit Jeloka, Peter Knaggs,
Sergei Kucherov, Nina Lewis, Bryn Llewellyn, Rahil Mir, Narendra Manappa, Gopal Mulagund, Janaki
Narasinghanallur, Paul Needham, Deb Owens, Robert Pang, Preetam Ramakrishna, Vipin Samar, Digvijay
Sirmukaddam, Richard Smith, Sachin Sonawane, James Spiller, Ashwini Surpur, Srividya Tata, Kamal
Tbeileh, Rodney Ward, Daniel Wong

This software and related documentation are provided under a license agreement containing restrictions on
use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your
license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license,
transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse
engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is
prohibited.

The information contained herein is subject to change without notice and is not warranted to be error-free. If
you find any errors, please report them to us in writing.

If this software or related documentation is delivered to the U.S. Government or anyone licensing it on
behalf of the U.S. Government, the following notice is applicable:

U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data
delivered to U.S. Government customers are "commercial computer software" or "commercial technical data"
pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As
such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and
license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of
the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software
License (December 2007). Oracle USA, Inc., 500 Oracle Parkway, Redwood City, CA 94065.

This software is developed for general use in a variety of information management applications. It is not
developed or intended for use in any inherently dangerous applications, including applications which may
create a risk of personal injury. If you use this software in dangerous applications, then you shall be
responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure the safe use
of this software. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of
this software in dangerous applications.

Oracle is a registered trademark of Oracle Corporation and/or its affiliates. Other names may be trademarks
of their respective owners.

This software and documentation may provide access to or information on content, products, and services
from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all
warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and
its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of
third-party content, products, or services.

iii

Contents

Preface ... xxi

Audience... xxi
Documentation Accessibility ... xxi
Related Documents .. xxii
Conventions ... xxiii

What's New in Oracle Database Security? .. xxv

Oracle Database 11g Release 2 (11.2.0.2) New Security Features ... xxv
Oracle Database 11g Release 2 (11.2.0.1) New Security Features .. xxvii
Oracle Database 11g Release 1 (11.1) New Security Features ... xxxi

1 Introducing Oracle Database Security

About Oracle Database Security ... 1-1
Additional Database Security Resources .. 1-2

2 Managing Security for Oracle Database Users

About User Security... 2-1
Creating User Accounts... 2-1

Creating a New User Account.. 2-2
Specifying a User Name.. 2-3
Assigning the User a Password.. 2-3
Assigning a Default Tablespace for the User ... 2-3
Assigning a Tablespace Quota for the User ... 2-4

Restricting the Quota Limits for User Objects in a Tablespace .. 2-5
Granting Users the UNLIMITED TABLESPACE System Privilege 2-5

Assigning a Temporary Tablespace for the User .. 2-5
Specifying a Profile for the User .. 2-6
Setting a Default Role for the User .. 2-6

Altering User Accounts ... 2-7
Changing the User Password ... 2-7

Configuring User Resource Limits ... 2-8
About User Resource Limits... 2-8
Types of System Resources and Limits... 2-9

Limiting the User Session Level.. 2-9
Limiting Database Call Levels .. 2-9

iv

Limiting CPU Time... 2-9
Limiting Logical Reads ... 2-10
Limiting Other Resources ... 2-10

Determining Values for Resource Limits of Profiles.. 2-11
Managing Resources with Profiles ... 2-11

Creating Profiles... 2-12
Dropping Profiles... 2-12

Deleting User Accounts.. 2-13
Finding Information About Database Users and Profiles .. 2-14

Using Data Dictionary Views to Find Information About Users and Profiles....................... 2-14
Listing All Users and Associated Information.. 2-15
Listing All Tablespace Quotas... 2-15
Listing All Profiles and Assigned Limits... 2-16
Viewing Memory Use for Each User Session.. 2-17

3 Configuring Authentication

About Authentication .. 3-1
Configuring Password Protection ... 3-2

What Are the Oracle Database Built-in Password Protections?.. 3-2
Minimum Requirements for Passwords ... 3-3
Using a Password Management Policy... 3-3

About Managing Passwords ... 3-4
Finding User Accounts That Have Default Passwords... 3-4
Configuring Password Settings in the Default Profile .. 3-4
Disabling and Enabling the Default Password Security Settings .. 3-6
Automatically Locking a User Account After a Failed Login .. 3-6
Controlling User Ability to Reuse Old Passwords .. 3-7
Controlling Password Aging and Expiration ... 3-8
Enforcing Password Complexity Verification .. 3-9
Enabling or Disabling Password Case Sensitivity .. 3-11

Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm..... 3-13
Managing the Secure External Password Store for Password Credentials 3-14

About the Secure External Password Store.. 3-14
How Does the External Password Store Work? .. 3-15
Configuring Clients to Use the External Password Store .. 3-16
Managing External Password Store Credentials... 3-18

Authenticating Database Administrators... 3-19
Strong Authentication and Centralized Management for Database Administrators 3-20

Configuring Directory Authentication for Administrative Users 3-20
Configuring Kerberos Authentication for Administrative Users 3-21
Configuring Secure Sockets Layer Authentication for Administrative Users 3-21

Authenticating Database Administrators by Using the Operating System 3-22
Authenticating Database Administrators by Using Their Passwords 3-23

Using the Database to Authenticate Users ... 3-24
About Database Authentication.. 3-24
Advantages of Database Authentication ... 3-24
Creating a User Who Is Authenticated by the Database ... 3-24

v

Using the Operating System to Authenticate Users ... 3-25
Using the Network to Authenticate Users.. 3-26

Authentication Using Secure Sockets Layer ... 3-26
Authentication Using Third-Party Services .. 3-26

Configuring Global User Authentication and Authorization .. 3-28
Creating a User Who Is Authorized by a Directory Service ... 3-29

Creating a Global User Who Has a Private Schema ... 3-29
Creating Multiple Enterprise Users Who Share Schemas.. 3-29

Advantages of Global Authentication and Global Authorization... 3-29
Configuring an External Service to Authenticate Users and Passwords.................................... 3-30

About External Authentication ... 3-30
Advantages of External Authentication .. 3-31
Creating a User Who Is Authenticated Externally ... 3-31
Authenticating User Logins Using the Operating System.. 3-32
Authentication User Logins Using Network Authentication... 3-32

Using Multitier Authentication and Authorization ... 3-32
Administration and Security in Clients, Application Servers, and Database Servers 3-33

Preserving User Identity in Multitiered Environments... 3-34
Using a Middle Tier Server for Proxy Authentication... 3-34

About Proxy Authentication .. 3-35
Advantages of Proxy Authentication.. 3-35
Altering a User Account to Connect Through a Proxy .. 3-36
Using Proxy Authentication with the Secure External Password Store 3-37
Passing Through the Identity of the Real User by Using Proxy Authentication............ 3-37
Limiting the Privilege of the Middle Tier... 3-38
Authorizing a Middle Tier to Proxy and Authenticate a User.. 3-39
Authorizing a Middle Tier to Proxy a User Authenticated by Other Means 3-39
Reauthenticating the User Through the Middle Tier to the Database 3-39
Auditing Actions Taken on Behalf of the Real User ... 3-41

Using Client Identifiers to Identify Application Users Not Known to the Database............ 3-41
How Client Identifiers Work in Middle Tier Systems.. 3-42
Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity 3-42
Using CLIENT_IDENTIFIER Independent of Global Application Context 3-42
Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier 3-43

Finding Information About User Authentication... 3-44

4 Configuring Privilege and Role Authorization

About Privileges and Roles .. 4-1
Who Should Be Granted Privileges? .. 4-2
Managing System Privileges.. 4-2

About System Privileges ... 4-2
Why Is It Important to Restrict System Privileges? .. 4-3

Restricting System Privileges by Securing the Data Dictionary .. 4-3
Allowing Access to Objects in the SYS Schema.. 4-4

Granting and Revoking System Privileges... 4-4
Who Can Grant or Revoke System Privileges?.. 4-5
About ANY and PUBLIC Privileges ... 4-5

vi

Managing User Roles... 4-5
About User Roles.. 4-6

The Functionality of Roles ... 4-6
Properties of Roles and Why They Are Advantageous .. 4-7
Common Uses of Roles ... 4-7
How Roles Affect the Scope of a User’s Privileges ... 4-8
How Roles Work in PL/SQL Blocks ... 4-8
How Roles Aid or Restrict DDL Usage ... 4-9
How Operating Systems Can Aid Roles... 4-10
How Roles Work in a Distributed Environment... 4-10

Predefined Roles in an Oracle Database Installation .. 4-10
Creating a Role .. 4-16
Specifying the Type of Role Authorization ... 4-17

Authorizing a Role by Using the Database .. 4-17
Authorizing a Role by Using an Application .. 4-18
Authorizing a Role by Using an External Source.. 4-18
Global Role Authorization by an Enterprise Directory Service .. 4-19

Granting and Revoking Roles ... 4-19
Who Can Grant or Revoke Roles? .. 4-20

Dropping Roles.. 4-20
Restricting SQL*Plus Users from Using Database Roles... 4-21

Potential Security Problems of Using Ad Hoc Tools .. 4-21
Limiting Roles Through the PRODUCT_USER_PROFILE Table 4-21
Using Stored Procedures to Encapsulate Business Logic .. 4-22

Securing Role Privileges by Using Secure Application Roles .. 4-22
Managing Object Privileges .. 4-23

About Object Privileges.. 4-23
Granting or Revoking Object Privileges .. 4-23
Managing Object Privileges... 4-24

Granting and Revoking Object Privileges .. 4-24
Who Can Grant Object Privileges? .. 4-24
Using Privileges with Synonyms... 4-25

Managing Table Privileges .. 4-25
How Table Privileges Affect Data Manipulation Language Operations......................... 4-25
How Table Privileges Affect Data Definition Language Operations 4-26

Managing View Privileges... 4-26
About View Privileges .. 4-26
Privileges Required to Create Views... 4-26
Increasing Table Security with Views... 4-27

Managing Procedure Privileges.. 4-28
Using the EXECUTE Privilege for Procedure Privileges ... 4-28
Procedure Execution and Security Domains ... 4-28
How Procedure Privileges Affect Definer’s Rights... 4-28
How Procedure Privileges Affect Invoker’s Rights .. 4-29
System Privileges Required to Create or Replace a Procedure ... 4-30
System Privileges Required to Compile a Procedure ... 4-30
How Procedure Privileges Affect Packages and Package Objects.................................... 4-30

vii

Managing Type Privileges ... 4-32
System Privileges for Named Types ... 4-32
Object Privileges .. 4-32
Method Execution Model .. 4-33
Privileges Required to Create Types and Tables Using Types ... 4-33
Example of Privileges for Creating Types and Tables Using Types 4-33
Privileges on Type Access and Object Access .. 4-34
Type Dependencies ... 4-35

Granting a User Privileges and Roles .. 4-36
Granting System Privileges and Roles ... 4-36

Granting the ADMIN Option... 4-37
Creating a New User with the GRANT Statement ... 4-37

Granting Object Privileges... 4-37
Specifying the GRANT OPTION Clause.. 4-38
Granting Object Privileges on Behalf of the Object Owner ... 4-38
Granting Privileges on Columns ... 4-39
Row-Level Access Control.. 4-40

Revoking Privileges and Roles from a User .. 4-40
Revoking System Privileges and Roles .. 4-40
Revoking Object Privileges .. 4-41

Revoking Object Privileges on Behalf of the Object Owner .. 4-41
Revoking Column-Selective Object Privileges .. 4-42
Revoking the REFERENCES Object Privilege ... 4-42

Cascading Effects of Revoking Privileges ... 4-42
Cascading Effects When Revoking System Privileges ... 4-43
Cascading Effects When Revoking Object Privileges... 4-43

Granting to and Revoking from the PUBLIC User Group.. 4-44
Granting Roles Using the Operating System or Network .. 4-44

About Granting Roles Using the Operating System or Network .. 4-44
Using Operating System Role Identification... 4-45
Using Operating System Role Management ... 4-46
Granting and Revoking Roles When OS_ROLES Is Set to TRUE .. 4-46
Enabling and Disabling Roles When OS_ROLES Is Set to TRUE .. 4-46
Using Network Connections with Operating System Role Management 4-46

When Do Grants and Revokes Take Effect?... 4-47
How the SET ROLE Statement Affects Grants and Revokes.. 4-47
Specifying Default Roles .. 4-47
The Maximum Number of Roles That a User Can Enable.. 4-48

Managing Fine-Grained Access in PL/SQL Packages and Types .. 4-48
About Fine-Grained Access Control to External Network Services.. 4-49
About Access Control to Wallets .. 4-49
Upgrading Applications That Depend on Packages That Use External Network Services 4-50
Creating an Access Control List for External Network Services.. 4-50

Step 1: Create the Access Control List and Its Privilege Definitions................................ 4-50
Step 2: Assign the Access Control List to One or More Network Hosts.......................... 4-53

Configuring Access Control to a Wallet .. 4-54
Step 1: Create an Oracle Wallet.. 4-54

viii

Step 2: Create an Access Control List that Grants the Wallet Privileges 4-55
Step 3: Assign the Access Control List to the Wallet .. 4-56
Step 4: Make the HTTP Request with the Passwords and Client Certificates 4-56

Examples of Creating Access Control Lists... 4-59
Example of an Access Control List for a Single Role and Network Connection 4-59
Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts .. 4-60
Example of an Access Control List for Using Passwords in a Non-Shared Wallet........ 4-62
Example of an Access Control List for Wallets in a Shared Database Session 4-63

Specifying a Group of Network Host Computers.. 4-64
Precedence Order for a Host Computer in Multiple Access Control List Assignments 4-64
Precedence Order for a Host in Access Control List Assignments with Port Ranges 4-65
Checking Privilege Assignments That Affect User Access to a Network Host 4-65

How a DBA Can Check User Network Connection and Domain Privileges.................. 4-66
How Users Can Check Their Network Connection and Domain Privileges 4-68

Setting the Precedence of Multiple Users and Roles in One Access Control List.................. 4-69
Finding Information About Access Control Lists Configured for User Access..................... 4-70

Finding Information About User Privileges and Roles ... 4-70
Listing All System Privilege Grants ... 4-72
Listing All Role Grants ... 4-72
Listing Object Privileges Granted to a User .. 4-72
Listing the Current Privilege Domain of Your Session ... 4-73
Listing Roles of the Database .. 4-74
Listing Information About the Privilege Domains of Roles ... 4-74

5 Managing Security for Application Developers

About Application Security Policies .. 5-1
Considerations for Using Application-Based Security... 5-1

Are Application Users Also Database Users? .. 5-2
Is Security Better Enforced in the Application or in the Database?.. 5-2

Securing Passwords in Application Design.. 5-3
General Guidelines for Securing Passwords in Applications.. 5-3

Platform-Specific Security Threats ... 5-3
Designing Applications to Handle Password Input.. 5-4
Configuring Password Formats and Behavior ... 5-5
Handling Passwords in SQL*Plus and SQL Scripts... 5-5

Securing Passwords Using an External Password Store .. 5-7
Securing Passwords Using the orapwd Utility.. 5-7
Example of Reading Passwords in Java.. 5-7

Managing Application Privileges .. 5-11
Creating Secure Application Roles to Control Access to Applications 5-12

Step 1: Create the Secure Application Role ... 5-12
Step 2: Create a PL/SQL Package to Define the Access Policy for the Application.............. 5-13

Associating Privileges with User Database Roles .. 5-14
Why Users Should Only Have the Privileges of the Current Database Role 5-15
Using the SET ROLE Statement to Automatically Enable or Disable Roles........................... 5-15

Protecting Database Objects by Using Schemas... 5-15
Protecting Database Objects in a Unique Schema.. 5-15

ix

Protecting Database Objects in a Shared Schema... 5-16
Managing Object Privileges in an Application... 5-16

What Application Developers Need to Know About Object Privileges 5-16
SQL Statements Permitted by Object Privileges... 5-17

Parameters for Enhanced Security of Database Communication .. 5-18
Reporting Bad Packets Received on the Database from Protocol Errors................................ 5-18
Terminating or Resuming Server Execution After Receiving a Bad Packet........................... 5-18
Configuring the Maximum Number of Authentication Attempts .. 5-19
Controlling the Display of the Database Version Banner ... 5-19
Configuring Banners for Unauthorized Access and Auditing User Actions 5-20

6 Using Application Contexts to Retrieve User Information

About Application Contexts... 6-1
What Is an Application Context? .. 6-1
Components of the Application Context .. 6-2
Where Are the Application Context Values Stored? .. 6-2
Benefits of Using Application Contexts .. 6-2
How Editions Affects Application Context Values... 6-3

Types of Application Contexts... 6-3
Using Database Session-Based Application Contexts .. 6-4

About Database Session-Based Application Contexts.. 6-4
Creating a Database Session-Based Application Context .. 6-5
Creating a PL/SQL Package to Set the Database Session-Based Application Context 6-6

About the Package That Manages the Database Session-Based Application Context 6-7
Using SYS_CONTEXT to Retrieve Session Information ... 6-7
Using Dynamic SQL with SYS_CONTEXT... 6-8
Using SYS_CONTEXT in a Parallel Query.. 6-9
Using SYS_CONTEXT with Database Links... 6-9
Using DBMS_SESSION.SET_CONTEXT to Set Session Information 6-9

Creating a Logon Trigger to Run a Database Session Application Context Package 6-11
Tutorial: Creating and Using a Database Session-Based Application Context...................... 6-13

About This Tutorial ... 6-13
Step 1: Create User Accounts and Ensure the User SCOTT Is Active.............................. 6-13
Step 2: Create the Database Session-Based Application Context...................................... 6-14
Step 3: Create a Package to Retrieve Session Data and Set the Application Context 6-14
Step 4: Create a Logon Trigger for the Package .. 6-15
Step 5: Test the Application Context ... 6-15
Step 6: Remove the Components for This Tutorial ... 6-16

Initializing Database Session-Based Application Contexts Externally 6-16
Obtaining Default Values from Users... 6-16
Obtaining Values from Other External Resources .. 6-17
Initializing Application Context Values from a Middle-Tier Server................................ 6-17

Initializing Database Session-Based Application Contexts Globally 6-18
About Initializing Database Session-Based Application Contexts Globally 6-18
Using Database Session-Based Application Contexts with LDAP................................... 6-18
How Globally Initialized Database Session-Based Application Contexts Work............ 6-19
Example of Initializing a Database Session-Based Application Context Globally......... 6-20

x

Using Externalized Database Session-Based Application Contexts .. 6-21
Using Global Application Contexts... 6-22

About Global Application Contexts ... 6-22
Creating a Global Application Context.. 6-23
Creating a PL/SQL Package to Manage a Global Application Context 6-24

About the Package That Manages the Global Application Context................................. 6-24
How Editions Affects the Results of a Global Application Context PL/SQL Package . 6-24
Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters 6-25
Sharing Global Application Context Values for All Database Users 6-26
Setting a Global Context for Database Users Who Move Between Applications........... 6-27
Setting a Global Application Context for Nondatabase Users ... 6-28
Clearing Session Data When the Session Closes ... 6-31

Embedding Calls in Middle-Tier Applications to Manage the Client Session ID 6-32
About Managing Client Session IDs Using a Middle-Tier Application 6-32
Retrieving the Client Session ID Using a Middle-Tier Application 6-32
Setting the Client Session ID Using a Middle-Tier Application 6-33
Clearing Session Data Using a Middle-Tier Application... 6-34

Tutorial: Creating a Global Application Context That Uses a Client Session ID................... 6-35
About This Tutorial ... 6-35
Step 1: Create User Accounts ... 6-35
Step 2: Create the Global Application Context .. 6-35
Step 3: Create a Package for the Global Application Context ... 6-36
Step 4: Test the Global Application Context .. 6-37
Step 5: Remove the Components for This Tutorial ... 6-39

Global Application Context Processes ... 6-39
Simple Global Application Context Process .. 6-39
Global Application Context Process for Lightweight Users.. 6-40

Using Client Session-Based Application Contexts... 6-42
About Client Session-Based Application Contexts .. 6-42
Setting a Value in the CLIENTCONTEXT Namespace ... 6-43
Retrieving the CLIENTCONTEXT Namespace.. 6-43
Clearing a Setting in the CLIENTCONTEXT Namespace .. 6-44
Clearing All Settings in the CLIENTCONTEXT Namespace ... 6-44

Finding Information About Application Contexts ... 6-45

7 Using Oracle Virtual Private Database to Control Data Access

About Oracle Virtual Private Database.. 7-1
What Is Oracle Virtual Private Database? ... 7-1
Benefits of Using Oracle Virtual Private Database Policies ... 7-2

Basing Security Policies on Database Objects Rather Than Applications 7-2
Controlling How Oracle Database Evaluates Policy Functions... 7-3

Which Privileges Are Used to Run Oracle Virtual Private Database Policy Functions?......... 7-3
Using Oracle Virtual Private Database with an Application Context.. 7-3

Components of an Oracle Virtual Private Database Policy ... 7-4
Creating a Function to Generate the Dynamic WHERE Clause.. 7-4
Creating a Policy to Attach the Function to the Objects You Want to Protect 7-5

Configuring an Oracle Virtual Private Database Policy... 7-5

xi

About Oracle Virtual Private Database Policies .. 7-6
Attaching a Policy a Database Table, View, or Synonym .. 7-7
Enforcing Policies on Specific SQL Statement Types.. 7-7
Controlling the Display of Column Data with Policies .. 7-8

Adding Policies for Column-Level Oracle Virtual Private Database.................................. 7-8
Displaying Only the Column Rows Relevant to the Query ... 7-9
Using Column Masking to Display Sensitive Columns as NULL Values....................... 7-10

Working with Oracle Virtual Private Database Policy Groups.. 7-11
About Oracle Virtual Private Database Policy Groups .. 7-12
Creating a New Oracle Virtual Private Database Policy Group 7-12
Designating a Default Policy Group with the SYS_DEFAULT Policy Group 7-13
Establishing Multiple Policies for Each Table, View, or Synonym................................... 7-13
Validating the Application Used to Connect to the Database... 7-13

Optimizing Performance by Using Oracle Virtual Private Database Policy Types 7-14
About Oracle Virtual Private Database Policy Types... 7-14
Using the Dynamic Policy Type to Automatically Rerun Policy Functions 7-15
Using a Static Policy to Prevent Policy Functions from Rerunning for Each Query 7-16
Using a Shared Static Policy to Share a Policy with Multiple Objects 7-16
When to Use Static and Shared Static Policies... 7-17
Using a Context-Sensitive Policy for Predicates That Do Not Change After Parsing ... 7-17
Using a Shared Context Sensitive Policy to Share a Policy with Multiple Objects 7-18
When to Use Context-Sensitive and Shared Context-Sensitive Policies.......................... 7-19
Summary of the Five Oracle Virtual Private Database Policy Types............................... 7-19

Tutorials: Creating Oracle Virtual Private Database Policies ... 7-20
Tutorial: Creating a Simple Oracle Virtual Private Database Policy....................................... 7-20

About This Tutorial ... 7-20
Step 1: Ensure That the OE User Account Is Active ... 7-20
Step 2: Create a Policy Function... 7-20
Step 3: Create the Oracle Virtual Private Database Policy... 7-21
Step 4: Test the Policy.. 7-22
Step 5: Remove the Components for This Tutorial ... 7-22

Tutorial: Implementing a Policy with a Database Session-Based Application Context 7-23
About This Tutorial ... 7-23
Step 1: Create User Accounts and Sample Tables ... 7-23
Step 2: Create a Database Session-Based Application Context ... 7-25
Step 3: Create a PL/SQL Package to Set the Application Context 7-25
Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package....... 7-26
Step 5: Create a PL/SQL Policy Function to Limit User Access to Their Orders 7-26
Step 6: Create the New Security Policy... 7-27
Step 7: Test the New Policy .. 7-27
Step 8: Remove the Components for This Tutorial ... 7-28

Tutorial: Implementing an Oracle Virtual Private Database Policy Group 7-29
About This Tutorial ... 7-29
Step 1: Create User Accounts and Other Components for This Tutorial......................... 7-29
Step 2: Create the Two Policy Groups .. 7-30
Step 3: Create PL/SQL Functions to Control the Policy Groups...................................... 7-30
Step 4: Add the PL/SQL Functions to the Policy Groups.. 7-31

xii

Step 5: Create the Driving Application Context.. 7-32
Step 6: Test the Policy Groups.. 7-33
Step 7: Remove the Components for This Tutorial ... 7-34

How Oracle Virtual Private Database Works with Other Oracle Features 7-34
Using Oracle Virtual Private Database Policies with Editions... 7-34
Using SELECT FOR UPDATE in User Queries on VPD-Protected Tables............................. 7-35
How Oracle Virtual Private Database Policies Affect Outer or ANSI Join Operations........ 7-35
How Oracle Virtual Private Database Security Policies Work with Applications 7-35
Using Automatic Reparsing for Fine-Grained Access Control Policy Functions 7-35
Using Oracle Virtual Private Database Policies and Flashback Query 7-36
Using Oracle Virtual Private Database and Oracle Label Security.. 7-36

Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies......... 7-36
Oracle Virtual Private Database and Oracle Label Security Exceptions 7-37

User Models and Oracle Virtual Private Database .. 7-38
Finding Information About Oracle Virtual Private Database Policies....................................... 7-39

8 Developing Applications Using the Data Encryption API

Security Problems That Encryption Does Not Solve .. 8-1
Principle 1: Encryption Does Not Solve Access Control Problems .. 8-1
Principle 2: Encryption Does Not Protect Against a Malicious Database Administrator 8-2
Principle 3: Encrypting Everything Does Not Make Data Secure ... 8-3

Data Encryption Challenges... 8-4
Encrypting Indexed Data .. 8-4
Generating Encryption Keys .. 8-4
Transmitting Encryption Keys ... 8-5
Storing Encryption Keys ... 8-5

Storing the Encryption Keys in the Database ... 8-5
Storing the Encryption Keys in the Operating System.. 8-7
Users Managing Their Own Encryption Keys.. 8-7
Using Transparent Database Encryption and Tablespace Encryption 8-7

Changing Encryption Keys... 8-7
Encrypting Binary Large Objects ... 8-7

Storing Data Encryption by Using the DBMS_CRYPTO Package ... 8-8
Verifying Data Integrity with the DBMS_SQLHASH Package ... 8-10

About the DBMS_SQLHASH Package .. 8-10
Using the DBMS_SQLHASH.GETHASH Function ... 8-10

Syntax .. 8-10
Parameters... 8-11

Examples of Using the Data Encryption API ... 8-11
Example of a Data Encryption Procedure ... 8-11
Example of AES 256-Bit Data Encryption and Decryption Procedures 8-12
Example of Encryption and Decryption Procedures for BLOB Data 8-13

Finding Information About Encrypted Data ... 8-16

9 Verifying Security Access with Auditing

About Auditing... 9-1
What Is Auditing? .. 9-2

xiii

Why Is Auditing Used? ... 9-2
Protecting the Database Audit Trail .. 9-3
Activities That Are Always Written to the Standard and Fine-Grained Audit Records......... 9-3
Activities That Are Always Audited for All Platforms .. 9-4
Auditing in a Distributed Database... 9-4
Best Practices for Auditing ... 9-4

Selecting an Auditing Type .. 9-5
Auditing General Activities with Standard Auditing .. 9-7

About Standard Auditing ... 9-7
What Is Standard Auditing?.. 9-7
Who Can Perform Standard Auditing? ... 9-7
When Are Standard Audit Records Created?... 9-8

Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter................ 9-8
Enabling or Disabling the Standard Audit Trail .. 9-8
Settings for the AUDIT_TRAIL Initialization Parameter... 9-10

What Do the Operating System and Database Audit Trails Have in Common?................... 9-12
Using the Operating System Audit Trail ... 9-13

About the Operating System Trail .. 9-13
What Do Operating System Audit Trail Records Look Like? ... 9-13
Advantages of the Operating System Audit Trail .. 9-16
How the Operating System Audit Trail Works... 9-17
Specifying a Directory for the Operating System Audit Trail... 9-17

Using the Syslog Audit Trail on UNIX Systems... 9-18
About the Syslog Audit Trail ... 9-18
Format of the Information Stored in the Syslog Audit Trail .. 9-19
What Does the Syslog Audit Trail Look Like? .. 9-19
Configuring Syslog Auditing... 9-19

How the AUDIT and NOAUDIT SQL Statements Work.. 9-20
Enabling Standard Auditing with the AUDIT SQL Statement ... 9-21
Auditing Statement Executions: Successful, Unsuccessful, or Both................................. 9-21
How Standard Audit Records Are Generated... 9-22
How Do Cursors Affect Standard Auditing? .. 9-22
Benefits of Using the BY ACCESS Clause in the AUDIT Statement 9-22
Auditing Actions Performed by Specific Users .. 9-23
Removing the Audit Option with the NOAUDIT SQL Statement 9-23

Auditing SQL Statements .. 9-23
About SQL Statement Auditing... 9-24
Types of SQL Statements That Are Audited.. 9-24
Configuring SQL Statement Auditing .. 9-24
Removing SQL Statement Auditing.. 9-25

Auditing Privileges ... 9-26
About Privilege Auditing ... 9-26
Types of Privileges That Can Be Audited .. 9-26
Configuring Privilege Auditing... 9-27
Removing Privilege Auditing .. 9-27

Auditing SQL Statements and Privileges in a Multitier Environment.................................... 9-27
Auditing Schema Objects ... 9-29

xiv

About Schema Object Auditing ... 9-29
Types of Schema Objects That Can Be Audited .. 9-29
Using Standard Auditing with Editioned Objects .. 9-30
Schema Object Audit Options for Views, Procedures, and Other Elements................... 9-30
Configuring Schema Object Auditing... 9-31
Removing Object Auditing... 9-31
Setting Audit Options for Objects That May Be Created in the Future 9-32

Auditing Directory Objects.. 9-32
About Directory Object Auditing .. 9-32
Configuring Directory Object Auditing ... 9-33
Removing Directory Object Auditing... 9-33

Auditing Functions, Procedures, Packages, and Triggers .. 9-33
About Auditing Functions, Procedures, Packages, and Triggers..................................... 9-33
Configuring the Auditing of Functions, Procedures, Packages, and Triggers 9-33
Removing the Auditing of Functions, Procedures, Packages, and Triggers................... 9-34

Auditing Network Activity ... 9-34
About Network Auditing ... 9-34
Configuring Network Auditing... 9-35
Removing Network Auditing .. 9-35

Using Default Auditing for Security-Relevant SQL Statements and Privileges...................... 9-35
About the Default Auditing Settings ... 9-35
Privileges That Oracle Database Audits by Default .. 9-36
Disabling and Enabling Default Audit Settings ... 9-36

Auditing Specific Activities with Fine-Grained Auditing ... 9-37
About Fine-Grained Auditing... 9-37
Advantages of Fine-Grained Auditing .. 9-38
What Permissions Are Needed to Create a Fine-Grained Audit Policy? 9-38
Activities That Are Always Audited in Fine-Grained Auditing.. 9-39
Using Fine-Grained Audit Policies with Editions .. 9-39
Creating an Audit Trail for Fine-Grained Audit Records ... 9-39
How the Fine-Grained Audit Trail Generates Records ... 9-39
Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies 9-40

About the DBMS_FGA PL/SQL Package .. 9-40
Creating a Fine-Grained Audit Policy .. 9-40
Disabling and Enabling a Fine-Grained Audit Policy .. 9-43
Dropping a Fine-Grained Audit Policy .. 9-43

Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy .. 9-44
About This Tutorial ... 9-44
Step 1: Install and Configure the UTL_MAIL PL/SQL Package 9-44
Step 2: Create User Accounts ... 9-45
Step 3: Configure an Access Control List File for Network Services 9-46
Step 4: Create the E-Mail Security Alert PL/SQL Procedure .. 9-47
Step 5: Create and Test the Fine-Grained Audit Policy Settings....................................... 9-48
Step 6: Test the Alert.. 9-48
Step 7: Remove the Components for This Tutorial ... 9-49

Tutorial: Auditing Nondatabase Users.. 9-50
About This Tutorial ... 9-50

xv

Step 1: Create the User Account and Ensure the User HR Is Active................................ 9-50
Step 2: Create the Fine-Grained Audit Policy.. 9-51
Step 3: Test the Policy.. 9-51
Step 4: Remove the Components for This Tutorial ... 9-52

Auditing SYS Administrative Users.. 9-52
Auditing User SYSTEM.. 9-52
Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER............................... 9-53

Using Triggers to Write Audit Data to a Separate Table .. 9-55
Managing Audit Trail Records ... 9-57

About Audit Records.. 9-57
Managing the Database Audit Trail ... 9-58

Database Audit Trail Contents... 9-58
Controlling the Size of the Database Audit Trail .. 9-59
Moving the Database Audit Trail to a Different Tablespace ... 9-60
Auditing the Database Audit Trail.. 9-61
Archiving the Database Audit Trail .. 9-61

Managing the Operating System Audit Trail ... 9-62
If the Operating System Audit Trail Becomes Full ... 9-62
Setting the Size of the Operating System Audit Trail .. 9-62
Setting the Age of the Operating System Audit Trail .. 9-64
Archiving the Operating System Audit Trail .. 9-65

Purging Audit Trail Records ... 9-66
About Purging Audit Trail Records ... 9-66
Selecting an Audit Trail Purge Method ... 9-67
Scheduling an Automatic Purge Job for the Audit Trail ... 9-67

Step 1: If Necessary, Tune Online and Archive Redo Log Sizes 9-68
Step 2: Plan a Timestamp and Archive Strategy ... 9-68
Step 3: Initialize the Audit Trail Cleanup Operation.. 9-68
Step 4: Optionally, Set an Archive Timestamp for Audit Records 9-69
Step 5: Create and Schedule the Purge Job... 9-71
Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches........... 9-72

Manually Purging the Audit Trail .. 9-72
Purging a Subset of Records from the Database Audit Trail.. 9-74
Other Audit Trail Purge Operations .. 9-75

Verifying That the Audit Trail Is Initialized for Cleanup .. 9-75
Setting the Default Audit Trail Purge Interval for Any Audit Trail Type....................... 9-76
Cancelling the Initialization Cleanup Settings .. 9-76
Enabling or Disabling an Audit Trail Purge Job ... 9-77
Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job................. 9-77
Deleting an Audit Trail Purge Job ... 9-78
Clearing the Archive Timestamp Setting ... 9-78
Clearing the Database Audit Trail Batch Size.. 9-78

Example: Directly Calling a Database Audit Trail Purge Operation 9-79
Finding Information About Audited Activities .. 9-80

Using Data Dictionary Views to Find Information About the Audit Trail 9-80
Using Audit Trail Views to Investigate Suspicious Activities.. 9-81

Listing Active Statement Audit Options ... 9-82

xvi

Listing Active Privilege Audit Options .. 9-82
Listing Active Object Audit Options for Specific Objects ... 9-83
Listing Default Object Audit Options ... 9-83
Listing Audit Records ... 9-83
Listing Audit Records for the AUDIT SESSION Option ... 9-83

Deleting the Audit Trail Views ... 9-84

10 Keeping Your Oracle Database Secure

About the Security Guidelines in This Chapter ... 10-1
Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities 10-2

Applying Security Patches and Workaround Solutions ... 10-2
Contacting Oracle Security Regarding Vulnerabilities in Oracle Database 10-2

Guidelines for Securing User Accounts and Privileges .. 10-2
Guidelines for Securing Roles.. 10-6
Guidelines for Securing Passwords... 10-7
Guidelines for Securing Data ... 10-9
Guidelines for Securing the ORACLE_LOADER Access Driver .. 10-10
Guidelines for Securing a Database Installation and Configuration 10-12
Guidelines for Securing the Network ... 10-12

Securing the Client Connection... 10-12
Securing the Network Connection ... 10-13
Securing a Secure Sockets Layer Connection.. 10-17

Guidelines for Auditing .. 10-18
Auditing Sensitive Information .. 10-18
Keeping Audited Information Manageable .. 10-19
Auditing Typical Database Activity... 10-19
Auditing Suspicious Database Activity ... 10-20
Recommended Audit Settings... 10-21

Addressing the CONNECT Role Change... 10-22
Why Was the CONNECT Role Changed?... 10-22
How the CONNNECT Role Change Affects Applications... 10-23

How the CONNECT Role Change Affects Database Upgrades 10-23
How the CONNECT Role Change Affects Account Provisioning 10-23
How the CONNECT Role Change Affects Applications Using New Databases 10-23

How the CONNECT Role Change Affects Users... 10-23
How the CONNECT Role Change Affects General Users... 10-23
How the CONNECT Role Change Affects Application Developers.............................. 10-24
How the CONNECT Role Change Affects Client Server Applications 10-24

Approaches to Addressing the CONNECT Role Change... 10-24
Approach 1: Create a New Database Role ... 10-24
Approach 2: Restore CONNECT Privileges... 10-25
Approach 3: Conduct Least Privilege Analysis .. 10-26

Glossary

Index

xvii

List of Examples

2–1 Creating a User Account with the CREATE SESSION Privilege... 2-2
2–2 Altering a User Account .. 2-7
2–3 Querying V$SESSION for the Session ID of a User .. 2-13
2–4 Killing a User Session .. 2-13
2–5 Finding Objects Owned by a User... 2-13
2–6 Dropping a User Account... 2-14
3–1 Password Creation SQL Statements... 3-3
3–2 Locking an Account with the CREATE PROFILE Statement... 3-7
3–3 Setting Password Aging and Expiration with the CREATE PROFILE Statement 3-8
3–4 Enabling Password Case Sensitivity ... 3-12
3–5 Sample SQLNET.ORA File with Wallet Parameters Set .. 3-17
3–6 Altering a User Account to Connect Through a Proxy User Account 3-36
4–1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE.. 4-3
4–2 Creating a User Role Authorized by a Password.. 4-16
4–3 Altering a Role to be Authorized by an External Source ... 4-17
4–4 Using SET ROLE for a Password-Authenticated Role ... 4-17
4–5 Creating a Role Authorized by a PL/SQL Package for an Application 4-18
4–6 Creating a Role Authorized by an External Source .. 4-18
4–7 Creating a Global Role .. 4-19
4–8 Revoking All Object Privileges Using CASCADE CONSTRAINTS 4-23
4–9 Compiling a Procedure ... 4-30
4–10 Package Objects Affected by Procedure Privileges... 4-31
4–11 Granting a System Privilege and a Role to a User .. 4-36
4–12 Granting the EXECUTE Privilege on a Directory Object ... 4-36
4–13 Granting the ADMIN Option... 4-37
4–14 Creating a New User with the GRANT Statement ... 4-37
4–15 Granting Object Privileges to Users .. 4-38
4–16 Using SET ROLE to Grant a Role and Specify a Password.. 4-47
4–17 Using SET ROLE to Disable All Roles ... 4-47
4–18 Using ALTER USER to Set Default Roles... 4-48
4–19 Creating an Access Control List for a Single Role and Network Connection................. 4-59
4–20 Creating an Access Control List for Multiple Roles and Network Connections............ 4-60
4–21 Using the DBA_NETWORK_ACL_PRIVILEGES View to Show Granted Privileges ... 4-61
4–22 Using the DBA_NETWORK_ACLS View to Show Host Assignments 4-61
4–23 Configuring ACL Access Using Passwords in a Non-Shared Wallet 4-62
4–24 Configuring ACL Access for a Wallet in a Shared Database Session............................... 4-63
4–25 Administrator Checking User Permissions for Network Host Connections 4-66
4–26 Administrator Checking Permissions for Domain Name Resolution.............................. 4-67
4–27 User Checking Permissions for Network Host Connections .. 4-68
4–28 User Checking Privileges for Domain Name Resolution... 4-68
5–1 Java Code for Reading Passwords.. 5-7
6–1 Creating a Database Session-Based Application Context ... 6-6
6–2 Finding SYS_CONTEXT Values ... 6-8
6–3 Simple Procedure to Create an Application Context Value .. 6-10
6–4 Creating a Simple Logon Trigger ... 6-11
6–5 Creating a Logon Trigger for a Production Environment ... 6-12
6–6 Creating a Logon Trigger for a Development Environment ... 6-12
6–7 Package to Retrieve Session Data and Set a Database Session Context........................... 6-14
6–8 Creating an Externalized Database Session-based Application Context......................... 6-17
6–9 Creating a Global Application Context .. 6-23
6–10 Package to Manage Global Application Values for All Database Users.......................... 6-26
6–11 Package to Manage Global Application Context Values for a User Moving Between

Applications 6-28
6–12 Package to Manage Global Application Context Values for Nondatabase Users.......... 6-30

xviii

6–13 Using OCIStmtExecute to Retrieve a Client Session ID Value.. 6-33
6–14 Retrieving a Client Session ID Value for Client Session-Based Contexts 6-44
7–1 Attaching a Simple Oracle Virtual Private Database Policy to a Table............................... 7-7
7–2 Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY.................................... 7-8
7–3 Creating a Column-Level Oracle Virtual Private Database Policy...................................... 7-9
7–4 Adding a Column Masking to an Oracle Virtual Private Database Policy 7-10
7–5 Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY 7-15
7–6 Creating a STATIC Policy with DBMS_RLS.ADD_POLICY... 7-16
7–7 Creating a SHARED_STATIC Policy with DBMS_RLS.ADD_POLICY 7-17
7–8 Creating a CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY 7-18
7–9 Creating a SHARED_CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY 7-18
9–1 Checking the Current Value of the AUDIT_TRAIL Initialization Parameter.................... 9-9
9–2 Enabling the Standard Audit Trail ... 9-9
9–3 Text File Operating System Audit Trail.. 9-13
9–4 XML File Operating System Audit Trail .. 9-15
9–5 Syslog Audit Trail for SYS User... 9-19
9–6 Using AUDIT to Audit User Actions .. 9-23
9–7 Using AUDIT to Enable SQL Statement Auditing.. 9-24
9–8 Using NOAUDIT to Remove Session and SQL Statement Auditing 9-26
9–9 Using NOAUDIT to Remove ALL STATEMENTS Auditing.. 9-26
9–10 Using AUDIT to Configure Privilege Auditing .. 9-27
9–11 Auditing Unsuccessful Statements and Privileges ... 9-27
9–12 Using AUDIT to Audit a SQL Statement for a User ... 9-28
9–13 Configuring Auditing for a Schema Table ... 9-31
9–14 Auditing Successful Statements on a Schema Table... 9-31
9–15 Configuring Auditing for Any New Objects Using the DEFAULT Clause 9-31
9–16 Auditing the Execution of a Procedure or Function ... 9-31
9–17 Auditing a Directory Object ... 9-33
9–18 Auditing All Functions, Procedures, Packages, and Triggers... 9-33
9–19 Auditing a User’s Execution of Functions, Procedures, Packages, and Triggers 9-34
9–20 Auditing the Execution of a Procedure or Function within a Schema............................. 9-34
9–21 Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy 9-42
9–22 Disabling a Fine-Grained Audit Policy... 9-43
9–23 Enabling a Fine-Grained Audit Policy.. 9-43
9–24 Dropping a Fine-Grained Audit Policy .. 9-44
9–25 Auditing Table Insert Operations by User SYSTEM .. 9-53
9–26 Audit Trigger to Record Before and After Changes to a Table... 9-56
9–27 Directly Calling a Database Audit Trail Purge Operation... 9-79

xix

List of Figures

3–1 Chronology of Password Lifetime and Grace Period.. 3-9
3–2 Multitier Authentication ... 3-33
4–1 Common Uses for Roles... 4-8
6–1 Location of Application Context in LDAP Directory Information Tree 6-19
9–1 Auditing Proxy Users.. 9-28
9–2 Auditing Client Identifier Information Across Sessions .. 9-29

xx

List of Tables

2–1 Data Dictionary Views That Display Information about Users and Profiles................. 2-14
3–1 Password-Specific Settings in the Default Profile ... 3-5
3–2 Parameters Controlling Reuse of an Old Password.. 3-7
3–3 Data Dictionary Views That Describe User Authentication... 3-44
4–1 Roles to Allow Access to SYS Schema Objects .. 4-4
4–2 Properties of Roles and Their Description ... 4-7
4–3 Oracle Database Predefined Roles.. 4-11
4–4 System Privileges for Named Types .. 4-32
4–5 Privileges for Object Tables ... 4-34
4–6 Data Dictionary Views That Display Information about Access Control Lists 4-70
4–7 Data Dictionary Views That Display Information about Privileges and Roles 4-70
5–1 Features Affected by the One Big Application User Model .. 5-2
5–2 How Privileges Relate to Schema Objects ... 5-16
5–3 SQL Statements Permitted by Database Object Privileges ... 5-17
6–1 Types of Application Contexts... 6-4
6–2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters 6-25
6–3 Data Dictionary Views That Display Information about Application Contexts 6-45
7–1 DBMS_RLS Procedures... 7-6
7–2 DBMS_RLS.ADD_POLICY Policy Types .. 7-19
7–3 Oracle Virtual Private Database in Different User Models... 7-39
7–4 Data Dictionary Views That Display Information about VPD Policies 7-39
8–1 DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison 8-8
8–2 GETHASH Function Parameters .. 8-11
8–3 Data Dictionary Views That Display Information about Encrypted Data 8-16
9–1 Selecting an Auditing Type .. 9-5
9–2 AUDIT_TRAIL Initialization Parameter Settings .. 9-10
9–3 Common Audited Actions in the Operating System and Database Audit Trails 9-12
9–4 Standard Auditing Levels and Their Effects... 9-21
9–5 Auditable Network Error Conditions.. 9-35
9–6 Comparison of Built-in Auditing and Trigger-Based Auditing....................................... 9-56
9–7 Selecting an Audit Trail Purge Method... 9-67
9–8 Data Dictionary Views That Display Information about the Database Audit Trail 9-80
10–1 Columns and Contents for DBA_CONNECT_ROLE_GRANTEES 10-26

xxi

Preface

Welcome to Oracle Database Security Guide. This guide describes how you can configure
security for Oracle Database by using the default database features.

This preface contains these topics:

■ Audience

■ Documentation Accessibility

■ Related Documents

■ Conventions

Audience
Oracle Database Security Guide is intended for database administrators (DBAs), security
administrators, application developers, and others tasked with performing the
following operations securely and efficiently:

■ Designing and implementing security policies to protect the data of an
organization, users, and applications from accidental, inappropriate, or
unauthorized actions

■ Creating and enforcing policies and practices of auditing and accountability for
inappropriate or unauthorized actions

■ Creating, maintaining, and terminating user accounts, passwords, roles, and
privileges

■ Developing applications that provide desired services securely in a variety of
computational models, leveraging database and directory services to maximize
both efficiency and ease of use

To use this document, you need a basic understanding of how and why a database is
used, and basic familiarity with SQL.

Documentation Accessibility
Our goal is to make Oracle products, services, and supporting documentation
accessible to all users, including users that are disabled. To that end, our
documentation includes features that make information available to users of assistive
technology. This documentation is available in HTML format, and contains markup to
facilitate access by the disabled community. Accessibility standards will continue to
evolve over time, and Oracle is actively engaged with other market-leading
technology vendors to address technical obstacles so that our documentation can be

xxii

accessible to all of our customers. For more information, visit the Oracle Accessibility
Program Web site at http://www.oracle.com/accessibility/.

Accessibility of Code Examples in Documentation
Screen readers may not always correctly read the code examples in this document. The
conventions for writing code require that closing braces should appear on an
otherwise empty line; however, some screen readers may not always read a line of text
that consists solely of a bracket or brace.

Accessibility of Links to External Web Sites in Documentation
This documentation may contain links to Web sites of other companies or
organizations that Oracle does not own or control. Oracle neither evaluates nor makes
any representations regarding the accessibility of these Web sites.

Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For
information, visit http://www.oracle.com/support/contact.html or visit
http://www.oracle.com/accessibility/support.html if you are hearing
impaired.

Related Documents
For more security-related information, see these Oracle resources:

■ Oracle Database Administrator's Guide

■ Oracle Database 2 Day DBA

■ Oracle Database 2 Day + Security Guide

■ Oracle Database Concepts

■ Oracle Database Reference

■ Oracle Database Vault Administrator's Guide

Many of the examples in this guide use the sample schemas of the seed database,
which you can create when you install Oracle Database. See Oracle Database Sample
Schemas for information about how these schemas were created and how you can use
them yourself.

Oracle Store
Printed documentation is available for sale in the Oracle Store at

https://oraclestore.oracle.com/OA_HTML/ibeCZzpHome.jsp

Oracle Technology Network (OTN)
You can download free release notes, installation documentation, updated versions of
this guide, white papers, or other collateral from the Oracle Technology Network
(OTN). Visit

http://www.oracle.com/technology/index.html

If you are not already a member, you can register for free at

http://www.oracle.com/technology/membership/

For security-specific information on OTN, visit

http://www.oracle.com/technology/deploy/security/index.html

https://oraclestore.oracle.com/OA_HTML/ibeCZzpHome.jsp
http://www.oracle.com/technology/index.html
http://www.oracle.com/technology/membership/
http://www.oracle.com/technology/deploy/security/index.html

xxiii

For the latest version of the Oracle documentation, including this guide, visit

http://www.oracle.com/technology/documentation/index.html

Oracle Documentation Search Engine
To access the database documentation search engine directly, visit

http://tahiti.oracle.com/

My Oracle Support
You can find information about security patches, certifications, and the support
knowledge base by visiting My Oracle Support (formerly OracleMetaLink) at

https://support.oracle.com

Conventions
The following text conventions are used in this document:

Convention Meaning

boldface Boldface type indicates graphical user interface elements associated
with an action, or terms defined in text or the glossary.

italic Italic type indicates book titles, emphasis, or placeholder variables for
which you supply particular values.

monospace Monospace type indicates commands within a paragraph, URLs, code
in examples, text that appears on the screen, or text that you enter.

http://www.oracle.com/technology/documentation/index.html
http://tahiti.oracle.com/
https://support.oracle.com

xxiv

xxv

What's New in Oracle Database Security?

The Oracle Database 11g Release 2 (11.2) security features and enhancements described
in this section comprise the overall effort to provide superior access control, privacy,
and accountability with this release of Oracle Database.

The following sections describe new security features of Oracle Database 11g Release 2
(11.2) and provide pointers to additional information:

■ Oracle Database 11g Release 2 (11.2.0.2) New Security Features

■ Oracle Database 11g Release 2 (11.2.0.1) New Security Features

■ Oracle Database 11g Release 1 (11.1) New Security Features

Oracle Database 11g Release 2 (11.2.0.2) New Security Features
This section contains:

■ Enhancements to Fine-Grained Access to External Services and Wallets

■ Support for MERGE INTO Statements for Virtual Private Database Policies

■ BY ACCESS Audit Trail Option Now the Default for AUDIT Statements

■ Enhancements for the UTL_SMTP PL/SQL Package

■ New DBMS_SCHEDULER PL/SQL Package Global Scheduler Attributes

■ Change to the UNLIMITED TABLESPACE System Privilege

Enhancements to Fine-Grained Access to External Services and Wallets
In this release, when you use fine-grained access control to configure external network
services and wallets, you now can control access to the DBMS_LDAP PL/SQL package.
In a default database installation, this package is created with the EXECUTE privilege
granted to PUBLIC users. This release enhances the security of this package by
enabling you to control access to applications in the database that use this package. As
part of this enhancement, the DBMS_LDAP package is now an invoker's rights package.
Before a user can connect to a remote network host, he or she must be granted the
connect privilege in the access control list that was assigned to the remote network
host.

See Oracle Database PL/SQL Packages and Types Reference for more information about the
DBMS_LDAP package.

Support for MERGE INTO Statements for Virtual Private Database Policies
In previous releases of Oracle Database, when you created an Oracle Virtual Private
Database policy on an application that included the MERGE INTO statement, the

xxvi

MERGE INTO statement would be prevented with an ORA-28132: Merge into
syntax does not support security policies error, due to the presence of
the Virtual Private Database policy. In this release, you can create policies on
applications that include MERGE INTO operations. To do so, in the DBMS_RLS.ADD_
POLICY statement_types parameter, include the INSERT, UPDATE, and DELETE
statements, or just omit the statement_types parameter altogether.

See "Enforcing Policies on Specific SQL Statement Types" on page 7-7 for more
information.

BY ACCESS Audit Trail Option Now the Default for AUDIT Statements
Starting with this release, the standard audit records will by default be generated
using the BY ACCESS clause functionality of the AUDIT statement. Both the BY
ACCESS and BY SESSION clauses write an individual audit record for each audited
event, but BY ACCESS captures more detail about the audited event.

See "Benefits of Using the BY ACCESS Clause in the AUDIT Statement" on page 9-22
for more information.

Enhancements for the UTL_SMTP PL/SQL Package
Starting with this release, the UTL_SMTP PL/SQL package has the following new
functionality:

■ You now can configure the UTL_SMTP PL/SQL package for use on both Transport
Layer Security (TLS) and Secure Sockets Layer (SSL) servers.

■ UTL_SMTP now provides support for the PLAIN, LOGON and CRAM_MD5 password
authentication schemes.

See Oracle Database PL/SQL Packages and Types Reference for more information about the
UTL_SMTP package.

New DBMS_SCHEDULER PL/SQL Package Global Scheduler Attributes
The DBMS_SCHEDULER PL/SQL package the following two new global scheduler
attributes, which are used to control encryption for connections to a mail server:

■ email_server_credential, which enables you to specify the schema and
name of an existing credential object on which user SYS has the EXECUTE object
privilege

■ email_server_encryption, which enables you to set one of three encryption
settings for your mail server:

– ssl_tls, which uses SSL or TLS to encrypt the connection to the mail server
form the beginning of the connection

– starttls, in which the connection to the mail server starts as unencrypted
but switches to an encrypted connection

– none, in which no encryption is used to connect to the mail server

See Oracle Database Administrator's Guide for more information about Scheduler
preferences.

Change to the UNLIMITED TABLESPACE System Privilege
1n previous releases, when you revoked the UNLIMITED TABLESPACE system
privilege from users, then the explicit quotas again took effect. Starting with this
release, after you revoke the UNLIMITED TABLESPACE system privilege, you must
explicitly grant quotas to individual tablespaces.

xxvii

See "Granting Users the UNLIMITED TABLESPACE System Privilege" on page 2-5 for
more information about the UNLIMITED TABLESPACE system privilege.

Oracle Database 11g Release 2 (11.2.0.1) New Security Features
This section contains:

■ Enhancements to Fine-Grained Access to External Services and Wallets

■ Support for MERGE INTO Statements for Virtual Private Database Policies

■ Global Application Contexts Available Across Oracle RAC Instances

■ Secure Sockets Layer (SSL) Version 2 Support Change

■ Enhancements to Directory Objects

■ Enhancements to Transparent Data Encryption

■ Enhancements to the Audit Trail Cleanup Process

■ Deprecated Security-Related Features

Enhancements to Fine-Grained Access to External Services and Wallets
The previous release of Oracle Database introduced the ability to create fine-grained
access control to external network services and wallets. In this release, the following
enhancements are available:

■ Updates to the UTL_HTTP PL/SQL package. You now can configure network
services to use the Amazon Simple Storage Service (S3) scheme, which configures
access to the Amazon.com Web site. In addition, an individual application can
make HTTP requests by using its private wallet and HTTP cookie table that will
not be shared with other applications in the same database session. This feature
also offers protection of the wallet using the access control list (ACL) privileges in
place of the password credential.

■ Support for IP Version 6 (IPv6) addresses. The DBMS_NETWORK_ACL_ADMIN and
DBMS_NETWORK_ACL_UTILTIY packages, and the PL/SQL network utility
packages (such as UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_
INADDR), now support both IP Version 4 (IPv4) and IPv6 addresses.

See "Managing Fine-Grained Access in PL/SQL Packages and Types" on page 4-48 for
more information.

Global Application Contexts Available Across Oracle RAC Instances
In this release, changes to global application context values are automatically
accessible across all Oracle Real Application Clusters (Oracle RAC) instances.

See "Using Global Application Contexts" on page 6-22 for more information about
creating a global application context.

Secure Sockets Layer (SSL) Version 2 Support Change
Starting with Oracle Database 11g Release 2 (11.2), SSL version 2 is no longer included
in the default list of default supported protocols. If your applications must use SSL
version 2, then you can do so by explicitly setting SSL version 2 while maintaining the
connection.

See Oracle Database Advanced Security Administrator's Guide for more information.

xxviii

Enhancements to Directory Objects
This section contains:

■ EXECUTE Privilege Available for Directory Objects

■ Ability to Audit Directory Objects

EXECUTE Privilege Available for Directory Objects
You now can grant users the EXECUTE privilege on directory objects that contain a
user-supplied preprocessor program for use by the ORACLE_LOADER access driver.
This prevents the user from accidentally or maliciously corrupting the preprocessor
program. The SQL statements that are affected by the EXECUTE privilege are GRANT
and REVOKE. The ORACLE_LOADER access parameters now include the
PREPROCESSOR clause, which you can use to specify the name and location of a
preprocessor program that modifies the contents of a data file so that the ORACLE_
LOADER access driver can read it.

For more information about using the ORACLE_LOADER access driver preprocessor,
see the following:

■ Oracle Database Utilities for more information about the ORACLE_LOADER access
driver

■ "Granting System Privileges and Roles" on page 4-36 for the syntax of granting the
EXECUTE privilege for a directory object

■ "Guidelines for Securing the ORACLE_LOADER Access Driver" on page 10-10

■ Oracle Database SQL Language Reference for updates to the GRANT and REVOKE SQL
statements

Ability to Audit Directory Objects
You now can audit the EXECUTE privilege on directory objects. This enables you to
monitor users who run a preprocessor program (which is used by the ORACLE_
LOADER access driver) that has been added to a directory object.

See "Auditing Directory Objects" on page 9-32 for more information.

Enhancements to Transparent Data Encryption
This section contains:

■ Unified Master Encryption Key

■ Tablespace Master Key Rekey: Changing the Encryption Key Password

■ Transparent Data Encryption Support for Oracle Exadata

■ Automatic Wallet Management Across Oracle RAC Instances

Unified Master Encryption Key
In this release, the master encryption key for transparent tablespace encryption and
transparent column encryption are now combined to one unified master encryption
key. Combining these keys enables transparent re-key operations for both of these
transparent data encryption features, regardless of whether the master encryption key
is stored in the Oracle Wallet or in one of the certified Hardware Security Modules
offered by RSA, SafeNet, Thales (including nCipher), and Utimaco.

For more information about transparent data encryption, see Oracle Database Advanced
Security Administrator's Guide.

xxix

Tablespace Master Key Rekey: Changing the Encryption Key Password
In this release, Oracle Advanced Security enables you to change the master key that
protects the encryption keys used to encrypt Oracle Database tablespaces. Industry
initiatives, such as the Payment Card Industry Data Security Standard (PCI DSS),
mandate periodic rotation of encryption keys associated with credit card data.

For more information about tablespace encryption, see Oracle Database Advanced
Security Administrator's Guide.

Transparent Data Encryption Support for Oracle Exadata
Starting with this release, the master encryption key is copied to the intelligent storage
cells, where data encrypted with transparent tablespace encryption or transparent
column encryption is now decrypted before the pre-filtering of the result set takes
place. This feature improves performance in databases that use transparent data
encryption.

For more information about Oracle Exadata, see Oracle Database High Availability
Overview.

Automatic Wallet Management Across Oracle RAC Instances
When you now open or close an Oracle wallet or re-key the master encryption key on
one Oracle RAC instance, then the changes you make automatically are propagated to
all other Oracle RAC instances.

For more information, see Oracle Database Advanced Security Administrator's Guide.

Enhancements to the Audit Trail Cleanup Process
Oracle Database 11g Release 2 (11.2) introduces several enhancements to the audit trail
cleanup process. In this release, you can:

■ Timestamp audit trail records based on their archive date. Later on, you can
purge all records that were created before this archive date.

See "Step 4: Optionally, Set an Archive Timestamp for Audit Records" on page 9-69
for more information.

■ Purge audit trail records in one operation or create a purge job. You can purge all
audit trail records in the system, or audit trail records of an individual type, such
as all fine-grained audit trail records within the database audit trail. The purge
operation will either remove audit trail records that were created before their
timestamped archive date, or it will remove all audit trail records of the specified
audit trail type. The purge job enables you to purge records based on a time
interval, and also can remove records based on their timestamped archive date.

See the following sections:

– "Scheduling an Automatic Purge Job for the Audit Trail" on page 9-67

– "Manually Purging the Audit Trail" on page 9-72

■ Move the database audit trail table from the SYSTEM tablespace to a different
tablespace. You can move the standard audit trail table, the fine-grained audit trail
table, or both standard and fine-grained audit trail tables together. Consider
moving the database audit trail from the SYSTEM tablespace if it is too busy.

See "Moving the Database Audit Trail to a Different Tablespace" on page 9-60 for
more information.

■ Set a batch size for the database audit trail records so that when they are purged,
the purge operation deletes each batch. In a purge operation, you remove all or

xxx

some of the audit trail records. Typically, you do this after you archive the audit
trail. Afterwards, the audit trail will resume collecting audit data. The batching
process enables you remove the records in groups, for example, 10,000 records at a
time, rather than deleting all records at a time.

See "Step 6: Optionally, Configure the Audit Trail Records to be Deleted in
Batches" on page 9-72 for more information.

■ Set a maximum size and age for the operating system audit trail. When the
current audit file reaches this maximum, Oracle Database stops populating the
current file and creates a new file for the subsequent audit trail records.

See the following sections:

– "Setting the Size of the Operating System Audit Trail" on page 9-62

– "Setting the Age of the Operating System Audit Trail" on page 9-64

Deprecated Security-Related Features
This section contains:

■ DB_EXTENDED Setting for the AUDIT_TRAIL Parameter Deprecated

■ WKUSER Role and Ultra Search Schemas Deprecated

■ Database Configuration Assistant No Longer Provides Default Security Settings

■ ALTER USER Clause AUTHENTICATED USING PASSWORD Deprecated

■ Password for the listener.ora File Deprecated

DB_EXTENDED Setting for the AUDIT_TRAIL Parameter Deprecated
The DB_EXTENDED setting in the AUDIT_TRAIL initialization parameter has been
deprecated. Instead, use the DB, EXTENDED setting in its place.

See "Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter"
on page 9-8 for more information.

WKUSER Role and Ultra Search Schemas Deprecated
The WKUSER role and the WKSYS, WKTEST, WKPROXY schemas have been deprecated.
For more information about Oracle Ultra Search, see Oracle Ultra Search Administrator's
Guide.

Database Configuration Assistant No Longer Provides Default Security Settings
In the previous release of Oracle Database, you could use Database Configuration
Assistant (DBCA) to add password security and audit options to a new database. This
option is not available in this release. In this release, DBCA automatically adds audit
options and password policies to new databases.

See the following sections for more information:

■ "Configuring Password Settings in the Default Profile" on page 3-4

■ "Using Default Auditing for Security-Relevant SQL Statements and Privileges" on
page 9-35

ALTER USER Clause AUTHENTICATED USING PASSWORD Deprecated
The AUTHENTICATED USING PASSWORD clause of the ALTER USER statement has
been deprecated for this release. If you use this clause, Oracle Database converts it to
the AUTHENTICATION REQUIRED clause. If you do not specify the AUTHENTICATION

xxxi

REQUIRED clause, then Oracle Database uses either the AUTHENTICATED USING
CERTIFICATE clause or the AUTHENTICATED USING DISTINGUISHED NAME
clause.

See Oracle Database SQL Language Reference for more information about the ALTER
USER statement options.

Password for the listener.ora File Deprecated
Setting a password for the listener.ora file has been deprecated for this release,
because it is no longer needed. In the next release, the listener password will not be
supported.

Oracle Database 11g Release 1 (11.1) New Security Features
This section contains:

■ Automatic Secure Configuration

■ New Password Protections

■ SYSDBA and SYSOPER Strong Authentication

■ SYSASM Privilege for Automatic Storage Management

■ Encryption Enhancements

■ Fine-Grained Access Control on Network Services on the Database

■ Change to AUDIT BY SESSION

■ Oracle XML DB Security Enhancements

■ Directory Security Enhancements

■ Oracle Call Interface Security Enhancements

Automatic Secure Configuration
When you create a new database, you can use Database Configuration Assistant
(DBCA) to automatically create a more secure configuration than in previous releases
of Oracle Database. You can enable the following secure configuration settings in one
operation:

■ Password-specific settings in the default profile. This feature enables you to
enforce password expiration and other password policies. See "Configuring
Password Settings in the Default Profile" on page 3-4 for more information.

■ Auditing. This feature enables auditing for specific events such as database
connections. See "Using Default Auditing for Security-Relevant SQL Statements
and Privileges" on page 9-35 for more information.

To configure your database for greater security, follow the guidelines in Chapter 10,
"Keeping Your Oracle Database Secure."

New Password Protections
Oracle Database now includes the following new password protections:

■ Easy ability to find default passwords. If you have upgraded from an earlier
release of Oracle Database, you may have user accounts that still have default
passwords. For greater security, you should find and change these passwords. See
"Finding User Accounts That Have Default Passwords" on page 3-4 for more
information.

xxxii

■ Password complexity verification. Password complexity verification ensures that
users set complex passwords when setting or resetting passwords. You can enforce
password complexity by using the default settings provided by Oracle Database,
or create custom requirements to further secure the password complexity
requirements for your site.

"Enforcing Password Complexity Verification" on page 3-9 describes built-in
password verification.

■ Enforced case sensitivity. See "Enabling or Disabling Password Case Sensitivity"
on page 3-11 for more information.

■ Stronger password hashing algorithm. This enhancement enables users to create
passwords that contain mixed case or special characters. See "Ensuring Against
Password Security Threats by Using the SHA-1 Hashing Algorithm" on page 3-13
for more information.

SYSDBA and SYSOPER Strong Authentication
You can now use the Secure Sockets Layer (SSL) and Kerberos strong authentication
methods to authenticate users who have the SYSDBA and SYSOPER privileges.

See "Strong Authentication and Centralized Management for Database
Administrators" on page 3-20 for more information.

SYSASM Privilege for Automatic Storage Management
The SYSASM system privilege has been added to Oracle Database 11g Release 2 (11.2),
to be used exclusively to administer Automatic Storage Management (ASM). Use the
SYSASM privilege instead of the SYSDBA privilege to connect to and administer ASM
instances.

See Oracle Database Storage Administrator's Guide for more information about the
SYSASM privilege.

Encryption Enhancements
This section describes the following enhancements in encryption:

■ Intelligent LOB Compression, Deduplication, and Encryption with SecureFiles

■ Compressed and Encrypted Dump File Sets

■ Transparent Data Encryption with Hardware Security Module Integration

■ Transparent Tablespace Encryption

Intelligent LOB Compression, Deduplication, and Encryption with SecureFiles
Oracle Database supports a new, faster, and scalable Large Object (LOB) storage
paradigm called SecureFiles. SecureFiles, in addition to performance, supports
efficient compression, deduplication (that is, coalescing duplicate data), and
encryption. LOB data can now be encrypted with Oracle Database, and is available for
random reads and writes.

For more information about SecureFiles, see Oracle Database SecureFiles and Large
Objects Developer's Guide. See also Oracle Database SQL Language Reference for updates
in the CREATE TABLE and ALTER TABLE statements to support this feature.

xxxiii

Compressed and Encrypted Dump File Sets
In this release, you can use Oracle Data Pump to compress and encrypt an entire
dump file set. You can optionally compress and encrypt the data, metadata, or
complete dump file set during an Oracle Data Pump export.

For more information, see Oracle Database Utilities.

Transparent Data Encryption with Hardware Security Module Integration
Transparent data encryption (TDE) stores the master key in an encrypted software
wallet and uses this key to encrypt the column keys, which in turn encrypt column
data. While this approach to key management is sufficient for many applications, it
may not be sufficient for environments that require stronger security. TDE has been
extended to use hardware security modules (HSMs). This enhancement provides high
assurance requirements of protecting the master key.

This release enables you to store the TDE master encryption key within a hardware
security module (HSM) at all times, leveraging its key management capabilities. Only
the table keys (for TDE column encryption) and tablespace keys (for TDE tablespace
encryption) are decrypted on the HSM, before they are returned to the database; the
encryption and decryption of application data remains with the database. Oracle
recommends that you encrypt the traffic between HSM device and databases. This
new feature provides additional security for transparent data encryption, because the
master encryption key cannot leave the HSM, neither in clear text nor in encrypted
format. Furthermore, it enables the sharing of the same key between multiple
databases and instances in an Oracle Real Applications Clusters (Oracle RAC) or Data
Guard environment.

To configure transparent data encryption with hardware security module integration,
see Oracle Database Advanced Security Administrator's Guide.

Transparent Tablespace Encryption
Transparent tablespace encryption enables you to encrypt entire application
tablespaces, encrypting all the data within these tablespaces. When a properly
authorized application accesses the tablespace, Oracle Database transparently decrypts
the relevant data blocks for the application.

Transparent tablespace encryption provides an alternative to TDE column encryption:
It eliminates the need for granular analysis of applications to determine which
columns to encrypt, especially for applications with a large number of columns
containing personally identifiable information (PII), such as Social Security numbers or
patient health care records. If your tables have small amounts of data to encrypt, then
you can continue to use the TDE column encryption solution.

For an introduction to transparent encryption, see Oracle Database 2 Day + Security
Guide. For detailed information about transparent tablespace encryption, see Oracle
Database Advanced Security Administrator's Guide.

Fine-Grained Access Control on Network Services on the Database
Oracle Database provides a set of PL/SQL utility packages, such as UTL_TCP, UTL_
SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR, that are designed to enable database
users to access network services on the database. Oracle Database PL/SQL Packages and
Types Reference describes the PL/SQL utility packages in detail.

In a default database installation, these packages are created with EXECUTE privileges
granted to PUBLIC users. This release enhances the security of these packages by
providing database administrators the ability to control access to applications in the
database that use these packages.

xxxiv

See "Managing Fine-Grained Access in PL/SQL Packages and Types" on page 4-48 for
more information.

Change to AUDIT BY SESSION
The BY SESSION clause of the AUDIT statement now writes one audit record for
every audited event. In previous releases, BY SESSION wrote one audit record for all
SQL statements or operations of the same type that were executed on the same schema
objects in the same user session. Now, both BY SESSION and BY ACCESS write one
audit record for each audit operation. In addition, there are separate audit records for
LOGON and LOGOFF events. If you omit the BY ACCESS clause, then BY SESSION is
used as the default.

The audit record that BY SESSION generates is different from the BY ACCESS audit
record. Oracle recommends that you include the BY ACCESS clause for all AUDIT
statements, which results in a more detailed audit record. In the case of LOGOFF
events, the timestamp for the audit record has a greater precision than in previous
releases.

Be aware that this change applies to schema object audit options, statement options,
and system privileges that audit SQL statements other than data definition language
(DDL) statements. Oracle Database has always audited using the BY ACCESS clause
on all SQL statements and system privileges that audit a DDL statement.

See the following sections for more information:

■ "How Standard Audit Records Are Generated" on page 9-22

■ "Benefits of Using the BY ACCESS Clause in the AUDIT Statement" on page 9-22

Oracle XML DB Security Enhancements
This section contains:

■ XML Translation Support for Oracle Database XML

■ Support for Web Services

XML Translation Support for Oracle Database XML
Security objects are now stored in the Oracle XML DB repository as XMLType objects.
These security objects can contain strings that need to be translated to different
languages so that they can be searched or displayed in those languages. Developers
can store translated strings with the XMLType and retrieve and operate on these
strings depending on the language settings of the user. The advantage of this feature is
that it reduces the costs associated with developing applications that are independent
of the target preferred language of the user.

To configure security for XMLType objects, see Oracle XML DB Developer's Guide.

Support for Web Services
You can now use the Oracle XML DB HTTP server for service-oriented architecture
(SOA) operations. This allows the database to be treated as simply another service
provider in an SOA environment. Security administrators can control user access to
Oracle Database Web services and their associated database objects by using the XDB_
WEBSERVICES, XDB_WEBSERVICES_OVER_HTTP, and XDB_WEBSERVICES_WITH_
PUBLIC predefined roles.

To configure Oracle Database Web services, see Oracle XML DB Developer's Guide.For
information on this feature’s predefined roles, see Table 4–3, " Oracle Database
Predefined Roles" on page 4-11.

xxxv

Directory Security Enhancements
In this release, administrators can now disallow anonymous access to database service
information in a directory and require clients to authenticate when performing LDAP
directory-based name look-ups. If you are using Microsoft Active Directory-based
name lookups, then Oracle Database uses the native operating system-based
authentication. If you are using Oracle Internet Directory (OID)-based name lookups,
then Oracle Database performs authentication by using wallets.

To configure directory security, see Oracle Database Net Services Reference.

Oracle Call Interface Security Enhancements
The following security enhancements are available for Oracle Call Interface (OCI):

■ Reporting bad packets that may come from malicious users or intruders

■ Terminating or resuming the client or server process on receiving a bad packet

■ Configuring the maximum number of authentication attempts

■ Controlling the display of the Oracle database version banner, to prevent intruders
from finding information about the security vulnerabilities present in the database
software based on the version

■ Adding banner information, such as "Unauthorized Access" and "User Actions
Audited," to server connections so that clients can display this information

Database administrators can manage these security enhancements for Oracle Call
Interface developers by configuring a set of new initialization parameters. See Section ,
"Parameters for Enhanced Security of Database Communication" for more
information. See also Oracle Call Interface Programmer's Guide for detailed information
on Oracle Call Interface.

xxxvi

1

Introducing Oracle Database Security 1-1

1 Introducing Oracle Database Security

This chapter contains:

■ About Oracle Database Security

■ Additional Database Security Resources

About Oracle Database Security
You can use the default Oracle Database features to configure security in the following
areas for your Oracle Database installation:

■ User accounts. When you create user accounts, you can secure them in a variety of
ways. You can also create password profiles to better secure password policies for
your site. Chapter 2, "Managing Security for Oracle Database Users," describes
how to manage user accounts.

■ Authentication methods. Oracle Database provides several ways to configure
authentication for users and database administrators. For example, you can
authenticate users on the database level, from the operating system, and on the
network. Chapter 3, "Configuring Authentication," describes how authentication
in Oracle Database works.

■ Privileges and roles. You can use privileges and roles to restrict user access to
data. Chapter 4, "Configuring Privilege and Role Authorization," describes how to
create and manage user privileges and roles.

■ Application security. The first step to creating a database application is to ensure
that it is properly secure. Chapter 5, "Managing Security
for Application Developers," discusses how to incorporate application security
into your application security policies.

■ User session information using application context. An application context is a
name-value pair that holds the session information. You can retrieve session
information about a user, such as the user name or terminal, and restrict database
and application access for that user based on this information. Chapter 6, "Using
Application Contexts to Retrieve User Information," describes how to use
application context.

■ Database access on the row and column level using Virtual Private Database. A
Virtual Private Database policy dynamically imbeds a WHERE predicate into SQL
statements the user issues. Chapter 7, "Using Oracle Virtual Private Database
to Control Data Access," describes how to create and manage Virtual Private
Database policies.

■ Encryption. You can disguise data on the network to prevent unauthorized access
to that data. Chapter 8, "Developing Applications Using the Data Encryption API,"

Additional Database Security Resources

1-2 Oracle Database Security Guide

explains how to use the DBMS_CRYPTO and DBMS_SQLHASH PL/SQL packages to
encrypt data.

■ Auditing database activities. You can audit database activities in general terms,
such as auditing all SQL statements, SQL privileges, schema objects, and network
activity. Or, you can audit in a granular manner, such as when the IP addresses
from outside the corporate network is being used. This chapter also explains how
to purge the database audit trail. Chapter 9, "Verifying Security Access with
Auditing," describes how to enable and configure database auditing.

In addition, Chapter 10, "Keeping Your Oracle Database Secure," provides guidelines
that you should follow when you secure your Oracle Database installation.

Additional Database Security Resources
In addition to the security resources described in this guide, Oracle Database provides
the following database security products:

■ Advanced security features. See Oracle Database Advanced Security Administrator's
Guide for information about advanced features such as transparent data
encryption, wallet management, network encryption, and the RADIUS, Kerberos,
Secure Sockets Layer authentication.

■ Oracle Label Security. Oracle Label Security secures database tables at the row
level, allowing you to filter user access to row data based on privileges. See Oracle
Label Security Administrator's Guide for detailed information about Oracle Label
Security.

■ Oracle Database Vault. Oracle Database Vault provides fine-grained access control
to your sensitive data, including protecting data from privileged users. Oracle
Database Vault Administrator's Guide describes how to use Oracle Database Vault.

■ Oracle Audit Vault. Oracle Audit Vault collects database audit data from sources
such as Oracle Database audit trail tables, database operating system audit files,
and database redo logs. Using Oracle Audit Vault, you can create alerts on
suspicious activities, and create reports on the history of privileged user changes,
schema modifications, and even data-level access. Oracle Audit Vault
Administrator's Guide explains how to administer Oracle Audit Vault.

■ Oracle Enterprise User Security. Oracle Enterprise User Security enables you to
manage user security at the enterprise level. Oracle Database Enterprise User
Security Administrator's Guide explains how to configure Oracle Enterprise User
Security.

In addition to these products, you can find the latest information about Oracle
Database security, such as new products and important information about security
patches and alerts, by visiting the Security Technology Center on Oracle Technology
Network at

http://www.oracle.com/technology/deploy/security/index.html

http://www.oracle.com/technology/deploy/security/index.html

2

Managing Security for Oracle Database Users 2-1

2 Managing Security for
Oracle Database Users

This chapter contains:

■ About User Security

■ Creating User Accounts

■ Altering User Accounts

■ Configuring User Resource Limits

■ Deleting User Accounts

■ Finding Information About Database Users and Profiles

About User Security
Each Oracle database has a list of valid database users. To access a database, a user
must run a database application, and connect to the database instance using a valid
user name defined in the database. Oracle Database enables you to set up security for
your users in a variety of ways. When you create user accounts, you can specify limits
to the user account. You can also set limits on the amount of various system resources
available to each user as part of the security domain of that user. Oracle Database
provides a set of database views that you can query to find information such as
resource and session information. This chapter also describes profiles. A profile is
collection of attributes that apply to a user. It enables a single point of reference for any
of multiple users that share those exact attributes.

Another way to manage user security is to assign users privileges and roles. Chapter 4,
"Configuring Privilege and Role Authorization," provides detailed information.

Creating User Accounts
This section contains:

■ Creating a New User Account

■ Specifying a User Name

■ Assigning the User a Password

■ Assigning a Default Tablespace for the User

■ Assigning a Tablespace Quota for the User

■ Assigning a Temporary Tablespace for the User

Creating User Accounts

2-2 Oracle Database Security Guide

■ Specifying a Profile for the User

■ Setting a Default Role for the User

For guidelines about creating and managing user accounts and passwords, see the
following sections:

■ "Guidelines for Securing User Accounts and Privileges" on page 10-2

■ "Guidelines for Securing Passwords" on page 10-7

Creating a New User Account
You create a database user with the CREATE USER statement. To create a user, you
must have the CREATE USER system privilege. Because it is a powerful privilege, a
database administrator or security administrator is usually the only user who has the
CREATE USER system privilege.

Example 2–1 creates a user and specifies the user password, default tablespace,
temporary tablespace where temporary segments are created, tablespace quotas, and
profile. It also grants the user the minimum privilege, CREATE SESSION, to log in to
the database session.

Example 2–1 Creating a User Account with the CREATE SESSION Privilege

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;
GRANT CREATE SESSION TO jward;

Replace password with a password that is secure. See "Minimum Requirements for
Passwords" on page 3-3 for more information.

A newly created user cannot connect to the database until you grant the user the
CREATE SESSION system privileges. So, immediately after you create the user
account, use the GRANT SQL statement to grant the user these privileges. If the user
must access Oracle Enterprise Manager, you should also grant the user the SELECT
ANY DICTIONARY privilege.

Note: As a security administrator, you should create your own
roles and assign only those privileges that are needed. For example,
many users formerly granted the CONNECT privilege did not need
the additional privileges CONNECT used to provide. Instead, only
CREATE SESSION was actually needed, and in fact, that is the only
privilege CONNECT presently retains.

Creating organization-specific roles gives an organization detailed
control of the privileges it assigns, and protects it in case Oracle
Database changes the roles that it defines in future releases. For
example, both CONNECT and RESOURCE roles will be deprecated in
future Oracle Database releases. Chapter 4, "Configuring Privilege
and Role Authorization," discusses how to create and manage roles.

Creating User Accounts

Managing Security for Oracle Database Users 2-3

Specifying a User Name
Within each database, a user name must be unique with respect to other user names
and roles. A user and role cannot have the same name. Furthermore, each user has an
associated schema. Within a schema, each schema object must have a unique name. In
the following, the text in bold shows how to create the user name.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Assigning the User a Password
In Example 2–1 on page 2-2, the new user is to be authenticated using the database. In
this case, the connecting user must supply the correct password to the database to
connect successfully. To specify a password for the user, use the IDENTIFIED BY
clause in the CREATE USER statement.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Assigning a Default Tablespace for the User
Each user should have a default tablespace. When a schema object is created in the
user’s schema and the DDL statement does not specify a tablespace to contain the
object, Oracle Database stores the object in the default user’s tablespace.

The default setting for the default tablespaces of all users is the SYSTEM tablespace. If a
user does not create objects, and has no privileges to do so, then this default setting is
fine. However, if a user is likely to create any type of object, then you should
specifically assign the user a default tablespace, such as the USERS tablespace. Using a
tablespace other than SYSTEM reduces contention between data dictionary objects and
user objects for the same data files. In general, do not store user data in the SYSTEM
tablespace.

You can use the CREATE TABLESPACE SQL statement to create a permanent default
tablespace other than SYSTEM at the time of database creation, to be used as the
database default for permanent objects. By separating the user data from the system
data, you reduce the likelihood of problems with the SYSTEM tablespace, which can in
some circumstances cause the entire database to become nonfunctional. This default

See Also:

■ "Minimum Requirements for Passwords" on page 3-3 for the
minimum requirements for creating passwords

■ "Guidelines for Securing Passwords" on page 10-7 for
additional ways to secure passwords

■ Chapter 3, "Configuring Authentication," for information about
authentication methods that are available for Oracle Database
users

Creating User Accounts

2-4 Oracle Database Security Guide

permanent tablespace is not used by system users, that is, SYS, SYSTEM, and OUTLN,
whose default permanent tablespace is SYSTEM. A tablespace designated as the
default permanent tablespace cannot be dropped. To accomplish this goal, you must
first designate another tablespace as the default permanent tablespace. You can use the
ALTER TABLESPACE SQL statement to alter the default permanent tablespace to
another tablespace. Be aware that this will affect all users or objects created after the
ALTER DDL statement commits.

You can also set a user default tablespace during user creation, and change it later with
the ALTER USER statement. Changing the user default tablespace affects only objects
created after the setting is changed.

When you specify the default tablespace for a user, also specify a quota on that
tablespace.

In the following CREATE USER statement, the default tablespace for user jward is
data_ts, and his quota on that tablespace is 500K:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Assigning a Tablespace Quota for the User
You can assign each user a tablespace quota for any tablespace (except a temporary
tablespace). Assigning a quota accomplishes the following:

■ Users with privileges to create certain types of objects can create those objects in
the specified tablespace.

■ Oracle Database limits the amount of space that can be allocated for storage of a
user's objects within the specified tablespace to the amount of the quota.

By default, a user has no quota on any tablespace in the database. If the user has the
privilege to create a schema object, then you must assign a quota to allow the user to
create objects. At a minimum, assign users a quota for the default tablespace, and
additional quotas for other tablespaces in which they can create objects.

The following CREATE USER statement assigns the following quotas for the test_ts
and data_ts tablespaces:

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

You can assign a user either individual quotas for a specific amount of disk space in
each tablespace or an unlimited amount of disk space in all tablespaces. Specific
quotas prevent a user's objects from using too much space in the database.

You can assign quotas to a user tablespace when you create the user, or add or change
quotas later. (You can find existing user quotas by querying the USER_TS_QUOTAS
view.) If a new quota is less than the old one, then the following conditions remain
true:

Creating User Accounts

Managing Security for Oracle Database Users 2-5

■ If a user has already exceeded a new tablespace quota, then the objects of a user in
the tablespace cannot be allocated more space until the combined space of these
objects is less than the new quota.

■ If a user has not exceeded a new tablespace quota, or if the space used by the
objects of the user in the tablespace falls under a new tablespace quota, then the
user's objects can be allocated space up to the new quota.

Restricting the Quota Limits for User Objects in a Tablespace
You can restrict the quota limits for user objects in a tablespace by using the ALTER
USER SQL statement to change the current quota of the user to zero. After a quota of
zero is assigned, the objects of the user in the tablespace remain, and the user can still
create new objects, but the existing objects will not be allocated any new space. For
example, you could not insert data into one of this user’s exiting tables. The operation
will fail with an ORA-1536 space quota exceeded for tables error.

Granting Users the UNLIMITED TABLESPACE System Privilege
To permit a user to use an unlimited amount of any tablespace in the database, grant
the user the UNLIMITED TABLESPACE system privilege. This overrides all explicit
tablespace quotas for the user. If you later revoke the privilege, then you must
explicitly grant quotas to individual tablespaces. You can grant this privilege only to
users, not to roles.

Before granting the UNLIMITED TABLESPACE system privilege, you must consider
the consequences of doing so.

Advantage:

You can grant a user unlimited access to all tablespaces of a database with one
statement.

Disadvantages:

■ The privilege overrides all explicit tablespace quotas for the user.

■ You cannot selectively revoke tablespace access from a user with the UNLIMITED
TABLESPACE privilege. You can grant selective or restricted access only after
revoking the privilege.

Assigning a Temporary Tablespace for the User
You should assign each user a temporary tablespace. When a user executes a SQL
statement that requires a temporary segment, Oracle Database stores the segment in
the temporary tablespace of the user. These temporary segments are created by the
system when performing sort or join operations. Temporary segments are owned by
SYS, which has resource privileges in all tablespaces.

In the following, the temporary tablespace of jward is temp_ts, a tablespace created
explicitly to contain only temporary segments.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Creating User Accounts

2-6 Oracle Database Security Guide

To create a temporary tablespace, use the CREATE TEMPORARY TABLESPACE SQL
statement.

If you do not explicitly assign the user a temporary tablespace, then Oracle Database
assigns the user the default temporary tablespace that was specified at database
creation, or by an ALTER DATABASE statement at a later time. If there is no default
temporary tablespace explicitly assigned, then the default is the SYSTEM tablespace or
another permanent default established by the system administrator. Do not store user
data in the SYSTEM tablespace. Assigning a tablespace to be used specifically as a
temporary tablespace eliminates file contention among temporary segments and other
types of segments.

You can set the temporary tablespace for a user at user creation, and change it later
using the ALTER USER statement. If you are logged in as user SYS, you can set a
quota for the temporary tablespace, and other space allocations. (Only user SYS can do
this, because all space in the temporary tablespace belongs to user SYS.) You can also
establish tablespace groups instead of assigning individual temporary tablespaces.

Specifying a Profile for the User
You can specify a profile when you create a user. A profile is a set of limits on database
resources and password access to the database. If you do not specify a profile, then
Oracle Database assigns the user a default profile.

The following example demonstrates how to assign a user a profile.

CREATE USER jward
 IDENTIFIED BY password
 DEFAULT TABLESPACE data_ts
 QUOTA 100M ON test_ts
 QUOTA 500K ON data_ts
 TEMPORARY TABLESPACE temp_ts
 PROFILE clerk;

Setting a Default Role for the User
A role is a named group of related privileges that you grant as a group to users or
other roles. A default role is automatically enabled for a user when the user creates a
session. You can assign a user zero or more default roles.

You cannot set default roles for a user in the CREATE USER statement. When you first
create a user, the default role setting for the user is ALL, which causes all roles

Note: If your SYSTEM tablespace is locally managed, then users
must be assigned a specific default (locally managed) temporary
tablespace. They may not be allowed to default to using the
SYSTEM tablespace because temporary objects cannot be placed in
locally managed permanent tablespaces.

See Also:

■ "Temporary Tablespaces" in Oracle Database Administrator's
Guide

■ "Multiple Temporary Tablespaces: Using Tablespace Groups" in
Oracle Database Administrator's Guide

See Also: "Managing Resources with Profiles" on page 2-11

Altering User Accounts

Managing Security for Oracle Database Users 2-7

subsequently granted to the user to be default roles. Use the ALTER USER statement to
change the default roles for the user. For example:

GRANT USER jward clerk_role;

ALTER USER jward DEFAULT ROLE clerk_role;

Before a role can be made the default role for a user, that user must have been already
granted the role.

Altering User Accounts
Users can change their own passwords. However, to change any other option of a user
security domain, you must have the ALTER USER system privilege. Security
administrators are typically the only users that have this system privilege, as it allows
a modification of any user security domain. This privilege includes the ability to set
tablespace quotas for a user on any tablespace in the database, even if the user
performing the modification does not have a quota for a specified tablespace.

You can alter user security settings with the ALTER USER SQL statement. Changing
user security settings affects the future user sessions, not current sessions.

Example 2–2 shows how to use the ALTER USER statement to alter the security
settings for the user avyrros:

Example 2–2 Altering a User Account

ALTER USER avyrros
 IDENTIFIED EXTERNALLY
 DEFAULT TABLESPACE data_ts
 TEMPORARY TABLESPACE temp_ts
 QUOTA 100M ON data_ts
 QUOTA 0 ON test_ts
 PROFILE clerk;

The ALTER USER statement here changes the security settings for the user avyrros
as follows:

■ Authentication is changed to use the operating system account of the user
avyrros.

■ The default and temporary tablespaces are explicitly set for user AVYRROS.

■ The user avyrros is given a 100M quota for the DATA_TS tablespace.

■ The quota on the test_ts is revoked for the user avyrros.

■ The user avyrros is assigned the clerk profile.

Changing the User Password
Most users can change their own passwords with the PASSWORD statement, as follows:

PASSWORD andy
Changing password for andy
New password: password
Retype new password: password

No special privileges (other than those to connect to the database and create a session)
are required for a user to change his or her own password. Encourage users to change

See Also: "Managing User Roles" on page 4-5

Configuring User Resource Limits

2-8 Oracle Database Security Guide

their passwords frequently. "Guidelines for Securing Passwords" on page 10-7
provides advice on the best ways to secure passwords. You can find existing users for
the current database instance by querying the ALL_USERS view.

Users can also use the ALTER USER SQL statement change their passwords. For
example:

ALTER USER andy
 IDENTIFIED BY password

However, for better security, use the PASSWORD statement to change the account’s
password. The ALTER USER statement displays the new password on the screen,
where it can be seen by any overly curious coworkers. The PASSWORD command does
not display the new password, so it is only known to you, not to your co-workers. In
both cases, the password is encrypted on the network.

Users must have the PASSWORD and ALTER USER privilege to switch between
methods of authentication. Usually, only an administrator has this privilege.

Configuring User Resource Limits
This section contains:

■ About User Resource Limits

■ Types of System Resources and Limits

■ Determining Values for Resource Limits of Profiles

■ Managing Resources with Profiles

About User Resource Limits
You can set limits on the amount of various system resources available to each user as
part of the security domain of that user. By doing so, you can prevent the uncontrolled
consumption of valuable system resources such as CPU time. To set resource limits,
you use Database Resource Manager, which is described in Oracle Database
Administrator's Guide.

This resource limit feature is very useful in large, multiuser systems, where system
resources are very expensive. Excessive consumption of these resources by one or
more users can detrimentally affect the other users of the database. In single-user or
small-scale multiuser database systems, the system resource feature is not as
important, because user consumption of system resources is less likely to have a
detrimental impact.

You manage user resource limits by using Database Resource Manager. You can set
password management preferences using profiles, either set individually or using a
default profile for many users. Each Oracle database can have an unlimited number of

See Also:

■ "Minimum Requirements for Passwords" on page 3-3 for the
minimum requirements for creating passwords

■ "Guidelines for Securing Passwords" on page 10-7 for
additional ways to secure passwords

■ Chapter 3, "Configuring Authentication," for information about
authentication methods that are available for Oracle Database
users

Configuring User Resource Limits

Managing Security for Oracle Database Users 2-9

profiles. Oracle Database allows the security administrator to enable or disable the
enforcement of profile resource limits universally.

Setting resource limits causes a slight performance degradation when users create
sessions, because Oracle Database loads all resource limit data for each user upon each
connection to the database.

Types of System Resources and Limits
Oracle Database can limit the use of several types of system resources, including CPU
time and logical reads. In general, you can control each of these resources at the
session level, call level, or both, as discussed in the following sections:

■ Limiting the User Session Level

■ Limiting Database Call Levels

■ Limiting CPU Time

■ Limiting Logical Reads

■ Limiting Other Resources

Limiting the User Session Level
Each time a user connects to a database, a session is created. Each session uses CPU
time and memory on the computer that runs Oracle Database. You can set several
resource limits at the session level.

If a user exceeds a session-level resource limit, then Oracle Database terminates (rolls
back) the current statement and returns a message indicating that the session limit has
been reached. At this point, all previous statements in the current transaction are
intact, and the only operations the user can perform are COMMIT, ROLLBACK, or
disconnect (in this case, the current transaction is committed). All other operations
produce an error. Even after the transaction is committed or rolled back, the user
cannot accomplish any more work during the current session.

Limiting Database Call Levels
Each time a user runs a SQL statement, Oracle Database performs several steps to
process the statement. During this processing, several calls are made to the database as
a part of the different execution phases. To prevent any one call from using the system
excessively, Oracle Database lets you set several resource limits at the call level.

If a user exceeds a call-level resource limit, then Oracle Database halts the processing
of the statement, rolls back the statement, and returns an error. However, all previous
statements of the current transaction remain intact, and the user session remains
connected.

Limiting CPU Time
When SQL statements and other types of calls are made to Oracle Database, a certain
amount of CPU time is necessary to process the call. Average calls require a small
amount of CPU time. However, a SQL statement involving a large amount of data or a
runaway query can potentially use a large amount of CPU time, reducing CPU time
available for other processing.

See Also: Oracle Database Administrator's Guide for detailed
information about managing resources

Configuring User Resource Limits

2-10 Oracle Database Security Guide

To prevent uncontrolled use of CPU time, you can set fixed or dynamic limits on the
CPU time for each call and the total amount of CPU time used for Oracle Database
calls during a session. The limits are set and measured in CPU one-hundredth seconds
(0.01 seconds) used by a call or a session.

Limiting Logical Reads
Input/output (I/O) is one of the most expensive operations in a database system. SQL
statements that are I/O-intensive can monopolize memory and disk use and cause
other database operations to compete for these resources.

To prevent single sources of excessive I/O, you can limit the logical data block reads
for each call and for each session. Logical data block reads include data block reads
from both memory and disk. The limits are set and measured in number of block reads
performed by a call or during a session.

Limiting Other Resources
Oracle Database provides for limiting several other resources at the session level:

■ You can limit the number of concurrent sessions for each user. Each user can
create only up to a predefined number of concurrent sessions.

■ You can limit the idle time for a session. If the time between calls in a session
reaches the idle time limit, then the current transaction is rolled back, the session is
terminated, and the resources of the session are returned to the system. The next
call receives an error that indicates that the user is no longer connected to the
instance. This limit is set as a number of elapsed minutes.

■ You can limit the elapsed connect time for each session. If the duration of a
session exceeds the elapsed time limit, then the current transaction is rolled back,
the session is dropped, and the resources of the session are returned to the system.
This limit is set as a number of elapsed minutes.

■ You can limit the amount of private System Global Area (SGA) space (used for
private SQL areas) for a session. This limit is only important in systems that use
the shared server configuration. Otherwise, private SQL areas are located in the
Program Global Area (PGA). This limit is set as a number of bytes of memory in
the SGA of an instance. Use the characters K or M to specify kilobytes or
megabytes.

Note: Shortly after a session is terminated because it has exceeded
an idle time limit, the process monitor (PMON) background
process cleans up after the terminated session. Until PMON
completes this process, the terminated session is still counted in any
session or user resource limit.

Note: Oracle Database does not constantly monitor the elapsed
idle time or elapsed connection time. Doing so reduces system
performance. Instead, it checks every few minutes. Therefore, a
session can exceed this limit slightly (for example, by 5 minutes)
before Oracle Database enforces the limit and terminates the
session.

Configuring User Resource Limits

Managing Security for Oracle Database Users 2-11

Determining Values for Resource Limits of Profiles
Before creating profiles and setting the resource limits associated with them, you
should determine appropriate values for each resource limit. You can base these values
on the type of operations a typical user performs. For example, if one class of user does
not usually perform a high number of logical data block reads, then use the ALTER
RESOURCE COST SQL statement to set the LOGICAL_READS_PER_SESSION setting
conservatively.

Usually, the best way to determine the appropriate resource limit values for a given
user profile is to gather historical information about each type of resource usage. For
example, the database or security administrator can use the AUDIT SESSION clause to
gather information about the limits CONNECT_TIME, LOGICAL_READS_PER_
SESSION.

You can gather statistics for other limits using the Monitor feature of Oracle Enterprise
Manager (or SQL*Plus), specifically the Statistics monitor.

Managing Resources with Profiles
A profile is a named set of resource limits and password parameters that restrict
database usage and instance resources for a user. You can assign a profile to each user,
and a default profile to all others. Each user can have only one profile, and creating a
new one supersedes an earlier version.

You need to create and manage user profiles only if resource limits are a requirement
of your database security policy. To use profiles, first categorize the related types of
users in a database. Just as roles are used to manage the privileges of related users,
profiles are used to manage the resource limits of related users. Determine how many
profiles are needed to encompass all types of users in a database and then determine
appropriate resource limits for each profile.

In general, the word profile refers to a collection of attributes that apply to a user,
enabling a single point of reference for any of multiple users that share those exact
attributes. User profiles in Oracle Internet Directory contain attributes pertinent to
directory usage and authentication for each user. Similarly, profiles in Oracle Label
Security contain attributes useful in label security user administration and operations

See Also: For instructions about enabling or disabling resource
limits:

■ "Finding Information About Database Users and Profiles" on
page 2-14

■ "Managing User Roles" on page 4-5

■ Oracle Database Administrator's Guide for detailed information
about managing resources

See Also:

■ "Using Data Dictionary Views to Find Information About Users
and Profiles" on page 2-14

■ Chapter 9, "Verifying Security Access with Auditing"

■ Oracle Database 2 Day DBA for more information about
Database Control

■ Enterprise Manager online Help for more information about
the Monitor feature

Configuring User Resource Limits

2-12 Oracle Database Security Guide

management. Profile attributes can include restrictions on system resources. You can
use Database Resource Manager to set these types of resource limits.

Profile resource limits are enforced only when you enable resource limitation for the
associated database. Enabling this limitation can occur either before starting up the
database (using the RESOURCE_LIMIT initialization parameter) or while it is open
(using the ALTER SYSTEM statement).

Though password parameters reside in profiles, they are unaffected by RESOURCE_
LIMIT or ALTER SYSTEM and password management is always enabled. In Oracle
Database, Database Resource Manager primarily handles resource allocations and
restrictions.

Creating Profiles
Any authorized database user can create, assign to users, alter, and drop a profile at
any time (using the CREATE USER or ALTER USER statement). Profiles can be
assigned only to users and not to roles or other profiles. Profile assignments do not
affect current sessions, instead, they take effect only in subsequent sessions. To find
information about current profiles, query the DBA_PROFILES view.

Dropping Profiles
To drop a profile, you must have the DROP PROFILE system privilege. You can drop a
profile (other than the default profile) using the SQL statement DROP PROFILE.To
successfully drop a profile currently assigned to a user, use the CASCADE option.

The following statement drops the profile clerk, even though it is assigned to a user:

DROP PROFILE clerk CASCADE;

Any user currently assigned to a profile that is dropped is automatically assigned to
the DEFAULT profile. The DEFAULT profile cannot be dropped. When a profile is
dropped, the drop does not affect currently active sessions. Only sessions created after
a profile is dropped use the modified pro file assignments.

See Also:

■ Oracle Database Administrator's Guide for detailed information
on managing resources

■ "Finding Information About Database Users and Profiles" on
page 2-14 for viewing resource information

■ Oracle Database SQL Language Reference for information about
ALTER SYSTEM or RESOURCE_LIMIT

See Also:

■ Oracle Database SQL Language Reference for more information about
the SQL statements used for managing profiles, such as CREATE
PROFILE, and for information about how to calculate composite
limits.

■ Oracle Database Administrator's Guide for detailed information
about managing resources

■ "Creating User Accounts" on page 2-1

■ "Altering User Accounts" on page 2-7

Deleting User Accounts

Managing Security for Oracle Database Users 2-13

Deleting User Accounts
When you drop a user account, Oracle Database removes the user account and
associated schema from the data dictionary. It also immediately drops all schema
objects contained in the user schema, if any.

A user that is currently connected to a database cannot be dropped. To drop a
connected user, you must first terminate the user sessions using the SQL statement
ALTER SYSTEM with the KILL SESSION clause. You can find the session ID (SID) by
querying the V$SESSION view.

Example 2–3 shows how to query V$SESSION and displays the session ID, serial
number, and user name for user ANDY.

Example 2–3 Querying V$SESSION for the Session ID of a User

SELECT SID, SERIAL#, USERNAME FROM V$SESSION;

 SID SERIAL# USERNAME
------- --------------- ----------------------
 127 55234 ANDY
...

Example 2–4 shows how to stop the session for user andy.

Example 2–4 Killing a User Session

ALTER SYSTEM KILL SESSION '127, 55234';

You can drop a user from a database using the DROP USER statement. To drop a user
and all the user schema objects (if any), you must have the DROP USER system
privilege. Because the DROP USER system privilege is powerful, a security
administrator is typically the only type of user that has this privilege.

If the schema of the user contains any dependent schema objects, then use the
CASCADE option to drop the user and all associated objects and foreign keys that
depend on the tables of the user successfully. If you do not specify CASCADE and the
user schema contains dependent objects, then an error message is returned and the
user is not dropped.

Before dropping a user whose schema contains objects, thoroughly investigate which
objects the schema contains and the implications of dropping them. You can find the
objects owned by a particular user by querying the DBA_OBJECTS view.

Example 2–5 shows how to find the objects owned by user andy.

Example 2–5 Finding Objects Owned by a User

SELECT OWNER, OBJECT_NAME FROM DBA_OBJECTS WHERE OWNER LIKE 'ANDY';

Notes:

■ If a user schema and associated objects must remain but the
user must be denied access to the database, then revoke the
CREATE SESSION privilege from the user.

■ Do not attempt to drop the SYS or SYSTEM user. Doing so
corrupts your database.

Finding Information About Database Users and Profiles

2-14 Oracle Database Security Guide

(Enter the user name in capital letters.) Pay attention to any unknown cascading
effects. For example, if you intend to drop a user who owns a table, then check
whether any views or procedures depend on that particular table.

Example 2–6 drops the user andy and all associated objects and foreign keys that
depend on the tables owned by andy.

Example 2–6 Dropping a User Account

DROP USER andy CASCADE;

Finding Information About Database Users and Profiles
This section contains:

■ Using Data Dictionary Views to Find Information About Users and Profiles

■ Listing All Users and Associated Information

■ Listing All Tablespace Quotas

■ Listing All Profiles and Assigned Limits

■ Viewing Memory Use for Each User Session

Using Data Dictionary Views to Find Information About Users and Profiles
Table 2–1 lists data dictionary views that contain information about database users and
profiles. For detailed information about these views, see Oracle Database Reference.

See Also: Oracle Database Administrator's Guide for more
information about terminating sessions

Table 2–1 Data Dictionary Views That Display Information about Users and Profiles

View Description

ALL_OBJECTS Describes all objects accessible to the current user

ALL_USERS Lists users visible to the current user, but does not describe them

DBA_PROFILES Displays all profiles and their limits

DBA_TS_QUOTAS Describes tablespace quotas for users

DBA_OBJECTS Describes all objects in the database

DBA_USERS Describes all users of the database

DBA_USERS_WITH_DEFPWD Lists all user accounts that have default passwords

PROXY_USERS Describes users who can assume the identity of other users

RESOURCE_COST Lists the cost for each resource in terms of CPUs for each session,
reads for each session, connection times, and SGA

USER_PASSWORD_LIMITS Describes the password profile parameters that are assigned to
the user

USER_RESOURCE_LIMITS Displays the resource limits for the current user

USER_TS_QUOTAS Describes tablespace quotas for users

USER_OBJECTS Describes all objects owned by the current user

USER_USERS Describes only the current user

Finding Information About Database Users and Profiles

Managing Security for Oracle Database Users 2-15

The following sections present examples of using these views. These examples assume
that the following statements have been run:

CREATE PROFILE clerk LIMIT
 SESSIONS_PER_USER 1
 IDLE_TIME 30
 CONNECT_TIME 600;

CREATE USER jfee
 IDENTIFIED BY password
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA 500K ON users
 PROFILE clerk;

CREATE USER dcranney
 IDENTIFIED BY password
 DEFAULT TABLESPACE users
 TEMPORARY TABLESPACE temp_ts
 QUOTA unlimited ON users;

CREATE USER userscott
 IDENTIFIED BY password;

Listing All Users and Associated Information
To find all users and their associated information as defined in the database, query the
DBA_USERS view. For detailed information on the DBA_USERS view, see Oracle
Database Reference.

For example:

SELECT USERNAME, PROFILE, ACCOUNT_STATUS, AUTHENTICATION_TYPE FROM DBA_USERS;

USERNAME PROFILE ACCOUNT_STATUS AUTHENTICATION_TYPE
--------------- --------------- --------------- -------------------
SYS DEFAULT OPEN PASSWORD
SYSTEM DEFAULT OPEN PASSWORD
USERSCOTT DEFAULT OPEN PASSWORD
JFEE CLERK OPEN GLOBAL
DCRANNEY DEFAULT OPEN EXTERNAL

Listing All Tablespace Quotas
Use the DBA_TS_QUOTAS view to list all tablespace quotas specifically assigned to
each user. (For detailed information on this view, see Oracle Database Reference.) For
example:

SELECT * FROM DBA_TS_QUOTAS;

V$SESSION Lists session information for each current session, includes user
name

V$SESSTAT Lists user session statistics

V$STATNAME Displays decoded statistic names for the statistics shown in the
V$SESSTAT view

Table 2–1 (Cont.) Data Dictionary Views That Display Information about Users and

View Description

Finding Information About Database Users and Profiles

2-16 Oracle Database Security Guide

TABLESPACE USERNAME BYTES MAX_BYTES BLOCKS MAX_BLOCKS
---------- --------- -------- ---------- ------- ----------
USERS JFEE 0 512000 0 250
USERS DCRANNEY 0 -1 0 -1

When specific quotas are assigned, the exact number is indicated in the MAX_BYTES
column. This number is always a multiple of the database block size, so if you specify
a tablespace quota that is not a multiple of the database block size, then it is rounded
up accordingly. Unlimited quotas are indicated by -1.

Listing All Profiles and Assigned Limits
The DBA_PROFILE view lists all profiles in the database and associated settings for
each limit in each profile. (For detailed information on this view, see Oracle Database
Reference.) For example:

SELECT * FROM DBA_PROFILES
 ORDER BY PROFILE;

PROFILE RESOURCE_NAME RESOURCE LIMIT
----------------- --------------- ---------- --------------
CLERK COMPOSITE_LIMIT KERNEL DEFAULT
CLERK FAILED_LOGIN_ATTEMPTS PASSWORD DEFAULT
CLERK PASSWORD_LIFE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_TIME PASSWORD DEFAULT
CLERK PASSWORD_REUSE_MAX PASSWORD DEFAULT
CLERK PASSWORD_VERIFY_FUNCTION PASSWORD DEFAULT
CLERK PASSWORD_LOCK_TIME PASSWORD DEFAULT
CLERK PASSWORD_GRACE_TIME PASSWORD DEFAULT
CLERK PRIVATE_SGA KERNEL DEFAULT
CLERK CONNECT_TIME KERNEL 600
CLERK IDLE_TIME KERNEL 30
CLERK LOGICAL_READS_PER_CALL KERNEL DEFAULT
CLERK LOGICAL_READS_PER_SESSION KERNEL DEFAULT
CLERK CPU_PER_CALL KERNEL DEFAULT
CLERK CPU_PER_SESSION KERNEL DEFAULT
CLERK SESSIONS_PER_USER KERNEL 1
DEFAULT COMPOSITE_LIMIT KERNEL UNLIMITED
DEFAULT PRIVATE_SGA KERNEL UNLIMITED
DEFAULT SESSIONS_PER_USER KERNEL UNLIMITED
DEFAULT CPU_PER_CALL KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_CALL KERNEL UNLIMITED
DEFAULT CONNECT_TIME KERNEL UNLIMITED
DEFAULT IDLE_TIME KERNEL UNLIMITED
DEFAULT LOGICAL_READS_PER_SESSION KERNEL UNLIMITED
DEFAULT CPU_PER_SESSION KERNEL UNLIMITED
DEFAULT FAILED_LOGIN_ATTEMPTS PASSWORD 10
DEFAULT PASSWORD_LIFE_TIME PASSWORD 180
DEFAULT PASSWORD_REUSE_MAX PASSWORD UNLIMITED
DEFAULT PASSWORD_LOCK_TIME PASSWORD 1
DEFAULT PASSWORD_GRACE_TIME PASSWORD 7
DEFAULT PASSWORD_VERIFY_FUNCTION PASSWORD UNLIMITED
DEFAULT PASSWORD_REUSE_TIME PASSWORD UNLIMITED
32 rows selected.

Finding Information About Database Users and Profiles

Managing Security for Oracle Database Users 2-17

Viewing Memory Use for Each User Session
To find the memory use for each user session, query the V$SESSION view. (For
detailed information on this view, see Oracle Database Reference. The following query
lists all current sessions, showing the Oracle Database user and current User Global
Area (UGA) memory use for each session:

SELECT USERNAME, VALUE || 'bytes' "Current UGA memory"
 FROM V$SESSION sess, V$SESSTAT stat, V$STATNAME name
WHERE sess.SID = stat.SID
 AND stat.STATISTIC# = name.STATISTIC#
 AND name.NAME = 'session uga memory';

USERNAME Current UGA memory
------------------------------ ---
 18636bytes
 17464bytes
 19180bytes
 18364bytes
 39384bytes
 35292bytes
 17696bytes
 15868bytes
USERSCOTT 42244bytes
SYS 98196bytes
SYSTEM 30648bytes

11 rows selected.

To see the maximum UGA memory allocated to each session since the instance started,
replace 'session uga memory' in the preceding query with 'session uga
memory max'.

Finding Information About Database Users and Profiles

2-18 Oracle Database Security Guide

3

Configuring Authentication 3-1

3 Configuring Authentication

This chapter contains:

■ About Authentication

■ Configuring Password Protection

■ Authenticating Database Administrators

■ Using the Database to Authenticate Users

■ Using the Operating System to Authenticate Users

■ Using the Network to Authenticate Users

■ Configuring Global User Authentication and Authorization

■ Configuring an External Service to Authenticate Users and Passwords

■ Using Multitier Authentication and Authorization

■ Preserving User Identity in Multitiered Environments

■ Finding Information About User Authentication

About Authentication
Authentication means verifying the identity of someone (a user, device, or other
entity) who wants to use data, resources, or applications. Validating that identity
establishes a trust relationship for further interactions. Authentication also enables
accountability by making it possible to link access and actions to specific identities.
After authentication, authorization processes can allow or limit the levels of access and
action permitted to that entity.

You can authenticate both database and nondatabase users for an Oracle database. For
simplicity, the same authentication method is generally used for all database users, but
Oracle Database allows a single database instance to use any or all methods. Oracle
Database requires special authentication procedures for database administrators,
because they perform special database operations. Oracle Database also encrypts
passwords during transmission to ensure the security of network authentication.

After authentication, authorization processes can allow or limit the levels of access and
action permitted to that entity. Authorization is described in Chapter 4, "Configuring
Privilege and Role Authorization."

Configuring Password Protection

3-2 Oracle Database Security Guide

Configuring Password Protection
This section contains:

■ What Are the Oracle Database Built-in Password Protections?

■ Minimum Requirements for Passwords

■ Using a Password Management Policy

■ Ensuring Against Password Security Threats by Using the SHA-1 Hashing
Algorithm

■ Managing the Secure External Password Store for Password Credentials

See also "Guidelines for Securing Passwords" on page 10-7 for advice on securing
passwords. If you want to configure Oracle XML DB to authenticate users by
encrypting their passwords but you do not need to encrypt other data (for example, an
Intranet e-mail), see Oracle XML DB Developer's Guide for more information.

What Are the Oracle Database Built-in Password Protections?
Oracle Database provides a set of built-in password protections designed to protect
your users’ passwords. These password protections are as follows:

■ Password encryption. Oracle Database automatically and transparently encrypts
passwords during network (client-to-server and server-to-server) connections,
using Advanced Encryption Standard (AES) before sending them across the
network.

■ Password complexity checking. In a default installation, Oracle Database checks
that new or changed passwords are sufficiently complex to prevent intruders who
try to break into the system by guessing passwords. You can further customize the
complexity of your users’ passwords. See "Enforcing Password Complexity
Verification" on page 3-9 for more information.

■ Preventing passwords from being broken. If a user tries to log in to Oracle
Database multiple times using an incorrect password, Oracle Database delays each
login after the third try. This protection applies for attempts made from different
IP addresses or multiple client connections. For the first three attempts, there is no
delay. Afterwards, it gradually increases the time before the user can try another
password, up to a maximum of about 10 seconds. If the user enters the correct
password, he or she is able to log in successfully without any delay.

This feature significantly decreases the number of passwords that an intruder
would be able to try when attempting to log in. It is designed to prevent repeated
attacks on password checking.

■ Enforced case sensitivity for passwords. Passwords are case sensitive. For
example, the password hPP5620qr fails if it is entered as hpp5620QR or
hPp5620Qr. In previous releases, passwords were not case sensitive. See
"Enabling or Disabling Password Case Sensitivity" on page 3-11 for information
about how case sensitivity works, and how it affects password files and database
links.

■ Passwords hashed using the Secure Hash Algorithm (SHA) cryptographic hash
function SHA-1. Oracle Database uses the SHA-1 verifier is to authenticate the
user password and establish the session of the user. In addition, it enforces case
sensitivity and restricts passwords to 160 bits. The advantage of using the SHA-1
verifier is that it is commonly used by Oracle Database customers and provides
much better security without forcing a network upgrade. It also adheres to

Configuring Password Protection

Configuring Authentication 3-3

compliance regulations that mandate the use of strong passwords being protected
by a suitably strong password hashing algorithm. See "Ensuring Against Password
Security Threats by Using the SHA-1 Hashing Algorithm" on page 3-13 for more
information.

Minimum Requirements for Passwords
Passwords must not exceed 30 characters or 30 bytes. For greater security, however,
follow the additional guidelines described in "Guidelines for Securing Passwords" on
page 10-7.

To create passwords for users, you can use the CREATE USER or ALTER USER SQL
statements. SQL statements that accept the IDENTIFIED BY clause also enable you to
create passwords. Example 3–1 shows several SQL statements that create passwords
with the IDENTIFIED BY clause.

Example 3–1 Password Creation SQL Statements

CREATE USER psmith IDENTIFIED BY password;
GRANT CREATE SESSION TO psmith IDENTIFIED BY password;
CREATE USER psmith IDENTIFIED BY password;
CREATE DATABASE LINK AUTHENTICATED BY psmith IDENTIFIED BY password;

Using a Password Management Policy
This section contains:

■ About Managing Passwords

■ Finding User Accounts That Have Default Passwords

■ Configuring Password Settings in the Default Profile

■ Disabling and Enabling the Default Password Security Settings

■ Automatically Locking a User Account After a Failed Login

■ Controlling Password Aging and Expiration

■ Controlling User Ability to Reuse Old Passwords

■ Enforcing Password Complexity Verification

■ Enabling or Disabling Password Case Sensitivity

See Also:

■ "Enforcing Password Complexity Verification" on page 3-9 for
ways that you can ensure that passwords are sufficiently complex
for your site

■ "Guidelines for Securing Passwords" on page 10-7 for more ways
to secure passwords

■ "Securing Passwords in Application Design" on page 5-3 for
password protection guidelines application developers should
follow

■ Oracle Database SQL Language Reference for more information about
the CREATE USER, ALTER USER, GRANT, and CREATE
DATABASE LINK SQL statements

Configuring Password Protection

3-4 Oracle Database Security Guide

About Managing Passwords
Database security systems that depend on passwords require that passwords be kept
secret at all times. Because passwords are vulnerable to theft, forgery, and misuse,
Oracle Database uses a password management policy. Database administrators and
security officers control this policy through user profiles, enabling greater control of
database security.

Use the CREATE PROFILE statement to create a user profile. The profile is assigned to
a user with the CREATE USER or ALTER USER statement. Details of creating and
altering database users are not discussed in this section. This section describes
password parameters that can be specified using the CREATE PROFILE (or ALTER
PROFILE) statement.

Finding User Accounts That Have Default Passwords
When you create a database in Oracle Database 11g Release 2 (11.2), most of its default
accounts are locked with the passwords expired. If you have upgraded from an earlier
release of Oracle Database, you may have user accounts that have default passwords.
These are default accounts that are created when you create a database, such as the HR,
OE, and SCOTT accounts.

For greater security, change the passwords for these accounts. Using a default
password that is commonly known can make your database vulnerable to attacks by
intruders. To find both locked and unlocked accounts that use default passwords, log
onto SQL*Plus using the SYSDBA privilege and then query the DBA_USERS_WITH_
DEFPWD data dictionary view.

For example, to find both the names of accounts that have default passwords and the
status of the account:

SELECT d.username, u.account_status
FROM DBA_USERS_WITH_DEFPWD d, DBA_USERS u
WHERE d.username = u.username
ORDER BY 2,1;

USERNAME ACCOUNT_STATUS
--------- ---------------------------
SCOTT EXPIRED & LOCKED

Then change the passwords for any accounts that the DBA_USERS_WITH_DEFPWD
view lists. Oracle recommends that you do not assign these accounts passwords that
they may have had in previous releases of Oracle Database.

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure. "Minimum Requirements for
Passwords" on page 3-3 describes the minimum requirements for passwords.

Configuring Password Settings in the Default Profile
A profile is a collection of parameters that sets limits on database resources. If you
assign the profile to a user, then that user cannot exceed these limits. You can use
profiles to configure database settings such as sessions per user, logging and tracing

See Also:

■ "Managing Resources with Profiles" on page 2-11

■ Oracle Database SQL Language Reference for syntax and specific
information about SQL statements discussed in this section

Configuring Password Protection

Configuring Authentication 3-5

features, and so on. Profiles can also control user passwords. To find information about
the current password settings in the profile, you can query the DBA_PROFILES data
dictionary view.

Table 3–1 lists the password-specific parameter settings in the default profile.

Table 3–1 Password-Specific Settings in the Default Profile

Parameter Default Setting Description

FAILED_LOGIN_ATTEMPTS 10 Sets the maximum times a user try to log in
and to fail before locking the account.

Notes:

■ When you set this parameter, take into
consideration users who may log in
using the CONNECT THROUGH privilege.

■ You can set limits on the number of
times an unauthorized user (possibly an
intruder) attempts to log in to Oracle
Call Interface (OCI) applications by
using the SEC_MAX_FAILED_LOGIN_
ATTEMPTS initialization parameter. See
"Configuring the Maximum Number of
Authentication Attempts" on page 5-19
for more information about this
parameter.

