

Index

A B C D E F G H I J K L M N O P Q R S T U V W

A

	access paths
	
	cluster scans, 11.2.4
	defined, 11.4.2
	execution plans, 11.4
	hash scans, 11.2.5
	index scans, 11.2.3

	Active Session History, 5.1.1.3
	
	report
	
	activity over time, 5.3.9.8
	load profile, 5.3.9.2
	top events, 5.3.9.1
	top files, 5.3.9.7
	top Java, 5.3.9.5
	top latches, 5.3.9.7
	top objects, 5.3.9.7
	top PL/SQL, 5.3.9.4
	top sessions, 5.3.9.6
	Top SQL, 5.3.9.3
	using, 5.3.9

	adaptive thresholds, 5.2.3
	ALL_OUTLINE_HINTS view
	
	stored outline hints, 20.1.7

	ALL_OUTLINES view
	
	stored outlines, 20.1.7

	ALL_ROWS hint, 11.5.2.2
	allocation of memory, 7.1
	ALTER INDEX statement, 14.1.7
	ALTER SESSION statement
	
	examples, 21.4.2
	SET SESSION_CACHED_CURSORS clause, 7.3.7.2

	ANALYZE statement, 13.3.1
	antijoins, 11.3.2
	applications
	
	deploying, 2.7
	design principles, 2.5
	development trends, 2.5.7
	implementing, 2.5.6

	Automatic Database Diagnostic Monitor
	
	actions and rationales of recommendations, 6.1.3
	analysis results example, 6.1.4
	and DB time, 6.1.1
	CONTROL_MANAGEMENT_PACK_ACCESS parameter, 6.2
	DBIO_EXPECTED, 6.2
	example report, 6.1.4
	findings, 6.1.3
	overview, 6.1
	results, 6.1.3
	setups, 6.2
	STATISTICS_LEVEL parameter, 6.2
	types of problems considered, 6.1.1
	types of recommendations, 6.1.3

	automatic database diagnostic monitoring, 1.2.1, 16.4.1
	automatic segment-space management, 4.1.4.1, 8.2.6.2, 10.3.1.2.1
	Automatic Shared Memory Management, 7.1.3
	automatic SQL tuning, 1.2.1, 16.4.2
	
	analysis, 17.1
	overview, 17

	Automatic Tuning Optimizer, 17.1
	automatic undo management, 4.1.2, 4.1.2
	Automatic Workload Repository, 1.2.1
	
	configuring, 5.2
	data gathering, 5.1
	DBMS_WORKLOAD_REPOSITORY package, 5.3.1, 5.3.2, 5.3.3
	default settings, 5.2.4
	factors affecting space usage, 5.2.4
	managing with APIs, 5.3.1, 5.3.2, 5.3.3
	minimizing space usage, 5.2.4
	overview, 5.2
	recommendations for retention period, 5.2.4
	reports, 5.3.6, 5.3.7, 5.3.8
	retention period, 5.2.4
	settings in DBA_HIST_WR_CONTROL view, 5.3.1.3
	space usage, 5.2.4
	statistics collected, 5.2
	turning off automatic snapshot collection, 5.2.4
	unusual percentages in reports, 5.3.6
	views for accessing data, 5.3.5

	awrrpt.sql
	
	Automatic Workload Repository report, 5.3.6, 5.3.7, 5.3.8

B

	baselines, 1.1.2.2, 5.2.2
	
	performance, 5.1

	benchmarking workloads, 2.6.2.2
	big bang rollout strategy, 2.7.1
	bind variables, 7.3.1.3
	
	peeking, 11.1.3

	bitmap indexes, 2.5.3.2.2
	
	inlist iterator, 12.9.5.3
	on joins, 14.6
	when to use, 14.5

	block cleanout, 10.2.4.2
	block size
	
	choosing, 8.2.6
	optimal, 8.2.6

	bottlenecks
	
	elimination, 1.1.2.4.2
	fixing, 3.1
	identifying, 3.1
	memory, 7.1
	resource, 10.3.18.1.2

	broadcast
	
	distribution value, 12.10

	B-tree indexes, 2.5.3.2.1
	buffer busy wait events, 10.2.3, 10.3.1
	
	actions, 10.3.1.2

	buffer cache
	
	contention, 10.3.2, 10.3.3, 10.3.10.2
	hit ratio, 7.2.2.3
	reducing buffers, 7.2.3.2, 7.3.4.2

	buffer pools
	
	default cache, 7.2.4.1
	hit ratio, 7.2.6
	KEEP, 7.2.8
	KEEP cache, 7.2.4.1
	multiple, 7.2.4
	RECYCLE cache, 7.2.4.1

	business logic, 2.4.1.2.2, 2.5.6
	BYTES column
	
	PLAN_TABLE table, 12.10

C

	CARDINALITY column
	
	PLAN_TABLE table, 12.10

	cardinality, column, 11.1.2.2
	cartesian joins, 11.3.6
	chained rows, 10.2.4.3
	classes
	
	wait events, 5.1.1.1, 10.1.3.2

	client/server applications, 9.4.1.2
	clusters, 14.8, 14.8
	
	hash and scans of, 11.2.5
	scans of, 11.2.4
	sorted hash, 14.9

	column order
	
	indexes, 2.5.3.5

	columns
	
	cardinality, 11.1.2.2
	to index, 14.1.3

	COMPATIBLE initialization parameter, 4.1.1
	components
	
	hardware, 2.4.1.1
	software, 2.4.1.2

	composite indexes, 14.1.4
	composite partitioning
	
	examples of, 12.9.2

	conceptual modeling, 3.1.2
	consistency
	
	read, 10.2.4.2

	consistent gets from cache statistic, 7.2.2.3
	consistent mode
	
	TKPROF, 21.4.4.1

	constraints, 14.1.10
	contention
	
	library cache latch, 10.3.10.3
	memory, 7.1, 10
	shared pool, 10.3.10.3
	tuning, 10
	wait events, 10.3.10

	context switches, 9.4.1.4.2
	CONTROL_FILES initialization parameter, 4.1.1
	CONTROL_MANAGEMENT_PACK_ACCESS initialization parameter
	
	enabling automatic database diagnostic monitoring, 6.2

	cost
	
	optimizer calculation, 11.1.1

	COST column
	
	PLAN_TABLE table, 12.10

	cost-based optimizations
	
	procedures for plan stability, 20.2
	upgrading to, 20.2.2

	CPUs, 2.4.1.1.1
	
	statistics, 5.1.2.1, 10.1.2.1.3
	utilization, 9.4.1

	CREATE INDEX statement
	
	PARALLEL clause, 4.2.3

	CREATE OUTLINE statement, 20.1.5
	create_extended_statistics, 13.3.1.6.1, 13.3.1.7.1
	CREATE_STORED_OUTLINES initialization parameter, 20.1.5, 20.1.5.1
	CREATE_STORED_OUTLINES parameter, 20.1.5
	current mode
	
	TKPROF, 21.4.4.1

	CURSOR_NUM column
	
	TKPROF_TABLE table, 21.4.5.3

	CURSOR_SHARING initialization parameter, 7.3.2.1
	CURSOR_SPACE_FOR_TIME initialization parameter, 7.3.6
	cursors
	
	accessing, 7.3.2.6
	sharing, 7.3.2.6

D

	data
	
	and transactions, 2.4.1.2.4
	cache, 9.1.1
	gathering, 5.1
	modeling, 2.5.2
	queries, 2.4.2
	searches, 2.4.2

	data dictionary, 7.3.4.1.2
	
	statistics in, 13.7.1
	views used in optimization, 13.7.1

	Data Pump
	
	Export utility
	
	statistics on system-generated columns names, 13.5.3

	Import utility
	
	copying statistics, 13.5.3

	database monitoring, 1.2.1, 16.4.1
	
	diagnostic, 6.1

	Database Resource Manager, 9.1.3, 9.1.3, 9.4.2, 10.1.2.1.3
	database tuning
	
	transient performance problems, 5.3.8

	databases
	
	buffers, 7.2.3.2, 7.3.4.2
	diagnosing and monitoring, 6.1
	size, 2.4.2
	statistics, 5.1.1

	DATE_OF_INSERT column
	
	TKPROF_TABLE table, 21.4.5.3

	db block gets from cache statistic, 7.2.2.3
	db file scattered read wait events, 10.2.3, 10.3.2, 10.3.2
	
	actions, 10.3.2.1, 10.3.3.1

	db file sequential read wait events, 10.2.3, 10.3.2, 10.3.3
	
	actions, 10.3.3.1

	DB time
	
	metric, 6.1.1
	statistic, 5.1.1.2

	DB_BLOCK_SIZE initialization parameter, 4.1.1, 8.2.1.2
	DB_CACHE_ADVICE parameter, 7.2.3.1
	DB_CACHE_SIZE initialization parameter, 7.2.3.2, 7.2.4
	DB_DOMAIN initialization parameter, 4.1.1
	DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter, 8.2.1.1, 8.2.1.2, 8.2.1.3, 10.3.2, 11.2.1
	
	cost-based optimization, 11.3.2

	DB_KEEP_CACHE_SIZE
	
	initialization parameter, 7.2.8

	DB_NAME initialization parameter, 4.1.1
	DB_nK_CACHE_SIZE initialization parameter, 7.2.3.1
	DB_RECYCLE_CACHE_SIZE
	
	initialization parameter, 7.2.9

	DB_WRITER_PROCESSES initialization parameter, 10.3.8.3.1
	DBA_HIST views, 5.3.5
	DBA_HIST_WR_CONTROL view
	
	Automatic Workload Repository settings, 5.3.1.3

	DBA_OBJECTS view, 7.2.7
	DBA_OUTLINE_HINTS view
	
	stored outline hints, 20.1.7

	DBA_OUTLINES view
	
	stored outlines, 20.1.7

	DBIO_EXPECTED parameter, 6.2
	DBMS_ADDM package
	
	Automatic Database Diagnostic Monitor, 6.3

	DBMS_ADVISOR package, 18.1
	
	setting DBIO_EXPECTED, 6.2
	setups for ADDM, 6.2, 6.2

	DBMS_MONITOR package
	
	End to End Application Tracing, 21.1

	DBMS_OUTLN package
	
	procedures for managing outlines, 20.1.4

	DBMS_OUTLN_EDIT package
	
	procedures for managing outlines, 20.1.4

	DBMS_RESULT_CACHE, 7.6.1.3, 7.6.1.3.2
	DBMS_SHARED_POOL package
	
	managing the shared pool, 7.3.9

	DBMS_SPM
	
	EVOLVE_SQL_PLAN_BASELINE, 15.2.3.2

	DBMS_SQLDIAG, 16.6.1.2
	DBMS_SQLTUNE package
	
	SQL Tuning Advisor, 17.3.4, 17.4
	SQL Tuning Sets, 17.4

	dbms_stats functions
	
	create_extended_statistics, 13.3.1.6.1
	drop_extended_stats, 13.3.1.6.3, 13.3.1.7.3
	gather_table_stats, 13.3.1.7.1
	show_extended_stats_name, 13.3.1.6.2

	DBMS_STATS package, 13.3.1, 13.3.4, 18.1
	
	managing query optimizer statistics, 11.5.2.3
	manually determining sample size for gathering procedures, 13.3.1.1

	dbms_stats package
	
	method_opt, 13.3.1.6.5

	DBMS_STATS_DISCOVER, 13.3.1.6
	DBMS_WORKLOAD_REPOSITORY package
	
	managing the Automatic Workload Repository, 5.3.1, 5.3.2, 5.3.3

	DBMS_XPLAN package
	
	displaying plan table output, 12.4

	debugging designs, 2.6.4
	default cache, 7.2.4.1
	deploying applications, 2.7
	DEPTH column
	
	TKPROF_TABLE table, 21.4.5.3

	design principles, 2.5
	designs
	
	debugging, 2.6.4
	testing, 2.6.4
	validating, 2.6.4

	development environments, 2.5.6
	diagnostic monitoring, 1.2.1, 6.1, 16.4.1
	
	introduction, 6.1

	direct path
	
	read events, 10.3.4
	read events actions, 10.3.4.2
	read events causes, 10.3.4.1
	wait events, 10.3.5
	write events actions, 10.3.5.2
	write events causes, 10.3.5.1

	disabled constraints, 14.1.10
	disks
	
	monitoring operating system file activity, 10.1.2.2
	statistics, 5.1.2.3

	DISTRIBUTION column
	
	PLAN_TABLE table, 12.10

	domain indexes
	
	and EXPLAIN PLAN, 12.9.6
	using, 14.7

	drop_extended_stats, 13.3.1.6.3, 13.3.1.7.3
	dynamic sampling
	
	process, 13.6.2.2
	when to use, 13.6.3

E

	emergencies
	
	performance, 3.2

	Emergency Performance Method, 3.2.1
	enabled constraints, 14.1.10
	End to End Application Tracing, 21, 21.1
	
	action and module names, 2.5.6, 21.1
	creating a service, 21.1
	DBMS_APPLICATION_INFO package, 21.1
	DBMS_MONITOR package, 21.1

	enforced constraints, 14.1.10
	enqueue wait events, 10.2.3, 10.3.6
	
	actions, 10.3.6.2
	statistics, 10.1.3.4.5

	equijoins, 16.5.3.1
	error message documentation, Preface
	estimating workloads, 2.6.2
	
	benchmarking, 2.6.2.2
	extrapolating, 2.6.2.1

	examples
	
	ALTER SESSION statement, 21.4.2
	EXPLAIN PLAN output, 21.4.4.10
	SQL trace facility output, 21.4.4.10

	EXECUTE_TASK procedure, 18.2.5.5.1
	execution plans
	
	capturing SQL plan baselines, 15.2.1
	evolving SQL plan baselines, 15.2.3
	examples, 21.4.3.1
	joins, 11.3.1
	loading from a SQL Tuning Set, 15.2.1.2.1
	loading from AWR snapshots, 15.2.1.2.1
	loading from the cursor cache, 15.2.1.2.2
	managing SQL plan baselines, 15.2
	overview of, 11.4
	plan stability, 20.1
	preserving with plan stability, 20.1
	selecting SQL plan baselines, 15.2.2
	TKPROF, 21.4.3.1, 21.4.3.2
	viewing with the utlxpls.sql script, 11.4.1

	EXPLAIN PLAN statement
	
	access paths, 11.2.6
	and domain indexes, 12.9.6
	and full partition-wise joins, 12.9.4
	and partial partition-wise joins, 12.9.3
	and partitioned objects, 12.9
	basic steps, 11.4.1
	examples of output, 21.4.4.10
	execution order of steps in output, 11.4.1
	invoking with the TKPROF program, 21.4.3.2
	PLAN_TABLE table, 12.2
	restrictions, 12.1.4
	scripts for viewing output, 11.4.1
	viewing the output, 11.4.1

	EXPLAIN_MVIEW procedure, 18.3
	expression
	
	mixed-type, 16.5.3.2

	Expression Statistics, 13.3.1.7
	Extended Statistics, 13.3.1.5
	extended syntax
	
	for specifying tables in hints, 19.2.3
	global hints, 19.2.3

	EXTENT MANAGEMENT LOCAL
	
	creating temporary tablespaces, 4.1.4.2

	extrapolating workloads, 2.6.2.1

F

	FAST_START_MTTR_TARGET
	
	and tuning instance recovery, 10.5.3

	Fast-Start checkpointing architecture, 10.5.2
	Fast-Start Fault Recovery, 10.5, 10.5.2
	features, new, Preface
	FILESYSTEMIO_OPTIONS initialization parameter, 9.1.1.2
	FIRST_ROWS(n) hint, 11.5.2.2
	free buffer wait events, 10.2.3, 10.3.8
	free lists, 10.3.1.2.1
	FULL hint, 14.1.6
	full outer joins, 11.3.7.4
	full partition-wise joins, 12.9.4
	full table scans, 10.3.4.2.2
	function-based indexes, 2.5.3.2.3, 14.2

G

	GATHER_ INDEX_STATS procedure
	
	in DBMS_STATS package, 13.3.1

	GATHER_DATABASE_STATS procedure
	
	in DBMS_STATS package, 13.3.1

	GATHER_DICTIONARY_STATS procedure
	
	in DBMS_STATS package, 13.3.1, 13.3.4

	GATHER_SCHEMA_STATS procedure
	
	in DBMS_STATS package, 13.3.1, 13.3.4

	gather_table_stats, 13.3.1.7.1
	GATHER_TABLE_STATS procedure
	
	in DBMS_STATS package, 13.3.1, 13.3.4

	GETMISSES column
	
	in V$ROWCACHE table, 7.3.4.1.2

	GETS column
	
	in V$ROWCACHE view, 7.3.4.1.2

	global hints, 19.2.3
	GV$BUFFER_POOL_STATISTICS view, 7.2.6

H

	hard parsing, 2.5.5
	hardware
	
	components, 2.4.1.1
	limitations of components, 2.3.3
	sizing of components, 2.3.3

	hash
	
	distribution value, 12.10

	hash clusters
	
	scans of, 11.2.5
	sorted, 14.9

	hash joins, 11.3.4
	
	cost-based optimization, 11.3.2
	index join, 11.2.3.8.1

	hash partitions, 12.9
	
	examples of, 12.9.1

	hashing, 14.9
	high water mark, 11.2.1
	hints
	
	access paths, 16.5.4, 19.1.2.8
	as used in outlines, 20.1.1.1
	cannot override sample access path, 11.2.7
	degree of parallelism, 19.1.2.7
	FULL, 14.1.6
	global, 19.2.3
	global compared to local, 19.2.3
	INDEX_FFS, 11.2.3.7
	INDEX_JOIN, 11.2.3.8
	indexspec syntax, 19.2.4
	location syntax, 19.2.2
	NO_INDEX, 14.1.6
	optimization approach and goal, 19.1.2.1
	overriding optimizer choice, 11.2.7
	overriding OPTIMIZER_MODE, 11.5.2.2
	parallel query option, 19.1.2.7
	specifying a query block, 19.2.2
	specifying indexes, 19.2.4
	tablespec syntax, 19.2.3
	using extended syntax, 19.2.3

	histograms
	
	frequency, 13.7.2.2
	height-balanced, 13.7.2.1

	HOLD_CURSOR clause, 7.3.2.6.2
	hours of service, 2.4.2
	HW enqueue
	
	contention, 10.3.6.2.2

I

	ID column
	
	PLAN_TABLE table, 12.10

	idle wait events, 10.3.9
	
	SQL*Net message from client, 10.3.18.1

	implementing business logic, 2.4.1.2.2
	INDEX hint, 14.1.6
	INDEX_COMBINE hint, 14.1.6
	INDEX_FFS hint, 11.2.3.7, 11.2.3.7.1
	INDEX_JOIN hint, 11.2.3.8
	indexes
	
	adding columns, 2.5.3.1
	appending columns, 2.5.3.1
	avoiding the use of, 14.1.6
	bitmap, 2.5.3.2.2, 14.5
	B-tree, 2.5.3.2.1
	choosing columns for, 14.1.3
	column order, 2.5.3.5
	composite, 14.1.4
	costs, 2.5.3.3
	creating, 4.2.3
	design, 2.5.3
	domain, 14.7
	dropping, 14.1.1
	enforcing uniqueness, 14.1.9
	ensuring the use of, 14.1.5
	function-based, 2.5.3.2.3, 14.2
	improving selectivity, 14.1.4
	index joins, 11.2.3.8.1
	joins, 11.2.3.8.1
	low selectivity, 14.1.6
	modifying values of, 14.1.3
	non-unique, 14.1.9
	partitioned, 2.5.3.2.4
	placement on disk, 8.2.2
	rebuilding, 14.1.7
	re-creating, 14.1.7
	reducing I/O, 2.5.3.5
	reverse key, 2.5.3.2.5
	scans of, 11.2.3
	selectivity, 2.5.3.5
	selectivity of, 14.1.3
	sequences in, 2.5.3.4
	serializing in, 2.5.3.4
	specifying in hints, 19.2.4
	statistics gathering, 13.5

	indexspec
	
	hint syntax, 19.2.4

	initialization parameters
	
	CONTROL_FILES, 4.1.1
	DB_BLOCK_SIZE, 4.1.1
	DB_DOMAIN, 4.1.1
	DB_FILE_MULTIBLOCK_READ_COUNT, 11.3.2
	DB_NAME, 4.1.1
	OPEN_CURSORS, 4.1.1
	OPTIMIZER_FEATURES_ENABLE, 11.2.3.7, 11.2.3.8
	OPTIMIZER_MODE, 11.5.2.1, 19.1.2.1
	PGA_AGGREGATE_TARGET, 4.2.3.1
	PROCESSES, 4.1.1
	SESSIONS, 4.1.1
	SQL_TRACE, 21.4.2, 21.4.2
	STREAMS_POOL_SIZE, 4.1.1, 7.1.3
	USER_DUMP_DEST, 21.4.1

	INLIST ITERATOR operation, 12.9.5
	inlists, 12.9.5
	instance caging, 9.4
	instance configuration
	
	initialization files, 4.1.1
	performance considerations, 4.1

	instance recovery
	
	Fast-Start Fault Recovery, 10.5.2
	performance tuning, 10.5

	Internet scalability, 2.3.2
	I/O
	
	and SQL statements, 10.3.2.4
	contention, 5.1.1.1, 10.1.2.2.1, 10.1.3.2, 10.3.2.2, 10.3.14
	excessive I/O waits, 10.3.2.2
	monitoring, 10.1.2.2
	objects causing I/O waits, 10.3.2.5
	reducing, 14.1.4

J

	joins
	
	antijoins, 11.3.2
	cartesian, 11.3.6
	execution plans and, 11.3.1
	full outer, 11.3.7.4
	hash, 11.3.4
	index joins, 11.2.3.8.1
	join order and execution plans, 11.4
	nested loop, 11.3.3
	nested loops and cost-based optimization, 11.3.2
	order, 16.5.4, 16.5.4
	outer, 11.3.7
	partition-wise
	
	examples of full, 12.9.4
	examples of partial, 12.9.3
	full, 12.9.4

	semijoins, 11.3.2
	sort merge, 11.3.5
	sort-merge and cost-based optimization, 11.3.2, 11.3.2

K

	KEEP buffer pool, 7.2.8
	KEEP cache, 7.2.4.1

L

	LARGE_POOL_SIZE initialization parameter, 7.3.5.1
	latch contention
	
	library cache latches, 10.2.1.2
	shared pool latches, 10.2.1.2

	latch free wait events, 10.2.3
	
	actions, 10.3.10.1

	latch wait events, 10.3.10
	latches, 5.3.9.7.3
	
	tuning, 1.1.2.3, 10.3.10.3

	library cache
	
	latch contention, 10.3.10.3
	latch wait events, 10.3.10.1
	lock, 10.3.13
	memory allocation, 7.3.4.1.1
	pin, 10.3.12

	linear scalability, 2.3.3
	locks and lock holders
	
	finding, 10.3.6.1

	log buffer
	
	space wait events, 10.2.3, 10.3.14
	tuning, 7.4.1

	log file
	
	parallel write wait events, 10.3.11
	switch wait events, 10.3.15
	sync wait events, 10.2.3, 10.3.16

	log writer processes
	
	tuning, 8.2.3.2

	LOG_BUFFER initialization parameter, 7.4
	
	setting, 7.4.2

	LRU
	
	aging policy, 7.2.4
	latch contention, 10.3.10.3.4

M

	managing the user interface, 2.4.1.2.1
	materialized views
	
	tuning, 18.3

	max session memory statistic, 7.3.5.1.2
	MAX_DISPATCHERS initialization parameter, 4.3.1.1
	MAX_DUMP_FILE_SIZE initialization parameter
	
	SQL Trace, 21.4.1

	MAXOPENCURSORS clause, 7.3.2.6.2
	memory
	
	hardware component, 2.4.1.1.2

	memory allocation
	
	importance, 7.1
	library cache, 7.3.4.1.1
	shared SQL areas, 7.3.4.1.1
	tuning, 7.1.7

	method_opt, 13.3.1.6.5
	metrics, 5.1
	migrated rows, 10.2.4.3
	mirroring
	
	redo logs, 8.2.3.3

	modeling
	
	conceptual, 3.1.2
	data, 2.5.2
	workloads, 2.6.3

	monitoring
	
	diagnostic, 1.2.1, 16.4.1

	MultiColumn Statistics, 13.3.1.6
	multiple buffer pools, 7.2.4

N

	NAMESPACE column
	
	V$LIBRARYCACHE view, 7.3.3.2

	nested loop joins, 11.3.3
	
	cost-based optimization, 11.3.2

	network
	
	hardware component, 2.4.1.1.4
	speed, 2.4.2
	statistics, 5.1.2.4

	network communication wait events, 10.3.18
	
	db file scattered read wait events, 10.3.2
	db file sequential read wait events, 10.3.2, 10.3.3
	SQL*Net message from Dblink, 10.3.18.2
	SQL*Net more data to client, 10.3.18.3

	new features, Preface
	NO_INDEX hint, 14.1.6
	NOT IN subquery, 11.3.2

O

	OBJECT_INSTANCE column
	
	PLAN_TABLE table, 12.10

	OBJECT_NAME column
	
	PLAN_TABLE table, 12.10

	OBJECT_NODE column
	
	PLAN_TABLE table, 12.10

	OBJECT_OWNER column
	
	PLAN_TABLE table, 12.10

	OBJECT_TYPE column
	
	PLAN_TABLE table, 12.10

	object-orientation, 2.5.7
	OLAP_PAGE_POOL_SIZE initialization parameter, 7.5.2
	OPEN_CURSORS initialization parameter, 4.1.1
	operating system
	
	data cache, 9.1.1
	monitoring disk I/O, 10.1.2.2
	statistics, 5.1.2

	OPERATION column
	
	PLAN_TABLE table, 12.10, 12.10

	optimization
	
	and dynamic sampling, 11.5.2.3
	choosing the approach, 11.5.2.1
	cost calculation, 11.1.1
	cost-based and choosing an access path, 11.2.7
	described, 11.1
	hints, 11.2.3.7, 11.2.3.8, 11.5.2.2
	manual, 11.5.2.2
	operations performed, 11.1.1

	optimizer
	
	cost calculation, 11.1.1
	estimator, 11.1.2.2
	goals, 11.5.2
	introduction, 1.1.3.1, 11.1
	modes, 17.1
	moving to from RBO, 20.2.1
	operations, 11.1.1
	parameters for setting mode, 11.5.2.1
	plan stability, 20.1
	query, 1.1.3.1
	statistics, 13.1
	throughput, 11.5.2
	upgrading, 20.2.2

	OPTIMIZER column
	
	PLAN_TABLE, 12.10

	OPTIMIZER_FEATURES_ENABLE initialization parameter, 11.2.3.7, 11.2.3.8
	OPTIMIZER_MODE initialization parameter, 11.5.2.1, 11.5.2.1, 19.1.2.1
	
	hints affecting, 11.5.2.2

	OPTIONS column
	
	PLAN_TABLE table, 12.10

	OPTMIZER_DYNAMIC_SAMPLING initialization parameter, 11.5.2.3
	Oracle CPU statistics, 10.1.2.1.3
	Oracle Enterprise Manager
	
	advisors, 1.2.1
	Performance page, 1.2.1

	Oracle Forms, 21.4.2
	
	control of parsing and private SQL areas, 7.3.2.6.5

	Oracle Managed Files, 8.2.5
	
	tuning, 8.2.5

	Oracle Orion
	
	calibration tool parameters, 8.4.4
	command-line options, 8.4.4

	Oracle performance improvement method, 3.1
	
	steps, 3.1.1

	order
	
	joins, 16.5.4

	OTHER column
	
	PLAN_TABLE table, 12.10

	OTHER_TAG column
	
	PLAN_TABLE table, 12.10

	outer joins, 11.3.7, 16.5.4.1
	outlines
	
	CREATE OUTLINE statement, 20.1.5
	creating and using, 20.1.5
	description, 20.1
	execution plans and plan stability, 20.1
	hints, 20.1.1.1
	moving tables, 20.1.8
	moving to the cost-based optimizer, 20.2.1
	storage requirements, 20.1.2
	using, 20.1.6
	viewing data for, 20.1.7

P

	package
	
	DBMS_RESULT_CACHE, 7.6.1.3, 7.6.1.3.2

	packages
	
	DBMS_ADVISOR, 18.1
	DBMS_STATS, 18.1

	page table, 9.4.1.1.2
	paging, 9.4.1.2
	
	reducing, 7.1.6.1

	PARALLEL clause
	
	CREATE INDEX statement, 4.2.3

	parameter
	
	RESULT_CACHE_MAX_SIZE, 7.6.1.3.1
	RESULT_CACHE_MODE, 7.6.3.1

	PARENT_ID column
	
	PLAN_TABLE table, 12.10

	parsing
	
	hard, 2.5.5
	Oracle Forms, 7.3.2.6.5
	Oracle precompilers, 7.3.2.6.2
	reducing unnecessary calls, 7.3.2.6
	soft, 2.5.5

	PARTITION_ID column
	
	PLAN_TABLE table, 12.10

	PARTITION_START column
	
	PLAN_TABLE table, 12.10

	PARTITION_STOP column
	
	PLAN_TABLE table, 12.10

	partitioned indexes, 2.5.3.2.4
	partitioned objects
	
	and EXPLAIN PLAN statement, 12.9

	partitioning
	
	distribution value, 12.10
	examples of, 12.9.1
	examples of composite, 12.9.2
	hash, 12.9
	range, 12.9
	start and stop columns, 12.9.1

	partition-wise joins
	
	full, 12.9.4
	full, and EXPLAIN PLAN output, 12.9.4
	partial, and EXPLAIN PLAN output, 12.9.3

	PCTFREE parameter, 4.2, 10.2.4.3
	PCTUSED parameter, 10.2.4.3, 10.2.4.3
	peeking
	
	bind variables, 11.1.3

	performance
	
	emergencies, 3.2
	improvement method, 3.1
	improvement method steps, 3.1.1
	mainframe, 9.2.3
	monitoring memory on Windows, 9.4.1.1.1
	tools for diagnosing and tuning, 1.2
	UNIX-based systems, 9.2.1
	viewing execution plans, 11.4.1
	Windows, 9.2.2

	performance problems
	
	transient, 5.3.8

	performance tuning
	
	Fast-Start Fault Recovery, 10.5
	instance recovery, 10.5
	
	FAST_START_MTTR_TARGET, 10.5.2
	setting FAST_START_MTTR_TARGET, 10.5.3
	using V$INSTANCE_RECOVERY, 10.5.2.3

	PGA_AGGREGATE_TARGET initialization parameter, 4.1.1, 4.2.3.1, 7.5.1, 9.1.2.2
	physical reads from cache statistic, 7.2.2.3
	plan stability, 20.1
	
	limitations of, 20.1.1
	preserving execution plans, 20.1
	procedures for the cost-based optimizer, 20.2
	use of hints, 20.1.1

	PLAN_TABLE table
	
	BYTES column, 12.10
	CARDINALITY column, 12.10
	COST column, 12.10
	creating, 12.2, 12.2
	displaying, 12.4
	DISTRIBUTION column, 12.10
	ID column, 12.10
	OBJECT_INSTANCE column, 12.10
	OBJECT_NAME column, 12.10
	OBJECT_NODE column, 12.10
	OBJECT_OWNER column, 12.10
	OBJECT_TYPE column, 12.10
	OPERATION column, 12.10
	OPTIMIZER column, 12.10
	OPTIONS column, 12.10
	OTHER column, 12.10
	OTHER_TAG column, 12.10
	PARENT_ID column, 12.10
	PARTITION_ID column, 12.10
	PARTITION_START column, 12.10
	PARTITION_STOP column, 12.10
	POSITION column, 12.10
	REMARKS column, 12.10
	SEARCH_COLUMNS column, 12.10
	STATEMENT_ID column, 12.10
	TIMESTAMP column, 12.10

	PL/SQL procedures
	
	EXPLAIN_MVIEW, 18.3
	TUNE_MVIEW, 18.3

	POSITION column
	
	PLAN_TABLE table, 12.10

	precompilers
	
	control of parsing and private SQL areas, 7.3.2.6.2

	PRIMARY KEY constraint, 14.1.9
	PRIVATE_SGA variable, 7.3.5.1.3
	privileges
	
	SQL Access Advisor, 18.2.2

	proactive monitoring, 1.1.2.4.1
	processes
	
	scheduling, 9.4.1.4.1

	PROCESSES initialization parameter, 4.1.1
	program global area (PGA)
	
	direct path read, 10.3.4
	direct path write, 10.3.5
	shared servers, 7.3.5.1.1

	programming languages, 2.5.6

Q

	queries
	
	avoiding the use of indexes, 14.1.6
	data, 2.4.2
	ensuring the use of indexes, 14.1.5

	query optimizer, 1.1.3.1
	
	See optimizer

R

	range
	
	distribution value, 12.10
	examples of partitions, 12.9.1
	partitions, 12.9

	rdbms ipc reply wait events, 10.3.17
	read consistency, 10.2.4.2
	read wait events
	
	direct path, 10.3.4
	scattered, 10.3.2

	REBUILD clause, 14.1.7
	recursive calls, 21.4.4.5
	RECYCLE cache, 7.2.4.1
	REDO BUFFER ALLOCATION RETRIES statistic, 7.4.2
	redo logs, 4.1.3
	
	buffer size, 10.3.14
	mirroring, 8.2.3.3
	placement on disk, 8.2.3.2
	sizing, 4.1.3
	space requests, 10.2.4.1

	reducing
	
	contention with dispatchers, 4.3.1.1
	data dictionary cache misses, 7.3.4.1.2
	paging and swapping, 7.1.6.1
	unnecessary parse calls, 7.3.2.6

	RELEASE_CURSOR clause, 7.3.2.6.2
	REMARKS column
	
	PLAN_TABLE table, 12.10

	resources
	
	allocation, 2.4.1.2.3, 2.5.6
	bottlenecks, 10.3.18.1.2
	wait events, 10.3.3

	response time, 2.4.2
	
	cost-based approach, 11.5.2.1

	result cache, 7.6.1
	reverse key indexes, 2.5.3.2.5
	rollout strategies
	
	big bang approach, 2.7.1
	trickle approach, 2.7.1

	round-robin
	
	distribution value, 12.10

	row cache objects, 10.3.10.3.6
	row sources, 11.4.2
	rowids
	
	table access by, 11.2.2

	rows
	
	row sources, 11.4.2
	rowids used to locate, 11.2.2

S

	SAMPLE BLOCK clause, 11.2.6
	
	access path and hints, 11.2.7

	SAMPLE clause, 11.2.6
	
	access path and hints cannot override, 11.2.7

	sample table scans, 11.2.6
	
	hints cannot override, 11.2.7

	sar UNIX command, 9.4.1.1.1
	scalability, 2.3.1
	
	factors preventing, 2.3.3, 2.3.3
	Internet, 2.3.2
	linear, 2.3.3

	scans
	
	index, 11.2.3
	index joins, 11.2.3.8.1
	index of type bitmap, 11.2.3.9
	sample table, 11.2.6
	sample table and hints cannot override, 11.2.7

	scattered read wait events, 10.3.2
	
	actions, 10.3.2.1

	SEARCH_COLUMNS column
	
	PLAN_TABLE table, 12.10

	segment-level statistics, 10.1.3.5
	SELECT statement
	
	SAMPLE clause, 11.2.6

	selectivity
	
	creating indexes, 14.1.3
	improving for an index, 14.1.4
	indexes, 14.1.6
	ordering columns in an index, 2.5.3.5

	semijoins, 11.3.2
	sequential read wait events
	
	actions, 10.3.3.1

	service hours, 2.4.2
	session memory statistic, 7.3.5.1.2
	SESSIONS initialization parameter, 4.1.1
	SGA size, 7.4.1
	SGA_TARGET initialization parameter, 4.1.1
	
	and Automatic Shared Memory Management, 7.1.3
	automatic memory management, 7.1.3

	shared pool contention, 10.3.10.3
	shared server
	
	performance issues, 4.3
	reducing contention, 4.3
	tuning, 4.3
	tuning memory, 7.3.5.1

	shared SQL areas
	
	memory allocation, 7.3.4.1.1

	SHARED_POOL_RESERVED_SIZE initialization parameter, 7.3.8.2
	SHARED_POOL_SIZE initialization parameter, 7.3.4.1.2, 7.3.4.2, 7.3.8.4
	
	allocating library cache, 7.3.4.1.1
	tuning the shared pool, 7.3.5.1.4

	SHOW SGA statement, 7.1.6.2
	show_extended_stats_name, 13.3.1.6.2
	sizing redo logs, 4.1.3
	snapshots
	
	about, 5.2.1

	soft parsing, 2.5.5
	software
	
	components, 2.4.1.2

	sort areas
	
	tuning, 7.5

	sort merge joins, 11.3.5
	
	cost-based optimization, 11.3.2

	SQL Access Advisor, 18.1, 18.1, 18.2.3.2
	
	constants, 18.2.8
	creating a task, 18.1.1
	EXECUTE_TASK procedure, 18.2.5.5.1
	generating the recommendations, 18.1.1
	privileges, 18.2.2
	recommendation process, 18.2.5.7
	steps in using, 18.1.1

	SQL management base
	
	about, 15.6
	disk space usage, 15.6.1
	purging policy, 15.6.2

	SQL plan baseline
	
	automatic plan capture, 15.2.1.1
	capturing
	
	automatic, 15.2.1.1
	manual, 15.2.1.2

	evolving manually, 15.2.3.1
	evolving with DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE, 15.2.3.2
	loading plans from a SQL Tuning Set, 15.2.1.2.1
	loading plans from AWR snapshots, 15.2.1.2.1
	loading plans from the cursor cache, 15.2.1.2.2
	manual plan loading, 15.2.1.2
	SQL Tuning Advisor, 15.3

	SQL plan baseline, fixed, 15.4
	SQL plan baselines
	
	about, 15.2.1
	capturing, 15.2.1
	displaying, 15.5
	enabling, 15.2.2
	evolving, 15.2.3
	importing and exporting, 15.7
	managing, 15.2
	plan history, 15.2.1
	selecting, 15.2.2
	statement log, 15.2.1

	SQL statements
	
	avoiding the use of indexes, 14.1.6
	ensuring the use of indexes, 14.1.5
	execution plans of, 11.4
	modifying indexed data, 14.1.3
	waiting for I/O, 10.3.2.4

	SQL Test Case Builder, 16.6
	SQL trace facility, 21.3.1, 21.4.3
	
	example of output, 21.4.4.10
	output, 21.4.4.1
	statement truncation, 21.4.4.7
	steps to follow, 21.4
	trace files, 21.4.1

	SQL Tuning Advisor, 1.2.1, 16.4.2
	
	administering with APIs, 17.3.4, 17.4
	input sources, 17.3.1
	overview, 17.2
	tuning options, 17.3.2

	SQL Tuning Sets
	
	description, 16.4.3, 17.3, 17.3.1, 17.3.4
	managing with APIs, 17.4, 17.4

	SQL*Net
	
	message from client idle events, 10.3.18.1
	message from dblink wait events, 10.3.18.2
	more data to client wait events, 10.3.18.3

	SQL_STATEMENT column
	
	TKPROF_TABLE, 21.4.5.3

	SQL_TRACE
	
	initialization parameter, 21.4.2

	SQLAccess Advisor, 1.2.1, 16.4.4
	SQLTUNE_CATEGORY initialization parameter
	
	determining the SQL Profile category, 17.5.3

	ST enqueue
	
	contention, 10.3.6.2.1

	start columns
	
	in partitioning and EXPLAIN PLAN statement, 12.9.1

	STATEMENT_ID column
	
	PLAN_TABLE table, 12.10

	statistics
	
	and STATISTICS_LEVEL initialization parameter, 1.2
	baselines, 5.1
	consistent gets from cache, 7.2.2.3
	databases, 5.1.1
	db block gets from cache, 7.2.2.3
	displaying in views, 13.7.1
	exporting and importing, 13.5.3
	gathering, 5.1
	gathering stale, 13.3.1.8
	gathering using sampling, 13.3.1.1
	gathering with DBMS_STATS package, 13.3.1, 13.3.4
	gathering with DBMS_STATS procedures, 13.3.1
	limitations on restoring previous versions, 13.5.2
	locking, 13.5.5
	manually gathering, 13.3
	max session memory, 7.3.5.1.2
	missing, 13.5.7
	operating systems, 5.1.2
	
	CPU statistics, 5.1.2.1
	disk statistics, 5.1.2.3
	network statistics, 5.1.2.4
	virtual memory statistics, 5.1.2.2

	optimizer, 13.1
	optimizer mode, 11.5.2.1
	physical reads from cache, 7.2.2.3
	restoring previous versions, 13.5.2
	segment-level, 10.1.3.5
	session memory, 7.3.5.1.2
	shared server processes, 4.3.2
	stale, 13.3.1.8
	system, 13.4
	time model, 5.1.1.2
	user-defined, 13.3.1.9
	when to gather, 13.3.3

	STATISTICS_LEVEL initialization parameter, 5.1.3, 10.1.3.1
	
	and Automatic Workload Repository, 5.2
	enabling automatic database diagnostic monitoring, 6.2
	settings for statistic gathering, 1.2

	stop columns
	
	in partitioning and EXPLAIN PLAN statement, 12.9.1

	stored outlines
	
	creating and using, 20.1.5
	execution plans and plan stability, 20.1
	hints, 20.1.1.1
	moving tables, 20.1.8
	storage requirements, 20.1.2
	using, 20.1.6
	viewing data for, 20.1.7

	STREAMS_POOL_SIZE initialization parameter, 4.1.1, 7.1.3
	striping
	
	manual, 8.2.2

	subqueries
	
	NOT IN, 11.3.2
	unnesting, 16.5.4.1.3

	swapping, 9.4.1.1.1, 9.4.1.2
	
	reducing, 7.1.6.1

	switching processes, 9.4.1.4.1
	system architecture, 2.4
	
	configuration, 2.4.2
	hardware components, 2.4.1.1
	
	CPUs, 2.4.1.1.1
	I/O subsystems, 2.4.1.1.3
	memory, 2.4.1.1.2
	networks, 2.4.1.1.4

	software components, 2.4.1.2
	
	data and transactions, 2.4.1.2.4
	implementing business logic, 2.4.1.2.2
	managing the user interface, 2.4.1.2.1
	user requests and resource allocation, 2.4.1.2.3

	System Global Area tuning, 7.1.6.2

T

	tables
	
	creating, 4.2
	design, 2.5.3
	full scans, 10.3.4.2.2
	placement on disk, 8.2.2
	setting storage options, 4.2

	tablespaces, 4.1.4
	
	creating, 4.1.4, 4.1.4.2
	temporary, 4.1.4, 4.1.4.2

	tablespec
	
	hint syntax, 19.2.3

	templates
	
	SQL Access Advisor, 18.2.3.2

	temporary tablespaces, 4.1.4
	
	creating, 4.1.4.2

	testing designs, 2.6.4
	thrashing, 9.4.1.2
	thresholds
	
	adaptive, 5.2.3

	throughput
	
	optimizer goal, 11.5.2

	time model statistics, 5.1.1.2
	TIMED_STATISTICS initialization parameter
	
	SQL Trace, 21.4.1

	TIMESTAMP column
	
	PLAN_TABLE table, 12.10

	TKPROF program, 21.3.2, 21.4.3
	
	editing the output SQL script, 21.4.5.2
	example of output, 21.4.4.10
	generating the output SQL script, 21.4.5.1
	row source operations, 21.4.4.2
	syntax, 21.4.3.2
	using the EXPLAIN PLAN statement, 21.4.3.2
	wait event information, 21.4.4.3

	TKPROF_TABLE, 21.4.5.3, 21.4.5.3
	TM enqueue contention, 10.3.6.2.3
	tools for performance tuning, 1.2
	Top Java
	
	Active Session History report, 5.3.9.5

	top PL/SQL
	
	Active Session History report, 5.3.9.4

	Top Sessions
	
	Active Session History report, 5.3.9.6

	Top SQL
	
	Active Session History report, 5.3.9.3

	TRACEFILE_IDENTIFIER initialization parameter
	
	identifying trace files, 21.4.1

	tracing
	
	consolidating with trcsess, 21.2
	identifying files, 21.4.1

	transactions and data, 2.4.1.2.4
	trcsess utility, 21.2
	trickle rollout strategy, 2.7.1
	TUNE_MVIEW procedure, 18.3
	tuning
	
	and bottleneck elimination, 1.1.2.4.2
	and proactive monitoring, 1.1.2.4.1
	latches, 1.1.2.3, 10.3.10.3
	logical structure, 14.1.1
	memory allocation, 7.1.7
	resource contention, 10
	shared server, 4.3
	sorts, 7.5
	SQL Tuning Advisor, 17.2
	System Global Area (SGA), 7.1.6.2

	TX enqueue contention, 10.3.6.2.4
	type conversion, 16.5.3.2

U

	undo management, automatic mode, 4.1.2
	UNDO TABLESPACE clause, 4.1.2
	UNDO_MANAGEMENT initialization parameter, 4.1.1, 4.1.2
	UNDO_TABLESPACE initialization parameter, 4.1.1
	UNIQUE constraint, 14.1.9
	uniqueness, 14.1.9
	UNIX system performance, 9.2.1
	untransformed column values, 16.5.3.2
	upgrade
	
	to the cost-based optimizer, 20.2.2

	USE_STORED_OUTLINES parameter, 20.1.6, 20.1.6
	user global area (UGA)
	
	shared servers, 4.3, 7.3.5.1
	V$SESSTAT, 7.3.5.1.2

	user requests, 2.4.1.2.3
	USER_DUMP_DEST initialization parameter, 21.4.1
	
	SQL Trace, 21.4.1

	USER_ID column, TKPROF_TABLE, 21.4.5.3
	USER_OUTLINE_HINTS view
	
	stored outline hints, 20.1.7

	USER_OUTLINES view
	
	stored outlines, 20.1.7

	user_stat_extensions, 13.3.1.6.4, 13.3.1.7.2
	user-defined bind variables, 11.1.3
	users
	
	interaction method, 2.4.2
	interfaces, 2.5.6
	location, 2.4.2
	network speed, 2.4.2
	number of, 2.4.2
	requests, 2.5.6
	response time, 2.4.2

	Using SQL Plan Management, 15
	UTLCHN1.SQL script, 10.2.4.3
	UTLXPLP.SQL script
	
	displaying plan table output, 12.4
	for viewing EXPLAIN PLANs, 11.4.1

	UTLXPLS.SQL script
	
	displaying plan table output, 12.4
	for viewing EXPLAIN PLANs, 11.4.1
	used for displaying EXPLAIN PLANs, 11.4.1

V

	V$ACTIVE_SESSION_HISTORY view, 5.1.1.3, 10.1.3.3
	V$ADVISOR_PROGRESS view, 17.3.4.5, 17.6
	V$BH view, 7.2.7
	V$BUFFER_POOL_STATISTICS view, 7.2.6, 7.2.6
	V$DB_CACHE_ADVICE view, 7.2.2.1, 7.2.2.3, 7.2.3, 7.2.3.1, 7.2.3.2, 7.2.5
	V$EVENT_HISTOGRAM view, 10.1.3.3
	V$FILE_HISTOGRAM view, 10.1.3.3
	V$JAVA_LIBRARY_CACHE_MEMORY view, 7.3.3.3.3
	V$JAVA_POOL_ADVICE view, 7.3.3.3.3
	V$LIBRARY_CACHE_MEMORY view, 7.3.3.3.2
	V$LIBRARYCACHE view
	
	NAMESPACE column, 7.3.3.2

	V$OSSTAT view, 5.1.2.1
	V$PGASTAT view, 7.5.1.2.1
	V$PROCESS view, 7.5.1.2.2
	V$PROCESS_MEMORY view, 7.5.1.2.3
	V$QUEUE view, 4.3.2
	V$ROWCACHE view
	
	GETMISSES column, 7.3.4.1.2
	GETS column, 7.3.4.1.2
	performance statistics, 7.3.3.4

	V$RSRC_CONSUMER_GROUP view, 10.1.2.1.3
	V$SESS_TIME_MODEL view, 5.1.1.2, 10.1.3.3
	V$SESSION view, 10.1.3.3, 10.1.3.4, 10.3
	V$SESSION_EVENT view, 10.1.3.3, 10.3
	V$SESSION_WAIT view, 10.1.3.3, 10.3
	V$SESSION_WAIT_CLASS view, 10.1.3.3
	V$SESSION_WAIT_HISTORY view, 10.1.3.3, 10.1.3.3, 10.3
	V$SESSTAT view, 7.3.5.1.2, 10.1.2.1.3
	V$SHARED_POOL_ADVICE view, 7.3.3.3.1
	V$SHARED_POOL_RESERVED view, 7.3.8.4
	V$SQL_PLAN view
	
	using to display execution plan, 12.1.3.1

	V$SQL_PLAN_STATISTICS view
	
	using to display execution plan statistics, 12.1.3.1

	V$SQL_PLAN_STATISTICS_ALL view
	
	using to display execution plan information, 12.1.3.1

	V$SQL_WORKAREA view, 7.5.1.2.6
	V$SQL_WORKAREA_ACTIVE view, 7.5.1.2.5
	V$SQL_WORKAREA_HISTOGRAM view, 7.5.1.2.4
	V$SYS_TIME_MODEL view, 5.1.1.2, 5.1.2.1, 10.1.3.3
	V$SYSMETRIC_HISTORY view, 5.1.2.1
	V$SYSSTAT view
	
	redo buffer allocation, 7.4.2
	using, 7.2.2.3

	V$SYSTEM_EVENT view, 10.1.3.3, 10.3
	V$SYSTEM_WAIT_CLASS view, 10.1.3.3
	V$TEMP_HISTOGRAM view, 10.1.3.3
	V$UNDOSTAT view, 4.1.2
	V$WAITSTAT view, 10.1.3.4
	validating designs, 2.6.4
	views, 2.5.4
	
	DBA_HIST, 5.3.5
	statistics, 13.7.1

	virtual memory statistics, 5.1.2.2
	vmstat UNIX command, 9.4.1.1.1

W

	wait events, 5.1.1.1
	
	buffer busy waits, 10.3.1
	classes, 5.1.1.1, 10.1.3.2
	contention wait events, 10.3.10
	direct path, 10.3.5
	enqueue, 10.3.6
	free buffer waits, 10.3.8
	idle wait events, 10.3.9
	latch, 10.3.10
	library cache latch, 10.3.10.1
	log buffer space, 10.3.14
	log file parallel write, 10.3.11
	log file switch, 10.3.15
	log file sync, 10.3.16
	network communication wait events, 10.3.18
	rdbms ipc reply, 10.3.17
	resource wait events, 10.3.3

	Windows performance, 9.2.2
	workloads, 2.6.2, 2.6.2.1, 2.6.2.2, 2.6.3, 2.6.4

3 Performance Improvement Methods

This chapter discusses Oracle Database improvement methods and contains the following sections:

	
The Oracle Performance Improvement Method

	
Emergency Performance Methods

3.1 The Oracle Performance Improvement Method

Oracle performance methodology helps you to identify performance problems in an Oracle database. This involves identifying bottlenecks and fixing them. It is recommended that changes be made to a system only after you have confirmed that there is a bottleneck.

Performance improvement, by its nature, is iterative. For this reason, removing the first bottleneck might not lead to performance improvement immediately, because another bottleneck might be revealed. Also, in some cases, if serialization points move to a more inefficient sharing mechanism, then performance could degrade. With experience, and by following a rigorous method of bottleneck elimination, applications can be debugged and made scalable.

Performance problems generally result from either a lack of throughput, unacceptable user/job response time, or both. The problem might be localized between application modules, or it might be for the entire system.

Before looking at any database or operating system statistics, it is crucial to get feedback from the most important components of the system: the users of the system and the people ultimately paying for the application. Typical user feedback includes statements like the following:

	
"The online performance is so bad that it prevents my staff from doing their jobs."

	
"The billing run takes too long."

	
"When I experience high amounts of Web traffic, the response time becomes unacceptable, and I am losing customers."

	
"I am currently performing 5000 trades a day, and the system is maxed out. Next month, we roll out to all our users, and the number of trades is expected to quadruple."

From candid feedback, it is easy to set critical success factors for any performance work. Determining the performance targets and the performance engineer's exit criteria make managing the performance process much simpler and more successful at all levels. These critical success factors are better defined in terms of real business goals rather than system statistics.

Some real business goals for these typical user statements might be:

	
"The billing run must process 1,000,000 accounts in a three-hour window."

	
"At a peak period on a Web site, the response time must not exceed five seconds for a page refresh."

	
"The system must be able to process 25,000 trades in an eight-hour window."

The ultimate measure of success is the user's perception of system performance. The performance engineer's role is to eliminate any bottlenecks that degrade performance. These bottlenecks could be caused by inefficient use of limited shared resources or by abuse of shared resources, causing serialization. Because all shared resources are limited, the goal of a performance engineer is to maximize the number of business operations with efficient use of shared resources. At a very high level, the entire database server can be seen as a shared resource. Conversely, at a low level, a single CPU or disk can be seen as shared resources.

You can apply the Oracle performance improvement method until performance goals are met or deemed impossible. This process is highly iterative. Inevitably, some investigations may have little or no impact on database performance. Time and experience are necessary to develop the skills to accurately and quickly pinpoint critical bottlenecks. However, prior experience can sometimes work against the experienced engineer who neglects to use the data and statistics available. This type of behavior encourages database tuning by myth and folklore. This is a very risky, expensive, and unlikely to succeed method of database tuning.

The Automatic Database Diagnostic Monitor (ADDM) implements parts of the performance improvement method and analyzes statistics to provide automatic diagnosis of major performance issues. Using ADDM can significantly shorten the time required to improve the performance of a system. See Chapter 6, "Automatic Performance Diagnostics" for a description of ADDM.

Systems are so different and complex that hard and fast rules for performance analysis are impossible. In essence, the Oracle performance improvement method defines a way of working, but not a definitive set of rules. With bottleneck detection, the only rule is that there are no rules! The best performance engineers use the data provided and think laterally to determine performance problems.

3.1.1 Steps in The Oracle Performance Improvement Method

	
Perform the following initial standard checks:

	
Get candid feedback from users. Determine the performance project's scope and subsequent performance goals, and performance goals for the future. This process is key in future capacity planning.

	
Get a full set of operating system, database, and application statistics from the system when the performance is both good and bad. If these are not available, then get whatever is available. Missing statistics are analogous to missing evidence at a crime scene: They make detectives work harder and it is more time-consuming.

	
Sanity-check the operating systems of all computers involved with user performance. By sanity-checking the operating system, you look for hardware or operating system resources that are fully utilized. List any over-used resources as symptoms for analysis later. In addition, check that all hardware shows no errors or diagnostics.

	
Check for the top ten most common mistakes with Oracle Database, and determine if any of these are likely to be the problem. List these as symptoms for later analysis. These are included because they represent the most likely problems. ADDM automatically detects and reports nine of these top ten issues. See Chapter 6, "Automatic Performance Diagnostics" and "Top Ten Mistakes Found in Oracle Systems".

	
Build a conceptual model of what is happening on the system using the symptoms as clues to understand what caused the performance problems. See "A Sample Decision Process for Performance Conceptual Modeling".

	
Propose a series of remedy actions and the anticipated behavior to the system, then apply them in the order that can benefit the application the most. ADDM produces recommendations each with an expected benefit. A golden rule in performance work is that you only change one thing at a time and then measure the differences. Unfortunately, system downtime requirements might prohibit such a rigorous investigation method. If multiple changes are applied at the same time, then try to ensure that they are isolated so that the effects of each change can be independently validated.

	
Validate that the changes made have had the desired effect, and see if the user's perception of performance has improved. Otherwise, look for more bottlenecks, and continue refining the conceptual model until your understanding of the application becomes more accurate.

	
Repeat the last three steps until performance goals are met or become impossible due to other constraints.

This method identifies the biggest bottleneck and uses an objective approach to performance improvement. The focus is on making large performance improvements by increasing application efficiency and eliminating resource shortages and bottlenecks. In this process, it is anticipated that minimal (less than 10%) performance gains are made from instance tuning, and large gains (100% +) are made from isolating application inefficiencies.

3.1.2 A Sample Decision Process for Performance Conceptual Modeling

Conceptual modeling is almost deterministic. However, as you gain experience in performance tuning, you begin to appreciate that no real rules exist. A flexible heads-up approach is required to interpret statistics and make good decisions.

For a quick and easy approach to performance tuning, use ADDM. ADDM automatically monitors your Oracle system and provides recommendations for solving performance problems should problems occur. For example, suppose a DBA receives a call from a user complaining that the system is slow. The DBA simply examines the latest ADDM report to see which of the recommendations should be implemented to solve the problem. See Chapter 6, "Automatic Performance Diagnostics" for information about the features that help monitor and diagnose Oracle databases.

The following steps illustrate how a performance engineer might look for bottlenecks without using automatic diagnostic features. These steps are only intended as a guideline for the manual process. With experience, performance engineers add to the steps involved. This analysis assumes that statistics for both the operating system and the database have been gathered.

	
Is the response time/batch run time acceptable for a single user on an empty or lightly loaded computer?

If it is not acceptable, then the application is probably not coded or designed optimally, and it will never be acceptable in a multiple user situation when system resources are shared. In this case, get application internal statistics, and get SQL Trace and SQL plan information. Work with developers to investigate problems in data, index, transaction SQL design, and potential deferral of work to batch and background processing.

	
Is all the CPU being utilized?

If the kernel utilization is over 40%, then investigate the operating system for network transfers, paging, swapping, or process thrashing. Continue to check CPU utilization in user space to verify if there are any non-database jobs consuming CPU on the system limiting the amount of shared CPU resources, such as backups, file transforms, print queues, and so on. After determining that the database is using most of the CPU, investigate the top SQL by CPU utilization. These statements form the basis of all future analysis. Check the SQL and the transactions submitting the SQL for optimal execution. Oracle Database provides CPU statistics in V$SQL and V$SQLSTATS.

	
See Also:

Oracle Database Reference for more information on V$SQL and V$SQLSTATS

If the application is optimal and no inefficiencies exist in the SQL execution, then consider rescheduling some work to off-peak hours or using a bigger computer.

	
At this point, the system performance is unsatisfactory, yet the CPU resources are not fully utilized.

In this case, you have serialization and unscalable behavior within the server. Get the WAIT_EVENTS statistics from the server, and determine the biggest serialization point. If there are no serialization points, then the problem is most likely outside the database, and this should be the focus of investigation. Elimination of WAIT_EVENTS involves modifying application SQL and tuning database parameters. This process is very iterative and requires the ability to drill down on the WAIT_EVENTS systematically to eliminate serialization points.

3.1.3 Top Ten Mistakes Found in Oracle Systems

This section lists the most common mistakes found in Oracle databases. By following the Oracle performance improvement methodology, you should be able to avoid these mistakes altogether. If you find these mistakes in your system, then re-engineer the application where the performance effort is worthwhile. See "Automatic Performance Tuning Features" for information about the features that help diagnose and tune Oracle databases. See Chapter 10, "Instance Tuning Using Performance Views" for a discussion on how wait event data reveals symptoms of problems that can be impacting performance.

	
Bad connection management

The application connects and disconnects for each database interaction. This problem is common with stateless middleware in application servers. It has over two orders of magnitude impact on performance, and is totally unscalable.

	
Bad use of cursors and the shared pool

Not using cursors results in repeated parses. If bind variables are not used, then there is hard parsing of all SQL statements. This has an order of magnitude impact in performance, and it is totally unscalable. Use cursors with bind variables that open the cursor and execute it many times. Be suspicious of applications generating dynamic SQL.

	
Bad SQL

Bad SQL is SQL that uses more resources than appropriate for the application requirement. This can be a decision support systems (DSS) query that runs for more than 24 hours, or a query from an online application that takes more than a minute. You should investigate SQL that consumes significant system resources for potential improvement. ADDM identifies high load SQL. SQL Tuning Advisor can provide recommendations for improvement. See Chapter 6, "Automatic Performance Diagnostics" and Chapter 17, "Automatic SQL Tuning".

	
Use of nonstandard initialization parameters

These might have been implemented based on poor advice or incorrect assumptions. Most databases provide acceptable performance using only the set of basic parameters. In particular, parameters associated with SPIN_COUNT on latches and undocumented optimizer features can cause a great deal of problems that can require considerable investigation.

Likewise, optimizer parameters set in the initialization parameter file can override proven optimal execution plans. For these reasons, schemas, schema statistics, and optimizer settings should be managed as a group to ensure consistency of performance.

	
See Also:

	
Oracle Database Administrator's Guide for information about initialization parameters and database creation

	
Oracle Database Reference for details on initialization parameters

	
"Performance Considerations for Initial Instance Configuration" for information about parameters and settings in an initial instance configuration

	
Getting database I/O wrong

Many sites lay out their databases poorly over the available disks. Other sites specify the number of disks incorrectly, because they configure disks by disk space and not I/O bandwidth. See Chapter 8, "I/O Configuration and Design".

	
Online redo log setup problems

Many sites run with too few online redo log files and files that are too small. Small redo log files cause system checkpoints to continuously put a high load on the buffer cache and I/O system. If too few redo log files exist, then the archive cannot keep up, and the database must wait for the archiver to catch up. See Chapter 4, "Configuring a Database for Performance" for information about sizing redo log files for performance.

	
Serialization of data blocks in the buffer cache due to lack of free lists, free list groups, transaction slots (INITRANS), or shortage of rollback segments.

This is particularly common on INSERT-heavy applications, in applications that have raised the block size above 8K, or in applications with large numbers of active users and few rollback segments. Use automatic segment-space management (ASSM) and automatic undo management to solve this problem.

	
Long full table scans

Long full table scans for high-volume or interactive online operations could indicate poor transaction design, missing indexes, or poor SQL optimization. Long table scans, by nature, are I/O intensive and unscalable.

	
High amounts of recursive (SYS) SQL

Large amounts of recursive SQL executed by SYS could indicate space management activities, such as extent allocations, taking place. This is unscalable and impacts user response time. Use locally managed tablespaces to reduce recursive SQL due to extent allocation. Recursive SQL executed under another user ID is probably SQL and PL/SQL, and this is not a problem.

	
Deployment and migration errors

In many cases, an application uses too many resources because the schema owning the tables has not been successfully migrated from the development environment or from an older implementation. Examples of this are missing indexes or incorrect statistics. These errors can lead to sub-optimal execution plans and poor interactive user performance. When migrating applications of known performance, export the schema statistics to maintain plan stability using the DBMS_STATS package.

Although these errors are not directly detected by ADDM, ADDM highlights the resulting high load SQL.

3.2 Emergency Performance Methods

This section provides techniques for dealing with performance emergencies. You presumably have a methodology for establishing and improving application performance. However, in an emergency situation, a component of the system has changed to transform it from a reliable, predictable system to one that is unpredictable and not satisfying user requests.

In this case, the performance engineer must rapidly determine what has changed and take appropriate actions to resume normal service as quickly as possible. In many cases, it is necessary to take immediate action, and a rigorous performance improvement project is unrealistic.

After addressing the immediate performance problem, the performance engineer must collect sufficient debugging information either to get better clarity on the performance problem or to at least ensure that it does not happen again.

