

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

1 About Skinning a Web Application

	1.1 Introduction to Skinning a Web Application
	1.2 Overview of Developing an ADF Skin
	1.3 Taking a Look at an ADF Skin
	1.4 Inheritance Relationship of the ADF Skins Provided by Oracle ADF

2 Working with ADF Skin Selectors

	2.1 About ADF Skin Selectors
	2.1.1 ADF Skin Selectors and Pseudo-Elements
	2.1.2 ADF Skin Selectors and Icon Images
	2.1.3 Grouped ADF Skin Selectors
	2.1.4 Descendant ADF Skin Selectors

	2.2 Pseudo-Classes in the ADF Skinning Framework
	2.3 Properties in the ADF Skinning Framework
	2.4 Rules in the ADF Skinning Framework

3 Working with the Oracle ADF Skin Editor

	3.1 About the ADF Skin Editor
	3.2 Working with the Selector Tree
	3.3 Working with the Property Inspector
	3.4 Navigating to the ADF Skins That Your ADF Skin Extends
	3.5 Customizing the ADF Skin Editor
	3.5.1 How to Change the Look and Feel of the ADF Skin Editor
	3.5.2 How to Customize the General Environment for the ADF Skin Editor
	3.5.3 How to Customize Dockable Windows in the ADF Skin Editor

	3.6 Searching the Source Files of ADF Skins
	3.6.1 How to Search the Source Files of ADF Skins

	3.7 Working with Extensions
	3.7.1 How to Install Extensions with Check for Updates

	3.8 Working with the Overview Editor in the ADF Skin Editor
	3.8.1 How to Use the Overview Editor for JSF Configuration Files in the ADF Skin Editor

	3.9 Adding External Tools to the ADF Skin Editor
	3.9.1 How to Add External Tools to the ADF Skin Editor

	3.10 Navigating the ADF Skin Editor
	3.10.1 How to Work With Shortcut Keys In the ADF Skin Editor
	3.10.2 Keyboard Navigation In the ADF Skin Editor
	3.10.2.1 Common Navigation Keys
	3.10.2.2 Navigation In Standard Components
	3.10.2.3 Navigating Complex Controls
	3.10.2.4 Navigation in Specific Components

4 Creating the Source Files for an ADF Skin

	4.1 About Creating an ADF Skin
	4.2 Creating ADF Skin Applications and ADF Skin Projects
	4.2.1 How to Create an ADF Skin Application
	4.2.2 How to Create a New ADF Skin Project

	4.3 Opening an Application Created Outside of the ADF Skin Editor
	4.4 Creating an ADF Skin File
	4.4.1 How to Create an ADF Skin in the ADF Skin Editor
	4.4.2 What Happens When You Create an ADF Skin

	4.5 Versioning ADF Skins
	4.5.1 How to Version an ADF Skin
	4.5.2 What Happens When You Version ADF Skins

	4.6 Managing Working Sets
	4.7 Importing ADF Skins from an ADF Library JAR
	4.7.1 How to Import an ADF Skin from an ADF Library JAR
	4.7.2 What Happens When You Import an ADF Skin from an ADF Library JAR

5 Working with Component-Specific Selectors

	5.1 About Working with Component-Specific Selectors
	5.2 Changing ADF Faces Components' Selectors
	5.3 Changing ADF Data Visualization Components' Selectors
	5.4 Changing a Component-Specific Selector
	5.4.1 How to Change a Component-Specific Selector
	5.4.2 What Happens When You Change a Component-Specific Selector

	5.5 Configuring ADF Skin Properties to Apply to Messages
	5.5.1 How to Configure an ADF Skin Property to Apply to a Message
	5.5.2 What Happens When You Configure an ADF Skin Property to Apply to a Message
	5.5.3 What You May Need to Know About Configuring an ADF Skin Property to Apply to a Message

	5.6 Applying Themes to ADF Faces Components
	5.6.1 How to Enable Themes for Components
	5.6.2 How to Set Theme Properties for a Component in an ADF Skin
	5.6.3 How to Prevent a Component Inheriting a Theme from a Parent Component

	5.7 Configuring an ADF Skin for Accessibility
	5.7.1 How to Configure an ADF Skin for Accessibility

6 Working with Images in Your ADF Skin

	6.1 About Working with Images in an ADF Skin
	6.2 Changing an Image for a Component Selector
	6.2.1 How to Copy an Image into the Project
	6.2.2 What Happens When You Copy an Image into the Project