See also "Automatically Locking a User
Account After a Failed Login" on
page 3-6 for more information.

PASSWORD_GRACE_TIME 7 Sets the number of days that a user has to
change his or her password before it expires.

See "Controlling Password Aging and
Expiration" on page 3-8 for more
information.

PASSWORD_LIFE_TIME 180 Sets the number of days the user can use his
or her current password.

See "Controlling Password Aging and
Expiration" on page 3-8 for more
information.

PASSWORD_LOCK_TIME 1 Sets the number of days an account will be
locked after the specified number of
consecutive failed login attempts. After the
time passes, then the account becomes
unlocked. This user’s profile parameter is
useful to help prevent brute force attacks on
user passwords but not to increase the
maintenance burden on administrators.

See "Automatically Locking a User Account
After a Failed Login" on page 3-6 for more
information.

PASSWORD_REUSE_MAX UNLIMITED Sets the number of password changes
required before the current password can be
reused.

See "Controlling User Ability to Reuse Old
Passwords" on page 3-7 for more
information.

Configuring Password Protection

3-6 Oracle Database Security Guide

For greater security, use the default settings described in Table 3–1, based on your
needs. You can create or modify the password-specific parameters individually by
using the CREATE PROFILE or ALTER PROFILE statement. For example:

ALTER PROFILE prof
 FAILED_LOGIN_ATTEMPTS 9
 PASSWORD_LOCK_TIME 10;

See Oracle Database SQL Language Reference for more information about CREATE
PROFILE, ALTER PROFILE, and the password-related parameters described in this
section.

Disabling and Enabling the Default Password Security Settings
If your applications use the default password security settings from Oracle Database
10g Release 2 (10.2), then you can revert to these settings until you modify the
applications to use the Release 11g password security settings. To do so, run the
undopwd.sql script.

After you have modified your applications to conform to the Release 11g password
security settings, you can manually update your database to use the password security
configuration that suits your business needs, or you can run the secconf.sql script
to apply the Release 11g default password settings. You can customize this script to
have different security settings if you like, but remember that the settings listed in the
original script are Oracle-recommended settings.

If you created your database manually, then you should run the secconf.sql script
to apply the Release 11g default password settings to the database. Databases that
have been created with Database Configuration Assistant (DBCA) will have these
settings, but manually created databases do not.

The undopwd.sql and secconf.sql scripts are in the $ORACLE_
HOME/rdbms/admin directory. The undopwd.sql script affects password settings
only, and the secconf.sql script affects both password and audit settings. They
have no effect on other security settings.

Automatically Locking a User Account After a Failed Login
Oracle Database can lock a user’s account after a specified number of consecutive
failed log-in attempts. You can set the PASSWORD_LOCK_TIME user’s profile
parameter to configure the account to unlock automatically after a specified time
interval or to require database administrator intervention to be unlocked. The database
administrator also can lock accounts manually, so that they must be unlocked
explicitly by the database administrator.

You can specify the permissible number of failed login attempts by using the CREATE
PROFILE statement. You can also specify the amount of time accounts remain locked.

PASSWORD_REUSE_TIME UNLIMITED Sets the number of days before which a
password cannot be reused.

See "Controlling User Ability to Reuse Old
Passwords" on page 3-7 for more
information.

Table 3–1 (Cont.) Password-Specific Settings in the Default Profile

Parameter Default Setting Description

Configuring Password Protection

Configuring Authentication 3-7

Example 3–2 sets the maximum number of failed login attempts for the user johndoe
to 10 (the default), and the amount of time the account locked to 30 days. The account
will unlock automatically after 30 days.

Example 3–2 Locking an Account with the CREATE PROFILE Statement

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 10
 PASSWORD_LOCK_TIME 30;
ALTER USER johndoe PROFILE prof;

Each time the user unsuccessfully logs in, Oracle Database increases the delay
exponentially with each login failure.

If you do not specify a time interval for unlocking the account, then PASSWORD_
LOCK_TIME assumes the value specified in a default profile. (The recommended value
is 1 day.) If you specify PASSWORD_LOCK_TIME as UNLIMITED, then you must
explicitly unlock the account by using an ALTER USER statement. For example,
assuming that PASSWORD_LOCK_TIME UNLIMITED is specified for johndoe, then
you use the following statement to unlock the johndoe account:

ALTER USER johndoe ACCOUNT UNLOCK;

After a user successfully logs into an account, Oracle Database resets the unsuccessful
login attempt count for the user, if it is non-zero, to zero.

The security officer can also explicitly lock user accounts. When this occurs, the
account cannot be unlocked automatically, and only the security officer should unlock
the account. The CREATE USER or ALTER USER statements explicitly lock or unlock
user accounts. For example, the following statement locks the user account, susan:

ALTER USER susan ACCOUNT LOCK;

Controlling User Ability to Reuse Old Passwords
You can ensure that users do not reuse their old passwords for a specified amount of
time or for a specified number of password changes. To do so, configure the rules for
password reuse with CREATE PROFILE or ALTER PROFILE statements. For the
complete syntax of these statements, see the Oracle Database SQL Language Reference.

Table 3–2 lists the CREATE PROFILE and ALTER PROFILE parameters that control
ability of a user to reuse an old password.

If you do not specify a parameter, then the user can reuse passwords at any time,
which is not a good security practice.

Table 3–2 Parameters Controlling Reuse of an Old Password

Parameter Name Description and Use

PASSWORD_REUSE_TIME Requires either of the following:

■ A number specifying how many days (or a fraction of a day) between the
earlier use of a password and its next use

■ The word UNLIMITED

PASSWORD_REUSE_MAX Requires either of the following:

■ An integer to specify the number of password changes required before a
password can be reused

■ The word UNLIMITED

Configuring Password Protection

3-8 Oracle Database Security Guide

If neither parameter is UNLIMITED, then password reuse is allowed, but only after
meeting both conditions. The user must have changed the password the specified
number of times, and the specified number of days must have passed since the old
password was last used.

For example, suppose that the profile of user A had PASSWORD_REUSE_MAX set to 10
and PASSWORD_REUSE_TIME set to 30. User A cannot reuse a password until he or
she has reset the password 10 times, and until 30 days had passed since the password
was last used.

If either parameter is specified as UNLIMITED, then the user can never reuse a
password.

If you set both parameters to UNLIMITED, then Oracle Database ignores both, and the
user can reuse any password at any time.

Controlling Password Aging and Expiration
You can specify a password lifetime, after which the password expires and must be
changed before logging into the account is permitted again. In addition, you can set a
grace period, during which each attempt to log in to the database account receives a
warning message to change the password. If the user does not change it by the end of
that period, then Oracle Database expires the account. No further logins to that
account are allowed without assistance by the database administrator.

You can also manually set the password state to expired, which sets the user account
status to expired. The user or the database administrator must then change the
password, using either the PASSWORD or ALTER USER statement, before the user can
log in to the database.

Use the CREATE PROFILE or ALTER PROFILE statement to specify a maximum
lifetime for passwords. When the specified amount of time passes and the password
expires, the user or DBA must change the password.

Example 3–3 demonstrates how to create and assign a profile to user johndoe, and
the PASSWORD_LIFE_TIME clause specifies that johndoe can use the same password
for 180 days before it expires.

Example 3–3 Setting Password Aging and Expiration with the CREATE PROFILE
Statement

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30
 PASSWORD_LIFE_TIME 180;
ALTER USER johndoe PROFILE prof;

You can also specify a grace period for password expiration. Users enter the grace
period upon the first attempt to log in to a database account after their password has
expired. During the grace period, a warning message appears each time users try to
log in to their accounts, and continues to appear until the grace period expires. Users
must change the password within the grace period. If they do not change the
password within the grace period, then they are prompted for a new password each

Note: If you specify DEFAULT for either parameter, then Oracle
Database uses the value defined in the DEFAULT profile, which sets
all parameters to UNLIMITED. Oracle Database thus uses
UNLIMITED for any parameter specified as DEFAULT, unless you
change the setting for that parameter in the DEFAULT profile.

Configuring Password Protection

Configuring Authentication 3-9

time they try to access their accounts. Access to an account is denied until a new
password is supplied.

Figure 3–1 shows the chronology of the password lifetime and grace period.

Figure 3–1 Chronology of Password Lifetime and Grace Period

In the following example, the profile assigned to johndoe includes the specification of
a grace period: PASSWORD_GRACE_TIME = 3 (the recommended value). The first
time johndoe tries to log in to the database after 90 days (this can be any day after the
90th day, that is, the 91st day, 100th day, or another day), he receives a warning
message that his password will expire in 3 days. If 3 days pass, and if he does not
change his password, then the password expires. After this, he receives a prompt to
change his password on any attempt to log in, and cannot log in until he does so.

CREATE PROFILE prof LIMIT
 FAILED_LOGIN_ATTEMPTS 4
 PASSWORD_LOCK_TIME 30
 PASSWORD_LIFE_TIME 90
 PASSWORD_GRACE_TIME 3;
ALTER USER johndoe PROFILE prof;

You can explicitly expire a password by using the CREATE USER and ALTER USER
statements. The following statement creates a user with an expired password. This
setting forces the user to change the password before the user can log in to the
database.

CREATE USER jbrown
 IDENTIFIED BY password
 ...
 PASSWORD EXPIRE;

Enforcing Password Complexity Verification
Complexity verification checks that each password is complex enough to provide
reasonable protection against intruders who try to break into the system by guessing
passwords. This forces users to create strong, secure passwords for database user
accounts. You need to ensure that the passwords for your users are complex enough to
provide reasonable protection against intruders who try to break into the system by
guessing passwords.

How Oracle Database Checks the Complexity of Passwords
Oracle Database provides a sample password verification function in the PL/SQL
script UTLPWDMG.SQL (located in ORACLE_BASE/ORACLE_HOME/RDBMS/ADMIN)
that, when enabled, checks whether users are correctly creating or modifying their
passwords. The UTLPWDMG.SQL script provides two password verification functions:
one for previous releases of Oracle Database and an updated version for Oracle
Database Release 11g.

Configuring Password Protection

3-10 Oracle Database Security Guide

The UTLPWDMG.SQL script checks for the following requirements when users create or
modify passwords:

■ The password contains no fewer than eight characters and does not exceed 30
characters.

■ The password is not the same as the user name, nor is it the user name spelled
backward or with numeric characters appended.

■ The password is not the same as the server name or the server name with the
numbers 1–100 appended.

■ The password is not too simple, for example, welcome1, database1, account1,
user1234, password1, oracle, oracle123, computer1, abcdefg1, or
change_on_install.

■ The password includes at least 1 numeric and 1 alphabetic character.

■ The password differs from the previous password by at least 3 letters.

Customizing Password Complexity Verification
You can create your own password complexity verification function by backing up and
customizing the PASSWORD_VERIFY function in the UTLPWDMG.SQL script. In fact,
Oracle recommends that you do so to further secure your site’s passwords. See also
Guideline 1 in "Guidelines for Securing Passwords" on page 10-7 for general advice on
creating passwords. However, be aware that the password complexity checking is not
enforced for user SYS.

By default, password complexity verification is not enabled. To enable the password
complexity verification:

1. Log in to SQL*Plus with administrative privileges and then run the
UTLPWDMG.SQL script (or your modified version of this script) to create the
password complexity function in the SYS schema.

CONNECT SYS/AS SYSDBA
Enter password: password

@$ORACLE_HOME/RDBMS/ADMIN/utlpwdmg.sql

2. In the default profile or the user profile, set the PASSWORD_VERIFY_FUNCTION
setting to either the sample password complexity function in the UTLPWDMG.SQL
script, or to your customized function. Use one of the following methods:

■ Log in to SQL*Plus with administrator privileges and use the CREATE
PROFILE or ALTER PROFILE statement to enable the function. For example,
to update the default profile to use the verify_function_11G function:

ALTER PROFILE default LIMIT
 PASSWORD_VERIFY_FUNCTION verify_function_11G;

■ In Oracle Enterprise Manager, go to the Edit Profiles page and then under
Complexity, select the name of the password complexity function from the
Complexity function list.

After you have enabled password complexity verification, it takes effect immediately.

Configuring Password Protection

Configuring Authentication 3-11

Enabling or Disabling Password Case Sensitivity
When you create or modify user accounts, by default, passwords are case sensitive. To
control the use of case sensitivity in passwords, set the SEC_CASE_SENSITIVE_
LOGON initialization parameter. Only users who have the ALTER SYSTEM privilege
can set the SEC_CASE_SENSITIVE_LOGON parameter. Set it to TRUE to enable case
sensitivity or FALSE to disable case sensitivity.

For greater security, Oracle recommends that you enable case sensitivity in passwords.
However, if you have compatibility issues with your applications, you can use this
parameter to disable password case sensitivity. Examples of application compatibility
issues are passwords for your applications being hard-coded to be case insensitive, or
different application modules being inconsistent about case sensitivity when sending
credentials to start a database session.

To enable case sensitivity in passwords:

1. If you are using a password file, ensure that it was created with the IGNORECASE
parameter set to N.

The IGNORECASE parameter overrides the SEC_CASE_SENSITIVE_LOGON
parameter. By default, IGNORECASE is set to Y, which means that passwords are
treated as case-sensitive. For more information about password files, see Oracle
Database Administrator's Guide.

2. Enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET SEC_CASE_SENSITIVE_LOGON = TRUE

In previous releases of Oracle Database, passwords were not case sensitive. If you
import user accounts from a previous release, for example, Release 10g, into the
current database release, the case-insensitive passwords in these accounts remain case
insensitive until the user changes his or her password. If the account was granted
SYSDBA or SYSOPER privilege, it is imported to the password file. (See "How Case
Sensitivity Affects Password Files" on page 3-12 for more information.) When a
password from a user account from the previous release is changed, it then becomes
case sensitive.

You can find users who have case sensitive or case insensitive passwords by querying
the DBA_USERS view. The PASSWORD_VERSIONS column in this view indicates the
release in which the password was created. For example:

SELECT USERNAME,PASSWORD_VERSIONS FROM DBA_USERS;

USERNAME PASSWORD_VERSIONS
------------------------------ -----------------
JONES 10G 11G

Note: The ALTER USER statement has a REPLACE clause. With
this clause, users can change their own unexpired passwords by
supplying the old password to authenticate themselves.

If the password has expired, then the user cannot log in to SQL to
issue the ALTER USER command. Instead, the
OCIPasswordChange() function must be used, which also
requires the old password.

A database administrator with ALTER ANY USER privilege can
change any user password (force a new password) without
supplying the old one.

Configuring Password Protection

3-12 Oracle Database Security Guide

ADAMS 10G 11G
CLARK 10G 11G
PRESTON 11G
BLAKE 10G

The passwords for accounts jones, adams, and clark were originally created in
Release 10g and then reset in Release 11g. Their passwords, assuming case sensitivity
has been enabled, are now case sensitive, as is the password for preston. However,
the account for blake is still using the Release 10g standard, so it is case insensitive.
Ask him to reset his password so that it will be case sensitive, and therefore more
secure.

See Oracle Database Reference for more information about the DBA_USERS view.

How Case Sensitivity Affects Password Files
You can enable or disable case sensitivity for password files by using the ignorecase
argument in the ORAPWD command line utility. The default value for ignorecase is n
(no), which enforces case sensitivity.

Example 3–4 shows how to enable case sensitivity in password files.

Example 3–4 Enabling Password Case Sensitivity

orapwd file=orapw entries=100 ignorecase=n
Enter password for SYS: password

This creates a password file called orapwd. Because ignorecase is set to n (no), the
password entered for the password parameter will be case sensitive. Afterwards, if
you connect using this password, it succeeds—as long as you enter it using the exact
case sensitivity in which it was created. If you enter the same password but with
different case sensitivity, it will fail.

If you set ignorecase to y, then the passwords in the password file are case
insensitive, which means that you can enter the password using any capitalization that
you want.

If you imported user accounts from a previous release and these accounts were created
with SYSDBA or SYSOPER privileges, then they will be included in the password file.
The passwords for these accounts are case insensitive. The next time these users
change their passwords, and assuming case sensitivity is enabled, the passwords
become case sensitive. For greater security, have these users change their passwords.

See Oracle Database Administrator's Guide for more information about password files.

How Case Sensitivity Affects Accounts Created for Database Link Connections
When you create a database link connection, you need to define a user name and
password for the connection. When you create the database link connection, the
password is case sensitive. How this user enters his or her password for connections
depends on the release in which the database link was created:

■ Before a user can connect from a pre-Release 11g database to a Release 11g
database, and assuming that case sensitivity is enabled, you must re-create the
password for this database link using all uppercase letters.

The reason you need to re-create the password using all uppercase letters is so that
it will match how Oracle Database stores database link passwords. Oracle
Database always stores this type of password in uppercase letters, even if the
password had originally been created using lower or mixed case letters. If case

Configuring Password Protection

Configuring Authentication 3-13

sensitivity is disabled, the user can enter the password using the case the
password was created in.

■ If the user is connecting from a Release 11g database to another Release 11g
database, he or she must enter the password using the case in which it was
created, assuming that case sensitivity is enabled.

■ If the user connecting from a Release 11g database to a pre-Release 11g database,
he or she can enter his or her password using any case, because the password is
still case insensitive.

In other words, any time a user connects to a Release 11g database from a database
link, he or she must enter the password in its exact case.

You can find the user accounts for existing database links by querying the V$DBLINK
view. For example:

SELECT DB_LINK, OWNER_ID FROM V$DBLINK;

See Oracle Database Reference for more information about the V$DBLINK view.

Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm
The SHA-1 cryptographic hashing algorithm protects against password-based security
threats by including support for mixed case characters, special characters, and
multibyte characters in passwords. In addition, the SHA-1 hashing algorithm adds a
salt to the password when it is hashed, which provides additional protection. This
enables your users to create far more complex passwords, and therefore, makes it more
difficult for an intruder to gain access to these passwords. Oracle recommends that
you use the SHA-1 hashing algorithm.

Many password cracking tools rely on access to the Oracle Database data dictionary.
The tool must first obtain the hash values of the password by using an administrator
account or by gaining direct access to the hash values that are stored on media such as
backup tapes or disk drives containing database files. (For this reason, it is a good idea
to encrypt backup media that contains database files.) The cracking tools then use clear
text password combinations to create the new hash, match the new hash with the
existing hash, and thus obtain an existing password.

You optionally can configure Oracle Database to run in exclusive mode for Release 11
or later. When you enable exclusive mode, then Oracle Database uses the SHA-1
hashing algorithm exclusively. Oracle Database 11g exclusive mode is compatible with
Oracle Database 10g and later products that use OCI-based drivers, including
SQL*Plus, ODBC, Oracle .NET, Oracle Forms, and various third-party Oracle Database
adapters. However, be aware that exclusive mode for Release 11g is not compatible
with JDBC type-4 (thin) versions earlier than Oracle Database 11g or Oracle Database
Client interface (OCI)-based drivers earlier than Oracle Database 10g. After you
configure exclusive mode, Oracle recommends that you remove the old password
hash values from the data dictionary.

Follow these steps:

1. Change all old passwords to include mixed case and special characters.

See Guideline 1 under "Guidelines for Securing Passwords" on page 10-7 for
additional guidelines for creating passwords, and techniques for creating complex
but easy to remember passwords.

2. Verify that the passwords in test scripts or batch jobs are consistent in their use of
mixed case and special characters.

Configuring Password Protection

3-14 Oracle Database Security Guide

3. Enable exclusive mode.

a. Create a back up copy of the sqlnet.ora parameter file, by default located in
the $ORACLE_HOME/network/admin directory on UNIX operating systems
and the %ORACLE_HOME%\network\admin directory on Microsoft Windows
operating systems.

b. Ensure that the sqlnet.ora file has the following line:

sqlnet.allowed_logon_version=11

c. Save and exit the sqlnet.ora file.

d. If necessary, restart the listener. At a command prompt, enter the following
commands:

lsnrctl STOP listener_name

lsnrctl START listener_name

listener_name is the name of the listener defined in the listener.ora
file. You do not need to identify the listener if you are using the default
listener, named LISTENER.

Managing the Secure External Password Store for Password Credentials
This section contains:

■ About the Secure External Password Store

■ How Does the External Password Store Work?

■ Configuring Clients to Use the External Password Store

■ Managing External Password Store Credentials

About the Secure External Password Store
You can store password credentials for connecting to databases by using a client-side
Oracle wallet. An Oracle wallet is a secure software container that stores
authentication and signing credentials.

This wallet usage can simplify large-scale deployments that rely on password
credentials for connecting to databases. When this feature is configured, application
code, batch jobs, and scripts no longer need embedded user names and passwords.
This reduces risk because the passwords are no longer exposed, and password
management policies are more easily enforced without changing application code
whenever user names or passwords change.

See Also:

■ "Using Proxy Authentication with the Secure External Password
Store" on page 3-37

■ Oracle Database Advanced Security Administrator's Guide for general
information about Oracle wallets

Configuring Password Protection

Configuring Authentication 3-15

How Does the External Password Store Work?
Typically, users (and as applications, batch jobs, and scripts) connect to databases by
using a standard CONNECT statement that specifies a database connection string. This
string can include a user name and password, and an Oracle Net service name
identifying the database on an Oracle Database network. If the password is omitted,
the connection prompts the user for the password.

For example, the service name could be the URL that identifies that database, or a TNS
alias you entered in the tnsnames.ora file in the database. Another possibility is a
host:port:sid string.

The following examples are standard CONNECT statements that could be used for a
client that is not configured to use the external password store:

CONNECT salesapp@sales_db.us.example.com
Enter password: password

CONNECT salesapp@orasales
Enter password: password

CONNECT salesapp@ourhost37:1527:DB17
Enter password: password

In these examples, salesapp is the user name, with the unique connection string for
the database shown as specified in three different ways. You could use its URL
sales_db.us.example.com, or its TNS alias orasales from the tnsnames.ora
file, or its host:port:sid string.

However, when clients are configured to use the secure external password store,
applications can connect to a database with the following CONNECT statement syntax,
without specifying database login credentials:

CONNECT /@db_connect_string

CONNECT /@db_connect_string AS SYSDBA

CONNECT /@db_connect_string AS SYSOPER

In this specification, db_connect_string is a valid connection string to access the
intended database, such as the service name, URL, or alias as shown in the earlier
examples. Each user account must have its own unique connection string; you cannot
create one connection string for multiple users.

In this case, the database credentials, user name and password, are securely stored in
an Oracle wallet created for this purpose. The autologin feature of this wallet is turned
on, so the system does not need a password to open the wallet. From the wallet, it gets
the credentials to access the database for the user they represent.

Note: The external password store of the wallet is separate from the
area where public key infrastructure (PKI) credentials are stored.
Consequently, you cannot use Oracle Wallet Manager to manage
credentials in the external password store of the wallet. Instead, use
the command-line utility mkstore to manage these credentials.

See Also: Oracle Database Advanced Security Administrator's Guide for
information about autologin wallets

Configuring Password Protection

3-16 Oracle Database Security Guide

Configuring Clients to Use the External Password Store
If your client is already configured to use external authentication, such as Windows
native authentication or Secure Sockets Layer (SSL), then Oracle Database uses that
authentication method. The same credentials used for this type of authentication are
typically also used to log in to the database.

For clients not using such authentication methods or wanting to override them for
database authentication, you can set the SQLNET.WALLET_OVERRIDE parameter in
sqlnet.ora to TRUE. The default value for SQLNET.WALLET_OVERRIDE is FALSE,
allowing standard use of authentication credentials as before.

If you want a client to use the secure external password store feature, then perform the
following configuration task:

1. Create a wallet on the client by using the following syntax at the command line:

mkstore -wrl wallet_location -create

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -create
Enter password: password

wallet_location is the path to the directory where you want to create and
store the wallet. This command creates an Oracle wallet with the autologin feature
enabled at the location you specify. The autologin feature enables the client to
access the wallet contents without supplying a password. See Oracle Database
Advanced Security Administrator's Guide for information about autologin wallets.

The mkstore utility -create option uses password complexity verification. See
"Enforcing Password Complexity Verification" on page 3-9 for more information.

2. Create database connection credentials in the wallet by using the following syntax
at the command line:

mkstore -wrl wallet_location -createCredential db_connect_string username
Enter password: password

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -createCredential orcl
system
Enter password: password

In this specification:

■ wallet_location is the path to the directory where you created the wallet
in Step 1.

■ db_connect_string is the TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on
an Oracle network. By default, tnsnames.ora is located in the $ORACLE_
HOME/network/admin directory on UNIX systems and in ORACLE_
HOME\network\admin on Windows.

■ username is the database login credential. When prompted, enter the
password for this user.

Repeat this step for each database you want accessible using the CONNECT /@db_
connect_string syntax.

Configuring Password Protection

Configuring Authentication 3-17

3. In the client sqlnet.ora file, enter the WALLET_LOCATION parameter and set it
to the directory location of the wallet you created in Step 1.

For example, if you created the wallet in $ORACLE_HOME/network/admin and
your Oracle home is set to /private/ora11, then you need to enter the
following into your client sqlnet.ora file:

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /private/ora11/network/admin)
)
)

4. In the client sqlnet.ora file, enter the SQLNET.WALLET_OVERRIDE parameter
and set it to TRUE as follows:

SQLNET.WALLET_OVERRIDE = TRUE

This setting causes all CONNECT /@db_connect_string statements to use the
information in the wallet at the specified location to authenticate to databases.

When external authentication is in use, an authenticated user with such a wallet
can use the CONNECT /@db_connect_string syntax to access the previously
specified databases without providing a user name and password. However, if a
user fails that external authentication, then these connect statements also fail.

Example 3–5 shows a sample sqlnet.ora file with the WALLET_LOCATION and the
SQLNET.WALLET_OVERRIDE parameters set as described in Steps 3 and 4.

Example 3–5 Sample SQLNET.ORA File with Wallet Parameters Set

WALLET_LOCATION =
 (SOURCE =
 (METHOD = FILE)
 (METHOD_DATA =
 (DIRECTORY = /private/ora11/network/admin)
)
)

SQLNET.WALLET_OVERRIDE = TRUE

Note: The db_connect_string used in the CONNECT /@db_
connect_string statement must be identical to the db_connect_
string specified in the -createCredential command.

Note: If an application uses SSL for encryption, then the
sqlnet.ora parameter, SQLNET.AUTHENTICATION_SERVICES,
specifies SSL and an SSL wallet is created. If this application wants to
use secret store credentials to authenticate to databases (instead of the
SSL certificate), then those credentials must be stored in the SSL
wallet. After SSL authentication, if SQLNET.WALLET_OVERRIDE =
TRUE, then the user names and passwords from the wallet are used to
authenticate to databases. If SQLNET.WALLET_OVERRIDE = FALSE,
then the SSL certificate is used.

Configuring Password Protection

3-18 Oracle Database Security Guide

SSL_CLIENT_AUTHENTICATION = FALSE
SSL_VERSION = 0

Managing External Password Store Credentials
This section summarizes the following tasks you can perform to manage credentials in
the external password store by using the mkstore command-line utility:

■ Listing External Password Store Contents

■ Adding Credentials to an External Password Store

■ Modifying Credentials in an External Password Store

■ Deleting Credentials from an External Password Store

Listing External Password Store Contents Periodically, you may want to view all contents
of a client wallet external password store, or you may need to check specific
credentials by viewing them. Listing the external password store contents provides
information you can use to decide whether to add or delete credentials from the store.

To list the contents of the external password store, enter the following command at the
command line:

mkstore -wrl wallet_location -listCredential

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -listCredential

wallet_location specifies the path to the directory where the wallet, whose
external password store contents you want to view, is located. This command lists all
of the credential database service names (aliases) and the corresponding user name
(schema) for that database. Passwords are not listed.

Adding Credentials to an External Password Store You can store multiple credentials in one
client wallet. For example, if a client batch job connects to hr_database and a script
connects to sales_database, then you can store the login credentials in the same
client wallet. You cannot, however, store multiple credentials (for logging in to
multiple schemas) for the same database in the same wallet. If you have multiple login
credentials for the same database, then they must be stored in separate wallets.

To add database login credentials to an existing client wallet, enter the following
command at the command line:

mkstore -wrl wallet_location -createCredential db_alias username

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -createCredential orcl system
Enter password: password

In this specification:

■ wallet_location is the path to the directory where the client wallet to which
you want to add credentials is stored.

■ db_alias can be the TNS alias you use to specify the database in the
tnsnames.ora file or any service name you use to identify the database on an
Oracle network.

■ username is the database login credential for the schema to which your
application connects. When prompted, enter the password for this user.

Authenticating Database Administrators

Configuring Authentication 3-19

Modifying Credentials in an External Password Store If the database connection strings
change, then you can modify the database login credentials that are stored in the
wallet.

To modify database login credentials in a wallet, enter the following command at the
command line:

mkstore -wrl wallet_location -modifyCredential dbase_alias username

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -modifyCredential sales_db
Enter password: password

In this specification:

■ wallet_location is the path to the directory where the wallet is located.

■ db_alias is a new or different alias you want to use to identify the database. It
can be a TNS alias you use to specify the database in the tnsnames.ora file or
any service name you use to identify the database on an Oracle network.

■ username is the new or different database login credential. When prompted,
enter the password for this user.

Deleting Credentials from an External Password Store If a database no longer exists or if you
want to disable connections to a specific database, then you can delete all login
credentials for that database from the wallet.

To delete database login credentials from a wallet, enter the following command at the
command line:

mkstore -wrl wallet_location -deleteCredential db_alias

For example:

mkstore -wrl c:\oracle\product\11.2.0\db_1\wallets -deleteCredential orcl

In this specification:

■ wallet_location is the path to the directory where the wallet is located.

■ db_alias is the TNS alias you use to specify the database in the tnsnames.ora
file, or any service name you use to identify the database on an Oracle Database
network.

Authenticating Database Administrators
Database administrators perform special operations, such as shutting down or starting
up a database, that should not be performed by non-administrative database users.
Oracle Database provides the following methods to secure the authentication of
database administrators who have either SYSDBA or SYSOPER privileges:

■ Strong Authentication and Centralized Management for Database Administrators

■ Authenticating Database Administrators by Using the Operating System

■ Authenticating Database Administrators by Using Their Passwords

Authenticating Database Administrators

3-20 Oracle Database Security Guide

Strong Authentication and Centralized Management for Database Administrators
Strong authentication lets you centrally control SYSDBA and SYSOPER access to
multiple databases. Consider using this type of authentication for database
administration for the following situations:

■ You have concerns about password file vulnerability.

■ Your site has very strict security requirements.

■ You want to separate the identity management from your database. By using a
directory server such as Oracle Internet Directory (OID), for example, you can
maintain, secure, and administer that server separately.

To enable the Oracle Internet Directory server to authorize SYSDBA and SYSOPER
connections, use one of the following methods, depending on your environment:

■ Configuring Directory Authentication for Administrative Users

■ Configuring Kerberos Authentication for Administrative Users

■ Configuring Secure Sockets Layer Authentication for Administrative Users

Configuring Directory Authentication for Administrative Users
To configure directory authentication for administrative users:

1. Configure the administrative user by using the same procedures you would use to
configure a typical user.

2. In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user
for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See "Guidelines for Securing
User Accounts and Privileges" on page 10-2 for advice on this topic.

3. Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA
and SYSOPER users to authenticate to the database by using a strong
authentication method.

See Oracle Database Reference for more information about LDAP_DIRECTORY_
SYSAUTH.

4. Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For
example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = PASSWORD;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to
NONE. Setting this parameter to PASSWORD or SSL ensures that users can be
authenticated using the SYSDBA or SYSOPER privileges through Oracle Internet
Directory. See Oracle Database Reference for more information about LDAP_
DIRECTORY_ACCESS.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT SOMEUSER@ORCL AS SYSDBA
Enter password: password

Authenticating Database Administrators

Configuring Authentication 3-21

If the database is configured to use a password file for remote authentication, Oracle
Database checks the password file first.

Configuring Kerberos Authentication for Administrative Users
To configure Kerberos authentication for administrative users:

1. Configure the administrative user by using the same procedures you would use to
configure a typical user.

See Oracle Database Advanced Security Administrator's Guide for more information.

2. Configure Oracle Internet Directory for Kerberos authentication.

See Oracle Database Enterprise User Security Administrator's Guide for more
information.

3. In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user
for the database that this user will administer.

Grant SYSDBA or SYSOPER only to trusted users. See "Guidelines for Securing
User Accounts and Privileges" on page 10-2 for advice on this topic.

4. Set the LDAP_DIRECTORY_SYSAUTH initialization parameter to YES:

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA
and SYSOPER users to authenticate to the database by using strong authentication
methods. See Oracle Database Reference for more information about LDAP_
DIRECTORY_SYSAUTH.

5. Set the LDAP_DIRECTORY_ACCESS parameter to either PASSWORD or SSL. For
example:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

Ensure that the LDAP_DIRECTORY_ACCESS initialization parameter is not set to
NONE. Setting this parameter to PASSWORD or SSL ensures that users can be
authenticated using SYSDBA or SYSOPER through Oracle Internet Directory. See
Oracle Database Reference for more information about LDAP_DIRECTORY_ACCESS.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT /@orcl AS SYSDBA

Configuring Secure Sockets Layer Authentication for Administrative Users
To configure Secure Sockets Layer (SSL) authentication for administrative users:

1. Configure the client to use SSL:

a. Configure the client wallet and user certificate. Update the wallet location in
the sqlnet.ora configuration file.

You can use Wallet Manager to configure the client wallet and user certificate.
See Oracle Database Advanced Security Administrator's Guide for more
information.

b. Configure the Oracle net service name to include server DNs and use TCP/IP
with SSL in tnsnames.ora.

c. Configure TCP/IP with SSL in listener.ora.

Authenticating Database Administrators

3-22 Oracle Database Security Guide

d. Set the client SSL cipher suites and the required SSL version, and then set SSL
as an authentication service in sqlnet.ora.

2. Configure the server to use SSL:

a. Enable SSL for your database listener on TCPS and provide a corresponding
TNS name. You can use Net Configuration Assistant to configure the TNS
name.

b. Store the database PKI credentials in the database wallet. You can use Wallet
Manager do this.

c. Set the LDAP_DIRECTORY_ACCESS initialization parameter to SSL:

ALTER SYSTEM SET LDAP_DIRECTORY_ACCESS = SSL;

See Oracle Database Reference for more information about LDAP_DIRECTORY_
ACCESS.

3. Configure Oracle Internet Directory for SSL user authentications.

See Oracle Database Enterprise User Security Administrator's Guide for information on
configuring enterprise user security SSL authentication.

4. In Oracle Internet Directory, grant the SYSDBA or SYSOPER privilege to the user
for the database that the user will administer.

5. On the server computer, set the LDAP_DIRECTORY_SYSAUTH initialization
parameter to YES.

ALTER SYSTEM SET LDAP_DIRECTORY_SYSAUTH = YES;

When set to YES, the LDAP_DIRECTORY_SYSAUTH parameter enables SYSDBA
and SYSOPER users to authenticate to the database by using a strong
authentication method. See Oracle Database Reference for more information about
LDAP_DIRECTORY_SYSAUTH.

Afterward, this user can log in by including the net service name in the CONNECT
statement in SQL*Plus. For example, to log on as SYSDBA if the net service name is
orcl:

CONNECT /@orcl AS SYSDBA

Authenticating Database Administrators by Using the Operating System
Operating system authentication for a database administrator typically involves
establishing a group on the operating system, granting DBA privileges to that group,
and then adding the names of persons who should have those privileges to that group.
(On UNIX systems, the group is the dba group.)

On Microsoft Windows systems, users who connect with the SYSDBA privilege can
take advantage of the Windows native authentication. If these users work with Oracle
Database using their domain accounts, then you must explicitly grant them local
administrative privileges and ORA_DBA membership.

See Also: Your Oracle Database operating system-specific
documentation for information about configuring operating system
authentication of database administrators

Authenticating Database Administrators

Configuring Authentication 3-23

Authenticating Database Administrators by Using Their Passwords
Oracle Database uses database-specific password files to keep track of database user
names that have been granted the SYSDBA and SYSOPER privileges. These privileges
enable the following activities:

■ The SYSOPER system privilege lets database administrators perform STARTUP,
SHUTDOWN, ALTER DATABASE OPEN/MOUNT, ALTER DATABASE BACKUP,
ARCHIVE LOG, and RECOVER operations. SYSOPER also includes the RESTRICTED
SESSION privilege.

■ The SYSDBA system privilege has all system privileges with ADMIN OPTION,
including the SYSOPER system privilege, and permits CREATE DATABASE and
time-based recovery.

■ A password file containing users with SYSDBA or SYSOPER privileges can be
shared between different databases. You can have a shared password file that
contains users in addition to the SYS user. To share a password file among
different databases, set the REMOTE_LOGIN_PASSWORDFILE parameter in the
init.ora file to SHARED.

If you set the REMOTE_LOGIN_PASSWORDFILE initialization parameter to
EXCLUSIVE or SHARED from NONE, then ensure that the password file is in sync
with the dictionary passwords. See Oracle Database Administrator's Guide for more
information.

■ Password file-based authentication is enabled by default. This means that the
database is ready to use a password file for authenticating users that have SYSDBA
or SYSOPER system privileges. Password file based authentication is activated as
soon as you create a password file using the ORAPWD utility.

Anyone who has EXECUTE privileges and write privileges to the $ORACLE_
HOME/dbs directory can run the ORAPWD utility.

However, be aware that using password files may pose security risks. For this reason,
consider using the authentication methods described in "Strong Authentication and
Centralized Management for Database Administrators" on page 3-20. Examples of
password security risks are as follows:

■ An intruder could steal or attack the password file.

■ Many users do not change the default password.

■ The password could be easily guessed.

■ The password is vulnerable if it can be found in a dictionary.

■ Passwords that are too short, chosen perhaps for ease of typing, are vulnerable if
an intruder obtains the cryptographic hash of the password.

Note: Connections requested AS SYSDBA or AS SYSOPER must
use these phrases; without them, the connection fails. The Oracle
Database parameter O7_DICTIONARY_ACCESSIBILITY is set to
FALSE by default, to limit sensitive data dictionary access only to
those authorized. The parameter also enforces the required AS
SYSDBA or AS SYSOPER syntax.

See Also: Oracle Database Administrator's Guide for information
about creating and maintaining password files

Using the Database to Authenticate Users

3-24 Oracle Database Security Guide

Using the Database to Authenticate Users
This section contains:

■ About Database Authentication

■ Advantages of Database Authentication

■ Creating a User Who Is Authenticated by the Database

About Database Authentication
Oracle Database can authenticate users attempting to connect to a database by using
information stored in that database itself. To configure Oracle Database to use
database authentication, you must create each user with an associated password. User
names can be multibyte, but each password must be composed of single-byte
characters, even if your database uses a multibyte character set. The user must provide
this user name and password when attempting to establish a connection. Oracle
Database stores user passwords in the data dictionary in an encrypted format.

To identify the authentication protocols that are allowed by a client or a database, a
database administrator can explicitly set the SQLNET.ALLOWED_LOGON_VERSION
parameter in the server sqlnet.ora file. Each connection attempt is tested, and if the
client or server does not meet the minimum version specified by its partner,
authentication fails with an ORA-28040 No matching authentication
protocol error. The parameter can take the values 11, 10, 9, or 8. The default value is
8. These values represent database server versions. Oracle recommends the value 11
for the strongest protection. However, be aware that if you set SQLNET.ALLOWED_
LOGON_VERSION to 11, then pre-Oracle Database Release 11.1 client applications or
JDBC thin clients cannot authenticate to the Oracle database using password-based
authentication.

To enhance security when using database authentication, Oracle recommends that you
use password management, including account locking, password aging and
expiration, password history, and password complexity verification. See "Using a
Password Management Policy" on page 3-3 for more information about password
management.

Advantages of Database Authentication
The advantages of database authentication are as follows:

■ User accounts and all authentication are controlled by the database. There is no
reliance on anything outside of the database.

■ Oracle Database provides strong password management features to enhance
security when using database authentication.

■ It is easier to administer when there are small user communities.

Creating a User Who Is Authenticated by the Database
The following SQL statement creates a user who is identified and authenticated by
Oracle Database. User sebastian must specify the assigned password whenever he
connects to Oracle Database.

CREATE USER sebastian IDENTIFIED BY password;

Using the Operating System to Authenticate Users

Configuring Authentication 3-25

Using the Operating System to Authenticate Users
Some operating systems permit Oracle Database to use information they maintain to
authenticate users. This has the following benefits:

■ Once authenticated by the operating system, users can connect to Oracle Database
more conveniently, without specifying a user name or password. For example, an
operating system-authenticated user can invoke SQL*Plus and omit the user name
and password prompts by entering the following command at the command line:

SQLPLUS /

Within SQL*Plus, you enter:

CONNECT /

■ With control over user authentication centralized in the operating system, Oracle
Database need not store or manage user passwords, although it still maintains
user names in the database.

■ Audit trails in the database and operating system can use the same user names.

■ You can authenticate both operating system and non-operating system users in the
same system. For example:

– Authenticate users by the operating system. You create the user account
using the IDENTIFIED EXTERNALLY clause of the CREATE USER statement,
and then you set the OS_AUTHENT_PREFIX initialization parameter to specify
a prefix that Oracle Database uses to authenticate users attempting to connect
to the server.

– Authenticate non-operating system users. These are users who are assigned
passwords and authenticated by the database.

– Authenticate Oracle Database Enterprise User Security users. These user
accounts where created using the IDENTIFIED GLOBALLY clause of the
CREATE USER statement, and then authenticated by Oracle Internet Directory
(OID) currently in the same database.

However, you should be aware of the following drawbacks to using the operating
system to authenticate users:

■ A user must have an operating system account on the computer that must be
accessed. Not all users have operating system accounts, particularly
non-administrative users.

■ If a user has logged in using this method and steps away from the terminal,
another user could easily log in because this user does not need any passwords or
credentials. This could pose a serious security problem.

■ When an operating system is used to authenticate database users, managing
distributed database environments and database links requires special care.
Operating system-authenticated database links can pose a security weakness. For
this reason, Oracle recommends that you do not use them.

Using the Network to Authenticate Users

3-26 Oracle Database Security Guide

Using the Network to Authenticate Users
You can authenticate users over a network by using Secure Sockets Layer with
third-party services.

■ Authentication Using Secure Sockets Layer

■ Authentication Using Third-Party Services

Authentication Using Secure Sockets Layer
The Secure Sockets Layer (SSL) protocol is an application layer protocol. You can use it
for user authentication to a database, and it is independent of global user management
in Oracle Internet Directory. That is, users can use SSL to authenticate to the database
without a directory server in place.

See Oracle Database Advanced Security Administrator's Guide for instructions about
configuring SSL.

Authentication Using Third-Party Services
You need to use third-party network authentication services if you want to
authenticate Oracle Database users over a network. Prominent examples include
Kerberos, PKI (public key infrastructure), the RADIUS (Remote Authentication Dial-In
User Service), and directory-based services, as described in the following sections.

If network authentication services are available to you, then Oracle Database can
accept authentication from the network service. If you use a network authentication
service, then some special considerations arise for network roles and database links.

Authenticating Using Kerberos
Kerberos is a trusted third-party authentication system that relies on shared secrets. It
presumes that the third party is secure, and provides single sign-on capabilities,
centralized password storage, database link authentication, and enhanced PC security.
It does this through a Kerberos authentication server, or through Cybersafe Active
Trust, a commercial Kerberos-based authentication server.

See Also:

■ Oracle Database Administrator's Guide for more information
about authentication, operating systems, distributed database
concepts, and distributed data management

■ Operating system-specific documentation by Oracle Database
for more information about authenticating by using your
operating system

Note: To use a network authentication service with Oracle Database,
you need Oracle Database Enterprise Edition with the Oracle
Database Advanced Security option.

See Also: Oracle Database Advanced Security Administrator's Guide
for information about Oracle Enterprise Edition with the Oracle
Database Advanced Security option

Using the Network to Authenticate Users

Configuring Authentication 3-27

Authenticating Using RADIUS
Oracle Database supports remote authentication of users through the Remote
Authentication Dial-In User Service (RADIUS), a standard lightweight protocol used
for user authentication, authorization, and accounting. This feature also enables users
to use the RSA One-Time Password Specifications (OTPS) to authenticate to the Oracle
database.

Authenticating Using Directory-Based Services
Using a central directory can make authentication and its administration efficient.
Directory-based services include the following:

■ Oracle Internet Directory, which uses the Lightweight Directory Access Protocol
(LDAP), uses a central repository to store and manage information about users
(called enterprise users) whose accounts were created in a distributed
environment. Although database users must be created (with passwords) in each
database that they need to access, enterprise user information is accessible
centrally in the Oracle Internet Directory. You can also integrate this directory with
Microsoft Active Directory and SunOne.

For more information about Oracle Internet Directory, see Oracle Internet Directory
Administrator's Guide.

■ Oracle Enterprise Security Manager lets you store and retrieve roles from Oracle
Internet Directory, which provides centralized privilege management to make
administration easier and increase security levels. For more information about
Oracle Enterprise Security Manager, see Oracle Enterprise Manager Advanced
Configuration.

Authenticating Using Public Key Infrastructure
Authentication systems based on public key infrastructure (PKI) issue digital
certificates to user clients, which use them to authenticate directly to servers in the
enterprise without directly involving an authentication server. Oracle Database
provides a PKI for using public keys and certificates, consisting of the following
components:

■ Authentication and secure session key management using SSL. See
"Authentication Using Secure Sockets Layer" on page 3-26 for more information.

■ Trusted certificates. These are used to identify third-party entities that are trusted
as signers of user certificates when an identity is being validated. When the user
certificate is being validated, the signer is checked by using trust points or a
trusted certificate chain of certificate authorities stored in the validating system. If
there are several levels of trusted certificates in this chain, then a trusted certificate
at a lower level is simply trusted without needing to have all its higher-level
certificates reverified. For more information about trusted certificates, see Oracle
Database Advanced Security Administrator's Guide.

See Also: Oracle Database Advanced Security Administrator's Guide
for more information about Kerberos

See Also:

■ Oracle Database Advanced Security Administrator's Guide for
information about configuring RADIUS

■ RSA documentation about OTPS

Configuring Global User Authentication and Authorization

3-28 Oracle Database Security Guide

■ OracleAS Certificate Authority. This is a component of the Oracle Identity
Management infrastructure, which provides an integrated solution for
provisioning X.509 version 3 certificates for individuals, applications, and servers
that require certificates for PKI-based operations such as authentication, SSL,
S/MIME, and so on. For more information about OracleAS Certificate Authority,
see Oracle Application Server Certificate Authority Administrator's Guide.

■ Oracle Wallet Manager. An Oracle wallet is a data structure that contains the
private key of a user, a user certificate, and the set of trust points of a user (trusted
certificate authorities). See Oracle Database Advanced Security Administrator's Guide
for information about managing Oracle wallets.

You can use Oracle Wallet Manager to manage Oracle wallets. This is a standalone
Java application used to manage and edit the security credentials in Oracle
wallets. It performs the following operations:

– Generates a public-private key pair and creates a certificate request for
submission to a certificate authority, and creates wallets

– Installs a certificate for the entity

– Manages X.509 version 3 certificates on Oracle Database clients and servers

– Configures trusted certificates for the entity

– Opens a wallet to enable access to PKI-based services

■ X.509 version 3 certificates obtained from (and signed by) a trusted entity, a
certificate authority. Because the certificate authority is trusted, these certificates
verify that the requesting entity’s information is correct and that the public key on
the certificate belongs to the identified entity. The certificate is loaded into an
Oracle wallet to enable future authentication.

Configuring Global User Authentication and Authorization
You can use Oracle Advanced Security to centralize the management of user-related
information, including authorizations, in an LDAP-based directory service. This
allows users and administrators to be identified in the database as global users,
meaning that they are authenticated by SSL and that the management of these users is
handled outside of the database by the centralized directory service. Global roles are
defined in a database and are known only to that database, but the directory service
handles authorizations for global roles.

This centralized management enables the creation of enterprise users and enterprise
roles. Enterprise users are defined and managed in the directory. They have unique
identities across the enterprise and can be assigned enterprise roles that determine
their access privileges across multiple databases. An enterprise role consists of one or
more global roles, and might be thought of as a container for global roles.

Note: You can also have users authenticated by SSL, whose
authorizations are not managed in a directory, that is, they have
local database roles only. See Oracle Database Advanced Security
Administrator's Guide for details.

See Also: "Strong Authentication and Centralized Management for
Database Administrators" on page 3-20 if you want to centralize the
management of SYSDBA or SYSOPER access

Configuring Global User Authentication and Authorization

Configuring Authentication 3-29

Creating a User Who Is Authorized by a Directory Service
You have the following options to specify users who are authorized by a directory
service:

■ Creating a Global User Who Has a Private Schema

■ Creating Multiple Enterprise Users Who Share Schemas

Creating a Global User Who Has a Private Schema
The following statement shows the creation of a global user with a private schema,
authenticated by SSL, and authorized by the enterprise directory service:

CREATE USER psmith IDENTIFIED GLOBALLY AS 'CN=psmith,OU=division1,O=oracle,C=US';

The string provided in the AS clause provides an identifier (distinguished name, or
DN) meaningful to the enterprise directory.

In this case, psmith is a global user. But, the disadvantage here is that user psmith
must then be created in every database that he must access, plus the directory.

Creating Multiple Enterprise Users Who Share Schemas
Multiple enterprise users can share a single schema in the database. These users are
authorized by the enterprise directory service but do not own individual private
schemas in the database. These users are not individually created in the database.
They connect to a shared schema in the database.

To create a schema-independent user:

1. Create a shared schema in the database using the following example:

CREATE USER appschema IDENTIFIED GLOBALLY AS '';

2. In the directory, create multiple enterprise users and a mapping object.

The mapping object tells the database how you want to map the DNs for the users
to the shared schema. You can either create a full DN mapping (one directory
entry for each unique DN), or you can map, for each user, multiple DN
components to one schema. For example:

OU=division,O=Oracle,C=US

Most users do not need their own schemas, and implementing schema-independent
users separates users from databases. You create multiple users who share the same
schema in a database, and as enterprise users, they can also access shared schemas in
other databases.

Advantages of Global Authentication and Global Authorization
Some advantages of global user authentication and authorization are as follows:

■ Provides strong authentication using SSL, Kerberos, or Windows native
authentication.

■ Enables centralized management of users and privileges across the enterprise.

See Also: Oracle Database Enterprise User Security Administrator's
Guide for an explanation of these mappings

Configuring an External Service to Authenticate Users and Passwords

3-30 Oracle Database Security Guide

■ Is easy to administer: You do not have to create a schema for every user in every
database in the enterprise.

■ Facilitates single sign-on: Users need to sign on once to only access multiple
databases and services. Further, users using passwords can have a single
password to access multiple databases accepting password-authenticated
enterprise users.

■ Because global user authentication and authorization provide password-based
access, you can migrate previously defined password-authenticated database
users to the directory (using the User Migration Utility) to be centrally
administered. This makes global authentication and authorization available for
earlier Oracle Database release clients that are still supported.

■ CURRENT_USER database links connect as a global user. A local user can connect
as a global user in the context of a stored procedure, that is, without storing the
global user password in a link definition.

Configuring an External Service to Authenticate Users and Passwords
This section contains:

■ About External Authentication

■ Advantages of External Authentication

■ Creating a User Who Is Authenticated Externally

■ Authenticating User Logins Using the Operating System

■ Authentication User Logins Using Network Authentication

About External Authentication
When you use external authentication for user accounts, Oracle Database maintains
the user account, but an external service performs the password administration and
user authentication. This external service can be the operating system or a network
service, such as Oracle Net.

With external authentication, your database relies on the underlying operating system
or network authentication service to restrict access to database accounts. A database
password is not used for this type of login. If your operating system or network
service permits, then it can authenticate users before they can log in to the database. To
enable this feature, set the initialization parameter OS_AUTHENT_PREFIX, and use this
prefix in Oracle Database user names. The OS_AUTHENT_PREFIX parameter defines a
prefix that Oracle Database adds to the beginning of the operating system account
name of every user. Oracle Database compares the prefixed user name with the Oracle
Database user names in the database when a user attempts to connect.

You should set OS_AUTHENT_PREFIX to a null string (an empty set of double
quotation marks: ""). Using a null string eliminates the addition of any prefix to
operating system account names, so that Oracle Database user names exactly match
operating system user names.

See Also: The following manuals for additional information
about global authentication and authorization and enterprise users
and roles:

■ Oracle Database Advanced Security Administrator's Guide

■ Oracle Database Enterprise User Security Administrator's Guide

Configuring an External Service to Authenticate Users and Passwords

Configuring Authentication 3-31

OS_AUTHENT_PREFIX=" "

After you set OS_AUTHENT_PREFIX, it should remain the same for the life of a
database. If you change the prefix, then any database user name that includes the old
prefix cannot be used to establish a connection, unless you alter the user name to have
it use password authentication.

The default value of this parameter is OPS$ for backward compatibility with previous
versions of Oracle Database. For example, assume that you set OS_AUTHENT_PREFIX
as follows:

OS_AUTHENT_PREFIX=OPS$

If a user with an operating system account named tsmith is to connect to an Oracle
database installation and be authenticated by the operating system, then Oracle
Database checks that there is a corresponding database user OPS$tsmith and, if so,
lets the user connect. All references to a user authenticated by the operating system
must include the prefix, OPS$, as seen in OPS$tsmith.

Advantages of External Authentication
The advantages of external authentication are as follows:

■ More choices of authentication mechanisms are available, such as smart cards,
fingerprints, Kerberos, or the operating system.

■ Many network authentication services, such as Kerberos support single sign-on,
enabling users to have fewer passwords to remember.

■ If you are already using an external mechanism for authentication, such as one of
those listed earlier, then there may be less administrative overhead to use that
mechanism with the database.

Creating a User Who Is Authenticated Externally
The following statement creates a user who is identified by Oracle Database and
authenticated by the operating system or a network service. This example assumes
that the OS_AUTHENT_PREFIX parameter has been set to a blank space (" ").

CREATE USER psmith IDENTIFIED EXTERNALLY;

Using the CREATE USER ... IDENTIFIED EXTERNALLY statement, you create
database accounts that must be authenticated by the operating system or network
service. Oracle Database then relies on this external login authentication when it
provides that specific operating system user with access to the database resources of a
specific user.

Note: The text of the OS_AUTHENT_PREFIX initialization
parameter is case-sensitive on some operating systems. See your
operating system-specific Oracle Database documentation for more
information about this initialization parameter.

See Also: Oracle Database Advanced Security Administrator's Guide
for more information about external authentication

Using Multitier Authentication and Authorization

3-32 Oracle Database Security Guide

Authenticating User Logins Using the Operating System
By default, Oracle Database allows operating system-authenticated logins only over
secure connections, which precludes using Oracle Net and a shared server
configuration. This restriction prevents a remote user from impersonating another
operating system user over a network connection.

Setting the REMOTE_OS_AUTHENT parameter to TRUE in the database initialization
parameter file forces the database to accept the client operating system user name
received over an unsecure connection and use it for account access. Because clients, in
general, such as PCs, are not trusted to perform operating system authentication
properly, it is very poor security practice to turn on this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure
configuration that enforces proper, server-based authentication of clients connecting to
an Oracle database.

Be aware that the REMOTE_OS_AUTHENT parameter was deprecated in Oracle
Database 11g Release 1 (11.1), and is retained only for backward compatibility.

Any change to this parameter takes effect the next time you start the instance and
mount the database. Generally, user authentication through the host operating system
offers faster and more convenient connection to Oracle Database without specifying a
separate database user name or password. Also, user entries correspond in the
database and operating system audit trails.

Authentication User Logins Using Network Authentication
Oracle Advanced Security performs network authentication, which you can configure
to use a third-party service such as Kerberos. If you are using Oracle Advanced
Security as your only external authentication service, then the REMOTE_OS_AUTHENT
parameter setting is irrelevant, because Oracle Advanced Security allows only secure
connections.

Using Multitier Authentication and Authorization
In a multitier environment, Oracle Database controls the security of middle-tier
applications by limiting their privileges, preserving client identities through all tiers,
and auditing actions taken on behalf of clients. In applications that use a very busy
middle tier, such as a transaction processing monitor, the identity of the clients
connecting to the middle tier must be preserved. One advantage of using a middle tier
is connection pooling, which allows multiple users to access a data server without
each of them needing a separate connection. In such environments, you need to be
able to set up and break down connections very quickly.

For these environments, you can use the Oracle Call Interface to create lightweight
sessions, which enable database password authentication for each user. This method
preserves the identity of the real user through the middle tier without the overhead of
a separate database connection for each user.

You can create lightweight sessions with or without passwords. However, if a middle
tier is outside of or on a firewall, then security is better when each lightweight session
has its own password. For an internal application server, lightweight sessions without
passwords might be appropriate.

Using Multitier Authentication and Authorization

Configuring Authentication 3-33

Administration and Security in Clients, Application Servers, and Database Servers
In a multitier environment, an application server provides data for clients and serves
as an interface from them to one or more database servers. The application server can
validate the credentials of a client, such as a Web browser, and the database server can
audit operations performed by the application server. These auditable operations
include actions performed by the application server on behalf of clients, such as
requests that information be displayed on the client. A request to connect to the
database server is an example of an application server operation not related to a
specific client.

Authentication in a multitier environment is based on trust regions. Client
authentication is the domain of the application server. The application server itself is
authenticated by the database server. The following operations are performed:

■ The end user provides proof of authenticity to the application server, typically, by
using a password or an X.509 certificate.

■ The application server authenticates the end user and then authenticates itself to
the database server.

■ The database server authenticates the application server, verifies that the end user
exists, and verifies that the application server has the privilege to connect for the
end user.

Application servers can also enable roles for an end user on whose behalf they
connect. The application server can obtain these roles from a directory, which serves as
an authorization repository. The application server can only request that these roles be
enabled. The database verifies the following requirements:

■ That the client has these roles by checking its internal role repository

■ That the application server has the privilege to connect on behalf of the user and
thus to use these roles as the user could

Figure 3–2 shows an example of multitier authentication.

Figure 3–2 Multitier Authentication

Preserving User Identity in Multitiered Environments

3-34 Oracle Database Security Guide

The following actions take place:

1. The user logs on using a password or Secure Sockets Layer. The authentication
information is passed through Oracle Application Server.

2. Oracle Internet Directory authenticates the user, gets the roles associated with that
user from the wallet, and then passes this information back to Oracle Application
Server.

3. Oracle Application Server checks the identity of the user in Oracle Database,
which contains a wallet that stores this information, and then sets the role for that
user.

Security for middle-tier applications must address the following key issues:

■ Accountability. The database server must be able to distinguish between the
actions of the application and the actions an application takes on behalf of a client.
It must be possible to audit both kinds of actions.

■ Least privilege. Users and middle tiers should be given the fewest privileges
necessary to perform their actions, to reduce the danger of inadvertent or
malicious unauthorized activities.

Preserving User Identity in Multitiered Environments
Many organizations want to know who the user is through all tiers of an application
without sacrificing the benefits of a middle tier. Oracle Database supports the
following ways to preserve user identity through the middle tier of an application:

■ Using a Middle Tier Server for Proxy Authentication

■ Using Client Identifiers to Identify Application Users Not Known to the Database

Using a Middle Tier Server for Proxy Authentication
Oracle Database provides proxy authentication in Oracle Call Interface (OCI),
JDBC/OCI, or JDBC Thin Driver for database users or enterprise users. Enterprise
users are those who are managed in Oracle Internet Directory and who access a shared
schema in the database.

The following sections explain how to use proxy authentication:

■ About Proxy Authentication

■ Advantages of Proxy Authentication

■ Altering a User Account to Connect Through a Proxy

■ Using Proxy Authentication with the Secure External Password Store

■ Passing Through the Identity of the Real User by Using Proxy Authentication

■ Limiting the Privilege of the Middle Tier

■ Authorizing a Middle Tier to Proxy and Authenticate a User

■ Authorizing a Middle Tier to Proxy a User Authenticated by Other Means

■ Reauthenticating the User Through the Middle Tier to the Database

■ Auditing Actions Taken on Behalf of the Real User

See Also: "Auditing SQL Statements and Privileges in a Multitier
Environment" on page 9-27

Preserving User Identity in Multitiered Environments

Configuring Authentication 3-35

About Proxy Authentication
You can design a middle-tier server to authenticate clients in a secure fashion by using
the following three forms of proxy authentication:

■ The middle-tier server authenticates itself with the database server and a client, in
this case an application user or another application, authenticates itself with the
middle-tier server. Client identities can be maintained all the way through to the
database.

■ The client, in this case a database user, is not authenticated by the middle-tier
server. The clients identity and database password are passed through the
middle-tier server to the database server for authentication.

■ The client, in this case a global user, is authenticated by the middle-tier server, and
passes one of the following through the middle tier for retrieving the client's user
name.

– Distinguished name (DN)

– Certificate

In all cases, an administrator must authorize the middle-tier server to act on behalf of
the client.

Advantages of Proxy Authentication
In multitier environments, proxy authentication controls the security of middle-tier
applications by preserving client identities and privileges through all tiers and by
auditing actions taken on behalf of clients. For example, this feature allows the identity
of a user using a Web application (which acts as a proxy) to be passed through the
application to the database server.

Three-tier systems provide the following benefits to organizations:

■ Organizations can separate application logic from data storage, partitioning the
former in application servers and the latter in databases.

■ Application servers and Web servers enable users to access data stored in
databases.

■ Users like using a familiar, easy-to-use browser interface.

■ Organizations can also lower their cost of computing by replacing many thick
clients with numerous thin clients and an application server.

In addition, Oracle Database proxy authentication provides the following security
benefits:

■ A limited trust model, by controlling the users on whose behalf middle tiers can
connect and the roles that the middle tiers can assume for the user

■ Scalability, by supporting user sessions through OCI, JDBC/OCI, or JDBC Thin
driver and eliminating the overhead of reauthenticating clients

Note: The use of certificates for proxy authentication may not be
supported in future Oracle Database releases.

See Also: Oracle Call Interface Programmer's Guide and Oracle
Database Advanced Application Developer's Guide or details about
designing a middle-tier server to proxy users

Preserving User Identity in Multitiered Environments

3-36 Oracle Database Security Guide

■ Accountability, by preserving the identity of the real user through to the database,
and enabling auditing of actions taken on behalf of the real user

■ Flexibility, by supporting environments in which users are known to the database,
and in which users are merely application users of which the database has no
awareness

Altering a User Account to Connect Through a Proxy
To authorize a user account to connect using a proxy account, use the GRANT
CONNECT THROUGH clause of the ALTER USER statement.

Example 3–6 shows how to alter user preston to connect through the proxy user
appuser.

Example 3–6 Altering a User Account to Connect Through a Proxy User Account

ALTER USER preston GRANT CONNECT THROUGH appuser;

Afterward, user preston can connect using the appuser proxy user as follows:

CONNECT appuser[preston]
Enter password: appuser_password

Note the following:

■ Using roles with middle-tier clients. You can also specify roles that the middle
tier is permitted to activate when connecting as the client. Operations performed
on behalf of a client by a middle-tier server can be audited.

■ Finding proxy users. To find the users who are currently authorized to connect
through a middle tier, query the PROXY_USERS data dictionary view, for example:

SELECT * FROM PROXY_USERS;

■ Removing proxy connections. Use the REVOKE CONNECT THROUGH clause of
ALTER USER to disallow a proxy connection. For example, to revoke user
preston from connecting through the proxy user appuser, enter the following
statement:

ALTER USER preston REVOKE CONNECT THROUGH appuser

■ Password expiration and proxy connections. Middle-tier use of password
expiration does not apply to accounts that are authenticated through a proxy.
Instead, lock the account rather than expire the password.

Note: Oracle Database supports this proxy authentication
functionality in three tiers only. It does not support it across
multiple middle tiers.

See Also:

■ Oracle Database SQL Language Reference for a description and
syntax of the proxy clause for ALTER USER

■ "Auditing SQL Statements and Privileges in a Multitier
Environment" on page 9-27 for details about auditing
operations done on behalf of a user by a middle tier

Preserving User Identity in Multitiered Environments

Configuring Authentication 3-37

Using Proxy Authentication with the Secure External Password Store
If you are concerned about the password used in proxy authentication being obtained
by a malicious user, then you can use the secure external password store with the
proxy authentication to store the password credentials in a wallet. Connecting to
Oracle Database using proxy authentication and the secure external password store is
ideal for situations such as running batch files. When a proxy user connects to the
database and authenticates using a secure external password, the password is not
exposed in the event that a malicious user tries to obtain the password.

To use proxy authentication with the secure external password store:

1. Configure the proxy authentication account, similar to Example 3–6 on page 3-36.

2. Configure the secure external password store. See "Configuring Clients to Use the
External Password Store" on page 3-16 for more information.

Afterward, the user can connect using the proxy but without having to specify a
password. For example:

sqlplus /[preston]@db_alias

When you use the secure external password store, the user logging in does not need to
supply the user name and password. Only the SERVICE_NAME value (that is, db_
alias) from the tnsnames.ora file must be specified.

Passing Through the Identity of the Real User by Using Proxy Authentication
For enterprise users or database users, Oracle Call Interface, JDBC/OCI, or Thin driver
enables a middle tier to set up several user sessions within a single database
connection, each of which uniquely identifies a connected user (connection pooling).
These sessions reduce the network overhead of creating separate network connections
from the middle tier to the database.

If you want to authenticate from clients through a middle tier to the database, the full
authentication sequence from the client to the middle tier to the database occurs as
follows:

1. The client authenticates to the middle tier, using whatever form of authentication
the middle tier will accept. For example, the client could authenticate to the
middle tier by using a user name and password or an X.509 certificate by means of
SSL.

2. The middle tier authenticates itself to the database by using whatever form of
authentication the database accepts. This could be a password or an authentication
mechanism supported by Oracle Advanced Security, such as a Kerberos ticket or
an X.509 certificate (SSL).

3. The middle tier then creates one or more sessions for users using OCI, JDBC/OCI,
or Thin driver.

■ If the user is a database user, then the session must, as a minimum, include the
database user name. If the database requires it, then the session can include a
password (which the database verifies against the password store in the
database). The session can also include a list of database roles for the user.

■ If the user is an enterprise user, then the session may provide different
information depending on how the user is authenticated.

Example 1: If the user authenticates to the middle tier using SSL, then the
middle tier can provide the DN from the X.509 certificate of the user, or the
certificate itself in the session. The database uses the DN to look up the user in
Oracle Internet Directory.

Preserving User Identity in Multitiered Environments

3-38 Oracle Database Security Guide

Example 2: If the user is a password-authenticated enterprise user, then the
middle tier must provide, as a minimum, a globally unique name for the user.
The database uses this name to look up the user in Oracle Internet Directory. If
the session also provides a password for the user, then the database will verify
the password against Oracle Internet Directory. User roles are automatically
retrieved from Oracle Internet Directory after the session is established.

■ The middle tier may optionally provide a list of database roles for the client.
These roles are enabled if the proxy is authorized to use the roles on behalf of
the client.

4. The database verifies that the middle tier has the privilege to create sessions on
behalf of the user.

The OCISessionBegin call fails if the application server cannot perform a proxy
authentication on behalf of the client by the administrator, or if the application
server is not allowed to activate the specified roles.

Limiting the Privilege of the Middle Tier
Least privilege is the principle that users should have the fewest privileges necessary
to perform their duties and no more. As applied to middle tier applications, this means
that the middle tier should not have more privileges than it needs. Oracle Database
enables you to limit the middle tier such that it can connect only on behalf of certain
database users, using only specific database roles. You can limit the privilege of the
middle tier to connect on behalf of an enterprise user, stored in an LDAP directory, by
granting to the middle tier the privilege to connect as the mapped database user. For
instance, if the enterprise user is mapped to the APPUSER schema, then you must at
least grant to the middle tier the ability to connect on behalf of APPUSER. Otherwise,
attempts to create a session for the enterprise user will fail.

However, you cannot limit the ability of the middle tier to connect on behalf of
enterprise users. For example, suppose that user Sarah wants to connect to the
database through a middle tier, appsrv (which is also a database user). Sarah has
multiple roles, but it is desirable to restrict the middle tier to use only the clerk role
on her behalf.

An administrator could effectively grant permission for appsrv to initiate connections
on behalf of Sarah using her clerk role only, using the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv WITH ROLE clerk;

By default, the middle tier cannot create connections for any client. The permission
must be granted for each user.

To allow appsrv to use all of the roles granted to the client Sarah, the following
statement would be used:

ALTER USER sarah GRANT CONNECT THROUGH appsrv;

Each time a middle tier initiates an OCI, JDBC/OCI, or Thin driver session for another
database user, the database verifies that the middle tier is authorized to connect for
that user by using the role specified.

Preserving User Identity in Multitiered Environments

Configuring Authentication 3-39

Authorizing a Middle Tier to Proxy and Authenticate a User
The following statement authorizes the middle-tier server appserve to connect as
user bill. It uses the WITH ROLE clause to specify that appserve activate all roles
associated with bill, except payroll.

ALTER USER bill
 GRANT CONNECT THROUGH appserve
 WITH ROLE ALL EXCEPT payroll;

To revoke the middle-tier server (appserve) authorization to connect as user bill,
the following statement is used:

ALTER USER bill REVOKE CONNECT THROUGH appserve;

Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
Use the AUTHENTICATED REQURED clause of the ALTER USER ... GRANT
CONNECT THROUGH statement to authorize a user to be proxied, but not authenticated,
by a middle tier. Currently, PASSWORD is the only means supported.

The following statement illustrates this form of authentication:

ALTER USER mary
 GRANT CONNECT THROUGH midtier
 AUTHENTICATED REQUIRED;

In the preceding statement, middle-tier server midtier is authorized to connect as
user mary, and midtier must also pass the user password to the database server for
authorization.

Reauthenticating the User Through the Middle Tier to the Database
Administrators can specify that authentication is required by using the
AUTHENTICATION REQUIRED proxy clause with the ALTER USER SQL statement. In
this case, the middle tier must provide user authentication credentials.

For example, suppose that user Sarah wants to connect to the database through a
middle tier, appsrv. An administrator could require that appsrv provides
authentication credentials for Sarah by using the following syntax:

ALTER USER sarah GRANT CONNECT THROUGH appsrv AUTHENTICATION REQUIRED;

Note: Instead of using default roles, create your own roles and
assign only necessary privileges to them. Creating your own roles
enables you to control the privileges granted by them and protects
you if Oracle Database changes or removes default roles. For
example, the CONNECT role now has only the CREATE SESSION
privilege, the one most directly needed when connecting to a
database.

However, CONNECT formerly provided several additional
privileges, often not needed or appropriate for most users. Extra
privileges can endanger the security of your database and
applications. These have now been removed from CONNECT, and
both CONNECT and RESOURCE roles will be deprecated in future
releases of Oracle Database.

See Chapter 4, "Configuring Privilege and Role Authorization," for
more information about roles.

Preserving User Identity in Multitiered Environments

3-40 Oracle Database Security Guide

The AUTHENTICATION REQUIRED clause ensures that authentication credentials for
the user must be presented when the user is authenticated through the specified proxy.

Using Password-Based Proxy Authentication When you use password-based proxy
authentication, Oracle Database passes the password of the client to the middle-tier
server. The middle-tier server then passes the password as an attribute to the data
server for verification. The main advantage to this is that the client computer does not
have to have Oracle software installed on it to perform database operations.

To pass the password of the client, the middle-tier server calls the OCIAttrSet()
function as follows, passing OCI_ATTR_PASSWORD as the type of the attribute being
set.

OCIAttrSet(
 session_handle, /* Pointer to a handle whose attribute gets modified. */
 OCI_HTYPE_SESSION, /* Handle type: OCI user session handle. */
 password_ptr, /* Pointer to the value of the password attribute. */
 0, /* The size of the password attribute value is already
 known by the OCI library. */
 OCI_ATTR_PASSWORD, /* The attribute type. */
 error_handle); /* An error handle used to retrieve diagnostic
 information in the event of an error. */

Using Proxy Authentication with Enterprise Users If the middle tier connects to the database
as a client who is an enterprise user, then either the distinguished name, or the X.509
certificate containing the distinguished name is passed over instead of the database
user name. If the user is a password-authenticated enterprise user, then the middle tier
must provide, as a minimum, a globally unique name for the user. The database uses
this name to look up the user in Oracle Internet Directory.

To pass over the distinguished name of the client, the application server would call the
Oracle Call Interface method OCIAttrSet() with OCI_ATTR_DISTINGUISHED_
NAME as the attribute type, as follows:

OCIAttrSet(session_handle,
 OCI_HTYPE_SESSION,
 distinguished_name,
 0,
 OCI_ATTR_DISTINGUISHED_NAME,
 error_handle);

To pass over the entire certificate, the middle tier would call OCIAttrSet() with
OCI_ATTR_CERTIFICATE as the attribute type, as follows.

OCIAttrSet(session_handle,
 OCI_HTYPE_SESSION,
 certificate,
 certificate_length,
 OCI_ATTR_CERTIFICATE,
 error_handle);

If the type is not specified, then the database uses its default certificate type of X.509.

Note: For backward compatibility, if you use the
AUTHENTICATED USING PASSWORD proxy clause, then Oracle
Database transforms it to AUTHENTICATION REQUIRED.

Preserving User Identity in Multitiered Environments

Configuring Authentication 3-41

If you are using proxy authentication for password-authenticated enterprise users,
then use the same OCI attributes as for database users authenticated by password
(OCI_ATTR_USERNAME). Oracle Database first checks the user name against the
database. If it finds no user, then the database checks the user name in the directory.
This user name must be globally unique.

Auditing Actions Taken on Behalf of the Real User
The proxy authentication features of Oracle Database enable you to audit actions that a
middle tier performs on behalf of a user. For example, suppose an application server
hrappserver creates multiple sessions for users Ajit and Jane. A database
administrator could enable auditing for SELECT statements performed on the bonus
table that hrappserver initiates for jane as follows:

AUDIT SELECT TABLE BY hrappserver ON BEHALF OF jane;

Alternatively, you could enable auditing on behalf of multiple users (in this case, both
Jane and Ajit) connecting through a middle tier as follows:

AUDIT SELECT TABLE BY hrappserver ON BEHALF OF ANY;

This auditing option only audits SELECT statements being initiated by hrappserver
on behalf of other users. You can enable separate auditing options to capture SELECT
statements against the bonus table from clients connecting directly to the database:

AUDIT SELECT TABLE;

For audit actions taken on behalf of the real user, you cannot audit CONNECT ON
BEHALF OF DN, because the user in the LDAP directory is not known to the
database. However, if the user accesses a shared schema (for example, APPUSER), then
you can audit CONNECT ON BEHALF OF APPUSER.

Using Client Identifiers to Identify Application Users Not Known to the Database
Oracle Database provides the CLIENT_IDENTIFIER attribute of the built-in USERENV
application context namespace for application users. These users are known to an
application but unknown to the database. The CLIENT_IDENTIFIER attribute can
capture any value that the application uses for identification or access control, and
passes it to the database. The CLIENT_IDENTIFIER attribute is supported in OCI,
JDBC/OCI, or Thin driver.

The following sections explain how to use client identifiers:

■ How Client Identifiers Work in Middle Tier Systems

■ Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity

■ Using CLIENT_IDENTIFIER Independent of Global Application Context

■ Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier

Note:

■ OCI_ATTR_CERTIFICATE is Distinguished Encoding Rules
(DER) encoded.

■ Certificate based proxy authentication using OCI_ATTR_
CERTIFICATE will not be supported in future Oracle Database
releases. Use the OCI_ATTR_DISTINGUISHED_NAME or OCI_
ATTR_USERNAME attribute instead

Preserving User Identity in Multitiered Environments

3-42 Oracle Database Security Guide

How Client Identifiers Work in Middle Tier Systems
Many applications use session pooling to set up several sessions to be reused by
multiple application users. Users authenticate themselves to a middle-tier application,
which uses a single identity to log in to the database and maintains all the user
connections. In this model, application users are users who are authenticated to the
middle tier of an application, but who are not known to the database. You can use a
CLIENT_IDENTIFIER attribute, which acts like an application user proxy for these
types of applications.

In this model, the middle tier passes a client identifier to the database upon the session
establishment. The client identifier could actually be anything that represents a client
connecting to the middle tier, for example, a cookie or an IP address. The client
identifier, representing the application user, is available in user session information
and can also be accessed with an application context (by using the USERENV naming
context). In this way, applications can set up and reuse sessions, while still being able
to keep track of the application user in the session. Applications can reset the client
identifier and thus reuse the session for a different user, enabling high performance.

Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity
You can use the CLIENT_IDENTIFIER predefined attribute of the built-in application
context namespace, USERENV, to capture the application user name for use with global
application context. You also can use the CLIENT_IDENTIFIER attribute
independently. When you use the CLIENT_IDENTIFIER attribute independently
from a global application context, you can set CLIENT_IDENTIFIER with the DBMS_
SESSION interface. The ability to pass a CLIENT_IDENTIFIER to the database is
supported in Oracle Call Interface (OCI), JDBC/OCI, or Thin driver.

When you use the CLIENT_IDENTIFIER attribute with global application context, it
provides flexibility and high performance for building applications. For example,
suppose a Web-based application that provides information to business partners has
three types of users: gold partner, silver partner, and bronze partner, representing
different levels of information available. Instead of each user having his or her own
session set up with individual application contexts, the application could set up global
application contexts for gold partners, silver partners, and bronze partners. Then, use
the CLIENT_IDENTIFIER to point the session at the correct context to retrieve the
appropriate type of data. The application need only initialize the three global contexts
once and use the CLIENT_IDENTIFIER to access the correct application context to
limit data access. This provides performance benefits through session reuse and
through accessing global application contexts set up once, instead of having to
initialize application contexts for each session individually.

Using CLIENT_IDENTIFIER Independent of Global Application Context
Using the CLIENT_IDENTIFIER attribute is especially useful for those applications in
which the users are unknown to the database. In these situations, the application
typically connects as a single database user and all actions are taken as that user.
Because all user sessions are created as the same user, this security model makes it
difficult to achieve data separation for each user. These applications can use the

See Also:

■ "Using Global Application Contexts" on page 6-22 for how to
implement global application contexts

■ "Tutorial: Creating a Global Application Context That Uses a
Client Session ID" on page 6-35

Preserving User Identity in Multitiered Environments

Configuring Authentication 3-43

CLIENT_IDENTIFIER attribute to preserve the real application user identity through
to the database.

With this approach, sessions can be reused by multiple users by changing the value of
the CLIENT_IDENTIFIER attribute, which captures the name of the real application
user. This avoids the overhead of setting up a separate session and separate attributes
for each user, and enables reuse of sessions by the application. When the CLIENT_
IDENTIFIER attribute value changes, the change is added to the next OCI,
JDBC/OCI, or Thin driver call for additional performance benefits.

For example, the user Daniel connects to a Web Expense application. Daniel is not a
database user; he is a typical Web Expense application user. The application accesses
the built-in application context namespace and sets DANIEL as the CLIENT_
IDENTIFIER attribute value. Daniel completes his Web Expense form and exits the
application. Then, Ajit connects to the Web Expense application. Instead of setting up a
new session for Ajit, the application reuses the session that currently exists for Daniel,
by changing the CLIENT_IDENTIFIER to AJIT. This avoids the overhead of setting
up a new connection to the database and the overhead of setting up a global
application context. The CLIENT_IDENTIFIER attribute can be set to any value on
which the application bases access control. It does not have to be the application user
name.

To set the CLIENT_IDENTIFIER attribute with OCI, use the OCI_ATTR_CLIENT_
IDENTIFIER attribute in the call to OCIAttrSet(). Then, on the next request to the
server, the information is propagated and stored in the server sessions. For example:

OCIAttrSet (session,
OCI_HTYPE_SESSION,
(dvoid *) "appuser1",
(ub4)strlen("appuser1"),
OCI_ATTR_CLIENT_IDENTIFIER,
*error_handle);

For applications that use JDBC, in a connection pooling environment, an application
developer can use the client identifier to identify which lightweight user is currently
using the database session. To set the client identifier for JDBC applications, use the
oracle.jdbc.OracleConnection interface.

Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier
To use the DBMS_SESSION package to set and clear the CLIENT_IDENTIFIER value
on the middle tier, use the following interfaces:

■ SET_IDENTIFIER

■ CLEAR_IDENTIFIER

The middle tier uses SET_IDENTIFIER to associate the database session with a
particular user or group. Then, the CLIENT_IDENTIFIER is an attribute of the session
and can be viewed in session information.

See Also:

■ Oracle Call Interface Programmer's Guide about how the OCI_
ATTR_CLIENT_IDENTIFIER user session handle attribute is
used in middle-tier applications

■ Oracle Database JDBC Developer's Guide and Reference for more
information about configuring client connections using JDBC

Finding Information About User Authentication

3-44 Oracle Database Security Guide

If you plan to use the DBMS_SESSION.SET_IDENTIFIER procedure, be aware that
the DBMS_APPLICATION_INFO.SET_CLIENT_INFO procedure can overwrite the
value of the client identifier. Typically, these values should be the same, so if SET_
CLIENT_INFO is set, its value can be automatically propagated to the value set by
SET_IDENTIFIER if the CLIENTID_OVERWRITE event is set to ON.

To check the status of the CLIENTID_OVERWRITE event, log in to SQL*Plus and then
enter the SHOW PARAMETER command. For example, assuming that CLIENTID_
OVERWRITE is enabled:

SHOW PARAMETER EVENT

NAME TYPE VALUE
------------------------------ ------------------ ------------------
event string clientid_overwrite

To enable the CLIENTID_OVERWRITE event system-wide, connect to SQL*Plus as SYS
using the SYSDBA privilege, and then enter the following ALTER SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID_OVERWRITE';

Or, enter the following line in your init.ora file:

event="clientid_overwrite"

Then restart the database. To disable the CLIENTID_OVERWRITE event, log in to
SQL*Plus as SYS with the SYSDBA privilege, and then run the following ALTER
SYSTEM statement:

ALTER SYSTEM SET EVENTS 'CLIENTID_OVERWRITE OFF';

If you prefer to change the CLIENTID_OVERWRITE value for the session only, then use
the ALTER SESSION statement.

Afterwards, if you set the client identifier using the DBMS_APPLICATION_
INFO.SET_CLIENT_INFO procedure, you must then run DBMS_SESSION.SET_
IDENTIFIER so that the client identifier settings are the same.

Finding Information About User Authentication
Table 3–3 lists data dictionary views that contain information about user
authentication. For detailed information about these views, see Oracle Database
Reference.

See Also:

■ "Using Global Application Contexts" on page 6-22 for information
about using client identifiers in a global application context

■ Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_SESSION package

Table 3–3 Data Dictionary Views That Describe User Authentication

View Description

DBA_PROFILES Displays information about profiles, including their settings and
limits.

DBA_ROLES Displays the kind of authentication used for a database role to
log in to the database, such as NONE or GLOBAL (query the
AUTHENTICATION_TYPE column)

Finding Information About User Authentication

Configuring Authentication 3-45

DBA_USERS Among other user information, displays the following:

■ The kind of authentication the user used to log in to the
database, such as PASSWORD or EXTERNAL
(AUTHENTICATION_TYPE column)

■ The release in which the user created his or her password
(PASSWORD_VERSIONS column)

DBA_USERS_WITH_DEFPWD Displays whether the user account password is a default
password

PROXY_USERS Displays users who are currently authorized to connect through
a middle tier

V$DBLINK Displays user accounts for existing database links (DB_LINK,
OWNER_ID columns)

Table 3–3 (Cont.) Data Dictionary Views That Describe User Authentication

View Description

Finding Information About User Authentication

3-46 Oracle Database Security Guide

4

Configuring Privilege and Role Authorization 4-1

4Configuring Privilege and Role Authorization

This chapter contains:

■ About Privileges and Roles

■ Who Should Be Granted Privileges?

■ Managing System Privileges

■ Managing User Roles

■ Managing Object Privileges

■ Granting a User Privileges and Roles

■ Revoking Privileges and Roles from a User

■ Granting to and Revoking from the PUBLIC User Group

■ Granting Roles Using the Operating System or Network

■ When Do Grants and Revokes Take Effect?

■ Managing Fine-Grained Access in PL/SQL Packages and Types

■ Finding Information About User Privileges and Roles

About Privileges and Roles
Authorization includes primarily two processes:

■ Permitting only certain users to access, process, or alter data.

■ Applying varying limitations on user access or actions. The limitations placed on
(or removed from) users can apply to objects such as schemas, tables, or rows or to
resources such as time (CPU, connect, or idle times).

A user privilege is the right to run a particular type of SQL statement, or the right to
access an object that belongs to another user, run a PL/SQL package, and so on. The
types of privileges are defined by Oracle Database.

Roles are created by users (usually administrators) to group together privileges or
other roles. They are a way to facilitate the granting of multiple privileges or roles to
users.

This section describes the following general categories:

■ System privileges. These privileges allow the grantee to perform standard
administrator tasks in the database. Restrict them only to trusted users. "Managing
System Privileges" on page 4-2 describes system privileges in detail.

Who Should Be Granted Privileges?

4-2 Oracle Database Security Guide

■ User roles. A role groups several privileges and roles, so that they can be granted
to and revoked from users simultaneously. You must enable the role for a user
before the user can use it. See "Managing User Roles" on page 4-5 for more
information.

■ Object privileges. Each type of object has privileges associated with it. "Managing
Object Privileges" on page 4-23 describes how to manage privileges for different
types of objects.

Who Should Be Granted Privileges?
You grant privileges to users so they can accomplish tasks required for their jobs. You
should grant a privilege only to a user who requires that privilege to accomplish the
necessary work. Excessive granting of unnecessary privileges can compromise
security. For example, you never should grant SYSDBA or SYSOPER privilege to users
who do not perform administrative tasks.

A user can receive a privilege in two ways:

■ You can grant privileges to users explicitly. For example, you can explicitly grant
to user psmith the privilege to insert records into the employees table.

■ You can grant privileges to a role (a named group of privileges), and then grant
the role to one or more users. For example, you can grant the privileges to select,
insert, update, and delete records from the employees table to the role named
clerk, which in turn you can grant to users psmith and robert.

Because roles allow for easier and better management of privileges, you should
usually grant privileges to roles and not to specific users.

Managing System Privileges
This section contains:

■ About System Privileges

■ Why Is It Important to Restrict System Privileges?

■ Granting and Revoking System Privileges

■ Who Can Grant or Revoke System Privileges?

■ About ANY and PUBLIC Privileges

About System Privileges
A system privilege is the right to perform a particular action or to perform an action
on any schema objects of a particular type. For example, the privileges to create
tablespaces and to delete the rows of any table in a database are system privileges.

There are over 100 distinct system privileges. Each system privilege allows a user to
perform a particular database operation or class of database operations. Remember that
system privileges are very powerful. Only grant them when necessary to roles and trusted

See Also:

■ "Guidelines for Securing User Accounts and Privileges" on
page 10-2 for best practices to follow when granting privileges

■ Oracle Database SQL Language Reference for the complete list of
system privileges and their descriptions

Managing System Privileges

Configuring Privilege and Role Authorization 4-3

users of the database. You can find a complete list of system privileges and their
descriptions in Oracle Database SQL Language Reference. To find the system privileges
that have been granted to a user, you can query the DBA_SYS_PRIVS data dictionary
view.

Why Is It Important to Restrict System Privileges?
Because system privileges are so powerful, by default the database is configured to
prevent typical (non-administrative) users from exercising the ANY system privileges
(such as UPDATE ANY TABLE) on the data dictionary. See "Guidelines for Securing
User Accounts and Privileges" on page 10-2 for additional guidelines about restricting
system privileges.

■ Restricting System Privileges by Securing the Data Dictionary

■ Allowing Access to Objects in the SYS Schema

Restricting System Privileges by Securing the Data Dictionary
To secure the data dictionary, set the O7_DICTIONARY_ACCESSIBILITY initialization
parameter to FALSE, which is the default value. This feature is called the dictionary
protection mechanism.

The O7_DICTIONARY_ACCESSIBILITY initialization parameter controls restrictions
on system privileges when you upgrade from Oracle Database release 7 to Oracle8i
and later releases. If the parameter is set to TRUE, then access to objects in the SYS
schema is allowed (Oracle Database release 7 behavior). Because the ANY privilege
applies to the data dictionary, a malicious user with ANY privilege could access or alter
data dictionary tables.

To set the O7_DICTIONARY_ACCESSIBILTY initialization parameter, modify it in the
initSID.ora file. Alternatively, you can log on to SQL*Plus as user SYS with the
SYSDBA privilege and then enter an ALTER SYSTEM statement, assuming you have
started the database using a server parameter file (SPFILE).

Example 4–1 shows how to set the O7_DICTIONARY_ACCESSIBILTY initialization
parameter to FALSE by issuing an ALTER SYSTEM statement in SQL*Plus.

Example 4–1 Setting O7_DICTIONARY_ACCESSIBILITY to FALSE

ALTER SYSTEM SET O7_DICTIONARY_ACCESSIBILITY=FALSE SCOPE=SPFILE;

When you set O7_DICTIONARY_ACCESSIBILITY to FALSE, system privileges that
enable access to objects in any schema (for example, users who have ANY privileges,
such as CREATE ANY PROCEDURE) do not allow access to objects in the SYS schema.
This means that access to the objects in the SYS schema (data dictionary objects) is
restricted to users who connect using the SYSDBA privilege. Remember that the SYS
user must log in with either the SYSDBA or SYSOPER privilege; otherwise, an
ORA-28009: connection as SYS should be as SYSDBA or SYSOPER error
is raised. If you set O7_DICTIONARY_ACCESSIBILITY to TRUE, then you would be
able to log in to the database as user SYS without having to specify the SYSDBA or
SYSOPER privilege.

System privileges that provide access to objects in other schemas do not give other
users access to objects in the SYS schema. For example, the SELECT ANY TABLE
privilege allows users to access views and tables in other schemas, but does not enable
them to select dictionary objects (base tables of dynamic performance views, regular
views, packages, and synonyms). You can, however, grant these users explicit object
privileges to access objects in the SYS schema.

Managing System Privileges

4-4 Oracle Database Security Guide

See Oracle Database Reference for more information about the O7_DICTIONARY_
ACCESSIBILITY initialization parameter.

Allowing Access to Objects in the SYS Schema
Users with explicit object privileges or those who connect with administrative
privileges (SYSDBA) can access objects in the SYS schema.

Table 4–1 lists roles that you can grant to users who need access to objects in the SYS
schema.

Additionally, you can grant the SELECT ANY DICTIONARY system privilege to users
who require access to tables created in the SYS schema. This system privilege allows
query access to any object in the SYS schema, including tables created in that schema.
It must be granted individually to each user requiring the privilege. It is not included
in GRANT ALL PRIVILEGES, but it can be granted through a role.

Granting and Revoking System Privileges
You can grant or revoke system privileges to users and roles. If you grant system
privileges to roles, then you can use the roles to exercise system privileges. For
example, roles permit privileges to be made selectively available. Ensure that you
follow the separation of duty guidelines described in "Guidelines for Securing Roles"
on page 10-6.

Use either of the following methods to grant or revoke system privileges to or from
users and roles:

■ GRANT and REVOKE SQL statements

■ Oracle Enterprise Manager Database Control

Table 4–1 Roles to Allow Access to SYS Schema Objects

Role Description

SELECT_CATALOG_ROLE Grant this role to allow users SELECT privileges on data
dictionary views.

EXECUTE_CATALOG_ROLE Grant this role to allow users EXECUTE privileges for packages
and procedures in the data dictionary.

DELETE_CATALOG_ROLE Grant this role to allow users to delete records from the system
audit tables SYS.AUD$ and SYS.FGA_LOG$.

Caution: You should grant these roles and the SELECT ANY
DICTIONARY system privilege with extreme care, because the
integrity of your system can be compromised by their misuse.

See Also:

■ "Granting a User Privileges and Roles" on page 4-36

■ "Revoking Privileges and Roles from a User" on page 4-40

■ "When Do Grants and Revokes Take Effect?" on page 4-47

■ "Finding Information About User Privileges and Roles" on
page 4-70

■ Oracle Database 2 Day DBA for more information about
Database Control

Managing User Roles

Configuring Privilege and Role Authorization 4-5

Who Can Grant or Revoke System Privileges?
Only two types of users can grant system privileges to other users or revoke those
privileges from them:

■ Users who were granted a specific system privilege with the ADMIN OPTION

■ Users with the system privilege GRANT ANY PRIVILEGE

For this reason, only grant these privileges to trusted users.

About ANY and PUBLIC Privileges
System privileges that use the ANY keyword enable you to set privileges for an entire
category of objects in the database. For example, the CREATE ANY PROCEDURE
system privilege allows a user to create a procedure anywhere in the database. The
behavior of an object created by users with the ANY privilege is not restricted to the
schema in which it was created. For example, if user MALCOEUR has the CREATE ANY
PROCEDURE privilege and creates a procedure in the schema JONES, then the
procedure will run as JONES. However, JONES may not be aware that the procedure
MALCOEUR created is running as him (JONES). If JONES has DBA privileges, letting
MALCOEUR run a procedure as JONES could pose a security violation.

You can grant privileges to the PUBLIC role, which then makes the privileges available
to every user in the Oracle database. Be careful about granting privileges to the
PUBLIC role, particularly powerful privileges such as the ANY privileges and system
privileges. For example, if MALCOEUR has the CREATE PUBLIC SYNONYM privilege,
he could redefine an interface that he knows everyone else uses, and then point to it
with the PUBLIC SYNONYM that he created. Instead of accessing the correct interface,
users would access the interface of MALCOEUR, which could possibly perform illegal
activities such as stealing the login credentials of users.

These types of privileges are very powerful and could pose a security risk if given to
the wrong person. Be careful about granting privileges using ANY or PUBLIC. As with
all privileges, you should follow the principles of "least privilege" when granting these
privileges to users.

To protect the data dictionary (the contents of the SYS schema) against users who have
one or more of the powerful ANY system privileges, set the O7_DICTIONARY_
ACCESSIBILITY initialization parameter to FALSE. You can set this parameter by
using an ALTER SYSTEM statement (see Example 4–1, "Setting O7_DICTIONARY_
ACCESSIBILITY to FALSE" on page 4-3) or by modifying the initSID.ora file. See
"Guidelines for Securing a Database Installation and Configuration" on page 10-12 for
additional guidelines.

Managing User Roles
This section contains:

■ About User Roles

■ Predefined Roles in an Oracle Database Installation

■ Creating a Role

■ Specifying the Type of Role Authorization

■ Dropping Roles

■ Restricting SQL*Plus Users from Using Database Roles

■ Securing Role Privileges by Using Secure Application Roles

Managing User Roles

4-6 Oracle Database Security Guide

About User Roles
Managing and controlling privileges is easier when you use roles, which are named
groups of related privileges that you grant as a group to users or other roles. Within a
database, each role name must be unique, different from all user names and all other
role names. Unlike schema objects, roles are not contained in any schema. Therefore, a
user who creates a role can be dropped with no effect on the role.

This section contains:

■ The Functionality of Roles

■ Properties of Roles and Why They Are Advantageous

■ Common Uses of Roles

■ How Roles Affect the Scope of a User’s Privileges

■ How Roles Work in PL/SQL Blocks

■ How Roles Aid or Restrict DDL Usage

■ How Operating Systems Can Aid Roles

■ How Roles Work in a Distributed Environment

The Functionality of Roles
Roles are useful for quickly and easily granting permissions to users. Although you
can use Oracle Database-defined roles, you have more control and continuity if you
create your own roles that contain only the privileges pertaining to your requirements.
Oracle may change or remove the privileges in an Oracle Database-defined role, as it
has with the CONNECT role, which now has only the CREATE SESSION privilege.
Formerly, this role had eight other privileges.

Roles have the following functionality:

■ A role can be granted system or object privileges.

■ Any role can be granted to any database user.

■ Each role granted to a user is, at a given time, either enabled or disabled. A user’s
security domain includes the privileges of all roles currently enabled for the user
and excludes the privileges of any roles currently disabled for the user. Oracle
Database allows database applications and users to enable and disable roles to
provide selective availability of privileges.

■ A role can be granted to other roles. However, a role cannot be granted to itself
and cannot be granted circularly. For example, role role1 cannot be granted to
role role2 if role role2 has previously been granted to role role1.

■ If a role is not password authenticated or a secure application role, then you can
grant the role indirectly to the user. An indirectly granted role is a role granted to
the user through another role that has already been granted to this user. For
example, suppose you grant user psmith the role1 role. Then you grant the
role2 and role3 roles to the role1 role. Roles role2 and role3 are now under
role1. This means psmith has been indirectly granted the roles role2 and
role3, in addition to the direct grant of role1. Enabling the direct role1 for
psmith enables the indirect roles role2 and role3 for this user as well.

■ Optionally, you can make a directly granted role a default role. You enable or
disable the default role status of a directly granted role by using the DEFAULT
ROLE clause of the ALTER USER statement. Ensure that the DEFAULT ROLE clause
refers only to roles that have been directly granted to the user. To find the directly

Managing User Roles

Configuring Privilege and Role Authorization 4-7

granted roles for a user, query the DBA_ROLE_PRIVS data dictionary view. This
view does not include the user’s indirectly granted roles. To find roles that are
granted to other roles, query the ROLE_ROLE_PRIVS view.

■ If the role is password authenticated or a secure application role, then you cannot
grant it indirectly to the user, nor can you make it a default role. You only can
grant this type of role directly to the user. Typically, you enable password
authenticated or secure application roles by using the SET ROLE statement.

Properties of Roles and Why They Are Advantageous
Table 4–2 describes the properties of roles that enable easier privilege management
within a database.

Database administrators often create roles for a database application. You should grant
a secure application role all privileges necessary to run the application. You then can
grant the secure application role to other roles or users. An application can have
several different roles, each granted a different set of privileges that allow for more or
less data access while using the application.

The DBA can create a role with a password to prevent unauthorized use of the
privileges granted to the role. Typically, an application is designed so that when it
starts, it enables the proper role. As a result, an application user does not need to know
the password for an application role.

Common Uses of Roles
In general, you create a role to serve one of two purposes:

■ To manage the privileges for a database application (see "Common Uses of
Application Roles" on page 4-8)

Table 4–2 Properties of Roles and Their Description

Property Description

Reduced privilege
administration

Rather than granting the same set of privileges explicitly to
several users, you can grant the privileges for a group of related
users to a role, and then only the role must be granted to each
member of the group.

Dynamic privilege
management

If the privileges of a group must change, then only the privileges
of the role need to be modified. The security domains of all users
granted the group's role automatically reflect the changes made
to the role.

Selective availability of
privileges

You can selectively enable or disable the roles granted to a user.
This allows specific control of a user's privileges in any given
situation.

Application awareness The data dictionary records which roles exist, so you can design
applications to query the dictionary and automatically enable (or
disable) selective roles when a user attempts to execute the
application by way of a given user name.

Application-specific security You can protect role use with a password. Applications can be
created specifically to enable a role when supplied the correct
password. Users cannot enable the role if they do not know the
password.

See Also: "How Roles Aid or Restrict DDL Usage" on page 4-9 for
information about restrictions for procedures

Managing User Roles

4-8 Oracle Database Security Guide

■ To manage the privileges for a user group (see "Common Uses of User Roles" on
page 4-8)

Figure 4–1 and the sections that follow describe the two uses of roles.

Figure 4–1 Common Uses for Roles

Common Uses of Application Roles Grant an application role all privileges necessary to
run a given database application. Then, grant the secure application role to other roles
or to specific users. An application can have several different roles, with each role
assigned a different set of privileges that allow for more or less data access while using
the application.

Common Uses of User Roles Create a user role for a group of database users with
common privilege requirements. You can manage user privileges by granting secure
application roles and privileges to the user role and then granting the user role to
appropriate users.

How Roles Affect the Scope of a User’s Privileges
Each role and user has its own unique security domain. The security domain of a role
includes the privileges granted to the role plus those privileges granted to any roles
that are granted to the role.

The security domain of a user includes privileges on all schema objects in the
corresponding schema, the privileges granted to the user, and the privileges of roles
granted to the user that are currently enabled. (A role can be simultaneously enabled
for one user and disabled for another.) This domain also includes the privileges and
roles granted to the user group PUBLIC. The PUBLIC user group represents all users
in the database.

How Roles Work in PL/SQL Blocks
The use of roles in a PL/SQL block depends on whether it is an anonymous block or a
named block (stored procedure, function, or trigger), and whether it executes with
definer's rights or invoker's rights.

Roles Used in Named Blocks with Definer's Rights All roles are disabled in any named
PL/SQL block (stored procedure, function, or trigger) that executes with definer's

Managing User Roles

Configuring Privilege and Role Authorization 4-9

rights. Roles are not used for privilege checking and you cannot set roles within a
definer's rights procedure.

The SESSION_ROLES view shows all roles that are currently enabled. If a named
PL/SQL block that executes with definer's rights queries SESSION_ROLES, then the
query does not return any rows.

Roles Used in Named Blocks with Invoker's Rights and Anonymous PL/SQL Blocks Named
PL/SQL blocks that execute with invoker's rights and anonymous PL/SQL blocks are
executed based on privileges granted through enabled roles. Current roles are used for
privilege checking within an invoker’s rights PL/SQL block. You can use dynamic
SQL to set a role in the session.

How Roles Aid or Restrict DDL Usage
A user requires one or more privileges to successfully execute a DDL statement,
depending on the statement. For example, to create a table, the user must have the
CREATE TABLE or CREATE ANY TABLE system privilege. To create a view of a table
that belongs to another user, the creator requires the CREATE VIEW or CREATE ANY
VIEW system privilege and either the SELECT object privilege for the table or the
SELECT ANY TABLE system privilege.

Oracle Database avoids the dependencies on privileges received by way of roles by
restricting the use of specific privileges in certain DDL statements. The following rules
describe these privilege restrictions concerning DDL statements:

■ All system privileges and object privileges that permit a user to perform a DDL
operation are usable when received through a role. For example:

– System privileges: CREATE TABLE, CREATE VIEW, and CREATE PROCEDURE
privileges

– Object privileges: ALTER and INDEX privileges for a table

You cannot use the REFERENCES object privilege for a table to define the
foreign key of a table if the privilege is received through a role.

■ All system privileges and object privileges that allow a user to perform a DML
operation that is required to issue a DDL statement are not usable when received
through a role. The security domain does not contain roles when a CREATE VIEW
statement is used. For example, a user who is granted the SELECT ANY TABLE
system privilege or the SELECT object privilege for a table through a role cannot
use either of these privileges to create a view on a table that belongs to another
user. This is because views are definer’s rights objects, so when creating them you
cannot use any privileges (neither system privileges or object privileges) granted
to you through a role. If the privilege is granted directly to you, then you can use
the privilege. However, if the privilege is revoked at a later time, then the view
definition becomes invalid ("contains errors") and must recompiled before it can be
used again.

See Also: Oracle Database Reference

See Also:

■ Oracle Database PL/SQL Language Reference for an explanation of
how invoker's and definer's rights can be used for name
resolution and privilege checking

■ Oracle Database PL/SQL Language Reference for information
about dynamic SQL in PL/SQL

Managing User Roles

4-10 Oracle Database Security Guide

The following example further clarifies the permitted and restricted uses of privileges
received through roles.

Assume that a user is:

■ Granted a role that has the CREATE VIEW system privilege

■ Directly granted a role that has the SELECT object privilege for the employees
table

■ Directly granted the SELECT object privilege for the departments table

Given these directly and indirectly granted privileges:

■ The user can issue SELECT statements on both the employees and
departments tables.

■ Although the user has both the CREATE VIEW and SELECT privilege for the
employees table through a role, the user cannot create a view on the employees
table, because the SELECT object privilege for the employees table was granted
through a role.

■ The user can create a view on the departments table, because the user has the
CREATE VIEW privilege through a role and the SELECT privilege for the
departments table directly.

How Operating Systems Can Aid Roles
In some environments, you can administer database security using the operating
system. The operating system can be used to grant and revoke database roles and to
manage their password authentication. This capability is not available on all operating
systems.

How Roles Work in a Distributed Environment
When you use roles in a distributed database environment, ensure that all needed
roles are set as the default roles for a distributed (remote) session. These roles cannot
be enabled when the user connects to a remote database from within a local database
session. For example, the user cannot execute a remote procedure that attempts to
enable a role at the remote site.

Predefined Roles in an Oracle Database Installation
Oracle Database provides a set of predefined roles to help in database administration.
These roles, listed in Table 4–3, are automatically defined for Oracle databases when
you run the standard scripts that are part of database creation. If you install other
options or products, then other predefined roles may be created. You can grant
privileges and roles to, and revoke privileges and roles from, these predefined roles in
the same way as you do with any role you define.

See Also: Your operating system-specific Oracle Database
documentation for details about managing roles through the
operating system

See Also: Oracle Database Heterogeneous Connectivity
Administrator's Guide

Managing User Roles

Configuring Privilege and Role Authorization 4-11

Table 4–3 Oracle Database Predefined Roles

Predefined Role Description

ADM_PARALLEL_EXECUTE_TASK Provides privileges to update table data in parallel by using the DBMS_
PARALLEL_EXECUTE PL/SQL package.

See Also: Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_PARALLEL_EXECUTE PL/SQL package.

AQ_ADMINISTRATOR_ROLE Provides privileges to administer Advanced Queuing. Includes ENQUEUE
ANY QUEUE, DEQUEUE ANY QUEUE, and MANAGE ANY QUEUE, SELECT
privileges on Advanced Queuing tables and EXECUTE privileges on
Advanced Queuing packages.

AQ_USER_ROLE Obsolete, but kept mainly for release 8.0 compatibility. Provides EXECUTE
privileges on the DBMS_AQ and DBMS_AQIN packages.

AUTHENTICATEDUSER Used by the XDB protocols to define any user who has logged in to the
system.

CAPI_USER_ROLE Provides access to packages used for implementing Information Lifecycle
Management (ILM) and hierarchical storage and other applications.

See Also: Oracle Database SecureFiles and Large Objects Developer's Guide

CONNECT Provides the CREATE SESSION system privilege.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS
view

CSW_USR_ROLE Provides user privileges to manage the Catalog Services for the Web (CSW)
component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

CTXAPP Provides privileges to create Oracle Text indexes and index preferences, and
to use PL/SQL packages. This role should be granted to Oracle Text users.

See Also: Oracle Text Application Developer's Guide for more information

CWM_USER Provides privileges to manage Common Warehouse Metadata (CWM),
which is a repository standard used by Oracle data warehousing and
decision support.

See Also: Oracle Database Data Warehousing Guide for more information

DATAPUMP_EXP_FULL_DATABASE Provides privileges to export data from an Oracle database using Oracle
Data Pump.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this role
to users.

See Also: Oracle Database Utilities for more information

DATAPUMP_IMP_FULL_DATABASE Provides privileges to import data into an Oracle database using Oracle
Data Pump.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this role
to users.

See Also: Oracle Database Utilities for more information

Managing User Roles

4-12 Oracle Database Security Guide

DBA Provides all system privileges that were created with the ADMIN option.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS
view

DELETE_CATALOG_ROLE Provides the DELETE privilege on the system audit table (AUD$).

EJBCLIENT Provides privileges to connect to EJBs from a Java stored procedure.

EXECUTE_CATALOG_ROLE Provides EXECUTE privileges on objects in the data dictionary.

EXP_FULL_DATABASE Provides the privileges required to perform full and incremental database
exports using the Export utility (later replaced with Oracle Data Pump). It
includes these privileges: SELECT ANY TABLE, BACKUP ANY TABLE,
EXECUTE ANY PROCEDURE, EXECUTE ANY TYPE, ADMINISTER
RESOURCE MANAGER, and INSERT, DELETE, and UPDATE on the tables
SYS.INCVID, SYS.INCFIL, and SYS.INCEXP. Also the following roles:
EXECUTE_CATALOG_ROLE and SELECT_CATALOG_ROLE.

This role is provided for convenience in using the export and import
utilities.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this role
to users.

See Also: Oracle Database Utilities for more information

GATHER_SYSTEM_STATISTICS Provides privileges to update system statistics, which are collected using the
DBMS_STATS.GATHER_SYSTEM_STATISTICS procedure

See Also: Oracle Database Performance Tuning Guide for more information
about managing optimizer statistics

GLOBAL_AQ_USER_ROLE Provides privileges to establish a connection to an LDAP server, for use
with Oracle Streams AQ.

See Also: Oracle Streams Advanced Queuing User's Guide for more
information

HS_ADMIN_EXECUTE_ROLE Provides the EXECUTE privilege for users who want to use the
Heterogeneous Services (HS) PL/SQL packages.

See Also: Oracle Database Heterogeneous Connectivity Administrator's Guide
for more information

HS_ADMIN_ROLE Provides privileges to both use the Heterogeneous Services (HS) PL/SQL
packages and query the HS-related data dictionary views.

See Also: Oracle Database Heterogeneous Connectivity Administrator's Guide
for more information

HS_ADMIN_SELECT_ROLE Provides privileges to query the Heterogeneous Services data dictionary
views.

See Also: Oracle Database Heterogeneous Connectivity Administrator's Guide
for more information

Table 4–3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

Managing User Roles

Configuring Privilege and Role Authorization 4-13

IMP_FULL_DATABASE Provides the privileges required to perform full database imports using the
Import utility (later replaced with Oracle Data Pump). Includes an extensive
list of system privileges (use view DBA_SYS_PRIVS to view privileges) and
the following roles: EXECUTE_CATALOG_ROLE and SELECT_CATALOG_
ROLE.

This role is provided for convenience in using the export and import
utilities.

Caution: This is a very powerful role because it provides a user access to
any data in any schema in the database. Use caution when granting this role
to users.s.

See Also: Oracle Database Utilities for more information

JAVADEBUGPRIV Provides privileges to run the Oracle Database Java applications debugger.

See Also: Oracle Database Java Developer's Guide for more information about
managing security for Oracle Java applications

JAVAIDPRIV Deprecated for this release.

JAVASYSPRIV Provides major permissions to use Java2, including updating Oracle
JVM-protected packages.

See Also: Oracle Database Java Developer's Guide for more information about
managing security for Oracle Java applications

JAVAUSERPRIV Provides limited permissions to use Java2.

See Also: Oracle Database Java Developer's Guide for more information about
managing security for Oracle Java applications

JAVA_ADMIN Provides administrative permissions to update policy tables for Oracle
Database Java applications.

See Also: Oracle Database Java Developer's Guide for more information about
managing security for Oracle Java applications

JAVA_DEPLOY Provides privileges to deploy ncomp DLLs into the javavm/admin
directory using the ncomp and deployns utilities. Without this role, the
javavm/deploy and javavm/admin directories can be accessible.

See Also: Oracle Database Advanced Application Developer's Guide for more
information

JMXSERVER Provides privileges to start and maintain a JMX agent in a database session.

See Also: Oracle Database Java Developer's Guide for more information about
managing Oracle Java applications

LBAC_DBA Provides permissions to use the SA_SYSDBA PL/SQL package.

See Also: Oracle Label Security Administrator's Guide for more information

LOGSTDBY_ADMINISTRATOR Provides administrative privileges to manage the SQL Apply (logical
standby database) environment.

See Also: Oracle Data Guard Concepts and Administration for more
information

MGMT_USER Grants the SELECT privilege on the different views used for the SYSMAN
schema.

OEM_ADVISOR Provides privileges to create, drop, select (read), load (write), and delete a
SQL tuning set through the DBMS_SQLTUNE PL/SQL package, and to access
to the Advisor framework using the ADVISOR PL/SQL package.

See Also: Oracle Database Performance Tuning Guide for more information

Table 4–3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

Managing User Roles

4-14 Oracle Database Security Guide

OEM_MONITOR Provides privileges needed by the Management Agent component of Oracle
Enterprise Manager to monitor and manage the database.

See Also: Oracle Database Performance Tuning Guide for more information

OLAPI_TRACE_USER Provides privileges to perform OLAP API tracing. Contact Oracle Support
for more information.

OLAP_DBA Provides administrative privileges to create dimensional objects in different
schemas for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

OLAP_USER Provides application developers privileges to create dimensional objects in
their own schemas for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

OLAP_XS_ADMIN Provides privileges to administer security for Oracle OLAP.

See Also: Oracle OLAP User's Guide for more information

ORDADMIN Provides privileges to administer Oracle Multimedia DICOM.

See Also: Oracle Multimedia DICOM Developer's Guide

OWB$CLIENT Provides privileges to perform standard client-related tasks for Oracle
Warehouse Builder, such as creating projects, modules, tables, views, maps,
and so on. Warehouse Builder automatically grants this role to all
workspace owners and users. (That is, you do not need to explicitly grant it
to anyone who must use Warehouse Builder.) For security reasons, the
OWB$CLIENT role is not a default role for Warehouse Builder users: Oracle
Warehouse Builder enables this role only when it is needed.

See Also: Oracle Warehouse Builder Installation and Administration Guide for
more information

OWB_DESIGNCENTER_VIEW Provides privileges from the database level for any registered Oracle
Warehouse Builder user to query the Warehouse Builder public views, such
as ALL_IV_PROJECTS. A Warehouse Builder administrator can use the
ACCESS_PUBLICVIEW_BROWSER system privilege from the Warehouse
Builder security level to control an Warehouse Builder user's access to those
public views.

See Also: Oracle Warehouse Builder Installation and Administration Guide for
more information

OWB_USER Provides privileges to create and own an Oracle Warehouse Builder
workspace. When a workspace owner registers other database users to this
workspace, Oracle Database grants this role to these users. Users with this
role also have access to Warehouse Builder Control Center public views and
other Control Center utilities. Oracle Warehouse Builder grants this role to
all Warehouse Builder users.

See Also: Oracle Warehouse Builder Installation and Administration Guide for
more information

RECOVERY_CATALOG_OWNER Provides privileges for owner of the recovery catalog. Includes: CREATE
SESSION, ALTER SESSION, CREATE SYNONYM, CREATE VIEW, CREATE
DATABASE LINK, CREATE TABLE, CREATE CLUSTER, CREATE
SEQUENCE, CREATE TRIGGER, and CREATE PROCEDURE

Table 4–3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

Managing User Roles

Configuring Privilege and Role Authorization 4-15

RESOURCE Provides the following system privileges: CREATE CLUSTER, CREATE
INDEXTYPE, CREATE OPERATOR, CREATE PROCEDURE, CREATE
SEQUENCE, CREATE TABLE, CREATE TRIGGER, CREATE TYPE.

This role is provided for compatibility with previous releases of Oracle
Database. You can determine the privileges encompassed by this role by
querying the DBA_SYS_PRIVS data dictionary view.

Note: Oracle recommends that you design your own roles for database
security rather than relying on this role. This role may not be created
automatically by future releases of Oracle Database.

See Also: Oracle Database Reference for a description of the DBA_SYS_PRIVS
view

SCHEDULER_ADMIN Allows the grantee to execute the procedures of the DBMS_SCHEDULER
package. It includes all of the job scheduler system privileges and is
included in the DBA role.

See Also: Oracle Database Administrator's Guide for more information about
the DBMS_SCHEDULER package

SELECT_CATALOG_ROLE Provides SELECT privilege on objects in the data dictionary.

SNMPAGENT Used by the Enterprise Manager Management Agent.

SPATIAL_CSW_ADMIN Provides administrative privileges to manage the Catalog Services for the
Web (CSW) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

SPATIAL_WFS_ADMIN Provides administrative privileges to manage the Web Feature Service
(WFS) component of Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

WFS_USR_ROLE Provides user privileges for the Web Feature Service (WFS) component of
Oracle Spatial.

See Also: Oracle Spatial Developer's Guide for more information

WM_ADMIN_ROLE Provides administrative privileges for Oracle Workspace Manage. This
enables users to run any DBMS_WM procedures on all version enabled tables,
workspaces, and savepoints regardless of their owner. It also enables the
user to modify the system parameters specific to Workspace Manager.

See Also: Oracle Database Workspace Manager Developer's Guide for more
information

XDBADMIN Allows the grantee to register an XML schema globally, as opposed to
registering it for use or access only by its owner. It also lets the grantee
bypass access control list (ACL) checks when accessing Oracle XML DB
Repository.

See Also: Oracle XML DB Developer's Guide for information about XML
schemas and the XML DB Repository

XDB_SET_INVOKER Allows the grantee to define invoker’s rights handlers and to create or
update the resource configuration for XML repository triggers. By default,
Oracle Database grants this role to the DBA role but not to the XDBADMIN
role.

See Also: Oracle XML DB Developer's Guide for information about Oracle
Database XML repository triggers

Table 4–3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

Managing User Roles

4-16 Oracle Database Security Guide

Creating a Role
You can create a role using the CREATE ROLE statement, but you must have the
CREATE ROLE system privilege to do so. Typically, only security administrators have
this system privilege.

After you create a role, the role has no privileges associated with it. Your next step is to
grant either privileges or other roles to the new role.

You must give each role you create a unique name among existing user names and role
names of the database. Roles are not contained in the schema of any user. In a database
that uses a multibyte character set, Oracle recommends that each role name contain at
least one single-byte character. If a role name contains only multibyte characters, then
the encrypted role name and password combination is considerably less secure. See
Guideline 1 in "Guidelines for Securing Passwords" on page 10-7 for password
guidelines.

Example 4–2 creates the clerk role.

Example 4–2 Creating a User Role Authorized by a Password

CREATE ROLE clerk IDENTIFIED BY password;

The IDENTIFIED BY clause specifies how the user must be authorized before the role
can be enabled for use by a specific user to which it has been granted. If you do not

XDB_WEBSERVICES Allows the grantee to access Oracle Database Web services over HTTPS.
However, it does not provide the user access to objects in the database that
are public. To allow public access, you need to grant the user the XDB_
WEBSERVICES_WITH_PUBLIC role. For a user to use these Web services,
SYS must enable the Web service servlets.

See Also: Oracle XML DB Developer's Guide for information about Oracle
Database Web services

XDB_WEBSERVICES_OVER_HTTP Allows the grantee to access Oracle Database Web services over HTTP.
However, it does not provide the user access to objects in the database that
are public. To allow public access, you need to grant the user the XDB_
WEBSERVICES_WITH_PUBLIC role.

See Also: Oracle XML DB Developer's Guide for information about Oracle
Database Web services

XDB_WEBSERVICES_WITH_PUBLIC Allows the grantee access to public objects through Oracle Database Web
services.

See Also: Oracle XML DB Developer's Guide for information about Oracle
Database Web services

Note: Each installation should create its own roles and assign only
those privileges that are needed, thus retaining detailed control of
the privileges in use. This process also removes any need to adjust
existing roles, privileges, or procedures whenever Oracle Database
changes or removes roles that Oracle Database defines. For
example, the CONNECT role now has only one privilege: CREATE
SESSION. Both CONNECT and RESOURCE roles will be deprecated
in future Oracle Database releases.

Table 4–3 (Cont.) Oracle Database Predefined Roles

Predefined Role Description

Managing User Roles

Configuring Privilege and Role Authorization 4-17

specify this clause, or if you specify NOT IDENTIFIED, then no authorization is
required when the role is enabled. Roles can be specified to be authorized by:

■ The database using a password

■ An application using a specified package

■ Externally by the operating system, network, or other external source

■ Globally by an enterprise directory service

These authorizations are discussed in the following sections.

You can set or change the authorization method for a role using the ALTER ROLE
statement. Remember that you can only directly grant secure application roles or
password-authenticated roles to a user.

Example 4–3 shows how to alter the clerk role to specify that the user must have
been authorized by an external source before enabling the role.