The method for debugging emergency performance problems is the same as the method described in the performance improvement method earlier in this book. However, shortcuts are taken in various stages because of the timely nature of the problem. Keeping detailed notes and records of facts found as the debugging process progresses is essential for later analysis and justification of any remedial actions. This is analogous to a doctor keeping good patient notes for future reference.

3.2.1 Steps in the Emergency Performance Method

The Emergency Performance Method is as follows:

	
Survey the performance problem and collect the symptoms of the performance problem. This process should include the following:

	
User feedback on how the system is underperforming. Is the problem throughput or response time?

	
Ask the question, "What has changed since we last had good performance?" This answer can give clues to the problem. However, getting unbiased answers in an escalated situation can be difficult. Try to locate some reference points, such as collected statistics or log files, that were taken before and after the problem.

	
Use automatic tuning features to diagnose and monitor the problem. See "Automatic Performance Tuning Features" for information about the features that help diagnose and tune Oracle systems. In addition, you can use Oracle Enterprise Manager performance features to identify top SQL and sessions.

	
Sanity-check the hardware utilization of all components of the application system. Check where the highest CPU utilization is, and check the disk, memory usage, and network performance on all the system components. This quick process identifies which tier is causing the problem. If the problem is in the application, then shift analysis to application debugging. Otherwise, move on to database server analysis.

	
Determine if the database server is constrained on CPU or if it is spending time waiting on wait events. If the database server is CPU-constrained, then investigate the following:

	
Sessions that are consuming large amounts of CPU at the operating system level and database; check V$SESS_TIME_MODEL for database CPU usage

	
Sessions or statements that perform many buffer gets at the database level; check V$SESSTAT and V$SQLSTATS

	
Execution plan changes causing sub-optimal SQL execution; these can be difficult to locate

	
Incorrect setting of initialization parameters

	
Algorithmic issues caused by code changes or upgrades of all components

If the database sessions are waiting on events, then follow the wait events listed in V$SESSION_WAIT to determine what is causing serialization. The V$ACTIVE_SESSION_HISTORY view contains a sampled history of session activity which you can use to perform diagnosis even after an incident has ended and the system has returned to normal operation. In cases of massive contention for the library cache, it might not be possible to logon or submit SQL to the database. In this case, use historical data to determine why there is suddenly contention on this latch. If most waits are for I/O, then examine V$ACTIVE_SESSION_HISTORY to determine the SQL being run by the sessions that are performing all of the inputs and outputs. See Chapter 10, "Instance Tuning Using Performance Views" for a discussion on wait events.

	
Apply emergency action to stabilize the system. This could involve actions that take parts of the application off-line or restrict the workload that can be applied to the system. It could also involve a system restart or the termination of job in process. These naturally have service level implications.

	
Validate that the system is stable. Having made changes and restrictions to the system, validate that the system is now stable, and collect a reference set of statistics for the database. Now follow the rigorous performance method described earlier in this book to bring back all functionality and users to the system. This process may require significant application re-engineering before it is complete.

6 Automatic Performance Diagnostics

This chapter describes Oracle Database automatic features for performance diagnosing and tuning.

This chapter contains the following topics:

	
Overview of the Automatic Database Diagnostic Monitor

	
Setting Up ADDM

	
Diagnosing Database Performance Problems with ADDM

	
Views with ADDM Information

	
See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about using Oracle Enterprise Manager to diagnose and tune the database with the Automatic Database Diagnostic Monitor

6.1 Overview of the Automatic Database Diagnostic Monitor

When problems occur with a system, it is important to perform accurate and timely diagnosis of the problem before making any changes to a system. Oftentimes, a database administrator (DBA) simply looks at the symptoms and immediately starts changing the system to fix those symptoms. However, an accurate diagnosis of the actual problem in the initial stage significantly increases the probability of success in resolving the problem.

With Oracle Database, the statistical data needed for accurate diagnosis of a problem is stored in the Automatic Workload Repository (AWR). The Automatic Database Diagnostic Monitor (ADDM):

	
Analyzes the AWR data on a regular basis

	
Diagnoses the root causes of performance problems

	
Provides recommendations for correcting any problems

	
Identifies non-problem areas of the system

Because AWR is a repository of historical performance data, ADDM can analyze performance issues after the event, often saving time and resources in reproducing a problem. For information about the AWR, see "Overview of the Automatic Workload Repository".

In most cases, ADDM output should be the first place that a DBA looks when notified of a performance problem. ADDM provides the following benefits:

	
Automatic performance diagnostic report every hour by default

	
Problem diagnosis based on decades of tuning expertise

	
Time-based quantification of problem impacts and recommendation benefits

	
Identification of root cause, not symptoms

	
Recommendations for treating the root causes of problems

	
Identification of non-problem areas of the system

	
Minimal overhead to the system during the diagnostic process

It is important to realize that tuning is an iterative process, and fixing one problem can cause the bottleneck to shift to another part of the system. Even with the benefit of ADDM analysis, it can take multiple tuning cycles to reach acceptable system performance. ADDM benefits apply beyond production systems; on development and test systems, ADDM can provide an early warning of performance issues.

This section contains the following topics:

	
ADDM Analysis

	
Using ADDM with Oracle Real Application Clusters

	
ADDM Analysis Results

	
Reviewing ADDM Analysis Results: Example

6.1.1 ADDM Analysis

An ADDM analysis can be performed on a pair of AWR snapshots and a set of instances from the same database. The pair of AWR snapshots define the time period for analysis, and the set of instances define the target for analysis.

If you are using Oracle Real Application Clusters (Oracle RAC), ADDM has three analysis modes:

	
Database

In Database mode, ADDM analyzes all instances of the database.

	
Instance

In Instance mode, ADDM analyzes a particular instance of the database.

	
Partial

In Partial mode, ADDM analyzes a subset of all database instances.

If you are not using Oracle RAC, ADDM can only function in Instance mode because there is only one instance of the database.

An ADDM analysis is performed each time an AWR snapshot is taken and the results are saved in the database. The time period analyzed by ADDM is defined by the last two snapshots (the last hour by default). ADDM will always analyze the specified instance in Instance mode. For non-Oracle RAC or single instance environments, the analysis performed in the Instance mode is the same as a database-wide analysis. If you are using Oracle RAC, ADDM will also analyze the entire database in Database mode, as described in "Using ADDM with Oracle Real Application Clusters". After an ADDM completes its analysis, you can view the results using Oracle Enterprise Manager, or by viewing a report in a SQL*Plus session.

ADDM analysis is performed top down, first identifying symptoms, and then refining them to reach the root causes of performance problems. The goal of the analysis is to reduce a single throughput metric called DB time. DB time is the cumulative time spent by the database in processing user requests. It includes wait time and CPU time of all non-idle user sessions. DB time is displayed in the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views.

	
See Also:

	
Oracle Database Reference for information about the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views

	
"Time Model Statistics" for a discussion of time model statistics and DB time

	
Oracle Database Concepts for information about server processes

By reducing DB time, the database is able to support more user requests using the same resources, which increases throughput. The problems reported by ADDM are sorted by the amount of DB time they are responsible for. System areas that are not responsible for a significant portion of DB time are reported as non-problem areas.

The types of problems that ADDM considers include the following:

	
CPU bottlenecks - Is the system CPU bound by Oracle Database or some other application?

	
Undersized Memory Structures - Are the Oracle Database memory structures, such as the SGA, PGA, and buffer cache, adequately sized?

	
I/O capacity issues - Is the I/O subsystem performing as expected?

	
High load SQL statements - Are there any SQL statements which are consuming excessive system resources?

	
High load PL/SQL execution and compilation, and high-load Java usage

	
Oracle RAC specific issues - What are the global cache hot blocks and objects; are there any interconnect latency issues?

	
Sub-optimal use of Oracle Database by the application - Are there problems with poor connection management, excessive parsing, or application level lock contention?

	
Database configuration issues - Is there evidence of incorrect sizing of log files, archiving issues, excessive checkpoints, or sub-optimal parameter settings?

	
Concurrency issues - Are there buffer busy problems?

	
Hot objects and top SQL for various problem areas

	
Note:

This is not a comprehensive list of all problem types that ADDM considers in its analysis.

ADDM also documents the non-problem areas of the system. For example, wait event classes that are not significantly impacting the performance of the system are identified and removed from the tuning consideration at an early stage, saving time and effort that would be spent on items that do not impact overall system performance.

6.1.2 Using ADDM with Oracle Real Application Clusters

If you are using Oracle RAC, you can run ADDM in Database analysis mode to analyze the throughput performance of all instances of the database. In Database mode, ADDM considers DB time as the sum of the database time for all database instances. Using the Database analysis mode enables you to view all findings that are significant to the entire database in a single report, instead of reviewing a separate report for each instance.

The Database mode report includes findings about database resources (such as I/O and interconnect). The report also aggregates findings from the various instances if they are significant to the entire database. For example, if the CPU load on a single instance is high enough to affect the entire database, the finding will appear in the Database mode analysis, which will point to the particular instance responsible for the problem.

	
See Also:

Oracle Database 2 Day + Real Application Clusters Guide for information about using ADDM with Oracle RAC

6.1.3 ADDM Analysis Results

In addition to problem diagnostics, ADDM recommends possible solutions. ADDM analysis results are represented as a set of findings. See Example 6-1 for an example of ADDM analysis result. Each ADDM finding can belong to one of the following types:

	
Problem findings describe the root cause of a database performance problem.

	
Symptom findings contain information that often lead to one or more problem findings.

	
Information findings are used for reporting information that are relevant to understanding the performance of the database, but do not constitute a performance problem (such as non-problem areas of the database and the activity of automatic database maintenance).

	
Warning findings contain information about problems that may affect the completeness or accuracy of the ADDM analysis (such as missing data in the AWR).

Each problem finding is quantified by an impact that is an estimate of the portion of DB time caused by the finding's performance issue. A problem finding can be associated with a list of recommendations for reducing the impact of the performance problem. The types of recommendations include:

	
Hardware changes: adding CPUs or changing the I/O subsystem configuration

	
Database configuration: changing initialization parameter settings

	
Schema changes: hash partitioning a table or index, or using automatic segment-space management (ASSM)

	
Application changes: using the cache option for sequences or using bind variables

	
Using other advisors: running SQL Tuning Advisor on high-load SQL or running the Segment Advisor on hot objects

A list of recommendations can contain various alternatives for solving the same problem; you do not have to apply all the recommendations to solve a specific problem. Each recommendation has a benefit which is an estimate of the portion of DB time that can be saved if the recommendation is implemented. Recommendations are composed of actions and rationales. You must apply all the actions of a recommendation to gain the estimated benefit. The rationales are used for explaining why the set of actions were recommended and to provide additional information to implement the suggested recommendation.

6.1.4 Reviewing ADDM Analysis Results: Example

Consider the following section of an ADDM report in Example 6-1.

Example 6-1 Example ADDM Report

FINDING 1: 31% impact (7798 seconds)

SQL statements were not shared due to the usage of literals. This resulted in
additional hard parses which were consuming significant database time.

RECOMMENDATION 1: Application Analysis, 31% benefit (7798 seconds)
 ACTION: Investigate application logic for possible use of bind variables
 instead of literals. Alternatively, you may set the parameter
 "cursor_sharing" to "force".
 RATIONALE: SQL statements with PLAN_HASH_VALUE 3106087033 were found to be
 using literals. Look in V$SQL for examples of such SQL statements.

In Example 6-1, the finding points to a particular root cause, the usage of literals in SQL statements, which is estimated to have an impact of about 31% of total DB time in the analysis period.

The finding has a recommendation associated with it, composed of one action and one rationale. The action specifies a solution to the problem found and is estimated to have a maximum benefit of up to 31% DB time in the analysis period. Note that the benefit is given as a portion of the total DB time and not as a portion of the finding's impact. The rationale provides additional information on tracking potential SQL statements that were using literals and causing this performance issue. Using the specified plan hash value of SQL statements that could be a problem, a DBA could quickly examine a few sample statements.

When a specific problem has multiple causes, the ADDM may report multiple problem and symptom findings. In this case, the impacts of these multiple findings can contain the same portion of DB time. Because the performance issues of findings can overlap, the sum of the impacts of the findings can exceed 100% of DB time. For example, if a system performs many reads, then ADDM might report a SQL statement responsible for 50% of DB time due to I/O activity as one finding, and an undersized buffer cache responsible for 75% of DB time as another finding.

When multiple recommendations are associated with a problem finding, the recommendations may contain alternatives for solving the problem. In this case, the sum of the recommendations' benefits may be higher than the finding's impact.

When appropriate, an ADDM action may have multiple solutions for you to choose from. In the example, the most effective solution is to use bind variables. However, it is often difficult to modify the application. Changing the value of the CURSOR_SHARING initialization parameter is much easier to implement and can provide significant improvement.

6.2 Setting Up ADDM

Automatic database diagnostic monitoring is enabled by default and is controlled by the CONTROL_MANAGEMENT_PACK_ACCESS and the STATISTICS_LEVEL initialization parameters.

The CONTROL_MANAGEMENT_PACK_ACCESS parameter should be set to DIAGNOSTIC or DIAGNOSTIC+TUNING to enable automatic database diagnostic monitoring. The default setting is DIAGNOSTIC+TUNING. Setting CONTROL_MANAGEMENT_PACK_ACCESS to NONE disables ADDM.

The STATISTICS_LEVEL parameter should be set to the TYPICAL or ALL to enable automatic database diagnostic monitoring. The default setting is TYPICAL. Setting STATISTICS_LEVEL to BASIC disables many Oracle Database features, including ADDM, and is strongly discouraged.

	
See Also:

Oracle Database Reference for information about the CONTROL_MANAGEMENT_PACK_ACCESS and STATISTICS_LEVEL initialization parameters

ADDM analysis of I/O performance partially depends on a single argument, DBIO_EXPECTED, that describes the expected performance of the I/O subsystem. The value of DBIO_EXPECTED is the average time it takes to read a single database block in microseconds. Oracle Database uses the default value of 10 milliseconds, which is an appropriate value for most modern hard drives. If your hardware is significantly different, such as very old hardware or very fast RAM disks, consider using a different value.

To determine the correct setting for DBIO_EXPECTED parameter:

	
Measure the average read time of a single database block read for your hardware. Note that this measurement is for random I/O, which includes seek time if you use standard hard drives. Typical values for hard drives are between 5000 and 20000 microseconds.

	
Set the value one time for all subsequent ADDM executions. For example, if the measured value if 8000 microseconds, you should execute the following command as SYS user:

EXECUTE DBMS_ADVISOR.SET_DEFAULT_TASK_PARAMETER(
 'ADDM', 'DBIO_EXPECTED', 8000);

6.3 Diagnosing Database Performance Problems with ADDM

To diagnose database performance problems, first review the ADDM analysis results that are automatically created each time an AWR snapshot is taken. If a different analysis is required (such as a longer analysis period, using a different DBIO_EXPECTED setting, or changing the analysis mode), you can run ADDM manually as described in this section.

ADDM can analyze any two AWR snapshots (on the same database), as long as both snapshots are still stored in the AWR (have not been purged). ADDM can only analyze instances that are started before the beginning snapshot and remain running until the ending snapshot. Additionally, ADDM will not analyze instances that experience significant errors when generating the AWR snapshots. In such cases, ADDM will analyze the largest subset of instances that did not experience these problems.

The primary interface for diagnostic monitoring is Oracle Enterprise Manager. Whenever possible, you should run ADDM using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can run ADDM using the DBMS_ADDM package. In order to run the DBMS_ADDM APIs, the user must be granted the ADVISOR privilege.

This section contains the following topics:

	
Running ADDM in Database Mode

	
Running ADDM in Instance Mode

	
Running ADDM in Partial Mode

	
Displaying an ADDM Report

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_ADDM package

6.3.1 Running ADDM in Database Mode

For Oracle RAC configurations, you can run ADDM in Database mode to analyze all instances of the databases. For single-instance configurations, you can still run ADDM in Database mode; ADDM will simply behave as if running in Instance mode.

To run ADDM in Database mode, use the DBMS_ADDM.ANALYZE_DB procedure:

BEGIN
DBMS_ADDM.ANALYZE_DB (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created. The begin_snapshot parameter specifies the snapshot number of the beginning snapshot in the analysis period. The end_snapshot parameter specifies the snapshot number of the ending snapshot in the analysis period. The db_id parameter specifies the database identifier of the database that will be analyzed. If unspecified, this parameter defaults to the database identifier of the database to which you are currently connected.

The following example creates an ADDM task in database analysis mode, and executes it to diagnose the performance of the entire database during the time period defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'ADDM for 7PM to 9PM';
 DBMS_ADDM.ANALYZE_DB(:tname, 137, 145);
END;
/

6.3.2 Running ADDM in Instance Mode

To analyze a particular instance of the database, you can run ADDM in Instance mode. To run ADDM in Instance mode, use the DBMS_ADDM.ANALYZE_INST procedure:

BEGIN
DBMS_ADDM.ANALYZE_INST (
 task_name IN OUT VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 instance_number IN NUMBER := NULL,
 db_id IN NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created. The begin_snapshot parameter specifies the snapshot number of the beginning snapshot in the analysis period. The end_snapshot parameter specifies the snapshot number of the ending snapshot in the analysis period. The instance_number parameter specifies the instance number of the instance that will be analyzed. If unspecified, this parameter defaults to the instance number of the instance to which you are currently connected. The db_id parameter specifies the database identifier of the database that will be analyzed. If unspecified, this parameter defaults to the database identifier of the database to which you are currently connected.

The following example creates an ADDM task in instance analysis mode, and executes it to diagnose the performance of instance number 1 during the time period defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'my ADDM for 7PM to 9PM';
 DBMS_ADDM.ANALYZE_INST(:tname, 137, 145, 1);
END;
/

6.3.3 Running ADDM in Partial Mode

To analyze a subset of all database instances, you can run ADDM in Partial mode. To run ADDM in Partial mode, use the DBMS_ADDM.ANALYZE_PARTIAL procedure:

BEGIN
DBMS_ADDM.ANALYZE_PARTIAL (
 task_name IN OUT VARCHAR2,
 instance_numbers IN VARCHAR2,
 begin_snapshot IN NUMBER,
 end_snapshot IN NUMBER,
 db_id IN NUMBER := NULL);
END;
/

The task_name parameter specifies the name of the analysis task that will be created. The instance_numbers parameter specifies a comma-delimited list of instance numbers of instances that will be analyzed. The begin_snapshot parameter specifies the snapshot number of the beginning snapshot in the analysis period. The end_snapshot parameter specifies the snapshot number of the ending snapshot in the analysis period. The db_id parameter specifies the database identifier of the database that will be analyzed. If unspecified, this parameter defaults to the database identifier of the database to which you are currently connected.

The following example creates an ADDM task in partial analysis mode, and executes it to diagnose the performance of instance numbers 1, 2, and 4, during the time period defined by snapshots 137 and 145:

VAR tname VARCHAR2(30);
BEGIN
 :tname := 'my ADDM for 7PM to 9PM';
 DBMS_ADDM.ANALYZE_PARTIAL(:tname, '1,2,4', 137, 145);
END;
/

6.3.4 Displaying an ADDM Report

To display a text report of an executed ADDM task, use the DBMS_ADDM.GET_REPORT function:

DBMS_ADDM.GET_REPORT (
 task_name IN VARCHAR2
 RETURN CLOB);

The following example displays a text report of the ADDM task specified by its task name using the tname variable:

SET LONG 1000000 PAGESIZE 0;
SELECT DBMS_ADDM.GET_REPORT(:tname) FROM DUAL;

Note that the return type of a report is a CLOB, formatted to fit line size of 80. For information about reviewing the ADDM analysis results in an ADDM report, see "ADDM Analysis Results".

6.4 Views with ADDM Information

Typically, you should view output and information from ADDM using Oracle Enterprise Manager or ADDM reports.

However, you can display ADDM information through the DBA_ADVISOR views. This group of views includes:

	
DBA_ADVISOR_FINDINGS

This view displays all the findings discovered by all advisors. Each finding is displayed with an associated finding ID, name, and type. For tasks with multiple executions, the name of each task execution associated with each finding is also listed.

	
DBA_ADDM_FINDINGS

This view contains a subset of the findings displayed in the related DBA_ADVISOR_FINDINGS view. This view only displays the ADDM findings discovered by all advisors. Each ADDM finding is displayed with an associated finding ID, name, and type.

	
DBA_ADVISOR_FINDING_NAMES

List of all finding names registered with the advisor framework.

	
DBA_ADVISOR_RECOMMENDATIONS

This view displays the results of completed diagnostic tasks with recommendations for the problems identified in each execution. The recommendations should be reviewed in the order of the RANK column, as this relays the magnitude of the problem for the recommendation. The BENEFIT column displays the benefit to the system you can expect after the recommendation is performed. For tasks with multiple executions, the name of each task execution associated with each advisor task is also listed.

	
DBA_ADVISOR_TASKS

This view provides basic information about existing tasks, such as the task ID, task name, and when the task was created. For tasks with multiple executions, the name and type of the last or current execution associated with each advisor task is also listed.

	
See Also:

Oracle Database Reference for information about static data dictionary views

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

What's New in Oracle Database Performance Tuning Guide?

	Oracle Database 11g Release 2 (11.2.0.2) New Features in Oracle Database Performance
	Oracle Database 11g Release 2 (11.2.0.1) New Features in Oracle Database Performance

Part I Performance Tuning

1 Performance Tuning Overview

	1.1 Introduction to Performance Tuning
	1.1.1 Performance Planning
	1.1.2 Instance Tuning
	1.1.3 SQL Tuning

	1.2 Introduction to Performance Tuning Features and Tools
	1.2.1 Automatic Performance Tuning Features
	1.2.2 Additional Oracle Database Tools

Part II Performance Planning

2 Designing and Developing for Performance

	2.1 Oracle Methodology
	2.2 Understanding Investment Options
	2.3 Understanding Scalability
	2.3.1 What is Scalability?
	2.3.2 System Scalability
	2.3.3 Factors Preventing Scalability

	2.4 System Architecture
	2.4.1 Hardware and Software Components
	2.4.2 Configuring the Right System Architecture for Your Requirements

	2.5 Application Design Principles
	2.5.1 Simplicity In Application Design
	2.5.2 Data Modeling
	2.5.3 Table and Index Design
	2.5.4 Using Views
	2.5.5 SQL Execution Efficiency
	2.5.6 Implementing the Application
	2.5.7 Trends in Application Development

	2.6 Workload Testing, Modeling, and Implementation
	2.6.1 Sizing Data
	2.6.2 Estimating Workloads
	2.6.3 Application Modeling
	2.6.4 Testing, Debugging, and Validating a Design

	2.7 Deploying New Applications
	2.7.1 Rollout Strategies
	2.7.2 Performance Checklist

3 Performance Improvement Methods

	3.1 The Oracle Performance Improvement Method
	3.1.1 Steps in The Oracle Performance Improvement Method
	3.1.2 A Sample Decision Process for Performance Conceptual Modeling
	3.1.3 Top Ten Mistakes Found in Oracle Systems

	3.2 Emergency Performance Methods
	3.2.1 Steps in the Emergency Performance Method

Part III Optimizing Instance Performance

4 Configuring a Database for Performance

	4.1 Performance Considerations for Initial Instance Configuration
	4.1.1 Initialization Parameters
	4.1.2 Configuring Undo Space
	4.1.3 Sizing Redo Log Files
	4.1.4 Creating Subsequent Tablespaces

	4.2 Creating and Maintaining Tables for Optimal Performance
	4.2.1 Table Compression
	4.2.2 Reclaiming Unused Space
	4.2.3 Indexing Data

	4.3 Performance Considerations for Shared Servers
	4.3.1 Identifying Contention Using the Dispatcher-Specific Views
	4.3.2 Identifying Contention for Shared Servers

5 Automatic Performance Statistics

	5.1 Overview of Data Gathering
	5.1.1 Database Statistics
	5.1.2 Operating System Statistics
	5.1.3 Interpreting Statistics

	5.2 Overview of the Automatic Workload Repository
	5.2.1 Snapshots
	5.2.2 Baselines
	5.2.3 Adaptive Thresholds
	5.2.4 Space Consumption

	5.3 Managing the Automatic Workload Repository
	5.3.1 Managing Snapshots
	5.3.2 Managing Baselines
	5.3.3 Managing Baseline Templates
	5.3.4 Transporting Automatic Workload Repository Data
	5.3.5 Using Automatic Workload Repository Views
	5.3.6 Generating Automatic Workload Repository Reports
	5.3.7 Generating Automatic Workload Repository Compare Periods Reports
	5.3.8 Generating Active Session History Reports
	5.3.9 Using Active Session History Reports

6 Automatic Performance Diagnostics

	6.1 Overview of the Automatic Database Diagnostic Monitor
	6.1.1 ADDM Analysis
	6.1.2 Using ADDM with Oracle Real Application Clusters
	6.1.3 ADDM Analysis Results
	6.1.4 Reviewing ADDM Analysis Results: Example

	6.2 Setting Up ADDM
	6.3 Diagnosing Database Performance Problems with ADDM
	6.3.1 Running ADDM in Database Mode
	6.3.2 Running ADDM in Instance Mode
	6.3.3 Running ADDM in Partial Mode
	6.3.4 Displaying an ADDM Report

	6.4 Views with ADDM Information

7 Configuring and Using Memory

	7.1 Understanding Memory Allocation Issues
	7.1.1 Oracle Memory Caches
	7.1.2 Automatic Memory Management
	7.1.3 Automatic Shared Memory Management
	7.1.4 Dynamically Changing Cache Sizes
	7.1.5 Application Considerations
	7.1.6 Operating System Memory Use
	7.1.7 Iteration During Configuration

	7.2 Configuring and Using the Buffer Cache
	7.2.1 Using the Buffer Cache Effectively
	7.2.2 Sizing the Buffer Cache
	7.2.3 Interpreting and Using the Buffer Cache Advisory Statistics
	7.2.4 Considering Multiple Buffer Pools
	7.2.5 Buffer Pool Data in V$DB_CACHE_ADVICE
	7.2.6 Buffer Pool Hit Ratios
	7.2.7 Determining Which Segments Have Many Buffers in the Pool
	7.2.8 KEEP Pool
	7.2.9 RECYCLE Pool

	7.3 Configuring and Using the Shared Pool and Large Pool
	7.3.1 Shared Pool Concepts
	7.3.2 Using the Shared Pool Effectively
	7.3.3 Sizing the Shared Pool
	7.3.4 Interpreting Shared Pool Statistics
	7.3.5 Using the Large Pool
	7.3.6 Using CURSOR_SPACE_FOR_TIME
	7.3.7 Caching Session Cursors
	7.3.8 Configuring the Reserved Pool
	7.3.9 Keeping Large Objects to Prevent Aging
	7.3.10 Sharing Cursors for Existing Applications
	7.3.11 Maintaining Connections

	7.4 Configuring and Using the Redo Log Buffer
	7.4.1 Sizing the Log Buffer
	7.4.2 Log Buffer Statistics

	7.5 PGA Memory Management
	7.5.1 Configuring Automatic PGA Memory
	7.5.2 Configuring OLAP_PAGE_POOL_SIZE

	7.6 Managing the Server and Client Result Caches
	7.6.1 Managing the Server Result Cache
	7.6.2 Managing the Client Result Cache
	7.6.3 Specifying Queries for Result Caching
	7.6.4 Requirements for the Result Cache
	7.6.5 Accessing Result Cache Information

8 I/O Configuration and Design

	8.1 About I/O
	8.2 I/O Configuration
	8.2.1 Lay Out the Files Using Operating System or Hardware Striping
	8.2.2 Manually Distributing I/O
	8.2.3 When to Separate Files
	8.2.4 Three Sample Configurations
	8.2.5 Oracle Managed Files
	8.2.6 Choosing Data Block Size

	8.3 I/O Calibration Inside the Database
	8.3.1 Prerequisites for I/O Calibration
	8.3.2 Running I/O Calibration

	8.4 I/O Calibration with the Oracle Orion Calibration Tool
	8.4.1 Introduction to the Oracle Orion Calibration Tool
	8.4.2 Getting Started with Orion
	8.4.3 Orion Input Files
	8.4.4 Orion Parameters
	8.4.5 Orion Output Files
	8.4.6 Orion Troubleshooting

9 Managing Operating System Resources

	9.1 Understanding Operating System Performance Issues
	9.1.1 Using Operating System Caches
	9.1.2 Memory Usage
	9.1.3 Using Operating System Resource Managers

	9.2 Resolving Operating System Issues
	9.2.1 Performance Hints on UNIX-Based Systems
	9.2.2 Performance Hints on Windows Systems
	9.2.3 Performance Hints on HP OpenVMS Systems

	9.3 Understanding CPU
	9.4 Resolving CPU Issues
	9.4.1 Finding and Tuning CPU Utilization
	9.4.2 Managing CPU Resources Using Oracle Database Resource Manager
	9.4.3 Managing CPU Resources Using Instance Caging

10 Instance Tuning Using Performance Views

	10.1 Instance Tuning Steps
	10.1.1 Define the Problem
	10.1.2 Examine the Host System
	10.1.3 Examine the Oracle Database Statistics
	10.1.4 Implement and Measure Change

	10.2 Interpreting Oracle Database Statistics
	10.2.1 Examine Load
	10.2.2 Using Wait Event Statistics to Drill Down to Bottlenecks
	10.2.3 Table of Wait Events and Potential Causes
	10.2.4 Additional Statistics

	10.3 Wait Events Statistics
	10.3.1 buffer busy waits
	10.3.2 db file scattered read
	10.3.3 db file sequential read
	10.3.4 direct path read and direct path read temp
	10.3.5 direct path write and direct path write temp
	10.3.6 enqueue (enq:) waits
	10.3.7 events in wait class other
	10.3.8 free buffer waits
	10.3.9 Idle Wait Events
	10.3.10 latch events
	10.3.11 log file parallel write
	10.3.12 library cache pin
	10.3.13 library cache lock
	10.3.14 log buffer space
	10.3.15 log file switch
	10.3.16 log file sync
	10.3.17 rdbms ipc reply
	10.3.18 SQL*Net Events

	10.4 Real-Time SQL Monitoring
	10.4.1 SQL Plan Monitoring
	10.4.2 Parallel Execution Monitoring
	10.4.3 Generating the SQL Monitor Report
	10.4.4 Enabling and Disabling SQL Monitoring

	10.5 Tuning Instance Recovery Performance: Fast-Start Fault Recovery
	10.5.1 About Instance Recovery
	10.5.2 Configuring the Duration of Cache Recovery: FAST_START_MTTR_TARGET
	10.5.3 Tuning FAST_START_MTTR_TARGET and Using MTTR Advisor

Part IV Optimizing SQL Statements

11 The Query Optimizer

	11.1 Overview of the Query Optimizer
	11.1.1 Optimizer Operations
	11.1.2 Components of the Query Optimizer
	11.1.3 Bind Variable Peeking

	11.2 Overview of Optimizer Access Paths
	11.2.1 Full Table Scans
	11.2.2 Rowid Scans
	11.2.3 Index Scans
	11.2.4 Cluster Access
	11.2.5 Hash Access
	11.2.6 Sample Table Scans
	11.2.7 How the Query Optimizer Chooses an Access Path

	11.3 Overview of Joins
	11.3.1 How the Query Optimizer Executes Join Statements
	11.3.2 How the Query Optimizer Chooses Execution Plans for Joins
	11.3.3 Nested Loop Joins
	11.3.4 Hash Joins
	11.3.5 Sort Merge Joins
	11.3.6 Cartesian Joins
	11.3.7 Outer Joins

	11.4 Reading and Understanding Execution Plans
	11.4.1 Overview of EXPLAIN PLAN
	11.4.2 Steps in the Execution Plan

	11.5 Controlling Optimizer Behavior
	11.5.1 Enabling Query Optimizer Features
	11.5.2 Choosing an Optimizer Goal

12 Using EXPLAIN PLAN

	12.1 Understanding EXPLAIN PLAN
	12.1.1 How Execution Plans Can Change
	12.1.2 Minimizing Throw-Away
	12.1.3 Looking Beyond Execution Plans
	12.1.4 EXPLAIN PLAN Restrictions

	12.2 The PLAN_TABLE Output Table
	12.3 Running EXPLAIN PLAN
	12.3.1 Identifying Statements for EXPLAIN PLAN
	12.3.2 Specifying Different Tables for EXPLAIN PLAN

	12.4 Displaying PLAN_TABLE Output
	12.4.1 Customizing PLAN_TABLE Output

	12.5 Reading EXPLAIN PLAN Output
	12.6 Viewing Parallel Execution with EXPLAIN PLAN
	12.6.1 Viewing Parallel Queries with EXPLAIN PLAN

	12.7 Viewing Bitmap Indexes with EXPLAIN PLAN
	12.8 Viewing Result Cache with EXPLAIN PLAN
	12.9 Viewing Partitioned Objects with EXPLAIN PLAN
	12.9.1 Examples of Displaying Range and Hash Partitioning with EXPLAIN PLAN
	12.9.2 Examples of Pruning Information with Composite Partitioned Objects
	12.9.3 Examples of Partial Partition-Wise Joins
	12.9.4 Examples of Full Partition-wise Joins
	12.9.5 Examples of INLIST ITERATOR and EXPLAIN PLAN
	12.9.6 Example of Domain Indexes and EXPLAIN PLAN

	12.10 PLAN_TABLE Columns

13 Managing Optimizer Statistics

	13.1 Overview of Optimizer Statistics
	13.2 Managing Automatic Optimizer Statistics Collection
	13.2.1 Enabling and Disabling Automatic Optimizer Statistics Collection
	13.2.2 Considerations When Gathering Statistics

	13.3 Gathering Statistics Manually
	13.3.1 Gathering Statistics with DBMS_STATS Procedures
	13.3.2 Setting Preferences for Manual Statistics Gathering
	13.3.3 When to Gather Statistics
	13.3.4 Comparing Statistics with DBMS_STATS Functions

	13.4 System Statistics
	13.4.1 Workload Statistics
	13.4.2 Noworkload Statistics

	13.5 Managing Statistics
	13.5.1 Pending Statistics
	13.5.2 Restoring Previous Versions of Statistics
	13.5.3 Exporting and Importing Statistics
	13.5.4 Restoring Statistics Versus Importing or Exporting Statistics
	13.5.5 Locking Statistics for a Table or Schema
	13.5.6 Setting Statistics
	13.5.7 Handling Missing Statistics

	13.6 Estimating Statistics with Dynamic Sampling
	13.6.1 Purpose of Dynamic Sampling
	13.6.2 Dynamic Sampling Concepts
	13.6.3 Setting Dynamic Sampling Levels

	13.7 Viewing Statistics
	13.7.1 Statistics on Tables, Indexes and Columns
	13.7.2 Viewing Histograms

14 Using Indexes and Clusters

	14.1 Understanding Index Performance
	14.1.1 Tuning the Logical Structure
	14.1.2 Index Tuning using the SQLAccess Advisor
	14.1.3 Choosing Columns and Expressions to Index
	14.1.4 Choosing Composite Indexes
	14.1.5 Writing Statements That Use Indexes
	14.1.6 Writing Statements That Avoid Using Indexes
	14.1.7 Re-creating Indexes
	14.1.8 Compacting Indexes
	14.1.9 Using Nonunique Indexes to Enforce Uniqueness
	14.1.10 Using Enabled Novalidated Constraints

	14.2 Using Function-based Indexes for Performance
	14.3 Using Partitioned Indexes for Performance
	14.4 Using Index-Organized Tables for Performance
	14.5 Using Bitmap Indexes for Performance
	14.6 Using Bitmap Join Indexes for Performance
	14.7 Using Domain Indexes for Performance
	14.8 Using Table Clusters for Performance
	14.9 Using Hash Clusters for Performance

15 Using SQL Plan Management

	15.1 Overview of SQL Plan Baselines
	15.1.1 Purpose of SQL Plan Baselines
	15.1.2 Architecture of SQL Plan Baselines

	15.2 Managing SQL Plan Baselines
	15.2.1 Capturing SQL Plan Baselines
	15.2.2 Selecting SQL Plan Baselines
	15.2.3 Evolving SQL Plan Baselines

	15.3 Using SQL Plan Baselines with SQL Tuning Advisor
	15.4 Using Fixed SQL Plan Baselines
	15.5 Displaying SQL Plan Baselines
	15.6 SQL Management Base
	15.6.1 Disk Space Usage
	15.6.2 Purging Policy
	15.6.3 SQL Management Base Configuration Parameters

	15.7 Importing and Exporting SQL Plan Baselines
	15.8 Migrating Stored Outlines to SQL Plan Baselines
	15.8.1 Overview of Stored Outline Migration
	15.8.2 Preparing for Stored Outline Migration
	15.8.3 Migrating Outlines to Utilize SQL Plan Management Features
	15.8.4 Migrating Outlines to Preserve Stored Outline Behavior
	15.8.5 Performing Follow-Up Tasks After Stored Outline Migration

16 SQL Tuning Overview

	16.1 Introduction to SQL Tuning
	16.2 Goals for Tuning
	16.2.1 Reduce the Workload
	16.2.2 Balance the Workload
	16.2.3 Parallelize the Workload

	16.3 Identifying High-Load SQL
	16.3.1 Identifying Resource-Intensive SQL
	16.3.2 Gathering Data on the SQL Identified

	16.4 Automatic SQL Tuning Features
	16.4.1 ADDM
	16.4.2 SQL Tuning Advisor
	16.4.3 SQL Tuning Sets
	16.4.4 SQL Access Advisor

	16.5 Developing Efficient SQL Statements
	16.5.1 Verifying Optimizer Statistics
	16.5.2 Reviewing the Execution Plan
	16.5.3 Restructuring the SQL Statements
	16.5.4 Controlling the Access Path and Join Order with Hints
	16.5.5 Restructuring the Indexes
	16.5.6 Modifying or Disabling Triggers and Constraints
	16.5.7 Restructuring the Data
	16.5.8 Maintaining Execution Plans Over Time
	16.5.9 Visiting Data as Few Times as Possible

	16.6 Building SQL Test Cases
	16.6.1 Creating a Test Case

17 Automatic SQL Tuning

	17.1 Overview of the Automatic Tuning Optimizer
	17.1.1 Statistics Analysis
	17.1.2 SQL Profiling
	17.1.3 Access Path Analysis
	17.1.4 SQL Structure Analysis
	17.1.5 Alternative Plan Analysis

	17.2 Managing the Automatic SQL Tuning Advisor
	17.2.1 How Automatic SQL Tuning Works
	17.2.2 Enabling and Disabling Automatic SQL Tuning
	17.2.3 Configuring Automatic SQL Tuning
	17.2.4 Viewing Automatic SQL Tuning Reports

	17.3 Tuning Reactively with SQL Tuning Advisor
	17.3.1 Input Sources
	17.3.2 Tuning Options
	17.3.3 Advisor Output
	17.3.4 Running SQL Tuning Advisor

	17.4 Managing SQL Tuning Sets
	17.4.1 Creating a SQL Tuning Set
	17.4.2 Loading a SQL Tuning Set
	17.4.3 Displaying the Contents of a SQL Tuning Set
	17.4.4 Modifying a SQL Tuning Set
	17.4.5 Transporting a SQL Tuning Set
	17.4.6 Dropping a SQL Tuning Set
	17.4.7 Additional Operations on SQL Tuning Sets

	17.5 Managing SQL Profiles
	17.5.1 Overview of SQL Profiles
	17.5.2 Accepting a SQL Profile
	17.5.3 Altering a SQL Profile
	17.5.4 Dropping a SQL Profile
	17.5.5 Transporting a SQL Profile

	17.6 SQL Tuning Views

18 SQL Access Advisor

	18.1 Overview of SQL Access Advisor
	18.1.1 Overview of Using SQL Access Advisor

	18.2 Using SQL Access Advisor
	18.2.1 Steps for Using SQL Access Advisor
	18.2.2 Privileges Needed to Use SQL Access Advisor
	18.2.3 Setting Up Tasks and Templates
	18.2.4 SQL Access Advisor Workloads
	18.2.5 Working with Recommendations
	18.2.6 Performing a Quick Tune
	18.2.7 Managing Tasks
	18.2.8 Using SQL Access Advisor Constants
	18.2.9 Examples of Using SQL Access Advisor

	18.3 Tuning Materialized Views for Fast Refresh and Query Rewrite
	18.3.1 DBMS_ADVISOR.TUNE_MVIEW Procedure

19 Using Optimizer Hints

	19.1 Overview of Optimizer Hints
	19.1.1 Types of Hints
	19.1.2 Hints by Category

	19.2 Specifying Hints
	19.2.1 Specifying a Full Set of Hints
	19.2.2 Specifying a Query Block in a Hint
	19.2.3 Specifying Global Table Hints
	19.2.4 Specifying Complex Index Hints

	19.3 Using Hints with Views
	19.3.1 Hints and Complex Views
	19.3.2 Hints and Mergeable Views
	19.3.3 Hints and Nonmergeable Views

20 Using Plan Stability

	20.1 Using Plan Stability to Preserve Execution Plans
	20.1.1 Using Hints with Plan Stability
	20.1.2 Storing Outlines
	20.1.3 Enabling Plan Stability
	20.1.4 Using Supplied Packages to Manage Stored Outlines
	20.1.5 Creating Outlines
	20.1.6 Using Stored Outlines
	20.1.7 Viewing Outline Data
	20.1.8 Moving Outline Tables

	20.2 Using Plan Stability with Query Optimizer Upgrades
	20.2.1 Moving from RBO to the Query Optimizer
	20.2.2 Moving to a New Oracle Release under the Query Optimizer

21 Using Application Tracing Tools

	21.1 End to End Application Tracing
	21.1.1 Enabling and Disabling Statistic Gathering for End to End Tracing
	21.1.2 Viewing Gathered Statistics for End to End Application Tracing
	21.1.3 Enabling and Disabling for End-to-End Tracing
	21.1.4 Viewing Enabled Traces for End to End Tracing

	21.2 Using the trcsess Utility
	21.2.1 Syntax for trcsess
	21.2.2 Sample Output of trcsess

	21.3 Understanding SQL Trace and TKPROF
	21.3.1 Understanding the SQL Trace Facility
	21.3.2 Understanding TKPROF

	21.4 Using the SQL Trace Facility and TKPROF
	21.4.1 Step 1: Setting Initialization Parameters for Trace File Management
	21.4.2 Step 2: Enabling the SQL Trace Facility
	21.4.3 Step 3: Formatting Trace Files with TKPROF
	21.4.4 Step 4: Interpreting TKPROF Output
	21.4.5 Step 5: Storing SQL Trace Facility Statistics

	21.5 Avoiding Pitfalls in TKPROF Interpretation
	21.5.1 Avoiding the Argument Trap
	21.5.2 Avoiding the Read Consistency Trap
	21.5.3 Avoiding the Schema Trap
	21.5.4 Avoiding the Time Trap

	21.6 Sample TKPROF Output
	21.6.1 Sample TKPROF Header
	21.6.2 Sample TKPROF Body
	21.6.3 Sample TKPROF Summary

Glossary

Index

This flowchart diagram shows the SQL Tuning Advisor APIs.

The following SQL Tuning Advisor API procedures are shown: CREATE_TUNING_TASK, EXECUTE_TUNING_TASK, and REPORT_TUNING_TASK.

Starting from the top of the diagram, STS leads to the CREATE_TUNING_TASK procedure, which leads to EXECUTE_TUNING_TASK. The REPORT_TUNING_TASK procedure is shown to only take place after execute and leads to four types of recommendations that user may choose to implement: store, SQL Profile, access, and rewrite.

End of image description.

This figure illustrates how materialized views work with the SQL Access Advisor:

	
First, data is in a warehouse. The warehouse includes materialized views and workloads.

	
From the warehouse, data goes to the trace log and the SQL cache.

	
From the trace log, to Oracle Trace Manager, then to the SQL Access Advisor.

	
From the SQL cache, to the SQL Access Advisor.

	
In addition, workload collection can go to the SQL Access Advisor.

	
Also, a third-party tool can go to the SQL Access Advisor.

This diagram shows a line graph of the Internet Workload Growth Curve, with Time along the horizontal axis and Required Workload along the vertical axis.

As time passes, the required workload grows at an increasing rate and the line in the graph rises rapidly.

End of image description.

This illustration depicts data from a buffer being read into the SGA Buffer Cache and the Process PGA.

The data being read into the SGA Buffer Cache is acquired either by a db sequential read or a db scattered read.

The data being read into the Process PGA is acquired by a direct path read.

End of image description.

This illustration shows a graph that has Time along the horizontal axis and Functional Demand along the vertical axis. The graph start at 8:00 and a functional demand of zero.

By 10:00, the functional demand is at the peak workload; by 12:00, the functional demand has dropped a little above the average workload. A little before 14:00, the functional demand is at the peak workload again; by 16:00, the functional demand has dropped back to zero.

End of image description.

This flowchart diagram shows the SQL Profile APIs.

The following SQL Profile API procedures are shown: ACCEPT_SQL_PROFILE, ALTER_SQL_PROFILE, and DROP_SQL_PROFILE. The ACCEPT_SQL_PROFILE procedure leads to a SQL Profile. The other procedures lead out of the SQL Profile.

End of image description.

This graphic shows a vertical flow chart as a stack of boxes. Each box points to a box beneath it.

At the top of the chart is a box that says: outline1 ... outlinen.

The next box says: Copy information from outlines.

The next box says: Reparse hints to generate plans.

The next box says: baseline1 ... baselinen.

The next box says: Obtain missing information such as bind data.

The first box is labeled: User specifies outlines.

The next three boxes are labeled: Database creates baselines.

The last box is labeled: Database updates baselines at first statement execution.

The illustration shows a line representation of V$PGA_TARGET_ADVICE. The content of the graph shows the cache hit percentage as related to the value of the PGA_AGGREGATE_TARGET parameter.

The current setting and optimal value are displayed on the graph. At the optimal setting, the cache hit percentage is nearly 85%, approximately 35% higher than the current setting.

End of image description.

/*+ index | ([table_1.]column_a [[table_2.]column_b]... */

This figure illustrates the following steps:

	
Step 1: Create and Manage Tasks and Data

This step uses a SQL Workload Object and SQL Access Task

	
Step 2: Prepare Tasks for Various Operations

This step uses Workload and Access parameters

	
Step 3: Gather and Manage Workload

This step uses a SQL Workload Object

	
Step 4: Prepare and Analyze Data

This step uses SQL Workload Objects and SQL Access Tasks

This illustration shows a circular process in which the redo log buffer is being filled by DML users while the LGWR is writing a portion of the buffer to disk.

End of image description.

This illustration shows a histogram with values 1 and 100 at the endpoints. The values 5, 5, 5, 5, 10, 10, 20, 35, and 60 are marked and are evenly spaced between the endpoints.

End of image description.

Shows the sample I/O load levels.

This illustration shows a graph that has Buffers along the horizontal axis and Physical I/O Ratio along the vertical axis. The values of the physical I/O ratio shown are between approximately 0.1 and 0.5.

The graph of the intuitive values is a smooth curve showing that as the number of buffers increases, the physical I/O ratio decreases.

The graph of the actual values shows that at some values (points A, B, and C in the illustration), the physical I/O ratio stays about the same as the number of buffers increases, then decreases quickly at a higher number of buffers.

End of image description.

This graphic shows a box labeled SQL Plan History. Three plans are in the SQL plan baseline and three plans in the SQL plan history but not the baseline. The plans in the baseline have check marks. The plans in the history have question marks.

/*+ [view_1.[view_2.]...] table */

This flowchart diagram shows the SQL Tuning Sets APIs.

The following SQL Tuning Set API procedures are shown: CREATE_SQLSET, DROP_SQLSET, LOAD_SQLSET, UNPACK_STQTAB_SQLSET, and PACK_STQTAB_SQLSET. All procedures either lead into or from the SQL Tuning Set (STS).

Three input sources are shown leading into the LOAD_SQLSET procedure: cursor cache, AWR, and another STS.

End of image description.

On the left of the graphic are two SELECT statements.

The top SELECT points to outline emp1 in category OLTP. This statement also points to outline emp2 in category DW.

The bottom SELECT points to outline dept2 in category DW.

emp1 points to baseline emp1. This baseline is in module OLTP.

emp2 points to baseline emp2. dept points to baseline dept. Both of these baselines are in module DW.

All modules are in category DEFAULT.

This flowchart diagram shows the steps performed by Oracle Database during the automatic SQL tuning process.

Starting from the top of the diagram, AWR leads to:

	
Identify SQL tuning candidates

	
Generate recommendations

	
Test SQL profiles

	
Implement SQL profiles

These four steps are wrapped inside a dotted area which points to the automatic SQL tuning reports on the right side of the diagram.

End of image description.

This illustration depicts the archiver reading two log groups: one with log files 1a and 3a, and the other with log files 1b and 3b. The archiver is also writing to the archive destination.

The LGWR is writing to two log groups: one with log files 2a and 4a, and the other with log files 2b and 4b.

End of image description.

I/O throughput at different small I/O load levels.

The graphic shows a SELECT statement pointing to a SQL profile. The profile, along with an icon representing the environment, points to the optimizer. The optimizer icon points to a plan in the SQL plan baseline.

This graphic shows a client process with two sessions. Each session submits the same SQL statement: SELECT department_id FROM departments. Each session retrieves the result set from the Client Result Cache. The Result Set contains the values 10,20,30,40, and so on. A vertical dotted line divides this part of the diagram, labeled Client, from the part labeled Server. A database icon is shown interacting with the cache, with the label "Keeps Consistent."

This illustration depicts a parsed query (from the parser) entering the Query Transformer.

The transformed query is then sent to the Estimator. Statistics are retrieved from the Dictionary, then the query and estimates are sent to the Plan Generator.

The plan generator either returns the plan to the estimator or sends the query plan to the row source generator.

End of image description.

The illustration shows a histogram with values 1 and 100 at the endpoints. The values 10, 20, 30, 40, 50, 60, 70, 80, and 90 are marked and evenly spaced between the endpoints.

End of image description.

This illustration shows a table hierarchy with three tables—Customer, Account, and Transaction—in order of smallest to largest.

End of image description.

I/O latency at small I/O load levels.

15 Using SQL Plan Management

This chapter describes how to manage SQL execution plans using SQL plan management. SQL plan management prevents performance regressions resulting from sudden changes to the execution plan of a SQL statement by providing components for capturing, selecting, and evolving SQL plan information.

This chapter contains the following topics:

	
Overview of SQL Plan Baselines

	
Managing SQL Plan Baselines

	
Using SQL Plan Baselines with SQL Tuning Advisor

	
Using Fixed SQL Plan Baselines

	
Displaying SQL Plan Baselines

	
SQL Management Base

	
Importing and Exporting SQL Plan Baselines

	
Migrating Stored Outlines to SQL Plan Baselines

15.1 Overview of SQL Plan Baselines

SQL plan management is a preventative mechanism that records and evaluates the execution plans of SQL statements over time. This mechanism can build a SQL plan baseline, which is a set of accepted plans for a SQL statement. The accepted plans have been proven to perform well.

15.1.1 Purpose of SQL Plan Baselines

The goal of SQL plan baselines is to preserve the performance of corresponding SQL statements, regardless of changes in the database. Examples of changes include:

	
New optimizer version

	
Changes to optimizer statistics and optimizer parameters

	
Changes to schema and metadata definitions

	
Changes to system settings

	
SQL profile creation

SQL plan baselines cannot help in cases where an event has caused irreversible execution plan changes, such as dropping an index.

The SQL tuning features of Oracle Database generate SQL profiles that help the optimizer to produce well-tuned plans. However, this mechanism is reactive and cannot guarantee stable performance when drastic database changes occur. SQL tuning can only resolve performance issues after they have occurred and are identified. For example, a SQL statement may become high-load because of a plan change, but SQL tuning cannot solve this problem until after the plan change occurs.

Common scenarios where SQL plan management can improve or preserve SQL performance include:

	
A database upgrade that installs a new optimizer version usually results in plan changes for a small percentage of SQL statements. Most of these plan changes result in either no performance change or improvement. However, some plan changes may cause performance regressions. SQL plan baselines significantly minimize potential regressions resulting from an upgrade.

	
Ongoing system and data changes can impact plans for some SQL statements, potentially causing performance regressions. SQL plan baselines help minimize performance regressions and stabilize SQL performance.

	
Deployment of new application modules means introducing new SQL statements into the database. The application software may use appropriate SQL execution plans developed in a standard test configuration for the new statements. If the system configuration is significantly different from the test configuration, then the database can evolve SQL plan baselines over time to produce better performance.

15.1.2 Architecture of SQL Plan Baselines

A SQL plan baseline contains one or more accepted plans, each of which contains the following information:

	
Set of hints

	
Plan hash value

	
Plan-related information

The plan history is the set of plans, both accepted and not accepted, that the optimizer generates for a SQL statement over time. Because only accepted plans are in the SQL plan baseline, the plans in the baseline form a susbset of the plan history. For example, after the optimizer generates the first acceptable plan for a SQL plan baseline, subsequent plans are part of the plan history but not part of the plan baseline.

The process of adding plans to a SQL plan baseline is plan evolution. To be eligible to be evolved, a plan must be enabled for use by the optimizer.

Figure 15-1 shows a single SELECT statement that has two accepted plans in its SQL plan baseline. The SQL plan history includes two other plans for the statement that have not been proven to perform well.

Figure 15-1 SQL Plan Baseline and SQL Plan History

[image: Description of Figure 15-1 follows]

The SQL management base (SMB), which is part of the data dictionary, stores the SQL plan baselines and plan history in the SYSAUX tablespace. The SMB also contains SQL profiles. The SMB uses automatic space management.

15.2 Managing SQL Plan Baselines

Managing SQL plan baselines involves the following phases:

	
Capturing SQL Plan Baselines

	
Selecting SQL Plan Baselines

	
Evolving SQL Plan Baselines

15.2.1 Capturing SQL Plan Baselines

During the SQL plan baseline capture phase, the database detects plan changes and records the new plan so that it can be evolved (verified) by the database administrator. To this end, the database maintains a plan history for individual SQL statements. Because ad hoc SQL statements do not repeat and thus do not suffer performance degradation, the database maintains plan history only for repeatable SQL statements.

To recognize repeatable SQL statements, the database maintains a statement log that contains the SQL ID of various SQL statements that the optimizer has evaluated. The database recognizes a SQL statement as repeatable when it is parsed or executed again after it has been logged.

For each repeatable SQL statement, the database maintains a plan history that contains all plans generated by the optimizer. The set of all accepted plans in the plan history is the SQL plan baseline.

You can configure the SQL Plan Baseline Capture phase for automatic capture of plan history and SQL plan baselines for repeatable SQL statements. Alternatively, you can manually load plans as SQL plan baselines.

This section contains the following topics:

	
Capturing Plans Automatically

	
Creating Baselines from Existing Plans

15.2.1.1 Capturing Plans Automatically

When automatic plan capture is enabled, the database automatically creates and maintains the plan history for SQL statements using information provided by the optimizer. The plan history includes relevant information used by the optimizer to reproduce an execution plan, such as the SQL text, outline, bind variables, and compilation environment.

The optimizer marks the initial plan generated for a SQL statement as accepted for use, and represents both the plan history and SQL plan baseline. The plan history includes all subsequent plans. During the SQL plan baseline evolution phase, the database adds plans to the baseline that have been verified not to cause performance regressions.

To enable automatic plan capture, set the OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES initialization parameter to TRUE. By default, this parameter is FALSE.

15.2.1.2 Creating Baselines from Existing Plans

You can create SQL plan baselines by manually loading existing plans for a set of SQL statements as plan baselines. The database does not verify manually loaded plans for performance, but adds them as accepted plans to existing or new SQL plan baselines. You can use manual plan loading with or as an alternative to automatic plan capture.

You can perform manual plan loading by:

	
Loading Plans from SQL Tuning Sets and AWR Snapshots

	
Loading Plans from the Shared SQL Area

	
See Also:

"SQL Management Base"

15.2.1.2.1 Loading Plans from SQL Tuning Sets and AWR Snapshots

To load plans from a SQL tuning set, use the LOAD_PLANS_FROM_SQLSET function of the DBMS_SPM package. The following example loads the plans stored in the SQL tuning set named tset1:

DECLARE
 my_plans PLS_INTEGER;
BEGIN
 my_plans := DBMS_SPM.LOAD_PLANS_FROM_SQLSET(sqlset_name => 'tset1');
END;
/

To load plans from Automatic Workload Repository (AWR), load the plans stored in AWR snapshots into a SQL tuning set before using the LOAD_PLANS_FROM_SQLSET function as described in this section.

	
See Also:

	
"Overview of the Automatic Workload Repository"

	
"Managing SQL Tuning Sets"

	
Oracle Database PL/SQL Packages and Types Reference to learn about additional parameters used by the LOAD_PLANS_FROM_SQLSET function

15.2.1.2.2 Loading Plans from the Shared SQL Area

To load plans from the shared SQL area, use the LOAD_PLANS_FROM_CURSOR_CACHE function of the DBMS_SPM package. In the following example, Oracle Database loads the plans located in the shared SQL area for the SQL statement identified by its sql_id:

DECLARE
 my_plans PLS_INTEGER;
BEGIN
 my_plans := DBMS_SPM.LOAD_PLANS_FROM_CURSOR_CACHE(sql_id => '99twu5t2dn5xd');
END;
/

You can identify plans in the shared SQL area by:

	
SQL identifier (SQL_ID)

	
SQL text (SQL_TEXT)

	
One of the following attributes:

	
PARSING_SCHEMA_NAME

	
MODULE

	
ACTION

	
See Also:

Oracle Database PL/SQL Packages and Types Reference to learn how to use the LOAD_PLANS_FROM_CURSOR_CACHE function

15.2.2 Selecting SQL Plan Baselines

During the SQL plan baseline selection phase, Oracle Database detects plan changes based on the stored plan history, and selects plans to avoid potential performance regressions for a set of SQL statements.

Each time the database compiles a SQL statement, the optimizer does the following:

	
Uses a cost-based search method to build a best-cost plan

	
Tries to find a matching plan in the SQL plan baseline

	
Does either of the following depending on whether a match is found:

	
If found, then the optimizer proceeds using the matched plan

	
If not found, then the optimizer evaluates the cost of each accepted plan in the SQL plan baseline and selects the plan with the lowest cost

The best-cost plan found by the optimizer that does not match any plans in the plan history for the SQL statement represents a new plan. The database adds this plan as a nonaccepted plan to the plan history. The database does not use the new plan until it is verified to not cause a performance regression. However, if a change in the system (such as a dropped index) causes all accepted plans to become non-reproducible, then the optimizer selects the best-cost plan. Thus, the presence of a SQL plan baseline causes the optimizer to use conservative plan selection strategy for the SQL statement.

To enable the use of SQL plan baselines, set the OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter to TRUE (default).

15.2.3 Evolving SQL Plan Baselines

During the SQL plan baseline evolution phase, the database evaluates the performance of new plans and integrates plans with better performance into SQL plan baselines.

When the optimizer finds a new plan for a SQL statement, the database adds the plan to the plan history as a nonaccepted plan. The database can verify the plan for performance relative to the SQL plan baseline performance. A successful verification of a nonaccepted plan consists of comparing its performance to that of a plan selected from the SQL plan baseline and ensuring that it delivers better performance. When the database verifies that a nonaccepted plan will not cause a performance regression, the database changes it to an accepted plan and integrates it into the baseline.

This section describes how to evolve SQL plan baselines and contains the following topics:

	
Evolving Plans with Manual Plan Loading

	
Evolving Plans with DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE

15.2.3.1 Evolving Plans with Manual Plan Loading

You can evolve an existing SQL plan baseline by manually loading plans from the shared SQL area or from a SQL tuning set. When you manually load plans into a SQL plan baseline, the database adds these loaded plans as accepted plans.

	
See Also:

"Creating Baselines from Existing Plans"

15.2.3.2 Evolving Plans with DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE

The PL/SQL function DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE tries to evolve new plans that have been added by the optimizer to the plan history of existing plan baselines. If the function can verify that the new plan performs better than a plan chosen from the corresponding SQL plan baseline, then the database adds the new plan as an accepted plan.

The following example of the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function evolves a new plan for a SQL statement identified by its SQL handle, which is its unique SQL identifier in string form. You can find the SQL handle by querying DBA_SQL_PLAN_BASELINES.SQL_HANDLE.

SET SERVEROUTPUT ON
SET LONG 10000
DECLARE
 report clob;
BEGIN
 report := DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE(
 sql_handle => 'SYS_SQL_593bc74fca8e6738');
 DBMS_OUTPUT.PUT_LINE(report);
END;
/

The following output shows that Oracle Database successfully evolved a plan:

REPORT
--

--
 Evolve SQL Plan Baseline Report
--

Inputs:

 SQL_HANDLE = SYS_SQL_593bc74fca8e6738
 PLAN_NAME =
 TIME_LIMIT = DBMS_SPM.AUTO_LIMIT
 VERIFY = YES
 COMMIT = YES

Plan: SYS_SQL_PLAN_ca8e6738a57b5fc2

 Plan was verified: Time used .07 seconds.
 Passed performance criterion: Compound improvement ratio >= 7.32.
 Plan was changed to an accepted plan.

 Baseline Plan Test Plan Improv. Ratio
 ------------- --------- -------------
 Execution Status: COMPLETE COMPLETE
 Rows Processed: 40 40
 Elapsed Time(ms): 23 8 2.88
 CPU Time(ms): 23 8 2.88
 Buffer Gets: 450 61 7.38
 Disk Reads: 0 0
 Direct Writes: 0 0
 Fetches: 0 0
 Executions: 1 1

 Report Summary

Number of SQL plan baselines verified: 1.
Number of SQL plan baselines evolved: 1.

Alternatively, you can use the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function to specify:

	
The name of a particular plan to evolve

	
A list of plans to evolve

	
No value

By specifying no value, you enable Oracle Database to evolve all nonaccepted plans currently in the SMB.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about using the DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE function

15.3 Using SQL Plan Baselines with SQL Tuning Advisor

When tuning SQL statements with SQL Tuning Advisor, if the advisor finds a tuned plan and verifies its performance to be better than a plan chosen from the corresponding SQL plan baseline, then it makes a recommendation to accept a SQL profile. When the SQL profile is accepted, the database adds the tuned plan to the corresponding SQL plan baseline. However, SQL Tuning Advisor does not verify existing unaccepted plans in the plan history.

In Oracle Database 11g, an automatically configured task runs SQL Tuning Advisor during a maintenance window. This task targets high-load SQL statements as identified by the execution performance data collected in the Automatic Workload Repository (AWR) snapshots. The automatic SQL tuning task implements the SQL profile recommendations made by SQL Tuning Advisor. Thus, the database automatically adds tuned plans to the SQL plan baselines of the identified high-load SQL statements.

	
See Also:

	
"Tuning Reactively with SQL Tuning Advisor"

	
"Managing SQL Profiles"

	
"Overview of the Automatic Workload Repository"

15.4 Using Fixed SQL Plan Baselines

A SQL plan baseline is fixed when it contains at least one enabled plan whose FIXED attribute is set to YES. You can use fixed SQL plan baselines to fix the set of possible plans (usually one plan) for a SQL statement, or migrate an existing stored outline by loading the "outlined" plan as a fixed plan.

If a fixed SQL plan baseline also contains non-fixed plans, then the optimizer gives preference to fixed plans over non-fixed ones. Thus, the optimizer picks the fixed plan with the least cost even though a non-fixed plan may have an even lower cost. If none of the fixed plans is reproducible, then the optimizer picks the best non-fixed plan.

