Developer's Guide for Oracle SOA Suite
11g Release 1 (11.1.1.6.1)
E10224-12
March 2012
Documentation for developers that describes how to design, secure, test, and deploy Oracle Service-Oriented Architecture (SOA) composite applications consisting of service and reference binding components and Oracle BPEL process, human task, business rule, Oracle Mediator, and spring service components. Includes additional information on designing transformations and business events, integrating Oracle Business Activity Monitoring and Oracle User Messaging Service into composites, and acting upon human tasks during runtime in Oracle BPM Worklist.
Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite, 11g Release 1 (11.1.1.6.1)
E10224-12
Copyright © 2005, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Anirban Ghosh, Solveig Haugland, Mark Kennedy, Richard Smith, Carol Thom, and Savija Vijayaraghavan
Contributor: Oracle SOA Suite development, product management, and quality assurance teams
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
This manual describes how to use Oracle SOA Suite.
This preface contains the following topics:
This manual is intended for anyone who is interested in developing applications with Oracle SOA Suite.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following Oracle resources:
Printed documentation is available for sale in the Oracle Store at
http://oraclestore.oracle.com/
To download free release notes, installation documentation, white papers, or other collateral, visit the Oracle Technology Network (OTN). You must register online before using OTN; registration is free and can be done at
http://www.oracle.com/technology/
To download Oracle BPEL Process Manager documentation, technical notes, or other collateral, visit the Oracle BPEL Process Manager site at Oracle Technology Network (OTN):
http://www.oracle.com/technology/bpel/
If you have a username and password for OTN, then you can go directly to the documentation section of the OTN web site at
http://www.oracle.com/technology/documentation/
See the Business Process Execution Language for Web Services Specification, available at the following URL:
http://msdn.microsoft.com/library/default.asp?url=/library/en-us/dnbizspec/html/bpel1-1.asp
See the XML Path Language (XPath) Specification, available at the following URL:
http://www.w3.org/TR/1999/REC-xpath-19991116
See the Web Services Description Language (WSDL) 1.1 Specification, available at the following URL:
The following text conventions are used in this document:
Convention | Meaning |
---|---|
boldface | Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary. |
italic | Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values. |
| Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter. |
For Release 11.1.1.6.x, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.x, the last columns denote which documentation release contains the update.
For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html
.
Sections | Changes Made | 11.1.1.6.0 | 11.1.1.6.1 |
---|---|---|---|
Chapter 4 Getting Started with Oracle BPEL Process Manager | |||
Section 4.1.1, "How to Add a BPEL Process Service Component" | Section revised to describe how to specify the | X | |
Chapter 8 Invoking an Asynchronous Web Service from a BPEL Process | |||
Section 8.3, "Creating a Dynamic Partner Link at Design Time for Use at Runtime" | Section revised to describe how to dynamically assign an endpoint reference to a partner link for use at runtime in BPEL version 2.0. | X | |
Chapter 9 Using Correlation Sets and Message Aggregation | |||
Section 9.2, "Routing Messages to the Same Instance" | Section added to describe the new message aggregation feature. When multiple messages are routed to the same process/partner link/operation name, the first message is routed to create an instance and subsequent messages can be routed to continue the created instance using a midprocess receive activity. | X | |
Chapter 11 Using Conditional Branching in a BPEL Process | |||
Section 11.5, "Specifying XPath Expressions to Bypass Activity Execution" | Section revised to describe how to specify an XPath expression in an activity in BPEL version 2.0 that, when evaluated to true, causes that activity to be skipped. | X | |
Chapter 12 Using Fault Handling in a BPEL Process | |||
Section 12.14, "Throwing Faults with Assertion Conditions" | Section revised to describe how to specify an assertion condition in BPEL version 2.0 that is executed upon receipt of a callback message in request-response invoke activities, receive activities, reply activities, and onMessage branches of pick and scope activities. | X | |
Chapter 15 Using Events and Timeouts in BPEL Processes | |||
Section 15.3, "Setting Timeouts for Request-Reply and In-Only Operations in Receive Activities" | Section revised to describe how to specify a timeout setting for request-reply (synchronous) operations and in-only receive (asynchronous) operations in BPEL version 2.0. | X | |
Chapter 20 Creating Oracle Mediator Routing Rules | |||
Section 20.3.2.5, "How to Handle Premature Callbacks" | Section added to describe the | X | |
Section 20.3.2.14, "How to Override Pass Through Settings for Attachments" | Section added to describe the | X | |
Chapter 42 Automating Testing of SOA Composite Applications | |||
Section 44.5, "Testing BPEL Process Service Components" | Section added to describe how to automate the testing of an individual BPEL process service component included in a new or existing SOA composite application test suite. | X | |
Chapter 44 Managing Large Documents and Large Numbers of Instances | |||
Section 45.1.1.2.1, "SOAP with Attachments" |
| X | |