Example 4–3 Altering a Role to be Authorized by an External Source

ALTER ROLE clerk IDENTIFIED EXTERNALLY;

To alter the authorization method for a role, you must have the ALTER ANY ROLE
system privilege or have been granted the role with ADMIN option.

Specifying the Type of Role Authorization
The methods of authorizing roles are presented in this section. A role must be enabled
for you to use it.

This section contains:

■ Authorizing a Role by Using the Database

■ Authorizing a Role by Using an Application

■ Authorizing a Role by Using an External Source

Authorizing a Role by Using the Database
You can protect a role authorized by the database by assigning the role a password. If a
user is granted a role protected by a password, then you can enable or disable the role
by supplying the proper password for the role in the SET ROLE statement. You cannot
authenticate a password-authenticated role on logon, even if you add it to the list of
default roles. You must explicitly enable it with the SET ROLE statement using the
required password.

Example 4–4 shows how to set a password-authenticated role by using the SET ROLE
statement.

Example 4–4 Using SET ROLE for a Password-Authenticated Role

SET ROLE clerk IDENTIFIED BY password;

See Also: Oracle Database SQL Language Reference for syntax,
restrictions, and authorization information about the SQL
statements used to manage roles and privileges

See Also: "When Do Grants and Revokes Take Effect?" on
page 4-47 for a discussion about enabling roles

Managing User Roles

4-18 Oracle Database Security Guide

Example 4–2, "Creating a User Role Authorized by a Password" on page 4-16 shows a
CREATE ROLE statement that creates a role called clerk. When it is enabled, the
password must be supplied.

Authorizing a Role by Using an Application
An application role (secure application role) can be enabled only by applications using
an authorized PL/SQL package. Application developers do not need to secure a role
by embedding passwords inside applications. Instead, they can create an application
role and specify which PL/SQL package is authorized to enable the role.

To create a role enabled by an authorized PL/SQL package, use the IDENTIFIED
USING package_name clause in the CREATE ROLE SQL statement.

Example 4–5 indicates that the role admin_role is an application role and the role can
only be enabled by any module defined inside the PL/SQL package hr.admin.

Example 4–5 Creating a Role Authorized by a PL/SQL Package for an Application

CREATE ROLE admin_role IDENTIFIED USING hr.admin;

See the following for more information about secure application roles:

■ "Securing Role Privileges by Using Secure Application Roles" on page 4-22

■ "Creating Secure Application Roles to Control Access to Applications" on
page 5-12

■ Oracle Database 2 Day + Security Guide

Authorizing a Role by Using an External Source
You can define the external role locally in the database, but you cannot grant the
external role to global users, to global roles, or to any other roles in the database. You
can create roles that are authorized by the operating system or network clients.

Example 4–6 creates a role named accts_rec and requires that the user is authorized
by an external source before it can be enabled:

Example 4–6 Creating a Role Authorized by an External Source

CREATE ROLE accts_rec IDENTIFIED EXTERNALLY;

Authorizing a Role by Using the Operating System Role authentication through the
operating system is useful only when the operating system is able to dynamically link
operating system privileges with applications. When a user starts an application, the
operating system grants an operating system privilege to the user. The granted
operating system privilege corresponds to the role associated with the application. At
this point, the application can enable the application role. When the application is
terminated, the previously granted operating system privilege is revoked from the
operating system account of the user.

Note: In a database that uses a multibyte character set, passwords
for roles must include only single-byte characters. Multibyte
characters are not accepted in passwords. See Guideline 1 in
"Guidelines for Securing Passwords" on page 10-7 for password
guidelines.

Managing User Roles

Configuring Privilege and Role Authorization 4-19

If a role is authorized by the operating system, then you must configure information
for each user at the operating system level. This operation is operating system
dependent.

If roles are granted by the operating system, then you do not need to have the
operating system authorize them also.

Authorizing a Role by Using a Network Client If users connect to the database over Oracle
Net, then by default, the operating system cannot authenticate their roles. This
includes connections through a shared server configuration, as this connection
requires Oracle Net. This restriction is the default because a remote user could
impersonate another operating system user over a network connection. Oracle
recommends that you set REMOTE_OS_ROLES to FALSE, which is the default.

If you are not concerned with this security risk and want to use operating system role
authentication for network clients, then set the initialization parameter REMOTE_OS_
ROLES in the database initialization parameter file to TRUE. The change will take effect
the next time you start the instance and mount the database.

Global Role Authorization by an Enterprise Directory Service
A role can be defined as a global role, where a (global) user can only be authorized to
use the role by an enterprise directory service. You define the global role locally in the
database by granting privileges and roles to it, but you cannot grant the global role
itself to any user or other role in the database. When a global user attempts to connect
to the database, the enterprise directory is queried to obtain any global roles associated
with the user.

Example 4–7 creates a global role.

Example 4–7 Creating a Global Role

CREATE ROLE supervisor IDENTIFIED GLOBALLY;

Global roles are one component of enterprise user security. A global role only applies
to one database, but you can grant it to an enterprise role defined in the enterprise
directory. An enterprise role is a directory structure that contains global roles on
multiple databases and can be granted to enterprise users.

See "Configuring Global User Authentication and Authorization" on page 3-28 for a
general discussion of global authentication and authorization of users, and its role in
enterprise user management.

Granting and Revoking Roles
You can grant system or object privileges to a role, and any role can be granted to any
database user or to another role (but not to itself). However, a role cannot be granted
circularly, that is, role X cannot be granted to role Y if role Y has previously been
granted to role X.

See Also: "Granting Roles Using the Operating System or
Network" on page 4-44 for more information about roles granted by
the operating system

See Also: Oracle Database Enterprise User Security Administrator's
Guide for information about implementing enterprise user
management

Managing User Roles

4-20 Oracle Database Security Guide

To provide selective availability of privileges, Oracle Database permits applications
and users to enable and disable roles. Each role granted to a user is, at any given time,
either enabled or disabled. The security domain of a user includes the privileges of all
roles currently enabled for the user and excludes the privileges of any roles currently
disabled for the user.

A role granted to a role is called an indirectly granted role. You can explicitly enable or
disable it for a user. However, whenever you enable a role that contains other roles,
you implicitly enable all indirectly granted roles of the directly granted role.

You grant roles to (or revoke roles from) users or other roles by using either of the
following methods:

■ Oracle Enterprise Manager Database Control

■ The GRANT and REVOKE SQL statements

Privileges are granted to and revoked from roles using the same options.

Who Can Grant or Revoke Roles?
Any user with the GRANT ANY ROLE system privilege can grant or revoke any role
except a global role to or from other users or roles of the database. (A global role is
managed in a directory, such as Oracle Internet Directory, but its privileges are
contained within a single database.) By default, the SYS or SYSTEM user has this
privilege. You should grant this system privilege conservatively because it is very
powerful.

Any user granted a role with the ADMIN OPTION can grant or revoke that role to or
from other users or roles of the database. This option allows administrative powers for
roles to be granted on a selective basis.

Dropping Roles
In some cases, it may be appropriate to drop a role from the database. The security
domains of all users and roles granted a dropped role are immediately changed to
reflect the absence of the dropped role privileges. All indirectly granted roles of the
dropped role are also removed from affected security domains. Dropping a role
automatically removes the role from all user default role lists.

Because the existence of objects is not dependent on the privileges received through a
role, tables and other objects are not dropped when a role is dropped.

You can drop a role using the SQL statement DROP ROLE. To drop a role, you must
have the DROP ANY ROLE system privilege or have been granted the role with the
ADMIN option.

See Also:

■ "Granting a User Privileges and Roles" on page 4-36

■ "Revoking Privileges and Roles from a User" on page 4-40

■ "When Do Grants and Revokes Take Effect?" on page 4-47

■ "Finding Information About User Privileges and Roles" on
page 4-70

■ Oracle Database 2 Day DBA for more information about
Database Control

See Also: Oracle Database Enterprise User Security Administrator's
Guide for information about global roles

Managing User Roles

Configuring Privilege and Role Authorization 4-21

The following statement drops the role CLERK:

DROP ROLE clerk;

Restricting SQL*Plus Users from Using Database Roles
This section describes features that you can use to restrict SQL*Plus users from using
database roles and thus, prevent serious security problems.

■ Potential Security Problems of Using Ad Hoc Tools

■ Limiting Roles Through the PRODUCT_USER_PROFILE Table

■ Using Stored Procedures to Encapsulate Business Logic

Potential Security Problems of Using Ad Hoc Tools
Prebuilt database applications explicitly control the potential actions of a user,
including the enabling and disabling of user roles while using the application. By
contrast, ad hoc query tools such as SQL*Plus, permit a user to submit any SQL
statement (which may or may not succeed), including enabling and disabling a
granted role.

Potentially, an application user can exercise the privileges attached to that application
to issue destructive SQL statements against database tables by using an ad hoc tool.

For example, consider the following scenario:

■ The Vacation application has a corresponding vacation role.

■ The vacation role includes the privileges to issue SELECT, INSERT, UPDATE,
and DELETE statements against the emp_tab table.

■ The Vacation application controls the use of privileges obtained through the
vacation role.

Now, consider a user who has been granted the vacation role. Suppose that, instead
of using the Vacation application, the user executes SQL*Plus. At this point, the user is
restricted only by the privileges granted to him explicitly or through roles, including
the vacation role. Because SQL*Plus is an ad hoc query tool, the user is not restricted
to a set of predefined actions, as with designed database applications. The user can
query or modify data in the emp_tab table as he or she chooses.

Limiting Roles Through the PRODUCT_USER_PROFILE Table
You can use the PRODUCT_USER_PROFILE table, which is in the SYSTEM schema, to
disable certain SQL and SQL*Plus commands in the SQL*Plus environment for each
user. SQL*Plus, not the Oracle Database, enforces this security. You can even restrict
access to the GRANT, REVOKE, and SET ROLE commands to control user ability to
change their database privileges.

The PRODUCT_USER_PROFILE table enables you to list roles that you do not want
users to activate with an application. You can also explicitly disable the use of various
commands, such as SET ROLE.

For example, you could create an entry in the PRODUCT_USER_PROFILE table to:

■ Disallow the use of the clerk and manager roles with SQL*Plus

■ Disallow the use of SET ROLE with SQL*Plus

Suppose user Marla connects to the database using SQL*Plus. Marla has the clerk,
manager, and analyst roles. As a result of the preceding entry in PRODUCT_USER_
PROFILE, Marla is only able to exercise her analyst role with SQL*Plus. Also, when

Managing User Roles

4-22 Oracle Database Security Guide

Ginny attempts to issue a SET ROLE statement, she is explicitly prevented from doing
so because of the entry in the PRODUCT_USER_PROFILE table prohibiting use of SET
ROLE.

Be aware that the PRODUCT_USER_PROFILE table does not completely guarantee
security, for multiple reasons. In the preceding example, while SET ROLE is
disallowed with SQL*Plus, if Marla had other privileges granted to her directly, then
she could exercise these using SQL*Plus.

Using Stored Procedures to Encapsulate Business Logic
Stored procedures encapsulate the use of privileges with business logic so that
privileges are only exercised in the context of a well-formed business transaction. For
example, an application developer can create a procedure to update the employee
name and address in the employees table, which enforces that the data can only be
updated in normal business hours. Also, rather than grant a human resources clerk the
UPDATE privilege on the employees table, a security administrator may grant the
privilege on the procedure only. Then, the human resources clerk can exercise the
privilege only in the context of the procedures, and cannot update the employees
table directly.

Securing Role Privileges by Using Secure Application Roles
A secure application role is a role that can be enabled only by an authorized PL/SQL
package (or procedure). The PL/SQL package itself reflects the security policies
needed to control access to the application.

This method of role creation restricts the enabling of this type of role to the invoking
application. For example, the application can perform authentication and customized
authorization, such as checking whether the user has connected through a proxy.

This type of role strengthens security because passwords are not embedded in
application source code or stored in a table. This way, the actions the database
performs are based on the implementation of your security policies, and these
definitions are stored in one place, the database, rather than in your applications. If
you need to modify the policy, you do so in one place without having to modify your
applications. No matter how users connect to the database, the result is always the
same, because the policy is bound to the role.

To enable the secure application role, you must execute its underlying package by
invoking it directly from the application when the user logs in, before the user
exercises the privileges granted by the secure application role. You cannot use a logon
trigger to enable a secure application role, nor can you have this type of role be a
default role.

When you enable the secure application role, Oracle Database verifies that the
authorized PL/SQL package is on the calling stack, that is, it verifies that the
authorized PL/SQL package is issuing the command to enable the role.

You can use secure application roles to ensure the existence of a database connection.
Because a secure application role is a role implemented by a package, the package can
validate that users can connect to the database through a middle tier or from a specific
IP address. In this way, the secure application role prevents users from accessing data
outside an application. They are forced to work within the framework of the
application privileges that they have been granted.

See Also: SQL*Plus User's Guide and Reference for more
information about the PRODUCT_USER_PROFILE table

Managing Object Privileges

Configuring Privilege and Role Authorization 4-23

Managing Object Privileges
This section contains:

■ About Object Privileges

■ Granting or Revoking Object Privileges

■ Managing Object Privileges

■ Managing Table Privileges

■ Managing View Privileges

■ Managing Procedure Privileges

■ Managing Type Privileges

About Object Privileges
An object privilege is a right that you grant to a user on a database object. Some
examples of object privileges include the right to:

■ Use an edition

■ Update a table

■ Select rows from another user’s table

■ Execute a stored procedure of another user

Granting or Revoking Object Privileges
Each type of object has different privileges associated with it.

You can specify ALL [PRIVILEGES] to grant or revoke all available object privileges
for an object. ALL is not a privilege; rather, it is a shortcut, or a way of granting or
revoking all object privileges with one GRANT and REVOKE statement. If all object
privileges are granted using the ALL shortcut, then individual privileges can still be
revoked.

Similarly, you can revoke all individually granted privileges by specifying ALL.
However, if you REVOKE ALL, and revoking causes integrity constraints to be deleted
(because they depend on a REFERENCES privilege that you are revoking), then you
must include the CASCADE CONSTRAINTS option in the REVOKE statement.

Example 4–8 revokes all privileges on the orders table in the HR schema using
CASCADE CONSTRAINTS.

Example 4–8 Revoking All Object Privileges Using CASCADE CONSTRAINTS

REVOKE ALL
 ON orders FROM hr
 CASCADE CONSTRAINTS;

See Also:

■ "Creating Secure Application Roles to Control Access to
Applications" on page 5-12

■ Oracle Database 2 Day + Security Guide

See Also: Oracle Database SQL Language Reference for a list of
object privileges and the operations they authorize

Managing Object Privileges

4-24 Oracle Database Security Guide

Managing Object Privileges
An object privilege grants permission to perform a particular action on a specific
schema object.

Different object privileges are available for different types of schema objects. The
privilege to delete rows from the departments table is an example of an object
privilege.

Some schema objects, such as clusters, indexes, triggers, and database links, do not
have associated object privileges. Their use is controlled with system privileges. For
example, to alter a cluster, a user must own the cluster or have the ALTER ANY
CLUSTER system privilege.

The following sections discuss granting and revoking such privileges:

■ "Granting and Revoking Object Privileges" on page 4-24

■ "Who Can Grant Object Privileges?" on page 4-24

■ "Using Privileges with Synonyms" on page 4-25

The following sections discuss object privileges that apply to specific schema objects:

■ "Managing Table Privileges" on page 4-25

■ "Managing View Privileges" on page 26

■ Sequences (see Oracle Database Administrator's Guide for information about
managing sequences)

■ "Managing Procedure Privileges" on page 4-28

■ Functions and Packages(Oracle Database Administrator's Guide for information
about managing object dependencies)

■ "Managing Type Privileges" on page 4-32

Granting and Revoking Object Privileges
Object privileges can be granted to and revoked from users and roles. If you grant
object privileges to roles, then you can make the privileges selectively available.

You can grant or revoke object privileges to or from users and roles using the
following methods:

■ The GRANT and REVOKE SQL statements

■ Oracle Enterprise Manager Database Control

Who Can Grant Object Privileges?
A user automatically has all object privileges for schema objects contained in his or her
schema. A user with the GRANT ANY OBJECT PRIVILEGE can grant any specified
object privilege to another user with or without the WITH GRANT OPTION clause of
the GRANT statement. A user with the GRANT ANY OBJECT PRIVILEGE can also use
that privilege to revoke any object privilege that was granted either by the object
owner or by some other user with the GRANT ANY OBJECT PRIVILEGE privilege.
Otherwise, the grantee can use the privilege, but cannot grant it to other users.

See Also: Oracle Database 2 Day DBA for more information about
Database Control

See Also: Oracle Database SQL Language Reference for information
about GRANT and GRANT ANY OBJECT PRIVILEGE

Managing Object Privileges

Configuring Privilege and Role Authorization 4-25

Using Privileges with Synonyms
A schema object and its synonym are equivalent with respect to privileges. That is, the
object privileges granted on a table, view, sequence, procedure, function, or package
apply whether referencing the base object by name or by using a synonym.

For example, assume there is a table jward.emp with a synonym named
jward.employee. The user jward issues the following statement:

GRANT SELECT ON emp TO swilliams;

The user swilliams can query jward.emp by referencing the table by name or by
using the synonym jward.employee:

SELECT * FROM jward.emp;
SELECT * FROM jward.employee;

If you grant object privileges on a table, view, sequence, procedure, function, or
package by referring to the object through a synonym for the object, then the effect is
the same as if no synonym were used. For example, if jward wanted to grant the
SELECT privilege for the emp table to swilliams, then jward could issue either of
the following statements:

GRANT SELECT ON emp TO swilliams;
GRANT SELECT ON employee TO swilliams;

If a synonym is dropped, then all grants for the underlying schema object remain in
effect, even if the privileges were granted by specifying the dropped synonym.

Managing Table Privileges
Object privileges for tables enable table security at the DML (data manipulation
language) or DDL (data definition language) level of operation.

The following sections discuss table privileges and DML and DDL operations:

■ How Table Privileges Affect Data Manipulation Language Operations

■ How Table Privileges Affect Data Definition Language Operations

How Table Privileges Affect Data Manipulation Language Operations
You can grant privileges to use the DELETE, INSERT, SELECT, and UPDATE DML
operations on a table or view. Grant these privileges only to users and roles that need
to query or manipulate data in a table.

You can restrict INSERT and UPDATE privileges for a table to specific columns of the
table. With a selective INSERT privilege, a privileged user can insert a row with values
for the selected columns. All other columns receive NULL or the default value of the
column. With a selective UPDATE privilege, a user can update only specific column
values of a row. You can use selective INSERT and UPDATE privileges to restrict user
access to sensitive data.

For example, if you do not want data entry users to alter the salary column of the
employees table, then selective INSERT or UPDATE privileges can be granted that
exclude the salary column. Alternatively, a view that excludes the salary column
could satisfy this need for additional security.

See Also: Oracle Database SQL Language Reference for more
information about DML operations

Managing Object Privileges

4-26 Oracle Database Security Guide

How Table Privileges Affect Data Definition Language Operations
The ALTER, INDEX, and REFERENCES privileges allow DDL operations to be
performed on a table. Because these privileges allow other users to alter or create
dependencies on a table, you should grant these privileges conservatively.

A user attempting to perform a DDL operation on a table may need additional system
or object privileges. For example, to create a trigger on a table, the user requires both
the ALTER TABLE object privilege for the table and the CREATE TRIGGER system
privilege.

As with the INSERT and UPDATE privileges, you can grant the REFERENCES privilege
on specific columns of a table. The REFERENCES privilege enables the grantee to use
the table on which the grant is made as a parent key to any foreign keys that the
grantee wishes to create in his or her own tables. This action is controlled with a
special privilege because the presence of foreign keys restricts the data manipulation
and table alterations that can be done to the parent key. A column-specific
REFERENCES privilege restricts the grantee to using the named columns (which, of
course, must include at least one primary or unique key of the parent table).

Managing View Privileges
This section contains:

■ About View Privileges

■ Privileges Required to Create Views

■ Increasing Table Security with Views

About View Privileges
A view is a presentation of data selected from one or more tables, possibly including
other views. A view shows the structure of the underlying tables. Its selected data can
be thought of as the result of a stored query. A view contains no actual data but rather
derives what it shows from the tables and views on which it is based. You can query a
view, and change the data it represents. Data in a view can be updated or deleted, and
new data inserted. These operations directly alter the tables on which the view is
based, and are subject to the integrity constraints and triggers of the base tables.

You can apply DML object privileges to views, similar to tables. Object privileges for a
view allow various DML operations, which as noted affect the base tables from which
the view is derived.

Privileges Required to Create Views
To create a view, you must meet the following requirements:

■ You must have been granted one of the following system privileges, either
explicitly or through a role:

– The CREATE VIEW system privilege (to create a view in your schema)

– The CREATE ANY VIEW system privilege (to create a view in the schema of
another user)

■ You must have been explicitly granted one of the following privileges:

See Also: "Data Integrity" in Oracle Database Concepts for more
information about primary keys, unique keys, and integrity
constraints

Managing Object Privileges

Configuring Privilege and Role Authorization 4-27

– The SELECT, INSERT, UPDATE, or DELETE object privileges on all base objects
underlying the view

– The SELECT ANY TABLE, INSERT ANY TABLE, UPDATE ANY TABLE, or
DELETE ANY TABLE system privileges

■ In addition, before you can grant other users access to you view, you must have
object privileges to the base objects with the GRANT OPTION clause or appropriate
system privileges with the ADMIN OPTION clause. If you do not have these
privileges, then you cannot to grant other users access to your view. If you try, an
ORA-01720: grant option does not exist for object_name error is
raised, with object_name referring to the view’s underlying object for which you
do not have the sufficient privilege.

Increasing Table Security with Views
To use a view, the user must have the appropriate privileges but only for the view
itself, not its underlying objects. However, if access privileges for the underlying
objects of the view are removed, then the user no longer has access. This behavior
occurs because the security domain that is used when a user queries the view is that of
the definer of the view. If the privileges on the underlying objects are revoked from the
view’s definer, then the view becomes invalid, and no one can use the view. Therefore,
even if a user has been granted access to the view, the user may not be able to use the
view if the definer’s rights have been revoked from the view’s underlying objects.

For example, suppose User A creates a view. User A has definer’s rights on the
underlying objects of the view. User A then grants the SELECT privilege on that view
to User B so that User B can query the view. But if User A no longer has access to the
underlying objects of that view, then User B no longer has access either.

Views add two more levels of security for tables, column-level security and
value-based security, as follows:

■ A view can provide access to selected columns of base tables. For example, you
can define a view on the employees table to show only the employee_id,
last_name, and manager_id columns:

CREATE VIEW employees_manager AS
 SELECT last_name, employee_id, manager_id FROM employees;

■ A view can provide value-based security for the information in a table. A WHERE
clause in the definition of a view displays only selected rows of base tables.
Consider the following two examples:

CREATE VIEW lowsal AS
 SELECT * FROM employees
 WHERE salary < 10000;

The lowsal view allows access to all rows of the employees table that have a
salary value less than 10000. Notice that all columns of the employees table are
accessible in the lowsal view.

CREATE VIEW own_salary AS
 SELECT last_name, salary
 FROM employees
 WHERE last_name = USER;

In the own_salary view, only the rows with an last_name that matches the
current user of the view are accessible. The own_salary view uses the user

See Also: Oracle Database SQL Language Reference

Managing Object Privileges

4-28 Oracle Database Security Guide

pseudo column, whose values always refer to the current user. This view combines
both column-level security and value-based security.

Managing Procedure Privileges
This section contains:

■ Using the EXECUTE Privilege for Procedure Privileges

■ Procedure Execution and Security Domains

■ How Procedure Privileges Affect Definer’s Rights

■ How Procedure Privileges Affect Invoker’s Rights

■ System Privileges Required to Create or Replace a Procedure

■ System Privileges Required to Compile a Procedure

■ How Procedure Privileges Affect Packages and Package Objects

Using the EXECUTE Privilege for Procedure Privileges
The EXECUTE privilege is the only object privilege for procedures, including
standalone procedures and functions, and for those within packages. Grant this
privilege only to users who need to run a procedure or to compile another procedure
that calls a desired procedure.

Procedure Execution and Security Domains
A user with the EXECUTE object privilege for a specific procedure can execute the
procedure or compile a program unit that references the procedure. Oracle Database
performs a run-time privilege check when any PL/SQL unit is called. A user with the
EXECUTE ANY PROCEDURE system privilege can execute any procedure in the
database. Privileges to run procedures can be granted to a user through roles.

How Procedure Privileges Affect Definer’s Rights
The owner of a procedure, called the definer, must have all the necessary object
privileges for referenced objects. If the procedure owner grants to another user the
right to use that procedure, then the privileges of the procedure owner (on the objects
referenced by the procedure) apply to the grantee user’s exercise of the procedure. The
privileges of the procedure’s definer must be granted directly to the user, not granted
through roles. These are termed definer’s rights.

The user of a procedure who is not its owner is called the invoker. Additional privileges
on referenced objects are required for invoker’s rights procedures, but not for definer's
rights procedures.

A user of a definer’s rights procedure requires only the privilege to execute the
procedure and no privileges on the underlying objects that the procedure accesses.
This is because a definer's rights procedure operates under the security domain of the
user who owns the procedure, regardless of who is executing it. The owner of the
procedure must have all the necessary object privileges for referenced objects. Fewer
privileges have to be granted to users of a definer’s rights procedure. This results in
stronger control of database access.

See Also: Oracle Database PL/SQL Language Reference for more
information about how Oracle Database checks privileges at run-time

See Also: "How Roles Work in PL/SQL Blocks" on page 4-8

Managing Object Privileges

Configuring Privilege and Role Authorization 4-29

You can use definer’s rights procedures to control access to private database objects
and add a level of database security. By writing a definer's rights procedure and
granting only EXECUTE privilege to a user, the user can be forced to access the
referenced objects only through the procedure.

At run time, Oracle Database checks whether the privileges of the owner of a definer’s
rights stored procedure allow access to that procedure’s referenced objects, before the
procedure is executed. If a necessary privilege on a referenced object was revoked
from the owner of a definer's rights procedure, then the procedure cannot be run by
the owner or any other user.

How Procedure Privileges Affect Invoker’s Rights
An invoker’s rights procedure executes with all of the invoker’s privileges. Oracle
Database enables the privileges that were granted to the invoker through any of the
invoker’s enabled roles to take effect, unless a definer’s rights procedure calls the
invoker's rights procedure directly or indirectly. A user of an invoker's rights
procedure needs privileges (granted to the user either directly or through a role) on
objects that the procedure accesses through external references that are resolved in the
schema of the invoker.

The invoker needs privileges at run time to access program references embedded in
DML statements or dynamic SQL statements, because they are effectively recompiled
at run time.

For all other external references, such as direct PL/SQL function calls, Oracle Database
checks the privileges of the owner at compile time, but does not perform a run-time
check. Therefore, the user of an invoker's rights procedure does not need privileges on
external references outside DML or dynamic SQL statements. Alternatively, the
developer of an invoker’s rights procedure must only grant privileges on the
procedure itself, not on all objects directly referenced by the invoker's rights
procedure.

You can create a software bundle that consists of multiple program units, some with
definer's rights and others with invoker's rights, and restrict the program entry points
(controlled step-in). A user who has the privilege to run an entry-point procedure can
also execute internal program units indirectly, but cannot directly call the internal
programs. For very precise control over query processing, you can create a PL/SQL
package specification with explicit cursors.

Note: Trigger processing follows the same patterns as definer's
rights procedures. The user runs a SQL statement, which that user
is privileged to run. As a result of the SQL statement, a trigger is
fired. The statements within the triggered action temporarily
execute under the security domain of the user that owns the trigger.
For more information, see "Overview of Triggers" in Oracle
Database Concepts.

Managing Object Privileges

4-30 Oracle Database Security Guide

System Privileges Required to Create or Replace a Procedure
To create or replace a procedure in your own schema, you must have the CREATE
PROCEDURE system privilege. To create or replace a procedure in another user's
schema, you must have the CREATE ANY PROCEDURE system privilege.

The user who owns the procedure also must have privileges for schema objects
referenced in the procedure body. To create a procedure, you need to have been
explicitly granted the necessary privileges (system or object) on all objects referenced
by the procedure. You cannot obtain the required privileges through roles. This
includes the EXECUTE privilege for any procedures that are called inside the procedure
being created.

System Privileges Required to Compile a Procedure
To compile a standalone procedure, run the ALTER PROCEDURE statement with the
COMPILE clause. To compile a procedure that is part of a package, run the ALTER
PACKAGE statement.

Example 4–9 shows how to compile a standalone procedure.

Example 4–9 Compiling a Procedure

ALTER PROCEDURE psmith.remove_emp COMPILE;

If the standalone or packaged procedure is in another user’s schema, you must have
the ALTER ANY PROCEDURE privilege to recompile it. You can recompile procedures
in your own schema without any privileges.

How Procedure Privileges Affect Packages and Package Objects
A user with the EXECUTE object privilege for a package can execute any public
procedure or function in the package, and can access or modify the value of any public
package variable. You cannot grant specific EXECUTE privileges for individual
constructs in a package. Therefore, you may find it useful to consider two alternatives
for establishing security when developing procedures, functions, and packages for a
database application. The following examples describe these alternatives.

See Also:

■ "Configuring an Oracle Virtual Private Database Policy" on
page 7-5

■ Oracle Database PL/SQL Language Reference for information
about how Oracle Database handles name resolution and
privilege checking at runtime using invoker’s and definer’s
rights

■ Oracle Database PL/SQL Language Reference for information
about defining explicit cursors in the CREATE PACKAGE
statement

Note: Triggers require that privileges on referenced objects be
granted directly to the owner of the trigger. Anonymous PL/SQL
blocks can use any privilege, whether the privilege is granted
explicitly or through a role.

Managing Object Privileges

Configuring Privilege and Role Authorization 4-31

Procedure Privileges and Packages and Package Objects: Example 1
Example 4–10 shows four procedures created in the bodies of two packages.

Example 4–10 Package Objects Affected by Procedure Privileges

CREATE PACKAGE BODY hire_fire AS
 PROCEDURE hire(...) IS
 BEGIN
 INSERT INTO employees . . .
 END hire;
 PROCEDURE fire(...) IS
 BEGIN
 DELETE FROM employees . . .
 END fire;
END hire_fire;

CREATE PACKAGE BODY raise_bonus AS
 PROCEDURE give_raise(...) IS
 BEGIN
 UPDATE employees SET salary = . . .
 END give_raise;
 PROCEDURE give_bonus(...) IS
 BEGIN
 UPDATE employees SET bonus = . . .
 END give_bonus;
END raise_bonus;

The following GRANT EXECUTE statements enable the big_bosses and little_
bosses roles to run the appropriate procedures:

GRANT EXECUTE ON hire_fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Procedure Privileges and Packages and Package Objects: Example 2
This example shows four procedure definitions within the body of a single package.
Two additional standalone procedures and a package are created specifically to
provide access to the procedures defined in the main package.

CREATE PACKAGE BODY employee_changes AS
 PROCEDURE change_salary(...) IS BEGIN ... END;
 PROCEDURE change_bonus(...) IS BEGIN ... END;
 PROCEDURE insert_employee(...) IS BEGIN ... END;
 PROCEDURE delete_employee(...) IS BEGIN ... END;
END employee_changes;

CREATE PROCEDURE hire
 BEGIN
 employee_changes.insert_employee(...)
 END hire;

CREATE PROCEDURE fire
 BEGIN
 employee_changes.delete_employee(...)
 END fire;

Note: Granting EXECUTE privilege for a package provides uniform
access to all package objects.

Managing Object Privileges

4-32 Oracle Database Security Guide

PACKAGE raise_bonus IS
 PROCEDURE give_raise(...) AS
 BEGIN
 employee_changes.change_salary(...)
 END give_raise;

 PROCEDURE give_bonus(...)
 BEGIN
 employee_changes.change_bonus(...)
 END give_bonus;

Using this method, the procedures that actually do the work (the procedures in the
employee_changes package) are defined in a single package and can share declared
global variables, cursors, on so on. By declaring top-level procedures, hire and
fire, and an additional package, raise_bonus, you can grant selective EXECUTE
privileges on procedures in the main package:

GRANT EXECUTE ON hire, fire TO big_bosses;
GRANT EXECUTE ON raise_bonus TO little_bosses;

Managing Type Privileges
The following sections describe the use of privileges for types, methods, and objects:

■ System Privileges for Named Types

■ Object Privileges

■ Method Execution Model

■ Privileges Required to Create Types and Tables Using Types

■ Example of Privileges for Creating Types and Tables Using Types

■ Privileges on Type Access and Object Access

■ Type Dependencies

System Privileges for Named Types
Table 4–4 lists system privileges for named types (object types, VARRAYs, and nested
tables).

The RESOURCE role includes the CREATE TYPE system privilege. The DBA role
includes all of these privileges.

Object Privileges
The only object privilege that applies to named types is EXECUTE. If the EXECUTE
privilege exists on a named type, then a user can use the named type to:

Table 4–4 System Privileges for Named Types

Privilege Enables you to ...

CREATE TYPE Create named types in your own schemas

CREATE ANY TYPE Create a named type in any schema

ALTER ANY TYPE Alter a named type in any schema

DROP ANY TYPE Drop a named type in any schema

EXECUTE ANY TYPE Use and reference a named type in any schema

Managing Object Privileges

Configuring Privilege and Role Authorization 4-33

■ Define a table

■ Define a column in a relational table

■ Declare a variable or parameter of the named type

The EXECUTE privilege permits a user to invoke the methods in the type, including the
type constructor. This is similar to the EXECUTE privilege on a stored PL/SQL
procedure.

Method Execution Model
Method execution is the same as any other stored PL/SQL procedure.

Privileges Required to Create Types and Tables Using Types
To create a type, you must meet the following requirements:

■ You must have the CREATE TYPE system privilege to create a type in your schema
or the CREATE ANY TYPE system privilege to create a type in the schema of
another user. These privileges can be acquired explicitly or through a role.

■ The owner of the type must be explicitly granted the EXECUTE object privileges to
access all other types referenced within the definition of the type, or have been
granted the EXECUTE ANY TYPE system privilege. The owner cannot obtain the
required privileges through roles.

■ If the type owner intends to grant access to the type to other users, then the owner
must receive the EXECUTE privileges to the referenced types with the GRANT
OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If
not, then the type owner has insufficient privileges to grant access on the type to
other users.

To create a table using types, you must meet the requirements for creating a table and
the following additional requirements:

■ The owner of the table must have been directly granted the EXECUTE object
privilege to access all types referenced by the table, or has been granted the
EXECUTE ANY TYPE system privilege. The owner cannot exercise the required
privileges if these privileges were granted through roles.

■ If the table owner intends to grant access to the table to other users, then the
owner must have the EXECUTE privilege to the referenced types with the GRANT
OPTION or the EXECUTE ANY TYPE system privilege with the ADMIN OPTION. If
not, then the table owner has insufficient privileges to grant access on the table.

Example of Privileges for Creating Types and Tables Using Types
Assume that three users exist with the CONNECT and RESOURCE roles:

■ user1

■ user2

■ user3

The following DDL is run in the schema of user1:

CREATE TYPE type1 AS OBJECT (

See Also: "Managing Procedure Privileges" on page 4-28

See Also: "Managing Table Privileges" on page 4-25 for the
requirements for creating a table

Managing Object Privileges

4-34 Oracle Database Security Guide

 attr1 NUMBER);

CREATE TYPE type2 AS OBJECT (
 attr2 NUMBER);

GRANT EXECUTE ON type1 TO user2;
GRANT EXECUTE ON type2 TO user2 WITH GRANT OPTION;

The following DDL is performed in the schema of user2:

CREATE TABLE tab1 OF user1.type1;
CREATE TYPE type3 AS OBJECT (
 attr3 user1.type2);
CREATE TABLE tab2 (
 col1 user1.type2);

The following statements succeed because user2 has EXECUTE privilege on
user1.type2 with the GRANT OPTION:

GRANT EXECUTE ON type3 TO user3;
GRANT SELECT on tab2 TO user3;

However, the following grant fails because user2 does not have EXECUTE privilege
on user1.type1 with the GRANT OPTION:

GRANT SELECT ON tab1 TO user3;

The following statements can be successfully run by user3:

CREATE TYPE type4 AS OBJECT (
 attr4 user2.type3);
CREATE TABLE tab3 OF type4;

Privileges on Type Access and Object Access
Existing column-level and table-level privileges for DML statements apply to both
column objects and row objects.

Table 4–5 lists the privileges for object tables.

Similar table privileges and column privileges apply to column objects. Retrieving
instances does not in itself reveal type information. However, clients must access
named type information to interpret the type instance images. When a client requests
type information, Oracle Database checks for the EXECUTE privilege on the type.

Note: Customers should discontinue using the CONNECT and
RESOURCE roles, as they will be deprecated in future Oracle
Database releases. The CONNECT role presently retains only the
CREATE SESSION privilege.

Table 4–5 Privileges for Object Tables

Privilege Enables you to...

SELECT Access an object and its attributes from the table

UPDATE Modify the attributes of the objects that make up the rows in the table

INSERT Create new objects in the table

DELETE Delete rows

Managing Object Privileges

Configuring Privilege and Role Authorization 4-35

Consider the following schema:

CREATE TYPE emp_type (
 eno NUMBER, ename CHAR(31), eaddr addr_t);
CREATE TABLE emp OF emp_t;

In addition, consider the following two queries:

SELECT VALUE(emp) FROM emp;
SELECT eno, ename FROM emp;

For either query, Oracle Database checks the SELECT privilege of the user for the emp
table. For the first query, the user must obtain the emp_type type information to
interpret the data. When the query accesses the emp_type type, Oracle Database
checks the EXECUTE privilege of the user.

The second query, however, does not involve named types, so Oracle Database does
not check type privileges.

In addition, by using the schema from the previous section, user3 can perform the
following queries:

SELECT tab1.col1.attr2 FROM user2.tab1 tab1;
SELECT attr4.attr3.attr2 FROM tab3;

Note that in both SELECT statements, user3 does not have explicit privileges on the
underlying types, but the statement succeeds because the type and table owners have
the necessary privileges with the GRANT OPTION.

Oracle Database checks privileges on the following events, and returns an error if the
client does not have the privilege for the action:

■ Pinning an object in the object cache using its REF value causes Oracle Database to
check for the SELECT privilege on the containing object table.

■ Modifying an existing object or flushing an object from the object cache causes
Oracle Database to check for the UPDATE privilege on the destination object table.

■ Flushing a new object causes Oracle Database to check for the INSERT privilege
on the destination object table.

■ Deleting an object causes Oracle Database to check for the DELETE privilege on the
destination table.

■ Pinning an object of a named type causes Oracle Database to check EXECUTE
privilege on the object.

Modifying the attributes of an object in a client third-generation language application
causes Oracle Database to update the entire object. Therefore, the user needs the
UPDATE privilege on the object table. Having the UPDATE privilege on only certain
columns of the object table is not sufficient, even if the application only modifies
attributes corresponding to those columns. Therefore, Oracle Database does not
support column-level privileges for object tables.

Type Dependencies
As with stored objects, such as procedures and tables, types being referenced by other
objects are called dependencies. There are some special issues for types on which
tables depend. Because a table contains data that relies on the type definition for
access, any change to the type causes all stored data to become inaccessible. Changes
that can cause this are when necessary privileges required to use the type are revoked,

Granting a User Privileges and Roles

4-36 Oracle Database Security Guide

or the type or dependent types are dropped. If these actions occur, then the table
becomes invalid and cannot be accessed.

A table that is invalid because of missing privileges can automatically become valid
and accessible if the required privileges are granted again. A table that is invalid
because a dependent type was dropped can never be accessed again, and the only
permissible action is to drop the table.

Because of the severe effects that revoking a privilege on a type or dropping a type can
cause, the SQL statements REVOKE and DROP TYPE, by default, implement restricted
semantics. This means that if the named type in either statement has table or type
dependents, then an error is received and the statement cancels. However, if the
FORCE clause for either statement is used, then the statement always succeeds. If there
are depended-upon tables, then they are invalidated.

Granting a User Privileges and Roles
This section contains:

■ Granting System Privileges and Roles

■ Granting Object Privileges

■ Granting Privileges on Columns

It is also possible to grant roles to a user connected through a middle tier or proxy.
This is discussed in "Using a Middle Tier Server for Proxy Authentication" on
page 3-34.

Granting System Privileges and Roles
You can use the GRANT SQL statement to grant system privileges and roles to users
and roles. The following privileges are required:

■ To grant a system privilege, a user must be granted the system privilege with the
ADMIN option or must be granted the GRANT ANY PRIVILEGE system privilege.

■ To grant a role, a user must be granted the role with the ADMIN option or was
granted the GRANT ANY ROLE system privilege.

Example 4–11 grants the system privilege CREATE SESSION and the accts_pay role
to the user jward.

Example 4–11 Granting a System Privilege and a Role to a User

GRANT CREATE SESSION, accts_pay TO jward;

Example 4–11 grants the EXECUTE privilege on the exec_dir directory object to the
user jward.

Example 4–12 Granting the EXECUTE Privilege on a Directory Object

GRANT EXECUTE ON DIRECTORY exec_dir TO jward;

See Also: Oracle Database Reference for details about using the
REVOKE, DROP TYPE, and FORCE clauses

Note: Object privileges cannot be granted along with system
privileges and roles in the same GRANT statement.

Granting a User Privileges and Roles

Configuring Privilege and Role Authorization 4-37

Granting the ADMIN Option
If you specify the WITH ADMIN OPTION clause when you grant a privilege or role to a
user or role, then the privilege grant has the following expanded capabilities:

■ The grantee can grant or revoke the system privilege or role to or from any other
user or role in the database. Users cannot revoke a role from themselves.

■ The grantee can grant the system privilege or role with the ADMIN option.

■ The grantee of a role can alter or drop the role.

Example 4–13 grants the new_dba role with the WITH ADMIN OPTION clause to user
michael.

Example 4–13 Granting the ADMIN Option

GRANT new_dba TO michael WITH ADMIN OPTION;

User michael is able to not only use all of the privileges implicit in the new_dba role,
but he can also grant, revoke, and drop the new_dba role as deemed necessary.
Because of these powerful capabilities, use caution when granting system privileges or
roles with the ADMIN option. These privileges are usually reserved for a security
administrator, and are rarely granted to other administrators or users of the system.

Creating a New User with the GRANT Statement
Oracle Database enables you to create a new user with the GRANT statement. If you
specify a password using the IDENTIFIED BY clause, and the user name does not
exist in the database, then a new user with that user name and password is created.

Example 4–14 creates psmith as a new user while granting psmith the CREATE
SESSION system privilege.

Example 4–14 Creating a New User with the GRANT Statement

GRANT CREATE SESSION TO psmith IDENTIFIED BY password;

Granting Object Privileges
You can use the GRANT statement to grant object privileges to roles and users. To grant
an object privilege, you must fulfill one of the following conditions:

■ You own the object specified.

■ You have been granted the GRANT ANY OBJECT PRIVILEGE system privilege.
This privilege enables you to grant and revoke privileges on behalf of the object
owner.

■ The WITH GRANT OPTION clause was specified when you were granted the object
privilege.

Note: When a user creates a role, the role is automatically granted to
the creator with the ADMIN option.

See Also:

■ "Creating User Accounts" on page 2-1

■ "Minimum Requirements for Passwords" on page 3-3

Granting a User Privileges and Roles

4-38 Oracle Database Security Guide

Example 4–15 grants the SELECT, INSERT, and DELETE object privileges for all
columns of the emp table to the users jfee and tsmith.

Example 4–15 Granting Object Privileges to Users

GRANT SELECT, INSERT, DELETE ON emp TO jfee, tsmith;

To grant all object privileges on the salary view to user jfee, use the ALL keyword
as shown in the following example:

GRANT ALL ON salary TO jfee;

Specifying the GRANT OPTION Clause
Specify the WITH GRANT OPTION clause with the GRANT statement to enable the
grantee to grant the object privileges to other users. The user whose schema contains
an object is automatically granted all associated object privileges with the GRANT
OPTION. This special privilege allows the grantee several expanded privileges:

■ The grantee can grant the object privilege to any user in the database, with or
without the GRANT OPTION, and to any role in the database.

■ If both of the following conditions are true, then the grantee can create views on
the table, and grant the corresponding privileges on the views to any user or role
in the database:

– The grantee receives object privileges for the table with the GRANT OPTION.

– The grantee has the CREATE VIEW or CREATE ANY VIEW system privilege.

Granting Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege enables users to grant and
revoke any object privilege on behalf of the object owner. This privilege provides a
convenient means for database and application administrators to grant access to
objects in any schema without requiring that they connect to the schema. Login
credentials do not need to be maintained for schema owners who have this privilege,
which reduces the number of connections required during configuration.

This system privilege is part of the Oracle Database supplied DBA role and is thus
granted (with the ADMIN option) to any user connecting AS SYSDBA (user SYS). As
with other system privileges, the GRANT ANY OBJECT PRIVILEGE system privilege
can only be granted by a user who possesses the ADMIN option.

Note: System privileges and roles cannot be granted along with
object privileges in the same GRANT statement.

Note: A grantee cannot regrant access to objects unless the
original grant included the GRANT OPTION. Thus in the example
just given, jfee cannot use the GRANT statement to grant object
privileges to anyone else.

Note: The GRANT OPTION is not valid when granting an object
privilege to a role. Oracle Database prevents the propagation of object
privileges through roles so that grantees of a role cannot propagate
object privileges received by means of roles.

Granting a User Privileges and Roles

Configuring Privilege and Role Authorization 4-39

The recorded grantor of access rights to an object is either the object owner or the
person exercising the GRANT ANY OBJECT PRIVILEGE system privilege. If the
grantor with GRANT ANY OBJECT PRIVILEGE does not have the object privilege
with the GRANT OPTION, then the object owner is shown as the grantor. Otherwise,
when that grantor has the object privilege with the GRANT OPTION, then that grantor
is recorded as the grantor of the grant.

For example, consider the following scenario. User adams possesses the GRANT ANY
OBJECT PRIVILEGE system privilege. He does not possess any other grant
privileges. He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO blake WITH GRANT OPTION;

If you examine the DBA_TAB_PRIVS view, then you will see that hr is shown as the
grantor of the privilege:

SELECT GRANTEE, GRANTOR, PRIVILEGE, GRANTABLE
 FROM DBA_TAB_PRIVS
 WHERE TABLE_NAME = 'EMPLOYEES' and OWNER = 'HR';

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES

Now assume that user blake also has the GRANT ANY OBJECT PRIVILEGE system.
He issues the following statement:

GRANT SELECT ON HR.EMPLOYEES TO clark;

In this case, when you query the DBA_TAB_PRIVS view again, you see that blake is
shown as being the grantor of the privilege:

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- -------- --------- ----------
BLAKE HR SELECT YES
CLARK BLAKE SELECT NO

This occurs because blake already possesses the SELECT privilege on
HR.EMPLOYEES with the GRANT OPTION.

Granting Privileges on Columns
You can grant INSERT, UPDATE, or REFERENCES privileges on individual columns in
a table.

Note: The audit record generated by the GRANT statement always
shows the actual user who performed the grant.

See Also: "Revoking Object Privileges on Behalf of the Object
Owner" on page 4-41

Revoking Privileges and Roles from a User

4-40 Oracle Database Security Guide

The following statement grants the INSERT privilege on the acct_no column of the
accounts table to user psmith:

GRANT INSERT (acct_no) ON accounts TO psmith;

In the following example, object privilege for the ename and job columns of the emp
table are granted to the users jfee and tsmith:

GRANT INSERT(ename, job) ON emp TO jfee, tsmith;

Row-Level Access Control
You can also provide access control at the row level, that is, within objects, using
Virtual Private Database (VPD) or Oracle Label Security (OLS).

Revoking Privileges and Roles from a User
This section contains:

■ Revoking System Privileges and Roles

■ Revoking Object Privileges

■ Cascading Effects of Revoking Privileges

Revoking System Privileges and Roles
You can revoke system privileges and roles using the SQL statement REVOKE. Any
user with the ADMIN option for a system privilege or role can revoke the privilege or
role from any other database user or role. The revoker does not have to be the user that
originally granted the privilege or role. Users with GRANT ANY ROLE can revoke any
role.

The following statement revokes the CREATE TABLE system privilege and the
accts_rec role from user psmith:

REVOKE CREATE TABLE, accts_rec FROM psmith;

Caution: Before granting a column-specific INSERT privilege,
determine if the table contains any columns on which NOT NULL
constraints are defined. Granting selective insert capability without
including the NOT NULL columns prevents the user from inserting
any rows into the table. To avoid this situation, ensure that each
NOT NULL column can either be inserted into or has a non-NULL
default value. Otherwise, the grantee will not be able to insert rows
into the table and will receive an error.

See Also:

■ Chapter 7, "Using Oracle Virtual Private Database
to Control Data Access"

■ "Adding Policies for Column-Level Oracle Virtual Private
Database" on page 7-8

■ Oracle Label Security Administrator's Guide

Revoking Privileges and Roles from a User

Configuring Privilege and Role Authorization 4-41

Revoking Object Privileges
To revoke an object privilege, you must fulfill one of the following conditions:

■ You previously granted the object privilege to the user or role.

■ You possess the GRANT ANY OBJECT PRIVILEGE system privilege that enables
you to grant and revoke privileges on behalf of the object owner.

You can only revoke the privileges that you, the person who granted the privilege,
directly authorized. You cannot revoke grants that were made by other users to whom
you granted the GRANT OPTION. However, there is a cascading effect. If the object
privileges of the user who granted the privilege are revoked, then the object privilege
grants that were propagated using the GRANT OPTION are revoked as well.

Assuming you are the original grantor of the privilege, the following statement
revokes the SELECT and INSERT privileges on the emp table from users jfee and
psmith:

REVOKE SELECT, INSERT ON emp FROM jfee, psmith;

The following statement revokes all object privileges for the dept table that you
originally granted to the human_resource role:

REVOKE ALL ON dept FROM human_resources;

Revoking Object Privileges on Behalf of the Object Owner
The GRANT ANY OBJECT PRIVILEGE system privilege enables you to revoke any
specified object privilege where the object owner is the grantor. This occurs when the
object privilege is granted by the object owner, or on behalf of the owner by any user
holding the GRANT ANY OBJECT PRIVILEGE system privilege.

In a situation where the object privilege was granted by both the owner of the object
and the user executing the REVOKE statement (who has both the specific object
privilege and the GRANT ANY OBJECT PRIVILEGE system privilege), Oracle
Database only revokes the object privilege granted by the user issuing the REVOKE
statement. This can be illustrated by continuing the example started in "Granting
Object Privileges on Behalf of the Object Owner" on page 4-38.

At this point, user blake granted the SELECT privilege on HR.EMPLOYEES to clark.
Even though blake possesses the GRANT ANY OBJECT PRIVILEGE system
privilege, he also holds the specific object privilege, thus this grant is attributed to him.
Assume that user HR also grants the SELECT privilege on HR.EMPLOYEES to user
clark. A query of the DBA_TAB_PRIVS view shows that the following grants are in
effect for the HR.EMPLOYEES table:

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES

Note: The ADMIN option for a system privilege or role cannot be
selectively revoked. Instead, revoke the privilege or role, and then
grant the privilege or role again but without the ADMIN option.

Note: The GRANT OPTION for an object privilege cannot be
selectively revoked. Instead, revoke the object privilege and then
grant it again but without the GRANT OPTION. Users cannot revoke
object privileges from themselves.

Revoking Privileges and Roles from a User

4-42 Oracle Database Security Guide

CLARK BLAKE SELECT NO
CLARK HR SELECT NO

User blake now issues the following REVOKE statement:

REVOKE SELECT ON HR.EMPLOYEES FROM clark;

Only the object privilege for user clark granted by user blake is removed. The grant
by the object owner, HR, remains.

GRANTEE GRANTOR PRIVILEGE GRANTABLE
-------- ------- ----------- ----------
BLAKE HR SELECT YES
CLARK HR SELECT NO

If blake issues the REVOKE statement again, then this time the effect is to remove the
object privilege granted by adams (on behalf of HR), using the GRANT ANY OBEJCT
PRIVILEGE system privilege.

Revoking Column-Selective Object Privileges
Although users can grant column-specific INSERT, UPDATE, and REFERENCES
privileges for tables and views, they cannot selectively revoke column-specific
privileges with a similar REVOKE statement. Instead, the grantor must first revoke the
object privilege for all columns of a table or view, and then selectively repeat the grant
of the column-specific privileges that the grantor intends to keep in effect.

For example, assume that role human_resources was granted the UPDATE privilege
on the deptno and dname columns of the table dept. To revoke the UPDATE privilege
on just the deptno column, issue the following two statements:

REVOKE UPDATE ON dept FROM human_resources;
GRANT UPDATE (dname) ON dept TO human_resources;

The REVOKE statement revokes the UPDATE privilege on all columns of the dept table
from the role human_resources. The GRANT statement then repeats, restores, or
reissues the grant of the UPDATE privilege on the dname column to the role human_
resources.

Revoking the REFERENCES Object Privilege
If the grantee of the REFERENCES object privilege has used the privilege to create a
foreign key constraint (that currently exists), then the grantor can revoke the privilege
only by specifying the CASCADE CONSTRAINTS option in the REVOKE statement:

REVOKE REFERENCES ON dept FROM jward CASCADE CONSTRAINTS;

Any foreign key constraints currently defined that use the revoked REFERENCES
privilege are dropped when the CASCADE CONSTRAINTS clause is specified.

Cascading Effects of Revoking Privileges
Depending on the type of privilege, there may be cascading effects when a privilege is
revoked. This is discussed in the following sections:

■ Cascading Effects When Revoking System Privileges

■ Cascading Effects When Revoking Object Privileges

See Also: "Granting Object Privileges on Behalf of the Object
Owner" on page 4-38

Revoking Privileges and Roles from a User

Configuring Privilege and Role Authorization 4-43

Cascading Effects When Revoking System Privileges
There are no cascading effects when revoking a system privilege related to DDL
operations, regardless of whether the privilege was granted with or without the
ADMIN option. For example, assume the following:

1. The security administrator grants the CREATE TABLE system privilege to user
jfee with the ADMIN option.

2. User jfee creates a table.

3. User jfee grants the CREATE TABLE system privilege to user tsmith.

4. User tsmith creates a table.

5. The security administrator revokes the CREATE TABLE system privilege from user
jfee.

6. The table created by user jfee continues to exist. User tsmith still has the table
and the CREATE TABLE system privilege.

You can observe cascading effects when you revoke a system privilege related to a
DML operation. If the SELECT ANY TABLE privilege is revoked from a user, then all
procedures contained in the users schema relying on this privilege can longer be
executed successfully until the privilege is reauthorized.

Cascading Effects When Revoking Object Privileges
Revoking an object privilege can have cascading effects. Remember the following:

■ Object definitions that depend on a DML object privilege can be affected if the
DML object privilege is revoked. For example, assume that the body of the test
procedure includes a SQL statement that queries data from the emp table. If the
SELECT privilege on the emp table is revoked from the owner of the test
procedure, then the procedure can no longer be executed successfully.

■ When a REFERENCES privilege for a table is revoked from a user, any foreign
key integrity constraints that are defined by the user and require the dropped
REFERENCES privilege are automatically dropped. For example, assume that
user jward is granted the REFERENCES privilege for the deptno column of the
dept table. This user now creates a foreign key on the deptno column in the emp
table that references the deptno column of the dept table. If the REFERENCES
privilege on the deptno column of the dept table is revoked, then the foreign key
constraint on the deptno column of the emp table is dropped in the same
operation.

■ The object privilege grants propagated using the GRANT OPTION are revoked
if the object privilege of a grantor is revoked. For example, assume that user1 is
granted the SELECT object privilege with the GRANT OPTION, and grants the
SELECT privilege on emp to user2. Subsequently, the SELECT privilege is
revoked from user1. This REVOKE statement is also cascaded to user2. Any
objects that depend on the revoked SELECT privilege of user1 and user2 can
also be affected, as described earlier.

Object definitions that require the ALTER and INDEX DDL object privileges are not
affected if the ALTER or INDEX object privilege is revoked. For example, if the INDEX
privilege is revoked from a user that created an index on a table that belongs to
another user, then the index continues to exist after the privilege is revoked.

Granting to and Revoking from the PUBLIC User Group

4-44 Oracle Database Security Guide

Granting to and Revoking from the PUBLIC User Group
You can grant and revoke privileges and roles from the user group PUBLIC. Because
PUBLIC is accessible to every database user, all privileges and roles granted to PUBLIC
are accessible to every database user.

Security administrators and database users should grant a privilege or role to PUBLIC
only if every database user requires the privilege or role. This recommendation
reinforces the general rule that, at any given time, each database user should have only
the privileges required to accomplish the current group tasks successfully.

Revoking a privilege from PUBLIC can cause significant cascading effects. If any
privilege related to a DML operation is revoked from PUBLIC (for example, SELECT
ANY TABLE or UPDATE ON emp), then all procedures in the database, including
functions and packages, must be reauthorized before they can be used again. Therefore,
be careful when you grant and revoke DML-related privileges to or from PUBLIC.

Granting Roles Using the Operating System or Network
This section contains:

■ About Granting Roles Using the Operating System or Network

■ Using Operating System Role Identification

■ Using Operating System Role Management

■ Granting and Revoking Roles When OS_ROLES Is Set to TRUE

■ Enabling and Disabling Roles When OS_ROLES Is Set to TRUE

■ Using Network Connections with Operating System Role Management

About Granting Roles Using the Operating System or Network
Instead of a security administrator explicitly granting and revoking database roles to
and from users using GRANT and REVOKE statements, the operating system on which
Oracle Database runs can grant roles to users at connect time. Roles can be
administered using the operating system and passed to Oracle Database when a user
creates a session. As part of this mechanism, the default roles of a user and the roles
granted to a user with the ADMIN option can be identified. If the operating system is
used to authorize users for roles, then all roles must be created in the database and
privileges assigned to the role with GRANT statements.

Roles can also be granted through a network service.

The advantage of using the operating system to identify the database roles of a user is
that privilege management for an Oracle database can be externalized. The security
facilities offered by the operating system control user privileges. This option may offer
advantages of centralizing security for several system activities, such as the following
situation:

■ MVS Oracle administrators want RACF groups to identify database user roles.

See Also:

■ Managing Object Dependencies in Oracle Database
Administrator's Guide for more information about object
dependencies

■ "Guidelines for Securing Data" on page 10-9

Granting Roles Using the Operating System or Network

Configuring Privilege and Role Authorization 4-45

■ UNIX Oracle administrators want UNIX groups to identify database user roles.

■ VMS Oracle administrators want to use rights identifiers to identify database user
roles.

The main disadvantage of using the operating system to identify the database roles of
a user is that privilege management can only be performed at the role level. Individual
privileges cannot be granted using the operating system, but they can still be granted
inside the database using GRANT statements.

A second disadvantage of using this feature is that, by default, users cannot connect to
the database through the shared server or any other network connection if the
operating system is managing roles. However, you can change this default as
described in "Using Network Connections with Operating System Role Management"
on page 4-46.

Using Operating System Role Identification
To cause a database to use the operating system to identify the database roles of each
user when a session is created, set the initialization parameter OS_ROLES to TRUE (and
restart the instance, if it is currently running). When a user tries to create a session with
the database, Oracle Database initializes the user security domain using the database
roles identified by the operating system.

To identify database roles for a user, the operating system account for each Oracle
Database user must have operating system identifiers (these may be called groups,
rights identifiers, or other similar names) that indicate which database roles are to be
available for the user. Role specification can also indicate which roles are the default
roles of a user and which roles are available with the ADMIN option. No matter which
operating system is used, the role specification at the operating system level follows
the format:

ora_ID_ROLE[[_d][_a][_da]]

In this specification:

■ ID has a definition that varies on different operating systems. For example, on
VMS, ID is the instance identifier of the database; on VMS, it is the computer type;
and on UNIX, it is the system ID.

■ ROLE is the name of the database role.

■ d is an optional character that indicates this role is to be a default role of the
database user.

■ a is an optional character that indicates this role is to be granted to the user with
the ADMIN option. This allows the user to grant the role to other roles only. Roles
cannot be granted to users if the operating system is used to manage roles.

Note: The features described in this section are available only on
some operating systems. See your operating system-specific Oracle
Database documentation to determine if you can use these features.

Note: ID is case-sensitive to match your ORACLE_SID. ROLE is
not case-sensitive.

Granting Roles Using the Operating System or Network

4-46 Oracle Database Security Guide

For example, an operating system account might have the following roles identified in
its profile:

ora_PAYROLL_ROLE1
ora_PAYROLL_ROLE2_a
ora_PAYROLL_ROLE3_d
ora_PAYROLL_ROLE4_da

When the corresponding user connects to the payroll instance of Oracle Database,
role3 and role4 are defaults, while role2 and role4 are available with the ADMIN
option.

Using Operating System Role Management
When you use operating system-managed roles, remember that database roles are
being granted to an operating system user. Any database user to which the operating
system user is able to connect will have the authorized database roles enabled. For this
reason, you should consider defining all Oracle Database users as IDENTIFIED
EXTERNALLY if you are using OS_ROLES = TRUE, so that the database accounts are
tied to the operating system account that was granted privileges.

Granting and Revoking Roles When OS_ROLES Is Set to TRUE
If the OS_ROLES parameter is set to TRUE, then the operating system completely
manages the granting and revoking of roles to users. Any previous granting of roles to
users using GRANT statements do not apply. However, they are still listed in the data
dictionary. Only the role grants to users made at the operating system level apply.
Users can still grant privileges to roles and users.

Enabling and Disabling Roles When OS_ROLES Is Set to TRUE
If the OS_ROLES initialization parameter is set to TRUE, then any role granted by the
operating system can be dynamically enabled using the SET ROLE statement. This
still applies, even if the role was defined to require a password or operating system
authorization. However, any role not identified in the operating system account of a
user cannot be specified in a SET ROLE statement, even if a role was granted using a
GRANT statement when OS_ROLES = FALSE. (If you specify such a role, then Oracle
Database ignores it.)

When OS_ROLES is set to TRUE, then the user can enable up to 148 roles. Remember
that this number includes other roles that may have been granted to the role.

Using Network Connections with Operating System Role Management
If you have the operating system manage roles, then, by default, users cannot connect
to the database through the shared server. This restriction is the default because a
remote user could impersonate another operating system user over an unsecure
connection.

Note: If either the d or a character is specified, then precede that
character by an underscore (_).

Note: If the operating system grants a role to a user with the
ADMIN option, then the user can grant the role only to other roles.

When Do Grants and Revokes Take Effect?

Configuring Privilege and Role Authorization 4-47

If you are not concerned with this security risk and want to use operating system role
management with the shared server, or any other network connection, then set the
initialization parameter REMOTE_OS_ROLES to TRUE. The change takes effect the next
time you start the instance and mount the database. The default setting of this
parameter is FALSE.

When Do Grants and Revokes Take Effect?
Depending on what is granted or revoked, a grant or revoke takes effect at different
times:

■ All grants and revokes of system and object privileges to anything (users, roles,
and PUBLIC) take immediate effect.

■ All grants and revokes of roles to anything (users, other roles, PUBLIC) take effect
only when a current user session issues a SET ROLE statement to reenable the role
after the grant and revoke, or when a new user session is created after the grant or
revoke.

You can see which roles are currently enabled by examining the SESSION_ROLES
data dictionary view.

How the SET ROLE Statement Affects Grants and Revokes
During the user session, the user or an application can use the SET ROLE statement
any number of times to change the roles currently enabled for the session. The user
must already be granted the roles that are named in the SET ROLE statement.

Example 4–16 enables the role clerk, which you have already been granted, and
specifies the password.

Example 4–16 Using SET ROLE to Grant a Role and Specify a Password

SET ROLE clerk IDENTIFIED BY password;

Replace password with a password that is secure. "Minimum Requirements for
Passwords" on page 3-3 describes the minimum requirements for passwords.

Example 4–17 shows how to use SET ROLE to disable all roles.

Example 4–17 Using SET ROLE to Disable All Roles

SET ROLE NONE;

Specifying Default Roles
When a user logs on, Oracle Database enables all privileges granted explicitly to the
user and all privileges in the default roles of the user.

You can set and alter a list of default roles for a user by using the ALTER USER SQL
statement. The ALTER USER statement specifies roles that are to be enabled when a
user connects to the database. The user must have been directly granted the roles with
a GRANT statement, or the roles must have been created by the user with the CREATE
ROLE privilege. For information about the restrictions of the DEFAULT ROLE clause of
the ALTER USER statement, see Oracle Database SQL Language Reference.

Example 4–18 sets the default roles payclerk and pettycash for user jane:

Managing Fine-Grained Access in PL/SQL Packages and Types

4-48 Oracle Database Security Guide

Example 4–18 Using ALTER USER to Set Default Roles

ALTER USER jane DEFAULT ROLE payclerk, pettycash;

You cannot set default roles for a user in the CREATE USER statement. When you first
create a user, the default user role setting is ALL, which causes all roles subsequently
granted to the user to be default roles. Use the ALTER USER statement to limit the
default user roles.

The Maximum Number of Roles That a User Can Enable
A user can enable no more than 148 roles.You can grant a user as many roles as you
want, but you should restrict the number of roles granted to a user to the minimum
roles the user needs. See "Guidelines for Securing Roles" on page 10-6 for additional
guidelines on granting roles to users.

Managing Fine-Grained Access in PL/SQL Packages and Types
You can configure user access control to external network services and wallets through
the UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR PL/SQL
packages, the DBMS_LDAP PL/SQL package, and the HttpUriType type.

■ Configuring fine-grained access control for users and roles that need to access
external network services from the database. This way, specific groups of users
can connect to one or more host computers, based on privileges that you grant
them. Typically, you use this feature to control access to applications that run on
specific host addresses.

■ Configuring fine-grained access control to Oracle wallets to make HTTP
requests that require password or client-certificate authentication. This feature
enables you to grant privileges to users who are using passwords and client
certificates stored in Oracle wallets to access external protected HTTP resources
through the UTL_HTTP package. For example, you can configure applications to
use the credentials stored in the wallets instead of hard-coding the credentials in
the applications. For more information about how you can use wallets to store
passwords and credentials, see Oracle Database Advanced Security Administrator's
Guide.

This section contains:

■ About Fine-Grained Access Control to External Network Services

Caution: When you create a role (other than a global role or an
application role), it is granted implicitly to you, and your set of
default roles is updated to include the new role. You can grant as
many roles as you want to a user, but remember that the user can
have no more than 148 roles enabled by default. Otherwise, the
user will be unable to log in to the database and an ORA-28031:
maximum of 148 enabled roles exceeded error is raised.
When aggregate roles, such as the DBA role, are granted to a user,
the roles granted to the role are included in the number of roles the
user has. For example, if a role has 20 roles granted to it and you
grant that role to the user, then the user now has 21 additional roles.
Therefore, when you grant new roles to a user, use the DEFAULT
ROLE clause of the ALTER USER statement to ensure that not too
many roles are specified as that user’s default roles.

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-49

■ About Access Control to Wallets

■ Upgrading Applications That Depend on Packages That Use External Network
Services

■ Creating an Access Control List for External Network Services

■ Configuring Access Control to a Wallet

■ Examples of Creating Access Control Lists

■ Specifying a Group of Network Host Computers

■ Precedence Order for a Host Computer in Multiple Access Control List
Assignments

■ Precedence Order for a Host in Access Control List Assignments with Port Ranges

■ Checking Privilege Assignments That Affect User Access to a Network Host

■ Setting the Precedence of Multiple Users and Roles in One Access Control List

■ Finding Information About Access Control Lists Configured for User Access

About Fine-Grained Access Control to External Network Services
To configure fine-grained access control to external network services, you create an
access control list (ACL), which is stored in Oracle XML DB. You can create the access
control list by using Oracle XML DB itself, or by using the DBMS_NETWORK_ACL_
ADMIN and DBMS_NETWORK_ACL_UTILITY PL/SQL packages. This guide explains
how to use these packages to create and manage the access control list. To create an
access control list by using Oracle XML DB and for general conceptual information
about access control lists, see Oracle XML DB Developer's Guide.

This feature enhances security for network connections because it restricts the external
network hosts that a database user can connect to using the PL/SQL network utility
packages UTL_TCP, UTL_SMTP, UTL_MAIL, UTL_HTTP, and UTL_INADDR, the DBMS_
LDAP PL/SQL package, and the HttpUriType type. Otherwise, an intruder who
gained access to the database could maliciously attack the network, because, by
default, the PL/SQL utility packages are created with the EXECUTE privilege granted
to PUBLIC users. These PL/SQL network utility packages, and the DBMS_NETWORK_
ACL_ADMIN and DBMS_NETWORK_ACL_UTILITY packages, support both IP Version 4
(IPv4) and IP Version 6 (IPv6) addresses. This guide explains how to manage access
control to both versions. For detailed information about how the IPv4 and IPv6
notation works with Oracle Database, see Oracle Database Net Services Administrator's
Guide.

About Access Control to Wallets
When a user accesses Web pages that are protected by a remote Web server, the user
can authenticate himself or herself by supplying the passwords and client certificates
that are stored in an Oracle wallet. The Oracle wallet provides secure storage of user
passwords and client certificates.

See Also: "Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit
Policy" on page 9-44 for an example of configuring access control to
external network services for e-mail alerts

Managing Fine-Grained Access in PL/SQL Packages and Types

4-50 Oracle Database Security Guide

To configure access control to a wallet, you need the following components:

■ An Oracle wallet. You can create the wallet using the Oracle Database mkstore
utility or Oracle Wallet Manager. The HTTP request will use the external password
store or the client certificate in the wallet to authenticate the user

■ An access control list to grant privileges to the user to use the wallet. To create
the access control list, you use the DBMS_NETWORK_ACL_ADMIN PL/SQL package.

■ A way to associate the wallet with the access control list. To do so, use the DBMS_
NETWORK_ACL_ADMIN PL/SQL package.

The use of wallets is beneficial because it provides secure storage of passwords and
client certificates necessary to access protected Web pages.

Upgrading Applications That Depend on Packages That Use External Network Services
If you have upgraded from a release before Oracle Database 11g Release 1 (11.1), and
your applications depend on PL/SQL network utility packages UTL_TCP, UTL_SMTP,
UTL_MAIL, UTL_HTTP, and UTL_INADDR, the DBMS_LDAP PL/SQL package, or the
HttpUriType type, then the following error may occur when you try to run the
application:

ORA-24247: network access denied by access control list (ACL)

Use the procedures in this section to reconfigure the network access for the
application. See also Oracle Database Upgrade Guide for compatibility issues for
applications that depend on the PL/SQL network utility packages. For detailed
information about the network utility packages, see Oracle Database PL/SQL Packages
and Types Reference.

Creating an Access Control List for External Network Services
When you create access control lists for network connections, you should create one
access control list dedicated to a group of common users, for example, users who need
access to a particular application that resides on a specific host computer. For ease of
administration and for good system performance, do not create too many access
control lists. Network hosts accessible to the same group of users should share the
same access control list.

To create the access control list by using the DBMS_NETWORK_ACL_ADMIN package,
follow these steps:

■ Step 1: Create the Access Control List and Its Privilege Definitions

■ Step 2: Assign the Access Control List to One or More Network Hosts

Step 1: Create the Access Control List and Its Privilege Definitions
Use the DBMS_NETWORK_ACL_ADMIN.CREATE_ACL procedure to create the content of
the access control list. It contains a name of the access control list, a brief description,
and privilege settings for one user or role that you want to associate with the access
control list. In an access control list, privileges for each user or role are grouped
together as an access control entry (ACE). An access control list must have the
privilege settings for at least one user or role.

See Also: "Configuring Access Control to a Wallet" on page 4-54

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-51

for example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'file_name.xml',
 description => 'file description',
 principal => 'user_or_role',
 is_grant => TRUE|FALSE,
 privilege => 'connect|resolve',
 start_date => null|timestamp_with_time_zone,
 end_date => null|timestamp_with_time_zone);
END;

In this specification:

■ acl: Enter a name for the access control list XML file. Oracle Database creates this
file relative to the /sys/acls directory in the XML DB Repository in the
database. Include the .xml extension. For example:

acl => 'us-example-com-permissions.xml',

■ description: Enter a brief description of the purpose of this file. For example:

description => 'Network connection permission for ACCT_MGR role',

■ principal: Enter the first user account or role being granted or denied
permissions. For example:

principal => 'ACCT_MGR',

Enter the name of the user account or role in case sensitive characters. For
example, if the database stores the role name ACCT_MGR in all capital letters,
entering it in mixed or lower case will not work. You can find the user accounts
and roles in the current database instance by querying the DBA_USERS and DBA_
ROLES data dictionary views. Typically, user names and roles are stored in
upper-case letters.

If you want to enter multiple users or grant additional privileges to this user or
role, use the DBMS_NETWORK_ACL.ADD_PRIVILEGE procedure (described next)
after you have created this access control list XML file.

■ is_grant: Enter either TRUE or FALSE, to indicate whether the privilege is to be
granted or denied. For example:

is_grant => TRUE,

■ privilege: Enter either connect or resolve. This setting is case sensitive, so
always enter it in lowercase. For example:

privilege => 'connect',

The connect privilege grants the user permission to connect to a network service
at an external host. The resolve privilege grants the user permission to resolve a
network host name or an IP address.

Note: You cannot import or export the access control list settings by
using the Oracle Database import or export utilities such as Oracle
Data Pump.

Managing Fine-Grained Access in PL/SQL Packages and Types

4-52 Oracle Database Security Guide

A database user needs the connect privilege to an external network host
computer if he or she is connecting using the UTL_TCP, UTL_SMTP, UTL_MAIL,
UTL_HTTP, the DBMS_LDAP package, and the HttpUriType type. To resolve the
host name that was given a host IP address, or the IP address that was given a host
name, with the UTL_INADDR package, grant the database user the resolve
privilege instead.

You can use the data dictionary views described in "Finding Information About
Access Control Lists Configured for User Access" on page 4-70 to find more
information about existing privileges and network connections.

■ start_date: (Optional) Enter the start date for the access control entry (ACE), in
TIMESTAMP WITH TIME ZONE format (YYYY-MM-DD HH:MI:SS.FF TZR).
When specified, the access control entry will be valid only on or after the specified
date. The default is null. For example, to set a start date of February 28, 2008, at
6:30 a.m. in San Francisco, California, U.S., which is in the Pacific time zone:

start_date => '2008-02-28 06:30:00.00 US/Pacific',

The NLS_TIMESTAMP_FORMAT initialization parameter sets the default timestamp
format. See Oracle Database Reference for more information.

■ end_date: (Optional) Enter the end date for the access control entry (ACE), in
TIMESTAMP WITH TIME ZONE format (YYYY-MM-DD HH:MI:SS.FF TZR).
When specified, the access control entry expires after the specified date. The end_
date setting must be greater than or equal to the start_date setting. The
default is null.

For example, to set an end date of December 10, 2008, at 11:59 p.m. in San
Francisco, California, U.S., which is in the Pacific time zone:

end_date => '2008-12-10 23:59:00.00 US/Pacific');

To add more users or roles to the access control list, or grant additional privileges to
one user or role, use the DBMS_NETWORK_ACL.ADD_PRIVILEGE procedure. The
syntax is as follows:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'file_name.xml',
 principal => 'user_or_role',
 is_grant => TRUE|FALSE,
 privilege => 'connect|resolve',
 position => null|value,
 start_date => null|timestamp_with_time_zone,
 end_date => null|timestamp_with_time_zone);
END;

As you can see, the parameters to add the privilege are the similar to those in the
CREATE_ACL procedure, except that description is not included and the position
parameter, which sets the order of precedence for multiple users or roles, was added.
Because you now are adding more than one user or role, you may want to consider
setting their precedence. "Setting the Precedence of Multiple Users and Roles in One
Access Control List" on page 4-69 provides more information.

Other DBMS_NETWORK_ACL_ADMIN procedures that are available for this step are
DELETE_PRIVILEGE and DROP_ACL.

At this stage, you have created an access control list that defines the privileges needed
to connect to a network host. However, the access control list has no effect until you
complete Step 2: Assign the Access Control List to One or More Network Hosts.

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-53

Step 2: Assign the Access Control List to One or More Network Hosts
After you create the access control list, then you are ready to assign it to one or more
network host computers. You can use the DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL
procedure to do so.

For example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'file_name.xml',
 host => 'network_host',
 lower_port => null|port_number,
 upper_port => null|port_number);
END;

In this specification:

■ acl: Enter the name of the access control list XML file (from Step 1: Create the
Access Control List and Its Privilege Definitions) to assign to the network host.
Oracle Database creates this file relative to the /sys/acls directory in the XML
DB Repository in the database. Include the .xml extension. For example:

acl => 'us-example-com-permissions.xml',

■ host: Enter the network host to which this access control list will be assigned.
This setting can be a name or IP address of the network host. Host names are case
insensitive. For example:

host => 'us.example.com',

If you specify localhost, and if the host name has not been specified with the
UTL_INADDR and UTL_HTTP PL/SQL packages in situations in which the local
host is assumed, then these packages will search for and use the ACL that has
been assigned localhost for the host setting.

See the following sections for more information about how network host
computers in access control list assignments work:

– "Specifying a Group of Network Host Computers" on page 4-64

– "Checking Privilege Assignments That Affect User Access to a Network Host"
on page 4-65

– "Precedence Order for a Host Computer in Multiple Access Control List
Assignments" on page 4-64

– "Precedence Order for a Host in Access Control List Assignments with Port
Ranges" on page 4-65

■ lower_port: (Optional) For TCP connections, enter the lower boundary of the
port range. Use this setting for the connect privilege only; omit it for the
resolve privilege. The default is null, which means that there is no port
restriction (that is, the ACL applies to all ports). The range of port numbers is
between 1 and 65535.

For example:

lower_port => 80,

■ upper_port: (Optional) For TCP connections, enter the upper boundary of the
port range. Use this setting for connect privileges only; omit it for resolve
privileges. The default is null, which means that there is no port restriction (that
is, the ACL applies to all ports). The range of port numbers is between 1 and 65535

Managing Fine-Grained Access in PL/SQL Packages and Types

4-54 Oracle Database Security Guide

For example:

upper_port => 3999);

If you enter a value for the lower_port and leave the upper_port at null (or
just omit it), Oracle Database assumes the upper_port setting is the same as the
lower_port. For example, if you set lower_port to 80 and omit upper_port,
the upper_port setting is assumed to be 80.

The resolve privilege in the access control list takes no effect when a port range
is specified in the access control list assignment.

Only one access control list can be assigned to any host computer, domain, or IP
subnet, and if specified, the TCP port range. When you assign a new access control list
to a network target, Oracle Database unassigns the previous access control list that was
assigned to the same target. However, Oracle Database does not drop the access
control list. You can drop the access control list by using the DROP_ACL procedure. To
remove an access control list assignment, use the UNASSIGN_ACL procedure.

Depending on how you create and maintain the access control list, the two steps may
overlap. For example, you can create an access control list that has privileges for five
users in it, and then apply it to two host computers. Later on, you can modify this
access control list to have different or additional users and privileges, and assign it to
different or additional host computers.

All access control list changes, including the assignment to network hosts, are
transactional. They do not take effect until the transaction is committed.

You can find information about existing privileges and network connections by using
the data dictionary views described in Table 4–6, " Data Dictionary Views That Display
Information about Access Control Lists" on page 4-70.

For information about using the DBMS_NETWORK_ACL_ADMIN package, see Oracle
Database PL/SQL Packages and Types Reference.

Configuring Access Control to a Wallet
This method lets you grant access to the passwords and client certificates that are
stored in an Oracle wallet to users to authenticate themselves to an external Web
server. This enables the user to retrieve protected Web pages from the Web server.

This section contains:

■ Step 1: Create an Oracle Wallet

■ Step 2: Create an Access Control List that Grants the Wallet Privileges

■ Step 3: Assign the Access Control List to the Wallet

■ Step 4: Make the HTTP Request with the Passwords and Client Certificates

Step 1: Create an Oracle Wallet
To create the wallet, you can use either the mkstore command-line utility or the
Oracle Wallet Manager user interface. To store passwords in the wallet, you must use
mkstore. You can use both standard and PKCS11 wallet types, and the wallet can be
an auto-login wallet if you want. For detailed information about creating wallets, see
Oracle Database Advanced Security Administrator's Guide.

When you create the wallet, do the following:

■ Ensure that you have exported the wallet to a file.

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-55

■ Make a note of the directory in which you created the wallet. You will need this
directory path when you complete the procedures in this section.

Step 2: Create an Access Control List that Grants the Wallet Privileges
After you have created the wallet, you are ready to create the access control list that
will assign the password or client certificate privilege the user needs to use password
credentials in the wallet for HTTP authentication.

For example:

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'file_name.xml',
 description => 'description',
 principal => 'user_or_role',
 is_grant => TRUE|FALSE,
 privilege => 'privilege';
...
END;

In this specification:

■ acl: Enter a name for the ACL, and make a note of this name. You will need this
name in Step 3: Assign the Access Control List to the Wallet, next. Oracle Database
creates this file relative to the /sys/acls directory in the XML DB Repository in
the database. Include the .xml extension. For example:

acl => 'hr_access_wallet_acl.xml',

■ description: Enter a brief description of the purpose of this file. For example:

description => 'Wallet ACL for the hr_access application',

■ principal: Enter the user account or role being granted or denied privileges. For
example:

principal => 'HR_CLERK',

Enter this name using case sensitive characters. For example, if the database stores
the role name HR_CLERK in all capital letters, entering it in mixed or lower-case
letters will not work. You can find the user accounts and roles in the current
database instance by querying the DBA_USERS and DBA_ROLES data dictionary
views. Typically, user names and roles are stored in upper-case letters.

If you want to add multiple users, or if you want to grant this user an additional
privilege, you can use the DBMS_NETWORK_ACL.ADD_PRIVILEGE procedure
after you have created this access control list XML file.

■ is_grant: Enter either TRUE or FALSE, to indicate whether the privilege is to be
granted or denied. For example:

is_grant => TRUE,

See Also:

■ "Example of an Access Control List for Using Passwords in a
Non-Shared Wallet" on page 4-62

■ "Example of an Access Control List for Wallets in a Shared
Database Session" on page 4-63

Managing Fine-Grained Access in PL/SQL Packages and Types

4-56 Oracle Database Security Guide

■ privilege: Enter one of the following settings using lowercase letters and
hyphens. Remember that the privilege name is case-sensitive.

– use-passwords to give the user permission to use passwords in the wallet

– use-client-certificates to authenticate the user with a client certificate
in the wallet

For example:

privilege => 'use-client-certificates');

Step 3: Assign the Access Control List to the Wallet
In this step, you assign this access control list to the wallet you created earlier.
Afterward, you can check your settings by querying the DBA_WALLET_ACLS data
dictionary view.

For example:

BEGIN
...
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL (
 acl => 'file_name.xml',
 wallet_path => 'file:path_to_directory_containing_wallet');
END;

In this specification:

■ acl: Enter the name that you created for this wallet in Step 2: Create an Access
Control List that Grants the Wallet Privileges, in the previous section. For example:

acl => 'hr_access_wallet_acl.xml',

■ wallet_path: Enter the path to the directory that contains the wallet. When you
specify the wallet path, you must use an absolute path and include file: before
this directory path. Do not use environment variables, such as $ORACLE_HOME,
nor insert a space after file: and before the path name. For example:

wallet_path => 'file:/oracle/wallets/hr_access_access'

Step 4: Make the HTTP Request with the Passwords and Client Certificates
In this step, you use the UTL_HTTP PL/SQL package to create a request context object
that is used privately with the HTTP request and its response. For detailed information
about the UTL_HTTP package, see Oracle Database PL/SQL Packages and Types Reference.

For example:

DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;
BEGIN
 req_context := UTL_HTTP.CREATE_REQUEST_CONTEXT (
 wallet_path => 'file:path_to_directory_containing_wallet',
 wallet_password => 'wallet_password'|NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'URL_to_application',
 request_context => 'request_context'|NULL);
 ...
END;

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-57

In this specification:

■ req_context: Use the UTL_HTTP.CREATE_REQUEST_CONTEXT_KEY datatype
to create the request context object. This object stores a randomly-generated
numeric key that Oracle Database uses to identify the request context. The UTL_
HTTP.CREATE_REQUEST_CONTEXT function creates the request context itself.

■ req: Use the UTL_HTTP.REQ datatype to create the object that will be used to
begin the HTTP request. You will refer to this object later on, when you set the
user name and password from the wallet to access a password-protected Web
page.

■ wallet_path: Enter the path to the directory that contains the wallet. Ensure that
this path is the same path you specified when you created access control list in
Step 3: Assign the Access Control List to the Wallet in the previous section.You
must include file: before the directory path. Do not use environment variables,
such as $ORACLE_HOME.

For example:

wallet_path => 'file:/oracle/wallets/hr_access_access',

■ wallet_password: Enter the password used to open the wallet. The default is
NULL, which is used for auto-login wallets. For example:

wallet_password => NULL);

■ url: Enter the URL to the application that uses the wallet.

For example:

url => 'www.hr_access.example.com',

■ request_context: Enter the name of the request context object that you created
earlier in this section. This object prevents the wallet from being shared with other
applications in the same database session.

For example:

request_context => req_context);

Using a Request Context to Hold the Wallet When Sharing the Session with
Other Applications
You should use a request context to hold the wallet when the database session is
shared with other applications. If your application has exclusive use of the database
session, you can hold the wallet in the database session by using the SET_WALLET
procedure instead.

For example:

DECLARE
 req UTL_HTTP.REQ;
BEGIN
 UTL_HTTP.SET_WALLET(
 path => 'file:path_to_directory_containing_wallet',
 password => 'wallet_password'|NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'URL_to_application');
 ...
END;

Managing Fine-Grained Access in PL/SQL Packages and Types

4-58 Oracle Database Security Guide

If the protected URL being requested requires the user name and password to
authenticate, then use the SET_AUTHENTICATION_FROM_WALLET procedure to set
the user name and password from the wallet to authenticate.

Using Only a Client Certificate to Authenticate
If the protected URL being requested requires only the client certificate to authenticate,
the BEGIN_REQUEST function sends the necessary client certificate from the wallet.
assuming the user has been granted the use-client-certificates privilege in
the ACL assigned to the wallet. The authentication should succeed at the remote Web
server and the user can proceed to retrieve the HTTP response by using the GET_
RESPONSE function.

Using the Password to Authenticate
If the protected URL being requested requires the username and password to
authenticate, you should use the SET_AUTHENTICATION_FROM_WALLET procedure
to set the username and password from the wallet to authenticate.

For example:

DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;
BEGIN
...
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r => HTTP_REQUEST,
 alias => 'alias_to_retrieve_credentials_stored_in_wallet',
 scheme => 'AWS|Basic',
 for_proxy => TRUE|FALSE);
END;

In this specification:

■ r: Enter the HTTP request defined in the UTL_HTTP.BEGIN_REQUEST procedure
that you created above, in the previous section. For example:

r => req,

■ alias: Enter the alias used to identify and retrieve the user name and password
credential stored in the Oracle wallet. For example, assuming the alias used to
identify this user name and password credential is hr_access.

alias => 'hr_access',

■ scheme: Enter one of the following:

– AWS: Specifies the Amazon Simple Storage Service (S3) scheme. Use this
scheme only if you are configuring access to the Amazon.com Web site.
(Contact Amazon for more information about this setting.)

– Basic: Specifies HTTP basic authentication. The default is Basic.

For example:

scheme => 'Basic',

■ for_proxy: Specify whether the HTTP authentication information is for access to
the HTTP proxy server instead of the Web server. The default is FALSE.

For example:

for_proxy => TRUE);

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-59

The use of the user name and password in the wallet requires the use-passwords
privilege to be granted to the user in the ACL assigned to the wallet.

Examples of Creating Access Control Lists
The following examples demonstrate how to create access control lists.

■ Example of an Access Control List for a Single Role and Network Connection

■ Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts

■ Example of an Access Control List for Using Passwords in a Non-Shared Wallet

■ Example of an Access Control List for Wallets in a Shared Database Session

Example of an Access Control List for a Single Role and Network Connection
Example 4–19 shows how you would create an access control list called
us-example-com-permissions.xml to grant users who have the ACCT_MGR role
access to network services that run on the host us.example.com.

Example 4–19 Creating an Access Control List for a Single Role and Network
Connection

-- 1. Create the access control list, which includes one role:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'us-example-com-permissions.xml',
 description => 'Network connection permission for ACCT_MGR',
 principal => 'ACCT_MGR', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'connect');
END;
/

-- 2. Assign the access control list a network host:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'us-example-com-permissions.xml',
 host => 'www.us.example.com',
 lower_port => 80,
 upper_port => 80);
END;
/

This example creates the us-example-com-permissions.xml file in the
/sys/acls directory, which is the default location. The XML file appears as follows:

<acl description="Network connection permission for ACCT_MGR"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:plsql="http://xmlns.oracle.com/plsql"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd">
 <security-class>plsql:network</security-class>

See Also: Oracle Database Vault Administrator's Guide for a tutorial
that demonstrates how to use an access control list when an
administrator must use the UTL_MAIL PL/SQL package to configure
an e-mail alert

Managing Fine-Grained Access in PL/SQL Packages and Types

4-60 Oracle Database Security Guide

 <ace>
 <grant>true</grant>
 <principal>ACCT_MGR</principal>
 <privilege><plsql:connect/></privilege>
 </ace>
</acl>

The xmlns and xsi elements are fixed and should not be modified, for example, in a
text editor.

You can check the contents of the access control list in SQL*Plus. See Oracle XML DB
Developer's Guide for examples.

Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts
Example 4–20 shows how to create a slightly more complex version of the
us-example-com-permissions.xml access control list. In this example, you
specify multiple role privileges and their precedence position, and assigned to
multiple host computers.

See"Specifying a Group of Network Host Computers" on page 4-64 and "Precedence
Order for a Host Computer in Multiple Access Control List Assignments" on page 4-64
for more information about host names. See also "Setting the Precedence of Multiple
Users and Roles in One Access Control List" on page 4-69 to determine the order of
multiple ACE elements in the access control list XML file.

Example 4–20 Creating an Access Control List for Multiple Roles and Network
Connections

-- 1. Create the access control list:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'us-example-com-permissions.xml',
 description => 'Network connection permission for ACCT_MGR and ACCT_CLERK',
 principal => 'ACCT_MGR', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'resolve');
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (-- Creates the second role privilege
 acl => 'us-example-com-permissions.xml',
 principal => 'ACCT_CLERK',
 is_grant => TRUE,
 privilege => 'connect',
 position => null);
END;
/

-- 2. Assign the access control list to hosts:
BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (-- Creates the first target host
 acl => 'us-example-com-permissions.xml',
 host => '*.us.example.com');
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (-- Creates the second target host
 acl => 'us-example-com-permissions.xml',
 host => '*.uk.example.com',
 lower_port => 80,
 upper_port => 99);
END;
/

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-61

The us-example-com-permissions.xml appears as follows:

<acl description="Network connection permission for ACCT_MGR and ACCT_CLERK"
 xmlns="http://xmlns.oracle.com/xdb/acl.xsd"
 xmlns:plsql="http://xmlns.oracle.com/plsql"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/xdb/acl.xsd
http://xmlns.oracle.com/xdb/acl.xsd">
 <security-class>plsql:network</security-class>
 <ace>
 <grant>true</grant>
 <principal>ACCT_MGR</principal>
 <privilege><plsql:resolve/></privilege>
 </ace>
 <ace>
 <grant>true</grant>
 <principal>ACCT_CLERK</principal>
 <privilege><plsql:connect/></privilege>
 </ace>
</acl>

Example 4–21 shows how the DBA_NETWORK_ACL_PRIVILEGES data dictionary view
displays the privilege granted in the previous access control list.

Example 4–21 Using the DBA_NETWORK_ACL_PRIVILEGES View to Show Granted
Privileges

ACL
ACLID PRINCIPAL PRIVILEGE IS_GRANT INVERT
START_DATE END_DATE
--
-------------------------------- ---------- ------- -------- -------
---------- ----------
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250 ACCT_
MGR resolve true false
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250 ACCT_
CLERK connect true false

Example 4–22 shows how the DBA_NETWORK_ACLS data dictionary view displays the
host assignment of the access control list.

Example 4–22 Using the DBA_NETWORK_ACLS View to Show Host Assignments

HOST LOWER_PORT UPPER_PORT
ACL
ACLID
-------------------- ---------- ----------
--

*.us.example.com
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250
*.uk.example.com 80 99
/sys/acls/us-example-com-permissions.xml 2EF86135D0E29B2AE040578CE4043250

In these examples, the ACCT_MGR role has the resolve privilege to the first host, and
the ACCT_CLERK role has the connect privilege to the first and second target hosts. The
ACCT_MGR role does not have the resolve privilege to the second host because a port
range is specified in the assignment to the second host.

To check the contents of the access control list in SQL*Plus, see Oracle XML DB
Developer's Guide for examples.

Managing Fine-Grained Access in PL/SQL Packages and Types

4-62 Oracle Database Security Guide

Example of an Access Control List for Using Passwords in a Non-Shared Wallet
Example 4–23 configures wallet access for two Human Resources department roles,
hr_clerk and hr_manager. These roles use the use-passwords privilege to access
passwords stored in the wallet. In this example, the wallet will not be shared with
other applications within the same database session.

Example 4–23 Configuring ACL Access Using Passwords in a Non-Shared Wallet

/* 1. At a command prompt, create the wallet. The following example uses the
 user name hr_access as the alias to identify the user name and password
 stored in the wallet. You must use this alias name when you call the
 SET_AUTHENTICATION_FROM_WALLET procedure later on. */
$ mkstore -wrl $ORACLE_HOME/wallets/hr_access_access -create
Enter password: password
Enter password again: password
$ mkstore -wrl $ORACLE_HOME/wallets/hr_access_access -createCredential hr_access
hr_usr
Your secret/Password is missing in the command line
Enter your secret/Password: password
Re-enter your secret/Password: password
Enter wallet password: password

/* 2. In SQL*Plus, create an access control list to grant privileges for the
 wallet. The following example grants the use-passwords privilege to the
 hr_clerk and hr_manager roles, and then it assigns this ACL to the wallet.*/
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'hr_access_wallet_acl.xml',
 description => 'Wallet ACL for hr_access application',
 principal => 'HR_CLERK', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'use-passwords');

 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'hr_access_wallet_acl.xml',
 principal => 'HR_MANAGER',
 is_grant => TRUE,
 privilege => 'use-passwords');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL(
 acl => 'hr_access_wallet_acl.xml',
 wallet_path => 'file:/oracle/wallets/hr_access_access');
END;
/
COMMIT;

/* 3. Create a request context and request object, and then set the
 authentication for the wallet. */
DECLARE
 req_context UTL_HTTP.REQUEST_CONTEXT_KEY;
 req UTL_HTTP.REQ;

BEGIN
 req_context := UTL_HTTP.CREATE_REQUEST_CONTEXT(
 wallet_path => 'file:/oracle/wallets/hr_access_access',
 wallet_password => NULL,
 enable_cookies => TRUE,
 max_cookies => 300,
 max_cookies_per_site => 20);
 req := UTL_HTTP.BEGIN_REQUEST(

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-63

 url => 'www.hr_access.example.com',
 request_context => req_context);
 UTL_HTTP.SET_AUTHENTICATION_FROM_WALLET(
 r => req,
 alias => 'hr_access'),
 scheme => 'Basic',
 for_proxy => FALSE);
END;
/

Example of an Access Control List for Wallets in a Shared Database Session
Example 4–24 is almost the same as Example 4–23, except that it configures the wallet
to be used for a shared database session; that is, all applications within the current
database session will have access to this wallet.

Example 4–24 Configuring ACL Access for a Wallet in a Shared Database Session

/* Follow these steps:
 1. Use Oracle Wallet Manager to create the wallet and add the client
 certificate. See Oracle Database Advanced Security Administrator's Guide
 for detailed information about using Oracle Wallet Manager.

 2. In SQL*Plus, create an access control list to grant privileges for the
 wallet. The following example grants the use-client-certificates privilege
 to the hr_clerk and hr_manager roles, then it assigns this ACL to the
 wallet. */
BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL(
 acl => 'hr_access_wallet_acl.xml',
 description => 'Wallet ACL for hr_access application',
 principal => 'HR_CLERK', -- Must be in upper case
 is_grant => TRUE,
 privilege => 'use-client-certificates');

 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE(
 acl => 'hr_access_wallet_acl.xml',
 principal => 'HR_MANAGER',
 is_grant => TRUE,
 privilege => 'use-client-certificates');

 DBMS_NETWORK_ACL_ADMIN.ASSIGN_WALLET_ACL(
 acl => 'hr_access_wallet_acl.xml',
 wallet_path => 'file:/oracle/wallets/hr_access_access');
END;
/
COMMIT;

/* 3. Create a request object to handle the HTTP authentication for the wallet.*/
DECLARE
 req UTL_HTTP.req;
BEGIN
 UTL_HTTP.SET_WALLET(
 path => 'file: $ORACLE_HOME/wallets/hr_access_access',
 password => NULL);
 req := UTL_HTTP.BEGIN_REQUEST(
 url => 'www.hr_access.example.com',
 method => 'POST',
 http_version => NULL,
 request_context => NULL);

Managing Fine-Grained Access in PL/SQL Packages and Types

4-64 Oracle Database Security Guide

END;
/

Specifying a Group of Network Host Computers
If you want to assign an access control list to a group of network host computers, you
can use the asterisk (*) wildcard character. For example, enter *.example.com for
host computers that belong to a domain or 192.0.2.* for IPv4 addresses that belong
to an IP subnet. The asterisk wildcard must be at the beginning, before a period (.) in a
domain, or at the end, after a period (.), in an IP subnet. For example,
*.example.com is valid, but *example.com and *.example.* are not. Be aware
that the use of wildcard characters affects the order of precedence for multiple access
control lists that are assigned to the same host computer. You cannot use wildcard
characters for IPv6 addresses.

The Classless Inter-Domain Routing (CIDR) notation defines how IPv4 and IPv6
addresses are categorized for routing IP packets on the internet. The DBMS_NETWORK_
ACL_ADMIN package supports CIDR notation for both IPv4 and IPv6 addresses. This
package considers an IPv4-mapped IPv6 address or subnet equivalent to the
IPv4-native address or subnet it represents. For example, ::ffff:192.0.2.1 is
equivalent to 192.0.2.1, and ::ffff:192.0.2.1/120 is equivalent to
192.0.2.*.

Precedence Order for a Host Computer in Multiple Access Control List Assignments
For multiple access control lists that are assigned to the host computer and its
domains, the access control list that is assigned to the host computer takes precedence
over those assigned to the domains. The access control list assigned to a domain has a
lower precedence than those assigned to the subdomains.

For example, Oracle Database first selects the access control list assigned to the host
server.us.example.com, ahead of other access control lists assigned to its
domains. If additional access control lists were assigned to the sub domains, their
order of precedence is as follows:

1. server.us.example.com

2. *.us.example.com

3. *.example.com

4. *.com

5. *

Similarly, for multiple access control lists that are assigned to the IP address (both IPv4
and IPv6) and the subnets it belongs to, the access control list that is assigned to the IP
address takes precedence over those assigned to the subnets. The access control list
assigned to a subnet has a lower precedence than those assigned to the smaller subnets
it contains.

For example, Oracle Database first selects the access control list assigned to the IP
address 192.0.2.3, ahead of other access control lists assigned to the subnets it
belongs to. If additional access control lists were assigned to the subnets, their order of
precedence is as follows:

1. 192.0.2.3 (or ::ffff:192.0.2.3)

2. 192.0.2.3/31 (or ::ffff:192.0.2.3/127)

3. 192.0.2.3/30 (or ::ffff:192.0.2.3/126)

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-65

4. 192.0.2.3/29 (or ::ffff:192.0.2.3/125)

5. ...

6. 192.0.2.3/24 (or ::ffff:192.0.2.3/120 or 192.0.2.*)

7. ...

8. 192.0.2.3/16 (or ::ffff:192.0.2.3/112 or 192.0.*)

9. ...

10. 192.0.2.3/8 (or ::ffff:192.0.2.3/104 or 192.*)

11. ...

12. ::ffff:192.0.2.3/95

13. ::ffff:192.0.2.3/94

14. ...

15. *

Precedence Order for a Host in Access Control List Assignments with Port Ranges
When an access control list is assigned to a host computer, a domain, or an IP subnet
with a port range, it takes precedence over the access control list assigned to the same
host, domain, or IP subnet without a port range.

For example, for TCP connections to any port between port 80 and 99 at
server.us.example.com, Oracle Database first selects the access control list
assigned to port 80 through 99 at server.us.example.com, ahead of the other
access control list assigned to server.us.example.com that is without a port range.

Checking Privilege Assignments That Affect User Access to a Network Host
Database administrators can use the DBA_NETWORK_ACL_PRIVILEGES data
dictionary view to query network privileges that have been granted to or denied from
database users and roles in the access control lists, and whether those privileges take
effect during certain times only. Using the information provided by the view, you may
need to combine the data to determine if a user is granted the privilege at the current
time, the roles the user has, the order of the access control entries, and so on. To
simplify this privilege evaluation, you can use the following DBMS_NETWORK_ACL_
ADMIN functions to check the privilege granted to a user in an access control list:

■ CHECK_PRIVILEGE: Checks if the specified privilege is granted to or denied from
the specified user in an access control list. This procedure identifies the access
control list by its path in the XML DB Repository. Use CHECK_PRIVILEGE if you
want to evaluate a single access control list with a known path.

■ CHECK_PRIVILEGE_ACLID: Similar to the CHECK_PRIVILEGE procedure, except
that it enables you to specify the object ID of the access control list. Use CHECK_
PRIVILEGE_ACLID if you need to evaluate multiple access control lists, when
you query the DBA_NETWORK_ACLS data dictionary view. For better performance,
call CHECK_PRIVILEGE_ACLID on multiple access control lists rather than using
CHECK_PRIVILEGE on each one individually.

Users without database administrator privileges do not have the privilege to access the
access control lists or to invoke those DBMS_NETWORK_ACL_ADMIN functions.
However, they can query the USER_NETWORK_ACL_PRIVILEGES data dictionary
view to check their privileges instead.

Managing Fine-Grained Access in PL/SQL Packages and Types

4-66 Oracle Database Security Guide

Database administrators and users can use the following DBMS_NETWORK_ACL_
UTILITY functions to determine if two hosts, domains, or subnets are equivalent, or if
a host, domain, or subnet is equal to or contained in another host, domain, or subnet:

■ EQUALS_HOST: Returns a value to indicate if two hosts, domains, or subnets are
equivalent

■ CONTAINS_HOST: Returns a value to indicate if a host, domain, or subnet is equal
to or contained in another host, domain, or subnet, and the relative order of
precedence of the containing domain or subnet for its ACL assignments

If you do not use IPv6 addresses, database administrators and users can use the
following DBMS_NETWORK_ACL_UTILITY functions to generate the list of domains or
IPv4 subnet a host belongs to and to sort the access control lists by their order of
precedence according to their host assignments:

■ DOMAINS: Returns a list of the domains or IP subnets whose access control lists
may affect permissions to a specified network host, subdomain, or IP subnet

■ DOMAIN_LEVEL: Returns the domain level of a given host

The following sections explain how database administrators and users can check
permissions for the user to connect to a network host or to perform domain name
resolutions:

■ How a DBA Can Check User Network Connection and Domain Privileges

■ How Users Can Check Their Network Connection and Domain Privileges

How a DBA Can Check User Network Connection and Domain Privileges
A database administrator can query the DBA_NETWORK_ACLS view to determine
which access control lists are present for a specified host computer. This view shows
the access control lists that determine the access to the network connection or domain,
and then determines if each access control list grants (GRANTED), denies (DENIED), or
does not apply (NULL) to the access privilege of the user. Only the database
administrator can query this view.

The following sections provide examples that demonstrate how the database
administrator can check user privileges for network connections and domain name
resolution.

■ Database Administrator Checking User Connection Privileges

■ Database Administrator Checking User Privileges for Domain Name Resolution

Database Administrator Checking User Connection Privileges
Example 4–25 shows how a database administrator can check the privileges for user
preston to connect to www.us.example.com. Remember that the user name you
enter for the user parameter in the CHECK_PRIVILEGE_ACLID procedure is case
sensitive. In this example, entering the user name preston is correct, but entering
Preston or preston is incorrect.

You can find the users in the current database instance by querying the DBA_USERS
data dictionary view, for example:

SELECT USERNAME FROM DBA_USERS;

Example 4–25 Administrator Checking User Permissions for Network Host Connections

SELECT HOST, LOWER_PORT, UPPER_PORT, ACL,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(ACLID, 'PRESTON',

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-67

 'connect'),
 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
 FROM (SELECT HOST, LOWER_PORT, UPPER_PORT, ACL, ACLID,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM DBA_NETWORK_ACLS)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC,
 LOWER_PORT NULLS LAST,
 UPPER_PORT NULLS LAST;

 HOST LOWER_PORT UPPER_PORT ACL PRIVILEGE
 -------------------- ---------- ---------- -------------------- ---------
 www.us.example.com 80 80 /sys/acls/www.xml GRANTED
 www.us.example.com 3000 3999 /sys/acls/www.xml GRANTED
 www.us.example.com /sys/acls/www.xml GRANTED
 *.example.com /sys/acls/all.xml
 * /sys/acls/all.xml

In this example, user preston was granted privileges for all the network host
connections found for www.us.example.com. However, suppose preston had been
granted access to a host connection on port 80, but then denied access to the host
connections on ports 3000–3999. In this case, you need to create one access control list
for the host connection on port 80, and a separate access control list for the host
connection on ports 3000–3999.

Database Administrator Checking User Privileges for Domain Name Resolution
Example 4–26 shows how a database administrator can check the privileges of user
preston to perform domain name resolution for the host www.us.example.com. In
this example, only the access control lists assigned to hosts without a port range
because the resolve privilege has no effect to those with a port range. (Remember
that the user name you enter for the user parameter in CHECK_PRIVILEGE_ACLID is
case sensitive.)

Example 4–26 Administrator Checking Permissions for Domain Name Resolution

SELECT HOST, ACL,
 DECODE(
 DBMS_NETWORK_ACL_ADMIN.CHECK_PRIVILEGE_ACLID(ACLID, 'PRESTON',
 'resolve'),
 1, 'GRANTED', 0, 'DENIED', NULL) PRIVILEGE
 FROM (SELECT HOST, LOWER_PORT, UPPER_PORT, ACL, ACLID,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM DBA_NETWORK_ACLS
 WHERE LOWER_PORT IS NULL AND UPPER_PORT IS NULL)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC;

 HOST ACL PRIVILEGE
 -------------------- -------------------- ---------

 www.us.example.com /sys/acls/www.xml GRANTED
 *.example.com /sys/acls/all.xml
 * /sys/acls/all.xml

Managing Fine-Grained Access in PL/SQL Packages and Types

4-68 Oracle Database Security Guide

How Users Can Check Their Network Connection and Domain Privileges
Users can query the USER_NETWORK_ACL_PRIVILEGES view to check their network
and domain permissions. The USER_NETWORK_ACL_PRIVILEGES view is PUBLIC, so
all users can select from it.

This view hides the access control lists from the user. It evaluates the permission status
for the user (GRANTED or DENIED) and filters out the NULL case because the user does
not need to know when the access control lists do not apply to him or her. In other
words, Oracle Database only shows the user on the network hosts that explicitly grant
or deny access to him or her. Therefore, the output does not display the
*.example.com and * that appear in the output from the database
administrator-specific DBA_NETWORK_ACLS view.

The following sections provide examples that demonstrate how a database
administrator can check user permissions for network connections and domain name
resolution.

■ User Checking His or Her Network Connection Privileges

■ User Checking Own Privileges for Domain Name Resolution

User Checking His or Her Network Connection Privileges
Example 4–27 shows how user preston can check her privileges to connect to
www.us.example.com.

Example 4–27 User Checking Permissions for Network Host Connections

SELECT HOST, LOWER_PORT, UPPER_PORT, STATUS PRIVILEGE
 FROM (SELECT HOST, LOWER_PORT, UPPER_PORT, STATUS,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM USER_NETWORK_ACL_PRIVILEGES
 WHERE PRIVILEGE = 'connect')
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC,
 LOWER_PORT NULLS LAST,
 UPPER_PORT NULLS LAST;

 HOST LOWER_PORT UPPER_PORT ACL PRIVILEGE
 -------------------- ---------- ---------- -------------------- ---------
 www.us.example.com 80 80 /sys/acls/www.xml GRANTED
 www.us.example.com 3000 3999 /sys/acls/www.xml GRANTED
 www.us.example.com /sys/acls/www.xml GRANTED

User Checking Own Privileges for Domain Name Resolution
Example 4–26 shows how the user preston can check her privileges to perform
domain name resolution for www.us.example.com:

Example 4–28 User Checking Privileges for Domain Name Resolution

SELECT HOST, STATUS PRIVILEGE
 from (SELECT HOST, STATUS,
 DBMS_NETWORK_ACL_UTILITY.CONTAINS_HOST('www.us.example.com',
 HOST) PRECEDENCE
 FROM USER_NETWORK_ACL_PRIVILEGES
 WHERE PRIVILEGE = 'resolve' AND
 LOWER_PORT IS NULL AND UPPER_PORT IS NULL)
 WHERE PRECEDENCE IS NOT NULL
 ORDER BY PRECEDENCE DESC;

Managing Fine-Grained Access in PL/SQL Packages and Types

Configuring Privilege and Role Authorization 4-69

 HOST PRIVILEGE
 -------------------- ---------
 www.us.example.com GRANTED

Setting the Precedence of Multiple Users and Roles in One Access Control List
By default, Oracle Database grants or denies privileges to users and roles based on
their physical position in the access control list. The first user or role listed is granted
or denied privileges first, followed the second user or role, and so on. For instance,
suppose the code in Example 4–20 defined one role, ACCT_MGR, and two users,
sebastian and preston, and the access control list XML file ordered these three as
follows:

<acl ...>
 ...
 <ace>
 <principal>ACCT_MGR</principal>
 <grant>true</grant>
 <privilege><plsql:connect/></privilege>
 </ace>
 <ace>
 <principal>SEBASTIAN</principal>
 <grant>false</grant>
 <privilege><plsql:connect/></privilege>
 </ace>
 <ace>
 <principal>PRESTON</principal>
 <grant>false</grant>
 <privilege><plsql:connect/></privilege>
 </ace>
</acl>

ACCT_MGR is granted permissions first, followed by permission denials for
sebastian and then preston. However, if sebastian and preston have been
granted the ACCT_MGR role, they still could log in, because the ACCT_MGR role appears
first in the list.

Even though these two users were granted the acct_mgr role, their specific jobs do
not require them to have access to the www.example.com host. If the positions were
reversed—the acct_mgr role listed after sebastian and preston—they would be
denied the privilege of connecting to the network. To set the order of precedence of the
ACE elements irrespective of their physical location in the CREATE_ACL and ADD_
PRIVILEGE statements, you can use the position attribute.

For example, the following statements set the ACE elements in the resultant XML file in
this order:

1. The ACE element for sebastian appears first.

2. The ACE element for preston appears second.

3. The acct_mgr role appears last.

In this case, neither of these users will be able to connect, because their grant
privileges, which are set to FALSE, are evaluated before the acct_mgr role.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'us-example-com-permissions.xml',
 description => 'Network connection permission for ACCT_MGR and users',
 principal => 'ACCT_MGR',

Finding Information About User Privileges and Roles

4-70 Oracle Database Security Guide

 is_grant => TRUE,
 privilege => 'connect');
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'us-example-com-permissions.xml',
 principal => 'SEBASTIAN',
 is_grant => FALSE,
 privilege => 'connect',
 position => 1);
 DBMS_NETWORK_ACL_ADMIN.ADD_PRIVILEGE (
 acl => 'us-example-com-permissions.xml',
 principal => 'PRESTON',
 is_grant => FALSE,
 privilege => 'connect',
 position => 2);
END;
/

Finding Information About Access Control Lists Configured for User Access
Table 4–6 lists data dictionary views that you can use to find information about
existing access control lists. See Oracle Database Reference for more information about
these views.

Finding Information About User Privileges and Roles
Table 4–7 lists data dictionary views that you can query to access information about
grants of privileges and roles. See Oracle Database Reference for detailed information
about these views.

Table 4–6 Data Dictionary Views That Display Information about Access Control Lists

View Description

DBA_NETWORK_ACLS Shows the access control list assignments to the network hosts. The SELECT
privilege on this view is granted to the SELECT_CATALOG_ROLE role only.

DBA_NETWORK_ACL_PRIVILEGES Shows the network privileges defined in all access control lists that are
currently assigned to network hosts. The SELECT privilege on this view is
granted to the SELECT_CATALOG_ROLE role only.

DBA_WALLET_ACLS Lists wallets that have been assigned access control lists.

USER_NETWORK_ACL_PRIVILEGES Shows the status of the network privileges for the current user to access
network hosts. The SELECT privilege on the view is granted to PUBLIC.

Table 4–7 Data Dictionary Views That Display Information about Privileges and Roles

View Description

ALL_COL_PRIVS Describes all column object grants for which the current user or
PUBLIC is the object owner, grantor, or grantee

ALL_COL_PRIVS_MADE Lists column object grants for which the current user is object
owner or grantor.

ALL_COL_PRIVS_RECD Describes column object grants for which the current user or
PUBLIC is the grantee

ALL_TAB_PRIVS Lists the grants on objects where the user or PUBLIC is the
grantee

ALL_TAB_PRIVS_MADE Lists the all object grants made by the current user or made on
the objects owned by the current user.

ALL_TAB_PRIVS_RECD Lists object grants for which the user or PUBLIC is the grantee

Finding Information About User Privileges and Roles

Configuring Privilege and Role Authorization 4-71

This section provides some examples of using these views. For these examples, assume
the following statements were issued:

CREATE ROLE security_admin IDENTIFIED BY password;

GRANT CREATE PROFILE, ALTER PROFILE, DROP PROFILE,
 CREATE ROLE, DROP ANY ROLE, GRANT ANY ROLE, AUDIT ANY,
 AUDIT SYSTEM, CREATE USER, BECOME USER, ALTER USER, DROP USER
 TO security_admin WITH ADMIN OPTION;

GRANT SELECT, DELETE ON SYS.AUD$ TO security_admin;

GRANT security_admin, CREATE SESSION TO swilliams;

GRANT security_admin TO system_administrator;

GRANT CREATE SESSION TO jward;

DBA_COL_PRIVS Describes all column object grants in the database

DBA_EPG_DAD_
AUTHORIZATION

Describes the database access descriptors (DAD) that are
authorized to use a different user’s privileges.

DBA_TAB_PRIVS Lists all grants on all objects in the database

DBA_ROLES Lists all roles that exist in the database, including secure
application roles

DBA_ROLE_PRIVS Lists roles directly granted to users and roles

DBA_SYS_PRIVS Lists system privileges granted to users and roles

ROLE_ROLE_PRIVS Lists roles granted to other roles. Information is provided only
about roles to which the user has access.

ROLE_SYS_PRIVS Lists system privileges granted to roles. Information is provided
only about roles to which the user has access.

ROLE_TAB_PRIVS Lists object privileges granted to roles. Information is provided
only about roles to which the user has access.

USER_COL_PRIVS Describes column object grants for which the current user is the
object owner, grantor, or grantee

USER_COL_PRIVS_MADE Describes column object grants for which the current user is the
grantor

USER_COL_PRIVS_RECD Describes column object grants for which the current user is the
grantee

USER_EPG_DAD_
AUTHORIZATION

Describes the database access descriptors (DAD) that are
authorized to use a different user’s privileges.

USER_ROLE_PRIVS Lists roles directly granted to the current user

USER_TAB_PRIVS Lists grants on all objects where the current user is the grantee

USER_SYS_PRIVS Lists system privileges granted to the current user

USER_TAB_PRIVS_MADE Lists grants on all objects owned by the current user

USER_TAB_PRIVS_RECD Lists object grants for which the current user is the grantee

SESSION_PRIVS Lists the privileges that are currently enabled for the user

SESSION_ROLES Lists the roles that are currently enabled to the user

Table 4–7 (Cont.) Data Dictionary Views That Display Information about Privileges and

View Description

Finding Information About User Privileges and Roles

4-72 Oracle Database Security Guide

GRANT SELECT, DELETE ON emp TO jward;

GRANT INSERT (ename, job) ON emp TO swilliams, jward;

Listing All System Privilege Grants
The following query returns all system privilege grants made to roles and users:

SELECT * FROM DBA_SYS_PRIVS;

GRANTEE PRIVILEGE ADM
-------------- --------------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES
SWILLIAMS CREATE SESSION NO
JWARD CREATE SESSION NO

See Oracle Database Reference for detailed information about the DBA_SYS_PRIVS view.

Listing All Role Grants
The following query returns all the roles granted to users and other roles:

SELECT * FROM DBA_ROLE_PRIVS;

GRANTEE GRANTED_ROLE ADM
------------------ ------------------------------------ ---
SWILLIAMS SECURITY_ADMIN NO

See Oracle Database Reference for detailed information about the DBA_ROLE_PRIVS
view.

Listing Object Privileges Granted to a User
The following query returns all object privileges (not including column-specific
privileges) granted to the specified user:

SELECT TABLE_NAME, PRIVILEGE, GRANTABLE FROM DBA_TAB_PRIVS
 WHERE GRANTEE = 'jward';

TABLE_NAME PRIVILEGE GRANTABLE
----------- ------------ ----------
EMP SELECT NO
EMP DELETE NO

See Also: Oracle Database Reference for a detailed description of
these data dictionary views

Finding Information About User Privileges and Roles

Configuring Privilege and Role Authorization 4-73

To list all the column-specific privileges that have been granted, use the following
query:

SELECT GRANTEE, TABLE_NAME, COLUMN_NAME, PRIVILEGE
 FROM DBA_COL_PRIVS;

GRANTEE TABLE_NAME COLUMN_NAME PRIVILEGE
----------- ------------ ------------- --------------
SWILLIAMS EMP ENAME INSERT
SWILLIAMS EMP JOB INSERT
JWARD EMP NAME INSERT
JWARD EMP JOB INSERT

See Oracle Database Reference for detailed information about the DBA_TAB_PRIVS view.

Listing the Current Privilege Domain of Your Session
The following query lists all roles currently enabled for the issuer:

SELECT * FROM SESSION_ROLES;

If user swilliams has the security_admin role enabled and issues the previous
query, then Oracle Database returns the following information:

ROLE

SECURITY_ADMIN

The following query lists all system privileges currently available in the security
domain of the issuer, both from explicit privilege grants and from enabled roles:

SELECT * FROM SESSION_PRIVS;

If user swilliams has the security_admin role enabled and issues the previous
query, then Oracle Database returns the following results:

PRIVILEGE
--
AUDIT SYSTEM
CREATE SESSION
CREATE USER
BECOME USER
ALTER USER
DROP USER
CREATE ROLE
DROP ANY ROLE
GRANT ANY ROLE
AUDIT ANY
CREATE PROFILE
ALTER PROFILE
DROP PROFILE

If the security_admin role is disabled for user swilliams, then the first query
would return no rows, while the second query would only return a row for the
CREATE SESSION privilege grant.

See Oracle Database Reference for detailed information about the SESSION_ROLES view.