	6.3 Working with the Images Window
	6.3.1 How to Generate Images Using the Images Window
	6.3.2 What Happens When You Generate Images Using the Images Window

7 Working With Text in an ADF Skin

	7.1 About Working with Text in an ADF Skin
	7.2 Using Text From Your Own Resource Bundle
	7.2.1 How to Specify an Additional Resource Bundle for an ADF Skin
	7.2.2 What Happens When You Specify an Additional Resource Bundle for an ADF Skin

8 Working With Global Selector Aliases

	8.1 About Global Selector Aliases
	8.2 Creating a Global Selector Alias
	8.2.1 How to Create a Global Selector Alias
	8.2.2 What Happens When You Create a Global Alias Selector

	8.3 Modifying a Global Alias Selector
	8.3.1 How to Modify a Global Alias Selector

	8.4 Applying a Global Alias Selector
	8.4.1 How to Apply a Global Alias Selector
	8.4.2 What Happens When You Apply a Global Alias Selector

	8.5 Referencing a Property Value from Another Selector
	8.5.1 How to Reference a Property Value from Another Selector
	8.5.2 What Happens When You Reference a Property Value from Another Selector

9 Working with Style Classes

	9.1 About Style Classes
	9.2 Creating a Style Class
	9.2.1 How to Create a Style Class
	9.2.2 What Happens When You Create a Style Class

	9.3 Modifying a Style Class
	9.3.1 How to Modify a Style Class

	9.4 Configuring a Style Class for a Specific Instance of a Component
	9.4.1 How to Configure a Style Class for a Specific Instance of a Component
	9.4.2 What Happens When You Configure a Style Class for a Specific Instance of a Component

10 Applying the Finished ADF Skin to Your Web Application

	10.1 About Applying a Finalized ADF Skin to an Application
	10.2 Testing Changes in Your ADF Skin
	10.2.1 How to Set Parameters for Testing Your ADF Skin
	10.2.2 What Happens When You Set Parameter for Testing Your ADF Skin

	10.3 Packaging an ADF Skin into an ADF Library JAR
	10.3.1 How to Package an ADF Skin into an ADF Library JAR
	10.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

	10.4 Applying an ADF Skin to Your Web Application
	10.4.1 How to Apply an ADF Skin to an Application
	10.4.2 What Happens When You Apply an ADF Skin to an Application

11 Advanced Topics

	11.1 Referring to URLs in an ADF Skin's CSS File
	11.2 ADF Skinning Framework and Supported Render Kits
	11.3 Configuration Files for an ADF Skin
	11.4 ADF Skins Provided by Oracle ADF

[image: Oracle Corporation]

4 Creating the Source Files for an ADF Skin

This chapter describes how to create the source files for an ADF skin in the ADF Skin Editor.

This chapter includes the following sections:

	
Section 4.1, "About Creating an ADF Skin"

	
Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects"

	
Section 4.3, "Opening an Application Created Outside of the ADF Skin Editor"

	
Section 4.4, "Creating an ADF Skin File"

	
Section 4.5, "Versioning ADF Skins."

	
Section 4.6, "Managing Working Sets"

	
Section 4.7, "Importing ADF Skins from an ADF Library JAR"

4.1 About Creating an ADF Skin

An ADF skin defines the properties for the selectors that ADF Faces and ADF Data Visualization components expose. Using the ADF Skin Editor, you can create a source file for an ADF skin. As a source file for an ADF skin is a type of CSS file, you could create it without using an editor. However, when you use the editor, associated configuration files get created (the first time that you create an ADF skin) or modified (when you create subsequent ADF skins). For more information about these configuration files, see Section 11.3, "Configuration Files for an ADF Skin."

4.2 Creating ADF Skin Applications and ADF Skin Projects

New ADF skin applications and ADF skin projects can be created in the ADF Skin Editor.

4.2.1 How to Create an ADF Skin Application

This section describes how to create an ADF skin application and a project within it in the ADF Skin Editor.

To create a new ADF skin application:

	
Open the Create ADF Skin Application dialog by choosing File > New > ADF Skin Application.

	
In the Create ADF Skin Application dialog, enter application details like the name and directory. For help with the wizard, press F1.

	
Click Next to open the ADF Skin Project page where you specify the name of your ADF skin project and the directory to store it.