The optimizer does not add new plans to a fixed SQL plan baseline. Because the optimizer does not automatically add new plans, the database does not evolve a fixed SQL plan baseline when you execute DBMS_SPM.EVOLVE_SQL_PLAN_BASELINE. However, you can evolve a fixed SQL plan baseline by manually loading new plans into it from the shared SQL area or a SQL tuning set.

When you tune a SQL statement with a fixed SQL plan baseline using SQL Tuning Advisor, a SQL profile recommendation has special meaning. When the SQL profile is accepted, the database adds the tuned plan to the fixed SQL plan baseline as a non-fixed plan. However, as described above, the optimizer does not use the tuned plan when a reproducible fixed plan is present. Therefore, the benefit of SQL tuning may not be realized. To enable the use of the tuned plan, manually alter the tuned plan to a fixed plan by setting its FIXED attribute to YES.

15.5 Displaying SQL Plan Baselines

To view the plans stored in the SQL plan baseline for a given statement, use the DISPLAY_SQL_PLAN_BASELINE function of the DBMS_XPLAN package. The following example displays one or more execution plans for the specified SQL statement, specified by the handle (sql_handle):

SELECT * FROM TABLE(
 DBMS_XPLAN.DISPLAY_SQL_PLAN_BASELINE(
 sql_handle=>'SYS_SQL_209d10fabbedc741',
 format=>'basic'));

Alternatively, you can display a single plan by supplying a plan name (plan_name).

This function uses plan information stored in the SQL management base to explain and display the plans. In this example, the DISPLAY_SQL_PLAN_BASELINE function displays the execution plans for the SQL statement specified by the handle SYS_SQL_209d10fabbedc741:

SQL handle: SYS_SQL_209d10fabbedc741
SQL text: select cust_last_name, amount_sold from customers c,
 sales s where c.cust_id=s.cust_id and cust_year_of_birth=:yob
--
--
Plan name: SYS_SQL_PLAN_bbedc741a57b5fc2
Enabled: YES Fixed: NO Accepted: NO Origin: AUTO-CAPTURE
--
Plan hash value: 2776326082

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	HASH JOIN	
2	TABLE ACCESS BY INDEX ROWID	CUSTOMERS
3	BITMAP CONVERSION TO ROWIDS	
4	BITMAP INDEX SINGLE VALUE	CUSTOMERS_YOB_BIX
5	PARTITION RANGE ALL	
6	TABLE ACCESS FULL	SALES
--

--
Plan name: SYS_SQL_PLAN_bbedc741f554c408
Enabled: YES Fixed: NO Accepted: YES Origin: MANUAL-LOAD
--
Plan hash value: 4115973128

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	NESTED LOOPS	
2	NESTED LOOPS	
3	TABLE ACCESS BY INDEX ROWID	CUSTOMERS
4	BITMAP CONVERSION TO ROWIDS	
5	BITMAP INDEX SINGLE VALUE	CUSTOMERS_YOB_BIX
6	PARTITION RANGE	
7	BITMAP CONVERSION TO ROWIDS	
8	BITMAP INDEX SINGLE VALUE	SALES_CUST_BIX
9	TABLE ACCESS BY LOCAL INDEX ROWID	SALES
--

You can also display SQL plan baseline information using a SELECT statement directly on the DBA_SQL_PLAN_BASELINES view, as shown in the following example:

SELECT SQL_HANDLE, PLAN_NAME, ENABLED, ACCEPTED, FIXED
FROM DBA_SQL_PLAN_BASELINES;

SQL_HANDLE PLAN_NAME ENA ACC FIX
--
SYS_SQL_209d10fabbedc741 SYS_SQL_PLAN_bbedc741a57b5fc2 YES NO NO
SYS_SQL_209d10fabbedc741 SYS_SQL_PLAN_bbedc741f554c408 YES YES NO

	
See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about additional parameters used by the DISPLAY_SQL_PLAN_BASELINE function

15.6 SQL Management Base

The SQL management base (SMB) is a part of the data dictionary that resides in the SYSAUX tablespace. It stores statement logs, plan histories, SQL plan baselines, and SQL profiles. To allow weekly purging of unused plans and logs, the SMB uses automatic space management.

You can also add plans manually to the SMB for a set of SQL statements. This feature is especially useful when upgrading the database from a version before Oracle Database 11g because it helps to minimize plan regressions resulting from the use of a new optimizer version.

Because the SMB is located entirely within SYSAUX, the database does not use SQL plan management and SQL tuning features when this tablespace is unavailable.

15.6.1 Disk Space Usage

Disk space used by the SMB is regularly checked against a limit based on the size of the SYSAUX tablespace. By default, the limit for the SMB is no more than 10% of the size of SYSAUX. The allowable range for this limit is between 1% and 50%.

A weekly background process measures the total space occupied by the SMB. When the defined limit is exceeded, the process writes a warning to the alert log. The database generates alerts weekly until one of the following conditions is met:

	
The SMB space limit is increased

	
The size of the SYSAUX tablespace is increased

	
The disk space used by the SMB is decreased by purging SQL management objects (SQL plan baselines or SQL profiles)

To change the percentage limit, use the CONFIGURE procedure of the DBMS_SPM package. The following example changes the space limit to 30%:

BEGIN
 DBMS_SPM.CONFIGURE('space_budget_percent',30);
END;
/

	
See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about additional parameters used by the CONFIGURE procedure

15.6.2 Purging Policy

A weekly scheduled purging task manages the disk space used by SQL plan management. The task runs as an automated task in the maintenance window.

The database purges plans not used for more than 53 weeks, as identified by the LAST_EXECUTED timestamp stored in the SMB for that plan. The 53-week period ensures plan information is available during any yearly SQL processing. The unused plan retention period can range between 5 and 523 weeks (a little more than 10 years).

To configure the retention period, use the CONFIGURE procedure of the DBMS_SPM PL/SQL package. The following example changes the retention period to 105 weeks:

BEGIN
 DBMS_SPM.CONFIGURE('plan_retention_weeks',105);
END;
/

	
See Also:

Oracle Database PL/SQL Packages and Types Reference to learn about additional parameters used by the CONFIGURE procedure

15.6.3 SQL Management Base Configuration Parameters

You can access the current configuration settings for the SQL management base using the DBA_SQL_MANAGEMENT_CONFIG view. The following query shows this information:

SELECT PARAMETER_NAME, PARAMETER_VALUE
FROM DBA_SQL_MANAGEMENT_CONFIG;

PARAMETER_NAME PARAMETER_VALUE
------------------------------ ---------------
SPACE_BUDGET_PERCENT 30
PLAN_RETENTION_WEEKS 105

15.7 Importing and Exporting SQL Plan Baselines

Oracle Database supports the export and import of SQL plan baselines using the Oracle Data Pump Import and Export utilities. Use the DBMS_SPM package to define a staging table, which you can use to pack and unpack SQL plan baselines.

To import a set of SQL plan baselines from one system to another:

	
On the original database, create a staging table using the CREATE_STGTAB_BASELINE procedure.

The following example creates a staging table named stage1:

BEGIN
 DBMS_SPM.CREATE_STGTAB_BASELINE(
 table_name => 'stage1');
END;
/

	
Pack the SQL plan baselines you want to export from the SQL management base into the staging table using the PACK_STGTAB_BASELINE function.

The following example packs enabled plan baselines created by user dba1 into staging table stage1. You can select SQL plan baselines using the plan name (plan_name), SQL handle (sql_handle), or any other plan criteria. The table_name parameter is mandatory.

DECLARE
 my_plans number;
BEGIN
 my_plans := DBMS_SPM.PACK_STGTAB_BASELINE(
 table_name => 'stage1',
 enabled => 'yes',
 creator => 'dba1');
END;
/

	
Export the staging table stage1 into a flat file using the Oracle Data Pump Export utility.

	
Transfer the flat file to the target system.

	
Import the staging table stage1 from the flat file using the Oracle Data Pump Import utility.

	
Unpack the SQL plan baselines from the staging table into the SQL management base on the target system using the UNPACK_STGTAB_BASELINE function.

The following example unpacks all fixed plan baselines stored in the staging table stage1:

DECLARE
 my_plans number;
BEGIN
 my_plans := DBMS_SPM.UNPACK_STGTAB_BASELINE(
 table_name => 'stage1',
 fixed => 'yes');
END;
/

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about using the DBMS_SPM package

	
Oracle Database Utilities for detailed information about using the Data Pump Export and Import utilities

15.8 Migrating Stored Outlines to SQL Plan Baselines

This section explains the concepts and tasks relating to stored outline migration. This section contains the following topics:

	
Overview of Stored Outline Migration

	
Preparing for Stored Outline Migration

	
Migrating Outlines to Utilize SQL Plan Management Features

	
Migrating Outlines to Preserve Stored Outline Behavior

	
Performing Follow-Up Tasks After Stored Outline Migration

15.8.1 Overview of Stored Outline Migration

A stored outline is a set of hints for a SQL statement. The hints direct the optimizer to choose a specific plan for the statement. A stored outline is a legacy technique for providing plan stability.

Stored outline migration is the user-initiated process of converting stored outlines to SQL plan baselines. A SQL plan baseline is a set of plans proven to provide good performance.

This section contains the following topics:

	
Purpose of Stored Outline Migration

	
How Stored Outline Migration Works

	
User Interface for Stored Outline Migration

	
Basic Steps in Stored Outline Migration

15.8.1.1 Purpose of Stored Outline Migration

This section assumes that you rely on stored outlines to maintain plan stability and prevent performance regressions. The goal of this section is to provide a convenient method to safely migrate from stored outlines to SQL plan baselines. After the migration, you can maintain the same plan stability that you had using stored outlines while being able to utilize the more advanced features provided by the SQL Plan Management framework.

Specifically, the section explains how to address the following problems:

	
Stored outlines cannot automatically evolve over time. Consequently, a stored outline may be good when you create it, but become a bad plan after a database change, leading to performance degradation.

	
Hints in a stored outline can become invalid, for example, an index hint on a dropped index. In such cases, the database still uses the outlines but excludes the invalid hints, producing a plan that is often worse than the original plan or the current best-cost plan generated by the optimizer.

	
For a SQL statement, the optimizer can only choose the plan defined in the stored outline in the currently specified category. The optimizer cannot choose from other stored outlines in different categories or the current cost-based plan even if they improve performance.

	
Stored outlines are a reactive tuning technique, which means that you only use a stored outline to address a performance problem after it has occurred. For example, you may implement a stored outline to correct the plan of a SQL statement that became high-load. In this case, you used stored outlines instead of proactively tuning the statement before it became high-load.

The stored outline migration PL/SQL API helps solve the preceding problems in the following ways:

	
SQL plan baselines enable the optimizer to use the same good plan and allow this plan to evolve over time.

For a specified SQL statement, you can add new plans as SQL plan baselines after they are verified not to cause performance regressions.

	
SQL plan baselines prevent plans from going bad because of invalid hints.

If hints stored in a plan baseline become invalid, then the plan may not be reproducible by the optimizer. In this case, the optimizer selects an alternative reproducible plan baseline or the current best-cost plan generated by optimizer.

	
For a specific SQL statement, the database can maintain multiple plan baselines.

The optimizer can choose from a set of good plans for a specific SQL statement instead of being restricted to a single plan per category, as required by stored outlines.

15.8.1.2 How Stored Outline Migration Works

This section explains how the database migrates stored outlines to SQL plan baselines. This information is important for performing the task of migrating stored outlines.

15.8.1.2.1 Stages of Stored Outline Migration

The following graphic shows the main stages in stored outline migration:

[image: Description of pfgrf231.gif follows]

The migration process has the following stages:

	
The user invokes a function that specifies which outlines should be migrated.

	
The database processes the outlines as follows:

	
The database copies information in the outline needed by the plan baseline.

The database copies it directly or calculates it based on information in the outline. For example, the text of the SQL statement exists in both schemas, so the database can copy the text from outline to baseline.

	
The database reparses the hints to obtain information not in the outline.

The plan hash value and plan cost cannot be derived from the existing information in the outline, which necessitates reparsing the hints.

	
The database creates the baselines.

	
The database obtains missing information when it chooses the SQL plan baseline for the first time to execute the same SQL statement.

The compilation environment and execution statistics are only available during execution when the plan baseline is parsed and compiled.

The migration is complete only after the preceding phases complete.

15.8.1.2.2 Outline Categories and Baseline Modules

An outline is a set of hints, whereas a SQL plan baseline is a set of plans. Because they are different technologies, some functionality of outlines does not map exactly to functionality of baselines. For example, a single SQL statement can have multiple outlines, each of which is in a different outline category, but the only category that currently exists for baselines is DEFAULT.

The equivalent of a category for an outline is a module for a SQL plan baseline. Table 15-1 explains how outline categories map to modules.

Table 15-1 Outline Categories

	Concept	Description	Default Value
	
Outline Category

	
Specifies a user-defined grouping for a set of stored outlines.

You can use categories to maintain different stored outlines for a SQL statement. For example, a single statement can have an outline in the OLTP category and the DW category.

Each SQL statement can have one or more stored outlines. Each stored outline is in one and only one outline category. A statement can have multiple stored outlines in different categories, but only one stored outline exists per category per statement.

During migration, the database maps each outline category to a SQL plan baseline module.

	
DEFAULT

	
Baseline Module

	
Specifies a high-level function being performed.

A SQL plan baseline can belong to one and only one module.

	
After an outline is migrated to a SQL plan baseline, module name defaults to outline category name

	
Baseline Category

	
Only one SQL plan baseline category exists. This category is named DEFAULT. During stored outline migration, the module name of the SQL plan baseline is set to the category name of the stored outline.

A statement can have multiple SQL plan baselines in the DEFAULT category.

	
DEFAULT

When migrating stored outlines to SQL plan baselines, Oracle Database maps every outline category to a SQL plan baseline module with the same name. As shown in the following diagram, the outline category OLTP is mapped to the baseline module OLTP. After migration, DEFAULT is a super-category that contains all SQL plan baselines.

[image: Description of pfgrf230.gif follows]

15.8.1.3 User Interface for Stored Outline Migration

You can use the DBMS_SPM package to perform the stored outline migration. Table 15-2 describes the relevant functions in this package.

Table 15-2 DBMS_SPM Functions Relating to Stored Outline Migration

	DBMS_SPM Function	Description
	
MIGRATE_STORED_OUTLINE

	
Migrates existing stored outlines to plan baselines.

Use either of the following formats:

	
Specify outline name, SQL text, outline category, or all stored outlines.

	
Specify a list of outline names.

	
ALTER_SQL_PLAN_BASELINE

	
Changes an attribute of a single plan or all plans associated with a SQL statement.

	
DROP_MIGRATED_STORED_OUTLINE

	
Drops stored outlines that have been migrated to SQL plan baselines.

The function finds stored outlines marked as MIGRATED in the DBA_OUTLINES view, and then drops these outlines from the database.

You can control stored outline and plan baseline behavior with initialization and session parameters. Table 15-3 describes the relevant parameters. See Table 15-5 and Table 15-6 for an explanation of how these parameter settings interact.

Table 15-3 Parameters Relating to Stored Outline Migration

	Initialization or Session Parameter	Description
	
CREATE_STORED_OUTLINES

	
Determines whether Oracle Database automatically creates and stores an outline for each query submitted during the session.

	
OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES

	
Enables or disables the automatic recognition of repeatable SQL statement and the generation of SQL plan baselines for these statements.

	
USE_STORED_OUTLINES

	
Determines whether the optimizer uses stored outlines to generate execution plans.

Note: This is a session parameter, not an initialization parameter.

	
OPTIMIZER_USE_SQL_PLAN_BASELINES

	
Enables or disables the use of SQL plan baselines stored in SQL Management Base.

You can use database views to access information relating to stored outline migration. Table 15-4 describes the following main views.

Table 15-4 Views Relating to Stored Outline Migration

	View	Description
	
DBA_OUTLINES

	
Describes all stored outlines in the database.

The MIGRATED column is important for outline migration and shows one of the following values: NOT-MIGRATED and MIGRATED. When MIGRATED, the stored outline has been migrated to a plan baseline and is not usable.

	
DBA_SQL_PLAN_BASELINES

	
Displays information about the SQL plan baselines currently created for specific SQL statements.

The ORIGIN column indicates how the plan baseline was created. The value STORED-OUTLINE indicates the baseline was created by migrating an outline.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS_SPM package

	
Oracle Database Reference to learn about database initialization parameters and database fixed views

15.8.1.4 Basic Steps in Stored Outline Migration

This section explains the basic steps in using the PL/SQL API to perform stored outline migration. The basic steps are as follows:

	
Prepare for stored outline migration.

Review the migration prerequisites and determine how you want the migrated plan baselines to behave.

See "Preparing for Stored Outline Migration".

	
Do one of the following:

	
Migrate to baselines to utilize SQL Plan Management features.

See "Migrating Outlines to Utilize SQL Plan Management Features".

	
Migrate to baselines while exactly preserving the behavior of the stored outlines.

See "Migrating Outlines to Preserve Stored Outline Behavior".

	
Perform post-migration confirmation and cleanup.

See "Performing Follow-Up Tasks After Stored Outline Migration".

15.8.2 Preparing for Stored Outline Migration

This section explains how to prepare for stored outline migration.

To prepare for stored outline migration:

	
Start SQL*Plus and log on as a user with SYSDBA privileges or the EXECUTE privilege on the DBMS_SPM package.

For example, do the following to use operating system authentication to log on to a database as SYS:

% sqlplus /nolog
SQL> CONNECT / AS SYSDBA

	
Query the stored outlines in the database.

The following example queries all stored outlines that have not been migrated to SQL plan baselines:

SELECT NAME, CATEGORY, SQL_TEXT
FROM DBA_OUTLINES
WHERE MIGRATED = 'NOT-MIGRATED';

	
Determine which stored outlines meet the following prerequisites for migration eligibility:

	
The statement must not be a run-time INSERT AS SELECT statement.

	
The statement must not reference a remote object.

	
This statement must not be a private stored outline.

	
Decide whether to migrate all outlines, specified stored outlines, or outlines belonging to a specified outline category.

If you do not decide to migrate all outlines, then list the outlines or categories that you intend to migrate.

	
Decide whether the stored outlines migrated to SQL plan baselines should use fixed plans or nonfixed plans:

	
Fixed plans

A fixed plan is frozen. If a fixed plan is reproducible using the hints stored in plan baseline, then the optimizer always chooses the lowest-cost fixed plan baseline over plan baselines that are not fixed. Essentially, a fixed plan baseline acts as a stored outline with valid hints.

A fixed plan is reproducible when the database can parse the statement based on the hints stored in the plan baseline and create a plan with the same plan hash value as the one in the plan baseline. If one of more of the hints become invalid, then the database may not be able to create a plan with the same plan hash value. In this case, the plan is nonreproducible.

If a fixed plan cannot be reproduced when parsed using its hints, then the optimizer chooses a different plan, which can be either of the following:

	
Another plan for the SQL plan baseline

	
The current cost-based plan created by the optimizer

In some cases, a performance regression occurs because of the different plan, requiring SQL tuning.

	
Nonfixed plans

If a plan baseline does not contain fixed plans, then SQL Plan Management considers the plans equally when picking a plan for a SQL statement.

	
Before beginning the actual migration, ensure that the Oracle database meets the following prerequisites:

	
The database must be Enterprise Edition.

	
The database must be open and must not be in a suspended state.

	
The database must not be in restricted access (DBA), read-only, or migrate mode.

	
OCI must be available.

	
See Also:

	
Oracle Database Administrator's Guide to learn about administrator privileges

	
Oracle Database Reference to learn about the DBA_OUTLINES views

15.8.3 Migrating Outlines to Utilize SQL Plan Management Features

The goals of this task are as follows:

	
To allow SQL Plan Management to select from all plans in a plan baseline for a SQL statement instead of applying the same fixed plan after migration

	
To allow the SQL plan baseline to evolve in the face of database changes by adding new plans to the baseline

The scenario in this section assumes the following:

	
You migrate all outlines.

To migrate specific outlines, see Oracle Database PL/SQL Packages and Types Reference for details about the DBMS_SPM.MIGRATE_STORED_OUTLINE function.

	
You want the module names of the baselines to be identical to the category names of the migrated outlines.

	
You do not want the SQL plans to be fixed.

By default, generated plans are not fixed and SQL Plan Management considers all plans equally when picking a plan for a SQL statement. This situation permits the advanced feature of plan evolution to capture new plans for a SQL statement, verify their performance, and accept these new plans into the plan baseline.

To migrate stored outlines to SQL plan baselines:

	
In SQL*Plus, call PL/SQL function MIGRATE_STORED_OUTLINE.

The following sample PL/SQL block migrates all stored outlines to fixed baselines:

DECLARE
 my_report CLOB;
BEGIN
 my_report := DBMS_SPM.MIGRATE_STORED_OUTLINE(attribute_name => 'all');
END;
/

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS_SPM package

	
Oracle Database SQL Language Reference to learn about the ALTER SYSTEM statement

15.8.4 Migrating Outlines to Preserve Stored Outline Behavior

The goal of this task is to migrate stored outlines to SQL plan baselines and preserve the original behavior of the stored outlines by creating fixed plan baselines. A fixed plan has higher priority over other plans for the same SQL statement. If a plan is fixed, then the plan baseline cannot be evolved. The database does not add new plans to a plan baseline that contains a fixed plan.

This section assumes the following:

	
You want to migrate only the stored outlines in the category named firstrow.

See Oracle Database PL/SQL Packages and Types Reference for syntax and semantics of the DBMS_SPM.MIGRATE_STORED_OUTLINE function.

	
You want the module names of the baselines to be identical to the category names of the migrated outlines.

To migrate stored outlines to plan baselines:

	
In SQL*Plus, call PL/SQL function MIGRATE_STORED_OUTLINE.

The following sample PL/SQL block migrates stored outlines in the category firstrow to fixed baselines:

DECLARE
 my_report CLOB;
BEGIN
 my_outlines := DBMS_SPM.MIGRATE_STORED_OUTLINE(
 attribute_name => 'category',
 attribute_value => 'firstrow',
 fixed => 'YES');
END;
/

After migration, the SQL plan baselines is in module firstrow and category DEFAULT.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS_SPM package

	
Oracle Database SQL Language Reference to learn about the ALTER SYSTEM statement

15.8.5 Performing Follow-Up Tasks After Stored Outline Migration

The goals of this task are as follows:

	
To configure the database to use plan baselines instead of stored outlines for stored outlines that have been migrated to SQL plan baselines

	
To create SQL plan baselines instead of stored outlines for future SQL statements

	
To drop the stored outlines that have been migrated to SQL plan baselines

This section assumes the following:

	
You have completed the basic steps in the stored outline migration.

	
Some stored outlines may have been created before Oracle Database 10g.

Hints in releases before Oracle Database 10g use a local hint format. After migration, hints stored in a plan baseline use the global hints format introduced in Oracle Database 10g.

This section explains how to set initialization parameters relating to stored outlines and plan baselines. The OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES and CREATE_STORED_OUTLINES initialization parameters determine how and when the database creates stored outlines and SQL plan baselines. Table 15-5 explains the interaction between these parameters.

Table 15-5 Creation of Outlines and Baselines

	CREATE_STORED_OUTLINES Initialization Parameter	OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES Initialization Parameter	Database Behavior
	
FALSE

	
FALSE

	
When executing a SQL statement, the database does not create stored outlines or SQL plan baselines.

	
FALSE

	
TRUE

	
The automatic recognition of repeatable SQL statements and the generation of SQL plan baselines for these statements is enabled. When executing a SQL statement, the database creates only new SQL plan baselines (if they do not exist) with the category name DEFAULT for the statement.

	
TRUE

	
FALSE

	
Oracle Database automatically creates and stores an outline for each query submitted during the session. When executing a SQL statement, the database creates only new stored outlines (if they do not exist) with the category name DEFAULT for the statement.

	
category

	
FALSE

	
When executing a SQL statement, the database creates only new stored outlines (if they do not exist) with the specified category name for the statement.

	
TRUE

	
TRUE

	
Oracle Database automatically creates and stores an outline for each query submitted during the session. The automatic recognition of repeatable SQL statements and the generation of SQL plan baselines for these statements is also enabled.

When executing a SQL statement, the database creates both stored outlines and SQL plan baselines with the category name DEFAULT.

	
category

	
TRUE

	
Oracle Database automatically creates and stores an outline for each query submitted during the session. The automatic recognition of repeatable SQL statements and the generation of SQL plan baselines for these statements is also enabled.

When executing a SQL statement, the database creates stored outlines with the specified category name and SQL plan baselines with the category name DEFAULT.

The USE_STORED_OUTLINES session parameter (it is not an initialization parameter) and OPTIMIZER_USE_SQL_PLAN_BASELINES initialization parameter determine how the database uses stored outlines and plan baselines. Table 15-6 explains how these parameters interact.

Table 15-6 Use of Stored Outlines and SQL Plan Baselines

	USE_STORED_OUTLINES Session Parameter	OPTIMIZER_USE_SQL_PLAN_BASELINES Initialization Parameter	Database Behavior
	
FALSE

	
FALSE

	
When choosing a plan for a SQL statement, the database does not use stored outlines or plan baselines.

	
FALSE

	
TRUE

	
When choosing a plan for a SQL statement, the database uses only SQL plan baselines.

	
TRUE

	
FALSE

	
When choosing a plan for a SQL statement, the database uses stored outlines with the category name DEFAULT.

	
category

	
FALSE

	
When choosing a plan for a SQL statement, the database uses stored outlines with the specified category name.

If a stored outline with the specified category name does not exist, then the database uses a stored outline in the DEFAULT category if it exists.

	
TRUE

	
TRUE

	
When choosing a plan for a SQL statement, stored outlines take priority over plan baselines.

If a stored outline with the category name DEFAULT exists for the statement and is applicable, then the database applies the stored outline. Otherwise, the database uses SQL plan baselines.

	
category

	
TRUE

	
When choosing a plan for a SQL statement, stored outlines take priority over plan baselines.

If a stored outline with the specified category name or the DEFAULT category exists for the statement and is applicable, then the database applies the stored outline. Otherwise, the database uses SQL plan baselines. However, if the stored outline has the property MIGRATED, then the database does not use the outline and uses the corresponding SQL plan baseline instead (if it exists).

To place the database in the proper state after the migration:

	
Check that SQL plan baselines have been created as the result of migration.

Ensure that the plans are enabled and accepted. For example, enter the following query (partial sample output included):

SELECT SQL_HANDLE, PLAN_NAME, ORIGIN, ENABLED, ACCEPTED, FIXED, MODULE
FROM DBA_SQL_PLAN_BASELINES;

SQL_HANDLE PLAN_NAME ORIGIN ENA ACC FIX MODULE
------------------------------ ---------- -------------- --- --- --- ------
SYS_SQL_f44779f7089c8fab STMT01 STORED-OUTLINE YES YES NO DEFAULT
.
.
.

	
Optionally, change the attributes of the SQL plan baselines.

For example, the following statement changes the status of the baseline for the specified SQL statement to fixed:

DECLARE
 v_cnt PLS_INTEGER;
BEGIN
 v_cnt := DBMS_SPM.ALTER_SQL_PLAN_BASELINE(
 sql_handle=>'SYS_SQL_f44779f7089c8fab',
 attribute_name=>'FIXED',
 attribute_value=>'NO');
 DBMS_OUTPUT.PUT_LINE('Plans altered: ' || v_cnt);
END;
/

	
Check the status of the original stored outlines.

For example, enter the following query (partial sample output included):

SELECT NAME, OWNER, CATEGORY, USED, MIGRATED
FROM DBA_OUTLINES
ORDER BY NAME;

NAME OWNER CATEGORY USED MIGRATED
---------- ---------- ---------- ------ ------------
STMT01 SYS DEFAULT USED MIGRATED
STMT02 SYS DEFAULT USED MIGRATED
.
.
.

	
Drop all stored outlines that have been migrated to SQL plan baselines.

For example, the following statements drops all stored outlines with status MIGRATED in DBA_OUTLINES:

DECLARE
 v_cnt PLS_INTEGER;
BEGIN
 v_cnt := DBMS_SPM.DROP_MIGRATED_STORED_OUTLINE();
 DBMS_OUTPUT.PUT_LINE('Migrated stored outlines dropped: ' || v_cnt);
END;
/

	
Set initialization parameters so that:

	
When executing a SQL statement, the database creates plan baselines but does not create stored outlines.

	
The database only uses stored outlines when the equivalent SQL plan baselines do not exist.

For example, the following SQL statements instruct the database to create SQL plan baselines instead of stored outlines when a SQL statement is executed. The example also instructs the database to apply a stored outline in category allrows or DEFAULT only if it exists and has not been migrated to a SQL plan baseline. In other cases, the database applies SQL plan baselines instead.

ALTER SYSTEM
 SET CREATE_STORED_OUTLINE = false;

ALTER SYSTEM
 SET OPTIMIZER_CAPTURE_SQL_PLAN_BASELINES = true;

ALTER SYSTEM
 SET OPTIMIZER_USE_SQL_PLAN_BASELINES = true;

ALTER SESSION
 SET USE_STORED_OUTLINES = allrows;

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference to learn about the DBMS_SPM package

	
Oracle Database Reference to learn about database fixed views

Part IV

Optimizing SQL Statements

This part explains how to tune your SQL statements for optimal performance and discusses Oracle SQL-related performance tools.

The chapters in this part include:

	
Chapter 11, "The Query Optimizer"

	
Chapter 12, "Using EXPLAIN PLAN"

	
Chapter 13, "Managing Optimizer Statistics"

	
Chapter 14, "Using Indexes and Clusters"

	
Chapter 15, "Using SQL Plan Management"

	
Chapter 16, "SQL Tuning Overview"

	
Chapter 17, "Automatic SQL Tuning"

	
Chapter 18, "SQL Access Advisor"

	
Chapter 19, "Using Optimizer Hints"

	
Chapter 20, "Using Plan Stability"

	
Chapter 21, "Using Application Tracing Tools"

14 Using Indexes and Clusters

This chapter provides an overview of data access methods using indexes and clusters that can enhance or degrade performance.

The chapter contains the following sections:

	
Understanding Index Performance

	
Using Function-based Indexes for Performance

	
Using Partitioned Indexes for Performance

	
Using Index-Organized Tables for Performance

	
Using Bitmap Indexes for Performance

	
Using Bitmap Join Indexes for Performance

	
Using Domain Indexes for Performance

	
Using Table Clusters for Performance

	
Using Hash Clusters for Performance

14.1 Understanding Index Performance

This section describes the following:

	
Tuning the Logical Structure

	
Index Tuning using the SQLAccess Advisor

	
Choosing Columns and Expressions to Index

	
Choosing Composite Indexes

	
Writing Statements That Use Indexes

	
Writing Statements That Avoid Using Indexes

	
Re-creating Indexes

	
Using Nonunique Indexes to Enforce Uniqueness

	
Using Enabled Novalidated Constraints

14.1.1 Tuning the Logical Structure

Although query optimization helps avoid the use of nonselective indexes within query execution, the SQL engine must continue to maintain all indexes defined against a table, regardless of whether queries make use of them. Index maintenance can present a significant CPU and I/O resource demand in any write-intensive application. In other words, do not build indexes unless necessary.

To maintain optimal performance, drop indexes that an application is not using. You can find indexes that are not being used by using the ALTER INDEX MONITORING USAGE functionality over a period that is representative of your workload. This monitoring feature records whether an index has been used. If you find that an index has not been used, then drop it. Make sure you are monitoring a representative workload to avoid dropping an index which is used, but not by the workload you sampled.

Also, indexes within an application sometimes have uses that are not immediately apparent from a survey of statement execution plans. An example of this is a foreign key index on a parent table, which prevents share locks from being taken out on a child table.

If you are deciding whether to create new indexes to tune statements, then you can also use the EXPLAIN PLAN statement to determine whether the optimizer chooses to use these indexes when the application is run. If you create new indexes to tune a statement that is currently parsed, then Oracle Database invalidates the statement.

When the statement is next parsed, the optimizer automatically chooses a new execution plan that could potentially use the new index. If you create new indexes on a remote database to tune a distributed statement, then the optimizer considers these indexes when the statement is next parsed.

Note that creating an index to tune one statement can affect the optimizer's choice of execution plans for other statements. For example, if you create an index to be used by one statement, then the optimizer can choose to use that index for other statements in the application as well. For this reason, reexamine the application's performance and execution plans, and rerun the SQL trace facility after you have tuned those statements that you initially identified for tuning.

	
See Also:

	
Oracle Database SQL Language Reference for syntax and semantics of the ALTER INDEX MONITORING USAGE statement

	
Oracle Database Advanced Application Developer's Guide to learn about foreign keys

14.1.2 Index Tuning using the SQLAccess Advisor

SQL Access Advisor is an alternative to manually determining which indexes are required. This advisor recommends a set of indexes when invoked from Oracle Enterprise Manager or run through the DBMS_ADVISOR package APIs. SQL Access Advisor either recommends using a workload or it generates a hypothetical workload for a specified schema.

Various workload sources are available, such as the current contents of the SQL cache, a user-defined set of SQL statements, or a SQL tuning set. Given a workload, SQL Access Advisor generates a set of recommendations from which you can select the indexes to be implemented. An implementation script is provided that can be executed manually or automatically through Oracle Enterprise Manager.

	
See Also:

"Overview of SQL Access Advisor"

14.1.3 Choosing Columns and Expressions to Index

A key is a column or expression on which you can build an index. Follow these guidelines for choosing keys to index:

	
Consider indexing keys that appear frequently in WHERE clauses.

	
Consider indexing keys that frequently join tables in SQL statements. For more information on optimizing joins, see the "Using Hash Clusters for Performance".

	
Choose index keys that have high selectivity. The selectivity of an index is the percentage of rows in a table having the same value for the indexed key. An index's selectivity is optimal if few rows have the same value.

	
Note:

Oracle Database automatically creates indexes, or uses existing indexes, on the keys and expressions of unique and primary keys that you define with integrity constraints.

Indexing low selectivity columns can be helpful when the data distribution is skewed so that one or two values occur much less often than other values.

	
Do not use standard B-tree indexes on keys or expressions with few distinct values. Such keys or expressions usually have poor selectivity and therefore do not optimize performance unless the frequently selected key values appear less frequently than the other key values. You can use bitmap indexes effectively in such cases, unless the index is modified frequently, as in a high concurrency OLTP application.

	
Do not index frequently modified columns. UPDATE statements that modify indexed columns and INSERT and DELETE statements that modify indexed tables take longer than if there were no index. Such SQL statements must modify data in indexes and data in tables. They also create additional undo and redo.

	
Do not index keys that appear only in WHERE clauses with functions or operators. A WHERE clause that uses a function, other than MIN or MAX, or an operator with an indexed key does not make available the access path that uses the index except with function-based indexes.

	
Consider indexing foreign keys of referential integrity constraints in cases in which a large number of concurrent INSERT, UPDATE, and DELETE statements access the parent and child tables. Such an index allows UPDATEs and DELETEs on the parent table without share locking the child table.

	
When choosing to index a key, consider whether the performance gain for queries is worth the performance loss for INSERTs, UPDATEs, and DELETEs and the use of the space required to store the index. You might want to experiment by comparing the processing times of the SQL statements with and without indexes. You can measure processing time with the SQL trace facility.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information on the effects of foreign keys on locking

14.1.4 Choosing Composite Indexes

A composite index contains multiple key columns. Composite indexes can provide additional advantages over single-column indexes:

	
Improved selectivity

Sometimes you can combine two or more columns or expressions, each with poor selectivity, to form a composite index with higher selectivity.

	
Reduced I/O

If all columns selected by a query are in a composite index, then Oracle Database can return these values from the index without accessing the table.

A SQL statement can use an access path involving a composite index when the statement contains constructs that use a leading portion of the index.

	
Note:

This is no longer the case with index skip scans. See "Index Skip Scans".

A leading portion of an index is a set of one or more columns that were specified first and consecutively in the list of columns in the CREATE INDEX statement that created the index. Consider this CREATE INDEX statement:

CREATE INDEX comp_ind
ON table1(x, y, z);

	
x, xy, and xyz combinations of columns are leading portions of the index

	
yz, y, and z combinations of columns are not leading portions of the index

14.1.4.1 Choosing Keys for Composite Indexes

Follow these guidelines for choosing keys for composite indexes:

	
Consider creating a composite index on keys that appear together frequently in WHERE clause conditions combined with AND operators, especially if their combined selectivity is better than the selectivity of either key individually.

	
If several queries select the same set of keys based on one or more key values, then consider creating a composite index containing all of these keys.

Of course, consider the guidelines associated with the general performance advantages and trade-offs of indexes described in the previous sections.

14.1.4.2 Ordering Keys for Composite Indexes

Follow these guidelines for ordering keys in composite indexes:

	
Create the index so the keys used in WHERE clauses make up a leading portion.

	
If some keys appear in WHERE clauses more frequently, then create the index so that the more frequently selected keys make up a leading portion to allow the statements that use only these keys to use the index.

	
If all keys appear in WHERE clauses equally often but the data is physically ordered on one of the keys, then place this key first in the composite index.

14.1.5 Writing Statements That Use Indexes

Even after you create an index, the optimizer cannot use an access path that uses the index simply because the index exists. The optimizer can choose such an access path for a SQL statement only if it contains a construct that makes the access path available. To allow the query optimizer the option of using an index access path, ensure that the statement contains a construct that makes such an access path available.

14.1.6 Writing Statements That Avoid Using Indexes

In some cases, you might want to prevent a SQL statement from using an access path that uses an existing index. You may want to take this approach if you know that the index is not very selective and a full table scan would be more efficient. If the statement contains a construct that makes such an index access path available, then you can force the optimizer to use a full table scan through one of the following methods:

	
Use the NO_INDEX hint to give the query optimizer maximum flexibility while disallowing the use of a certain index.

	
Use the FULL hint to instruct the optimizer to choose a full table scan instead of an index scan.

	
Use the INDEX or INDEX_COMBINE hints to instruct the optimizer to use one index or a set of listed indexes instead of another.

	
See Also:

Chapter 19, "Using Optimizer Hints" for more information on the NO_INDEX, FULL, INDEX, and INDEX_COMBINE and hints

Parallel execution uses indexes effectively. It does not perform parallel index range scans, but it does perform parallel index lookups for parallel nested loop join execution. If an index is very selective (there are few rows for each index entry), then it might be better to use sequential index lookup rather than parallel table scan.

14.1.7 Re-creating Indexes

You might want to re-create an index to compact it and minimize fragmented space, or to change the index's storage characteristics. When creating a new index that is a subset of an existing index or when rebuilding an existing index with new storage characteristics, Oracle Database might use the existing index instead of the base table to improve the performance of the index build.

However, in some cases using the base table instead of the existing index is beneficial. Consider an index on a table on which a lot of DML has been performed. Because of the DML, the size of the index can increase to the point where each block is only 50% full, or even less. If the index refers to most of the columns in the table, then the index could actually be larger than the table. In this case, it is faster to use the base table rather than the index to re-create the index.

Use the ALTER INDEX ... REBUILD statement to reorganize or compact an existing index or to change its storage characteristics. The REBUILD statement uses the existing index as the basis for the new one. All index storage statements are supported, such as STORAGE (for extent allocation), TABLESPACE (to move the index to a new tablespace), and INITRANS (to change the initial number of entries).

Usually, ALTER INDEX ... REBUILD is faster than dropping and re-creating an index, because this statement uses the fast full scan feature. It reads all the index blocks using multiblock I/O, then discards the branch blocks. A further advantage of this approach is that the old index is still available for queries while the rebuild is in progress.

	
See Also:

Oracle Database SQL Language Reference for more information about the CREATE INDEX and ALTER INDEX statements and restrictions on rebuilding indexes

14.1.8 Compacting Indexes

You can coalesce leaf blocks of an index by using the ALTER INDEX statement with the COALESCE option. This option lets you combine leaf levels of an index to free blocks for reuse. You can also rebuild the index online.

	
See Also:

Oracle Database SQL Language Reference and Oracle Database Administrator's Guide for more information about the syntax for this statement

14.1.9 Using Nonunique Indexes to Enforce Uniqueness

You can use an existing nonunique index on a table to enforce uniqueness, either for UNIQUE constraints or the unique aspect of a PRIMARY KEY constraint. The advantage of this approach is that the index remains available and valid when the constraint is disabled. Therefore, enabling a disabled UNIQUE or PRIMARY KEY constraint does not require rebuilding the unique index associated with the constraint. This can yield significant time savings on enable operations for large tables.

Using a nonunique index to enforce uniqueness also lets you eliminate redundant indexes. You do not need a unique index on a primary key column if that column is included as the prefix of a composite index. You can use the existing index to enable and enforce the constraint. You also save significant space by not duplicating the index. However, if the existing index is partitioned, then the partitioning key of the index must also be a subset of the UNIQUE key; otherwise, Oracle Database creates an additional unique index to enforce the constraint.

14.1.10 Using Enabled Novalidated Constraints

An enabled novalidated constraint behaves similarly to an enabled validated constraint for new data. Placing a constraint in the enabled novalidated state signifies that any new data entered into the table must conform to the constraint. Existing data is not checked. By placing a constraint in the enabled novalidated state, you enable the constraint without locking the table.

If you change a constraint from disabled to enabled, then the table must be locked. No new DML, queries, or DDL can occur, because no mechanism can ensure that operations on the table conform to the constraint during the enable operation. The enabled novalidated state prevents users from performing operations on the table that violate the constraint.

The database can validate an enabled novalidated constraint with a parallel, consistent-read query of the table to determine whether any data violates the constraint. The database performs no locking, so the enable operation does not block readers or writers. In addition, the database can validate enabled novalidated constraints in parallel. The database can validate multiple constraints at the same time and check the validity of each constraint using parallel query.

Use the following approach to create tables with constraints and indexes:

	
Create the tables with the constraints. NOT NULL constraints can be unnamed and should be created enabled and validated. You should name all other constraints (CHECK, UNIQUE, PRIMARY KEY, and FOREIGN KEY) and create them disabled.

	
Note:

By default, constraints are created in the ENABLED state.

	
Load old data into the tables.

	
Create all indexes, including indexes needed for constraints.

	
Enable novalidate all constraints. Do this to primary keys before foreign keys.

	
Allow users to query and modify data.

	
With a separate ALTER TABLE statement for each constraint, validate all constraints. Do this to primary keys before foreign keys. For example,

CREATE TABLE t (a NUMBER CONSTRAINT apk PRIMARY KEY DISABLE,
b NUMBER NOT NULL);
CREATE TABLE x (c NUMBER CONSTRAINT afk REFERENCES t DISABLE);

Now load data into table t.

CREATE UNIQUE INDEX tai ON t (a);
CREATE INDEX tci ON x (c);
ALTER TABLE t MODIFY CONSTRAINT apk ENABLE NOVALIDATE;
ALTER TABLE x MODIFY CONSTRAINT afk ENABLE NOVALIDATE;

At this point, users can start performing INSERT, UPDATE, DELETE, and SELECT operations on table t.

ALTER TABLE t ENABLE CONSTRAINT apk;
ALTER TABLE x ENABLE CONSTRAINT afk;

Now the constraints are enabled and validated.

	
See Also:

Oracle Database Concepts for a complete discussion of integrity constraints

14.2 Using Function-based Indexes for Performance

A function-based index includes columns that are either transformed by a function, such as the UPPER function, or included in an expression, such as col1 + col2. With a function-based index, you can store computation-intensive expressions in the index.

Defining a function-based index on the transformed column or expression allows that data to be returned using the index when that function or expression is used in a WHERE clause or an ORDER BY clause. This allows Oracle Database to bypass computing the value of the expression when processing SELECT and DELETE statements. Therefore, a function-based index can be beneficial when frequently-executed SQL statements include transformed columns, or columns in expressions, in a WHERE or ORDER BY clause.

Oracle Database treats descending indexes as function-based indexes. The columns marked DESC are sorted in descending order.

For example, function-based indexes defined with the UPPER(column_name) or LOWER(column_name) keywords allow case-insensitive searches. The index created in the following statement:

CREATE INDEX uppercase_idx ON employees (UPPER(last_name));

facilitates processing queries such as:

SELECT * FROM employees
 WHERE UPPER(last_name) = 'MARKSON';

	
See Also:

	
Oracle Database Advanced Application Developer's Guide and Oracle Database Administrator's Guide for more information on using function-based indexes

	
Oracle Database SQL Language Reference for more information on the CREATE INDEX statement

14.3 Using Partitioned Indexes for Performance

Similar to partitioned tables, partitioned indexes improve manageability, availability, performance, and scalability. They can either be partitioned independently (global indexes) or automatically linked to a table's partitioning method (local indexes).

Oracle Database supports both range and hash partitioned global indexes. In a range partitioned global index, each index partition contains values defined by a partition bound. In a hash partitioned global index, each partition contains values determined by the Oracle Database hash function.

The hash method can improve performance of indexes where a small number leaf blocks in the index have high contention in multiuser OLTP environment. In some OLTP applications, index insertions happen only at the right edge of the index. This situation could occur when the index is defined on monotonically increasing columns. In such situations, the right edge of the index becomes a hotspot because of contention for index pages, buffers, latches for update, and additional index maintenance activity, which results in performance degradation.

With hash partitioned global indexes index entries are hashed to different partitions based on partitioning key and the number of partitions. This spreads out contention over number of defined partitions, resulting in increased throughput. Hash-partitioned global indexes would benefit TPC-H refresh functions that are executed as massive PDMLs into huge fact tables because contention for buffer latches would be spread out over multiple partitions.

With hash partitioning, an index entry is mapped to a particular index partition based on the hash value generated by Oracle Database. The syntax to create hash-partitioned global index is very similar to hash-partitioned table. Queries involving equality and IN predicates on index partitioning key can efficiently use global hash partitioned index to answer queries quickly.

	
See Also:

Oracle Database Concepts and Oracle Database Administrator's Guide for more information on global indexes tables

14.4 Using Index-Organized Tables for Performance

An index-organized table differs from an ordinary table in that the data for the table is held in its associated index. Changes to the table data, such as adding new rows, updating rows, or deleting rows, result only in updating the index. Because data rows are stored in the index, index-organized tables provide faster key-based access to table data for queries that involve exact match or range search or both.

A parent/child relationship is an example of a situation that may warrant an index-organized table. For example, a members table has a child table containing phone numbers. Phone numbers for a member are changed and added over time. In a heap-organized table, rows are inserted in data blocks where they fit. However, when you query the members table, you always retrieve the phone numbers from the child table. To make the retrieval more efficient, you can store the phone numbers in an index-organized table so that phone records for a given member are inserted near each other in the data blocks.

In some circumstances, an index-organized table may provide a performance advantage over a heap-organized table. For example, if a query requires fewer blocks in the cache, then the database uses the buffer cache more efficiently. If fewer distinct blocks are needed for a query, then a single physical I/O may retrieve all necessary data, requiring a smaller amount of I/O for each query.

Global hash-partitioned indexes are supported for index-organized tables and can provide performance benefits in a multiuser OLTP environment. Index-organized tables are useful when you must store related pieces of data together or physically store data in a specific order.

	
See Also:

Oracle Database Concepts and Oracle Database Administrator's Guide for more information on index-organized tables

14.5 Using Bitmap Indexes for Performance

Bitmap indexes can substantially improve performance of queries that have all of the following characteristics:

	
The WHERE clause contains multiple predicates on low- or medium-cardinality columns.

	
The individual predicates on these low- or medium-cardinality columns select a large number of rows.

	
The bitmap indexes used in the queries have been created on some or all of these low- or medium-cardinality columns.

	
The tables in the queries contain many rows.

You can use multiple bitmap indexes to evaluate the conditions on a single table. Bitmap indexes are thus highly advantageous for complex ad hoc queries that contain lengthy WHERE clauses. Bitmap indexes can also provide optimal performance for aggregate queries and for optimizing joins in star schemas.

	
See Also:

Oracle Database Concepts and Oracle Database Data Warehousing Guide for more information on bitmap indexing

14.6 Using Bitmap Join Indexes for Performance

In addition to a bitmap index on a single table, you can create a bitmap join index, which is a bitmap index for the join of two or more tables. A bitmap join index is a space-saving way to reduce the volume of data that must be joined by performing restrictions in advance. For each value in a column of a table, a bitmap join index stores the rowids of corresponding rows in another table. In a data warehousing environment, the join condition is an equi-inner join between the primary key column(s) of the dimension tables and the foreign key column(s) in the fact table.

Bitmap join indexes are much more efficient in storage than materialized join views, an alternative for materializing joins in advance. Materialized join views do not compress the rowids of the fact tables.

	
See Also:

Oracle Database Data Warehousing Guide for examples and restrictions of bitmap join indexes

14.7 Using Domain Indexes for Performance

Domain indexes are built using the indexing logic supplied by a user-defined indextype. An indextype provides an efficient mechanism to access data that satisfy certain operator predicates. Typically, the user-defined indextype is part of an Oracle Database option, like the Spatial option. For example, the SpatialIndextype allows efficient search and retrieval of spatial data that overlap a given bounding box.

The cartridge determines the parameters you can specify in creating and maintaining the domain index. Similarly, the performance and storage characteristics of the domain index are presented in the specific cartridge documentation.

Refer to the appropriate cartridge documentation for information such as the following:

	
What data types can be indexed?

	
What indextypes are provided?

	
What operators does the indextype support?

	
How can the domain index be created and maintained?

	
How do we efficiently use the operator in queries?

	
What are the performance characteristics?

	
Note:

You can also create index types with the CREATE INDEXTYPE statement.

	
See Also:

Oracle Spatial Developer's Guide for information about the SpatialIndextype

14.8 Using Table Clusters for Performance

A table cluster is a group of one or more tables that are physically stored together because they share common columns and usually appear together in SQL statements. Because the database physically stores related rows together, disk access time improves. To create a cluster, use the CREATE CLUSTER statement.

	
See Also:

Oracle Database Concepts for more information on clusters

Follow these guidelines when deciding whether to cluster tables:

	
Cluster tables that are accessed frequently by the application in join statements.

	
Do not cluster tables if the application joins them only occasionally or modifies their common column values frequently. Modifying a row's cluster key value takes longer than modifying the value in an unclustered table, because Oracle Database might need to migrate the modified row to another block to maintain the cluster.

	
Do not cluster tables if the application often performs full table scans of only one of the tables. A full table scan of a clustered table can take longer than a full table scan of an unclustered table. Oracle Database is likely to read more blocks because the tables are stored together.

	
Cluster master-detail tables if you often select a master record and then the corresponding detail records. Detail records are stored in the same data block(s) as the master record, so they are likely still to be in memory when you select them, requiring Oracle Database to perform less I/O.

	
Store a detail table alone in a cluster if you often select many detail records of the same master. This measure improves the performance of queries that select detail records of the same master, but does not decrease the performance of a full table scan on the master table. An alternative is to use an index organized table.

	
Do not cluster tables if the data from all tables with the same cluster key value exceeds more than one or two data blocks. To access a row in a clustered table, Oracle Database reads all blocks containing rows with that value. If these rows take up multiple blocks, then accessing a single row could require more reads than accessing the same row in an unclustered table.

	
Do not cluster tables when the number of rows for each cluster key value varies significantly. This causes waste of space for the low cardinality key value; it causes collisions for the high cardinality key values. Collisions degrade performance.

Consider the benefits and drawbacks of clusters for the application. For example, you might decide that the performance gain for join statements outweighs the performance loss for statements that modify cluster key values. You might want to experiment and compare processing times with the tables both clustered and stored separately.

	
See Also:

Oracle Database Administrator's Guide for more information on creating clusters

14.9 Using Hash Clusters for Performance

Hash clusters group table data by applying a hash function to each row's cluster key value. All rows with the same cluster key value are stored together on disk. Consider the benefits and drawbacks of hash clusters for the application. You might want to experiment and compare processing times with a particular table in a hash cluster and alone with an index.

Follow these guidelines for choosing when to use hash clusters:

	
Use hash clusters to store tables accessed frequently by SQL statements with WHERE clauses, if the WHERE clauses contain equality conditions that use the same column or combination of columns. Designate this column or combination of columns as the cluster key.

	
Store a table in a hash cluster if you can determine how much space is required to hold all rows with a given cluster key value, including rows to be inserted immediately and rows to be inserted in the future.

	
Use sorted hash clusters, where rows corresponding to each value of the hash function are sorted on a specific columns in ascending order, when the database can improve response time on operations with this sorted clustered data.

	
Do not store a table in a hash cluster if the application often performs full table scans and if you must allocate a great deal of space to the hash cluster in anticipation of the table growing. Such full table scans must read all blocks allocated to the hash cluster, even though some blocks might contain few rows. Storing the table alone reduces the number of blocks read by full table scans.

	
Do not store a table in a hash cluster if the application frequently modifies the cluster key values. Modifying a row's cluster key value can take longer than modifying the value in an unclustered table, because Oracle Database might need to migrate the modified row to another block to maintain the cluster.

Storing a single table in a hash cluster can be useful, regardless of whether the table is joined frequently with other tables, as long as hashing is appropriate for the table based on the considerations in this list.

	
See Also:

	
Oracle Database Administrator's Guide to learn how to manage hash clusters

	
Oracle Database SQL Language Reference to learn about the CREATE CLUSTER statement

19 Using Optimizer Hints

You can use optimizer hints with SQL statements to alter execution plans. This chapter explains how to use hints to instruct the optimizer to use specific approaches.

The chapter contains the following sections:

	
Overview of Optimizer Hints

	
Specifying Hints

	
Using Hints with Views

19.1 Overview of Optimizer Hints

A hint is an instruction to the optimizer. When writing SQL code, you may know information about the data unknown to the optimizer. Hints enable you to make decisions normally made by the optimizer, sometimes causing the optimizer to select a plan that it sees as higher cost.

In a test or development environments, hints are useful for testing the performance of a specific access path. For example, you may know that a certain index is more selective for certain queries. In this case, you may use hints to instruct the optimizer to use a better execution plan.

The disadvantage of hints is the extra code that must be managed, checked, and controlled. Changes in the database and host environment can make hints obsolete or even have negative consequences. For this reason, test by means of hints, but use other techniques to manage the SQL execution plans, such as SQL Tuning advisor and SQL Plan Baselines.

Oracle Database supports more than 60 hints, each of which may have zero or more parameters. A statement block can have only one comment containing hints, and that comment must follow the SELECT, UPDATE, INSERT, MERGE, or DELETE keyword. For example, the following hint directs the optimizer to pick the query plan that produces the first 10 rows from the employees table at the lowest cost:

SELECT /*+ FIRST_ROWS(10) */ * FROM employees;

	
See Also:

Oracle Database SQL Language Reference to a complete list of hints supported by Oracle Database

19.1.1 Types of Hints

Hints can be of the following general types:

	
Single-table

Single-table hints are specified on one table or view. INDEX and USE_NL are examples of single-table hints.

	
Multi-table

Multi-table hints are like single-table hints, except that the hint can specify one or more tables or views. LEADING is an example of a multi-table hint. Note that USE_NL(table1 table2) is not considered a multi-table hint because it is a shortcut for USE_NL(table1) and USE_NL(table2).

	
Query block

Query block hints operate on single query blocks. STAR_TRANSFORMATION and UNNEST are examples of query block hints.

	
Statement

Statement hints apply to the entire SQL statement. ALL_ROWS is an example of a statement hint.

19.1.2 Hints by Category

Optimizer hints are grouped into the following categories:

	
Hints for Optimization Approaches and Goals

	
Hints for Enabling Optimizer Features

	
Hints for Access Paths

	
Hints for Join Orders

	
Hints for Join Operations

	
Hints for Online Application Upgrade

	
Hints for Parallel Execution

	
Hints for Query Transformations

	
Additional Hints

These categories, and the hints contained within each category, are listed in the sections that follow.

	
See Also:

Oracle Database SQL Language Reference for syntax and a more detailed description of each hint

19.1.2.1 Hints for Optimization Approaches and Goals

The ALL_ROWS and FIRST_ROWS(n) hints let you choose between optimization approaches and goals. If a SQL statement has a hint specifying an optimization approach and goal, then the optimizer uses the specified approach regardless of the presence or absence of statistics, the value of the OPTIMIZER_MODE initialization parameter, and the OPTIMIZER_MODE parameter of the ALTER SESSION statement.

	
Note:

The optimizer goal applies only to queries submitted directly. Use hints to specify the access path for any SQL statements submitted from within PL/SQL. The ALTER SESSION ... SET OPTIMIZER_MODE statement does not affect SQL run within PL/SQL.

If you specify either the ALL_ROWS or the FIRST_ROWS(n) hint in a SQL statement, and if the data dictionary does not have statistics about tables accessed by the statement, then the optimizer uses default statistical values, such as allocated storage for such tables, to estimate the missing statistics and choose an execution plan. These estimates might not be as accurate as those gathered by the DBMS_STATS package, so use DBMS_STATS to gather statistics.

If you specify hints for access paths or join operations along with either the ALL_ROWS or FIRST_ROWS(n) hint, then the optimizer gives precedence to the access paths and join operations specified by the hints.

	
See Also:

"Optimization Approaches and Goal Hints in Views" for hint behavior with mergeable views

19.1.2.2 Hints for Enabling Optimizer Features

The OPTIMIZER_FEATURES_ENABLE hint acts as an umbrella parameter for enabling a series of optimizer features based on an Oracle Database release number. This hint is a useful way to check for plan regressions after database upgrades.

Specify the release number as an argument to the hint. The following example runs a query with the optimizer features from Oracle Database 11g Release 1 (11.1.0.6):

SELECT /*+ optimizer_features_enable('11.1.0.6') */ employee_id, last_name
FROM employees
ORDER BY employee_id;

	
See Also:

Oracle Database Reference to learn about the OPTIMIZER_FEATURES_ENABLE initialization parameter

19.1.2.3 Hints for Access Paths

The following hints instructs the optimizer to use a specific access path for a table:

	
FULL

	
CLUSTER

	
HASH

	
INDEX and NO_INDEX

	
INDEX_ASC and INDEX_DESC

	
INDEX_COMBINE and INDEX_JOIN

	
INDEX_JOIN

	
INDEX_FFS and NO_INDEX_FFS

	
INDEX_SS and NO_INDEX_SS

	
INDEX_SS_ASC and INDEX_SS_DESC

Specifying one of the preceding hints causes the optimizer to choose the specified access path only if the access path is available based on the existence of an index or cluster and on the syntactic constructs of the SQL statement. If a hint specifies an unavailable access path, then the optimizer ignores it.

You must specify the table to be accessed exactly as it appears in the statement. If the statement uses an alias for the table, then use the alias rather than the table name in the hint. The table name within the hint should not include the schema name if the schema name is present in the statement.

	
Note:

For access path hints, Oracle Database ignores the hint if you specify the SAMPLE option in the FROM clause of a SELECT statement.

	
See Also:

	
"Access Path and Join Hints on Views" and "Access Path and Join Hints Inside Views" for hint behavior with mergeable views

	
Oracle Database SQL Language Reference for more information on the SAMPLE option

19.1.2.4 Hints for Join Orders

The following hints suggest join orders:

	
LEADING

	
ORDERED

19.1.2.5 Hints for Join Operations

The following hints instructs the optimizer to use a specific join operation for a table:

	
USE_NL and NO_USE_NL

	
USE_NL_WITH_INDEX

	
USE_MERGE and NO_USE_MERGE

	
USE_HASH and NO_USE_HASH

	
NO_USE_HASH

Use of the USE_NL and USE_MERGE hints is recommended with any join order hint. See "Hints for Join Orders". Oracle Database uses these hints when the referenced table is forced to be the inner table of a join; the hints are ignored if the referenced table is the outer table.

See "Access Path and Join Hints on Views" and "Access Path and Join Hints Inside Views" for hint behavior with mergeable views.

19.1.2.6 Hints for Online Application Upgrade

The online application upgrade hints suggest how to handle conflicting INSERT and UPDATE operations when performing an online application upgrade using edition-based redefinition:

	
CHANGE_DUPKEY_ERROR_INDEX

	
IGNORE_ROW_ON_DUPKEY_INDEX

	
RETRY_ON_ROW_CHANGE

You can use the CHANGE_DUPKEY_ERROR_INDEX and IGNORE_ROW_ON_DUPKEY_INDEX hints to handle conflicting INSERT operations during an online application upgrade. You can use the CHANGE_DUPKEY_ERROR_INDEX hint to identify unique key violations for a specified set of columns or index. When a unique key violation is encountered during an INSERT or UPDATE operation, an ORA-38911 error is reported instead of an ORA-001. You can use the IGNORE_ROW_ON_DUPKEY_INDEX hint to ignore unique key violations for a specified set of columns or index. When a unique key violation is encountered during a single-table INSERT operation, a row-level rollback occurs and execution resumes with the next input row. Therefore, a unique key violation does not cause the INSERT to terminate or an error to be reported.

You can use the RETRY_ON_ROW_CHANGE hint to handle conflicting UPDATE operations during an online application upgrade. You can use this hint to retry an UPDATE or DELETE operation if one or more rows changed from the time when the set of rows to be modified was determined to the time when the set of rows was actually modified.

	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about performing an online application upgrade using edition-based redefinition

19.1.2.7 Hints for Parallel Execution

The parallel execution hints instruct the optimizer about whether and how to parallelize operations. You can use the following parallel hints:

	
PARALLEL and NO_PARALLEL

	
PARALLEL_INDEX and NO_PARALLEL_INDEX

	
PQ_DISTRIBUTE

The following sections group the hints into functional categories.

	
See Also:

	
Oracle Database VLDB and Partitioning Guide to learn how to use parallel execution

	
Oracle Database 2 Day + Data Warehousing Guide for more information on parallel execution

19.1.2.7.1 Hints Controlling the Degree of Parallelism

Hints beginning with the keyword PARALLEL indicate the degree of parallelism for the query. Hints beginning with NO_PARALLEL disable parallelism.

	
Note:

You can perform conventional inserts in parallel mode using the /*+ NOAPPEND PARALLEL */ hint.

You can specify parallelism at the statement or object level. If you do not explicitly specify an object in the hint, then parallelism occurs at the statement level. In contrast to most hints, parallel statement-level hints take precedence over object-level hints.

To illustrate the difference between object-level and statement-level parallelism settings, suppose that you perform the following steps:

	
You set the parallelism setting on the employees table to 2 and disable parallelism on the departments table as follows:

ALTER TABLE employees PARALLEL 2;
ALTER TABLE departments NOPARALLEL;

	
You execute the following SELECT statement:

SELECT /*+ PARALLEL(employees 3) */ e.last_name, d.department_name
FROM employees e, departments d
WHERE e.department_id=d.department_id;

The PARALLEL hint for employees overrides the degree of parallelism of 2 for this table specified in Step 1.

In the explain plan in Example 19-1, the IN-OUT column shows PCWP for parallel access of employees and S for serial access of departments. Access to departments is serialized because a NOPARALLEL setting was applied to this table in Step 1.