Finding Information About User Privileges and Roles

4-74 Oracle Database Security Guide

Listing Roles of the Database
You can use the DBA_ROLES data dictionary view to list all roles of a database and the
authentication used for each role. For example, the following query lists all the roles in
the database:

SELECT * FROM DBA_ROLES;

ROLE PASSWORD
---------------- --------
CONNECT NO
RESOURCE NO
DBA NO
SECURITY_ADMIN YES

See Oracle Database Reference for detailed information about the DBA_ROLES view.

Listing Information About the Privilege Domains of Roles
The ROLE_ROLE_PRIVS, ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS data dictionary
views contain information about the privilege domains of roles. For example, the
following query lists all the roles granted to the system_admin role:

SELECT GRANTED_ROLE, ADMIN_OPTION
 FROM ROLE_ROLE_PRIVS
 WHERE ROLE = 'SYSTEM_ADMIN';

GRANTED_ROLE ADM
---------------- ----
SECURITY_ADMIN NO

The following query lists all the system privileges granted to the security_admin
role:

SELECT * FROM ROLE_SYS_PRIVS WHERE ROLE = 'SECURITY_ADMIN';

ROLE PRIVILEGE ADM
----------------------- ----------------------------- ---
SECURITY_ADMIN ALTER PROFILE YES
SECURITY_ADMIN ALTER USER YES
SECURITY_ADMIN AUDIT ANY YES
SECURITY_ADMIN AUDIT SYSTEM YES
SECURITY_ADMIN BECOME USER YES
SECURITY_ADMIN CREATE PROFILE YES
SECURITY_ADMIN CREATE ROLE YES
SECURITY_ADMIN CREATE USER YES
SECURITY_ADMIN DROP ANY ROLE YES
SECURITY_ADMIN DROP PROFILE YES
SECURITY_ADMIN DROP USER YES
SECURITY_ADMIN GRANT ANY ROLE YES

The following query lists all the object privileges granted to the security_admin
role:

SELECT TABLE_NAME, PRIVILEGE FROM ROLE_TAB_PRIVS
 WHERE ROLE = 'SECURITY_ADMIN';

TABLE_NAME PRIVILEGE
--------------------------- ----------------
AUD$ DELETE
AUD$ SELECT

Finding Information About User Privileges and Roles

Configuring Privilege and Role Authorization 4-75

See Oracle Database Reference for detailed information about the ROLE_ROLE_PRIVS,
ROLE_SYS_PRIVS, and ROLE_TAB_PRIVS views.

Finding Information About User Privileges and Roles

4-76 Oracle Database Security Guide

5

Managing Security for Application Developers 5-1

5 Managing Security
for Application Developers

This chapter contains:

■ About Application Security Policies

■ Considerations for Using Application-Based Security

■ Securing Passwords in Application Design

■ Managing Application Privileges

■ Creating Secure Application Roles to Control Access to Applications

■ Associating Privileges with User Database Roles

■ Protecting Database Objects by Using Schemas

■ Managing Object Privileges in an Application

■ Parameters for Enhanced Security of Database Communication

About Application Security Policies
Creating an application security policy is the first step to create a secure database
application. An application security policy is a list of application security requirements
and rules that regulate user access to database objects.

You should draft security policies for each database application. For example, each
database application should have one or more database roles that provide different
levels of security when executing the application. You then can grant the database
roles to other roles or directly to specific users.

Applications that can potentially allow unrestricted SQL statement processing
(through tools such as SQL*Plus or SQL Developer) also need security policies that
prevent malicious access to confidential or important schema objects. In particular, you
must ensure that your applications handle passwords in a secure manner.

The following sections describe aspects of application security and the Oracle
Database features that you can use to plan and develop secure database applications.

Considerations for Using Application-Based Security
Two main questions to consider when you formulate and implement application
security are covered in the following sections:

■ Are Application Users Also Database Users?

Considerations for Using Application-Based Security

5-2 Oracle Database Security Guide

■ Is Security Better Enforced in the Application or in the Database?

Are Application Users Also Database Users?
Where possible, you should build applications in which application users are database
users. In this way, you can leverage the intrinsic security mechanisms of the database.

For many commercial packaged applications, application users are not database users.
For these applications, multiple users authenticate themselves to the application, and
the application then connects to the database as a single, highly-privileged user. This is
called the One Big Application User model.

Applications built in this way generally cannot use many of the intrinsic security
features of the database, because the identity of the user is not known to the database.

Table 5–1 describes how the One Big Application User model affects various Oracle
Database security features:

Is Security Better Enforced in the Application or in the Database?
Applications, whose users are also database users, can either build security into the
application, or rely on intrinsic database security mechanisms such as granular
privileges, virtual private databases (fine-grained access control with application
context), roles, stored procedures, and auditing (including fine-grained auditing).
Oracle recommends that applications use the security enforcement mechanisms of the
database as much as possible.

When security is enforced in the database itself, rather than in the application, it
cannot be bypassed. The main shortcoming of application-based security is that
security is bypassed if the user bypasses the application to access data. For example, a
user who has SQL*Plus access to the database can execute queries without going

Table 5–1 Features Affected by the One Big Application User Model

Oracle Database Feature Limitations of One Big Application User Model

Auditing A basic principle of security is accountability through auditing.
If One Big Application User performs all actions in the database,
then database auditing cannot hold individual users accountable
for their actions. The application must implement its own
auditing mechanisms to capture individual user actions.

Oracle Advanced Security
enhanced authentication

Strong forms of authentication supported by Oracle Advanced
Security (such as client authentication over SSL, tokens, and so
on) cannot be used if the client authenticating to the database is
the application, rather than an individual user.

Roles Roles are assigned to database users. Enterprise roles are
assigned to enterprise users who, though not created in the
database, are known to the database. If application users are not
database users, then the usefulness of roles is diminished.
Applications must then craft their own mechanisms to
distinguish between the privileges which various application
users need to access data within the application.

Enterprise user
management feature of
Oracle Advanced Security

The Enterprise user management feature enables an Oracle
database to use the Oracle Identity Management Infrastructure
by securely storing and managing user information and
authorizations in an LDAP-based directory such as Oracle
Internet Directory. While enterprise users do not need to be
created in the database, they do need to be known to the
database. The One Big Application User model cannot take
advantage of Oracle Identity Management.

Securing Passwords in Application Design

Managing Security for Application Developers 5-3

through the Human Resources application. The user, therefore, bypasses all of the
security measures in the application.

Applications that use the One Big Application User model must build security
enforcement into the application rather than use database security mechanisms.
Because it is the application, and not the database, that recognizes users; the
application itself must enforce security measures for each user.

This approach means that each application that accesses data must reimplement
security. Security becomes expensive, because organizations must implement the same
security policies in multiple applications, and each new application requires an
expensive reimplementation.

Securing Passwords in Application Design
This section provides strategies for securely invoking password-protected services
from a batch job, script, installation file, or application. In addition to password
protection, most of these strategies can be applied to other sensitive data, such as
cryptographic keys.

This section contains:

■ General Guidelines for Securing Passwords in Applications

■ Securing Passwords Using an External Password Store

■ Securing Passwords Using the orapwd Utility

■ Example of Reading Passwords in Java

General Guidelines for Securing Passwords in Applications
These guidelines are in the following categories:

■ Platform-Specific Security Threats

■ Designing Applications to Handle Password Input

■ Configuring Password Formats and Behavior

■ Handling Passwords in SQL*Plus and SQL Scripts

Platform-Specific Security Threats
Be aware of the following potential security threats, which may not be obvious:

■ On UNIX and Linux platforms, command parameters are available for viewing
by all operating system users on the same host computer. As a result, passwords
entered on the command line could be exposed to other users. However, do not
assume that non-UNIX and Linux platforms are safe from this threat.

■ On some UNIX platforms, such as HP Tru64 and IBM AIX, environment
variables for all processes are available for viewing by all operating system

See Also: "Potential Security Problems of Using Ad Hoc Tools"
on page 4-21

See Also:

■ "Minimum Requirements for Passwords" on page 3-3

■ Chapter 10, "Keeping Your Oracle Database Secure," for general
guidelines on securing an Oracle database

Securing Passwords in Application Design

5-4 Oracle Database Security Guide

users. However, do not assume that non-UNIX and Linux platforms are safe from
this threat.

■ On Microsoft Windows, the command recall feature (the Up arrow) remembers
user input across command invocations. For example, if you use the CONNECT
SYSTEM/password notation in SQL*Plus, exit, and then press the Up arrow to
repeat the CONNECT command, the command recall feature reveals the connect
string and displays the password. In addition, do not assume that non-Microsoft
Windows platforms are safe from this threat.

Designing Applications to Handle Password Input
Follow these guidelines:

■ Design applications to interactively prompt for passwords. For command-line
utilities, do not force users to expose passwords at a command prompt.

Check the APIs for the programming language you use to design applications for
the best way to handle passwords from users. For an example of Java code that
handles this functionality, see "Example of Reading Passwords in Java" on
page 5-7.

■ Protect your database against SQL injection attacks. A SQL injection attack
occurs when SQL statements are appended or altered in a manner not intended by
the PL/SQL application. For example, an intruder can bypass password
authentication by setting a WHERE clause to TRUE.

To address the problem of SQL injection attacks, use bind variable arguments or
create validation checks. If you cannot use bind variables, then consider using the
DBMS_ASSERT PL/SQL package to validate the properties of input values. Oracle
Database PL/SQL Packages and Types Reference describes the DBMS_ASSERT package
in detail. You also should review any grants to roles such as PUBLIC.

See Oracle Database PL/SQL Language Reference for more information about
preventing SQL injection.

■ If possible, design your applications to defer authentication. For example:

– Use certificates for logins.

– Authenticate users by using facilities provided by the operating system. For
example, applications on Microsoft Windows can use domain authentication.

■ Mask or encrypt passwords. If you must store passwords, then mask or encrypt
them. For example, you can mask passwords in log files and encrypt passwords in
recovery files.

■ Authenticate each connection. For example, if schema A exists in database 1, then
do not assume that schema A in database 2 is the same user. Similarly, the local
operating system user psmith is not necessarily the same person as remote user
psmith.

■ Do not store clear text passwords in files or repositories. Storing passwords in
files increases the risk of an intruder accessing them.

■ Use a single master password. For example:

– You can grant a single database user proxy authentication to act as other
database users. In this case, only a single database password is needed. See
"Altering a User Account to Connect Through a Proxy" on page 3-36 for more
information.

Securing Passwords in Application Design

Managing Security for Application Developers 5-5

– You can create a password wallet, which can be opened by the master
password. The wallet then contains the other passwords. See Oracle Database
Advanced Security Administrator's Guide for more information about Wallet
Manager.

Configuring Password Formats and Behavior
Follow these guidelines:

■ Limit the lifetime for passwords. You can set a password lifetime, after which the
password expires and must be changed before the user can log in to the account.
See "Controlling Password Aging and Expiration" on page 3-8 for parameters you
can use to control the lifetime of a password.

■ Limit the ability of users to reuse old passwords. See "Controlling User Ability to
Reuse Old Passwords" on page 3-7 for more information.

■ Force users to create strong, secure passwords. See "Guidelines for Securing
Passwords" on page 10-7 for advice on creating strong passwords. "Enforcing
Password Complexity Verification" on page 3-9 explains how you can customize
password requirements.

■ Enable case sensitivity in passwords. See "Enabling or Disabling Password Case
Sensitivity" on page 3-11 for more information.

Handling Passwords in SQL*Plus and SQL Scripts
Follow these guidelines:

■ Do not invoke SQL*Plus with a password on the command line, either in
programs or scripts. If a password is required but omitted, SQL*Plus prompts the
user for it and then automatically disables the echo feature so that the password is
not displayed.

The following examples are secure because passwords are not exposed on the
command line. Oracle Database also automatically encrypts these passwords over
the network.

$ sqlplus system
Enter password: password

SQL> connect system
Enter password: password

The following example exposes the password to other operating system users:

sqlplus system/password

The next example poses two security risks. First, it exposes the password to other
users who may be watching over your shoulder. Second, on some platforms, such
as Microsoft Windows, it makes the password vulnerable to a command line recall
attack.

$ sqlplus /nolog
SQL> connect system/password

See Also:

■ "Minimum Requirements for Passwords" on page 3-3

■ "Enforcing Password Complexity Verification" on page 3-9

■ "Guidelines for Securing Passwords" on page 10-7

Securing Passwords in Application Design

5-6 Oracle Database Security Guide

■ For SQL scripts that require passwords or secret keys, for example, to create an
account or to log in as an account, do not use positional parameters, such as
substitution variables &1, &2, and so on. Instead, design the script to prompt the
user for the value. You should also disable the echo feature, which displays output
from a script or if you are using spool mode. To disable the echo feature, use the
following setting:

SET ECHO OFF

A good practice is to ensure that the script makes the purpose of the value clear.
For example, it should be clear whether or not the value will establish a new value,
such as an account or a certificate, or if the value will authenticate, such as logging
in to an existing account.

The following example is secure because it prevents users from invoking the script
in a manner that poses security risks: It does not echo the password; it does not
record the password in a spool file.

In this example:

– Line 1: Prevents the password from being displayed. (SET VERIFY lists each
line of the script before and after substitution.) Combining the SET VERIFY
OFF command with the HIDE command (in Line 3) is a useful technique for
hiding passwords and other sensitive input data.

– Line 3: Includes the HIDE option for the ACCEPT password prompt, which
prevents the input password from being echoed.

The next example, which uses positional parameters, poses security risks because
a user may invoke the script by passing the password on the command line. If the
user does not enter a password and instead is prompted, the danger lies in that
whatever the user types is echoed to the screen and to a spool file if spooling is
enabled.

CONNECT &1/&2

■ Control the log in times for batch scripts. For batch scripts that require
passwords, configure the account so that the script can only log in during the time
in which it is supposed to run. For example, suppose you have a batch script that
runs for an hour each evening starting at 8 p.m. Set the account so that the script
can only log in during this time. If an intruder manages to gain access, then he or
she has less of a chance of exploiting any compromised accounts.

■ Be careful when using DML or DDL SQL statements that prompt for
passwords. In this case, sensitive information is passed in clear text over the
network. You can remedy this problem by using Oracle Advanced Security. See
Oracle Database Advanced Security Administrator's Guide for more information.

The following example of altering a password is secure because the password is
not exposed:

password psmith
Changing password for psmith
New password: password
Retype new password: password

1
2
3
4

SET VERIFY OFF
 ACCEPT user CHAR PROMPT ‘Enter user to connect to: ‘
 ACCEPT password CHAR PROMPT ‘Enter the password for that user: ' HIDE
 CONNECT &user/&password

Securing Passwords in Application Design

Managing Security for Application Developers 5-7

This example poses a security risk because the password is exposed both at the
command line and on the network:

ALTER USER psmith IDENTIFIED BY password

Securing Passwords Using an External Password Store
You can store password credentials for connecting to a database by using a client-side
Oracle wallet. An Oracle wallet is a secure software container that stores the
authentication and signing credentials needed for a user to log in.

See "Managing the Secure External Password Store for Password Credentials" on
page 3-14 for more information about the secure external password store. See also
Oracle Database Advanced Security Administrator's Guide for information about using
Oracle Wallet Manager to configure Oracle wallets.

Securing Passwords Using the orapwd Utility
You can create a password file for users who need to connect to an application using
the SYSDBA or SYSOPER privileges over a network. To create the password file, use the
ORAPWD utility. See Oracle Database Administrator's Guide for more information about
creating and maintaining a password file.

Example of Reading Passwords in Java
Example 5–1 demonstrates how to create a Java package that can be used to read
passwords.

Example 5–1 Java Code for Reading Passwords

// Change the following line to a name for your version of this package
package passwords.sysman.emSDK.util.signing;

import java.io.IOException;
import java.io.PrintStream;
import java.io.PushbackInputStream;
import java.util.Arrays;

/**
 * The static readPassword method in this class issues a password prompt
 * on the console output and returns the char array password
 * entered by the user on the console input.
 */
public final class ReadPassword {
 //----------------------------------
 /**
 * Test driver for readPassword method.
 * @param args the command line args
 */
 public static void main(String[] args) {
 char[] pass = ReadPassword.readPassword("Enter password: ");
 System.out.println("The password just entered is \""
 + new String(pass) + "\"");
 System.out.println("The password length is " + pass.length);
 }
 * Issues a password prompt on the console output and returns
 * the char array password entered by the user on the console input.
 * The password is not displayed on the console (chars are not echoed).

Securing Passwords in Application Design

5-8 Oracle Database Security Guide

 * As soon as the returned char array is not needed,
 * it should be erased for security reasons (Arrays.fill(charArr, ' '));
 * A password should never be stored as a java String.
 *
 * Note that Java 6 has a Console class with a readPassword method,
 * but there is no equivalent in Java 5 or Java 1.4.
 * The readPassword method here is based on Sun's suggestions at
 * http://java.sun.com/developer/technicalArticles/Security/pwordmask.
 *
 * @param prompt the password prompt to issue
 * @return new char array containing the password
 * @throws RuntimeException if some error occurs
 */
 public static final char[] readPassword(String prompt)
 throws RuntimeException {
 try {
 StreamMasker masker = new StreamMasker(System.out, prompt);
 Thread threadMasking = new Thread(masker);
 int firstByte = -1;
 PushbackInputStream inStream = null;
 try {
 threadMasking.start();
 inStream = new PushbackInputStream(System.in);
 firstByte = inStream.read();
 } finally {
 masker.stopMasking();
 }
 try {
 threadMasking.join();
 } catch (InterruptedException e) {
 throw new RuntimeException("Interrupt occurred when reading password");
 }
 if (firstByte == -1) {
 throw new RuntimeException("Console input ended unexpectedly");
 }
 if (System.out.checkError()) {
 throw new RuntimeException("Console password prompt output error");
 }
 inStream.unread(firstByte);
 return readLineSecure(inStream);
 }
 catch (IOException e) {
 throw new RuntimeException("I/O error occurred when reading password");
 }
 }
 //----------------------------------
 /**
 * Reads one line from an input stream into a char array in a secure way
 * suitable for reading a password.
 * The char array will never contain a '\n' or '\r'.
 *
 * @param inStream the pushback input stream
 * @return line as a char array, not including end-of-line-chars;
 * never null, but may be zero length array
 * @throws RuntimeException if some error occurs
 */
 private static final char[] readLineSecure(PushbackInputStream inStream)
 throws RuntimeException {
 if (inStream == null) {
 throw new RuntimeException("readLineSecure inStream is null");

Securing Passwords in Application Design

Managing Security for Application Developers 5-9

 }
 try {
 char[] buffer = null;
 try {
 buffer = new char[128];
 int offset = 0;
 // EOL is '\n' (unix), '\r\n' (windows), '\r' (mac)
 loop:
 while (true) {
 int c = inStream.read();
 switch (c) {
 case -1:
 case '\n':
 break loop;
 case '\r':
 int c2 = inStream.read();
 if ((c2 != '\n') && (c2 != -1))
 inStream.unread(c2);
 break loop;
 default:
 buffer = checkBuffer(buffer, offset);
 buffer[offset++] = (char) c;
 break;
 }
 }
 char[] result = new char[offset];
 System.arraycopy(buffer, 0, result, 0, offset);
 return result;
 }
 finally {
 if (buffer != null)
 Arrays.fill(buffer, ' ');
 }
 }
 catch (IOException e) {
 throw new RuntimeException("I/O error occurred when reading password");
 }
 }
 //----------------------------------
 /**
 * This is a helper method for readLineSecure.
 *
 * @param buffer the current char buffer
 * @param offset the current position in the buffer
 * @return the current buffer if it is not yet full;
 * otherwise return a larger buffer initialized with a copy
 * of the current buffer and then erase the current buffer
 * @throws RuntimeException if some error occurs
 */
 private static final char[] checkBuffer(char[] buffer, int offset)
 throws RuntimeException
 {
 if (buffer == null)
 throw new RuntimeException("checkBuffer buffer is null");
 if (offset < 0)
 throw new RuntimeException("checkBuffer offset is negative");
 if (offset < buffer.length)
 return buffer;
 else {
 try {

Securing Passwords in Application Design

5-10 Oracle Database Security Guide

 char[] bufferNew = new char[offset + 128];
 System.arraycopy(buffer, 0, bufferNew, 0, buffer.length);
 return bufferNew;
 } finally {
 Arrays.fill(buffer, ' ');
 }
 }
 }
 //----------------------------------
 /**
 * This private class prints a one line prompt
 * and erases reply chars echoed to the console.
 */
 private static final class StreamMasker
 extends Thread {
 private static final String BLANKS = StreamMasker.repeatChars(' ', 10);
 private String m_promptOverwrite;
 private String m_setCursorToStart;
 private PrintStream m_out;
 private volatile boolean m_doMasking;
 //----------------------------------
 /**
 * Constructor.
 * @throws RuntimeException if some error occurs
 */
 public StreamMasker(PrintStream outPrint, String prompt)
 throws RuntimeException {
 if (outPrint == null)
 throw new RuntimeException("StreamMasker outPrint is null");
 if (prompt == null)
 throw new RuntimeException("StreamMasker prompt is null");
 if (prompt.indexOf('\r') != -1)
 throw new RuntimeException("StreamMasker prompt contains a CR");
 if (prompt.indexOf('\n') != -1)
 throw new RuntimeException("StreamMasker prompt contains a NL");
 m_out = outPrint;
 m_setCursorToStart = StreamMasker.repeatChars('\010',
 prompt.length() + BLANKS.length());
 m_promptOverwrite = m_setCursorToStart + prompt + BLANKS
 + m_setCursorToStart + prompt;
 }
 //----------------------------------
 /**
 * Begin masking until asked to stop.
 * @throws RuntimeException if some error occurs
 */
 public void run()
 throws RuntimeException {
 int priorityOriginal = Thread.currentThread().getPriority();
 Thread.currentThread().setPriority(Thread.MAX_PRIORITY);
 try {
 m_doMasking = true;
 while (m_doMasking) {
 m_out.print(m_promptOverwrite);
 if (m_out.checkError())
 throw new RuntimeException("Console output error writing prompt");
 try {
 Thread.currentThread().sleep(1);
 } catch (InterruptedException ie) {
 Thread.currentThread().interrupt();

Managing Application Privileges

Managing Security for Application Developers 5-11

 return;
 }
 }
 m_out.print(m_setCursorToStart);
 } finally {
 Thread.currentThread().setPriority(priorityOriginal);
 }
 }
 //----------------------------------
 /**
 * Instructs the thread to stop masking.
 */
 public void stopMasking() {
 m_doMasking = false;
 }
 //----------------------------------
 /**
 * Returns a repeated char string.
 *
 * @param c the char to repeat
 * @param length the number of times to repeat the char
 * @throws RuntimeException if some error occurs
 */
 private static String repeatChars(char c, int length)
 throws RuntimeException {
 if (length < 0)
 throw new RuntimeException("repeatChars length is negative");
 StringBuffer sb = new StringBuffer(length);
 for (int i = 0; i < length; i++)
 sb.append(c);
 return sb.toString();
 }
 }
}

Managing Application Privileges
Most database applications involve different privileges on different schema objects.
Keeping track of the privileges that are required for each application can be complex.
In addition, authorizing users to run an application can involve many GRANT
operations.

To simplify application privilege management, you can create a role for each
application and grant that role all the privileges a user must run the application. In
fact, an application can have several roles, each granted a specific subset of privileges
that allow greater or lesser capabilities while running the application.

For example, suppose every administrative assistant uses the Vacation application to
record the vacation taken by members of the department. To best manage this
application, you should:

1. Create a VACATION role.

2. Grant all privileges required by the Vacation application to the VACATION role.

3. Grant the VACATION role to all administrative assistants. Better yet, create a role
that defines the privileges the administrative assistants have, and then grant the
VACATION role to that role.

Creating Secure Application Roles to Control Access to Applications

5-12 Oracle Database Security Guide

Grouping application privileges in a role aids privilege management. Consider the
following administrative options:

■ You can grant the role, rather than many individual privileges, to those users who
run the application. Then, as employees change jobs, you need to grant or revoke
only one role, rather than many privileges.

■ You can change the privileges associated with an application by modifying only
the privileges granted to the role, rather than the privileges held by all users of the
application.

■ You can determine the privileges that are necessary to run a particular application
by querying the ROLE_TAB_PRIVS and ROLE_SYS_PRIVS data dictionary views.

■ You can determine which users have privileges on which applications by querying
the DBA_ROLE_PRIVS data dictionary view.

Creating Secure Application Roles to Control Access to Applications
As explained in "Securing Role Privileges by Using Secure Application Roles" on
page 4-22, a secure application role is a role that is only enabled through its associated
PL/SQL package or procedure. This package defines the policy needed to control
access to an application.

This section contains:

■ Step 1: Create the Secure Application Role

■ Step 2: Create a PL/SQL Package to Define the Access Policy for the Application

Step 1: Create the Secure Application Role
You create a secure application role by using the SQL statement CREATE ROLE with the
IDENTIFIED USING clause. You must have the CREATE ROLE system privilege to
execute this statement.

For example, to create a secure application role called hr_admin that is associated
with the sec_mgr.hr_admin package, follow these steps:

1. Create the security application role as follows:

CREATE ROLE hr_admin IDENTIFIED USING sec_mgr.hr_admin_role_check;

This statement indicates the following:

■ The role hr_admin to be created is a secure application role.

■ The role can only be enabled by modules defined inside the PL/SQL
procedure sec_mgr.hr_admin_role_check. At this stage, this procedure

See Also:

■ Chapter 4, "Configuring Privilege and Role Authorization," for
a complete discussion of creating, enabling, and disabling roles,
and granting and revoking privileges

■ "Finding Information About User Privileges and Roles" on
page 4-70 for more information about the security uses of the
ROLE_TAB_PRIVS, ROLE_SYS_PRIVS, and DBA_ROLE_PRIVS
data dictionary views

See Also: Oracle Database 2 Day + Security Guide for a tutorial on
creating a secure application role

Creating Secure Application Roles to Control Access to Applications

Managing Security for Application Developers 5-13

does not need to exist; "Step 2: Create a PL/SQL Package to Define the Access
Policy for the Application" on page 5-13 explains how to create the package or
procedure.

2. Grant the security application role the privileges you would normally associate
with this role.

For example, to grant the hr_admin role SELECT, INSERT, UPDATE, and DELETE
privileges on the HR.EMPLOYEES table, you enter the following statement:

GRANT SELECT, INSERT, UPDATE, DELETE ON HR.EMPLOYEES TO hr_admin;

Do not grant the role directly to the user. The PL/SQL procedure or package does
that for you, assuming the user passes its security policies.

Step 2: Create a PL/SQL Package to Define the Access Policy for the Application
To enable or disable the secure application role, you create the security policies of the
role within a PL/SQL package. You also can create an individual procedure to do this,
but a package lets you group a set of procedures together. This lets you group a set of
policies that, used together, present a solid security strategy to protect your
applications. For users (or potential intruders) who fail the security policies, you can
add auditing checks to the package to record the failure. Typically, you create this
package in the schema of the security administrator.

The package or procedure must accomplish the following:

■ It must use invoker’s rights to enable the role.To create the package using
invoker’s rights, you must set the AUTHID property to CURRENT_USER. You
cannot create the package by using definer’s rights.

For more information about invoker’s rights and definer’s rights, see Oracle
Database PL/SQL Language Reference.

■ It must include one or more security checks to validate the user. One way to
validate users is to use the SYS_CONTEXT SQL function. See Oracle Database SQL
Language Reference for more information about SYS_CONTEXT. To find session
information for a user, you can use SYS_CONTEXT with an application context. See
Chapter 6, "Using Application Contexts to Retrieve User Information," for details.

■ It must issue a SET ROLE SQL statement or DBMS_SESSION.SET_ROLE
procedure when the user passes the security checks. Because you create the
package using invoker’s rights, you must set the role by issuing the SET ROLE
SQL statement or the DBMS_SESSION.SET_ROLE procedure. (However, you
cannot use the SET ROLE ALL statement for this type of role enablement.) The
PL/SQL embedded SQL syntax does not support the SET ROLE statement, but
you can invoke SET ROLE by using dynamic SQL (for example, with EXECUTE
IMMEDIATE).

For more information about EXECUTE IMMEDIATE, see Oracle Database PL/SQL
Language Reference.

Because of the way that you must create this package or procedure, you cannot use a
logon trigger to enable or disable a secure application role. Instead, invoke the package
directly from the application when the user logs in, before the user must use the
privileges granted by the secure application role.

For example, suppose you wanted to restrict anyone using the hr_admin role to
employees who are on site (that is, using certain terminals) and between the hours of 8
a.m. and 5 p.m. As the system or security administrator, follow these steps. (You can

Associating Privileges with User Database Roles

5-14 Oracle Database Security Guide

copy and paste this text by positioning the cursor at the start of CREATE OR REPLACE
in the first line.)

1. Create the procedure as follows:

In this example:

■ Line 2: Sets the AUTHID property to CURRENT_USER so that invoker’s rights
can be used.

■ Line 5: Validates the user by using the SYS_CONTEXT SQL function to retrieve
the user session information.

■ Lines 6–8: Create a test to grant or deny access. The test restricts access to
users who are on site (that is, using certain terminals) and working between
the hours of 8:00 a.m. and 5:00 p.m. If the user passes this check, the hr_
admin role is granted.

■ Lines 9–10: Assuming the user passes the test, grants the role to the user by
issuing the SET ROLE statement using the EXECUTE IMMEDIATE command.

2. Grant EXECUTE permissions for the hr_admin_role_check procedure to any
user who was assigned it.

For example:

GRANT EXECUTE ON hr_admin_role_check TO psmith;

To test the secure application role, log in to SQL*Plus as the user, try to enable the role,
and then try to perform an action that requires the privileges the role grants.

For example:

CONNECT PSMITH
Enter password: password

EXECUTE sec_admin.hr_admin_role_check;

-- Actions requiring privileges granted by the role

Associating Privileges with User Database Roles
Ensure that users have only the privileges associated with the current database role.

This section contains:

■ Why Users Should Only Have the Privileges of the Current Database Role

■ Using the SET ROLE Statement to Automatically Enable or Disable Roles

1
2
3
4
5
6
7
8
9
10
11
12
13

CREATE OR REPLACE PROCEDURE hr_admin_role_check
 AUTHID CURRENT_USER
 AS
 BEGIN
 IF (SYS_CONTEXT ('userenv','ip_address')
 BETWEEN '192.0.2.10' and '192.0.2.20'
 AND
 TO_CHAR (SYSDATE, 'HH24') BETWEEN 8 AND 17)
 THEN
 EXECUTE IMMEDIATE 'SET ROLE hr_admin';
 END IF;
 END;
/

Protecting Database Objects by Using Schemas

Managing Security for Application Developers 5-15

Why Users Should Only Have the Privileges of the Current Database Role
A single user can use many applications and associated roles. However, you should
ensure that the user has only the privileges associated with the current database role.
Consider the following scenario:

■ The ORDER role (for an application called Order) contains the UPDATE privilege for
the INVENTORY table.

■ The INVENTORY role (for an application called Inventory) contains the SELECT
privilege for the INVENTORY table.

■ Several order entry clerks were granted both the ORDER and INVENTORY roles.

In this scenario, an order entry clerk who was granted both roles can use the privileges
of the ORDER role when running the INVENTORY application to update the
INVENTORY table. The problem is that updating the INVENTORY table is not an
authorized action for the INVENTORY application. It is an authorized action for the
ORDER application. To avoid this problem, use the SET ROLE statement as explained in
the following section.

Using the SET ROLE Statement to Automatically Enable or Disable Roles
Use a SET ROLE statement at the beginning of each application to automatically enable
its associated role and to disable all others. This way, each application dynamically
enables particular privileges for a user only when required.

The SET ROLE statement simplifies privilege management. You control what
information users can access and when they can access it. The SET ROLE statement
also keeps users operating in a well-defined privilege domain. If a user obtains
privileges only from roles, then the user cannot combine these privileges to perform
unauthorized operations.

Protecting Database Objects by Using Schemas
A schema is a security domain that can contain database objects. The privileges granted
to each user or role control access to these database objects.

This section contains:

■ Protecting Database Objects in a Unique Schema

■ Protecting Database Objects in a Shared Schema

Protecting Database Objects in a Unique Schema
You can think of most schemas as user names: the accounts that enable users to
connect to a database and access the database objects. However, a unique schema does
not allow connections to the database, but is used to contain a related set of objects.
Schemas of this sort are created as typical users, and yet are not granted the CREATE
SESSION system privilege (either explicitly or through a role). However, you must
temporarily grant the CREATE SESSION and RESOURCE privilege to a unique schema

See Also:

■ "When Do Grants and Revokes Take Effect?" on page 4-47 for
information about enabling and disabling roles

■ "How the SET ROLE Statement Affects Grants and Revokes" on
page 4-47

Managing Object Privileges in an Application

5-16 Oracle Database Security Guide

if you want to use the CREATE SCHEMA statement to create multiple tables and views
in a single transaction.

For example, a given schema might own the schema objects for a specific application.
If application users have the privileges to do so, then they can connect to the database
using typical database user names and use the application and the corresponding
objects. However, no user can connect to the database using the schema set up for the
application. This configuration prevents access to the associated objects through the
schema, and provides another layer of protection for schema objects. In this case, the
application could issue an ALTER SESSION SET CURRENT_SCHEMA statement to
connect the user to the correct application schema.

Protecting Database Objects in a Shared Schema
For many applications, users do not need their own accounts or schemas in a database.
These users only need to access an application schema. For example, users John,
Firuzeh, and Jane are all users of the Payroll application, and they need access to the
payroll schema on the finance database. None of them need to create their own
objects in the database. They need to only access the payroll objects. To address this
issue, Oracle Advanced Security provides the enterprise users, which are
schema-independent users.

Enterprise users, users managed in a directory service, do not need to be created as
database users because they use a shared database schema. To reduce administration
costs, you can create an enterprise user once in the directory, and point the user at a
shared schema that many other enterprise users can also access.

For more information about managing enterprise users, see Oracle Database Enterprise
User Security Administrator's Guide.

Managing Object Privileges in an Application
As part of designing your application, you need to determine the types of users who
will be working with the application and the level of access that they need to
accomplish their designated tasks. You must categorize these users into role groups,
and then determine the privileges that must be granted to each role.

This section contains:

■ What Application Developers Need to Know About Object Privileges

■ SQL Statements Permitted by Object Privileges

What Application Developers Need to Know About Object Privileges
End users are typically granted object privileges. An object privilege allows a user to
perform a particular action on a specific table, view, sequence, procedure, function, or
package.

Table 5–2 summarizes the object privileges available for each type of object.

Table 5–2 How Privileges Relate to Schema Objects

Object Privilege
Applies
to Table?

Applies
to View?

Applies to
Sequence?

Applies to
Procedure?1

ALTER Yes No Yes No

DELETE Yes Yes No No

EXECUTE No No No Yes

Managing Object Privileges in an Application

Managing Security for Application Developers 5-17

See also "Auditing Schema Objects" on page 9-29 for detailed information about how
schema objects can be audited.

SQL Statements Permitted by Object Privileges
As you implement and test your application, you should create each necessary role.
Test the usage scenario for each role to ensure that the users of your application will
have proper access to the database. After completing your tests, coordinate with the
administrator of the application to ensure that each user is assigned the proper roles.

Table 5–3 lists the SQL statements permitted by the object privileges shown in
Table 5–2.

See "About Privileges and Roles" on page 4-1 for a discussion of object privileges. See
also "Auditing SQL Statements" on page 9-23 for detailed information about how SQL
statements can be audited.

INDEX Yes2 No No No

INSERT Yes Yes No No

REFERENCES Yes No No No

SELECT Yes Yes3 Yes No

UPDATE Yes Yes No No
1 Standalone stored procedures, functions, and public package constructs
2 Privilege that cannot be granted to a role
3 Can also be granted for snapshots

Table 5–3 SQL Statements Permitted by Database Object Privileges

Object Privilege SQL Statements Permitted

ALTER ALTER object (table or sequence)

CREATE TRIGGER ON object (tables only)

DELETE DELETE FROM object (table, view, or synonym)

EXECUTE EXECUTE object (procedure or function)

References to public package variables

INDEX CREATE INDEX ON object (table, view, or synonym)

INSERT INSERT INTO object (table, view, or synonym)

REFERENCES CREATE or ALTER TABLE statement defining a FOREIGN KEY
integrity constraint on object (tables only)

SELECT SELECT...FROM object (table, view, synonym, or snapshot)

SQL statements using a sequence

Table 5–2 (Cont.) How Privileges Relate to Schema Objects

Object Privilege
Applies
to Table?

Applies
to View?

Applies to
Sequence?

Applies to
Procedure?1

Parameters for Enhanced Security of Database Communication

5-18 Oracle Database Security Guide

Parameters for Enhanced Security of Database Communication
Database administrators can manage security for their applications by following the
procedures in this section.

■ Reporting Bad Packets Received on the Database from Protocol Errors

■ Terminating or Resuming Server Execution After Receiving a Bad Packet

■ Configuring the Maximum Number of Authentication Attempts

■ Controlling the Display of the Database Version Banner

■ Configuring Banners for Unauthorized Access and Auditing User Actions

Reporting Bad Packets Received on the Database from Protocol Errors
Networking communication utilities such as Oracle Call Interface (OCI) or Two-Task
Common (TTC) can generate a large disk file containing the stack trace and heap
dump when the server receives a bad packet, out-of-sequence packet, or a private or
an unused remote procedure call. Typically, this disk file can grow quite large. An
intruder can potentially cripple a system by repeatedly sending bad packets to the
server, which can result in disk flooding and denial of service. An unauthenticated
client can also mount this type of attack.

You can prevent these attacks by setting the SEC_PROTOCOL_ERROR_TRACE_ACTION
initialization parameter to one of the following values:

■ None: Configures the server to ignore the bad packets and does not generate any
trace files or log messages. Use this setting if the server availability is
overwhelmingly more important than knowing that bad packets are being
received.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = None

■ Trace (default setting): Creates the trace files, but it is useful for debugging
purposes, for example, when a network client is sending bad packets as a result of
a bug.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = Trace

■ Log: Writes a short, one-line message to the server trace file. This choice balances
some level of auditing with system availability.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = Log

■ Alert: Sends an alert message to a database administrator or monitoring console.

For example:

SEC_PROTOCOL_ERROR_TRACE_ACTION = Alert

Terminating or Resuming Server Execution After Receiving a Bad Packet
After Oracle Database detects a client or server protocol error, it must continue
execution. However, this could subject the server to further bad packets, which could
lead to disk flooding or denial-of-service attacks.

Parameters for Enhanced Security of Database Communication

Managing Security for Application Developers 5-19

You can control the further execution of a server process when it is receiving bad
packets from a potentially malicious client by setting the SEC_PROTOCOL_ERROR_
FURTHER_ACTION initialization parameter to one of the following values:

■ Continue (default setting): Continues the server execution. However, be aware
that the server may be subject to further attacks.

For example:

SEC_PROTOCOL_ERROR_FURTHER_ACTION = Continue

■ Delay,m: Delays the client m seconds before the server can accept the next request
from the same client connection. This setting prevents malicious clients from
excessively using server resources while legitimate clients experience a
degradation in performance but can continue to function.

For example:

SEC_PROTOCOL_ERROR_FURTHER_ACTION = Delay,3

■ Drop,n: Forcefully terminates the client connection after n bad packets. This
setting enables the server to protect itself at the expense of the client, for example,
loss of a transaction. However, the client can still reconnect, and attempt the same
operation again.

For example:

SEC_PROTOCOL_ERROR_FURTHER_ACTION = Drop,10

Configuring the Maximum Number of Authentication Attempts
With Oracle Database, a server process is first started, and then the client authenticates
with this server process. An intruder could start a server process first, and then issue
an unlimited number of authenticated requests with different user names and
passwords in an attempt to gain access to the database.

You can limit the number of failed login attempts for application connections by
setting the SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter to restrict
the number of authentication attempts on a connection. After the specified number of
authentication attempts fail, the database process drops the connection. By default,
SEC_MAX_FAILED_LOGIN_ATTEMPTS is set to 10.

Remember that the SEC_MAX_FAILED_LOGIN_ATTEMPTS initialization parameter is
designed to prevent potential intruders from attacking your applications; it does not
apply to valid users. The sqlnet.ora INBOUND_CONNECT_TIMEOUT parameter and
the FAILED_LOGIN_ATTEMPTS initialization parameter also restrict failed logins, but
the difference is that these two parameters only apply to valid user accounts.

For example, to limit the maximum attempts to 5, set SEC_MAX_FAILED_LOGIN_
ATTEMPTS as follows in the initsid.ora initialization parameter file:

SEC_MAX_FAILED_LOGIN_ATTEMPTS = 5

Controlling the Display of the Database Version Banner
Detailed product version information should not be accessible before a client
connection (including an Oracle Call Interface client) is authenticated. An intruder
could use the database version to find information about security vulnerabilities that
may be present in the database software.

Parameters for Enhanced Security of Database Communication

5-20 Oracle Database Security Guide

You can restrict the display of the database version banner to unauthenticated clients
by setting the SEC_RETURN_SERVER_RELEASE_BANNER initialization parameter in
the initsid.ora initialization parameter file to either YES or NO. By default, SEC_
RETURN_SERVER_RELEASE_BANNER is set to NO.

For example, if you set it to YES, the Oracle Database displays the full correct database
version:

Oracle Database 11g Enterprise Edition Release 11.2.0.0 - Production

In the future, if you install Oracle Database 11.2.0.2, for example, it will display the
following banner:

Oracle Database 11g Enterprise Edition Release 11.2.0.2 - Production

However, if in that same release, you set it to NO, then Oracle Database restricts the
banner to display the following fixed text starting with Release 11.2:

Oracle Database 11g Release 11.2.0.0.0 - Production

Configuring Banners for Unauthorized Access and Auditing User Actions
You should create and configure banners to warn users against unauthorized access
and possible auditing of user actions. The notices are available to the client application
when it logs into the database.

To configure these banners to display, set the following sqlnet.ora parameters on
the database server side to point to a text file that contains the banner information:

■ SEC_USER_UNAUTHORIZED_ACCESS_BANNER. For example:

SEC_USER_UNAUTHORIZED_ACCESS_BANNER = /opt/Oracle/11g/dbs/unauthaccess.txt

■ SEC_USER_AUDIT_ACTION_BANNER. For example:

SEC_USER_AUDIT_ACTION_BANNER = /opt/Oracle/11g/dbs/auditactions.txt

By default, these parameters are not set. In addition, be aware that there is a 512-byte
limitation for the number of characters used for the banner text.

After you set these parameters, the Oracle Call Interface application must use the
appropriate OCI APIs to retrieve these banners and present them to the end user.

6

Using Application Contexts to Retrieve User Information 6-1

6Using Application Contexts
to Retrieve User Information

This chapter contains:

■ About Application Contexts

■ Types of Application Contexts

■ Using Database Session-Based Application Contexts

■ Using Global Application Contexts

■ Using Client Session-Based Application Contexts

■ Finding Information About Application Contexts

About Application Contexts
This section contains:

■ What Is an Application Context?

■ Components of the Application Context

■ Where Are the Application Context Values Stored?

■ Benefits of Using Application Contexts

■ How Editions Affects Application Context Values

What Is an Application Context?
An application context is a set of name-value pairs that Oracle Database stores in
memory. The application context has a label called a namespace (for example, empno_
ctx for an application context that retrieves employee IDs). Inside the context are the
name-value pairs (an associative array): the name points to a location in memory that
holds the value. An application can use the application context to access session
information about a user, such as the user ID or other user-specific information, or a
client ID, and then securely pass this data to the database. You can then use this
information to either permit or prevent the user from accessing data through the
application. You can use application contexts to authenticate both database and
nondatabase users.

About Application Contexts

6-2 Oracle Database Security Guide

Components of the Application Context
The components of the name-value pair are as follows:

■ Name. Refers to the name of the attribute set that is associated with the value. For
example, if the empno_ctx application context retrieves an employee ID from the
HR.EMPLOYEES table, it could have a name such as employee_id.

■ Value. Refers to a value set by the attribute. For example, for the empno_ctx
application context, if you wanted to retrieve an employee ID from the
HR.EMPLOYEES table, you could create a value called emp_id that sets the value
for this ID.

Think of an application context as a global variable that holds information that is
accessed during a database session. To set the values for a secure application context,
you must create a PL/SQL package procedure that uses the DBMS_SESSION.SET_
CONTEXT procedure. In fact, this is the only way that you can set application context
values if the context is not marked INITIALIZED EXTERNALLY or INITIALIZED
GLOBALLY. You can assign the values to the application context attributes at run time,
not when you create the application context. Because the trusted procedure, and not
the user, assigns the values, it is a called secure application context. For client-session
based application contexts, another way to set the application context is to use Oracle
Call Interface (OCI) calls.

Where Are the Application Context Values Stored?
Oracle Database stores the application context values in a secure data cache available
in the User Global Area (UGA) or the System (sometimes called "Shared") Global Area
(SGA). This way, the application context values are retrieved during the session.
Because the application context stores the values in this data cache, it increases
performance for your applications. You can use an application context by itself, with
Oracle Virtual Private Databases policies, or with other fine-grained access control
policies. See "Using Oracle Virtual Private Database with an Application Context" on
page 7-3 if you are interested in using application contexts with Virtual Private
Database policies.

Benefits of Using Application Contexts
Most applications contain the kind of information that can be used for application
contexts. For example, in an order entry application that uses a table containing the
columns ORDER_NUMBER and CUSTOMER_NUMBER, you can use the values in these
columns as security attributes to restrict access by a customer to his or her own orders,
based on the ID of that customer.

Application contexts are useful for the following purposes:

■ Enforcing fine-grained access control (for example, in Oracle Virtual Private
Database polices)

■ Preserving user identity across multitier environments

■ Enforcing stronger security for your applications, because the application context
is controlled by a trusted procedure, not the user

■ Increasing performance by serving as a secure data cache for attributes needed by
an application for fine-grained auditing or for use in PL/SQL conditional
statements or loops

This cache saves the repeated overhead of querying the database each time these
attributes are needed. Because the application context stores session data in cache

Types of Application Contexts

Using Application Contexts to Retrieve User Information 6-3

rather than forcing your applications to retrieve this data repeatedly from a table,
it greatly improves the performance of your applications.

■ Serving as a holding area for name-value pairs that an application can define,
modify, and access

How Editions Affects Application Context Values
Oracle Database sets the application context in all editions that are affected by the
application context package. The values the application context sets are visible in all
editions the application context affects.

Types of Application Contexts
There are three general categories of application contexts:

■ Database session-based application contexts. This type retrieves data that is
stored in the database user session (that is, the UGA) cache. There are three
categories of database session-based application contexts:

– Initialized locally. Initializes the application context locally, to the session of
the user.

– Initialized externally. Initializes the application context from an Oracle Call
Interface (OCI) application, a job queue process, or a connected user database
link.

– Initialized globally. Uses attributes and values from a centralized location,
such as an LDAP directory.

"Using Database Session-Based Application Contexts" on page 6-4 describes this
type of application context.

■ Global application contexts. This type retrieves data that is stored in the System
Global Area (SGA) so that it can be used for applications that use a sessionless
model, such as middle-tier applications in a three-tiered architecture. A global
application context is useful if the session context must be shared across sessions,
for example, through connection pool implementations.

"Using Global Application Contexts" on page 6-22 describes this type.

■ Client session-based application contexts. This type uses Oracle Call Interface
functions on the client side to set the user session data, and then to perform the
necessary security checks to restrict user access.

"Using Client Session-Based Application Contexts" on page 6-42 describes this
type.

See Also: Oracle Database Advanced Application Developer's Guide for
detailed information about editions

Using Database Session-Based Application Contexts

6-4 Oracle Database Security Guide

Table 6–1 summarizes the different types of application contexts.

Using Database Session-Based Application Contexts
 This section contains:

■ About Database Session-Based Application Contexts

■ Creating a Database Session-Based Application Context

■ Creating a PL/SQL Package to Set the Database Session-Based Application
Context

■ Creating a Logon Trigger to Run a Database Session Application Context Package

■ Tutorial: Creating and Using a Database Session-Based Application Context

■ Initializing Database Session-Based Application Contexts Externally

■ Initializing Database Session-Based Application Contexts Globally

■ Using Externalized Database Session-Based Application Contexts

About Database Session-Based Application Contexts
If you must retrieve session information for database users, then use a database
session-based application context. This type of application context uses a PL/SQL
procedure within Oracle Database to retrieve, set, and secure the data it manages.

The database session-based application context is managed entirely within Oracle
Database. Oracle Database sets the values, and then when the user exits the session,
automatically clears the application context values stored in cache. If the user
connection ends abnormally, for example, during a power failure, then the PMON
background process cleans up the application context data.You do not need to
explicitly clear the application context from cache.

Table 6–1 Types of Application Contexts

Application Context Type
Stored
in UGA

Stored
in SGA

Supports Connected
User Database Links

Supports Centralized
Storage of Users'
Application Context

Supports Sessionless
Multitier Applications

Database session-based
application context
initialized locally

Yes No No No No

Database session-based
application context
initialized externally

Yes No Yes No No

Database session-based
application context
initialized globally

Yes No No Yes No

Global application context No Yes No No Yes

Client session-based
application context

Yes No Yes No Yes

Note: If your users are application users, that is, users who are not in
your database, consider using a global application context instead. See
"Using Global Application Contexts" on page 6-22 for more
information.

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-5

The advantage of having Oracle Database manage the application context is that you
can centralize the application context management. Any application that accesses this
database will need to use this application context to permit or prevent user access to
that application. This provides benefits both in improved performance and stronger
security.

You use the following components to create and use a database session-based
application context:

■ The application context. You use the CREATE CONTEXT SQL statement to create
an application context. This statement names the application context (namespace)
and associates it with a PL/SQL procedure that is designed to retrieve session data
and set the application context.

■ A PL/SQL procedure to perform the data retrieval and set the context. "About the
Package That Manages the Database Session-Based Application Context" on
page 6-7 describes the tasks this procedure must perform. Ideally, create this
procedure within a package, so that you can include other procedures if you want
(for example, to perform error checking tasks).

■ A way to set the application context when the user logs on. Users who log on to
applications that use the application context must run a PL/SQL package that sets
the application context. You can achieve this with either a logon trigger that fires
each time the user logs on, or you can embed this functionality in your
applications.

"Tutorial: Creating and Using a Database Session-Based Application Context" on
page 6-13 shows how to create and use a database session-based application context
that is initialized locally.

You can also initialize session-based application contexts either externally or globally.
Either method stores the context information in the user session.

■ External initialization. This type can come from an OCI interface, a job queue
process, or a connected user database link. See "Initializing Database
Session-Based Application Contexts Externally" on page 6-16 for detailed
information.

■ Global initialization. This type uses attributes and values from a centralized
location, such as an LDAP directory. "Initializing Database Session-Based
Application Contexts Globally" on page 6-18 provides more information.

Creating a Database Session-Based Application Context
To create a database session-based application context, you use the CREATE CONTEXT
SQL statement. Here, you create a namespace for the application context and then
associate it with a PL/SQL package that manages the name-value pair that holds the
session information of the user. You must have the CREATE ANY CONTEXT system
privilege to run this statement, and the DROP ANY CONTEXT privilege to use the DROP
CONTEXT statement if you drop the application context. In a database session-based
application context, data is stored in the database user session (UGA) in a namespace
that you create with the CREATE CONTEXT SQL statement.

Each application context must have a unique attribute and belong to a namespace.
That is, context names must be unique within the database, not just within a schema.

The ownership of the application context is as follows: Even though a user who has
been granted the CREATE ANY CONTEXT and DROP ANY CONTEXT privileges can
create and drop the application context, it is owned by the SYS schema. Oracle
Database associates the context with the schema account that created it, but if you

Using Database Session-Based Application Contexts

6-6 Oracle Database Security Guide

drop this user, the context still exists in the SYS schema. As user SYS, you can drop the
application context.

Example 6–1 shows how to use CREATE CONTEXT to create a database session-based
application context:

Example 6–1 Creating a Database Session-Based Application Context

CREATE CONTEXT empno_ctx USING set_empno_ctx_pkg;

Here, empno_ctx is the context namespace and set_empno_ctx_pkg is the package
that sets attributes for the empno_ctx namespace. When you create the application
context, the PL/SQL package does not need to exist, but it must exist at run time. "Step
3: Create a Package to Retrieve Session Data and Set the Application Context" on
page 6-14 shows an example of how to create a package that can be used with this
application context.

Notice that when you create the context, you do not set its name-value attributes in the
CREATE CONTEXT statement. Instead, you set these in the package that you associate
with the application context. The reason you do this is to prevent a malicious user
from changing the context attributes without proper attribute validation.

For each application, you can create an application context that has its own attributes.
Suppose, for example, you have three applications: General Ledger, Order Entry, and
Human Resources. You can specify different attributes for each application:

■ For the order entry application context, you can specify the attribute CUSTOMER_
NUMBER.

■ For the general ledger application context, you can specify the attributes SET_OF_
BOOKS and TITLE.

■ For the human resources application context, you can specify the attributes
ORGANIZATION_ID, POSITION, and COUNTRY.

The data the attributes access is stored in the tables behind the applications. For
example, the order entry application uses a table called OE.CUSTOMERS, which
contains the CUSTOMER_NUMBER column, which provides data for the CUSTOMER_
NUMBER attribute. In each case, you can adapt the application context to your precise
security needs.

Creating a PL/SQL Package to Set the Database Session-Based Application Context
This section contains:

■ About the Package That Manages the Database Session-Based Application Context

■ Using SYS_CONTEXT to Retrieve Session Information

■ Using Dynamic SQL with SYS_CONTEXT

■ Using SYS_CONTEXT in a Parallel Query

■ Using SYS_CONTEXT with Database Links

■ Using DBMS_SESSION.SET_CONTEXT to Set Session Information

Note: You cannot create a context called CLIENTCONTEXT. This
word is reserved for use with client session-based application
contexts. See "Using Client Session-Based Application Contexts" on
page 6-42 for more information about this type of application context.

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-7

About the Package That Manages the Database Session-Based Application Context
The PL/SQL package, usually created in the schema of the security administrator,
defines procedures that manage the session data represented by the application
context. It must perform the following tasks:

■ Retrieve session information. To retrieve the user session information, you can
use the SYS_CONTEXT SQL function. The SYS_CONTEXT function returns the
value of the parameter associated with the context namespace. You can use this
function in both SQL and PL/SQL statements. Typically, you will use the built-in
USERENV namespace to retrieve the session information of a user. (For detailed
information about the SYS_CONTEXT function, see Oracle Database SQL Language
Reference.)

■ Set the name-value attributes of the application context you created with
CREATE CONTEXT. You can use the DBMS_SESSION.SET_CONTEXT procedure
to set the name-value attributes of the application context. The name-value
attributes can hold information such as the user ID, IP address, authentication
mode, the name of the application, and so on. The values of the attributes you set
remain either until you reset them, or until the user ends the session. Note the
following:

– If the value of the parameter in the namespace already has been set, then SET_
CONTEXT overwrites this value.

– Be aware that any changes in the context value are reflected immediately and
subsequent calls to access the value through the SYS_CONTEXT function will
return the most recent value.

■ Be executed by users. After you create the package, the user will need to execute
the package when he or she logs on. You can create a logon trigger to execute the
package automatically when the user logs on, or you can embed this functionality
in your applications. Remember that the application context session values are
cleared automatically when the user ends the session, so you do not need to
manually remove the session data.

It is important to remember that the procedure is a trusted procedure: It is designed to
prevent the user from setting his or her own application context attribute values. The
user runs the procedure, but the procedure sets the application context values, not the
user.

"Tutorial: Creating and Using a Database Session-Based Application Context" on
page 6-13 shows how to create a database session-based application context.

Using SYS_CONTEXT to Retrieve Session Information
The syntax for the PL/SQL function SYS_CONTEXT is as follows:

SYS_CONTEXT ('namespace','parameter'[,length])

In this specification:

■ namespace: The name of the application context. You can specify either a string
or an expression that evaluates to a string. The SYS_CONTEXT function returns the
value of parameter associated with the context namespace at the current instant. If
the value of the parameter in the namespace already has been set, then SET_
CONTEXT overwrites this value.

■ parameter: A parameter within the namespace application context. This value
can be a string or an expression.

Using Database Session-Based Application Contexts

6-8 Oracle Database Security Guide

■ length: Optional. The default maximum size of the return type is 256 bytes, but
you can override the length by specifying a value up to 4000 bytes. Enter a value
that is a NUMBER data type, or a value that can be can be implicitly converted to
NUMBER. The data type of the SYS_CONTEXT return type is a VARCHAR2.

The SYS_CONTEXT function provides a default namespace, USERENV, which describes
the current session of the user logged on. You can use SYS_CONTEXT to retrieve
different types of session-based information about a user, such as the user host
computer ID, host IP address, operating system user name, and so on. Remember that
you only use USERENV to retrieve session data, not set it. The predefined attributes are
listed in the description for the PL/SQL function in the Oracle Database SQL Language
Reference.

For example, to retrieve the name of the host computer to which a client is connected,
you can use the HOST parameter of USERENV as follows:

SYS_CONTEXT ('userenv','host')

You can check the SYS_CONTEXT settings by issuing a SELECT SQL statement on the
DUAL table. The DUAL table is a small table in the data dictionary that Oracle Database
and user-written programs can reference to guarantee a known result. This table has
one column called DUMMY and one row that contains the value X.

Example 6–2 demonstrates how to find the host computer on which you are logged,
assuming that you are logged on to the SHOBEEN_PC host computer under EMP_
USERS.

Example 6–2 Finding SYS_CONTEXT Values

SELECT SYS_CONTEXT ('USERENV', 'HOST') FROM DUAL;

SYS_CONTEXT(USERENV,HOST)

EMP_USERS\SHOBEEEN_PC

Using Dynamic SQL with SYS_CONTEXT
During a session in which you expect a change in policy between executions of a given
query, the query must use dynamic SQL. You must use dynamic SQL because static
SQL and dynamic SQL parse statements differently:

■ Static SQL statements are parsed at compile time. They are not parsed again at
execution time for performance reasons.

■ Dynamic SQL statements are parsed every time they are executed.

Consider a situation in which Policy A is in force when you compile a SQL statement,
and then you switch to Policy B and run the statement. With static SQL, Policy A
remains in force. Oracle Database parses the statement at compile time, but does not
parse it again upon execution. With dynamic SQL, Oracle Database parses the
statement upon execution, then the switch to Policy B takes effect.

For example, consider the following policy:

EMPLOYEE_NAME = SYS_CONTEXT ('USERENV', 'SESSION_USER')

Note: The USERENV application context namespace replaces the
USERENV function provided in earlier Oracle Database releases.

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-9

The policy EMPLOYEE_NAME matches the database user name. It is represented in the
form of a SQL predicate in Oracle Virtual Private Database: the predicate is considered
a policy. If the predicate changes, then the statement must be parsed again to produce
the correct result.

Using SYS_CONTEXT in a Parallel Query
If you use SYS_CONTEXT inside a SQL function that is embedded in a parallel query,
then the function includes the application context.

Consider a user-defined function within a SQL statement, which sets the user ID to 5:

CREATE FUNCTION set_id
 RETURN NUMBER IS
BEGIN
 IF SYS_CONTEXT ('hr', 'id') = 5
 THEN RETURN 1; ELSE RETURN 2;
 END IF;
END;

Now consider the following statement:

SELECT * FROM emp WHERE set_id() = 1;

When this statement is run as a parallel query, the user session, which contains the
application context information, is propagated to the parallel execution servers (query
child processes).

Using SYS_CONTEXT with Database Links
When SQL statements within a user session involve database links, then Oracle
Database runs the SYS_CONTEXT SQL function at the host computer of the database
link, and then captures the context information there (at the host computer).

If remote PL/SQL procedure calls are run on a database link, then Oracle Database
runs any SYS_CONTEXT function inside such a procedure at the destination database
of the link. In this case, only externally initialized application contexts are available at
the database link destination site. For security reasons, Oracle Database propagates
only the externally initialized application context information to the destination site
from the initiating database link site.

Using DBMS_SESSION.SET_CONTEXT to Set Session Information
After you have used the SYS_CONTEXT function to retrieve the session data of a user,
you are ready to set the application context values from the session of this user. To do
so, use the DBMS_SESSION.SET_CONTEXT procedure. (Ensure that you have the
EXECUTE privilege for the DBMS_SESSION PL/SQL package.)

Its syntax is as follows:

DBMS_SESSION.SET_CONTEXT (
 namespace VARCHAR2,
 attribute VARCHAR2,
 value VARCHAR2,
 username VARCHAR2,
 client_id VARCHAR2);

In this specification:

See Also: "Using Automatic Reparsing for Fine-Grained Access
Control Policy Functions" on page 7-35

Using Database Session-Based Application Contexts

6-10 Oracle Database Security Guide

■ namespace: The namespace of the application context to be set, limited to 30
bytes. For example, if you were using a namespace called custno_ctx, you
would specify it as follows:

namespace => 'custno_ctx',

■ attribute: The attribute of the application context to be set, limited to 30 bytes.
For example, to create the ctx_attrib attribute for the custno_ctx namespace:

attribute => 'ctx_attrib',

■ value: The value of the application context to be set, limited to 4000 bytes.
Typically, this is the value retrieved by the SYS_CONTEXT function and stored in a
variable. For example:

value => ctx_value,

■ username: Optional. The database user name attribute of the application context.
The default is NULL, which permits any user to access the session. For database
session-based application contexts, omit this setting so that it uses the NULL
default.

The username and client_id parameters are used for globally accessed
application contexts. See "Setting the DBMS_SESSION.SET_CONTEXT username
and client_id Parameters" on page 6-25 for more information.

■ client_id: Optional. The application-specific client_id attribute of the
application context (64-byte maximum). The default is NULL, which means that no
client ID is specified. For database session-based application contexts, omit this
setting so that it uses the NULL default.

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DBMS_SESSION package.

For example, remember the application context created in Example 6–1 on page 6-6:

CREATE CONTEXT empno_ctx USING set_empno_ctx_proc;

Example 6–3 shows how to create a simple procedure that creates an attribute for the
empno_ctx application context.

Example 6–3 Simple Procedure to Create an Application Context Value

In this example:

■ Line 2: Takes emp_value as the input parameter. This parameter specifies the
value associated with the application context attribute empno_attrib. Its limit is
4000 bytes.

■ Line 5: Sets the value of the application context by using the DBMS_
SESSION.SET_CONTEXT procedure:

– 'empno_ctx': Refers to the application context namespace. Enclose its name
in single quotation marks.

1
2
3
4
5
6
7

CREATE OR REPLACE PROCEDURE set_empno_ctx_proc(
 emp_value IN VARCHAR2)
 IS
 BEGIN
 DBMS_SESSION.SET_CONTEXT('empno_ctx', 'empno_attrib', emp_value);
 END;
/

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-11

– 'empno_attrib': Creates the attribute associated with the application
context namespace.

– emp_value: Specifies the value for the empno_attrib attribute. Here, it
refers to the emp_value parameter defined in Line 2.

At this stage, you can run the set_empno_ctx_proc procedure to set the application
context:

EXECUTE set_empno_ctx_proc ('42783');

(In a real world scenario, you would set the application context values in the
procedure itself, so that it becomes a trusted procedure. This example is only used to
show how data can be set for demonstration purposes.)

To check the application context setting, run the following SELECT statement:

SELECT SYS_CONTEXT ('empno_ctx', 'empno_attrib') empno_attrib FROM DUAL;

EMPNO_ATTRIB

42783

You can also query the SESSION_CONTEXT data dictionary view to find all the
application context settings in the current session of the database instance. For
example:

SELECT * FROM SESSION_CONTEXT;

NAMESPACE ATTRIBUTE VALUE
--
EMPNO_CTX EMP_ID 42783

Creating a Logon Trigger to Run a Database Session Application Context Package
After you create the application context and its associated package, the user must run
the package procedure when he or she logs on. You can create a logon trigger that
handles this automatically. You do not need to grant the user EXECUTE permissions to
run the package.

Example 6–4 shows a simple logon trigger that executes a PL/SQL procedure.

Example 6–4 Creating a Simple Logon Trigger

CREATE OR REPLACE TRIGGER set_empno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sec_mgr.set_empno_ctx_proc;
 END;

Example 6–5 shows how to create a logon trigger that uses a WHEN OTHERS exception.
Otherwise, if there is an error in the PL/SQL logic that creates an unhandled

See Also:

■ "Tutorial: Creating and Using a Database Session-Based
Application Context" on page 6-13 for how to create a package
that retrieves the user session information and then sets the
application context based on this information

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_SESSION.SET_CONTEXT
procedure

Using Database Session-Based Application Contexts

6-12 Oracle Database Security Guide

exception, then all connections to the database are blocked. This example shows a
WHEN OTHERS exception that writes errors to a table in the security administrator’s
schema. In a production environment, this is safer than sending the output to the user
session, where it could be vulnerable to security attacks.

Example 6–5 Creating a Logon Trigger for a Production Environment

CREATE OR REPLACE TRIGGER set_empno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sec_mgr.set_empno_ctx_proc;
 EXCEPTION
 WHEN OTHERS THEN
 v_code := SQLCODE;
 v_errm := SUBSTR(SQLERRM, 1 , 64);
 -- Invoke another procedure,
 -- declared with PRAGMA AUTONOMOUS_TRANSACTION,
 -- to insert information about errors.
 INSERT INTO sec_mgr.errors VALUES (v_code, v_errm, SYSTIMESTAMP);
 END;
/

Example 6–6 shows how to create the same logon trigger for a development
environment, in which you may want to output errors the user session for debugging
purposes.

Example 6–6 Creating a Logon Trigger for a Development Environment

CREATE TRIGGER set_empno_ctx_trig
 AFTER LOGON ON DATABASE
 BEGIN
 sysadmin_ctx.set_empno_ctx_pkg.set_empno;
 EXCEPTION
 WHEN OTHERS THEN
 RAISE_APPLICATION_ERROR(
 -20000, 'Trigger sysadmin_ctx.set_empno_ctx_trig violation. Login denied.');
 END;
/

Note the following:

■ If the PL/SQL package procedure called by the logon trigger has any unhandled
exceptions or raises any exceptions (because, for example, a security check
failed), then the logon trigger fails. When the logon trigger fails, the logon fails,
that is, the user is denied permission to log in to the database.

■ Logon triggers may affect performance. In addition, test the logon trigger on a
sample schema user first before creating it for the database. That way, if there is an
error, you can easily correct it.

■ Be aware of situations in which if you have a changing set of books, or if
positions change constantly. In these cases, the new attribute values may not be
picked up right away, and you must force a cursor reparse to pick them up.

Note: A logon trigger can be used because the user context
(information such as EMPNO, GROUP, MANAGER) should be set before
the user accesses any data.

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-13

Tutorial: Creating and Using a Database Session-Based Application Context
This section contains:

■ About This Tutorial

■ Step 1: Create User Accounts and Ensure the User SCOTT Is Active

■ Step 2: Create the Database Session-Based Application Context

■ Step 3: Create a Package to Retrieve Session Data and Set the Application Context

■ Step 4: Create a Logon Trigger for the Package

■ Step 5: Test the Application Context

■ Step 6: Remove the Components for This Tutorial

About This Tutorial
This tutorial shows how to create an application context that checks the employee ID
of any database user who tries to log in to the database.

Step 1: Create User Accounts and Ensure the User SCOTT Is Active
1. Log on as user SYS and connect using the AS SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

2. Create the sysadmin_ctx account, who will administer the database
session-based application context.

GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE, CREATE TRIGGER,
ADMINISTER DATABASE TRIGGER TO sysadmin_ctx IDENTIFIED BY password;
GRANT SELECT ON HR.EMPLOYEES TO sysadmin_ctx;
GRANT EXECUTE ON DBMS_SESSION TO sysadmin_ctx;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

3. Create the following user account for Lisa Ozer, who is listed as having lozer for
her e-mail account in the HR.EMPLOYEES table.

GRANT CREATE SESSION TO LOZER IDENTIFIED BY password;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

4. The sample user SCOTT will also be used in this tutorial, so query the DBA_USERS
data dictionary view to ensure that SCOTT is not locked or expired.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'SCOTT';

If the DBA_USERS view lists user SCOTT as locked and expired, then enter the
following statement to unlock the SCOTT account and create a new password for
him:

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Enter a password that is secure. For greater security, do not give the SCOTT
account the same password from previous releases of Oracle Database. See
"Minimum Requirements for Passwords" on page 3-3 for the minimum
requirements for creating passwords.

Using Database Session-Based Application Contexts

6-14 Oracle Database Security Guide

Step 2: Create the Database Session-Based Application Context
1. Log on to SQL*Plus as sysadmin_ctx.

CONNECT sysadmin_ctx
Enter password: password

2. Create the application context using the following statement:

CREATE CONTEXT empno_ctx USING set_empno_ctx_pkg;

Remember that even though user sysadmin_ctx has created this application
context, the SYS schema owns the context.

Step 3: Create a Package to Retrieve Session Data and Set the Application Context
Example 6–7 shows how to create the package you need to retrieve the session data
and set the application context. Before creating the package, ensure that you are still
logged on as user sysadmin_ctx. (You can copy and paste this text by positioning
the cursor at the start of CREATE OR REPLACE in the first line.)

Example 6–7 Package to Retrieve Session Data and Set a Database Session Context

This package creates a procedure called set_empno that performs the following
actions:

■ Line 8: Declares a variable, emp_id, to store the employee ID for the user who
logs on. It uses the same data type as the EMPLOYEE_ID column in
HR.EMPLOYEES.

■ Line 10: Performs a SELECT statement to copy the employee ID that is stored in
the employee_id column data from the HR.EMPLOYEES table into the emp_id
variable.

■ Line 11: Uses a WHERE clause to find all employee IDs that match the e-mail
account for the session user. The SYS_CONTEXT function uses the predefined
USERENV context to retrieve the user session ID, which is the same as the email
column data. For example, the user ID and e-mail address for Lisa Ozer are both
the same: lozer.

■ Line 12: Uses the DBMS_SESSION.SET_CONTEXT procedure to set the application
context:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

CREATE OR REPLACE PACKAGE set_empno_ctx_pkg IS
 PROCEDURE set_empno;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY set_empno_ctx_pkg IS
 PROCEDURE set_empno
 IS
 emp_id HR.EMPLOYEES.EMPLOYEE_ID%TYPE;
 BEGIN
 SELECT EMPLOYEE_ID INTO emp_id FROM HR.EMPLOYEES
 WHERE email = SYS_CONTEXT('USERENV', 'SESSION_USER');
 DBMS_SESSION.SET_CONTEXT('empno_ctx', 'employee_id', emp_id);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN NULL;
 END;
 END;
/

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-15

– 'empno_ctx': Calls the application context empno_ctx. Enclose empno_
ctx in single quotes.

– 'employee_id': Creates the attribute value of the empno_ctx application
context name-value pair, by naming it employee_id. Enclose employee_id
in single quotes.

– emp_id: Sets the value for the employee_id attribute to the value stored in
the emp_id variable. The emp_id variable was created in Line 8 and the
employee ID was retrieved in Lines 10–11.

To summarize, the set_empno_ctx_pkg.set_empno procedure says, "Get the
session ID of the user and then match it with the employee ID and e-mail address
of any user listed in the HR.EMPLOYEES table."

■ Lines 13–14: Add a WHEN NO_DATA_FOUND system exception to catch any no
data found errors that may result from the SELECT statement in Lines 10–11.
Without this exception, the package and logon trigger will work fine and set the
application context as needed, but then any non-system administrator users other
than the users listed in the HR.EMPLOYEES table will not be able to log in to the
database. Other users should be able to log in to the database, assuming they are
valid database users. Once the application context information is set, then you can
use this session information as a way to control user access to a particular
application.

Step 4: Create a Logon Trigger for the Package
As user sysadmin_ctx, create the following trigger:

CREATE TRIGGER set_empno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sysadmin_ctx.set_empno_ctx_pkg.set_empno;
 END;
/

Step 5: Test the Application Context
1. Log on as user lozer.

CONNECT lozer
Enter password: password

When user lozer logs on, the empno_ctx application context collects her
employee ID. You can check it as follows:

SELECT SYS_CONTEXT('empno_ctx', 'employee_id') emp_id FROM DUAL;

The following output should appear:

EMP_ID
--
168

2. Log on as user SCOTT.

CONNECT SCOTT
Enter password: password

User SCOTT is not listed as an employee in the HR.EMPLOYEES table, so the
empno_ctx application context cannot collect an employee ID for him.

SELECT SYS_CONTEXT('empno_ctx', 'employee_id') emp_id FROM DUAL;

Using Database Session-Based Application Contexts

6-16 Oracle Database Security Guide

The following output should appear:

EMP_ID
--

From here, the application can use the user session information to determine how
much access the user can have in the database. You can use Oracle Virtual Private
Database to accomplish this. See Chapter 7, "Using Oracle Virtual Private Database
to Control Data Access," for more information.

Step 6: Remove the Components for This Tutorial
1. Log on as SYS and connect using AS SYSDBA.

CONNECT SYS/AS SYSDBA
Enter password: password

2. Drop the users sysadmin_ctx and lozer:

DROP USER sysadmin_ctx CASCADE;
DROP USER lozer;

3. Drop the application context.

DROP CONTEXT empno_ctx;

Remember that even though sysadmin_ctx created the application context, it is
owned by the SYS schema.

4. If you want, lock and expire SCOTT, unless other users want to use this account:

ALTER USER SCOTT PASSWORD EXPIRE ACCOUNT LOCK;

Initializing Database Session-Based Application Contexts Externally
When you initialize a database session-based application context externally, you
specify a special type of namespace that accepts the initialization of attribute values
from external resources and then stores them in the local user session. Initializing an
application context externally enhances performance because it is stored in the UGA
and enables the automatic propagation of attributes from one session to another.
Connected user database links are supported only by application contexts initialized
from OCI-based external sources.

This section contains:

■ Obtaining Default Values from Users

■ Obtaining Values from Other External Resources

■ Initializing Application Context Values from a Middle-Tier Server

Obtaining Default Values from Users
Sometimes you need the default values from users. Initially, these default values may
be hints or preferences, and then after validation, they become trusted contexts.
Similarly, it may be more convenient for clients to initialize some default values, and
then rely on a login event trigger or applications to validate the values.

For job queues, the job submission routine records the context being set at the time the
job is submitted, and restores it when executing the batched job. To maintain the
integrity of the context, job queues cannot bypass the designated PL/SQL package to
set the context. Rather, the externally initialized application context accepts
initialization of context values from the job queue process.

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-17

Automatic propagation of context to a remote session may create security problems.
Developers or administrators can effectively handle the context that takes default
values from resources other than the designated PL/SQL procedure by using logon
triggers to reset the context when users log in.

Obtaining Values from Other External Resources
You can create an application context that accepts the initialization of attributes and
values through external resources. Examples include an OCI interface, a job queue
process, or a database link.

Externally initialized application contexts provide the following features:

■ For remote sessions, automatic propagation of context values that are in the
externally initialized application context namespace

■ For job queues, restoration of context values that are in the externally initialized
application context namespace

■ For OCI interfaces, a mechanism to initialize context values that are in the
externally initialized application context namespace

Although any client program that is using Oracle Call Interface can initialize this type
of namespace, you can use login event triggers to verify the values. It is up to the
application to interpret and trust the values of the attributes.

Example 6–8 shows how to create a database session-based application context that
obtains values from an external source.

Example 6–8 Creating an Externalized Database Session-based Application Context

CREATE CONTEXT ext_ctx USING ext_ctx_pkg INITIALIZED EXTERNALLY;

Initializing Application Context Values from a Middle-Tier Server
Middle-tier servers can initialize application context values on behalf of database
users. Context attributes are propagated for the remote session at initialization time,
and the remote database accepts the values if the namespace is externally initialized.

For example, a three-tier application creating lightweight user sessions through OCI or
JDBC/OCI can access the PROXY_USER attribute in USERENV. This attribute enables
you to determine if the user session was created by a middle-tier application. You
could allow a user to access data only for connections where the user is proxied. If
users connect directly to the database, then they would not be able to access any data.

You can use the PROXY_USER attribute from the USERENV namespace within Oracle
Virtual Private Database to ensure that users only access data through a particular
middle-tier application. For a different approach, you can develop a secure application
role to enforce your policy that users access the database only through a specific proxy.

Using Database Session-Based Application Contexts

6-18 Oracle Database Security Guide

Initializing Database Session-Based Application Contexts Globally
This section contains:

■ About Initializing Database Session-Based Application Contexts Globally

■ Using Database Session-Based Application Contexts with LDAP

■ How Globally Initialized Database Session-Based Application Contexts Work

■ Example of Initializing a Database Session-Based Application Context Globally

About Initializing Database Session-Based Application Contexts Globally
You can use a centralized location to store the database session-based application
context of the user. This enables applications to set up a user context during
initialization based upon user identity. In particular, this feature supports Oracle Label
Security labels and privileges. Initializing an application context globally makes it
easier to manage contexts for large numbers of users and databases.

For example, many organizations want to manage user information centrally, in an
LDAP-based directory. Enterprise User Security, a feature of Oracle Advanced
Security, supports centralized user and authorization management in Oracle Internet
Directory. However, there may be additional attributes an application must retrieve
from Lightweight Directory Access Protocol (LDAP) to use for Oracle Virtual Private
Database enforcement, such as the user title, organization, or physical location.
Initializing an application context globally enables you to retrieve these types of
attributes.

Using Database Session-Based Application Contexts with LDAP
An application context that is initialized globally uses LDAP, a standard, extensible,
and efficient directory access protocol. The LDAP directory stores a list of users to
which this application is assigned. Oracle Database uses a directory service, typically
Oracle Internet Directory, to authenticate and authorize enterprise users.

The orclDBApplicationContext LDAP object (a subclass of
groupOfUniqueNames) stores the application context values in the directory. The

See Also:

■ "Preserving User Identity in Multitiered Environments" on
page 3-34 for information about proxy authentication and
about using the USERENV attribute CLIENT_IDENTIFIER to
preserve user identity across multiple tiers

■ "Using a Middle Tier Server for Proxy Authentication" on
page 3-34 for information about using a secure application role
to enforce a policy through a specific proxy

■ Oracle Database JDBC Developer's Guide and Reference

■ Oracle Call Interface Programmer's Guide

Note:

■ Enterprise User Security requires Oracle Advanced Security.

■ You can use third-party directories such as Microsoft Active
Directory and Sun Microsystems SunONE as the directory service.

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-19

location of the application context object is described in Figure 6–1, which is based on
the Human Resources example.

On the LDAP side, an internal C function is required to retrieve the
orclDBApplicationContext value, which returns a list of application context
values to the database. In this example, HR is the namespace; Title and Project are the
attributes; and Manager and Promotion are the values.

Figure 6–1 Location of Application Context in LDAP Directory Information Tree

How Globally Initialized Database Session-Based Application Contexts Work
To use a globally initialized secure application, you need to first configure Enterprise
User Security, a feature of Oracle Advanced Security. Then, you set up the application
context values for the user in the database and the directory.

When a global user (enterprise user) connects to the database, Enterprise User Security
verifies the identity of the user connecting to the database. After authentication, the
global user roles and application context are retrieved from the directory. When the
user logs on to the database, the global roles and initial application context are already
set.

See Also: Oracle Database Enterprise User Security Administrator's
Guide for information about configuring Enterprise User Security

Using Database Session-Based Application Contexts

6-20 Oracle Database Security Guide

Example of Initializing a Database Session-Based Application Context Globally
You can configure and store the initial application context for a user, such as the
department name and title, in the LDAP directory. The values are retrieved during
user login so that the context is set properly. In addition, any information related to the
user is retrieved and stored in the SYS_USER_DEFAULTS application context
namespace. The following procedure shows how this is accomplished:

1. Create the application context in the database.

CREATE CONTEXT hr USING hrapps.hr_manage_pkg INITIALIZED GLOBALLY;

2. Create and add new entries in the LDAP directory.

An example of the entries added to the LDAP directory follows. These entries
create an attribute named Title with the attribute value Manager for the
application (namespace) HR, and assign user names user1 and user2. In the
following, cn=example refers to the name of the domain.

dn:
cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleConte
xt,ou=Americas,o=oracle,c=US
changetype: add
cn: OracleDBAppContext
objectclass: top
objectclass: orclContainer

dn:
cn=hr,cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=Oracl
eContext,ou=Americas,o=oracle,c=US
changetype: add
cn: hr
objectclass: top
objectclass: orclContainer

dn: cn=Title,cn=hr,
cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleConte
xt,ou=Americas,o=oracle,c=US
changetype: add
cn: Title
objectclass: top
objectclass: orclContainer

dn: cn=Manager,cn=Title,cn=hr,
cn=OracleDBAppContext,cn=example,cn=OracleDBSecurity,cn=Products,cn=OracleConte
xt,ou=Americas,o=oracle,c=US
cn: Manager
objectclass: top
objectclass: groupofuniquenames
objectclass: orclDBApplicationContext
uniquemember: CN=user1,OU=Americas,O=Oracle,L=Redwoodshores,ST=CA,C=US
uniquemember: CN=user2,OU=Americas,O=Oracle,L=Redwoodshores,ST=CA,C=US

3. If an LDAP inetOrgPerson object entry exists for the user, then the connection
retrieves the attributes from inetOrgPerson, and assigns them to the namespace
SYS_LDAP_USER_DEFAULT. The following is an example of an inetOrgPerson
entry:

dn: cn=user1,ou=Americas,O=oracle,L=redwoodshores,ST=CA,C=US
changetype: add
objectClass: top

Using Database Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-21

objectClass: person
objectClass: organizationalPerson
objectClass: inetOrgPerson
cn: user1
sn: One
givenName: User
initials: UO
title: manager, product development
uid: uone
mail: uone@us.example.com
telephoneNumber: +1 650 555 0105
employeeNumber: 00001
employeeType: full time

4. Connect to the database.

When user1 connects to a database that belongs to the example domain, user1
will have his Title set to Manager. Any information related to user1 will be
retrieved from the LDAP directory. The value can be obtained using the following
syntax:

SYS_CONTEXT('namespace','attribute name')

For example:

DECLARE
 tmpstr1 VARCHAR2(30);
 tmpstr2 VARCHAR2(30);
BEGIN
 tmpstr1 = SYS_CONTEXT('HR','TITLE);
 tmpstr2 = SYS_CONTEXT('SYS_LDAP_USER_DEFAULT','telephoneNumber');
 DBMS_OUTPUT.PUT_LINE('Title is ' || tmpstr1);
 DBMS_OUTPUT.PUT_LINE('Telephone Number is ' || tmpstr2);
END;

The output of this example is:

Title is Manager
Telephone Number is +1 650 555 0105

Using Externalized Database Session-Based Application Contexts
Many applications store attributes used for fine-grained access control within a
database metadata table. For example, an employees table could include cost center,
title, signing authority, and other information useful for fine-grained access control.
Organizations also centralize user information for user management and access
control in LDAP-based directories, such as Oracle Internet Directory. Application
context attributes can be stored in Oracle Internet Directory, and assigned to one or
more enterprise users. They can also be retrieved automatically upon login for an
enterprise user, and then used to initialize an application context.

Note: Enterprise User Security is a feature of Oracle Advanced
Security.

Using Global Application Contexts

6-22 Oracle Database Security Guide

Using Global Application Contexts
This section contains:

■ About Global Application Contexts

■ Creating a Global Application Context

■ Creating a PL/SQL Package to Manage a Global Application Context

■ Embedding Calls in Middle-Tier Applications to Manage the Client Session ID

■ Tutorial: Creating a Global Application Context That Uses a Client Session ID

■ Global Application Context Processes

About Global Application Contexts
A global application context enables application context values to be accessible across
database sessions, including Oracle RAC instances. In an Oracle RAC environment,
whenever a global application context is loaded or changed, it is visible only to the
existing active instances. Oracle Database stores the global application context
information in the System (sometimes called "Shared") Global Area (SGA) so that it
can be used for applications that use a sessionless model, such as middle-tier
applications in a three-tiered architecture. These applications cannot use a
session-based application context because users authenticate to the application, and
then it typically connects to the database as a single identity. Oracle Database
initializes the global application context once, rather than for each user session. This
improves performance, because connections are reused from a connection pool.

There are three general uses for global application contexts:

■ You must share application values globally for all database users. For example,
you may need to disable access to an application based on a specific situation. In
this case, the values the application context sets are not user-specific, nor are they
based on the private data of a user. The application context defines a situation, for
example, to indicate the version of application module that is running.

■ You have database users who must move from one application to another. In this
case, the second application the user is moving to has different access
requirements from the first application.

■ You must authenticate nondatabase users, that is, users who are not known to
the database. This type of user, who does not have a database account, typically
connects through a Web application by using a connection pool. These types of
applications connect users to the database as single user, using the One Big

See Also:

■ "Initializing Database Session-Based Application Contexts
Externally" on page 6-16 for information about initializing local
application context through external resources such as an OCI
interface, a job queue process, or a database link

■ "Initializing Database Session-Based Application Contexts
Globally" on page 6-18 for information about initializing local
application context through a centralized resource, such as
Oracle Internet Directory

■ Oracle Database Enterprise User Security Administrator's Guide for
information about enterprise users

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-23

Application User authentication model. To authenticate this type of user, you use
the client session ID of the user.

A global application context has the following components:

■ The global application context. You use the CREATE CONTEXT SQL statement to
create the global application context, and include the ACCESSED GLOBALLY
clause in the statement. This statement names the application context and
associates it with a PL/SQL procedure that is designed to set the application data
context data. The global application context is created and stored in the database
schema of the security administrator who creates it.

■ A PL/SQL package to set the attributes. The package must contain a procedure
that uses the DBMS_SESSION.SET_CONTEXT procedure to set the global
application context. The SET_CONTEXT procedure provides parameters that
enable you to create a global application context that fits any of the three user
situations described in this section. You create, store, and run the PL/SQL package
on the database server. Typically, it belongs in the schema of the security
administrator who created it.

■ A middle-tier application to get and set the client session ID. For nondatabase
users, which require a client session ID to be authenticated, you can use the Oracle
Call Interface (OCI) calls in the middle-tier application to retrieve and set their
session data. You can also use the DBMS_SESSION.SET_IDENTIFIER procedure
to set the client session ID. An advantage of creating a client session ID to store the
nondatabase user’s name is that you can query the CLIENT_ID column of DBA_
AUDIT_TRAIL, DBA_FGA_AUDIT_TRAIL, and DBA_COMMON_AUDIT_TRAIL data
dictionary views to audit this user’s activity.

Creating a Global Application Context
To create a global application context, use the CREATE CONTEXT SQL statement to
create the application context and include the ACCESSED GLOBALLY clause in the
statement. You must have the CREATE ANY CONTEXT system privilege before you can
use the CREATE CONTEXT statement, and the DROP ANY CONTEXT privilege before
you can drop the context with the DROP CONTEXT statement. As with local
application contexts, the global application context is created and stored in the
database schema of a security administrator.

The ownership of the global application context is as follows: Even though a user who
has been granted the CREATE ANY CONTEXT and DROP ANY CONTEXT privileges
can create and drop the global application context, it is owned by the SYS schema.
Oracle Database associates the context with the schema account that created it, but if
you drop this user, the context still exists in the SYS schema. As user SYS, you can
drop the application context.

Example 6–9 shows how to create the global application context global_hr_ctx,
which is set by the hr_ctx_pkg package.

Example 6–9 Creating a Global Application Context

CREATE OR REPLACE CONTEXT global_hr_ctx USING hr_ctx_pkg ACCESSED GLOBALLY;

Note: Be aware that the DBMS_APPLICATION_INFO.SET_CLIENT_
INFO setting can overwrite the value. See "Using the DBMS_SESSION
PL/SQL Package to Set and Clear the Client Identifier" on page 3-43
for more information.

Using Global Application Contexts

6-24 Oracle Database Security Guide

Creating a PL/SQL Package to Manage a Global Application Context
This section contains:

■ About the Package That Manages the Global Application Context

■ How Editions Affects the Results of a Global Application Context PL/SQL
Package

■ Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters

■ Sharing Global Application Context Values for All Database Users

■ Setting a Global Context for Database Users Who Move Between Applications

■ Setting a Global Application Context for Nondatabase Users

■ Clearing Session Data When the Session Closes

For detailed information about the DBMS_SESSION package, see Oracle Database
PL/SQL Packages and Types Reference.

About the Package That Manages the Global Application Context
The task of the PL/SQL package that you associate with a global application context is
to use the DBMS_SESSION package to set and clear the global application context
values. You must have the EXECUTE privilege for the DBMS_SESSION package before
you use its procedures. Typically, you create and store this package in the database
schema of a security administrator. The SYS schema owns the DBMS_SESSION
package.

Unlike PL/SQL packages used to set a local application context, you do not include a
SYS_CONTEXT function to get the user session data. You do not need to include this
function because the owner of the session, recorded in the USERENV context, is the
same for every user who is connecting.

You can run the procedures within the PL/SQL package for a global application
context at any time. You do not need to create logon and logoff triggers to execute the
package procedures associated with the global application context. A common practice
is to run the package procedures from within the database application. Additionally,
for nondatabase users, you use middle-tier applications to get and set client session
IDs.

How Editions Affects the Results of a Global Application Context PL/SQL Package
You can control the behavior of a global application context package—and for
packages used for Oracle Virtual Private Database and fine-grained audit policies, as
well—across multiple editions, as follows:

■ Have the PL/SQL package results be the same across all editions. To do so, create
the package in the schema of a user who has not been editions enabled. To find
users who are not editions enabled, you can query the DBA_USERS and USER_
USERS data dictionary views. Remember that SYS, SYSTEM, and other default
Oracle Database administrative accounts that are listed in the DBA_REGISTRY
data dictionary view are not and cannot be editions enabled.

■ Have the PL/SQL package results depend on the current state of the edition in
which the package is run. Here, the results may be different across all editions to
which the package applies. In this case, create the package in the schema of a user
who has been editions enabled. If the schema is editions enabled, then it is likely
that there will be different actual copies of the package in different editions, where
each copy has different behavior. This is useful for the following types of
scenarios:

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-25

– The package must use a new application context.

– The package must encode input values using a different scheme.

– The package must apply different validation rules for users logging in to the
database.

For PL/SQL packages that set a global application context, use a single getter
function to wrap the primitive SYS_CONTEXT calls that will read the key-value
application context pairs. You can put this getter function in the same package as
the application context setter procedure. This approach lets you tag the value for
the application context key to reflect a relevant concept. For example, the tag can
be the edition in which the setter function is actual. Or, it can be the current edition
of the session that set the context, which you can find by using SYS_
CONTEXT('USERENV', 'CURRENT_EDITION_NAME'). This tag can be any
specific notion to which the setter function applies.

Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters
In addition to the namespace, attribute, and value parameters, the DBMS_
SESSION.SYS_CONTEXT procedure provides the client_id and username
parameters. Use these settings for global application contexts. Table 6–2 explains how
the combination of these settings controls the type of global application context you
can create.

See Also: Oracle Database Advanced Application Developer's Guide for
detailed information about editions

Table 6–2 Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters

Combination Settings Result

username set to NULL

client_id set to NULL

This combination enables all users to access the application context. See "Sharing
Global Application Context Values for All Database Users" on page 6-26 for more
information.

These settings are also used for database session-based application contexts. See
"Using Database Session-Based Application Contexts" on page 6-4 for more
information.

username set to a value

client_id set to NULL

This combination enables an application context to be accessed by multiple sessions,
as long as the username setting is the same throughout. Ensure that the user name
specified is a valid database user. See "Setting a Global Context for Database Users
Who Move Between Applications" on page 6-27 for more information.

username set to NULL

client_id set to a value

This combination enables an application to be accessed by multiple user sessions, as
long as the client_id parameter is set to the same value throughout. This enables
sessions of all users to see the application context values.

username set to a value

client_id set to a value

This combination enables the following two scenarios:

■ Lightweight users. If the user does not have a database account, the username
specified is a connection pool owner. The client_id setting is then associated
with the nondatabase user who is logging in.

■ Database users. If the user is a database user, this combination can be used for
stateless Web sessions.

Setting the username parameter in the SET_CONTEXT procedure to USER calls the
Oracle Database-supplied USER function. The USER function specifies the session
owner from the application context retrieval process and ensures that only the user
who set the application context can access the context. See Oracle Database SQL
Language Reference for more information about the USER function.

See "Setting a Global Application Context for Nondatabase Users" on page 6-28 for
more information.

Using Global Application Contexts

6-26 Oracle Database Security Guide

Sharing Global Application Context Values for All Database Users
To share global application values for all database users, set the namespace,
attribute, and value parameters in the SET_CONTEXT procedure. In this scenario,
all users who have database accounts will potentially have access to data in the
database.

Example 6–10 shows how to create a package that sets and clears this type of global
application context.

Example 6–10 Package to Manage Global Application Values for All Database Users

In this example:

■ Lines 12–16: Uses the DBMS_SESSION.SET_CONTEXT procedure to set values for
the namespace, attribute, and value parameters. The sec_level value is
specified when the database application runs the hr_ctx_pkg.set_hr_ctx
procedure.

The username and client_id values are not set, hence, they are NULL. This
enables all users (database users) to have access to the values, which is appropriate
for server-wide settings.

■ Line 13: In the SET_CONTEXT procedure, sets the namespace to global_hr_
ctx.

■ Line 14: Creates the job_role attribute.

■ Line 15: Sets the value for the job_role attribute to sec_level.

■ Lines 18–24: Creates the clear_hr_context procedure to clear the context
values. See "Clearing Session Data When the Session Closes" on page 6-31 for more
information.

Typically, you execute this procedure within a database application. For example, if all
users logging in are clerks, and you want to use "clerk" as a security level, you would
embed a call within a database application similar to the following:

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24

CREATE OR REPLACE PACKAGE hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2);
 PROCEDURE clear_hr_context;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_hr_ctx',
 attribute => 'job_role',
 value => sec_level);
 END set_hr_ctx;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx', 'job_role');
 END clear_context;
 END;
 /

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-27

BEGIN
 hr_ctx_pkg.set_hr_ctx('clerk');
END;
/

If the procedure successfully completes, you can check the application context setting
as follows:

SELECT SYS_CONTEXT('global_hr_ctx', 'job_role') job_role FROM DUAL;

JOB_ROLE

clerk

To clear this application context, enter the following:

BEGIN
 hr_ctx_pkg.clear_hr_context;
END;
/
To check that it is really cleared, the following SELECT statement should return no
values:

SELECT SYS_CONTEXT('global_hr_ctx', 'job_role') job_role FROM DUAL;

JOB_ROLE

Setting a Global Context for Database Users Who Move Between Applications
To set a global application context for database users who move from one application
to another, particularly when the applications have different access requirements,
include the username parameter in the SET_CONTEXT procedure. This parameter
specifies that the same schema be used for all sessions.

Use the following SET_CONTEXT parameters:

■ namespace

■ attribute

■ value

■ username

Oracle Database matches the username value so that the other application can
recognize the application context. This enables the user to move between applications.

By omitting the client_id setting, its value is NULL, the default. This means that
values can be seen by multiple sessions if the username setting is the same for a

Note: If Oracle Database returns error messages saying that you
have insufficient privileges, ensure that you have correctly created the
global application context. You should also query the DBA_CONTEXT
database view to ensure that your settings are correct, for example,
that you are calling the procedure from the schema in which you
created it.

If NULL is returned, then you may have inadvertently set a client
identifier. To clear the client identifier, run the following procedure:

EXEC DBMS_SESSION.CLEAR_IDENTIFIER;

Using Global Application Contexts

6-28 Oracle Database Security Guide

database user who maintains the same context in different applications. For example,
you can have a suite of applications that control user access with Oracle Virtual Private
Database policies, with each user restricted to a job role.

Example 6–11 demonstrates how to set the username parameter so that a specific user
can move between applications. This example is similar to the package that was
created in Example 6–10 on page 6-26. The use of the username parameter is
indicated in bold typeface.

Example 6–11 Package to Manage Global Application Context Values for a User Moving
Between Applications

CREATE OR REPLACE PACKAGE hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2, user_name IN VARCHAR2);
 PROCEDURE clear_hr_context;
 END;
 /
 CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg
 AS
 PROCEDURE set_hr_ctx(sec_level IN VARCHAR2, user_name IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_hr_ctx',
 attribute => 'job_role',
 value => sec_level,
 username => user_name);
 END set_hr_ctx;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx');
 END clear_context;
 END;
 /

Typically, you execute this procedure within a database application by embedding a
call similar to the following example. Ensure that the value for the user_name
parameter (scott in this case) is a valid database user name.

BEGIN
 hr_ctx_pkg.set_hr_ctx('clerk', 'scott');
END;

A secure way to manage this type of global application context is within your
applications, embed code to grant a secure application role to the user. This code
should include EXECUTE permissions on the trusted PL/SQL package that sets the
application context. In other words, the application, not the user, will set the context
for the user.

Setting a Global Application Context for Nondatabase Users
When a nondatabase user, that is, a user who is not known to the database (such as a
Web application user), starts a client session, the application server generates a client
session ID. Once this ID is set on the application server, it must be passed to the
database server side. You do this by using the DBMS_SESSION.SET_IDENTIFIER
procedure to set the client session ID. To set the context, you set the client_id
parameter in the DBMS_SESSION.SET_CONTEXT procedure, in a PL/SQL procedure

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-29

on the server side. This enables you to manage the application context globally, yet
each client sees only his or her assigned application context.

The client_id value is the key here to getting and setting the correct attributes for
the global application context. Remember that the client identifier is controlled by the
middle-tier application, and once set, it remains open until it is cleared.

A typical way to manage this type of application context is to place the session_id
value (client_identifier) in a cookie, and send it to the end user’s HTML page so
that is returned on the next request. A lookup table in the application should also keep
client identifiers so that they are prevented from being reused for other users and to
implement an end-user session time out.

For nondatabase users, configure the following SET_CONTEXT parameters:

■ namespace

■ attribute

■ value

■ username

■ client_id

Using Global Application Contexts

6-30 Oracle Database Security Guide

Example 6–12 shows how to create a package that manages this type of global
application context.

Example 6–12 Package to Manage Global Application Context Values for Nondatabase
Users

In this example:

■ Line 12: Creates the session_id_global variable, which will hold the client
session ID. The session_id_global variable is referenced throughout the
package definition, including the procedure that creates the global application
context attributes and assigns them values. This means that the global application
context values will always be associated with this particular session ID.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45

CREATE OR REPLACE PACKAGE hr_ctx_pkg
 AS
 PROCEDURE set_session_id(session_id_p IN NUMBER);
 PROCEDURE set_hr_ctx(sec_level_attr IN VARCHAR2,
 sec_level_val IN VARCHAR2);
 PROCEDURE clear_hr_session(session_id_p IN NUMBER);
 PROCEDURE clear_hr_context;
 END;
/
 CREATE OR REPLACE PACKAGE BODY hr_ctx_pkg
 AS
 session_id_global NUMBER;
 PROCEDURE set_session_id(session_id_p IN NUMBER)
 AS
 BEGIN
 session_id_global := session_id_p;
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 END set_session_id;

 PROCEDURE set_hr_ctx(sec_level_attr IN VARCHAR2,
 sec_level_val IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_hr_ctx',
 attribute => sec_level_attr,
 value => sec_level_val,
 username => USER,
 client_id => session_id_global);
 END set_hr_ctx;

 PROCEDURE clear_hr_session(session_id_p IN NUMBER)
 AS
 BEGIN
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 DBMS_SESSION.CLEAR_IDENTIFIER;
 END clear_hr_session;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_hr_ctx', session_id_global);
 END clear_hr_context;
 END;
 /

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-31

■ Lines 13–18: Creates the set_session_id procedure, which writes the client
session ID to the session_id_global variable.

■ Lines 20–30: Creates the set_hr_ctx procedure, which creates global application
context attributes and enables you to assign values to these attributes. Within this
procedure:

– Line 28: Specifies the username value. This example sets it by calling the
Oracle Database-supplied USER function, which adds the session owner from
the context retrieval process. The USER function ensures that only the user
who set the application context can access the context. See Oracle Database SQL
Language Reference for more information about the USER function.

If you had specified NULL (the default for the username parameter), then any
user can access the context.

Setting both the username and client_id values enables two scenarios. For
lightweight users, set the username parameter to a connection pool owner
(for example, APPS_USER), and then set client_id to the client session ID. If
you want to use a stateless Web session, set the user_name parameter to the
same database user who has logged in, and ensure that this user keeps the
same client session ID. See "Setting the DBMS_SESSION.SET_CONTEXT
username and client_id Parameters" on page 6-25 for an explanation of how
different username and client_id settings work.

– Line 29: Specifies client_id value. This example sets it to the session_id_
global variable. This associates the context settings defined here with a
specific client session ID, that is, the one that is set when you run the set_
session_id procedure. If you specify the client_id parameter default,
NULL, then the global application context settings could be used by any
session.

■ Lines 32–37: Creates the clear_hr_session procedure to clear the client session
identifier. Line 33 sets it to ensure that you are clearing the correct session ID, that
is, the one stored in variable session_id_p defined in Line 10.

■ Lines 39–44: Creates the clear_hr_context procedure, so that you can clear the
context settings for the current user session, which were defined by the global_
hr_ctx variable. See "Clearing Session Data When the Session Closes" on
page 6-31 for more information.

Clearing Session Data When the Session Closes
The application context exists entirely within memory. When the user exits a session,
you need to clear the context for the client_identifier value. This releases
memory and prevents other users from accidentally using any left over values.

See Also:

■ "Tutorial: Creating a Global Application Context That Uses a
Client Session ID" on page 6-35 for a tutorial that demonstrates
how a global application context used for client session IDs
works

■ "Setting the Client Session ID Using a Middle-Tier Application"
on page 6-33

■ "Using Client Identifiers to Identify Application Users Not
Known to the Database" on page 3-41 for information about
how client identifiers work on middle-tier systems

Using Global Application Contexts

6-32 Oracle Database Security Guide

To clear session data when a user exits a session, use either of the following methods
in the server-side PL/SQL package:

■ Clearing the client identifier when a user exits a session. Use the DBMS_
SESSION.CLEAR_IDENTIFIER procedure. For example:

DBMS_SESSION.CLEAR_IDENTIFIER;

■ Continuing the session but still clearing the context. If you want the session to
continue, but you still need to clear the context, use the DBMS_SESSION.CLEAR_
CONTEXT or the DBMS_SESSION.CLEAR_ALL_CONTEXT procedure. For example:

DBMS_SESSION.CLEAR_CONTEXT('my_ctx', 'my_attribute');

The CLEAR_CONTEXT procedure clears the context for the current user. To clear
the context values for all users, for example, when you need to shut down the
application server, use the CLEAR_ALL_CONTEXT procedure.

Global application context values are available until they are cleared, so you
should use CLEAR_CONTEXT or CLEAR_ALL_CONTEXT to ensure that other
sessions do not have access to these values. Be aware that any changes in the
context value are reflected immediately and subsequent calls to access the value
through the SYS_CONTEXT function will return the most recent value.

Embedding Calls in Middle-Tier Applications to Manage the Client Session ID
This section contains:

■ About Managing Client Session IDs Using a Middle-Tier Application

■ Retrieving the Client Session ID Using a Middle-Tier Application

■ Setting the Client Session ID Using a Middle-Tier Application

■ Clearing Session Data Using a Middle-Tier Application

About Managing Client Session IDs Using a Middle-Tier Application
The application server generates the client session ID. From a middle-tier application,
you can get, set, and clear the client session IDs. To do so, embed either Oracle Call
Interface (OCI) calls or DBMS_SESSION PL/SQL package procedures into the
middle-tier application code.

The application authenticates the user, sets the client identifier, and sets it in the
current session. The PL/SQL package SET_CONTEXT sets the client_identifier
value in the application context. See "Setting a Global Application Context for
Nondatabase Users" on page 6-28 for more information.

Retrieving the Client Session ID Using a Middle-Tier Application
When a user starts a client session, the application server generates a client session ID.
To retrieve this client ID, you can use the OCIStmtExecute call with any of the
following statements:

SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM dual;

SELECT CLIENT_IDENTIFIER from V$SESSION;

SELECT value FROM session_context WHERE attribute='CLIENT_IDENTIFIER';

Example 6–13 shows how to use the OCIStmtExecute call to retrieve a client session
ID value.

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-33

Example 6–13 Using OCIStmtExecute to Retrieve a Client Session ID Value

In this example:

■ Lines 1–5: Create variables to store the client session ID, reference call for
OCIDefine, the statement handle, and the SELECT statement to use.

■ Lines 7–8: Prepare the statement selcid for execution.

■ Lines 10–11: Define the output variable clientid for client session ID.

■ Lines 13–14: Execute the statement in the selcid variable.

■ Line 16: Prints the formatted output for the retrieved client session ID.

Setting the Client Session ID Using a Middle-Tier Application
After you use the OCIStmtExecute call to retrieve the client session ID, you are
ready to set this ID. The DBMS_SESSION.SET_CONTEXT procedure in the server-side
PL/SQL package then sets this session ID and optionally, overwrites the application
context values.

Ensure that the middle-tier application code checks that the client session ID value (for
example, the value written to user_id in the previous examples) matches the
client_id setting defined in the server-side DBMS_SESSION.SET_CONTEXT
procedure. The sequence of calls on the application server side should be as follows:

1. Get the current client session ID. The session should already have this ID, but it
is safer to ensure that it truly has the correct value.

2. Clear the current client session ID. This prepares the application to service a
request from a different end user.

3. Set the new client session ID or the client session ID that has been assigned to
the end user. This ensures that the session is using a different set of global
application context values.

You can use the following methods to set the client session ID on the application server
side:

■ Oracle Call Interface. Set the OCI_ATTR_CLIENT_IDENTIFIER attribute in an
OCIAttrSet OCI call. This attribute sets the client identifier in the session handle
to track the end user identity.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

oratext clientid[31];
 OCIDefine *defnp1 = (OCIDefine *) 0;
 OCIStmt *statementhndle;
 oratext *selcid = (oratext *)"SELECT SYS_CONTEXT('userenv',
 'client_identifier') FROM DUAL";

 OCIStmtPrepare(statementhndle, errhp, selcid,
 (ub4) strlen((char *) selcid), (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIDefineByPos(statementhndle, &defnp1, errhp, 1, (dvoid *)clientid, 31,
 SQLT_STR, (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT);

OCIStmtExecute(servhndle, statementhndle, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT);

printf("CLIENT_IDENTIFIER = %s \n", clientid);

Using Global Application Contexts

6-34 Oracle Database Security Guide

The following example shows how to use OCIAttrSet with the ATTR_CLIENT_
IDENTIFIER parameter. The user_id setting refers to a variable that stores the
ID of the user who is logging on.

OCIAttrSet((void *)session_handle, (ub4) OCI_HTYPE_SESSION,
 (void *) user_id, (ub4)strlen(user_id),
 OCI_ATTR_CLIENT_IDENTIFIER, error_handle);

■ DBMS_SESSION package. Use the DBMS_SESSION.SET_IDENTIFIER
procedure to set the client identifier for the global application context. For
example, assuming you are storing the ID of the user logging on in a variable
called user_id, you would enter the following line into the middle-tier
application code:

DBMS_SESSION.SET_IDENTIFIER(user_id);

For both OCIAttrSet and DBMS_SESSION.SET_IDENTIFIER, you can check the
value of this identifier as follows:

SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM dual;

Another way to check this value is to query the V$SESSION view:

SELECT CLIENT_IDENTIFIER from V$SESSION;

Clearing Session Data Using a Middle-Tier Application
The application context exists entirely within memory. When the user exits a session,
you need to clear the context for the client_identifier value. This releases
memory and prevents other users from accidentally using any left over values

To clear session data when a user exits a session, use either of the following methods
in the middle-tier application code:

■ Clearing the client identifier when a user exits a session. Use the DBMS_
SESSION.CLEAR_IDENTIFIER procedure. For example:

DBMS_SESSION.CLEAR_IDENTIFIER;

■ Continuing the session but still clearing the context. If you want the session to
continue, but you still need to clear the context, use the DBMS_SESSION.CLEAR_
CONTEXT or the DBMS_SESSION.CLEAR_ALL_CONTEXT procedure. For example:

DBMS_SESSION.CLEAR_CONTEXT(namespace, client_identifier, attribute);

Note: When the application generates a session ID for use as a
CLIENT_IDENTIFIER, then the session ID must be suitably random
and protected over the network by encryption. If the session ID is not
random, then a malicious user could guess the session ID and access
the data of another user. If the session ID is not encrypted over the
network, then a malicious user could retrieve the session ID and
access the connection.

You can encrypt the session ID by using Oracle Advanced Security.
See Oracle Database Advanced Security Administrator's Guide for more
information. To learn more about encrypting data over a network, see
Oracle Database 2 Day + Security Guide.

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-35

The CLEAR_CONTEXT procedure clears the context for the current user. To clear
the context values for all users, for example, when you need to shut down the
application server, use the CLEAR_ALL_CONTEXT procedure.

Global application context values are available until they are cleared, so you
should use CLEAR_CONTEXT or CLEAR_ALL_CONTEXT to ensure that other
sessions do not have access to these values.

Tutorial: Creating a Global Application Context That Uses a Client Session ID
This section contains:

■ About This Tutorial

■ Step 1: Create User Accounts

■ Step 2: Create the Global Application Context

■ Step 3: Create a Package for the Global Application Context

■ Step 4: Test the Global Application Context

■ Step 5: Remove the Components for This Tutorial

About This Tutorial
This tutorial shows how to create a global application context that uses a client session
ID for a lightweight user application. It demonstrates how to control nondatabase user
access by using a connection pool.

Step 1: Create User Accounts
You must create two users for this example: a security administrator who will manage
the application context and its package, and a user account that owns the connection
pool.

In this tutorial:

1. Log on to SQL*Plus as SYS and connect using AS SYSDBA.

sqlplus sys as sysdba
Enter password: password

2. Create the sysadmin_ctx account, who will administer the global application
context.

GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE TO sysadmin_ctx
IDENTIFIED BY password;

GRANT EXECUTE ON DBMS_SESSION TO sysadmin_ctx;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

3. Create the database account apps_user, who will own the connection pool.

GRANT CREATE SESSION TO apps_user IDENTIFIED BY password;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

Step 2: Create the Global Application Context
1. Log on as the security administrator sysadmin_ctx.

Using Global Application Contexts

6-36 Oracle Database Security Guide

CONNECT sysadmin_ctx
Enter password: password

2. Create the cust_ctx global application context.

CREATE CONTEXT global_cust_ctx USING cust_ctx_pkg ACCESSED GLOBALLY;

The cust_ctx context is created and associated with the schema of the security
administrator sysadmin_ctx. However, the SYS schema owns the application
context.

Step 3: Create a Package for the Global Application Context
1. As sysadmin_ctx, create the following PL/SQL package:

CREATE OR REPLACE PACKAGE cust_ctx_pkg
 AS
 PROCEDURE set_session_id(session_id_p IN NUMBER);
 PROCEDURE set_cust_ctx(sec_level_attr IN VARCHAR2,
 sec_level_val IN VARCHAR2);
 PROCEDURE clear_hr_session(session_id_p IN NUMBER);
 PROCEDURE clear_hr_context;
 END;
 /
CREATE OR REPLACE PACKAGE BODY cust_ctx_pkg
 AS
 session_id_global NUMBER;

 PROCEDURE set_session_id(session_id_p IN NUMBER)
 AS
 BEGIN
 session_id_global := session_id_p;
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 END set_session_id;

 PROCEDURE set_cust_ctx(sec_level_attr IN VARCHAR2, sec_level_val IN VARCHAR2)
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'global_cust_ctx',
 attribute => sec_level_attr,
 value => sec_level_val,
 username => USER, -- Retrieves the session user, in this case, apps_user
 client_id => session_id_global);
 END set_cust_ctx;

 PROCEDURE clear_hr_session(session_id_p IN NUMBER)
 AS
 BEGIN
 DBMS_SESSION.SET_IDENTIFIER(session_id_p);
 DBMS_SESSION.CLEAR_IDENTIFIER;
 END clear_hr_session;

 PROCEDURE clear_hr_context
 AS
 BEGIN
 DBMS_SESSION.CLEAR_CONTEXT('global_cust_ctx', session_id_global);
 END clear_hr_context;
 END;
/

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-37

For a detailed explanation of how this type of package works, see Example 6–12
on page 6-30.

2. Grant EXECUTE privileges on the cust_ctx_pkg package to the connection pool
owner, apps_user.

GRANT EXECUTE ON cust_ctx_pkg TO apps_user;

Step 4: Test the Global Application Context
At this stage, you are ready to explore how this global application context and session
ID settings work.

1. Log on to SQL*Plus as the connection pool owner, user apps_user.

CONNECT apps_user
Enter password: password

2. When the connection pool user logs on, the application sets the client session
identifier as follows:

BEGIN
 sysadmin_ctx.cust_ctx_pkg.set_session_id(34256);
END;
/

You can test and check the value of the client session identifier as follows:

a. Connect to SQL*Plus as the connection pool user apps_user.

b. Set the session ID:

EXEC sysadmin_ctx.cust_ctx_pkg.set_session_id(34256);

c. Check the session ID:

SELECT SYS_CONTEXT('userenv', 'client_identifier') FROM dual;

The following output should appear:

SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')
--
34256

3. As user apps_user, set the global application context as follows:

EXEC sysadmin_ctx.cust_ctx_pkg.set_cust_ctx('Category', 'Gold Partner');
EXEC sysadmin_ctx.cust_ctx_pkg.set_cust_ctx('Benefit Level', 'Highest');

(In a real-world scenario, the middle-tier application would set the global
application context values, similar to how the client session identifier was set in
Step 2.)

4. Enter the following SELECT SYS_CONTEXT statement to check that the settings
were successful:

col category format a13
col benefit_level format a14

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category, SYS_
CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM dual;

The following output should appear:

CATEGORY BENEFIT_LEVEL

Using Global Application Contexts

6-38 Oracle Database Security Guide

------------- --------------
Gold Partner Highest

What apps_user has done here, within the client session 34256, is set a global
application context on behalf of a nondatabase user. This context sets the Category
and Benefit Level DBMS_SESSION.SET_CONTEXT attributes to be Gold
Partner and Highest, respectively. The context exists only for user apps_user
with client ID 34256. When a nondatabase user logs in, behind the scenes, he or she is
really logging on as the connection pool user apps_user. Hence, the Gold Partner
and Highest context values are available to the nondatabase user.

Suppose the user had been a database user and could log in without using the
intended application. (For example, the user logs in using SQL*Plus.) Because the user
has not logged in through the connection pool user apps_user, the global application
context appears empty to our errant user. This is because the context was created and
set under the apps_user session. If the user runs the SELECT SYS_CONTEXT
statement, the following output appears:

CATEGORY BENEFIT_LEVEL
------------- --------------

Next, try the following test:

1. As user apps_user, clear the session ID.

EXEC sysadmin_ctx.cust_ctx_pkg.clear_hr_session(34256);

2. Check the global application context settings again.

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category, SYS_
CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM dual;

CATEGORY BENEFIT_LEVEL
------------- --------------

Because apps_user has cleared the session ID, the global application context
settings are no longer available.

3. Restore the session ID to 34256, and then check the context values.

EXEC sysadmin_ctx.cust_ctx_pkg.set_session_id(34256);

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category, SYS_
CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM dual;

The following output should appear:

CATEGORY BENEFIT_LEVEL
------------- --------------
Gold Partner Highest

As you can see, resetting the session ID to 34256 brings the application context
values back again. To summarize, the global application context must be set only
once for this user, but the client session ID must be set each time the user logs on.

4. Now try clearing and then checking the global application context values.

EXEC sysadmin_ctx.cust_ctx_pkg.clear_hr_context;

SELECT SYS_CONTEXT('global_cust_ctx', 'Category') category, SYS_
CONTEXT('global_cust_ctx', 'Benefit Level') benefit_level FROM dual;

The following output should appear:

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-39

CATEGORY BENEFIT_LEVEL
------------- --------------

At this stage, the client session ID, 34256 is still in place, but the application
context settings no longer exist. This enables you to continue the session for this
user but without using the previously set application context values.

Step 5: Remove the Components for This Tutorial
1. Log on as SYS and connect using AS SYSDBA.

CONNECT sys/as sysdba
Enter password: password

2. Drop the global application context.

DROP CONTEXT global_cust_ctx;

Remember that even though sysadmin_ctx created the global application
context, it is owned by the SYS schema.

3. Drop the two sample users.

DROP USER sysadmin_ctx CASCADE;
DROP USER apps_user;

Global Application Context Processes
This section contains:

■ Simple Global Application Context Process

■ Global Application Context Process for Lightweight Users

Simple Global Application Context Process
Consider the application server, AppSvr, that has assigned the client identifier 12345
to client SCOTT. The AppSvr application uses the SCOTT user to create a session (that
is, it is not a connection pool.) The value assigned to the context attribute can come
from anywhere, for example, from running a SELECT statement on a table that holds
the responsibility codes for users. When the application context is populated, it is
stored in memory. As a result, any action that needs the responsibility code can access
it quickly with SYS_CONTEXT call, without the overhead of accessing a table. The only
advantage of a global context over a local context in this case is if SCOTT were
changing applications frequently and used the same context in each application.

The following steps show how the global application context process sets the client
identifier for SCOTT:

1. The administrator creates a global context namespace by using the following
statement:

CREATE OR REPLACE CONTEXT hr_ctx USING hr.init ACCESSED GLOBALLY;

2. The administrator creates a PL/SQL package for the hr_ctx application context
to indicate that, for this client identifier, there is an application context called
responsibility with a value of 13 in the HR namespace.:

CREATE OR REPLACE PROCEDURE hr.init
 AS
 BEGIN
 DBMS_SESSION.SET_CONTEXT(
 namespace => 'hr_ctx',

Using Global Application Contexts

6-40 Oracle Database Security Guide

 attribute => 'responsibility',
 value => '13',
 username => 'SCOTT',
 client_id => '12345');
 END;
/

This PL/SQL procedure is stored in the HR database schema, but typically it is
stored in the schema of the security administrator.

3. The AppSvr application issues the following command to indicate the connecting
client identity each time scott uses AppSvr to connect to the database:

EXEC DBMS_SESSION.SET_IDENTIFIER('12345');

4. When there is a SYS_CONTEXT('hr_ctx','responsibility') call within the
database session, the database matches the client identifier, 12345, to the global
context, and then returns the value 13.

5. When exiting this database session, AppSvr clears the client identifier by issuing
the following procedure:

EXEC DBMS_SESSION.CLEAR_IDENTIFIER();

6. To release the memory used by the application context, AppSvr issues the
following procedure:

DBMS_SESSION.CLEAR_CONTEXT('hr_ctx', '12345');

CLEAR_CONTEXT is needed when the user session is no longer active, either on an
explicit logout, timeout, or other conditions determined by the AppSvr
application.

Global Application Context Process for Lightweight Users
The following steps show the global application context process for a lightweight user
application. The lightweight user, robert, is not known to the database through the
application.

1. The administrator creates the global context namespace by using the following
statement:

CREATE CONTEXT hr_ctx USING hr.init ACCESSED GLOBALLY;

2. The HR application server, AppSvr, starts and then establishes multiple
connections to the HR database as the appsmgr user.

3. User robert logs in to the HR application server.

4. AppSvr authenticates robert to the application.

5. AppSvr assigns a temporary session ID (or uses the application user ID), 12345,
for this connection.

6. The session ID is returned to the Web browser used by robert as part of a cookie
or is maintained by AppSvr.

Note: After a client identifier in a session is cleared, it becomes a
NULL value. This implies that subsequent SYS_CONTEXT calls only
retrieve application contexts with NULL client identifiers, until the
client identifier is set again using the SET_IDENTIFIER interface.