	
In the Target Application Release list, select the release of Oracle ADF that the application you want to skin uses.

The ADF Skin Editor configures your ADF skin project appropriately for the release you specify. For example, the ADF Skin Editor filters the list of ADF skins that you can extend from, as described in Section 4.4.1, "How to Create an ADF Skin in the ADF Skin Editor." The ADF Skin Editor also filters the list of skin selectors to display only those that the release you target supports. It will not display a skin selector introduced in a later release if you target your ADF skin project at an earlier release.

	
When you are done, click Finish.

4.2.2 How to Create a New ADF Skin Project

You use the Application Navigator to keep track of the ADF skin projects (collections of source files for ADF skins, images, and related files) you use while developing your ADF skin application.

You can create a new empty ADF skin project in an ADF skin application.

All ADF skin projects inherit the settings specified in the Default Project Properties dialog. As soon as you create the ADF skin project, it is added to the active ADF skin application.

To create a new ADF skin project:

	
In the Application Navigator, select the ADF skin application within which the project will appear.

	
Open the Create ADF Skin Project dialog by choosing File > New > ADF Skin Project.

	
In the Create ADF Skin Project dialog, enter project details like the name and directory.

	
In the Target Application Release list, select the release of Oracle ADF that the application you want to skin uses.

The ADF Skin Editor configures your ADF skin project appropriately for the release you specify. For example, the ADF Skin Editor filters the list of ADF skins that you can extend from, as described in Section 4.4.1, "How to Create an ADF Skin in the ADF Skin Editor." The ADF Skin Editor also filters the list of skin selectors to display only those that the release you target supports. It will not display a skin selector introduced in a later release if you target your ADF skin project at an earlier release.

	
When you are done, click Finish.

The new ADF skin project appears in the Application Navigator. It inherits whatever default properties you've already set. To alter project properties for this project, either double-click the filename or right-click and choose Project Properties.

4.3 Opening an Application Created Outside of the ADF Skin Editor

When you open an application or project that was created in a prior release of JDeveloper, the ADF Skin Editor will prompt you to migrate the project to JDeveloper 11g format. Depending on the content of the project, the ADF Skin Editor may display additional prompts to migrate some specific source files as well. Oracle recommends that you make a backup copy of your projects before you open them in the ADF Skin Editor or migrate them using the ADF Skin Editor.

4.4 Creating an ADF Skin File

You can create an ADF skin file in the ADF Skin Editor that defines how ADF Faces and ADF Data Visualization components render at runtime. The ADF skin that you create must extend either one of the ADF skins that Oracle ADF provides or from an existing ADF skin that you created. The ADF skins that Oracle ADF provides vary in the level of customization that they define for ADF Faces and ADF Data Visualization components. For information about the inheritance relationship between the ADF skins that Oracle ADF provides, see Section 1.4, "Inheritance Relationship of the ADF Skins Provided by Oracle ADF." For information about the levels of customization in the ADF skins provided by Oracle ADF and for a recommendation about the ADF skin to extend, see Section 11.4, "ADF Skins Provided by Oracle ADF."

The visual editor of the ADF Skin Editor supports the creation of ADF skins for the org.apache.myfaces.trinidad.desktop render kit.

You can create ADF skins for other render kits using the source editor in the ADF Skin Editor. For more information, see Section 11.2, "ADF Skinning Framework and Supported Render Kits."

After you create an ADF skin, you set values for the selectors that the ADF Faces and ADF Data Visualization components expose. Otherwise, the ADF skin that you create defines the same appearance as the ADF skin from which it extends. For more information, see Chapter 5, "Working with Component-Specific Selectors."

4.4.1 How to Create an ADF Skin in the ADF Skin Editor

You can create an ADF skin in the ADF Skin Editor.

To create an ADF skin in the ADF Skin Editor:

	
In the Application Navigator, right-click the project where you want to create the new ADF skin and choose New > ADF Skin File.

	
In the Create ADF Skin File dialog, enter the following:

	
File Name: Enter a file name for the new ADF skin.

	
Directory: Enter the path to the directory where you store the CSS source file for the ADF skin or accept the default directory proposed by the editor.

	
Family: Enter a value for the family name of your skin.

You can define a new family or select an existing family by entering a value in the input field. A family groups together ADF skins for an application. You configure an application to use a particular family of ADF skin.