Section 45.1.3.4, "Using XSLT Transformations on Large Payloads (For Oracle BPEL Process Manager)" | Section revised to remove a note that recommended Mediator not be used for XSLT transformations with large payloads. | X | |
Section 45.1.3.5, "Using XSLT Transformations on Large Payloads (For Oracle Mediator)" | Section added to describe the new | X | |
Chapter 48 Working with Cross References | |||
Section 49.3, "Oracle Data Integrator Support for Cross Referencing" | Section added to outline how to use Oracle Data Integrator to create cross reference tables for SOA composites. | X | |
Section 49.5.2, "About the xref:populateLookupXRefRow Function" | Section added to document the new | X | |
Chapter 54 Creating Oracle BAM Enterprise Message Sources | |||
Section 56.2.4, "How to Configure EMS Error Handling" | Section revised to add information on the certification of EMS error handling. | X | |
Chapter 58 Creating Oracle BAM Alerts | |||
Section 60.1, "Introduction to Creating Alerts", Section 60.2.2, "How to Activate Alerts", Section 60.2.3, "How to Modify Alert Rules", and Section 60.2.4, "How to Delete an Alert" | Sections revised to note that all alerts should be visible to administrators. | X | |
Section 60.2.5, "What You May Need to Know About Modifying Alerts" | Sections added to provide information about the options admin users have when modifying alerts. | X | |
Appendix A BPEL Processes Activities and Services | |||
Section A.2.2, "Copying and Pasting Activities in BPEL Projects" | Section added to document how to copy and paste activities in the same BPEL project or between BPEL projects. | X | |
Appendix B XPath Extension Functions | |||
Section B.3.12, "readBinaryFromFile" | Section added to describe the usage of the | X |
This part provides an introduction to Oracle SOA Suite and developing SOA composite applications.
This part contains the following chapters:
This chapter describes service-oriented architecture (SOA) and Oracle SOA Suite, standards used by Oracle SOA Suite to enable SOA, SOA composite application architecture and runtime behavior, approaches to designing SOA composite applications, and where to go to learn more about Oracle SOA Suite.
This chapter includes the following sections:
Changing markets, increasing competitive pressures, and evolving customer needs are placing greater pressure on IT to deliver greater flexibility and speed. Today, every organization is faced with predicting change in a global business environment, to rapidly respond to competitors, and to best exploit organizational assets for growth. In response to these challenges, leading companies are adopting service-oriented architecture (SOA) to deliver on these requirements by overcoming the complexity of their application and IT environments.
SOA provides an enterprise architecture that supports building connected enterprise applications to provide solutions to business problems. SOA facilitates the development of enterprise applications as modular business web services that can be easily integrated and reused, creating a truly flexible, adaptable IT infrastructure.
SOA separates business functions into distinct units, or services. A SOA application reuses services to automate a business process.
A standard interface and message structure define services. The most widely used mechanism are web services standards. These standards include the Web Service Description Language (WSDL) file for service interface definition and XML Schema Documents (XSD) for message structure definition. These XML standards are easily exchanged using standard protocols. Because standards for web services use a standard document structure, they enable existing systems to interoperate regardless of the choice of operating system and computer language used for service implementation.
When designing a SOA approach, you create a service portfolio plan to identify common functionality to use as a service within the business process. By creating and maintaining a plan, you ensure that existing services and applications are reused or repurposed whenever possible. This plan also reduces the time spent in creating needed functionality for the application.
Oracle SOA Suite provides a complete set of service infrastructure components for designing, deploying, and managing composite applications. Oracle SOA Suite enables services to be created, managed, and orchestrated into composite applications and business processes. Composites enable you to easily assemble multiple technology components into one SOA composite application. Oracle SOA Suite plugs into heterogeneous IT infrastructures and enables enterprises to incrementally adopt SOA.
The components of Oracle SOA Suite benefit from common capabilities, including a single deployment, management, and tooling model, end-to-end security, and unified metadata management. Oracle SOA Suite is unique in that it provides the following set of integrated capabilities:
Oracle SOA Suite puts a strong emphasis on standards and interoperability. Among the standards it leverages are:
Provides the service details and their interdependencies to form composite applications. SCA enables you to represent business logic as reusable service components that can be easily integrated into any SCA-compliant application. The resulting application is known as a SOA composite application. The specification for the SCA standard is maintained by the Organization for the Advancement of Structured Information Standards (OASIS) through the Open Composite Services Architecture (CSA) Member Section:
Specifies a standard data method and can modify business data regardless of how it is physically accessed. Knowledge is not required about how to access a particular back-end data source to use SDO in a SOA composite application. Consequently, you can use static or dynamic programming styles and obtain connected and disconnected access.