Using Global Application Contexts

Using Application Contexts to Retrieve User Information 6-41

7. AppSvr initializes the application context for this client by calling the hr.init
package, which issues the following statements:

DBMS_SESSION.SET_CONTEXT('hr_ctx', 'id', 'robert', 'APPSMGR', 12345);
DBMS_SESSION.SET_CONTEXT('hr_ctx', 'dept', 'sales', 'APPSMGR', 12345);

8. AppSvr assigns a database connection to this session and initializes the session by
issuing the following statement:

DBMS_SESSION.SET_IDENTIFIER(12345);

9. All SYS_CONTEXT calls within this database session return application context
values that belong only to the client session.

For example, SYS_CONTEXT('hr','id') returns the value robert.

10. When finished with the session, AppSvr issues the following statement to clean
up the client identity:

DBMS_SESSION.CLEAR_IDENTIFIER ();

Even if another user logged in to the database, this user cannot access the global
context set by AppSvr, because AppSvr specified that only the application with user
APPSMGR logged in can see it. If AppSvr used the following, then any user session
with client ID set to 12345 can see the global context:

DBMS_SESSION.SET_CONTEXT('hr_ctx', 'id', 'robert', NULL , 12345);
DBMS_SESSION.SET_CONTEXT('hr_ctx', 'dept', 'sales', NULL , 12345);

Setting USERNAME to NULL enables different users to share the same context.

You can query the client identifier set in the session as follows:

SELECT SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER') FROM dual;

The following output should appear:

SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')

12345

A security administrator can see which sessions have the client identifier set by
querying the V$SESSION view for the CLIENT_IDENTIFIER and USERNAME, for
example:

COL client_identifier format a18
SELECT CLIENT_IDENTIFIER, USERNAME from V$SESSION;

The following output should appear:

CLIENT_IDENTIFIER USERNAME
------------------ --------
12345 APPSMGR

Note: Be aware of the security implication of different settings of the
global context. NULL in the user name means that any user can access
the global context. A NULL client ID in the global context means that a
session with an uninitialized client ID can access the global context. To
ensure that only the user who has logged on can access the session,
specify USER instead of NULL.

Using Client Session-Based Application Contexts

6-42 Oracle Database Security Guide

To check the amount of global context area (in bytes) being used, use the following
query:

SELECT SYS_CONTEXT('USERENV','GLOBAL_CONTEXT_MEMORY') FROM dual;

The following output should appear:

SYS_CONTEXT('USERENV','GLOBAL_CONTEXT_MEMORY')
--
584

Using Client Session-Based Application Contexts
This section contains:

■ About Client Session-Based Application Contexts

■ Setting a Value in the CLIENTCONTEXT Namespace

■ Retrieving the CLIENTCONTEXT Namespace

■ Clearing a Setting in the CLIENTCONTEXT Namespace

■ Clearing All Settings in the CLIENTCONTEXT Namespace

About Client Session-Based Application Contexts
In a client session-based application context, you use Oracle Call Interface (OCI)
functions to set and clear user session information, which is then stored in the User
Global Area (UGA).

The advantage of this type of application context is that an individual application can
check for specific nondatabase user session data, rather than having the database
perform this task. Another advantage is that the calls to set the application context
value are included in the next call to the server, which improves performance.

However, be aware that application context security is compromised with a client
session-based application context: any application user can set the client application
context, and no check is performed in the database.

You configure the client session-based application context for the client application
only. You do not configure any settings on the database server to which the client
connects. Any application context settings in the database server do not affect the
client session-based application context.

To configure a client session-based application context, use the OCIAppCtxSet OCI
function. A client session-based application context uses the CLIENTCONTEXT
namespace, updatable by any OCI client or by the existing DBMS_SESSION package
for application context. Oracle Database performs no privilege or package security
checks for this type.

See Also: For more information about using the CLIENT_
IDENTIFIER predefined attribute of the USERENV application
context:

■ "Using the CLIENT_IDENTIFIER Attribute to Preserve User
Identity" on page 3-42

■ Oracle Database SQL Language Reference

■ Oracle Call Interface Programmer's Guide

Using Client Session-Based Application Contexts

Using Application Contexts to Retrieve User Information 6-43

The CLIENTCONTEXT namespace enables a single application transaction to both
change the user context information and use the same user session handle to service
the new user request. You can set or clear individual values for attributes in the
CLIENTCONTEXT namespace, or clear all their values.

■ An OCI client uses the OCIAppCtx function to set variable length data for the
namespace, called OCISessionHandle. The OCI network single, round-trip
transport sends all the information to the server in one round-trip. On the server
side, you can query the application context information by using the SYS_
CONTEXT SQL function on the namespace. For example:

■ A JDBC client uses the oracle.jdbc.internal.OracleConnection function
to achieve the same purposes.

Any user can set, clear, or collect the information in the CLIENTCONTEXT namespace,
because it is not protected by package-based security.

Setting a Value in the CLIENTCONTEXT Namespace
For Oracle Call Interface, to set a value in the CLIENTCONTEXT namespace, use a
command in the following syntax:

err = OCIAppCtxSet((void *) session_handle,(dvoid *)"CLIENTCONTEXT",(ub4) 13,
 (dvoid *)attribute_name, length_of_attribute_name
 (dvoid *)attribute_value, length_of_attribute_value, errhp,
 OCI_DEFAULT);

In this specification:

■ session_handle: Represents the OCISessionHandle namespace.

■ attribute_name: Name of attribute. For example, responsibility, with a
length of 14.

■ attribute_value: Value of attribute. For example, manager, with a length of 7.

Retrieving the CLIENTCONTEXT Namespace
To retrieve the CLIENTCONTEXT namespace, you can use the Oracle Call Interface
OCIStmtExecute call with either of the following statements:

SELECT SYS_CONTEXT('CLIENTCONTEXT', 'Attribute-1') FROM dual;

SELECT VALUE FROM SESSION_CONTEXT
WHERE NAMESPACE='CLIENTCONTEXT' AND ATTRIBUTE='attribute-1';

The Attribute-1 value can be any attribute value that has already been set in the
CLIENTCONTEXT namespace. Oracle Database only retrieves the set attribute;
otherwise, it returns NULL. Typically, you set the attribute by using the
OCIAppCtxSet call. In addition, you can embed a DBMS_SESSION.SET_CONTEXT
call in the OCI code to set the attribute value.

Example 6–13 shows how to use the OCIStmtExecute call to retrieve a client session
ID value.

See Also: Oracle Call Interface Programmer's Guide for more
information about client application contexts

See Also: "Managing Scalable Platforms" in Oracle Call Interface
Programmer's Guide for details about the OCIAppCtx function

Using Client Session-Based Application Contexts

6-44 Oracle Database Security Guide

Example 6–14 Retrieving a Client Session ID Value for Client Session-Based Contexts

In this example:

■ Lines 1–5: Create variables to store the client session ID, reference call for
OCIDefine, the statement handle, and the SELECT statement to use.

■ Lines 7–8: Prepare the statement selcid for execution.

■ Lines 10–11: Define the output variable clientid for client session ID.

■ Lines 13–14: Execute the statement in the selcid variable.

■ Line 16: Prints the formatted output for the retrieved client session ID.

Clearing a Setting in the CLIENTCONTEXT Namespace
For Oracle Call Interface, to clear a setting in CLIENTCONTEXT, set the value to NULL
or to an empty string by using one of the following commands:

(void) OCIAppCtxSet((void *) session_handle, (dvoid *)"CLIENTCONTEXT", 13,
 (dvoid *)attribute_name, length_of_attribute_name,
 (dvoid *)0, 0,errhp
 OCI_DEFAULT);

or

(void) OCIAppCtxSet((void *) session_handle, (dvoid *)"CLIENTCONTEXT", 13
 (dvoid *)attribute_name, length_of_attribute_name,
 (dvoid *)"", 0,errhp,
 OCI_DEFAULT);

Clearing All Settings in the CLIENTCONTEXT Namespace
For Oracle Call Interface (OCI), use a command of the following form:

err = OCIAppCtxClearAll((void *) session_handle,
 (dvoid *)"CLIENTCONTEXT", 13,
 errhp,
 OCI_DEFAULT);

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

oratext clientid[31];
OCIDefine *defnp1 = (OCIDefine *) 0;
OCIStmt *statementhndle;
oratext *selcid = (oratext *)"SELECT SYS_CONTEXT('CLIENTCONTEXT',
 attribute) FROM DUAL";

OCIStmtPrepare(statementhndle, errhp, selcid, (ub4) strlen((char *) selcid),
 (ub4) OCI_NTV_SYNTAX, (ub4) OCI_DEFAULT);

OCIDefineByPos(statementhndle, &defnp1, errhp, 1, (dvoid *)clientid, 31,
 SQLT_STR, (dvoid *) 0, (ub2 *) 0, (ub2 *) 0, OCI_DEFAULT);

OCIStmtExecute(servhndle, statementhndle, errhp, (ub4) 1, (ub4) 0,
 (CONST OCISnapshot *) NULL, (OCISnapshot *) NULL, OCI_DEFAULT);

printf("CLIENT_IDENTIFIER = %s \n", clientid);

Finding Information About Application Contexts

Using Application Contexts to Retrieve User Information 6-45

Finding Information About Application Contexts
Table 6–3 lists data dictionary views that you can query to find information about
application contexts. For detailed information about these views, see Oracle Database
Reference.

Table 6–3 Data Dictionary Views That Display Information about Application Contexts

View Description

ALL_CONTEXT Describes all context namespaces in the current session for which attributes and
values were specified using the DBMS_SESSION.SET_CONTEXT procedure. It lists
the namespace and its associated schema and PL/SQL package.

ALL_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views
accessible to the current user. (A driving context is a context used in a Virtual Private
Database policy.)

DBA_CONTEXT Provides all context namespace information in the database. Its columns are the
same as those in the ALL_CONTEXT view, except that it includes the TYPE column.
The TYPE column describes how the application context is accessed or initialized.

DBA_POLICY_CONTEXTS Describes all driving contexts in the database that were added by the DBMS_
RLS.ADD_POLICY_CONTEXT procedure. Its columns are the same as those in ALL_
POLICY_CONTEXTS.

SESSION_CONTEXT Describes the context attributes and their values set for the current session.

USER_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views owned
by the current user. Its columns (except for OBJECT_OWNER) are the same as those in
ALL_POLICY_CONTEXTS.

V$CONTEXT Lists set attributes in the current session. Users do not have access to this view
unless you grant the user the SELECT privilege on it.

V$SESSION Lists detailed information about each current session. Users do not have access to
this view unless you grant the user the SELECT privilege on it.

Tip: In addition to these views, check the database trace file if you
find errors when running applications that use application contexts.
See Oracle Database Performance Tuning Guide for more information
about trace files. The USER_DUMP_DEST initialization parameter sets
the directory location of the trace files. You can find the value of this
parameter by issuing SHOW PARAMETER USER_DUMP_DEST in
SQL*Plus.

Finding Information About Application Contexts

6-46 Oracle Database Security Guide

7

Using Oracle Virtual Private Database to Control Data Access 7-1

7Using Oracle Virtual Private Database
to Control Data Access

This chapter contains:

■ About Oracle Virtual Private Database

■ Components of an Oracle Virtual Private Database Policy

■ Configuring an Oracle Virtual Private Database Policy

■ Tutorials: Creating Oracle Virtual Private Database Policies

■ How Oracle Virtual Private Database Works with Other Oracle Features

■ Finding Information About Oracle Virtual Private Database Policies

About Oracle Virtual Private Database
This section contains:

■ What Is Oracle Virtual Private Database?

■ Benefits of Using Oracle Virtual Private Database Policies

■ Which Privileges Are Used to Run Oracle Virtual Private Database Policy
Functions?

■ Using Oracle Virtual Private Database with an Application Context

What Is Oracle Virtual Private Database?
Oracle Virtual Private Database (VPD) enables you to create security policies to control
database access at the row and column level. Essentially, Oracle Virtual Private
Database adds a dynamic WHERE clause to a SQL statement that is issued against the
table, view, or synonym to which an Oracle Virtual Private Database security policy
was applied.

Oracle Virtual Private Database enforces security, to a fine level of granularity, directly
on database tables, views, or synonyms. Because you attach security policies directly
to these database objects, and the policies are automatically applied whenever a user
accesses data, there is no way to bypass security.

When a user directly or indirectly accesses a table, view, or synonym that is protected
with an Oracle Virtual Private Database policy, Oracle Database dynamically modifies
the SQL statement of the user. This modification creates a WHERE condition (called a
predicate) returned by a function implementing the security policy. Oracle Database
modifies the statement dynamically, transparently to the user, using any condition that

About Oracle Virtual Private Database

7-2 Oracle Database Security Guide

can be expressed in or returned by a function. You can apply Oracle Virtual Private
Database policies to SELECT, INSERT, UPDATE, INDEX, and DELETE statements.

For example, suppose a user performs the following query:

SELECT * FROM OE.ORDERS;

The Oracle Virtual Private Database policy dynamically appends the statement with a
WHERE clause. For example:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = 159;

In this example, the user can only view orders by Sales Representative 159.

If you want to filter the user based on the session information of that user, such as the
ID of the user, then you can create the WHERE clause to use an application context. For
example:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = SYS_CONTEXT('USERENV','SESSION_USER');

Benefits of Using Oracle Virtual Private Database Policies
Oracle Virtual Private Database policies provide the following benefits:

■ Basing Security Policies on Database Objects Rather Than Applications

■ Controlling How Oracle Database Evaluates Policy Functions

Basing Security Policies on Database Objects Rather Than Applications
Attaching Oracle Virtual Private Database security policies to database tables, views,
or synonyms, rather than implementing access controls in all your applications,
provides the following benefits:

■ Security. Associating a policy with a database table, view, or synonym can solve a
potentially serious application security problem. Suppose a user is authorized to
use an application, and then drawing on the privileges associated with that
application, wrongfully modifies the database by using an ad hoc query tool, such
as SQL*Plus. By attaching security policies directly to tables, views, or synonyms,
fine-grained access control ensures that the same security is in force, no matter
how a user accesses the data.

■ Simplicity. You add the security policy to a table, view, or synonym only once,
rather than repeatedly adding it to each of your table-based, view-based, or
synonym-based applications.

■ Flexibility. You can have one security policy for SELECT statements, another for
INSERT statements, and still others for UPDATE and DELETE statements. For
example, you might want to enable Human Resources clerks to have SELECT
privileges for all employee records in their division, but to update only salaries for
those employees in their division whose last names begin with A through F.
Furthermore, you can create multiple policies for each table, view, or synonym.

Note: Oracle Virtual Private Database does not support filtering for
DDLs, such as TRUNCATE or ALTER TABLE statements.

About Oracle Virtual Private Database

Using Oracle Virtual Private Database to Control Data Access 7-3

Controlling How Oracle Database Evaluates Policy Functions
Running policy functions multiple times can affect performance. You can control the
performance of policy functions by configuring how Oracle Database caches the
Oracle Virtual Private Database predicates. The following options are available:

■ Evaluate the policy once for each query (static policies).

■ Evaluate the policy only when an application context within the policy function
changes (context-sensitive policies).

■ Evaluate the policy each time it is run (dynamic policies).

See "Optimizing Performance by Using Oracle Virtual Private Database Policy Types"
on page 7-14 for information configuring these policy types.

Which Privileges Are Used to Run Oracle Virtual Private Database Policy Functions?
For greater security, the Oracle Virtual Private Database policy function runs as if it
had been declared with definer's rights. Do not declare it as invoker’s rights because
this can confuse yourself and other users who maintain the code.

Using Oracle Virtual Private Database with an Application Context
You can use application contexts with Oracle Virtual Private Database policies. When
you create an application context, it securely caches user information. Only the
designated application package can set the cached environment. It cannot be changed
by the user or outside the package. In addition, because the data is cached,
performance is increased. Chapter 6, "Using Application Contexts
to Retrieve User Information," describes application contexts in detail.

For example, suppose you want to base access to the ORDERS_TAB table on the
customer ID number. Rather than querying the customer ID number for a logged-in
user each time you need it, you could store the number in the application context.
Then, the customer number is available in the session when you need it.

Application contexts are especially helpful if your security policy is based on multiple
security attributes. For example, if a policy function bases a WHERE predicate on four
attributes (such as employee number, cost center, position, spending limit), then
multiple subqueries must execute to retrieve this information. Instead, if this data is
available through an application context, then performance is much faster.

You can use an application context to return the correct security policy, enforced
through a predicate. For example, consider an order entry application that enforces the
following rules: customers only see their own orders, and clerks see all orders for all
customers. These are two different policies. You could define an application context
with a position attribute, and this attribute could be accessed within the policy
function to return the correct predicate, depending on the value of the attribute. Thus,
you can enable a user in the clerk position to retrieve all orders, but a user in the
customer position can see only those records associated with that particular user.

To design a fine-grained access control policy that returns a specific predicate for an
attribute, you need to access the application context within the function that
implements the policy. For example, suppose you want to limit customers to seeing
only their own records. The user performs the following query:

SELECT * FROM orders_tab

See Also: Oracle Database PL/SQL Language Reference for detailed
information about definer’s rights

Components of an Oracle Virtual Private Database Policy

7-4 Oracle Database Security Guide

Fine-grained access control dynamically modifies this query to include the following
WHERE predicate:

SELECT * FROM orders_tab
 WHERE custno = SYS_CONTEXT ('order_entry', 'cust_num');

Continuing with the preceding example, suppose you have 50,000 customers, and you
do not want to have a different predicate returned for each customer. Customers all
share the same WHERE predicate, which prescribes that they can only see their own
orders. It is merely their customer numbers that are different.

Using application context, you can return one WHERE predicate within a policy
function that applies to 50,000 customers. As a result, there is one shared cursor that
executes differently for each customer, because the customer number is evaluated at
execution time. This value is different for every customer. Use of application context in
this case provides optimum performance, and at row-level security.

The SYS_CONTEXT function works much like a bind variable; only the SYS_CONTEXT
arguments are constants.

Components of an Oracle Virtual Private Database Policy
To implement Oracle Virtual Private Database, you must create a function to generate
the dynamic WHERE clause, and a policy to attach this function to the objects that you
want to protect.

■ Creating a Function to Generate the Dynamic WHERE Clause

■ Creating a Policy to Attach the Function to the Objects You Want to Protect

Creating a Function to Generate the Dynamic WHERE Clause
To generate the dynamic WHERE clause (predicate), you must create a function (not a
procedure) that defines the restrictions that you want to enforce. Usually, the security
administrator creates this function in his or her own schema. For more complex
behavior, such as including calls to other functions or adding checks to track failed
logon attempts, create these functions within a package.

The function must have the following behavior:

■ It must take as arguments a schema name and an object (table, view, or
synonym) name as inputs. Define input parameters to hold this information, but
do not specify the schema and object name themselves within the function. The
policy that you create with the DBMS_RLS package (described in "Creating a Policy
to Attach the Function to the Objects You Want to Protect" on page 7-5) provides
the names of the schema, and object to which the policy will apply. You must
create the parameter for the schema first, followed by the parameter for the object.

■ It must provide a return value for the WHERE clause predicate that will be
generated. The return value for the WHERE clause is always a VARCHAR2 data type.

See Also:

■ "Which Privileges Are Used to Run Oracle Virtual Private
Database Policy Functions?" on page 7-3

■ "Tutorials: Creating Oracle Virtual Private Database Policies" on
page 7-20

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-5

■ It must generate a valid WHERE clause. This code can be as basic as the example
in "Tutorial: Creating a Simple Oracle Virtual Private Database Policy" on
page 7-20, in that its WHERE clause is the same for all users who log on.

But in most cases, you may want to design the WHERE clause to be different for
each user, each group of users, or each application that accesses the objects you
want to protect. For example, if a manager logs in, the WHERE clause can be
specific to the rights of that particular manager. You can do this by incorporating
an application context, which accesses user session information, into the WHERE
clause generation code. "Tutorial: Implementing a Policy with a Database
Session-Based Application Context" on page 7-23 demonstrates how to create an
Oracle Virtual Private Database policy that uses an application context.

You can create Oracle Virtual Private Database functions that do not use an
application context, but an application context creates a much stronger Oracle
Virtual Private Database policy, by securely basing user access on the session
attributes of that user, such as the user ID. Chapter 6, "Using Application Contexts
to Retrieve User Information," discusses different types of application contexts in
detail.

In addition, you can embed C or Java calls to access operating system information
or to return WHERE clauses from an operating system file or other source.

Creating a Policy to Attach the Function to the Objects You Want to Protect
After you create the function, you need to create an Oracle Virtual Private Database
policy that associates the function with a table, view, or synonym. You create the
policy by using the DBMS_RLS package. If you are not SYS, then you must be granted
EXECUTE privileges to use the DBMS_RLS package. This package contains procedures
that enable you to manage the policy and set fine-grained access control. For example,
to attach the policy to a table, you use the DBMS_RLS.ADD_POLICY procedure. Within
this setting, you set fine-grained access control, such as setting the policy to go into
effect when a user issues a SELECT or UPDATE statement on the table or view.

The combination of creating the function and then applying it to a table or view is
referred to as creating the Oracle Virtual Private Database policy.

"Tutorials: Creating Oracle Virtual Private Database Policies" on page 7-20 provides
examples of how to create Virtual Private Database policies. See "Configuring an
Oracle Virtual Private Database Policy" on page 7-5 for detailed information.

Configuring an Oracle Virtual Private Database Policy
This section contains:

■ About Oracle Virtual Private Database Policies

■ Attaching a Policy a Database Table, View, or Synonym

■ Enforcing Policies on Specific SQL Statement Types

■ Controlling the Display of Column Data with Policies

Note: If you plan to run the function across different editions, you
can control the results of the function: whether the results are uniform
across all editions, or specific to the edition in which the function is
run. See "How Editions Affects the Results of a Global Application
Context PL/SQL Package" on page 6-24 for more information.

Configuring an Oracle Virtual Private Database Policy

7-6 Oracle Database Security Guide

■ Working with Oracle Virtual Private Database Policy Groups

■ Optimizing Performance by Using Oracle Virtual Private Database Policy Types

About Oracle Virtual Private Database Policies
After you create a function that defines the actions of the Oracle Virtual Private
Database WHERE clause, you need to associate this function with the database table to
which the VPD action applies. You can do this by configuring an Oracle Virtual Private
Database policy. The policy itself is a mechanism for managing the Virtual Private
Database function. The policy also enables you to add fine-grained access control, such
as specifying the types of SQL statements or particular table columns the policy
affects. When a user tries to access the data in this database object, the policy goes into
effect automatically.

This section describes commonly used ways of attaching policies to tables, views, and
synonyms. To manage an Oracle Virtual Private Database policy, you use the DBMS_
RLS package, which is described in detail in Oracle Database PL/SQL Packages and Types
Reference.

Table 7–1 lists the procedures in the DBMS_RLS package.

Table 7–1 DBMS_RLS Procedures

Procedure Description

For Handling Individual Policies

DBMS_RLS.ADD_POLICY Adds a policy to a table, view, or synonym

DBMS_RLS.ENABLE_POLICY Enables (or disables) a policy you previously
added to a table, view, or synonym

DBMS_RLS.REFRESH_POLICY Invalidates cursors associated with nonstatic
policies

DBMS_RLS.DROP_POLICY To drop a policy from a table, view, or synonym

For Handling Grouped Policies

DBMS_RLS.CREATE_POLICY_GROUP Creates a policy group

DBMS_RLS.DELETE_POLICY_GROUP Drops a policy group

DBMS_RLS.ADD_GROUPED_POLICY Adds a policy to the specified policy group

DBMS_RLS.ENABLE_GROUPED_POLICY Enables a policy within a group

DBMS_RLS.REFRESH_GROUPED_POLICY Parses again the SQL statements associated with
a refreshed policy

DBMS_RLS.DISABLE_GROUPED_POLICY Disables a policy within a group

DBMS_RLS.DROP_GROUPED_POLICY Drops a policy that is a member of the specified
group

For Handling Application Contexts

DBMS_RLS.ADD_POLICY_CONTEXT Adds the context for the active application

DBMS_RLS.DROP_POLICY_CONTEXT Drops the context for the application

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-7

Attaching a Policy a Database Table, View, or Synonym
To attach a policy to a table, view, or synonym, you use the DBMS_RLS.ADD_POLICY
procedure. You need to specify the table, view, or synonym to which you are adding a
policy, and a name for the policy. You can also specify other information, such as the
types of statements the policy controls (SELECT, INSERT, UPDATE, DELETE, CREATE
INDEX, or ALTER INDEX).

Example 7–1 shows how to use DBMS_RLS.ADD_POLICY to attach an Oracle Virtual
Private Database policy called secure_update to the HR.EMPLOYEES table. The
function attached to the policy is check_updates.

Example 7–1 Attaching a Simple Oracle Virtual Private Database Policy to a Table

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'check_updates',
...

If the function was created inside a package, include the package name. For example:

 policy_function => 'pkg.check_updates',
...

Enforcing Policies on Specific SQL Statement Types
You can enforce Oracle Virtual Private Database policies for SELECT, INSERT,
UPDATE, INDEX, and DELETE statements. If you do not specify a statement type, by
default, Oracle Database specifies SELECT, INSERT, UPDATE, and DELETE, but not
INDEX. Enter any combination of these statement types by using the statement_
types parameter in the DBMS_RLS.ADD_POLICY procedure. Enclose the list in a pair
of single quotation marks.

See Also:

■ "Components of an Oracle Virtual Private Database Policy" on
page 7-4 for a description of the type of function that you need to
create to control user access to a database table, view, or synonym

■ Chapter 6, "Using Application Contexts
to Retrieve User Information," if you plan to use application
contexts in the Oracle Virtual Private Database policy (which in
most cases, you would)

■ "Tutorials: Creating Oracle Virtual Private Database Policies" on
page 7-20 for examples of using application contexts in sample
Oracle Virtual Private Database functions

Note: Although you can define a policy against a table, you
cannot select that table from within the policy that was defined
against the table.

Configuring an Oracle Virtual Private Database Policy

7-8 Oracle Database Security Guide

Example 7–2 shows an how to use the statement_types parameter to specify the
SELECT and INDEX statements for a policy.

Example 7–2 Specifying SQL Statement Types with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'check_updates',
 statement_types => 'SELECT,INDEX');
END;
/

When you specify the statement_types parameter, be aware of the following
functionality:

■ The application code affected by the Virtual Private Database policy can include
the MERGE INTO statement. However, in the Virtual Private Database policy,
you must ensure that the statement_types parameter includes all three of the
INSERT, UPDATE, and DELETE statements for the policy to succeed. Alternatively,
you can omit the statement_types parameter. (This functionality is available
with Oracle Database 11g Release 2 (11.2.0.2).)

■ Be aware that a user who has privileges to maintain an index can see all the row
data, even if the user does not have full table access under a regular query such
as SELECT. For example, a user can create a function-based index that contains a
user-defined function with column values as its arguments. During index creation,
Oracle Database passes column values of every row into the user function, making
the row data available to the user who creates the index. You can enforce Oracle
Virtual Private Database policies on index maintenance operations by specifying
INDEX with the statement_types parameter.

Controlling the Display of Column Data with Policies
You can create policies that enforce row-level security when a security-relevant
column is referenced in a query.

■ Adding Policies for Column-Level Oracle Virtual Private Database

■ Displaying Only the Column Rows Relevant to the Query

■ Using Column Masking to Display Sensitive Columns as NULL Values

Adding Policies for Column-Level Oracle Virtual Private Database
Column-level policies enforce row-level security when a query references a
security-relevant column. You can apply a column-level Oracle Virtual Private
Database policy to tables and views, but not to synonyms.

To apply the policy to a column, specify the security-relevant column by using the
SEC_RELEVANT_COLS parameter of the DBMS_RLS.ADD_POLICY procedure. This
parameter applies the security policy whenever the column is referenced, explicitly or
implicitly, in a query.

For example, users who are not in a Human Resources department typically are
allowed to view only their own Social Security numbers. A sales clerk initiates the
following query:

SELECT fname, lname, ssn FROM emp;

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-9

The function implementing the security policy returns the predicate ssn='my_ssn'.
Oracle Database rewrites the query and executes the following:

SELECT fname, lname, ssn FROM emp
 WHERE ssn = 'my_ssn';

Example 7–3 shows a Oracle Virtual Private Database policy in which sales
department users cannot see the salaries of people outside the department
(department number 30) of the sales department users. The relevant columns for this
policy are sal and comm. First, the Oracle Virtual Private Database policy function is
created, and then it is added by using the DBMS_RLS PL/SQL package.

Example 7–3 Creating a Column-Level Oracle Virtual Private Database Policy

CREATE OR REPLACE FUNCTION hide_sal_comm (
 v_schema IN VARCHAR2,
 v_objname IN VARCHAR2)

RETURN VARCHAR2 AS
con VARCHAR2 (200);

BEGIN
 con := 'deptno=30';
 RETURN (con);
END hide_sal_comm;

Then you configure the policy with the DBMS_RLS.ADD_POLICY procedure as
follows:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'scott',
 object_name => 'emp',
 policy_name => 'hide_sal_policy',
 policy_function => 'hide_sal_comm',
 sec_relevant_cols => 'sal,comm');
END;

Displaying Only the Column Rows Relevant to the Query
The default behavior for column-level Oracle Virtual Private Database is to restrict the
number of rows returned for a query that references columns containing sensitive
information. You specify these security-relevant columns by using the SEC_
RELEVANT_COLUMNS parameter of the DBMS_RLS.ADD_POLICY procedure, as shown
in Example 7–3 on page 7-9.

For example, consider sales department users with the SELECT privilege on the emp
table, which is protected with the column-level Oracle Virtual Private Database policy
created in Example 7–3. The user (for example, user SCOTT) runs the following query:

SELECT ENAME, d.dname, JOB, SAL, COMM
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

The database returns the following rows:

ENAME DNAME JOB SAL COMM
---------- -------------- --------- ---------- ----------
ALLEN SALES SALESMAN 1600 300
WARD SALES SALESMAN 1250 500

Configuring an Oracle Virtual Private Database Policy

7-10 Oracle Database Security Guide

MARTIN SALES SALESMAN 1250 1400
BLAKE SALES MANAGER 2850
TURNER SALES SALESMAN 1500 0
JAMES SALES CLERK 950

6 rows selected.

The only rows that are displayed are those that the user has privileges to access all
columns in the row.

Using Column Masking to Display Sensitive Columns as NULL Values
If a query references a sensitive column, then the default action of column-level Oracle
Virtual Private Database restricts the number of rows returned. With column-masking
behavior, all rows display, even those that reference sensitive columns. However, the
sensitive columns display as NULL values. To enable column-masking, set the SEC_
RELEVANT_COLS_opt parameter of the DBMS_RLS.ADD_POLICY procedure.

For example, consider the results of the sales clerk query, described in the previous
example. If column-masking is used, then instead of seeing only the row containing
the details and Social Security number of the sales clerk, the clerk would see all rows
from the emp table, but the ssn column values would be returned as NULL. Note that
this behavior is fundamentally different from all other types of Oracle Virtual Private
Database policies, which return only a subset of rows.

In contrast to the default action of column-level Oracle Virtual Private Database,
column-masking displays all rows, but returns sensitive column values as NULL. To
include column-masking in your policy, set the SEC_RELEVANT_COLS_OPT parameter
of the DBMS_RLS.ADD_POLICY procedure to DBMS_RLS.ALL_ROWS.

Example 7–4 shows column-level Oracle Virtual Private Database column-masking. It
uses the same VPD policy as Example 7–3 on page 7-9, but with sec_relevant_
cols_opt specified as DBMS_RLS.ALL_ROWS.

Example 7–4 Adding a Column Masking to an Oracle Virtual Private Database Policy

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'scott',
 object_name => 'emp',
 policy_name => 'hide_sal_policy',
 policy_function => 'hide_sal_comm',
 sec_relevant_cols =>' sal,comm',
 sec_relevant_cols_opt => dbms_rls.ALL_ROWS);
END;

Assume that a sales department user with SELECT privilege on the emp table (such as
user SCOTT) runs the following query:

SELECT ENAME, d.dname, job, sal, comm
 FROM emp e, dept d
 WHERE d.deptno = e.deptno;

The database returns all rows specified in the query, but with certain values masked
because of the Oracle Virtual Private Database policy:

ENAME DNAME JOB SAL COMM
---------- -------------- --------- ---------- ----------
CLARK ACCOUNTING MANAGER
KING ACCOUNTING PRESIDENT
MILLER ACCOUNTING CLERK

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-11

JONES RESEARCH MANAGER
FORD RESEARCH ANALYST
ADAMS RESEARCH CLERK
SMITH RESEARCH CLERK
SCOTT RESEARCH ANALYST
WARD SALES SALESMAN 1250 500
TURNER SALES SALESMAN 1500 0
ALLEN SALES SALESMAN 1600 300
JAMES SALES CLERK 950
BLAKE SALES MANAGER 2850
MARTIN SALES SALESMAN 1250 1400

14 rows selected.

The column-masking returned all rows requested by the sales user query, but made
the sal and comm columns NULL for employees outside the sales department.

The following considerations apply to column-masking:

■ Column-masking applies only to SELECT statements.

■ Column-masking conditions generated by the policy function must be simple
Boolean expressions, unlike regular Oracle Virtual Private Database predicates.

■ For applications that perform calculations, or do not expect NULL values, use
standard column-level Oracle Virtual Private Database, specifying SEC_
RELEVANT_COLS rather than the SEC_RELEVANT_COLS_OPT column-masking
option.

■ Do not include columns of the object data type (including the XMLtype) in the
sec_relevant_cols setting. This column type is not supported for the sec_
relevant_cols setting.

■ Column-masking used with UPDATE AS SELECT updates only the columns that
users are allowed to see.

■ For some queries, column-masking may prevent some rows from displaying. For
example:

SELECT * FROM emp
 WHERE sal = 10;

Because the column-masking option was set, this query may not return rows if the
salary column returns a NULL value.

Working with Oracle Virtual Private Database Policy Groups
This section contains:

■ About Oracle Virtual Private Database Policy Groups

■ Creating a New Oracle Virtual Private Database Policy Group

■ Designating a Default Policy Group with the SYS_DEFAULT Policy Group

■ Establishing Multiple Policies for Each Table, View, or Synonym

■ Validating the Application Used to Connect to the Database

See Also: "Tutorial: Implementing an Oracle Virtual Private
Database Policy Group" on page 7-29

Configuring an Oracle Virtual Private Database Policy

7-12 Oracle Database Security Guide

About Oracle Virtual Private Database Policy Groups
You can group multiple security policies together, and apply them to an application. A
policy group is a set of security policies that belong to an application. You can
designate an application context (known as a driving context or policy context) to
indicate the policy group in effect. Then, when a user accesses the table, view, or
synonym column, Oracle Database looks up the driving context to determine the
policy group in effect. It enforces all the associated policies that belong to the policy
group.

Policy groups are useful for situations where multiple applications with multiple
security policies share the same table, view, or synonym. This enables you to identify
those policies that should be in effect when the table, view, or synonym is accessed.

For example, in a hosting environment, Company A can host the BENEFIT table for
Company B and Company C. The table is accessed by two different applications,
Human Resources and Finance, with two different security policies. The Human
Resources application authorizes users based on ranking in the company, and the
Finance application authorizes users based on department. Integrating these two
policies into the BENEFIT table requires joint development of policies between the two
companies, which is not a feasible option. By defining an application context to drive
the enforcement of a particular set of policies to the base objects, each application can
implement a private set of security policies.

To do this, you organize security policies into groups. By referring to the application
context, Oracle Database determines which group of policies should be in effect at run
time. The server enforces all the policies that belong to that policy group.

Creating a New Oracle Virtual Private Database Policy Group
To add a policy to a table, view, or synonym, use the DBMS_RLS.ADD_GROUPED_
POLICY procedure to specify the group to which the policy belongs. To specify which
policies will be effective, you can add a driving context using the DBMS_RLS.ADD_
POLICY_CONTEXT procedure. If the driving context returns an unknown policy
group, then an error is returned.

If the driving context is not defined, then Oracle Database runs all policies. Likewise, if
the driving context is NULL, then policies from all policy groups are enforced. An
application accessing the data cannot bypass the security setup module (which sets up
application context) to avoid any applicable policies.

You can apply multiple driving contexts to the same table, view, or synonym, and each
of them will be processed individually. This enables you to configure multiple active
sets of policies to be enforced.

Consider, for example, a hosting company that hosts Benefits and Financial
applications, which share some database objects. Both applications are striped for
hosting using a SUBSCRIBER policy in the SYS_DEFAULT policy group. Data access is
partitioned first by subscriber ID, then by whether the user is accessing the Benefits or
Financial applications (determined by a driving context). Suppose that Company A,
which uses the hosting services, wants to apply a custom policy that relates only to its
own data access. You could add an additional driving context (such as COMPANY A
SPECIAL) to ensure that the additional, special policy group is applied for data access
for Company A only. You would not apply this under the SUBSCRIBER policy,
because the policy relates only to Company A, and it is more efficient to segregate the
basic hosting policy from other policies.

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-13

Designating a Default Policy Group with the SYS_DEFAULT Policy Group
Within a group of security policies, you can designate one security policy to be the
default security policy. This is useful in situations where you partition security policies
by application, so that they will be always be in effect. Default security policies allow
developers to base security enforcement under all conditions, while partitioning
security policies by application (using security groups) enables layering of additional,
application-specific security on top of default security policies. To implement default
security policies, you add the policy to the SYS_DEFAULT policy group.

Policies defined in this group for a particular table, view, or synonym are run with
with the policy group specified by the driving context. As described earlier, a driving
context is an application context that indicates the policy group in effect. The SYS_
DEFAULT policy group may or may not contain policies. You cannot to drop the SYS_
DEFAULT policy group. If you do, then Oracle Database displays an error.

If, to the SYS_DEFAULT policy group, you add policies associated with two or more
objects, then each object will have a separate SYS_DEFAULT policy group associated
with it. For example, the emp table in the scott schema has one SYS_DEFAULT policy
group, and the dept table in the scott schema has a different SYS_DEFAULT policy
group associated with it. Think of them as being organized in the tree structure as
follows:

SYS_DEFAULT
 - policy1 (scott/emp)
 - policy3 (scott/emp)
SYS_DEFAULT
 - policy2 (scott/dept)

You can create policy groups with identical names. When you select a particular policy
group, its associated schema and object name are displayed in the property sheet on
the right side of the screen.

Establishing Multiple Policies for Each Table, View, or Synonym
You can establish several policies for the same table, view, or synonym. Suppose, for
example, you have a base application for Order Entry, and each division of your
company has its own rules for data access. You can add a division-specific policy
function to a table without having to rewrite the policy function of the base
application.

All policies applied to a table are enforced with AND syntax. If you have three policies
applied to the CUSTOMERS table, then each policy is applied to the table. You can use
policy groups and an application context to partition fine-grained access control
enforcement so that different policies apply, depending upon which application is
accessing data. This eliminates the requirement for development groups to collaborate
on policies, and simplifies application development. You can also have a default policy
group that is always applicable (for example, to enforce data separated by subscriber
in a hosting environment).

Validating the Application Used to Connect to the Database
The package implementing the driving context must correctly validate the application
that is being used to connect to the database. Although Oracle Database checks the call
stack to ensure that the package implementing the driving context sets context
attributes, inadequate validation can still occur within the package.

For example, in applications where database users or enterprise users are known to the
database, the user needs the EXECUTE privilege on the package that sets the driving
context. Consider a user who knows that:

Configuring an Oracle Virtual Private Database Policy

7-14 Oracle Database Security Guide

■ The BENEFITS application enables more liberal access than the HR application.

■ The setctx procedure (which sets the correct policy group within the driving
context) does not perform any validation to determine which application is
actually connecting. That is, the procedure does not check either the IP address of
the incoming connection (for a three-tier system) or the proxy_user attribute of
the user session.

This user could pass to the driving context package an argument setting the context to
the more liberal BENEFITS policy group, and then access the HR application instead.
Because the setctx does no further validation of the application, this user bypasses
the more restrictive HR security policy.

By contrast, if you implement proxy authentication with Oracle Virtual Private
Database, then you can determine the identity of the middle tier (and the application)
that is connecting to the database on behalf of a user. The correct policy will be applied
for each application to mediate data access.

For example, a developer using the proxy authentication feature could determine that
the application (the middle tier) connecting to the database is HRAPPSERVER. The
package that implements the driving context can thus verify whether the proxy_user
in the user session is HRAPPSERVER. If so, then it can set the driving context to use the
HR policy group. If proxy_user is not HRAPPSERVER, then it can deny access.

In this case, the following query is executed:

SELECT * FROM apps.benefit;

Oracle Database picks up policies from the default policy group (SYS_DEFAULT) and
active namespace HR. The query is internally rewritten as follows:

SELECT * FROM apps.benefit
 WHERE company = SYS_CONTEXT('ID','MY_COMPANY')
 and SYS_CONTEXT('ID','TITLE') = 'MANAGER';

Optimizing Performance by Using Oracle Virtual Private Database Policy Types
This section contains:

■ About Oracle Virtual Private Database Policy Types

■ Using the Dynamic Policy Type to Automatically Rerun Policy Functions

■ Using a Static Policy to Prevent Policy Functions from Rerunning for Each Query

■ Using a Shared Static Policy to Share a Policy with Multiple Objects

■ When to Use Static and Shared Static Policies

■ Using a Context-Sensitive Policy for Predicates That Do Not Change After Parsing

■ Using a Shared Context Sensitive Policy to Share a Policy with Multiple Objects

■ When to Use Context-Sensitive and Shared Context-Sensitive Policies

■ Summary of the Five Oracle Virtual Private Database Policy Types

About Oracle Virtual Private Database Policy Types
You can optimize performance each time a policy runs by specifying a policy type for
your policies. Policy types control how Oracle Database caches Oracle Virtual Private
Database policy predicates. Consider setting a policy type for your policies, because
the execution of policy functions can use a significant amount of system resources.

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-15

Minimizing the number of times that a policy function can run optimizes database
performance.

You can choose from five policy types: DYNAMIC, STATIC, SHARED_STATIC,
CONTEXT_SENSITIVE, and SHARED_CONTEXT_SENSITIVE. These enable you to
precisely specify how often a policy predicate should change. To specify the policy
type, set the policy_type parameter of the DBMS_RLS.ADD POLICY procedure.

Using the Dynamic Policy Type to Automatically Rerun Policy Functions
The DYNAMIC policy type runs the policy function each time a user accesses the Virtual
Private Database-protected database objects. If you do not specify a policy type in the
DBMS_RLS.ADD_POLICY procedure, then, by default, your policy will be dynamic.
You can specifically configure a policy to be dynamic by setting the policy_type
parameter of the DBMS_RLS.ADD_POLICY procedure to DYNAMIC.

This policy type does not optimize database performance as the static and context
sensitive policy types do. However, Oracle recommends that before you set policies as
either static or context-sensitive, you should first test them as DYNAMIC policy types,
which run every time. Testing policy functions as DYNAMIC policies first enables you
to observe how the policy function affects each query, because nothing is cached. This
ensures that the functions work properly before you enable them as static or
context-sensitive policy types to optimize performance.

You can use the DBMS_UTILITY.GET_TIME procedure to measure the start and end
times for a statement to execute. For example:

-- 1. Get the start time:
SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 GET_TIME

 2312721

-- 2. Run the statement:
SELECT COUNT(*) FROM HR.EMPLOYEES;

 COUNT(*)

 107

-- 3. Get the end time:
SELECT DBMS_UTILITY.GET_TIME FROM DUAL;

 GET_TIME

 2314319

Example 7–5 shows how to create the DYNAMIC policy type.

Example 7–5 Creating a DYNAMIC Policy with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.DYNAMIC);
END;
/

Configuring an Oracle Virtual Private Database Policy

7-16 Oracle Database Security Guide

Using a Static Policy to Prevent Policy Functions from Rerunning for Each Query
The static policy type enforces the same predicate for all users in the instance. Oracle
Database stores static policy predicates in SGA, so policy functions do not rerun for
each query. This results in faster performance.

You can enable static policies by setting the policy_type parameter of the DBMS_
RLS.ADD_POLICY procedure to either STATIC or SHARED_STATIC, depending on
whether or not you want the policy to be shared across multiple objects.

Example 7–6 shows how to create the STATIC policy type.

Example 7–6 Creating a STATIC Policy with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.STATIC);
END;
/

Each execution of the same cursor could produce a different row set for the same
predicate, because the predicate may filter the data differently based on attributes such
as SYS_CONTEXT or SYSDATE.

For example, suppose you enable a policy as either a STATIC or SHARED_STATIC
policy type, which appends the following predicate to all queries made against policy
protected database objects:

WHERE dept = SYS_CONTEXT ('hr_app','deptno')

Although the predicate does not change for each query, it applies to the query based
on session attributes of the SYS_CONTEXT. In the case of the preceding example, the
predicate returns only those rows where the department number matches the deptno
attribute of the SYS_CONTEXT, which is the department number of the user who is
querying the policy-protected database object.

Using a Shared Static Policy to Share a Policy with Multiple Objects
If, for example, you wanted to apply the policy in Example 7–6 to a second table in the
HR schema that may contain financial data that you want to side, you would use the
SHARED_STATIC setting for both tables.

See Also: "About Auditing Functions, Procedures, Packages, and
Triggers" on page 9-33 for information about how Oracle Database
audits the underlying policy function for dynamic policies

Note: When using shared static policies, ensure that the policy
predicate does not contain attributes that are specific to a particular
database object, such as a column name.

See Also: "About Auditing Functions, Procedures, Packages, and
Triggers" on page 9-33 for information about how Oracle Database
audits the underlying policy function for static policies

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-17

Example 7–7 shows how to set the SHARED_STATIC policy type for two tables that
share the same policy.

Example 7–7 Creating a SHARED_STATIC Policy with DBMS_RLS.ADD_POLICY

-- 1. Create a policy for the first table, employees:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_STATIC);
END;
/
-- 2. Create a policy for the second table, fin_data:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'fin_data',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_STATIC);
END;
/

When to Use Static and Shared Static Policies
Static policies are ideal for environments where every query requires the same
predicate and fast performance is essential, such as hosting environments. For these
situations when the policy function appends the same predicate to every query,
rerunning the policy function each time adds unnecessary overhead to the system. For
example, consider a data warehouse that contains market research data for customer
organizations that are competitors. The warehouse must enforce the policy that each
organization can see only their own market research, which is expressed by the
following predicate:

WHERE subscriber_id = SYS_CONTEXT('customer', 'cust_num')

Using SYS_CONTEXT for the application context enables the database to dynamically
change the rows that are returned. You do not need to rerun the function, so the
predicate can be cached in the SGA, thus conserving system resources and improving
performance.

Using a Context-Sensitive Policy for Predicates That Do Not Change After Parsing
In contrast to static policies, context-sensitive policies do not always cache the
predicate. With context-sensitive policies, the database assumes that the predicate will
change after statement parse time. But if there is no change in local application context,
Oracle Database does not rerun the policy function within the user session. If there
was a change in context, then the database reruns the policy function to ensure that it
captures any changes to the predicate since the initial parsing.

You can enable context-sensitive policies by setting the policy_type parameter of
the DBMS_RLS.ADD_POLICY procedure to either CONTEXT_SENSITIVE or SHARED_
CONTEXT_SENSITIVE.

Configuring an Oracle Virtual Private Database Policy

7-18 Oracle Database Security Guide

Example 7–8 shows how to create the CONTEXT_SENSITIVE policy type.

Example 7–8 Creating a CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_POLICY

BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.CONTEXT_SENSITIVE);
END;
/

Context-sensitive policies are useful when different predicates should apply
depending on which user is executing the query. For example, consider the case where
managers should have the predicate WHERE group set to managers, and employees
should have the predicate WHERE empno set to emp_id.

Shared context-sensitive policies operate in the same way as regular context-sensitive
policies, except they can be shared across multiple database objects. For this policy
type, all objects can share the policy function from the UGA, where the predicate is
cached until the local session context changes.

Using a Shared Context Sensitive Policy to Share a Policy with Multiple Objects
Example 7–9 Ishows how to create two shared context sensitive policies that share a
policy with multiple tables.

Example 7–9 Creating a SHARED_CONTEXT_SENSITIVE Policy with DBMS_RLS.ADD_
POLICY

-- 1. Create a policy for the first table, employees:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'employees',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_CONTEXT_SENSITIVE);
END;
/
--2. Create a policy for the second table, fin_data:
BEGIN
 DBMS_RLS.ADD_POLICY(
 object_schema => 'hr',
 object_name => 'fin_data',
 policy_name => 'secure_update',
 policy_function => 'hide_fin',
 policy_type => dbms_rls.SHARED_CONTEXT_SENSITIVE);

Note: When using shared context-sensitive policies, ensure that
the policy predicate does not contain attributes that are specific to a
particular database object, such as a column name.

See Also: "About Auditing Functions, Procedures, Packages, and
Triggers" on page 9-33 for information about how Oracle Database
audits the underlying policy function for dynamic policies

Configuring an Oracle Virtual Private Database Policy

Using Oracle Virtual Private Database to Control Data Access 7-19

END;
/

When to Use Context-Sensitive and Shared Context-Sensitive Policies
Context-sensitive policies are useful when a predicate does not need to change for a
user session, but the policy must enforce two or more different predicates for different
users or groups. For example, consider a sales_history table with a single policy.
This policy states that analysts can see only their own products and regional
employees can see only their own region. In this case, the database must rerun the
policy function each time the type of user changes. The performance gain is realized
when a user can log in and issue several DML statements against the protected object
without causing the server to rerun the policy function.

Summary of the Five Oracle Virtual Private Database Policy Types
Table 7–2 summarizes the types of policy types available.

Note: For session pooling where multiple clients share a database
session, the middle tier must reset the context during client
switches.

Table 7–2 DBMS_RLS.ADD_POLICY Policy Types

Policy Types When the Policy Function Executes Usage Example Shared Across Multiple Objects?

DYNAMIC Policy function re-executes every time
a policy-protected database object is
accessed.

Applications where policy
predicates must be generated for
each query, such as time-dependent
policies where users are denied
access to database objects at certain
times during the day

No

STATIC Once, then the predicate is cached in
the SGA1

1 Each execution of the same cursor could produce a different row set for the same predicate because the predicate may filter the
data differently based on attributes such as SYS_CONTEXT or SYSDATE.

View replacement No

SHARED_
STATIC

Same as STATIC Hosting environments, such as data
warehouses where the same
predicate must be applied to
multiple database objects

Yes

CONTEXT_
SENSITIVE

■ At statement parse time

■ At statement execution time
when the local application
context changed since the last
use of the cursor

Three-tier, session pooling
applications where policies enforce
two or more predicates for different
users or groups

No

SHARED_
CONTEXT_
SENSITIVE

First time the object is reference in a
database session.

Predicates are cached in the private
session memory UGA so policy
functions can be shared among
objects.

Same as CONTEXT_SENSITIVE,
but multiple objects can share the
policy function from the session
UGA

Yes

Tutorials: Creating Oracle Virtual Private Database Policies

7-20 Oracle Database Security Guide

Tutorials: Creating Oracle Virtual Private Database Policies
This section contains:

■ Tutorial: Creating a Simple Oracle Virtual Private Database Policy

■ Tutorial: Implementing a Policy with a Database Session-Based Application
Context

■ Tutorial: Implementing an Oracle Virtual Private Database Policy Group

Tutorial: Creating a Simple Oracle Virtual Private Database Policy
This section contains:

■ About This Tutorial

■ Step 1: Ensure That the OE User Account Is Active

■ Step 2: Create a Policy Function

■ Step 3: Create the Oracle Virtual Private Database Policy

■ Step 4: Test the Policy

■ Step 5: Remove the Components for This Tutorial

About This Tutorial
Suppose you wanted to create a simple Oracle Virtual Private Database policy that
limits access to all orders in the OE.ORDERS table that were created by Sales
Representative 159. In essence, the policy translates the following statement:

SELECT * FROM OE.ORDERS;

To the following statement:

SELECT * FROM OE.ORDERS
 WHERE SALES_REP_ID = 159;

Step 1: Ensure That the OE User Account Is Active
1. Log on to SQL*Plus as user SYSTEM with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

2. Run the following SELECT statement on the DBA_USERS data dictionary view:

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'OE';

If the DBA_USERS view lists user OE as locked and expired, then enter the
following statement to unlock the OE account and create a new password:

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure. For greater security, do not
reuse the same password that was used in previous releases of Oracle Database.
See "Minimum Requirements for Passwords" on page 3-3 for more information.

Step 2: Create a Policy Function
Create the following function, which will append the WHERE SALES_REP_ID = 159
clause to any SELECT statement on the OE.ORDERS table. (You can copy and paste this
text by positioning the cursor at the start of CREATE OR REPLACE in the first line.)

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-21

In this example:

■ Lines 2–3: Create input parameters to specify to store the schema name, OE, and
table name, ORDERS. First, define the parameter for the schema, and then define
the parameter for the object, in this case, a table. Always create them in this order.
The Virtual Private Database policy you create will need these parameters to
specify the OE.ORDERS table.

■ Line 5: Returns the string that will be used for the WHERE predicate clause.
Remember that return value is always a VARCHAR2 data type.

■ Lines 6–10: Encompass the creation of the WHERE SALES_REP_ID = 159
predicate.

Step 3: Create the Oracle Virtual Private Database Policy
Next, create the following policy by using the ADD_POLICY procedure in the DBMS_
RLS package. (You can copy and paste this text by positioning the cursor at the start of
BEGIN in the first line.)

In this example:

■ Line 3: Specifies the schema that you want to protect, that is, OE.

■ Line 4: Specifies the object within the schema to protect, that is, the ORDERS table.

■ Line 5: Names this policy orders_policy.

■ Line 6: Specifies the schema in which the auth_orders function was created. In
this example, auth_orders was created in the SYS schema. But typically, it
should be created in the schema of a security administrator.

■ Line 7: Specifies a function to enforce the policy. Here, you specify the auth_
orders function that you created in Step 2: Create a Policy Function.

1
2
3
4
5
6
7
8
9
10
11
12

CREATE OR REPLACE FUNCTION auth_orders(
 schema_var IN VARCHAR2,
 table_var IN VARCHAR2
)
 RETURN VARCHAR2
 IS
 return_val VARCHAR2 (400);
 BEGIN
 return_val := 'SALES_REP_ID = 159';
 RETURN return_val;
 END auth_orders;
/

1
2
3
4
5
6
7
8
9
10
11

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'oe',
 object_name => 'orders',
 policy_name => 'orders_policy',
 function_schema => 'sys',
 policy_function => 'auth_orders',
 statement_types => 'select, insert, update, delete'
);
 END;
/

Tutorials: Creating Oracle Virtual Private Database Policies

7-22 Oracle Database Security Guide

■ Line 8: Specifies the operations to which the policy applies. In this example, the
policy applies to all SELECT, INSERT, UPDATE, and DELETE statements the user
may perform.

Step 4: Test the Policy
After you create the Oracle Virtual Private Database policy, it goes into effect
immediately. The next time a user, including the owner of the schema, performs a
SELECT on OE.ORDERS, only the orders by Sales Representative 159 will be accessed.

1. Log on as user OE.

CONNECT oe
Enter password: password

2. Enter the following SELECT statement:

SELECT COUNT(*) FROM ORDERS;

The following output should appear:

 COUNT(*)

 7

The policy is in effect for user OE: As you can see, only 7 of the 105 rows in the
orders table are returned.

But users with administrative privileges still have access to all the rows in the
table.

3. Log back on as user SYS.

CONNECT sys/as sysdba
Enter password: password

4. Enter the following SELECT statement:

SELECT COUNT(*) FROM OE.ORDERS;

The following output should appear:

 COUNT(*)

 105

Step 5: Remove the Components for This Tutorial
1. As user SYS, remove the function and policy as follows:

DROP FUNCTION auth_orders;
EXEC DBMS_RLS.DROP_POLICY('OE','ORDERS','ORDERS_POLICY');

2. If you need to lock and expire the OE account, then enter the following statement:

ALTER USER OE ACCOUNT LOCK PASSWORD EXPIRE;

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-23

Tutorial: Implementing a Policy with a Database Session-Based Application Context
This section contains:

■ About This Tutorial

■ Step 1: Create User Accounts and Sample Tables

■ Step 2: Create a Database Session-Based Application Context

■ Step 3: Create a PL/SQL Package to Set the Application Context

■ Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package

■ Step 5: Create a PL/SQL Policy Function to Limit User Access to Their Orders

■ Step 6: Create the New Security Policy

■ Step 7: Test the New Policy

■ Step 8: Remove the Components for This Tutorial

About This Tutorial
This tutorial shows how you can use a database session-based application context to
implement a policy in which customers can see only their own orders. You create the
following layers of security:

1. When a user logs on, a database session-based application context checks whether
the user is a customer. If a user is not a customer, the user still can log on, but this
user cannot access the orders entry table you will create for this example.

2. If the user is a customer, he or she can log on. After the customer has logged on, an
Oracle Virtual Private Database policy restricts this user to see only his or her
orders.

3. As a further restriction, Oracle Virtual Private Database policy permits the user to
only view his or her orders. The user cannot add, modify, or remove orders.

Step 1: Create User Accounts and Sample Tables
1. Start SQL*Plus and log on as a user who has administrative privileges.

sqlplus sys as sysdba
Enter password: password

2. Create the following administrative user, who will administer the Oracle Virtual
Private Database policy.

The following SQL statements create this user and then grant the user the
necessary privileges for completing this tutorial.

GRANT CREATE SESSION, CREATE ANY CONTEXT, CREATE PROCEDURE, CREATE TRIGGER,
ADMINISTER DATABASE TRIGGER TO sysadmin_vpd IDENTIFIED BY password;
GRANT EXECUTE ON DBMS_SESSION TO sysadmin_vpd;
GRANT EXECUTE ON DBMS_RLS TO sysadmin_vpd;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

3. Create the following user accounts:

GRANT CREATE SESSION TO tbrooke IDENTIFIED BY password;
GRANT CREATE SESSION TO owoods IDENTIFIED BY password;

Tutorials: Creating Oracle Virtual Private Database Policies

7-24 Oracle Database Security Guide

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

4. Check the status of the sample user SCOTT, who you will use for this tutorial:

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'SCOTT';

If the DBA_USERS view lists user SCOTT as locked and expired, then enter the
following statement to unlock the SCOTT account and create a new password for
him:

ALTER USER SCOTT ACCOUNT UNLOCK IDENTIFIED BY password;

Replace password with a password that is secure. For greater security, do not
reuse the same password that was used in previous releases of Oracle Database.
See "Minimum Requirements for Passwords" on page 3-3 for more information.

5. Connect as user SCOTT, and then create and populate the customers table.

CONNECT scott
Enter password: password

CREATE TABLE customers (
 cust_no NUMBER(4),
 cust_email VARCHAR2(20),
 cust_name VARCHAR2(20));

INSERT INTO customers VALUES (1234, 'TBROOKE', 'Thadeus Brooke');
INSERT INTO customers VALUES (5678, 'OWOODS', 'Oberon Woods');

When you enter the user e-mail addresses, enter them in upper-case letters. Later
on, when you create the application context PL/SQL package, the SESSION_USER
parameter of the SYS_CONTEXT function expects the user names to be in upper
case. Otherwise, you will be unable to set the application context for the user.

6. User sysadmin_vpd will need SELECT privileges for the customers table, so as
user SCOTT, grant him this privilege.

GRANT SELECT ON customers TO sysadmin_vpd;

7. Create and populate the orders_tab table.

CREATE TABLE orders_tab (
 cust_no NUMBER(4),
 order_no NUMBER(4));

INSERT INTO orders_tab VALUES (1234, 9876);
INSERT INTO orders_tab VALUES (5678, 5432);
INSERT INTO orders_tab VALUES (5678, 4592);

8. Users tbrooke and owoods need to query the orders_tab table, so grant them
the SELECT privilege.

GRANT SELECT ON orders_tab TO tbrooke;
GRANT SELECT ON orders_tab TO owoods;

At this stage, the two sample customers, tbrooke and owoods, have a record of
purchases in the orders_tab order entry table, and if they tried right now, they can
see all the orders in this table.

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-25

Step 2: Create a Database Session-Based Application Context
1. Connect as user sysadmin_vpd.

CONNECT sysadmin_vpd
Enter password: password

2. Enter the following statement:

CREATE OR REPLACE CONTEXT orders_ctx USING orders_ctx_pkg;

This statement creates the orders_ctx application context. Remember that even
though user sysadmin_vpd has created this context and it is associated with the
sysadmin_vpd schema, the SYS schema owns the application context.

Step 3: Create a PL/SQL Package to Set the Application Context
As user sysadmin_vpd, create the following PL/SQL package, which will set the
database session-based application context when the customers tbrooke and owoods
log onto their accounts. (You can copy and paste this text by positioning the cursor at
the start of CREATE OR REPLACE in the first line.)

In this example:

■ Line 8: Creates the custnum variable, which will hold the customer ID.

■ Line 10: Performs a SELECT statement to copy the customer ID that is stored in
the cust_no column data from the scott.customers table into the custnum
variable.

■ Line 11: Uses a WHERE clause to find all the customer IDs that match the user name
of the user who is logging on.

■ Line 12: Sets the order_entry application context values by creating the cust_
no attribute and then setting it to the value stored in the custnum variable.

■ Lines 13–14: Add a WHEN NO_DATA_FOUND system exception to catch any no
data found errors that may result from the SELECT statement in Lines 10–11.

To summarize, the sysadmin_vpd.set_cust_num procedure identifies whether or
not the session user is a registered customer by attempting to select the user’s
customer ID into the custnum variable. If the user is a registered customer, then
Oracle Database sets an application context value for this user. As you will see in Step
5: Create a PL/SQL Policy Function to Limit User Access to Their Orders, the policy

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17

CREATE OR REPLACE PACKAGE orders_ctx_pkg IS
 PROCEDURE set_custnum;
 END;
/
CREATE OR REPLACE PACKAGE BODY orders_ctx_pkg IS
 PROCEDURE set_custnum
 AS
 custnum NUMBER;
 BEGIN
 SELECT cust_no INTO custnum FROM SCOTT.CUSTOMERS
 WHERE cust_email = SYS_CONTEXT('USERENV', 'SESSION_USER');
 DBMS_SESSION.SET_CONTEXT('orders_ctx', 'cust_no', custnum);
 EXCEPTION
 WHEN NO_DATA_FOUND THEN NULL;
 END set_custnum;
END;
/

Tutorials: Creating Oracle Virtual Private Database Policies

7-26 Oracle Database Security Guide

function uses the context value to control the access a user has to data in the orders_
tab table.

Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package
The logon trigger runs the procedure in the PL/SQL package that you created in Step
3: Create a PL/SQL Package to Set the Application Context the next time a user logs
on, so that the application context can be set.

As user sysadmin_vpd, create the following trigger:

CREATE TRIGGER set_custno_ctx_trig AFTER LOGON ON DATABASE
 BEGIN
 sysadmin_vpd.orders_ctx_pkg.set_custnum;
 END;
/

At this stage, if you log on as either tbrooke or owoods, the logon trigger should set
the application context for the user when it fires the sysadmin_vpd.orders_ctx_
pkg.set_custnum procedure. You can test it as follows:

CONNECT tbrooke
Enter password: password

SELECT SYS_CONTEXT('orders_ctx', 'cust_no') custnum FROM DUAL;

The following output should appear:

EMP_ID

1234

Step 5: Create a PL/SQL Policy Function to Limit User Access to Their Orders
The next step is to create a PL/SQL function that, when the user who has logged in
performs a SELECT * FROM scott.orders_tab query, displays only the orders of
that user.

As user sysadmin_vpd, create the following function:

CREATE OR REPLACE FUNCTION get_user_orders(
 schema_p IN VARCHAR2,
 table_p IN VARCHAR2)
 RETURN VARCHAR2
 AS
 orders_pred VARCHAR2 (400);
 BEGIN
 orders_pred := 'cust_no = SYS_CONTEXT(''orders_ctx'', ''cust_no'')';
 RETURN orders_pred;
END;
/

This function creates and returns a WHERE predicate that translates to "where the
orders displayed belong to the user who has logged in." It then appends this WHERE
predicate to any queries this user may run against the scott.orders_tab table.
Next, you are ready to create an Oracle Virtual Private Database policy that applies
this function to the orders_tab table.

See Also: "Creating a Logon Trigger to Run a Database Session
Application Context Package" on page 6-11

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-27

Step 6: Create the New Security Policy
As user sysadmin_vpd, create the policy as follows:

BEGIN
 DBMS_RLS.ADD_POLICY (
 object_schema => 'scott',
 object_name => 'orders_tab',
 policy_name => 'orders_policy',
 function_schema => 'sysadmin_vpd',
 policy_function => 'get_user_orders',
 statement_types => 'select');
END;
/

This statement creates a policy named orders_policy and applies it to the orders_
tab table, which customers will query for their orders, in the SCOTT schema. The
get_user_orders function implements the policy, which is stored in the
sysadmin_vpd schema. The policy further restricts users to issuing SELECT
statements only.

Step 7: Test the New Policy
1. Log on as user tbrooke.

CONNECT tbrooke
Enter password: password

User tbrooke can log on because he has passed the requirements you defined in
the application context.

2. As user tbrooke, access your purchases.

SELECT * FROM scott.orders_tab;

The following output should appear:

 CUST_NO ORDER_NO
---------- ----------
 1234 9876

User tbrooke has passed the second test. He can access his own orders in the
scott.orders_tab table.

3. Log on as user owoods, and then access your purchases.

CONNECT owoods
Enter password: passwords

SELECT * FROM scott.orders_tab

The following output should appear:

 CUST_NO ORDER_NO
---------- ----------
 5678 5432
 5678 4592

As with user tbrooke, user owoods can log on and see a listing of his own
orders.

Tutorials: Creating Oracle Virtual Private Database Policies

7-28 Oracle Database Security Guide

Note the following:

■ You can create several predicates based on the position of a user. For example, a
sales representative would be able to see records only for his customers, and an
order entry clerk would be able to see any customer order. You could expand the
custnum_sec function to return different predicates based on the user position
context value.

■ The use of an application context in a fine-grained access control package
effectively gives you a bind variable in a parsed statement. For example:

SELECT * FROM scott.orders_tab
 WHERE cust_no = SYS_CONTEXT('order_entry', 'cust_num');

This is fully parsed and optimized, but the evaluation of the cust_num attribute
value of the user for the order_entry context takes place at run-time. This
means that you get the benefit of an optimized statement that executes differently
for each user who issues the statement.

■ You can set context attributes based on data from a database table or tables, or
from a directory server using Lightweight Directory Access Protocol (LDAP).

Compare and contrast this tutorial, which uses an application context within the
dynamically generated predicate, with "About Oracle Virtual Private Database
Policies" on page 7-6, which uses a subquery in the predicate.

Step 8: Remove the Components for This Tutorial
1. Connect as user OE and remove the orders_tab and customers tables.

CONNNECT SCOTT
Enter password: password

DROP TABLE orders_tab;
DROP TABLE customers;

2. Connect as user SYS, connecting with AS SYSDBA.

CONNECT sys/as sysdba
Enter password: password

3. Run the following statements to drop the components for this tutorial:

DROP CONTEXT orders_ctx;
DROP USER sysadmin_vpd CASCADE;
DROP USER tbrooke;
DROP USER owoods;

Note: You can improve the performance of the function in this
tutorial by indexing cust_no.

See Also: Oracle Database PL/SQL Language Reference for more
information about triggers

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-29

Tutorial: Implementing an Oracle Virtual Private Database Policy Group
This section contains:

■ About This Tutorial

■ Step 1: Create User Accounts and Other Components for This Tutorial

■ Step 2: Create the Two Policy Groups

■ Step 3: Create PL/SQL Functions to Control the Policy Groups

■ Step 4: Add the PL/SQL Functions to the Policy Groups

■ Step 5: Create the Driving Application Context

■ Step 6: Test the Policy Groups

■ Step 7: Remove the Components for This Tutorial

About This Tutorial
"Working with Oracle Virtual Private Database Policy Groups" on page 7-11 describes
how you can group a set of policies for use in an application. When a nondatabase
user logs onto the application, Oracle Database grants the user access based on the
policies defined within the appropriate policy group.

For column-level access control, every column or set of hidden columns is controlled
by one policy. In this tutorial, you must hide two sets of columns. So, you need to
create two policies, one for each set of columns that you want to hide. You only want
one policy for each user; the driving application context separates the policies for you.

Step 1: Create User Accounts and Other Components for This Tutorial
1. Log on as user SYS with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

2. Create the following users:

GRANT CREATE SESSION TO apps_user IDENTIFIED BY password;
GRANT CREATE SESSION, CREATE PROCEDURE, CREATE ANY CONTEXT TO sysadmin_pg
IDENTIFIED BY password;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

3. Grant the following additional privilege to user sysadmin_pg:

GRANT EXECUTE ON DBMS_RLS TO sysadmin_pg;

4. Log on as user OE.

CONNECT OE
Enter password: password

If the OE account is locked and expired, then reconnect as user SYS with the
SYSDBA privilege and enter the following statement to unlock the account and
give it s new password:

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Tutorials: Creating Oracle Virtual Private Database Policies

7-30 Oracle Database Security Guide

Replace password with a password that is secure. For greater security, do not
reuse the same password that was used in previous releases of Oracle Database.
See "Minimum Requirements for Passwords" on page 3-3 for more information.

5. Create the product_code_names table:

CREATE TABLE product_code_names(
group_a varchar2(32),
year_a varchar2(32),
group_b varchar2(32),
year_b varchar2(32));

6. Insert some values into the product_code_names table:

INSERT INTO product_code_names values('Biffo','2008','Beffo','2004');
INSERT INTO product_code_names values('Hortensia','2008','Bunko','2008');
INSERT INTO product_code_names values('Boppo','2006','Hortensia','2003');

COMMIT;

7. Grant the apps_user user SELECT privileges on the product_code_names
table.

GRANT SELECT ON product_code_names TO apps_user;

Step 2: Create the Two Policy Groups
Next, you must create a policy group for each of the two nondatabase users,
provider_a and provider_b.

1. Connect as user sysadmin_pg.

CONNECT sysadmin_pg
Enter password: password

2. Create the provider_a_group policy group, to be used by user provider_a:

BEGIN
 DBMS_RLS.CREATE_POLICY_GROUP(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_a_group');
END;
/

3. Create the provider_b_group policy group, to be used by user provider_b:

BEGIN
 DBMS_RLS.CREATE_POLICY_GROUP(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_b_group');
END;
/

Step 3: Create PL/SQL Functions to Control the Policy Groups
Each of the policy groups that you created in Step 2: Create the Two Policy Groups
must have a function that defines how the application can control data access for users
provider_a and provider_b.

1. Create the vpd_function_provider_a function, which restricts the data
accessed by user provider_a.

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-31

CREATE OR REPLACE FUNCTION vpd_function_provider_a
 (schema in varchar2, tab in varchar2) return varchar2 as
 predicate varchar2(8) default NULL;
 BEGIN
 IF LOWER(SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')) = 'provider_a'
 THEN predicate := '1=2';
 ELSE NULL;
 END IF;
 RETURN predicate;
END;
/

This function checks that the user logging in is really user provider_a. If this is
true, then only the data in the product_code_names table columns group_a
and year_a will be visible to provider_a. Data in columns group_b and
year_b will not appear for provider_a. This works as follows: Setting
predicate := '1=2' hides the relevant columns. In Step 4: Add the PL/SQL
Functions to the Policy Groups, you specify these columns in the SEC_RELEVANT_
COLS parameter.

See "Creating a Function to Generate the Dynamic WHERE Clause" on page 7-4 for
detailed information on the components of this type of function.

2. Create the vpd_function_provider_b, function, which restricts the data
accessed by user provider_a.

CREATE OR REPLACE FUNCTION vpd_function_provider_b
 (schema in varchar2, tab in varchar2) return varchar2 as
 predicate varchar2(8) default NULL;
 BEGIN
 IF LOWER(SYS_CONTEXT('USERENV','CLIENT_IDENTIFIER')) = 'provider_b'
 THEN predicate := '1=2';
 ELSE NULL;
 END IF;
 RETURN predicate;
END;
/

Similar to the vpd_function_provider_a function, this function checks that
the user logging in is really user provider_b. If this is true, then only the data in
the columns group_b and year_b will be visible to provider_b, with data in
the group_a and year_a not appearing for provider_b. Similar to the vpd_
function_provider_a function, predicate := '1=2' hides the relevant
columns specified Step 4: Add the PL/SQL Functions to the Policy Groups in the
SEC_RELEVANT_COLS parameter.

Step 4: Add the PL/SQL Functions to the Policy Groups
Now that you have created the necessary functions, you are ready to associate them
with their appropriate policy groups.

1. Add the vpd_function_provider_a function to the provider_a_group
policy group.

BEGIN
 DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_a_group',
 policy_name => 'filter_provider_a',
 function_schema => 'sysadmin_pg',

Tutorials: Creating Oracle Virtual Private Database Policies

7-32 Oracle Database Security Guide

 policy_function => 'vpd_function_provider_a',
 statement_types => 'select',
 policy_type => DBMS_RLS.CONTEXT_SENSITIVE,
 sec_relevant_cols => 'group_b,year_b',
 sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS);
END;
/

The group_b and year_b columns specified in the sec_relevant_cols
parameter are hidden from user provider_a.

2. Add the vpd_function_provider_b function to the provider_b_group
policy group.

BEGIN
 DBMS_RLS.ADD_GROUPED_POLICY(
 object_schema => 'oe',
 object_name => 'product_code_names',
 policy_group => 'provider_b_group',
 policy_name => 'filter_provider_b',
 function_schema => 'sysadmin_pg',
 policy_function => 'vpd_function_provider_b',
 statement_types => 'select',
 policy_type => DBMS_RLS.CONTEXT_SENSITIVE,
 sec_relevant_cols => 'group_a,year_a',
 sec_relevant_cols_opt => DBMS_RLS.ALL_ROWS);
END;
/
The group_a and year_a columns specified in the sec_relevant_cols
parameter are hidden from user provider_b.

Step 5: Create the Driving Application Context
The application context determines which policy the nondatabase user who is the
logging on should use.

1. As user sysadmin_pg, create the driving application context as follows:

CREATE OR REPLACE CONTEXT provider_ctx USING provider_package;

2. Create the PL/SQL provider_package package for the application context.

CREATE OR REPLACE PACKAGE provider_package IS
 PROCEDURE set_provider_context (policy_group varchar2 default NULL);
END;
/
CREATE OR REPLACE PACKAGE BODY provider_package AS
 PROCEDURE set_provider_context (policy_group varchar2 default NULL) IS
 BEGIN
 CASE LOWER(SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER'))
 WHEN 'provider_a' THEN
 DBMS_SESSION.SET_CONTEXT('provider_ctx','policy_group','PROVIDER_A_GROUP');
 WHEN 'provider_b' THEN
 DBMS_SESSION.SET_CONTEXT('provider_ctx','policy_group','PROVIDER_B_GROUP');
 END CASE;
 END set_provider_context;
END;
/

3. Associate the provider_ctx application context with the product_code_
names table, and then provide a name.

Tutorials: Creating Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-33

BEGIN
 DBMS_RLS.ADD_POLICY_CONTEXT(
 object_schema =>'oe',
 object_name =>'product_code_names',
 namespace =>'provider_ctx',
 attribute =>'policy_group');
END;
/

4. Grant the apps_user account the EXECUTE privilege for the provider_
package package.

GRANT EXECUTE ON provider_package TO apps_user;

Step 6: Test the Policy Groups
Now you are ready to test the two policy groups.

1. Connect as user apps_user and then enter the following statements to ensure
that the output you will create later on is nicely formatted.

CONNECT apps_user
Enter password: password

col group_a format a16
col group_b format a16;
col year_a format a16;
col year_b format a16;

2. Set the session identifier to provider_a.

EXEC DBMS_SESSION.SET_IDENTIFIER('provider_a');

Here, the application sets the identifier. Setting the identifier to provider_a sets
the apps_user user to a user who should only see the products available to
products in the provider_a_group policy group.

3. Run the provider_package to set the policy group based on the context.

EXEC sysadmin_pg.provider_package.set_provider_context;

At this stage, you can check the application context was set, as follows:

SELECT SYS_CONTEXT('USERENV', 'CLIENT_IDENTIFIER') AS END_USER FROM DUAL;

The following output should appear:

END_USER

provider_a

4. Enter the following SELECT statement:

SELECT * FROM oe.product_code_names;

The following output should appear:

GROUP_A YEAR_A GROUP_B YEAR_B
---------------- ---------------- ---------------- ----------------
Biffo 2008
Hortensia 2008
Boppo 2006

How Oracle Virtual Private Database Works with Other Oracle Features

7-34 Oracle Database Security Guide

5. Set the client identifier to provider_b and then enter the following statements:

EXEC DBMS_SESSION.SET_IDENTIFIER('provider_b');
EXEC sysadmin_pg.provider_package.set_provider_context;
SELECT * FROM oe.product_code_names;

The following output should appear:

GROUP_A YEAR_A GROUP_B YEAR_B
---------------- ---------------- ---------------- ----------------
 Beffo 2004
 Bunko 2008
 Hortensia 2003

Step 7: Remove the Components for This Tutorial
1. Connect as user OE and drop the product_code_names table.

CONNECT OE
Enter password: password

DROP TABLE product_code_names;

2. Connect as user SYS and drop the application context and users for this tutorial.

CONNECT SYS/AS SYSDBA
Enter password: password

DROP CONTEXT provider_ctx;
DROP USER sysadmin_pg cascade;
DROP USER apps_user;

How Oracle Virtual Private Database Works with Other Oracle Features
This section contains:

■ Using Oracle Virtual Private Database Policies with Editions

■ Using SELECT FOR UPDATE in User Queries on VPD-Protected Tables

■ How Oracle Virtual Private Database Policies Affect Outer or ANSI Join
Operations

■ How Oracle Virtual Private Database Security Policies Work with Applications

■ Using Automatic Reparsing for Fine-Grained Access Control Policy Functions

■ Using Oracle Virtual Private Database Policies and Flashback Query

■ Using Oracle Virtual Private Database and Oracle Label Security

■ User Models and Oracle Virtual Private Database

Using Oracle Virtual Private Database Policies with Editions
If you are preparing an application for edition-based redefinition, and you cover each
table that the application uses with an editioning view, then you must move the
Virtual Private Database polices that protect these tables to the editioning view.

When an editioned object has a Virtual Private Database t policy, then it applies in all
editions in which the object is visible. When an editioned object is actualized, any VPD
policies that are attached to it are newly attached to the new actual occurrence. When
you newly apply a VPD policy to an inherited editioned object, this action will
actualize it.

How Oracle Virtual Private Database Works with Other Oracle Features

Using Oracle Virtual Private Database to Control Data Access 7-35

Using SELECT FOR UPDATE in User Queries on VPD-Protected Tables
As a general rule, users should not include the FOR UPDATE clause when querying
Virtual Private Database-protected tables. The Virtual Private Database technology
depends on rewriting the user’s query against an inline view that includes the VPD
predicate generated by the VPD policy function. Because of this, the same limitations
on views also apply to VPD-protected tables. If a user’s query against a VPD-protected
table includes the FOR UPDATE clause in a SELECT statement, in most cases, the query
may not work. However, the user’s query may work in some situations if the inline
view generated by VPD is sufficiently simple.

How Oracle Virtual Private Database Policies Affect Outer or ANSI Join Operations
Oracle Virtual Private Database rewrites SQL by using dynamic views. For SQL that
contains outer join or ANSI operations, some views may not merge and some indexes
may not be used. This problem is a known optimization limitation. To remedy this
problem, rewrite the SQL to not use outer joins or ANSI operations.

How Oracle Virtual Private Database Security Policies Work with Applications
An Oracle Virtual Private Database security policy is applied within the database
itself, rather than within an application. Hence, a user trying to access data by using a
different application cannot bypass the Oracle Virtual Private Database security policy.
Another advantage of creating the security policy in the database is that you maintain
it in one central place, rather than maintaining individual security policies in multiple
applications. Oracle Virtual Private Database provides stronger security than
application-based security, at a lower cost of ownership.

You may want to enforce different security policies depending on the application that
is accessing data. Consider a situation in which two applications, Order Entry and
Inventory, both access the orders table. You may want to have the Inventory
application use a policy that limits access based on type of product. At the same time,
you may want to have the Order Entry application use a policy that limits access based
on customer number.

In this case, you must partition the use of fine-grained access by application.
Otherwise, both policies would be automatically concatenated together, which may
not be the result that you want. You can specify two or more policy groups, and a
driving application context that determines which policy group is in effect for a given
transaction. You can also designate default policies that always apply to data access. In
a hosted application, for example, data access should be limited by subscriber ID. See
"Tutorial: Implementing an Oracle Virtual Private Database Policy Group" on
page 7-29 for an example of how you can create policy groups that use an application
context to determine which group should be used.

Using Automatic Reparsing for Fine-Grained Access Control Policy Functions
By default, queries against objects enabled with fine-grained access control run the
policy function to ensure that the most current predicate is used for each policy. For
example, in the case of a time-based policy function, in which queries are only allowed

See Also: Oracle Database Advanced Application Developer's Guide for
detailed information about editions

See Also: Oracle Database SQL Language Reference for more
information about the restrictions of the FOR UPDATE clause in the
SELECT statement

How Oracle Virtual Private Database Works with Other Oracle Features

7-36 Oracle Database Security Guide

between 8:00 a.m. and 5:00 p.m., a cursor execution parsed at noon runs the policy
function at that time, ensuring that the policy is consulted again for the query. Even if
the curser was parsed at 9 a.m., when it runs later on (for example, at noon), then the
Virtual Private Database policy function runs again to ensure that the execution of the
cursor is still permitted at the current time (noon). This ensures that the security check
it must perform is the most recent.

Automatic re-execution of the Virtual Private Database policy function does not occur
when you set the DBMS_RLS.ADD_POLICY setting STATIC_POLICY to TRUE while
adding the policy. This setting causes the policy function to return the same predicate.

Using Oracle Virtual Private Database Policies and Flashback Query
By default, operations on the database use the most recently committed data available.
The flashback query feature enables you to query the database at some point in the
past. To write an application that uses flashback query, you can use the AS OF clause
in SQL queries to specify either a time or a system change number (SCN), and then
query against the committed data from the specified time. You can also use the DBMS_
FLASHBACK PL/SQL package, which requires more code, but enables you to perform
multiple operations, all of which refer to the same point in time.

However, if you use flashback query against a database object that is protected with
Oracle Virtual Private Database policies, then the current policies are applied to the old
data. Applying the current Oracle Virtual Private Database policies to flashback query
data is more secure because it reflects the most current business policy.

Using Oracle Virtual Private Database and Oracle Label Security
This section contains:

■ Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies

■ Oracle Virtual Private Database and Oracle Label Security Exceptions

Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies
You can use Oracle Virtual Private Database policies to provide column or row-level
access control based on Oracle Label Security user authorizations. In general, you need
to perform the following steps:

1. When you create the Oracle Label Security policy, do not apply the policy to the
table that you want to protect. (The Virtual Private Database policy that you create
handles this for you.) In the SA_SYSDBA.CREATE_POLICY procedure, set the
default_options parameter to NO_CONTROL.

2. Create the Oracle Label Security label components and authorize users as you
normally would.

3. When you create the Oracle Virtual Private Database policy, do the following:

See Also:

■ Oracle Database Advanced Application Developer's Guide for more
information about the flashback query feature and how to write
applications that use it

■ Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_FLASHBACK PL/SQL package

See Also: Oracle Label Security Administrator's Guide

How Oracle Virtual Private Database Works with Other Oracle Features

Using Oracle Virtual Private Database to Control Data Access 7-37

■ In the PL/SQL function you create for the policy, use the Oracle Label Security
DOMINATES function to compare the authorization of the user with the label
that you created in Step 2. (See Oracle Label Security Administrator's Guide for
more information about the dominance functions.) The DOMINATES function
determines if the user authorization is equal to, or if it is more sensitive than,
the label used in the comparison. If the user authorization passes, then the
user is granted access to the column. Otherwise, the user is denied access.

■ In the Virtual Private Database policy definition, apply this function to the
table that you want to protect. In the DBMS_RLS.ADD_POLICY procedure, use
the sensitive column (SEC_RELEVANT_COLS parameter) and column masking
(SEC_RELEVANT_COLS_OPT parameter) functionality to show or hide
columns based on Oracle Label Security user authorizations.

For an example of how to accomplish this, visit the following Oracle Technology
Network site:

http://www.oracle.com/technology/deploy/security/database-securi
ty/label-security/ols_cs1.html

Oracle Virtual Private Database and Oracle Label Security Exceptions
Be aware of the following exceptions when you use Oracle Virtual Private Database
and Oracle Label Security:

■ When you are exporting data, Oracle Virtual Private Database and Oracle Label
Security policies are not enforced during a direct path export operation. In a
direct path export operation, Oracle Database reads data from disk into the buffer
cache and transfers rows directly to the Export client. See Oracle Database Utilities
for more information about direct path export operations.

■ You cannot apply Oracle Virtual Private Database policies and Oracle Label
Security policies to objects in the SYS schema. The SYS user and users making a
DBA-privileged connection to the database (for example, CONNECT/AS SYSDBA)
do not have Oracle Virtual Private Database or Oracle Label Security policies
applied to their actions. The database user SYS is thus always exempt from Oracle
Virtual Private Database or Oracle Label Security enforcement, regardless of the
export mode, application, or utility used to extract data from the database.

However, you can audit SYSDBA actions by enabling auditing upon installation
and specifying that this audit trail be stored in a secure location in the operating
system. See "Auditing SYS Administrative Users" on page 9-52 for more
information. You can also closely monitor the SYS user by using Oracle Database
Vault.

■ Database users who were granted the EXEMPT ACCESS POLICY privilege,
either directly or through a database role, are exempt from Oracle Virtual
Private Database enforcements. The system privilege EXEMPT ACCESS POLICY
allows a user to be exempted from all fine-grained access control policies on any
SELECT or DML operation (INSERT, UPDATE, and DELETE). This provides ease of
use for administrative activities, such as installation and import and export of the
database, through a non-SYS schema.

However, the following policy enforcement options remain in effect even when
EXEMPT ACCESS POLICY is granted:

– INSERT_CONTROL, UPDATE_CONTROL, DELETE_CONTROL, WRITE_CONTROL,
LABEL_UPDATE, and LABEL_DEFAULT

http://www.oracle.com/technology/deploy/security/database-security/label-security/ols_cs1.html

How Oracle Virtual Private Database Works with Other Oracle Features

7-38 Oracle Database Security Guide

– If the Oracle Label Security policy specifies the ALL_CONTROL option, then all
enforcement controls are applied except READ_CONTROL and CHECK_
CONTROL.

Because EXEMPT ACCESS POLICY negates the effect of fine-grained access
control, you should only grant this privilege to users who have legitimate reasons
for bypassing fine-grained access control enforcement. Do not grant this privilege
using the WITH ADMIN OPTION. If you do, users could pass the EXEMPT ACCESS
POLICY privilege to other users, and thus propagate the ability to bypass
fine-grained access control.

User Models and Oracle Virtual Private Database
You can use Oracle Virtual Private Database in the following types of user models:

■ Application users who are also database users. Oracle Database enables
applications to enforce fine-grained access control for each user, regardless of
whether that user is a database user or an application user unknown to the
database. When application users are also database users, Oracle Virtual Private
Database enforcement works as follows: users connect to the database, and then
the application sets up application contexts for each session. (You can use the
default USERENV application context namespace, which provides many
parameters for retrieve different types of user session data.) As each session is
initiated under a different user name, it can enforce different fine-grained access
control conditions for each user.

■ Proxy authentication using OCI or JDBC/OCI. Proxy authentication permits
different fine-grained access control for each user, because each session (OCI or
JDBC/OCI) is a distinct database session with its own application context.

■ Proxy authentication integrated with Enterprise User Security. If you have
integrated proxy authentication by using Enterprise User Security, you can
retrieve user roles and other attributes from Oracle Internet Directory to enforce
Oracle Virtual Private Database policies. (In addition, globally initialized
application context can also be retrieved from the directory.)

■ Users connecting as One Big Application User. Applications connecting to the
database as a single user on behalf of all users can have fine-grained access control
for each user. The user for that single session is often called One Big Application
User. Within the context of that session, however, an application developer can
create a global application context attribute to represent the individual application
user (for example, REALUSER). Although all database sessions and audit records
are created for One Big Application User, the attributes for each session can vary,
depending on who the end user is. This model works best for applications with a
limited number of users and no reuse of sessions. The scope of roles and database
auditing is diminished because each session is created as the same database user.
For more information about global application contexts, see "Using Global
Application Contexts" on page 6-22.

Note:

■ The EXEMPT ACCESS POLICY privilege does not affect the
enforcement of object privileges such as SELECT, INSERT,
UPDATE, and DELETE. These privileges are enforced even if a
user was granted the EXEMPT ACCESS POLICY privilege.

■ The SYS_CONTEXT values that Oracle Virtual Private Database
uses are not propagated to secondary databases for failover.

Finding Information About Oracle Virtual Private Database Policies

Using Oracle Virtual Private Database to Control Data Access 7-39

■ Web-based applications. Web-based applications typically have hundreds of
users. Even when there are persistent connections to the database, supporting data
retrieval for many user requests, these connections are not specific to particular
Web-based users. Instead, Web-based applications typically set up and reuse
connections, to provide scalability, rather than having different sessions for each
user. For example, when Web users Jane and Ajit connect to a middle tier
application, it may establish a single database session that it uses on behalf of both
users. Typically, neither Jane nor Ajit is known to the database. The application is
responsible for switching the user name on the connection, so that, at any given
time, it is either Jane or Ajit using the session.

Oracle Virtual Private Database helps with connection pooling by allowing
multiple connections to access more than one global application context. This
ability makes it unnecessary to establish a separate application context for each
distinct user session.

Table 7–3 summarizes how Oracle Virtual Private Database applies to user models.

Finding Information About Oracle Virtual Private Database Policies
Table 7–4 lists data dictionary views that you can use to find information about Oracle
Virtual Private Database policies. See Oracle Database Reference for more information
about these views.

Table 7–3 Oracle Virtual Private Database in Different User Models

User Model Scenario

Individual
Database

Connection

Separate
Application Context

per User

Single
Database
Connection

Application Must
Switch User Name

Application users are also
database users

Yes Yes No No

Proxy authentication using OCI
or JDBC/OCI

Yes Yes No No

Proxy authentication
integrated with Enterprise User
Security1

1 User roles and other attributes, including globally initialized application context, can be retrieved from Oracle Internet
Directory to enforce Oracle Virtual Private Database.

No No Yes Yes

One Big Application User No No2

2 Application developers can create a global application context attribute representing individual application users (for example,
REALUSER), which can then be used for controlling each session attributes, or for auditing.

No Yes2

Web-based applications No No Yes Yes

Table 7–4 Data Dictionary Views That Display Information about VPD Policies

View Description

ALL_POLICIES Describes all Oracle Virtual Private Database security policies for objects
accessible to the current user.

ALL_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views
accessible to the current user. A driving context is an application context used in
an Oracle Virtual Private Database policy.

ALL_POLICY_GROUPS Describes the Oracle Virtual Private Database policy groups defined for the
synonyms, tables, and views accessible to the current user

ALL_SEC_RELEVANT_COLS Describes the security relevant columns of the security policies for the tables
and views accessible to the current user

Finding Information About Oracle Virtual Private Database Policies

7-40 Oracle Database Security Guide

DBA_POLICIES Describes all Oracle Virtual Private Database security policies in the database.

DBA_POLICY_GROUPS Describes all policy groups in the database.

DBA_POLICY_CONTEXTS Describes all driving contexts in the database. Its columns are the same as those
in ALL_POLICY_CONTEXTS.

DBA_SEC_RELEVANT_COLS Describes the security relevant columns of all security policies in the database

USER_POLICIES Describes all Oracle Virtual Private Database security policies associated with
objects owned by the current user. This view does not display the OBJECT_
OWNER column.

USER_POLICY_CONTEXTS Describes the driving contexts defined for the synonyms, tables, and views
owned by the current user. Its columns (except for OBJECT_OWNER) are the
same as those in ALL_POLICY_CONTEXTS.

USER_SEC_RELEVANT_COLS Describes the security relevant columns of the security policies for the tables
and views owned by the current user. Its columns (except for OBJECT_OWNER)
are the same as those in ALL_SEC_RELEVANT_COLS.

USER_POLICY_GROUPS Describes the policy groups defined for the synonyms, tables, and views owned
by the current user. This view does not display the OBJECT_OWNER column.

V$VPD_POLICY Displays all the fine-grained security policies and predicates associated with the
cursors currently in the library cache. This view is useful for finding the policies
that were applied to a SQL statement.

Tip: In addition to these views, check the database trace file if you
find errors in application that use Virtual Private Database policies.
See Oracle Database Performance Tuning Guide for more information
about trace files. The USER_DUMP_DEST initialization parameter
specifies the current location of the trace files. You can find the value
of this parameter by issuing SHOW PARAMETER USER_DUMP_DEST in
SQL*Plus.

Table 7–4 (Cont.) Data Dictionary Views That Display Information about VPD Policies

View Description

8

Developing Applications Using the Data Encryption API 8-1

8 Developing Applications Using
the Data Encryption API

This chapter contains:

■ Security Problems That Encryption Does Not Solve

■ Data Encryption Challenges

■ Storing Data Encryption by Using the DBMS_CRYPTO Package

■ Verifying Data Integrity with the DBMS_SQLHASH Package

■ Examples of Using the Data Encryption API

■ Finding Information About Encrypted Data

Security Problems That Encryption Does Not Solve
While there are many good reasons to encrypt data, there are many reasons not to
encrypt data. Encryption does not solve all security problems, and may make some
problems worse. The following sections describe some misconceptions about
encryption of stored data:

■ Principle 1: Encryption Does Not Solve Access Control Problems

■ Principle 2: Encryption Does Not Protect Against a Malicious Database
Administrator

■ Principle 3: Encrypting Everything Does Not Make Data Secure

Principle 1: Encryption Does Not Solve Access Control Problems
Most organizations need to limit data access to users who need to see this data. For
example, a human resources system may limit employees to viewing only their own
employment records, while allowing managers of employees to see the employment
records of subordinates. Human resource specialists may also need to see employee
records for multiple employees.

See Also:

■ Oracle Database 2 Day + Security Guide for an introduction to
network encryption

■ Oracle Database Advanced Security Administrator's Guide for
information about using transparent data encryption and
tablespace encryption

Security Problems That Encryption Does Not Solve

8-2 Oracle Database Security Guide

Typically, you can use access control mechanisms to address security policies that limit
data access to those with a need to see it. Oracle Database has provided strong,
independently evaluated access control mechanisms for many years. It enables access
control enforcement to a fine level of granularity through Virtual Private Database.

Because human resource records are considered sensitive information, it is tempting to
think that all information should be encrypted for better security. However, encryption
cannot enforce granular access control, and it may hinder data access. For example, an
employee, his manager, and a human resources clerk may all need to access an
employee record. If all employee data is encrypted, then all three must be able to
access the data in unencrypted form. Therefore, the employee, the manager and the
human resources clerk would have to share the same encryption key to decrypt the
data. Encryption would, therefore, not provide any additional security in the sense of
better access control, and the encryption might hinder the proper or efficient
functioning of the application. An additional issue is that it is difficult to securely
transmit and share encryption keys among multiple users of a system.

A basic principle behind encrypting stored data is that it must not interfere with access
control. For example, a user who has the SELECT privilege on emp should not be
limited by the encryption mechanism from seeing all the data he is otherwise allowed
to see. Similarly, there is little benefit to encrypting part of a table with one key and
part of a table with another key if users need to see all encrypted data in the table. In
this case, encryption adds to the overhead of decrypting the data before users can read
it. If access controls are implemented well, then encryption adds little additional
security within the database itself. A user who has privileges to access data within the
database has no more nor any less privileges as a result of encryption. Therefore, you
should never use encryption to solve access control problems.

Principle 2: Encryption Does Not Protect Against a Malicious Database Administrator
Some organizations, concerned that a malicious user might gain elevated (database
administrator) privileges by guessing a password, like the idea of encrypting stored
data to protect against this threat. However, the correct solution to this problem is to
protect the database administrator account, and to change default passwords for other
privileged accounts. The easiest way to break into a database is by using a default
password for a privileged account that an administrator allowed to remain
unchanged. One example is SYS/CHANGE_ON_INSTALL.

While there are many destructive things a malicious user can do to a database after
gaining the DBA privilege, encryption will not protect against many of them. Examples
include corrupting or deleting data, exporting user data to the file system to e-mail the
data back to himself to run a password cracker on it, and so on.

Some organizations are concerned that database administrators, typically having all
privileges, are able to see all data in the database. These organizations feel that the
database administrators should administer the database, but should not be able to see
the data that the database contains. Some organizations are also concerned about
concentrating so much privilege in one person, and would prefer to partition the DBA
function, or enforce two-person access rules.

It is tempting to think that encrypting all data (or significant amounts of data) will
solve these problems, but there are better ways to protect against these threats. For
example, Oracle Database supports limited partitioning of DBA privileges. Oracle
Database provides native support for SYSDBA and SYSOPER users. SYSDBA has all
privileges, but SYSOPER has a limited privilege set (such as startup and shutdown of
the database).

Security Problems That Encryption Does Not Solve

Developing Applications Using the Data Encryption API 8-3

Furthermore, you can create smaller roles encompassing several system privileges. A
jr_dba role might not include all system privileges, but only those appropriate to a
junior database administrator (such as CREATE TABLE, CREATE USER, and so on).

Oracle Database also enables auditing the actions taken by SYS (or SYS-privileged
users) and storing that audit trail in a secure operating system location. Using this
model, a separate auditor who has root privileges on the operating system can audit
all actions by SYS, enabling the auditor to hold all database administrators
accountable for their actions.

See "Auditing SYS Administrative Users" on page 9-52 for information about ways to
audit database administrators.

You can also fine-tune the access and control that database administrators have by
using Oracle Database Vault. See Oracle Database Vault Administrator's Guide for more
information.

The database administrator function is a trusted position. Even organizations with the
most sensitive data, such as intelligence agencies, do not typically partition the
database administrator function. Instead, they manage their database administrators
strongly, because it is a position of trust. Periodic auditing can help to uncover
inappropriate activities.

Encryption of stored data must not interfere with the administration of the database,
because otherwise, larger security issues can result. For example, if by encrypting data
you corrupt the data, then you create a security problem, the data itself cannot be
interpreted, and it may not be recoverable.

You can use encryption to limit the ability of a database administrator or other
privileged user to see data in the database. However, it is not a substitute for
managing the database administrator privileges properly, or for controlling the use of
powerful system privileges. If untrustworthy users have significant privileges, then
they can pose multiple threats to an organization, some of them far more significant
than viewing unencrypted credit card numbers.

Principle 3: Encrypting Everything Does Not Make Data Secure
A common error is to think that if encrypting some data strengthens security, then
encrypting everything makes all data secure.

As the discussion of the previous two principles illustrates, encryption does not
address access control issues well, and it is important that encryption not interfere
with normal access controls. Furthermore, encrypting an entire production database
means that all data must be decrypted to be read, updated, or deleted. Encryption is
inherently a performance-intensive operation; encrypting all data will significantly
affect performance.

Availability is a key aspect of security. If encrypting data makes data unavailable, or
adversely affects availability by reducing performance, then encrypting everything
will create a new security problem. Availability is also adversely affected by the
database being inaccessible when encryption keys are changed, as good security
practices require on a regular basis. When the keys are to be changed, the database is
inaccessible while data is decrypted and reencrypted with a new key or keys.

There may be advantages to encrypting data stored off-line. For example, an
organization may store backups for a period of 6 months to a year off-line, in a remote
location. Of course, the first line of protection is to secure the facility storing the data,
by establishing physical access controls. Encrypting this data before it is stored may
provide additional benefits. Because it is not being accessed on-line, performance need
not be a consideration. While an Oracle database does not provide this capability, there

Data Encryption Challenges

8-4 Oracle Database Security Guide

are vendors who provide encryption services. Before embarking on large-scale
encryption of backup data, organizations considering this approach should thoroughly
test the process. It is essential to verify that data encrypted before off-line storage can
be decrypted and re-imported successfully.

Data Encryption Challenges
In cases where encryption can provide additional security, there are some associated
technical challenges, as described in the following sections:

■ Encrypting Indexed Data

■ Generating Encryption Keys

■ Transmitting Encryption Keys

■ Storing Encryption Keys

■ Changing Encryption Keys

■ Encrypting Binary Large Objects

Encrypting Indexed Data
Special difficulties arise when encrypted data is indexed. For example, suppose a
company uses a national identity number, such as the U.S. Social Security number
(SSN), as the employee number for its employees. The company considers employee
numbers to be sensitive data, and, therefore, wants to encrypt data in the employee_
number column of the employees table. Because employee_number contains
unique values, the database designers want to have an index on it for better
performance.

However, if DBMS_CRYPTO or the DBMS_OBFUSCATION_TOOLKIT (or another
mechanism) is used to encrypt data in a column, then an index on that column will
also contain encrypted values. Although an index can be used for equality checking
(for example, SELECT * FROM emp WHERE employee_number =
'987654321'), if the index on that column contains encrypted values, then the index
is essentially unusable for any other purpose. You should not encrypt indexed data.

Oracle recommends that you do not use national identity numbers as unique IDs.
Instead, use the CREATE SEQUENCE statement to generate unique identity numbers.
Reasons to avoid using national identity numbers are as follows:

■ There are privacy issues associated with overuse of national identity numbers (for
example, identity theft).

■ Sometimes national identity numbers can have duplicates, as with U.S. Social
Security numbers.

Generating Encryption Keys
Encrypted data is only as secure as the key used for encrypting it. An encryption key
must be securely generated using secure cryptographic key generation. Oracle
Database provides support for secure random number generation, with the
RANDOMBYTES function of DBMS_CRYPTO. (This function replaces the capabilities
provided by the GetKey procedure of the earlier DBMS_OBFUSCATION_TOOLKIT.)
DBMS_CRYPTO calls the secure random number generator (RNG) previously certified
by RSA Security.

Data Encryption Challenges

Developing Applications Using the Data Encryption API 8-5

Be sure to provide the correct number of bytes when you encrypt a key value. For
example, you must provide a 16-byte key for the ENCRYPT_AES128 encryption
algorithm.

Transmitting Encryption Keys
If the encryption key is to be passed by the application to the database, then you must
encrypt it. Otherwise, an intruder could get access to the key as it is being transmitted.
Network encryption, such as that provided by Oracle Advanced Security, protects all
data in transit from modification or interception, including cryptographic keys.

Storing Encryption Keys
Storing encryption keys is one of the most important, yet difficult, aspects of
encryption. To recover data encrypted with a symmetric key, the key must be
accessible to an authorized application or user seeking to decrypt the data. At the
same time, the key must be inaccessible to someone who is maliciously trying to access
encrypted data that he is not supposed to see.

The options available to a developer are:

■ Storing the Encryption Keys in the Database

■ Storing the Encryption Keys in the Operating System

■ Users Managing Their Own Encryption Keys

■ Using Transparent Database Encryption and Tablespace Encryption

Storing the Encryption Keys in the Database
Storing the keys in the database cannot always provide infallible security if you are
trying to protect against the database administrator accessing encrypted data. An
all-privileged database administrator could still access tables containing encryption
keys. However, it can often provide good security against the casual curious user or
against someone compromising the database file on the operating system.

As a trivial example, suppose you create a table (EMP) that contains employee data.
You want to encrypt the employee Social Security number (SSN) stored in one of the
columns. You could encrypt employee SSN using a key that is stored in a separate
column. However, anyone with SELECT access on the entire table could retrieve the
encryption key and decrypt the matching SSN.

While this encryption scheme seems easily defeated, with a little more effort you can
create a solution that is much harder to break. For example, you could encrypt the SSN
using a technique that performs some additional data transformation on the
employee_number before using it to encrypt the SSN. This technique might be as
simple as using an XOR operation on the employee_number and the birth date of the
employee to determine the validity of the values.

As additional protection, PL/SQL source code performing encryption can be wrapped,
(using the WRAP utility) which obfuscates (scrambles) the code. The WRAP utility

Note: Do not use the DBMS_RANDOM package. The DBMS_RANDOM
package generates pseudo-random numbers, which, as Randomness
Recommendations for Security (RFC-1750) states that using
pseudo-random processes to generate secret quantities can result in
pseudo-security.

Data Encryption Challenges

8-6 Oracle Database Security Guide

processes an input SQL file and obfuscates the PL/SQL units in it. For example, the
following command uses the keymanage.sql file as the input:

wrap iname=/mydir/keymanage.sql

A developer can subsequently have a function in the package call the DBMS_
OBFUSCATION_TOOLKIT with the key contained in the wrapped package.

Oracle Database enables you to obfuscate dynamically generated PL/SQL code. The
DBMS_DDL package contains two subprograms that allow you to obfuscate
dynamically generated PL/SQL program units. For example, the following block uses
the DBMS_DDL.CREATE_WRAPPED procedure to wrap dynamically generated PL/SQL
code.

BEGIN
......
SYS.DBMS_DDL.CREATE_WRAPPED(function_returning_PLSQL_code());
......
END;

While wrapping is not unbreakable, it makes it harder for an intruder to get access to
the encryption key. Even in cases where a different key is supplied for each encrypted
data value, you should not embed the key value within a package. Instead, wrap the
package that performs the key management (that is, data transformation or padding).

An alternative to wrapping the data is to have a separate table in which to store the
encryption key and to envelope the call to the keys table with a procedure. The key
table can be joined to the data table using a primary key to foreign key relationship.
For example, employee_number is the primary key in the employees table that
stores employee information and the encrypted SSN. The employee_number column
is a foreign key to the ssn_keys table that stores the encryption keys for the employee
SSN. The key stored in the ssn_keys table can also be transformed before use (by
using an XOR operation), so the key itself is not stored unencrypted. If you wrap the
procedure, then that can hide the way in which the keys are transformed before use.

The strengths of this approach are:

■ Users who have direct table access cannot see the sensitive data unencrypted, nor
can they retrieve the keys to decrypt the data.

■ Access to decrypted data can be controlled through a procedure that selects the
encrypted data, retrieves the decryption key from the key table, and transforms it
before it can be used to decrypt the data.

■ The data transformation algorithm is hidden from casual snooping by wrapping
the procedure, which obfuscates the procedure code.

■ SELECT access to both the data table and the keys table does not guarantee that
the user with this access can decrypt the data, because the key is transformed
before use.

The weakness to this approach is that a user who has SELECT access to both the key
table and the data table, and who can derive the key transformation algorithm, can
break the encryption scheme.

The preceding approach is not infallible, but it is adequate to protect against easy
retrieval of sensitive information stored in clear text.

See Also: Oracle Database PL/SQL Language Reference for additional
information about the WRAP command line utility and the DBMS_DDL
subprograms for dynamic wrapping

Data Encryption Challenges

Developing Applications Using the Data Encryption API 8-7

Storing the Encryption Keys in the Operating System
Storing keys in a flat file in the operating system is another option. Oracle Database
enables you to make callouts from PL/SQL, which you could use to retrieve
encryption keys. However, if you store keys in the operating system and make callouts
to it, then your data is only as secure as the protection on the operating system. If your
primary security concern is that the database can be broken into from the operating
system, then storing the keys in the operating system makes it easier for an intruder to
retrieve encrypted data than storing the keys in the database itself.

Users Managing Their Own Encryption Keys
Having the user supply the key assumes the user will be responsible with the key.
Considering that 40 percent of help desk calls are from users who have forgotten their
passwords, you can see the risks of having users manage encryption keys. In all
likelihood, users will either forget an encryption key, or write the key down, which
then creates a security weakness. If a user forgets an encryption key or leaves the
company, then your data is not recoverable.

If you do decide to have user-supplied or user-managed keys, then you need to ensure
you are using network encryption so that the key is not passed from the client to the
server in the clear. You also must develop key archive mechanisms, which is also a
difficult security problem. Key archives and backdoors create the security weaknesses
that encryption is attempting to solve.

Using Transparent Database Encryption and Tablespace Encryption
Transparent database encryption and tablespace encryption provide secure encryption
with automatic key management for the encrypted tables and tablespaces. If the
application requires protection of sensitive column data stored on the media, then
these two types of encryption are a simple and fast way of achieving this.

Changing Encryption Keys
Prudent security practice dictates that you periodically change encryption keys. For
stored data, this requires periodically unencrypting the data, and reencrypting it with
another well-chosen key. You would most likely change the encryption key while the
data is not being accessed, which creates another challenge. This is especially true for a
Web-based application encrypting credit card numbers, because you do not want to
shut down the entire application while you switch encryption keys.

Encrypting Binary Large Objects
Certain data types require more work to encrypt. For example, Oracle Database
supports storage of binary large objects (BLOBs), which stores very large objects (for
example, multiple gigabytes) in the database. A BLOB can be either stored internally
as a column, or stored in an external file.

For an example of using DBMS_CRYPTO on BLOB data, see "Example of Encryption
and Decryption Procedures for BLOB Data" on page 8-13.

See Also: Oracle Database Advanced Security Administrator's Guide for
more information about transparent data encryption

Storing Data Encryption by Using the DBMS_CRYPTO Package

8-8 Oracle Database Security Guide

Storing Data Encryption by Using the DBMS_CRYPTO Package
The DBMS_CRYPTO package provides several ways to address the security issues that
were discussed. (For backward compatibility, DBMS_OBFUSCATION_TOOLKIT is also
provided.)

While encryption is not the ideal solution for addressing several security threats, it is
clear that selectively encrypting sensitive data before storage in the database does
improve security. Examples of such data could include:

■ Credit card numbers

■ National identity numbers

 Oracle Database provides the PL/SQL package DBMS_CRYPTO to encrypt and decrypt
stored data. This package supports several industry-standard encryption and hashing
algorithms, including the Advanced Encryption Standard (AES) encryption algorithm.
AES was approved by the National Institute of Standards and Technology (NIST) to
replace the Data Encryption Standard (DES).

The DBMS_CRYPTO package enables encryption and decryption for common Oracle
Database data types, including RAW and large objects (LOBs), such as images and
sound. Specifically, it supports BLOBs and CLOBs. In addition, it provides
Globalization Support for encrypting data across different database character sets.

The following cryptographic algorithms are supported:

■ Data Encryption Standard (DES), Triple DES (3DES, 2-key)

■ Advanced Encryption Standard (AES)

■ SHA-1 Cryptographic Hash

■ SHA-1 Message Authentication Code (MAC)

Block cipher modifiers are also provided with DBMS_CRYPTO. You can choose from
several padding options, including Public Key Cryptographic Standard (PKCS) #5,
and from four block cipher chaining modes, including Cipher Block Chaining (CBC).
Padding must be done in multiples of eight bytes.

Table 8–1 compares the DBMS_CRYPTO package features to the other PL/SQL
encryption package, the DBMS_OBFUSCATION_TOOLKIT.

Note:

■ DES is no longer recommended by the National Institute of
Standards and Technology (NIST).

■ Usage of SHA-1 is more secure than MD5.

■ Keyed MD5 is not vulnerable.

Table 8–1 DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison

Package Feature DBMS_CRYPTO DBMS_OBFUSCATION_TOOLKIT

Cryptographic algorithms DES, 3DES, AES, RC4, 3DES_2KEY DES, 3DES

Padding forms PKCS5, zeroes None supported

Block cipher chaining modes CBC, CFB, ECB, OFB CBC

Cryptographic hash algorithms SHA-1, MD4, MD5 MD5

Storing Data Encryption by Using the DBMS_CRYPTO Package

Developing Applications Using the Data Encryption API 8-9

DBMS_CRYPTO is intended to replace the OBFUSCATION_TOOLKIT package, because it
is easier to use and supports a range of algorithms that accommodate both new and
existing systems. Although 3DES_2KEY and MD4 are provided for backward
compatibility, you achieve better security using 3DES, AES, or SHA-1. Therefore,
3DES_2KEY is not recommended.

The DBMS_CRYPTO package includes cryptographic checksum capabilities (MD5),
which are useful for comparisons, and the ability to generate a secure random number
(the RANDOMBYTES function). Secure random number generation is an important part
of cryptography; predictable keys are easily guessed keys; and easily guessed keys
may lead to easy decryption of data. Most cryptanalysis is done by finding weak keys
or poorly stored keys, rather than through brute force analysis (cycling through all
possible keys).

Key management is programmatic. That is, the application (or caller of the function)
must supply the encryption key. This means that the application developer must find a
way of storing and retrieving keys securely. The relative strengths and weaknesses of
various key management techniques are discussed in the sections that follow. The
DBMS_OBFUSCATION_TOOLKIT package, which can handle both string and raw data,
requires the submission of a 64-bit key. The DES algorithm itself has an effective key
length of 56-bits.

Keyed hash (MAC) algorithms HMAC_MD5, HMAC_SH1 None supported

Cryptographic pseudo-random number
generator

RAW, NUMBER, BINARY_INTEGER RAW, VARCHAR2

Database types RAW, CLOB, BLOB RAW, VARCHAR2

Note: Do not use DBMS_RANDOM, because it is unsuitable for
cryptographic key generation.

Note: The DBMS_OBFUSCATION_TOOLKIT is granted to PUBLIC
by default. Oracle recommends that you revoke this grant.

While the DBMS_OBFUSCATION_TOOLKIT package can take either
VARCHAR2 or RAW data types, it is preferable to use the RAW data
type for keys and encrypted data. Storing encrypted data as
VARCHAR2 can cause problems if it passes through Globalization
Support routines. For example, when transferring a database to
another database that uses another character set.

To convert between VARCHAR2 and RAW data types, use the CAST_
TO_RAW and CAST_TO_VARCHAR2 functions of the UTL_RAW
package.

Table 8–1 (Cont.) DBMS_CRYPTO and DBMS_OBFUSCATION_TOOLKIT Feature Comparison

Package Feature DBMS_CRYPTO DBMS_OBFUSCATION_TOOLKIT

Verifying Data Integrity with the DBMS_SQLHASH Package

8-10 Oracle Database Security Guide

Verifying Data Integrity with the DBMS_SQLHASH Package
This section contains:

■ About the DBMS_SQLHASH Package

■ Using the DBMS_SQLHASH.GETHASH Function

About the DBMS_SQLHASH Package
The DBMS_SQLHASH package can check data integrity by using hash algorithms. It
provides an interface to generate the hash value of the result set returned by a SQL
query. Hash values are similar to data fingerprints and are used to ensure data
integrity. DBMS_SQLHASH provides support for several industry-standard hashing
algorithms, including MD4, MD5, and SHA-1 cryptographic hashes.

Oracle Database installs the DBMS_SQLHASH package in the SYS schema. You can then
grant package access to existing users and roles as required.

DBMS_SQLHASH includes the GETHASH function that is used to retrieve the hash value
of a query result set. The GETHASH function runs one of the supported cryptographic
hash algorithms against the result set of the SQL statement to arrive at a hash value.

You can compare hash values to check whether data was altered. For example, before
storing data, Jane runs the DBMS_SQLHASH.GETHASH function against the SQL
statement to create a hash value of the SQL result set. When she retrieves the stored
data at a later date, she reruns the hash function against the SQL statement using the
same algorithm. If the second hash value is identical to the first one, then data was not
altered. Any modification to the result set data causes the hash value to be different.

Using the DBMS_SQLHASH.GETHASH Function
The DBMS_SQLHASH.GETHASH function applies one of the supported cryptographic
hash algorithms to the result set of the SQL statement.

Syntax
DBMS_SQLHASH.GETHASH(
 sqltext IN varchar2,
 digest_type IN BINARY_INTEGER,
 chunk_size IN number DEFAULT 134217728)
 RETURN raw;

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information about the DBMS_CRYPTO package

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information about the OBFUSCATION_TOOLKIT package

■ Oracle Database PL/SQL Packages and Types Reference for detailed
information about the UTL_RAW package

Examples of Using the Data Encryption API

Developing Applications Using the Data Encryption API 8-11

Parameters
Table 8–2 lists the GETHASH parameters and their descriptions.

Examples of Using the Data Encryption API
This section contains:

■ Example of a Data Encryption Procedure

■ Example of AES 256-Bit Data Encryption and Decryption Procedures

■ Example of Encryption and Decryption Procedures for BLOB Data

Example of a Data Encryption Procedure
The following sample PL/SQL program (dbms_crypto.sql) shows how to encrypt
data. This example code performs the following actions:

■ Encrypts a string (VARCHAR2 type) using DES after first converting it into the RAW
data type.

This step is necessary because encrypt and decrypt functions and procedures in
DBMS_CRYPTO package work on the RAW data type only, unlike functions and
packages in the DBMS_OBFUSCATION_TOOLKIT package.

■ Shows how to create a 160-bit hash using SHA-1 algorithm.

■ Demonstrates how MAC, a key-dependent one-way hash, can be computed using
the MD5 algorithm.

The dbms_crypto.sql procedure follows:

DECLARE
 input_string VARCHAR2(16) := 'tigertigertigert';
 raw_input RAW(128) :=
UTL_RAW.CAST_TO_RAW(CONVERT(input_string,'AL32UTF8','US7ASCII'));
 key_string VARCHAR2(8) := 'scottsco';
 raw_key RAW(128) :=
UTL_RAW.CAST_TO_RAW(CONVERT(key_string,'AL32UTF8','US7ASCII'));
 encrypted_raw RAW(2048);
 encrypted_string VARCHAR2(2048);
 decrypted_raw RAW(2048);
 decrypted_string VARCHAR2(2048);
-- Begin testing Encryption:
BEGIN
 dbms_output.put_line('> Input String : ' ||
 CONVERT(UTL_RAW.CAST_TO_VARCHAR2(raw_input),'US7ASCII','AL32UTF8'));
 dbms_output.put_line('> ========= BEGIN TEST Encrypt =========');

Table 8–2 GETHASH Function Parameters

Parameter Name Description

sqltext The SQL statement whose result is hashed.

digest_type Hash algorithm used: HASH_MD4, HASH_MD5, or HASH_
SH1

chunk_size Size of the result chunk when getting the hash

When the result set size is large, the GETHASH function breaks it
into chunks having a size equal to chunk_size. It generates the
hash for each chunk and then uses hash chaining to calculate the
final hash. The default chunk_size is 128 megabytes.