Example 19-1 Explain Plan for Query with /*+ PARALLEL(employees 3) */ Hint

--
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time | TQ |IN-OUT| PQ Distrib
--
0	SELECT STATEMENT		14	588	5 (20)	00:00:01			
1	PX COORDINATOR								
2	PX SEND QC (RANDOM)	:TQ10001	14	588	5 (20)	00:00:01	Q1,01	P->S	QC (RAND)
* 3	HASH JOIN		14	588	5 (20)	00:00:01	Q1,01	PCWP	
4	BUFFER SORT						Q1,01	PCWC	
5	PX RECEIVE		4	88	2 (0)	00:00:01	Q1,01	PCWP	
6	PX SEND BROADCAST	:TQ10000	4	88	2 (0)	00:00:01		S->P	BROADCAST
7	TABLE ACCESS FULL	DEPARTMENTS	4	88	2 (0)	00:00:01			
8	PX BLOCK ITERATOR		14	280	2 (0)	00:00:01	Q1,01	PCWC	
9	TABLE ACCESS FULL	EMPLOYEES	14	280	2 (0)	00:00:01	Q1,01	PCWP	
--

	
You execute the following SELECT statement:

SELECT /*+ PARALLEL(4) */ hr_emp.last_name, d.department_name
FROM employees hr_emp, departments d
WHERE hr_emp.department_id=d.department_id;

Because no schema object is specified in the PARALLEL hint, the scope of the hint is the statement, not an object. This statement forces the query of the employees and departments tables to execute with a degree of parallelism of 4, overriding the parallelism setting defined on the tables.

19.1.2.7.2 Hints Controlling the Distribution Method for Joins

The PQ_DISTRIBUTE hint controls the distribution method for a specified join operation. The basic syntax is as follows, where distribution is the distribution method to use between the producer and the consumer slaves for the left and the right side of the join:

/*+ PQ_DISTRIBUTE(tablespec, distribution) */

For example, in a HASH,HASH distribution the rows of each table are mapped to consumer query servers, using a hash function on the join keys. When mapping is complete, each query server performs the join between a pair of resulting partitions. This distribution is recommended when the tables are comparable in size and the join operation is implemented by hash join or sort merge join. The following query contains a hint to use hash distribution:

SELECT /*+ORDERED PQ_DISTRIBUTE(departments HASH, HASH) USE_HASH (departments)*/
 e.employee_id, d.department_name
FROM employees e, departments d
WHERE e.department_id=d.department_id;

	
See Also:

Oracle Database SQL Language Reference for valid syntax and semantics for the PQ_DISTRIBUTE hint

19.1.2.7.3 Hints Controlling the Distribution Method for Loads

The PQ_DISTRIBUTE hint applies to parallel INSERT ... SELECT and parallel CREATE TABLE AS SELECT statements to specify how rows should be distributed between the producer (query) and the consumer (load) slaves.

For example, a PARTITION distribution use the partitioning information of the table being loaded to distribute rows from the query slaves to the load slaves. Use this method when the following conditions are met:

	
It is not possible or desirable to combine the query and load operations into each slave.

	
The number of partitions being loaded is greater than or equal to the number of load slaves.

	
The input data is evenly distributed across the partitions being loaded.

The following sample statement creates a table and specifies the PARTITION distribution method:

CREATE /*+ PQ_DISTRIBUTE(lineitem, PARTITION) */ TABLE lineitem
 NOLOGGING PARALLEL 16
 PARTITION BY HASH (l_orderkey) PARTITIONS 512
 AS SELECT * FROM lineitemxt;

In contrast, a NONE distribution combines the query and load operation into each slave. Thus, all slaves load all partitions. Use this distribution to avoid the overhead of distribution of rows when there is no skew. The following sample SQL statement specifies a distribution of NONE for an insert into the lineitem table:

INSERT /*+ APPEND PARALLEL(LINEITEM, 16) PQ_DISTRIBUTE(LINEITEM, NONE) */
 INTO lineitem
 (SELECT * FROM lineitemxt);

19.1.2.8 Hints for Query Transformations

Each of the following hints instructs the optimizer to use a specific SQL query transformation:

	
NO_QUERY_TRANSFORMATION

	
USE_CONCAT

	
NO_EXPAND

	
REWRITE and NO_REWRITE

	
MERGE and NO_MERGE

	
STAR_TRANSFORMATION and NO_STAR_TRANSFORMATION

	
FACT and NO_FACT

	
UNNEST and NO_UNNEST

19.1.2.9 Additional Hints

The following are several additional hints:

	
APPEND, APPEND_VALUES, and NOAPPEND

	
CACHE and NOCACHE

	
PUSH_PRED and NO_PUSH_PRED

	
PUSH_SUBQ and NO_PUSH_SUBQ

	
QB_NAME

	
CURSOR_SHARING_EXACT

	
DRIVING_SITE

	
DYNAMIC_SAMPLING

	
MODEL_MIN_ANALYSIS

19.2 Specifying Hints

Hints apply only to the optimization of the block of a statement in which they appear. A statement block is any one of the following statements or parts of statements:

	
A simple SELECT, UPDATE, or DELETE statement

	
A parent statement or subquery of a complex statement

	
A part of a compound query

For example, a compound query consisting of two component queries combined by the UNION operator has two blocks, one for each component query. For this reason, hints in the first component query apply only to its optimization, not to the optimization of the second component query.

The following sections discuss the use of hints in more detail.

19.2.1 Specifying a Full Set of Hints

When using hints, in some cases, you might need to specify a full set of hints to ensure the optimal execution plan. For example, if you have a very complex query, which consists of many table joins, and if you specify only the INDEX hint for a given table, then the optimizer must determine the remaining access paths to be used, and the corresponding join methods. Therefore, even though you gave the INDEX hint, the optimizer might not necessarily use that hint, because the optimizer might have determined that the requested index cannot be used due to the join methods and access paths selected by the optimizer.

In Example 19-2, the LEADING hint specifies the exact join order. The join methods are also specified.

Example 19-2 Specifying a Full Set of Hints

SELECT /*+ LEADING(e2 e1) USE_NL(e1) INDEX(e1 emp_emp_id_pk)
 USE_MERGE(j) FULL(j) */
 e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
 FROM employees e1, employees e2, job_history j
 WHERE e1.employee_id = e2.manager_id
 AND e1.employee_id = j.employee_id
 AND e1.hire_date = j.start_date
 GROUP BY e1.first_name, e1.last_name, j.job_id
 ORDER BY total_sal;

19.2.2 Specifying a Query Block in a Hint

To identify a query block in a query, you can use an optional query block name in a hint to specify the block to which the hint applies. The syntax of the query block argument is of the form @queryblock, where queryblock is an identifier that specifies a block in the query. The queryblock identifier can either be system-generated or user-specified.

Note the following guidelines:

	
You can obtain the system-generated identifier by using EXPLAIN PLAN for the query. You can determine pre-transformation query block names by running EXPLAIN PLAN for the query using the NO_QUERY_TRANSFORMATION hint.

	
You can set the user-specified name with the QB_NAME hint.

Assumptions

This tutorial assumes the following:

	
You intend to create a join view of employees and job_history that contains a nested query block.

	
You want to query all rows in the view, but apply the NO_UNNEST hint to the query block only.

To apply the NO_UNNEST hint to the query block:

	
Start SQL*Plus and log in as user hr.

	
Create the view.

For example, run the following statement:

CREATE OR REPLACE VIEW v_emp_job_history AS
 SELECT e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
 FROM employees e1, (SELECT * FROM employees e3) e2, job_history j
 WHERE e1.employee_id = e2.manager_id
 AND e1.employee_id = j.employee_id
 AND e1.hire_date = j.start_date
 AND e1.salary = (SELECT max(e2.salary)
 FROM employees e2
 WHERE e2.department_id = e1.department_id)
 GROUP BY e1.first_name, e1.last_name, j.job_id
 ORDER BY total_sal;

	
Explain the plan for a query of v_emp_job_history.

For example, run the following SQL statement:

EXPLAIN PLAN FOR SELECT * FROM v_emp_job_history;

	
Query the plan table.

For example, run the following SQL statement:

SELECT PLAN_TABLE_OUTPUT
FROM TABLE(DBMS_XPLAN.DISPLAY(NULL, NULL, 'ALL'));

The database displays the plan.

	
In the query plan output, obtain the operation ID associated with the query block, and then use the ID to find the query block name.

For example, the following plan shows that the full scan of the employees table occurs in operation 11, which corresponds to query block @SEL$4:

--
|Id| Operation |Name |Rows|Bytes|Cost |Time
--
|0 | SELECT STATEMENT | |1 |46 |9(34)|00:00:01|
.
.
.
|11| TABLE ACCESS FULL | EMPLOYEES |107 |749 |3(0) |00:00:01|
.
.
.

Query Block Name / Object Alias (identified by operation id):

 1 - SEL$2980E977 / V_EMP_JOB_HISTORY@SEL$1
 2 - SEL$2980E977
 8 - SEL$8F9407EC / VW_SQ_1@SEL$32F848CB
 9 - SEL$8F9407EC
 11 - SEL$8F9407EC / E2@SEL$4

	
Query the view using the NO_UNNEST hint.

For example, run the following SQL statement to apply the NO_UNNEST hint to query block @SEL$4 (sample output included):

SQL> SELECT /*+ NO_UNNEST(@SEL$4) */ * FROM v_emp_job_history;

FIRST_NAME LAST_NAME JOB_ID TOTAL_SAL
-------------------- ------------------------- ---------- ----------
Michael Hartstein MK_REP 6000

19.2.3 Specifying Global Table Hints

Hints that specify a table generally refer to tables in the DELETE, SELECT, or UPDATE query block in which the hint occurs, not to tables inside any views referenced by the statement. When you want to specify hints for tables that appear inside views, Oracle recommends using global hints instead of embedding the hint in the view. You can transform the table hints described in this chapter into a global hint by using an extended tablespec syntax that includes view names with the table name.

In addition, an optional query block name can precede the tablespec syntax. See "Specifying a Query Block in a Hint".

Hints that specify a table use the following syntax, where view specifies a view name and table specifies the name or alias of the table:

tablespec::= [image: Description of tablespec.gif follows]

If the view path is specified, then the database resolves the hint from left to right, where the first view must be present in the FROM clause, and each subsequent view must be specified in the FROM clause of the preceding view.

Example 19-3 creates a view v to return the first and last name of the employee, his or her first job, and the total salary of all direct reports of that employee for each employee with the highest salary in his or her department. When querying the data, you want to force the use of the index emp_job_ix for the table e3 in view e2.

Example 19-3 Using Global Hints Example

CREATE OR REPLACE VIEW v AS
 SELECT e1.first_name, e1.last_name, j.job_id, sum(e2.salary) total_sal
 FROM employees e1, (SELECT * FROM employees e3) e2, job_history j
 WHERE e1.employee_id = e2.manager_id
 AND e1.employee_id = j.employee_id
 AND e1.hire_date = j.start_date
 AND e1.salary = (SELECT max(e2.salary) FROM employees e2
 WHERE e2.department_id = e1.department_id)
 GROUP BY e1.first_name, e1.last_name, j.job_id
 ORDER BY total_sal;

By using the global hint structure, you can avoid the modification of view v with the specification of the index hint in the body of view e2. To force the use of the index emp_job_ix for the table e3, you can use one of the following statements:

SELECT /*+ INDEX(v.e2.e3 emp_job_ix) */ * FROM v;

SELECT /*+ INDEX(@SEL$2 e2.e3 emp_job_ix) */ * FROM v;

SELECT /*+ INDEX(@SEL$3 e3 emp_job_ix) */ * FROM v;

	
Note:

Oracle Database ignores global hints that refer to multiple query blocks. For example, the LEADING hint is ignored in the following query because it uses the dot notation to the main query block containing table a and view query block v:

SELECT /*+ LEADING(v.b a v.c) */ *
FROM a, v
WHERE a.id = v.id;

To avoid this issue, Oracle recommends that you specify a query block in the hint using the @SEL notation:

SELECT /*+ LEADING(A@SEL$1 B@SEL$2 C@SEL$2) */
FROM a a, v v
WHERE a.id = v.id;

Example 19-4 Using Global Hints with NO_MERGE

The global hint syntax also applies to unmergeable views as in Example 19-4.

CREATE OR REPLACE VIEW v1 AS
 SELECT *
 FROM employees
 WHERE employee_id < 150;

CREATE OR REPLACE VIEW v2 AS
 SELECT v1.employee_id employee_id, departments.department_id department_id
 FROM v1, departments
 WHERE v1.department_id = departments.department_id;

SELECT /*+ NO_MERGE(v2) INDEX(v2.v1.employees emp_emp_id_pk)
 FULL(v2.departments) */ *
 FROM v2
 WHERE department_id = 30;

The hints cause v2 not to be merged and specify access path hints for the employee and department tables. These hints are pushed down into the (nonmerged) view v2.

	
See Also:

"Using Hints with Views"

19.2.4 Specifying Complex Index Hints

Hints that specify an index can use either a simple index name or a parenthesized list of columns as follows:

indexspec::=

[image: Description of indexspec.gif follows]

The semantics are as follows:

	
table specifies the name

	
column specifies the name of a column in the specified table

	
The columns can optionally be prefixed with table qualifiers allowing the hint to specify bitmap join indexes where the index columns are on a different table than the indexed table. If tables qualifiers are present, then they must be base tables, not aliases in the query.

	
Each column in an index specification must be a base column in the specified table, not an expression. Function-based indexes cannot be hinted using a column specification unless the columns specified in the index specification form the prefix of a function-based index.

	
index specifies an index name

When tablespec is followed by indexspec in the specification of a hint, a comma separating the table name and index name is permitted but not required. Commas are also permitted, but not required, to separate multiple occurrences of indexspec.

The hint is resolved as follows:

	
If an index name is specified, then the database only considered the specified index.

	
If a column list is specified, and if an index exists whose columns match the specified columns in number and order, then the database only consider this index. If no such index exists, then any index on the table with the specified columns as the prefix in the order specified is considered. In either case, the behavior is exactly as if the user had specified the same hint individually on all the matching indexes.

For example, in Example 19-3 the job_history table has a single-column index on the employee_id column and a concatenated index on employee_id and start_date columns. To specifically instruct the optimizer on index use, you can hint the query as follows:

SELECT /*+ INDEX(v.j jhist_employee_ix (employee_id start_date)) */ * FROM v;

19.3 Using Hints with Views

Oracle does not encourage hints inside or on views (or subqueries) because you can define views in one context and use them in another. Also, such hints can result in unexpected execution plans. In particular, hints inside views or on views are handled differently, depending on whether the view is mergeable into the top-level query.

To specify a hint for a table in a view or subquery, the global hint syntax is preferable. See "Specifying Global Table Hints".

If you decide to use hints with views, then the following sections describe the behavior.

19.3.1 Hints and Complex Views

By default, hints do not propagate inside a complex view. For example, if you specify a hint in a query that selects against a complex view, then this hint is not honored, because it is not pushed inside the view.

	
Note:

If the view is a single-table, then the hint is not propagated.

Unless the hints are inside the base view, they might not be honored from a query against the view.

19.3.2 Hints and Mergeable Views

A mergeable view is a view that Oracle Database can replace with the query that defines the view. For example, suppose you create a view as follows:

CREATE OR REPLACE VIEW emp_view AS
 SELECT last_name, department_name FROM employees e, departments d
 WHERE e.department_id=d.department_id;

This view is mergeable because the database can optimize the following query to use the SELECT statement that defines the view, avoiding use of the view itself.

SELECT * FROM emp_view;

19.3.2.1 Optimization Approaches and Goal Hints in Views

Optimization approach and goal hints can occur in a top-level query or inside views.

	
If such a hint exists in the top-level query, then the database uses this hint regardless of any such hints inside the views.

	
If there is no top-level optimizer mode hint, then the database uses mode hints in referenced views as long as all mode hints in the views are consistent.

	
If two or more mode hints in the referenced views conflict, then the database discards all mode hints in the views and uses the session mode, whether default or user-specified.

19.3.2.2 Access Path and Join Hints on Views

Access path and join hints on referenced views are ignored unless the view contains a single table or references an Additional Hints view with a single table. For such single-table views, an access path hint or a join hint on the view applies to the table inside the view.

19.3.2.3 Access Path and Join Hints Inside Views

Access path and join hints can appear in a view definition.

	
If the view is an inline view (that is, if it appears in the FROM clause of a SELECT statement), then all access path and join hints inside the view are preserved when the view is merged with the top-level query.

	
For views that are non-inline views, access path and join hints in the view are preserved only if the referencing query references no other tables or views (that is, if the FROM clause of the SELECT statement contains only the view).

19.3.3 Hints and Nonmergeable Views

With nonmergeable views, optimization approach and goal hints inside the view are ignored; the top-level query decides the optimization mode.

Because nonmergeable views are optimized separately from the top-level query, access path and join hints inside the view are preserved. For the same reason, access path hints on the view in the top-level query are ignored.

However, join hints on the view in the top-level query are preserved because, in this case, a nonmergeable view is similar to a table.

20 Using Plan Stability

This chapter describes how to use plan stability to preserve performance characteristics. Plan stability also facilitates migration from the rule-based optimizer to the query optimizer when you upgrade to a new Oracle Database release.

This chapter contains the following topics:

	
Using Plan Stability to Preserve Execution Plans

	
Using Plan Stability with Query Optimizer Upgrades

	
Note:

Stored outlines will be desupported in a future release in favor of SQL plan management. In Oracle Database 11g Release 1 (11.1), stored outlines continue to function as in past releases. However, Oracle strongly recommends that you use SQL plan management for new applications. SQL plan management creates SQL plan baselines, which offer superior SQL performance and stability compared with stored outlines.
If you have existing stored outlines, then consider migrating them to SQL plan baselines by following the steps in "Migrating Stored Outlines to SQL Plan Baselines". When the migration is complete, you should disable or remove the stored outlines.

	
See Also:

	
Chapter 15, "Using SQL Plan Management" for information about SQL plan management

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_SPM package

20.1 Using Plan Stability to Preserve Execution Plans

Plan stability prevents certain database environment changes from affecting the performance characteristics of applications. Such changes include changes in optimizer statistics, changes to the optimizer mode settings, and changes to parameters affecting the sizes of memory structures, such as SORT_AREA_SIZE and BITMAP_MERGE_AREA_SIZE. Plan stability is most useful when you cannot risk any performance changes in an application.

Plan stability preserves execution plans in stored outlines. An outline is implemented as a set of optimizer hints that are associated with the SQL statement. If the use of the outline is enabled for the statement, then Oracle Database automatically considers the stored hints and tries to generate an execution plan in accordance with those hints.

Oracle Database can create a public or private stored outline for one or all SQL statements. The optimizer then generates equivalent execution plans from the outlines when you enable the use of stored outlines. You can group outlines into categories and control which category of outlines Oracle Database uses to simplify outline administration and deployment.

The plans that Oracle Database maintains in stored outlines remain consistent despite changes to a system's configuration or statistics. Using stored outlines also stabilizes the generated execution plan if the optimizer changes in subsequent Oracle Database releases.

	
Note:

If you develop applications for mass distribution, then you can use stored outlines to ensure that all customers access the same execution plans.

20.1.1 Using Hints with Plan Stability

The degree to which plan stability controls execution plans is dictated by how much the Oracle Database hint mechanism controls execution plans, because Oracle Database uses hints to record stored plans.

There is a one-to-one correspondence between SQL text and its stored outline. If you specify a different literal in a predicate, then a different outline applies. To avoid this situation, replace literals in applications with bind variables.

	
See Also:

Oracle Database can allow similar statements to share SQL by replacing literals with system-generated bind variables. This works with plan stability if the outline was generated using the CREATE_STORED_OUTLINES parameter, not the CREATE OUTLINE statement. Also, the outline must have been created with the CURSOR_SHARING parameter set to FORCE or SIMILAR, and the parameter must also set to FORCE or SIMILAR when attempting to use the outline. See Chapter 7, "Configuring and Using Memory" for more information.

Plan stability relies on preserving execution plans at a point in time when performance is satisfactory. In many environments, however, attributes for data types such as dates or order numbers can change rapidly. In these cases, permanent use of an execution plan can result in performance degradation over time as the data characteristics change.

This implies that techniques that rely on preserving plans in dynamic environments are somewhat contrary to the purpose of using query optimization. Query optimization attempts to produce execution plans based on statistics that accurately reflect the state of the data. Thus, you must balance the need to control plan stability with the benefit obtained from the optimizer's ability to adjust to changes in data characteristics.

20.1.1.1 How Outlines Use Hints

An outline consists primarily of a set of hints that is equivalent to the optimizer's results for the execution plan generation of a particular SQL statement. When Oracle Database creates an outline, plan stability examines the optimization results using the same data used to generate the execution plan. That is, Oracle Database uses the input to the execution plan to generate an outline, and not the execution plan itself.

	
Note:

Oracle Database creates the USER_OUTLINES and USER_OUTLINE_HINTS views in the SYS tablespace based on data in the OL$ and OL$HINTS tables, respectively. Direct manipulation of the OL$, OL$HINTS, and OL$NODES tables is prohibited.
You can embed hints in SQL statements, but this has no effect on how Oracle Database uses outlines. Oracle Database considers a SQL statement that you revised with hints to be different from the original SQL statement stored in the outline.

20.1.2 Storing Outlines

Oracle Database stores outline data in the OL$, OL$HINTS, and OL$NODES tables. Unless you remove them, Oracle Database retains outlines indefinitely.

The only effect outlines have on caching execution plans is that the database uses the outline category name in addition to the SQL text to determine whether the plan is in cache. This ensures that Oracle Database does not use an execution plan compiled under one category to execute a SQL statement that the database should compile under a different category.

20.1.3 Enabling Plan Stability

Settings for several parameters, especially those ending with the suffix _ENABLED, must be consistent across execution environments for outlines to function properly. These parameters are:

	
QUERY_REWRITE_ENABLED

	
STAR_TRANSFORMATION_ENABLED

	
OPTIMIZER_FEATURES_ENABLE

20.1.4 Using Supplied Packages to Manage Stored Outlines

The DBMS_OUTLN and DBMS_OUTLN_EDIT package provides procedures used for managing stored outlines and their outline categories.

Users need the EXECUTE_CATALOG_ROLE role to execute DBMS_OUTLN, but public has execute privileges on DBMS_OUTLN_EDIT. The DBMS_OUTLN_EDIT package is an invoker's rights package.

Some of the useful DBMS_OUTLN and DBMS_OUTLN_EDIT procedures are:

	
CLEAR_USED - Clears specified outline

	
DROP_BY_CAT - Drops outlines that belong to a specified category

	
UPDATE_BY_CAT - Changes the category of outlines in one specified category to a new specified category

	
EXACT_TEXT_SIGNATURES - Computes an outline signature according to an exact text matching scheme

	
GENERATE_SIGNATURE - Generates a signature for the specified SQL text

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information on using DBMS_OUTLN package procedures

20.1.5 Creating Outlines

Oracle Database can automatically create outlines for all SQL statements, or you can create them for specific SQL statements. In either case, the outlines derive their input from the optimizer.

Oracle Database creates stored outlines automatically when you set the initialization parameter CREATE_STORED_OUTLINES to true. When activated, Oracle Database creates outlines for all compiled SQL statements. You can create stored outlines for specific statements using the CREATE OUTLINE statement.

When creating or editing a private outline, the outline data is written to global temporary tables in the SYSTEM schema. These tables are accessible with the OL$, OL$HINTS, and OL$NODES synonyms.

	
Note:

You must ensure that schemas in which outlines are to be created have the CREATE ANY OUTLINE privilege. Otherwise, despite having turned on the CREATE_STORED_OUTLINE initialization parameter, no outlines appear in the database after you run the application.
Also, the default system tablespace can become exhausted if the CREATE_STORED_OUTLINES initialization parameter is enabled and the running application has many literal SQL statements. If this happens, then use the DBMS_OUTLN.DROP_UNUSED procedure to remove those literal SQL outlines.

	
See Also:

	
Oracle Database SQL Language Reference for more information on the CREATE OUTLINE statement

	
Oracle Database PL/SQL Packages and Types Reference for more information on the DBMS_OUTLN and DBMS_OUTLN_EDIT packages

	
"Moving from RBO to the Query Optimizer" to learn how to move from the rule-based optimizer to the query optimizer

20.1.5.1 Using Category Names for Stored Outlines

You can categorize outlines to simplify the management task. The CREATE OUTLINE statement allows for specification of a category. The DEFAULT category is chosen if unspecified. Likewise, the CREATE_STORED_OUTLINES initialization parameter lets you specify a category name, where specifying true produces outlines in the DEFAULT category.

If you specify a category name using the CREATE_STORED_OUTLINES initialization parameter, then Oracle Database assigns all subsequently created outlines to that category until you reset the category name. Set the parameter to false to suspend outline generation.

If you set CREATE_STORED_OUTLINES to true, or if you use the CREATE OUTLINE statement without a category name, then Oracle Database assigns outlines to the category name of DEFAULT.

20.1.6 Using Stored Outlines

When you activate the use of stored outlines, Oracle Database always uses the query optimizer. Outlines rely on hints. To be effective, most hints require the optimizer.

To use stored outlines when Oracle Database compiles a SQL statement, set the system parameter USE_STORED_OUTLINES to true or to a category name. If you set USE_STORED_OUTLINES to true, then Oracle Database uses outlines in the default category. If you specify a category with the USE_STORED_OUTLINES parameter, then Oracle Database uses outlines in that category until you reset the parameter to another category name or until you suspend outline use by setting USE_STORED_OUTLINES to false. If you specify a category name, and if Oracle Database does not find an outline in that category that matches the SQL statement, then the database searches for an outline in the default category.

To use a specific outline rather than all the outlines in a category, execute the ALTER OUTLINE statement to enable the specific outline. To use the outlines in a category except for a specific outline, use the ALTER OUTLINE statement to disable the specific outline in the category that is being used. The ALTER OUTLINE statement can also rename a stored outline, reassign it to a different category, or regenerate it.

The designated outlines only control the compilation of SQL statements that have outlines. If you set USE_STORED_OUTLINES to false, then Oracle Database does not use outlines. When you set USE_STORED_OUTLINES to false and you set CREATE_STORED_OUTLINES to true, Oracle Database creates outlines but does not use them.

The USE_PRIVATE_OUTLINES parameter lets you control the use of private outlines. A private outline is an outline seen only in the current session and whose data resides in the current parsing schema. Any changes made to such an outline are not seen by any other session on the system, and applying a private outline to the compilation of a statement can only be done in the current session with the USE_PRIVATE_OUTLINES parameter. Only when you explicitly choose to save your edits back to the public area are they seen by the rest of the users.

While the optimizer usually chooses optimal plans for queries, there are times when users know things about the execution environment that are inconsistent with the heuristics that the optimizer follows. By editing outlines directly, you can tune the SQL query without having to alter the application.

When the USE_PRIVATE_OUTLINES parameter is enabled and an outlined SQL statement is issued, the optimizer retrieves the outline from the session private area rather than the public area used when USE_STORED_OUTLINES is enabled. If no outline exists in the session private area, then the optimizer does not use an outline to compile the statement.

Any CREATE OUTLINE statement requires the CREATE ANY OUTLINE privilege. Specification of the FROM clause also requires the SELECT privilege. This privilege should be granted only to those users who would have the authority to view SQL text and hint text associated with the outlined statements. This role is required for the CREATE OUTLINE FROM command unless the issuer of the command is also the owner of the outline.

	
Note:

The USE_STORED_OUTLINES and USE_PRIVATE_OUTLINES parameters are system or session specific. They are not initialization parameters. For more information on these parameters, see the Oracle Database SQL Language Reference.

You can test whether the database is using an outline with the V$SQL view. Query the OUTLINE_CATEGORY column in conjunction with the SQL statement. If the database applied an outline, then this column contains the category to which the outline belongs. Otherwise, it is NULL. The OUTLINE_SID column tells you whether this particular cursor is using a public outline (value is 0) or a private outline (session's SID of the corresponding session using it).

For example:

SELECT OUTLINE_CATEGORY, OUTLINE_SID
 FROM V$SQL
 WHERE SQL_TEXT LIKE 'SELECT COUNT(*) FROM emp%';

	
See Also:

Oracle Database SQL Language Reference to learn about the ALTER OUTLINE statement

20.1.7 Viewing Outline Data

You can access information about outlines and related hint data that Oracle Database stores in the data dictionary from the following views:

	
USER_OUTLINES

	
USER_OUTLINE_HINTS

	
ALL_OUTLINES

	
ALL_OUTLINE_HINTS

	
DBA_OUTLINES

	
DBA_OUTLINE_HINTS

Use the following syntax to obtain outline information from the USER_OUTLINES view, where the outline category is mycat:

SELECT NAME, SQL_TEXT
 FROM USER_OUTLINES
 WHERE CATEGORY='mycat';

Oracle Database responds by displaying the names and text of all outlines in category mycat.

To see all generated hints for the outline name1, use the following syntax:

SELECT HINT
 FROM USER_OUTLINE_HINTS
 WHERE NAME='name1';

You can check the flags in _OUTLINES views for information about compatibility, format, and whether an outline is enabled. For example, check the ENABLED field in the USER_OUTLINES view to determine whether an outline is enabled or not.

SELECT NAME, CATEGORY, ENABLED FROM USER_OUTLINES;

	
See Also:

Oracle Database Reference to learn about views related to outlines

20.1.8 Moving Outline Tables

Oracle Database creates the USER_OUTLINES and USER_OUTLINE_HINTS views based on data in the OL$ and OL$HINTS tables, respectively. These tables and the OL$NODES table reside in the outln schema.

The outln schema stores data in the SYSTEM tablespace. If outlines use too much space in the SYSTEM tablespace, then you can move them. To achieve this goal, create a separate tablespace and move the outline tables into this tablespace.

	
Note:

The default system tablespace could become exhausted if the CREATE_STORED_OUTLINES parameter is on and if the running application has many literal SQL statements. In this case, use the DBMS_OUTLN.DROP_UNUSED procedure to remove the literal SQL outlines.

To move outline tables into a new tablespace:

	
Use the Oracle Data Pump Export utility to export the OL$, OL$HINTS, and OL$NODES tables.

The following example exports these tables to the exp.dmp file located in the directory that maps to the outln_dir object:

% expdp outln DIRECTORY=outln_dir DUMPFILE=exp.dmp TABLES=OL$,OL$HINTS,OL$NODES
Password: password

	
Start SQL*Plus and connect to the database as the outln user, as shown in the following example:

SQL> CONNECT outln
Enter password: password

	
Remove the previous OL$, OL$HINTS, and OL$NODES tables, as shown in the following example:

SQL> DROP TABLE OL$;
SQL> DROP TABLE OL$HINTS;
SQL> DROP TABLE OL$NODES;

	
Create a new tablespace for the tables.

The following example connects as SYSTEM and creates a tablespace named outln_ts:

SQL> CONNECT SYSTEM
Enter password: password

SQL> CREATE TABLESPACE outln_ts DATAFILE 'tspace.dat' SIZE 2M
 2 DEFAULT STORAGE (INITIAL 10K NEXT 20K MINEXTENTS 1 MAXEXTENTS 999
 3 PCTINCREASE 10) ONLINE;

	
Change the default tablespace for the outln schema.

The following statement changes the default tablespace to outln_ts:

SQL> ALTER USER OUTLN DEFAULT TABLESPACE outln_ts;

	
To force the import into the outln_ts tablespace, perform the following tasks:

	
Set the quota for the SYSTEM tablespace to 0K for the outln user.

	
Revoke the UNLIMITED TABLESPACE privilege and all roles, such as the RESOURCE role, that have unlimited tablespace privileges or quotas.

	
Set a quota for the outln tablespace.

	
Use the Data Pump Import utility to import the OL$, OL$HINTS, and OL$NODES tables, as in the following example:

% impdp outln DIRECTORY=outln_dir DUMPFILE=exp.dmp TABLES=OL$,OL$HINTS,OL$NODES
Password: password

When the import completes, the OL$, OL$HINTS, and OL$NODES tables are re-created in the schema named outln and reside in the outln_ts tablespace.

	
Optionally, adjust the tablespace quotas for the outln user appropriately by adding any privileges and roles that were removed in a previous step.

	
See Also:

	
Oracle Database Utilities for detailed information about using the Data Pump Export and Import utilities

	
Oracle Database PL/SQL Packages and Types Reference for detailed information about using the DBMS_OUTLN package

20.2 Using Plan Stability with Query Optimizer Upgrades

This section describes procedures you can use to significantly improve performance by taking advantage of query optimizer functionality. Plan stability provides a way to preserve a system's targeted execution plans with satisfactory performance while also taking advantage of new query optimizer features for the rest of the SQL statements.

While there are classes of SQL statements and features where an exact reproduction of the original execution plan is not guaranteed, plan stability can still be a highly useful part of the migration. Before the migration, outline capturing of execution plan should be turned on until all or most of the applications SQL-statement have been covered.

If performance problems for some specific SQL-statement occur after migration, then you can turn on the stored outline for the specified statement as a way of restoring the old behavior. Stored outlines are not always the best way of resolving a migration related performance problem because they prevent plans from adapting to changing data properties. However, stored outlines add to the arsenal of techniques that you can use to address such problems.

Topics covered in this section are:

	
Moving from RBO to the Query Optimizer

	
Moving to a New Oracle Release under the Query Optimizer

20.2.1 Moving from RBO to the Query Optimizer

If an application was developed using the rule-based optimizer, then a considerable amount of effort might have gone into manually tuning the SQL statements to optimize performance. You can use plan stability to leverage the effort that has gone into performance tuning by preserving the behavior of the application when upgrading from rule-based to query optimization.

By creating outlines for an application before switching to query optimization, the plans generated by the rule-based optimizer can be used, while statements generated by newly written applications developed after the switch use query plans. To create and use outlines for an application, use the following process.

	
Note:

Carefully read this procedure and consider its implications before executing it!

	
Ensure that schemas in which outlines are to be created have the CREATE ANY OUTLINE privilege. For example, from SYS:

GRANT CREATE ANY OUTLINE TO user-name

	
Execute syntax similar to the following to designate; for example, the RBOCAT outline category.

ALTER SESSION SET CREATE_STORED_OUTLINES = rbocat;

	
Run the application long enough to capture stored outlines for all important SQL statements.

	
Suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

	
Gather statistics with the DBMS_STATS package.

	
Alter the parameter OPTIMIZER_MODE to CHOOSE.

	
Enter the following syntax to make Oracle database use the outlines in category RBOCAT:

ALTER SESSION SET USE_STORED_OUTLINES = rbocat;

	
Run the application.

Subject to the limitations of plan stability, access paths for this application's SQL statements should be unchanged.

	
Note:

If a query was not executed in step 2, then you can capture the old behavior of the query even after switching to query optimization. To achieve this goal, change the optimizer mode to RULE, create an outline for the query, and then change the optimizer mode back to CHOOSE.

20.2.2 Moving to a New Oracle Release under the Query Optimizer

When upgrading to a new Oracle Database release under query optimization, some SQL statements may have their execution plans changed because of changes in the optimizer. While such changes benefit performance, you might have applications that perform so well that you would consider any changes in their behavior to be an unnecessary risk. For such applications, you can create outlines before the upgrade using the following procedure.

	
Note:

Carefully read this procedure and consider its implications before running it!

	
Enter the following syntax to enable outline creation:

ALTER SESSION SET CREATE_STORED_OUTLINES = ALL_QUERIES;

	
Run the application long enough to capture stored outlines for all critical SQL statements.

	
Enter this syntax to suspend outline generation:

ALTER SESSION SET CREATE_STORED_OUTLINES = FALSE;

	
Upgrade the production system to the new version of the RDBMS.

	
Run the application.

After the upgrade, you can enable the use of stored outlines, or alternatively, you can use the outlines that were stored as a backup if you find that some statements exhibit performance degradation after the upgrade.

With the latter approach, you can selectively use the stored outlines for such problematic statements as follows:

	
For each problematic SQL statement, change the CATEGORY of the associated stored outline to a category name similar to this:

ALTER OUTLINE outline_name CHANGE CATEGORY TO problemcat;

	
Enter this syntax to make Oracle database use outlines from the category problemcat.

ALTER SESSION SET USE_STORED_OUTLINES = problemcat;

20.2.2.1 Upgrading with a Test System

A test database, separate from the production database, is useful for conducting experiments with optimizer behavior after an upgrade. You can migrate statistics from the production system to the test system using import/export. This technique alleviates the need to fill the tables in the test database with data.

You can move outlines between the systems by category. For example, after you create outlines in the problemcat category, export them by category using the query-based export option. This is a convenient and efficient way to export only selected outlines from one database to another without exporting all outlines in the source database. Use the Data Pump Export utility with the QUERY parameter as in the following example (note the use of the line continuation character):

% expdp outln DIRECTORY=outln_dir DUMPFILE=exp_file.dmp \
? TABLES=OL$,OL$HINTS,OL$NODES QUERY='WHERE CATEGORY="problemcat"'
Password: password

	
See Also:

Oracle Database Utilities for detailed information about using the Data Pump Export and Import utilities

1 Performance Tuning Overview

This chapter provides an introduction to performance tuning and contains the following sections:

	
Introduction to Performance Tuning

	
Introduction to Performance Tuning Features and Tools

1.1 Introduction to Performance Tuning

This guide provides information about tuning Oracle Database for performance. Topics discussed in this guide include:

	
Performance Planning

	
Instance Tuning

	
SQL Tuning

	
See Also:

Oracle Database 2 Day + Performance Tuning Guide to learn how to use Oracle Enterprise Manager to tune database performance

1.1.1 Performance Planning

You should complete Part II, "Performance Planning" before proceeding to other parts of this guide. Based on years of designing and performance experience, Oracle has designed a performance methodology. This part describes activities that can dramatically improve system performance and contains the following topics:

	
Understanding Investment Options

	
Understanding Scalability

	
System Architecture

	
Application Design Principles

	
Workload Testing, Modeling, and Implementation

	
Deploying New Applications

1.1.2 Instance Tuning

Part III, "Optimizing Instance Performance" discusses the factors involved in the tuning and optimizing of an Oracle database instance.

When considering instance tuning, take care in the initial design of the database to avoid bottlenecks that could lead to performance problems. In addition, you must consider:

	
Allocating memory to database structures

	
Determining I/O requirements of different parts of the database

	
Tuning the operating system for optimal performance of the database

After the database instance has been installed and configured, you must monitor the database as it is running to check for performance-related problems.

1.1.2.1 Performance Principles

Performance tuning requires a different, although related, method to the initial configuration of a system. Configuring a system involves allocating resources in an ordered manner so that the initial system configuration is functional.

Tuning is driven by identifying the most significant bottleneck and making the appropriate changes to reduce or eliminate the effect of that bottleneck. Usually, tuning is performed reactively, either while the system is in preproduction or after it is live.

1.1.2.2 Baselines

The most effective way to tune is to have an established performance baseline that you can use for comparison if a performance issue arises. Most database administrators (DBAs) know their system well and can easily identify peak usage periods. For example, the peak periods could be between 10.00am and 12.00pm and also between 1.30pm and 3.00pm. This could include a batch window of 12.00am midnight to 6am.

It is important to identify these peak periods at the site and install a monitoring tool that gathers performance data for those high-load times. Optimally, data gathering should be configured from when the application is in its initial trial phase during the QA cycle. Otherwise, this should be configured when the system is first in production.

Ideally, baseline data gathered should include the following:

	
Application statistics (transaction volumes, response time)

	
Database statistics

	
Operating system statistics

	
Disk I/O statistics

	
Network statistics

In the Automatic Workload Repository, baselines are identified by a range of snapshots that are preserved for future comparisons. See "Overview of the Automatic Workload Repository".

1.1.2.3 The Symptoms and the Problems

A common pitfall in performance tuning is to mistake the symptoms of a problem for the actual problem itself. It is important to recognize that many performance statistics indicate the symptoms, and that identifying the symptom is not sufficient data to implement a remedy. For example:

	
Slow physical I/O

Generally, this is caused by poorly-configured disks. However, it could also be caused by a significant amount of unnecessary physical I/O on those disks issued by poorly-tuned SQL.

	
Latch contention

Rarely is latch contention tunable by reconfiguring the instance. Rather, latch contention usually is resolved through application changes.

	
Excessive CPU usage

Excessive CPU usage usually means that there is little idle CPU on the system. This could be caused by an inadequately-sized system, by untuned SQL statements, or by inefficient application programs.

1.1.2.4 When to Tune

There are two distinct types of tuning:

	
Proactive Monitoring

	
Bottleneck Elimination

1.1.2.4.1 Proactive Monitoring

Proactive monitoring usually occurs on a regularly scheduled interval, where several performance statistics are examined to identify whether the system behavior and resource usage has changed. Proactive monitoring can also be considered as proactive tuning.

Usually, monitoring does not result in configuration changes to the system, unless the monitoring exposes a serious problem that is developing. In some situations, experienced performance engineers can identify potential problems through statistics alone, although accompanying performance degradation is usual.

Experimenting with or tweaking a system when there is no apparent performance degradation as a proactive action can be a dangerous activity, resulting in unnecessary performance drops. Tweaking a system should be considered reactive tuning, and the steps for reactive tuning should be followed.

Monitoring is usually part of a larger capacity planning exercise, where resource consumption is examined to see changes in the way the application is being used, and the way the application is using the database and host resources.

1.1.2.4.2 Bottleneck Elimination

Tuning usually implies fixing a performance problem. However, tuning should be part of the life cycle of an application—through the analysis, design, coding, production, and maintenance stages. Often, the tuning phase is left until the database is in production. At this time, tuning becomes a reactive process, where the most important bottleneck is identified and fixed.

Usually, the purpose for tuning is to reduce resource consumption or to reduce the elapsed time for an operation to complete. Either way, the goal is to improve the effective use of a particular resource. In general, performance problems are caused by the overuse of a particular resource. The overused resource is the bottleneck in the system. There are several distinct phases in identifying the bottleneck and the potential fixes. These are discussed in the sections that follow.

Remember that the different forms of contention are symptoms that can be fixed by making changes in the following places:

	
Changes in the application, or the way the application is used

	
Changes in Oracle

	
Changes in the host hardware configuration

Often, the most effective way of resolving a bottleneck is to change the application.

1.1.3 SQL Tuning

Part IV, "Optimizing SQL Statements" of this guide discusses the process of tuning and optimizing SQL statements.

Many application programmers consider SQL a messaging language, because queries are issued and data is returned. However, client tools often generate inefficient SQL statements. Therefore, a good understanding of the database SQL processing engine is necessary for writing optimal SQL. This is especially true for high transaction processing systems.

Typically, SQL statements issued by OLTP applications operate on relatively few rows at a time. If an index can point to the exact rows that are required, then Oracle Database can construct an accurate plan to access those rows efficiently through the shortest possible path. In decision support system (DSS) environments, selectivity is less important, because they often access most of a table's rows. In such situations, full table scans are common, and indexes are not even used. This book is primarily focussed on OLTP-type applications. For detailed information on DSS and mixed environments, see the Oracle Database Data Warehousing Guide.

1.1.3.1 Query Optimizer and Execution Plans

When a SQL statement is executed on an Oracle database, the query optimizer determines the most efficient execution plan after considering many factors related to the objects referenced and the conditions specified in the query. This determination is an important step in the processing of any SQL statement and can greatly affect execution time.

During the evaluation process, the query optimizer reviews statistics gathered on the system to determine the best data access path and other considerations. You can override the execution plan of the query optimizer with hints inserted in SQL statement.

1.2 Introduction to Performance Tuning Features and Tools

Effective data collection and analysis is essential for identifying and correcting performance problems. Oracle Database provides several tools that allow a performance engineer to gather information regarding database performance. In addition to gathering data, Oracle Database provides tools to monitor performance, diagnose problems, and tune applications.

The Oracle Database gathering and monitoring features are mainly automatic, managed by Oracle background processes. To enable automatic statistics collection and automatic performance features, the STATISTICS_LEVEL initialization parameter must be set to TYPICAL or ALL. You can administer and display the output of the gathering and tuning tools with Oracle Enterprise Manager, or with APIs and views. For ease of use and to take advantage of its numerous automated monitoring and diagnostic tools, Oracle Enterprise Manager Database Control is recommended.

	
See Also:

	
Oracle Database 2 Day DBA to learn how to use Oracle Enterprise Manager to manage Oracle Database

	
Oracle Database 2 Day + Performance Tuning Guide to learn how to use Oracle Enterprise Manager to tune database performance

	
Oracle Database PL/SQL Packages and Types Reference for detailed information on the DBMS_ADVISOR, DBMS_SQLTUNE, DBMS_AUTO_SQLTUNE, and DBMS_WORKLOAD_REPOSITORY packages

	
Oracle Database Reference for information about the STATISTICS_LEVEL initialization parameter

1.2.1 Automatic Performance Tuning Features

The Oracle Database automatic performance tuning features include:

	
Automatic Workload Repository (AWR) collects, processes, and maintains performance statistics for problem detection and self-tuning purposes. See "Overview of the Automatic Workload Repository".

	
Automatic Database Diagnostic Monitor (ADDM) analyzes the information collected by the AWR for possible performance problems with the Oracle database. See "Overview of the Automatic Database Diagnostic Monitor".

	
SQL Tuning Advisor allows a quick and efficient technique for optimizing SQL statements without modifying any statements. See "Tuning Reactively with SQL Tuning Advisor".

	
SQLAccess Advisor provides advice on materialized views, indexes, and materialized view logs. See "Automatic SQL Tuning Features" and "Overview of SQL Access Advisor" for information about SQLAccess Advisor.

	
End to End Application tracing identifies excessive workloads on the system by specific user, service, or application component. See "End to End Application Tracing".

	
Server-generated alerts automatically provide notifications when impending problems are detected. See Oracle Database Administrator's Guide to learn how to monitor the operation of the database with server-generated alerts.

	
Additional advisors that can be launched from Oracle Enterprise Manager, such as memory advisors to optimize memory for an instance. The memory advisors are commonly used when automatic memory management is not set up for the database. Other advisors are used to optimize mean time to recovery (MTTR), shrinking of segments, and undo tablespace settings. To learn about the advisors available with Oracle Enterprise Manager, see Oracle Database 2 Day + Performance Tuning Guide.

	
The Database Performance page in Oracle Enterprise Manager displays host, instance service time, and throughput information for real time monitoring and diagnosis. The page can be set to refresh automatically in selected intervals or manually. To learn about the Database Performance page, see Oracle Database 2 Day + Performance Tuning Guide.

1.2.2 Additional Oracle Database Tools

This section describes additional Oracle Database tools that you can use for determining performance problems.

1.2.2.1 V$ Performance Views

The V$ views are the performance information sources used by all Oracle Database performance tuning tools. The V$ views are based on memory structures initialized at instance startup. The memory structures, and the views that represent them, are automatically maintained by Oracle Database t the life of the instance. See Chapter 10, "Instance Tuning Using Performance Views" for information diagnosing tuning problems using the V$ performance views.

	
See Also:

Oracle Database Reference to learn more about dynamic performance views

	
Note:

Oracle recommends using the Automatic Workload Repository to gather performance data. These tools have been designed to capture all of the data needed for performance analysis.

9 Managing Operating System Resources

This chapter explains how to tune the operating system for optimal performance of Oracle Database.

This chapter contains the following sections:

	
Understanding Operating System Performance Issues

	
Resolving Operating System Issues

	
Understanding CPU

	
Resolving CPU Issues

	
See Also:

	
"Operating System Statistics" for a discussion of the importance of operating system statistics

	
Your operating system documentation

	
Your Oracle Database platform-specific documentation, which contains tuning information specific to your platform

9.1 Understanding Operating System Performance Issues

Operating system performance issues commonly involve process management, memory management, and scheduling. If you have tuned the Oracle database instance and still need to improve performance, verify your work or try to reduce system time. Ensure that there is enough I/O bandwidth, CPU power, and swap space. Do not expect, however, that further tuning of the operating system will have a significant effect on application performance. Changes in the Oracle Database configuration or in the application are likely to result in a more significant difference in operating system efficiency than simply tuning the operating system.

For example, if an application experiences excessive buffer busy waits, then the number of system calls increases. If you reduce the buffer busy waits by tuning the application, then the number of system calls decreases.

This section covers the following topics related to operating system performance issues:

	
Using Operating System Caches

	
Memory Usage

	
Using Operating System Resource Managers

9.1.1 Using Operating System Caches

Operating systems and device controllers provide data caches that do not directly conflict with Oracle Database cache management. Nonetheless, these structures can consume resources while offering little or no performance benefit. This situation is most noticeable when database files are stored in a Linux or UNIX file system. By default, all database I/O goes through the file system cache.

On some Linux and UNIX systems, direct I/O is available to the filestore. This arrangement allows the database files to be accessed within the file system, bypassing the file system cache. Direct I/O saves CPU resources and allows the file system cache to be dedicated to non-database activity, such as program texts and spool files.

	
Note:

This problem does not occur on Windows. All file requests by the database bypass the caches in the file system.

Although the operating system cache is often redundant because the Oracle Database buffer cache buffers blocks, in some cases the database does not use the database buffer cache. In these cases, using direct I/O or raw devices may yield worse performance than using operating system buffering. Examples include:

	
Reads or writes to the TEMP tablespace

	
Data stored in NOCACHE LOBs

	
Parallel Query slaves reading data

	
Note:

In some cases the database can cache parallel query data in the database buffer cache instead of performing direct reads from disk into the PGA. This configuration may be appropriate when the database servers have a large amount of memory. See Oracle Database VLDB and Partitioning Guide to learn more using parallel execution.

You may want to cache but not all files at the operating system level.

9.1.1.1 Asynchronous I/O

With synchronous I/O, when an I/O request is submitted to the operating system, the writing process blocks until the write is confirmed as complete. It can then continue processing. With asynchronous I/O, processing continues while the I/O request is submitted and processed. Use asynchronous I/O when possible to avoid bottlenecks.

Some platforms support asynchronous I/O by default, others need special configuration, and some only support asynchronous I/O for certain underlying file system types.

9.1.1.2 FILESYSTEMIO_OPTIONS Initialization Parameter

You can use the FILESYSTEMIO_OPTIONS initialization parameter to enable or disable asynchronous I/O or direct I/O on file system files. This parameter is platform-specific and has a default value that is best for a particular platform.

FILESYTEMIO_OPTIONS can be set to one of the following values:

	
ASYNCH: enable asynchronous I/O on file system files, which has no timing requirement for transmission.

	
DIRECTIO: enable direct I/O on file system files, which bypasses the buffer cache.

	
SETALL: enable both asynchronous and direct I/O on file system files.

	
NONE: disable both asynchronous and direct I/O on file system files.

	
See Also:

Your platform-specific documentation for more details

9.1.2 Memory Usage

Memory usage is affected by both buffer cache limits and initialization parameters.

9.1.2.1 Buffer Cache Limits

The UNIX buffer cache consumes operating system memory resources. Although in some versions of UNIX, the UNIX buffer cache may be allocated a set amount of memory, it is common today for more sophisticated memory management mechanisms to be used. Typically, these will allow free memory pages to be used to cache I/O. In such systems, it is common for operating system reporting tools to show that there is no free memory, which is not generally a problem. If processes require more memory, the memory caching I/O data is usually released to allow the process memory to be allocated.

9.1.2.2 Parameters Affecting Memory Usage

The memory required by any one Oracle Database session depends on many factors. Typically the major contributing factors are:

	
Number of open cursors

	
Memory used by PL/SQL, such as PL/SQL tables

	
SORT_AREA_SIZE initialization parameter

In Oracle Database, the PGA_AGGREGATE_TARGET initialization parameter gives greater control over a session's memory usage.

9.1.3 Using Operating System Resource Managers

Some platforms provide operating system resource managers. These are designed to reduce the impact of peak load use patterns by prioritizing access to system resources. They usually implement administrative policies that govern which resources users can access and how much of those resources each user is permitted to consume.

Operating system resource managers are different from domains or other similar facilities. Domains provide one or more completely separated environments within one system. Disk, CPU, memory, and all other resources are dedicated to each domain and cannot be accessed from any other domain. Other similar facilities completely separate just a portion of system resources into different areas, usually separate CPU or memory areas. Like domains, the separate resource areas are dedicated only to the processing assigned to that area; processes cannot migrate across boundaries. Unlike domains, all other resources (usually disk) are accessed by all partitions on a system.

Oracle Database runs within domains, and within these other less complete partitioning constructs, as long as the allocation of partitioned memory (RAM) resources is fixed, not dynamic.

Operating system resource managers prioritize resource allocation within a global pool of resources, usually a domain or an entire system. Processes are assigned to groups, which are in turn assigned resources anywhere within the resource pool.

	
Note:

Oracle Database is not supported for use with any UNIX operating system resource manager's memory management and allocation facility. Oracle Database Resource Manager, which provides resource allocation capabilities within an Oracle database instance, cannot be used with any operating system resource manager.

	
Note:

If you have multiple instances on a node, and you want to distribute resources among them, then each instance should be assigned to a dedicated operating-system resource manager group or managed entity. To run multiple instances in the managed entity, use instance caging to manage how the CPU resources within the managed entity should be distributed among the instances. When Oracle Database Resource Manager is managing CPU resources, it expects a fixed amount of CPU resources for the instance. Without instance caging, it expects the available CPU resources to be equal to the number of CPUs in the managed entity. With instance caging, it expects the available CPU resources to be equal to the value of the CPU_COUNT initialization parameter. If there are less CPU resources than expected, then Oracle Database Resource Manager is not as effective at enforcing the resource allocations in the resource plan.

	
See Also:

	
For a complete list of operating system resource management and resource allocation and deallocation features that work with Oracle Database and Oracle Database Resource Manager, see your systems vendor and your Oracle representative. Oracle does not certify these system features for compatibility with specific release levels.

	
Oracle Database Administrator's Guide for information about Oracle Database Resource Manager.

	
Oracle Database Administrator's Guide for information about instance caging.

9.2 Resolving Operating System Issues

This section provides hints for tuning various systems by explaining the following topics:

	
Performance Hints on UNIX-Based Systems

	
Performance Hints on Windows Systems

	
Performance Hints on HP OpenVMS Systems

Familiarize yourself with platform-specific issues so that you know what performance options the operating system provides.

	
See Also:

Your Oracle platform-specific documentation and your operating system vendor's documentation

9.2.1 Performance Hints on UNIX-Based Systems

On UNIX systems, try to establish a good ratio between the amount of time the operating system spends fulfilling system calls and doing process scheduling and the amount of time the application runs. The goal should be to run most of the time in application mode, also called user mode, rather than system mode.

The ratio of time spent in each mode is only a symptom of the underlying problem, which might involve the following:

	
Paging or swapping

	
Executing too many operating system calls

	
Running too many processes

If such conditions exist, then there is less time available for the application to run. The more time you can release from the operating system side, the more transactions an application can perform.

9.2.2 Performance Hints on Windows Systems

On Windows systems, as with UNIX-based systems, establish an appropriate ratio between time in application mode and time in system mode. You can easily monitor many factors with the Windows administrative performance tool: CPU, network, I/O, and memory are all displayed on the same graph to assist you in avoiding bottlenecks in any of these areas.

9.2.3 Performance Hints on HP OpenVMS Systems

Consider the paging parameters on a mainframe, and remember that Oracle Database can exploit a very large working set.

Free memory in HP OpenVMS environments is actually memory that is not mapped to any operating system process. On a busy system, free memory likely contains a page belonging to one or more currently active process. When that access occurs, a soft page fault takes place, and the page is included in the working set for the process. If the process cannot expand its working set, then one of the pages currently mapped by the process must be moved to the free set.

Any number of processes might have pages of shared memory within their working sets. The sum of the sizes of the working sets can thus markedly exceed the available memory. When the Oracle server is running, the SGA, the Oracle Database kernel code, and the Oracle Forms run-time executable are normally all sharable and account for perhaps 80% or 90% of the pages accessed.

9.3 Understanding CPU

To address CPU problems, first establish appropriate expectations for the amount of CPU resources your system should be using. Then, determine whether sufficient CPU resources are available and recognize when your system is consuming too many resources. Begin by determining the amount of CPU resources the Oracle database instance utilizes with your system in the following three cases:

	
System is idle, when little Oracle Database and non-Oracle activity exists

	
System at average workloads

	
System at peak workloads

You can capture various workload snapshots using the Automatic Workload Repository, Statspack, or the UTLBSTAT/UTLESTAT utility. Operating system utilities—such as vmstat, sar, and iostat on UNIX and the administrative performance monitoring tool on Windows—can be used along with the V$OSSTAT or V$SYSMETRIC_HISTORY view during the same time interval as Automatic Workload Repository, Statspack, or UTLBSTAT/UTLESTAT to provide a complimentary view of the overall statistics.

	
See Also:

	
"Overview of the Automatic Workload Repository"

	
Chapter 6, "Automatic Performance Diagnostics" for more information on Oracle Database tools

Workload is an important factor when evaluating your system's level of CPU utilization. During peak workload hours, 90% CPU utilization with 10% idle and waiting time can be acceptable. Even 30% utilization at a time of low workload can be understandable. However, if your system shows high utilization at normal workload, then there is no room for a peak workload. For example, Figure 9-1 illustrates workload over time for an application having peak periods at 10:00 AM and 2:00 PM.

Figure 9-1 Average Workload and Peak Workload

[image: Description of Figure 9-1 follows]

This example application has 100 users working 8 hours a day. Each user entering one transaction every 5 minutes translates into 9,600 transactions daily. Over an 8-hour period, the system must support 1,200 transactions an hour, which is an average of 20 transactions a minute. If the demand rate were constant, then you could build a system to meet this average workload.

However, usage patterns are not constant and in this context, 20 transactions a minute can be understood as merely a minimum requirement. If the peak rate you need to achieve is 120 transactions a minute, then you must configure a system that can support this peak workload.

For this example, assume that at peak workload, Oracle Database uses 90% of the CPU resource. For a period of average workload, then, Oracle Database uses no more than about 15% of the available CPU resource, as illustrated in the following equation:

20 tpm / 120 tpm * 90% = 15% of available CPU resource

where tpm is transactions a minute.

If the system requires 50% of the CPU resource to achieve 20 tpm, then a problem exists: the system cannot achieve 120 transactions a minute using 90% of the CPU. However, if you tuned this system so that it achieves 20 tpm using only 15% of the CPU, then, assuming linear scalability, the system might achieve 120 transactions a minute using 90% of the CPU resources.

As users are added to an application, the workload can rise to what had previously been peak levels. No further CPU capacity is then available for the new peak rate, which is actually higher than the previous.

9.4 Resolving CPU Issues

You can resolve CPU capacity issues by:

	
Detecting and solving CPU problems from excessive consumption, as described in "Finding and Tuning CPU Utilization".

	
Reducing the impact of peak load use patterns by prioritizing CPU resource allocation using Oracle Database Resource Manager, as described in "Managing CPU Resources Using Oracle Database Resource Manager".

	
Using instance caging to limit the number of CPUs that a database instance can use simultaneously when running multiple database instances on a multi-CPU system, as described in "Managing CPU Resources Using Instance Caging".

	
Increasing hardware capacity and improving the system architecture, as described in "System Architecture".

9.4.1 Finding and Tuning CPU Utilization

Every process running on your system affects the available CPU resources. Therefore, tuning non-database factors can also improve database performance.

Use the V$OSSTAT or V$SYSMETRIC_HISTORY view to monitor system utilization statistics from the operating system. Useful statistics contained in V$OSSTAT and V$SYSMETRIC_HISTORY include:

	
Number of CPUs

	
CPU utilization

	
Load

	
Paging

	
Physical memory

	
See Also:

Oracle Database Reference for more information on V$OSSTAT and V$SYSMETRIC_HISTORY

You can use operating system monitoring tools to determine which processes run on the system as a whole. If the system is too heavily loaded, check the memory, I/O, and process management areas described later in this section.

You can use tools such as sar -u on many UNIX-based systems to examine the level of CPU utilization on the system. In UNIX, statistics show user time, system time, idle time, and time waiting for I/O. A CPU problem exists if idle time and time waiting for I/O are both close to zero (less than 5%) at a normal or low workload.

On Windows, you can use the administrative performance tool to monitor CPU utilization. This utility provides statistics on processor time, user time, privileged time, interrupt time, and DPC time.

This section contains the following topics related to checking system CPU utilization:

	
Checking Memory Management

	
Checking I/O Management

	
Checking Network Management

	
Checking Process Management

	
Note:

This section describes how to check system CPU utilization on most UNIX-based and Windows systems. For other platforms, see your operating system documentation.

9.4.1.1 Checking Memory Management

Check the following memory management areas:

	
Paging and Swapping

	
Oversize Page Tables

9.4.1.1.1 Paging and Swapping

Use the V$OSSTAT view, utilities such as sar or vmstat on UNIX, or the administrative performance tool on Windows, to investigate the cause of paging and swapping.

9.4.1.1.2 Oversize Page Tables

On UNIX, if the processing space becomes too large, then it can result in the page tables becoming too large. This is not an issue on Windows systems.

9.4.1.2 Checking I/O Management

Thrashing is an I/O management issue. Ensure that your workload fits into memory, so the computer is not thrashing (swapping and paging processes in and out of memory). The operating system allocates fixed portions of time during which CPU resources are available to your process. If the process wastes a large portion of each time period checking to ensure that it can run and ensuring that all necessary components are in the computer, then the process might be using only 50% of the time allotted to actually perform work.

	
See Also:

Chapter 8, "I/O Configuration and Design"

9.4.1.3 Checking Network Management

Check client/server round trips. There is an overhead in processing messages. When an application generates many messages that need to be sent through the network, the latency of sending a message can result in CPU overload. To alleviate this problem, bundle multiple messages rather than perform lots of round trips. For example, you can use array inserts, array fetches, and so on.

9.4.1.4 Checking Process Management

Several process management issues discussed in this section should be checked.

9.4.1.4.1 Scheduling and Switching

The operating system can spend excessive time scheduling and switching processes. Examine the way in which you are using the operating system, because it is possible that too many processes are in use. On Windows systems, do not overload the server with too many non-database processes.

9.4.1.4.2 Context Switching

Due to operating system specific characteristics, your system could be spending a lot of time in context switches. Context switching can be expensive, especially with a large SGA. Context switching is not an issue on Windows, which has only one process for each instance. All threads share the same page table.

Oracle Database has several features for context switching:

	
Post-wait driver

An Oracle process must be able to post another Oracle process (give it a message) and also must be able to wait to be posted. For example, a foreground process may need to post LGWR to tell it to write out all blocks up to a given point so that it can acknowledge a commit.

Often this post-wait mechanism is implemented through UNIX Semaphores, but these can be resource intensive. Therefore, some platforms supply a post-wait driver, typically a kernel device driver that is a lightweight method of implementing a post-wait interface.

	
Memory-mapped system timer

Oracle Database often needs to query the system time for timing information. This can involve an operating system call that incurs a relatively costly context switch. Some platforms implement a memory-mapped timer that uses an address within the processes virtual address space to contain the current time information. Reading the time from this memory-mapped timer is less expensive than the overhead of a context switch for a system call.

	
List I/O interfaces to submit multiple asynchronous I/Os in One Call

List I/O is an application programming interface that allows several asynchronous I/O requests to be submitted in a single system call, rather than submitting several I/O requests through separate system calls. The main benefit of this feature is to reduce the number of context switches required.

9.4.1.4.3 Starting New Operating System Processes

There is a high cost in starting new operating system processes. Developers often create a single-purpose process, exit the process, and then create a new one. This technique re-creates and destroys the process each time, consuming excessive amounts of CPU, especially in applications that have large SGAs. The CPU is needed to build the page tables each time. The problem is aggravated when you pin or lock shared memory because you must access every page.