Provides enterprises with an industry standard for business-process orchestration and execution. Using BPEL, you design a business process that integrates a series of discrete services into an end-to-end process flow. This integration reduces process cost and complexity. BPEL versions 1.1 and 2.0 are supported.
Processes XML documents and transforms document data from one XML schema to another.
Provides a Java technology solution to the problem of connectivity between the many application servers in Enterprise Information Systems (EIS).
Provides a messaging standard that allows application components based on the Java 2 Platform, Enterprise Edition (Java EE) to access business logic distributed among heterogeneous systems.
Provides the entry points into a SOA composite application. The WSDL file provides a standard contract language and is central for understanding the capabilities of a service.
Provides the default network protocol for message delivery.
Oracle SOA Suite uses the SCA standard as a way to assemble service components into a SOA composite application. SCA provides a programming model for the following:
SCA provides a model for assembling distributed groups of service components into an application, enabling you to describe the details of a service and how services and service components interact. Composites are used to group service components and wires are used to connect service components. SCA helps to remove middleware concerns from the programming code by applying infrastructure declaratively to composites, including security and transactions.
The key benefits of SCA include the following:
Service components integrate with other service components without needing to know how other service components are implemented.
Service components can easily be replaced by other service components.
Services can be invoked either synchronously or asynchronously.
Service components are easily integrated to create a SOA composite application.
Service components can be easily maintained and debugged when an issue is encountered.
A SOA composite is an assembly of services, service components, and references designed and deployed in a single application. Wiring between the services, service components, and references enables message communication. The details for a composite are stored in the composite.xml
file.
Figure 1-1 provides an example of a composite that includes an inbound service binding component, a BPEL process service component (named Account
), a business rules service component (named AccountRule
), and two outbound reference binding components.
Figure 1-1 Simple SOA Composite Architecture
Service components are the building blocks that you use to construct a SOA composite application.
The following service components are available. There is a corresponding service engine of the same name for each service component. All service engines can interact in a single composite.
Binding components establish a connection between a SOA composite and the external world. There are two types of binding components:
Table 1-1 lists and describes the binding components provided by Oracle SOA Suite.
Table 1-1 Binding Components Provided by Oracle SOA Suite
Binding Components | Description |
---|---|
Web service (SOAP over HTTP) | Use for connecting to standards-based services using SOAP over HTTP. |
JCA adapters | Use for integrating services and references with technologies (for example, databases, file systems, FTP servers, messaging: JMS, IBM WebSphere MQ, and so on) and applications (Oracle E-Business Suite, PeopleSoft, and so on). This includes the AQ adapter, database adapter, file adapter, FTP adapter, JMS adapter, MQ adapter, and Socket adapter. |
B2B binding component | Use for browsing B2B metadata in the MDS repository and selecting document definitions. |
ADF-BC service | Use for connecting Oracle Application Development Framework (ADF) applications using SDO with the SOA platform. |
Oracle Applications | Use for integrating the Oracle Applications adapter with Oracle applications. |
BAM adapter | Use for integrating Java EE applications with Oracle BAM Server to send data, and also use as a reference binding component in a SOA composite application. |
EJB service | Use for integrating SDO parameters or Java interfaces with Enterprise JavaBeans. |
Direct binding service | Use to invoke a SOA composite application and exchange messages over a remote method invocation (RMI) in the inbound direction and to invoke an Oracle Service Bus (OSB) flow or another SOA composite application in the outbound direction. |
HTTP binding | Use to integrate SOA composite applications with HTTP binding. |
Figure 1-2 shows the operability of a SOA composite application using SCA technology. In this example, an external application (a .NET payment calculator) initiates contact with the SOA composite application.
For more information about descriptions of the tasks that services, references, service components, and wires perform in an application, see Section 1.5, "Service Component Architecture within SOA Composite Applications."
Figure 1-2 Runtime Behavior of SOA Composite Application
The .NET payment calculator is an external application that sends a SOAP message to the SOA application to initiate contact. The Service Infrastructure picks up the SOAP message from the binding component and determines the intended component target. The BPEL process service engine receives the message from the Service Infrastructure for processing by the BPEL Loan Process application and posts the message back to the Service Infrastructure after completing the processing.
Table 1-2 describes the operability of the SOA composite application shown in Figure 1-1.