The value you enter must be unique. You can use an EL expression to select an ADF skin for your application at runtime by referencing this value. For more information about using EL expressions to select an ADF skin for your application, see the "Enabling End Users to Change an Application's ADF Skin" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

	
Use as the default skin family for this project: Deselect this checkbox if you do not want to make the ADF skin the default for your project immediately.

	
Extends: Select the ADF skin that you want to extend. ADF Faces provides a number of ADF skins that you can extend. For more information and a recommendation on the ADF skin to extend, see Section 11.4, "ADF Skins Provided by Oracle ADF."

	
Note:

The value you select for Target Application Release, as described in Section 4.2, "Creating ADF Skin Applications and ADF Skin Projects," determines the list of ADF skins from which you can extend.

	
Skin Id: A read-only field that displays a concatenation of the value you enter in File Name and the ID of the render kit (desktop) for which you create your ADF skin. You select this value from the Extends list if you want to create another ADF skin that extends from this one.

The ADF Skin Editor writes the value to the <id> element in the trinidad-skins.xml file.

	
Click OK.

4.4.2 What Happens When You Create an ADF Skin

If you accepted the default value proposed for the Directory field, a file with the extension .css is generated in a subdirectory of the skins directory in your project. This file is opened in the visual editor for the ADF skin, as illustrated in Figure 4-1.

Figure 4-1 Newly-Created ADF Skin

[image: ADF Skin File in JDeveloper]

The trinidad-skins.xml file is modified to include metadata for the ADF skin that you create, as illustrated in Example 4-1.

Example 4-1 trinidad-skins.xml File

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">

 <skin>
 <id>skin2.desktop</id>
 <family>skin2</family>
 <extends>fusionFx-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
 </skin>
</skins>

If you select the Use as the default skin family for this project check box in the Create New ADF Skin file dialog, the trinidad-config.xml file is modified to make the new ADF skin the default skin for your application. Example 4-2 shows a trinidad-config.xml file that makes the ADF skin in Example 4-1 the default for an application.

Example 4-2 trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>skin2</skin-family>
</trinidad-config>

The source file for the ADF skin contains a comment and namespace references, as illustrated in Example 4-3. These entries in the source file for the ADF skin distinguish the file from non-ADF skin files with the .css file extension. A source file for an ADF skin requires these entries in order to open in the visual editor for the ADF skin.

Example 4-3 Default Entries for a Newly Created ADF Skin File

/**ADFFaces_Skin_File / DO NOT REMOVE**/
@namespace af "http://xmlns.oracle.com/adf/faces/rich";
@namespace dvt "http://xmlns.oracle.com/dss/adf/faces";

The first time that you create an ADF skin in your project, a resource bundle file (skinBundle.properties) is generated, as illustrated in Figure 4-1. For more information about using resource bundles, see Chapter 7, "Working With Text in an ADF Skin."

4.5 Versioning ADF Skins

You can specify version numbers for your ADF skins in the trinidad-skins.xml file using the <version> element. Use this capability if you want to distinguish between ADF skins that have the same value for the <family> element in the trinidad-skins.xml file. Note that when you configure an application to use a particular ADF skin, you do so by specifying values in the trinidad-config.xml file, as described in section Section 10.4, "Applying an ADF Skin to Your Web Application."

4.5.1 How to Version an ADF Skin

You specify a version for your ADF skin by entering a value for the <version> element in the trinidad-skins.xml file.

To version an ADF skin:

	
In the Application Navigator, double-click the trinidad-skins.xml file. By default, this is in the Web Content/WEB-INF node.

	
In the Structure window, right-click the skin node for the ADF skin that you want to version and choose Insert inside skin > version.

	
In the Insert version dialog, select true from the default list if you want your application to use this version of the ADF skin when no value is specified in the <skin-version> element of the trinidad-config.xml file, as described in Section 10.4, "Applying an ADF Skin to Your Web Application."

	
Enter a value in the name field. For example, enter v1 if this is the first version of the ADF skin.

	
Click OK.

4.5.2 What Happens When You Version ADF Skins

Example 4-4 shows an example trinidad-skins.xml that references three source files for ADF skins (skin1.css, skin2.css, and skin3.css). Each of these ADF skins have the same value for the <family> element (test). The values for the child elements of the <version> elements distinguish between each of these ADF skins. At runtime, an application that specifies test as the value for the <skin-family> element in the application's trinidad-config.xml file uses skin3 because this ADF skin is configured as the default skin in the trinidad-skins.xml file (<default>true</default>). You can override this behavior by specifying a value for the <skin-version> element in the trinidad-config.xml file, as described in Section 10.4, "Applying an ADF Skin to Your Web Application."