For example, if you have a 1 gigabyte SGA, then you might have page table entries for every 4 KB, and a page table entry might be 8 bytes. You could end up with (1 GB / 4 KB) * 8 byte entries. This becomes expensive, because you need to continually ensure that the page table is loaded.

9.4.2 Managing CPU Resources Using Oracle Database Resource Manager

Oracle Database Resource Manager allocates and manages CPU resources among database users and applications in the following ways:

	
Preventing CPU saturation

If the CPUs run at 100%, then you can use Oracle Database Resource Manager to allocate a maximum amount of CPU to sessions in each consumer group. This feature can ensure that high-priority sessions can run immediately and lower the CPU consumption of low-priority sessions.

	
Limiting CPU usage for a consumer group

You can use the Resource Manager directive max_utilization_limit to place a hard limit on the percentage of CPU that a consumer group can use. This feature restricts the CPU consumption of low-priority sessions and can help provide more consistent performance for the workload in a consumer group.

	
Limiting damage from runaway queries

Starting with Oracle Database 11g Release 2 (11.2.0.2), Oracle Database Resource Manager can limit the damage from runaway queries by limiting the maximum execution time for a call, or by moving a long-running query to a lower-priority consumer group.

	
Limiting the parallel statement activity for a consumer group

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the Resource Manager directive parallel_target_percentage to prevent one consumer group from monopolizing all parallel servers. The database queues parallel statements if they would cause this limit to be exceeded.

For example, assume that the target number of parallel servers is 64, and the consumer group ETL has this directive set to 50%. If consumer group ETL is using 30 parallel servers, and if a new parallel statement needs 4 parallel servers, then the database would queue this statement.

	
See Also:

	
Oracle Database Administrator's Guide to learn how to use Oracle Database Resource Manager

	
Oracle Database VLDB and Partitioning Guide to learn how to use parallel query

9.4.3 Managing CPU Resources Using Instance Caging

When running multiple database instances on a single system, the instances compete for CPU resources. One resource-intensive database instance may significantly degrade the performance of the other instances. To avoid this problem, you can use instance caging to limit the number of CPUs that can used by each instance. Oracle Database Resource Manager then allocates CPU among the various database sessions according to the resource plan that you set for the instance, thereby minimizing the likelihood of the instance becoming CPU-bound.

	
See Also:

Oracle Database Administrator's Guide for information about using instance caging

8 I/O Configuration and Design

The I/O subsystem is a vital component of an Oracle database. This chapter introduces fundamental I/O concepts, discusses the I/O requirements of different parts of the database, and provides sample configurations for I/O subsystem design.

This chapter includes the following topics:

	
About I/O

	
I/O Configuration

	
I/O Calibration Inside the Database

	
I/O Calibration with the Oracle Orion Calibration Tool

8.1 About I/O

Every Oracle Database reads or write data on disk, the database generates disk I/O. The performance of many software applications is inherently limited by disk I/O. Applications that spend the majority of CPU time waiting for I/O activity to complete are said to be I/O-bound.

Oracle Database is designed so that if an application is well written, its performance should not be limited by I/O. Tuning I/O can enhance the performance of the application if the I/O system is operating at or near capacity and is not able to service the I/O requests within an acceptable time. However, tuning I/O cannot help performance if the application is not I/O-bound (for example, when CPU is the limiting factor).

Consider the following database requirements when designing an I/O system:

	
Storage, such as minimum disk capacity

	
Availability, such as continuous (24 x 7) or business hours only

	
Performance, such as I/O throughput and application response times

Many I/O designs plan for storage and availability requirements with the assumption that performance will not be an issue. This is not always the case. Optimally, the number of disks and controllers to be configured should be determined by I/O throughput and redundancy requirements. The size of disks can then be determined by the storage requirements.

When developing an I/O design plan, consider using Oracle Automatic Storage Management (Oracle ASM). Oracle ASM is an integrated, high-performance database file system and disk manager that is based on the principle that the database should manage storage instead of requiring an administrator to do it.

Oracle recommends that you use Oracle ASM for your database file storage, instead of raw devices or the operating system file system. Oracle ASM provides the following key benefits:

	
Striping

	
Mirroring

	
Online storage reconfiguration and dynamic rebalancing

	
Managed file creation and deletion

	
See Also:

Oracle Automatic Storage Management Administrator's Guide for additional information about Oracle ASM

8.2 I/O Configuration

This section describes the basic information to be gathered and decisions to be made when defining a system's I/O configuration. You want to keep the configuration as simple as possible, while maintaining the required availability, recoverability, and performance. The more complex a configuration becomes, the more difficult it is to administer, maintain, and tune.

This section contains the following topics:

	
Lay Out the Files Using Operating System or Hardware Striping

	
Manually Distributing I/O

	
When to Separate Files

	
Three Sample Configurations

	
Oracle Managed Files

	
Choosing Data Block Size

8.2.1 Lay Out the Files Using Operating System or Hardware Striping

If your operating system has LVM software or hardware-based striping, then it is possible to distribute I/O using these tools. Decisions to be made when using an LVM or hardware striping include stripe depth and stripe width.

	
Stripe depth is the size of the stripe, sometimes called stripe unit.

	
Stripe width is the product of the stripe depth and the number of drives in the striped set.

Choose these values wisely so that the system is capable of sustaining the required throughput. For an Oracle database, reasonable stripe depths range from 256 KB to 1 MB. Different types of applications benefit from different stripe depths. The optimal stripe depth and stripe width depend on the following:

	
Requested I/O Size

	
Concurrency of I/O Requests

	
Alignment of Physical Stripe Boundaries with Block Size Boundaries

	
Manageability of the Proposed System

8.2.1.1 Requested I/O Size

Table 8-1 lists the Oracle Database and operating system parameters that you can use to set I/O size:

Table 8-1 Oracle Database and Operating System Operational Parameters

	Parameter	Description
	
DB_BLOCK_SIZE

	
The size of single-block I/O requests. This parameter is also used in combination with multiblock parameters to determine multiblock I/O request size.

	
OS block size

	
Determines I/O size for redo log and archive log operations.

	
Maximum OS I/O size

	
Places an upper bound on the size of a single I/O request.

	
DB_FILE_MULTIBLOCK_READ_COUNT

	
The maximum I/O size for full table scans is computed by multiplying this parameter with DB_BLOCK_SIZE. (the upper value is subject to operating system limits). If this value is not set explicitly (or is set to 0), the default value corresponds to the maximum I/O size that can be efficiently performed and is platform-dependent.

	
SORT_AREA_SIZE

	
Determines I/O sizes and concurrency for sort operations.

	
HASH_AREA_SIZE

	
Determines the I/O size for hash operations.

In addition to I/O size, the degree of concurrency also helps in determining the ideal stripe depth. Consider the following when choosing stripe width and stripe depth:

	
On low-concurrency (sequential) systems, ensure that no single I/O visits the same disk twice. For example, assume that the stripe width is four disks, and the stripe depth is 32K. If a single 1MB I/O request (for example, for a full table scan) is issued by an Oracle server process, then each disk in the stripe must perform eight I/Os to return the requested data. To avoid this situation, the size of the average I/O should be smaller than the stripe width multiplied by the stripe depth. If this is not the case, then a single I/O request made by Oracle Database to the operating system results in multiple physical I/O requests to the same disk.

	
On high-concurrency (random) systems, ensure that no single I/O request is broken up into multiple physical I/O calls. Failing to do this multiplies the number of physical I/O requests performed in your system, which in turn can severely degrade the I/O response times.

8.2.1.2 Concurrency of I/O Requests

In a system with a high degree of concurrent small I/O requests, such as in a traditional OLTP environment, it is beneficial to keep the stripe depth large. Using stripe depths larger than the I/O size is called coarse grain striping. In high-concurrency systems, the stripe depth can be as follows, where n > 1:

n * DB_BLOCK_SIZE

Coarse grain striping allows a disk in the array to service several I/O requests. In this way, a large number of concurrent I/O requests can be serviced by a set of striped disks with minimal I/O setup costs. Coarse grain striping strives to maximize overall I/O throughput. Multiblock reads, as in full table scans, will benefit when stripe depths are large and can be serviced from one drive. Parallel query in a data warehouse environment is also a candidate for coarse grain striping because many individual processes each issue separate I/Os. If coarse grain striping is used in systems that do not have high concurrent requests, then hot spots could result.

In a system with a few large I/O requests, such as in a traditional DSS environment or a low-concurrency OLTP system, then it is beneficial to keep the stripe depth small. This is called fine grain striping. In such systems, the stripe depth is as follows, where n is smaller than the multiblock read parameters, such as DB_FILE_MULTIBLOCK_READ_COUNT:

n * DB_BLOCK_SIZE

Fine grain striping allows a single I/O request to be serviced by multiple disks. Fine grain striping strives to maximize performance for individual I/O requests or response time.

8.2.1.3 Alignment of Physical Stripe Boundaries with Block Size Boundaries

On some Oracle Database ports, a database block boundary may not align with the stripe. If your stripe depth is the same size as the database block, then a single I/O issued by Oracle Database may result in two physical I/O operations.

This is not optimal in an OLTP environment. To ensure a higher probability of one logical I/O resulting in no more than one physical I/O, the minimum stripe depth should be at least twice the Oracle block size. Table 8-2 shows recommended minimum stripe depth for random access and for sequential reads.

Table 8-2 Minimum Stripe Depth

	Disk Access	Minimum Stripe Depth
	
Random reads and writes

	
The minimum stripe depth is twice the Oracle block size.

	
Sequential reads

	
The minimum stripe depth is twice the value of DB_FILE_MULTIBLOCK_READ_COUNT, multiplied by the Oracle block size.

	
See Also:

The specific documentation for your platform

8.2.1.4 Manageability of the Proposed System

With an LVM, the simplest configuration to manage is one with a single striped volume over all available disks. In this case, the stripe width encompasses all available disks. All database files reside within that volume, effectively distributing the load evenly. This single-volume layout provides adequate performance in most situations.

A single-volume configuration is viable only when used in conjunction with RAID technology that allows easy recoverability, such as RAID 1. Otherwise, losing a single disk means losing all files concurrently and, hence, performing a full database restore and recovery.

In addition to performance, there is a manageability concern: the design of the system must allow disks to be added simply, to allow for database growth. The challenge is to do so while keeping the load balanced evenly.

For example, an initial configuration can involve the creation of a single striped volume over 64 disks, each disk being 16 GB. This is total disk space of 1 terabyte (TB) for the primary data. Sometime after the system is operational, an additional 80 GB (that is, five disks) must be added to account for future database growth.

The options for making this space available to the database include creating a second volume that includes the five new disks. However, an I/O bottleneck might develop, if these new disks are unable to sustain the I/O throughput required for the files placed on them.

Another option is to increase the size of the original volume. LVMs are becoming sophisticated enough to allow dynamic reconfiguration of the stripe width, which allows disks to be added while the system is online. This begins to make the placement of all files on a single striped volume feasible in a production environment.

If your LVM cannot support dynamically adding disks to the stripe, then it is likely that you need to choose a smaller, more manageable stripe width. Then, when new disks are added, the system can grow by a stripe width.

In the preceding example, eight disks might be a more manageable stripe width. This is only feasible if eight disks are capable of sustaining the required number of I/Os each second. Thus, when extra disk space is required, another eight-disk stripe can be added, keeping the I/O balanced across the volumes.

	
Note:

The smaller the stripe width becomes, the more likely it is that you will need to spend time distributing the files on the volumes, and the closer the procedure becomes to manually distributing I/O.

8.2.2 Manually Distributing I/O

If your system does not have an LVM or hardware striping, then I/O must be manually balanced across the available disks by distributing the files according to each file's I/O requirements. In order to make decisions on file placement, you should be familiar with the I/O requirements of the database files and the capabilities of the I/O system. If you are not familiar with this data and do not have a representative workload to analyze, you can make a first guess and then tune the layout as the usage becomes known.

To stripe disks manually, you need to relate a file's storage requirements to its I/O requirements.

	
Evaluate database disk-storage requirements by checking the size of the files and the disks.

	
Identify the expected I/O throughput for each file. Determine which files have the highest I/O rate and which do not have many I/Os. Lay out the files on all the available disks so as to even out the I/O rate.

One popular approach to manual I/O distribution suggests separating a frequently used table from its index. This is not correct. During the course of a transaction, the index is read first, and then the table is read. Because these I/Os occur sequentially, the table and index can be stored on the same disk without contention. It is not sufficient to separate a data file simply because the data file contains indexes or table data. The decision to segregate a file should be made only when the I/O rate for that file affects database performance.

8.2.3 When to Separate Files

Regardless of whether you use operating system striping or manual I/O distribution, if the I/O system or I/O layout is not able to support the I/O rate required, then you need to separate files with high I/O rates from the remaining files. You can identify such files either at the planning stage or after the system is live.

The decision to segregate files should only be driven by I/O rates, recoverability concerns, or manageability issues. (For example, if your LVM does not support dynamic reconfiguration of stripe width, then you might need to create smaller stripe widths to be able to add n disks at a time to create a new stripe of identical configuration.)

Before segregating files, verify that the bottleneck is truly an I/O issue. The data produced from investigating the bottleneck identifies which files have the highest I/O rates.

The following sections describe how to segregate the following file types:

	
Tables, Indexes, and TEMP Tablespaces

	
Redo Log Files

	
Archived Redo Logs

	
See Also:

"Identifying High-Load SQL"

8.2.3.1 Tables, Indexes, and TEMP Tablespaces

If the files with high I/O are data files belonging to tablespaces that contain tables and indexes, then identify whether the I/O for those files can be reduced by tuning SQL or application code.

If the files with high-I/O are data files that belong to the TEMP tablespace, then investigate whether to tune the SQL statements performing disk sorts to avoid this activity, or to tune the sorting.

After the application has been tuned to avoid unnecessary I/O, if the I/O layout is still not able to sustain the required throughput, then consider segregating the high-I/O files.

	
See Also:

"Identifying High-Load SQL"

8.2.3.2 Redo Log Files

If the high-I/O files are redo log files, then consider splitting the redo log files from the other files. Possible configurations can include the following:

	
Placing all redo logs on one disk without any other files. Also consider availability; members of the same group should be on different physical disks and controllers for recoverability purposes.

	
Placing each redo log group on a separate disk that does not store any other files.

	
Striping the redo log files across several disks, using an operating system striping tool. (Manual striping is not possible in this situation.)

	
Avoiding the use of RAID 5 for redo logs.

Redo log files are written sequentially by the Log Writer (LGWR) process. This operation can be made faster if there is no concurrent activity on the same disk. Dedicating a separate disk to redo log files usually ensures that LGWR runs smoothly with no further tuning necessary. If your system supports asynchronous I/O but this feature is not currently configured, then test to see if using this feature is beneficial. Performance bottlenecks related to LGWR are rare.

8.2.3.3 Archived Redo Logs

If the archiver is slow, then it might be prudent to prevent I/O contention between the archiver process and LGWR by ensuring that archiver reads and LGWR writes are separated. This is achieved by placing logs on alternating drives.

For example, suppose a system has four redo log groups, each group with two members. To create separate-disk access, the eight log files should be labeled 1a, 1b, 2a, 2b, 3a, 3b, 4a, and 4b. This requires at least four disks, plus one disk for archived files.

Figure 8-1 illustrates how redo members should be distributed across disks to minimize contention.

Figure 8-1 Distributing Redo Members Across Disks

[image: Description of Figure 8-1 follows]

In this example, LGWR switches out of log group 1 (member 1a and 1b) and writes to log group 2 (2a and 2b). Concurrently, the archiver process reads from group 1 and writes to its archive destination. Note how the redo log files are isolated from contention.

	
Note:

Mirroring redo log files, or maintaining multiple copies of each redo log file on separate disks, does not slow LGWR considerably. LGWR writes to each disk in parallel and waits until each part of the parallel write is complete. Thus, a parallel write does not take longer than the longest possible single-disk write.

Because redo logs are written serially, drives dedicated to redo log activity generally require limited head movement. This significantly accelerates log writing.

8.2.4 Three Sample Configurations

This section contains three high-level examples of configuring I/O systems. These examples include sample calculations that define the disk topology, stripe depths, and so on:

	
Stripe Everything Across Every Disk

	
Move Archive Logs to Different Disks

	
Move Redo Logs to Separate Disks

8.2.4.1 Stripe Everything Across Every Disk

The simplest approach to I/O configuration is to build one giant volume, striped across all available disks. To account for recoverability, the volume is mirrored (RAID 1). The striping unit for each disk should be larger than the maximum I/O size for the frequent I/O operations. This provides adequate performance for most cases.

8.2.4.2 Move Archive Logs to Different Disks

If archived redo log files are striped on the same set of disks as other files, then any I/O requests on those disks could suffer when the database is archiving the redo logs. Moving archived redo log files to separate disks provides the following benefits:

	
The archive can be performed at very high rate (using sequential I/O).

	
Nothing else is affected by the degraded response time on the archive destination disks.

The number of disks for archive logs is determined by the rate of archive log generation and the amount of archive storage required.

8.2.4.3 Move Redo Logs to Separate Disks

In high-update OLTP systems, the redo logs are write-intensive. Moving the redo log files to disks that are separate from other disks and from archived redo log files has the following benefits:

	
Writing redo logs is performed at the highest possible rate. Hence, transaction processing performance is at its best.

	
Writing of the redo logs is not impaired with any other I/O.

The number of disks for redo logs is mostly determined by the redo log size, which is generally small compared to current technology disk sizes. Typically, a configuration with two disks (possibly mirrored to four disks for fault tolerance) is adequate. In particular, by having the redo log files alternating on two disks, writing redo log information to one file does not interfere with reading a completed redo log for archiving.

8.2.5 Oracle Managed Files

When file systems can contain all Oracle Database data, database administration is simplified by using Oracle Managed Files. Oracle Database internally uses standard file system interfaces to create and delete files as needed for tablespaces, temp files, online logs, and control files. Administrators only specify the file system directory to be used for a particular type of file. You can specify one default location for data files and up to five multiplexed locations for the control and online redo log files.

Oracle Database ensures that a unique file is created and then deleted when it is no longer needed. This reduces corruption caused by administrators specifying the wrong file, reduces wasted disk space consumed by obsolete files, and simplifies creation of test and development databases. It also makes development of portable third-party tools easier, because it eliminates the need to put operating system-specific file names in SQL scripts.

New files can be created as Oracle Managed Files, while old ones are administered in the old way. Thus, a database can have a mixture of Oracle Managed Files and user-managed files.

	
Note:

Oracle Managed Files cannot be used with raw devices.

Several points should be considered when tuning Oracle Managed Files:

	
Because Oracle Managed Files require the use of a file system, DBAs give up control over how the data is laid out. Therefore, it is important to correctly configure the file system.

	
Build the file system for Oracle Managed Files on top of an LVM that supports striping. For load balancing and improved throughput, stripe the disks in the file system.

	
Oracle Managed Files work best if used on an LVM that supports dynamically extensible logical volumes. Otherwise, configure the logical volumes as large as possible.

	
Oracle Managed Files work best if the file system provides large extensible files.

	
See Also:

Oracle Database Administrator's Guide for detailed information on using Oracle Managed Files

8.2.6 Choosing Data Block Size

A block size of 8 KB is optimal for most systems. However, OLTP systems occasionally use smaller block sizes and DSS systems occasionally use larger block sizes. This section discusses considerations when choosing database block size for optimal performance and contains the following topics:

	
Reads

	
Writes

	
Block Size Advantages and Disadvantages

	
Note:

The use of multiple block sizes in a single database instance is not encouraged because of manageability issues.

8.2.6.1 Reads

Regardless of the size of the data, the goal is to minimize the number of reads required to retrieve the desired data.

	
If the rows are small and access is predominantly random, then choose a smaller block size.

	
If the rows are small and access is predominantly sequential, then choose a larger block size.

	
If the rows are small and access is both random and sequential, then it might be effective to choose a larger block size.

	
If the rows are large, such as rows containing large object (LOB) data, then choose a larger block size.

8.2.6.2 Writes

For high-concurrency OLTP systems, consider appropriate values for INITRANS, MAXTRANS, and FREELISTS when using a larger block size. These parameters affect the degree of update concurrency allowed within a block. However, you do not need to specify the value for FREELISTS when using automatic segment-space management.

If you are uncertain about which block size to choose, then try a database block size of 8 KB for most systems that process a large number of transactions. This represents a good compromise and is usually effective. Only systems processing LOB data need more than 8 KB.

	
See Also:

The Oracle Database installation documentation specific to your operating system for information about the minimum and maximum block size on your platform

8.2.6.3 Block Size Advantages and Disadvantages

Table 8-3 lists the advantages and disadvantages of different block sizes.

Table 8-3 Block Size Advantages and Disadvantages

	Block Size	Advantages	Disadvantages
	
Smaller

	
Good for small rows with lots of random access.

Reduces block contention.

	
Has relatively large space overhead due to metadata (that is, block header).

Not recommended for large rows. There might only be a few rows stored for each block, or worse, row chaining if a single row does not fit into a block,

	
Larger

	
Has lower overhead, so there is more room to store data.

Permits reading several rows into the buffer cache with a single I/O (depending on row size and block size).

Good for sequential access or very large rows (such as LOB data).

	
Wastes space in the buffer cache, if you are doing random access to small rows and have a large block size. For example, with an 8 KB block size and 50 byte row size, you waste 7,950 bytes in the buffer cache when doing random access.

Not good for index blocks used in an OLTP environment, because they increase block contention on the index leaf blocks.

8.3 I/O Calibration Inside the Database

The I/O calibration feature of Oracle Database enables you to assess the performance of the storage subsystem, and determine whether I/O performance problems are caused by the database or the storage subsystem. Unlike other external I/O calibration tools that issue I/Os sequentially, the I/O calibration feature of Oracle Database issues I/Os randomly using Oracle data files to access the storage media, producing results that more closely match the actual performance of the database.

The section describes how to use the I/O calibration feature of Oracle Database and contains the following topics:

	
Prerequisites for I/O Calibration

	
Running I/O Calibration

Oracle Database also provides Orion, an I/O calibration tool. Orion is a tool for predicting the performance of an Oracle database without having to install Oracle or create a database. Unlike other I/O calibration tools, Oracle Orion is expressly designed for simulating Oracle database I/O workloads using the same I/O software stack as Oracle. Orion can also simulate the effect of striping performed by Oracle Automatic Storage Management. For more information, see "I/O Calibration with the Oracle Orion Calibration Tool".

8.3.1 Prerequisites for I/O Calibration

Before running I/O calibration, ensure that the following requirements are met:

	
The user must be granted the SYSDBA privilege

	
timed_statistics must be set to TRUE

	
Asynchronous I/O must be enabled

When using file systems, asynchronous I/O can be enabled by setting the FILESYSTEMIO_OPTIONS initialization parameter to SETALL.

	
Ensure that asynchronous I/O is enabled for data files by running the following query:

COL NAME FORMAT A50
SELECT NAME,ASYNCH_IO FROM V$DATAFILE F,V$IOSTAT_FILE I
WHERE F.FILE#=I.FILE_NO
AND FILETYPE_NAME='Data File';

Additionally, only one calibration can be performed on a database instance at a time.

8.3.2 Running I/O Calibration

The I/O calibration feature of Oracle Database is accessed using the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure. This procedure issues an I/O intensive read-only workload, made up of one megabyte of random of I/Os, to the database files to determine the maximum IOPS (I/O requests per second) and MBPS (megabytes of I/O per second) that can be sustained by the storage subsystem.

The I/O calibration occurs in two steps:

	
In the first step of I/O calibration with the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure, the procedure issues random database-block-sized reads, by default, 8 KB, to all data files from all database instances. This step provides the maximum IOPS, in the output parameter max_iops, that the database can sustain. The value max_iops is an important metric for OLTP databases. The output parameter actual_latency provides the average latency for this workload. When you need a specific target latency, you can specify the target latency with the input parameter max_latency (specifies the maximum tolerable latency in milliseconds for database-block-sized IO requests).

	
The second step of calibration using the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure issues random, 1 MB reads to all data files from all database instances. The second step yields the output parameter max_mbps, which specifies the maximum MBPS of I/O that the database can sustain. This step provides an important metric for data warehouses.

The calibration runs more efficiently if the user provides the num_physical_disks input parameter, which specifies the approximate number of physical disks in the database storage system.

Due to the overhead from running the I/O workload, I/O calibration should only be performed when the database is idle, or during off-peak hours, to minimize the impact of the I/O workload on the normal database workload.

To run I/O calibration and assess the I/O capability of the storage subsystem used by Oracle Database, use the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure:

SET SERVEROUTPUT ON
DECLARE
 lat INTEGER;
 iops INTEGER;
 mbps INTEGER;
BEGIN
-- DBMS_RESOURCE_MANAGER.CALIBRATE_IO (<DISKS>, <MAX_LATENCY>, iops, mbps, lat);
 DBMS_RESOURCE_MANAGER.CALIBRATE_IO (2, 10, iops, mbps, lat);

 DBMS_OUTPUT.PUT_LINE ('max_iops = ' || iops);
 DBMS_OUTPUT.PUT_LINE ('latency = ' || lat);
 dbms_output.put_line('max_mbps = ' || mbps);
end;
/

When running the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure, consider the following:

	
Only run one calibration at a time on databases that use the same storage subsystem. If you simultaneously run the calibration across separate databases that use the same storage subsystem, the calibration will fail.

	
Quiesce the database to minimize I/O on the instance.

	
For Oracle Real Application Clusters (Oracle RAC) configurations, ensure that all instances are opened to calibrate the storage subsystem across nodes.

	
For an Oracle Real Application Clusters (Oracle RAC) database, the workload is simultaneously generated from all instances.

	
The num_physical_disks input parameter is optional. By setting the num_physical_disks parameter to the approximate number of physical disks in the database's storage system, the calibration can be faster and more accurate.

	
In some cases, asynchronous I/O is permitted for data files, but the I/O subsystem for submitting asynchronous I/O may be maximized, and I/O calibration cannot continue. In such cases, refer to the port-specific documentation for information about checking the maximum limit for asynchronous I/O on the system.

At any time during the I/O calibration process, you can query the calibration status in the V$IO_CALIBRATION_STATUS view. After I/O calibration is successfully completed, you can view the results in the DBA_RSRC_IO_CALIBRATE table.

	
See Also:

	
Oracle Database PL/SQL Packages and Types Reference for more information about running the DBMS_RESOURCE_MANAGER.CALIBRATE_IO procedure

	
Oracle Database Reference for information about the V$IO_CALIBRATION_STATUS view and DBA_RSRC_IO_CALIBRATE table

8.4 I/O Calibration with the Oracle Orion Calibration Tool

This section describes the Oracle Orion Calibration Tool and includes the following sections:

	
Introduction to the Oracle Orion Calibration Tool

	
Getting Started with Orion

	
Orion Input Files

	
Orion Parameters

	
Orion Output Files

	
Orion Troubleshooting

8.4.1 Introduction to the Oracle Orion Calibration Tool

Oracle Orion is a tool for predicting the performance of an Oracle database without having to install Oracle or create a database. Unlike other I/O calibration tools, Oracle Orion is expressly designed for simulating Oracle database I/O workloads using the same I/O software stack as Oracle. Orion can also simulate the effect of striping performed by Oracle Automatic Storage Management.

Table 8-4 lists the types of I/O workloads that Orion supports.

For each type of workload shown in Table 8-4, Orion can run tests using different I/O loads to measure performance metrics such as MBPS, IOPS, and I/O latency. Load is expressed in terms of the number of outstanding asynchronous I/Os. Internally, for each such load level, the Orion software keeps issuing I/O requests as fast as they complete to maintain the I/O load at that level. For random workloads, using either large or small sized I/Os, the load level is the number of outstanding I/Os. For large sequential workloads, the load level is a combination of the number of sequential streams and the number of outstanding I/Os per stream. Testing a given workload at a range of load levels can help you understand how performance is affected by load.

Note the following when you use Orion:

	
Run Orion when the storage is idle (or pretty close to idle). Orion calibrates the performance of the storage based on the I/O load it generates; Orion is not able to properly assess the performance if non-Orion I/O workloads run simultaneously.

	
If a database has been created on the storage, the storage can alternatively be calibrated using the PL/SQL routine dbms_resource_manager.calibrate_io().

Table 8-4 Orion I/O Workload Support

	Workload	Description
	
Small Random I/O

	
OLTP applications typically generate random reads and writes whose size is equivalent to the database block size, typically 8 KB. Such applications typically care about the throughput in I/Os Per Second (IOPS) and about the average latency (I/O turn-around time) per request. These parameters translate to the transaction rate and transaction turn-around time at the application layer.

Orion simulates a random I/O workload with a given percentage of reads compared to writes, a given I/O size, and a given number of outstanding I/Os. In this Orion workload simulation, the I/Os are distributed across all disks.

	
Large Sequential I/O

	
Data warehousing applications, data loads, backups, and restores generate sequential read and write streams composed of multiple outstanding 1 MB I/Os. Such applications are processing large amounts of data, such as a whole table or a whole database and they typically care about the overall data throughput in MegaBytes Per Second (MBPS).

Orion can simulate a given number of sequential read or write streams of a given I/O size with a given number of outstanding I/Os. Orion can optionally simulate Oracle Automatic Storage Management striping when testing sequential streams.

	
Large Random I/O

	
A sequential stream typically accesses the disks concurrently with other database traffic. With striping, a sequential stream is spread across many disks. Consequently, at the disk level, multiple sequential streams are seen as random 1 MB I/Os.

	
Mixed Workloads

	
Orion can simulate two simultaneous workloads: Small Random I/O and either Large Sequential I/O or Large Random I/O. This workload type enables you to simulate, for example, an OLTP workload of 8 KB random reads and writes with a backup workload of four sequential read streams of 1 MB I/Os.

Each Orion data point is a test for a specific mix of small and large I/O loads sustained for a duration. An Orion test consists of multiple data point tests. These data point tests can be represented as a two-dimensional matrix. Each column in the matrix represents data point tests with the same small I/O load, but varying large I/O loads. Each row represents data point tests with the same large I/O load, but varying small I/O loads. An Orion test can be for a single point, a single row, a single column, or for the whole matrix.

8.4.1.1 Orion Test Targets

You can use Orion to test any disk-based character device that supports asynchronous I/O. Orion has been tested on the following types of targets:

	
DAS (direct-attached) storage: You can use Orion to test the performance of one or more local disks, volumes, or files on the local host.

	
SAN (storage-area network) storage: Orion can be run on any host that has all or parts of the SAN storage mapped as character devices. The devices can correspond to striped or un-striped volumes exported by the storage array(s), or individual disks, or one or more whole arrays.

	
NAS (network-attached storage): You can use Orion to test the performance on data files on NAS storage. In general, the performance results on NAS storage are dependent on the I/O patterns with which the data files have been created and updated. Therefore, you should initialize the data files appropriately before running Orion.

8.4.1.2 Orion for Oracle Administrators

Oracle administrators can use Orion to evaluate and compare different storage arrays, based on the expected workloads. Oracle administrators can also use Orion to determine the optimal number of network connections, storage arrays, storage array controllers, and disks for the expected peak workloads.

8.4.2 Getting Started with Orion

To get started using Orion, do the following:

	
Select a test name to use with the Orion –testname parameter. This parameter specifies a unique identifier for your Orion run. For example, use the test name "mytest". For more information, see "Orion Parameters".

	
Create an Orion input file, based on the test name. For example, create a file named mytest.lun. In the input file list the raw volumes or files to test. Add one volume name per line. Do not put comments or anything else in the .lun file.

For example, an Orion input file could contain the following:

/dev/raw/raw1
/dev/raw/raw2
/dev/raw/raw3
/dev/raw/raw4
/dev/raw/raw5
/dev/raw/raw6
/dev/raw/raw7
/dev/raw/raw8

For more information, see "Orion Input Files".

	
Verify that the all volumes specified in the input file, for example mytest.lun, are accessible using the command dd or another equivalent file viewing utility. For example, for a typical sanity-check try the following on a Linux system:

$ dd if=/dev/raw/raw1 of=/dev/null bs=32k count=1024

Depending on your platform, the file viewing utility you use and its interface may be different.

	
Verify that your platform has the necessary libraries installed to do asynchronous I/Os. The Orion test is completely dependent on asynchronous I/O. On Linux and Solaris, the library libaio must be in the standard lib directories or accessible through the shell environment's library path variable (usually LD_LIBRARY_PATH or LIBPATH, depending on your shell). Windows has built-in asynchronous I/O libraries, so this issue does not apply.

	
As a first test with Orion, use –run with either the oltp or dss option. If the database is primarily OLTP, then use –run oltp. If the database is primarily for data warehousing or analytics, then use –run dss.

For example, use the following command to run an OLTP-like workload using the default input file name, orion.lun:

$./orion -run oltp

The I/O load levels generated by Orion take into account the number of disk spindles being tested (or specified with the –num_disks parameter). Keep in mind that the number of spindles may or may not be related to the number of volumes specified in the input file, depending on how these volumes are mapped.

	
The section, "Orion Output Files" provides sample results showing the Orion output files. Using the sample file mytest_summary.txt is a good starting point for verifying the input parameters and analyzing the output. The sample files mytest_*.csv contain comma-delimited values for several I/O performance measures. For more information, see "Orion Output Files".

8.4.3 Orion Input Files

When you specify the Orion –testname <testname> parameter, this sets the test name prefix for the Orion input and output filenames. The default value for the –testname option is "orion".

The Orion input file, <testname>.lun should contain a carriage-return-separated list of LUNs.

8.4.4 Orion Parameters

Use the Orion command parameters to specify the I/O workload type and to specify other Orion options.

8.4.4.1 Orion Required Parameter

The –run parameter is required with the Orion command. Table 8-5 describes the –run parameter.

Table 8-5 Required Orion Parameter

	Option	Description	Default
	
–run level

	
Specifies the test run level to be level. This option provides the run level and allows complex commands to be specified at the advanced level. If not set as –run advanced, then setting any other parameter, besides –cache_size or –verbose, results in an error.

Except advanced, all of the –run level settings use a pre-specified set of parameters.

The level must be one of:

	
oltp

Tests with random small (8K) I/Os at increasing loads to determine the maximum IOPS.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
 -num_large 0 -size_small 8 -type rand \
 -simulate concat -write 0 -duration 60 \
 -matrix row

	
dss

Tests with random large (1M) I/Os at increasing loads to determine the maximum throughput.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
 -num_small 0 -size_large 1024 -type rand \
 -simulate concat -write 0 -duration 60 \
 -matrix column

	
simple

Generates the Small Random I/O and the Large Random I/O workloads for a range of load levels. In this option, small and large I/Os are tested in isolation. The only optional parameters that can be specified at this run level are –cache_size and –verbose.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix basic

	
normal

Same as simple, but also generates combinations of the small random I/O and large random I/O workloads for a range of loads. The only optional parameters that can be specified at this run level are –cache_size and –verbose.

This parameter corresponds to the following Orion invocation:

%> ./orion -run advanced \
-size_small 8 -size_large 1024 -type rand \
-simulate concat -write 0 -duration 60 \
-matrix detailed

	
advanced

Tests the workload you specify with optional parameters. Any of the optional parameters can be specified at this run level.

	
normal

8.4.4.2 Orion Optional Parameters

Table 8-6 Optional Orion Parameters

	Option	Description	Default
	
–cache_size num

	
Size of the storage array's read or write cache (in MB). For Large Sequential I/O workloads, Orion warms the cache by doing random large I/Os before each data point. Orion uses the cache size to determine the duration for this cache warming operation. If set to 0, do not perform cache warming.

Unless this option is set to 0, Orion issues several unmeasured, random I/Os before each large sequential data point. These I/Os fill up the storage array's cache, if any, with random data so that I/Os from one data point do not result in cache hits for the next data point. Read tests are preceded with junk reads and write tests are preceded with junk writes. If specified, this 'cache warming' is performed until num MBs of I/O have been read or written.

	
Default Value:

If not specified, warming occurs for a default amount of time (two minutes). That is, issue two minutes of unmeasured random I/Os before each data point.

	
–duration num_seconds

	
Set the duration to test each data point in seconds to the value num_seconds.

	
Default Value: 60

	
–help

	
Prints Orion help information. All other options are ignored with help set.

	

	
–matrix type

	
Type of mixed workloads to test over a range of loads. An Orion test consists of multiple data point tests. The data point tests can be represented as a two-dimensional matrix.

Each column in the matrix represents data point tests with the same small I/O load, but varying large I/O loads. Each row represents data point tests with the same large I/O load, but varying small I/O loads. An Orion test can be for a single point, a single row, a single column, or the whole matrix, depending on the matrix type:

	
basic: No mixed workload. The Small Random and Large Random/Sequential workloads are tested separately. Test small I/Os only, then large I/Os only.

	
detailed: Small Random and Large Random/Sequential workloads are tested in combination. Test entire matrix.

	
point: A single data point with S outstanding Small Random I/Os and L outstanding Large Random I/Os or sequential streams. S is set by the –num_small parameter. L is set by the –num_large parameter. Test with –num_small small I/Os, –num_large large I/Os.

	
col: Large Random/Sequential workloads only. Test a varying large I/O load with –num_small small I/Os.

	
row: Small Random workloads only. Test a varying small I/O load with –num_large large I/Os.

	
max: Same as detailed, but only tests the workload at the maximum load, specified by the –num_small and –num_large parameters. Test varying loads up to the –num_small and –num_large limits.

	
Default Value: basic

	
–num_disks value

	
Specify the number of physical disks used by the test. Used to generate a range for the load. Specifies the number of disks (physical spindles). This number value is used to gauge the range of loads that Orion should test at. Increasing this parameter results in Orion using heavier I/O loads.

	
Default Value: the number of LUNs in <testname>.lun.

	
–num_large value

	
Controls the large I/O load.

Note, this option only applies when –matrix is specified as: row, point, or max.

When the –type option is set to rand, the parameter argument value specifies the number of outstanding large I/Os.

When the –type option is set to seq, the parameter argument value specifies the number of sequential I/O streams.

	
Default Value: no default

	
–num_small

	
Specify the maximum number of outstanding I/Os for the Small Random I/O workload.

Note: this only applies when –matrix is specified as col, point, or max.

	
Default Value: no default

	
–num_streamIO num

	
Specify the number of concurrent I/Os per stream as num.

Note: this parameter is only used if –type is seq.

	
Default Value: 4

	
–simulate type

	
Data layout to simulate for Large Sequential I/O workload. Orion tests on a virtual LUN formed by combining specified LUNs in one of these ways. The type is one:

	
concat: A virtual volume is simulated by serially chaining the specified LUNs. A sequential test over this virtual volume will go from some point to the end of each one LUN, followed by the beginning to end of the next LUN, and so on.

	
raid0: A virtual volume is simulated by striping across the specified LUNs. Each sequential stream issues I/Os across all LUNs using raid0 striping. The stripe depth is 1M by default, to match the Oracle Automatic Storage Management stripe depth, and can be changed with the –stripe parameter.

The offsets for I/Os are determined as follows:

For Small Random and Large Random workloads:

	
The LUNs are concatenated into a single virtual LUN (VLUN) and random offsets are chosen within the VLUN.

For Large Sequential workloads:

	
With striping (–simulate raid0). The LUNs are used to create a single striped VLUN. With no concurrent Small Random workload, the sequential streams start at fixed offsets within the striped VLUN. For n streams, stream i start at offset VLUNsize * (i + 1) / (n + 1), unless n is 1, in which case the single stream start at offset 0. With a concurrent Small Random workload, streams start at random offsets within the striped VLUN.

	
Without striping (–simulate CONCAT). The LUNs are concatenated into a single VLUN. The streams start at random offsets within the single VLUN.

This parameter is typically only used if –type is seq.

	
Default Value: concat

	
–size_large num

	
Specify the num, size of the I/Os (in KB) for the Large Random or Sequential I/O workload.

	
Default Value: 1024

	
–size_small num

	
Specify the num, size of the I/Os (in KB) for the Small Random I/O workload.

	
Default Value: 8

	
–testname tname

	
Specify the tname identifier for the test run. When specified, the input file containing the LUN disk or file names must be named <tname>.lun.

The output files are named with the prefix <tname>_.

	
Default Value: orion

	
–type [rand | seq]

	
Type of the Large I/O workload.

	
rand: Randomly distributed large I/Os.

	
seq: Sequential streams of large I/Os.

	
Default Value: rand

	
–verbose

	
Prints status and tracing information to standard output.

	
Default Value: option not set

	
–write num_write

	
Specify the percentage of I/Os that are writes to num_write; the rest being reads.

This parameter applies to both the Large and Small I/O workloads. For Large Sequential I/Os, each stream is either read-only or write-only; the parameter specifies the percentage of streams that are write-only. The data written to disk is garbage and unrelated to any existing data on the disk.

Caution: write tests obliterate all data on the specified LUNS.

	
Default Value: 0

	
Caution:

Write tests obliterate all data on the specified LUNS.

8.4.4.3 Orion Command Line Samples

The following provides sample Orion commands for different types of I/O workloads:

	
To evaluate storage for an OLTP database:

-run oltp

	
To evaluate storage for a data warehouse:

-run dss

	
For a basic set of data:

-run normal

	
To understand your storage performance with read-only, small and large random I/O workload:

$ orion -run simple

	
To understand your storage performance with a mixed small and large random I/O workload:

$ orion -run normal

	
To generate combinations of 32KB and 1MB reads to random locations:

$ orion -run advanced -size_small 32 \
-size_large 1024 -type rand -matrix detailed

	
To generate multiple sequential 1 MB write streams, simulating 1 MB RAID-0 stripes:

$ orion -run advanced -simulate raid0 \
-stripe 1024 -write 100 -type seq -matrix col -num_small 0

	
To generate combinations of 32 KB and 1 MB reads to random locations:

 -run advanced -size_small 32 -size_large 1024 -type rand -matrix detailed

	
To generate multiple sequential 1 MB write streams, simulating RAID0 striping:

 -run advanced -simulate raid0 -write 100 -type seq -matrix col -num_small 0

8.4.5 Orion Output Files

The output files for a test run are prefixed by <testname>_<date> where date is yyyymmdd_hhmm.

Table 8-7 lists the Orion output files.

Table 8-7 Orion Generated Output Files

	Output File	Description
	
<testname>_<date>_hist.csv

	
Histogram of I/O latencies.

	
<testname>_<date>_iops.csv

	
Performance results of small I/Os in IOPS.

	
<testname>_<date>_lat.csv

	
Latency of small I/Os in microseconds.

	
<testname>_<date>_mbps.csv

	
Performance results of large I/Os in MBPS.

	
<testname>_<date>_summary.txt

	
Summary of the input parameters, along with the minimum small I/O latency (in secs), the maximum MBPS, and the maximum IOPS observed.

	
<testname>_<date>_trace.txt

	
Extended, unprocessed output.

	
Caution:

If you are performing write tests, be prepared to lose any data stored on the LUNs.

8.4.5.1 Orion Sample Output Files

Orion creates several output files as specified in Table 8-7. For the sample "mytest" shown in the section, "Getting Started with Orion", the output files are:

	
mytest_summary.txt: This file contains:

	
Input parameters

	
Maximum throughput observed for the Large Random/Sequential workload

	
Maximum I/O rate observed for the Small Random workload

	
Minimum latency observed for the Small Random workload

	
mytest_mbps.csv: comma-delimited value file containing the data transfer rate (MBPS) results for the Large Random/Sequential workload. In the general case, this and all other CSV files contains a two-dimensional table. Each row in the table corresponds to a large I/O load level and each column corresponds to a specific small I/O load level. Thus, the column headings are the number of outstanding small I/Os and the row headings are the number of outstanding large I/Os (for random large I/O tests) or the number of sequential streams (for sequential large I/O tests).

Example 8-1 shows the first few data points of the Orion MBPS output CSV file for "mytest". The simple mytest command-line does not test combinations of large and small I/Os. Hence, the MBPS file has just one column corresponding to 0 outstanding small I/Os. In Example 8-1, at a load level of 8 outstanding large reads and no small I/Os, the report data indicates a throughput of 103.06 MBPS.

Example 8-1 Mytest Sample Data Points

Large/Small, 0

1, 19.18
2, 37.59
4, 65.53
6, 87.03
8, 103.06
10, 109.67
.
.

Figure 8-2 shows a sample data transfer rate measured at different large I/O load levels. This chart can be generated by loading mytest_mbps.csv into a spreadsheet and graphing the data points. Orion does not directly generate such graphs. The x-axis corresponds to the number of outstanding large reads and the y-axis corresponds to the throughput observed.

The graph shown in Figure 8-2 shows typical storage system behavior. As the number of outstanding I/O requests is increased, the throughput increases. However, at a certain point the throughput level stabilizes, indicating the storage system's maximum throughput value.

Figure 8-2 Sample I/O Load Levels

[image: Description of Figure 8-2 follows]

	
mytest_iops.csv: Comma-delimited value file containing the I/O throughput (in IOPS) results for the Small Random workload. Like in the MBPS file, the column headings are the number of outstanding small I/Os and the row headings are the number of outstanding large I/Os, when testing large random, or the number of sequential streams (for large sequential).

In the general case, a CSV file contains a two-dimensional table. However, for a simple test where you are not testing combinations of large and small I/Os the results file has just one row. Hence, the IOPS results file just has one row with 0 large I/Os. As shown in Example 8-2, an example data point with 12 outstanding small reads and no large I/Os provides a sample throughput of 951 IOPS.

Example 8-2 Sample Data Points with 12 Small Reads and No Large Reads

Large/Small, 1, 2, 3, 6, 9, 12

0, 105, 208, 309, 569, 782, 951

The graph shown in Figure 8-3, generated by loading mytest_iops.csv into Excel and charting the data, illustrates the IOPS throughput seen at different small I/O load levels.

Figure 8-3 shows typical storage system behavior. As the number of outstanding I/O requests is increased, the throughput increases. However, at a certain point, the throughput level stabilizes, indicating the storage system reaches a maximum throughput value. At higher throughput levels, the latency for the I/O requests also increase significantly. Therefore, it is important to view this data with the latency data provided in the generated latency results in mytest_lat.csv.

Figure 8-3 I/O Throughput at Different Small I/O Load Levels

[image: Description of Figure 8-3 follows]

	
mytest_lat.csv: Comma-delimited value file containing the latency results for the Small Random workload. As with the MBPS and IOPS files, the column headings are the number of outstanding small I/Os and the row headings are the number of outstanding large I/Os (when testing large random I/Os) or the number of sequential streams.

In the general case, a CSV file contains a two-dimensional table. However, for a simple test where you are not testing combinations of large and small I/Os the results file has just one row. Hence, the IOPS results file just has one row with 0 large I/Os. In the example shown in Example 8-3, at a sustained load level of 12 outstanding small reads and no large I/Os, the generated results show an I/O turn-around latency of 22.25 milliseconds.

Example 8-3 Sample CSV file with 12 Small Reads and No Large Reads

Large/Small, 1, 2, 3, 6, 9, 12

0, 14.22, 14.69, 15.09, 16.98, 18.91, 21.25

The graph in Figure 8-4, generated by loading mytest_lat.csv into Excel and charting the data, illustrates the small I/O latency at different small I/O load levels for mytest.

Figure 8-4 I/O Latency at Small I/O Load Levels

[image: Description of Figure 8-4 follows]

	
mytest_trace.txt: Contains the extended, unprocessed test output.

	
Note:

Orion reports errors that occur during a test on standard output.

8.4.6 Orion Troubleshooting

	
If you are getting an I/O error on one or more of the volumes specified in the <testname>.lun file:

	
Verify that you can access the volume in the same mode as the test, read or write, using a file copy program such as dd.

	
Verify that your host operating system version can do asynchronous I/O.

	
On Linux and Solaris, the library libaio must be in the standard lib directories or accessible through the shell environment's library path variable (usually LD_LIBRARY_PATH or LIBPATH, depending on your shell).

	
If you run on NAS storage:

	
The file system must be properly mounted for Orion to run. Please consult your Oracle Installation Guide for directions (for example, the section, Appendix B "Using NAS Devices" in the Database Installation Guide for Linux x86).

	
The mytest.lun file should contain one or more paths of existing files. Orion does not work on directories or mount points. The file has to be large enough for a meaningful test. The size of this file should represent the eventual expected size of your datafiles (say, after a few years of use).

	
You may see poor performance doing asynchronous I/O over NFS on Linux (including 2.6 kernels).

	
If you are doing read tests and the reads are hitting untouched blocks of the file that were not initialized or previously written, some smart NAS systems may "fake" the read by returning zeroed-out blocks. When this occurs, you see unexpectedly good performance.

The workaround is to write all blocks, using a tool such as dd, before performing the read test.

	
If you run Orion on Windows: Testing on raw partitions requires temporarily mapping the partitions to drive letters and specifying these drive letters in the test.lun file.

	
If you run Orion 32-bit Linux/x86 binary on an x86_64 system: Please copy a 32-bit libaio.so file from a 32-bit computer running the same Linux version.

	
If you are testing with a lot of disks (num_disks greater than around 30):

	
You should use the -duration option (see the optional parameters section for more details) to specify a long duration (like 120 seconds or more) for each data point. Since Orion tries to keep all the spindles running at a particular load level, each data point requires a ramp-up time, which implies a longer duration for the test.

	
You may get the following error message, instructing you to increase the duration value:

Specify a longer -duration value.

A duration of 2x the number of spindles seems to be a good rule of thumb. Depending on your disk technology, your platform may need more or less time.

	
If you get an error about libraries being used by Orion:

	
Linux/Solaris: See I/O error troubleshooting.

	
NT-Only: Do not move/remove the Oracle libraries included in the distribution. These must be in the same directory as orion.exe.

	
If you are seeing performance numbers that are "unbelievably good":

	
You may have a large read or write cache, or read and write cache somewhere between the Orion program and the disk spindles. Typically, the storage array controller has the biggest effect. Find out the size of this cache and use the -cache_size advanced option to specify it to Orion (see the optional parameters section for more details).

	
The total size of your volumes may be really small compared to one or more caches along the way. Try to turn off the cache. This is needed if the other volumes sharing your storage show significant I/O activity in a production environment (and end up using large parts of the shared cache).

	
If Orion is reporting a long estimated run time:

	
The run time increases when -num_disks is high. Orion internally uses a linear formula to determine how long it takes to saturate the given number of disks.

	
The -cache_size parameter affects the run time, even when it is not specified. Orion does cache warming for two minutes per data point by default. If you have turned off the cache, specify -cache_size 0.

	
The run time increases when a long -duration value is specified, as expected.

5 Automatic Performance Statistics

This chapter discusses the gathering of performance statistics. This chapter contains the following topics:

	
Overview of Data Gathering

	
Overview of the Automatic Workload Repository

	
Managing the Automatic Workload Repository

5.1 Overview of Data Gathering

To effectively diagnose performance problems, statistics must be available. Oracle Database generates many types of cumulative statistics for the system, sessions, and individual SQL statements. Oracle Database also tracks cumulative statistics on segments and services. When analyzing a performance problem in any of these scopes, you typically look at the change in statistics (delta value) over the period you are interested in. Specifically, you look at the difference between the cumulative value of a statistic at the start of the period and the cumulative value at the end.

Cumulative values for statistics are generally available through dynamic performance views, such as the V$SESSTAT and V$SYSSTAT views. Note that the cumulative values in dynamic views are reset when the database instance is shutdown. The Automatic Workload Repository (AWR) automatically persists the cumulative and delta values for most of the statistics at all levels except the session level. This process is repeated on a regular time period and the result is called an AWR snapshot. The delta values captured by the snapshot represent the changes for each statistic over the time period. See "Overview of the Automatic Workload Repository".

A metric is another type of statistic collected by Oracle Database. A metric is defined as the rate of change in some cumulative statistic. That rate can be measured against a variety of units, including time, transactions, or database calls. For example, the number database calls per second is a metric. Metric values are exposed in some V$ views, where the values are the average over a fairly small time interval, typically 60 seconds. A history of recent metric values is available through V$ views, and some data is also persisted by AWR snapshots.

A third type of statistical data collected by Oracle is sampled data. The active session history (ASH) sampler performs the sampling. ASH samples the current state of all active sessions. The database collects this data into memory, where you can access it with a V$ view. AWR snapshot processing also writes it to persistent storage. See "Active Session History".

A powerful tool for diagnosing performance problems is the use of statistical baselines. A statistical baseline is collection of statistic rates usually taken over time period where the system is performing well at peak load. Comparing statistics captured during a period of bad performance to a baseline helps discover specific statistics that have increased significantly and could be the cause of the problem.

AWR supports the capture of baseline data by enabling you to specify and preserve a pair or range of AWR snapshots as a baseline. Carefully consider the time period you choose as a baseline; the baseline should be a good representation of the peak load on the system. In the future, you can compare these baselines with snapshots captured during periods of poor performance.

Oracle Enterprise Manager is the recommended tool for viewing both real time data in the dynamic performance views and historical data from the AWR history tables. Enterprise Manager can also be used to capture operating system and network statistical data that can be correlated with AWR data. For more information, see Oracle Database 2 Day + Performance Tuning Guide.

This section covers the following topics:

	
Database Statistics

	
Operating System Statistics

	
Interpreting Statistics

5.1.1 Database Statistics

Database statistics provide information on the type of load on the database and the internal and external resources used by the database. This section describes some of the more important statistics.

5.1.1.1 Wait Events

Wait events are statistics that are incremented by a server process or thread to indicate that it had to wait for an event to complete before being able to continue processing. Wait event data reveals various symptoms of problems that might be impacting performance, such as latch contention, buffer contention, and I/O contention.

To enable easier high-level analysis of the wait events, events are grouped into classes. The classes include: Administrative, Application, Cluster, Commit, Concurrency, Configuration, Idle, Network, Other, Scheduler, System I/O, and User I/O.

The wait classes are based on a common solution that usually applies to fixing a problem with the wait event. For example, exclusive TX locks are generally an application level issue and HW locks are generally a configuration issue.

The following list includes common examples of the waits in some of the classes:

	
Application: locks waits caused by row level locking or explicit lock commands

	
Commit: waits for redo log write confirmation after a commit

	
Idle: wait events that signify the session is inactive, such as SQL*Net message from client

	
Network: waits for data to be sent over the network

	
User I/O: wait for blocks to be read off a disk

Wait event statistics for an instance include statistics for both background and foreground processes. Because you would typically focus your effort in tuning foreground activities, overall instance activity is broken down into foreground and background statistics in the relevant V$ views to facilitate tuning.

The V$SYSTEM_EVENT view shows wait event statistics for the foreground activities of an instance and the wait event statistics for the instance. The V$SYSTEM_WAIT_CLASS view shows these foreground and wait event instance statistics after aggregating to wait classes. V$SESSION_EVENT and V$SYSTEM_WAIT_CLASS show wait event and wait class statistics at the session level.

	
See Also:

Oracle Database Reference for more information about Oracle wait events

5.1.1.2 Time Model Statistics

When tuning an Oracle database, each component has its own set of statistics. To look at the system as a whole, it is necessary to have a common scale for comparisons. For this reason, most Oracle Database advisories and reports describe statistics in terms of time. In addition, the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views provide time model statistics. Using the common time instrumentation helps to identify quantitative effects on the database operations.

The most important of the time model statistics is DB time. This statistics represents the total time spent in database calls and is an indicator of the total instance workload. It is calculated by aggregating the CPU and wait times of all sessions not waiting on idle wait events (non-idle user sessions).

DB time is measured cumulatively from the time of instance startup. Because DB time it is calculated by combining the times from all non-idle user sessions, it is possible that the DB time can exceed the actual time elapsed after the instance started. For example, an instance that has been running for 30 minutes could have four active user sessions whose cumulative DB time is approximately 120 minutes.

The objective for tuning an Oracle system could be stated as reducing the time that users spend in performing some action on the database, or simply reducing DB time. Other time model statistics provide quantitative effects (in time) on specific actions, such as logon operations and hard and soft parses.

	
See Also:

Oracle Database Reference to learn about the V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views

5.1.1.3 Active Session History

The V$ACTIVE_SESSION_HISTORY view provides sampled session activity in the instance. Active sessions are sampled every second and are stored in a circular buffer in SGA. Any session that is connected to the database and is waiting for an event that does not belong to the Idle wait class is considered as an active session. This includes any session that was on the CPU at the time of sampling.

Each session sample is a set of rows and the V$ACTIVE_SESSION_HISTORY view returns one row for each active session per sample, returning the latest session sample rows first. Because the active session samples are stored in a circular buffer in SGA, the greater the system activity, the smaller the number of seconds of session activity that can be stored in the circular buffer. This means that the duration for which a session sample appears in the V$ view, or the number of seconds of session activity that is displayed in the V$ view, is completely dependent on the database activity.

As part of the AWR snapshots, the content of V$ACTIVE_SESSION_HISTORY is also flushed to disk. Because the content of this V$ view can get quite large during heavy system activity, only a portion of the session samples is written to disk.

By capturing only active sessions, a manageable set of data is represented with the size being directly related to the work being performed rather than the number of sessions allowed on the system. Using ASH enables you to examine and perform detailed analysis on both current data in the V$ACTIVE_SESSION_HISTORY view and historical data in the DBA_HIST_ACTIVE_SESS_HISTORY view, often avoiding the need to replay the workload to gather additional performance tracing information. ASH also contains execution plan information for each captured SQL statement. You can use this information to identify which part of SQL execution contributed most to the SQL elapsed time. The data present in ASH can be rolled up on various dimensions that it captures, including the following:

	
SQL identifier of SQL statement

	
SQL plan identifier and hash value of the SQL plan used to execute the SQL statement

	
SQL execution plan information

	
Object number, file number, and block number

	
Wait event identifier and parameters

	
Session identifier and session serial number

	
Module and action name

	
Client identifier of the session

	
Service hash identifier

	
Consumer group identifier

You can gather ASH information over a specified duration into a report. For more information, see "Generating Active Session History Reports".

Active session history sampling is also available for Active Data Guard physical standby instances and Oracle Automatic Storage Management (Oracle ASM) instances. On these instances, the current session activity is collected and displayed in the V$ACTIVE_SESSION_HISTORY view, but not written to disk.

	
See Also:

	
Oracle Database Reference for more information about the V$ACTIVE_SESSION_HISTORY view

	
Oracle Database High Availability Overview for more information about using ASH in an Active Data Guard physical standby environment

5.1.1.4 System and Session Statistics

A large number of cumulative database statistics are available on a system and session level through the V$SYSSTAT and V$SESSTAT views.

	
See Also:

Oracle Database Reference to learn about the V$SYSSTAT and V$SESSTAT views

5.1.2 Operating System Statistics

Operating system statistics provide information on the usage and performance of the main hardware components of the system, and the performance of the operating system itself. This information is crucial for detecting potential resource exhaustion, such as CPU cycles and physical memory, and for detecting bad performance of peripherals, such as disk drives.

Operating system statistics are an indication of how the hardware and operating system are working. Many system analysts react to a hardware resource shortage by installing more hardware. This is a reactionary response to a series of symptoms shown in the operating system statistics. It is best to consider operating system statistics as a diagnostic tool, similar to the way doctors use body temperature, pulse rate, and patient pain when making a diagnosis. To help identify bottlenecks, gather operating system statistics for all servers in the system under performance analysis.

Operating system statistics include the following:

	
CPU Statistics

	
Virtual Memory Statistics

	
Disk I/O Statistics

	
Network Statistics

	
See Also:

"Operating System Data Gathering Tools" for information about tools for gathering operating statistics

5.1.2.1 CPU Statistics

CPU utilization is the most important operating system statistic in the tuning process. Get CPU utilization for the entire system and for each individual CPU on multi-processor environments. Utilization for each CPU can detect single-threading and scalability issues.

Most operating systems report CPU usage as time spent in user space or mode and time spent in kernel space or mode. These additional statistics allow better analysis of what is actually being executed on the CPU.

On a system running Oracle Database, where only one application is typically running, the system runs database activity in user space. Activities required to service database requests (such as scheduling, synchronization, I/O, memory management, and process/thread creation and tear down) run in kernel mode. In a system where CPU is fully utilized, a healthy Oracle database runs between 65% and 95% in user space.

The V$OSSTAT view captures machine-level information in the database, making it easier for you to determine if hardware-level resource issues exist. The V$SYSMETRIC_HISTORY view shows a one-hour history of the Host CPU Utilization metric, a representation of percentage of CPU usage at each one-minute interval. The V$SYS_TIME_MODEL view supplies statistics on the CPU usage by the Oracle database. Using both sets of statistics enable you to determine whether the Oracle database or other system activity is the cause of the CPU problems.

5.1.2.2 Virtual Memory Statistics

Virtual memory statistics should mainly be used as a check to validate that there is very little paging or swapping activity on the system. System performance degrades rapidly and unpredictably when paging or swapping occurs.

Individual process memory statistics can detect memory leaks due to a programming failure to deallocate memory taken from the process heap. These statistics are necessary to validate that memory usage does not increase after the system has reached a steady state after startup. This problem is particularly acute on shared server applications on middle tier computers where session state may persist across user interactions, and on completion state information that is not fully deallocated.

5.1.2.3 Disk I/O Statistics

Because the database resides on a set of disks, the performance of the I/O subsystem is very important to the performance of the database. Most operating systems provide extensive statistics on disk performance. The most important disk statistics are the current response time and the length of the disk queues. These statistics show if the disk is performing optimally or if the disk is being overworked.

Measure the normal performance of the I/O system; typical values for a single block read range from 5 to 20 milliseconds, depending on the hardware used. If the hardware shows response times much higher than the normal performance value, then it is performing badly or is overworked. This is your bottleneck. If disk queues start to exceed two, then the disk is a potential bottleneck of the system.

Oracle Database also maintains a consistent set of I/O statistics for the I/O calls it issues. These statistics are captured for both single and multi block read and write operations in the following dimensions:

	
Consumer group

When Oracle Database Resource Manager is enabled, the V$IOSTAT_CONSUMER_GROUP view captures I/O statistics for all consumer groups that are part of the currently enabled resource plan. The database samples cumulative statistics every hour and stores them as historical statistics in the AWR.

	
Database file

I/O statistics of database files that are or have been accessed are captured in the V$IOSTAT_FILE view.

	
Database function

I/O statistics for database functions (such as the LGWR and DBWR) are captured in the V$IOSTAT_FUNCTION view.

	
See Also:

"Identifying I/O Problems Using V$ Views" to learn how to use views in Oracle Database to identify I/O problems

5.1.2.4 Network Statistics

You can use network statistics in much the same way as disk statistics to determine if a network or network interface is overloaded or not performing optimally. In today's networked applications, network latency can be a large portion of the actual user response time. For this reason, these statistics are a crucial debugging tool.

Oracle Database maintains a set of network I/O statistics in the V$IOSTAT_NETWORK view.

	
See Also:

"Identifying Network Issues" to learn how to use the V$IOSTAT_NETWORK view to identify network issues

5.1.2.5 Operating System Data Gathering Tools

Table 5-1 shows the various tools for gathering operating statistics on UNIX. For Windows, use the Performance Monitor tool.