Table 1-2 Introduction to a SOA Composite Application Using SCA Technologies
Part | Description | Example of Use in Figure 1-1 | See Section |
---|---|---|---|
Binding components | Establishes the connectivity between a SOA composite and the external world. There are two types:
| The SOAP binding component service:
An example of a binding component reference in Figure 1-2 is the Loan Process application. | Section 1.5.1, "Service Components" |
Service Infrastructure | Provides internal message transport | The Service Infrastructure:
| Section 1.6.1, "Service Infrastructure" |
Service engines (containers hosting service components) | Host the business logic or processing rules of the service components. Each service component has its own service engine. | The BPEL service engine:
| Section 1.6.2, "Service Engines" |
UDDI and MDS | The MDS (Metadata Service) repository stores descriptions of available services. The UDDI advertises these services, and enables discovery and dynamic binding at runtime. | The SOAP service used in this composite application is stored in the MDS repository and can also be published to UDDI. | Oracle Fusion Middleware Getting Started with Oracle SOA Suite |
SOA Archive: Composite (deployment unit) | The deployment unit that describes the composite application. | The SOA archive (SAR) of the composite application is deployed to the Service Infrastructure. | Section 1.6.3, "Deployed Service Archives" |
The Service Infrastructure provides the following internal message routing infrastructure capabilities for connecting components and enabling data flow:
Service engines are containers that host the business logic or processing rules of these service components. Service engines process the message information received from the Service Infrastructure.
There is a corresponding service engine of the same name for each service component. All service engines can interact in a single composite.
For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
The SAR is a SOA archive deployment unit. A SAR file is a special JAR file that requires a prefix of sca_
. (for example, sca_OrderBookingComposite_rev1.0.jar
). The SAR file is deployed to the Service Infrastructure. The SAR packages service components, such as BPEL processes, business rules, human tasks, and mediator routing services into a single application. The SAR file is analogous to the BPEL suitcase archive of previous releases, but at the higher composite level and with any additional service components that your application includes (for example, human tasks, business rules, and mediator routing services).
For more information, see Chapter 43, "Deploying SOA Composite Applications."
When creating a SOA composite application, you have a choice of approaches for building it:
In addition to this developer's guide, Oracle also offers the following resources to help you learn how you can best use Oracle SOA Suite in your applications:
Note: While this guide primarily describes how to use Oracle SOA Suite with Oracle WebLogic Server, most of the information is also applicable to using Oracle SOA Suite with other third-party application servers. However, there may be some differences with using third-party application servers. For information about these differences, see Oracle Fusion Middleware Third-Party Application Server Guide. |
This chapter describes how to use Oracle JDeveloper to create a SOA composite application. It guides you through the basic steps of composite, service and reference binding component, and service component creation, security, test, and deployment, along with describing key issues to be aware of when designing a SOA composite application.
This chapter includes the following sections:
The first steps in building a new application are to assign it a name and to specify the directory where to save source files. By creating an application using application templates provided by Oracle JDeveloper, you automatically get the organization of the workspace into projects, along with many of the configuration files required by the type of application you are creating.
You first create an application for the SOA project.
Note: In order to create and deploy SOA composite applications and projects, you must install the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper. |
To create an application:
Table 2-1 SOA Composite Application Creation
If Oracle JDeveloper... | Then... |
---|---|
Has no applications For example, you are opening Oracle JDeveloper for the first time. | In the Application Navigator in the upper left, click New Application. |
Has existing applications | From the File main menu or the Application menu:
|
The Create SOA Application wizard starts.
Notes:
|
Note: Composite and component names cannot exceed 500 characters. |
A project deployed to the same infrastructure must have a unique name across SOA composite applications. The uniqueness of a composite is determined by its project name. For example, do not perform the actions described in Table 2-2. During deployment, the second deployed project (composite) overwrites the first deployed project (composite).
Table 2-2 Restrictions on Naming a SOA Project
Create an Application Named... | With a SOA Project Named... |
---|---|
|
|
|
|
The Project SOA Settings page of the Create SOA Application wizard appears.
When you create a SOA application, Oracle JDeveloper creates a project that contains all the source files related to your application. Oracle JDeveloper automatically adds the following libraries needed for your SOA project:
You can then use Oracle JDeveloper to create additional projects needed for your application.
Figure 2-1 shows the SOA Composite Editor for the OrderBookingComposite project contained within the WebLogicFusionOrderDemo application of the Fusion Order Demo.
Figure 2-1 New Workspace for a SOA Composite Application
Table 2-3 describes the SOA Composite Editor.