Examples of Using the Data Encryption API

8-12 Oracle Database Security Guide

 encrypted_raw := dbms_crypto.Encrypt(
 src => raw_input,
 typ => DBMS_CRYPTO.DES_CBC_PKCS5,
 key => raw_key);
 dbms_output.put_line('> Encrypted hex value : ' ||
 rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_raw)));
decrypted_raw := dbms_crypto.Decrypt(
 src => encrypted_raw,
 typ => DBMS_CRYPTO.DES_CBC_PKCS5,
 key => raw_key);
 decrypted_string :=
 CONVERT(UTL_RAW.CAST_TO_VARCHAR2(decrypted_raw),'US7ASCII','AL32UTF8');
dbms_output.put_line('> Decrypted string output : ' ||
 decrypted_string);
if input_string = decrypted_string THEN
 dbms_output.put_line('> String DES Encyption and Decryption successful');
END if;
dbms_output.put_line('');
dbms_output.put_line('> ========= BEGIN TEST Hash =========');
 encrypted_raw := dbms_crypto.Hash(
 src => raw_input,
 typ => DBMS_CRYPTO.HASH_SH1);
dbms_output.put_line('> Hash value of input string : ' ||
 rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_raw)));
dbms_output.put_line('> ========= BEGIN TEST Mac =========');
 encrypted_raw := dbms_crypto.Mac(
 src => raw_input,
 typ => DBMS_CRYPTO.HMAC_MD5,
 key => raw_key);
dbms_output.put_line('> Message Authentication Code : ' ||
 rawtohex(UTL_RAW.CAST_TO_RAW(encrypted_raw)));
dbms_output.put_line('');
dbms_output.put_line('> End of DBMS_CRYPTO tests ');
END;
/

Example of AES 256-Bit Data Encryption and Decryption Procedures
The following PL/SQL block shows how to encrypt and decrypt a predefined variable
named input_string using the AES 256-bit algorithm with Cipher Block Chaining
and PKCS #5 padding.

declare
 input_string VARCHAR2 (200) := 'Secret Message';
 output_string VARCHAR2 (200);
 encrypted_raw RAW (2000); -- stores encrypted binary text
 decrypted_raw RAW (2000); -- stores decrypted binary text
 num_key_bytes NUMBER := 256/8; -- key length 256 bits (32 bytes)
 key_bytes_raw RAW (32); -- stores 256-bit encryption key
 encryption_type PLS_INTEGER := -- total encryption type
 DBMS_CRYPTO.ENCRYPT_AES256
 + DBMS_CRYPTO.CHAIN_CBC
 + DBMS_CRYPTO.PAD_PKCS5;
begin
 DBMS_OUTPUT.PUT_LINE ('Original string: ' || input_string);
 key_bytes_raw := DBMS_CRYPTO.RANDOMBYTES (num_key_bytes);
 encrypted_raw := DBMS_CRYPTO.ENCRYPT
 (
 src => UTL_I18N.STRING_TO_RAW (input_string, 'AL32UTF8'),
 typ => encryption_type,

Examples of Using the Data Encryption API

Developing Applications Using the Data Encryption API 8-13

 key => key_bytes_raw
);
 -- The encrypted value in the encrypted_raw variable can be used here:
 decrypted_raw := DBMS_CRYPTO.DECRYPT
 (
 src => encrypted_raw,
 typ => encryption_type,
 key => key_bytes_raw
);
 output_string := UTL_I18N.RAW_TO_CHAR (decrypted_raw, 'AL32UTF8');
 DBMS_OUTPUT.PUT_LINE ('Decrypted string: ' || output_string);
end;

Example of Encryption and Decryption Procedures for BLOB Data
The following sample PL/SQL program (blob_test.sql) shows how to encrypt and
decrypt BLOB data. This example code does the following, and prints out its progress
(or problems) at each step:

■ Creates a table for the BLOB column

■ Inserts the raw values into that table

■ Encrypts the raw data

■ Decrypts the encrypted data

The blob_test.sql procedure follows:

-- 1. Create a table for BLOB column:
create table table_lob (id number, loc blob);

-- 2. Insert 3 empty lobs for src/enc/dec:
insert into table_lob values (1, EMPTY_BLOB());
insert into table_lob values (2, EMPTY_BLOB());
insert into table_lob values (3, EMPTY_BLOB());

set echo on
set serveroutput on

declare
 srcdata RAW(1000);
 srcblob BLOB;
 encrypblob BLOB;
 encrypraw RAW(1000);
 encrawlen BINARY_INTEGER;
 decrypblob BLOB;
 decrypraw RAW(1000);
 decrawlen BINARY_INTEGER;

 leng INTEGER;

begin

 -- RAW input data 16 bytes
 srcdata := hextoraw('6D6D6D6D6D6D6D6D6D6D6D6D6D6D6D6D');

 dbms_output.put_line('---');
 dbms_output.put_line('input is ' || srcdata);
 dbms_output.put_line('---');

 -- select empty lob locators for src/enc/dec

Examples of Using the Data Encryption API

8-14 Oracle Database Security Guide

 select loc into srcblob from table_lob where id = 1;
 select loc into encrypblob from table_lob where id = 2;
 select loc into decrypblob from table_lob where id = 3;

 dbms_output.put_line('Created Empty LOBS');
 dbms_output.put_line('---');

 leng := DBMS_LOB.GETLENGTH(srcblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Source BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Source BLOB Len ' || leng);
 END IF;

 leng := DBMS_LOB.GETLENGTH(encrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Encrypt BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Encrypt BLOB Len ' || leng);
 END IF;

 leng := DBMS_LOB.GETLENGTH(decrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Decrypt BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Decrypt BLOB Len ' || leng);
 END IF;

 -- 3. Write source raw data into blob:
 DBMS_LOB.OPEN (srcblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.WRITEAPPEND (srcblob, 16, srcdata);
 DBMS_LOB.CLOSE (srcblob);

 dbms_output.put_line('Source raw data written to source blob');
 dbms_output.put_line('---');

 leng := DBMS_LOB.GETLENGTH(srcblob);
 IF leng IS NULL THEN
 dbms_output.put_line('source BLOB Len NULL ');
 ELSE
 dbms_output.put_line('Source BLOB Len ' || leng);
 END IF;

 /*
 * Procedure Encrypt
 * Arguments: srcblob -> Source BLOB
 * encrypblob -> Output BLOB for encrypted data
 * DBMS_CRYPTO.AES_CBC_PKCS5 -> Algo : AES
 * Chaining : CBC
 * Padding : PKCS5
 * 256 bit key for AES passed as RAW
 * ->
 hextoraw('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
 * IV (Initialization Vector) for AES algo passed as RAW
 * -> hextoraw('00000000000000000000000000000000')
 */

 DBMS_CRYPTO.Encrypt(encrypblob,
 srcblob,
 DBMS_CRYPTO.AES_CBC_PKCS5,

Examples of Using the Data Encryption API

Developing Applications Using the Data Encryption API 8-15

 hextoraw
('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F'),
 hextoraw('00000000000000000000000000000000'));

 dbms_output.put_line('Encryption Done');
 dbms_output.put_line('---');

 leng := DBMS_LOB.GETLENGTH(encrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Encrypt BLOB Len NULL');
 ELSE
 dbms_output.put_line('Encrypt BLOB Len ' || leng);
 END IF;

 -- 4. Read encrypblob to a raw:
 encrawlen := 999;

 DBMS_LOB.OPEN (encrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.READ (encrypblob, encrawlen, 1, encrypraw);
 DBMS_LOB.CLOSE (encrypblob);

 dbms_output.put_line('Read encrypt blob to a raw');
 dbms_output.put_line('---');

 dbms_output.put_line('Encrypted data is (256 bit key) ' || encrypraw);
 dbms_output.put_line('---');

 /*
 * Procedure Decrypt
 * Arguments: encrypblob -> Encrypted BLOB to decrypt
 * decrypblob -> Output BLOB for decrypted data in RAW
 * DBMS_CRYPTO.AES_CBC_PKCS5 -> Algo : AES
 * Chaining : CBC
 * Padding : PKCS5
 * 256 bit key for AES passed as RAW (same as used during Encrypt)
 * ->
 hextoraw('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F')
 * IV (Initialization Vector) for AES algo passed as RAW (same as
 used during Encrypt)
 * -> hextoraw('00000000000000000000000000000000')
 */

 DBMS_CRYPTO.Decrypt(decrypblob,
 encrypblob,
 DBMS_CRYPTO.AES_CBC_PKCS5,
 hextoraw
 ('000102030405060708090A0B0C0D0E0F101112131415161718191A1B1C1D1E1F'),
 hextoraw('00000000000000000000000000000000'));

 leng := DBMS_LOB.GETLENGTH(decrypblob);
 IF leng IS NULL THEN
 dbms_output.put_line('Decrypt BLOB Len NULL');
 ELSE
 dbms_output.put_line('Decrypt BLOB Len ' || leng);
 END IF;

 -- Read decrypblob to a raw
 decrawlen := 999;

Finding Information About Encrypted Data

8-16 Oracle Database Security Guide

 DBMS_LOB.OPEN (decrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.READ (decrypblob, decrawlen, 1, decrypraw);
 DBMS_LOB.CLOSE (decrypblob);

 dbms_output.put_line('Decrypted data is (256 bit key) ' || decrypraw);
 dbms_output.put_line('---');

 DBMS_LOB.OPEN (srcblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.TRIM (srcblob, 0);
 DBMS_LOB.CLOSE (srcblob);

 DBMS_LOB.OPEN (encrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.TRIM (encrypblob, 0);
 DBMS_LOB.CLOSE (encrypblob);

 DBMS_LOB.OPEN (decrypblob, DBMS_LOB.lob_readwrite);
 DBMS_LOB.TRIM (decrypblob, 0);
 DBMS_LOB.CLOSE (decrypblob);

end;
/

truncate table table_lob;
drop table table_lob;

Finding Information About Encrypted Data
Table 8–3 lists data dictionary views that you can query to access information about
encrypted data. See Oracle Database Reference for detailed information about these
views.

Table 8–3 Data Dictionary Views That Display Information about Encrypted Data

View Description

ALL_ENCRYPTED_COLUMNS Describes encryption algorithm information for all encrypted columns in
all tables accessible to the user

DBA_ENCRYPTED_COLUMNS Describes encryption algorithm information for all encrypted columns in
the database

USER_ENCRYPTED_COLUMNS Describes encryption algorithm information for all encrypted columns in
all tables in the schema of the user

V$ENCRYPTED_TABLESPACES Displays information about the tablespaces that are encrypted

V$ENCRYPTION_WALLET Displays information on the status of the wallet and the wallet location
for transparent data encryption

V$RMAN_ENCRYPTION_ALGORITHMS Displays supported encryption algorithms.

9

Verifying Security Access with Auditing 9-1

9 Verifying Security Access with Auditing

This chapter contains:

■ About Auditing

■ Selecting an Auditing Type

■ Auditing General Activities with Standard Auditing

■ Using Default Auditing for Security-Relevant SQL Statements and Privileges

■ Auditing Specific Activities with Fine-Grained Auditing

■ Auditing SYS Administrative Users

■ Using Triggers to Write Audit Data to a Separate Table

■ Managing Audit Trail Records

■ Purging Audit Trail Records

■ Finding Information About Audited Activities

About Auditing
This section contains:

■ What Is Auditing?

■ Why Is Auditing Used?

■ Protecting the Database Audit Trail

■ Activities That Are Always Written to the Standard and Fine-Grained Audit
Records

■ Activities That Are Always Audited for All Platforms

■ Auditing in a Distributed Database

■ Best Practices for Auditing

See Also: "Guidelines for Auditing" on page 10-18 for general
guidelines to follow for auditing your system

See Also: Oracle Audit Vault Administrator's Guide for information
about Oracle Audit Vault, which provides advanced auditing features

About Auditing

9-2 Oracle Database Security Guide

What Is Auditing?
Auditing is the monitoring and recording of selected user database actions, from both
database users and nondatabase users1. You can base auditing on individual actions,
such as the type of SQL statement executed, or on combinations of data that can
include the user name, application, time, and so on. You can audit both successful and
failed activities. To use auditing, you enable it, and then configure what must be
audited. The actions that you audit are recorded in either data dictionary tables or in
operating system files.

Oracle recommends that you enable and configure auditing. Auditing is an effective
method of enforcing strong internal controls so that your site can meet its regulatory
compliance requirements, as defined in the Sarbanes-Oxley Act. This enables you to
monitor business operations, and find any activities that may deviate from company
policy. Doing so translates into tightly controlled access to your database and the
application software, ensuring that patches are applied on schedule and preventing ad
hoc changes. By enabling auditing by default, you can generate an audit record for
audit and compliance personnel. Be selective with auditing and ensure that it meets
your business compliance needs.

Why Is Auditing Used?
You typically use auditing to perform the following activities:

■ Enable accountability for actions. These include actions taken in a particular
schema, table, or row, or affecting specific content.

■ Deter users (or others, such as intruders) from inappropriate actions based on
their accountability.

■ Investigate suspicious activity. For example, if a user is deleting data from tables,
then a security administrator might decide to audit all connections to the database
and all successful and unsuccessful deletions of rows from all tables in the
database.

■ Notify an auditor of the actions of an unauthorized user. For example, an
unauthorized user could be changing or deleting data, or the user has more
privileges than expected, which can lead to reassessing user authorizations.

■ Monitor and gather data about specific database activities. For example, the
database administrator can gather statistics about which tables are being updated,
how many logical I/Os are performed, or how many concurrent users connect at
peak times.

■ Detect problems with an authorization or access control implementation. For
example, you can create audit policies that you expect will never generate an audit
record because the data is protected in other ways. However, if these policies
generate audit records, then you will know the other security controls are not
properly implemented.

■ Address auditing requirements for compliance. Regulations such as the
following have common auditing-related requirements:

– Sarbanes-Oxley Act

– Health Insurance Portability and Accountability Act (HIPAA)

1 "Nondatabase users" refers to application users who are recognized in the database using the
CLIENT_IDENTIFIER attribute. To audit this type of user, you can use a fine-grained audit
policy. See "Auditing Specific Activities with Fine-Grained Auditing" on page 9-37 for more
information.

About Auditing

Verifying Security Access with Auditing 9-3

– International Convergence of Capital Measurement and Capital Standards: a
Revised Framework (Basel II)

– Japan Privacy Law

– European Union Directive on Privacy and Electronic Communications

Protecting the Database Audit Trail
When auditing for suspicious database activity, you should protect the integrity of the
audit trail records to guarantee the accuracy and completeness of the auditing
information.

Oracle Database writes the database audit trail to the SYS.AUD$ and SYS.FGA_LOG$
tables. Audit records generated as a result of object audit options set for the SYS.AUD$
and SYS.FGA_LOG$ tables can only be deleted from the audit trail by someone who
has connected with administrator privileges. Remember that administrators are also
audited for unauthorized use. See "Auditing SYS Administrative Users" on page 9-52
for more information.

Other ways to protect the database audit trail are as follows:

■ Set the O7_DICTIONARY_ACCESSIBILITY initialization parameter to FALSE
(the default). This way, only users who have the SYSDBA privilege can perform
DML actions on the audit data in the SYS.AUD$ and SYS.FGA_LOG$ tables. In a
default installation, O7_DICTIONARY_ACCESSIBILITY is set to FALSE.

■ If you have Oracle Database Vault installed, create a realm around the
SYSTEM.AUD$ and SYS.FGA_LOG$ tables. In an Oracle Database Vault
environment, when Oracle Label Security is enabled, the AUD$ table is moved to
the SYSTEM schema. The synonym SYS.AUD$ is created to refer to the
SYSTEM.AUD$ table. See Oracle Database Vault Administrator's Guide for more
information about realms in Oracle Database Vault.

Activities That Are Always Written to the Standard and Fine-Grained Audit Records
When standard auditing is enabled (that is, you set AUDIT_TRAIL to DB or
DB,EXTENDED), Oracle Database audits all data manipulation language (DML)
operations, such as INSERT, UPDATE, MERGE, and DELETE on the SYS.AUD$ and
SYS.FGA_LOG$ tables by non-SYS users. (It performs this audit even if you have not
set audit options for the AUD$ and FGA_LOGS$ tables.) Typically, non-SYS users do not
have access to these tables, except if they have been explicitly granted access. If a
non-SYS user tampers with the data in the SYS.FGA_LOG$ and SYS.AUD$ tables,
then Oracle Database writes an audit record for each action.

See Also:

■ "Auditing General Activities with Standard Auditing" on page 9-7

■ "Auditing Specific Activities with Fine-Grained Auditing" on
page 9-37

See Also:

■ "Auditing General Activities with Standard Auditing" on page 9-7

■ "Auditing Specific Activities with Fine-Grained Auditing" on
page 9-37

About Auditing

9-4 Oracle Database Security Guide

Activities That Are Always Audited for All Platforms
Oracle Database always audits certain database-related operations and writes them to
the operating system audit files. It includes the actions of any user who is logged in
with the SYSDBA or SYSOPER privilege. This is called mandatory auditing. Even if
you have enabled the database audit trail (that is, setting the AUDIT_TRAIL parameter
to DB), Oracle Database still writes mandatory records to operating system files.

By default, the operating system files are in the $ORACLE_HOME/admin/$ORACLE_
SID/adump directory on UNIX systems. On Windows systems, Oracle Database
writes this information to the Windows Event Viewer. You can change the location of
this directory by setting the AUDIT_FILE_DEST initialization parameter, which is
described in "Specifying a Directory for the Operating System Audit Trail" on
page 9-17.

Mandatory auditing includes the following operations:

■ Database startup. An audit record is generated that lists the operating system user
starting the instance, the user terminal identifier, and the date and time stamp.
This data is stored in the operating system audit trail because the database audit
trail is not available until after the startup has successfully completed.

■ SYSDBA and SYSOPER logins. Oracle Database records all SYSDBA and
SYSOPER connections.

■ Database shutdown. An audit record is generated that lists the operating system
user shutting down the instance, the user terminal identifier, and the date and
time stamp.

Auditing in a Distributed Database
Auditing is site autonomous. An instance audits only the statements issued by directly
connected users. A local Oracle Database node cannot audit actions that take place in a
remote database.

Best Practices for Auditing
Follow these best practices guidelines:

■ As a general rule, design your auditing strategy to collect the amount of
information that you need to meet compliance requirements, but being sure to
focus on activities that cause the greatest security concerns. For example, auditing
every table in the database is not practical, but auditing table columns that contain
sensitive data, such as salaries, is. With both standard and fine-grained auditing,
there are mechanisms you can use to design audit policies that focus on specific
activities to audit.

■ Periodically archive and purge the audit trail data. See "Purging Audit Trail
Records" on page 9-66 for more information.

Note: If you set the AUDIT_SYSLOG_LEVEL initialization parameter,
mandatory actions are written the to the UNIX syslog. See "Using the
Syslog Audit Trail on UNIX Systems" on page 9-18 for more
information about the syslog audit trail. See also your operating
system-specific Oracle Database documentation for more information
about the operating system and syslog audit trail.

Selecting an Auditing Type

Verifying Security Access with Auditing 9-5

Selecting an Auditing Type
Table 9–1 provides a roadmap for selecting and using the different audit options
available.

See Also: "Guidelines for Auditing" on page 10-18 for general
guidelines to follow for auditing your system

Table 9–1 Selecting an Auditing Type

What Do You Want to Audit? About This Type of Auditing

General activities You can audit SQL statements, privileges, schema objects, functions, procedures,
packages, triggers, and network activity. For example, you can audit each time a
particular user performs an UPDATE or a DELETE SQL statement.

Location of audit records: Oracle Database writes these audit records to the
location based on the AUDIT_TRAIL initialization parameter. See also "About
Audit Records" on page 9-57.

General steps:

1. See "Auditing General Activities with Standard Auditing" on page 9-7 to
understand more about auditing general activities.

2. Decide whether you want to write audit records to the database audit trail or
to an operating system file. See "Managing the Database Audit Trail" on
page 9-58.

3. Set the AUDIT_TRAIL initialization parameter to enable auditing and to
select the audit trail destination (database audit trail or operating system
audit trail). See "Configuring Standard Auditing with the AUDIT_TRAIL
Initialization Parameter" on page 9-8.

4. Use the AUDIT and NOAUDIT SQL statements to audit the general activities.
See the relevant categories under "Auditing General Activities with Standard
Auditing" on page 9-7.

5. To monitor audit activities, periodically check the operating system records
you configured, or query the audit trail data dictionary views. See "Finding
Information About Audited Activities" on page 9-80.

6. Perform maintenance on the audit trail. See "Managing Audit Trail Records"
on page 9-57.

7. Periodically archive and purge the contents of the audit trail. See "Purging
Audit Trail Records" on page 9-66.

Default, security-relevant SQL
statements and privileges

Oracle Database provides a set of default audit settings that you can enable for
commonly used security-relevant SQL statements and privileges.

Location of audit records: Oracle Database writes these audit records to the
location based on the AUDIT_TRAIL initialization parameter. See also "About
Audit Records" on page 9-57.

General steps:

1. Follow the instructions in "Using Default Auditing for Security-Relevant SQL
Statements and Privileges" on page 9-35 to enable default auditing.

To understand more about the database audit trail, see "Managing Audit Trail
Records" on page 9-57.

2. To monitor audit activities, periodically query the database audit trail data
dictionary views. See "Finding Information About Audited Activities" on
page 9-80.

3. Perform maintenance on the database audit trail. See "Managing the
Database Audit Trail" on page 9-58.

4. Periodically archive and purge the contents of the audit trail. See "Purging
Audit Trail Records" on page 9-66.

Selecting an Auditing Type

9-6 Oracle Database Security Guide

Specific, fine-grained activities You can audit at the most granular level, data access, and actions based on
content, using Boolean measures, such as value > 7800 or the IP address from
which an action occurred.

Location of audit records: You can write the audit records to either the database
audit trail or an operating system audit trail in XML format. See also "About
Audit Records" on page 9-57.

General steps:

1. See "Auditing Specific Activities with Fine-Grained Auditing" on page 9-37 to
understand more about auditing specific activities.

2. Decide whether you want to write audit records to the database audit trail or
to an operating system file. See "Managing the Database Audit Trail" on
page 9-58.

3. Use the DBMS_FGA PL/SQL package to configure fine-grained auditing
policies. The DBMS_FGA.ADD_POLICY procedure provides the audit_
trail parameter, which you use to select the audit trail type. You can choose
between a database audit trail or an operating system audit trail using XML
files. See the following sections:

"Creating an Audit Trail for Fine-Grained Audit Records" on page 9-39

"Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies" on
page 9-40

4. To monitor audit activities, periodically check the operating system records
you configured, or query the audit trail data dictionary views. See "Finding
Information About Audited Activities" on page 9-80.

5. Perform maintenance on the audit trail. See "Managing Audit Trail Records"
on page 9-57.

6. Periodically archive and purge the contents of the audit trail. See "Purging
Audit Trail Records" on page 9-66.

SYS administrative users You can audit the top-level SQL statements issued by users who have connected
using the SYSDBA or SYSOPER privilege. (Top-level refers to statements directly
issued by a user. Statements run from a PL/SQL procedure or function are not
considered top-level.)

Location of audit records: Oracle Database writes these audit records to an
operating system audit trail only. On Windows, Oracle Database writes the SYS
audit records to the Windows Event log by default. For UNIX systems, you can
write records to a syslog file. See also "About Audit Records" on page 9-57.

General steps:

1. See "Auditing SYS Administrative Users" on page 9-52 to configure
administrative auditing.

2. To understand more about the operating system audit trail, see Managing the
Operating System Audit Trail on page 9-62.

3. To monitor audit activities, periodically check the operating system or syslog
records you configured. If you are writing to an XML file, you can query the
V$XML_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL views. See
"Finding Information About Audited Activities" on page 9-80.

4. Perform maintenance on the audit trail. See "Managing Audit Trail Records"
on page 9-57

5. Periodically archive and purge the contents of the audit trail. See "Purging
Audit Trail Records" on page 9-66.

Table 9–1 (Cont.) Selecting an Auditing Type

What Do You Want to Audit? About This Type of Auditing

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-7

Auditing General Activities with Standard Auditing
This section contains:

■ About Standard Auditing

■ Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter

■ What Do the Operating System and Database Audit Trails Have in Common?

■ Using the Operating System Audit Trail

■ Using the Syslog Audit Trail on UNIX Systems

■ How the AUDIT and NOAUDIT SQL Statements Work

■ Auditing SQL Statements

■ Auditing Privileges

■ Auditing SQL Statements and Privileges in a Multitier Environment

■ Auditing Schema Objects

■ Auditing Directory Objects

■ Auditing Functions, Procedures, Packages, and Triggers

■ Auditing Network Activity

About Standard Auditing
This section contains:

■ What Is Standard Auditing?

■ Who Can Perform Standard Auditing?

■ When Are Standard Audit Records Created?

What Is Standard Auditing?
In standard auditing, you audit SQL statements, privileges, schema objects, and
network activity. You configure standard auditing by using the AUDIT SQL statement
and NOAUDIT to remove this configuration. You can write the audit records to either
the database audit trail or to operating system audit files.

Who Can Perform Standard Auditing?
Any user can configure auditing for the objects in his or her own schema, by using the
AUDIT statement. To undo the audit configuration for this object, the user can use the
NOAUDIT statement. No additional privileges are needed to perform this task. Users
can run AUDIT statements to set auditing options regardless of the AUDIT_TRAIL
parameter setting. If auditing has been disabled, the next time it is enabled, Oracle
Database will record the auditing activities set by the AUDIT statements. "Enabling or
Disabling the Standard Audit Trail" on page 9-8 explains how to enable standard
auditing.

See Also:

■ "Auditing SYS Administrative Users" on page 9-52 to learn how
to use standard auditing to audit SYS users

■ Oracle Database 2 Day + Security Guide for a tutorial on creating
a standard audit trail

Auditing General Activities with Standard Auditing

9-8 Oracle Database Security Guide

Note the following:

■ To audit objects in another schema, the user must have the AUDIT ANY system
privilege.

■ To audit system privileges, the user must have the AUDIT SYSTEM privilege.

■ If the O7_DICTIONARY_ACCESSIBILITY initialization parameter has been set to
FALSE (the default), then only users who have the SYSDBA privilege can perform
DML actions on the audit data in the SYS.AUD$ and SYS.FGA_LOG$ tables. For
greater security, set the O7_DICTIONARY_ACCESSIBILITY parameter to FALSE
so that non-SYSDBA users cannot audit SYS objects.

When Are Standard Audit Records Created?
You, as the security administrator, enable or disable standard auditing for the entire
database. If it is disabled, then no audit records are created. Configuring audit options
is described in the previous section, "Who Can Perform Standard Auditing?"

When auditing is enabled in the database and an action configured to be audited
occurs, Oracle Database generates an audit record during or after the execution phase
of the SQL statement. Oracle Database individually audits SQL statements inside
PL/SQL program units, as necessary, when the program unit is run.

The generation and insertion of an audit trail record is independent of a user
transaction being committed. That is, even if a user transaction is rolled back, the audit
trail record remains committed.

Statement and privilege audit options in effect at the time a database user connects to
the database remain in effect for the duration of the session. When the session is
already active, setting or changing statement or privilege audit options does not take
effect in that session. The modified statement or privilege audit options take effect
only when the current session ends and a new session is created.

In contrast, changes to schema object audit options become immediately effective for
current sessions.

Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter
This section contains:

■ Enabling or Disabling the Standard Audit Trail

■ Settings for the AUDIT_TRAIL Initialization Parameter

Enabling or Disabling the Standard Audit Trail
You enable the standard audit trail by setting the AUDIT_TRAIL initialization
parameter. This setting determines whether to create the audit trail in the database
audit trail, write the audit activities to an operating system file, or to disable auditing.

See Also:

■ GRANT in Oracle Database SQL Language Reference for a listing of
available system and object privileges

■ AUDIT in Oracle Database SQL Language Reference for a full listing
of audit options

See Also: Oracle Database Concepts for information about the
different phases of SQL statement processing and shared SQL

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-9

To enable or disable the standard audit trail, log in to SQL*Plus with administrative
privileges, and use the ALTER SYSTEM statement. Afterwards, you need to restart the
database instance.

To check the current value of the AUDIT_TRAIL parameter, use the SHOW PARAMETER
command in SQL*Plus.

Example 9–1 shows how to check the AUDIT_TRAIL parameter setting.

Example 9–1 Checking the Current Value of the AUDIT_TRAIL Initialization Parameter

SHOW PARAMETER AUDIT_TRAIL

NAME TYPE VALUE
------------------------------------ ----------- -------
audit_trail string DB

Example 9–2 shows how to log onto SQL*Plus, enable the standard audit trail, and
then restart the database instance.

Example 9–2 Enabling the Standard Audit Trail

CONNECT SYSTEM
Enter password: password

ALTER SYSTEM SET AUDIT_TRAIL=DB SCOPE=SPFILE;
System altered.

CONNECT SYS/AS SYSOPER
Enter password: password

SHUTDOWN
Database closed.
Database dismounted.
ORACLE instance shut down.

STARTUP
ORACLE instance started.

This example uses the SCOPE clause because the database instance had been started
using a server parameter file (SPFILE). Starting the database with a server parameter
file is the preferred way of starting a database instance. See Oracle Database
Administrator's Guide for information about creating configuring server parameter
files.

Auditing General Activities with Standard Auditing

9-10 Oracle Database Security Guide

Settings for the AUDIT_TRAIL Initialization Parameter
Table 9–2 lists the settings you can use for the AUDIT_TRAIL initialization parameter.

Table 9–2 AUDIT_TRAIL Initialization Parameter Settings

AUDIT_TRAIL Value Description

DB Directs audit records to the database audit trail (the SYS.AUD$ table), except for mandatory
and SYS audit records, which are always written to the operating system audit trail.
(Table 9–1 on page 9-5 describes the location of the audit records for each type of auditing.)
Use this setting for a general database for manageability. DB is the default setting for the
AUDIT_TRAIL parameter.

If the database was started in read-only mode with AUDIT_TRAIL set to DB, then Oracle
Database internally sets AUDIT_TRAIL to OS. Check the alert log for details.

See also "Managing the Database Audit Trail" on page 9-58.

DB, EXTENDED Behaves the same as AUDIT_TRAIL=DB, but also populates the SQL bind and SQL text
CLOB-type columns of the SYS.AUD$ table, when available.

DB,EXTENDED enables you to capture the SQL statement used in the action that was
audited. You can capture both the SQL statement that caused the audit, and any associated
bind variables. However, be aware that you only can capture data from the following
column datatypes: CHAR, NCHAR, VARCHAR, VARCHAR2, NVARCHAR2, NUMBER, FLOAT,
BINARY_FLOAT, BINARY_DOUBLE, LONG, ROWID, DATE, TIMESTAMP, and TIMESTAMP
WITH TIMEZONE. Also be aware that DB, EXTENDED can capture sensitive data, such as
credit card information. See also "Auditing Sensitive Information" on page 10-18.

If the database was started in read-only mode with AUDIT_TRAIL set to DB, EXTENDED,
then Oracle Database internally sets AUDIT_TRAIL to OS. Check the alert log for details.

You can specify DB,EXTENDED in either of the following ways:

ALTER SYSTEM SET AUDIT_TRAIL=DB, EXTENDED SCOPE=SPFILE;
ALTER SYSTEM SET AUDIT_TRAIL='DB','EXTENDED' SCOPE=SPFILE;

However, do not enclose DB, EXTENDED in quotes, for example:

ALTER SYSTEM SET AUDIT_TRAIL='DB, EXTENDED' SCOPE=SPFILE;

OS Directs all audit records to an operating system file.

Oracle recommends that you use the OS setting, particularly if you are using an ultra-secure
database configuration. See "Advantages of the Operating System Audit Trail" on page 9-16
for more information. See also Example 9–3, "Text File Operating System Audit Trail" on
page 9-13.

If you set AUDIT_TRAIL to OS, then set the following additional initialization parameters:

■ AUDIT_FILE_DEST, which specifies the location of the operating system audit record
file. On UNIX systems, the default location is $ORACLE_HOME/admin/$ORACLE_
SID/adump. For better performance on UNIX systems, set the AUDIT_FILE_DEST
parameter to a directory on a disk that is locally attached to the host running the
Oracle Database instance. On Windows, the OS setting writes the audit trail to the
Application area of the Windows Event Viewer.

■ AUDIT_SYS_OPERATIONS, if you want to audit the top-level SQL statements directly
issued by users who have connected with the SYSDBA or SYSOPER privilege. To enable
this auditing, set AUDIT_SYS_OPERATIONS to TRUE.

If you set AUDIT_SYS_OPERATIONS to TRUE and AUDIT_TRAIL to XML or
XML,EXTENDED, then Oracle Database writes SYS audit records operating system files
in XML format.

■ AUDIT_SYSLOG_LEVEL, which writes SYS and standard OS audit records to the
system audit log using the SYSLOG utility. This option only applies to UNIX
environments. See "Configuring Syslog Auditing" on page 9-19 for more information.

See also "Managing the Operating System Audit Trail" on page 9-62.

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-11

Note the following:

■ You do not need to restart the database after you run the AUDIT or NOAUDIT
statements. You only need to restart the database if you made a universal change,
such as changing the AUDIT_TRAIL initialization parameter.

■ You do not need to set AUDIT_TRAIL to enable either fine-grained auditing or
SYS auditing. For fine-grained auditing, you add and remove fine-grained audit
policies as necessary, applying them to the specific operations or objects you want
to monitor. To enable SYS auditing, set the AUDIT_SYS_OPERATIONS parameter
to TRUE.

XML Writes to the operating system audit record file in XML format. Records all elements of the
AuditRecord node given by the XML schema in
http://xmlns.oracle.com/oracleas/schema/dbserver_audittrail-11_
2.xsd except Sql_Text and Sql_Bind to operating system XML audit files. (This .xsd
file represents the schema definition of the XML audit file. An XML schema is a document
written in the XML Schema language.)

See also "Advantages of the Operating System Audit Trail" on page 9-16 and Example 9–4,
"XML File Operating System Audit Trail" on page 9-15.

If you set the XML value, then also set the AUDIT_FILE_DEST parameter. For all platforms,
including Windows, the default location for XML audit trail records is $ORACLE_
HOME/admin/$ORACLE_SID/adump.

In addition to XML files, Oracle Database creates a text index file that lists the XML files
that were generated by the XML auditing. The file is named adx_$ORACLE_SID.txt (for
example, adx_ORCL.txt). The adx_$ORACLE_SID.txt is only used when you query the
V$XML_AUDIT_TRAIL data dictionary view. Deleting this file does not interfere with
auditing, except that you will not see the audit records from the files that are not present in
adx_$ORACLE_SID.txt at the time of the query.

The XML AUDIT_TRAIL value does not affect syslog audit file. In other words, if you have
set the AUDIT_TRAIL parameter to XML, then the syslog audit records will still be in text
format, not XML file format.

You can control the output for SYS and mandatory audit records as follows:

■ To write SYS and mandatory audit files to operating system files in XML format: Set
AUDIT_TRAIL to XML or XML,EXTENDED, set AUDIT_SYS_OPERATIONS to TRUE, but
do not set the AUDIT_SYSLOG_LEVEL parameter.

■ To write SYS and mandatory audit records to syslog audit files and standard audit
records to XML audit files: Set AUDIT_TRAIL to XML or XML,EXTENDED, set AUDIT_
SYS_OPERATIONS to TRUE, and set the AUDIT_SYSLOG_LEVEL parameter.

XML, EXTENDED Behaves the same as AUDIT_TRAIL=XML, but also includes SQL text and SQL bind
information in the operating system XML audit files.

You can specify XML,EXTENDED in either of the following ways:

ALTER SYSTEM SET AUDIT_TRAIL=XML, EXTENDED SCOPE=SPFILE;
ALTER SYSTEM SET AUDIT_TRAIL='XML','EXTENDED' SCOPE=SPFILE;

However, do not enclose XML, EXTENDED in quotes, for example:

ALTER SYSTEM SET AUDIT_TRAIL='XML, EXTENDED' SCOPE=SPFILE;

See also the following sections:

■ "Advantages of the Operating System Audit Trail" on page 9-16

■ "Auditing Sensitive Information" on page 10-18

NONE Disables standard auditing.

Table 9–2 (Cont.) AUDIT_TRAIL Initialization Parameter Settings

AUDIT_TRAIL Value Description

Auditing General Activities with Standard Auditing

9-12 Oracle Database Security Guide

What Do the Operating System and Database Audit Trails Have in Common?
The operating system and database audit trails both capture many of the same types of
actions. Table 9–3 lists the operating system audit trail records. Most map to equivalent
columns in the DBA_AUDIT_TRAIL view. For a description of these columns, see
Oracle Database Reference.

Table 9–3 Common Audited Actions in the Operating System and Database Audit Trails

Operating System Audit Record Equivalent DBA_AUDIT_TRAIL View Column

SESSIONID SESSIONID

ENTRYID ENTRYID

STATEMENT STATEMENTID

USERID USERNAME

USERHOST USERHOST

TERMINAL TERMINAL

ACTION ACTION

SYS$OPTIONS Indicates what audit option was set with AUDIT or
NOAUDIT, or what privilege was granted or revoked.1

1 For example, if the ACTION value is 104 (for AUDIT) or 105 (for NOAUDIT), then the SYS$OPTIONS
number represents an audit option listed in the STMT_AUDIT_OPTION_MAP table. If the ACTION value is
108 (for GRANT) or 109 (for REVOKE), then the number represents a privilege listed in the SYSTEM_
PRIVILEGE_MAP table.

RETURNCODE RETURNCODE

OBJ$CREATOR OWNER

OBJ$NAME OBJ_NAME

OBJ$PRIVILEGES OBJ_PRIVILEGE

AUTH$GRANTEE GRANTEE

NEW$OWNER NEW_OWNER

NEW$NAME NEW_NAME

SES$ACTIONS SES_ACTIONS

LOGOFF$PREAD LOGOFF_PREAD

LOGOFF$LWRITE LOGOFF_LWRITE

COMMENT$TEXT COMMENT_TEXT

OS$USERID OS_USERNAME

PRIV$USED PRIV_USED

SES$LABEL CLIENT_ID

SES$TID Does not have an equivalent in the DBA_AUDIT_
TRAIL view, but it does appear in the SYS.AUD$ table

SPARE2 Does not have an equivalent in the DBA_AUDIT_
TRAIL view, but it does appear in the SYS.AUD$ table

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-13

Using the Operating System Audit Trail
This section contains:

■ About the Operating System Trail

■ What Do Operating System Audit Trail Records Look Like?

■ Advantages of the Operating System Audit Trail

■ How the Operating System Audit Trail Works

■ Specifying a Directory for the Operating System Audit Trail

About the Operating System Trail
As an alternative to creating standard audit records in the DBA_AUDIT_TRAIL
(SYS.AUD$ table), you can create standard audit records in operating system files. The
operating system file that contains the audit trail can include any of the following data:

■ Database audit trail records

■ Mandatory audit records (that is, database actions that are always audited)

■ Audit records for administrative users (SYS)

You can write the operating system audit records to either a text file or an XML file.

What Do Operating System Audit Trail Records Look Like?
The operating system audit trail files are in either text or XML file format. Be aware
that the contents of the text and XML operating system files have some differences,
and that the formats may change across different releases. With each release of Oracle
Database, new enhancements, such as the audit type, have been made to the XML file,
but not the text file. The text operating system file has a different presentation for the
timestamp, for example:

Wed May 6 00:57:36 2009 -07:00

However, this timestamp does not appear in the event log or syslog, which have their
own format for timestamps. The timestamp string only appears in the text operating
system audit files.

Example 9–3 shows a typical text operating system audit trail for a logon operation on
an Oracle database that is installed on Microsoft Windows. (The text in the actual
record wraps around, but for this manual, each item is separated onto its own line for
easier readability.)

Example 9–3 Text File Operating System Audit Trail

Audit trail:
LENGTH: "349"
SESSIONID:[5] "43464"
ENTRYID:[1] "1"
STATEMENT:[1] "1"
USERID:[6] "DBSNMP"
USERHOST:[7] "SHOBEEN"
TERMINAL:[3] "MAU"
ACTION:[3] "100"
RETURNCODE:[1] "0"
COMMENT$TEXT:[97] "Authenticated by: DATABASE; Client address:
(ADDRESS=(PROTOCOL=tcp)(HOST=192.0.2.4)(PORT=2955))"
OS$USERID:[19] "NT AUTHORITY\SYSTEM"
DBID:[10] "1212547373"

Auditing General Activities with Standard Auditing

9-14 Oracle Database Security Guide

PRIV$USED:[1] "5"

In this example:

■ LENGTH refers to the total number of bytes used in this audit record. This number
includes the trailing newline bytes (\n), if any, at the end of the audit record.

■ [] brackets indicate the length of each value for each audit entry. For example, the
USERID entry, DBSNMP, is 6 bytes long.

■ SESSIONID indicates the audit session ID number. You can also find the session
ID by querying the AUDSID column in the V$SESSION data dictionary view.

■ ENTRYID indicates the current audit entry number, assigned to each audit trail
record. The audit ENTRYID sequence number is shared between fine-grained audit
records and regular audit records.

■ STATEMENT is a numeric ID assigned to the statement the user runs. It appears for
each statement issued during the user session, because a statement can result in
multiple audit records.

■ ACTION is a numeric value representing the action the user performed. The
corresponding name of the action type is in the AUDIT_ACTIONS table. For
example, action 100 refers to LOGON.

■ RETURNCODE indicates if the audited action was successful. 0 indicates success. If
the action fails, the return code lists the Oracle Database error number. For
example, if you try to drop a non-existent table, the error number is ORA-00903
invalid table name, which in turn translates to 903 in the RETURNCODE
setting.

■ COMMENT$TEXT indicates additional comments about the audit record. For
example, for LOGON audit records, it can indicate the authentication method.It
corresponds to the COMENT_TEXT column of the DBA_COMMON_AUDIT_TRAIL
data dictionary view.

■ DBID is a database identifier calculated when the database is created. It
corresponds to the DBID column of the V$DATABASE data dictionary view.

■ ECONTEXT_ID indicates the application execution context identifier.

■ PRIVS$USED refers to the privilege that was used to perform an action. To find the
privilege, query the SYSTEM_PRIVILEGE_MAP table. For example, privilege 5
refers to -5 in this table, which means CREATE SESSION. PRIVS$USED
corresponds to the PRIV_USED column in the DBA_COMMON_AUDIT_TRAIL,
which lists the privilege by name.

Other possible values are as follows:

■ SCN (for example, SCN:8934328925) indicates the System Change Number
(SCN). Use this value if you want to perform a flashback query to find the value of
a setting (for example, a column) at a time in the past. For example, to find the
value of the ORDER_TOTAL column of the OE.ORDERS table based on the SCN
number, use the following SELECT statement:

SELECT ORDER_TOTAL
FROM OE.ORDERS
AS OF SCN = 8934328925
WHERE ORDER_TOTAL = 86;

■ SES_ACTIONS indicates the actions that took place during the session. This field is
present only if the event was audited with the BY SESSION clause. Because this

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-15

field does not explain in detail the actions that occurred during the session, you
should configure the audit event with the BY ACCESS clause.

The SES_ACTIONS field contains 16 characters. Positions 14, 15, and 16 are
reserved for future use. In the first 12 characters, each position indicates the result
of an action. They are: ALTER, AUDIT, COMMENT, DELETE, GRANT, INDEX,
INSERT, LOCK, RENAME, SELECT, UPDATE, and FLASHBACK. For example, if the
user had successfully run the ALTER statement, the SES_ACTIONS setting is as
follows:

S---------------

The S, in the first position (for ALTER), indicates success. Had the ALTER
statement failed, the letter F would have appeared in its place. If the action
resulted in both a success and failure, then the letter is B.

■ SES$TID indicates the ID of the object affected by the audited action.

■ SPARE2 indicates whether the user modified SYS.AUD$ table. 0 means the user
modified SYS.AUD$; otherwise, the value is NULL.

Similarly, Example 9–4 shows how an XML audit trail record appears. The text wraps
around in the actual record, but for this manual, each element appears on its own line
for easier readability. To find all the tags that appear in the XML audit file, you can
view its schema in a Web browser at

http://www.oracle.com/technology/oracleas/schema/dbserver_
audittrail-11_2.xsd

Example 9–4 XML File Operating System Audit Trail

<?xml version="1.0" encoding="UTF-8"?>
 <Audit xmlns="http://xmlns.oracle.com/oracleas/schema/dbserver_audittrail-11_
2.xsd"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
 xsi:schemaLocation="http://xmlns.oracle.com/oracleas/schema/dbserver_
audittrail-11_2.xsd">
 <Version>11.2</Version>
 <AuditRecord>
 <Audit_Type>1</Audit_Type>
 <Session_Id>43535</Session_Id>
 <StatementId>1</StatementId>
 <EntryId>1</EntryId>
 <Extended_Timestamp>2009-04-29T18:32:26.062000Z</Extended_Timestamp>
 <DB_User>SYSMAN</DB_User>
 <OS_User>SYSTEM</OS_User>
 <Userhost>shobeen</Userhost>
 <OS_Process>3164:3648</OS_Process>
 <Terminal>mau</Terminal>
 <Instance_Number>0</Instance_Number>
 <Action>100</Action>
 <TransactionId>0000000000000000</TransactionId>
 <Returncode>0</Returncode>
 <Comment_Text>Authenticated by: DATABASE; Client address:
(ADDRESS=(PROTOCOL=tcp)(HOST=192.0.2.4)(PORT=3536))</Comment_Text>
 <Priv_Used>5</Priv_Used>
</AuditRecord>
</Audit>

Auditing General Activities with Standard Auditing

9-16 Oracle Database Security Guide

In this example:

■ AuditRecord element contains the entire audit record. (See Example 9–3 for
more information about the elements within the Audit_Record element.)

■ Audit_Type indicates the type of audit trail. Possible values are as follows:

– 1: Standard audit record

– 2: Fine-grained audit record

– 4: SYS audit record

– 8: Mandatory audit record

This field only appears in the XML audit files, not the OS text audit files.

■ Extended_Timestamp indicates the time of the audited operation (timestamp of
user login for entries created by AUDIT SESSION), in Coordinated Universal Time
(UTC) or Greenwich Mean Time (GMT). This field only appears in the XML audit
files, not the OS text audit files.

■ Instance_Number indicates the instance number to which the user is connected,
for an Oracle Real Application Clusters environment. In this example, the number
is 0, which is used for single-instance database installations. The INSTANCE_
NUMBER initialization parameter specifies this number.

The following values can appear if you set the AUDIT_TRAIL parameter to XML,
EXTENDED. Both are listed in the DBA_COMMON_AUDIT_TRAIL data dictionary view.

■ Sql_Bind (for example, <Sql_Bind>#1(5):89</Sql_Bind>) shows the value
of the bind variable. The syntax is as follows:

VariablePosition(LengthOfVariableValue):ValueofBindVariable

The example #1(5):89 indicates that there is 1 bind variable; its value is 5
characters long; and the value of the bind variable is 89.

■ Sql_Text (for example, <Sql_Text>begin procedure_one(:num); end;
</Sql_Text>) appears if you have set the AUDIT_TRAIL parameter to XML,
EXTENDED. It shows the SQL text that the user entered.

Advantages of the Operating System Audit Trail
Using the operating system audit trail offers these advantages:

■ It reduces the likelihood of a denial-of-service (DoS) attack.

■ It makes it easier to secure the audit trail. If the auditor is distinct from the
database administrator, then you must use the OS, XML, or XML, EXTENDED
setting. Otherwise, a database administrator can view and modify any auditing
information that is stored in the database.

■ Because you are writing the audit trail to a specific location that you can restrict to
specific users, the operating system audit trail enforces separation of duty
concepts.

■ Writing the audit trail to an operating system file results in the least amount of
overhead on the database. For this reason, it is excellent for very large databases.

■ Audit records stored in operating system files can be more secure than
database-stored audit records because access can require file permissions that
database administrators do not have. Greater availability is another advantage to
operating system storage for audit records, because they remain available even if
the database is temporarily inaccessible.

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-17

■ If the AUDIT_TRAIL initialization parameter is set to XML (or XML, EXTENDED),
then Oracle Database writes audit records to the operating system as XML files.
You can use the V$XML_AUDIT_TRAIL view to make XML audit records available
to database administrators through a SQL query, providing enhanced usability.

■ The DBA_COMMON_AUDIT_TRAIL view includes the standard and fine grained
audit trails written to database tables, XML-format audit trail records, and the
contents of the V$XML_AUDIT_TRAIL dynamic view (standard, fine grained, SYS
and mandatory).

■ Using your operating system audit trail can enable you to consolidate audit
records from multiple sources, including Oracle Database and other applications.
Examining system activity can be more efficient with all audit records in one place.
If you use XML audit records, then you can use of any standard XML editing tool
to review or extract information from those records.

How the Operating System Audit Trail Works
The operating system audit trail writes the audit data to an operating system file. You
can enable this feature by setting the AUDIT_TRAIL initialization parameter to one of
the following values:

■ OS: Writes the audit trail records to a text operating system file on UNIX systems
and to the applications Event Viewer on Microsoft Windows.

■ XML: Writes the audit trail records to an XML file.

■ XML, EXTENDED: Writes the audit trail records to an XML file and includes SQL
text and SQL bind information in the operating system XML audit files.

The AUDIT_FILE_DEST initialization parameter sets the location of the operating
system audit file. If you want to audit top-level statements issued by users who log in
to the database with the SYSDBA or SYSOPER privilege, then set the AUDIT_SYS_
OPERATIONS parameter to TRUE. See Table 9–2, " AUDIT_TRAIL Initialization
Parameter Settings" on page 9-10 for more information about these settings.

The records that are written to an operating system file are not recorded to the
SYS.AUD$ and SYS.FGA_LOG$ tables. You can still view the contents of the XML
operating system audit files by querying the DBA_COMMON_AUDIT_TRAIL data
dictionary views. Querying this view parses all XML files (all files with an .xml
extension) in the AUDIT_FILE_DEST directory, and then presents them in relational
table format. Because XML is a standard document format, many utilities are available
to parse and analyze XML data. Consult the operating system-specific Oracle Database
documentation to find if this feature has been implemented on your operating system.

Specifying a Directory for the Operating System Audit Trail
Use the AUDIT_FILE_DEST initialization parameter to specify an operating system
directory into which the audit trail is written, when the AUDIT_TRAIL initialization
parameter is set to OS, XML, or XML, EXTENDED. You must set AUDIT_FILE_DEST to
a valid directory with permissions restricted to the owner of the Oracle software and
the DBA group. Mandatory auditing information also goes into that directory, as do
audit records for user SYS if the AUDIT_SYS_OPERATIONS initialization parameter is
specified. You can change the AUDIT_FILE_DEST parameter by using the following
ALTER SYSTEM statement, which enables the new destination to be effective for all
subsequent sessions.

ALTER SYSTEM SET AUDIT_FILE_DEST = directory_path DEFERRED;

Auditing General Activities with Standard Auditing

9-18 Oracle Database Security Guide

To find the current setting of the AUDIT_FILE_DEST parameter, issue the following
command:

SHOW PARAMETER AUDIT_FILE_DEST

The location of the operating system files depends on the following:

■ If the database is not running and you have not set the AUDIT_FILE_DEST
parameter, then the operating system files are placed in the first default location
$ORACLE_BASE/admin/$ORACLE_SID/adump directory.

■ If the database is not running and the first default location, the $ORACLE_
BASE/admin/$ORACLE_SID/adump directory, is inaccessible or cannot be
written to, or the Oracle process cannot identify the environment variables, then
the second default location, $ORACLE_HOME/rdbms/audit is used.

■ When the database is open and Oracle Database reads the initialization file
(initSID.ora) for the database instance, the value of AUDIT_FILE_DEST
parameter is used as the operating system audit file directory.

■ For UNIX and Solaris systems, all operating system files are written to a directory
in the operating system. For Windows, the operating system text records are
available from the Windows Event Viewer, but operating system XML files are
available from an operating system directory, as explained in the preceding
bulleted items.

Using the Syslog Audit Trail on UNIX Systems
On UNIX systems, you can audit the activities of users, including privileged users, and
record these activities in a syslog file by creating a syslog audit trail.

This section contains:

■ About the Syslog Audit Trail

■ Format of the Information Stored in the Syslog Audit Trail

■ What Does the Syslog Audit Trail Look Like?

■ Configuring Syslog Auditing

About the Syslog Audit Trail
A potential security vulnerability for the operating system audit trail is that a
privileged user, such as a database administrator, can modify or delete database audit
records. To minimize this risk, you can use a syslog audit trail. Syslog is a standard
protocol on UNIX-based systems for logging information from different components
of a network. Applications call the syslog() function to log information to the syslog
daemon, which then determines where to log the information. You can configure
syslog to log information to a file or to a dedicated host by editing the syslog.conf
file. You can also configure syslog to alert a specified set of users when information is
logged.

Because applications, such as an Oracle process, use the syslog() function to log
information to the syslog daemon, a privileged user would not have permissions to
the file system where syslog messages are logged. For this reason, audit records stored

Notes: For platforms other than UNIX, Solaris, and Windows,
check the platform documentation to learn the correct target
directory for operating system files.

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-19

using a syslog audit trail can be more secure than audit records stored using an
operating system audit trail. In addition to restricting permissions to a file system for a
privileged user, for a syslog audit trail to be secure, neither privileged users nor the
Oracle process should have root access to the system where the audit records are
written.

Format of the Information Stored in the Syslog Audit Trail
Similar to the operating system audit trail records, Oracle Database encodes the syslog
records to ensure greater security. If you have Oracle Audit Vault installed, you can
use its Syslog Collector to extract and transfer syslog audit records to centralized
Oracle Audit Vault server.

What Does the Syslog Audit Trail Look Like?
Example 9–5 shows how the syslog audit trail can appear. (For this example, the text
has been reformatted for easier readability. In reality, the text is all on one line.) As
with other Oracle Database audit trails, the brackets indicate the length of the value
that was audited. For syslog audit trails, the text from (and including) LENGTH: is
Oracle Database audit record. The prepended text (the date and Oracle Audit
[10085] line) is added by the syslog utility.

Example 9–5 Syslog Audit Trail for SYS User

May 14 23:40:15 shobeen
Oracle Audit[10085]:
LENGTH : '171'
ACTION :[18] 'select * from aud$'
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[6] 'pts/12'
STATUS:[1] '0'
DBID:[9] '562317007'

Configuring Syslog Auditing
To enable syslog auditing, follow these steps:

1. Assign the value of OS to the AUDIT_TRAIL initialization parameter, as described
in "Enabling or Disabling the Standard Audit Trail" on page 9-8.

For example:

ALTER SYSTEM SET AUDIT_TRAIL=OS SCOPE=SPFILE;

2. Manually set the AUDIT_SYSLOG_LEVEL parameter to the initialization
parameter file, initsid.ora.

Caution: You should have a strong understanding of how to work
with syslog before enabling syslog auditing. See the following
references for more information about syslog:

■ Oracle Database Reference for information about the AUDIT_
SYSLOG_LEVEL initialization parameter

■ The UNIX man page for the syslogd utility for more information
about the facility.priority settings and their directory
paths

Auditing General Activities with Standard Auditing

9-20 Oracle Database Security Guide

Set the AUDIT_SYSLOG_LEVEL parameter to specify a facility and priority in the
format AUDIT_SYSLOG_LEVEL=facility.priority.

■ facility: Describes the part of the operating system that is logging the
message. Accepted values are user, local0–local7, syslog, daemon,
kern, mail, auth, lpr, news, uucp, and cron.

The local0–local7 values are predefined tags that enable you to sort the
syslog message into categories. These categories can be log files or other
destinations that the syslog utility can access. To find more information about
these types of tags, refer to the syslog utility MAN page.

■ priority: Defines the severity of the message. Accepted values are notice,
info, debug, warning, err, crit, alert, and emerg.

The syslog daemon compares the value assigned to the facility argument of the
AUDIT_SYSLOG_LEVEL parameter with the syslog.conf file to determine
where to log information.

For example, the following statement identifies the facility as local1 with a
priority level of warning:

AUDIT_SYSLOG_LEVEL=local1.warning

See Oracle Database Reference for more information about AUDIT_SYSLOG_LEVEL.

3. Log in to the computer that contains the syslog configuration file,
/etc/syslog.conf, with the superuser (root) privilege.

4. Add the audit file destination to the syslog configuration file syslog.conf.

For example, assuming you had set the AUDIT_SYSLOG_LEVEL to
local1.warning, enter the following:

local1.warning /var/log/audit.log

This setting logs all warning messages to the /var/log/audit.log file.

5. Restart the syslog logger:

$/etc/rc.d/init.d/syslog restart

Now, all audit records will be captured in the file /var/log/audit.log through
the syslog daemon.

6. Restart the database instance:

CONNECT SYS / AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

How the AUDIT and NOAUDIT SQL Statements Work
This section contains:

■ Enabling Standard Auditing with the AUDIT SQL Statement

■ Auditing Statement Executions: Successful, Unsuccessful, or Both

■ How Standard Audit Records Are Generated

■ How Do Cursors Affect Standard Auditing?

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-21

■ Benefits of Using the BY ACCESS Clause in the AUDIT Statement

■ Auditing Actions Performed by Specific Users

■ Removing the Audit Option with the NOAUDIT SQL Statement

Enabling Standard Auditing with the AUDIT SQL Statement
To configure the standard auditing option, use the AUDIT SQL statement.

Table 9–4 lists the categories in which you can use the AUDIT statement.

Auditing Statement Executions: Successful, Unsuccessful, or Both
For statement, privilege, and schema object auditing, Oracle Database permits the
selective auditing of successful executions of statements, unsuccessful attempts to
execute statements, or both. This enables you to monitor actions even if the audited
statements do not complete successfully. Monitoring unsuccessful SQL statement can
expose users who are snooping or acting maliciously, though most unsuccessful SQL
statements are neither.

This method of auditing is also useful in that it reduces the audit trail, helping you to
focus on specific actions. This can aid in maintaining good database performance.

The options are as follows:

■ WHENEVER SUCCESSFUL clause: This clause audits only successful executions
of the audited statement.

■ WHENEVER NOT SUCCESSFUL clause: This clause audits only unsuccessful
executions of the audited statement.

Auditing an unsuccessful statement execution generates an audit report only if a
valid SQL statement is issued but fails, because it lacks proper authorization or
references a nonexistent schema object. Statements that fail to execute because they
were not valid cannot be audited.

For example, an enabled privilege auditing option set to audit unsuccessful
statement executions audits statements that use the target system privilege but
failed for other reasons. One example is when a CREATE TABLE auditing
condition is set, but some CREATE TABLE statements fail due to insufficient quota
for the specified tablespace.

See Also: Oracle Database SQL Language Reference for a description
of the AUDIT statement syntax

Table 9–4 Standard Auditing Levels and Their Effects

Level Effect

Statement Audits specific SQL statements or groups of statements that
affect a particular type of database object. For example, AUDIT
TABLE audits the CREATE TABLE, TRUNCATE TABLE,
COMMENT ON TABLE, and DELETE [FROM] TABLE statements.

Privilege Audits SQL statements that are authorized by the specified
system privilege. For example, AUDIT CREATE ANY TRIGGER
audits statements issued using the CREATE ANY TRIGGER
system privilege.

Object Audits specific statements on specific objects, such as ALTER
TABLE on the HR.EMPLOYEES table.

Network Audits unexpected errors in network protocol or internal errors
in the network layer.

Auditing General Activities with Standard Auditing

9-22 Oracle Database Security Guide

■ Omitting WHENEVER SUCCESSFUL or WHENEVER NOT SUCCESSFUL: If
you omit these clauses, then Oracle Database audits both successful and
unsuccessful executions of the audited statement.

For example:

AUDIT CREATE TABLE BY ACCESS WHENEVER NOT SUCCESSFUL;

How Standard Audit Records Are Generated
Oracle Database generates an audit record for each execution of an audited statement
or operation, as follows:

■ Each time the SQL statement for which auditing was configured is executed. This
also includes the execution of the statements within PL/SQL procedures.

■ Each time the privilege for which auditing was configured is used

■ Each time the object for which auditing was configured is operated upon

How Do Cursors Affect Standard Auditing?
For each execution of an auditable operation within a cursor, Oracle Database inserts
one audit record into the audit trail. Events that cause cursors to be reused include the
following:

■ An application, such as Oracle Forms, holding a cursor open for reuse

■ Subsequent execution of a cursor using new bind variables

■ Statements executed within PL/SQL loops where the PL/SQL engine optimizes
the statements to reuse a single cursor

Auditing is not affected by whether or not a cursor is shared. Each user creates her or
his own audit trail records on first execution of the cursor.

Benefits of Using the BY ACCESS Clause in the AUDIT Statement
By default, Oracle Database writes a new audit record for every audited event, using
the BY ACCESS clause functionality. To use this functionality, either include BY
ACCESS in the AUDIT statement, or if you want, you can omit it because it is the
default. (As of Oracle Database 11g Release 2 (11.2.0.2), the BY ACCESS clause is the
default setting.)

Oracle recommends that you audit BY ACCESS and not BY SESSION in your AUDIT
statements. The benefits of using the BY ACCESS clause in the AUDIT statement are as
follows:

■ The audit records generated through the BY ACCESS audit option have more
information, such as execution status (return code), date and time of execution, the
privileges used, the objects accessed, the SQL text itself and its bind values. In
addition, the BY ACCESS audit option captures the SCN for each execution and
this can help flashback queries.

■ Oracle Database records separately each execution of a SQL statement, the use of a
privilege, and access to the audited object. Given that the values for the return
code, timestamp, SQL text recorded are accurate for each execution, this can help
you find how many times the action was performed.

■ The BY ACCESS audit records have separate LOGON and LOGOFF entries, each
with fine-grained timestamps.

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-23

For example:

AUDIT SELECT TABLE BY ACCESS;

In this scenario:

■ The user jward connects to the database and issues five SELECT statements
against the table named departments and then disconnects from the database.

■ The user swilliams connects to the database and issues three SELECT
statements against the departments table and then disconnects from the
database.

The audit trail contains eight records, one recorded for each SELECT statement.

Auditing Actions Performed by Specific Users
Statement and privilege audit options can audit statements issued by any user or
statements issued by a specific list of users. By focusing on specific users, you can
minimize the number of audit records generated.

Example 9–6 shows how to audit statements by users scott and blake when they
query or update a table or view.

Example 9–6 Using AUDIT to Audit User Actions

AUDIT SELECT TABLE, UPDATE TABLE BY scott, blake BY ACCESS;

See Oracle Database SQL Language Reference for additional information about auditing
by user.

Removing the Audit Option with the NOAUDIT SQL Statement
The NOAUDIT statement removes the audit option. Use it to reset statement and
privilege audit options, and object audit options. A NOAUDIT statement that sets
statement and privilege audit options can include the BY user clause to specify a list
of users to limit the scope of the statement and privilege audit options.

You can use the NOAUDIT statement to disable an audit option selectively using the
WHENEVER clause. If the clause is not specified, then the auditing option is disabled
entirely, for both successful and unsuccessful cases.

The NOAUDIT statement does not support the BY ACCESS clause. You can remove
audit options, no matter how they were turned on, by using an appropriate NOAUDIT
statement.

Auditing SQL Statements
This section contains:

■ About SQL Statement Auditing

■ Types of SQL Statements That Are Audited

■ Configuring SQL Statement Auditing

■ Removing SQL Statement Auditing

See Also: Oracle Database SQL Language Reference for a description
of the NOAUDIT statement syntax

Auditing General Activities with Standard Auditing

9-24 Oracle Database Security Guide

About SQL Statement Auditing
SQL statement auditing is the selective auditing of related groups of SQL statements
regarding a particular type of database structure or schema object, but not a
specifically named structure or schema object.

Types of SQL Statements That Are Audited
The statements that you can audit are in the following categories:

■ DDL statements. For example, AUDIT TABLE audits all CREATE and DROP TABLE
statements

■ DML statements. For example, AUDIT SELECT TABLE audits all SELECT ... FROM
TABLE/VIEW statements, regardless of the table or view

Statement auditing can be broad or focused, for example, by auditing the activities of
all database users or of only a select list of activities.

Configuring SQL Statement Auditing
Use the AUDIT statement to configure SQL statement auditing. You must have the
AUDIT SYSTEM system privilege before you can enable auditing. Typically, only the
security administrator is granted this system privilege.

Example 9–7 shows how to audit the SELECT TABLE SQL statement.

Example 9–7 Using AUDIT to Enable SQL Statement Auditing

AUDIT SELECT TABLE BY ACCESS;

If you plan to audit all SQL statements, individual user connections, or references to
non-existent objects, follow these guidelines:

■ Auditing all SQL statements for individual users. You can use the ALL
STATEMENTS clause to audit only the top-level SQL statements. The behavior of
this audit option is different from other statement audit options. If the SQL
statement is issued from inside a PL/SQL procedure, then the ALL STATEMENTS
audit option does not audit it. This audit option does not affect any other AUDIT
options that you may have already set.

For example, to audit all successful statements issued by users jward and
jsmith, enter the following:

AUDIT ALL STATEMENTS BY jward, jsmith BY ACCESS WHENEVER SUCCESSFUL;

■ Auditing all the SQL statement shortcut activities performed by individual
users. You can use the ALL clause to audit all the SQL statement shortcuts listed in
Table 13-1 and Table 13-2 in Oracle Database SQL Language Reference.

For example:

AUDIT ALL BY jward BY ACCESS;

■ Auditing all SQL statements for the current session, regardless of user. You can
use the IN SESSION CURRENT clause for ALL STATEMENTS audit option to
audit top-level SQL statements in the lifetime of the user session. You cannot use
the IN SESSION CURRENT clause for a specific user. You cannot use the
NOAUDIT statement to cancel it, but the auditing lasts only as long as the user
session lasts. When the user ends the session, the auditing ends.

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-25

For example, to audit all unsuccessful statements in any current user session:

AUDIT ALL STATEMENTS IN SESSION CURRENT BY ACCESS WHENEVER NOT SUCCESSFUL;

You can use the AUDIT ALL STATEMENTS audit option with the IN SESSION
CURRENT clause in a database logon trigger. The database logon trigger can use
SYS_CONTEXT function to configure this auditing only under certain conditions,
such as the time a user logs in between 6:30 p.m. to 9:00 a.m. This would enable
you to capture SQL statements performed by users who log in to the database
during non-work hours.

This type of auditing is useful to increase the collection of audit activity when you
suspect this connection may not be secure or could pose an internal threat. For
example, by using a database logon trigger, you can query contents of the
connection context using the SYS_CONTEXT function.

The logon trigger functionality can establish that this connection should be
audited more fully. Issue the following SQL command:

AUDIT ALL STATEMENTS IN SESSION CURRENT;

This type of auditing remains in effect until this session is terminated.

■ Auditing login and logoff connections and disconnections. The AUDIT
SESSION statement generates an independent audit record for every login and
logoff event. This enables you to audit all successful and unsuccessful connections
to and disconnections from the database, regardless of user.

For example:

AUDIT SESSION BY ACCESS;

You can set this option selectively for individual users also, as in the following
example:

AUDIT SESSION BY jward, jsmith BY ACCESS;

■ Auditing statements that fail because an object does not exist. The NOT EXISTS
option of the AUDIT statement specifies auditing of all SQL statements that fail
because the target object does not exist.

For example:

AUDIT NOT EXISTS;

See Oracle Database SQL Language Reference for detailed information about the AUDIT
SQL statement.

Removing SQL Statement Auditing
To remove SQL statement auditing, use the use the NOAUDIT SQL statement. (Privilege
auditing will still be enabled.) You must have the AUDIT SYSTEM system privilege
before you can remove SQL statement auditing. If you have configured the AUDIT
ALL STATEMENTS option, then issuing the NOAUDIT AUDIT STATEMENTS statement
does not affect other audit options you may have set. If you included the IN SESSION
CURRENT clause in the AUDIT statement, you cannot remove this AUDIT statement
using the NOAUDIT statement. (The audit setting discontinues when the user’s session
ends.)

Auditing General Activities with Standard Auditing

9-26 Oracle Database Security Guide

Example 9–8 shows examples of using the NOAUDIT statement to remove auditing.

Example 9–8 Using NOAUDIT to Remove Session and SQL Statement Auditing

NOAUDIT session;
NOAUDIT session BY preston, sebastian;
NOAUDIT DELETE ANY TABLE;
NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE;

Example 9–9 shows how to remove all statement auditing by using the NOAUDIT
statement.

Example 9–9 Using NOAUDIT to Remove ALL STATEMENTS Auditing

NOAUDIT ALL STATEMENTS;

See Oracle Database SQL Language Reference for detailed information about the
NOAUDIT statement.

Auditing Privileges
This section contains:

■ About Privilege Auditing

■ Types of Privileges That Can Be Audited

■ Configuring Privilege Auditing

■ Removing Privilege Auditing

About Privilege Auditing
Privilege auditing audits statements that use a system privilege, such as SELECT ANY
TABLE. In this kind of auditing, SQL statements that require the audited privilege to
succeed are recorded.

Types of Privileges That Can Be Audited
You can audit the use of any system privilege. Similar to statement auditing, privilege
auditing audits the activities of all database users or only a specified list.

If you set similar audit options for both statement and privilege auditing, then only a
single audit record is generated. For example, if the statement clause TABLE and the
system privilege CREATE TABLE are both audited, then only a single audit record is
generated each time a table is created.

Privilege auditing does not occur if the action is already permitted by the existing
owner and object privileges. Privilege auditing is triggered only if the privileges are
insufficient, that is, only if what makes the action possible is a system privilege. For
example, suppose that user SCOTT has been granted the SELECT ANY TABLE
privilege and the SELECT ANY TABLE is being audited. If SCOTT selects his own table
(for example, SCOTT.EMP), then the SELECT ANY TABLE privilege is not used.
Because he performed the SELECT statement within his own schema, no audit record
is generated. On the other hand, if SCOTT selects from another schema (for example,
the HR.EMPLOYEES table), then an audit record is generated. Because SCOTT selected
a table outside his own schema, he needed to use the SELECT ANY TABLE privilege.

Privilege auditing is more focused than statement auditing, because each privilege
auditing option audits only specific types of statements, not a related list of
statements. For example, the statement auditing clause, TABLE, audits CREATE TABLE,

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-27

ALTER TABLE, and DROP TABLE statements. However, the privilege auditing option,
CREATE TABLE, audits only CREATE TABLE statements, because only the CREATE
TABLE statement requires the CREATE TABLE privilege.

See the listing of system privileges in the GRANT SQL statement section of Oracle
Database SQL Language Reference.

Configuring Privilege Auditing
Privilege audit options are the same as their corresponding system privileges. For
example, the option to audit use of the DELETE ANY TABLE privilege is DELETE ANY
TABLE.

Example 9–10 shows how to audit the DELETE ANY TABLE privilege.

Example 9–10 Using AUDIT to Configure Privilege Auditing

AUDIT DELETE ANY TABLE BY ACCESS WHENEVER NOT SUCCESSFUL;

To audit all successful and unsuccessful uses of the DELETE ANY TABLE system
privilege, enter the following statement:

AUDIT DELETE ANY TABLE BY ACCESS;

Example 9–11 shows how to audit all unsuccessful SELECT, INSERT, and DELETE
statements on all tables and unsuccessful uses of the EXECUTE PROCEDURE system
privilege, by all database users, and by individual audited statement.

Example 9–11 Auditing Unsuccessful Statements and Privileges

AUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Removing Privilege Auditing
The following statement removes all privilege audit options:

NOAUDIT ALL PRIVILEGES;

This example disables the audit settings from Example 9–11:

NOAUDIT SELECT TABLE, INSERT TABLE, DELETE TABLE, EXECUTE PROCEDURE;

To disable privilege auditing options, you must have the AUDIT SYSTEM system
privilege. Usually, only the security administrator is granted this system privilege.

Auditing SQL Statements and Privileges in a Multitier Environment
You can use the AUDIT statement to audit the activities of a client in a multitier
environment. In a multitier environment, Oracle Database preserves the identity of a
client through all tiers. Thus, you can audit actions taken on behalf of the client by a
middle-tier application, by using the BY user clause in your AUDIT statement. The
audit applies to all user sessions, including proxy sessions.

The middle tier can also set the user client identity in a database session, enabling the
auditing of end-user actions through the middle-tier application. The end-user client
identity then shows up in the audit trail.

Example 9–12 shows how to audit SELECT TABLE statements issued by the user
jackson.

Auditing General Activities with Standard Auditing

9-28 Oracle Database Security Guide

Example 9–12 Using AUDIT to Audit a SQL Statement for a User

AUDIT SELECT TABLE BY jackson;

You can audit user activity in a multitier environment. Once audited, you can verify
these activities by querying the DBA_AUDIT_TRAIL data dictionary view.

Figure 9–1 illustrates how you can audit proxy users by querying the COMMENT_TEXT,
PROXY_SESSIONID, ACTION_NAME, and SESSION_ID columns of the DBA_AUDIT_
TRAIL view. In this scenario, both the database user and proxy user accounts are
known to the database. Session pooling can be used.

Figure 9–1 Auditing Proxy Users

Figure 9–2 illustrates how you can audit client identifier information across multiple
database sessions by querying the CLIENT_ID column of the DBA_AUDIT_TRAIL
data dictionary view. In this scenario, the client identifier has been set to CLIENT_A.
As with the proxy user-database user scenario described in Figure 9–1, session pooling
can be used.

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-29

Figure 9–2 Auditing Client Identifier Information Across Sessions

Auditing Schema Objects
This section contains:

■ About Schema Object Auditing

■ Types of Schema Objects That Can Be Audited

■ Using Standard Auditing with Editioned Objects

■ Schema Object Audit Options for Views, Procedures, and Other Elements

■ Configuring Schema Object Auditing

■ Removing Object Auditing

■ Setting Audit Options for Objects That May Be Created in the Future

About Schema Object Auditing
Schema object auditing monitors actions performed on the audited schema objects,
such as tables or views. Object auditing applies to all users but is limited to the
audited object only. Users can use the AUDIT and NOAUDIT statements on objects in
their own schemas.

Types of Schema Objects That Can Be Audited
You can audit statements that refer to tables, views, sequences, standalone stored
procedures or functions, and packages, but not individual procedures within
packages. (See "Auditing Functions, Procedures, Packages, and Triggers" on page 9-33
for more information about auditing these types of objects.)

You cannot directly audit statements that reference clusters, database links, indexes, or
synonyms. However, you can indirectly audit access to these schema objects, by
auditing the operations that affect the base table.

See Also: "Preserving User Identity in Multitiered Environments" on
page 3-34 for more information about user authentication in a
multitiered environment

Auditing General Activities with Standard Auditing

9-30 Oracle Database Security Guide

When you audit a schema object, the auditing applies to all users of the database. You
cannot set these options for a specific list of users. You can set default schema object
audit options for all auditable schema objects.

Using Standard Auditing with Editioned Objects
When an editioned object has an audit policy, then it applies in all editions in which
the object is visible. When an editioned object is actualized, any audit policies that are
attached to it are newly attached to the new actual occurrence. When you newly apply
an audit policy to an inherited editioned object, this action will actualize it.

You can find the editions in which audited objects appear by querying the OBJECT_
NAME and OBJ_EDITION_NAME columns in the DBA_COMMON_AUDIT_TRAIL and
V$XML_AUDIT_TRAIL data dictionary views.

Schema Object Audit Options for Views, Procedures, and Other Elements
The definitions for views and procedures (including stored functions, packages, and
triggers) reference underlying schema objects. Because of this dependency, some
unique characteristics apply to auditing views and procedures, such as the likelihood
of generating multiple audit records.

Views and procedures are subject to the enabled audit options on the base schema
objects, including the default audit options. These options also apply to the resulting
SQL statements.

Consider the following series of SQL statements:

AUDIT SELECT ON HR.EMPLOYEES BY ACCESS;

CREATE VIEW employees_departments AS
 SELECT employee_id, last_name, department_id
 FROM employees, departments
 WHERE employees.department_id = departments.department_id;

AUDIT SELECT ON employees_departments BY ACCESS;

SELECT * FROM employees_departments;

As a result of the query on the employees_departments view, two audit records are
generated: one for the query on the employees_departments view and one for the
query on the base table employees (indirectly through the employees_
departments view). The query on the base table departments does not generate an
audit record because the SELECT audit option for this table is not enabled. All audit
records pertain to the user that queried the employees_departments view.

In the given example, if the AUDIT SELECT ON HR.EMPLOYEES; statement is
omitted, then using the employees_departments view does not generate an audit
record for the EMPLOYEES table.

See Also: Oracle Database SQL Language Reference for information
about auditable schema objects

See Also: Oracle Database Advanced Application Developer's Guide for
detailed information about editions

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-31

Configuring Schema Object Auditing
You can use the AUDIT statement to configure object auditing in the current edition.
Oracle Database SQL Language Reference lists valid object audit options for AUDIT and
the schema object types for which each option is available.

A user can set any object audit option for the objects contained in his or her schema.
The AUDIT ANY system privilege is required to set an object audit option for an object
contained in another user schema or to set the default object auditing option. Usually,
only the security administrator is granted the AUDIT ANY privilege.

Figure 9–13 shows how to audit all successful and unsuccessful DELETE statements on
the laurel.emp table.

Example 9–13 Configuring Auditing for a Schema Table

AUDIT DELETE ON laurel.emp BY ACCESS;

Example 9–14 shows how to audit all successful SELECT, INSERT, and DELETE
statements on the dept table owned by user jward.

Example 9–14 Auditing Successful Statements on a Schema Table

AUDIT SELECT, INSERT, DELETE
 ON jward.dept
 BY ACCESS
 WHENEVER SUCCESSFUL;

Example 9–15 shows how you can use the ON DEFAULT clause to apply to any new
objects (tables, views, and sequences) that are created after you set the AUDIT
statement. In this example, new objects that are created in the future will be audited
for all unsuccessful SELECT statements:

Example 9–15 Configuring Auditing for Any New Objects Using the DEFAULT Clause

AUDIT SELECT
 ON DEFAULT
 BY ACCESS
 WHENEVER NOT SUCCESSFUL;

Example 9–16 shows how to audit the execution of PL/SQL procedure or function.

Example 9–16 Auditing the Execution of a Procedure or Function

AUDIT EXECUTE ON sec_mgr.auth_orders BY ACCESS;

Removing Object Auditing
Use the NOAUDIT statement to remove object auditing. The following statements turn
off the corresponding auditing options:

NOAUDIT DELETE
 ON emp;
NOAUDIT SELECT, INSERT, DELETE
 ON jward.dept;

To remove all object audit options on the emp table, enter the following statement:

NOAUDIT ALL ON emp;

Auditing General Activities with Standard Auditing

9-32 Oracle Database Security Guide

To remove all default object audit options, enter the following statement:

NOAUDIT ALL ON DEFAULT;

All schema objects that are created before this NOAUDIT statement is issued continue to
use the default object audit options in effect at the time of their creation, unless
overridden by an explicit NOAUDIT statement after their creation.

To remove object audit options for a specific object, you must be the owner of the
schema object. To remove the object audit options of an object in the schema of another
user or to remove default object audit options, you must have the AUDIT ANY system
privilege. A user with privileges to remove object audit options of an object can
override the options set by any user.

Setting Audit Options for Objects That May Be Created in the Future
You can create audit settings for objects that do not exist yet, such as the insertion and
deletion of tables to be created. There are two approaches that you can take. One
approach is to use the statement audit options in the AUDIT statement. For example, to
audit all inserts on future tables, enter the following SQL statement:

AUDIT INSERT TABLE BY ACCESS;

The second approach is to invoke the AUDIT statement using the ON DEFAULT clause.
For example:

AUDIT ALL ON DEFAULT BY ACCESS;

This statement audits by default all subsequent object creation statements. The ON
keyword specifies object auditing. The ON DEFAULT clause configures auditing for
subsequently created objects that are affected by the following statements:

To restrict ON DEFAULT to a specific action, enter a statement similar to the following:

AUDIT ALTER, DELETE ON DEFAULT BY ACCESS;

For more information about the audit options and the ON DEFAULT clause of the
AUDIT SQL statement, see Oracle Database SQL Language Reference. To find objects
audited by default, query the ALL_DEF_AUDIT_OPTS data dictionary view.

Auditing Directory Objects
This section contains:

■ About Directory Object Auditing

■ Configuring Directory Object Auditing

■ Removing Directory Object Auditing

About Directory Object Auditing
You can audit directory objects. For example, suppose you create a directory object
that contains a preprocessor program that the ORACLE_LOADER access driver will use.
You can audit anyone who runs this program within this directory object.

ALTER EXECUTE INSERT SELECT

AUDIT GRANT LOCK UPDATE

COMMENT FLASHBACK READ

DELETE INDEX RENAME

Auditing General Activities with Standard Auditing

Verifying Security Access with Auditing 9-33

Configuring Directory Object Auditing
Use the AUDIT statement to enable object auditing. Example 9–17 shows how to audit
the EXECUTE privilege on the directory object my_exec.

Example 9–17 Auditing a Directory Object

AUDIT EXECUTE ON DIRECTORY my_exec BY ACCESS;

Removing Directory Object Auditing
Use the NOAUDIT statement to disable directory object auditing. For example:

NOAUDIT EXECUTE ON DIRECTORY my_exec;

Auditing Functions, Procedures, Packages, and Triggers
This section contains:

■ About Auditing Functions, Procedures, Packages, and Triggers

■ Configuring the Auditing of Functions, Procedures, Packages, and Triggers

■ Removing the Auditing of Functions, Procedures, Packages, and Triggers

About Auditing Functions, Procedures, Packages, and Triggers
You can audit functions, procedures, PL/SQL packages, and triggers. The areas that
you can audit are as follows:

■ You can individually audit standalone functions, standalone procedures, and
PL/SQL packages.

■ If you audit a PL/SQL package, Oracle Database audits all functions and
procedures within the package.

■ If you enable auditing for all executions, Oracle Database audits all triggers in the
database, as well as all the functions and procedures within PL/SQL packages.

■ You cannot audit individual functions or procedures within a PL/SQL package.

If you want to audit functions that are associated with Oracle Virtual Private database
policies, note the following:

■ Dynamic policies: Oracle Database evaluates the policy function twice, once
during SQL statement parsing and again during execution. As a result, two audit
records are generated for each evaluation.

■ Static policies: Oracle Database evaluates the policy function once and then
caches it in the SGA. As a result, only one audit record is generated.

■ Context-sensitive policies: Oracle Database executes the policy function once,
during statement parsing. As a result, only one audit record is generated.

Configuring the Auditing of Functions, Procedures, Packages, and Triggers
Example 9–18 shows how to audit the execution of any function, procedure, package,
or trigger, by any user in the database.

Example 9–18 Auditing All Functions, Procedures, Packages, and Triggers

AUDIT EXECUTE PROCEDURE BY ACCESS;

Auditing General Activities with Standard Auditing

9-34 Oracle Database Security Guide

Example 9–19 shows how to audit user psmith’s successful and unsuccessful
executions of functions, procedures, packages, and triggers.

Example 9–19 Auditing a User’s Execution of Functions, Procedures, Packages, and
Triggers

AUDIT EXECUTE PROCEDURE BY psmith BY ACCESS;

Example 9–20 shows how to audit a standalone procedure entitled check_work that
is in the sales_data schema. This idea applies to standalone functions as well.

Example 9–20 Auditing the Execution of a Procedure or Function within a Schema

AUDIT EXECUTE ON sales_data.check_work BY ACCESS WHENEVER SUCCESSFUL;

Removing the Auditing of Functions, Procedures, Packages, and Triggers
Use the NOAUDIT statement to remove the auditing of functions, procedures, and
triggers. For example:

NOAUDIT EXECUTE PROCEDURE;

NOAUDIT EXECUTE PROCEDURE BY psmith;

NOAUDIT EXECUTE ON sales_data.checkwork;

Auditing Network Activity
This section contains:

■ About Network Auditing

■ Configuring Network Auditing

■ Removing Network Auditing

About Network Auditing
You can use the AUDIT statement to audit unexpected errors in network protocol or
internal errors in the network layer. Network auditing captures errors that occur
during communication with the client on the network. These are errors thrown by the
SQL*Net driver. There can be several causes of network errors. For example, an
internal event set by a database engineer for testing purposes can cause a network
error. Other causes include conflicting configuration settings for encryption, such as
the network not finding the information required to create or process expected
encryption. The errors that network auditing uncovers (such as ACTION 122
Network Error) are not connection failures: network auditing is only concerned
with data as it travels across the network.

The audit record for network auditing lists the authentication type and SQL*Net
address of the client (if available) in the COMMENT_TEXT field of the audit record,
using the following format:

Authenticated by: authentication_type; Client Address: SQLNetAddress_of_client

The Client Address: SQLNetAddress_of_client portion only appears if this
information is available.

Using Default Auditing for Security-Relevant SQL Statements and Privileges

Verifying Security Access with Auditing 9-35

Table 9–5 shows how to remedy four common error conditions.

Configuring Network Auditing
To configure network auditing, use the AUDIT statement. For example:

AUDIT NETWORK BY ACCESS;

Removing Network Auditing
To remove network auditing:

NOAUDIT NETWORK;

Using Default Auditing for Security-Relevant SQL Statements and
Privileges

This section contains:

■ About the Default Auditing Settings

■ Privileges That Oracle Database Audits by Default

■ Disabling and Enabling Default Audit Settings

About the Default Auditing Settings
When you use Database Configuration Assistant (DBCA) to create a new database,
Oracle Database configures the database to audit the most commonly used
security-relevant SQL statements and privileges. It also sets the AUDIT_TRAIL
initialization parameter to DB. If you decide to use a different audit trail type (for

Table 9–5 Auditable Network Error Conditions

Error Cause Action

TNS-02507

Encryption
algorithm not
installed

After picking an algorithm, the server
was unable to find an index for it in its
table of algorithms. This should be
impossible because the algorithm was
chosen (indirectly) from that list.

Turn on tracing for further
details, and then rerun the
operation. (Note that this
error is not normally visible
to the user.) If the error
persists, then contact Oracle
Support Services.

TNS-12648

Encryption or
data integrity
algorithm list
empty

An Oracle Advanced Security
list-of-algorithms parameter was
empty.

Change the list to contain
the name of at least one
installed algorithm, or
remove the list entirely if
every installed algorithm is
not acceptable.

TNS-12649

Unknown
encryption or
data integrity
algorithm

An Oracle Advanced Security
list-of-algorithms parameter included
an algorithm name that was not
recognized.

Remove that algorithm
name, correct it if it was
misspelled, or install the
driver for the missing
algorithm.

TNS-12650

No common
encryption or
data integrity
algorithm

The client and server have no
algorithm in common for either
encryption or data integrity or both.

Choose sets of algorithms
that overlap. In other words,
add one of the client
algorithm choices to the
server list, or add one of the
server list choices to the
client algorithm.

Using Default Auditing for Security-Relevant SQL Statements and Privileges

9-36 Oracle Database Security Guide

example, OS if you want to write the audit trail records to operating system files), then
you can do that: Oracle Database continues to audit the privileges that are audited by
default. If you disable auditing by setting the AUDIT_TRAIL parameter to NONE, then
no auditing takes place.

If you manually create a database, then you should run the secconf.sql script to
apply the default audit settings to your database. See "Disabling and Enabling Default
Audit Settings" on page 9-36 for more information.

To individually control the auditing of SQL statements and privileges, use the AUDIT
and NOAUDIT statements. For more information, see "Auditing SQL Statements" on
page 9-23 and "Auditing Privileges" on page 9-26.

Privileges That Oracle Database Audits by Default
Oracle Database audits the following privileges by default:

Oracle Database audits the following SQL shortcuts by default:

Disabling and Enabling Default Audit Settings
If your applications use the default audit settings from Oracle Database 10g Release 2
(10.2), then you can revert to these audit settings until you modify the applications to
use the Release 11g audit settings. To do so, run the undoaud.sql script.

After you have modified your applications to conform to the Release 11g audit
settings, then you can manually update your database to use the audit configuration
that suits your business needs, or you can run the secconf.sql script to apply the
Release 11g default audit settings. You can customize this script to have different
security settings if you like, but remember that the settings listed in the original script
are Oracle-recommended settings.

If you created your database manually, then you should run the secconf.sql script
to apply the Release 11g default audit settings to the database. Databases that have

ALTER ANY PROCEDURE CREATE ANY LIBRARY DROP ANY TABLE

ALTER ANY TABLE CREATE ANY PROCEDURE DROP PROFILE

ALTER DATABASE CREATE ANY TABLE DROP USER

ALTER PROFILE CREATE EXTERNAL JOB EXEMPT ACCESS POLICY

ALTER SYSTEM CREATE PUBLIC DATABASE LINK GRANT ANY OBJECT PRIVILEGE

ALTER USER CREATE SESSION GRANT ANY PRIVILEGE

AUDIT SYSTEM CREATE USER GRANT ANY ROLE

CREATE ANY JOB DROP ANY PROCEDURE

ROLE SYSTEM AUDIT PUBLIC SYNONYM

DATABASE LINK PROFILE SYSTEM GRANT

See Also:

■ Oracle Database SQL Language Reference for detailed information
about the SQL statements described in this section

sql_statement_shortcut in Oracle Database SQL Language Reference for a
list of accepted SQL shortcuts you can use with the AUDIT statement

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-37

been created with Database Configuration Assistant will have these settings, but
manually created databases do not.

The undoaud.sql and secconf.sql scripts are in the $ORACLE_
HOME/rdbms/admin directory. The undoaud.sql script affects audit settings only,
and the secconf.sql script affects both audit and password settings. They have no
effect on other security settings.

Auditing Specific Activities with Fine-Grained Auditing
This section contains:

■ About Fine-Grained Auditing

■ Advantages of Fine-Grained Auditing

■ What Permissions Are Needed to Create a Fine-Grained Audit Policy?

■ Activities That Are Always Audited in Fine-Grained Auditing

■ Using Fine-Grained Audit Policies with Editions

■ Creating an Audit Trail for Fine-Grained Audit Records

■ How the Fine-Grained Audit Trail Generates Records

■ Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies

■ Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy

■ Tutorial: Auditing Nondatabase Users

About Fine-Grained Auditing
Fine-grained auditing enables you to create policies that define specific conditions that
must take place for the audit to occur. This enables you to monitor data access based
on content. It provides granular auditing of queries, and INSERT, UPDATE, and
DELETE operations. For example, a central tax authority must track access to tax
returns to guard against employee snooping, with enough detail to determine what
data was accessed. It is not enough to know that SELECT privilege was used by a
specific user on a particular table. Fine-grained auditing provides this deeper
functionality.

In general, fine-grained audit policies are based on simple, user-defined SQL
predicates on table objects as conditions for selective auditing. During fetching,
whenever policy conditions are met for a row, the query is audited.

You can use fine-grained auditing to audit the following types of actions:

■ Accessing a table between 9 p.m. and 6 a.m. or on Saturday and Sunday

■ Using an IP address from outside the corporate network

■ Selecting or updating a table column

■ Modifying a value in a table column

Fine-grained auditing records are stored in the SYS.FGA_LOG$ table. To find the
records have been generated for the audit policies that are in effect, you can query the
DBA_FGA_AUDIT_TRAIL view. The DBA_COMMON_AUDIT_TRAIL view combines
both standard and fine-grained audit log records. In addition, you can use the V$XML_
AUDIT_TRAIL view to find fine-grained audit records that were written in XML
formatted files. For detailed information about these views, see Oracle Database
Reference.

Auditing Specific Activities with Fine-Grained Auditing

9-38 Oracle Database Security Guide

Advantages of Fine-Grained Auditing
Fine-grained auditing creates a more meaningful audit trail, one that includes only
very specific actions that you want to audit. It excludes unnecessary information that
occurs if each table access was recorded. Fine-grained auditing has the following
advantages over standard auditing:

■ It performs a Boolean condition check. If the Boolean condition you specify is
met, for example, a table being accessed on a Saturday, then the audit takes place.

■ It captures the SQL that triggered the audit. You can capture both the SQL
statement that caused the audit, and any associated bind variables. Be aware that
you can only capture data from scalar column types. You cannot capture data from
object columns, LOBs, or user-defined column types. For example, suppose you
have the following query:

SELECT NAME FROM EMPLOYEE WHERE SSN = :1

If :1 is of integer type and the value for SSN is 987654321, then the audit trail can
capture this information. However, the audit trail cannot capture this information
if :1 is a BLOB, CLOB, object, or user-defined type.

This feature is available if you create the fine grained audit policy with the
audit_trail parameter of the DBMS_FGA.ADD_POLICY PL/SQL procedure to
DB+EXTENDED or XML+EXTENDED.

■ It adds extra protection to sensitive columns. You can audit specific relevant
columns that may hold sensitive information, such as salaries or Social Security
numbers.

■ It provides an event handler feature. For example, you can write a function that
sends an e-mail alert to a security administrator when an audited column that
should not be changed at midnight is updated.

■ You do not need to set initialization parameters to enable fine-grained auditing.
Instead of setting initialization parameters such as AUDIT_TRAIL, you use the
DBMS_FGA PL/SQL package to add and remove fine-grained auditing policies as
necessary applying them to the specific operations or objects you want to monitor.

What Permissions Are Needed to Create a Fine-Grained Audit Policy?
To create a fine-grained audit policy, you must have EXECUTE privileges on the DBMS_
FGA PL/SQL package. The package is owned by the SYS user.

Note:

■ Fine-grained auditing is supported only with cost-based
optimization. For queries using rule-based optimization,
fine-grained auditing checks before applying row filtering,
which could result in an unnecessary audit event trigger.

■ Policies currently in force on an object involved in a flashback
query are applied to the data returned from the specified
flashback snapshot (based on time or system change number
(SCN).

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-39

Activities That Are Always Audited in Fine-Grained Auditing
The SYS.AUD$ table records all data manipulation language (DML) statements, such
as INSERT, UPDATE, MERGE, and DELETE, that are performed on the SYS.FGA_LOG$
table by non-SYS users. Oracle Database performs the audit even if auditing has not
been configured for the SYS.FGA_LOG$ table, which is the table in which these
activities occur. You can check these activities by querying the DBA_FGA_AUDIT_
TRAIL and DBA_COMMON_AUDIT_TRAIL views. See also "Activities That Are Always
Written to the Standard and Fine-Grained Audit Records" on page 9-3.

Using Fine-Grained Audit Policies with Editions
If you are preparing an application for edition-based redefinition, and you cover each
table that the application uses with an editioning view, then you must move the
fine-grained audit polices that protect these tables to the editioning view.

Creating an Audit Trail for Fine-Grained Audit Records
You designate the audit trail format for fine-grained auditing by setting the audit_trail
parameter for the DBMS_FGA.ADD_POLICY policy (not to be confused with the
AUDIT_TRAIL initialization parameter) when you create the audit policy. Setting this
parameter to XML or XML+EXTENDED writes the records to the operating system files in
XML format. If you prefer to write the fine-grained audit records to the SYS.FGA_
LOG$ table, then set the audit_trail parameter for the DBMS_FGA.ADD_POLICY
parameter to DB or DB+EXTENDED. For a list of reasons why writing audit records to
operating system files is beneficial, see "Advantages of the Operating System Audit
Trail" on page 9-16.

You can use the V$XML_AUDIT_TRAIL data dictionary view to make audit records
from XML files available to DBAs through a SQL query, providing enhanced usability.
Querying this view causes all XML files (all files with an .xml extension) in the
AUDIT_FILE_DEST directory to be parsed and presented in relational table format.

The DBA_COMMON_AUDIT_TRAIL view includes the contents of the V$XML_AUDIT_
TRAIL dynamic view for standard and fine-grained audit records.

Because the audit XML files are stored in files with the .xml extension on all
platforms, the dynamic view presents audit information similarly on all platforms. See
Oracle Database Reference for detailed information about the V$XML_AUDIT_TRAIL
view contents.

How the Fine-Grained Audit Trail Generates Records
The fine-grained audit trail captures an audit record for each reference of a table or a
view within a SQL statement. For example, if you run a UNION statement that
references the HR.EMPLOYEES table twice, then an audit policy for statement
generates two audit records, one for each access of the HR.EMPLOYEES table.

Note: If you audit tables that have sensitive data, remember that
DB+EXTENDED and XML+EXTENDED settings for the DBMS_FGA.ADD_
POLICY audit_trail parameter will capture this data. See
"Auditing Sensitive Information" on page 10-18 for ways to handle
this scenario.

Auditing Specific Activities with Fine-Grained Auditing

9-40 Oracle Database Security Guide

Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies
This section contains:

■ About the DBMS_FGA PL/SQL Package

■ Creating a Fine-Grained Audit Policy

■ Disabling and Enabling a Fine-Grained Audit Policy

■ Dropping a Fine-Grained Audit Policy

About the DBMS_FGA PL/SQL Package
To manage a fine-grained audit policy, you use the DBMS_FGA PL/SQL package. This
package enables you to add all combinations of SELECT, INSERT, UPDATE, and
DELETE statements to one policy. You also can audit MERGE statements, by auditing
the underlying actions of INSERT and UPDATE. To audit MERGE statements, configure
fine-grained access on the INSERT and UPDATE statements. Only one record is
generated for each policy for successful MERGE operations. To administer fine-grained
audit policies, you must have the EXECUTE privilege on the DBMS_FGA package.

The audit policy is bound to the table for which you created it. This simplifies the
management of audit policies because the policy only must be changed once in the
database, not in each application. In addition, no matter how a user connects to the
database—from an application, a Web interface, or through SQL*Plus or Oracle SQL
Developer—Oracle Database records any actions that affect the policy.

If any rows returned from a query match the audit condition that you define, then
Oracle Database inserts an audit entry into the fine-grained audit trail. This entry
excludes all the information that is reported in the regular audit trail. In other words,
only one row of audit information is inserted into the audit trail for every fine-grained
audit policy that evaluates to true.

For detailed information about the syntax of the DBMS_FGA package, see Oracle
Database PL/SQL Packages and Types Reference. See also Oracle Database Advanced
Application Developer's Guide.

Creating a Fine-Grained Audit Policy
To create a fine-grained audit policy, use the DBMS_FGA.ADD_POLICY procedure. This
procedure creates an audit policy using the supplied predicate as the audit condition.
Oracle Database executes the policy predicate with the privileges of the user who
created the policy. The maximum number of fine-grained policies on any table or view
object is 256. Oracle Database stores the policy in the data dictionary table, but you can
create the policy on any table or view that is not in the SYS schema.

After you create the fine-grained audit policy, it does not reside in any specific schema,
although the definition for the policy is stored in the SYS.FGA$ data dictionary table.

You cannot modify a fine-grained audit policy after you have created it. If you need to
modify the policy, drop it and then recreate it.

Note: If you plan to use the DBMS_FGA package policy across
different editions, then you can control the results of the policy:
whether the results are uniform across all editions, or specific to the
edition in which the policy is used. See "How Editions Affects the
Results of a Global Application Context PL/SQL Package" on
page 6-24 for more information.

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-41

The syntax for the ADD_POLICY procedure is:

DBMS_FGA.ADD_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2,
 audit_condition VARCHAR2,
 audit_column VARCHAR2,
 handler_schema VARCHAR2,
 handler_module VARCHAR2,
 enable BOOLEAN,
 statement_types VARCHAR2,
 audit_trail BINARY_INTEGER IN DEFAULT,
 audit_column_opts BINARY_INTEGER IN DEFAULT);

In this specification:

■ object_schema: Specifies the schema of the object to be audited. (If NULL, the
current log-on user schema is assumed.)

■ object_name: Specifies the name of the object to be audited.

■ policy_name: Specifies the name of the policy to be created. Ensure that this
name is unique.

■ audit_condition: Specifies a Boolean condition in a row. NULL is allowed and
acts as TRUE. See "Auditing Specific Columns and Rows" on page 9-42 for more
information. If you specify NULL or no audit condition, then any action on a table
with that policy creates an audit record, whether or not rows are returned

■ audit_column: Specifies one or more columns to audit, including hidden
columns. If set to NULL or omitted, all columns are audited. These can include
Oracle Label Security hidden columns or object type columns. The default, NULL,
causes audit if any column is accessed or affected.

■ handler_schema: If an alert is used to trigger a response when the policy is
violated, specifies the name of the schema that contains the event handler. The
default, NULL, uses the current schema. See also "Tutorial: Adding an E-Mail Alert
to a Fine-Grained Audit Policy" on page 9-44.

■ handler_module: Specifies the name of the event handler. Include the package
the event handler is in. This function is invoked only after the first row that
matches the audit condition in the query is processed. If the procedure fails with
an exception, then the user SQL statement fails as well.

■ enable: Enables or disables the policy using true or false. If omitted, the policy is
enabled. The default is TRUE.

■ statement_types: Specifies the SQL statements to be audited: INSERT,
UPDATE, DELETE, or SELECT only.

■ audit_trail: Specifies the destination (DB or XML) of fine-grained audit records.
Also specifies whether to populate LSQLTEXT and LSQLBIND in FGA_LOG$.
However, be aware that sensitive data, such as credit card information, can be
recorded in clear text. See "Auditing Sensitive Information" on page 10-18 for how
you can handle this scenario.

If you set the audit_trail parameter to XML, then the XML files are written to
the directory specified by the AUDIT_FILE_DEST initialization parameter.

For read-only databases, Oracle Database writes the fine-grained audit trail to
XML files, regardless of the audit_trail setting.

Auditing Specific Activities with Fine-Grained Auditing

9-42 Oracle Database Security Guide

■ audit_column_opts: If you specify more than one column in the audit_
column parameter, then this parameter determines whether to audit all or specific
columns. See "Auditing Specific Columns and Rows" on page 9-42 for more
information.

See Oracle Database PL/SQL Packages and Types Reference for additional details about the
ADD_POLICY syntax.

Example 9–21 shows how to audit statements INSERT, UPDATE, DELETE, and SELECT
on table HR.EMPLOYEES. Note that this example omits the audit_column_opts
parameter, because it is not a mandatory parameter.

Example 9–21 Using DBMS_FGA.ADD_POLICY to Create a Fine-Grained Audit Policy

BEGIN
 DBMS_FGA.ADD_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees',
 policy_owner => 'SEC_MGR',
 enable => TRUE,
 statement_types => 'INSERT, UPDATE, SELECT, DELETE',
 audit_trail => DBMS_FGA.DB);
END;
/

At this point, if you query the DBA_AUDIT_POLICIES view, you will find the new
policy listed:

SELECT POLICY_NAME FROM DBA_AUDIT_POLICIES;

POLICY_NAME

CHK_HR_EMPLOYEES

Afterwards, any of the following SQL statements log an audit event record.

SELECT COUNT(*) FROM HR.EMPLOYEES WHERE COMMISSION_PCT = 20 AND SALARY > 4500;

SELECT SALARY FROM HR.EMPLOYEES WHERE DEPARTMENT_ID = 50;

DELETE FROM HR.EMPLOYEES WHERE SALARY > 1000000;

Auditing Specific Columns and Rows
You can fine-tune the audit behavior by targeting a specific column, referred to as a
relevant column, to be audited if a condition is met. To accomplish this, you use the
audit_column parameter to specify one or more sensitive columns. In addition, you
can audit data in specific rows by using the audit_condition parameter to define a
Boolean condition.

Example 9–21 on page 9-42 performs an audit if anyone in Department 50 tries to
access the salary and commission_pct columns.

audit_condition => 'DEPARTMENT_ID = 50',
audit_column => 'SALARY,COMMISSION_PCT,'

As you can see, this feature is enormously beneficial. It not only enables you to
pinpoint particularly important types of data to audit, but it provides increased
protection for columns that contain sensitive data, such as Social Security numbers,
salaries, patient diagnoses, and so on.

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-43

If the audit_column lists more than one column, you can use the audit_column_
opts parameter to specify whether a statement is audited when the query references
any column specified in the audit_column parameter or only when all columns are
referenced. For example:

audit_column_opts => DBMS_FGA.ANY_COLUMNS,

audit_column_opts => DBMS_FGA.ALL_COLUMNS,

If you do not specify a relevant column, then auditing applies to all columns.

For more information about the audit_condition, audit_column, and audit_
column_opts parameters in the DBMS_FGA.ADD_POLICY procedure, see Oracle
Database PL/SQL Packages and Types Reference. See also the usage notes for the ADD_
POLICY procedure in that section.

Disabling and Enabling a Fine-Grained Audit Policy
You can disable a fine-grained audit policy by using the DBMS_FGA.DISABLE_
POLICY procedure. The syntax for DISABLE_POLICY is:

DBMS_FGA.DISABLE_POLICY(
 object_schema VARCHAR2,
 object_name VARCHAR2,
 policy_name VARCHAR2);

Example 9–22 shows how to disable the fine-grained audit policy created in
Example 9–21 on page 9-42.

Example 9–22 Disabling a Fine-Grained Audit Policy

DBMS_FGA.DISABLE_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees');
/

For detailed information about the DISABLE_POLICY syntax, see Oracle Database
PL/SQL Packages and Types Reference.

Example 9–23 show how to reenable the chk_hr_emp policy by using the DBMS_
FGA.ENABLE_POLICY procedure:

Example 9–23 Enabling a Fine-Grained Audit Policy

DBMS_FGA.ENABLE_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees',
 enable => TRUE);
/

For detailed information about the ENABLE_POLICY syntax, see Oracle Database
PL/SQL Packages and Types Reference.

Dropping a Fine-Grained Audit Policy
Oracle Database automatically drops the audit policy if you remove the object
specified in the object_name parameter of the DBMS_FGA.ADD_POLICY procedure,
or if you drop the user who created the audit policy.

Auditing Specific Activities with Fine-Grained Auditing

9-44 Oracle Database Security Guide

Example 9–24 shows how to drop a fine-grained audit policy manually by using the
DBMS_FGA.DROP_POLICY procedure.

Example 9–24 Dropping a Fine-Grained Audit Policy

DBMS_FGA.DROP_POLICY(
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'chk_hr_employees');

See Oracle Database PL/SQL Packages and Types Reference for detailed information about
the DROP_POLICY syntax.

Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy
This section contains:

■ About This Tutorial

■ Step 1: Install and Configure the UTL_MAIL PL/SQL Package

■ Step 2: Create User Accounts

■ Step 3: Configure an Access Control List File for Network Services

■ Step 4: Create the E-Mail Security Alert PL/SQL Procedure

■ Step 5: Create and Test the Fine-Grained Audit Policy Settings

■ Step 6: Test the Alert

■ Step 7: Remove the Components for This Tutorial

About This Tutorial
You can add an e-mail alert to a fine-grained audit policy that goes into effect when a
user (or an intruder) violates the policy. To accomplish this, you first must create a
procedure that generates the alert, and then use the following DBMS_FGA.ADD_
POLICY parameters to call this function when someone violates this policy:

■ handler_schema: The schema in which the handler event is stored

■ handler_module: The name of the event handler

The alert can come in any form that best suits your environment: an e-mail or pager
notification, updates to a particular file or table, and so on. Creating alerts also helps to
meet certain compliance regulations, such as California Senate Bill 1386. In this
tutorial, you will create an e-mail alert.

In this tutorial, you create an e-mail alert that notifies a security administrator that a
Human Resources representative is trying to select or modify salary information in the
HR.EMPLOYEES table. The representative is permitted to make changes to this table,
but to meet compliance regulations, we want to create a record of all salary selections
and modifications to the table.

Step 1: Install and Configure the UTL_MAIL PL/SQL Package
1. Log on as user SYS with the SYSDBA privilege.

sqlplus sys as sysdba
Enter password: password

2. Install the UTL_MAIL package.

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-45

@$ORACLE_HOME/rdbms/admin/utlmail.sql
@$ORACLE_HOME/rdbms/admin/prvtmail.plb

The UTL_MAIL package enables you to manage e-mail. See Oracle Database PL/SQL
Packages and Types Reference for more information about UTL_MAIL.

Be aware that currently, the UTL_MAIL PL/SQL package does not support SSL
servers.

3. Check the current value of the SMTP_OUT_SERVER initialization parameter, and
make a note of this value so that you can restore it when you complete this
tutorial.

For example:

SHOW PARAMETER SMTP_OUT_SERVER

If the SMTP_OUT_SERVER parameter has already been set, then output similar to
the following appears:

NAME TYPE VALUE
----------------------- ----------------- ----------------------------------
SMTP_OUT_SERVER string some_imap_server.example.com

4. Issue the following ALTER SYSTEM statement:

ALTER SYSTEM SET SMTP_OUT_SERVER="imap_mail_server.example.com";

Replace imap_mail_server with the name of your SMTP server, which you can
find in the account settings in your e-mail tool. Enclose these settings in quotation
marks. For example:

ALTER SYSTEM SET SMTP_OUT_SERVER="my_imap_server.example.com"

5. Connect as SYS using the SYSOPER privilege and then restart the database.

CONNECT SYS/AS SYSOPER
Enter password: password

SHUTDOWN IMMEDIATE
STARTUP

6. Ensure that the SMTP_OUT_SERVER parameter setting is correct.

CONNECT SYS/AS SYSDBA
Enter password: password

SHOW PARAMETER SMTP_OUT_SERVER

Output similar to the following appears:

NAME TYPE VALUE
----------------------- ----------------- ----------------------------------
SMTP_OUT_SERVER string my_imap_server.example.com

Step 2: Create User Accounts
1. Ensure that you are connected as SYS using the SYSDBA privilege, and then create

the sysadmin_fga account, who will create the fine-grained audit policy.

For example:

CONNECT SYS/AS SYSDBA
Enter password: password

Auditing Specific Activities with Fine-Grained Auditing

9-46 Oracle Database Security Guide

GRANT CREATE SESSION, DBA TO sysadmin_fga IDENTIFIED BY password;
GRANT EXECUTE ON DBMS_FGA TO sysadmin_fga;
GRANT CREATE PROCEDURE, DROP ANY PROCEDURE TO sysadmin_fga;
GRANT EXECUTE ON UTL_TCP TO sysadmin_fga;
GRANT EXECUTE ON UTL_SMTP TO sysadmin_fga;
GRANT EXECUTE ON UTL_MAIL TO sysadmin_fga;
GRANT EXECUTE ON DBMS_NETWORK_ACL_ADMIN TO sysadmin_fga;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

The UTL_TCP, UTL_SMTP, UTL_MAIL, and DBMS_NETWORK_ACL_ADMIN PL/SQL
packages are used by the e-mail security alert that you create.

2. Connect as user SYSTEM.

CONNECT SYSTEM
Enter password: password

3. Ensure that the HR schema account is unlocked and has a password. If necessary,
unlock HR and grant this user a password.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'HR';

If the DBA_USERS view lists user HR as locked and expired, then enter the
following statement to unlock the HR account and create a new password:

ALTER USER HR ACCOUNT UNLOCK IDENTIFIED BY password;

Enter a password that is secure. For greater security, do not give the HR account
the same password from previous releases of Oracle Database. "Minimum
Requirements for Passwords" on page 3-3 for the minimum requirements for
creating passwords.

4. Create a user account for Susan Mavris, who is an HR representative, and then
grant this user access to the HR.EMPLOYEES table.

GRANT CREATE SESSION TO smavris IDENTIFIED BY password;
GRANT SELECT, INSERT, UPDATE, DELETE ON HR.EMPLOYEES TO SMAVRIS;

Step 3: Configure an Access Control List File for Network Services
Before you can use PL/SQL network utility packages such as UTL_MAIL, you must
configure an access control list (ACL) file that enables fine-grained access to external
network services. For detailed information about this topic, see "Managing
Fine-Grained Access in PL/SQL Packages and Types" on page 4-48.

To configure an access control list for the e-mail alert:

1. Connect to SQL*Plus as user sysadmin_fga.

CONNECT sysadmin_fga
Enter password: password

2. Create the following access control list and its privilege definitions.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.CREATE_ACL (
 acl => 'email_server_permissions.xml',
 description => 'Enables network permissions for the e-mail server',
 principal => 'SYSADMIN_FGA',
 is_grant => TRUE,

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-47

 privilege => 'connect');
END;
/

Ensure that you enter your exact user name for the principal setting, in upper-case
letters. For this tutorial, enter SYSADMIN_FGA for the name of the principal.

3. Assign the access control list to the outgoing SMTP network host for your e-mail
server.

BEGIN
 DBMS_NETWORK_ACL_ADMIN.ASSIGN_ACL (
 acl => 'email_server_permissions.xml',
 host => 'SMTP_OUT_SERVER_setting',
 lower_port => port);
END;
/

In this example:

■ SMTP_OUT_SERVER_setting: Enter the SMTP_OUT_SERVER setting that you
set for the SMTP_OUT_SERVER parameter in "Step 1: Install and Configure the
UTL_MAIL PL/SQL Package" on page 9-44. This setting should match exactly
the setting that your e-mail tool specifies for its outgoing server.

■ port: Enter the port number that your e-mail tool specifies for its outgoing
server. Typically, this setting is 25. Enter this value for the lower_port
setting. (Currently, the UTL_MAIL package does not support SSL. If your
e-mail server is an SSL server, then enter 25 for the port number, even if the
e-mail server uses a different port number.)

Step 4: Create the E-Mail Security Alert PL/SQL Procedure
As user sysadmin_fga, create the following procedure. (You can copy and paste this
text by positioning the cursor at the start of CREATE OR REPLACE in the first line.)

In this example:

■ Lines 1 and 2: In the CREATE PROCEDURE statement, you must include a
signature that describes the schema name (sch), table name (tab), and the name
of the audit procedure (pol) that you will define in audit policy in the next step.

■ Lines 9 and 10: Replace youremail@example.com with your e-mail address,
and recipientemail@example.com with the e-mail address of the person you
want to receive the notification.

1
2
3
4
5
6
7
8
9
10
11
12

CREATE OR REPLACE PROCEDURE email_alert (sch varchar2, tab varchar2, pol varchar2)
AS
msg varchar2(20000) := 'HR.EMPLOYEES table violation. The time is: ';
BEGIN
 msg := msg||TO_CHAR(SYSDATE, 'Day DD MON, YYYY HH24:MI:SS');
UTL_MAIL.SEND (
 sender => 'youremail@example.com',
 recipients => 'recipientemail@example.com',
 subject => 'Table modification on HR.EMPLOYEES',
 message => msg);
END email_alert;
/

Auditing Specific Activities with Fine-Grained Auditing

9-48 Oracle Database Security Guide

Step 5: Create and Test the Fine-Grained Audit Policy Settings
1. As user sysadmin_fga, create the chk_hr_emp policy fine-grained audit policy

as follows.

BEGIN
 DBMS_FGA.ADD_POLICY (
 object_schema => 'HR',
 object_name => 'EMPLOYEES',
 policy_name => 'CHK_HR_EMP',
 audit_column => 'SALARY',
 handler_schema => 'SYSADMIN_FGA',
 handler_module => 'EMAIL_ALERT',
 enable => TRUE,
 statement_types => 'SELECT, UPDATE',
 audit_trail => DBMS_FGA.DB + DBMS_FGA.EXTENDED);
END;
/

2. Commit the changes you have made to the database.

COMMIT;

3. Test the settings that you have created so far.

EXEC email_alert ('hr', 'employees', 'chk_hr_emp');

SQL*Plus should display a PL/SQL procedure successfully completed
message, and in a moment, depending on the speed of your e-mail server, you
should receive the e-mail alert.

If you receive an ORA-24247: network access denied by access
control list (ACL) error followed by ORA-06512: at stringline
string errors, then check the settings in the access control list file.

Step 6: Test the Alert
1. Connect to SQL*Plus as user smavris, check your salary, and give yourself a nice

raise.

CONNECT smavris
Enter password: password

SELECT SALARY FROM HR.EMPLOYEES WHERE LAST_NAME = 'Mavris';

SALARY

6500

UPDATE HR.EMPLOYEES SET SALARY = 13000 WHERE LAST_NAME = 'Mavris';

2. Now select from a column other than SALARY in the HR.EMPLOYEES table.

SELECT FIRST_NAME, LAST_NAME FROM HR.EMPLOYEES WHERE LAST_NAME = 'Raphaely';

The following output should appear:

FIRST_NAME LAST_NAME
-------------------- --------------------
Den Raphaely

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-49

By now, depending on the speed of you e-mail server, you (or your recipient)
should have received an e-mail with the subject header Table modification
on HR.EMPLOYEES notifying you of the tampering of the HR.EMPLOYEES table.

3. As user sysadmin_fga, query the DBA_FGA_AUDIT_TRAIL data dictionary
view, which contains the Susan Mavris’s audited activities.

CONNECT sysadmin_fga
Enter password: password

col dbuid format a10
col lsqltext format a66
col ntimestamp# format a15

SELECT DBUID, LSQLTEXT, NTIMESTAMP# FROM SYS.FGA_LOG$ WHERE POLICYNAME='CHK_HR_
EMP';

Output similar to the following appears:

DBUID LSQLTEXT
---------- --
NTIMESTAMP#
--
SMAVRIS SELECT SALARY FROM HR.EMPLOYEES WHERE LAST_NAME = 'Mavris'
23-JUN-09 03.48.59.111000 PM

SMAVRIS UPDATE HR.EMPLOYEES SET SALARY = 13000 WHERE LAST_NAME = 'Mavris'
23-JUN-09 03.49.07.330000 PM

The audit trail captures the two SQL statements that Susan Mavris ran that
affected the SALARY column in the HR.EMPLOYEES table. The third statement she
ran, in which she asked about Den Raphaely, was not recorded because it was not
affected by the audit policy. This is because Oracle Database executes the audit
function as an autonomous transaction, committing only the actions of the
handler_module setting and not any user transaction. The function has no effect
on any user SQL transaction.

Step 7: Remove the Components for This Tutorial
1. Connect to SQL*Plus as user SYSTEM privilege, and then drop users sysadmin_

fga (including the objects in the sysadmin_fga schema) and smavris.

CONNECT SYSTEM
Enter password: password

DROP USER sysadmin_fga CASCADE;
DROP USER smavris;

2. Connect as user HR and remove the loftiness of Susan Mavris’s salary.

CONNECT HR
Enter password: password

UPDATE HR.EMPLOYEES SET SALARY = 6500 WHERE LAST_NAME = 'Mavris';

3. If you want, lock and expire HR, unless other users want to use this account:

ALTER USER HR PASSWORD EXPIRE ACCOUNT LOCK;

4. Connect as user SYS with the SYSDBA privilege, and drop the email_server_
permissions.xml access control list.

Auditing Specific Activities with Fine-Grained Auditing

9-50 Oracle Database Security Guide

BEGIN
 DBMS_NETWORK_ACL_ADMIN.DROP_ACL(
 acl => 'email_server_permissions.xml');
END;
/
Access control lists reside in the SYS schema, not the schema of the user who
created them.

5. Issue the following ALTER SYSTEM statement to restore the SMTP_OUT_SERVER
parameter to the previous value, from Step 4 under "Step 1: Install and Configure
the UTL_MAIL PL/SQL Package" on page 9-44:

ALTER SYSTEM SET SMTP_OUT_SERVER="previous_value";

Enclose this setting in quotation marks. For example:

ALTER SYSTEM SET SMTP_OUT_SERVER="some_imap_server.example.com"

6. Restart the database instance.

Tutorial: Auditing Nondatabase Users
This section contains:

■ About This Tutorial

■ Step 1: Create the User Account and Ensure the User HR Is Active

■ Step 2: Create the Fine-Grained Audit Policy

■ Step 3: Test the Policy

■ Step 4: Remove the Components for This Tutorial

About This Tutorial
This tutorial shows how to create a fine-grained audit policy that audits a nondatabase
user’s actions, based on the identity set in the client identifier.

Step 1: Create the User Account and Ensure the User HR Is Active
1. Log on as user SYS with the SYSDBA privilege.

sqlplus SYS AS SYSDBA
Enter password: password

2. Create the sysadmin_fga account, who will create the fine-grained audit policy.

GRANT CREATE SESSION, DBA TO sysadmin_fga IDENTIFIED BY password;
GRANT SELECT ON OE.ORDERS TO sysadmin_fga;
GRANT EXECUTE ON DBMS_FGA TO sysadmin_fga;
GRANT SELECT ON SYS.FGA_LOG$ TO sysadmin_fga;

Replace password with a password that is secure. See "Minimum Requirements
for Passwords" on page 3-3 for more information.

3. The sample user OE will also be used in this tutorial, so query the DBA_USERS
data dictionary view to ensure that OE is not locked or expired.