Table 5-1 UNIX Tools for Operating Statistics

	Component	UNIX Tool
	
CPU

	
sar, vmstat, mpstat, iostat

	
Memory

	
sar, vmstat

	
Disk

	
sar, iostat

	
Network

	
netstat

5.1.3 Interpreting Statistics

When initially examining performance data, you can formulate potential theories by examining your statistics. One way to ensure that your interpretation of the statistics is correct is to perform cross-checks with other data. This establishes whether a statistic or event is really of interest. Also, because foreground activities are tunable, it is better to first analyze the statistics from foreground activities before analyzing the statistics from background activities.

Some pitfalls are discussed in the following sections:

	
Hit ratios

When tuning, it is common to compute a ratio that helps determine whether there is a problem. Such ratios include the buffer cache hit ratio, the soft-parse ratio, and the latch hit ratio. Do not use these ratios as definitive identifiers of whether a performance bottleneck exists. Rather, use them as indicators. To identify whether a bottleneck exists, examine other related evidence. See "Calculating the Buffer Cache Hit Ratio".

	
Wait events with timed statistics

Setting TIMED_STATISTICS to true at the instance level directs the database to gather wait time for events, in addition to available wait counts. This data is useful for comparing the total wait time for an event to the total elapsed time between the data collections. For example, if the wait event accounts for only 30 seconds out of a 2-hour period, then little is to be gained by investigating this event, although it may be the highest ranked wait event when ordered by time waited. However, if the event accounts for 30 minutes of a 45-minute period, then the event is worth investigating. See "Wait Events".

	
Note:

Timed statistics are automatically collected for the database if the initialization parameter STATISTICS_LEVEL is set to TYPICAL or ALL. If STATISTICS_LEVEL is set to BASIC, then you must set TIMED_STATISTICS to TRUE to enable collection of timed statistics. Note that setting STATISTICS_LEVEL to BASIC disables many automatic features and is not recommended.
If you explicitly set DB_CACHE_ADVICE, TIMED_STATISTICS, or TIMED_OS_STATISTICS, either in the initialization parameter file or by using ALTER_SYSTEM or ALTER SESSION, then the explicitly set value overrides the value derived from STATISTICS_LEVEL.

	
Comparing Oracle Database statistics with other factors

When looking at statistics, it is important to consider other factors that influence whether the statistic is of value. Such factors include the user load and the hardware capability. Even an event that had a wait of 30 minutes in a 45-minute period might not be indicative of a problem if you discover that there were 2000 users on the system, and the host hardware was a 64-node computer.

	
Wait events without timed statistics

If TIMED_STATISTICS is false, then the amount of time waited for an event is not available. Therefore, it is only possible to order wait events by the number of times each event was waited for. Although the events with the largest number of waits might indicate the potential bottleneck, they might not be the main bottleneck. This can happen when an event is waited for a large number of times, but the total time waited for that event is small. The converse is also true: an event with fewer waits might be a problem if the wait time is a significant proportion of the total wait time. Without having the wait times to use for comparison, it is difficult to determine whether a wait event is really of interest.

	
Idle wait events

Oracle Database uses some wait events to indicate if the Oracle server process is idle. Typically, these events are of no value when investigating performance problems, and they should be ignored when examining the wait events. See "Idle Wait Events".

	
Computed statistics

When interpreting computed statistics (such as rates, statistics normalized over transactions, or ratios), it is important to cross-verify the computed statistic with the actual statistic counts. This confirms whether the derived rates are really of interest: small statistic counts usually can discount an unusual ratio. For example, on initial examination, a soft-parse ratio of 50% generally indicates a potential tuning area. If, however, there was only one hard parse and one soft parse during the data collection interval, then the soft-parse ratio would be 50%, even though the statistic counts show this is not an area of concern. In this case, the ratio is not of interest due to the low raw statistic counts.

	
See Also:

	
"Setting the Level of Statistics Collection" to learn about the STATISTICS_LEVEL settings

	
Oracle Database Reference for information about the STATISTICS_LEVEL initialization parameter

5.2 Overview of the Automatic Workload Repository

The Automatic Workload Repository (AWR) collects, processes, and maintains performance statistics for problem detection and self-tuning purposes. This data is both in memory and stored in the database. The gathered data can be displayed in both reports and views.

The statistics collected and processed by AWR include:

	
Object statistics that determine both access and usage statistics of database segments

	
Time model statistics based on time usage for activities, displayed in the V$SYS_TIME_MODEL and V$SESS_TIME_MODEL views

	
Some of the system and session statistics collected in the V$SYSSTAT and V$SESSTAT views

	
SQL statements that are producing the highest load on the system, based on criteria such as elapsed time and CPU time

	
ASH statistics, representing the history of recent sessions activity

Gathering database statistics using the AWR is enabled by default and is controlled by the STATISTICS_LEVEL initialization parameter. The STATISTICS_LEVEL parameter should be set to the TYPICAL or ALL to enable statistics gathering by the AWR. The default setting is TYPICAL. Setting STATISTICS_LEVEL to BASIC disables many Oracle Database features, including the AWR, and is not recommended. If STATISTICS_LEVEL is set to BASIC, you can still manually capture AWR statistics using the DBMS_WORKLOAD_REPOSITORY package. However, because in-memory collection of many system statistics—such as segments statistics and memory advisor information—will be disabled, the statistics captured in these snapshots may not be complete. For information about the STATISTICS_LEVEL initialization parameter, see Oracle Database Reference.

5.2.1 Snapshots

Snapshots are sets of historical data for specific time periods that are used for performance comparisons by ADDM. By default, Oracle Database automatically generates snapshots of the performance data once every hour and retains the statistics in the workload repository for 8 days. You can also manually create snapshots, but this is usually not necessary. The data in the snapshot interval is then analyzed by the Automatic Database Diagnostic Monitor (ADDM). For information about ADDM, see "Overview of the Automatic Database Diagnostic Monitor".

AWR compares the difference between snapshots to determine which SQL statements to capture based on the effect on the system load. This reduces the number of SQL statements that must be captured over time.

For information about managing snapshots, see "Managing Snapshots".

5.2.2 Baselines

A baseline contains performance data from a specific time period that is preserved for comparison with other similar workload periods when performance problems occur. The snapshots contained in a baseline are excluded from the automatic AWR purging process and are retained indefinitely.

There are several types of available baselines in Oracle Database:

	
Fixed Baselines

	
Moving Window Baseline

	
Baseline Templates

5.2.2.1 Fixed Baselines

A fixed baseline corresponds to a fixed, contiguous time period in the past that you specify. Before creating a fixed baseline, carefully consider the time period you choose as a baseline, because the baseline should represent the system operating at an optimal level. In the future, you can compare the baseline with other baselines or snapshots captured during periods of poor performance to analyze performance degradation over time.

	
See Also:

"Managing Baselines" for information about managing fixed baselines

5.2.2.2 Moving Window Baseline

A moving window baseline corresponds to all AWR data that exists within the AWR retention period. This is useful when using adaptive thresholds because the database can use AWR data in the entire AWR retention period to compute metric threshold values.

Oracle Database automatically maintains a system-defined moving window baseline. The default window size for the system-defined moving window baseline is the current AWR retention period, which by default is 8 days. If you are planning to use adaptive thresholds, consider using a larger moving window—such as 30 days—to accurately compute threshold values. You can resize the moving window baseline by changing the number of days in the moving window to a value that is equal to or less than the number of days in the AWR retention period. Therefore, to increase the size of a moving window, you must first increase the AWR retention period accordingly.

	
See Also:

"Modifying the Window Size of the Default Moving Window Baseline" for information about resizing the moving window baseline

5.2.2.3 Baseline Templates

You can also create baselines for a contiguous time period in the future using baseline templates. There are two types of baseline templates: single and repeating.

You can use a single baseline template to create a baseline for a single contiguous time period in the future. This technique is useful if you know beforehand of a time period that you intend to capture in the future. For example, you may want to capture the AWR data during a system test that is scheduled for the upcoming weekend. In this case, you can create a single baseline template to automatically capture the time period when the test occurs.

You can use a repeating baseline template to create and drop baselines based on a repeating time schedule. This is useful if you want Oracle Database to automatically capture a contiguous time period on an ongoing basis. For example, you may want to capture the AWR data during every Monday morning for a month. In this case, you can create a repeating baseline template to automatically create baselines on a repeating schedule for every Monday, and automatically remove older baselines after a specified expiration interval, such as one month.

	
See Also:

"Managing Baseline Templates" for information about managing baseline templates

5.2.3 Adaptive Thresholds

Adaptive thresholds enable you to monitor and detect performance issues while minimizing administrative overhead. Adaptive thresholds can automatically set warning and critical alert thresholds for some system metrics using statistics derived from metric values captured in the moving window baseline. The statistics for these thresholds are recomputed weekly and might result in new thresholds as system performance evolves over time. In addition to recalculating thresholds weekly, adaptive thresholds might compute different thresholds values for different times of the day or week based on periodic workload patterns.

For example, many databases support an online transaction processing (OLTP) workload during the day and batch processing at night. The performance metric for response time per transaction can be useful for detecting degradation in OLTP performance during the day. However, a useful OLTP threshold value is almost certainly too low for batch workloads, where long-running transactions might be common. As a result, threshold values appropriate to OLTP might trigger frequent false performance alerts during batch processing. Adaptive thresholds can detect such a workload pattern and automatically set different threshold values for the daytime and nighttime.

	
Note:

In Oracle Database 11g Release 2 (11.2), Oracle Database automatically determines the appropriate time groupings for a database. However, before Oracle Database 11g Release 2 (11.2), time groupings were specified manually by the database administrator.

There are two types of adaptive thresholds:

	
Percentage of maximum: The threshold value is computed as a percentage multiple of the maximum value observed for the data in the moving window baseline.

	
Significance level: The threshold value is set to a statistical percentile that represents how unusual it is to observe values above the threshold value based the data in the moving window baseline. Specify one of the following percentiles:

	
High (.95): Only 5 in 100 observations are expected to exceed this value.

	
Very High (.99): Only 1 in 100 observations are expected to exceed this value.

	
Severe (.999): Only 1 in 1,000 observations are expected to exceed this value.

	
Extreme (.9999): Only 1 in 10,000 observations are expected to exceed this value.

	
Note:

When you specify Severe (.999) or Extreme (.9999), Oracle Database performs an internal calculation to set the threshold value. In some cases, Oracle Database cannot establish the threshold value at these levels using the data in the baseline, and the significance level threshold is not set.
If you are not receiving alerts as expected, and you specified a Severe (.999) or Extreme (.9999) significance level threshold, then you can try setting the significance level threshold to a lower value, such as Very High (.99) or High (.95). Alternatively, you can set a percentage of maximum threshold instead of a significance level threshold. If you change the threshold and find that you are receiving too many alerts, then you can try increasing the number of occurrences to cause an alert.

Percentage of maximum thresholds are most useful when a system is sized for peak workloads, and you want to be alerted when the current workload volume is approaching or exceeding previous high values. Metrics that have an unknown but definite limiting value are good candidates for these settings. For example, the redo generated per second metric is typically a good candidate for a percentage of maximum threshold.

Significance level thresholds are most useful for metrics that should exhibit statistically stable behavior when the system is operating normally, but might vary over a wide range when the system is performing poorly. For example, the response time per transaction metric should be stable for a well-tuned OLTP system, but may fluctuate widely when performance issues arise. Significance level thresholds are meant to generate alerts when conditions produce both unusual metric values and unusual system performance.

	
Note:

The primary interface for managing baseline metrics is Oracle Enterprise Manager. To create an adaptive threshold for a baseline metric, use Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide.

	
See Also:

"Moving Window Baseline"

5.2.4 Space Consumption

The space consumed by the AWR is determined by several factors:

	
Number of active sessions in the system at any given time

	
Snapshot interval

The snapshot interval determines the frequency at which snapshots are captured. A smaller snapshot interval increases the frequency, which increases the volume of data collected by the AWR.

	
Historical data retention period

The retention period determines how long this data is retained before being purged. A longer retention period increases the space consumed by the AWR.

By default, snapshots are captured once every hour and are retained in the database for 8 days. With these default settings, a typical system with an average of 10 concurrent active sessions can require approximately 200 to 300 MB of space for its AWR data. It is possible to change the default values for both snapshot interval and retention period. See "Modifying Snapshot Settings" to learn how to modify AWR settings.

The AWR space consumption can be reduced by the increasing the snapshot interval and reducing the retention period. When reducing the retention period, note that several Oracle Database self-managing features depend on AWR data for proper functioning. Not having enough data can affect the validity and accuracy of these components and features, including:

	
Automatic Database Diagnostic Monitor

	
SQL Tuning Advisor

	
Undo Advisor

	
Segment Advisor

If possible, Oracle recommends that you set the AWR retention period large enough to capture at least one complete workload cycle. If your system experiences weekly workload cycles, such as OLTP workload during weekdays and batch jobs during the weekend, you do not need to change the default AWR retention period of 8 days. However if your system is subjected to a monthly peak load during month end book closing, you may have to set the retention period to one month.

Under exceptional circumstances, you can turn off automatic snapshot collection by setting the snapshot interval to 0. Under this condition, the automatic collection of the workload and statistical data is stopped and much of the Oracle Database self-management functionality is not operational. In addition, you cannot manually create snapshots. For this reason, Oracle strongly recommends that you do not turn off automatic snapshot collection.

5.3 Managing the Automatic Workload Repository

This section describes how to manage the AWR and contains the following topics:

	
Managing Snapshots

	
Managing Baselines

	
Managing Baseline Templates

	
Transporting Automatic Workload Repository Data

	
Using Automatic Workload Repository Views

	
Generating Automatic Workload Repository Reports

	
Generating Automatic Workload Repository Compare Periods Reports

	
Generating Active Session History Reports

	
Using Active Session History Reports

	
See Also:

"Overview of the Automatic Workload Repository" for a description of the AWR

5.3.1 Managing Snapshots

By default, Oracle Database generates snapshots once every hour, and retains the statistics in the workload repository for 8 days. When necessary, you can use DBMS_WORKLOAD_REPOSITORY procedures to manually create, drop, and modify the snapshots. To invoke these procedures, a user must be granted the DBA role.

The primary interface for managing snapshots is Oracle Enterprise Manager. Whenever possible, you should manage snapshots using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can manage snapshots using the DBMS_WORKLOAD_REPOSITORY package, as described in the following sections:

	
Creating Snapshots

	
Dropping Snapshots

	
Modifying Snapshot Settings

	
See Also:

	
"Snapshots" for more information about snapshots

	
Oracle Database PL/SQL Packages and Types Reference for detailed information on the DBMS_WORKLOAD_REPOSITORY package

5.3.1.1 Creating Snapshots

You can manually create snapshots with the CREATE_SNAPSHOT procedure to capture statistics at times different than those of the automatically generated snapshots. For example:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_SNAPSHOT ();
END;
/

In this example, a snapshot for the instance is created immediately with the flush level specified to the default flush level of TYPICAL. You can view this snapshot in the DBA_HIST_SNAPSHOT view.

5.3.1.2 Dropping Snapshots

You can drop a range of snapshots using the DROP_SNAPSHOT_RANGE procedure. To view a list of the snapshot IDs along with database IDs, check the DBA_HIST_SNAPSHOT view. For example, you can drop the following range of snapshots:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_SNAPSHOT_RANGE (low_snap_id => 22,
 high_snap_id => 32, dbid => 3310949047);
END;
/

In the example, the range of snapshot IDs to drop is specified from 22 to 32. The optional database identifier is 3310949047. If you do not specify a value for dbid, the local database identifier is used as the default value.

Active Session History data (ASH) that belongs to the time period specified by the snapshot range is also purged when the DROP_SNAPSHOT_RANGE procedure is called.

5.3.1.3 Modifying Snapshot Settings

You can adjust the interval, retention, and captured Top SQL of snapshot generation for a specified database ID, but note that this can affect the precision of the Oracle Database diagnostic tools.

The INTERVAL setting affects how often the database automatically generates snapshots. The RETENTION setting affects how long the database stores snapshots in the workload repository. The TOPNSQL setting affects the number of Top SQL to flush for each SQL criteria (Elapsed Time, CPU Time, Parse Calls, sharable Memory, and Version Count). The value for this setting is not affected by the statistics/flush level and will override the system default behavior for the AWR SQL collection. It is possible to set the value for this setting to MAXIMUM to capture the complete set of SQL in the shared SQL area, though by doing so (or by setting the value to a very high number) may lead to possible space and performance issues because there will more data to collect and store. To adjust the settings, use the MODIFY_SNAPSHOT_SETTINGS procedure. For example:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.MODIFY_SNAPSHOT_SETTINGS(retention => 43200,
 interval => 30, topnsql => 100, dbid => 3310949047);
END;
/

In this example, the retention period is specified as 43200 minutes (30 days), the interval between each snapshot is specified as 30 minutes, and the number of Top SQL to flush for each SQL criteria as 100. If NULL is specified, the existing value is preserved. The optional database identifier is 3310949047. If you do not specify a value for dbid, the local database identifier is used as the default value. You can check the current settings for your database instance with the DBA_HIST_WR_CONTROL view.

5.3.2 Managing Baselines

This section describes how to manage baselines. The primary interface for managing baselines is Oracle Enterprise Manager. Whenever possible, you should manage baselines using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can manage baselines using the DBMS_WORKLOAD_REPOSITORY package, as described in the following sections:

	
Creating a Baseline

	
Dropping a Baseline

	
Renaming a Baseline

	
Displaying Baseline Metrics

	
Modifying the Window Size of the Default Moving Window Baseline

	
See Also:

	
"Baselines" for more information about baselines

	
Oracle Database PL/SQL Packages and Types Reference for detailed information on the DBMS_WORKLOAD_REPOSITORY package

5.3.2.1 Creating a Baseline

This section describes how to create a baseline using an existing range of snapshots.

To create a baseline:

	
Review the existing snapshots in the DBA_HIST_SNAPSHOT view to determine the range of snapshots to use.

	
Use the CREATE_BASELINE procedure to create a baseline using the desired range of snapshots:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE (start_snap_id => 270,
 end_snap_id => 280, baseline_name => 'peak baseline',
 dbid => 3310949047, expiration => 30);
END;
/

In this example, 270 is the start snapshot sequence number and 280 is the end snapshot sequence. The name of baseline is peak baseline. The optional database identifier is 3310949047. If you do not specify a value for dbid, then the local database identifier is used as the default value. The optional expiration parameter is set to 30, so the baseline will expire and be dropped automatically after 30 days. If you do not specify a value for expiration, the baseline will never expire.

The system automatically assign a unique baseline ID to the new baseline when the baseline is created. The baseline ID and database identifier are displayed in the DBA_HIST_BASELINE view.

5.3.2.2 Dropping a Baseline

This section describes how to drop an existing baseline. Periodically, you may want to drop a baseline that is no longer used to conserve disk space. The snapshots associated with a baseline are retained indefinitely until you explicitly drop the baseline or the baseline has expired.

To drop a baseline:

	
Review the existing baselines in the DBA_HIST_BASELINE view to determine the baseline to drop.

	
Use the DROP_BASELINE procedure to drop the desired baseline:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE (baseline_name => 'peak baseline',
 cascade => FALSE, dbid => 3310949047);
END;
/

In the example, the name of baseline is peak baseline. The cascade parameter is set to FALSE, which specifies that only the baseline is dropped. Setting this parameter to TRUE specifies that the drop operation will also remove the snapshots associated with the baseline. The optional dbid parameter specifies the database identifier, which in this example is 3310949047. If you do not specify a value for dbid, then the local database identifier is used as the default value.

5.3.2.3 Renaming a Baseline

This section describes how to rename a baseline.

To rename a baseline:

	
Review the existing baselines in the DBA_HIST_BASELINE view to determine the baseline to rename.

	
Use the RENAME_BASELINE procedure to rename the desired baseline:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.RENAME_BASELINE (
 old_baseline_name => 'peak baseline',
 new_baseline_name => 'peak mondays',
 dbid => 3310949047);
END;
/

In this example, the name of the baseline is renamed from peak baseline, as specified by the old_baseline_name parameter, to peak mondays, as specified by the new_baseline_name parameter. The optional dbid parameter specifies the database identifier, which in this example is 3310949047. If you do not specify a value for dbid, then the local DBID is the default value.

5.3.2.4 Displaying Baseline Metrics

This section describes how to display metric threshold settings during the time period captured in a baseline. When used with adaptive thresholds, a baseline contains AWR data that the database can use to compute metric threshold values. The SELECT_BASELINE_METRICS function enables you to display the summary statistics for metric values in a baseline period.

To display metric information in a baseline:

	
Review the existing baselines in the DBA_HIST_BASELINE view to determine the baseline for which you want to display metric information.

	
Use the SELECT_BASELINE_METRICS function to display the metric information for the desired baseline:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.SELECT_BASELINE_METRICS (
 baseline_name => 'peak baseline',
 dbid => 3310949047,
 instance_num => '1');
END;
/

In this example, the name of baseline is peak baseline. The optional dbid parameter specifies the database identifier, which in this example is 3310949047. If you do not specify a value for dbid, then the local database identifier is used as the default value. The optional instance_num parameter specifies the instance number, which in this example is 1. If you do not specify a value for instance_num, then the local instance is used as the default value.

5.3.2.5 Modifying the Window Size of the Default Moving Window Baseline

This section describes how to modify the window size of the default moving window baseline. For information about the default moving window baseline, see "Moving Window Baseline".

To resize the default moving window baseline, use the MODIFY_BASELINE_WINDOW_SIZE procedure:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.MODIFY_BASELINE_WINDOW_SIZE (
 window_size => 30,
 dbid => 3310949047);
END;
/

The window_size parameter is used to specify the new window size, in number of days, for the default moving window size. In this example, the window_size parameter is set to 30. The window size must be set to a value that is equal to or less than the value of the AWR retention setting. To set a window size that is greater than the current AWR retention period, you must first increase the value of the retention parameter, as described in "Modifying Snapshot Settings".

In this example, the optional dbid parameter specifies the database identifier is 3310949047. If you do not specify a value for dbid, then the local database identifier is used as the default value.

5.3.3 Managing Baseline Templates

This section describes how to manage baseline templates. You can automatically create baselines to capture specified time periods in the future using baseline templates. For information about baseline templates, see "Baseline Templates".

The primary interface for managing baseline templates is Oracle Enterprise Manager. Whenever possible, you should manage baseline templates using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can manage baseline templates using the DBMS_WORKLOAD_REPOSITORY package, as described in the following sections:

	
Creating a Single Baseline Template

	
Creating a Repeating Baseline Template

	
Dropping a Baseline Template

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for detailed information on the DBMS_WORKLOAD_REPOSITORY package

5.3.3.1 Creating a Single Baseline Template

This section describes how to create a single baseline template. You can use a single baseline template to create a baseline during a single, fixed time interval in the future. For example, you can create a single baseline template to generate a baseline that is captured on April 2, 2009 from 5:00 p.m. to 8:00 p.m.

To create a single baseline template, use the CREATE_BASELINE_TEMPLATE procedure:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (
 start_time => '2009-04-02 17:00:00 PST',
 end_time => '2009-04-02 20:00:00 PST',
 baseline_name => 'baseline_090402',
 template_name => 'template_090402', expiration => 30,
 dbid => 3310949047);
END;
/

The start_time parameter specifies the start time for the baseline to be created. The end_time parameter specifies the end time for the baseline to be created. The baseline_name parameter specifies the name of the baseline to be created. The template_name parameter specifies the name of the baseline template. The optional expiration parameter specifies the expiration, in number of days, for the baseline. If unspecified, then the baseline never expires. The optional dbid parameter specifies the database identifier. If unspecified, then the local database identifier is used as the default value.

In this example, a baseline template named template_090402 is created that will generate a baseline named baseline_090402 for the time period from 5:00 p.m. to 8:00 p.m. on April 2, 2009 on the database with a database ID of 3310949047. The baseline will expire after 30 days.

5.3.3.2 Creating a Repeating Baseline Template

This section describes how to create a repeating baseline template. A repeating baseline template can be used to automatically create baselines that repeat during a particular time interval over a specific period in the future. For example, you can create a repeating baseline template to generate a baseline that repeats every Monday from 5:00 p.m. to 8:00 p.m. for the year 2009.

To create a repeating baseline template, use the CREATE_BASELINE_TEMPLATE procedure:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.CREATE_BASELINE_TEMPLATE (
 day_of_week => 'monday', hour_in_day => 17,
 duration => 3, expiration => 30,
 start_time => '2009-04-02 17:00:00 PST',
 end_time => '2009-12-31 20:00:00 PST',
 baseline_name_prefix => 'baseline_2009_mondays_',
 template_name => 'template_2009_mondays',
 dbid => 3310949047);
END;
/

The day_of_week parameter specifies the day of the week on which the baseline will repeat. The hour_in_day parameter specifies the hour in the day when the baseline will start. The duration parameter specifies the duration, in number of hours, that the baseline will last. The expiration parameter specifies the number of days to retain each created baseline. If set to NULL, then the baselines never expires. The start_time parameter specifies the start time for the baseline to be created. The end_time parameter specifies the end time for the baseline to be created. The baseline_name_prefix parameter specifies the name of the baseline prefix that will be appended to the data information when the baseline is created. The template_name parameter specifies the name of the baseline template. The optional dbid parameter specifies the database identifier. If unspecified, then the local database identifier is used as the default value.

In this example, a baseline template named template_2009_mondays is created that will generate a baseline on every Monday from 5:00 p.m. to 8:00 p.m. beginning on April 2, 2009 at 5:00 p.m. and ending on December 31, 2009 at 8:00 p.m. on the database with a database ID of 3310949047. Each of the baselines will be created with a baseline name with the prefix baseline_2009_mondays_ and will expire after 30 days.

5.3.3.3 Dropping a Baseline Template

This section describes how to drop an existing baseline template. Periodically, you may want to remove baselines templates that are no longer used to conserve disk space.

To drop a baseline template:

	
Review the existing baselines in the DBA_HIST_BASELINE_TEMPLATE view to determine the baseline template you want to drop.

	
Use the DROP_BASELINE_TEMPLATE procedure to drop the desired baseline template:

BEGIN
 DBMS_WORKLOAD_REPOSITORY.DROP_BASELINE_TEMPLATE (
 template_name => 'template_2009_mondays',
 dbid => 3310949047);
END;
/

The template_name parameter specifies the name of the baseline template that will be dropped. In the example, the name of baseline template that will be dropped is template_2009_mondays. The optional dbid parameter specifies the database identifier, which in this example is 3310949047. If you do not specify a value for dbid, then the local database identifier is used as the default value.

5.3.4 Transporting Automatic Workload Repository Data

Oracle Database enables you to transport AWR data between systems. This is useful in cases where you want to use a separate system to perform analysis of the AWR data. To transport AWR data, you must first extract the AWR snapshot data from the database on the source system, then load the data into the database on the target system, as described in the following sections:

	
Extracting AWR Data

	
Loading AWR Data

5.3.4.1 Extracting AWR Data

The awrextr.sql script extracts the AWR data for a range of snapshots from the database into a Data Pump export file. After it is created, you can transport this dump file to another database where you can load the extracted data. To run the awrextr.sql script, you must be connected to the database as the SYS user.

To extract AWR data:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrextr.sql

A list of the databases in the AWR schema is displayed.

	
Specify the database from which the AWR data will be extracted:

Enter value for db_id: 1377863381

In this example, the database with the database identifier of 1377863381 is selected.

	
Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.

	
Define the range of snapshots for which AWR data will be extracted by specifying a beginning and ending snapshot ID:

Enter value for begin_snap: 30
Enter value for end_snap: 40

In this example, the snapshot with a snapshot ID of 30 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 40 is selected as the ending snapshot.

	
A list of directory objects is displayed.

Specify the directory object pointing to the directory where the export dump file will be stored:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

	
Specify the prefix for name of the export dump file (the .dmp suffix will be automatically appended):

Enter value for file_name: awrdata_30_40

In this example, an export dump file named awrdata_30_40 will be created in the directory corresponding to the directory object you specified:

Dump file set for SYS.SYS_EXPORT_TABLE_01 is:
C:\ORACLE\PRODUCT\11.1.0.5\DB_1\RDBMS\LOG\AWRDATA_30_40.DMP
Job "SYS"."SYS_EXPORT_TABLE_01" successfully completed at 08:58:20

Depending on the amount of AWR data that must be extracted, the AWR extract operation may take a while to complete. After the dump file is created, you can use Data Pump to transport the file to another system.

	
See Also:

Oracle Database Utilities for information about using Data Pump

5.3.4.2 Loading AWR Data

After the export dump file is transported to the target system, you can load the extracted AWR data using the awrload.sql script. The awrload.sql script will first create a staging schema where the snapshot data is transferred from the Data Pump file into the database. The data is then transferred from the staging schema into the appropriate AWR tables. To run the awrload.sql script, you must be connected to the database as the SYS user.

To load AWR data:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrload.sql

A list of directory objects is displayed.

	
Specify the directory object pointing to the directory where the export dump file is located:

Enter value for directory_name: DATA_PUMP_DIR

In this example, the directory object DATA_PUMP_DIR is selected.

	
Specify the prefix for name of the export dump file (the .dmp suffix will be automatically appended):

Enter value for file_name: awrdata_30_40

In this example, the export dump file named awrdata_30_40 is selected.

	
Specify the name of the staging schema where the AWR data will be loaded:

Enter value for schema_name: AWR_STAGE

In this example, a staging schema named AWR_STAGE will be created where the AWR data will be loaded.

	
Specify the default tablespace for the staging schema:

Enter value for default_tablespace: SYSAUX

In this example, the SYSAUX tablespace is selected.

	
Specify the temporary tablespace for the staging schema:

Enter value for temporary_tablespace: TEMP

In this example, the TEMP tablespace is selected.

	
A staging schema named AWR_STAGE will be created where the AWR data will be loaded. After the AWR data is loaded into the AWR_STAGE schema, the data will be transferred into the AWR tables in the SYS schema:

Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/CONSTRAINT
Completed 113 CONSTRAINT objects in 11 seconds
Processing object type TABLE_EXPORT/TABLE/CONSTRAINT/REF_CONSTRAINT
Completed 1 REF_CONSTRAINT objects in 1 seconds
Job "SYS"."SYS_IMPORT_FULL_03" successfully completed at 09:29:30
... Dropping AWR_STAGE user
End of AWR Load

Depending on the amount of AWR data that must be loaded, the AWR load operation may take a while to complete. After the AWR data is loaded, the staging schema will be dropped automatically.

5.3.5 Using Automatic Workload Repository Views

Typically, you would view the AWR data through Oracle Enterprise Manager or AWR reports. However, you can also view the statistics using the following views:

	
V$ACTIVE_SESSION_HISTORY

This view displays active database session activity, sampled once every second. See "Active Session History".

	
V$ metric views provide metric data to track the performance of the system

The metric views are organized into various groups, such as event, event class, system, session, service, file, and tablespace metrics. These groups are identified in the V$METRICGROUP view.

	
DBA_HIST views

The DBA_HIST views displays historical data stored in the database. This group of views includes:

	
DBA_HIST_ACTIVE_SESS_HISTORY displays the history of the contents of the in-memory active session history for recent system activity

	
DBA_HIST_BASELINE displays information about the baselines captured on the system, such as the time range of each baseline and the baseline type

	
DBA_HIST_BASELINE_DETAILS displays details about a specific baseline

	
DBA_HIST_BASELINE_TEMPLATE displays information about the baseline templates used by the system to generate baselines

	
DBA_HIST_DATABASE_INSTANCE displays information about the database environment

	
DBA_HIST_DB_CACHE_ADVICE displays historical predictions of the number of physical reads for the cache size corresponding to each row

	
DBA_HIST_DISPATCHER displays historical information for each dispatcher process at the time of the snapshot

	
DBA_HIST_DYN_REMASTER_STATS displays statistical information about the dynamic remastering process

	
DBA_HIST_IOSTAT_DETAIL displays historical I/O statistics aggregated by file type and function

	
DBA_HIST_SHARED_SERVER_SUMMARY displays historical information for shared servers, such as shared server activity, common queues and dispatcher queues

	
DBA_HIST_SNAPSHOT displays information on snapshots in the system

	
DBA_HIST_SQL_PLAN displays the SQL execution plans

	
DBA_HIST_WR_CONTROL displays the settings for controlling AWR

	
See Also:

Oracle Database Reference for information about dynamic and static data dictionary views

5.3.6 Generating Automatic Workload Repository Reports

An AWR report shows data captured between two snapshots (or two points in time). The AWR reports are divided into multiple sections. The HTML report includes links that can be used to navigate quickly between sections. The content of the report contains the workload profile of the system for the selected range of snapshots.

The primary interface for generating AWR reports is Oracle Enterprise Manager. Whenever possible, you should generate AWR reports using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can generate AWR reports by running SQL scripts, as described in the following sections:

	
Generating an AWR Report

	
Generating an Oracle RAC AWR Report

	
Generating an AWR Report on a Specific Database Instance

	
Generating an Oracle RAC AWR Report on Specific Database Instances

	
Generating an AWR Report for a SQL Statement

	
Generating an AWR Report for a SQL Statement on a Specific Database Instance

To run these scripts, you must be granted the DBA role.

	
Note:

If you run a report on a database that does not have any workload activity during the specified range of snapshots, calculated percentages for some report statistics can be less than 0 or greater than 100. This result simply means that there is no meaningful value for the statistic.

5.3.6.1 Generating an AWR Report

The awrrpt.sql SQL script generates an HTML or text report that displays statistics for a range of snapshot IDs.

To generate an AWR report:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpt.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

	
Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.

	
Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the ending snapshot.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_1_150_160

In this example, the default name is accepted and an AWR report named awrrpt_1_150_160 is generated.

5.3.6.2 Generating an Oracle RAC AWR Report

The awrgrpt.sql SQL script generates an HTML or text report that displays statistics for a range of snapshot IDs using the current database identifier and all available database instances in an Oracle Real Application Clusters (Oracle RAC) environment.

	
Note:

In an Oracle RAC environment, you should always try to generate an HTML report (instead of a text report) because they are much easier to read.

To generate an AWR report in an Oracle RAC environment:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgrpt.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

	
Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last day are displayed.

	
Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the ending snapshot.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named awrrpt_rac_150_160.html is generated.

5.3.6.3 Generating an AWR Report on a Specific Database Instance

The awrrpti.sql SQL script generates an HTML or text report that displays statistics for a range of snapshot IDs using a specific database and instance. This script enables you to specify a database identifier and instance for which the AWR report will be generated.

To generate an AWR report on a specific database instance:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrrpti.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251


	
Enter the values for the database identifier (dbid) and instance number (inst_num):


Enter value for dbid: 3309173529
Using 3309173529 for database Id
Enter value for inst_num: 1


	
Specify the number of days for which you want to list snapshot IDs.


Enter value for num_days: 2


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.


	
Specify a beginning and ending snapshot ID for the workload repository report:


Enter value for begin_snap: 150
Enter value for end_snap: 160


In this example, the snapshot with a snapshot ID of 150 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the ending snapshot.


	
Enter a report name, or accept the default report name:


Enter value for report_name: 
Using the report name awrrpt_1_150_160


In this example, the default name is accepted and an AWR report named awrrpt_1_150_160 is generated on the database instance with a database ID value of 3309173529.









5.3.6.4 Generating an Oracle RAC AWR Report on Specific Database Instances

The awrgrpti.sql SQL script generates an HTML or text report that displays statistics for a range of snapshot IDs using specific databases and instances running in an Oracle RAC environment. This script enables you to specify database identifiers and a comma-delimited list of database instances for which the AWR report will be generated.




	
Note:

In an Oracle RAC environment, you should always try to generate an HTML report (instead of a text report) because they are much easier to read.







To generate an AWR report on a specific database instance in an Oracle RAC environment:

	
At the SQL prompt, enter:


@$ORACLE_HOME/rdbms/admin/awrgrpti.sql


	
Specify whether you want an HTML or a text report:


Enter value for report_type: html


In this example, an HTML report is chosen.

A list of available database identifiers and instance numbers are displayed:


Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251
 3309173529 2 TINT251 tint252 samp252

	
Enter the value for the database identifier (dbid):

Enter value for dbid: 3309173529
Using 3309173529 for database Id

	
Enter the value for the instance numbers (instance_numbers_or_all) of the Oracle RAC instances you want to include in the report:

Enter value for instance_numbers_or_all: 1,2

	
Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.

	
Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 150
Enter value for end_snap: 160

In this example, the snapshot with a snapshot ID of 150 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 160 is selected as the ending snapshot.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_rac_150_160.html

In this example, the default name is accepted and an AWR report named awrrpt_rac_150_160.html is generated on the database instance with a database ID value of 3309173529.

5.3.6.5 Generating an AWR Report for a SQL Statement

The awrsqrpt.sql SQL script generates an HTML or text report that displays statistics of a particular SQL statement for a range of snapshot IDs. Run this report to inspect or debug the performance of a SQL statement.

To generate an AWR report for a particular SQL statement:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpt.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

	
Specify the number of days for which you want to list snapshot IDs.

Enter value for num_days: 1

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the previous day are displayed.

	
Specify a beginning and ending snapshot ID for the workload repository report:

Enter value for begin_snap: 146
Enter value for end_snap: 147

In this example, the snapshot with a snapshot ID of 146 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the ending snapshot.

	
Specify the SQL ID of a particular SQL statement to display statistics:

Enter value for sql_id: 2b064ybzkwf1y

In this example, the SQL statement with a SQL ID of 2b064ybzkwf1y is selected.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrrpt_1_146_147.html

In this example, the default name is accepted and an AWR report named awrrpt_1_146_147 is generated.

5.3.6.6 Generating an AWR Report for a SQL Statement on a Specific Database Instance

The awrsqrpi.sql SQL script generates an HTML or text report that displays statistics of a particular SQL statement for a range of snapshot IDs using a specific database and instance.This script enables you to specify a database identifier and instance for which the AWR report will be generated. Run this report to inspect or debug the performance of a SQL statement on a specific database and instance.

To generate an AWR report for a particular SQL statement on a specified database instance:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrsqrpi.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251


	
Enter the values for the database identifier (dbid) and instance number (inst_num):


Enter value for dbid: 3309173529
Using 3309173529 for database Id
Enter value for inst_num: 1
Using 1 for instance number


	
Specify the number of days for which you want to list snapshot IDs.


Enter value for num_days: 1


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the previous day are displayed.


	
Specify a beginning and ending snapshot ID for the workload repository report:


Enter value for begin_snap: 146
Enter value for end_snap: 147


In this example, the snapshot with a snapshot ID of 146 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 147 is selected as the ending snapshot.


	
Specify the SQL ID of a particular SQL statement to display statistics:


Enter value for sql_id: 2b064ybzkwf1y


In this example, the SQL statement with a SQL ID of 2b064ybzkwf1y is selected.


	
Enter a report name, or accept the default report name:


Enter value for report_name: 
Using the report name awrrpt_1_146_147.html


In this example, the default name is accepted and an AWR report named awrrpt_1_146_147 is generated on the database instance with a database ID value of 3309173529.











5.3.7 Generating Automatic Workload Repository Compare Periods Reports

While an AWR report shows AWR data between two snapshots (or two points in time), the AWR Compare Periods report shows the difference between two periods (or two AWR reports, which equates to four snapshots). Using the AWR Compare Periods report helps you to identify detailed performance attributes and configuration settings that differ between two time periods.

For example, if the application workload is known to be stable between 10:00 p.m. and midnight every night, but the performance on a particular Thursday was poor between 10:00 p.m. and 11:00 p.m., generating an AWR Compare Periods report for Thursday from 10:00 p.m. to 11:00 p.m. and Wednesday from 10:00 p.m. to 11:00 p.m. should identify configuration settings, workload profile, and statistics that were different in these time periods. Based on the differences, you can more easily diagnose the cause of the performance degradation. The two time periods selected for the AWR Compare Periods Report can be of different durations because the report normalizes the statistics by the amount of time spent on the database for each time period, and presents statistical data ordered by the largest difference between the periods.

The AWR Compare Periods reports are divided into multiple sections. The HTML report includes links that can be used to navigate quickly between sections. The content of the report contains the workload profile of the system for the selected range of snapshots.

The primary interface for generating AWR Compare Periods reports is Oracle Enterprise Manager. Whenever possible, you should generate AWR Compare Periods reports using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can generate AWR Compare Periods reports by running SQL scripts, as described in the following sections:

	
Generating an AWR Compare Periods Report


	
Generating an Oracle RAC AWR Compare Periods Report


	
Generating an AWR Compare Periods Report on a Specific Database Instance


	
Generating an Oracle RAC AWR Compare Periods Report on Specific Database Instances




To run these scripts, you must be granted the DBA role.



5.3.7.1 Generating an AWR Compare Periods Report

The awrddrpt.sql SQL script generates an HTML or text report that compares detailed performance attributes and configuration settings between two selected time periods.

To generate an AWR Compare Periods report:

	
At the SQL prompt, enter:


@$ORACLE_HOME/rdbms/admin/awrddrpt.sql


	
Specify whether you want an HTML or a text report:


Enter value for report_type: html


In this example, an HTML report is chosen.


	
Specify the number of days for which you want to list snapshot IDs in the first time period.


Enter value for num_days: 2


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.


	
Specify a beginning and ending snapshot ID for the first time period:


Enter value for begin_snap: 102
Enter value for end_snap: 103


In this example, the snapshot with a snapshot ID of 102 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the ending snapshot for the first time period.


	
Specify the number of days for which you want to list snapshot IDs in the second time period.


Enter value for num_days2: 1


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the previous day are displayed.


	
Specify a beginning and ending snapshot ID for the second time period:


Enter value for begin_snap2: 126
Enter value for end_snap2: 127


In this example, the snapshot with a snapshot ID of 126 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the ending snapshot for the second time period.


	
Enter a report name, or accept the default report name:


Enter value for report_name: 
Using the report name awrdiff_1_102_1_126.txt


In this example, the default name is accepted and an AWR report named awrdiff_1_102_126 is generated.









5.3.7.2 Generating an Oracle RAC AWR Compare Periods Report

The awrgdrpt.sql SQL script generates an HTML or text report that compares detailed performance attributes and configuration settings between two selected time periods using the current database identifier and all available database instances in an Oracle RAC environment.




	
Note:

In an Oracle RAC environment, you should always try to generate an HTML report (instead of a text report) because they are much easier to read.







To generate an AWR Compare Periods report in an Oracle RAC environment:

	
At the SQL prompt, enter:


@$ORACLE_HOME/rdbms/admin/awrgdrpt.sql


	
Specify whether you want an HTML or a text report:


Enter value for report_type: html


In this example, an HTML report is chosen.


	
Specify the number of days for which you want to list snapshot IDs in the first time period.


Enter value for num_days: 2


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.


	
Specify a beginning and ending snapshot ID for the first time period:


Enter value for begin_snap: 102
Enter value for end_snap: 103


In this example, the snapshot with a snapshot ID of 102 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the ending snapshot for the first time period.


	
Specify the number of days for which you want to list snapshot IDs in the second time period.


Enter value for num_days2: 1


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the previous day are displayed.


	
Specify a beginning and ending snapshot ID for the second time period:


Enter value for begin_snap2: 126
Enter value for end_snap2: 127


In this example, the snapshot with a snapshot ID of 126 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the ending snapshot for the second time period.


	
Enter a report name, or accept the default report name:


Enter value for report_name: 
Using the report name awrracdiff_1st_1_2nd_1.html


In this example, the default name is accepted and an AWR report named awrrac_1st_1_2nd_1.html is generated.









5.3.7.3 Generating an AWR Compare Periods Report on a Specific Database Instance

The awrddrpi.sql SQL script generates an HTML or text report that compares detailed performance attributes and configuration settings between two selected time periods on a specific database and instance. This script enables you to specify a database identifier and instance for which the AWR Compare Periods report will be generated.

To generate an AWR Compare Periods report on a specified database instance:

	
At the SQL prompt, enter:


@$ORACLE_HOME/rdbms/admin/awrddrpi.sql


	
Specify whether you want an HTML or a text report:


Enter value for report_type: text


In this example, a text report is chosen.


	
A list of available database identifiers and instance numbers are displayed:


Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251

Enter the values for the database identifier (dbid) and instance number (inst_num) for the first time period:

Enter value for dbid: 3309173529
Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1
Using 1 for Instance Number for the first pair of snapshots

	
Specify the number of days for which you want to list snapshot IDs in the first time period.

Enter value for num_days: 2

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.

	
Specify a beginning and ending snapshot ID for the first time period:

Enter value for begin_snap: 102
Enter value for end_snap: 103

In this example, the snapshot with a snapshot ID of 102 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the ending snapshot for the first time period.

	
Enter the values for the database identifier (dbid) and instance number (inst_num) for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for inst_num2: 1
Using 1 for Instance Number for the second pair of snapshots

	
Specify the number of days for which you want to list snapshot IDs in the second time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the previous day are displayed.

	
Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the ending snapshot for the second time period.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrdiff_1_102_1_126.txt

In this example, the default name is accepted and an AWR report named awrdiff_1_102_126 is generated on the database instance with a database ID value of 3309173529.

5.3.7.4 Generating an Oracle RAC AWR Compare Periods Report on Specific Database Instances

The awrgdrpi.sql SQL script generates an HTML or text report that compares detailed performance attributes and configuration settings between two selected time periods using specific databases and instances in an Oracle RAC environment. This script enables you to specify database identifiers and a comma-delimited list of database instances for which the AWR Compare Periods report will be generated.

	
Note:

In an Oracle RAC environment, you should always try to generate an HTML report (instead of a text report) because they are much easier to read.

To generate an AWR Compare Periods report on a specified database instance in an Oracle RAC environment:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/awrgdrpi.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

	
A list of available database identifiers and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251
 3309173529        2 TINT251      tint252      samp252
 3309173529        3 TINT251      tint253      samp253
 3309173529        4 TINT251      tint254      samp254


Enter the values for the database identifier (dbid) and instance number (instance_numbers_or_all) for the first time period:


Enter value for dbid: 3309173529
Using 3309173529 for Database Id for the first pair of snapshots
Enter value for inst_num: 1,2
Using instances 1 for the first pair of snapshots


	
Specify the number of days for which you want to list snapshot IDs in the first time period.


Enter value for num_days: 2


A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the last 2 days are displayed.


	
Specify a beginning and ending snapshot ID for the first time period:


Enter value for begin_snap: 102
Enter value for end_snap: 103


In this example, the snapshot with a snapshot ID of 102 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 103 is selected as the ending snapshot for the first time period.


	
A list of available database identifiers and instance numbers are displayed:


Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251
 3309173529 2 TINT251 tint252 samp252
 3309173529 3 TINT251 tint253 samp253
 3309173529 4 TINT251 tint254 samp254
INSTNUM1

1,2

Enter the values for the database identifier (dbid2) and instance numbers (instance_numbers_or_all2) for the second time period:

Enter value for dbid2: 3309173529
Using 3309173529 for Database Id for the second pair of snapshots
Enter value for instance_numbers_or_all2: 3,4

	
Specify the number of days for which you want to list snapshot IDs in the second time period.

Enter value for num_days2: 1

A list of existing snapshots for the specified time range is displayed. In this example, snapshots captured in the previous day are displayed.

	
Specify a beginning and ending snapshot ID for the second time period:

Enter value for begin_snap2: 126
Enter value for end_snap2: 127

In this example, the snapshot with a snapshot ID of 126 is selected as the beginning snapshot, and the snapshot with a snapshot ID of 127 is selected as the ending snapshot for the second time period.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name awrracdiff_1st_1_2nd_1.html

In this example, the default name is accepted and an AWR report named awrrac_1st_1_2nd_1.html is generated.

5.3.8 Generating Active Session History Reports

Use Active Session History (ASH) reports to perform analysis of:

	
Transient performance problems that typically last for a few minutes

	
Scoped or targeted performance analysis by various dimensions or their combinations, such as time, session, module, action, or SQL_ID

Transient performance problems are short-lived and do not appear in the Automatic Database Diagnostics Monitor (ADDM) analysis. ADDM tries to report the most significant performance problems during an analysis period in terms of their impact on DB time. If a particular problem lasts for a very short duration, then its severity might be averaged out or minimized by other performance problems in the analysis period. Therefore, the problem may not appear in the ADDM findings. Whether a performance problem is captured by ADDM depends on its duration compared to the interval between the AWR snapshots.

If a performance problem lasts for a significant portion of the time between snapshots, it will be captured by ADDM. For example, if the snapshot interval is set to one hour, a performance problem that lasts for 30 minutes should not be considered as a transient performance problem because its duration represents a significant portion of the snapshot interval and will likely be captured by ADDM.

However, a performance problem that lasts for only 2 minutes could be a transient performance problem because its duration represents a small portion of the snapshot interval and will likely not show up in the ADDM findings. For example, if the user notifies you that the system was slow between 10:00 p.m. and 10:10 p.m., but the ADDM analysis for the time period between 10:00 p.m. and 11:00 p.m. does not show a performance problem, a transient performance problem probably occurred that lasted for only a few minutes of the 10-minute interval reported by the user.

The ASH reports are divided into multiple sections. The HTML report includes links that can be used to navigate quickly between sections. The content of the report contains ASH information used to identify blocker and waiter identities and their associated transaction identifiers and SQL for a specified duration. For more information on ASH, see "Active Session History".

The primary interface for generating ASH reports is Oracle Enterprise Manager. Whenever possible, you should generate ASH reports using Oracle Enterprise Manager, as described in Oracle Database 2 Day + Performance Tuning Guide. If Oracle Enterprise Manager is unavailable, you can generate ASH reports by running SQL scripts, as described in the following sections:

	
Generating an ASH Report

	
Generating an ASH Report on a Specific Database Instance

	
Generating an Oracle RAC ASH Report

5.3.8.1 Generating an ASH Report

The ashrpt.sql SQL script generates an HTML or text report that displays ASH information for a specified duration.

To generate an ASH report:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpt.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: text

In this example, a text report is chosen.

	
Specify the begin time in minutes before the system date:

Enter value for begin_time: -10

In this example, 10 minutes before the current time is selected.

	
Enter the duration in minutes that the report for which you want to capture ASH information from the begin time.

Enter value for duration:

In this example, the default duration of system date minus begin time is accepted.

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_1_0310_0131.txt

In this example, the default name is accepted and an ASH report named ashrpt_1_0310_0131 is generated. The report will gather ASH information beginning from 10 minutes before the current time and ending at the current time.

5.3.8.2 Generating an ASH Report on a Specific Database Instance

The ashrpti.sql SQL script generates an HTML or text report that displays ASH information for a specified duration for a specified database and instance. This script enables you to specify a database and instance before setting the time frame to collect ASH information.

To generate an ASH report on a specified database instance:

	
At the SQL prompt, enter:

@$ORACLE_HOME/rdbms/admin/ashrpti.sql

	
Specify whether you want an HTML or a text report:

Enter value for report_type: html

In this example, an HTML report is chosen.

	
A list of available database IDs and instance numbers are displayed:

Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
   DB Id    Inst Num DB Name      Instance     Host
----------- -------- ------------ ------------ ------------
 3309173529        1 MAIN         main         examp1690
 3309173529        1 TINT251      tint251      samp251


Enter the values for the database identifier (dbid) and instance number (inst_num):


Enter value for dbid: 3309173529
Using 3309173529 for database id
Enter value for inst_num: 1


	
This step is applicable only if you are generating an ASH report on an Active Data Guard physical standby instance. If this is not the case, you may skip this step.

To generate an ASH report on a physical standby instance, the standby database must be opened read-only. The ASH data on disk represents activity on the primary database and the ASH data in memory represents activity on the standby database.

Specify whether to generate the report using data sampled from the primary or standby database:


You are running ASH report on a Standby database.
To generate the report over data sampled on the Primary database, enter 'P'.
Defaults to 'S' - data sampled in the Standby database.
Enter value for stdbyflag:
Using Primary (P) or Standby (S): S


In this example, the default value of Standby (S) is selected.


	
Specify the begin time in minutes before the system date:


Enter value for begin_time: -10


In this example, 10 minutes before the current time is selected.


	
Enter the duration in minutes that the report for which you want to capture ASH information from the begin time.


Enter value for duration:


In this example, the default duration of system date minus begin time is accepted.


	
Specify the slot width in seconds that will be used in the Activity Over Time section of the report:


Enter value for slot_width: 


In this example, the default value is accepted. For more information about the Activity Over Time section and how to specify the slot width, see "Activity Over Time".


	
Follow the instructions as explained in the subsequent prompts and enter values for the following report targets:

	
target_session_id


	
target_sql_id


	
target_wait_class


	
target_service_hash


	
target_module_name


	
target_action_name


	
target_client_id


	
target_plsql_entry





	
Enter a report name, or accept the default report name:


Enter value for report_name: 
Using the report name ashrpt_1_0310_0131.txt


In this example, the default name is accepted and an ASH report named ashrpt_1_0310_0131 is generated. The report will gather ASH information on the database instance with a database ID value of 3309173529 beginning from 10 minutes before the current time and ending at the current time.









5.3.8.3 Generating an Oracle RAC ASH Report

The ashrpti.sql SQL script generates an HTML or text report that displays ASH information for a specified duration for specified databases and instances in an Oracle RAC environment. Only ASH data that is written to disk will be used to generate the report. This report will only use ASH samples from the last 10 minutes that are found in the DBA_HIST_ACTIVE_SESS_HISTORY table.

To generate an ASH report in an Oracle RAC environment:

	
At the SQL prompt, enter:


@$ORACLE_HOME/rdbms/admin/ashrpti.sql


	
Specify whether you want an HTML or a text report:


Enter value for report_type: html


In this example, an HTML report is chosen.


	
A list of available database IDs and instance numbers are displayed:


Instances in this Workload Repository schema
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~
 DB Id Inst Num DB Name Instance Host
----------- -------- ------------ ------------ ------------
 3309173529 1 MAIN main examp1690
 3309173529 1 TINT251 tint251 samp251
 3309173529 2 TINT251 tint252 samp252
 3309173529 3 TINT251 tint253 samp253
 3309173529 4 TINT251 tint254 samp254

Enter the values for the database identifier (dbid) and instance number (inst_num):

Enter value for dbid: 3309173529
Using database id: 3309173529
Enter instance numbers. Enter 'ALL' for all instances in an Oracle
RAC cluster or explicitly specify list of instances (e.g., 1,2,3).
Defaults to current instance.
Enter value for inst_num: ALL
Using instance number(s): ALL

	
Specify the begin time in minutes before the system date:

Enter value for begin_time: -1:10

In this example, 1 hour and 10 minutes before the current time is selected.

	
Enter the duration in minutes that the report for which you want to capture ASH information from the begin time:

Enter value for duration: 10

In this example, the duration is set to 10 minutes.

	
Specify the slot width in seconds that will be used in the Activity Over Time section of the report:

Enter value for slot_width:

In this example, the default value is accepted. For more information about the Activity Over Time section and how to specify the slot width, see "Activity Over Time".

	
Follow the instructions as explained in the subsequent prompts and enter values for the following report targets:

	
target_session_id

	
target_sql_id

	
target_wait_class

	
target_service_hash

	
target_module_name

	
target_action_name

	
target_client_id

	
target_plsql_entry

	
Enter a report name, or accept the default report name:

Enter value for report_name:
Using the report name ashrpt_rac_0310_0131.txt

In this example, the default name is accepted and an ASH report named ashrpt_rac_0310_0131 is generated. The report will gather ASH information on all instances belonging to the database with a database ID value of 3309173529 beginning from 10 minutes before the current time and ending at the current time.

5.3.9 Using Active Session History Reports

After generating an ASH report, you can review the contents to identify transient performance problems.

The contents of the ASH report are divided into the following sections:

	
Top Events

	
Load Profile

	
Top SQL

	
Top PL/SQL

	
Top Java

	
Top Sessions

	
Top Objects/Files/Latches

	
Activity Over Time

	
See Also:

Oracle Real Application Clusters Administration and Deployment Guide for information about sections in the ASH report that are specific to Oracle Real Application Clusters (Oracle RAC)

5.3.9.1 Top Events

The Top Events section describes the top wait events of the sampled session activity categorized by user, background, and priority. Use the information in this section to identify the wait events that may be the cause of the transient performance problem.

The Top Events section contains the following subsections:

	
Top User Events

This subsection lists the top wait events from user processes that accounted for the highest percentages of sampled session activity.

	
Top Background Events

This subsection lists the top wait events from backgrounds that accounted for the highest percentages of sampled session activity.

	
Top Event P1/P2/P3

This subsection lists the wait event parameter values of the top wait events that accounted for the highest percentages of sampled session activity, ordered by the percentage of total wait time (% Event). For each wait event, values in the P1 Value, P2 Value, P3 Value column correspond to wait event parameters displayed in the Parameter 1, Parameter 2, and Parameter 3 columns.

5.3.9.2 Load Profile

The Load Profile section describes the load analyzed in the sampled session activity. Use the information in this section to identify the service, client, or SQL command type that may be the cause of the transient performance problem.

The Load Profile section contains the following subsections:

	
Top Service/Module

This subsection lists the services and modules that accounted for the highest percentages of sampled session activity.

	
Top Client IDs

This subsection lists the clients that accounted for the highest percentages of sampled session activity based on their client ID, which is the application-specific identifier of the database session.

	
Top SQL Command Types

This subsection lists the SQL command types, such as SELECT or UPDATE, that accounted for the highest percentages of sampled session activity.

	
Top Phases of Execution

This subsection lists the phases of execution, such as SQL, PL/SQL, and Java compilation and execution, that accounted for the highest percentages of sampled session activity.

5.3.9.3 Top SQL

The Top SQL section describes the top SQL statements of the sampled session activity. Use this information to identify high-load SQL statements that may be the cause of the transient performance problem.

The Top SQL section contains the following subsections:

	
Top SQL with Top Events

	
Top SQL with Top Row Sources

	
Top SQL Using Literals

	
Top Parsing Module/Action

	
Complete List of SQL Text

5.3.9.3.1 Top SQL with Top Events

The Top SQL with Top Events subsection lists the SQL statements that accounted for the highest percentages of sampled session activity and the top wait events that were encountered by these SQL statements. The Sampled # of Executions column shows how many distinct executions of a particular SQL statement were sampled.

5.3.9.3.2 Top SQL with Top Row Sources

The Top SQL with Top Row Sources subsection lists the SQL statements that accounted for the highest percentages of sampled session activity and their detailed execution plan information. You can use this information to identify which part of the SQL execution contributed significantly to the SQL elapsed time.

5.3.9.3.3 Top SQL Using Literals

The Top SQL Using Literals subsection lists the SQL statements using literals that accounted for the highest percentages of sampled session activity. You should review the statements listed in this report to determine whether the literals can be replaced with bind variables.

5.3.9.3.4 Top Parsing Module/Action

The Top Parsing Module/Action subsection lists the module and action that accounted for the highest percentages of sampled session activity while parsing the SQL statement.

5.3.9.3.5 Complete List of SQL Text

The Complete List of SQL Text subsection displays the entire text of the Top SQL statements shown in this section.

5.3.9.4 Top PL/SQL

The Top PL/SQL section lists the PL/SQL procedures that accounted for the highest percentages of sampled session activity. The PL/SQL Entry Subprogram column lists the application's top-level entry point into PL/SQL. The PL/SQL Current Subprogram column lists the PL/SQL subprogram being executed at the point of sampling. If the value of this column is SQL, then the % Current column shows the percentage of time spent executing SQL for this subprogram.

5.3.9.5 Top Java

The Top Java section describes the top Java programs in the sampled session activity.

5.3.9.6 Top Sessions

The Top Sessions section describes the sessions that were waiting for a particular wait event. Use this information to identify the sessions that accounted for the highest percentages of sampled session activity, which may be the cause of the transient performance problem.

The Top Sessions section contains the following subsections:

	
Top Sessions

	
Top Blocking Sessions

	
Top Sessions Running PQs

5.3.9.6.1 Top Sessions

The Top Session subsection lists the sessions that were waiting for a particular wait event that accounted for the highest percentages of sampled session activity.

5.3.9.6.2 Top Blocking Sessions

The Top Blocking Sessions subsection lists the blocking sessions that accounted for the highest percentages of sampled session activity.

5.3.9.6.3 Top Sessions Running PQs

The Top Sessions Running PQs subsection lists the sessions running parallel queries (PQs) that were waiting for a particular wait event, which accounted for the highest percentages of sampled session activity.

5.3.9.7 Top Objects/Files/Latches

The Top Objects/Files/Latches section provides additional information about the most commonly-used database resources and contains the following subsections:

	
Top DB Objects

	
Top DB Files

	
Top Latches

5.3.9.7.1 Top DB Objects

The Top DB Objects subsection lists the database objects (such as tables and indexes) that accounted for the highest percentages of sampled session activity.

5.3.9.7.2 Top DB Files

The Top DB Files subsection lists the database files that accounted for the highest percentages of sampled session activity.

5.3.9.7.3 Top Latches

The Top Latches subsection lists the latches that accounted for the highest percentages of sampled session activity.

Latches are simple, low-level serialization mechanisms to protect shared data structures in the System Global Area (SGA). For example, latches protect the list of users currently accessing the database and the data structures describing the blocks in the buffer cache. A server or background process acquires a latch for a very short time while manipulating or looking at one of these structures. The implementation of latches is operating system-dependent, particularly regarding whether and how long a process waits for a latch.

5.3.9.8 Activity Over Time

The Activity Over Time section is one of the most informative sections of the ASH report. This section is particularly useful for longer time periods because it provides in-depth details about activities and workload profiles during the analysis period. The Activity Over Time section is divided into 10 time slots. The size of each time slot varies based on the duration of the analysis period. The first and last slots are usually odd-sized. All inner slots are equally sized and can be compared to each other. For example, if the analysis period lasts for 10 minutes, then all time slots will 1 minute each. However, if the analysis period lasts for 9 minutes and 30 seconds, then the outer slots may be 15 seconds each and the inner slots will be 1 minute each.

Each of the time slots contains information regarding that particular time slot, as described in Table 5-2.

Table 5-2 Activity Over Time

	Column	Description
	
Slot Time (Duration)

	
Duration of the slot

	
Slot Count

	
Number of sampled sessions in the slot

	
Event

	
Top three wait events in the slot

	
Event Count

	
Number of ASH samples waiting for the wait event

	
% Event

	
Percentage of ASH samples waiting for wait events in the entire analysis period

When comparing the inner slots, perform a skew analysis by identifying spikes in the Event Count and Slot Count columns. A spike in the Event Count column indicates an increase in the number of sampled sessions waiting for a particular event. A spike in the Slot Count column indicates an increase in active sessions, because ASH data is sampled from active sessions only and a relative increase in database workload. Typically, when the number of active session samples and the number of sessions associated with a wait event increases, the slot may be the cause of the transient performance problem.

To generate the ASH report with a user-defined slot size, run the ashrpti.sql script, as described in "Generating an ASH Report on a Specific Database Instance".

[image: Oracle Corporation]

17 Automatic SQL Tuning

This chapter discusses the automatic SQL tuning features of Oracle Database. Automatic SQL tuning automates the manual process, which is complex, repetitive, and time-consuming.