Table 2-3 SOA Composite Editor
Element | Description |
---|---|
Application Navigator | Displays the key files for the specific service components included in the SOA project:
|
Designer | You drag service components, services, and references from the Component Palette into the composite in the designer. When you drag and drop a service component into the designer window, a corresponding property editor is invoked for performing configuration tasks related to that service component. For example, when you drag and drop the Oracle Mediator service component into the designer, the Mediator Editor is displayed that enables you to configure the Oracle Mediator service component. For all subsequent editing sessions, you double-click these service components to re-open their editors. |
Left Swimlane (Exposed Services) | The left swimlane is for services, such as a web services or JCA adapters, providing an entry point to the SOA composite application. |
Right Swimlane (External References) | The right swimlane is for references that send messages to external services in the outside world, such as web services and JCA adapters. |
Component Palette | The component palette provides the various resources that you can use in a SOA composite. It contains the following service components and adapters:
If the Component Palette does not display, select Component Palette from the View main menu. |
Resource Palette | The Resource Palette provides a single dialog from which you can browse both local and remote resources. For example, you can access the following resources:
If the Resource Palette does not display, then select Resource Palette from the View main menu. You select these resources for the SOA composite application through the SOA Resource Browser dialog. This dialog is accessible through a variety of methods. For example, when you select the WSDL file to use with a service binding component or an Oracle Mediator service component or select the schema file to use in a BPEL process, the SOA Resource Browser dialog appears. Click Resource Palette at the top of this dialog to access available resources. |
Log Window | The Log window displays messages about application compilation, validation, and deployment. |
Property Inspector | The Property Inspector displays properties for the selected service component, service, or reference. You can also define deployment descriptor properties for a BPEL process service component. For more information, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector." If the Property Inspector does not display, select Property Inspector from the View main menu. |
Application View | The Application View shows the artifacts for the SOA composite application. |
The composite.xml file displays as a tab in the designer and as a file in the Application Navigator. This file is automatically created when you create a new SOA project. This file describes the entire composite assembly of services, service components, and references. There is one composite.xml file for each SOA project.
When you work with the composite.xml file, you mostly use the designer, the Structure window, and the Property Inspector, as shown in Figure 2-1. The designer enables you to view many of your files in a WYSIWYG environment, or you can view a file in an overview editor where you can declaratively make changes, or you can view the source code for the file. The Structure window shows the structure of the currently selected file. You can select objects in this window, and then edit the properties for the selection in the Property Inspector.
Once you create your application, often the next step is to add service components that implement the business logic or processing rules of your application. You can use the Component Palette from the SOA Composite Editor to drag and drop service components into the composite.
To add a service component:
Figure 2-2 shows a BPEL process being added to the designer.
Figure 2-2 Adding BPEL Process to Composite
A specific dialog for the selected service component is displayed. Table 2-4 describes the available editors.
Table 2-4 Starting Service Component Editors
Dragging This Service Component... | Invokes The... |
---|---|
BPEL Process | Create BPEL Process dialog to create a BPEL process that integrates a series of business activities and services into an end-to-end process flow. |
Business Rule | Create Business Rules dialog to create a business decision based on rules. |
Human Task | Create Human Task dialog to create a workflow that describes the tasks for users or groups to perform as part of an end-to-end business process flow. |
Mediator | Create Mediator dialog to define services that perform message and event routing, filtering, and transformations. |
Spring Context | Create Spring dialog to create a spring context file for integrating Java interfaces into SOA composite applications. |
Figure 2-3 shows the BPEL Process dialog with data entered to create the OrderProcessor BPEL process for the WebLogicFusionOrderDemo application of the Fusion Order Demo. The process is selected to be asynchronous. The Expose as a SOAP Service option directs Oracle JDeveloper to create this service component automatically connected to an inbound web service.
The service component displays in the designer. Figure 2-4 shows the OrderProcessor BPEL process added to the composite.xml file. A SOAP service binding component called orderprocessor_client_ep in the left swimlane provides the outside world with an entry point into the SOA composite application. If the Expose as a SOAP Service option was not selected in the Create BPEL Process dialog, the orderprocessor_client_ep service would not display. Section 2.3.1, "How to Add a Service Binding Component," describes how you later add a service.
You can more fully define the content of the service component now or at a later time. For this top-down example, the content is defined now.
Note the following details about adding service components:
Note the following details about deleting service components:
.componentType
file and removes the wire to the task. You modify a service component to define specific details about the service component.
To edit a service component:
Table 2-5 Starting SOA Service Component Wizards and Dialogs
Double-Clicking This Service Component... | Displays The... |
---|---|
BPEL Process | Oracle BPEL Designer for further designing. |
Business Rule | Business Rules Designer for further designing. |
Human Task | Human Task Editor for further designing. |
Mediator | Oracle Mediator Editor for further designing. |
Spring Context | Spring Editor for further designing. |
To return to the SOA Composite Editor from within any service component, double-click composite.xml in the Application Navigator or single-click composite.xml above the designer.
For help with a service component editor, click Help or press F1.
This action returns you to the SOA Composite Editor.
You add a service binding component to act as the entry point to the SOA composite application from the outside world.
Notes:
|
You can use the Component Palette from the SOA Composite Editor to drag and drop service binding components to the composite.
To add a service binding component:
Figure 2-5 shows a web service being added to the designer.
Figure 2-5 Adding a Web Service to a Composite
A specific dialog for the selected service displays. Table 2-6 describes the available editors.