SELECT USERNAME, ACCOUNT_STATUS FROM DBA_USERS WHERE USERNAME = 'OE';

If the DBA_USERS view lists user OE as locked and expired, log in as user SYSTEM
and then enter the following statement to unlock the OE account and create a new
password:

Auditing Specific Activities with Fine-Grained Auditing

Verifying Security Access with Auditing 9-51

ALTER USER OE ACCOUNT UNLOCK IDENTIFIED BY password;

Enter a password that is secure. For greater security, do not give the OE account
the same password from previous releases of Oracle Database. "Minimum
Requirements for Passwords" on page 3-3 for the minimum requirements for
creating passwords.

Step 2: Create the Fine-Grained Audit Policy
1. Connect to SQL*Plus as user sysadmin_fga.

CONNECT sysadmin_fga
Enter password: password

2. Create the following policy:

BEGIN
 DBMS_FGA.ADD_POLICY(OBJECT_SCHEMA => 'OE',
 OBJECT_NAME => 'ORDERS',
 POLICY_NAME => 'ORDERS_FGA_POL',
 AUDIT_CONDITION => 'SYS_CONTEXT(''USERENV'', ''CLIENT_
IDENTIFIER'') = ''Robert''',
 HANDLER_SCHEMA => NULL,
 HANDLER_MODULE => NULL,
 ENABLE => True,
 STATEMENT_TYPES => 'INSERT,UPDATE,DELETE,SELECT',
 AUDIT_TRAIL => DBMS_FGA.DB + DBMS_FGA.EXTENDED,
 AUDIT_COLUMN_OPTS => DBMS_FGA.ANY_COLUMNS);
END;
/

In this example, the AUDIT_CONDITION parameter assumes the nondatabase user
is named Robert. The policy will monitor any INSERT, UPDATE, DELETE, and
SELECT statements Robert will attempt.

Step 3: Test the Policy
1. Connect as user OE and select from the OE.ORDERS table.

CONNECT OE
Enter password: password

SELECT COUNT(*) FROM ORDERS;

The following output appears:

 COUNT(*)

 105

2. Connect as user sysadmin_fga and then check if any audit records were
generated.

CONNECT sysadmin_fga
Enter password: password

SELECT DBUID, LSQLTEXT FROM SYS.FGA_LOG$ WHERE POLICYNAME='ORDERS_FGA_POL';

The following output appears:

no rows selected

Auditing SYS Administrative Users

9-52 Oracle Database Security Guide

Because no nondatabase users were logged in to query the OE.ORDERS table, the
audit trail is empty.

3. Reconnect as user OE, set the client identifier to Robert, and then reselect from
the OE.ORDERS table.

CONNECT OE
Enter password: password

EXEC DBMS_SESSION.SET_IDENTIFIER('Robert');

SELECT COUNT(*) FROM ORDERS;

The following output should appear:

 COUNT(*)

 105

4. Reconnect as user sysadmin_fga and then check the audit trail again.

CONNECT sysadmin_fga
Enter password: password

SELECT DBUID, LSQLTEXT FROM SYS.FGA_LOG$ WHERE POLICYNAME='ORDERS_FGA_POL';

This time, because Robert has made his appearance and queried the OE.ORDERS
table, the audit trail captures his actions:

DBUID LSQLTEXT
---------------- ----------------------------
OE SELECT COUNT(*) FROM ORDERS;

Step 4: Remove the Components for This Tutorial
1. Connect to SQL*Plus as user SYSTEM, and then drop user sysadmin_fga

(including the objects in the sysadmin_fga schema).

CONNECT SYSTEM
Enter password: password

DROP USER sysadmin_fga CASCADE;

2. If you want, lock and expire OE, unless other users want to use this account:

ALTER USER OE PASSWORD EXPIRE ACCOUNT LOCK;

Auditing SYS Administrative Users
This section contains:

■ Auditing User SYSTEM

■ Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER

Auditing User SYSTEM
You can audit the SYSTEM user by using all the standard and fine-grained audit
features. Insofar as auditing is concerned, user SYSTEM is a typical database user (such
as HR or OE) and requires no special configuration to be audited.

Auditing SYS Administrative Users

Verifying Security Access with Auditing 9-53

Example 9–25 shows how to audit any table insert operations issued by user SYSTEM.

Example 9–25 Auditing Table Insert Operations by User SYSTEM

AUDIT INSERT ANY TABLE BY SYSTEM BY ACCESS;

Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER
You can fully audit sessions for users who connect as SYS, including all users
connecting using the SYSDBA or SYSOPER privileges. This enables you to write the
actions of administrative users to an operating system file, even if the AUDIT_TRAIL
parameter is set to NONE, DB, or DB, EXTENDED. Writing the actions of administrator
users to an operating system audit file is safer than writing to the SYS.AUD$ table,
because administrative users can remove rows from this table that indicate their bad
behavior.

To configure audit settings for SYSDBA and SYSOPER users:

1. Set the AUDIT_SYS_OPERATIONS initialization parameter to TRUE.

ALTER SYSTEM SET AUDIT_SYS_OPERATIONS=TRUE SCOPE=SPFILE;

This setting records the top-level operations directly issued by users who have
connected to the database using the SYSDBA or SYSOPER privilege. It writes the
audit records to the operation system audit trail. The SQL text of every statement
is written to the ACTION field in the operating system audit trail record.

2. If you want to write system administrator activities to XML files, then set the
AUDIT_TRAIL initialization parameter to either XML or XML, EXTENDED.

For example:

ALTER SYSTEM SET AUDIT_TRAIL=XML, EXTENDED SCOPE=SPFILE;

In all operating systems, if you set AUDIT_TRAIL to either XML or
XML,EXTENDED, then audit records are written as XML files in the directory
specified by the AUDIT_FILE_DEST initialization parameter. By default, Oracle
Database writes the audit records to operating system files.

See Table 9–2, " AUDIT_TRAIL Initialization Parameter Settings" on page 9-10 for
more information about these settings. See also "Enabling or Disabling the
Standard Audit Trail" on page 9-8.

3. Restart the database.

After you restart the database, Oracle Database audits all successful actions performed
by SYSDBA and SYSOPER users, and writes these audit records to the operating system
audit trail, and not to the SYS.AUD$ table.

In Windows, if you have set the AUDIT_TRAIL initialization parameter OS, then
Oracle Database writes audit records as events to the Event Viewer log file.

Auditing SYS Administrative Users

9-54 Oracle Database Security Guide

If you do not specify the AUDIT_FILE_DEST initialization parameter, then the default
location is $ORACLE_BASE/admin/$ORACLE_SID/adump in Linux and Solaris, and
%ORACLE_BASE%\admin\%ORACLE_SID%\adump for Microsoft Windows. For other
operating systems, refer to their audit trail documentation.

Oracle Database audits all SYS-issued SQL statements indiscriminately and regardless
of the setting of the AUDIT_TRAIL initialization parameter.

Consider the following SYS session:

CONNECT SYS/AS SYSDBA;
Enter password: password

ALTER SYSTEM FLUSH SHARED_POOL;
UPDATE salary SET base=1000 WHERE name='laurel';

When SYS auditing is enabled, both the ALTER SYSTEM and UPDATE statements are
displayed in the operating system audit file, similar to the following output. (Be aware
that this format may change in different Oracle Database releases.)

Tue May 5 04:53:37 2009 -07:00
LENGTH : '159'
ACTION :[7] 'CONNECT'
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[5] 'pts/0'
STATUS:[1] '0'
DBID:[9] '561542328'

Tue May 5 04:53:40 2009 -07:00
LENGTH : '183'
ACTION :[30] 'ALTER SYSTEM FLUSH SHARED_POOL'
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[5] 'pts/0'
STATUS:[1] '0'

Note: The $ORACLE_BASE/admin/$ORACLE_SID/adump directory
is the first default location used if the AUDIT_FILE_DEST
initialization parameter is not set or does not point to a valid directory.
If writing to that first default location fails or the database is closed,
then Oracle Database uses the $ORACLE_HOME/rdbms/audit
directory as the backup default location. If that attempt fails, then the
audited operation fails and a message is written to the alert log.

When AUDIT_TRAIL is set to OS, audit file names continue to be in
the following form:

$ORACLE_SID_short_form_process_name_processid_sequence_number.aud

The sequence number starts from number 1.

For example, the short process name ora is used for dedicated server
processes, and the names s001, s002, and so on are used for shared
server processes.

When AUDIT_TRAIL is set to XML or XML, EXTENDED, the same
audit file names have the extension xml instead of aud.

Using Triggers to Write Audit Data to a Separate Table

Verifying Security Access with Auditing 9-55

DBID:[9] '561542328'

Tue May 5 04:53:49 2009 -07:00
LENGTH : '200'
ACTION :[47] 'UPDATE salary SET base=1000 WHERE name='laurel''
DATABASE USER:[1] '/'
PRIVILEGE :[6] 'SYSDBA'
CLIENT USER:[7] 'laurelh'
CLIENT TERMINAL:[5] 'pts/0'
STATUS:[1] '0'
DBID:[9] '561542328'

The brackets indicate the length of the value. For example, PRIVILEGE is set to
SYSDBA, which uses 6 characters. In addition, the values are in single quotes for SYS
and mandatory audit records.

Because of the superuser privileges available to users who connect as SYSDBA, Oracle
recommends that database administrators rarely use this connection and only when
necessary. Database administrators can usually perform normal day-to-day
maintenance activity. These database administrators are typical database users with
the DBA role, or have been granted privileges that are the equivalent of a DBA role (for
example, mydba or jr_dba) that your organization customizes.

Using Triggers to Write Audit Data to a Separate Table
You can use triggers to supplement the built-in auditing features of Oracle Database.
The trigger that you create records user actions to a separate database table. When an
activity fires the trigger, the trigger records the action in this table. Triggers are useful
when you want to record customized information such as before-and-after changes to
a table. For detailed information about creating triggers, see Oracle Database PL/SQL
Language Reference.

You do not need to have auditing enabled for the trigger to work, nor does it matter
what type of auditing you do have enabled. The trigger works outside of the database
audit functionality.

Follow these guidelines if you want to create audit triggers:

■ Never write the trigger so that it writes data to the SYS.AUD$ table. In fact, you
should never modify the SYS.AUD$ table contents. If you try to write values to
SYS.AUD$ and the trigger does not work as expected, then it could adversely
affect standard auditing. The SYS.AUD$ table is an Oracle Database-owned table,
and only Oracle Database should write to it.

■ If possible, create the trigger as an AFTER trigger. The triggering statement is
subjected to any applicable constraints. If no records are found, then the AFTER
trigger does not fire, and audit processing is not carried out unnecessarily.

■ Create the trigger as either an AFTER row or AFTER statement trigger. Choosing
between AFTER row and AFTER statement triggers depends on the information
being audited. For example, row triggers provide value-based auditing for each
table row. Triggers can also require you to supply a reason code for issuing the
audited SQL statement, which can be useful in both row and statement-level
auditing situations.

Using Triggers to Write Audit Data to a Separate Table

9-56 Oracle Database Security Guide

Table 9–6 provides a comparison of trigger-based auditing and the built-in database
auditing features.

In Example 9–26, a trigger audits modifications to the emp_tab table for specific rows.
The trigger writes the old and new values to the emp_audit_tab table, including the
user who performed the update and the time the update took place.

Example 9–26 Audit Trigger to Record Before and After Changes to a Table

/* 1. Create the following table: */
CREATE TABLE emp_tab (
 empno NUMBER(4),
 ename VARCHAR2(10),
 job VARCHAR2(9),
 mgr NUMBER(4),
 hiredate DATE,
 sal NUMBER(8,2),
 deptno NUMBER(2));

/* 2. Create a table to capture the audit data. */
CREATE TABLE emp_audit_tab (
 oldname VARCHAR2(10),
 oldjob VARCHAR2(9),
 oldsal NUMBER (8,2),
 newname VARCHAR2(10),
 newjob VARCHAR2(9),
 newsal NUMBER(8,2),
 user1 varchar2(10),
 systemdate TIMESTAMP);

Table 9–6 Comparison of Built-in Auditing and Trigger-Based Auditing

Audit Feature Description

DML and DDL
auditing

Standard auditing options permit auditing of DML and DDL statements
regarding all types of schema objects and structures. Comparatively, triggers
permit auditing of DML statements entered against tables, and DDL auditing
at SCHEMA or DATABASE level.

Centralized
audit trail

All database audit information is recorded centrally and automatically using
the auditing features of the database.

Declarative
method

Auditing features enabled using the standard database features are easier to
declare and maintain, and less prone to errors, when compared to auditing
functions defined by triggers.

Auditing
options can be
audited

Any changes to existing auditing options can also be audited to guard against
malicious database activity.

Session and
execution time
auditing

Using the database auditing features, records are generated once every time
an audited statement is entered. With triggers, an audit record is generated
each time a trigger-audited table is referenced.

Auditing of
unsuccessful
data access

Database auditing can be set to audit when unsuccessful data access occurs.
However, unless autonomous transactions are used, any audit information
generated by a trigger is rolled back if the triggering statement is rolled back.
For more information about autonomous transactions, see Oracle Database
Concepts.

Sessions can be
audited

Connections, disconnections, and session activity (physical I/Os, logical
I/Os, deadlocks, and so on) can be recorded using standard database
auditing.

Managing Audit Trail Records

Verifying Security Access with Auditing 9-57

/* 3. Create a trigger to record the old and new values, the author of the change,
 and when the change took place. */
CREATE OR REPLACE TRIGGER emp_audit_trig
 AFTER INSERT OR DELETE OR UPDATE ON emp_tab
 FOR EACH ROW
BEGIN
 INSERT INTO emp_audit_tab (
 oldname, oldjob, oldsal,
 newname, newjob, newsal,
 user1, systemdate
)
 VALUES (
 :OLD.ename, :OLD.job, :OLD.sal,
 :NEW.ename, :NEW.job, :NEW.sal,
 user, sysdate
);
END;
/

To test this trigger, add a row to the emp_tab table, and then change the value the
ename, job, or sal column in the emp_tab table. Then query the emp_audit_tab
table to find the audit data.

Managing Audit Trail Records
This section contains:

■ About Audit Records

■ Managing the Database Audit Trail

■ Managing the Operating System Audit Trail

About Audit Records
Audit records include information about the operation that was audited, the user who
performed the operation2, and the date and time of the operation. Depending on the
type of auditing you choose, you can write audit records to data dictionary tables,
called the database audit trail, or in operating system files, called the operating
system audit trail.

If you choose to write audit records to the database audit trail, Oracle Database writes
the audit records to the SYS.AUD$ table for default and standard auditing, and to the
SYS.FGA_LOG$ table for fine-grained auditing. Both of these tables reside in the
SYSTEM tablespace and are owned by the SYS schema. You can check the contents of
these tables by querying the following data dictionary views:

■ DBA_AUDIT_TRAIL for the SYS.AUD$ contents

■ DBA_FGA_AUDIT_TRAIL for the SYS.FGA_LOG$ contents

■ DBA_COMMON_AUDIT_TRAIL for both SYS.AUD$ and SYS.FGA_LOG$ contents

2 Oracle Database records the actions of both database and nondatabase users in the SYS.AUD$
and SYS.FGA_LOG$ tables. The CLIENTID column in these tables records the name of the
nondatabase user. The USERID column in the SYS.AUD$ table and the DBUID column of the
SYS.FGA_LOG$ store the database user account. For nondatabase users, the USERID and
DBUID columns store the database user account that was created to enable the nondatabase
user access to the database. The DBA_AUDIT_TRAIL, DBA_FGA_AUDIT_TRAIL, and DBA_
COMMON_AUDIT_TRAIL views store this information in the CLIENT_ID, USERNAME, and DB_
USER columns.

Managing Audit Trail Records

9-58 Oracle Database Security Guide

"Finding Information About Audited Activities" on page 9-80 describes more data
dictionary views that you can use to view to contents of the SYS.AUD$ and SYS.FGA_
LOG$ tables.

If you choose to write audit records to an operating system file, you can write them to
either a text file or to an XML file. You can check the contents of the audit XML files by
querying the V$XML_AUDIT_TRAIL data dictionary view.

Managing the Database Audit Trail
This section contains:

■ Database Audit Trail Contents

■ Controlling the Size of the Database Audit Trail

■ Moving the Database Audit Trail to a Different Tablespace

■ Protecting the Database Audit Trail

■ Auditing the Database Audit Trail

■ Archiving the Database Audit Trail

Database Audit Trail Contents
The database audit trail is a pair of tables, AUD$ (for standard auditing) and FGA_
LOG$ (for fine-grained auditing), in the SYS schema of each Oracle Database data
dictionary. It records both standard and fine-grained audit activities. Several data
dictionary views can help you use the information in this table. "Finding Information
About Audited Activities" on page 9-80 lists all the auditing-related views.

The database audit trail record contains different types of information, depending on
the events audited and the auditing options set. For example, if you have set the
AUDIT_TRAIL initialization parameter to DB, EXTENDED or XML, EXTENDED, then
the SQL_BIND and SQL_TEXT columns show any SQL bind variables used for a SQL
statement and SQL text that triggered the audit, respectively. For full details about the
contents of these views, refer to Oracle Database Reference. However, be aware that the
format and columns of the DBA_AUDIT_TRAIL view may change across Oracle
Database releases.

If the database destination for audit records becomes full or unavailable, and,
therefore, unable to accept new records, then an audited action cannot complete.
Instead, Oracle Database generates an error message and does not audit the action.
You can control the size of the audit trail to make it more manageable. (In fact, Oracle
strongly recommends that you do so.) See "Controlling the Size of the Database Audit
Trail" on page 9-59 for more information. See also "Keeping Audited Information
Manageable" on page 10-19.

The audit trail does not store information about any data values that might be
involved in the audited statement. For example, old and new data values of updated

See Also: "Purging Audit Trail Records" on page 9-66

Note: If the AUDIT_TRAIL initialization parameter is set to XML or
XML, EXTENDED, then Oracle Database sends standard audit records
to operating system files in XML format. Because XML is a standard
document format, many utilities are available to parse and analyze
XML data.

Managing Audit Trail Records

Verifying Security Access with Auditing 9-59

rows are not stored when an UPDATE statement is audited. However, you can perform
this specialized type of auditing by using fine-grained auditing methods.

You can use the Flashback Query feature to show the old and new values of the
updated rows, subject to any auditing policy presently in force. The current policies
are enforced even if the flashback is to an old query that was originally subject to a
different policy. Current business access rules always apply.

Controlling the Size of the Database Audit Trail
If the database audit trail is full and no more audit records can be inserted, then
underlying statement cannot complete successfully until you purge the audit trail.
Oracle Database issues errors to all users who issue statements that cause the audit.
Therefore, you must control the growth and size of the audit trail.

When auditing is enabled and audit records are being generated, the audit trail
increases according to two factors:

■ The number of audit options turned on

■ The frequency of execution of audited statements

To control the growth of the audit trail, you can use the following methods:

■ Enable and disable database auditing. If it is enabled, then audit records are
generated and stored in the audit trail. If it is disabled, then audit records are not
generated. (Remember that some activities are always audited.)

■ Be selective about the audit options that are turned on. If more selective auditing
is performed, then useless or unnecessary audit information is not generated and
stored in the audit trail. You can use fine-grained auditing to selectively audit only
certain conditions.

■ Tightly control the ability to perform object auditing. You can accomplish this in
the following ways:

– A security administrator owns all objects and never grants the AUDIT ANY
system privilege to any other user. Alternatively, all schema objects can belong
to a schema for which the corresponding user does not have CREATE
SESSION privilege.

See Also:

■ "Auditing Specific Activities with Fine-Grained Auditing" on
page 9-37 for more information about methods of fine-grained
auditing

■ Oracle Database Administrator's Guide for information about
auditing table changes by using Flashback Transaction Query

■ Flashback entries in the table of system privileges listed in the
GRANT SQL statement section of Oracle Database SQL Language
Reference

Note: You can find information about the log history by querying the
V$LOGMNR_CONTENTS data dictionary view. The CLIENT_ID column
of this view records changes to the session client identifier. To query
this view, you must have the SELECT ANY TRANSACTION system
privilege.

Managing Audit Trail Records

9-60 Oracle Database Security Guide

– All objects are contained in schemas that do not correspond to real database
users (that is, the CREATE SESSION privilege is not granted to the
corresponding user). The security administrator is the only user granted the
AUDIT ANY system privilege.

In both scenarios, a security administrator controls entirely object auditing.

The maximum size of the database audit trail tables (AUD$ and FGA_LOG$) is
determined by the default storage parameters of the SYSTEM tablespace, in which it is
stored by default. If you are concerned that a too-large database audit trail will affect
the SYSTEM table performance, then consider moving the database audit trail tables to
a different tablespace.

Moving the Database Audit Trail to a Different Tablespace
By default, the SYSTEM tablespace stores the database audit trail SYS.AUD$ and
SYS.FGA_LOG$ tables. You can change this default location to another tablespace,
such as the SYSAUX tablespace or a user-created tablespace. You may want to move the
database audit trail tables to a different tablespace if the SYSTEM tablespace is too
busy. Another reason for moving these audit trail tables to a different tablespace is if
you plan to purge them by using the DBMS_AUDIT_MGMT PL/SQL package
procedures.

Be aware that moving the database audit trail tables to a different tablespace can take a
long time, depending on the amount of audit data in the audit tables, so you may want
to do this during a time when database activity is slow.

To move the database audit trail from SYSTEM to a different tablespace:

1. Log in to SQL*Plus as an administrator who has the EXECUTE privilege on the
DBMS_AUDIT_MGMT PL/SQL package.

For more information about the DBMS_AUDIT_MGMT PL/SQL package, see Oracle
Database PL/SQL Packages and Types Reference.

2. Check the tablespace to which you want to move the database audit trail tables.

You may need to optimize and allocate more space to this tablespace, including
the SYSAUX auxiliary tablespace. For more information, see Oracle Database
Performance Tuning Guide.

3. Run the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION PL/SQL procedure
to specify the name of the destination tablespace.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_LOCATION(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_LOCATION_VALUE => 'AUD_AUX');
END;

In this example:

■ AUDIT_TRAIL_TYPE: Refers to the database audit trail type. Enter one of the
following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table,
AUD$.

See Also: Operating system-specific Oracle Database
documentation for more information about managing the operating
system audit trail when directing audit records to that location

Managing Audit Trail Records

Verifying Security Access with Auditing 9-61

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail
table, FGA_LOG$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and
fine-grained audit trail tables.

■ AUDIT_TRAIL_LOCATION_VALUE: Specifies the destination tablespace. This
example specifies a tablespace named AUD_AUX.

Auditing the Database Audit Trail
At times an application must give the SYS.AUD$ system table access to regular users
(non-SYSDBA users). For example, an audit report generator needs access to AUD$
table to generate daily reports on possible violations. Also, many installations have a
distinct auditor role to achieve separation of duty.

In this case, be aware that DML statements such as INSERT, UPDATE, MERGE, and
DELETE are always audited and recorded in the SYS.AUD$ table. You can check these
activities by querying the DBA_AUDIT_TRAIL and DBA_COMMON_AUDIT_TRAIL
views.

If a user has SELECT, UPDATE, INSERT, and DELETE privileges on SYS.AUD$ and
executes a SELECT operation, then the audit trail will have a record of that operation.
That is, SYS.AUD$ will have a row identifying the SELECT action on itself, as for
example row 1.

If a user later tries to delete this row from SYS.AUD$, then the DELETE operation
succeeds, because the user has the privilege to perform this action. However, this
DELETE action on SYS.AUD$ is also recorded in the audit trail. Setting up this type of
auditing acts as a safety feature, potentially revealing unusual or unauthorized
actions.

Archiving the Database Audit Trail
You should periodically archive and then purge the audit trail to prevent it from
growing too large. Archiving and purging both frees audit trail space and facilitates
the purging of the database audit trail. See "Purging Audit Trail Records" on page 9-66
for different ways of purging the audit trail records.

You can create an archive of the database audit trail by using one of the following
methods:

■ Oracle Audit Vault. You install Oracle Audit Vault separately from Oracle
Database. For more information, see Oracle Audit Vault Administrator's Guide.

■ Oracle Data Warehouse. Oracle Data Warehouse is automatically installed with
Oracle Database. For more information, see Oracle Warehouse Builder Installation
and Administration Guide.

After you complete the archive, you can purge the database audit trail contents. See
"Purging Audit Trail Records" on page 9-66 for more information.

To archive standard and fine-grained audit records, you can copy the relevant records
to a normal database table. For example:

Note: DELETE, INSERT, UPDATE, and MERGE operations on
SYS.AUD$ table are always audited. These audit records are not
allowed to be deleted.

See Also: "Auditing Sensitive Information" on page 10-18

Managing Audit Trail Records

9-62 Oracle Database Security Guide

INSERT INTO table SELECT ... FROM SYS.AUD$...;
INSERT INTO table SELECT ... FROM SYS.FGA_LOG$...;

To purge the database audit trail, see the following sections:

■ "Scheduling an Automatic Purge Job for the Audit Trail" on page 9-67

■ "Manually Purging the Audit Trail" on page 9-72

■ "Purging a Subset of Records from the Database Audit Trail" on page 9-74

Managing the Operating System Audit Trail
This section contains:

■ If the Operating System Audit Trail Becomes Full

■ Setting the Size of the Operating System Audit Trail

■ Setting the Age of the Operating System Audit Trail

■ Archiving the Operating System Audit Trail

If the Operating System Audit Trail Becomes Full
Be aware that an operating system audit trail or file system, including the Windows
Event Log, can become full, and therefore, unable to accept new records, including
audit records from Oracle Database. In this case, Oracle Database cancels and rolls
back the operation being performed, including operations that normally are always
audited. (See "Activities That Are Always Audited for All Platforms" on page 9-4.) If
the operating system audit trail becomes full, then set the AUDIT_TRAIL parameter to
use database audit trail (such as DB or DB, EXTENDED). This prevents the audited
actions from completing if their audit records cannot be stored. You should
periodically archive and purge the operating system audit file to prevent these types of
failures.

If you plan to use operating system auditing, then ensure that the operating system
audit trail or the file system does not fill completely. Most operating systems provide
administrators with sufficient information and warning to ensure this does not occur.
If you configure auditing to use the database audit trail, you can prevent this potential
loss of audit information. Oracle Database prevents audited events from occurring if
the audit trail is unable to accept the database audit record for the statement.

Periodically archive and then purge the operating system audit trail. See "Archiving
the Operating System Audit Trail" on page 9-65 and "Purging Audit Trail Records" on
page 9-66for more information.

Setting the Size of the Operating System Audit Trail
To control the size of the operating system audit trail, set the DBMS_AUDIT_MGMT.OS_
FILE_MAX_SIZE property by using the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_
PROPERTY PL/SQL procedure. Remember that you must have the EXECUTE privilege
for the DBMS_AUDIT_MGMT PL/SQL package before you can use it. When the
operating system file meets the size limitation you set, Oracle Database stops adding
records to the current file and then creates a new operating system file for the

See Also:

■ "Purging Audit Trail Records" on page 9-66

■ "Using the Syslog Audit Trail on UNIX Systems" on page 9-18

■ "Activities That Are Always Audited for All Platforms"

Managing Audit Trail Records

Verifying Security Access with Auditing 9-63

subsequent records. For more information about the DBMS_AUDIT_MGMT PL/SQL
package, see Oracle Database PL/SQL Packages and Types Reference.

If you set both the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE and the DBMS_AUDIT_
MGMT.OS_FILE_MAX_AGE (described in "Setting the Age of the Operating System
Audit Trail" on page 9-64) properties, then Oracle Database performs the action based
the property value limit that is met first.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE,
 AUDIT_TRAIL_PROPERTY_VALUE => 102400);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Specifies the operating system audit trail. Enter one of the
following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail files
with the .aud extension. (This setting does not apply to Windows Event Log
entries. Nor does it apply to syslog audit records, when the AUDIT_SYSLOG_
LEVEL initialization parameter is set.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML audit trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and XML
audit trail files.

■ AUDIT_TRAIL_PROPERTY: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_
SIZE property, which sets the maximum size. To find the status of the current
property settings, query the PARAMETER_NAME and PARAMETER_VALUE columns
of the DBA_AUDIT_MGMT_CONFIG_PARAMS data dictionary view.

■ AUDIT_TRAIL_PROPERTY_VALUE: Sets the maximum size to 102400 kilobytes,
that is, 10 megabytes. The default setting is 10,000 kilobytes (approximately 10
megabytes). Do not exceed 2 gigabytes.

Clearing the DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE Setting
To clear the maximum file size setting, use the DBMS_AUDIT_MGMT.CLEAR_AUDIT_
TRAIL_PROPERTY procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.OS_FILE_MAX_SIZE,
 USE_DEFAULT_VALUES => TRUE);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Specifies the operating system audit trail. Enter one of the
AUDIT_TRAIL_TYPE values described in "Setting the Size of the Operating
System Audit Trail" on page 9-62.

Managing Audit Trail Records

9-64 Oracle Database Security Guide

■ AUDIT_TRAIL_PROPERTY: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_
SIZE property. You can query the DBA_AUDIT_MGMT_CONFIG_PARAMS data
dictionary view to find the current status of this property.

■ USE_DEFAULT_VALUES: Enter one of the following values:

– TRUE: Clears the current value and uses the default value, 10,000 kilobytes,
instead.

– FALSE: Oracle Database does not use a default maximum size for the
operating system or XML file growth. The files will continue to grow without
limitation unless you configure the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE
property. The default setting is FALSE.

Setting the Age of the Operating System Audit Trail
To control the age of the operating system audit trail, use the DBMS_AUDIT_
MGMT.SET_AUDIT_TRAIL_PROPERTY PL/SQL procedure. Remember that you must
have the EXECUTE privilege for the DBMS_AUDIT_MGMT PL/SQL package before you
can use it. When the operating system file meets the age limitation you set, Oracle
Database stops adding records to the current file and then creates a new operating
system file for the subsequent records. For more information about the DBMS_AUDIT_
MGMT PL/SQL package, see Oracle Database PL/SQL Packages and Types Reference.

If you set both the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE and the DBMS_AUDIT_
MGMT.OS_FILE_MAX_SIZE (described in "Setting the Size of the Operating System
Audit Trail" on page 9-62) properties, then Oracle Database controls the growth of the
Audit file based on the property value limit that is met first.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE,
 AUDIT_TRAIL_PROPERTY_VALUE => 10);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Specifies the operating system audit trail. Enter one of the
following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail files
with the .aud extension. (This setting does not apply to Windows Event Log
entries. Nor does it apply to syslog audit records, when the AUDIT_SYSLOG_
LEVEL initialization parameter is set.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML audit trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and XML
audit trail files.

■ AUDIT_TRAIL_PROPERTY: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_
AGE property to set the maximum age. To find the status of the current property
setting, query the DBA_AUDIT_MGMT_CONFIG_PARAMS data dictionary view.

■ AUDIT_TRAIL_PROPERTY_VALUE: Sets the maximum age to 10 days. Enter a
value between 1 and 495. The default age is 5 days.

Managing Audit Trail Records

Verifying Security Access with Auditing 9-65

Clearing the DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE Setting
To clear the maximum file age setting, use the DBMS_AUDIT_MGMT.CLEAR_AUDIT_
TRAIL_PROPERTY procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.OS_FILE_MAX_AGE,
 USE_DEFAULT_VALUES => TRUE);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Specifies operating system audit trail. Enter one of the
AUDIT_TRAIL_TYPE values listed in "Setting the Age of the Operating System
Audit Trail" on page 9-64.

■ AUDIT_TRAIL_PROPERTY: Specifies the DBMS_AUDIT_MGMT.OS_FILE_MAX_
AGE property. Query the PARAMETER_NAME and PARAMETER_VALUE columns of
the DBA_AUDIT_MGMT_CONFIG_PARAMS data dictionary view to find the current
status of this property.

■ USE_DEFAULT_VALUES: Specify one of the following values:

– TRUE: Clears the current value and uses the default value, 5 days, instead.

– FALSE: Oracle Database does not use a default maximum age for the
operating system or XML file growth. In this case, the files will continue to age
without limitation unless you configure the DBMS_AUDIT_MGMT.OS_FILE_
MAX_SIZE property. The default setting is FALSE.

Archiving the Operating System Audit Trail
You should periodically archive the operating system audit trail. Use your
platform-specific operating system tools to create an archive of the operating system
audit files.

Use the following methods to archive the operating system audit files:

■ Use Oracle Audit Vault. You install Oracle Audit Vault separately from Oracle
Database. For more information, see Oracle Audit Vault Administrator's Guide.

■ Create tape or disc backups. You can create a compressed file of the audit files,
and then store it on tapes or discs. Consult your operating system documentation
for more information.

Afterwards, you should purge (delete) the operating system audit records both to free
audit trail space and to facilitate audit trail management. See "Purging Audit Trail
Records" on page 9-66 for different ways that you can use to purge the operating
system audit trail records.

Purging Audit Trail Records

9-66 Oracle Database Security Guide

Purging Audit Trail Records
This section contains:

■ About Purging Audit Trail Records

■ Selecting an Audit Trail Purge Method

■ Scheduling an Automatic Purge Job for the Audit Trail

■ Manually Purging the Audit Trail

■ Purging a Subset of Records from the Database Audit Trail

■ Other Audit Trail Purge Operations

■ Example: Directly Calling a Database Audit Trail Purge Operation

About Purging Audit Trail Records
You should periodically archive and then delete (purge) audit trail records, because
the audit trail cannot accept new records if it grows too large. This section describes a
variety of ways that you can use to purge both the database and operating system
audit trail records. You can purge a subset of database audit trail records. For both
database and operating system audit trail types, you can manually purge the records
or create a purge job that performs at a specified time interval. In that case, the purge
operation either purges the audit trail records that were created before the archive
timestamp, or it purges all audit trail records.

To perform the audit trail purge tasks, in most cases, you use the DBMS_AUDIT_MGMT
PL/SQL package. You must have the EXECUTE privilege for DBMS_AUDIT_MGMT
before you can use it.

If you have Oracle Audit Vault installed, the audit trail purge process differs from the
procedures described in this manual. For example, Oracle Audit Vault archives the
audit trail for you. See Oracle Audit Vault Administrator's Guide.

Note: Oracle Database audits all deletions from the audit trail,
without exception. See "Auditing the Database Audit Trail" on
page 9-61 and "Auditing SYS Administrative Users" on page 9-52.

See Also:

■ Oracle Database PL/SQL Packages and Types Reference for more
information about the DBMS_AUDIT_MGMT PL/SQL package

■ Oracle Database Reference for detailed information about the DBA_
AUDIT_MGMT-related views

Purging Audit Trail Records

Verifying Security Access with Auditing 9-67

Selecting an Audit Trail Purge Method
Table 9–7 provides a roadmap for selecting an audit trail purge method.

Scheduling an Automatic Purge Job for the Audit Trail
You can purge the entire audit trail, or only a portion of the audit trail that was created
before a timestamp. For the database audit trail, the individual audit records created
before the timestamp can be purged. For the operating system audit trail, you purge
audit files that were created before the timestamp.

Be aware that purging the audit trail, particularly a large one, can take a while to
complete. Consider scheduling the purge job so that it runs during a time when the
database is not busy.

Table 9–7 Selecting an Audit Trail Purge Method

What Do You Want to Purge? About This Type of Purge Method

All audit records, or audit records
created before a specified timestamp,
on a regularly scheduled basis

You can schedule a purge operation to occur an specific times. For
example, you can schedule it for every Saturday at 2 a.m.

General steps:

1. If necessary, tune online and archive redo log sizes to accommodate
the additional records generated during the audit table purge process.

2. Plan a timestamp and archive strategy.

3. Initialize the audit trail cleanup operation.

4. Set an archive timestamp for the audit records.

5. Create and schedule the purge job.

6. Optionally, configure the audit trail to be deleted in batches.

See "Scheduling an Automatic Purge Job for the Audit Trail" on page 9-67
for more information.

All audit records, or records that were
created before a specified timestamp,
when you want

You can manually purge the audit records right away in a one-time
operation, rather than creating a purge schedule.

General steps:

1. If necessary, tune online and archive redo log sizes to accommodate
the additional records generated during the audit table purge process.

2. Plan a timestamp and archive strategy.

3. Initialize the audit trail cleanup operation.

4. Set an archive timestamp for the audit records.

5. Optionally, configure the audit trail to be deleted in batches.

6. Run the purge operation.

See "Manually Purging the Audit Trail" on page 9-72 for more information.

Just a subset of the audit records from
the database audit trail

You can manually purge just a subset of the audit records. For example,
you can delete all audit records that were created between May 14, 2010
and June 14, 2010.

General steps:

1. If necessary, tune online and archive redo log sizes to accommodate
the additional records generated during the audit table purge process.

2. Archive the audit records you want to purge.

3. As a user with administrative privileges, delete from the SYS.AUD$
table.

See "Purging a Subset of Records from the Database Audit Trail" on
page 9-74 for more information.

Purging Audit Trail Records

9-68 Oracle Database Security Guide

You can create multiple purge jobs for different audit trail types, so long as they do not
conflict. For example, you can create a purge job for the standard audit trail table and
then the fine-grained audit trail table. However, you cannot then create a purge job for
both or all types, that is, by using the DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD or
DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL property.

To create and schedule an automatic purge job:

■ Step 1: If Necessary, Tune Online and Archive Redo Log Sizes

■ Step 2: Plan a Timestamp and Archive Strategy

■ Step 3: Initialize the Audit Trail Cleanup Operation

■ Step 4: Optionally, Set an Archive Timestamp for Audit Records

■ Step 5: Create and Schedule the Purge Job

■ Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches

Step 1: If Necessary, Tune Online and Archive Redo Log Sizes
The purge process may generate additional redo logs. Before you run this process, you
may need to tune online and archive redo log sizes to accommodate the additional
records generated during the audit table purge process. For more information about
tuning log files, see Oracle Database Performance Tuning Guide and Oracle Database
Administrator's Guide.

Step 2: Plan a Timestamp and Archive Strategy
You must record the timestamp of the database and operating system audit records
before you can archive them. You can check the timestamp date by querying the DBA_
AUDIT_MGMT_LAST_ARCH_TS data dictionary view. Later on, when the purge takes
place, Oracle Database purges only the audit trail records that were created before the
date of this timestamp. See "Step 4: Optionally, Set an Archive Timestamp for Audit
Records" on page 9-69 for more information.

After you have timestamped the records, you are ready to archive them. See the
following sections for more information:

■ "Archiving the Database Audit Trail" on page 9-61

■ "Archiving the Operating System Audit Trail" on page 9-65

Step 3: Initialize the Audit Trail Cleanup Operation
Before you can purge the audit trail by using the DBMS_AUDIT_MGMT.CLEAN_
AUDIT_TRAIL PL/SQL procedure, you must initialize the audit trail for the cleanup
operation. For the database audit trail, if you have not moved the database audit trail
tables (SYS.AUD$ and SYS.FGA_LOG$) from the SYSTEM tablespace to another
tablespace, this process moves these tables to the SYSAUX tablespace or to the
tablespace that you specified in "Moving the Database Audit Trail to a Different
Tablespace" on page 9-60. Be aware that moving these tables takes a while, so you may
want to schedule the initialization process during time when the database is not busy.

To initialize the audit trail cleanup operation:

1. Log in to SQL*Plus as an administrative user who has the EXECUTE privilege on
the DBMS_AUDIT_MGMT PL/SQL package.

2. If you have not done so already, initialize the audit trail cleanup operation by
running the DBMS_AUDIT_MGMT.INIT_CLEANUP procedure. (You only need to
perform this step once.

Purging Audit Trail Records

Verifying Security Access with Auditing 9-69

You can check if the audit trail has been initialized for cleanup by running the
DBMS_AUDIT_MGMT.IS_CLEANUP_INITIALIZED function. See "Verifying That
the Audit Trail Is Initialized for Cleanup" on page 9-75.)

For example:

BEGIN
 DBMS_AUDIT_MGMT.INIT_CLEANUP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 DEFAULT_CLEANUP_INTERVAL => 12);
END;
/

In this specification:

■ AUDIT_TRAIL_TYPE: Enter one of the following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table,
AUD$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail
table, FGA_LOG$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and
fine-grained audit trail tables.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail
files with the .aud extension. (This setting does not apply to Windows
Event Log entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML Operating system audit
trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and
XML audit trail files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL: All audit trail records, that is,
both database audit trail and operating system audit trail types.

■ DEFAULT_CLEANUP_INTERVAL: Specify the desired default hourly purge
interval (for example, 12 for every 12 hours). The DBMS_AUDIT_MGMT
procedures use this value to determine how to purge audit records. The timing
begins when you run the DBMS_AUDIT_MGMT.INIT_CLEANUP procedure. To
update this value later, set the DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL
property of the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY
procedure.

The DEFAULT_CLEANUP_INTERVAL setting must indicate the frequency in
which DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL is called. If you are
uncertain about the frequency, set it to an approximate value. You can change
this value later on by using the DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_
PROPERTY procedure.

Step 4: Optionally, Set an Archive Timestamp for Audit Records
If you want to delete all of the audit trail, you can bypass this step.

You can set a timestamp when the last audit record was archived. Setting an archive
timestamp provides a hint to the cleanup infrastructure that the cleanup operation will
be invoked every 6 hours.

For the database audit trail, you must set the timestamp after you have initialized the
audit trail cleanup operation. To find the last archive timestamps for the audit trail,

Purging Audit Trail Records

9-70 Oracle Database Security Guide

you can query the DBA_AUDIT_MGMT_LAST_ARCH_TS data dictionary view. After
you set the timestamp, all audit records in the audit trail that indicate a time earlier
than that timestamp are purged when you run the DBMS_AUDIT_MGMT.CLEAN_
AUDIT_TRAIL PL/SQL procedure. If you want to clear the archive timestamp setting,
see "Clearing the Archive Timestamp Setting" on page 9-78.

For the operating system audit trail, remember that you cannot delete individual audit
records in the operating system (including XML) audit files. Instead, Oracle Database
removes the entire file that contains the timestamped records.

If you are using Oracle Real Application Clusters (Oracle RAC), then use Network
Time Protocol (NTP) to synchronize the time on each computer where you have
installed an Oracle Database instance. For example, suppose you set the time for one
Oracle RAC instance node at 11:00:00 a.m. and then set the next Oracle RAC instance
node at 11:00:05. As a result, the two nodes have inconsistent times. You can use
Network Time Protocol (NTP) to synchronize the times for these Oracle RAC instance
nodes.

To set the timestamp, use the DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP
PL/SQL procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 LAST_ARCHIVE_TIME => '2009-05-28 06:30:00.00'
 RAC_INSTANCE_NUMBER => 0);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Enter one of the following settings:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Specified the standard audit
trail table, AUD$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Specifies the fine-grained
audit trail table, FGA_LOG$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail files
with the .aud extension. (This setting does not apply to Windows Event Log
entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: Specifies XML audit trail files.

■ LAST_ARCHIVE_TIME: Enter the timestamp in YYYY-MM-DD HH:MI:SS.FF UTC
(Coordinated Universal Time) format for AUDIT_TRAIL_DB_AUD and AUDIT_
TRAIL_FGA_STD (standard and fine-grained audit trails), and in the Local Time
Zone for AUDIT_TRAIL_OS and AUDIT_TRAIL_XML (operating system and XML
audit trails).

■ RAC_INSTANCE_NUMBER: Specifies the instance number for an Oracle RAC
installation. If you specified the DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD or
DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD audit trail types, you can omit the
RAC_INSTANCE_NUMBER argument. This is because there is only one AUD$ and
FGA_LOG$ table, even for an Oracle RAC installation. The default is 0, which is
used for single-instance database installations.

Purging Audit Trail Records

Verifying Security Access with Auditing 9-71

Typically, after you set the timestamp, you can use the DBMS_AUDIT_MGMT.CLEAN_
AUDIT_TRAIL PL/SQL procedure to remove the audit records that were created
before the timestamp date.

Step 5: Create and Schedule the Purge Job
Create and schedule the purge job by running the DBMS_AUDIT_MGMT.CREATE_
PURGE_JOB PL/SQL procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CREATE_PURGE_JOB (
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_PURGE_INTERVAL => 12,
 AUDIT_TRAIL_PURGE_NAME => 'Standard_Audit_Trail_PJ',
 USE_LAST_ARCH_TIMESTAMP => TRUE);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Enter one of the following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table,
AUD$

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail table,
FGA_LOG$

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and fine-grained
audit trail tables

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail files
with the .aud extension. (This setting does not apply to Windows Event Log
entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML audit trail files

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and XML
audit trail files

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL: All audit trail records, that is, both
database audit trail and operating system audit trail types

■ AUDIT_TRAIL_PURGE_INTERVAL: Specify the hourly interval for this purge job
to run. The timing begins when you run the DBMS_AUDIT_MGMT.CREATE_
PURGE_JOB procedure, in this case, 12 hours after you run this procedure. Later
on, if you want to update this value, run the DBMS_AUDIT_MGMT.SET_PURGE_
JOB_INTERVAL procedure.

■ USE_LAST_ARCH_TIMESTAMP: Enter either of the following settings:

– TRUE: Deletes audit records created before the last archive timestamp. To
check the last recorded timestamp, query the LAST_ARCHIVE_TS column of
the DBA_AUDIT_MGMT_LAST_ARCH_TS data dictionary view. The default
value is TRUE. Oracle recommends that you set USE_LAST_ARCH_
TIMESTAMP to TRUE.

– FALSE: Deletes all audit records without considering last archive timestamp.
Be careful about using this setting, in case you inadvertently delete audit
records that should have been deleted.

Purging Audit Trail Records

9-72 Oracle Database Security Guide

Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches
By default, the DBMS_AUDIT_MGMT package procedures delete the database and
operating system audit trail records in batches of 10000 database audit records, or 1000
operating system audit files. You can set this batch size to a different value if you want.
Later on, when Oracle Database runs the purge job, it deletes each batch, rather than
all records together. If the audit trail is very large (and they can grow quite large),
deleting the records in batches facilitates the purge operation.

To find the current batch setting, you can query the PARAMETER_NAME and
PARAMETER_VALUE columns of the DBA_AUDIT_MGMT_CONFIG_PARAMS data
dictionary view. To set the batch size, use the DBMS_AUDIT_MGMT.SET_AUDIT_
TRAIL_PROPERTY procedure. If you later want to clear this setting, see "Clearing the
Database Audit Trail Batch Size" on page 9-78.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.DB_DELETE_BATCH_SIZE,
 AUDIT_TRAIL_PROPERTY_VALUE => 100000);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Specifies the audit trail type, which in this case is the
database system audit trail. Enter one of the following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table,
AUD$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail table,
FGA_LOG$.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit files.

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML audit files.

■ AUDIT_TRAIL_PROPERTY: Uses the DBMS_AUDIT_MGMT.DB_DELETE_BATCH_
SIZE property to indicate the database audit trail batch size setting. If you want to
batch the operating system audit trail, then use the FILE_DELETE_BATCH_SIZE
property.

■ AUDIT_TRAIL_PROPERTY_VALUE: Sets the number of audit record files to be
100,000 for each batch. Enter a value between 100 and 1000000. To determine
this number, consider the total number of records being purged, and the time
interval in which the purge operation is performed. The default is 10000 for the
database audit trail and 1000 for the operating system audit trail records.

Manually Purging the Audit Trail
You can manually purge the audit trail right away, without scheduling a purge job.
Similar to a purge job, you can purge audit trail records that were created before an
archive timestamp date or all the records in the audit trail.

Note the following about the DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL PL/SQL
procedure:

■ Only the current audit directory is cleaned up when you run this procedure.

Purging Audit Trail Records

Verifying Security Access with Auditing 9-73

■ On Microsoft Windows, because the DBMS_AUDIT_MGMT package does not
support cleanup of Windows Event Viewer, setting the AUDIT_TRAIL_TYPE
property to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS has no effect. This is because
operating system audit records on Windows are written to Windows Event
Viewer. The DBMS_AUDIT_MGMT package does not support this type of cleanup
operation.

■ On UNIX platforms, if you set the AUDIT_SYSLOG_LEVEL initialization
parameter to a valid value as listed in Oracle Database Reference, then Oracle
Database writes the operating system log files to syslog files. If you set the AUDIT_
TRAIL_TYPE property to DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS, then the
procedure only removes .aud files under audit directory (This directory is
specified by the AUDIT_FILE_DEST initialization parameter).

■ When the AUDIT_TRAIL_TYPE parameter is set to DBMS_AUDIT_MGMT.AUDIT_
TRAIL_XML, this procedure only cleans up XML audit files (.xml) in the current
audit directory. Oracle Database maintains an index file, called adx_$ORACLE_
SID.txt, which lists the XML files that were generated by the XML auditing. The
cleanup procedure does not remove this file.

For database audit trails, you must initialize the cleanup infrastructure by running the
DBMS_AUDIT_MGMT.INIT_CLEANUP procedure, and then purging the database audit
trail by using the method described in "Purging a Subset of Records from the Database
Audit Trail" on page 9-74.

To manually purge the audit trail:

1. Follow these steps under "Scheduling an Automatic Purge Job for the Audit Trail"
on page 9-67:

■ Step 1: If Necessary, Tune Online and Archive Redo Log Sizes

■ Step 2: Plan a Timestamp and Archive Strategy

■ Step 3: Initialize the Audit Trail Cleanup Operation

■ Step 4: Optionally, Set an Archive Timestamp for Audit Records

■ Step 5: Create and Schedule the Purge Job

■ Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches

2. Purge the audit trail records by running the DBMS_AUDIT_MGMT.CLEAN_AUDIT_
TRAIL PL/SQL procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 USE_LAST_ARCH_TIMESTAMP => TRUE);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Enter one of the following values:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table,
AUD$

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail
table, FGA_LOG$

Purging Audit Trail Records

9-74 Oracle Database Security Guide

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and
fine-grained audit trail tables

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail
files with the .aud extension. (This setting does not apply to Windows
Event Log entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML audit trail files

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and
XML audit trail files

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL: All audit trail records, that is,
both database audit trail and operating system audit trail types

■ USE_LAST_ARCH_TIMESTAMP: Enter either of the following settings:

– TRUE: Deletes audit records created before the last archive timestamp. To
set the archive timestamp, see "Step 4: Optionally, Set an Archive
Timestamp for Audit Records" on page 9-69. The default (and
recommended) value is TRUE. Oracle recommends that you set USE_
LAST_ARCH_TIMESTAMP to TRUE.

– FALSE: Deletes all audit records without considering last archive
timestamp. Be careful about using this setting, in case you inadvertently
delete audit records that should have been deleted.

Purging a Subset of Records from the Database Audit Trail
You can manually remove records from the database audit trail tables. This method
can be useful if you want to remove a specific subset of records. You can use this
method if the database audit trail table is in any tablespace, including the SYSTEM
tablespace.

For example, to delete audit records that were created later than the evening of
February 28, 2009 but before March 28, 2009, enter the following statement:

DELETE FROM SYS.AUD$
 WHERE NTIMESTAMP# > TO_TIMESTAMP ('28-FEB-09 09.07.59.907000 PM') AND
 NTIMESTAMP# < TO_TIMESTAMP ('28-MAR-09 09.07.59.907000 PM');

Alternatively, to delete all audit records from the audit trail, enter the following
statement:

DELETE FROM SYS.AUD$;

Only the user SYS or a user to whom SYS granted the DELETE privilege on SYS.AUD$
can delete records from the database audit trail.

Note: If the audit trail is full and connections are being audited
(that is, if the AUDIT SESSION statement is set), then typical users
cannot connect to the database because the associated audit record
for the connection cannot be inserted into the audit trail. In this
case, connect as SYS with the SYSDBA privilege, and make space
available in the audit trail. Remember that operations by SYS are
not recorded in the standard audit trail, but they are audited if you
set the AUDIT_SYS_OPERATIONS parameter to TRUE.

Purging Audit Trail Records

Verifying Security Access with Auditing 9-75

After you delete the rows from the database audit trail table, the freed space is
available for reuse by that table. (The SYS.AUD$ table is allocated only as many
extents as are necessary to maintain current audit trail records.) You do not need to do
anything to make this space available to the table for reuse. If you want to use this
space for another table, then you can run the following statement to free the space to
the tablespace so that other objects can allocate its space:

ALTER TABLE SYS.AUD$ SHRINK SPACE;

If you want to both delete all the rows from the database audit trail table and free the
used space for other tablespace objects, use the TRUNCATE TABLE statement. For
example:

TRUNCATE TABLE SYS.AUD$;

Other Audit Trail Purge Operations
This section contains:

■ Verifying That the Audit Trail Is Initialized for Cleanup

■ Setting the Default Audit Trail Purge Interval for Any Audit Trail Type

■ Cancelling the Initialization Cleanup Settings

■ Enabling or Disabling an Audit Trail Purge Job

■ Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job

■ Deleting an Audit Trail Purge Job

■ Clearing the Archive Timestamp Setting

■ Clearing the Database Audit Trail Batch Size

Verifying That the Audit Trail Is Initialized for Cleanup
You can check if the audit trail has been initialized for cleanup by running the DBMS_
AUDIT_MGMT.IS_CLEANUP_INITIALIZED function. If the audit trail has been
initialized, then this function returns TRUE. If it is not, it returns FALSE.

For example:

SET SERVEROUTPUT ON
BEGIN
 IF
 DBMS_AUDIT_MGMT.IS_CLEANUP_INITIALIZED(DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD)
 THEN
 DBMS_OUTPUT.PUT_LINE('AUD$ is initialized for cleanup');
 ELSE
 DBMS_OUTPUT.PUT_LINE('AUD$ is not initialized for cleanup.');
 END IF;
END;
/

This example verifies that the database standard audit trail has been initialized and
returns a message indicating its status. To select a setting for a different audit trail,
choose from the AUDIT_TRAIL_TYPE settings described in "Step 3: Initialize the Audit
Trail Cleanup Operation" on page 9-68.

Note: SYS.AUD$ and SYS.FGA_LOG$ are the only SYS objects
that can ever be directly modified.

Purging Audit Trail Records

9-76 Oracle Database Security Guide

Setting the Default Audit Trail Purge Interval for Any Audit Trail Type
You can set a default purge operation interval, in hours, that must pass before the next
purge operation takes place for a specified audit trail type.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL,
 AUDIT_TRAIL_PROPERTY_VALUE => 24);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Specifies the audit trail type, which in this case is the
database standard audit trail. Choose from the following settings:

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD: Standard audit trail table,
AUD$

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_STD: Fine-grained audit trail table,
FGA_LOG$

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD: Both standard and fine-grained
audit trail tables

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_OS: Operating system audit trail files
with the .aud extension. (This setting does not apply to Windows Event Log
entries.)

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML: XML Operating system audit trail
files

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_FILES: Both operating system and XML
audit trail files

– DBMS_AUDIT_MGMT.AUDIT_TRAIL_ALL: All audit trail records, that is, both
database audit trail and operating system audit trail types

You can set a default interval for multiple audit trail types, so long as they do not
conflict. For example, you can set individual intervals for the DBMS_AUDIT_
MGMT.AUDIT_TRAIL_AUD_STD and DBMS_AUDIT_MGMT.AUDIT_TRAIL_FGA_
STD properties, but not for the DBMS_AUDIT_MGMT.AUDIT_TRAIL_DB_STD
property.

■ AUDIT_TRAIL_PROPERTY: Sets the DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL
property to indicate the purge operation interval setting. To find the current
property settings, query the PARAMETER_NAME and PARAMETER_VALUE columns
of the DBA_AUDIT_MGMT_CONFIG_PARAMS data dictionary view. The timing
begins when you set the DBMS_AUDIT_MGMT.CLEAN_UP_INTERVAL property.

■ AUDIT_TRAIL_PROPERTY_VALUE: Updates the default hourly interval set by the
DBMS_AUDIT_MGMT.INIT_CLEANUP procedure. Enter a value between 1 and 999.

Cancelling the Initialization Cleanup Settings
You can cancel the DBMS_AUDIT_MGMT.INIT_CLEANUP settings, that is, the default
cleanup interval, by invoking the DBMS_AUDIT_MGMT.DEINIT_CLEANUP procedure.

Purging Audit Trail Records

Verifying Security Access with Auditing 9-77

For example, to cancel all purge settings for the standard audit trail:

BEGIN
 DBMS_AUDIT_MGMT.DEINIT_CLEANUP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD);
END;
/

In this example:

■ AUDIT_TRAIL_TYPE: Enter one of the AUDIT_TRAIL_TYPE settings listed in
"Step 3: Initialize the Audit Trail Cleanup Operation" on page 9-68.

Enabling or Disabling an Audit Trail Purge Job
To enable or disable an audit trail purge job, use the DBMS_AUDIT_MGMT.SET_
PURGE_JOB_STATUS PL/SQL procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_PURGE_JOB_STATUS(
 AUDIT_TRAIL_PURGE_NAME => 'OS_Audit_Trail_PJ',
 AUDIT_TRAIL_STATUS_VALUE => DBMS_AUDIT_MGMT.PURGE_JOB_ENABLE);
END;
/

In this example:

■ AUDIT_TRAIL_PURGE_NAME: Specifies a purge job called OS_Audit_Trail_PJ.
To find existing purge jobs, query the JOB_NAME and JOB_STATUS columns of the
DBA_AUDIT_MGMT_CLEANUP_JOBS data dictionary view.

■ AUDIT_TRAIL_STATUS_VALUE: Enter one of the following properties:

– DBMS_AUDIT_MGMT.PURGE_JOB_ENABLE: Enables the specified purge job.

– DBMS_AUDIT_MGMT.PURGE_JOB_DISABLE: Disables the specified purge job.

Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job
You can set a default purge operation interval, in hours, that must pass before the next
purge job operation takes place. The interval setting that is used in the DBMS_AUDIT_
MGMT.CREATE_PURGE_JOB procedure takes precedence over this setting.

For example:

BEGIN
 DBMS_AUDIT_MGMT.SET_PURGE_JOB_INTERVAL(
 AUDIT_TRAIL_PURGE_NAME => 'OS_Audit_Trail_PJ',
 AUDIT_TRAIL_INTERVAL_VALUE => 24);
END;
/

In this example:

■ AUDIT_TRAIL_PURGE_NAME: Specifies the name of the audit trail purge job. To
find a list of existing purge jobs, query the JOB_NAME and JOB_STATUS columns
of the DBA_AUDIT_MGMT_CLEANUP_JOBS data dictionary view.

■ AUDIT_TRAIL_INTERVAL_VALUE: Updates the default hourly interval set by the
DBMS_AUDIT_MGMT.CREATE_PURGE_JOB procedure. Enter a value between 1
and 999. The timing begins when you run the purge job.

Purging Audit Trail Records

9-78 Oracle Database Security Guide

Deleting an Audit Trail Purge Job
To delete an audit trail purge job, use the DBMS_AUDIT_MGMT.DROP_PURGE_JOB
PL/SQL procedure. To find existing purge jobs, query the JOB_NAME and JOB_
STATUS columns of the DBA_AUDIT_MGMT_CLEANUP_JOBS data dictionary view.

For example:

BEGIN
 DBMS_AUDIT_MGMT.DROP_PURGE_JOB(
 AUDIT_TRAIL_PURGE_NAME => 'FGA_Audit_Trail_PJ');
END;
/

In this example:

■ AUDIT_TRAIL_PURGE_NAME: Specifies a purge job called FGA_Audit_Trail_
PJ.

Clearing the Archive Timestamp Setting
To clear the archive timestamp setting, use the DBMS_AUDIT_MGMT.CLEAR_LAST_
ARCHIVE_TIMESTAMP PL/SQL procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CLEAR_LAST_ARCHIVE_TIMESTAMP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML',
 RAC_INSTANCE_NUMBER => 1);
END;
/

In this example:

■ RAC_INSTANCE_NUMBER: If the AUDIT_TRAIL_TYPE property is set to DBMS_
AUDIT_MGMT.AUDIT_TRAIL_OS or DBMS_AUDIT_MGMT.AUDIT_TRAIL_XML,
then you cannot set RAC_INSTANCE_NUMBER to 0. You can omit this setting or
specify 1 to indicate an instance number.

You can omit the RAC_INSTANCE_NUMBER setting when AUDIT_TRAIL_TYPE is
DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD or DBMS_AUDIT_MGMT.AUDIT_
TRAIL_FGA_STD, or if the database is not an Oracle RAC database. Otherwise,
specify the correct instance number. You can find the instance number by issuing
the SHOW PARAMETER INSTANCE_NUMBER command in SQL*Plus.

Clearing the Database Audit Trail Batch Size
To clear the batch size setting, use the DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_
PROPERTY procedure.

For example:

BEGIN
 DBMS_AUDIT_MGMT.CLEAR_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.DB_DELETE_BATCH_SIZE,
 USE_DEFAULT_VALUES => TRUE);
END;
/

Purging Audit Trail Records

Verifying Security Access with Auditing 9-79

In this example:

■ AUDIT_TRAIL_TYPE: Specifies the audit trail type, which in this case is the
database system audit trail. Enter one of the AUDIT_TRAIL_TYPE values listed in
"Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches" on
page 9-72.

■ AUDIT_TRAIL_PROPERTY: Specifies the DB_DELETE_BATCH_SIZE property.
Query the DBA_AUDIT_MGMT_CONFIG_PARAMS data dictionary view to find the
current status of this property.

■ USE_DEFAULT_VALUES: Is set to TRUE, which clears the current audit record
batch size and uses the default value, 10000, instead.

Example: Directly Calling a Database Audit Trail Purge Operation
The pseudo code in Example 9–27 creates a database audit trail purge operation that
the user calls by invoking the DBMS_ADUIT.CLEAN_AUDIT_TRAIL procedure. The
purge operation deletes records that were created before the last archived timestamp
by using a loop. The loop archives the audit records, calculates which audit records
were archived and uses the SetCleanUpAuditTrail call to set the last archive
timestamp, and then calls the CLEAN_AUDIT_TRAIL procedure. It deletes the
database audit trail records in batches of 100,000 records each. In this example, major
steps are in bold typeface.

Example 9–27 Directly Calling a Database Audit Trail Purge Operation

-- 1. Initialize the AUD$ table for cleanup:
PROCEDURE CleanUpAuditTrailMain()
BEGIN
 -- Connect to the database using appropriate login.
 CALL ConnectToDatabase();
 -- The login used must have privileges to modify Audit settings.
 -- Currently, the DBA will be the authorized user

 DBMS_AUDIT_MGMT.INIT_CLEANUP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 DEFAULT_CLEANUP_INTERVAL => 12);
END; /*PROCEDURE */
/
-- 2. Optionally, set the batch size:
BEGIN
 DBMS_AUDIT_MGMT.SET_AUDIT_TRAIL_PROPERTY(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 AUDIT_TRAIL_PROPERTY => DBMS_AUDIT_MGMT.DB_DELETE_BATCH_SIZE,
 AUDIT_TRAIL_PROPERTY_VALUE => 100000 /* delete batch size */);
END; /*PROCEDURE */
/
-- 3. Set the last archive timestamp:
PROCEDURE SetCleanUpAuditTrail()
BEGIN
 CALL FindLastArchivedTimestamp(AUD$);
 DBMS_AUDIT_MGMT.SET_LAST_ARCHIVE_TIMESTAMP(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 LAST_ARCHIVE_TIME => '20-AUG-2009 00:00:00');
END /* PROCEDURE */
/
-- 4. Run a customized archive procedure to purge the audit trail records:
BEGIN
 CALL MakeAuditSettings();

Finding Information About Audited Activities

9-80 Oracle Database Security Guide

 LOOP (/* How long to loop*/)
 -- Invoke function for audit record archival
 CALL DoAuditRecordArchival(AUD$);

 CALL SetCleanUpAuditTrail();
 IF(/* Clean up is needed immediately */)
 DBMS_AUDIT_MGMT.CLEAN_AUDIT_TRAIL(
 AUDIT_TRAIL_TYPE => DBMS_AUDIT_MGMT.AUDIT_TRAIL_AUD_STD,
 USE_LAST_ARCH_TIMESTAMP => TRUE);
 END IF
 END LOOP /*LOOP*/
END; /* PROCEDURE */
/

Finding Information About Audited Activities
This section contains:

■ Using Data Dictionary Views to Find Information About the Audit Trail

■ Using Audit Trail Views to Investigate Suspicious Activities

■ Deleting the Audit Trail Views

Using Data Dictionary Views to Find Information About the Audit Trail
Table 9–8 lists data dictionary views that provide auditing information. For detailed
information about these views, see Oracle Database Reference.

Tip: To find error information about audit policies, check the trace
files. The USER_DUMP_DEST initialization parameter sets the location
of the trace files.

Table 9–8 Data Dictionary Views That Display Information about the Database Audit Trail

View Description

ALL_AUDIT_POLICIES Describes the fine-grained auditing policies on the tables and views
accessible to the current user

ALL_AUDIT_POLICY_COLUMNS Describes the fine-grained auditing policy columns on the tables and
views accessible to the current user.

ALL_DEF_AUDIT_OPTS Lists default object-auditing options that are to be applied when objects
are created

AUDIT_ACTIONS Describes audit trail action type codes

DBA_AUDIT_EXISTS Lists audit trail entries produced BY AUDIT NOT EXISTS

DBA_AUDIT_MGMT_CLEAN_EVENTS Displays the history of purge events. Periodically, as user SYS
connected with the SYSDBA privilege, you should delete the contents of
this view so that it does not grow too large. For example:

DELETE FROM DBA_AUDIT_MGMT_CLEAN_EVENTS;

DBA_AUDIT_MGMT_CLEANUP_JOBS Displays the currently configured audit trail purge jobs

DBA_AUDIT_MGMT_CONFIG_PARAMS Displays the currently configured audit trail properties that are used by
the DBMS_AUDIT_MGMT PL/SQL package

DBA_AUDIT_MGMT_LAST_ARCH_TS Displays the last archive timestamps that have set for audit trail purges.

DBA_AUDIT_OBJECT Lists audit trail records for all objects in the system

DBA_AUDIT_POLICIES Lists all the fine-grained auditing policies on the system

Finding Information About Audited Activities

Verifying Security Access with Auditing 9-81

Using Audit Trail Views to Investigate Suspicious Activities
This section provides examples that demonstrate how to examine and interpret the
information in the audit trail. Suppose you want to audit the database for the
following suspicious activities:

■ Passwords, tablespace settings, and quotas for some database users are altered
without authorization.

■ A high number of deadlocks occur, most likely because of users acquiring
exclusive table locks.

■ Rows are arbitrarily deleted from the emp table in laurel's schema.

You suspect the users jward and swilliams of several of these detrimental actions.

To investigate, you issue the following statements (in the order specified):

AUDIT ALTER, INDEX, RENAME ON DEFAULT;
CREATE VIEW laurel.employee AS SELECT * FROM laurel.emp;
AUDIT SESSION BY jward, swilliams;

DBA_AUDIT_SESSION Lists all audit trail records concerning CONNECT and DISCONNECT

DBA_AUDIT_POLICY_COLUMNS Describes the fine-grained auditing policy columns on the tables and
views throughout the database.

DBA_AUDIT_STATEMENT Lists audit trail records concerning GRANT, REVOKE, AUDIT, NOAUDIT,
and ALTER SYSTEM statements throughout the database

DBA_AUDIT_TRAIL Lists all standard audit trail entries in the AUD$ table

DBA_COMMON_AUDIT_TRAIL Combines standard and fine-grained audit log records, and includes
SYS and mandatory audit records written in XML format

DBA_FGA_AUDIT_TRAIL Lists audit trail records for fine-grained auditing.

DBA_OBJ_AUDIT_OPTS Describes auditing options on all objects

DBA_PRIV_AUDIT_OPTS Describes current system privileges being audited across the system and
by user

DBA_STMT_AUDIT_OPTS Describes current statement auditing options across the system and by
user

USER_AUDIT_OBJECT Lists audit trail records for statements concerning objects that are
accessible to the current user

USER_AUDIT_POLICIES Describes the fine-grained auditing policy columns on the tables and
views accessible to the current user.

USER_AUDIT_SESSION Lists all audit trail records concerning connections and disconnections
for the current user

USER_AUDIT_STATEMENT Lists audit trail records concerning GRANT, REVOKE, AUDIT, NOAUDIT,
and ALTER SYSTEM statements issued by the user

USER_AUDIT_TRAIL Lists all standard audit trail entries in the AUD$ table relating to the
current user

USER_OBJ_AUDIT_OPTS Describes auditing options on all objects owned by the current user

V$LOGMNR_CONTENTS Contains log history information. To query this view, you must have the
SELECT ANY TRANSACTION privilege.

V$XML_AUDIT_TRAIL Shows standard, fine-grained, SYS, and mandatory audit records
written in XML format files.

Table 9–8 (Cont.) Data Dictionary Views That Display Information about the Database Audit Trail

View Description

Finding Information About Audited Activities

9-82 Oracle Database Security Guide

AUDIT ALTER USER;
AUDIT LOCK TABLE
 BY ACCESS
 WHENEVER SUCCESSFUL;
AUDIT DELETE ON laurel.emp
 BY ACCESS
 WHENEVER SUCCESSFUL;

The following statements are subsequently issued by the user jward:

ALTER USER tsmith QUOTA 0 ON users;
DROP USER djones;

The following statements are subsequently issued by the user swilliams:

LOCK TABLE laurel.emp IN EXCLUSIVE MODE;
DELETE FROM laurel.emp WHERE mgr = 7698;
ALTER TABLE laurel.emp ALLOCATE EXTENT (SIZE 100K);
CREATE INDEX laurel.ename_index ON laurel.emp (ename);
CREATE PROCEDURE laurel.fire_employee (empid NUMBER) AS
 BEGIN
 DELETE FROM laurel.emp WHERE empno = empid;
 END;
/

EXECUTE laurel.fire_employee(7902);

The following sections display the information relevant to your investigation that can
be viewed using the audit trail views in the data dictionary:

■ Listing Active Statement Audit Options

■ Listing Active Privilege Audit Options

■ Listing Active Object Audit Options for Specific Objects

■ Listing Default Object Audit Options

■ Listing Audit Records

■ Listing Audit Records for the AUDIT SESSION Option

Listing Active Statement Audit Options
The following query returns all the statement audit options that are set:

SELECT * FROM DBA_STMT_AUDIT_OPTS;

Output similar to the following appears:

USER_NAME AUDIT_OPTION SUCCESS FAILURE
-------------------- ------------------- ---------- ---------
JWARD DROP ANY CLUSTER BY ACCESS BY ACCESS
SWILLIAMS DEBUG PROCEDURE BY ACCESS BY ACCESS
MSEDLAK ALTER RESOURCE COST BY ACCESS BY ACCESS

Listing Active Privilege Audit Options
The following query returns all the privilege audit options that are set:

SELECT * FROM DBA_PRIV_AUDIT_OPTS;

Finding Information About Audited Activities

Verifying Security Access with Auditing 9-83

Output similar to the following appears:

USER_NAME PRIVILEGE SUCCESS FAILURE
------------------- -------------------- --------- ----------
ALTER USER BY ACCESS BY ACCESS

Listing Active Object Audit Options for Specific Objects
The following query returns all audit options set for any objects with names that start
with the characters emp and that are contained in the schema of laurel:

SELECT * FROM DBA_OBJ_AUDIT_OPTS
 WHERE OWNER = 'LAUREL' AND OBJECT_NAME LIKE 'EMP%';

Output similar to the following appears:

OWNER OBJECT_NAME OBJECT_TY ALT AUD COM DEL GRA IND INS LOC ...
----- ----------- --------- --- --- --- --- --- --- --- --- ...
LAUREL EMP TABLE S/S -/- -/- A/- -/- S/S -/- -/- ...
LAUREL EMPLOYEE VIEW -/- -/- -/- A/- -/- S/S -/- -/- ...

The view returns information about all the audit options for the specified object. The
information in the view is interpreted as follows:

■ A dash (-) indicates that the audit option is not set.

■ The S character indicates that the audit option is set BY SESSION.

■ The A character indicates that the audit option is set BY ACCESS.

■ Each audit option has two possible settings, WHENEVER SUCCESSFUL and
WHENEVER NOT SUCCESSFUL, separated by a slash (/). For example, the DELETE
audit option for laurel.emp is set BY ACCESS for successful DELETE statements
and not set at all for unsuccessful DELETE statements.

Listing Default Object Audit Options
The following query returns all default object audit options:

SELECT * FROM ALL_DEF_AUDIT_OPTS;

Output similar to the following appears:

ALT AUD COM DEL GRA IND INS LOC REN SEL UPD REF EXE FBK REA
--- --- --- --- --- --- --- --- --- --- --- --- --- --- ---
S/S -/- -/- -/- -/- S/S -/- -/- S/S -/- -/- -/- -/- /- -/-

Notice that the view returns information similar to the USER_OBJ_AUDIT_OPTS and
DBA_OBJ_AUDIT_OPTS views (refer to previous example).

Listing Audit Records
The following query lists audit records generated for all objects in the database:

SELECT * FROM DBA_AUDIT_OBJECT;

Listing Audit Records for the AUDIT SESSION Option
The following query lists audit information corresponding to the AUDIT SESSION
statement audit option:

SELECT USERNAME, LOGOFF_TIME, LOGOFF_LREAD, LOGOFF_PREAD,
 LOGOFF_LWRITE, LOGOFF_DLOCK
 FROM DBA_AUDIT_SESSION;

Finding Information About Audited Activities

9-84 Oracle Database Security Guide

Output similar to the following appears:

USERNAME LOGOFF_TI LOGOFF_LRE LOGOFF_PRE LOGOFF_LWR LOGOFF_DLO
---------- --------- ---------- ---------- ---------- ----------
JWARD 02-AUG-91 53 2 24 0
SWILLIAMS 02-AUG-91 3337 256 630 0

Deleting the Audit Trail Views
If you disable auditing and no longer need the audit trail views, then delete them by
connecting to the database as SYS and run the script file CATNOAUD.SQL. The location
of the CATNOAUD.SQL script is operating system-dependent.

10

Keeping Your Oracle Database Secure 10-1

10 Keeping Your Oracle Database Secure

This chapter contains:

■ About the Security Guidelines in This Chapter

■ Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities

■ Guidelines for Securing User Accounts and Privileges

■ Guidelines for Securing Roles

■ Guidelines for Securing Passwords

■ Guidelines for Securing Data

■ Guidelines for Securing the ORACLE_LOADER Access Driver

■ Guidelines for Securing a Database Installation and Configuration

■ Guidelines for Securing the Network

■ Guidelines for Auditing

■ Addressing the CONNECT Role Change

About the Security Guidelines in This Chapter
This chapter provides a set of guidelines to keep your Oracle database secure.
Information security, and privacy and protection of corporate assets and data are
critical in any business. Oracle Database comprehensively addresses the need for
information security by providing cutting-edge security features such as deep data
protection, auditing, scalable security, secure hosting, and data exchange.

Oracle Database leads the industry in security. To maximize the security features
offered by Oracle Database in any business environment, it is imperative that the
database itself be well protected.

Security guidelines provide advice about how to configure Oracle Database to be
secure by adhering to and recommending industry-standard and advisable security
practices for operational database deployments. Many of the guidelines described in
this section address common regulatory requirements such as those described in the
Sarbanes-Oxley Act. For more information about how Oracle Database addresses
regulatory compliance, protection of personally identifiable information, and internal
threats, visit:

http://www.oracle.com/technology/deploy/security/db_
security/index.html

Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities

10-2 Oracle Database Security Guide

Downloading Security Patches and Contacting Oracle Regarding
Vulnerabilities

This section contains:

■ Applying Security Patches and Workaround Solutions

■ Contacting Oracle Security Regarding Vulnerabilities in Oracle Database

Applying Security Patches and Workaround Solutions
Always apply all relevant security patches for both the operating system on which
Oracle Database resides and Oracle Database itself, and for all installed Oracle
Database options and components.

Periodically check the security site on Oracle Technology Network for details about
security alerts released by Oracle at

http://www.oracle.com/technology/deploy/security/alerts.htm

Also check the Oracle Worldwide Support Service site, My Oracle Support, for details
about available and upcoming security-related patches at

https://support.oracle.com

Contacting Oracle Security Regarding Vulnerabilities in Oracle Database
If you are an Oracle customer or an Oracle partner, use My Oracle Support to submit a
Service Request on any potential Oracle product security vulnerability. Otherwise,
send an e-mail to secalert_us@oracle.com with a complete description of the
problem, including product version and platform, together with any scripts and
examples. Oracle encourages those who want to contact Oracle Security to employ
e-mail encryption, using our encryption key.

Guidelines for Securing User Accounts and Privileges
Follow these guidelines to secure user accounts and privileges:

1. Practice the principle of least privilege.

Oracle recommends the following guidelines:

a. Grant necessary privileges only.

Do not provide database users or roles more privileges than are necessary. (If
possible, grant privileges to roles, not users.) In other words, the principle of
least privilege is that users be given only those privileges that are actually
required to efficiently perform their jobs.

To implement this principle, restrict the following as much as possible:

– The number of SYSTEM and OBJECT privileges granted to database users.

– The number of people who are allowed to make SYS-privileged
connections to the database.

– The number of users who are granted the ANY privileges, such as the DROP
ANY TABLE privilege. For example, there is generally no need to grant
CREATE ANY TABLE privileges to a non-DBA-privileged user.

https://support.oracle.com
http://www.oracle.com/technology/deploy/security/alerts.htm

Guidelines for Securing User Accounts and Privileges

Keeping Your Oracle Database Secure 10-3

– The number of users who are allowed to perform actions that create,
modify, or drop database objects, such as the TRUNCATE TABLE, DELETE
TABLE, DROP TABLE statements, and so on.

b. Limit granting the CREATE ANY EDITION and DROP ANY EDITION
privileges.

To maintain additional versions of objects, editions can increase resource and
disk space consumption in the database. Only grant the CREATE ANY
EDITION and DROP ANY EDITION privileges to trusted users who are
responsible for performing upgrades.

c. Restrict the CREATE ANY JOB, BECOME USER, EXP_FULL_DATABASE,
and IMP_FULL_DATABASE privileges.

These are powerful security-related privileges. Only grant these privileges to
users who need them.

d. Do not allow non-administrative users access to objects owned by the SYS
schema.

Do not allow users to alter table rows or schema objects in the SYS schema,
because doing so can compromise data integrity. Limit the use of statements
such as DROP TABLE, TRUNCATE TABLE, DELETE, INSERT, or similar
object-modification statements on SYS objects only to highly privileged
administrative users.

The SYS schema owns the data dictionary. You can protect the data dictionary
by setting the O7_DICTIONARY_ACCESSIBILITY parameter to FALSE. See
Guideline 1 under "Guidelines for Securing Data" on page 10-9 for more
information.

e. Only grant the EXECUTE privilege on the DBMS_RANDOM PL/SQL
package to trusted users.

The EXECUTE privilege on the DBMS_RANDOM package could permit users
who normally should have only minimal access to execute the functions
associated with this package.

f. Restrict permissions on run-time facilities.

Many Oracle Database products use run-time facilities, such as Oracle Java
Virtual Machine (OJVM). Do not assign all permissions to a database run-time
facility. Instead, grant specific permissions to the explicit document root file
paths for facilities that might run files and packages outside the database.

Here is an example of a vulnerable run-time call, which individual files are
specified:

call dbms_java.grant_permission('wsmith',
'SYS:java.io.FilePermission','<<ALL FILES>>','read');

Here is an example of a better (more secure) run-time call, which specifies a
directory path instead:

call dbms_java.grant_permission('wsmith',
'SYS:java.io.FilePermission','<<actual directory path>>','read');

2. Lock and expire default (predefined) user accounts.

Oracle Database installs with several default database user accounts. Upon
successful installation of the database, the Database Configuration Assistant
automatically locks and expires most default database user accounts.

Guidelines for Securing User Accounts and Privileges

10-4 Oracle Database Security Guide

If you perform a manual (without using Database Configuration Assistant)
installation of Oracle Database, then no default database users are locked upon
successful installation of the database server. Or, if you have upgraded from a
previous release of Oracle Database, you may have default accounts from earlier
releases. Left open in their default states, these user accounts can be exploited, to
gain unauthorized access to data or disrupt database operations.

You should lock and expire all default database user accounts. Oracle Database
provides SQL statements to perform these operations. For example:

ALTER USER ANONYMOUS PASSWORD EXPIRE ACCOUNT LOCK;

See Oracle Database SQL Language Reference for more information about the ALTER
USER statement.

Installing additional products and components after the initial installation also
results in creating more default database accounts. Database Configuration
Assistant automatically locks and expires all additionally created database user
accounts. Unlock only those accounts that need to be accessed on a regular basis
and assign a strong, meaningful password to each of these unlocked accounts.
Oracle provides SQL and password management to perform these operations.

If any default database user account other than the ones left open is required for
any reason, then a database administrator (DBA) must unlock and activate that
account with a new, secure password.

See Oracle Database 2 Day + Security Guide for a description of the predefined user
accounts that are created when you install Oracle Database.

If a default database user account, other than the ones left open, is required for any
reason, then a database administrator (DBA) can unlock and activate that account
with a new, secure password.

Oracle Enterprise Manager Accounts

If you install Oracle Enterprise Manager, the SYSMAN and DBSNMP accounts are
open, unless you configure Oracle Enterprise Manager for central administration.
In this case, the SYSMAN account (if present) will be locked.

If you do not install Oracle Enterprise Manager, then only the SYS and SYSTEM
accounts are open. Database Configuration Assistant locks and expires all other
accounts (including SYSMAN and DBSNMP).

3. Use the following data dictionary views to find information about user access to
the database.

■ DBA_*

■ DBA_ROLES

■ DBA_SYS_PRIVS

■ DBA_ROLE_PRIVS

■ DBA_TAB_PRIVS

■ DBA_AUDIT_TRAIL (if standard auditing is enabled)

■ DBA_FGA_AUDIT_TRAIL (if fine-grained auditing is enabled)

Guidelines for Securing User Accounts and Privileges

Keeping Your Oracle Database Secure 10-5

4. Monitor the granting of the following privileges only to users and roles who
need these privileges.

By default, Oracle Database audits the following privileges:

■ ALTER SYSTEM

■ AUDIT SYSTEM

■ CREATE EXTERNAL JOB

Oracle recommends that you also audit the following privileges:

■ ALL PRIVILEGES (which includes privileges such as BECOME USER, CREATE
LIBRARY, and CREATE PROCEDURE)

■ DBMS_BACKUP_RESTORE package

■ EXECUTE to DBMS_SYS_SQL

■ SELECT ANY TABLE

■ SELECT on PERFSTAT.STATS$SQLTEXT

■ SELECT on PERFSTAT.STATS$SQL_SUMMARY

■ SELECT on SYS.SOURCE$

■ Privileges that have the WITH ADMIN clause

■ Privileges that have the WITH GRANT clause

■ Privileges that have the CREATE keyword

5. Revoke access to the following:

■ The SYS.USER_HISTORY$ table from all users except SYS and DBA accounts

■ The RESOURCE role from typical application accounts

■ The CONNECT role from typical application accounts

■ The DBA role from users who do not need this role

6. Grant privileges only to roles.

Granting privileges to roles and not individual users makes the management and
tracking of privileges much easier.

7. Limit the proxy account (for proxy authorization) privileges to CREATE
SESSION only.

8. Use secure application roles to protect roles that are enabled by application
code.

Secure application roles allow you to define a set of conditions, within a PL/SQL
package, that determine whether or not a user can log on to an application. Users
do not need to use a password with secure application roles.

Another approach to protecting roles from being enabled or disabled in an
application is the use of role passwords. This approach prevents a user from
directly accessing the database in SQL (rather than the application) to enable the
privileges associated with the role. However, Oracle recommends that you use
secure application roles instead, to avoid having to manage another set of
passwords.

Guidelines for Securing Roles

10-6 Oracle Database Security Guide

9. Discourage users from using the NOLOGGING clause in SQL statements.

In some SQL statements, the user has the option of specifying the NOLOGGING
clause, which indicates that the database operation is not logged in the online redo
log file. Even though the user specifies the clause, a redo record is still written to
the online redo log file. However, there is no data associated with this record.
Because of this, using NOLOGGING has the potential for malicious code to be
entered can be accomplished without an audit trail.

Guidelines for Securing Roles
Follow these guidelines when managing roles:

1. Grant a role to users only if they need all privileges of the role.

Roles (groups of privileges) are useful for quickly and easily granting permissions
to users. Although you can use Oracle-defined roles, you have more control and
continuity if you create your own roles containing only the privileges pertaining to
your requirements. Oracle may change or remove the privileges in an Oracle
Database-defined role, as it has with the CONNECT role, which now has only the
CREATE SESSION privilege. Formerly, this role had eight other privileges. Both
CONNECT and RESOURCE roles will be deprecated in future Oracle releases.

Ensure that the roles you define contain only the privileges that reflect job
responsibility. If your application users do not need all the privileges encompassed
by an existing role, then apply a different set of roles that supply just the correct
privileges. Alternatively, create and assign a more restricted role.

For example, it is imperative to strictly limit the privileges of user SCOTT, because
this is a well known account that may be vulnerable to intruders. Because the
CREATE DBLINK privilege allows access from one database to another, drop its
privilege for SCOTT. Then, drop the entire role for the user, because privileges
acquired by means of a role cannot be dropped individually. Re-create your own
role with only the privileges needed, and grant that new role to that user.
Similarly, for better security, drop the CREATE DBLINK privilege from all users
who do not require it.

2. Do not grant user roles to application developers.

Roles are not meant to be used by application developers, because the privileges to
access schema objects within stored programmatic constructs need to be granted
directly. Remember that roles are not enabled within stored procedures except for
invoker’s right procedures. See "How Roles Work in PL/SQL Blocks" on page 4-8
for information about this topic.

3. Create and assign roles specific to each Oracle Database installation.

This principle enables the organization to retain detailed control of its roles and
privileges. This also avoids the necessity to adjust if Oracle Database changes or
removes Oracle Database-defined roles, as it has with CONNECT, which now has
only the CREATE SESSION privilege. Formerly, it also had eight other privileges.
Both CONNECT and RESOURCE roles will be deprecated in future Oracle Database
versions.

4. For enterprise users, create global roles.

Global roles are managed by an enterprise directory service, such as Oracle
Internet Directory. See the following sections for more information about global
roles:

■ "Configuring Global User Authentication and Authorization" on page 3-28

Guidelines for Securing Passwords

Keeping Your Oracle Database Secure 10-7

■ "Global Role Authorization by an Enterprise Directory Service" on page 4-19

■ Oracle Database Enterprise User Security Administrator's Guide

Guidelines for Securing Passwords
When you create a user account, Oracle Database assigns a default password policy for
that user. The password policy defines rules for how the password should be created,
such as a minimum number of characters, when it expires, and so on. You can
strengthen passwords by using password policies. See also "Configuring Password
Protection" on page 3-2 for additional ways to protect passwords.

Follow these guidelines to further strengthen passwords:

1. Choose passwords carefully.

"Minimum Requirements for Passwords" on page 3-3 describes the minimum
requirements for passwords. Follow these additional guidelines when you create
or change passwords:

■ Make the password between 8 and 30 characters and numbers.

■ Have the password contain at least one digit, one upper-case character, and
one lower-case character.

■ Use mixed case letters and special characters in the password. (See "Ensuring
Against Password Security Threats by Using the SHA-1 Hashing Algorithm"
on page 3-13 for more information.)

■ You can include multibyte characters in the password.

■ Use the database character set for the password’s characters, which can
include the underscore (_), dollar ($), and number sign (#) characters.

■ You must enclose the following passwords in double-quotation marks:

– Passwords containing multibyte characters.

– Passwords starting with numbers or special characters and containing
alphabetical characters. For example:

"123abc"

"#abc"

"123dc$"

– Passwords containing any character other than alphabetical characters,
numbers, and special characters. For example:

"abc>"

"abc@",

" "

■ You do not need to specify the following passwords in double-quotation
marks.

– Passwords starting with an alphabet (a–z, A–Z) and containing
numbers(0–9) or special characters ($, #, _). For example:

abc123

ab23a

ab$#_

Guidelines for Securing Passwords

10-8 Oracle Database Security Guide

– Passwords containing only numbers.

– Passwords containing only alphabetical characters.

■ Do not use an actual word for the entire password.

2. To create a longer, more complex password from a shorter, easier to remember
password, follow these techniques:

■ Create passwords from the first letters of the words of an easy-to-remember
sentence. For example, "I usually work until 6 almost every day of the week"
can be Iuwu6aedotw.

■ Combine two weaker passwords, such as welcome1 and binky into
WelBinkyCome1.

■ Repeat a character at the beginning or end of the password.

■ Add a string, another password, or part the same password to the beginning
or end of the password that you want to create. For example, ways that you
can modify the password fussy2all are as follows:

– fussy2all34hj2

– WelBinkyCome1fussy2all

– fusfussy2all

■ Double some or all of the letters. For example, welcome13 can become
wwellCcooMmee13.

3. Ensure that the password is sufficiently complex.

Oracle Database provides a password complexity verification routine, the PL/SQL
script UTLPWDMG.SQL, that you can run to check whether or not passwords are
sufficiently complex. Ideally, edit the UTLPWDMG.SQL script to provide stronger
password protections. See also "Enforcing Password Complexity Verification" on
page 3-9 for a sample routine that you can use to check passwords.

4. Change default user passwords.

Oracle Database installs with a set of predefined, default user accounts. Security is
most easily broken when a default database user account still has a default
password even after installation. This is particularly true for the user account
SCOTT, which is a well known account that may be vulnerable to intruders. In
Oracle Database 11g Release 2 (11.2), default accounts are installed locked with the
passwords expired, but if you have upgraded from a previous release, you may
still have accounts that use default passwords.

To find user accounts that have default passwords, query the DBA_USERS_WITH_
DEFPWD data dictionary view. See "Finding User Accounts That Have Default
Passwords" on page 3-4 for more information.

5. Change default passwords of administrative users.

You can use the same or different passwords for the SYS, SYSTEM, SYSMAN, and
DBSNMP administrative accounts. Oracle recommends that you use different
passwords for each. In any Oracle environment (production or test), assign strong,
secure, and distinct passwords to these administrative accounts. If you use
Database Configuration Assistant to create a new database, then it requires you to
enter passwords for the SYS and SYSTEM accounts, disallowing the default
passwords CHANGE_ON_INSTALL and MANAGER.

Similarly, for production environments, do not use default passwords for
administrative accounts, including SYSMAN and DBSNMP.

Guidelines for Securing Data

Keeping Your Oracle Database Secure 10-9

See Oracle Database 2 Day + Security Guide for information about changing a default
password.

6. Enforce password management.

Apply basic password management rules (such as password length, history,
complexity, and so forth) to all user passwords. Oracle Database has password
policies enabled for the default profile. Guideline 1 in this section lists these
password policies. Oracle Database 2 Day + Security Guide lists initialization
parameters that you can use to further secure user passwords.

You can find information about user accounts by querying the DBA_USERS view.
The PASSWORD column of the DBA_USERS view indicates whether the password is
global, external, or null. The DBA_USERS view provides useful information such
as the user account status, whether the account is locked, and password versions.

Oracle also recommends, if possible, using Oracle Advanced Security (an option to
Oracle Database Enterprise Edition) with network authentication services (such as
Kerberos), token cards, smart cards, or X.509 certificates. These services provide
strong authentication of users, and provide protection against unauthorized access
to Oracle Database.

7. Do not store user passwords in clear text in Oracle tables.

For better security, do not store passwords in clear text (that is, human readable) in
Oracle tables. You can correct this problem by encrypting the table column that
contains the password. See Oracle Database 2 Day + Security Guide for information
about how to use transparent data encryption to encrypt a table column.

When you create or modify a password for a user account, Oracle Database
automatically encrypts it. If you query the DBA_USERS view to find information
about a user account, the data in the PASSWORD column indicates if the user
password is global, external, or null.

Guidelines for Securing Data
Follow these guidelines to secure data on your system:

1. Enable data dictionary protection.

Oracle recommends that you protect the data dictionary to prevent users that have
the ANY system privilege from using those privileges on the data dictionary.
Altering or manipulating the data in data dictionary tables can permanently and
detrimentally affect the operation of a database.

To enable data dictionary protection, set the following initialization parameter to
FALSE (which is the default) in the initsid.ora control file:

O7_DICTIONARY_ACCESSIBILITY = FALSE

You can set the O7_DICTIONARY_ACCESSIBILITY parameter in a server
parameter file. For more information about server parameter files, see Oracle
Database Administrator's Guide.

After you set O7_DICTIONARY_ACCESSIBILTY to FALSE, only users who have
the SELECT ANY DICTIONARY privilege and those authorized users making
DBA-privileged (for example CONNECT / AS SYSDBA) connections can use the
ANY system privilege on the data dictionary. If O7_DICTIONARY_
ACCESSIBILITY parameter is not set to FALSE, then any user with the DROP ANY
TABLE (for example) system privilege will be able to drop parts of the data

Guidelines for Securing the ORACLE_LOADER Access Driver

10-10 Oracle Database Security Guide

dictionary. However, if a user needs view access to the data dictionary, then you
can grant that user the SELECT ANY DICTIONARY system privilege.

2. Restrict operating system access.

Follow these guidelines:

■ Limit the number of operating system users.

■ Limit the privileges of the operating system accounts (administrative,
root-privileged, or DBA) on the Oracle Database host computer to the least
privileges required for a user to perform necessary tasks.

■ Restrict the ability to modify the default file and directory permissions for the
Oracle Database home (installation) directory or its contents. Even privileged
operating system users and the Oracle owner should not modify these
permissions, unless instructed otherwise by Oracle.

■ Restrict symbolic links. Ensure that when you provide a path or file to the
database, neither the file nor any part of the path is modifiable by an
untrusted user. The file and all components of the path should be owned by
the database administrator or trusted account, such as root.

This recommendation applies to all types of files: data files, log files, trace
files, external tables, BFILE data types, and so on.

3. Encrypt sensitive data and all backup media that contains database files.

According to common regulatory compliance requirements, you must encrypt
sensitive data such as credit card numbers and passwords. When you delete
sensitive data from the database, encrypted data does not linger in data blocks,
operating system files, or sectors on disk.

In most cases, you may want to use transparent data encryption to encrypt your
sensitive data. See Oracle Database Advanced Security Administrator's Guide for more
information. See also "Security Problems That Encryption Does Not Solve" on
page 8-1 for when you should not encrypt data.

Guidelines for Securing the ORACLE_LOADER Access Driver
Follow these guidelines to secure the ORACLE_LOADER access driver:

1. Create a separate operating system directory to store the access driver
preprocessors. You (or the operating system manager) may need to create multiple
directories if different Oracle Database users will run different preprocessors. If
you want to prevent one set of users from using one preprocessor while allowing
those users access to another preprocessor, then place the preprocessors in
separate directories. If all the users need equal access, then you can place the

Note:

■ In a default installation, the O7_DICTIONARY_
ACCESSIBILITY parameter is set to FALSE. However, in
Oracle8i, this parameter is set to TRUE by default, and must be
changed to FALSE to enable this security feature.

■ The SELECT ANY DICTIONARY privilege is not included in
the GRANT ALL PRIVILEGES statement, but you can grant it
through a role. Chapter 4, "Configuring Privilege and Role
Authorization," describes roles in detail.

Guidelines for Securing the ORACLE_LOADER Access Driver

Keeping Your Oracle Database Secure 10-11

preprocessors together in one directory. After you create these operating system
directories, in SQL*Plus, you can create a directory object for each directory.

2. Grant the operating system user ORACLE the correct operating system
privileges to run the access driver preprocessor. In addition, protect the
preprocessor program from WRITE access by operating system users other than
the user responsible for managing the preprocessor program.

3. Grant the EXECUTE privilege to each user who will run the preprocessor
program in the directory object. Do not grant this user the WRITE privilege on the
directory object. Never grant users both the EXECUTE and WRITE privilege for
directory objects.

4. Grant the WRITE privilege sparingly to anyone who will manage directory
objects that contain preprocessors. This prevents database users from accidentally
or maliciously overwriting the preprocessor program.

5. Create a separate operating system directory and directory object for any data
files that are required for external tables. Ensure that these are separate from the
directory and directory object used by the access directory preprocessor.

Work with the operating system manager to ensure that only the appropriate
operating system users have access to this directory. Grant the ORACLE operating
system user READ access to any directory that has a directory object with READ
privileges granted to database users. Similarly, grant the ORACLE operating system
user WRITE access to any directory that has the WRITE privilege granted to
database users.

6. Create a separate operating system directory and directory object for any files
that the access driver generates. This includes log files, bad files, and discarded
files. You and the operating system manager must ensure that this directory and
directory object have the proper protections, similar to those described in
Guideline 5. The database user may need to access these files when resolving
problems in data files, so you and the operating system manager must determine a
way for this user to read those files.

7. Grant the CREATE ANY DIRECTORY and DROP ANY DIRECTORY privileges
sparingly. Users who have these privileges and users who have been granted the
DBA role have full access to all directory objects.

8. Consider auditing the DROP ANY DIRECTORY privilege. See "Auditing
Privileges" on page 9-26 for more information about auditing privileges.

9. Consider auditing the directory object. See "Auditing Directory Objects" on
page 9-32 for more information.

See Also: Oracle Database Utilities for more information about the
ORACLE_DATAPUMP access driver

Guidelines for Securing a Database Installation and Configuration

10-12 Oracle Database Security Guide

Guidelines for Securing a Database Installation and Configuration
For this release, changes were made to the default configuration of Oracle Database to
make it more secure. The recommendations in this section augment the new, secure
default configuration.

Follow these guidelines to secure the database installation and configuration:

1. Before you begin an Oracle Database installation on UNIX systems, ensure that
the umask value is 022 for the Oracle owner account.

See Oracle Database Administrator's Reference for Linux and UNIX for more
information about managing Oracle Database on Linux and UNIX systems.

2. Install only what is required.

Options and Products: The Oracle Database CD pack contains products and
options in addition to the database. Install additional products and options only as
necessary. Use the Custom Installation feature to avoid installing unnecessary
products, or perform a typical installation, and then deinstall options and products
that are not required. There is no need to maintain additional products and
options if they are not being used. They can always be properly installed, as
required.

Sample Schemas: Oracle Database provides sample schemas to provide a
common platform for examples. If your database will be used in a production
environment, then do not install the sample schema. If you have installed the
sample schema on a test database, then before going to production, remove or
relock the sample schema accounts. See Oracle Database Sample Schemas for more
information about the sample schemas.

3. During installation, when you are prompted for a password, create a secure
password.

Follow Guidelines 1, 4, and 5 in "Guidelines for Securing Passwords" on page 10-7.

4. Immediately after installation, lock and expire default user accounts.

See Guideline 2 in "Guidelines for Securing User Accounts and Privileges" on
page 10-2.

Guidelines for Securing the Network
Security for network communications is improved by using client, listener, and
network guidelines to ensure thorough protection. Using SSL is an essential element in
these lists, enabling top security for authentication and communications.

These guidelines are as follows:

■ Securing the Client Connection

■ Securing the Network Connection

■ Securing a Secure Sockets Layer Connection

Securing the Client Connection
Because authenticating client computers is problematic, typically, user authentication
is performed instead. This approach avoids client system issues that include falsified
IP addresses, hacked operating systems or applications, and falsified or stolen client
system identities. Nevertheless, the following guidelines improve the security of client
connections:

Guidelines for Securing the Network

Keeping Your Oracle Database Secure 10-13

1. Enforce access controls effectively and authenticate clients stringently.

By default, Oracle allows operating system-authenticated logins only over secure
connections, which precludes using Oracle Net and a shared server configuration.
This default restriction prevents a remote user from impersonating another
operating system user over a network connection.

Setting the initialization parameter REMOTE_OS_AUTHENT to TRUE forces the
database to accept the client operating system user name received over an
unsecure connection and use it for account access. Because clients, such as PCs, are
not trusted to perform operating system authentication properly, it is poor security
practice to use this feature.

The default setting, REMOTE_OS_AUTHENT = FALSE, creates a more secure
configuration that enforces proper, server-based authentication of clients
connecting to an Oracle database. Be aware that the REMOTE_OS_AUTHENT was
deprecated in Oracle Database Release 11g (11.1) and is retained only for backward
compatibility.

You should not alter the default setting of the REMOTE_OS_AUTHENT
initialization parameter, which is FALSE.

Setting this parameter to FALSE does not mean that users cannot connect remotely.
It means that the database will not trust that the client has already authenticated,
and will therefore apply its standard authentication processes.

2. Configure the connection to use encryption.

Oracle network encryption makes eavesdropping difficult. To learn how to
configure encryption, see Oracle Database Advanced Security Administrator's Guide.

3. Set up strong authentication.

See Oracle Database Advanced Security Administrator's Guide for more information
about using Kerberos and public key infrastructure (PKI).

Securing the Network Connection
Protecting the network and its traffic from inappropriate access or modification is the
essence of network security. You should consider all paths the data travels, and assess
the threats on each path and node. Then, take steps to lessen or eliminate those threats
and the consequences of a security breach. In addition, monitor and audit to detect
either increased threat levels or penetration attempts.

To manage network connections, you can use Oracle Net Manager. For an introduction
to using Oracle Net Manager, see Oracle Database 2 Day DBA. See also Oracle Database
Net Services Administrator's Guide.

 The following practices improve network security:

1. Use Secure Sockets Layer (SSL) when administering the listener.

See "Securing a Secure Sockets Layer Connection" on page 10-17 for more
information.

2. Monitor listener activity.

You can monitor listener activity by using Enterprise Manager Database Control.
In the Database Control home page, under General, click the link for your listener.
The Listener page appears. This page provides detailed information, such as the
category of alert generated, alert messages, when the alert was triggered, and so
on. This page provides other information as well, such as performance statistics
for the listener.

Guidelines for Securing the Network

10-14 Oracle Database Security Guide

3. Prevent online administration by requiring the administrator to have the write
privilege on the listener password and on the listener.ora file on the server.

a. Add or alter this line in the listener.ora file:

ADMIN_RESTRICTIONS_LISTENER=ON

b. Use RELOAD to reload the configuration.

c. Use SSL when administering the listener by making the TCPS protocol the
first entry in the address list, as follows:

LISTENER=
 (DESCRIPTION=
 (ADDRESS_LIST=
 (ADDRESS=
 (PROTOCOL=tcps)
 (HOST = sales.us.example.com)
 (PORT = 8281)))

To administer the listener remotely, you define the listener in the
listener.ora file on the client computer. For example, to access listener
USER281 remotely, use the following configuration:

user281 =
 (DESCRIPTION =
 (ADDRESS =
 (PROTOCOL = tcps)
 (HOST = sales.us.example.com)
 (PORT = 8281))
)
)

For more information about the parameters in listener.ora, see Oracle Database
Net Services Reference.

4. Do not set the listener password.

Ensure that the password has not been set in the listener.ora file. The local
operating system authentication will secure the listener administration. The
remote listener administration is disabled when the password has not been set.
This prevents brute force attacks of the listener password.

The listener password has been deprecated in this release. It will not be supported
in the next release of Oracle Database.

5. When a host computer has multiple IP addresses associated with multiple
network interface controller (NIC) cards, configure the listener to the specific IP
address.

This allows the listener to listen on all the IP addresses. You can restrict the listener
to listen on a specific IP address. Oracle recommends that you specify the specific
IP addresses on these types of computers, rather than allowing the listener to
listen on all IP addresses. Restricting the listener to specific IP addresses helps to
prevent an intruder from stealing a TCP end point from under the listener process.

6. Restrict the privileges of the listener, so that it cannot read or write files in the
database or the Oracle server address space.

This restriction prevents external procedure agents spawned by the listener (or
procedures executed by an agent) from inheriting the ability to perform read or
write operations. The owner of this separate listener process should not be the

Guidelines for Securing the Network

Keeping Your Oracle Database Secure 10-15

owner that installed Oracle Database or executes the Oracle Database instance
(such as ORACLE, the default owner).

For more information about configuring external procedures in the listener, see
Oracle Database Net Services Administrator's Guide.

7. Use encryption to secure the data in flight.

See Oracle Database 2 Day + Security Guide and Oracle Database Advanced Security
Administrator's Guide for more information about network data encryption.

8. Use a firewall.

Appropriately placed and configured firewalls can prevent outside access to your
databases.

■ Keep the database server behind a firewall. Oracle Database network
infrastructure, Oracle Net (formerly known as Net8 and SQL*Net), provides
support for a variety of firewalls from various vendors. Supported
proxy-enabled firewalls include Gauntlet from Network Associates and
Raptor from Axent. Supported packet-filtering firewalls include PIX Firewall
from Cisco, and supported stateful inspection firewalls (more sophisticated
packet-filtered firewalls) include Firewall-1 from CheckPoint.

■ Ensure that the firewall is placed outside the network to be protected.

■ Configure the firewall to accept only those protocols, applications, or
client/server sources that you know are safe.

■ Use a product such as Oracle Connection Manager to manage multiplex
multiple client network sessions through a single network connection to the
database. It can filter on source, destination, and host name. This product
enables you to ensure that connections are accepted only from physically
secure terminals or from application Web servers with known IP addresses.
(Filtering on IP address alone is not enough for authentication, because it can
be falsified.)

9. Prevent unauthorized administration of the Oracle listener.

For more information about the listener, see Oracle Database Net Services
Administrator's Guide.

10. Check network IP addresses.

Use the Oracle Net valid node checking security feature to allow or deny access to
Oracle server processes from network clients with specified IP addresses. To use
this feature, set the following sqlnet.ora configuration file parameters:

tcp.validnode_checking = YES

tcp.excluded_nodes = {list of IP addresses}

tcp.invited_nodes = {list of IP addresses}

The tcp.validnode_checking parameter enables the feature. The
tcp.excluded_nodes and tcp.invited_nodes parameters deny and enable
specific client IP addresses from making connections to the Oracle listener. This
helps to prevent potential Denial of Service attacks.

You can use Oracle Net Manager to configure these parameters. See Oracle
Database Net Services Administrator's Guide for more information.

Guidelines for Securing the Network

10-16 Oracle Database Security Guide

11. Encrypt network traffic.

If possible, use Oracle Advanced Security to encrypt network traffic among clients,
databases, and application servers. Oracle Database 2 Day + Security Guide provides
an introduction to network encryption. For detailed information about network
encryption, see Oracle Database Advanced Security Administrator's Guide.

12. Secure the host operating system (the system on which Oracle Database is
installed).

Secure the host operating system by disabling all unnecessary operating system
services. Both UNIX and Windows provide a variety of operating system services,
most of which are not necessary for typical deployments. These services include
FTP, TFTP, TELNET, and so forth. Be sure to close both the UDP and TCP ports for
each service that is being disabled. Disabling one type of port and not the other
does not make the operating system more secure.

Securing a Secure Sockets Layer Connection
Secure Sockets Layer (SSL) is the Internet standard protocol for secure communication,
providing mechanisms for data integrity and data encryption. These mechanisms can
protect the messages sent and received by you or by applications and servers,
supporting secure authentication, authorization, and messaging through certificates
and, if necessary, encryption. Good security practices maximize protection and
minimize gaps or disclosures that threaten security. The following guidelines show the
cautious attention to detail necessary for the successful use of SSL. For detailed
information about Oracle SSL configuration, see Oracle Database Advanced Security
Administrator's Guide.

1. Ensure that configuration files (for example, for clients and listeners) use the
correct port for SSL, which is the port configured upon installation.

You can run HTTPS on any port, but the standards specify port 443, where any
HTTPS-compliant browser looks by default. The port can also be specified in the
URL, for example:

https://secure.example.com:4445/

If a firewall is in use, then it too must use the same ports for secure (SSL)
communication.

2. Ensure that TCPS is specified as the PROTOCOL in the ADDRESS parameter
in the tnsnames.ora file (typically on the client or in the LDAP directory).

An identical specification must appear in the listener.ora file (typically in the
$ORACLE_HOME/network/admin directory).

3. Ensure that the SSL mode is consistent for both ends of every communication.
For example, the database (on one side) and the user or application (on the
other) must have the same SSL mode.

The mode can specify either client or server authentication (one-way), both client
and server authentication (two-way), or no authentication.

4. Ensure that the server supports the client cipher suites and the certificate key
algorithm in use.

5. Enable DN matching for both the server and client, to prevent the server from
falsifying its identity to the client during connections.

This setting ensures that the server identity is correct by matching its global
database name against the DN from the server certificate.

Guidelines for Auditing

Keeping Your Oracle Database Secure 10-17

You can enable DN matching in the tnsnames.ora file. For example:

set:SSL_SERVER_CERT_DN="cn=finance,cn=OracleContext,c=us,o=example"

Otherwise, a client application would not check the server certificate, which could
allow the server to falsify its identity.

6. Do not remove the encryption from your RSA private key inside your server.key
file, which requires that you enter your pass phrase to read and parse this file.

If you decide your server is secure enough, you could remove the encryption from
the RSA private key while preserving the original file. This enables system boot
scripts to start the database server, because no pass phrase is needed. Ideally,
restrict permissions to the root user only, and have the Web server start as root,
but then log on as another user. Otherwise, anyone who gets this key can
impersonate you on the Internet, or decrypt the data that was sent to the server.

Guidelines for Auditing
This section contains:

■ Auditing Sensitive Information

■ Keeping Audited Information Manageable

■ Auditing Typical Database Activity

■ Auditing Suspicious Database Activity

■ Recommended Audit Settings

Auditing Sensitive Information
Be aware that sensitive data, such as credit card numbers, appear in the fine-grained
audit trail if you collect SQL text. For standard auditing, setting the AUDIT_TRAIL
initialization parameter to DB, EXTENDED or XML, EXTENDED enables the collection
of SQL text. For fine-grained auditing, you would set the audit_trail parameter of
the DBMS_FGA PL/SQL package to DBMS_FGA.DB + DBMS_FGA.EXTENDED or
DBMS_FGA.XML + DBMS_FGA.EXTENDED.

If you have sensitive data that is being audited, consider using either of the following
solutions:

■ Move the audit trail out of the SYSTEM tablespace and into SYSAUX or another
tablespace. See "Moving the Database Audit Trail to a Different Tablespace" on
page 9-60. Afterwards, encrypt this tablespace. For more information about
tablespace encryption, see Oracle Database Advanced Security Administrator's Guide.

■ Do not enable the collection of SQL text in the audit trail. Use the following
settings instead:

Note: A server without SSL does not require a pass phrase.

See Also:

■ Oracle Database Advanced Security Administrator's Guide for
general SSL information, including configuration

■ Oracle Database Net Services Reference for TCP-related
parameters in sqlnet.ora

Guidelines for Auditing

10-18 Oracle Database Security Guide

– Standard auditing: Set the AUDIT_TRAIL initialization parameter to DB, OS,
or XML. See "Configuring Standard Auditing with the AUDIT_TRAIL
Initialization Parameter" on page 9-8.

– Fine-grained auditing: Set the DBMS_FGA.ADD_POLICY audit_trail
parameter to DBMS_FGA.DB or DBMS_FGA.XML. See "Creating a Fine-Grained
Audit Policy" on page 9-40.

Keeping Audited Information Manageable
Although auditing is relatively inexpensive, limit the number of audited events as
much as possible. This minimizes the performance impact on the execution of audited
statements and the size of the audit trail, making it easier to analyze and understand.

Follow these guidelines when devising an auditing strategy:

1. Evaluate your reason for auditing.

After you have a clear understanding of the reasons for auditing, you can devise
an appropriate auditing strategy and avoid unnecessary auditing.

For example, suppose you are auditing to investigate suspicious database activity.
This information by itself is not specific enough. What types of suspicious
database activity do you suspect or have you noticed? A more focused auditing
strategy might be to audit unauthorized deletions from arbitrary tables in the
database. This purpose narrows the type of action being audited and the type of
object being affected by the suspicious activity.

2. Audit knowledgeably.

Audit the minimum number of statements, users, or objects required to get the
targeted information. This prevents unnecessary audit information from cluttering
the meaningful information and using valuable space in the SYSTEM tablespace.
Balance your need to gather sufficient security information with your ability to
store and process it.

For example, if you are auditing to gather information about database activity,
then determine exactly what types of activities you want to track, audit only the
activities of interest, and audit only for the amount of time necessary to gather the
information that you want. As another example, do not audit objects if you are
only interested in logical I/O information for each session.

3. Before you implement an auditing strategy, consult your legal department.

You should have the legal department of your organization review your audit
strategy. Because your auditing will monitor other users in your organization, you
must ensure that you are correctly following the compliance and corporate policy
of your site.

Auditing Typical Database Activity
When your purpose for auditing is to gather historical information about particular
database activities, use the following guidelines:

1. Audit only pertinent actions.

At a minimum, audit user access, the use of system privileges, and changes to the
database schema structure. To avoid cluttering meaningful information with
useless audit records and reduce the amount of audit trail administration, only
audit the targeted database activities. Remember also that auditing too much can
affect database performance.

Guidelines for Auditing

Keeping Your Oracle Database Secure 10-19

For example, auditing changes to all tables in a database produces far too many
audit trail records and can slow down database performance. However, auditing
changes to critical tables, such as salaries in a Human Resources table, is useful.

You can audit specific actions by using fine-grained auditing, which is described in
"Auditing Specific Activities with Fine-Grained Auditing" on page 9-37.

2. Archive audit records and purge the audit trail.

After you collect the required information, archive the audit records of interest and
then purge the audit trail of this information. See the following sections:

■ "Archiving the Database Audit Trail" on page 9-61

■ "Archiving the Operating System Audit Trail" on page 9-65

■ "Purging Audit Trail Records" on page 9-66

■ "Controlling the Size of the Database Audit Trail" on page 9-59

■ "Setting the Size of the Operating System Audit Trail" on page 9-62

3. Remember your company’s privacy considerations.

Privacy regulations often lead to additional business privacy policies. Most
privacy laws require businesses to monitor access to personally identifiable
information (PII), and monitoring is implemented by auditing. A business-level
privacy policy should address all relevant aspects of data access and user
accountability, including technical, legal, and company policy concerns.

4. Check the Oracle Database log files for additional audit information

The log files generated by Oracle Database contain useful information that you can
use when auditing a database. For example, an Oracle database creates an alert file
to record STARTUP and SHUTDOWN operations, and structural changes such as
adding data files to the database.

For example, if you want to audit committed or rolled back transactions, you can
use the redo log files.

Auditing Suspicious Database Activity
When you audit to monitor suspicious database activity, use the following guidelines:

1. First audit generally, and then specifically.

When you start to audit for suspicious database activity, often not much
information is available to target specific users or schema objects. Therefore, set
audit options more generally at first, that is, by using the standard audit options
described in Chapter 9, "Verifying Security Access with Auditing," explains how
you can use the standard audit options to audit SQL statements, schema objects,
privileges, and so on.

After you have recorded and analyzed the preliminary audit information, disable
general auditing, and then audit specific actions. You can use fine-grained
auditing, which is described in "Auditing Specific Activities with Fine-Grained
Auditing" on page 9-37, to audit specific actions. Continue this process until you
have gathered enough evidence to draw conclusions about the origin of the
suspicious database activity.

2. Audit common suspicious activities.

Common suspicious activities are as follows:

■ Users who access the database during unusual hours

Guidelines for Auditing

10-20 Oracle Database Security Guide

■ Multiple failed user login attempts

■ Login attempts by non-existent users

In addition, monitor users who share accounts or multiple users who are logging
in from the same IP address. You can query the DBA_AUDIT_SESSION data
dictionary view to find this kind of activity. For a very granular approach, create
fine-grained audit policies.

3. Protect the audit trail.

When auditing for suspicious database activity, protect the audit trail so that audit
information cannot be added, changed, or deleted without being audited. You can
audit the standard audit trail by using the AUDIT SQL statement.

For example:

AUDIT SELECT ON SYS.AUD$ BY ACCESS;

See also "Auditing the Database Audit Trail" on page 9-61.

To audit the fine-grained audit trail, as user SYS, you would enter the following
statement:

AUDIT SELECT ON SYS.FGA$ BY ACCESS;

If you have Oracle Database Vault enabled, you can further protect the
SYS.AUDIT$, SYSTEM.AUD$, SYS.FGA$, and SYS.FGA_LOG$ tables by
enclosing them in a realm. (In an Oracle Database Vault environment, the AUD$
table is moved to the SYSTEM schema when Oracle Label Security is enabled.
SYS.AUD$ becomes a synonym for the SYSTEM.AUD$ table.) See Oracle Database
Vault Administrator's Guide for more information.

Recommended Audit Settings
Database schema or structure changes. Use the following AUDIT statement settings:

■ AUDIT ALTER ANY PROCEDURE BY ACCESS;

■ AUDIT ALTER ANY TABLE BY ACCESS;

■ AUDIT ALTER DATABASE BY ACCESS;

■ AUDIT ALTER SYSTEM BY ACCESS;

■ AUDIT CREATE ANY EDITION;

■ AUDIT CREATE ANY JOB BY ACCESS;

■ AUDIT CREATE ANY LIBRARY BY ACCESS;

■ AUDIT CREATE ANY PROCEDURE BY ACCESS;

■ AUDIT CREATE ANY TABLE BY ACCESS;

■ AUDIT CREATE EXTERNAL JOB BY ACCESS;

■ AUDIT DROP ANY EDITION;

■ AUDIT DROP ANY PROCEDURE BY ACCESS;

■ AUDIT DROP ANY TABLE BY ACCESS;

Database access and privileges. Use these AUDIT statement settings:

■ AUDIT ALTER PROFILE BY ACCESS;

■ AUDIT ALTER USER BY ACCESS;

Addressing the CONNECT Role Change

Keeping Your Oracle Database Secure 10-21

■ AUDIT AUDIT SYSTEM BY ACCESS;

■ AUDIT CREATE PUBLIC DATABASE LINK BY ACCESS;

■ AUDIT CREATE SESSION BY ACCESS;

■ AUDIT CREATE USER BY ACCESS;

■ AUDIT DROP PROFILE BY ACCESS;

■ AUDIT DROP USER BY ACCESS;

■ AUDIT EXEMPT ACCESS POLICY BY ACCESS;

■ AUDIT GRANT ANY OBJECT PRIVILEGE BY ACCESS;

■ AUDIT GRANT ANY PRIVILEGE BY ACCESS;

■ AUDIT GRANT ANY ROLE BY ACCESS;

■ AUDIT ROLE BY ACCESS;

Addressing the CONNECT Role Change
The CONNECT role was introduced with Oracle Database version 7, which added new
and robust support for database roles. The CONNECT role is used in sample code,
applications, documentation, and technical papers. In Oracle Database 10g Release 2
(10.2), the CONNECT role was changed. If you are upgrading from a release earlier than
Oracle Database 10.2 to the current release, then read this section.

This section contains:

■ Why Was the CONNECT Role Changed?

■ How the CONNNECT Role Change Affects Applications

■ How the CONNECT Role Change Affects Users

■ Approaches to Addressing the CONNECT Role Change

Why Was the CONNECT Role Changed?
The CONNECT role was originally established with the following privileges:

Beginning in Oracle Database 10g Release 2, the CONNECT role has only the CREATE
SESSION privilege, all other privileges are removed.

Although the CONNECT role was frequently used to provision new accounts in Oracle
Database, connecting to the database does not require all those privileges. Making this
change enables you to enforce good security practices more easily.

Each user should have only the privileges needed to perform his or her tasks, an idea
called the principle of least privilege. Least privilege mitigates risk by limiting
privileges, so that it remains easy to do what is needed while concurrently reducing
the ability to do inappropriate things, either inadvertently or maliciously.