This chapter contains the following sections:

	
Overview of the Automatic Tuning Optimizer

	
Managing the Automatic SQL Tuning Advisor

	
Tuning Reactively with SQL Tuning Advisor

	
Managing SQL Tuning Sets

	
Managing SQL Profiles

	
SQL Tuning Views

	
See Also:

Oracle Database 2 Day + Performance Tuning Guide for information about using the automatic SQL tuning features with Oracle Enterprise Manager (Enterprise Manager)

17.1 Overview of the Automatic Tuning Optimizer

Oracle Database uses the optimizer to generate the execution plans for submitted SQL statements. The optimizer operates in the following modes:

	
Normal mode

The optimizer compiles the SQL and generates an execution plan. The normal mode generates a reasonable plan for the vast majority of SQL statements. Under normal mode, the optimizer operates with very strict time constraints, usually a fraction of a second.

	
Tuning mode

The optimizer performs additional analysis to check whether it can further improve the plan produced in normal mode. The optimizer output is not an execution plan, but a series of actions, along with their rationale and expected benefit for producing a significantly better plan. When running in tuning mode, the optimizer is known as the Automatic Tuning Optimizer.

Under tuning mode, the optimizer can take several minutes to tune a single statement. It is both time and resource intensive to invoke Automatic Tuning Optimizer every time a query must be hard-parsed. Automatic Tuning Optimizer is meant for complex and high-load SQL statements that have nontrivial impact on the database.

Automatic Database Diagnostic Monitor (ADDM) proactively identifies high-load SQL statements that are good candidates for SQL tuning (see Chapter 6, "Automatic Performance Diagnostics"). The automatic SQL tuning feature also automatically identifies problematic SQL statements and implements tuning recommendations during system maintenance windows as an automated maintenance task.

The Automatic Tuning Optimizer performs the following types of tuning analysis:

	
Statistics Analysis

	
SQL Profiling

	
Access Path Analysis

	
SQL Structure Analysis

	
Alternative Plan Analysis

17.1.1 Statistics Analysis

The optimizer relies on object statistics to generate execution plans. If these statistics are stale or missing, then the optimizer does not have the necessary information it needs and can generate poor execution plans. The Automatic Tuning Optimizer checks each query object for missing or stale statistics, and produces two types of output:

	
Recommendations to gather relevant statistics for objects with stale or no statistics

Because optimizer statistics are automatically collected and refreshed, this problem occurs only when automatic optimizer statistics collection is disabled. See "Managing Automatic Optimizer Statistics Collection".

	
Auxiliary statistics for objects with no statistics, and statistic adjustment factor for objects with stale statistics

The database stores this auxiliary information in an object called a SQL profile.

17.1.2 SQL Profiling

A SQL profile is a set of auxiliary information specific to a SQL statement. Conceptually, a SQL profile is to a SQL statement what statistics are to a table or index. The database can use the auxiliary information to improve execution plans.

	
See Also:

"Managing SQL Profiles"

17.1.3 Access Path Analysis

An access path is the means by which data is retrieved from a database. For example, a query using an index and a query using a full table scan use different access paths.

Indexes can tremendously enhance performance of a SQL statement by reducing the need for full scans of large tables. Effective indexing is a common tuning technique. Automatic Tuning Optimizer explores whether a new index can significantly enhance query performance. If so, then the advisor recommends index creation.

Because the Automatic Tuning Optimizer does not analyze how its index recommendation can affect the entire SQL workload, it also recommends running SQL Access Advisor on the SQL statement along with a representative SQL workload. SQL Access Advisor looks at the impact of creating an index on the entire SQL workload before making recommendations. See "Automatic SQL Tuning Features".

17.1.4 SQL Structure Analysis

Automatic Tuning Optimizer identifies common problems with the structure of SQL statements that can lead to poor performance. These could be syntactic, semantic, or design problems. In each case, Automatic Tuning Optimizer makes relevant suggestions to restructure the statements. The suggested alternative is similar, but not equivalent, to the original statement.

For example, the optimizer may suggest replacing the UNION operator with UNION ALL or NOT IN with NOT EXISTS. You can then determine if the advice is applicable to your situation. For example, if the schema design is such that duplicates are not possible, then the UNION ALL operator is much more efficient than the UNION operator. These changes require a good understanding of the data properties and should be implemented only after careful consideration.

17.1.5 Alternative Plan Analysis

While tuning a SQL statement, SQL Tuning Advisor searches real-time and historical performance data for alternative execution plans for the statement. If plans other than the original plan exist, then SQL Tuning Advisor reports an alternative plan finding.

SQL Tuning Advisor validates the alternative execution plans and notes any plans that are not reproducible. When reproducible alternative plans are found, you can create a SQL plan baseline to instruct the optimizer to choose these plans in the future.

Example 17-1 shows an alternative plan finding for a SELECT statement.

Example 17-1 Alternative Plan Finding

2- Alternative Plan Finding

 Some alternative execution plans for this statement were found by searching
 the system's real-time and historical performance data.

 The following table lists these plans ranked by their average elapsed time.
 See section "ALTERNATIVE PLANS SECTION" for detailed information on each
 plan.

 id plan hash last seen elapsed (s) origin note
 -- ---------- -------------------- ------------ --------------- ----------------
 1 1378942017 2009-02-05/23:12:08 0.000 Cursor Cache original plan
 2 2842999589 2009-02-05/23:12:08 0.002 STS

 Information

 - The Original Plan appears to have the best performance, based on the
 elapsed time per execution. However, if you know that one alternative
 plan is better than the Original Plan, you can create a SQL plan baseline
 for it. This will instruct the Oracle optimizer to pick it over any other
 choices in the future.
 execute dbms_sqltune.create_sql_plan_baseline(task_name => 'TASK_XXXXX',
 object_id => 2, task_owner => 'SYS', plan_hash => xxxxxxxx);

Example 17-1 shows that SQL Tuning Advisor found two plans, one in the shared SQL area and one in a SQL tuning set. The plan in the shared SQL area is the same as the original plan.

SQL Tuning Advisor only recommends an alternative plan if the elapsed time of the original plan is worse than alternative plans. In this case, SQL Tuning Advisor recommends that users create a SQL plan baseline on the plan with the best performance. In Example 17-1, the alternative plan did not perform as well as the original plan, so SQL Tuning Advisor did not recommend using the alternative plan.

In Example 17-2, the alternative plans section of the SQL Tuning Advisor output includes both the original and alternative plans and summarizes their performance. The most important statistic is elapsed time. The original plan used an index, whereas the alternative plan used a full table scan, increasing elapsed time by .002 seconds.

Example 17-2 Alternative Plans Section

Plan 1

 Plan Origin :Cursor Cache
 Plan Hash Value :1378942017
 Executions :50
 Elapsed Time :0.000 sec
 CPU Time :0.000 sec
 Buffer Gets :0
 Disk Reads :0
 Disk Writes :0

Notes:
 1. Statistics shown are averaged over multiple executions.
 2. The plan matches the original plan.

--
| Id | Operation | Name |
--
0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	MERGE JOIN	
3	INDEX FULL SCAN	TEST1_INDEX
4	SORT JOIN	
5	TABLE ACCESS FULL	TEST
--

Plan 2

 Plan Origin :STS
 Plan Hash Value :2842999589
 Executions :10
 Elapsed Time :0.002 sec
 CPU Time :0.002 sec
 Buffer Gets :3
 Disk Reads :0
 Disk Writes :0

Notes:
 1. Statistics shown are averaged over multiple executions.

| Id | Operation | Name |

0	SELECT STATEMENT	
1	SORT AGGREGATE	
2	HASH JOIN	
3	TABLE ACCESS FULL	TEST
4	TABLE ACCESS FULL	TEST1

To adopt an alternative plan regardless of whether SQL Tuning Advisor recommends it, call DBMS_SQLTUNE.CREATE_SQL_PLAN_BASELINE. You can use this procedure to create a SQL plan baseline on any existing reproducible plan.

17.2 Managing the Automatic SQL Tuning Advisor

SQL Tuning Advisor takes one or more SQL statements as an input and invokes the Automatic Tuning Optimizer to perform SQL tuning on the statements. The output takes the form of advice or recommendations, along with a rationale for each recommendation and its expected benefit. The recommendation relates to a collection of statistics on objects, creation of new indexes, restructuring of the SQL statement, or creation of a SQL profile. You can choose to accept the recommendation to complete the tuning of the SQL statements.

The database can automatically tune SQL statements by identifying problematic statements and implementing recommendations using SQL Tuning Advisor during system maintenance windows. When run automatically, SQL Tuning Advisor is known as the Automatic SQL Tuning Advisor.

This section explains how to manage the Automatic SQL Tuning Advisor:

	
How Automatic SQL Tuning Works

	
Enabling and Disabling Automatic SQL Tuning

	
Configuring Automatic SQL Tuning

	
Viewing Automatic SQL Tuning Reports

	
See Also:

Oracle Database Administrator's Guide for information about automated maintenance tasks

17.2.1 How Automatic SQL Tuning Works

Oracle Database automatically runs SQL Tuning Advisor on selected high-load SQL statements from the Automatic Workload Repository (AWR) that qualify as tuning candidates. This task, called Automatic SQL Tuning, runs in the default maintenance windows on a nightly basis. By default, automatic SQL tuning runs for at most one hour. You can customize attributes of the maintenance windows, including start and end time, frequency, and days of the week.

After automatic SQL tuning begins, the database performs the following steps:

	
Identifies SQL candidates in the AWR for tuning

Oracle Database analyzes statistics in AWR and generates a list of potential SQL statements that are eligible for tuning. These statements include repeating high-load statements that have a significant impact on the database.

The database tunes only SQL statements that have an execution plan with a high potential for improvement. The database ignores recursive SQL and statements that have been tuned recently (in the last month), parallel queries, DML, DDL, and SQL statements with performance problems caused by concurrency issues.

The database orders the SQL statements that are selected as candidates based on their performance impact. The database calculates the impact by summing the CPU time and the I/O times in AWR for the selected statement in the past week.

	
Tunes each SQL statement individually by calling SQL Tuning Advisor

During the tuning process, the database considers and reports all recommendation types, but it can implement only SQL profiles automatically.

	
Tests SQL profiles by executing the SQL statement

If a SQL profile is recommended, the database tests the new profile by executing the SQL statement both with and without the profile. If the performance improvement improves at least threefold, then the database accepts the SQL profile, but only if the ACCEPT_SQL_PROFILES task parameter is set to TRUE. Otherwise, the automatic SQL tuning reports merely report the recommendation to create a SQL profile.

	
Optionally, implements the SQL profiles provided they meet the criteria of threefold performance improvement

The database considers other factors when deciding whether to implement the SQL profile. For example, the database does not implement a profile when the objects referenced in the statement have stale optimizer statistics. SQL profiles that have been implemented automatically show type is AUTO in the DBA_SQL_PROFILES view.

If the database uses SQL plan management, and if a SQL plan baseline exists for the SQL statement, then the database adds a new plan baseline when creating the SQL profile. As a result, the optimizer uses the new plan immediately after profile creation. See Chapter 15, "Using SQL Plan Management".

At any time during or after the automatic SQL tuning process, you can view the results using the automatic SQL tuning report. This report describes in detail all the SQL statements that were analyzed, the recommendations generated, and the SQL profiles that were automatically implemented.

Figure 17-1 shows the steps performed by the database during automatic SQL tuning.

Figure 17-1 Automatic SQL Tuning

[image: Description of Figure 17-1 follows]

17.2.2 Enabling and Disabling Automatic SQL Tuning

Automatic SQL tuning runs as part of the automated maintenance tasks infrastructure.

To enable automatic SQL tuning, use the ENABLE procedure in the DBMS_AUTO_TASK_ADMIN package:

BEGIN
 DBMS_AUTO_TASK_ADMIN.ENABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

To disable automatic SQL tuning, use the DISABLE procedure in the DBMS_AUTO_TASK_ADMIN package:

BEGIN
 DBMS_AUTO_TASK_ADMIN.DISABLE(
 client_name => 'sql tuning advisor',
 operation => NULL,
 window_name => NULL);
END;
/

You can pass a specific window name using the window_name parameter to enable or disable the task in certain maintenance windows only.

Setting the STATISTICS_LEVEL parameter to BASIC disables automatic statistics gathering by the AWR and, as a result, also disables automatic SQL tuning.

	
See Also:

	
Oracle Database Administrator's Guide for information about the AutoTask infrastructure

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_AUTO_TASK_ADMIN package

17.2.3 Configuring Automatic SQL Tuning

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the DBMS_AUTO_SQLTUNE package to configure the behavior of the automatic SQL tuning task. For previous releases, use DBMS_SQLTUNE instead.

Table 17-2 lists the configurable parameters specific to automatic SQL tuning.

Table 17-1 SET_AUTO_TUNING_TASK_PARAMETER Automatic SQL Tuning Parameters

	Parameter	Description
	
ACCEPT_SQL_PROFILE

	
Specifies whether to accept SQL profiles automatically.

	
EXECUTION_DAYS_TO_EXPIRE

	
Specifies the number of days for which to save the task history in the advisor framework schema. By default, the task history is saved for 30 days before it expires.

	
MAX_SQL_PROFILES_PER_EXEC

	
Specifies the limit of SQL profiles that are accepted for each automatic SQL tuning task. Consider setting the limit of SQL profiles that are accepted for each automatic SQL tuning task based on the acceptable level of changes that can be made to the system on a daily basis.

	
MAX_AUTO_SQL_PROFILES

	
Specifies the limit of SQL profiles that are accepted in total.

To use the DBMS_AUTO_SQLTUNE package, you must have the DBA role, or have EXECUTE privileges granted by an administrator. The only exception is the EXECUTE_AUTO_TUNING_TASK procedure, which can only be run by SYS.

To configure automatic SQL tuning:

	
Start SQL*Plus, and connect to the database with DBA privileges (or connect as SYS if you plan to run EXECUTE_AUTO_TUNING_TASK).

	
Run the DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER procedure.

The following example configures the automatic SQL tuning task to automatically accept SQL profiles recommended by SQL Tuning Advisor:

BEGIN
 DBMS_AUTO_SQLTUNE.SET_AUTO_TUNING_TASK_PARAMETER(
 parameter => 'ACCEPT_SQL_PROFILES', value => 'TRUE');
END;
/

	
See Also:

	
"Configuring a SQL Tuning Task" to learn about other parameters that you can configure for a SQL tuning task

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_AUTO_SQLTUNE package

17.2.4 Viewing Automatic SQL Tuning Reports

Starting with Oracle Database 11g Release 2 (11.2.0.2), you can use the DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK function to generate the automatic SQL tuning report. For previous releases, use the DBMS_SQLTUNE package instead.

The report contains information about multiple executions of the Automatic SQL Tuning task. Depending on the sections that were included in the report, you can view information about the automatic SQL tuning task in the following sections:

	
General information

The general information section has a high-level description of the automatic SQL tuning task, including information about the inputs given for the report, the number of SQL statements tuned during the maintenance, and the number of SQL profiles created.

	
Summary

The summary section lists the SQL statements (by their SQL identifiers) that were tuned during the maintenance window and the estimated benefit of each SQL profile, or their actual execution statistics after test executing the SQL statement with the SQL profile.

	
Tuning findings

This section contains the following information about each SQL statement analyzed by SQL Tuning Advisor:

	
All findings associated with each SQL statement

	
Whether the profile was accepted on the database, and why

	
Whether the SQL profile is currently enabled on the database

	
Detailed execution statistics captured when testing the SQL profile

	
Explain plans

This section shows the old and new explain plans used by each SQL statement analyzed by SQL Tuning Advisor.

	
Errors

This section lists all errors encountered by the automatic SQL tuning task.

To view the automatic SQL tuning report using DBMS_AUTO_SQLTUNE:

	
Start SQL*Plus, and connect to the database with the appropriate privileges.

	
Run the DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK function.

In the following example, the advisor generates a text report to show all SQL statements that were analyzed in the most recent execution, including recommendations that were not implemented.

VARIABLE my_rept CLOB;
BEGIN
 :my_rept :=DBMS_AUTO_SQLTUNE.REPORT_AUTO_TUNING_TASK(
 begin_exec => NULL,
 end_exec => NULL,
 type => 'TEXT',
 level => 'TYPICAL',
 section => 'ALL',
 object_id => NULL,
 result_limit => NULL);
END;
/

PRINT :my_rept

	
See Also:

	
Oracle Database 2 Day + Performance Tuning Guide to learn how to view automatic SQL tuning reports using Enterprise Manager

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_AUTO_SQLTUNE package

17.3 Tuning Reactively with SQL Tuning Advisor

You can invoke SQL Tuning Advisor manually for on-demand tuning of one or more SQL statements. To tune multiple statements, you must create a SQL tuning set (STS). A SQL tuning set is a database object that stores SQL statements along with their execution context. You can create a SQL tuning set using command line APIs or Enterprise Manager. See "Managing SQL Tuning Sets".

17.3.1 Input Sources

Input for SQL Tuning Advisor can come from several sources, including the following:

	
ADDM (Automatic Database Diagnostic Monitor)

The primary input source is ADDM. By default, ADDM runs proactively once every hour and analyzes key statistics gathered by the Automatic Workload Repository (AWR) over the last hour to identify any performance problems including high-load SQL statements. If a high-load SQL is identified, ADDM recommends running SQL Tuning Advisor on the SQL. See "Overview of the Automatic Database Diagnostic Monitor".

	
AWR

The second most important input source is the Automatic Workload Repository (AWR). AWR takes regular snapshots of system activity, including high-load SQL statements ranked by relevant statistics, such as CPU consumption and wait time.

You can view the AWR and manually identify high-load SQL statements. You can run SQL Tuning Advisor on these statements, although Oracle Database automatically performs this work as part of automatic SQL tuning. By default, AWR retains data for the last eight days. You can locate and tune any high-load SQL that ran within the retention period of AWR using this method. See "Overview of the Automatic Workload Repository".

	
Shared SQL area

The third likely source of input is the shared SQL area. The database uses this source to tune recent SQL statements that have yet to be captured in the AWR. The shared SQL area and AWR provide the capability to identify and tune high-load SQL statements from the current time going as far back as the AWR retention allows, which by default is at least 8 days.

	
SQL tuning set

Another possible input source for SQL Tuning Advisor is the SQL tuning set. A SQL tuning set (STS) is a database object that stores SQL statements along with their execution context. An STS can include SQL statements that are yet to be deployed, with the goal of measuring their individual performance, or identifying the ones whose performance falls short of expectation. When a set of SQL statements serve as input, the database must first construct and use an STS. See "Managing SQL Tuning Sets".

17.3.2 Tuning Options

SQL Tuning Advisor provides options to manage the scope and duration of a tuning task. You can set the scope of a tuning task either of the following:

	
Limited

In this case, SQL Tuning Advisor produces recommendations based on statistical checks, access path analysis, and SQL structure analysis. SQL profile recommendations are not generated.

	
Comprehensive

In this case, SQL Tuning Advisor carries out all the analysis it performs under limited scope plus SQL Profiling. With the comprehensive option you can also specify a time limit for the tuning task, which by default is 30 minutes.

17.3.3 Advisor Output

After analyzing the SQL statements, SQL Tuning Advisor provides advice on optimizing the execution plan, the rationale for the proposed optimization, the estimated performance benefit, and the command to implement the advice. You choose whether to accept the recommendations to optimize the SQL statements.

17.3.4 Running SQL Tuning Advisor

The recommended interface for running SQL Tuning Advisor is Enterprise Manager. Whenever possible, run SQL Tuning Advisor using Enterprise Manager, as described in the Oracle Database 2 Day + Performance Tuning Guide. If Enterprise Manager is unavailable, then you can run SQL Tuning Advisor using procedures in the DBMS_SQLTUNE package. To use the APIs, the user must be granted specific privileges.

Running SQL Tuning Advisor using DBMS_SQLTUNE package is a multi-step process:

	
Create a SQL tuning set (if tuning multiple SQL statements)

	
Create a SQL tuning task

	
Execute a SQL tuning task

	
Display the results of a SQL tuning task

	
Implement recommendations as appropriate

You can create a SQL tuning task for a single SQL statement. For tuning multiple statements, a SQL tuning set (STS) has to be first created. An STS is a database object that stores SQL statements along with their execution context. You can create an STS manually using command line APIs or automatically using Enterprise Manager. See "Managing SQL Tuning Sets".

Figure 17-2 shows the steps involved when running SQL Tuning Advisor using the DBMS_SQLTUNE package.

Figure 17-2 SQL Tuning Advisor APIs

[image: Description of Figure 17-2 follows]

This section covers the following topics:

	
Creating a SQL Tuning Task

	
Configuring a SQL Tuning Task

	
Executing a SQL Tuning Task

	
Checking the Status of a SQL Tuning Task

	
Checking the Progress of SQL Tuning Advisor

	
Displaying the Results of a SQL Tuning Task

	
Additional Operations on a SQL Tuning Task

	
See Also:

	
Oracle Database 2 Day + Performance Tuning Guide to learn how to run SQL Tuning Advisor manually using Enterprise Manager

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_SQLTUNE package

17.3.4.1 Creating a SQL Tuning Task

You can create tuning tasks from the text of a single SQL statement, a SQL tuning set containing multiple statements, a SQL statement selected by SQL identifier from the shared SQL area, or a SQL statement selected by SQL identifier from AWR.

For example, to use SQL Tuning Advisor to optimize a specified SQL statement text, create a tuning task with the SQL statement passed as a CLOB argument. For the following PL/SQL code, the user hr has been granted the ADVISOR privilege, and the function is run as user hr on the hr.employees table.

DECLARE
 my_task_name VARCHAR2(30);
 my_sqltext CLOB;
BEGIN
 my_sqltext := 'SELECT /*+ ORDERED */ * ' ||
 'FROM employees e, locations l, departments d ' ||
 'WHERE e.department_id = d.department_id AND ' ||
 'l.location_id = d.location_id AND ' ||
 'e.employee_id < :bnd';

 my_task_name := DBMS_SQLTUNE.CREATE_TUNING_TASK(
 sql_text => my_sqltext,
 bind_list => sql_binds(anydata.ConvertNumber(100)),
 user_name => 'HR',
 scope => 'COMPREHENSIVE',
 time_limit => 60,
 task_name => 'my_sql_tuning_task',
 description => 'Task to tune a query on a specified employee');
END;
/

In the preceding example, 100 is the value for bind variable :bnd passed as function argument of type SQL_BINDS, HR is the user under which the CREATE_TUNING_TASK function analyzes the SQL statement, the scope is set to COMPREHENSIVE which means that the advisor also performs SQL Profiling analysis, and 60 is the maximum time in seconds that the function can run. In addition, values for task name and description are provided.

The CREATE_TUNING_TASK function returns the task name that you provided or generates a unique name. You can use the task name to specify this task when using other APIs. To view task names associated with an owner, run the following query:

SELECT TASK_NAME
FROM DBA_ADVISOR_LOG
WHERE OWNER = 'HR';

17.3.4.2 Configuring a SQL Tuning Task

You can fine tune a SQL tuning task after it has been created by configuring its parameters using the SET_TUNING_TASK_PARAMETER procedure in the DBMS_SQLTUNE package:

BEGIN
 DBMS_SQLTUNE.SET_TUNING_TASK_PARAMETER(
 task_name => 'my_sql_tuning_task',
 parameter => 'TIME_LIMIT', value => 300);
END;
/

In the preceding example, the maximum time that the SQL tuning task can run is changed to 300 seconds.

Table 17-2 lists parameters that you can configure using the SET_TUNING_TASK_PARAMETER procedure.

Table 17-2 SET_TUNING_TASK_PARAMETER Procedure Parameters

	Parameter	Description
	
MODE

	
Specifies the scope of the tuning task:

	
LIMITED takes approximately 1 second to tune each SQL statement but does not recommend a SQL profile

	
COMPREHENSIVE performs a complete analysis and recommends a SQL profile, when appropriate, but may take much longer.

	
USERNAME

	
Username under which the SQL statement is parsed

	
DAYS_TO_EXPIRE

	
Number of days before the task is deleted

	
DEFAULT_EXECUTION_TYPE

	
Default execution type if not specified by the EXECUTE_TUNING_TASK function when the task is executed

	
TIME_LIMIT

	
Time limit (in number of seconds) before the task times out

	
LOCAL_TIME_LIMIT

	
Time limit (in number of seconds) for each SQL statement

	
TEST_EXECUTE

	
Determines if the SQL Tuning Advisor test executes the SQL statements to verify the recommendation benefit:

	
FULL - Test executes SQL statements for as much of the local time limit as necessary

	
AUTO - Test executes SQL statements using an automatic time limit

	
OFF - Does not test execute SQL statements

	
BASIC_FILTER

	
Basic filter used for SQL tuning set

	
OBJECT_FILTER

	
Object filter used for SQL tuning set

	
PLAN_FILTER

	
Plan filter used for SQL tuning set

	
RANK_MEASURE1

	
First ranking measure used for SQL tuning set

	
RANK_MEASURE2

	
Second ranking measure used for SQL tuning set

	
RANK_MEASURE3

	
Third ranking measure used for SQL tuning set

	
RESUME_FILTER

	
Extra filter used for SQL tuning set (besides BASIC_FILTER)

	
SQL_LIMIT

	
Maximum number of SQL statements to tune

	
SQL_PERCENTAGE

	
Percentage filter of statements from SQL tuning set

17.3.4.3 Executing a SQL Tuning Task

After you have created a tuning task, execute the task and start the tuning process. For example, run the following PL/SQL code:

BEGIN
 DBMS_SQLTUNE.EXECUTE_TUNING_TASK(task_name => 'my_sql_tuning_task');
END;
/

Like any other SQL Tuning Advisor task, you can also execute the automatic tuning task SYS_AUTO_SQL_TUNING_TASK using the EXECUTE_TUNING_TASK API. SQL Tuning Advisor performs the same analysis and actions as it would when run automatically. You can also pass an execution name to the API to name the new execution.

17.3.4.4 Checking the Status of a SQL Tuning Task

You can check the status of the task by reviewing the information in the USER_ADVISOR_TASKS view or check execution progress of the task in the V$SESSION_LONGOPS view. For example, run the following query:

SELECT status
FROM USER_ADVISOR_TASKS
WHERE task_name = 'my_sql_tuning_task';

17.3.4.5 Checking the Progress of SQL Tuning Advisor

You can check the execution progress of SQL Tuning Advisor in the V$ADVISOR_PROGRESS view. For example, run the following query:

SELECT SOFAR, TOTALWORK
FROM V$ADVISOR_PROGRESS
WHERE USER_NAME = 'HR' AND TASK_NAME = 'my_sql_tuning_task';

	
See Also:

Oracle Database Reference to learn about the V$ADVISOR_PROGRESS view

17.3.4.6 Displaying the Results of a SQL Tuning Task

After a task has been executed, you display a report of the results with the REPORT_TUNING_TASK function. For example:

SET LONG 1000
SET LONGCHUNKSIZE 1000
SET LINESIZE 100
SELECT DBMS_SQLTUNE.REPORT_TUNING_TASK('my_sql_tuning_task')
FROM DUAL;

The report contains all the findings and recommendations of SQL Tuning Advisor. For each proposed recommendation, the rationale and benefit is provided along with the SQL statements needed to implement the recommendation.

You can find additional information about tuning tasks and results in DBA views. See "SQL Tuning Views".

17.3.4.7 Additional Operations on a SQL Tuning Task

You can use the following APIs for managing SQL tuning tasks:

	
INTERRUPT_TUNING_TASK to interrupt a task while executing, causing a normal exit with intermediate results

	
RESUME_TUNING_TASK to resume a previously interrupted task

	
CANCEL_TUNING_TASK to cancel a task while executing, removing all results from the task

	
RESET_TUNING_TASK to reset a task while executing, removing all results from the task and returning the task to its initial state

	
DROP_TUNING_TASK to drop a task, removing all results associated with the task

17.4 Managing SQL Tuning Sets

A SQL tuning set (STS) is a database object that includes one or more SQL statements along with their execution statistics and execution context, and could include a user priority ranking. You can load SQL statements into a SQL tuning set from different SQL sources, such as AWR, the shared SQL area, or customized SQL provided by the user. An STS includes:

	
A set of SQL statements

	
Associated execution context, such as user schema, application module name and action, list of bind values, and the cursor compilation environment

	
Associated basic execution statistics, such as elapsed time, CPU time, buffer gets, disk reads, rows processed, cursor fetches, the number of executions, the number of complete executions, optimizer cost, and the command type

	
Associated execution plans and row source statistics for each SQL statement (optional)

You can filter SQL statements using the application module name and action, or any of the execution statistics. In addition, you can rank statements based on any combination of execution statistics.

You can use an STS as input to SQL Tuning Advisor, which performs automatic tuning of the SQL statements based on other user-specified input parameters. You can export SQL tuning sets from one database to another, enabling transfer of SQL workloads between databases for remote performance diagnostics and tuning. When poorly performing SQL statements occur on a production database, developers may not want investigate and tune directly on the production database. The DBA can transport the problematic SQL statements to a test database where the developers can safely analyze and tune them. To transport SQL tuning sets, use the DBMS_SQLTUNE package.

Whenever possible, you should manage SQL tuning sets using Enterprise Manager, as described in the Oracle Database 2 Day + Performance Tuning Guide. If Enterprise Manager is unavailable, then you can manage SQL tuning sets using the DBMS_SQLTUNE package procedures.

Typically, you use STS operations in the following sequence:

	
Create a new STS

"Creating a SQL Tuning Set" describes this task.

	
Load the STS

"Loading a SQL Tuning Set" describes this task.

	
Select the STS to review the contents

"Displaying the Contents of a SQL Tuning Set" describes this task.

	
Update the STS if necessary

"Modifying a SQL Tuning Set" describes this task.

	
Create a tuning task with the STS as input

	
Transport the STS to another system, if necessary

"Transporting a SQL Tuning Set" describes this task.

	
Drop the STS when finished

"Dropping a SQL Tuning Set" describes this task.

To use the APIs, you need the ADMINISTER SQL TUNING SET system privilege to manage SQL tuning sets that you own, or the ADMINISTER ANY SQL TUNING SET system privilege to manage any SQL tuning sets.

Figure 17-3 shows the steps involved when using SQL tuning sets APIs.

Figure 17-3 SQL Tuning Sets APIs

[image: Description of Figure 17-3 follows]

This section covers the following topics:

	
Creating a SQL Tuning Set

	
Loading a SQL Tuning Set

	
Displaying the Contents of a SQL Tuning Set

	
Modifying a SQL Tuning Set

	
Transporting a SQL Tuning Set

	
Dropping a SQL Tuning Set

	
Additional Operations on SQL Tuning Sets

	
See Also:

	
Oracle Database 2 Day + Performance Tuning Guide to learn how to manage SQL tuning sets using Enterprise Manager

	
Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_SQLTUNE package

17.4.1 Creating a SQL Tuning Set

The CREATE_SQLSET procedure creates an empty STS object in the database. For example, the following procedure creates an STS object that you could use to tune I/O-intensive SQL statements during a specific period:

BEGIN
 DBMS_SQLTUNE.CREATE_SQLSET(
 sqlset_name => 'my_sql_tuning_set',
 description => 'I/O intensive workload');
END;
/

In the preceding example, my_sql_tuning_set is the name of the STS in the database. 'I/O intensive workload' is the description assigned to the STS.

17.4.2 Loading a SQL Tuning Set

The LOAD_SQLSET procedure populates the STS with selected SQL statements. The standard sources for populating an STS are the workload repository, another STS, or the shared SQL area. For both the workload repository and STS, predefined table functions can select columns from the source to populate a new STS.

In the following example, procedure calls load my_sql_tuning_set from an AWR baseline called peak baseline. The data has been filtered to select only the top 30 SQL statements ordered by elapsed time. First a ref cursor is opened to select from the specified baseline. Next the statements and their statistics are loaded from the baseline into the STS.

DECLARE
 baseline_cursor DBMS_SQLTUNE.SQLSET_CURSOR;
BEGIN
 OPEN baseline_cursor FOR
 SELECT VALUE(p)
 FROM TABLE (DBMS_SQLTUNE.SELECT_WORKLOAD_REPOSITORY(
 'peak baseline',
 NULL, NULL,
 'elapsed_time',
 NULL, NULL, NULL,
 30)) p;

 DBMS_SQLTUNE.LOAD_SQLSET(
 sqlset_name => 'my_sql_tuning_set',
 populate_cursor => baseline_cursor);
END;
/

17.4.3 Displaying the Contents of a SQL Tuning Set

The SELECT_SQLSET table function reads the contents of the STS. After an STS has been created and populated, you can browse the SQL in the STS using different filtering criteria. The SELECT_SQLSET procedure is provided for this purpose.

In the following example, the SQL statements in the STS are displayed for statements with a disk-reads to buffer-gets ratio greater than or equal to 75%.

SELECT * FROM TABLE(DBMS_SQLTUNE.SELECT_SQLSET(
 'my_sql_tuning_set',
 '(disk_reads/buffer_gets) >= 0.75'));

Additional details of the SQL tuning sets that have been created and loaded can also be displayed with DBA views, such as DBA_SQLSET, DBA_SQLSET_STATEMENTS, and DBA_SQLSET_BINDS.

17.4.4 Modifying a SQL Tuning Set

You can update and delete SQL statements from an STS based on a search condition. In the following example, the DELETE_SQLSET procedure deletes SQL statements from my_sql_tuning_set that have been executed less than fifty times.

BEGIN
 DBMS_SQLTUNE.DELETE_SQLSET(
 sqlset_name => 'my_sql_tuning_set',
 basic_filter => 'executions < 50');
END;
/

17.4.5 Transporting a SQL Tuning Set

You can transport SQL tuning sets. This operation involves exporting the STS from one database to a staging table, and then importing the STS from the staging table into another database.

You can transport a SQL tuning set to any database created in Oracle Database 10g (Release 2) or later. This technique is useful when using SQL Performance Analyzer to tune regressions on a test database. For example, you can transport an STS in the following scenario:

	
An STS with regressed SQL resides in a production database created in Oracle Database 11g Release 2 (11.2).

	
You are running SQL Performance Analyzer trials on a remote test database created in Oracle Database 11g Release 1 (11.1) or Oracle Database 10g.

	
You want to copy the STS from the production database to the test database and tune the regressions from the SQL Performance Analyzer trials.

To transport a SQL tuning set:

	
Use the CREATE_STGTAB_SQLSET procedure to create a staging table where the SQL tuning sets will be exported.

The following example creates my_10g_staging_table in the dba1 schema and specifies the format of the staging table as 10.2:

BEGIN
 DBMS_SQLTUNE.create_stgtab_sqlset(
 table_name => 'my_10g_staging_table',
 schema_name => 'dba1',
 db_version => DBMS_SQLTUNE.STS_STGTAB_10_2_VERSION);
END;
/

	
Use the PACK_STGTAB_SQLSET procedure to export SQL tuning sets into the staging table.

The following example populates dba1.my_10g_staging_table with the STS my_sts owned by hr:

BEGIN
 DBMS_SQLTUNE.pack_stgtab_sqlset(
 sqlset_name => 'my_sts',
 sqlset_owner => 'hr',
 staging_table_name => 'my_10g_staging_table',
 staging_schema_owner => 'dba1',
 db_version => DBMS_SQLTUNE.STS_STGTAB_10_2_VERSION);
END;
/

	
Move the staging table to the database where the SQL tuning sets will be imported using the mechanism of choice (such as Oracle Data Pump or database link).

	
On the database where the SQL tuning sets will be imported, use the UNPACK_STGTAB_SQLSET procedure to import SQL tuning sets from the staging table.

The following example shows how to import SQL tuning sets contained in the staging table:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLSET(
 sqlset_name => '%',
 replace => TRUE,
 staging_table_name => 'my_10g_staging_table');
END;
/

17.4.6 Dropping a SQL Tuning Set

The DROP_SQLSET procedure drops an STS that is no longer needed. For example:

BEGIN
 DBMS_SQLTUNE.DROP_SQLSET(sqlset_name => 'my_sql_tuning_set');
END;
/

17.4.7 Additional Operations on SQL Tuning Sets

You can use the following APIs to manage an STS:

	
Updating the attributes of SQL statements in an STS

The UPDATE_SQLSET procedure updates the attributes of SQL statements (such as PRIORITY or OTHER) in an existing STS identified by STS name and SQL ID.

	
Capturing the full system workload

The CAPTURE_CURSOR_CACHE_SQLSET function enables the capture of the full system workload by repeatedly polling the shared SQL area over a specified interval. This function more efficient than repeatedly using the SELECT_CURSOR_CACHE and LOAD_SQLSET procedures to capture the shared SQL area over an extended period. This function effectively captures the entire workload, as opposed to the AWR—which only captures the workload of high-load SQL statements—or the LOAD_SQLSET procedure, which accesses the data source only once.

	
Adding and removing a reference to an STS

The ADD_SQLSET_REFERENCE function adds a new reference to an existing STS to indicate its use by a client. The function returns the identifier of the added reference. The REMOVE_SQLSET_REFERENCE procedure deactivates an STS to indicate it is no longer used by the client.

17.5 Managing SQL Profiles

A SQL profile is a set of auxiliary information specific to a SQL statement.

This section contains the following topics:

	
Overview of SQL Profiles

	
Accepting a SQL Profile

	
Altering a SQL Profile

	
Dropping a SQL Profile

	
Transporting a SQL Profile

	
See Also:

Oracle Database 2 Day + Performance Tuning Guide to learn how to manage SQL profiles using Enterprise Manager

17.5.1 Overview of SQL Profiles

A SQL profile contains corrections for poor optimizer estimates discovered during Automatic SQL Tuning. This information can improve optimizer cardinality and selectivity estimates, which in turn leads the optimizer to select better plans.

The SQL profile does not contain information about individual execution plans. Rather, the optimizer has the following sources of information when choosing plans:

	
The environment, which contains the database configuration, bind variable values, optimizer statistics, data set, and so on

	
The supplemental statistics in the SQL profile

If the environment or SQL profile change, then the optimizer can create a new plan.

You can use SQL profiles with or without SQL plan management. If you use SQL plan management, then the plan chosen by the optimizer must be an enabled plan baseline. If the statement has multiple plans in the baseline, then the profile remains useful because it enables the optimizer to chose the lowest-cost plan in the baseline.

Figure 17-4 illustrates the relationship between a SQL statement and the SQL profile for this statement. The optimizer uses the profile and the environment to generate a query plan. In this example, the plan is in the SQL plan baseline for the statement.

Figure 17-4 SQL Profile

[image: Description of Figure 17-4 follows]

SQL profiles provide the following benefits:

	
Unlike hints and stored outlines, profiles do not tie the optimizer to a specific plan or subplan. Profiles fix incorrect estimates while giving the optimizer the flexibility to pick the best plan in different situations.

	
Unlike hints, no changes to application source code are necessary when using profiles.

The use of SQL profiles by the database is transparent to the user.

17.5.1.1 SQL Profile Recommendations

During SQL tuning, you select a statement for automatic tuning and run SQL Tuning Advisor. The database can profile the following types of statement:

	
DML statements (SELECT, INSERT with a SELECT clause, UPDATE, and DELETE)

	
CREATE TABLE statements (only with the AS SELECT clause)

	
MERGE statements (the update or insert operations)

SQL Tuning Advisor invokes Automatic Tuning Optimizer to generate recommendations. Recommendations to accept SQL profiles occur in a finding.

Example 17-3 shows that the database found a better plan for a SELECT statement that uses several expensive joins. The recommendation is to run DBMS_SQLTUNE.ACCEPT_SQL_PROFILE to accept the profile, which should enable the statement to run 98.53% faster.

Example 17-3 Sample SQL Profile Finding

FINDINGS SECTION (2 findings)

1- SQL Profile Finding (see explain plans section below)
--
 A potentially better execution plan was found for this statement. Choose
 one of the following SQL profiles to implement.

 Recommendation (estimated benefit: 99.45%)
 --
 - Consider accepting the recommended SQL profile.
 execute dbms_sqltune.accept_sql_profile(task_name => 'my_task',
 object_id => 3, task_owner => 'SH', replace => TRUE);

 Validation results

 The SQL profile was tested by executing both its plan and the original plan
 and measuring their respective execution statistics. A plan may have been
 only partially executed if the other could be run to completion in less time.

 Original Plan With SQL Profile % Improved
 ------------- ---------------- ----------
 Completion Status: PARTIAL COMPLETE
 Elapsed Time(us): 15467783 226902 98.53 %
 CPU Time(us): 15336668 226965 98.52 %
 User I/O Time(us): 0 0
 Buffer Gets: 3375243 18227 99.45 %
 Disk Reads: 0 0
 Direct Writes: 0 0
 Rows Processed: 0 109
 Fetches: 0 109
 Executions: 0 1

 Notes

 1. The SQL profile plan was first executed to warm the buffer cache.
 2. Statistics for the SQL profile plan were averaged over next 3 executions.

Sometimes SQL Tuning Advisor may recommend accepting a profile that uses the Automatic Degree of Parallelism (Auto DOP) feature. A parallel query profile is only recommended when the original plan is serial and when parallel execution can significantly reduce the response time for a long-running query. When it recommends a profile that uses Auto DOP, SQL Tuning Advisor gives details about the performance overhead of using parallel execution for the SQL statement in the report.

For parallel execution recommendations, SQL Tuning Advisor may provide two SQL profile recommendations, one using serial execution and one using parallel. In this case, the parallel profile is identical to the standard profile except for the directive to run in parallel.

Example 17-4 shows a parallel query recommendation. In this example, a degree of parallelism of 7 improves response time significantly at the cost of increasing resource consumption by almost 25%. You must decide whether the reduction in database throughput is worth the increase in response time.

Example 17-4 Parallel Query Recommendation

 Recommendation (estimated benefit: 99.99%)
 --
 - Consider accepting the recommended SQL profile to use parallel execution
 for this statement.
 execute dbms_sqltune.accept_sql_profile(task_name => 'gfk_task',
 object_id => 3, task_owner => 'SH', replace => TRUE,
 profile_type => DBMS_SQLTUNE.PX_PROFILE);

 Executing this query parallel with DOP 7 will improve its response time
 82.22% over the SQL profile plan. However, there is some cost in enabling
 parallel execution. It will increase the statement's resource consumption by
 an estimated 24.43% which may result in a reduction of system throughput.
 Also, because these resources are consumed over a much smaller duration, the
 response time of concurrent statements might be negatively impacted if
 sufficient hardware capacity is not available.

 The following data shows some sampled statistics for this SQL from the past
 week and projected weekly values when parallel execution is enabled.

 Past week sampled statistics for this SQL

 Number of executions 0
 Percent of total activity .29
 Percent of samples with #Active Sessions > 2*CPU 0
 Weekly DB time (in sec) 76.51

 Projected statistics with Parallel Execution
 --
 Weekly DB time (in sec) 95.21

17.5.1.2 SQL Profile Creation

When you accept a profile, the database creates the profile and stores it persistently in the data dictionary. If a user issues a statement for which a profile has been built, then the query optimizer (in normal mode) uses both the environment and the SQL profile to build a well-tuned plan.

If the database uses SQL plan management, and if a SQL plan baseline exists for the SQL statement, then the database adds a new plan to the baseline when a SQL profile is created. Otherwise, the database does not add a new plan baseline.

No strict relationship exists between the SQL profile and the plan baseline. When hard parsing, the optimizer uses the SQL profile to select the best plan baseline from the available plans. In some conditions, the SQL profile may cause the optimizer to select different plan baselines.

	
See Also:

Chapter 15, "Using SQL Plan Management"

17.5.1.3 SQL Profile APIs

While SQL profiles are usually handled by Enterprise Manager as part of Automatic SQL tuning, you can manage SQL profiles with the DBMS_SQLTUNE package. To use the APIs, you must have the ADMINISTER SQL MANAGEMENT OBJECT privilege.

Table 17-3 shows the main procedures and functions for managing SQL profiles.

Table 17-3 DBMS_SQLTUNE APIs for SQL Profiles

	Procedure or Function	Description	Section
	
ACCEPT_SQL_PROFILE

	
Creates a SQL Profile for the specified tuning task

	
"Accepting a SQL Profile"

	
ALTER_SQL_PROFILE

	
Alters specific attributes of an existing SQL Profile object

	
"Altering a SQL Profile"

	
DROP_SQL_PROFILE

	
Drops the named SQL Profile from the database

	
"Dropping a SQL Profile"

	
CREATE_STGTAB_SQLPROF

	
Creates the staging table used for copying SQL profiles from one system to another

	
"Transporting a SQL Profile"

	
PACK_STGTAB_SQLPROF

	
Moves profile data out of the SYS schema into the staging table

	
"Transporting a SQL Profile"

	
UNPACK_STGTAB_SQLPROF

	
Uses the profile data stored in the staging table to create profiles on this system

	
"Transporting a SQL Profile"

Figure 17-5 shows the possible actions when using SQL profile APIs.

Figure 17-5 SQL Profile APIs

[image: Description of Figure 17-5 follows]

As tables grow or indexes are created or dropped, the plan for a profile can change. The profile continues to be relevant even if the data distribution or access path of the corresponding statement changes. In general, you do not need to refresh SQL profiles.

Over a long period, profile content can become outdated. In this case, the performance of the corresponding SQL statement may degrade. The poorly performing statement may appear as high-load or top SQL. In this situation, the Automatic SQL Tuning task again captures the statement as high-load SQL. You can create a new profile for the statement.

	
See Also:

Oracle Database PL/SQL Packages and Types Reference for information about the DBMS_SQLTUNE package

17.5.2 Accepting a SQL Profile

You can use the DBMS_SQLTUNE.ACCEPT_SQL_PROFILE procedure or function to accept a SQL profile recommended by SQL Tuning Advisor. This procedure creates and stores a SQL profile in the database.

As a rule of thumb, accept a SQL profile recommended by SQL Tuning Advisor. If both an index and a SQL profile are recommended, then either use both or use the SQL profile only. If you create an index, then the optimizer may need the profile to pick the new index.

In some situations, SQL Tuning Advisor may find an improved serial plan in addition to an even better parallel plan. In this case, the advisor recommends both a standard and a parallel SQL profile, enabling you to choose between the best serial and best parallel plan for the statement. Accept a parallel plan only if the increase in response time is worth the decrease in throughput (see Example 17-4).

To accept a SQL profile:

	
Call the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure.

In following example, my_sql_tuning_task is the name of the SQL tuning task and my_sql_profile is the name of the SQL profile. The PL/SQL block accepts a profile that uses parallel execution (profile_type):

DECLARE
 my_sqlprofile_name VARCHAR2(30);
BEGIN
 my_sqlprofile_name := DBMS_SQLTUNE.ACCEPT_SQL_PROFILE (
 task_name => 'my_sql_tuning_task',
 name => 'my_sql_profile',
 profile_type => DBMS_SQLTUNE.PX_PROFILE,
 force_match => TRUE);
END;
/

The force_match setting controls statement matching. Typically, an accepted SQL profile is associated with the SQL statement through a SQL signature that is generated using a hash function. This hash function changes the SQL statement to upper case and removes all extra whites spaces before generating the signature. Thus, the same SQL profile works for all SQL statements in which the only difference is case and white spaces.

By setting force_match to TRUE, the SQL profile additionally targets all SQL statements that have the same text after normalizing literal values to bind variables. This setting may be useful for applications that use only literal values because it allows SQL with text differing only in its literal values to share a SQL profile. If both literal values and bind variables are in the SQL text, or if force_match is set to FALSE (default), then literal values are not normalized.

You can view information about a SQL profile in the DBA_SQL_PROFILES view.

17.5.3 Altering a SQL Profile

You can alter attributes of an existing SQL profile with the ALTER_SQL_PROFILE procedure. Modifiable attributes are STATUS, NAME, DESCRIPTION, and CATEGORY.

The CATEGORY attribute determines which sessions can apply a profile. You can view the CATEGORY attribute by querying DBA_SQL_PROFILES.CATEGORY. By default, all profiles are in the DEFAULT category, which means that all sessions in which the SQLTUNE_CATEGORY initialization parameter is set to DEFAULT can use the profile.

By altering the category of a SQL profile, you can determine which sessions are affected by profile creation. For example, by setting the category to DEV, only sessions in which the SQLTUNE_CATEGORY initialization parameter is set to DEV can use the profile. Other sessions do not have access to the SQL profile and execution plans for SQL statements are not impacted by the SQL profile. This technique enables you to test a profile in a restricted environment before making it available to other sessions.

To alter a SQL profile:

	
Call the DBMS_SQLTUNE.ALTER_SQL_PROFILE procedure.

In the following example, the STATUS attribute of my_sql_profile is changed to DISABLED, which means the SQL profile is not used during SQL compilation:

BEGIN
 DBMS_SQLTUNE.ALTER_SQL_PROFILE(
 name => 'my_sql_profile',
 attribute_name => 'STATUS',
 value => 'DISABLED');
END;
/

	
See Also:

Oracle Database Reference to learn about the SQLTUNE_CATEGORY initialization parameter

17.5.4 Dropping a SQL Profile

You can drop a SQL profile with the DROP_SQL_PROFILE procedure. You can specify whether to ignore errors raised if the name does not exist. For this example, the default value of FALSE is accepted

To drop a SQL profile:

	
Call the DBMS_SQLTUNE.DROP_SQL_PROFILE procedure.

The following example drops the profile named my_sql_profile:

BEGIN
 DBMS_SQLTUNE.DROP_SQL_PROFILE(name => 'my_sql_profile');
END;
/

17.5.5 Transporting a SQL Profile

You can transport SQL profiles. This operation involves exporting the SQL profile from the SYS schema in one database to a staging table, and then importing the SQL profile from the staging table into another database. You can transport a SQL profile to any Oracle database created in the same release or later.

To transport a SQL profile:

	
Use the CREATE_STGTAB_SQLPROF procedure to create a staging table where the SQL profiles will be exported.

The following example creates my_staging_table in the DBA1 schema:

BEGIN
 DBMS_SQLTUNE.create_stgtab_sqlprof(
 table_name => 'my_staging_table',
 schema_name => 'DBA1');
END;
/

	
Use the PACK_STGTAB_SQLPROF procedure to export SQL profiles into the staging table.

The following example populates dba1.my_staging_table with the SQL profile my_profile:

BEGIN
 DBMS_SQLTUNE.pack_stgtab_sqlprof(
 profile_name => 'my_profile',
 staging_table_name => 'my_staging_table',
 staging_schema_owner => 'dba1');
END;
/

	
Move the staging table to the database where the SQL profiles will be imported using the mechanism of choice (such as Oracle Data Pump or database link).

	
On the database where the SQL profiles will be imported, use the UNPACK_STGTAB_SQLPROF procedure to import SQL profiles from the staging table.

The following example shows how to import SQL profiles contained in the staging table:

BEGIN
 DBMS_SQLTUNE.UNPACK_STGTAB_SQLPROF(
 replace => TRUE,
 staging_table_name => 'my_staging_table');
END;
/

17.6 SQL Tuning Views

This section summarizes views that shows information gathered for tuning the SQL statements. You need DBA privileges to access these views.

	
Advisor information views, such as DBA_ADVISOR_TASKS, DBA_ADVISOR_EXECUTIONS, DBA_ADVISOR_FINDINGS, DBA_ADVISOR_RECOMMENDATIONS, and DBA_ADVISOR_RATIONALE views.

	
SQL tuning information views, such as DBA_SQLTUNE_STATISTICS, DBA_SQLTUNE_BINDS, and DBA_SQLTUNE_PLANS views.

	
SQL tuning set views, such as DBA_SQLSET, DBA_SQLSET_BINDS, DBA_SQLSET_STATEMENTS, and DBA_SQLSET_REFERENCES views.

	
Information on captured execution plans for statements in SQL tuning sets are displayed in the DBA_SQLSET_PLANS and USER_SQLSET_PLANS views.

	
SQL profile information is displayed in the DBA_SQL_PROFILES view.

If TYPE = MANUAL, then the SQL profile was created manually by SQL Tuning Advisor. If TYPE = MANUAL, then the profile was created by automatic SQL tuning.

	
Advisor execution progress information is displayed in the V$ADVISOR_PROGRESS view.

	
Dynamic views containing information relevant to the SQL tuning, such as VSQL, VSQLAREA, V$SQLSTATS, and V$SQL_BINDS views.

	
See Also:

Oracle Database Reference for descriptions of the static data dictionary and dynamic views

10 Instance Tuning Using Performance Views

After the initial configuration of a database, monitoring and tuning an instance regularly is important to eliminate any potential performance bottlenecks. This chapter discusses the tuning process using Oracle V$ performance views.

This chapter contains the following sections:

	
Instance Tuning Steps

	
Interpreting Oracle Database Statistics

	
Wait Events Statistics

	
Real-Time SQL Monitoring

	
Tuning Instance Recovery Performance: Fast-Start Fault Recovery

10.1 Instance Tuning Steps

These are the main steps in the Oracle performance method for instance tuning:

	
Define the Problem

Get candid feedback from users about the scope of the performance problem.

	
Examine the Host System and Examine the Oracle Database Statistics

	
After obtaining a full set of operating system, database, and application statistics, examine the data for any evidence of performance problems.

	
Consider the list of common performance errors to see whether the data gathered suggests that they are contributing to the problem.

	
Build a conceptual model of what is happening on the system using the performance data gathered.

	
Implement and Measure Change

Propose changes to be made and the expected result of implementing the changes. Then, implement the changes and measure application performance.

	
Determine whether the performance objective defined in step 1 has been met. If not, then repeat steps 2 and 3 until the performance goals are met.

	
See Also:

"The Oracle Performance Improvement Method" for a theoretical description of this performance method and a list of common errors

The remainder of this chapter discusses instance tuning using the Oracle Database dynamic performance views. However, Oracle recommends using the Automatic Workload Repository (AWR) and Automatic Database Diagnostic Monitor (ADDM) for statistics gathering, monitoring, and tuning due to the extended feature list. See "Overview of the Automatic Workload Repository" and "Overview of the Automatic Database Diagnostic Monitor".

	
Note:

If your site does not have the AWR and ADDM features, then you can use Statspack to gather Oracle database instance statistics.

10.1.1 Define the Problem

It is vital to develop a good understanding of the purpose of the tuning exercise and the nature of the problem before attempting to implement a solution. Without this understanding, it is virtually impossible to implement effective changes. The data gathered during this stage helps determine the next step to take and what evidence to examine.

Gather the following data:

	
Identify the performance objective.

What is the measure of acceptable performance? How many transactions an hour, or seconds, response time will meet the required performance level?

	
Identify the scope of the problem.

What is affected by the slowdown? For example, is the whole instance slow? Is it a particular application, program, specific operation, or a single user?

	
Identify the time frame when the problem occurs.

Is the problem only evident during peak hours? Does performance deteriorate over the course of the day? Was the slowdown gradual (over the space of months or weeks) or sudden?

	
Quantify the slowdown.

This helps identify the extent of the problem and also acts as a measure for comparison when deciding whether changes implemented to fix the problem have actually made an improvement. Find a consistently reproducible measure of the response time or job run time. How much worse are the timings than when the program was running well?

	
Identify any changes.

Identify what has changed since performance was acceptable. This may narrow the potential cause quickly. For example, has the operating system software, hardware, application software, or Oracle Database release been upgraded? Has more data been loaded into the system, or has the data volume or user population grown?

At the end of this phase, you should have a good understanding of the symptoms. If the symptoms can be identified as local to a program or set of programs, then the problem is handled in a different manner than instance-wide performance issues.

	
See Also:

Chapter 16, "SQL Tuning Overview" to learn how to solve performance problems specific to an application or user

10.1.2 Examine the Host System

Look at the load on the database server and the database instance. Consider the operating system, the I/O subsystem, and network statistics, because examining these areas helps determine what might be worth further investigation. In multitier systems, also examine the application server middle-tier hosts.

Examining the host hardware often gives a strong indication of the bottleneck in the system. This determines which Oracle Database performance data could be useful for cross-reference and further diagnosis.

Data to examine includes the following:

	
CPU Usage

	
Identifying I/O Problems

	
Identifying Network Issues

10.1.2.1 CPU Usage

If there is a significant amount of idle CPU, then there could be an I/O, application, or database bottleneck. Note that wait I/O should be considered as idle CPU.

If there is high CPU usage, then determine whether the CPU is being used effectively. Is the majority of CPU usage attributable to a small number of high-CPU using programs, or is the CPU consumed by an evenly distributed workload?

If a small number of high-usage programs use the CPU, then look at the programs to determine the cause. Check whether some processes alone consume the full power of one CPU. Depending on the process, this could indicate a CPU or process-bound workload that can be tackled by dividing or parallelizing process activity.

10.1.2.1.1 Non-Oracle Processes

If the programs are not Oracle programs, then identify whether they are legitimately requiring that amount of CPU. If so, determine whether their execution be delayed to off-peak hours. Identifying these CPU intensive processes can also help narrowing what specific activity, such as I/O, network, and paging, is consuming resources and how can it be related to the database workload.

10.1.2.1.2 Oracle Processes

If a small number of Oracle processes consumes most of the CPU resources, then use SQL_TRACE and TKPROF to identify the SQL or PL/SQL statements to see if a particular query or PL/SQL program unit can be tuned. For example, a SELECT statement could be CPU-intensive if its execution involves many reads of data in cache (logical reads) that could be avoided with better SQL optimization.

10.1.2.1.3 Oracle Database cPU Statistics

Oracle Database CPU statistics are available in several V$ views:

	
V$SYSSTAT shows Oracle Database CPU usage for all sessions. The CPU used by this session statistic shows the aggregate CPU used by all sessions. The parse time cpu statistic shows the total CPU time used for parsing.

	
V$SESSTAT shows Oracle Database CPU usage for each session. Use this view to determine which particular session is using the most CPU.

	
V$RSRC_CONSUMER_GROUP shows CPU utilization statistics for each consumer group when the Oracle Database Resource Manager is running.

10.1.2.1.4 Interpreting CPU Statistics

It is important to recognize that CPU time and real time are distinct. With eight CPUs, for any given minute in real time, there are eight minutes of CPU time available. On Windows and UNIX, this can be either user time or system time (privileged mode on Windows). Thus, average CPU time utilized by all processes (threads) on the system could be greater than one minute for every one minute real time interval.

At any given moment, you know how much time Oracle Database has used on the system. So, if eight minutes are available and Oracle Database uses four minutes of that time, then you know that 50% of all CPU time is used by Oracle. If your process is not consuming that time, then some other process is. Identify the processes that are using CPU time, figure out why, and then attempt to tune them. See Chapter 21, "Using Application Tracing Tools".

If the CPU usage is evenly distributed over many Oracle server processes, examine the V$SYS_TIME_MODEL view to help get a precise understanding of where most time is spent. See Table 10-1, "Wait Events and Potential Causes".

10.1.2.2 Identifying I/O Problems

An overly active I/O system can be evidenced by disk queue lengths greater than two, or disk service times that are over 20-30ms. If the I/O system is overly active, then check for potential hot spots that could benefit from distributing the I/O across more disks. Also identify whether the load can be reduced by lowering the resource requirements of the programs using those resources. If the I/O problems are caused by Oracle Database, then I/O tuning can begin. If Oracle Database is not consuming the available I/O resources, then identify the process that is using up the I/O. Determine why the process is using up the I/O, and then tune this process.

I/O problems can be identified using V$ views in Oracle Database and monitoring tools in the operating system, as described in the following sections:

	
Identifying I/O Problems Using V$ Views

	
Identifying I/O Problems Using Operating System Monitoring Tools

10.1.2.2.1 Identifying I/O Problems Using V$ Views

Check the Oracle wait event data in V$SYSTEM_EVENT to see whether the top wait events are I/O related. I/O related events include db file sequential read, db file scattered read, db file single write, db file parallel write, and log file parallel write. These are all events corresponding to I/Os performed against data files and log files. If any of these wait events correspond to high average time, then investigate the I/O contention.

Cross reference the host I/O system data with the I/O sections in the Automatic Repository report to identify hot data files and tablespaces. Also compare the I/O times reported by the operating system with the times reported by Oracle Database to see if they are consistent.

An I/O problem can also manifest itself with non-I/O related wait events. For example, the difficulty in finding a free buffer in the buffer cache or high wait times for logs to be flushed to disk can also be symptoms of an I/O problem. Before investigating whether the I/O system should be reconfigured, determine if the load on the I/O system can be reduced.

To reduce I/O load caused by Oracle Database, examine the I/O statistics collected for all I/O calls made by the database using the following views:

	
V$IOSTAT_CONSUMER_GROUP

The V$IOSTAT_CONSUMER_GROUP view captures I/O statistics for consumer groups. If Oracle Database Resource Manager is enabled, I/O statistics for all consumer groups that are part of the currently enabled resource plan are captured.

	
V$IOSTAT_FILE

The V$IOSTAT_FILE view captures I/O statistics of database files that are or have been accessed. The SMALL_SYNC_READ_LATENCY column displays the latency for single block synchronous reads (in milliseconds), which translates directly to the amount of time that clients need to wait before moving onto the next operation. This defines the responsiveness of the storage subsystem based on the current load. If there is a high latency for critical data files, you may want to consider relocating these files to improve their service time. To calculate latency statistics, timed_statistics must be set to TRUE.

	
V$IOSTAT_FUNCTION

The V$IOSTAT_FUNCTION view captures I/O statistics for database functions (such as the LGWR and DBWR).

An I/O can be issued by various Oracle processes with different functionalities. The top database functions are classified in the V$IOSTAT_FUNCTION view. In cases when there is a conflict of I/O functions, the I/O is placed in the bucket with the lower FUNCTION_ID. For example, if XDB issues an I/O from the buffer cache, the I/O would be classified as an XDB I/O because it has a lower FUNCTION_ID value. Any unclassified function is placed in the Others bucket. You can display the FUNCTION_ID hierarchy by querying the V$IOSTAT_FUNCTION view:

select FUNCTION_ID, FUNCTION_NAME
from v$iostat_function
order by FUNCTION_ID;

FUNCTION_ID FUNCTION_NAME
----------- ------------------
 0 RMAN
 1 DBWR
 2 LGWR
 3 ARCH
 4 XDB
 5 Streams AQ
 6 Data Pump
 7 Recovery
 8 Buffer Cache Reads
 9 Direct Reads
 10 Direct Writes
 11 Others

These V$IOSTAT views contains I/O statistics for both single and multi block read and write operations. Single block operations are small I/Os that are less than or equal to 128 kilobytes. Multi block operations are large I/Os that are greater than 128 kilobytes. For each of these operations, the following statistics are collected:

	
Identifier

	
Total wait time (in milliseconds)

	
Number of waits executed (for consumer groups and functions)

	
Number of requests for each operation

	
Number of single and multi block bytes read

	
Number of single and multi block bytes written

You should also look at SQL statements that perform many physical reads by querying the V$SQLAREA view, or by reviewing the "SQL ordered by Reads" section of the Automatic Workload Repository report. Examine these statements to see how they can be tuned to reduce the number of I/Os.

	
See Also:

	
Chapter 8, "I/O Configuration and Design"

	
Chapter 16, "SQL Tuning Overview"

	
"db file scattered read" and "db file sequential read" for the difference between a scattered read and a sequential read, and how this affects I/O

	
Oracle Database Reference for information about the V$IOSTAT_CONSUMER_GROUP, V$IOSTAT_FUNCTION, V$IOSTAT_FILE, and V$SQLAREA views

10.1.2.2.2 Identifying I/O Problems Using Operating System Monitoring Tools

Use operating system monitoring tools to determine what processes are running on the system as a whole and to monitor disk access to all files. Remember that disks holding data files and redo log files can also hold files that are not related to Oracle Database. Reduce any heavy access to disks that contain database files. You can monitor access to non-database files only through operating system facilities, rather than through the V$ views.