Table 2-6 Service Editors
Dragging This Service... | Invokes The... |
---|---|
Web service | Create Web Service dialog to create a web invocation service. |
Adapters | Adapter Configuration Wizard to guide you through integration of the service with database tables, database queues, file systems, FTP servers, Java Message Services (JMS), IBM WebSphere MQ, BAM servers, sockets, or Oracle E-Business Suite applications. |
ADF-BC Service | Create ADF-BC Service dialog to create a service data object (SDO) invocation service. |
B2B | B2B Wizard to guide you through selection of a document definition. |
EJB Service | Create EJB Service to create an Enterprise JavaBeans service for using SDO parameters or Java interfaces with Enterprise JavaBeans. |
HTTP Binding | Create HTTP Binding Wizard to create HTTP binding. This wizard enables you to invoke SOA composite applications through HTTP POST and GET operations. |
Direct Binding | Create Direct Binding Service dialog to invoke a SOA composite application and exchange messages over a remote method invocation (RMI) in the inbound direction. |
Figure 2-6 shows the Web Service dialog with data entered to create the orderprocessor_client_ep service for the OrderProcessor BPEL process.
The service binding component displays in the left swimlane. Figure 2-7 shows the orderprocessor_client_ep service binding component added to the composite.xml file.
As described in Section 2.3.1, "How to Add a Service Binding Component," a web service is a type of binding component that you can add to a SOA composite application. You must define the interface (WSDL) file for the web service.
To add a WSDL for a web service:
This invokes the Create Web Service dialog shown in Figure 2-6.
Table 2-7 Create Web Service Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name for the service. |
Type | Select the type (message direction) for the web service. Since you dragged the web service to the left swimlane, the Service type is the correct selection, and displays by default:
Since this example describes how to create an entry point to the SOA composite application, Service is selected. |
Define a new WSDL using an existing schema or by defining a new schema.
Select a WSDL created when defining a component interface. The WSDL can be selected from the project / application browser.
Figure 2-9 Use of Existing WSDL files from Other Applications
Automatically define a service interface WSDL from a component
You can modify the default values.
Figure 2-10 Automatic Generation of WSDL File
For more information, click Help.
Notes:
|
You can view all schemas used by the interface's WSDL file and, if you want, choose a new message schema for a selected message part in the Update Interface dialog.
To view schemas:
Figure 2-11 Selection of Inbound Interface Handle
The Update Interface dialog shown in Figure 2-12 displays all schemas currently used by the WSDL file.
After initially creating a service, you can edit its contents at a later time. Double-click the component icon to display its appropriate editor or wizard. Table 2-9 provides an overview.
Table 2-9 Starting Service Wizards and Dialogs
Double-Click This Service... | To... |
---|---|
Web service | Display the Update Service dialog. |
Adapters | Reenter the Adapter Configuration Wizard. |
ADF-BC Service | Display the Update Service dialog. |
B2B | Reenter the B2B wizard. |
EJB Service | Display the Update Service dialog. |
HTTP Binding | Reenter the HTTP Binding Wizard. |
Direct Binding | Reenter the Update Service dialog. |
Note the following detail about adding services:
Note the following detail about deleting services:
Having two different WSDL files with the same fully-qualified namespace in the same SOA composite application is ambiguous and not supported. This causes the application to fail during compilation with duplicate definition errors. Ensure that you use unique namespaces for every WSDL file.
When the SOA Infrastructure is configured in the Server URL field of the SOA Infrastructure Common Properties page in Oracle Enterprise Manager Fusion Middleware Control to use both internal and external Oracle HTTP servers, you cannot browse for WSDL URLs using the Resource Palette. However, you can paste the correct WSDL URL in the WSDL URL field of the Update Service dialog for the web service binding component. Figure 2-13 provides details.
You add reference binding components that enable the SOA composite application to send messages to external services in the outside world.
You can use the Component Palette from the SOA Composite Editor to drag and drop reference binding components to the composite.
To add a reference binding component:
Figure 2-14 shows a web service being added to the designer.
Figure 2-14 Adding Web Service to Composite
A specific dialog or wizard for the selected reference displays. Table 2-10 describes the available editors.
Table 2-10 Reference Editors
Dragging This Service... | Invokes The... |
---|---|
Web Service | Create Web Service dialog to create a web invocation service. |
Adapters | Adapter Configuration Wizard to guide you through integration of the service with database tables, database queues, file systems, FTP servers, Java Message Services (JMS), IBM WebSphere MQ, BAM servers, sockets, or Oracle E-Business Suite applications. |
ADF-BC Service | Create ADF-BC Service dialog to create a service data object (SDO) invocation service. |
B2B | B2B Wizard to guide you through selection of a document definition. |
EJB Service | Create EJB Service dialog to create an Enterprise JavaBeans service for using SDO parameters with Enterprise JavaBeans. |
HTTP Binding | Create HTTP Binding Wizard to create HTTP binding. This wizard enables you to invoke SOA composite applications through HTTP POST and GET operations, and invoke HTTP endpoints through HTTP POST and GET operations. |
Direct Binding | Create Direct Binding Service Dialog to invoke an Oracle Service Bus (OSB) flow or another SOA composite application. |
Figure 2-15 shows the Create Web Service dialog with data entered to create a reference.