ALTER SESSION CREATE SESSION

CREATE CLUSTER CREATE SYNONYM

CREATE DATABASE LINK CREATE TABLE

CREATE SEQUENCE CREATE VIEW

Addressing the CONNECT Role Change

10-22 Oracle Database Security Guide

How the CONNNECT Role Change Affects Applications
The effects of the changes to the CONNECT role can be seen in database upgrades,
account provisioning, and installation of applications using new databases.

How the CONNECT Role Change Affects Database Upgrades
Upgrading your existing Oracle database to Oracle Database 10g Release 2 (10.2)
automatically changes the CONNECT role to have only the CREATE SESSION privilege.
Most applications are not affected because the applications objects already exist: no
new tables, views, sequences, synonyms, clusters, or database links need to be created.

Applications that create tables, views, sequences, synonyms, clusters, or database
links, or that use the ALTER SESSION command dynamically, may fail due to
insufficient privileges.

How the CONNECT Role Change Affects Account Provisioning
If your application or DBA grants the CONNECT role as part of the account
provisioning process, then only CREATE SESSION privileges are included. Any
additional privileges must be granted either directly or through another role.

This issue can be addressed by creating a new customized database role.

How the CONNECT Role Change Affects Applications Using New Databases
New databases created using the Oracle Database 10g Release 2 (10.2) Utility (DBCA),
or using database creation templates generated from DBCA, define the CONNECT role
with only the CREATE SESSION privilege. Installing an application to use a new
database may fail if the database schema used for the application is granted privileges
solely through the CONNECT role.

How the CONNECT Role Change Affects Users
The change to the CONNECT role affects three classes of users differently: general users,
application developers, and client/server applications.

How the CONNECT Role Change Affects General Users
The new CONNECT role supplies only the CREATE SESSION privilege. Users who
connect to the database to use an application are not affected, because the CONNECT
role still has the CREATE SESSION privilege.

However, appropriate privileges will not be present for a certain set of users if they are
provisioned solely with the CONNECT role. These are users who create tables, views,
sequences, synonyms, clusters, or database links, or use the ALTER SESSION
command. The privileges they need are no longer provided with the CONNECT role. To
authorize the additional privileges needed, the database administrator must create and
apply additional roles for the appropriate privileges, or grant them directly to the
users who need them.

Note that the ALTER SESSION privilege is required for setting events. Few database
users should require the ALTER SESSION privilege.

ALTER SESSION SET EVENTS

The alter session privilege is not required for other alter session commands.

See Also: Approaches to Addressing the CONNECT Role Change
on page 10-24

Addressing the CONNECT Role Change

Keeping Your Oracle Database Secure 10-23

ALTER SESSION SET NLS_TERRITORY = FRANCE;

How the CONNECT Role Change Affects Application Developers
Application developers provisioned solely with the CONNECT role do not have
appropriate privileges to create tables, views, sequences, synonyms, clusters, or
database links, nor to use the ALTER SESSION statement. The database administrator
must either create and apply additional roles for the appropriate privileges, or grant
them directly to the application developers who need them.

How the CONNECT Role Change Affects Client Server Applications
Most client/server applications that use dedicated user accounts will not be affected
by this change. However, applications that create private synonyms or temporary
tables using dynamic SQL in the user schema during account provisioning or run-time
operations will be affected. They will require additional roles or grants to acquire the
system privileges appropriate to their activities.

Approaches to Addressing the CONNECT Role Change
Oracle recommends the following three approaches to address the impact of this
change.

Approach 1: Create a New Database Role
The privileges removed from the CONNECT role can be managed by creating a new
database role.

First, connect to the upgraded Oracle database and create a new database role. The
following example uses a role called my_app_developer.

CREATE ROLE my_app_developer;
GRANT CREATE TABLE, CREATE VIEW, CREATE SEQUENCE, CREATE SYNONYM, CREATE CLUSTER,
CREATE DATABASE LINK, ALTER SESSION TO my_app_developer;

Second, determine which users or database roles have the CONNECT role, and grant the
new role to these users or roles.

SELECT USER$.NAME, ADMIN_OPTION, DEFAULT_ROLE
 FROM USER$, SYSAUTH$, DBA_ROLE_PRIVS
 WHERE PRIVILEGE# =
 (SELECT USER# FROM USER$ WHERE NAME = 'CONNECT')
 AND USER$.USER# = GRANTEE#
 AND GRANTEE = USER$.NAME
 AND GRANTED_ROLE = 'CONNECT';

NAME ADMIN_OPTI DEF
------------------------------ ---------- ---
R1 YES YES
R2 NO YES

GRANT my_app_developer TO R1 WITH ADMIN OPTION;
GRANT my_app_developer TO R2;

You can determine the privileges that users require by using Oracle Auditing. The
audit information can then be analyzed and used to create additional database roles
with finer granularity.

Addressing the CONNECT Role Change

10-24 Oracle Database Security Guide

Privileges not used can then be revoked for specific users. Note that before auditing,
the database initialization parameter AUDIT_TRAIL must be initialized and the
database restarted.

AUDIT CREATE TABLE, CREATE SEQUENCE, CREATE SYNONYM, CREATE DATABASE LINK, CREATE
CLUSTER, CREATE VIEW, ALTER SESSION;

Database privilege usage can now be monitored periodically.

SELECT USERID, NAME FROM AUD$, SYSTEM_PRIVILEGE_MAP
WHERE - PRIV$USED = PRIVILEGE;

USERID NAME
------------------------------ ----------------
ACME CREATE TABLE
ACME CREATE SEQUENCE
ACME CREATE TABLE
ACME ALTER SESSION
APPS CREATE TABLE
APPS CREATE TABLE
APPS CREATE TABLE
APPS CREATE TABLE

8 rows selected.

Approach 2: Restore CONNECT Privileges
Starting with Oracle Database 10g Release 2 (10.2), Oracle provided a script called
rstrconn.sql in the $ORACLE_HOME/rdbms/admin directory. After a database
upgrade or new database creation, this script can be used to grant the privileges that
were removed from the CONNECT role in Oracle Database 10g Release 2 (10.2).

If this approach is used, then privileges that are not used should be revoked from
users who do not need them. To identify such privileges and users, the database must
be restarted with the database initialization parameter AUDIT_TRAIL initialized, for
example, AUDIT_TRAIL=DB. Oracle Database auditing should then be turned on to
monitor what privileges are used, as follows:

AUDIT CREATE TABLE, CREATE SEQUENCE, CREATE SYNONYM, CREATE DATABASE LINK, CREATE
CLUSTER, CREATE VIEW, ALTER SESSION;

Database privilege usage can also be monitored periodically.

SELECT USERID, NAME FROM AUD$, SYSTEM_PRIVILEGE_MAP
WHERE - PRIV$USED = PRIVILEGE;

USERID NAME
------------------------------ ----------------
ACME CREATE TABLE
ACME CREATE SEQUENCE
ACME CREATE TABLE
ACME ALTER SESSION
APPS CREATE TABLE
APPS CREATE TABLE
APPS CREATE TABLE
APPS CREATE TABLE
8 rows selected.

New View Showing CONNECT Grantees A new view enables administrators who continue
using the old CONNECT role to see quickly which users have that role.

Addressing the CONNECT Role Change

Keeping Your Oracle Database Secure 10-25

Table 10–1 shows the columns in the new DBA_CONNECT_ROLE_GRANTEES view.

Approach 3: Conduct Least Privilege Analysis
Oracle partners and application providers should use this approach to deliver more
secure products to the Oracle customer base. The principle of least privilege mitigates
risk by limiting privileges to the minimum set required to perform a given function.

For each class of users that the analysis shows need the same set of privileges, create a
role with only those privileges. Remove all other privileges from those users, and
assign that role to those users. As needs change, you can grant additional privileges,
either directly or through these new roles, or create new roles to meet new needs. This
approach helps to ensure that inappropriate privileges have been limited, thereby
reducing the risk of inadvertent or malicious harm.

Table 10–1 Columns and Contents for DBA_CONNECT_ROLE_GRANTEES

Column Name Contents

Grantee User granted the CONNECT role

Path_of_connect_role_grant Role (or nested roles) by which the user is granted CONNECT

Admin_opt VARCHAR2(3), YES if user has the ADMIN option on CONNECT;
otherwise, NO

Addressing the CONNECT Role Change

10-26 Oracle Database Security Guide

Glossary-1

Glossary

application context

A name-value pair that enables an application to access session information about a
user, such as the user ID or other user-specific information, and then securely pass this
data to the database.

See also global application context.

application role

A database role that is granted to application users and that is secured by embedding
passwords inside the application.

See also secure application role.

certificate

An ITU x.509 v3 standard data structure that securely binds an identify to a public key.

A certificate is created when an entity's public key is signed by a trusted identity, a
certificate authority. The certificate ensures that the entity's information is correct, and
that the public key belongs to that entity.

A certificate contains the entity's name, identifying information, and public key. It is
also likely to contain a serial number, expiration date, and information about the
rights, uses, and privileges associated with the certificate. Finally, it contains
information about the certificate authority that issued it.

certificate revocation list (CRL)

See CRL.

Classless Inter-Domain Routing

See CIDR.

cleartext

Unencrypted plain text.

CIDR

The standard notation used for IP addresses. In CIDR notation, an IPv6 subnet is
denoted by the subnet prefix and the size in bits of the prefix (in decimal), separated
by the slash (/) character. For example, fe80:0000:0217:f2ff::/64 denotes a
subnet with addresses fe80:0000:0217:f2ff:0000:0000:0000:0000 through
fe80:0000:0217:f2ff:ffff:ffff:ffff:ffff. The CIDR notation includes
support for IPv4 addresses. For example, 192.0.2.1/24 denotes the subnet with
addresses 192.0.2.1 through 192.0.2.255.

CRL

Glossary-2

CRL

A set of signed data structures that contain a list of revoked certificates. The
authenticity and integrity of the CRL is provided by a digital signature appended to it.
Usually, the CRL signer is the same entity that signed the issued certificate.

definer's rights procedure

A procedure that executes with the privileges of its owner, not its current user.
Definer's rights subprograms are bound to the schema in which they are located. For
example, assume that user blake and user scott each have a table called dept in
their respective user schemas. If user blake calls a definer's rights procedure, which is
owned by user scott, to update the dept table, then this procedure will update the
dept table in the scott schema because this procedure executes with the privileges of
the user who owns (defined) the procedure.

decryption

Decoding an encyrpted message so that it is readable.

denial-of-service (DoS) attack

An attack that renders a Web site inaccessible or unusable. The denial-of-service attack
can occur in many different ways but frequently includes attacks that cause the site to
crash, reject connections, or perform too slowly to be usable. DoS attacks come in two
forms:

■ Basic denial-of-service attacks, which require only one or a few computers

■ Distributed denial-of-service (DDoS) attacks, which require many computers to
execute

directly granted role

A role that has been granted directly to the user, as opposed to an indirectly granted
role.

encryption

Disguising a message, rendering it unreadable to all but the intended recipient.

forced cleanup

The ability to forcibly cleanup (that is, remove) all audit records from the database. To
accomplish this, you set the USE_LAST_ARCH_TIMESTAMP argument of the DBMS_
AUDIT_MGMT.CLEAN_AUDIT_TRAIL procedure to FALSE.

See also purge job.

Forwardable Ticket Granting Ticket

A special Kerberos ticket that can be forwarded to proxies, permitting the proxy to
obtain additional Kerberos tickets on behalf of the client for proxy authentication.

See also Kerberos ticket.

global application context

A name-value pair that enables application context values to be accessible across
database sessions.

See also application context.

mandatory auditing

Glossary-3

indirectly granted role

A role granted to a user through another role that has already been granted to this
user. Then you grant the role2 and role3 roles to the role1 role. Roles role2 and
role3 are now under role1. This means psmith has been indirectly granted the
roles role2 and role3, in addition to the direct grant of role1. Enabling the direct
role1 for psmith enables the indirect roles role2 and role3 for this user as well.

integrity

A guarantee that the contents of a message received were not altered from the contents
of the original message sent.

invoker's rights procedures

Procedures that execute with the privileges of the current user, that is, the user who
invokes the procedure. These procedures are not bound to a particular schema. They
can be run by a variety of users and allow multiple users to manage their own data by
using centralized application logic. Invoker's rights procedures are created with the
AUTHID clause in the declaration section of the procedure code.

KDC

A computer that issues Kerberos tickets.

See also Kerberos ticket.

Kerberos ticket

A temporary set of electronic credentials that verify the identity of a client for a
particular service. Also referred to as a service ticket.

Key Distribution Center (KDC)

See KDC.

last archive timestamp

A timestamp that indicates the timestamp of the last archived audit record. For the
database audit trail, this timestamp indicates the last audit record archived. For
operating system audit files, it indicates the highest last modified timestamp property
of the audit file that was archived. To set this timestamp, you use the DBMS_AUDIT_
MGMT.SET_LAST_ARCHIVE_TIMESTAMP PL/SQL procedure.

See also purge job.

lightweight user session

A user session that contains only information pertinent to the application that the user
is logging onto. The lightweight user session does not hold its own database resources,
such as transactions and cursors; hence it is considered "lightweight." Lightweight
user sessions consume far less system resources than traditional database session.
Because lightweight user sessions consume much fewer server resources, a lightweight
user session can be dedicated to each end user and can persist for as long as the
application deems necessary.

mandatory auditing

Activities that are audited by default, regardless of whether or not auditing was
enabled. These activities include connections to the instance with administrator
privileges, database startups, and database shutdowns. Oracle Database writes these
activities to the operating system audit trail.

namespace

Glossary-4

namespace

In Oracle Database security, the name of an application context. You create this name
in a CREATE CONTEXT statement.

Oracle Virtual Private Database

A set of features that enables you to create security policies to control database access
at the row and column level. Essentially, Oracle Virtual Private Database adds a
dynamic WHERE clause to a SQL statement that is issued against the table, view, or
synonym to which an Oracle Virtual Private Database security policy was applied.

salt

In cryptography, a way to strengthen the security of encrypted data. Salt is a random
string that is added to the data before it is encrypted, making it more difficult for
attackers to steal the data by matching patterns of ciphertext to known ciphertext
samples. Salt is often also added to passwords, before the passwords are encrypted, to
avoid dictionary attacks, a method that unethical hackers (attackers) use to steal
passwords. The encrypted salted values make it difficult for attackers to match the
hash value of encrypted passwords (sometimes called verifiers) with their dictionary
lists of common password hash values.

secure application role

A database role that is granted to application users, but secured by using an invoker's
right stored procedure to retrieve the role password from a database table. A secure
application role password is not embedded in the application.

See also application role.

purge job

A database job created by the DBMS_AUDIT_MGMT.CREATE_PURGE_JOB procedure,
which manages the deletion of the audit trail. A database administrator schedules,
enables, and disables the purge job. When the purge job becomes active, it deletes
audit records from the database audit tables, or it deletes Oracle Database operating
system audit files.

See also forced cleanup, last archive timestamp.

role

A named group of related privileges that you grant as a group to users or other roles.

See also indirectly granted role.

separation of duty

Restricting activities only to those users who must perform them. For example, you
should not grant the SYSDBA privilege to any user. Only grant this privilege to
administrative users. Separation of duty is required by many compliance policies. See
"Guidelines for Securing User Accounts and Privileges" on page 10-2 for guidelines on
granting privileges to the correct users.

service ticket

See Kerberos ticket.

wallet

A data structure used to store and manage security credentials for an individual entity.

Index-1

Index

A
access control

encryption, problems not solved by, 8-1
enforcing, 10-13
object privileges, 4-23
password encryption, 3-2

access control list (ACL)
examples

external network connection for e-mail
alert, 9-44

external network connections, 4-59
wallet access, 4-59

external network services
about, 4-49
adding more users or privileges, 4-52
advantages, 4-48
affect of upgrade from earlier release, 4-50
creating ACL, 4-50
DBMS_NETWORK_ACL_ADMIN package,

general process, 4-50
e-mail alert for audit violation tutorial, 9-44
finding information about, 4-70
hosts, assigning, 4-53
network hosts, using wildcards to

specify, 4-64
ORA-24247 errors, 4-50
order of precedence, hosts, 4-64
port ranges, 4-65
privilege assignments, about, 4-65
privilege assignments, database administrators

checking, 4-66
privilege assignments, users checking, 4-68
setting precedence, multiple roles, 4-69
setting precedence, multiple users, 4-69
syntax for creating, 4-51

hosts
local host, 4-53

localhost setting, 4-53
wallet access

about, 4-49
advantages, 4-50
client certificate credentials, using, 4-54
finding information about, 4-70
non-shared wallets, 4-54
password credentials, 4-54

password credentials, using, 4-54
shared database session, 4-54
wallets with sensitive information, 4-54
wallets without sensitive information, 4-54

account locking
example, 3-7
explicit, 3-7
password management, 3-6
PASSWORD_LOCK_TIME initialization

parameter, 3-7
ad hoc tools

database access, security problems of, 4-21
ADM_PARALLEL_EXECUTE_TASK role

about, 4-11
ADMIN OPTION

about, 4-37
revoking privileges, 4-40
revoking roles, 4-40
roles, 4-20
system privileges, 4-5

administrative user passwords
default, importance of changing, 10-8

administrator privileges
access, 10-14
operating system authentication, 3-22
passwords, 3-23, 10-8
SYSDBA and SYSOPER access, centrally

controlling, 3-20
write, on listener.ora file, 10-14

adump audit files directory, 9-54
adx_SID.txt file from XML audit trail

about, 9-11
alerts, used in fine-grained audit policy, 9-44
"all permissions", 10-3
ALTER privilege statement

SQL statements permitted, 5-17
ALTER PROCEDURE statement

used for compiling procedures, 4-30
ALTER PROFILE statement

password management, 3-4
ALTER RESOURCE COST statement, 2-12
ALTER ROLE statement

changing authorization method, 4-17
ALTER SESSION statement

schema, setting current, 5-16
ALTER USER privilege, 2-7

Index-2

ALTER USER statement
AUTHENTICATION USER PASSWORD clause

deprecated, xxx
default roles, 4-47
explicit account unlocking, 3-7
GRANT CONNECT THROUGH clause, 3-36
passwords, changing, 2-8
passwords, expiring, 3-9
profiles, changing, 3-9
REVOKE CONNECT THROUGH clause, 3-36
user profile, 3-4

altering users, 2-7
ANSI operations

Oracle Virtual Private Database affect on, 7-35
ANY system privilege

guidelines for security, 10-9
application contexts

about, 6-1
as secure data cache, 6-2
benefits of using, 6-2
bind variables, 7-4
components, 6-2
DBMS_SESSION.SET_CONTEXT procedure, 6-9
driving context, 6-45
editions, affect on, 6-3
finding errors by checking trace files, 6-45
finding information about, 6-45
global application contexts

authenticating user for multiple
applications, 6-27

creating, 6-23
logon trigger, creating, 6-11
Oracle Virtual Private Database, used with, 7-3
performance, 7-28
policy groups, used in, 7-12
returning predicate, 7-3
session information, retrieving, 6-7
support for database links, 6-16
types, 6-3
users, nondatabase connections, 6-22, 6-28
where values are stored, 6-2
See also client session-based application contexts,

database session-based application contexts,
global application contexts

application developers
CONNECT role change, 10-24

application security
restricting wallet access to current

application, 4-54
sharing wallet with other applications, 4-54
specifying attributes, 6-6

application users who are database users
Oracle Virtual Private Database, how it works

with, 7-38
applications

about security policies for, 5-1
database users, 5-2
enhancing security with, 4-7
object privileges, 5-16
object privileges permitting SQL statements, 5-17

One Big Application User authentication
security considerations, 5-3
security risks of, 5-2

Oracle Virtual Private Database, how it works
with, 7-35

password handling, guidelines, 5-4
password protection strategies, 5-3
privileges, managing, 5-11
roles

multiple, 4-8
privileges, associating with database

roles, 5-14
security, 4-21, 5-2
security considerations for use, 5-1
security limitations, 7-35
security policies, 7-13
validating with security policies, 7-13

AQ_ADMINISTRATOR_ROLE role
about, 4-11

AQ_USER_ROLE role
about, 4-11

archiving
operating system audit files, 9-65
standard audit trail, 9-61
timestamping audit trail, 9-69

attacks
See security attacks

AUDIT EXECUTE PROCEDURE statement, 9-33
audit files

activities always written to, 9-4
directory, 9-54
file names, form of, 9-54
operating system audit trail

archiving, setting timestamp, 9-69
audited actions in common with database audit

trail, 9-12
operating system file

advantages of using, 9-16
appearance of text file, 9-13
appearance of XML file, 9-15
archiving, 9-65
contents, 9-13
directory location, 9-17
how it works, 9-17
if becomes too full, 9-62

standard audit trail
archiving, setting timestamp, 9-69
audited actions in common with operating

system audit trail, 9-12
records, archiving, 9-61

where written to, 9-53
AUDIT statement

about, 9-7
schema objects, 9-31

audit trail
about, 9-57
archiving, 9-61
deleting views, 9-84
finding information about, 9-80
interpreting, 9-81

Index-3

types of, 9-57
See also standard audit trail, SYS.AUD$ table,

SYS.FGA_LOG$ table
AUDIT_FILE_DEST initialization parameter

about, 9-17
setting for OS auditing, 9-17

AUDIT_SYS_OPERATIONS initialization parameter
auditing SYS, 9-53

AUDIT_SYSLOG_LEVEL initialization parameter
how it affects mandatory audit records, 9-4

AUDIT_TRAIL initialization parameter
about, 9-8
auditing SYS, 9-54
database, starting in read-only mode, 9-10
DB (database) setting, 9-10
DB, EXTENDED setting, 9-10
disabling, 9-11
OS (operating system) setting, 9-10
setting, 9-9
values, 9-10
XML setting, 9-11
XML, EXTENDED setting, 9-11

auditing
administrators

See standard auditing
audit options, 9-5
audit records, 9-57
audit trail, sensitive data in, 10-18
audit trails, 9-57
before-and-after changes, recording with

triggers, 9-55
committed data, 9-21, 10-20
database user names, 3-25
default auditing, enabling, 9-35
distributed databases and, 9-4
finding information about, 9-80
fine-grained

See fine-grained auditing
functions, 9-33
functions, Oracle Virtual Private Database, 9-33
general steps for, 9-5
guidelines for security, 10-18
historical information, 10-19
keeping information manageable, 10-19
LOBs, auditing

user-defined columns, 9-38
logon and logoff events, 9-25
middle-tier systems, real user actions, 3-41
multitier environments

See standard auditing
network

See standard auditing
object columns, 9-38
objects

See standard auditing
One Big Application User authentication,

compromised by, 5-2
operating system files

appearance, 9-13
configuring, 9-10

managing, 9-62
operating-system user names, 3-25
Oracle Virtual Private Database policy

functions, 9-33
packages, 9-33
performance, 9-4
PL/SQL packages, 9-33
privileges

See standard auditing
procedures, 9-33
range of focus, 9-5
recommended settings, 10-21
Sarbanes-Oxley Act

auditing, meeting compliance through, 9-2
schema objects

See standard auditing
schema objects created in the future, 9-31
SQL statements

See standard auditing
standard

See standard audit trail, standard auditing
statements

See standard auditing
STMT_AUDIT_OPTION_MAP table, 9-12
suspicious activity, 10-20
SYS user, 9-53
SYS.FGA_LOG$ table, 9-39
SYSTEM user, 9-52
SYSTEM_PRIVILEGE_MAP table, 9-12
triggers, 9-33
triggers used for, 9-55
UNIX syslog, 9-4
views

active object options, 9-83
active privilege options, 9-82
active statement options, 9-82
default object options, 9-83

when audit options take effect, 9-8
XML files

appearance, 9-15
configuring, 9-11

See also SYS.AUD$ table, SYS.FGA_LOG$ table,
standard auditing, standard audit trail,
fine-grained auditing

auditing, purging records
about, 9-66
cancelling archive timestamp, 9-78
clearing database audit trail batch size, 9-78
creating audit trail

purge job, 9-67
creating the purge job, 9-71
database audit trail

purging subset of records, 9-74
deleting a purge job, 9-78
disabling purge jobs, 9-77
enabling purge jobs, 9-77
example, 9-79
general steps for, 9-67
initializing

cancelling, 9-76

Index-4

initializing cleanup operation, 9-68
initializing, checking if done, 9-75
purging audit trail manually, 9-72
purging records in batched groups, 9-72
roadmap, 9-67
scheduling the purge job, 9-71
setting archive timestamp, 9-69
time interval for all purge jobs, 9-76
time interval for named purge job, 9-77

AUTHENTICATEDUSER role, 4-11
authentication

about, 3-1
administrators

operating system, 3-22
passwords, 3-23
SYSDBA and SYSOPER access, centrally

controlling, 3-20
by database, 3-24
by SSL, 3-29
client, 10-13
client-to-middle tier process, 3-37
database administrators, 3-19
databases, using

about, 3-24
advantages, 3-24
procedure, 3-24

directory service, 3-29
directory-based services, 3-27
external authentication

about, 3-30
advantages, 3-31
operating system authentication, 3-32
user creation, 3-31

global authentication
about, 3-28
advantages, 3-29
user creation for private schemas, 3-29
user creation for shared schemas, 3-29

middle-tier authentication
proxies, example, 3-39

multitier, 3-32
network authentication

Secure Sockets Layer, 3-26
third-party services, 3-26

One Big Application User, compromised by, 5-2
operating system authentication

about, 3-25
advantages, 3-25
disadvantages, 3-25

proxy user authentication
about, 3-34
expired passwords, 3-36

public key infrastructure, 3-27
RADIUS, 3-27
remote, 10-13
specifying when creating a user, 2-3
strong, 10-9
SYSDBA on Windows systems, 3-22
Windows native authentication, 3-22
See also passwords, proxy authentication

AUTHID DEFINER clause
used with Oracle Virtual Private Database

functions, 7-3
authorization

about, 4-1
changing for roles, 4-17
global

about, 3-28
advantages, 3-29

multitier, 3-32
omitting for roles, 4-17
operating system, 4-19
roles, about, 4-17

automatic reparse
Oracle Virtual Private Database, how it works

with, 7-35
Automatic Storage Management (ASM)

SYSASM privilege, xxxii

B
banners

auditing user actions, configuring, 5-20
unauthorized access, configuring, 5-20

batch jobs, authenticating users in, 3-14
BFILEs

guidelines for security, 10-10
bind variables

application contexts, used with, 7-4
information captured in audit trail, 9-10

BLOBS
encrypting, 8-7

BY ACCESS clause
about, 9-22
benefits of using, 9-22
finding statement audit options, 9-82
NOAUDIT statement non-support of, 9-23
using, 9-22

C
CAPI_USER_ROLE role, 4-11
cascading revokes, 4-42
CATNOAUD.SQL script

about, 9-84
audit trail views, deleting with, 9-84

certificate key algorithm
Secure Sockets Layer, 10-17

change_on_install default password, 10-8
character sets

role names, multibyte characters in, 4-16
role passwords, multibyte characters in, 4-18

cipher suites
Secure Sockets Layer, 10-17

client connections
guidelines for security, 10-12
secure external password store, 3-16
securing, 10-12

client identifier
setting for applications that use JDBC, 3-43

Index-5

client identifiers
about, 3-41
auditing users, 9-28
consistency between DBMS_SESSION.SET_

IDENTIFIER and DBMS_APPLICATION_
INFO.SET_CLIENT_INFO, 3-44

global application context, independent of, 3-42
setting with DBMS_SESSION.SET_IDENTIFIER

procedure, 6-23
See also nondatabase users

client session-based application contexts
about, 6-42
CLIENTCONTEXT namespace, clearing value

from, 6-44
CLIENTCONTEXT namespace, setting value

in, 6-43
retrieving CLIENTCONTEXT namespace, 6-43
See also application contexts

CLIENT_IDENTIFIER USERENV attribute
setting and clearing with DBMS_SESSION

package, 3-43
setting with OCI user session handle

attribute, 3-43
See also USERENV namespace

CLIENTID_OVERWRITE event, 3-44
column masking behavior, 7-10

column specification, 7-10
restrictions, 7-11

columns
granting privileges for selected, 4-39
granting privileges on, 4-39
INSERT privilege and, 4-39
listing users granted to, 4-73
privileges, 4-39
pseudo columns

USER, 4-27
revoking privileges on, 4-42

command line recall attacks, 5-4, 5-5
committed data

auditing, 9-21, 10-20
configuration

guidelines for security, 10-12
configuration files

listener.ora, 10-14
sample listener.ora file, 10-14
server.key encryption file, 10-18
tsnames.ora, 10-17
typical directory, 10-17

CONNECT role
about, 10-22
applications

account provisioning, 10-23
affects of, 10-23
database upgrades, 10-23
installation of, 10-23

script to create, 4-11
users

application developers, impact, 10-24
client-server applications, impact, 10-24
general users, impact, 10-23

how affects, 10-23
why changed, 10-22

CONNECT role, privilege available to, 4-6
connection pooling

about, 3-32
global application contexts, 6-22
nondatabase users, 6-28
proxy authentication, 3-37

connections
SYS privilege, 10-2

CPU time limit, 2-9
CREATE ANY PROCEDURE system privilege, 4-30
CREATE ANY TABLE statement

non-administrative users, 10-2
CREATE CONTEXT statement

about, 6-5
example, 6-5

CREATE PROCEDURE system privilege, 4-30
CREATE PROFILE statement

account locking period, 3-6
failed login attempts, 3-6
password aging and expiration, 3-8
password management, 3-4
passwords, example, 3-9

CREATE ROLE statement
IDENTIFIED EXTERNALLY option, 4-18

CREATE SCHEMA statement
securing, 5-16

CREATE SESSION statement, 4-6
CONNECT role privilege, 10-6
securing, 5-15

CREATE USER statement
explicit account locking, 3-7
IDENTIFIED BY option, 2-3
IDENTIFIED EXTERNALLY option, 2-3
passwords, expiring, 3-9
user profile, 3-4

CSW_USR_ROLE role, 4-11
CTXAPP role, 4-11
cursors

reparsing, for application contexts, 6-12
shared, used with Virtual Private Database, 7-4

custom installation, 10-12
CWM_USER role, 4-11

D
data definition language (DDL)

roles and privileges, 4-9
standard auditing, 9-24

data dictionary
protecting, 10-9
securing with O7_DICTIONARY_

ACCESSIBILITY, 4-3
data dictionary views

See views
data files, 10-10

guidelines for security, 10-9
data manipulation language (DML)

privileges controlling, 4-25

Index-6

standard auditing, 9-24
data security

encryption, problems not solved by, 8-3
database administrators (DBAs)

access, controlling, 8-2
authentication, 3-19
malicious, encryption not solved by, 8-2

database audit trail
audited actions in common with operating system

audit trail, 9-12
batch size for records during purging, 9-72
protecting, 9-3
tablespace, moving to one other than

SYSTEM, 9-60
Database Configuration Assistant (DBCA)

default passwords, changing, 10-8
user accounts, automatically locking and

expiring, 10-3
database links

application context support, 6-16
application contexts, 6-9
auditing, 9-29
authenticating with Kerberos, 3-26
authenticating with third-party services, 3-26
global user authentication, 3-30
object privileges, 4-24
operating system accounts, care needed, 3-25
session-based application contexts, accessing, 6-9

database session-based application contexts
about, 6-4
cleaning up after user exits, 6-4
components, 6-5
creating, 6-5
database links, 6-9
dynamic SQL, 6-8
externalized, using, 6-21
how to use, 6-4
initializing externally, 6-16
initializing globally, 6-18
ownership, 6-5
parallel queries, 6-9
PL/SQL package creation, 6-6
session information, setting, 6-9
SYS_CONTEXT function, 6-7
trusted procedure, 6-2
tutorial, 6-13
See also application contexts

database upgrades and CONNECT role, 10-23
databases

access control
password encryption, 3-2

additional security resources, 1-2
authentication, 3-24
database user and application user, 5-2
default audit settings

about, 9-35
DBCA-created databases, 9-35
manually-created databases, 9-36

default password security settings, 3-6
DBCA-created databases, 3-6

manually-created databases, 3-6
default security features, summary, 1-1
granting privileges, 4-36
granting roles, 4-36
limitations on usage, 2-8
read-only mode, starting in, 9-10
security and schemas, 5-15
security embedded, advantages of, 5-2
security policies based on, 7-2

DATAPUMP_EXP_FULL_DATABASE role, 4-11
DATAPUMP_IMP_FULL_DATABASE role, 4-11
DB_EXTENDED setting in AUDIT_TRAIL

initialization parameter, xxx
DBA role

about, 4-12
DBA_NETWORK_ACL_PRIVILEGES view, 4-65
DBA_ROLE_PRIVS view

application privileges, finding, 5-12
DBMS_APPLICATION.SET_CLIENT_INFO

procedure
DBMS_SESSION.SET_IDENTIFIER value,

overwriting, 3-44
DBMS_CRYPTO package

about, 8-8
encryption algorithms supported, 8-8
examples, 8-11

DBMS_FGA package
about, 9-40
ADD_POLICY procedure, 9-40
DISABLE_POLICY procedure, 9-43
DROP_POLICY procedure, 9-44
ENABLE_POLICY procedure, 9-43

DBMS_OBFUSCATION_TOOLKIT package
backward compatibility, 8-8
See also DBMS_CRYPTO package

DBMS_RLS package
about, 7-6

DBMS_RLS.ADD_CONTEXT procedure, 7-6
DBMS_RLS.ADD_GROUPED_POLICY

procedure, 7-6
DBMS_RLS.ADD_POLICY

sec_relevant_cols parameter, 7-8
sec_relevant_cols_opt parameter, 7-10

DBMS_RLS.ADD_POLICY procedure
about, 7-6

DBMS_RLS.CREATE_POLICY_GROUP
procedure, 7-6

DBMS_RLS.DELETE_POLICY_GROUPS
procedure, 7-6

DBMS_RLS.DISABLE_GROUPED_POLICY
procedure, 7-6

DBMS_RLS.DROP_CONTEXT procedure, 7-6
DBMS_RLS.DROP_GROUPED_POLICY

procedure, 7-6
DBMS_RLS.DROP_POLICY procedure, 7-6
DBMS_RLS.ENABLE_GROUPED_POLICY

procedure, 7-6
DBMS_RLS.ENABLE_POLICY procedure, 7-6
DBMS_RLS.REFRESH_GROUPED_POLICY

procedure, 7-6

Index-7

DBMS_RLS.REFRESH_POLICY procedure, 7-6
DBMS_SESSION package

client identifiers, using, 3-43
global application context, used in, 6-24
SET_CONTEXT procedure

about, 6-9
application context name-value pair,

setting, 6-7
DBMS_SESSION.SET_CONTEXT procedure

about, 6-9
syntax, 6-9
username and client_id settings, 6-25

DBMS_SESSION.SET_IDENTIFIER procedure
client session ID, setting, 6-23
DBMS_APPLICATION.SET_CLIENT_INFO value,

overwritten by, 3-44
DBMS_SQLHASH encryption package

about, 8-10
GETHASH function, 8-10

DBSNMP user account
password usage, 10-8

DDL
See data definition language

default passwords, 10-8
change_on_install or manager passwords, 10-8
changing, importance of, 3-4
finding, 3-4

default permissions, 10-10
default profiles

about, 3-4
default roles

setting for user, 2-6
specifying, 4-47

default users
accounts, 10-3
Enterprise Manager accounts, 10-4
passwords, 10-8

defaults
tablespace quota, 2-4
user tablespaces, 2-3

definer’s rights
about, 4-28
procedure privileges, used with, 4-28
procedure security, 4-28
secure application roles, 5-13
used with Oracle Virtual Private Database

functions, 7-3
DELETE privilege

SQL statements permitted, 5-17
DELETE_CATALOG_ROLE role

about, 4-12
SYS schema objects, enabling access to, 4-4

denial-of-service (DoS) attacks
bad packets, preventing, 5-18
networks, securing, 10-15

denial-of-service attacks
about, Glossary-2

denial-of-service(DoS) attacks
audit trail, writing to operating system file, 9-16

deprecated security features, xxx

dictionary protection mechanism, 4-3
directory authentication, configuring for SYSDBA or

SYSOPER access, 3-20
directory object auditing

configuring, 9-33
removing, 9-33

directory objects
auditing, 9-32
granting EXECUTE privilege on, 4-36

directory-based services authentication, 3-27
disabling unnecessary services

FTP, TFTP, TELNET, 10-17
dispatcher processes (Dnnn)

limiting SGA space for each session, 2-10
distributed databases

auditing and, 9-4
DML

See data manipulation language
driving context, 6-45
DROP PROFILE statement

example, 2-12
DROP ROLE statement

example, 4-21
security domain, affected, 4-20

DROP USER statement
about, 2-13
schema objects of dropped user, 2-14

DUAL table
about, 6-8

dynamic Oracle Virtual Private Database policy
types, 7-15

DYNAMIC policy type, 7-15

E
editions

application contexts, how affects, 6-3
fine-grained auditing packages, results in, 6-24
global application contexts, how affects, 6-24
Oracle Virtual Private Database packages, results

in, 6-24
EJBCLIENT role, 4-12
e-mail alert example, 9-44
encryption

access control, 8-1
backup media, reason why to encrypt, 3-13
BLOBS, 8-7
challenges, 8-4
data security, problems not solved by, 8-3
data transfer, 10-15
DBMS_CRYPTO package, 8-8
deleted encrypted data, 10-10
examples, 8-11
finding information about, 8-16
indexed data, 8-4
key generation, 8-4
key storage, 8-5
key transmission, 8-5
keys, changing, 8-7
malicious database administrators, 8-2

Index-8

network traffic, 10-17
problems not solved by, 8-1
transparent data encryption, 8-7
transparent tablespace encryption, 8-7

enterprise directory service, 4-19
Enterprise Edition, 10-9
Enterprise Manager

granting roles, 4-20
statistics monitor, 2-11

enterprise roles, 3-28, 4-19
enterprise user management, 5-2
Enterprise User Security

application context, globally initialized, 6-19
proxy authentication

Oracle Virtual Private Database, how it works
with, 7-38

enterprise users
centralized management, 3-28
global role, creating, 4-19
One Big Application User authentication,

compromised by, 5-2
proxy authentication, 3-34
shared schemas, protecting users, 5-16

errors
ORA-01720, 4-27
ORA-06512, 9-48
ORA-24247, 4-50, 9-48
ORA-28009, 4-3
ORA-28031, 4-48
ORA-28040, 3-24
ORA-28132, xxvi

examples
access control lists

external network connections, 4-59
wallet access, 4-59

account locking, 3-7
audit trail, purging, 9-79
audit trigger to record before-and-after

values, 9-55
data encryption

encrypting and decrypting BLOB data, 8-13
encrypting and decrypting procedure with AES

256-Bit, 8-12
directory objects, granting EXECUTE privilege

on, 4-36
encrypting procedure, 8-11
Java code to read passwords, 5-7
locking an account with CREATE PROFILE, 3-7
login attempt grace period, 3-9
nondatabase user authentication, 6-28
O7_DICTIONARY_ACCESSIBILITY initialization

parameter, setting, 4-3
passwords

aging and expiration, 3-8
changing, 2-7
creating for user, 2-3

privileges
granting ADMIN OPTION, 4-37
views, 4-71

procedure privileges affecting packages, 4-31

profiles, assigning to user, 2-6
roles

altering for external authorization, 4-17
creating for application authorization, 4-18
creating for external authorization, 4-18
creating for password authorization, 4-16
default, setting, 4-47
using SET ROLE for password-authenticated

roles, 4-17
views, 4-71

secure external password store, 3-15
session ID of user

finding, 2-13
terminating, 2-13

system privilege and role, granting, 4-36
tablespaces

assigning default to user, 2-4
quota, assigning to user, 2-4
temporary, 2-5

type creation, 4-33
users

account creation, 2-2
creating with GRANT statement, 4-37
dropping, 2-14
middle-tier server proxying a client, 3-36
naming, 2-3
object privileges granted to, 4-38
proxy user, connecting as, 3-36

See also tutorials
exceptions

WHEN NO DATA FOUND, used in application
context package, 6-15

WHEN OTHERS, used in triggers
development environment (debugging)

example, 6-12
production environment example, 6-11

exclusive mode
SHA-1 password hashing algorithm,

enabling, 3-13
EXECUTE privilege

SQL statements permitted, 5-17
EXECUTE_CATALOG_ROLE role

about, 4-12
SYS schema objects, enabling access to, 4-4

execution time for statements, measuring, 7-15
EXEMPT ACCESS POLICY privilege

Oracle Virtual Private Database enforcements,
exemption, 7-37

EXP_FULL_DATABASE role
about, 4-12

expiring a password
explicitly, 3-9

exporting data
direct path export impact on Oracle Virtual Private

Database, 7-37
policy enforcement, 7-37

external authentication
about, 3-30
advantages, 3-31
network, 3-32

Index-9

operating system, 3-32
user creation, 3-31

external network services, fine-grained access to
See access control list (ACL)

external tables, 10-10

F
failed login attempts

account locking, 3-6
password management, 3-6
resetting, 3-7

features, new security
See new features, security

files
adx_SID.txt

about, 9-11
BFILEs

operating system access, restricting, 10-10
BLOB, 8-7
data

operating system access, restricting, 10-10
external tables

operating system access, restricting, 10-10
keys, 8-7
listener.ora file

guidelines for security, 10-14, 10-17
log

audit file location for Windows, 9-53
audit file locations, 9-18
operating system access, restricting, 10-10

restrict listener access, 10-14
server.key encryption file, 10-18
symbolic links, restricting, 10-10
tnsnames.ora, 10-17
trace

operating system access, restricting, 10-10
fine-grained access control

See Oracle Virtual Private Database (VPD)
fine-grained auditing

about, 9-37
activities always recorded, 9-39
advantages, 9-38
alerts, adding to policy, 9-44
archiving audit trail, 9-61
columns, specific, 9-42
creating audit trail for, 9-39
DBMS_FGA package, 9-40
edition-based redefinitions, 9-39
editions, results in, 6-24
finding errors by checking trace files, 9-80
how audit records are generated, 9-39
how to use, 9-37
non-SYS activities audited, 9-3
policies

adding, 9-40
disabling, 9-43
dropping, 9-44
enabling, 9-43
modifying, 9-40

where created, 9-40
privileges needed, 9-38
records

archiving, 9-61
See also SYS.FGA_LOG$ table

firewalls
advice about using, 10-15
database server location, 10-15
ports, 10-17
supported types, 10-15

flashback query
auditing, used with, 9-59
Oracle Virtual Private Database, how it works

with, 7-36
foreign keys

privilege to use parent key, 4-26
FTP service, 10-17
functions

auditing, 9-33
Oracle Virtual Private Database

components of, 7-4
privileges used to run, 7-3

privileges for, 4-28
roles, 4-8

G
GATHER_SYSTEM_STATISTICS role, 4-12
global application contexts

about, 6-22
authenticating nondatabase users, 6-28
components, 6-23
editions, affect on, 6-24
example of authenticating nondatabase

users, 6-30
example of authenticating user moving to different

application, 6-27
example of setting values for all users, 6-26
Oracle RAC instances, 6-22
ownership, 6-23
PL/SQL package creation, 6-24
process, lightweight users, 6-40
process, standard, 6-39
sharing values globally for all users, 6-26
system global area, 6-22
tutorial for client session IDs, 6-35
used for One Big Application User scenarios, 7-38
user name retrieval with USER function, 6-25
uses for, 7-38
See also application contexts

global authentication
about, 3-28
advantages, 3-29
user creation for private schemas, 3-29
user creation for shared schemas, 3-29

global authorization
about, 3-28
advantages, 3-29
role creation, 4-19
roles, 3-28

Index-10

global roles
about, 4-19

global users, 3-28
GLOBAL_AQ_USER_ROLE role, 4-12
grace period for login attempts

example, 3-9
grace period for password expiration, 3-8
GRANT ALL PRIVILEGES statement

SELECT ANY DICTIONARY privilege, exclusion
of, 10-10

GRANT ANY OBJECT PRIVILEGE system
privilege, 4-38, 4-41

GRANT ANY PRIVILEGE system privilege, 4-5
GRANT CONNECT THROUGH clause

consideration when setting FAILED_LOGIN_
ATTEMPTS parameter, 3-5

for proxy authorization, 3-36
GRANT statement, 4-36

ADMIN OPTION, 4-37
creating a new user, 4-37
object privileges, 4-37, 5-16
system privileges and roles, 4-36
when takes effect, 4-47
WITH GRANT OPTION, 4-38

granting privileges and roles
about, 4-4
finding information about, 4-70
specifying ALL, 4-23

guidelines for security
auditing, 10-18
custom installation, 10-12
data files and directories, 10-9
encrypting sensitive data, 10-10
installation and configuration, 10-12
networking security, 10-12
operating system accounts, limiting

privileges, 10-10
operating system users, limiting number of, 10-10
Oracle home default permissions, disallowing

modification, 10-10
ORACLE_DATAPUMP access driver, 10-10
passwords, 10-7
Secure Sockets Layer

mode, 10-17
TCPS protocol, 10-17

symbolic links, restricting, 10-10
user accounts and privileges, 10-2

H
hackers

See security attacks
HS_ADMIN_EXECUTE_ROLE role

about, 4-12
HS_ADMIN_ROLE role

about, 4-12
HS_ADMIN_SELECT_ROLE role

about, 4-12
HTTP authentication

See access control lists (ACL), wallet access

HTTPS
port, correct running on, 10-17

I
IMP_FULL_DATABASE role

about, 4-13
INDEX privilege

SQL statements permitted, 5-17
indexed data

encryption, 8-4
indirectly granted roles, 4-6
initialization parameters

application protection, 5-18 to 5-20
AUDIT_FILE_DEST, 9-4, 9-54
AUDIT_SYS_OPERATIONS, 9-53
AUDIT_SYSLOG_LEVEL, 9-19
AUDIT_TRAIL

about, 9-8
using, 9-10

current value, checking, 9-9
FAILED_LOGIN_ATTEMPTS, 3-5
MAX_ENABLED_ROLES, 4-48
O7_DICTIONARY_ACCESSIBILITY, 4-3
OS_AUTHENT_PREFIX, 3-30
OS_ROLES, 4-19
PASSWORD_GRACE_TIME, 3-5, 3-9
PASSWORD_LIFE_TIME, 3-5, 3-8
PASSWORD_LOCK_TIME, 3-5, 3-7
PASSWORD_REUSE_MAX, 3-5, 3-7
PASSWORD_REUSE_TIME, 3-6, 3-7
REMOTE_OS_AUTHENT, 10-13
RESOURCE_LIMIT, 2-12
SEC_CASE_SENSITIVE_LOGIN, 3-11
SEC_MAX_FAILED_LOGIN_ATTEMPTS, 5-19
SEC_PROTOCOL_ERROR_FURTHER_

ACTION, 5-19
SEC_PROTOCOL_ERROR_TRACE_

ACTION, 5-18
SEC_RETURN_SERVER_RELEASE_

BANNER, 5-20
SEC_USER_AUDIT_ACTION_BANNER, 5-20
SEC_USER_UNAUTHORIZED_ACCESS_

BANNER, 5-20
INSERT privilege

granting, 4-39
revoking, 4-42
SQL statements permitted, 5-17

installation
guidelines for security, 10-12

intruders
See security attacks

invoker’s rights
about, 4-29
procedure privileges, used with, 4-28
procedure security, 4-29
secure application roles, 5-13
secure application roles, requirement for

enabling, 5-13
IP addresses

Index-11

falsifying, 10-15

J
JAVA_ADMIN role, 4-13
JAVA_DEPLOY role, 4-13
JAVADEBUGPRIV role, 4-13
JAVAIDPRIV role, 4-13
JAVASYSPRIV role, 4-13
JAVAUSERPRIV role, 4-13
JDBC connections

JDBC Thin Driver proxy authentication
configuring, 3-34
with real user, 3-37

JDBC/OCI proxy authentication, 3-34
multiple user sessions, 3-37
Oracle Virtual Private Database, 7-38

JMXSERVER role, 4-13

K
Kerberos authentication, 3-26

configuring for SYSDBA or SYSOPER
access, 3-21

password management, 10-9
key generation

encryption, 8-4
key storage

encryption, 8-5
key transmission

encryption, 8-5

L
LBAC_DBA role, 4-13
least privilege principle, 10-2

about, 10-2
granting user privileges, 10-2
middle-tier privileges, 3-38

lightweight users
example using a global application context, 6-35
Lightweight Directory Access Protocol

(LDAP), 7-28
listener

not an Oracle owner, 10-14
preventing online administration, 10-14
restrict privileges, 10-14
secure administration, 10-15

listener.ora file
administering remotely, 10-14
default location, 10-17
online administration, preventing, 10-14
TCPS, securing, 10-17

LOBS
auditing, 9-38

lock and expire
default accounts, 10-4
predefined user accounts, 10-3

log files
auditing, default location, 9-18
owned by trusted user, 10-10

Windows Event Viewer, 9-53
logical reads limit, 2-10
logon triggers

auditing current session, 9-25
examples, 6-11
externally initialized application contexts, 6-12
secure application roles, 4-22

LOGSTDBY_ADMINISTRATOR role, 4-13

M
malicious database administrators

See also security attacks
manager default password, 10-8
mandatory auditing

about, 9-4
syslog, written to, 9-4

memory
users, viewing, 2-17

MERGE INTO statement, affected by DBMS_
RLS.ADD_POLICY statement_types
parameter, 7-8

methods
privileges on, 4-32

MGMT_USER role, 4-13
middle-tier systems

auditing real user actions, 3-41
client identifiers, 3-42
enterprise user connections, 3-40
password-based proxy authentication, 3-40
privileges, limiting, 3-38
proxies authenticating users, 3-39
proxying but not authenticating users, 3-39
reauthenticating user to database, 3-39
USERENV namespace attributes, accessing, 6-17

monitoring user actions
See also auditing, standard auditing, fine-grained

auditing
multiplex multiple-client network sessions, 10-15
My Oracle Support

security patches, downloading, 10-2

N
Net8

See Oracle Net
network auditing

about, 9-34
removing, 9-35

network authentication
external authentication, 3-32
guidelines for securing, 10-9
roles, granting using, 4-44
Secure Sockets Layer, 3-26
smart cards, 10-9
third-party services, 3-26
token cards, 10-9
X.509 certificates, 10-9

network connections
denial-of-service (DoS) attacks, addressing, 10-15

Index-12

guidelines for security, 10-12, 10-13
securing, 10-13

network IP addresses
guidelines for security, 10-15

new features, security, 0-xxv
NOAUDIT statement

audit options, removing, 9-23
default object audit options, disabling, 9-32
network auditing, removing, 9-35
object auditing, removing, 9-31
privilege auditing, removing, 9-27
statement auditing, removing, 9-25

nondatabase users
about, 6-22
audit record information, 9-57
auditing, 9-50
clearing session data, 6-31
creating client session-based application

contexts, 6-42 to 6-44
global application contexts

package example, 6-30
reason for using, 6-22
setting, 6-28
tutorial, 6-35

One Big Application User authentication
about, 7-38
features compromised by, 5-2
security risks, 5-2

Oracle Virtual Private Database
how it works with, 7-38
tutorial for creating a policy group, 7-29

See also application contexts, client identifiers

O
O7_DICTIONARY_ACCESSIBILITY initialization

parameter
about, 4-3
auditing privileges on SYS objects, 9-3, 9-8
data dictionary protection, 10-9
default setting, 10-10
securing data dictionary with, 4-3

object columns
auditing, 9-38

object privileges, 10-2
about, 4-24
granting on behalf of the owner, 4-38
managing, 5-16
revoking, 4-41
revoking on behalf of owner, 4-41
schema object privileges, 4-24
See also schema object privileges

objects
applications, managing privileges in, 5-16
granting privileges, 5-17
privileges

applications, 5-16
managing, 4-32

protecting in shared schemas, 5-16
protecting in unique schemas, 5-15

SYS schema, access to, 4-4
OEM_ADVISOR role, 4-13
OEM_MONITOR role, 4-14
OLAP_DBA role, 4-14
OLAP_USER role, 4-14
OLAP_XS_ADMIN role, 4-14
OLAPI_TRACE_USER role, 4-14
One Big Application User authentication

See nondatabase users
operating system audit trail

age, controlling, 9-64
audited actions in common with database audit

trail, 9-12
size, controlling, 9-62

operating systems
accounts, 4-45
authentication

about, 3-25
advantages, 3-25
disadvantages, 3-25
roles, using, 4-44

authentication, external, 3-32
default permissions, 10-10
enabling and disabling roles, 4-46
operating system account privileges,

limiting, 10-10
role identification, 4-45
roles and, 4-10
roles, granting using, 4-44
users, limiting number of, 10-10

ORA-01720 error, 4-27
ORA-06512 error, 9-48
ORA-1536 error, 2-5
ORA-24247 error, 4-50, 9-48
ORA-28009 error, 4-3
ORA-28031 error, 4-48
ORA-28040 error, 3-24
ORA-28132 error, xxvi
Oracle Advanced Security

network authentication services, 10-9
network traffic encryption, 10-17
user access to application schemas, 5-16

Oracle Call Interface (OCI)
application contexts, client session-based, 6-42
proxy authentication, 3-34

Oracle Virtual Private Database, how it works
with, 7-38

proxy authentication with real user, 3-37
security-related initialization

parameters, 5-18 to 5-20
Oracle Connection Manager

securing client networks with, 10-15
Oracle Enterprise Security Manager

role management with, 3-27
Oracle home

default permissions, disallowing
modification, 10-10

Oracle Internet Directory (OID)
authenticating with directory-based service, 3-27
SYSDBA and SYSOPER access, controlling, 3-20

Index-13

Oracle Java Virtual Machine (OJVM)
permissions, restricting, 10-3

Oracle Label Security (OLS)
Oracle Virtual Private Database, using with, 7-36

Oracle Net
firewall support, 10-15

Oracle Real Application Clusters
archive timestamp for audit records, 9-70
global contexts, 6-22

Oracle Technology Network
security alerts, 10-2

Oracle Virtual Private Database
edition-based redefinitions, 7-34

Oracle Virtual Private Database (VPD)
about, 7-1
ANSI operations, 7-35
application contexts

tutorial, 7-23
used with, 7-3

applications
how it works with, 7-35
users who are database users, how it works

with, 7-38
applications using for security, 5-2
automatic reparsing, how it works with, 7-35
benefits, 7-2
column level, 7-8
column masking behavior

enabling, 7-10
restrictions, 7-11

column-level display, 7-8
components, 7-4
configuring, 7-5 to 7-19
cursors, shared, 7-4
editions, results in, 6-24
Enterprise User Security proxy authentication,

how it works with, 7-38
exporting data, 7-37
finding information about, 7-39
flashback query, how it works with, 7-36
function

auditing, 9-29
components, 7-4
how it is executed, 7-3

JDBC proxy authentication, how it works
with, 7-38

MERGE INTO, ORA-28132 error, xxvi
nondatabase user applications, how works

with, 7-38
OCI proxy authentication, how it works

with, 7-38
Oracle Label Security

exceptions in behavior, 7-37
using with, 7-36

outer join operations, 7-35
performance benefit, 7-3
policies, Oracle Virtual Private Database

about, 7-6
applications, validating, 7-13
attaching to database object, 7-7

column display, 7-8
column-level display, default, 7-9
dynamic, 7-15
multiple, 7-13
optimizing performance, 7-14
privileges used to run, 7-3
SQL statements, specifying, 7-7

policy groups
about, 7-12
benefits, 7-12
creating, 7-12
default, 7-13
tutorial, implementation, 7-29

policy types
context sensitive, about, 7-17
context sensitive, when to use, 7-19
context-sensitive, audited, 9-33
DYNAMIC, 7-15
dynamic, audited, 9-33
shared context sensitive, about, 7-18
shared context sensitive, when to use, 7-19
shared static, about, 7-16
shared static, when to use, 7-17
static, about, 7-16
static, audited, 9-33
static, when to use, 7-17
summary of features, 7-19

SELECT FOR UPDATE statements in
policies, 7-35

tutorial, simple, 7-20
user models, 7-38
Web-based applications, how it works with, 7-39

Oracle Wallet Manager
X.509 Version 3 certificates, 3-28

Oracle wallets
authentication method, 3-28

Oracle Warehouse Builder
roles, predefined, 4-14

ORACLE_DATAPUMP access driver
guidelines for security, 10-10

OracleMetaLink
See My Oracle Support

ORAPWD password utility
case sensitivity in passwords, 3-12
password file authentication, 3-23
permissions to run, 3-23

ORDADMIN role, 4-14
OS_ROLES initialization parameter

operating system role grants, 4-46
operating-system authorization and, 4-19
REMOTE_OS_ROLES and, 4-46
using, 4-45

outer join operations
Oracle Virtual Private Database affect on, 7-35

OWB$CLIENT role, 4-14
OWB_DESIGNCENTER_VIEW role, 4-14
OWB_USER role, 4-14

Index-14

P
packages

auditing, 9-33
examples, 4-31
examples of privilege use, 4-31
privileges

divided by construct, 4-30
executing, 4-28, 4-30

parallel execution servers, 6-9
parallel query, and SYS_CONTEXT, 6-9
pass phrase

read and parse server.key file, 10-18
password files

case sensitivity, effect on SEC_CASE_SENSITIVE_
LOGON parameter, 3-11

how used to authenticate administrators, 3-23
PASSWORD statement

about, 2-7
PASSWORD_LIFE_TIME initialization

parameter, 3-8
PASSWORD_LOCK_TIME initialization

parameter, 3-7
PASSWORD_REUSE_MAX initialization

parameter, 3-7
PASSWORD_REUSE_TIME initialization

parameter, 3-7
passwords

about managing, 3-4
account locking, 3-6
administrator

authenticating with, 3-23
guidelines for securing, 10-8

aging and expiration, 3-8
ALTER PROFILE statement, 3-4
altering, 2-7
application design guidelines, 5-4
applications, strategies for protecting

passwords, 5-3
brute force attacks, 3-2
case sensitivity setting, SEC_CASE_SENSITIVE_

LOGIN, 3-11
case sensitivity, configuring, 3-11
changing for roles, 4-17
complexity verification

about, 3-9
guidelines for security, 10-8

complexity, guidelines for enforcing, 10-9
connecting without, 3-25
CREATE PROFILE statement, 3-4
danger in storing as clear text, 10-9
database user authentication, 3-24
default profile settings

about, 3-4
default user account, 10-8
default, finding, 3-4
delays for incorrect passwords, 3-2
duration, 10-9
encrypting, 3-2, 10-9
examples of creating, 3-3
expiring

explicitly, 3-9
procedure for, 3-8
proxy account passwords, 3-36
with grace period, 3-8

failed logins, resetting, 3-7
grace period, example, 3-9
guidelines for security, 10-7
history, 3-7, 10-9
Java code example to read passwords, 5-7
length, 10-9
lifetime for, 3-8
lock time, 3-7
management rules, 10-9
managing, 3-3
maximum reuse time, 3-7
ORAPWD password utility, 3-12
password complexity verification, 3-9
password file risks, 3-23
PASSWORD_LOCK_TIME initialization

parameter, 3-7
PASSWORD_REUSE_MAX initialization

parameter, 3-7
PASSWORD_REUSE_TIME initialization

parameter, 3-7
policies, 3-3
privileges for changing for roles, 4-17
privileges to alter, 2-7
protections, built-in, 3-2
proxy authentication, 3-40
requirements, 3-3
reusing, 3-7, 10-9
reusing passwords, 3-7
roles authenticated by passwords, 4-16
roles enabled by SET ROLE statement, 4-17
secure external password store, 3-14
security risks, 3-23
SYS and SYSTEM, 10-8
used in roles, 4-7
UTLPWDMG.SQL password script

password management, 3-9
verified using SHA-1 hashing algorithm, 3-13
See also authentication, and access control list

(ACL), wallet access
performance

application contexts, 6-2
auditing, 9-4
database audit trail, moving to different

tablespace, 9-60
Oracle Virtual Private Database policies, 7-3
Oracle Virtual Private Database policy types, 7-14
resource limits and, 2-8

permissions
default, 10-10
run-time facilities, 10-3

PKI
See public key infrastructure (PKI)

PL/SQL
auditing of statements within, 9-8
roles in procedures, 4-8

PL/SQL functions

Index-15

auditing, 9-33
PL/SQL packages

auditing, 9-33
PL/SQL procedures

auditing, 9-33
setting application context, 6-7

PMON background process
application contexts, cleaning up, 6-4

positional parameters
security risks, 5-6

principle of least privilege, 10-2
about, 10-2
granting user privileges, 10-2
middle-tier privileges, 3-38

privileges
about, 4-1
access control lists, checking for external network

services, 4-65
altering

passwords, 2-7
users, 2-7

altering role authentication method, 4-17
applications, managing, 5-11
audited when default auditing is enabled, 9-36
auditing use of, 9-26, 9-27
auditing, recommended settings for, 10-21
cascading revokes, 4-42
column, 4-39
compiling procedures, 4-30
creating or replacing procedures, 4-30
creating users, 2-2
dropping profiles, 2-12
finding information about, 4-70
granting

about, 4-4, 4-36
examples, 4-31
object privileges, 4-24, 4-37
system, 4-36
system privileges, 4-36

grants, listing, 4-72
grouping with roles, 4-5
managing, 5-16
middle tier, 3-38
object, 4-23, 5-17

granting and revoking, 4-24
on selected columns, 4-42
procedures, 4-28

creating and replacing, 4-30
executing, 4-28
in packages, 4-30

reasons to grant, 4-2
revoking privileges

about, 4-4
object, 4-41
object privileges, cascading effect, 4-43
object privileges, requirements for, 4-41
schema object, 4-24

revoking system privileges, 4-40
roles

creating, 4-16

dropping, 4-20
restrictions on, 4-9

roles, why better to grant, 4-2
schema object, 4-24

DML and DDL operations, 4-25
packages, 4-30
procedures, 4-28

SQL statements permitted, 5-17
system

granting and revoking, 4-4
SELECT ANY DICTIONARY, 10-10

SYSTEM and OBJECT, 10-2
system privileges

about, 4-2
trigger privileges, 4-29
used for Oracle Virtual Private Database policy

functions, 7-3
view privileges

creating a view, 4-26
using a view, 4-27

views, 4-26
See also access control list (ACL) and system

privileges.
procedures

auditing, 9-30, 9-33
compiling, 4-30
definer’s rights

about, 4-28
roles disabled, 4-8

examples of, 4-31
examples of privilege use, 4-31
invoker’s rights

about, 4-29
roles used, 4-9

privileges for procedures
create or replace, 4-30
executing, 4-28
executing in packages, 4-30

privileges required for, 4-30
security enhanced by, 4-29

process monitor process (PMON)
cleans up timed-out sessions, 2-10

PRODUCT_USER_PROFILE table, 4-22
SQL commands, disabling with, 4-21

products and options
install only as necessary, 10-12

profiles, 2-11
about, 2-11
creating, 2-12
dropping, 2-12
finding information about, 2-14
managing, 2-11
password management, 3-4
privileges for dropping, 2-12
specifying for user, 2-6
viewing, 2-16

proxy authentication
about, 3-34, 3-35
advantages, 3-35
auditing actions on behalf of real user, 3-41

Index-16

auditing operations, 3-33
auditing users, 9-28
client-to-middle tier sequence, 3-37
middle-tier

authorizing but not authenticating users, 3-39
authorizing to proxy and authenticate

users, 3-39
limiting privileges, 3-38
reauthenticating users, 3-39

passwords, expired, 3-36
secure external password store, used with, 3-37
security benefits, 3-35
users, passing real identity of, 3-37

PROXY_USER attribute, 6-17
PROXY_USERS view, 3-36
pseudo columns

USER, 4-27
PUBLIC

procedures and, 4-44
user group, 4-44

public key infrastructure (PKI)
about, 3-27

PUBLIC user group
about, 4-8
granting and revoking privileges to, 4-44
security domain of users, 4-8

PUBLIC_DEFAULT profile
profiles, dropping, 2-12

Q
quotas

tablespace, 2-4
temporary segments and, 2-4
unlimited, 2-5
viewing, 2-15

R
RADIUS authentication, 3-27
read-only mode, affect on AUDIT_TRAIL

parameter, 9-10
reads

limits on data blocks, 2-10
RECOVERY_CATALOG_OWNER role

about, 4-14
redo log files

auditing committed and rolled back
transactions, 10-20

REFERENCES privilege
CASCADE CONSTRAINTS option, 4-42
revoking, 4-42
SQL statements permitted, 5-17

remote authentication, 10-13
REMOTE_OS_AUTHENT initialization parameter

guideline for securing, 10-13
setting, 3-32

remote_os_authentication, 10-13
REMOTE_OS_ROLES initialization parameter

OS role management risk on network, 4-47

setting, 4-19
resource limits

about, 2-8
call level, limiting, 2-9
connection time for each session, 2-10
CPU time, limiting, 2-9
determining values for, 2-11
idle time in each session, 2-10
logical reads, limiting, 2-10
private SGA space for each session, 2-10
profiles, 2-11
session level, limiting, 2-9
sessions

concurrent for user, 2-10
elapsed connection time, 2-10
idle time, 2-10
SGA space, 2-10

types, 2-9
RESOURCE privilege

CREATE SCHEMA statement, needed for, 5-15
RESOURCE role, 4-32

about, 4-15
REVOKE CONNECT THROUGH clause

revoking proxy authorization, 3-36
REVOKE statement

system privileges and roles, 4-40
when takes effect, 4-47

revoking privileges and roles
cascading effects, 4-42
on selected columns, 4-42
REVOKE statement, 4-40
specifying ALL, 4-23
when using operating-system roles, 4-46

role identification
operating system accounts, 4-45

ROLE_SYS_PRIVS view
application privileges, 5-12

ROLE_TAB_PRIVS view
application privileges, finding, 5-12

roles
about, 4-1, 4-6
ADM_PARALLEL_EXECUTE_TASK role, 4-11
ADMIN OPTION and, 4-37
advantages in application use, 5-12
application, 4-8, 4-21, 5-14, 5-16
application privileges, 5-12
applications, for user, 5-14
AQ_ADMINISTRATOR_ROLE role, 4-11
AQ_USER_ROLE role, 4-11
AUTHENTICATEDUSER role, 4-11
authorization, 4-17
authorized by enterprise directory service, 4-19
CAPI_USER_ROLE role, 4-11
changing authorization for, 4-17
changing passwords, 4-17
CONNECT, 4-6
CONNECT role

about, 4-11
create your own, 10-6
CSW_USR_ROLE role, 4-11

Index-17

CTXAPP role, 4-11
CWM_USER role, 4-11
database role, users, 5-15
DATAPUMP_EXP_FULL_DATABASE role, 4-11
DATAPUMP_IMP_FULL_DATABASE role, 4-11
DBA role, 4-12
DDL statements and, 4-9
default, 4-47
default, setting for user, 2-6
definer’s rights procedures disable, 4-8
DELETE_CATALOG_ROLE role, 4-12
dependency management in, 4-9
disabling, 4-47
dropping, 4-20
EJBCLIENT role, 4-12
enabled or disabled, 4-6, 4-20
enabling, 4-47, 5-14
enterprise, 3-28, 4-19
EXECUTE_CATALOG_ROLE role, 4-12
EXP_FULL_DATABASE role, 4-12
finding information about, 4-70
functionality, 4-2, 4-6
functionality of, 4-6
GATHER_SYSTEM_STATISTICS role, 4-12
global authorization, 4-19

about, 4-19
global roles

about, 3-28
creating, 4-19
external sources, and, 4-18

GLOBAL_AQ_USER_ROLE role, 4-12
GRANT statement, 4-46
granted to other roles, 4-6
granting roles

about, 4-36
methods for, 4-20
system, 4-36
system privileges, 4-4

guidelines for security, 10-6
HS_ADMIN_EXECUTE_ROLE role, 4-12
HS_ADMIN_ROLE role, 4-12
HS_ADMIN_SELECT_ROLE role, 4-12
IMP_FULL_DATABASE role, 4-13
in applications, 4-7
indirectly granted, 4-6
invoker’s rights procedures use, 4-9
JAVA_ADMIN role, 4-13
JAVA_DEPLOY role, 4-13
JAVADEBUGPRIV role, 4-13
JAVAIDPRIV role, 4-13
JAVASYSPRIV role, 4-13
JAVAUSERPRIV role, 4-13
JMXSERVER role, 4-13
job responsibility privileges only, 10-6
LBAC_DBA role, 4-13
listing grants, 4-72
listing privileges and roles in, 4-74
listing roles, 4-74
LOGSTDBY_ADMINISTRATOR role, 4-13
management using the operating system, 4-44

managing roles
about, 4-5
categorizing users, 5-16

managing through operating system, 4-10
maximum number a user can enable, 4-48
MGMT_USER role, 4-13
multibyte characters in names, 4-16
multibyte characters in passwords, 4-18
naming, 4-6
network authorization, 4-19
network client authorization, 4-19
OEM_ADVISOR role, 4-13
OEM_MONITOR role, 4-14
OLAP_DBA role, 4-14
OLAP_USER role, 4-14
OLAP_XS_ADMIN role, 4-14
OLAPI_TRACE_USER role, 4-14
One Big Application User, compromised by, 5-2
operating system, 4-45
operating system authorization, 4-19
operating system granting of, 4-46
operating system identification of, 4-45
operating system management and the shared

server, 4-46
operating system-managed, 4-46
operating-system authorization, 4-18
ORDADMIN role, 4-14
OWB$CLIENT role, 4-14
OWB_DESIGNCENTER_VIEW role, 4-14
OWB_USER role, 4-14
predefined, 4-10
privileges for creating, 4-16
privileges for dropping, 4-20
privileges, changing authorization method

for, 4-17
privileges, changing passwords, 4-17
RECOVERY_CATALOG_OWNER role, 4-14
RESOURCE role, 4-15
restricting from tool users, 4-21
restrictions on privileges of, 4-9
REVOKE statement, 4-46
revoking, 4-20, 4-40
revoking ADMIN option, 4-41
SCHEDULER_ADMIN role, 4-15
schemas do not contain, 4-6
security domains of, 4-8
SELECT_CATALOG_ROLE role, 4-15
SET ROLE statement, 4-46
setting in PL/SQL blocks, 4-9
SNMPAGENT role, 4-15
SPATIAL_CSW_ADMIN role, 4-15
SPATIAL_WFS_ADMIN role, 4-15
unique names for, 4-16
use of passwords with, 4-7
user, 4-8, 5-16
users capable of granting, 4-20
uses of, 4-6, 4-7
WFS_USR_ROLE role, 4-15
WITH GRANT OPTION and, 4-38
without authorization, 4-17

Index-18

WKUSER role, xxx
WM_ADMIN_ROLE role, 4-15
XDB_SET_INVOKER roles, 4-15
XDB_WEBSERVICES role, 4-16
XDB_WEBSERVICES_OVER_HTTP role, 4-16
XDB_WEBSERVICES_WITH_PUBLIC role, 4-16
XDBADMIN role, 4-15
See also secure application roles

root file paths
for files and packages outside the database, 10-3

row-level security
See fine-grained access control, Oracle Virtual

Private Database (VPD)
RSA private key, 10-18
run-time facilities, 10-3

restriction permissions, 10-3

S
Sample Schemas

remove or relock for production, 10-12
test database, 10-12

sample schemas, 10-12
Sarbanes-Oxley Act

auditing to meet compliance, 9-2
SCHEDULER_ADMIN role

about, 4-15
schema object auditing

enabling, 9-31
removing, 9-31

schema object privileges, 4-24
schema objects

audit options, removing, 9-31
auditing, 9-29
auditing procedures or functions, 9-31
cascading effects on revoking, 4-43
default audit options, 9-31
default tablespace for, 2-3
dropped users, owned by, 2-13
enabling audit options on, 9-31
granting privileges, 4-37
privileges

DML and DDL operations, 4-25
granting and revoking, 4-24
view privileges, 4-26

privileges on, 4-24
privileges to access, 4-23
privileges with, 4-23
removing audit options, 9-27
revoking privileges, 4-41

schema-independent users, 5-16
schemas

auditing, recommended settings for, 10-21
private, 3-29
shared among enterprise users, 3-29
shared, protecting objects in, 5-16
unique, 5-15
unique, protecting objects in, 5-15

SCOTT user account
restricting privileges of, 10-6

script files
audit trail views, removing, 9-84
CATNOAUD.SQL, 9-84

scripts, authenticating users in, 3-14
SEC_CASE_SENSITIVE_LOGIN initialization

parameter, 3-11
SEC_MAX_FAILED_LOGIN_ATTEMPTS

initialization parameter, 5-19
SEC_PROTOCOL_ERROR_FURTHER_ACTION

initialization parameter, 5-19
SEC_PROTOCOL_ERROR_TRACE_ACTION

initialization parameter, 5-18
sec_relevant_cols_opt parameter, 7-10
SEC_RETURN_SERVER_RELEASE_BANNER

initialization parameter, 5-20
SEC_USER_AUDIT_ACTION_BANNER initialization

parameter, 5-20
SEC_USER_UNAUTHORIZED_ACCESS_BANNER

initialization parameter, 5-20
secconf.sql script

audit settings, 9-36
password settings, 3-6

secure application roles
about, 4-22
creating, 5-12
creating PL/SQL package, 5-13
finding with DBA_ROLES view, 4-71
invoker’s rights, 5-13
invoker’s rights requirement, 5-13
package for, 5-13
SET ROLE statement, 5-14
user environment information from SYS_

CONTEXT SQL function, 5-13, 5-14
using to ensure database connection, 4-22

secure external password store
about, 3-14
client configuration, 3-16
examples, 3-15
how it works, 3-15
proxy authentication, used with, 3-37

Secure Sockets Layer (SSL)
about, 3-26
certificate key algorithm, 10-17
cipher suites, 10-17
configuration files, securing, 10-17
configuring for SYSDBA or SYSOPER

access, 3-21
global users with private schemas, 3-29
guidelines for security, 10-17
listener, administering, 10-14
mode, 10-17
pass phrase, 10-18
RSA private key, 10-18
securing SSL connection, 10-17
server.key file, 10-18
TCPS, 10-17
version support, xxvii

security
application enforcement of, 4-7
default user accounts

Index-19

locked and expired automatically, 10-3
locking and expiring, 10-3

domains, enabled roles and, 4-20
enforcement in application, 5-2
enforcement in database, 5-2
multibyte characters in role names, 4-16
multibyte characters in role passwords, 4-18
passwords, 3-24
policies

applications, 5-1
SQL*Plus users, restricting, 4-21
tables or views, 7-2

procedures enhance, 4-29
resources, additional, 1-2
roles, advantages in application use, 5-12
See also security risks

security alerts, 10-2
security attacks

access to server after protocol errors,
preventing, 5-18

application context values, attempts to
change, 6-6

application design to prevent attacks, 5-3
command line recall attacks, 5-4, 5-5
denial of service, 10-15
denial-of-service

bad packets, addressing, 5-18
denial-of-service attacks through listener, 10-15
disk flooding, preventing, 5-18
eavesdropping, 10-13
encryption, problems not solved by, 8-2
falsified IP addresses, 10-12
falsified or stolen client system identities, 10-12
hacked operating systems or applications, 10-12
intruders, 8-2
non-SYS activities audited, 9-3
password cracking, 3-2
password protections against, 3-2
preventing malicious attacks from clients, 5-18
preventing password theft with proxy

authentication and secure external password
store, 3-37

session ID, need for encryption, 6-34
shoulder surfing, 5-5
SQL injection attacks, 5-4
unlimited authenticated requests,

preventing, 5-19
user session output, hiding from intruders, 6-12
See also security risks

security domains
enabled roles and, 4-6

security patches
about, 10-2
downloading, 10-2

security policies
See Oracle Virtual Private Database, policies

security risks
ad hoc tools, 4-21
application users not being database users, 5-2
applications enforcing rather than database, 5-2

audit records being tampered with, 9-18
bad packets to server, 5-18
database audit trail, protecting, 9-3
database version displaying, 5-19
encryption keys, users managing, 8-7
password files, 3-23
passwords exposed in large deployments, 3-14
passwords, exposing in programs or scripts, 5-5
positional parameters in SQL scripts, 5-6
privileges carelessly granted, 4-5
privileges granted to PUBLIC user group, 4-5
remote user impersonating another user, 4-19
sensitive data in audit trail, 10-18
server falsifying identities, 10-17
users with multiple roles, 5-15
See also security attacks

security settings scripts
audit settings

secconf.sql, 9-36
password settings

secconf.sql, 3-6
undoaud.sql, 9-36
undopwd.sql, 3-6

SELECT ANY DICTIONARY privilege
data dictionary, accessing, 10-9
exclusion from GRANT ALL PRIVILEGES

privilege, 10-10
SELECT FOR UPDATE statement in Virtual Private

Database policies, 7-35
SELECT privilege

SQL statements permitted, 5-17
SELECT_CATALOG_ROLE role

about, 4-15
SYS schema objects, enabling access to, 4-4

separation of duty concepts, Glossary-4
sequences

auditing, 9-29
server.key file

pass phrase to read and parse, 10-18
service-oriented architecture (SOA)

security enhancements for Oracle XML DB, xxxiv
SESSION_ROLES view

queried from PL/SQL block, 4-9
sessions

listing privilege domain of, 4-73
memory use, viewing, 2-17
time limits on, 2-10
when auditing options take effect, 9-8

SET ROLE statement
application code, including in, 5-15
associating privileges with role, 5-15
disabling roles with, 4-47
enabling roles with, 4-47
secure application roles, 5-14
when using operating-system roles, 4-46

SGA
See System Global Area (SGA)

SHA-1 hashing algorithm
about, 3-13
enabling exclusive mode, 3-13

Index-20

how it increases password safety, 3-13
recommended by Oracle, 3-13

Shared Global Area (SGA)
See System Global Area (SGA)

shared server
limiting private SQL areas, 2-10
operating system role management

restrictions, 4-46
shoulder surfing, 5-5
SHOW PARAMETER command, 9-9
smart cards

guidelines for security, 10-9
SNMPAGENT role

about, 4-15
SOA

See service-oriented architecture
SPATIAL_CSW_ADMIN role, 4-15
SPATIAL_WFS_ADMIN role, 4-15
SQL injection attacks, 5-4
SQL statements

audited when default auditing is enabled, 9-36
auditing

about, 9-24
configuring, 9-24
removing, 9-25
when records generated, 9-8

dynamic, 6-8
object privileges permitting in applications, 5-17
privileges required for, 4-24, 5-17
resource limits and, 2-9
restricting ad hoc use, 4-21

SQL*Net
See Oracle Net

SQL*Plus
connecting with, 3-25
restricting ad hoc use, 4-21
statistics monitor, 2-11

SSL
See Secure Sockets Layer

standard audit trail
activities always recorded, 9-4
AUDIT SQL statement, 9-21
auditing standard audit trail, 9-61
controlling size of, 9-59
disabling, 9-8
enabling, 9-8
maximum size of, 9-60
NOAUDIT SQL statement, 9-23
records, purging, 9-65
size, reducing, 9-74
transaction independence, 9-8
when created, 9-8

standard auditing
about, 9-7
administrative users on all platforms, 9-53
affected by editions, 9-30
archiving audit trail, 9-61
audit option levels, 9-21
audit trails

database, 9-58

auditing
default auditing, enabling, 9-35

cursors, affect on auditing, 9-22
database audit trail records, 9-58
DDL statement auditing, 9-24
default options, 9-31
default options, disabling, 9-32
directory object auditing

about, 9-32
configuring, 9-33
removing, 9-33

disabling options versus auditing, 9-23
DML statements, 9-24
information stored in operating system file, 9-13
mandatory auditing, 9-4
network auditing

about, 9-34
configuring, 9-35
error types recorded, 9-34
removing, 9-35

non-SYS activities audited, 9-3
object auditing

See standard auditing, schema object
operating system audit trail, 9-13

file location, 9-17
operating system audit trail using, 9-16
privilege auditing

about, 9-26
configuring, 9-27
multitier environment, 9-27
options, 9-27
removing, 9-27
types, 9-26

privileges needed, 9-7
procedures or functions, 9-31
range of focus, 9-20
records

archiving, 9-61
removing, 9-23
schema object auditing

about, 9-29
enabling, 9-31
example, 9-31
options, 9-30
removing, 9-31
types, 9-29

SQL statement
See standard auditing, statement auditing

statement auditing
about, 9-24
all statements for individual users, 9-24
all statements for the current session, 9-24
configuring, 9-24
multitier environment, 9-27
removing, 9-25
SQL statement shortcuts by individual

users, 9-24
statement level, 9-24
types you can audit, 9-24

statement executions, number of, 9-22

Index-21

successful or unsuccessful, 9-21
setting, 9-21

SYS users, 9-53
syslog audit trail on UNIX systems, 9-18
user, 9-23
See also auditing, standard audit trail, SYS.AUD$

table
standard auditing, schema object

objects created in the future, 9-32
statement_types parameter of DBMS_RLS.ADD_

POLICY procedure, 7-7
STMT_AUDIT_OPTION_MAP table, 9-12
storage

quotas and, 2-4
unlimited quotas, 2-5

stored procedures
using privileges granted to PUBLIC, 4-44

strong authentication
centrally controlling SYSDBA and SYSOPER access

to multiple databases, 3-20
guideline, 10-9

symbolic links
restricting, 10-10

synonyms
inheriting privileges from object, 4-25

SYS account
policy enforcement, 7-37

SYS and SYSTEM
passwords, 10-8

SYS schema
objects, access to, 4-4

SYS_CONTEXT function
about, 6-7
auditing current session, 9-25
auditing nondatabase users with, 9-51
database links, 6-9
dynamic SQL statements, 6-8
example, 6-10
parallel query, 6-9
STATIC policies, 7-17
syntax, 6-7
validating users, 5-13

SYS_DEFAULT Oracle Virtual Private Database
policy group, 7-13

SYSASM privilege, xxxii
SYS.AUD$ table

about, 9-58
archiving, 9-61
audit records, writing to, 9-10
contents, 9-58
data values in audited statement, 9-58
location in Oracle Database Vault

environment, 9-3
modifying manually, dangers of, 9-55
non-SYS actions audited, 9-3
purging, 9-61
too full or unavailable, 9-58
See also standard auditing

SYSAUX tablespace
moving database audit trail tables to, 9-60

SYS.FGA_LOG$
fine-grained auditing, 9-39

SYS.FGA_LOG$ table
about, 9-58
archiving, 9-61
contents, 9-58
data values in audited statement, 9-58
non-SYS actions audited, 9-3
purging, 9-61
too full or unavailable, 9-58

SYS.FGA_LOGS$ table
See also fine-grained auditing

syslog audit trail
about, 9-18
appearance, 9-19
configuring, 9-19
format, 9-19
format when AUDIT_TRAIL is set to XML, 9-11
mandatory audit records written to, 9-4

SYSMAN user account, 10-8
SYS-privileged connections, 10-2
System Global Area (SGA)

application contexts, storing in, 6-2
global application context information

location, 6-22
limiting private SQL areas, 2-10

system privileges, 10-2
about, 4-2
ADMIN OPTION, 4-5
ANY

guidelines for security, 10-9
ANY system privileges, 4-3
GRANT ANY OBJECT PRIVILEGE, 4-38, 4-41
GRANT ANY PRIVILEGE, 4-5
granting, 4-36
granting and revoking, 4-4
power of, 4-2
restriction needs, 4-3
revoking, cascading effect of, 4-43
SELECT ANY DICTIONARY, 10-10
SYSASM privilege, xxxii

SYSTEM_PRIVILEGE_MAP table, 9-12

T
tables

auditing, 9-29
privileges on, 4-25

tablespaces
assigning defaults for users, 2-3
default quota, 2-4
quotas for users, 2-4
quotas, viewing, 2-15
temporary

assigning to users, 2-5
unlimited quotas, 2-5

TCPS protocol
Secure Sockets Layer, used with, 10-14
tnsnames.ora file, used in, 10-17

TELNET service, 10-17

Index-22

TFTP service, 10-17
time measurement for statement execution, 7-15
token cards, 10-9
top-level SQL statements, 9-6
trace files

access to, importance of restricting, 10-10
bad packets, 5-18
location of, finding, 6-45

transparent data encryption, 8-7
transparent tablespace encryption, 8-7
triggers

audit data, recording, 9-55
auditing, 9-30, 9-33
CREATE TRIGGER ON, 5-17
logon

examples, 6-11
externally initialized application contexts, 6-12

privileges for executing, 4-29
roles, 4-8

WHEN OTHERS exception, 6-11
troubleshooting

finding errors by checking trace files, 6-45
trusted procedure

database session-based application contexts, 6-2
tsnames.ora configuration file, 10-17
tutorials

application context, database session-based, 6-13
auditing

creating policy to audit nondatabase
users, 9-50

creating policy using e-mail alert, 9-44
external network services, using e-mail alert, 9-44
global application context with client session

ID, 6-35
nondatabase users

creating Oracle Virtual Private Database policy
group, 7-29

global application context, 6-35
Oracle Virtual Private Database

policy groups, 7-29
policy implementing, 7-23
simple example, 7-20

See also examples
types

creating, 4-33
privileges on, 4-32
user defined

creation requirements, 4-33

U
UDP and TCP ports

close for ALL disabled services, 10-17
UGA

See User Global Area (UGA)
Ultra Search

deprecated role and schemas, xxx
undoaud.sql script, 9-36
undopwd.sql script, 3-6
UNIX systems

audit data written to syslog, 9-4
UNIX systems, auditing users on, 9-18
UNLIMITED TABLESPACE privilege, 2-5
UPDATE privilege

revoking, 4-42
user accounts

administrative user passwords, 10-8
default user account, 10-8
password guidelines, 10-7
passwords, encrypted, 10-9

USER function
global application contexts, 6-25

User Global Area (UGA)
application contexts, storing in, 6-2

user names
schemas, 5-15

USER pseudo column, 4-27
user sessions, multiple within single database

connection, 3-37
user-defined columns

auditing, 9-38
USERENV function, 6-8, 8-9
USERENV namespace

about, 6-8
client identifiers, 3-41
See also CLIENT_IDENTIFIER USERENV attribute

users
administrative option (ADMIN OPTION), 4-37
altering, 2-7
application users not known to database, 3-41
assigning unlimited quotas for, 2-5
auditing, 9-23
database role, current, 5-15
default roles, changing, 2-6
default tablespaces, 2-3
dropping, 2-13
dropping profiles and, 2-12
dropping roles and, 4-20
enabling roles for, 5-14
enterprise, 3-28, 4-19
enterprise, shared schema protection, 5-16
external authentication

about, 3-30
advantages, 3-31
operating system, 3-32
user creation, 3-31

finding information about, 2-14
finding information about authentication, 3-44
global, 3-28
hosts, connecting to multiple

See external network services, fine-grained
access to

information about, viewing, 2-15
listing roles granted to, 4-72
memory use, viewing, 2-17
network authentication, external, 3-32
nondatabase, 6-22, 6-28
objects after dropping, 2-13
operating system external authentication, 3-32
password encryption, 3-2

Index-23

privileges
for changing passwords, 2-7
for creating, 2-2
granted to, listing, 4-72
of current database role, 5-15

profiles
creating, 2-12
specifying, 2-6

proxy authentication, 3-34
proxy users, connecting as, 3-35
PUBLIC group, 4-44
PUBLIC user group, 4-8
quota limits for tablespace, 2-5
restricting application roles, 4-21
roles and, 4-7

for types of users, 4-8
schema-independent, 5-16
schemas, private, 3-29
security domains of, 4-8
security, about, 2-1
tablespace quotas, 2-4
tablespace quotas, viewing, 2-15
user accounts, creating, 2-2
user models and Oracle Virtual Private

Database, 7-38
user name, specifying with CREATE USER

statement, 2-3
views for finding information about, 2-14

UTLPWDMG.SQL
about, 3-9
guidelines for security, 10-8

V
V$LOGMNR_CONTENTS data dictionary

view, 9-59
valid node checking, 10-15
views

about, 4-26
access control list data

external network services, 4-70
wallet access, 4-70

application contexts, 6-45
audit trail, 9-80
auditing, 9-29, 9-30
authentication, 3-44
DBA_COL_PRIVS, 4-73
DBA_NETWORK_ACL_PRIVILEGES, 4-65, 4-70
DBA_NETWORK_ACLS, 4-70
DBA_ROLE_PRIVS, 4-72
DBA_ROLES, 4-74
DBA_SYS_PRIVS, 4-72
DBA_TAB_PRIVS, 4-72
DBA_USERS_WITH_DEFPWD, 3-4
DBA_WALLET_ACLS, 4-70
encrypted data, 8-16
Oracle Virtual Private Database policies, 7-39
privileges, 4-26, 4-70
profiles, 2-14
ROLE_ROLE_PRIVS, 4-74

ROLE_SYS_PRIVS, 4-74
ROLE_TAB_PRIVS, 4-74
roles, 4-70
security applications of, 4-27
SESSION_PRIVS, 4-73
SESSION_ROLES, 4-73
USER_NETWORK_ACL_PRIVILEGES, 4-70
users, 2-14

Virtual Private Database
See Oracle Virtual Private Database

VPD
See Oracle Virtual Private Database

vulnerable run-time call, 10-3
made more secure, 10-3

W
Wallet Manager

See Oracle Wallet Manager
wallets

authentication method, 3-28
See also access control lists (ACL), wallet access

Web applications
user connections, 6-22, 6-28

Web services
security enhancements for Oracle XML DB, xxxiv

Web-based applications
Oracle Virtual Private Database, how it works

with, 7-39
WFS_USR_ROLE role, 4-15
WHEN OTHERS exceptions

logon triggers, used in, 6-11
WHERE clause, dynamic SQL, 7-5
Windows native authentication, 3-22
WKUSER role, xxx
WM_ADMIN_ROLE role, 4-15

X
X.509 certificates

guidelines for security, 10-9
XDB_SET_INVOKER role, 4-15
XDB_WEBSERVICES role, 4-16
XDB_WEBSERVICES_OVER_HTTP role

about, 4-16
XDB_WEBSERVICES_WITH_PUBLIC role, 4-16
XDBADMIN role, 4-15
XML

adx_SID.txt file
about, 9-11

AUDIT_TRAIL XML setting, 9-11
AUDIT_TRAIL XML, EXTENDED setting, 9-11

XML, EXTENDED AUDIT_TRAIL setting
used with DB in AUDIT_TRAIL, 9-10
used with XML in AUDIT_TRAIL, 9-11

Index-24

	Contents
	Preface
	Audience
	Documentation Accessibility
	Related Documents
	Conventions

	What's New in Oracle Database Security?
	Oracle Database 11g Release 2 (11.2.0.2) New Security Features
	Oracle Database 11g Release 2 (11.2.0.1) New Security Features
	Oracle Database 11g Release 1 (11.1) New Security Features

	1 Introducing Oracle Database Security
	About Oracle Database Security
	Additional Database Security Resources

	2 Managing Security for Oracle Database Users
	About User Security
	Creating User Accounts
	Creating a New User Account
	Specifying a User Name
	Assigning the User a Password
	Assigning a Default Tablespace for the User
	Assigning a Tablespace Quota for the User
	Restricting the Quota Limits for User Objects in a Tablespace
	Granting Users the UNLIMITED TABLESPACE System Privilege

	Assigning a Temporary Tablespace for the User
	Specifying a Profile for the User
	Setting a Default Role for the User

	Altering User Accounts
	Changing the User Password

	Configuring User Resource Limits
	About User Resource Limits
	Types of System Resources and Limits
	Limiting the User Session Level
	Limiting Database Call Levels
	Limiting CPU Time
	Limiting Logical Reads
	Limiting Other Resources

	Determining Values for Resource Limits of Profiles
	Managing Resources with Profiles
	Creating Profiles
	Dropping Profiles

	Deleting User Accounts
	Finding Information About Database Users and Profiles
	Using Data Dictionary Views to Find Information About Users and Profiles
	Listing All Users and Associated Information
	Listing All Tablespace Quotas
	Listing All Profiles and Assigned Limits
	Viewing Memory Use for Each User Session

	3 Configuring Authentication
	About Authentication
	Configuring Password Protection
	What Are the Oracle Database Built-in Password Protections?
	Minimum Requirements for Passwords
	Using a Password Management Policy
	About Managing Passwords
	Finding User Accounts That Have Default Passwords
	Configuring Password Settings in the Default Profile
	Disabling and Enabling the Default Password Security Settings
	Automatically Locking a User Account After a Failed Login
	Controlling User Ability to Reuse Old Passwords
	Controlling Password Aging and Expiration
	Enforcing Password Complexity Verification
	Enabling or Disabling Password Case Sensitivity

	Ensuring Against Password Security Threats by Using the SHA-1 Hashing Algorithm
	Managing the Secure External Password Store for Password Credentials
	About the Secure External Password Store
	How Does the External Password Store Work?
	Configuring Clients to Use the External Password Store
	Managing External Password Store Credentials

	Authenticating Database Administrators
	Strong Authentication and Centralized Management for Database Administrators
	Configuring Directory Authentication for Administrative Users
	Configuring Kerberos Authentication for Administrative Users
	Configuring Secure Sockets Layer Authentication for Administrative Users

	Authenticating Database Administrators by Using the Operating System
	Authenticating Database Administrators by Using Their Passwords

	Using the Database to Authenticate Users
	About Database Authentication
	Advantages of Database Authentication
	Creating a User Who Is Authenticated by the Database

	Using the Operating System to Authenticate Users
	Using the Network to Authenticate Users
	Authentication Using Secure Sockets Layer
	Authentication Using Third-Party Services

	Configuring Global User Authentication and Authorization
	Creating a User Who Is Authorized by a Directory Service
	Creating a Global User Who Has a Private Schema
	Creating Multiple Enterprise Users Who Share Schemas

	Advantages of Global Authentication and Global Authorization

	Configuring an External Service to Authenticate Users and Passwords
	About External Authentication
	Advantages of External Authentication
	Creating a User Who Is Authenticated Externally
	Authenticating User Logins Using the Operating System
	Authentication User Logins Using Network Authentication

	Using Multitier Authentication and Authorization
	Administration and Security in Clients, Application Servers, and Database Servers

	Preserving User Identity in Multitiered Environments
	Using a Middle Tier Server for Proxy Authentication
	About Proxy Authentication
	Advantages of Proxy Authentication
	Altering a User Account to Connect Through a Proxy
	Using Proxy Authentication with the Secure External Password Store
	Passing Through the Identity of the Real User by Using Proxy Authentication
	Limiting the Privilege of the Middle Tier
	Authorizing a Middle Tier to Proxy and Authenticate a User
	Authorizing a Middle Tier to Proxy a User Authenticated by Other Means
	Reauthenticating the User Through the Middle Tier to the Database
	Auditing Actions Taken on Behalf of the Real User

	Using Client Identifiers to Identify Application Users Not Known to the Database
	How Client Identifiers Work in Middle Tier Systems
	Using the CLIENT_IDENTIFIER Attribute to Preserve User Identity
	Using CLIENT_IDENTIFIER Independent of Global Application Context
	Using the DBMS_SESSION PL/SQL Package to Set and Clear the Client Identifier

	Finding Information About User Authentication

	4 Configuring Privilege and Role Authorization
	About Privileges and Roles
	Who Should Be Granted Privileges?
	Managing System Privileges
	About System Privileges
	Why Is It Important to Restrict System Privileges?
	Restricting System Privileges by Securing the Data Dictionary
	Allowing Access to Objects in the SYS Schema

	Granting and Revoking System Privileges
	Who Can Grant or Revoke System Privileges?
	About ANY and PUBLIC Privileges

	Managing User Roles
	About User Roles
	The Functionality of Roles
	Properties of Roles and Why They Are Advantageous
	Common Uses of Roles
	How Roles Affect the Scope of a User’s Privileges
	How Roles Work in PL/SQL Blocks
	How Roles Aid or Restrict DDL Usage
	How Operating Systems Can Aid Roles
	How Roles Work in a Distributed Environment

	Predefined Roles in an Oracle Database Installation
	Creating a Role
	Specifying the Type of Role Authorization
	Authorizing a Role by Using the Database
	Authorizing a Role by Using an Application
	Authorizing a Role by Using an External Source
	Global Role Authorization by an Enterprise Directory Service

	Granting and Revoking Roles
	Who Can Grant or Revoke Roles?

	Dropping Roles
	Restricting SQL*Plus Users from Using Database Roles
	Potential Security Problems of Using Ad Hoc Tools
	Limiting Roles Through the PRODUCT_USER_PROFILE Table
	Using Stored Procedures to Encapsulate Business Logic

	Securing Role Privileges by Using Secure Application Roles

	Managing Object Privileges
	About Object Privileges
	Granting or Revoking Object Privileges
	Managing Object Privileges
	Granting and Revoking Object Privileges
	Who Can Grant Object Privileges?
	Using Privileges with Synonyms

	Managing Table Privileges
	How Table Privileges Affect Data Manipulation Language Operations
	How Table Privileges Affect Data Definition Language Operations

	Managing View Privileges
	About View Privileges
	Privileges Required to Create Views
	Increasing Table Security with Views

	Managing Procedure Privileges
	Using the EXECUTE Privilege for Procedure Privileges
	Procedure Execution and Security Domains
	How Procedure Privileges Affect Definer’s Rights
	How Procedure Privileges Affect Invoker’s Rights
	System Privileges Required to Create or Replace a Procedure
	System Privileges Required to Compile a Procedure
	How Procedure Privileges Affect Packages and Package Objects

	Managing Type Privileges
	System Privileges for Named Types
	Object Privileges
	Method Execution Model
	Privileges Required to Create Types and Tables Using Types
	Example of Privileges for Creating Types and Tables Using Types
	Privileges on Type Access and Object Access
	Type Dependencies

	Granting a User Privileges and Roles
	Granting System Privileges and Roles
	Granting the ADMIN Option
	Creating a New User with the GRANT Statement

	Granting Object Privileges
	Specifying the GRANT OPTION Clause
	Granting Object Privileges on Behalf of the Object Owner
	Granting Privileges on Columns
	Row-Level Access Control

	Revoking Privileges and Roles from a User
	Revoking System Privileges and Roles
	Revoking Object Privileges
	Revoking Object Privileges on Behalf of the Object Owner
	Revoking Column-Selective Object Privileges
	Revoking the REFERENCES Object Privilege

	Cascading Effects of Revoking Privileges
	Cascading Effects When Revoking System Privileges
	Cascading Effects When Revoking Object Privileges

	Granting to and Revoking from the PUBLIC User Group
	Granting Roles Using the Operating System or Network
	About Granting Roles Using the Operating System or Network
	Using Operating System Role Identification
	Using Operating System Role Management
	Granting and Revoking Roles When OS_ROLES Is Set to TRUE
	Enabling and Disabling Roles When OS_ROLES Is Set to TRUE
	Using Network Connections with Operating System Role Management

	When Do Grants and Revokes Take Effect?
	How the SET ROLE Statement Affects Grants and Revokes
	Specifying Default Roles
	The Maximum Number of Roles That a User Can Enable

	Managing Fine-Grained Access in PL/SQL Packages and Types
	About Fine-Grained Access Control to External Network Services
	About Access Control to Wallets
	Upgrading Applications That Depend on Packages That Use External Network Services
	Creating an Access Control List for External Network Services
	Step 1: Create the Access Control List and Its Privilege Definitions
	Step 2: Assign the Access Control List to One or More Network Hosts

	Configuring Access Control to a Wallet
	Step 1: Create an Oracle Wallet
	Step 2: Create an Access Control List that Grants the Wallet Privileges
	Step 3: Assign the Access Control List to the Wallet
	Step 4: Make the HTTP Request with the Passwords and Client Certificates

	Examples of Creating Access Control Lists
	Example of an Access Control List for a Single Role and Network Connection
	Example of an Access Control List with Multiple Roles Assigned to Multiple Hosts
	Example of an Access Control List for Using Passwords in a Non-Shared Wallet
	Example of an Access Control List for Wallets in a Shared Database Session

	Specifying a Group of Network Host Computers
	Precedence Order for a Host Computer in Multiple Access Control List Assignments
	Precedence Order for a Host in Access Control List Assignments with Port Ranges
	Checking Privilege Assignments That Affect User Access to a Network Host
	How a DBA Can Check User Network Connection and Domain Privileges
	How Users Can Check Their Network Connection and Domain Privileges

	Setting the Precedence of Multiple Users and Roles in One Access Control List
	Finding Information About Access Control Lists Configured for User Access

	Finding Information About User Privileges and Roles
	Listing All System Privilege Grants
	Listing All Role Grants
	Listing Object Privileges Granted to a User
	Listing the Current Privilege Domain of Your Session
	Listing Roles of the Database
	Listing Information About the Privilege Domains of Roles

	5 Managing Security for Application Developers
	About Application Security Policies
	Considerations for Using Application-Based Security
	Are Application Users Also Database Users?
	Is Security Better Enforced in the Application or in the Database?

	Securing Passwords in Application Design
	General Guidelines for Securing Passwords in Applications
	Platform-Specific Security Threats
	Designing Applications to Handle Password Input
	Configuring Password Formats and Behavior
	Handling Passwords in SQL*Plus and SQL Scripts

	Securing Passwords Using an External Password Store
	Securing Passwords Using the orapwd Utility
	Example of Reading Passwords in Java

	Managing Application Privileges
	Creating Secure Application Roles to Control Access to Applications
	Step 1: Create the Secure Application Role
	Step 2: Create a PL/SQL Package to Define the Access Policy for the Application

	Associating Privileges with User Database Roles
	Why Users Should Only Have the Privileges of the Current Database Role
	Using the SET ROLE Statement to Automatically Enable or Disable Roles

	Protecting Database Objects by Using Schemas
	Protecting Database Objects in a Unique Schema
	Protecting Database Objects in a Shared Schema

	Managing Object Privileges in an Application
	What Application Developers Need to Know About Object Privileges
	SQL Statements Permitted by Object Privileges

	Parameters for Enhanced Security of Database Communication
	Reporting Bad Packets Received on the Database from Protocol Errors
	Terminating or Resuming Server Execution After Receiving a Bad Packet
	Configuring the Maximum Number of Authentication Attempts
	Controlling the Display of the Database Version Banner
	Configuring Banners for Unauthorized Access and Auditing User Actions

	6 Using Application Contexts to Retrieve User Information
	About Application Contexts
	What Is an Application Context?
	Components of the Application Context
	Where Are the Application Context Values Stored?
	Benefits of Using Application Contexts
	How Editions Affects Application Context Values

	Types of Application Contexts
	Using Database Session-Based Application Contexts
	About Database Session-Based Application Contexts
	Creating a Database Session-Based Application Context
	Creating a PL/SQL Package to Set the Database Session-Based Application Context
	About the Package That Manages the Database Session-Based Application Context
	Using SYS_CONTEXT to Retrieve Session Information
	Using Dynamic SQL with SYS_CONTEXT
	Using SYS_CONTEXT in a Parallel Query
	Using SYS_CONTEXT with Database Links
	Using DBMS_SESSION.SET_CONTEXT to Set Session Information

	Creating a Logon Trigger to Run a Database Session Application Context Package
	Tutorial: Creating and Using a Database Session-Based Application Context
	About This Tutorial
	Step 1: Create User Accounts and Ensure the User SCOTT Is Active
	Step 2: Create the Database Session-Based Application Context
	Step 3: Create a Package to Retrieve Session Data and Set the Application Context
	Step 4: Create a Logon Trigger for the Package
	Step 5: Test the Application Context
	Step 6: Remove the Components for This Tutorial

	Initializing Database Session-Based Application Contexts Externally
	Obtaining Default Values from Users
	Obtaining Values from Other External Resources
	Initializing Application Context Values from a Middle-Tier Server

	Initializing Database Session-Based Application Contexts Globally
	About Initializing Database Session-Based Application Contexts Globally
	Using Database Session-Based Application Contexts with LDAP
	How Globally Initialized Database Session-Based Application Contexts Work
	Example of Initializing a Database Session-Based Application Context Globally

	Using Externalized Database Session-Based Application Contexts

	Using Global Application Contexts
	About Global Application Contexts
	Creating a Global Application Context
	Creating a PL/SQL Package to Manage a Global Application Context
	About the Package That Manages the Global Application Context
	How Editions Affects the Results of a Global Application Context PL/SQL Package
	Setting the DBMS_SESSION.SET_CONTEXT username and client_id Parameters
	Sharing Global Application Context Values for All Database Users
	Setting a Global Context for Database Users Who Move Between Applications
	Setting a Global Application Context for Nondatabase Users
	Clearing Session Data When the Session Closes

	Embedding Calls in Middle-Tier Applications to Manage the Client Session ID
	About Managing Client Session IDs Using a Middle-Tier Application
	Retrieving the Client Session ID Using a Middle-Tier Application
	Setting the Client Session ID Using a Middle-Tier Application
	Clearing Session Data Using a Middle-Tier Application

	Tutorial: Creating a Global Application Context That Uses a Client Session ID
	About This Tutorial
	Step 1: Create User Accounts
	Step 2: Create the Global Application Context
	Step 3: Create a Package for the Global Application Context
	Step 4: Test the Global Application Context
	Step 5: Remove the Components for This Tutorial

	Global Application Context Processes
	Simple Global Application Context Process
	Global Application Context Process for Lightweight Users

	Using Client Session-Based Application Contexts
	About Client Session-Based Application Contexts
	Setting a Value in the CLIENTCONTEXT Namespace
	Retrieving the CLIENTCONTEXT Namespace
	Clearing a Setting in the CLIENTCONTEXT Namespace
	Clearing All Settings in the CLIENTCONTEXT Namespace

	Finding Information About Application Contexts

	7 Using Oracle Virtual Private Database to Control Data Access
	About Oracle Virtual Private Database
	What Is Oracle Virtual Private Database?
	Benefits of Using Oracle Virtual Private Database Policies
	Basing Security Policies on Database Objects Rather Than Applications
	Controlling How Oracle Database Evaluates Policy Functions

	Which Privileges Are Used to Run Oracle Virtual Private Database Policy Functions?
	Using Oracle Virtual Private Database with an Application Context

	Components of an Oracle Virtual Private Database Policy
	Creating a Function to Generate the Dynamic WHERE Clause
	Creating a Policy to Attach the Function to the Objects You Want to Protect

	Configuring an Oracle Virtual Private Database Policy
	About Oracle Virtual Private Database Policies
	Attaching a Policy a Database Table, View, or Synonym
	Enforcing Policies on Specific SQL Statement Types
	Controlling the Display of Column Data with Policies
	Adding Policies for Column-Level Oracle Virtual Private Database
	Displaying Only the Column Rows Relevant to the Query
	Using Column Masking to Display Sensitive Columns as NULL Values

	Working with Oracle Virtual Private Database Policy Groups
	About Oracle Virtual Private Database Policy Groups
	Creating a New Oracle Virtual Private Database Policy Group
	Designating a Default Policy Group with the SYS_DEFAULT Policy Group
	Establishing Multiple Policies for Each Table, View, or Synonym
	Validating the Application Used to Connect to the Database

	Optimizing Performance by Using Oracle Virtual Private Database Policy Types
	About Oracle Virtual Private Database Policy Types
	Using the Dynamic Policy Type to Automatically Rerun Policy Functions
	Using a Static Policy to Prevent Policy Functions from Rerunning for Each Query
	Using a Shared Static Policy to Share a Policy with Multiple Objects
	When to Use Static and Shared Static Policies
	Using a Context-Sensitive Policy for Predicates That Do Not Change After Parsing
	Using a Shared Context Sensitive Policy to Share a Policy with Multiple Objects
	When to Use Context-Sensitive and Shared Context-Sensitive Policies
	Summary of the Five Oracle Virtual Private Database Policy Types

	Tutorials: Creating Oracle Virtual Private Database Policies
	Tutorial: Creating a Simple Oracle Virtual Private Database Policy
	About This Tutorial
	Step 1: Ensure That the OE User Account Is Active
	Step 2: Create a Policy Function
	Step 3: Create the Oracle Virtual Private Database Policy
	Step 4: Test the Policy
	Step 5: Remove the Components for This Tutorial

	Tutorial: Implementing a Policy with a Database Session-Based Application Context
	About This Tutorial
	Step 1: Create User Accounts and Sample Tables
	Step 2: Create a Database Session-Based Application Context
	Step 3: Create a PL/SQL Package to Set the Application Context
	Step 4: Create a Logon Trigger to Run the Application Context PL/SQL Package
	Step 5: Create a PL/SQL Policy Function to Limit User Access to Their Orders
	Step 6: Create the New Security Policy
	Step 7: Test the New Policy
	Step 8: Remove the Components for This Tutorial

	Tutorial: Implementing an Oracle Virtual Private Database Policy Group
	About This Tutorial
	Step 1: Create User Accounts and Other Components for This Tutorial
	Step 2: Create the Two Policy Groups
	Step 3: Create PL/SQL Functions to Control the Policy Groups
	Step 4: Add the PL/SQL Functions to the Policy Groups
	Step 5: Create the Driving Application Context
	Step 6: Test the Policy Groups
	Step 7: Remove the Components for This Tutorial

	How Oracle Virtual Private Database Works with Other Oracle Features
	Using Oracle Virtual Private Database Policies with Editions
	Using SELECT FOR UPDATE in User Queries on VPD-Protected Tables
	How Oracle Virtual Private Database Policies Affect Outer or ANSI Join Operations
	How Oracle Virtual Private Database Security Policies Work with Applications
	Using Automatic Reparsing for Fine-Grained Access Control Policy Functions
	Using Oracle Virtual Private Database Policies and Flashback Query
	Using Oracle Virtual Private Database and Oracle Label Security
	Using Oracle Virtual Private Database to Enforce Oracle Label Security Policies
	Oracle Virtual Private Database and Oracle Label Security Exceptions

	User Models and Oracle Virtual Private Database

	Finding Information About Oracle Virtual Private Database Policies

	8 Developing Applications Using the Data Encryption API
	Security Problems That Encryption Does Not Solve
	Principle 1: Encryption Does Not Solve Access Control Problems
	Principle 2: Encryption Does Not Protect Against a Malicious Database Administrator
	Principle 3: Encrypting Everything Does Not Make Data Secure

	Data Encryption Challenges
	Encrypting Indexed Data
	Generating Encryption Keys
	Transmitting Encryption Keys
	Storing Encryption Keys
	Storing the Encryption Keys in the Database
	Storing the Encryption Keys in the Operating System
	Users Managing Their Own Encryption Keys
	Using Transparent Database Encryption and Tablespace Encryption

	Changing Encryption Keys
	Encrypting Binary Large Objects

	Storing Data Encryption by Using the DBMS_CRYPTO Package
	Verifying Data Integrity with the DBMS_SQLHASH Package
	About the DBMS_SQLHASH Package
	Using the DBMS_SQLHASH.GETHASH Function
	Syntax
	Parameters

	Examples of Using the Data Encryption API
	Example of a Data Encryption Procedure
	Example of AES 256-Bit Data Encryption and Decryption Procedures
	Example of Encryption and Decryption Procedures for BLOB Data

	Finding Information About Encrypted Data

	9 Verifying Security Access with Auditing
	About Auditing
	What Is Auditing?
	Why Is Auditing Used?
	Protecting the Database Audit Trail
	Activities That Are Always Written to the Standard and Fine-Grained Audit Records
	Activities That Are Always Audited for All Platforms
	Auditing in a Distributed Database
	Best Practices for Auditing

	Selecting an Auditing Type
	Auditing General Activities with Standard Auditing
	About Standard Auditing
	What Is Standard Auditing?
	Who Can Perform Standard Auditing?
	When Are Standard Audit Records Created?

	Configuring Standard Auditing with the AUDIT_TRAIL Initialization Parameter
	Enabling or Disabling the Standard Audit Trail
	Settings for the AUDIT_TRAIL Initialization Parameter

	What Do the Operating System and Database Audit Trails Have in Common?
	Using the Operating System Audit Trail
	About the Operating System Trail
	What Do Operating System Audit Trail Records Look Like?
	Advantages of the Operating System Audit Trail
	How the Operating System Audit Trail Works
	Specifying a Directory for the Operating System Audit Trail

	Using the Syslog Audit Trail on UNIX Systems
	About the Syslog Audit Trail
	Format of the Information Stored in the Syslog Audit Trail
	What Does the Syslog Audit Trail Look Like?
	Configuring Syslog Auditing

	How the AUDIT and NOAUDIT SQL Statements Work
	Enabling Standard Auditing with the AUDIT SQL Statement
	Auditing Statement Executions: Successful, Unsuccessful, or Both
	How Standard Audit Records Are Generated
	How Do Cursors Affect Standard Auditing?
	Benefits of Using the BY ACCESS Clause in the AUDIT Statement
	Auditing Actions Performed by Specific Users
	Removing the Audit Option with the NOAUDIT SQL Statement

	Auditing SQL Statements
	About SQL Statement Auditing
	Types of SQL Statements That Are Audited
	Configuring SQL Statement Auditing
	Removing SQL Statement Auditing

	Auditing Privileges
	About Privilege Auditing
	Types of Privileges That Can Be Audited
	Configuring Privilege Auditing
	Removing Privilege Auditing

	Auditing SQL Statements and Privileges in a Multitier Environment
	Auditing Schema Objects
	About Schema Object Auditing
	Types of Schema Objects That Can Be Audited
	Using Standard Auditing with Editioned Objects
	Schema Object Audit Options for Views, Procedures, and Other Elements
	Configuring Schema Object Auditing
	Removing Object Auditing
	Setting Audit Options for Objects That May Be Created in the Future

	Auditing Directory Objects
	About Directory Object Auditing
	Configuring Directory Object Auditing
	Removing Directory Object Auditing

	Auditing Functions, Procedures, Packages, and Triggers
	About Auditing Functions, Procedures, Packages, and Triggers
	Configuring the Auditing of Functions, Procedures, Packages, and Triggers
	Removing the Auditing of Functions, Procedures, Packages, and Triggers

	Auditing Network Activity
	About Network Auditing
	Configuring Network Auditing
	Removing Network Auditing

	Using Default Auditing for Security-Relevant SQL Statements and Privileges
	About the Default Auditing Settings
	Privileges That Oracle Database Audits by Default
	Disabling and Enabling Default Audit Settings

	Auditing Specific Activities with Fine-Grained Auditing
	About Fine-Grained Auditing
	Advantages of Fine-Grained Auditing
	What Permissions Are Needed to Create a Fine-Grained Audit Policy?
	Activities That Are Always Audited in Fine-Grained Auditing
	Using Fine-Grained Audit Policies with Editions
	Creating an Audit Trail for Fine-Grained Audit Records
	How the Fine-Grained Audit Trail Generates Records
	Using the DBMS_FGA Package to Manage Fine-Grained Audit Policies
	About the DBMS_FGA PL/SQL Package
	Creating a Fine-Grained Audit Policy
	Disabling and Enabling a Fine-Grained Audit Policy
	Dropping a Fine-Grained Audit Policy

	Tutorial: Adding an E-Mail Alert to a Fine-Grained Audit Policy
	About This Tutorial
	Step 1: Install and Configure the UTL_MAIL PL/SQL Package
	Step 2: Create User Accounts
	Step 3: Configure an Access Control List File for Network Services
	Step 4: Create the E-Mail Security Alert PL/SQL Procedure
	Step 5: Create and Test the Fine-Grained Audit Policy Settings
	Step 6: Test the Alert
	Step 7: Remove the Components for This Tutorial

	Tutorial: Auditing Nondatabase Users
	About This Tutorial
	Step 1: Create the User Account and Ensure the User HR Is Active
	Step 2: Create the Fine-Grained Audit Policy
	Step 3: Test the Policy
	Step 4: Remove the Components for This Tutorial

	Auditing SYS Administrative Users
	Auditing User SYSTEM
	Auditing User SYS and Users Who Connect as SYSDBA and SYSOPER

	Using Triggers to Write Audit Data to a Separate Table
	Managing Audit Trail Records
	About Audit Records
	Managing the Database Audit Trail
	Database Audit Trail Contents
	Controlling the Size of the Database Audit Trail
	Moving the Database Audit Trail to a Different Tablespace
	Auditing the Database Audit Trail
	Archiving the Database Audit Trail

	Managing the Operating System Audit Trail
	If the Operating System Audit Trail Becomes Full
	Setting the Size of the Operating System Audit Trail
	Setting the Age of the Operating System Audit Trail
	Archiving the Operating System Audit Trail

	Purging Audit Trail Records
	About Purging Audit Trail Records
	Selecting an Audit Trail Purge Method
	Scheduling an Automatic Purge Job for the Audit Trail
	Step 1: If Necessary, Tune Online and Archive Redo Log Sizes
	Step 2: Plan a Timestamp and Archive Strategy
	Step 3: Initialize the Audit Trail Cleanup Operation
	Step 4: Optionally, Set an Archive Timestamp for Audit Records
	Step 5: Create and Schedule the Purge Job
	Step 6: Optionally, Configure the Audit Trail Records to be Deleted in Batches

	Manually Purging the Audit Trail
	Purging a Subset of Records from the Database Audit Trail
	Other Audit Trail Purge Operations
	Verifying That the Audit Trail Is Initialized for Cleanup
	Setting the Default Audit Trail Purge Interval for Any Audit Trail Type
	Cancelling the Initialization Cleanup Settings
	Enabling or Disabling an Audit Trail Purge Job
	Setting the Default Audit Trail Purge Job Interval for a Specified Purge Job
	Deleting an Audit Trail Purge Job
	Clearing the Archive Timestamp Setting
	Clearing the Database Audit Trail Batch Size

	Example: Directly Calling a Database Audit Trail Purge Operation

	Finding Information About Audited Activities
	Using Data Dictionary Views to Find Information About the Audit Trail
	Using Audit Trail Views to Investigate Suspicious Activities
	Listing Active Statement Audit Options
	Listing Active Privilege Audit Options
	Listing Active Object Audit Options for Specific Objects
	Listing Default Object Audit Options
	Listing Audit Records
	Listing Audit Records for the AUDIT SESSION Option

	Deleting the Audit Trail Views

	10 Keeping Your Oracle Database Secure
	About the Security Guidelines in This Chapter
	Downloading Security Patches and Contacting Oracle Regarding Vulnerabilities
	Applying Security Patches and Workaround Solutions
	Contacting Oracle Security Regarding Vulnerabilities in Oracle Database

	Guidelines for Securing User Accounts and Privileges
	Guidelines for Securing Roles
	Guidelines for Securing Passwords
	Guidelines for Securing Data
	Guidelines for Securing the ORACLE_LOADER Access Driver
	Guidelines for Securing a Database Installation and Configuration
	Guidelines for Securing the Network
	Securing the Client Connection
	Securing the Network Connection
	Securing a Secure Sockets Layer Connection

	Guidelines for Auditing
	Auditing Sensitive Information
	Keeping Audited Information Manageable
	Auditing Typical Database Activity
	Auditing Suspicious Database Activity
	Recommended Audit Settings

	Addressing the CONNECT Role Change
	Why Was the CONNECT Role Changed?
	How the CONNNECT Role Change Affects Applications
	How the CONNECT Role Change Affects Database Upgrades
	How the CONNECT Role Change Affects Account Provisioning
	How the CONNECT Role Change Affects Applications Using New Databases

	How the CONNECT Role Change Affects Users
	How the CONNECT Role Change Affects General Users
	How the CONNECT Role Change Affects Application Developers
	How the CONNECT Role Change Affects Client Server Applications

	Approaches to Addressing the CONNECT Role Change
	Approach 1: Create a New Database Role
	Approach 2: Restore CONNECT Privileges
	Approach 3: Conduct Least Privilege Analysis

	Glossary
	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