Example 4-4 trinidad-skins.xml with versioned ADF skin files

<?xml version="1.0" encoding="windows-1252"?>
<skins xmlns="http://myfaces.apache.org/trinidad/skin">
 <skin>
 <id>skin1.desktop</id>
 <family>test</family>
 <extends>fusionFx-simple-v1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin1/skin1.css</style-sheet-name>
 <version>
 <name>v1</name>
 </version>
 </skin>
 <skin>
 <id>skin2.desktop</id>
 <family>test</family>
 <extends>skin1.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin2/skin2.css</style-sheet-name>
 <version>
 <name>v2</name>
 </version>
 </skin>
 <skin>
 <id>skin3.desktop</id>
 <family>test</family>
 <extends>skin2.desktop</extends>
 <render-kit-id>org.apache.myfaces.trinidad.desktop</render-kit-id>
 <style-sheet-name>skins/skin3/skin3.css</style-sheet-name>
 <version>
 <default>true</default>
 <name>v3</name>
 </version>
 </skin>
</skins>

4.6 Managing Working Sets

Working sets allow you to configure the Application Navigator to show you a subset of files from your project. This is particularly useful when working with large projects. Before you define your own working sets the only one available is Default, and it is a working set which includes all the files in the current application.

You can define a working set by selecting from files or containers in the Application Navigator, or by providing include and exclude filter patterns through the Manage Working Sets dialog.

To group objects in the Application Navigator into a working set:

	
In the Application Navigator, select the objects that you want to include in a new working set.

	
In the Application Navigator, click the Working Sets icon and select New from Selection.

This opens a Save As dialog. For more information at any time, press F1 or click Help from within the Save As dialog.

	
Enter a name for the working set, then click OK.

To create a working set by defining file and directory filters:

	
In the Application Navigator, click the Working Sets icon and select Manage Working Sets.

This opens the Working Sets dialog. Use the tree on the left to select the projects to include. In the right panel, select which files in the current project to include. For more information at any time, press F1 or click Help from within the Working Sets dialog.

	
Click Save As to save the working set.

To create a working set from the results of a search in the Log window:

	
In the Log window, right-click and choose Save as Working Set from the context menu.

	
In the Create Working Set dialog, enter a name for the working set.

To see which working set you are currently using:

	
In the Application Navigator, hover the mouse over the Working Sets icon. The name of the current working set is displayed as a tooltip. Alternatively, click the Working Sets icon to bring up a menu in which the active working set is checked.

To change the active working set:

	
In the Application Navigator, click the Working Sets icon and select the working set you want to open.

Files not belonging to the working set are removed from view.

To edit files and projects in a working set:

	
In the Application Navigator, click the Working Sets icon and select Manage Working Sets.

This opens the Working Sets dialog. For more information at any time, press F1 or click Help from within the Working Sets dialog.

	
Select the working set that you want to change from the Working Set drop-down list.

	
Make the changes as required.

To restore the view in the Application Navigator to show all files:

	
In the Application Navigator, click the Working Sets icon and select (All Files).

4.7 Importing ADF Skins from an ADF Library JAR

You can import ADF skins into your project that have been packaged in a JAR file. When you import an ADF skin into your project, the imported ADF skin is available to extend from when you create a new ADF skin, as described in Section 4.4, "Creating an ADF Skin File."

The recommended type of JAR file to use to package an ADF skin is an ADF Library JAR file. For information about how to package an ADF skin into this type of JAR file, see Section 10.3, "Packaging an ADF Skin into an ADF Library JAR."

You can import an ADF skin that you have packaged in other types of JAR file. For these ADF skins to appear in the user interface as a choice to extend from when you create a new ADF skin, your JAR file must have the same directory structure shown in Example 4-5. Your JAR file must also include an oracle.adf.common.services.ResourceService.sva file. You can generate this file by following the instructions in Section 10.3, "Packaging an ADF Skin into an ADF Library JAR."

Images referenced by the ADF skin you want to import must appear under a directory named adf, as shown in Example 4-5.