The reference binding component displays in the right swimlane. Figure 2-16 shows the StoreFrontService reference added to the SOA composite application.
Note the following detail about adding references:
Note the following details about deleting references:
A WSDL file is added to the SOA composite application whenever you create a new component that has a WSDL (for example, a service binding component, service component (for example, Oracle Mediator, BPEL process, and so on), or reference binding component). When you delete a component, any WSDL imports used by that component are removed only if not used by another component. The WSDL import is always removed when the last component that uses it is deleted.
When a service or reference binding component is updated to use a new WSDL, it is handled as if the interface was deleted and a new one was added. Therefore, the old WSDL import is only removed if it is not used by another component.
If a service or reference binding component is updated to use the same WSDL (porttype
qname
), but from a new location, the WSDL import and any other WSDL reference (for example, the BPEL process WSDL that imports an external reference WSDL) are automatically updated to reference the new location.
Simply changing the WSDL location in the source view of the composite.xml file's import is not sufficient. Other WSDL references in the metadata are required by the user interface (see the ui:wsdlLocation
attribute on composite and componentType services and references). There can also be other WSDL references required by runtime (for example, a WSDL that imports another WSDL, such as the BPEL process WSDL). Ensure that you change the following places in this file where a WSDL URL is referenced:
Always modify the WSDL location though the dialogs of the SOA Composite Editor in which a WSDL location is specified (for example, a web service, BPEL partner link, and so on). Changing the URL's host address is the exact case in which the SOA Composite Editor automatically updates all WSDL references.
If a BPEL process has multiple WSDL messages declared in its WSDL file and one or more messages have their parts defined to be of some type, whereas other messages have their parts defined to be of some element, runtime behavior can become unpredictable. This is because these WSDLs are considered to have mixed type messages. For example, assume there are multiple copy actions within an assign activity. These copy actions attempt to populate an output variable that has multiple parts:
xsd:string
type. xsd:int
type. This behavior is not supported.
A WSDL URL that does not contain a revision number is processed by the default composite application. This action enables you to always call the default revision of the called service without having to make other changes in the calling composite.
Select the default WSDL to use in the Resource Palette in Oracle JDeveloper.
You wire (connect) services, service components, and references. For this example, you wire the web service and service component. Note the following:
Figure 2-17 Limitations on Wiring Services and Composites with Different Interfaces
The service and reference must match, meaning the interface and the callback must be the same. If you have two services that have different interfaces, you can place an Oracle Mediator between the two services and perform a transformation between the interfaces.
You can wire a service binding component to a service component from the SOA Composite Editor.
To wire a service and a service component:
Figure 2-19 Display of the Service as a Partner Link in the BPEL Process
You can wire a service component to a reference binding component from the SOA Composite Editor.
To wire a service component and a reference:
Figure 2-20 Wiring of a Service Component and Reference
Figure 2-21 Display of the Reference as a Partner Link in the BPEL Process
The orderprocessor_client_ep
service binding component shown in Example 2-1 provides the entry point to the composite.
Example 2-1 Service
The OrderProcessor
BPEL process service component is shown in Example 2-2:
Example 2-2 Service Component
A reference binding component named StoreFrontService
is shown in Example 2-3. The reference provides access to the external service in the outside world.
Example 2-3 Reference
In Example 2-4, the communication (or wiring) between service components is described:
orderprocessor_client_ep
service binding component is wired to the target OrderProcessor
BPEL process service component. Wiring enables web service message communication with this specific BPEL process. OrderProcessor
BPEL process is wired to the target StoreFrontService
reference binding component. This is the reference to the external service in the outside world. Note the following details about adding wires:
If you remove the wire between the two Oracle Mediators, then for every message, the second Oracle Mediator can publish the event and the first Oracle Mediator can subscribe to it.
Note the following details about deleting wires:
If you want to change the service WSDL interface, there are several workarounds:
See Section 2.3.3, "How to View Schemas" for details about the Update Interface dialog.
As you create your SOA composite application, you can secure web services by attaching policies to service binding components, service components, and reference binding components. For more information about implementing policies, see Chapter 42, "Enabling Security with Policies."
Deploying the SOA composite application involves creating a connection to an Oracle WebLogic Server and deploying an archive of the SOA composite application to an Oracle WebLogic Server managed server. For more information about deploying SOA composite applications, see Chapter 43, "Deploying SOA Composite Applications."
You can invoke other deployed SOA composite applications from your SOA composite application. The other applications must be deployed.
To invoke other composites:
Figure 2-22 Browse for a SOA Composite Application
For information about creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
As you build and deploy a SOA composite application, you manage and test it using a combination of Oracle JDeveloper and Oracle Enterprise Manager Fusion Middleware Control.