Utilities, such as sar -d (or iostat) on many UNIX systems and the administrative performance monitoring tool on Windows systems, examine I/O statistics for the entire system.

	
See Also:

Your operating system documentation for the tools available on your platform

10.1.2.3 Identifying Network Issues

Using operating system utilities, look at the network round-trip ping time and the number of collisions. If the network is causing large delays in response time, then investigate possible causes.

To identify network I/O caused by remote access of database files, examine the V$IOSTAT_NETWORK view. This view contains network I/O statistics caused by accessing files on a remote database instance, including:

	
Database client initiating the network I/O (such as RMAN and PLSQL)

	
Number of read and write operations issued

	
Number of kilobytes read and written

	
Total wait time in milliseconds for read operations

	
Total wait in milliseconds for write operations

After the cause of the network issue is identified, network load can be reduced by scheduling large data transfers to off-peak times, or by coding applications to batch requests to remote hosts, rather than accessing remote hosts once (or more) for one request.

10.1.3 Examine the Oracle Database Statistics

You should examine Oracle Database statistics and cross-reference them with operating system statistics to ensure a consistent diagnosis of the problem. Operating system statistics can indicate a good place to begin tuning. However, if the goal is to tune the Oracle database instance, then look at the Oracle Database statistics to identify the resource bottleneck from a database perspective before implementing corrective action. See "Interpreting Oracle Database Statistics".

The following sections discuss the common Oracle data sources used while tuning.

10.1.3.1 Setting the Level of Statistics Collection

Oracle Database provides the initialization parameter STATISTICS_LEVEL, which controls all major statistics collections or advisories in the database. This parameter sets the statistics collection level for the database.

Depending on the setting of STATISTICS_LEVEL, certain advisories or statistics are collected, as follows:

	
BASIC: No advisories or statistics are collected. Monitoring and many automatic features are disabled. Oracle does not recommend this setting because it disables important Oracle Database features.

	
TYPICAL: This is the default value and ensures collection for all major statistics while providing best overall database performance. This setting should be adequate for most environments.

	
ALL: All of the advisories or statistics that are collected with the TYPICAL setting are included, plus timed operating system statistics and row source execution statistics.

	
See Also:

	
Oracle Database Reference for more information on the STATISTICS_LEVEL initialization parameter

	
"Interpreting Statistics" for considerations when setting the STATISTICS_LEVEL, DB_CACHE_ADVICE, TIMED_STATISTICS, or TIMED_OS_STATISTICS initialization parameters

10.1.3.1.1 V$STATISTICS_LEVEL

This view lists the status of the statistics or advisories controlled by STATISTICS_LEVEL.

	
See Also:

Oracle Database Reference for information about the dynamic performance V$STATISTICS_LEVEL view

10.1.3.2 Wait Events

Wait events are statistics that are incremented by a server process or thread to indicate that it had to wait for an event to complete before being able to continue processing. Wait event data reveals various symptoms of problems that might be impacting performance, such as latch contention, buffer contention, and I/O contention. Remember that these are only symptoms of problems, not the actual causes.

Wait events are grouped into classes. The wait event classes include: Administrative, Application, Cluster, Commit, Concurrency, Configuration, Idle, Network, Other, Scheduler, System I/O, and User I/O.

A server process can wait for the following:

	
A resource to become available, such as a buffer or a latch.

	
An action to complete, such as an I/O.

	
More work to do, such as waiting for the client to provide the next SQL statement to execute. Events that identify that a server process is waiting for more work are known as idle events.

	
See Also:

Oracle Database Reference for more information about Oracle wait events

Wait event statistics include the number of times an event was waited for and the time waited for the event to complete. If the initialization parameter TIMED_STATISTICS is set to true, then you can also see how long each resource was waited for.

To minimize user response time, reduce the time spent by server processes waiting for event completion. Not all wait events have the same wait time. Therefore, it is more important to examine events with the most total time waited rather than wait events with a high number of occurrences. Usually, it is best to set the dynamic parameter TIMED_STATISTICS to true at least while monitoring performance. See "Setting the Level of Statistics Collection" for information about STATISTICS_LEVEL settings.

10.1.3.3 Dynamic Performance Views Containing Wait Event Statistics

These dynamic performance views can be queried for wait event statistics:

	
V$ACTIVE_SESSION_HISTORY

The V$ACTIVE_SESSION_HISTORY view displays active database session activity, sampled once every second. See "Active Session History".

	
V$SESS_TIME_MODEL and V$SYS_TIME_MODEL

The V$SESS_TIME_MODEL and V$SYS_TIME_MODEL views contain time model statistics, including DB time which is the total time spent in database calls.

	
V$SESSION_WAIT

The V$SESSION_WAIT view displays information about the current or last wait for each session (such as wait ID, class, and time).

	
V$SESSION

The V$SESSION view displays information about each current session and contains the same wait statistics as those found in the V$SESSION_WAIT view. If applicable, this view also contains detailed information about the object that the session is currently waiting for (such as object number, block number, file number, and row number), the blocking session responsible for the current wait (such as the blocking session ID, status, and type), and the amount of time waited.

	
V$SESSION_EVENT

The V$SESSION_EVENT view provides summary of all the events the session has waited for since it started.

	
V$SESSION_WAIT_CLASS

The V$SESSION_WAIT_CLASS view provides the number of waits and the time spent in each class of wait events for each session.

	
V$SESSION_WAIT_HISTORY

The V$SESSION_WAIT_HISTORY view displays information about the last ten wait events for each active session (such as event type and wait time).

	
V$SYSTEM_EVENT

The V$SYSTEM_EVENT view provides a summary of all the event waits on the instance since it started.

	
V$EVENT_HISTOGRAM

The V$EVENT_HISTOGRAM view displays a histogram of the number of waits, the maximum wait, and total wait time on an event basis.

	
V$FILE_HISTOGRAM

The V$FILE_HISTOGRAM view displays a histogram of times waited during single block reads for each file.

	
V$SYSTEM_WAIT_CLASS

The V$SYSTEM_WAIT_CLASS view provides the instance wide time totals for the number of waits and the time spent in each class of wait events.

	
V$TEMP_HISTOGRAM

The V$TEMP_HISTOGRAM view displays a histogram of times waited during single block reads for each temporary file.

	
See Also:

Oracle Database Reference for information about the dynamic performance views

Investigate wait events and related timing data when performing reactive performance tuning. The events with the most time listed against them are often strong indications of the performance bottleneck. For example, by looking at V$SYSTEM_EVENT, you might notice lots of buffer busy waits. It might be that many processes are inserting into the same block and must wait for each other before they can insert. The solution could be to use automatic segment space management or partitioning for the object in question. See "Wait Events Statistics" for a description of the differences between the views V$SESSION_WAIT, V$SESSION_EVENT, and V$SYSTEM_EVENT.

10.1.3.4 System Statistics

System statistics are typically used in conjunction with wait event data to find further evidence of the cause of a performance problem.

For example, if V$SYSTEM_EVENT indicates that the largest wait event (in terms of wait time) is the event buffer busy waits, then look at the specific buffer wait statistics available in the view V$WAITSTAT to see which block type has the highest wait count and the highest wait time.

After the block type has been identified, also look at V$SESSION real-time while the problem is occurring or V$ACTIVE_SESSION_HISTORY and DBA_HIST_ACTIVE_SESS_HISTORY views after the problem has been experienced to identify the contended-for objects using the object number indicated. The combination of this data indicates the appropriate corrective action.

Statistics are available in many V$ views. Some common views include the following:

	
V$ACTIVE_SESSION_HISTORY

	
V$SYSSTAT

	
V$FILESTAT

	
V$ROLLSTAT

	
V$ENQUEUE_STAT

	
V$LATCH

10.1.3.4.1 V$ACTIVE_SESSION_HISTORY

This view displays active database session activity, sampled once every second. See "Active Session History".

10.1.3.4.2 V$SYSSTAT

This contains overall statistics for many different parts of Oracle Database, including rollback, logical and physical I/O, and parse data. Data from V$SYSSTAT is used to compute ratios, such as the buffer cache hit ratio.

10.1.3.4.3 V$FILESTAT

This contains detailed file I/O statistics for each file, including the number of I/Os for each file and the average read time.

10.1.3.4.4 V$ROLLSTAT

This contains detailed rollback and undo segment statistics for each segment.

10.1.3.4.5 V$ENQUEUE_STAT

This contains detailed enqueue statistics for each enqueue, including the number of times an enqueue was requested and the number of times an enqueue was waited for, and the wait time.

10.1.3.4.6 V$LATCH

This contains detailed latch usage statistics for each latch, including the number of times each latch was requested and the number of times the latch was waited for.

	
See Also:

Oracle Database Reference for information about dynamic performance views

10.1.3.5 Segment-Level Statistics

You can gather segment-level statistics to help you spot performance problems associated with individual segments. Collecting and viewing segment-level statistics is a good way to effectively identify hot tables or indexes in an instance.

After viewing wait events and system statistics to identify the performance problem, you can use segment-level statistics to find specific tables or indexes that are causing the problem. Consider, for example, that V$SYSTEM_EVENT indicates that buffer busy waits cause a fair amount of wait time. You can select from V$SEGMENT_STATISTICS the top segments that cause the buffer busy waits. Then you can focus your effort on eliminating the problem in those segments.

You can query segment-level statistics through the following dynamic performance views:

	
V$SEGSTAT_NAME This view lists the segment statistics being collected and the properties of each statistic (for instance, if it is a sampled statistic).

	
V$SEGSTAT This is a highly efficient, real-time monitoring view that shows the statistic value, statistic name, and other basic information.

	
V$SEGMENT_STATISTICS This is a user-friendly view of statistic values. In addition to all the columns of V$SEGSTAT, it has information about such things as the segment owner and table space name. It makes the statistics easy to understand, but it is more costly.

	
See Also:

Oracle Database Reference for information about dynamic performance views

10.1.4 Implement and Measure Change

Often at the end of a tuning exercise, it is possible to identify two or three changes that could potentially alleviate the problem. To identify which change provides the most benefit, it is recommended that only one change be implemented at a time. The effect of the change should be measured against the baseline data measurements found in the problem definition phase.

Typically, most sites with dire performance problems implement several overlapping changes at once, and thus cannot identify which changes provided any benefit. Although this is not immediately an issue, this becomes a significant hindrance if similar problems subsequently appear, because it is not possible to know which of the changes provided the most benefit and which efforts to prioritize.

If it is not possible to implement changes separately, then try to measure the effects of dissimilar changes. For example, measure the effect of making an initialization change to optimize redo generation separately from the effect of creating a new index to improve the performance of a modified query. It is impossible to measure the benefit of performing an operating system upgrade if SQL is tuned, the operating system disk layout is changed, and the initialization parameters are also changed at the same time.

Performance tuning is an iterative process. It is unlikely to find a 'silver bullet' that solves an instance-wide performance problem. In most cases, excellent performance requires iteration through the performance tuning phases, because solving one bottleneck often uncovers another (sometimes worse) problem.

Knowing when to stop tuning is also important. The best measure of performance is user perception, rather than how close the statistic is to an ideal value.

10.2 Interpreting Oracle Database Statistics

Gather statistics that cover the time when the instance had the performance problem. If you previously captured baseline data for comparison, then you can compare the current data to the data from the baseline that most represents the problem workload.

When comparing two reports, ensure that the two reports are from times where the system was running comparable workloads.

	
See Also:

"Overview of Data Gathering"

10.2.1 Examine Load

Usually, wait events are the first data examined. However, if you have a baseline report, then check to see if the load has changed. Regardless of whether you have a baseline, it is useful to see whether the resource usage rates are high.

Load-related statistics to examine include redo size, session logical reads, db block changes, physical reads, physical read total bytes, physical writes, physical write total bytes, parse count (total), parse count (hard), and user calls. This data is queried from V$SYSSTAT. It is best to normalize this data over seconds and over transactions. It is also useful to examine the total I/O load in MB per second by using the sum of physical read total bytes and physical write total bytes. The combined value includes the I/O's used to buffer cache, redo logs, archive logs, by Recovery Manager (RMAN) backup and recovery and any Oracle Database background process.

In the AWR report, look at the Load Profile section. The data has been normalized over transactions and over seconds.

10.2.1.1 Changing Load

The load profile statistics over seconds show the changes in throughput (that is, whether the instance is performing more work each second). The statistics over transactions identify changes in the application characteristics by comparing these to the corresponding statistics from the baseline report.

10.2.1.2 High Rates of Activity

Examine the statistics normalized over seconds to identify whether the rates of activity are very high. It is difficult to make blanket recommendations on high values, because the thresholds are different on each site and are contingent on the application characteristics, the number and speed of CPUs, the operating system, the I/O system, and the Oracle Database release.

The following are some generalized examples (acceptable values vary at each site):

	
A hard parse rate of more than 100 a second indicates that there is a very high amount of hard parsing on the system. High hard parse rates cause serious performance issues and must be investigated. Usually, a high hard parse rate is accompanied by latch contention on the shared pool and library cache latches.

	
Check whether the sum of the wait times for library cache and shared pool latch events (latch: library cache, latch: library cache pin, latch: library cache lock and latch: shared pool) is significant compared to statistic DB time found in V$SYSSTAT. If so, examine the SQL ordered by Parse Calls section of the AWR report.

	
A high soft parse rate could be in the rate of 300 a second or more. Unnecessary soft parses also limit application scalability. Optimally, a SQL statement should be soft parsed once in each session and executed many times.

10.2.2 Using Wait Event Statistics to Drill Down to Bottlenecks

Whenever an Oracle process waits for something, it records the wait using one of a set of predefined wait events. These wait events are grouped in wait classes. The Idle wait class groups all events that a process waits for when it does not have work to do and is waiting for more work to perform. Non-idle events indicate nonproductive time spent waiting for a resource or action to complete.

	
Note:

Not all symptoms can be evidenced by wait events. See "Additional Statistics" for the statistics that can be checked.

The most effective way to use wait event data is to order the events by the wait time. This is only possible if TIMED_STATISTICS is set to true. Otherwise, the wait events can only be ranked by the number of times waited, which is often not the ordering that best represents the problem.

	
See Also:

	
"Setting the Level of Statistics Collection" for information about STATISTICS_LEVEL settings

	
Oracle Database Reference for information about the STATISTICS_LEVEL initialization parameter

To get an indication of where time is spent, follow these steps:

	
Examine the data collection for V$SYSTEM_EVENT. The events of interest should be ranked by wait time.

Identify the wait events that have the most significant percentage of wait time. To determine the percentage of wait time, add the total wait time for all wait events, excluding idle events, such as Null event, SQL*Net message from client, SQL*Net message to client, and SQL*Net more data to client. Calculate the relative percentage of the five most prominent events by dividing each event's wait time by the total time waited for all events.

	
See Also:

	
"Idle Wait Events" for the list of idle wait events

	
Description of the V$EVENT_NAME view in Oracle Database Reference

	
Detailed wait event information in Oracle Database Reference

Alternatively, look at the Top 5 Timed Events section at the beginning of the Automatic Workload Repository report. This section automatically orders the wait events (omitting idle events), and calculates the relative percentage:

Top 5 Timed Events
~~~~~~~~~~~~~~~~~~                                                % Total
Event                                         Waits    Time (s) Call Time
-------------------------------------- ------------ ----------- ---------
CPU time                                                    559     88.80
log file parallel write                       2,181          28      4.42
SQL*Net more data from client               516,611          27      4.24
db file parallel write                       13,383          13      2.04
db file sequential read                         563           2       .27


In some situations, there might be a few events with similar percentages. This can provide extra evidence if all the events are related to the same type of resource request (for example, all I/O related events).


	
Look at the number of waits for these events, and the average wait time. For example, for I/O related events, the average time might help identify whether the I/O system is slow. The following example of this data is taken from the Wait Event section of the AWR report:


                                                             Avg
                                                Total Wait   wait     Waits
Event                           Waits  Timeouts   Time (s)   (ms)      /txn
--------------------------- --------- --------- ---------- ------ ---------
log file parallel write         2,181         0         28     13      41.2
SQL*Net more data from clie   516,611         0         27      0   9,747.4
db file parallel write         13,383         0         13      1     252.5


	
The top wait events identify the next places to investigate. A table of common wait events is listed in Table 10-1. It is usually a good idea to also have quick look at high-load SQL.


	
Examine the related data indicated by the wait events to see what other information this data provides. Determine whether this information is consistent with the wait event data. In most situations, there is enough data to begin developing a theory about the potential causes of the performance bottleneck.


	
To determine whether this theory is valid, cross-check data you have examined with other statistics available for consistency. The appropriate statistics vary depending on the problem, but usually include load profile-related data in V$SYSSTAT, operating system statistics, and so on. Perform cross-checks with other data to confirm or refute the developing theory.









10.2.3 Table of Wait Events and Potential Causes

Table 10-1 links wait events to possible causes and gives an overview of the Oracle data that could be most useful to review next.


Table 10-1 Wait Events and Potential Causes

	Wait Event	General Area	Possible Causes	Look for / Examine
	
buffer busy waits

	
Buffer cache, DBWR

	
Depends on buffer type. For example, waits for an index block may be caused by a primary key that is based on an ascending sequence.

	
Examine V$SESSION while the problem is occurring to determine the type of block in contention.


	
free buffer waits

	
Buffer cache, DBWR, I/O

	
Slow DBWR (possibly due to I/O?)

Cache too small

	
Examine write time using operating system statistics. Check buffer cache statistics for evidence of too small cache.


	
db file scattered read

	
I/O, SQL statement tuning

	
Poorly tuned SQL

Slow I/O system

	
Investigate V$SQLAREA to see whether there are SQL statements performing many disk reads. Cross-check I/O system and V$FILESTAT for poor read time.


	
db file sequential read

	
I/O, SQL statement tuning

	
Poorly tuned SQL

Slow I/O system

	
Investigate V$SQLAREA to see whether there are SQL statements performing many disk reads. Cross-check I/O system and V$FILESTAT for poor read time.


	
enqueue waits (waits starting with enq:)

	
Locks

	
Depends on type of enqueue

	
Look at V$ENQUEUE_STAT.


	
library cache latch waits: library cache, library cache pin, and library cache lock

	
Latch contention

	
SQL parsing or sharing

	
Check V$SQLAREA to see whether there are SQL statements with a relatively high number of parse calls or a high number of child cursors (column VERSION_COUNT). Check parse statistics in V$SYSSTAT and their corresponding rate for each second.


	
log buffer space

	
Log buffer, I/O

	
Log buffer small

Slow I/O system

	
Check the statistic redo buffer allocation retries in V$SYSSTAT. Check configuring log buffer section in configuring memory chapter. Check the disks that house the online redo logs for resource contention.


	
log file sync

	
I/O, over- committing

	
Slow disks that store the online logs

Un-batched commits

	
Check the disks that house the online redo logs for resource contention. Check the number of transactions (commits + rollbacks) each second, from V$SYSSTAT.








You may also want to review the My Oracle Support notices on buffer busy waits (34405.1) and free buffer waits (62172.1). You can also access these notices and related notices by searching for "busy buffer waits" and "free buffer waits" at:


http://support.oracle.com/





	
See Also:

	
"Wait Events Statistics" for detailed information on each event listed in Table 10-1 and for other information to cross-check


	
Oracle Database Reference for information about dynamic performance views

















10.2.4 Additional Statistics

There are several statistics that can indicate performance problems that do not have corresponding wait events.



10.2.4.1 Redo Log Space Requests Statistic

The V$SYSSTAT statistic redo log space requests indicates how many times a server process had to wait for space in the online redo log, not for space in the redo log buffer. Use this statistic and the wait events as an indication that you must tune checkpoints, DBWR, or archiver activity, not LGWR. Increasing the size of the log buffer does not help.






10.2.4.2 Read Consistency

Your system might spend excessive time rolling back changes to blocks in order to maintain a consistent view. Consider the following scenarios:

	
If there are many small transactions and an active long-running query is running in the background on the same table where the changes are happening, then the query might need to roll back those changes often, in order to obtain a read-consistent image of the table. Compare the following V$SYSSTAT statistics to determine whether this is happening:

	
consistent: changes statistic indicates the number of times a database block has rollback entries applied to perform a consistent read on the block. Workloads that produce a great deal of consistent changes can consume a great deal of resources.


	
consistent gets: statistic counts the number of logical reads in consistent mode.





	
If there are few very, large rollback segments, then your system could be spending a lot of time rolling back the transaction table during delayed block cleanout in order to find out exactly which system change number (SCN) a transaction was committed. When Oracle Database commits a transaction, all modified blocks are not necessarily updated with the commit SCN immediately. In this case, it is done later on demand when the block is read or updated. This is called delayed block cleanout.

The ratio of the following V$SYSSTAT statistics should be close to one:


ratio = transaction tables consistent reads - undo records applied /
        transaction tables consistent read rollbacks


The recommended solution is to use automatic undo management.


	
If there are insufficient rollback segments, then there is rollback segment (header or block) contention. Evidence of this problem is available by the following:

	
Comparing the number of WAITS to the number of GETS in V$ROLLSTAT; the proportion of WAITS to GETS should be small.


	
Examining V$WAITSTAT to see whether there are many WAITS for buffers of CLASS 'undo header'.




The recommended solution is to use automatic undo management.









10.2.4.3 Table Fetch by Continued Row

You can detect migrated or chained rows by checking the number of table fetch continued row statistic in V$SYSSTAT. A small number of chained rows (less than 1%) is unlikely to impact system performance. However, a large percentage of chained rows can affect performance.

Chaining on rows larger than the block size is inevitable. Consider using a tablespace with a larger block size for such data.

However, for smaller rows, you can avoid chaining by using sensible space parameters and good application design. For example, do not insert a row with key values filled in and nulls in most other columns, then update that row with the real data, causing the row to grow in size. Rather, insert rows filled with data from the start.

If an UPDATE statement increases the amount of data in a row so that the row no longer fits in its data block, then Oracle Database tries to find another block with enough free space to hold the entire row. If such a block is available, then Oracle Database moves the entire row to the new block. This operation is called row migration. If the row is too large to fit into any available block, then the database splits the row into multiple pieces and stores each piece in a separate block. This operation is called row chaining. The database can also chain rows when they are inserted.

Migration and chaining are especially detrimental to performance with the following:

	
UPDATE statements that cause migration and chaining to perform poorly


	
Queries that select migrated or chained rows because these must perform additional input and output




The definition of a sample output table named CHAINED_ROWS appears in a SQL script available on your distribution medium. The common name of this script is UTLCHN1.SQL, although its exact name and location varies depending on your platform. Your output table must have the same column names, data types, and sizes as the CHAINED_ROWS table.

Increasing PCTFREE can help to avoid migrated rows. If you leave more free space available in the block, then the row has room to grow. You can also reorganize or re-create tables and indexes that have high deletion rates. If tables frequently have rows deleted, then data blocks can have partially free space in them. If rows are inserted and later expanded, then the inserted rows might land in blocks with deleted rows but still not have enough room to expand. Reorganizing the table ensures that the main free space is totally empty blocks.




	
Note:

PCTUSED is not the opposite of PCTFREE.










	
See Also:

	
Oracle Database Concepts for more information on PCTUSED


	
Oracle Database Administrator's Guide to learn how to reorganize tables

















10.2.4.4 Parse-Related Statistics

The more your application parses, the more potential for contention exists, and the more time your system spends waiting. If parse time CPU represents a large percentage of the CPU time, then time is being spent parsing instead of executing statements. If this is the case, then it is likely that the application is using literal SQL and so SQL cannot be shared, or the shared pool is poorly configured.




	
See Also:

Chapter 7, "Configuring and Using Memory"







There are several statistics available to identify the extent of time spent parsing by Oracle. Query the parse related statistics from V$SYSSTAT. For example:


SELECT NAME, VALUE
  FROM V$SYSSTAT
 WHERE NAME IN (  'parse time cpu', 'parse time elapsed',
                  'parse count (hard)', 'CPU used by this session' );


There are various ratios that can be computed to assist in determining whether parsing may be a problem:

	
parse time CPU / parse time elapsed

This ratio indicates how much of the time spent parsing was due to the parse operation itself, rather than waiting for resources, such as latches. A ratio of one is good, indicating that the elapsed time was not spent waiting for highly contended resources.


	
parse time CPU / CPU used by this session

This ratio indicates how much of the total CPU used by Oracle server processes was spent on parse-related operations. A ratio closer to zero is good, indicating that the majority of CPU is not spent on parsing.













10.3 Wait Events Statistics

The V$SESSION, V$SESSION_WAIT, V$SESSION_HISTORY, V$SESSION_EVENT, and V$SYSTEM_EVENT views provide information on what resources were waited for, and, if the configuration parameter TIMED_STATISTICS is set to true, how long each resource was waited for.




	
See Also:

	
"Setting the Level of Statistics Collection" for information about STATISTICS_LEVEL settings


	
Oracle Database Reference for a description of the V$ views and the Oracle wait events












Investigate wait events and related timing data when performing reactive performance tuning. The events with the most time listed against them are often strong indications of the performance bottleneck.

The following views contain related, but different, views of the same data:

	
V$SESSION lists session information for each current session. It lists either the event currently being waited for, or the event last waited for on each session. This view also contains information about blocking sessions, the wait state, and the wait time.


	
V$SESSION_WAIT is a current state view. It lists either the event currently being waited for, or the event last waited for on each session, the wait state, and the wait time.


	
V$SESSION_WAIT_HISTORY lists the last 10 wait events for each current session and the associated wait time.


	
V$SESSION_EVENT lists the cumulative history of events waited for on each session. After a session exits, the wait event statistics for that session are removed from this view.


	
V$SYSTEM_EVENT lists the events and times waited for by the whole instance (that is, all session wait events data rolled up) since instance startup.




Because V$SESSION_WAIT is a current state view, it also contains a finer-granularity of information than V$SESSION_EVENT or V$SYSTEM_EVENT. It includes additional identifying data for the current event in three parameter columns: P1, P2, and P3.

For example, V$SESSION_EVENT can show that session 124 (SID=124) had many waits on the db file scattered read, but it does not show which file and block number. However, V$SESSION_WAIT shows the file number in P1, the block number read in P2, and the number of blocks read in P3 (P1 and P2 let you determine for which segments the wait event is occurring).

This section concentrates on examples using V$SESSION_WAIT. However, Oracle recommends capturing performance data over an interval and keeping this data for performance and capacity analysis. This form of rollup data is queried from the V$SYSTEM_EVENT view by AWR. See "Overview of the Automatic Workload Repository".

Most commonly encountered events are described in this chapter, listed in case-sensitive alphabetical order. Other event-related data to examine is also included. The case used for each event name is that which appears in the V$SYSTEM_EVENT view.

Oracle Database 11g accumulates wait counts and time outs for wait events (such as in the V$SYSTEM_EVENT view) differently than in past releases. Continuous waits for certain types of resources (such as enqueues) are internally divided into a set of shorter wait calls. In prior releases, each individual internal wait call was counted as a separate wait. Starting with release 11.1, a single resource wait is recorded as a single wait, irrespective of the number of internal time outs experienced by the session during the wait.

This change allows Oracle Database to display a more representative wait count, and an accurate total time spent waiting for the resource. Time outs now refer to the resource wait, instead of the individual internal wait calls. This change also affects the average wait time and the maximum wait time. For example, if a user session must wait for an enqueue in order for a transaction row lock to update a single row in a table, and it takes 10 seconds to acquire the enqueue, Oracle Database breaks down the enqueue wait into 3-second wait calls. In this example, there will be three 3-second wait calls, followed by a 1-second wait call. From the session's perspective, however, there is only one wait on an enqueue.

In prior releases, the V$SYSTEM_EVENT view would represent this wait scenario as follows:

	
TOTAL_WAITS: 4 waits (three 3-second waits, one 1-second wait)


	
TOTAL_TIMEOUTS: 3 time outs (the first three waits time out and the enqueue is acquired during the final wait)


	
TIME_WAITED: 10 seconds (sum of the times from the 4 waits)


	
AVERAGE_WAIT: 2.5 seconds


	
MAX_WAIT: 3 seconds




In Oracle Database 11g, this wait scenario is represented as:

	
TOTAL_WAITS: 1 wait (one 10-second wait)


	
TOTAL_TIMEOUTS: 0 time outs (the enqueue is acquired during the resource wait)


	
TIME_WAITED: 10 seconds (time for the resource wait)


	
AVERAGE_WAIT: 10 seconds


	
MAX_WAIT: 10 seconds




The following common wait events are affected by this change:

	
Enqueue waits (such as enq: name - reason waits)


	
Library cache lock waits


	
Library cache pin waits


	
Row cache lock waits




The following statistics are affected by this change:

	
Wait counts


	
Wait time outs


	
Average wait time


	
Maximum wait time




The following views are affected by this change:

	
V$EVENT_HISTOGRAM


	
V$EVENTMETRIC


	
V$SERVICE_EVENT


	
V$SERVICE_WAIT_CLASS


	
V$SESSION_EVENT


	
V$SESSION_WAIT


	
V$SESSION_WAIT_CLASS


	
V$SESSION_WAIT_HISTORY


	
V$SYSTEM_EVENT


	
V$SYSTEM_WAIT_CLASS


	
V$WAITCLASSMETRIC


	
V$WAITCLASSMETRIC_HISTORY







	
See Also:

Oracle Database Reference for a description of the V$SYSTEM_EVENT view









10.3.1 buffer busy waits

This wait indicates that there are some buffers in the buffer cache that multiple processes are attempting to access concurrently. Query V$WAITSTAT for the wait statistics for each class of buffer. Common buffer classes that have buffer busy waits include data block, segment header, undo header, and undo block.

Check the following V$SESSION_WAIT parameter columns:

	
P1: File ID


	
P2: Block ID


	
P3: Class ID






10.3.1.1 Causes

To determine the possible causes, first query V$SESSION to identify the value of ROW_WAIT_OBJ# when the session waits for buffer busy waits. For example:


SELECT row_wait_obj# 
  FROM V$SESSION 
 WHERE EVENT = 'buffer busy waits';


To identify the object and object type contended for, query DBA_OBJECTS using the value for ROW_WAIT_OBJ# that is returned from V$SESSION. For example:


SELECT owner, object_name, subobject_name, object_type
  FROM DBA_OBJECTS
 WHERE data_object_id = &row_wait_obj;






10.3.1.2 Actions

The action required depends on the class of block contended for and the actual segment.



10.3.1.2.1 segment header

If the contention is on the segment header, then this is most likely free list contention.

Automatic segment-space management in locally managed tablespaces eliminates the need to specify the PCTUSED, FREELISTS, and FREELIST GROUPS parameters. If possible, switch from manual space management to automatic segment-space management (ASSM).

The following information is relevant if you are unable to use ASSM (for example, because the tablespace uses dictionary space management).

A free list is a list of free data blocks that usually includes blocks existing in several different extents within the segment. Free lists are composed of blocks in which free space has not yet reached PCTFREE or used space has shrunk below PCTUSED. Specify the number of process free lists with the FREELISTS parameter. The default value of FREELISTS is one. The maximum value depends on the data block size.

To find the current setting for free lists for that segment, run the following:


SELECT SEGMENT_NAME, FREELISTS
  FROM DBA_SEGMENTS
 WHERE SEGMENT_NAME = segment name
   AND SEGMENT_TYPE = segment type;


Set free lists, or increase the number of free lists. If adding more free lists does not alleviate the problem, then use free list groups (even in single instance this can make a difference). If using Oracle RAC, then ensure that each instance has its own free list group(s).




	
See Also:

Oracle Database Concepts for information about automatic segment-space management, free lists, PCTFREE, and PCTUSED












10.3.1.2.2 data block

If the contention is on tables or indexes (not the segment header):

	
Check for right-hand indexes. These are indexes that are inserted into at the same point by many processes. For example, those that use sequence number generators for the key values.


	
Consider using ASSM, global hash partitioned indexes, or increasing free lists to avoid multiple processes attempting to insert into the same block.









10.3.1.2.3 undo header

For contention on rollback segment header:

	
If you are not using automatic undo management, then add more rollback segments.









10.3.1.2.4 undo block

For contention on rollback segment block:

	
If you are not using automatic undo management, then consider making rollback segment sizes larger.













10.3.2 db file scattered read

This event signifies that the user process is reading buffers into the SGA buffer cache and is waiting for a physical I/O call to return. A db file scattered read issues a scattered read to read the data into multiple discontinuous memory locations. A scattered read is usually a multiblock read. It can occur for a fast full scan (of an index) in addition to a full table scan.

The db file scattered read wait event identifies that a full scan is occurring. When performing a full scan into the buffer cache, the blocks read are read into memory locations that are not physically adjacent to each other. Such reads are called scattered read calls, because the blocks are scattered throughout memory. This is why the corresponding wait event is called 'db file scattered read'. multiblock (up to DB_FILE_MULTIBLOCK_READ_COUNT blocks) reads due to full scans into the buffer cache show up as waits for 'db file scattered read'.

Check the following V$SESSION_WAIT parameter columns:

	
P1: The absolute file number


	
P2: The block being read


	
P3: The number of blocks (should be greater than 1)






10.3.2.1 Actions

On a healthy system, physical read waits should be the biggest waits after the idle waits. However, also consider whether there are direct read waits (signifying full table scans with parallel query) or db file scattered read waits on an operational (OLTP) system that should be doing small indexed accesses.

Other things that could indicate excessive I/O load on the system include the following:

	
Poor buffer cache hit ratio


	
These wait events accruing most of the wait time for a user experiencing poor response time









10.3.2.2 Managing Excessive I/O

There are several ways to handle excessive I/O waits. In the order of effectiveness, these are as follows:

	
Reduce the I/O activity by SQL tuning.


	
Reduce the need to do I/O by managing the workload.


	
Gather system statistics with DBMS_STATS package, allowing the query optimizer to accurately cost possible access paths that use full scans.


	
Use Automatic Storage Management.


	
Add more disks to reduce the number of I/Os for each disk.


	
Alleviate I/O hot spots by redistributing I/O across existing disks.



	
See Also:

Chapter 8, "I/O Configuration and Design"








The first course of action should be to find opportunities to reduce I/O. Examine the SQL statements being run by sessions waiting for these events and statements causing high physical I/Os from V$SQLAREA. Factors that can adversely affect the execution plans causing excessive I/O include the following:

	
Improperly optimized SQL


	
Missing indexes


	
High degree of parallelism for the table (skewing the optimizer toward scans)


	
Lack of accurate statistics for the optimizer


	
Setting the value for DB_FILE_MULTIBLOCK_READ_COUNT initialization parameter too high which favors full scans









10.3.2.3 Inadequate I/O Distribution

Besides reducing I/O, also examine the I/O distribution of files across the disks. Is I/O distributed uniformly across the disks, or are there hot spots on some disks? Are the number of disks sufficient to meet the I/O needs of the database?

See the total I/O operations (reads and writes) by the database, and compare those with the number of disks used. Remember to include the I/O activity of LGWR and ARCH processes.






10.3.2.4 Finding the SQL Statement executed by Sessions Waiting for I/O

Use the following query to determine, at a point in time, which sessions are waiting for I/O:


SELECT SQL_ADDRESS, SQL_HASH_VALUE
  FROM V$SESSION 
 WHERE EVENT LIKE 'db file%read';  






10.3.2.5 Finding the Object Requiring I/O

To determine the possible causes, first query V$SESSION to identify the value of ROW_WAIT_OBJ# when the session waits for db file scattered read. For example:


SELECT row_wait_obj# 
  FROM V$SESSION 
 WHERE EVENT = 'db file scattered read';


To identify the object and object type contended for, query DBA_OBJECTS using the value for ROW_WAIT_OBJ# that is returned from V$SESSION. For example:


SELECT owner, object_name, subobject_name, object_type
  FROM DBA_OBJECTS
 WHERE data_object_id = &row_wait_obj;








10.3.3 db file sequential read

This event signifies that the user process is reading a buffer into the SGA buffer cache and is waiting for a physical I/O call to return. A sequential read is a single-block read.

Single block I/Os are usually the result of using indexes. Rarely, full table scan calls could get truncated to a single block call because of extent boundaries, or buffers present in the buffer cache. These waits would also show up as db file sequential read.

Check the following V$SESSION_WAIT parameter columns:

	
P1: The absolute file number


	
P2: The block being read


	
P3: The number of blocks (should be 1)



	
See Also:

"db file scattered read" for information about managing excessive I/O, inadequate I/O distribution, and finding the SQL causing the I/O and the segment the I/O is performed on










10.3.3.1 Actions

On a healthy system, physical read waits should be the biggest waits after the idle waits. However, also consider whether there are db file sequential reads on a large data warehouse that should be seeing mostly full table scans with parallel query.

Figure 10-1 depicts the differences between the following wait events:

	
db file sequential read (single block read into one SGA buffer)


	
db file scattered read (multiblock read into many discontinuous SGA buffers)


	
direct read (single or multiblock read into the PGA, bypassing the SGA)





Figure 10-1 Scattered Read, Sequential Read, and Direct Path Read

[image: Description of Figure 10-1 follows]












10.3.4 direct path read and direct path read temp

When a session is reading buffers from disk directly into the PGA (opposed to the buffer cache in SGA), it waits on this event. If the I/O subsystem does not support asynchronous I/Os, then each wait corresponds to a physical read request.

If the I/O subsystem supports asynchronous I/O, then the process is able to overlap issuing read requests with processing the blocks existing in the PGA. When the process attempts to access a block in the PGA that has not yet been read from disk, it then issues a wait call and updates the statistics for this event. Hence, the number of waits is not necessarily the same as the number of read requests (unlike db file scattered read and db file sequential read).

Check the following V$SESSION_WAIT parameter columns:

	
P1: File_id for the read call


	
P2: Start block_id for the read call


	
P3: Number of blocks in the read call






10.3.4.1 Causes

This situation occurs in the following situations:

	
The sorts are too large to fit in memory and some of the sort data is written out directly to disk. This data is later read back in, using direct reads.


	
Parallel slaves are used for scanning data.


	
The server process is processing buffers faster than the I/O system can return the buffers. This can indicate an overloaded I/O system.









10.3.4.2 Actions

The file_id shows if the reads are for an object in TEMP tablespace (sorts to disk) or full table scans by parallel slaves. This wait is the largest wait for large data warehouse sites. However, if the workload is not a Decision Support Systems (DSS) workload, then examine why this situation is happening.



10.3.4.2.1 Sorts to Disk

Examine the SQL statement currently being run by the session experiencing waits to see what is causing the sorts. Query V$TEMPSEG_USAGE to find the SQL statement that is generating the sort. Also query the statistics from V$SESSTAT for the session to determine the size of the sort. See if it is possible to reduce the sorting by tuning the SQL statement. If WORKAREA_SIZE_POLICY is MANUAL, then consider increasing the SORT_AREA_SIZE for the system (if the sorts are not too big) or for individual processes. If WORKAREA_SIZE_POLICY is AUTO, then investigate whether to increase PGA_AGGREGATE_TARGET. See "PGA Memory Management".






10.3.4.2.2 Full Table Scans

If tables are defined with a high degree of parallelism, then this setting could skew the optimizer to use full table scans with parallel slaves. Check the object being read into using the direct path reads. If the full table scans are a valid part of the workload, then ensure that the I/O subsystem is adequate for the degree of parallelism. Consider using disk striping if you are not already using it or Oracle Automatic Storage Management (Oracle ASM).






10.3.4.2.3 Hash Area Size

For query plans that call for a hash join, excessive I/O could result from having HASH_AREA_SIZE too small. If WORKAREA_SIZE_POLICY is MANUAL, then consider increasing the HASH_AREA_SIZE for the system or for individual processes. If WORKAREA_SIZE_POLICY is AUTO, then investigate whether to increase PGA_AGGREGATE_TARGET.




	
See Also:

	
"Managing Excessive I/O"


	
"PGA Memory Management"





















10.3.5 direct path write and direct path write temp

When a process is writing buffers directly from PGA (as opposed to the DBWR writing them from the buffer cache), the process waits on this event for the write call to complete. Operations that could perform direct path writes include sorts on disk, parallel DML operations, direct-path INSERTs, parallel create table as select, and some LOB operations.

Like direct path reads, the number of waits is not the same as number of write calls issued if the I/O subsystem supports asynchronous writes. The session waits if it has processed all buffers in the PGA and cannot continue work until an I/O request completes.




	
See Also:

Oracle Database Administrator's Guide for information about direct-path inserts







Check the following V$SESSION_WAIT parameter columns:

	
P1: File_id for the write call


	
P2: Start block_id for the write call


	
P3: Number of blocks in the write call






10.3.5.1 Causes

This happens in the following situations:

	
Sorts are too large to fit in memory and are written to disk


	
Parallel DML are issued to create/populate objects


	
Direct path loads









10.3.5.2 Actions

For large sorts see "Sorts to Disk".

For parallel DML, check the I/O distribution across disks and ensure that the I/O subsystem is adequately configured for the degree of parallelism.








10.3.6 enqueue (enq:) waits

Enqueues are locks that coordinate access to database resources. This event indicates that the session is waiting for a lock that is held by another session.

The name of the enqueue is included as part of the wait event name, in the form enq: enqueue_type - related_details. In some cases, the same enqueue type can be held for different purposes, such as the following related TX types:

	
enq: TX - allocate ITL entry


	
enq: TX - contention


	
enq: TX - index contention


	
enq: TX - row lock contention




The V$EVENT_NAME view provides a complete list of all the enq: wait events.

You can check the following V$SESSION_WAIT parameter columns for additional information:

	
P1: Lock TYPE (or name) and MODE


	
P2: Resource identifier ID1 for the lock


	
P3: Resource identifier ID2 for the lock



	
See Also:

Oracle Database Reference for information about Oracle Database enqueues










10.3.6.1 Finding Locks and Lock Holders

Query V$LOCK to find the sessions holding the lock. For every session waiting for the event enqueue, there is a row in V$LOCK with REQUEST <> 0. Use one of the following two queries to find the sessions holding the locks and waiting for the locks.

If there are enqueue waits, you can see these using the following statement:


SELECT * FROM V$LOCK WHERE request > 0;


To show only holders and waiters for locks being waited on, use the following:


SELECT DECODE(request,0,'Holder: ','Waiter: ') || 
          sid sess, id1, id2, lmode, request, type
   FROM V$LOCK
 WHERE (id1, id2, type) IN (SELECT id1, id2, type FROM V$LOCK WHERE request > 0)
   ORDER BY id1, request;






10.3.6.2 Actions

The appropriate action depends on the type of enqueue.



10.3.6.2.1 ST enqueue

If the contended-for enqueue is the ST enqueue, then the problem is most likely to be dynamic space allocation. Oracle Database dynamically allocates an extent to a segment when there is no more free space available in the segment. This enqueue is only used for dictionary managed tablespaces.

To solve contention on this resource:

	
Check to see whether the temporary (that is, sort) tablespace uses TEMPFILES. If not, then switch to using TEMPFILES.


	
Switch to using locally managed tablespaces if the tablespace that contains segments that are growing dynamically is dictionary managed.



	
See Also:

Oracle Database Concepts for detailed information on TEMPFILEs and locally managed tablespaces






	
If it is not possible to switch to locally managed tablespaces, then ST enqueue resource usage can be decreased by changing the next extent sizes of the growing objects to be large enough to avoid constant space allocation. To determine which segments are growing constantly, monitor the EXTENTS column of the DBA_SEGMENTS view for all SEGMENT_NAMEs. See Oracle Database Administrator's Guide for information about displaying information about space usage.


	
Preallocate space in the segment, for example, by allocating extents using the ALTER TABLE ALLOCATE EXTENT SQL statement.









10.3.6.2.2 HW enqueue

The HW enqueue is used to serialize the allocation of space beyond the high water mark of a segment.

	
V$SESSION_WAIT.P2 / V$LOCK.ID1 is the tablespace number.


	
V$SESSION_WAIT.P3 / V$LOCK.ID2 is the relative data block address (dba) of segment header of the object for which space is being allocated.




If this is a point of contention for an object, then manual allocation of extents solves the problem.






10.3.6.2.3 TM enqueue

The most common reason for waits on TM locks tend to involve foreign key constraints where the constrained columns are not indexed. Index the foreign key columns to avoid this problem.






10.3.6.2.4 TX enqueue

These are acquired exclusive when a transaction initiates its first change and held until the transaction does a COMMIT or ROLLBACK.

	
Waits for TX in mode 6: occurs when a session is waiting for a row level lock that is held by another session. This occurs when one user is updating or deleting a row, which another session wants to update or delete. This type of TX enqueue wait corresponds to the wait event enq: TX - row lock contention.

The solution is to have the first session holding the lock perform a COMMIT or ROLLBACK.


	
Waits for TX in mode 4 can occur if the session is waiting for an ITL (interested transaction list) slot in a block. This happens when the session wants to lock a row in the block but one or more other sessions have rows locked in the same block, and there is no free ITL slot in the block. Usually, Oracle Database dynamically adds another ITL slot. This may not be possible if there is insufficient free space in the block to add an ITL. If so, the session waits for a slot with a TX enqueue in mode 4. This type of TX enqueue wait corresponds to the wait event enq: TX - allocate ITL entry.

The solution is to increase the number of ITLs available, either by changing the INITRANS or MAXTRANS for the table (either by using an ALTER statement, or by re-creating the table with the higher values).


	
Waits for TX in mode 4 can also occur if a session is waiting due to potential duplicates in UNIQUE index. If two sessions try to insert the same key value the second session has to wait to see if an ORA-0001 should be raised or not. This type of TX enqueue wait corresponds to the wait event enq: TX - row lock contention.

The solution is to have the first session holding the lock perform a COMMIT or ROLLBACK.


	
Waits for TX in mode 4 is also possible if the session is waiting due to shared bitmap index fragment. Bitmap indexes index key values and a range of rowids. Each entry in a bitmap index can cover many rows in the actual table. If two sessions want to update rows covered by the same bitmap index fragment, then the second session waits for the first transaction to either COMMIT or ROLLBACK by waiting for the TX lock in mode 4. This type of TX enqueue wait corresponds to the wait event enq: TX - row lock contention.


	
Waits for TX in Mode 4 can also occur waiting for a PREPARED transaction.


	
Waits for TX in mode 4 also occur when a transaction inserting a row in an index has to wait for the end of an index block split being done by another transaction. This type of TX enqueue wait corresponds to the wait event enq: TX - index contention.



	
See Also:

Oracle Database Advanced Application Developer's Guide for more information about referential integrity and locking data explicitly

















10.3.7 events in wait class other

This event belong to Other wait class and typically should not occur on a system. This event is an aggregate of all other events in the Other wait class, such as latch free, and is used in the V$SESSION_EVENT and V$SERVICE_EVENT views only. In these views, the events in the Other wait class will not be maintained individually in every session. Instead, these events will be rolled up into this single event to reduce the memory used for maintaining statistics on events in the Other wait class.






10.3.8 free buffer waits

This wait event indicates that a server process was unable to find a free buffer and has posted the database writer to make free buffers by writing out dirty buffers. A dirty buffer is a buffer whose contents have been modified. Dirty buffers are freed for reuse when DBWR has written the blocks to disk.



10.3.8.1 Causes

DBWR may not be keeping up with writing dirty buffers in the following situations:

	
The I/O system is slow.


	
There are resources it is waiting for, such as latches.


	
The buffer cache is so small that DBWR spends most of its time cleaning out buffers for server processes.


	
The buffer cache is so big that one DBWR process is not enough to free enough buffers in the cache to satisfy requests.









10.3.8.2 Actions

If this event occurs frequently, then examine the session waits for DBWR to see whether there is anything delaying DBWR.



10.3.8.2.1 Writes

If it is waiting for writes, then determine what is delaying the writes and fix it. Check the following:

	
Examine V$FILESTAT to see where most of the writes are happening.


	
Examine the host operating system statistics for the I/O system. Are the write times acceptable?




If I/O is slow:

	
Consider using faster I/O alternatives to speed up write times.


	
Spread the I/O activity across large number of spindles (disks) and controllers. See Chapter 8, "I/O Configuration and Design" for information about balancing I/O.









10.3.8.2.2 Cache is Too Small

It is possible DBWR is very active because the cache is too small. Investigate whether this is a probable cause by looking to see if the buffer cache hit ratio is low. Also use the V$DB_CACHE_ADVICE view to determine whether a larger cache size would be advantageous. See "Sizing the Buffer Cache".






10.3.8.2.3 Cache Is Too Big for One DBWR

If the cache size is adequate and the I/O is evenly spread, then you can potentially modify the behavior of DBWR by using asynchronous I/O or by using multiple database writers.








10.3.8.3 Consider Multiple Database Writer (DBWR) Processes or I/O Slaves

Configuring multiple database writer processes, or using I/O slaves, is useful when the transaction rates are high or when the buffer cache size is so large that a single DBWn process cannot keep up with the load.



10.3.8.3.1 DB_WRITER_PROCESSES

The DB_WRITER_PROCESSES initialization parameter lets you configure multiple database writer processes (from DBW0 to DBW9 and from DBWa to DBWj). Configuring multiple DBWR processes distributes the work required to identify buffers to be written, and it also distributes the I/O load over these processes. Multiple db writer processes are highly recommended for systems with multiple CPUs (at least one db writer for every 8 CPUs) or multiple processor groups (at least as many db writers as processor groups).

Based upon the number of CPUs and the number of processor groups, Oracle Database either selects an appropriate default setting for DB_WRITER_PROCESSES or adjusts a user-specified setting.






10.3.8.3.2 DBWR_IO_SLAVES

If it is not practical to use multiple DBWR processes, then Oracle Database provides a facility whereby the I/O load can be distributed over multiple slave processes. The DBWR process is the only process that scans the buffer cache LRU list for blocks to be written out. However, the I/O for those blocks is performed by the I/O slaves. The number of I/O slaves is determined by the parameter DBWR_IO_SLAVES.

DBWR_IO_SLAVES is intended for scenarios where you cannot use multiple DB_WRITER_PROCESSES (for example, where you have a single CPU). I/O slaves are also useful when asynchronous I/O is not available, because the multiple I/O slaves simulate nonblocking, asynchronous requests by freeing DBWR to continue identifying blocks in the cache to be written. Asynchronous I/O at the operating system level, if you have it, is generally preferred.

DBWR I/O slaves are allocated immediately following database open when the first I/O request is made. The DBWR continues to perform all of the DBWR-related work, apart from performing I/O. I/O slaves simply perform the I/O on behalf of DBWR. The writing of the batch is parallelized between the I/O slaves.




	
Note:

Implementing DBWR_IO_SLAVES requires that extra shared memory be allocated for I/O buffers and request queues. Multiple DBWR processes cannot be used with I/O slaves. Configuring I/O slaves forces only one DBWR process to start.












10.3.8.3.3 Choosing Between Multiple DBWR Processes and I/O Slaves

Configuring multiple DBWR processes benefits performance when a single DBWR process cannot keep up with the required workload. However, before configuring multiple DBWR processes, check whether asynchronous I/O is available and configured on the system. If the system supports asynchronous I/O but it is not currently used, then enable asynchronous I/O to see if this alleviates the problem. If the system does not support asynchronous I/O, or if asynchronous I/O is configured and there is still a DBWR bottleneck, then configure multiple DBWR processes.




	
Note:

If asynchronous I/O is not available on your platform, then asynchronous I/O can be disabled by setting the DISK_ASYNCH_IO initialization parameter to FALSE.







Using multiple DBWRs parallelizes the gathering and writing of buffers. Therefore, multiple DBWn processes should deliver more throughput than one DBWR process with the same number of I/O slaves. For this reason, the use of I/O slaves has been deprecated in favor of multiple DBWR processes. I/O slaves should only be used if multiple DBWR processes cannot be configured.










10.3.9 Idle Wait Events

These events belong to Idle wait class and indicate that the server process is waiting because it has no work. This usually implies that if there is a bottleneck, then the bottleneck is not for database resources. The majority of the idle events should be ignored when tuning, because they do not indicate the nature of the performance bottleneck. Some idle events can be useful in indicating what the bottleneck is not. An example of this type of event is the most commonly encountered idle wait-event SQL Net message from client. This and other idle events (and their categories) are listed in Table 10-2.


Table 10-2 Idle Wait Events

	Wait Name	Background Process Idle Event	User Process Idle Event	Parallel Query Idle Event	Shared Server Idle Event	Oracle Real Application Clusters Idle Event
	
dispatcher timer

	
.

	
.

	
.

	
X

	
.


	
pipe get

	
.

	
X

	
.

	
.

	
.


	
pmon timer

	
X

	
.

	
.

	
.

	
.


	
PX Idle Wait

	
.

	
.

	
X

	
.

	
.


	
PX Deq Credit: need buffer

	
.

	
.

	
X

	
.

	
.


	
rdbms ipc message

	
X

	
.

	
.

	
.

	
.


	
shared server idle wait

	
.

	
.

	
.

	
X

	
.


	
smon timer

	
X

	
.

	
.

	
.

	
.


	
SQL*Net message from client

	
.

	
X

	
.

	
.

	
.











	
See Also:

Oracle Database Reference for explanations of each idle wait event












10.3.10 latch events

A latch is a low-level internal lock used by Oracle Database to protect memory structures. The latch free event is updated when a server process attempts to get a latch, and the latch is unavailable on the first attempt.

There is a dedicated latch-related wait event for the more popular latches that often generate significant contention. For those events, the name of the latch appears in the name of the wait event, such as latch: library cache or latch: cache buffers chains. This enables you to quickly figure out if a particular type of latch is responsible for most of the latch-related contention. Waits for all other latches are grouped in the generic latch free wait event.




	
See Also:

Oracle Database Concepts for more information on latches and internal locks









10.3.10.1 Actions

This event should only be a concern if latch waits are a significant portion of the wait time on the system as a whole, or for individual users experiencing problems.

	
Examine the resource usage for related resources. For example, if the library cache latch is heavily contended for, then examine the hard and soft parse rates.


	
Examine the SQL statements for the sessions experiencing latch contention to see if there is any commonality.




Check the following V$SESSION_WAIT parameter columns:

	
P1: Address of the latch


	
P2: Latch number


	
P3: Number of times process has slept, waiting for the latch









10.3.10.2 Example: Find Latches Currently Waited For


SELECT EVENT, SUM(P3) SLEEPS, SUM(SECONDS_IN_WAIT) SECONDS_IN_WAIT
  FROM V$SESSION_WAIT
 WHERE EVENT LIKE 'latch%'
  GROUP BY EVENT;


A problem with the previous query is that it tells more about session tuning or instant instance tuning than instance or long-duration instance tuning.

The following query provides more information about long duration instance tuning, showing whether the latch waits are significant in the overall database time.


SELECT EVENT, TIME_WAITED_MICRO, 
       ROUND(TIME_WAITED_MICRO*100/S.DBTIME,1) PCT_DB_TIME 
  FROM V$SYSTEM_EVENT, 
   (SELECT VALUE DBTIME FROM V$SYS_TIME_MODEL WHERE STAT_NAME = 'DB time') S
 WHERE EVENT LIKE 'latch%'
 ORDER BY PCT_DB_TIME ASC;


A more general query that is not specific to latch waits is the following:


SELECT EVENT, WAIT_CLASS, 
      TIME_WAITED_MICRO,ROUND(TIME_WAITED_MICRO*100/S.DBTIME,1) PCT_DB_TIME
  FROM V$SYSTEM_EVENT E, V$EVENT_NAME N,
    (SELECT VALUE DBTIME FROM V$SYS_TIME_MODEL WHERE STAT_NAME = 'DB time') S
   WHERE E.EVENT_ID = N.EVENT_ID
    AND N.WAIT_CLASS NOT IN ('Idle', 'System I/O')
  ORDER BY PCT_DB_TIME ASC;



Table 10-3 Latch Wait Event

	Latch	SGA Area	Possible Causes	Look For:
	
Shared pool, library cache

	
Shared pool

	
Lack of statement reuse

Statements not using bind variables

Insufficient size of application cursor cache

Cursors closed explicitly after each execution

Frequent logins and logoffs

Underlying object structure being modified (for example truncate)

Shared pool too small

	
Sessions (in V$SESSTAT) with high:

	
parse time CPU


	
parse time elapsed


	
Ratio of parse count (hard) / execute count


	
Ratio of parse count (total) / execute count




Cursors (in V$SQLAREA/V$SQLSTATS) with:

	
High ratio of PARSE_CALLS / EXECUTIONS


	
EXECUTIONS = 1 differing only in literals in the WHERE clause (that is, no bind variables used)


	
High RELOADS


	
High INVALIDATIONS


	
Large (> 1mb) SHARABLE_MEM





	
cache buffers lru chain

	
Buffer cache LRU lists

	
Excessive buffer cache throughput. For example, inefficient SQL that accesses incorrect indexes iteratively (large index range scans) or many full table scans

DBWR not keeping up with the dirty workload; hence, foreground process spends longer holding the latch looking for a free buffer

Cache may be too small

	
Statements with very high logical I/O or physical I/O, using unselective indexes


	
cache buffers chains

	
Buffer cache buffers

	
Repeated access to a block (or small number of blocks), known as a hot block

	
Sequence number generation code that updates a row in a table to generate the number, rather than using a sequence number generator

Index leaf chasing from very many processes scanning the same unselective index with very similar predicate

Identify the segment the hot block belongs to


	
row cache objects

	
	
	











10.3.10.3 Shared Pool and Library Cache Latch Contention

A main cause of shared pool or library cache latch contention is parsing. There are several techniques that you can use to identify unnecessary parsing and several types of unnecessary parsing:

	
Unshared SQL


	
Reparsed Sharable SQL


	
By Session


	
cache buffers lru chain


	
cache buffers chains


	
row cache objects






10.3.10.3.1 Unshared SQL

This method identifies similar SQL statements that could be shared if literals were replaced with bind variables. The idea is to either:

	
Manually inspect SQL statements that have only one execution to see whether they are similar:


SELECT SQL_TEXT
  FROM V$SQLSTATS
 WHERE EXECUTIONS < 4
 ORDER BY SQL_TEXT;


	
Or, automate this process by grouping what may be similar statements. Estimate the number of bytes of a SQL statement that are likely the same, and group the SQL statements by this number of bytes. For example, the following example groups statements that differ only after the first 60 bytes.


SELECT SUBSTR(SQL_TEXT, 1, 60), COUNT(*)
  FROM V$SQLSTATS
 WHERE EXECUTIONS < 4 
 GROUP BY SUBSTR(SQL_TEXT, 1, 60)
 HAVING COUNT(*) > 1;


	
Or report distinct SQL statements that have the same execution plan. The following query selects distinct SQL statements that share the same execution plan at least four times. These SQL statements are likely to be using literals instead of bind variables.


SELECT SQL_TEXT FROM V$SQLSTATS WHERE PLAN_HASH_VALUE IN
  (SELECT PLAN_HASH_VALUE 
     FROM V$SQLSTATS 
    GROUP BY PLAN_HASH_VALUE HAVING COUNT(*) > 4)
  ORDER BY PLAN_HASH_VALUE;









10.3.10.3.2 Reparsed Sharable SQL

Check the V$SQLSTATS view. Enter the following query:


SELECT SQL_TEXT, PARSE_CALLS, EXECUTIONS 
  FROM V$SQLSTATS
ORDER BY PARSE_CALLS;


When the PARSE_CALLS value is close to the EXECUTIONS value for a given statement, you might be continually reparsing that statement. Tune the statements with the higher numbers of parse calls.






10.3.10.3.3 By Session

Identify unnecessary parse calls by identifying the session in which they occur. It might be that particular batch programs or certain types of applications do most of the reparsing. To achieve this goal, run the following query:


SELECT pa.SID, pa.VALUE "Hard Parses", ex.VALUE "Execute Count" 
  FROM V$SESSTAT pa, V$SESSTAT ex 
 WHERE pa.SID = ex.SID 
   AND pa.STATISTIC#=(SELECT STATISTIC# 
       FROM V$STATNAME WHERE NAME = 'parse count (hard)') 
   AND ex.STATISTIC#=(SELECT STATISTIC# 
       FROM V$STATNAME WHERE NAME = 'execute count') 
   AND pa.VALUE > 0; 


The result is a list of all sessions and the amount of reparsing they do. For each session identifier (SID), go to V$SESSION to find the name of the program that causes the reparsing.




	
Note:

Because this query counts all parse calls since instance startup, it is best to look for sessions with high rates of parse. For example, a connection which has been up for 50 days might show a high parse figure, but a second connection might have been up for 10 minutes and be parsing at a much faster rate.







The output is similar to the following:


   SID  Hard Parses  Execute Count
------  -----------  -------------
     7            1             20
     8            3          12690
     6           26            325
    11           84           1619






10.3.10.3.4 cache buffers lru chain

The cache buffers lru chain latches protect the lists of buffers in the cache. When adding, moving, or removing a buffer from a list, a latch must be obtained.

For symmetric multiprocessor (SMP) systems, Oracle Database automatically sets the number of LRU latches to a value equal to one half the number of CPUs on the system. For non-SMP systems, one LRU latch is sufficient.

Contention for the LRU latch can impede performance on SMP computers with a large number of CPUs. LRU latch contention is detected by querying V$LATCH, V$SESSION_EVENT, and V$SYSTEM_EVENT. To avoid contention, consider tuning the application, bypassing the buffer cache for DSS jobs, or redesigning the application.






10.3.10.3.5 cache buffers chains

The cache buffers chains latches are used to protect a buffer list in the buffer cache. These latches are used when searching for, adding, or removing a buffer from the buffer cache. Contention on this latch usually means that there is a block that is greatly contended for (known as a hot block).

To identify the heavily accessed buffer chain, and hence the contended for block, look at latch statistics for the cache buffers chains latches using the view V$LATCH_CHILDREN. If there is a specific cache buffers chains child latch that has many more GETS, MISSES, and SLEEPS when compared with the other child latches, then this is the contended for child latch.

This latch has a memory address, identified by the ADDR column. Use the value in the ADDR column joined with the X$BH table to identify the blocks protected by this latch. For example, given the address (V$LATCH_CHILDREN.ADDR) of a heavily contended latch, this queries the file and block numbers:


SELECT OBJ data_object_id, FILE#, DBABLK,CLASS, STATE, TCH
  FROM X$BH
 WHERE HLADDR = 'address of latch'
  ORDER BY TCH;


X$BH.TCH is a touch count for the buffer. A high value for X$BH.TCH indicates a hot block.

Many blocks are protected by each latch. One of these buffers will probably be the hot block. Any block with a high TCH value is a potential hot block. Perform this query several times, and identify the block that consistently appears in the output. After you have identified the hot block, query DBA_EXTENTS using the file number and block number, to identify the segment.

After you have identified the hot block, you can identify the segment it belongs to with the following query:


SELECT OBJECT_NAME, SUBOBJECT_NAME
  FROM DBA_OBJECTS
 WHERE DATA_OBJECT_ID = &obj;


In the query, &obj is the value of the OBJ column in the previous query on X$BH.






10.3.10.3.6 row cache objects

The row cache objects latches protect the data dictionary.










10.3.11 log file parallel write

This event involves writing redo records to the redo log files from the log buffer.






10.3.12 library cache pin

This event manages library cache concurrency. Pinning an object causes the heaps to be loaded into memory. If a client wants to modify or examine the object, the client must acquire a pin after the lock.






10.3.13 library cache lock

This event controls the concurrency between clients of the library cache. It acquires a lock on the object handle so