Example 4-5 Required Directory Structure and Files for a non-ADF Library JAR File

META-INF
| MANIFEST.MF
| oracle.adf.common.services.ResourceService.sva
| trinidad-skins.xml
|
+---adf
| \---skins
| \---jarredskin
| \---images
| \---af_column
| sort_des_selected.png
|
\---skins
 \---jarredskin
 jarredskin.css

4.7.1 How to Import an ADF Skin from an ADF Library JAR

You can import ADF skins into your project that have been packaged in a JAR file.

To import an ADF skin from an ADF Library JAR:

	
From the main menu, choose Application > Project Properties.

	
In the Project Properties dialog, select the Libraries and Classpath page and click Add JAR/Directory.

	
In the Add Archive or Directory dialog, navigate to the JAR file that contains the ADF skin you want to import and click Select.

The JAR file appears in the Classpath Entries list.

	
When finished, click OK.

4.7.2 What Happens When You Import an ADF Skin from an ADF Library JAR

The ADF skin(s) that you import from the JAR file appear in the Extends list when you create a new ADF skin, as described in Section 4.4, "Creating an ADF Skin File." After you create a new ADF skin by extending an ADF skin that you imported from a JAR file, the Extended Skins list in the Preview Pane displays the name of the ADF skin that you imported. For example, in Figure 4-2 the skin2.css ADF skin has been created by extending the ADF skin, jarredskin.css, that was imported into the project from a JAR file.

Figure 4-2 Imported ADF Skin in the Extended Skins List

[image: Imported ADF Skin in the Extended Skins List]

Properties that have been defined in the ADF skin that you imported appear with a blue upward pointing arrow in the Property Inspector. An information tip about the inheritance relationship displays when you hover the mouse over the property, as illustrated in Figure 4-3.

Figure 4-3 Property Inherited from an Imported ADF Skin

[image: Property Inherited from an Imported ADF Skin]

10 Applying the Finished ADF Skin to Your Web Application

This chapter provides information on how to test your ADF skin, package the completed ADF skin in an ADF Library JAR, and configure an ADF application so that it uses the completed ADF skin.

This chapter includes the following sections:

	
Section 10.1, "About Applying a Finalized ADF Skin to an Application"

	
Section 10.2, "Testing Changes in Your ADF Skin"

	
Section 10.3, "Packaging an ADF Skin into an ADF Library JAR"

	
Section 10.4, "Applying an ADF Skin to Your Web Application"

10.1 About Applying a Finalized ADF Skin to an Application

After you create an ADF skin where you define style properties for one or more ADF skin selectors, you may want to test the changes that you make in the ADF skin. Once you complete testing the changes in your ADF skin and are satisfied with the final ADF skin, you can package the ADF skin and associated files (images, resource bundles, and configuration files) into an ADF Library JAR to distribute for inclusion to the application projects that use the final ADF skin. Once you have distributed the final ADF skin, you configure the application to apply the ADF skin to it.

10.2 Testing Changes in Your ADF Skin

Once you have created an ADF skin and defined style properties that you want for one or more selectors, you may want to test how these style properties render at runtime in a browser. To do this, you apply the ADF skin to your application and run a page that renders the ADF Faces component which exposed the selector.

Consider using tools, such as Firebug for the Mozilla Firefox browser (or similar for your particular browser), when you run your application. These tools provide useful information that can help you as you iteratively develop your ADF skin. For example, in addition to inspecting changes that you have already made, these tools can help you identify the ADF skin selectors that correspond to a particular DOM element.

You can also configure context initialization parameters in the web.xml file of your application that allow you to:

	
View changes in an ADF skin without having to restart the application

Set the value of the following context initialization parameter to true:

org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION

	
Display the full uncompressed CSS style class name at runtime

Set the value of the following context initialization parameter to true:

org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION

Note that not all changes that you make to an ADF skin in your Fusion web application appear immediately if you set the CHECK_FILE_MODIFICATION to true. You must restart the Fusion web application to view changes that you make to icon and ADF skin properties.

For more information about context initialization parameters, see the "ADF Faces Configuration" appendix in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

Figure 10-1 demonstrates how the name of a style class (fndGlobalSearchCategory) defined in an ADF skin, and applied to an ADF Faces commandLink component using the component's styleClass attribute, is compressed when it renders in a browser.

Figure 10-1 Compressed Style Class Name from an ADF Skin

[image: Compressed Style Class Name from an ADF Skin]

Figure 10-2 shows how the browser renders the full uncompressed name of the style class and the ADF Faces component when you set the DISABLE_CONTENT_COMPRESSION parameter to true. In Figure 10-2, the uncompressed style class af_commandLink corresponds to the af|commandLink selector documented in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors.

The uncompressed style classes that correspond to the pseudo-elements that an ADF skin selector exposes can also be identified. For example, the tab-end pseudo-element exposed by the af|panelTabbed selector (af|panelTabbed::tab-end) translates to the uncompressed af_panelTabbed_tab-end style class at runtime.

Similarly, changes that you make to the appearance of a component when it is in a specific state can also be identified or inspected using browser tools. For example, the following entry in the source file of an ADF skin allows you to define the style for the ADF Faces panelTabbed component when a user selects the right-hand side of the component:

af|panelTabbed::tab:selected af|panelTabbed::tab-end

At runtime, the uncompressed style class name translates to the following:

.af_panelTabbed_tab.p_AFSelected .af_panelTabbed_tab-end

Note that :selected translates to p_AFSelected although sometimes the generated CSS does not have a p_AFSelected equivalent because some browsers have built-in support for that particular state, as is the case for other pseudo-classes like :hover.

It is recommended that you only customize the ADF skin selectors, pseudo-elements, and pseudo-classes documented in the Oracle Fusion Middleware Tag Reference for Oracle ADF Faces Skin Selectors and the Oracle Fusion Middleware Data Visualization Tools Tag Reference for Oracle ADF Faces. Customizing other ADF skin selectors may result in unexpected or inconsistent behavior for your application.

Figure 10-2 Uncompressed Style Class Name from an ADF Skin

[image: Uncompressed Style Class Name from an ADF Skin]

10.2.1 How to Set Parameters for Testing Your ADF Skin

You set the CHECK_FILE_MODIFICATION and DISABLE_CONTENT_COMPRESSION context initialization parameters to true in the web.xml file of your application.

To set parameters for testing your ADF skin:

	
In the Application Navigator, double-click web.xml to open the file.

	
Add the following context initialization parameter entries and set to true:

	
org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION

	
org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION

	
Save and close the web.xml file.

10.2.2 What Happens When You Set Parameter for Testing Your ADF Skin

Entries appear in the web.xml file for your application, as illustrated in Example 10-1.

Example 10-1 web.xml Entry

<context-param>
 <param-name>org.apache.myfaces.trinidad.CHECK_FILE_MODIFICATION</param-name>
 <param-value>true</param-value>
</context-param>
<context-param>
 <param-name>org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION</param-name>
 <param-value>true</param-value>
</context-param>

Changes that you make to a selector for an ADF Faces component (other than changes to icon and skin properties) render immediately when you refresh a Fusion web application's page that renders the ADF Faces component. Using Firebug if your browser is Mozilla Firefox or Google Chrome's developer tools, you can see the uncompressed style class names that render at runtime and establish what ADF skin selector it corresponds to. Remember that setting org.apache.myfaces.trinidad.DISABLE_CONTENT_COMPRESSION to true incurs a performance cost for your Fusion web application so set it to false when you finish testing your changes.

10.3 Packaging an ADF Skin into an ADF Library JAR

You can deploy an ADF skin and associated files (for example, image files, configuration files, and resource bundles) in an ADF Library JAR. This enables you to package files required to apply an ADF skin to an application. The benefits of packaging ADF skins into an ADF Library JAR as compared to bundling them into the application are the following:

	
An ADF skin can be deployed and developed separately from the application. This also helps to reduce the number of files to be checked in case some changes must be applied to the ADF skin.

	
The source files for an ADF skin and images can be separated into their own ADF Library JARs. Therefore, you can partition the image base into separate ADF Library JARs, so that not all files have to be deployed with all applications.

10.3.1 How to Package an ADF Skin into an ADF Library JAR

Create an ADF Library JAR file deployment profile to package the ADF skin into an ADF Library JAR.

To create an ADF Library JAR file deployment profile:

	
In the Application Navigator, right-click the project that contains the ADF skins and choose Deploy > New Deployment Profile.

	
In the Create Deployment Profile dialog, choose ADF Library JAR File in the Profile Type dropdown list.

	
Enter a name for the deployment profile in the Deployment Profile Name input field and click OK.

	
Review the options in the Edit ADF Library JAR Deployment Profile Properties dialog that appears. For more information at any time, click Help.

	
Click OK.

To package an ADF skin into an ADF Library JAR:

	
In the Application Navigator, right-click the project that contains the ADF skin and choose Deploy > deployment, where deployment is the name of the ADF Library JAR file deployment profile.

	
In the Deploy dialog Deployment Action page, click Next and then click Finish.

10.3.2 What Happens When You Package an ADF Skin into an ADF Library JAR

An ADF Library JAR file is written to the directory specified by the deployment profile. This ADF Library JAR contains the source file for the ADF skin, the trinidad-skins.xml file, image files, and any resource bundles that you created to define resource strings or to override the default strings defined for ADF Faces components. The ADF Library JAR file also contains other files from the ADF skin's project not related to skinning.

Example 10-2 shows the directory structure for a project that contains the following items for an ADF skin:

	
The trinidad-skins.xml file

	
An image file (sort_des_ena.png) copied into the ADF skin project

	
The source file for an ADF skin (skin1.css)

	
An .sva file (oracle.adf.common.services.ResourceService.sva) that is used to inspect the content of the ADF Library JAR when you import it into a project, as described in Section 4.7, "Importing ADF Skins from an ADF Library JAR."

	
A resource bundle (skinBundle.properties) that contains string values to override strings from the default resource bundle

For information about how to specify resource bundles that contain string values you define, see Section 7.2.1, "How to Specify an Additional Resource Bundle for an ADF Skin."

Example 10-2 Directory Structure for an ADF Library JAR Containing an ADF Skin

ADFLibraryJARRootDirectory
+---META-INF
| | MANIFEST.MF
| | oracle.adf.common.services.ResourceService.sva
| | trinidad-skins.xml
| |
| +---adf
| | \---skins
| | \---skin1
| | \---images
| | \---af_column
| | sort_des_selected.png
| |
| \---skins
| \---skin1
| skin1.css
|
+---resources
| skinBundle.properties
|
\---WEB-INF
 faces-config.xml

The directory paths for images in the ADF skin that appear in the ADF Library JAR are modified to include the directory path from the ADF skin project. Example 10-3 demonstrates an example of the changes that occur:

Example 10-3 Modified Directory Path for Images in a Deployed ADF Skin

// Reference to an image in an ADF skin prior to deployment to an ADF Library JAR
af|column::sorted-descending-icon-style
{
 background-image: url("images/af_column/sort_des_selected.png");
}

// Reference to an image in an ADF skin after deployment to an ADF Library JAR
af|column::sorted-descending-icon-style
{
 background-image: url("/adf/skins/skin1/images/af_column/sort_des_selected.png");
}

10.4 Applying an ADF Skin to Your Web Application

You configure an application to use an ADF skin by specifying values in the application's trinidad-config.xml file. You specify a value for the <skin-family> element that identifies the ADF skin family the application uses at runtime. If you created more than one ADF skin in the skin family, you can version these ADF skins, as described in Section 4.5, "Versioning ADF Skins." If you versioned multiple ADF skins in the same skin family, use the <skin-version> element to identify the specific version that you want the application to use.

Note that you can also configure an application page for your end users to dynamically select the ADF skin that they want the application to use. For more information, see the "Enabling End Users to Change an Application's ADF Skin" section in the Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.

10.4.1 How to Apply an ADF Skin to an Application

You apply an ADF skin to an application by modifying the application's trinidad-config.xml file. You do this by editing the application's trinidad-config.xml file to specify the ADF skin family to use.

To apply an ADF skin to an application:

	
In the Application Navigator, double-click the trinidad-config.xml file to open it in the source editor. By default, this file is in the Web Content/WEB-INF node.

	
In the trinidad-config.xml file, write entries to specify the value of the <skin-family> element and, optionally, the <skin-version> element as shown in Example 10-4.

10.4.2 What Happens When You Apply an ADF Skin to an Application

The values that you specify for the <skin-family> element and, optionally, the <skin-version> element in the trinidad-config.xml file determine the ADF skin that the Fusion web application uses at runtime, as shown in Example 10-4.

Example 10-4 trinidad-config.xml File

<?xml version="1.0" encoding="windows-1252"?>
<trinidad-config xmlns="http://myfaces.apache.org/trinidad/config">
 <skin-family>fusionFx</skin-family>
 <skin-version>v1.1</skin-version>
</trinidad-config>