You can manage deployed SOA composite applications from the Application Server Navigator in Oracle JDeveloper. Management tasks consist of undeploying, activating, retiring, turning on, and turning off SOA composite application revisions.
Note: These instructions assume you have created an application server connection to an Oracle WebLogic Administration Server on which the SOA Infrastructure is deployed. Creating a connection to an Oracle WebLogic Administration Server enables you to browse for managed Oracle WebLogic Servers or clustered Oracle WebLogic Servers in the same domain. From the File main menu, select New > Connections > Application Server Connection to create a connection. |
The SOA folder appears, as shown in Figure 2-23. The SOA folder displays all deployed SOA composite application revisions and services. You can browse all applications deployed on all Oracle WebLogic Administration Servers, managed Oracle WebLogic Servers, and clustered Oracle WebLogic Servers in the same domain. Figure 2-23 provides details.
Deployed SOA composite applications and services appear, as shown in Figure 2-24.
Figure 2-24 Deployed SOA Composite Applications
Table 2-11 SOA Composite Application Options
Option | Description |
---|---|
Stop | Shuts down a running SOA composite application revision. Any request (initiating or a callback) to the composite is rejected if the composite is shut down. Note: The behavior differs based on which binding component is used. For example, if it is a web service request, it is rejected back to the caller. A JCA adapter binding component may do something else in this case (for example, put the request in a rejected table). This option displays when the composite application has been started. |
Start | Restarts a composite application revision that was shut down. This action enables new requests to be processed (and not be rejected). No recovery of messages occurs. This option displays when the composite application has been stopped. |
Retire | Retires the selected composite revision. If the process life cycle is retired, you cannot create a new instance. Existing instances are allowed to complete normally. An initiating request to the composite application is rejected back to the client. The behavior of different binding components during rejection is the same as with the shut down option. A callback to an initiated composite application instance is delivered properly. This option displays when the composite application is active. |
Activate | Activates the retired composite application revision. Note the following behavior with this option:
This option displays when the application is retired. |
Undeploy | Undeploys the selected composite application revision. The consequences of this action are as follows:
|
Set Default Revision | Sets the selected composite application revision to be the default. |
You are prompted to select the following:
Figure 2-25 provides details.
For more information, see the following documentation:
After you deploy a SOA composite application, you can initiate a test instance of it from the Test Web Service page in Oracle Enterprise Manager Fusion Middleware Control to verify the XML payload data. For more information about initiating a test instance, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
In addition to creating a test instance, you can also simulate the interaction between a SOA composite application and its web service partners before deployment in a production environment. This helps to ensure that a process interacts with web service partners as expected by the time it is ready for deployment to a production environment. For more information about creating a unit test, see Chapter 44, "Automating Testing of SOA Composite Applications."
This chapter describes how to set up, deploy, and run the SOA sample application that can be used with this guide. The WebLogic Fusion Order Demo application of the Fusion Order Demo demonstrates various capabilities of Oracle SOA Suite and is used as an example throughout this guide.
This chapter includes the following sections:
The WebLogic Fusion Order Demo application is part of a larger sample application called Fusion Order Demo. In this larger sample application, Global Company sells electronic devices through many channels, including a web-based client application. Electronic devices are sold through a storefront-type web application. Customers can visit the web site, register, and place orders for the products.
There are two parts to the Fusion Order Demo, the Store Front module and the WebLogic Fusion Order Demo application.
The Store Front module provides a rich user interface built with Oracle Application Development Framework to show how to combine an easily built AJAX user interface with a sophisticated SOA composite application. It is based on Oracle ADF business components, ADF model data bindings, and ADF faces.
The Store Front module sells electronic devices through a storefront-type web application.
The Store Front module contains the following projects:
Figure 3-1 shows the Home page of the Store Front module user interface. It shows the featured products that the site wants to promote and provides access to the full catalog of items. Products are presented as images along with the name of the product. Page regions divide the product catalog area from other features that the site offers.
From the home page, you can browse the web site as an anonymous user, then log in as a registered customer to place an order.
The Fusion Order Demo application ships with predefined customer data. Because the Fusion Order Demo application implements Oracle ADF security to manage access to Oracle ADF resources, only the authenticated user can view orders in their cart.
For more information about the Store Front module, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
The WebLogic Fusion Order Demo application processes orders placed in the Store Front module. It uses the following Oracle SOA Suite components:
Once an order has been placed by using the Store Front module, the WebLogic Fusion Order Demo application processes the order. When processing an order, it uses various internal and external applications, including a customer service application, a credit validation system, and both an internal vendor and external vendor. For example, the internal vendor (InternalWarehouseService) and external vendor (ExternalPartnerSupplier), are sent information for every order. As part of the order process, they each return a price for which they would supply the items in the order. A condition in the process determines which supplier is assigned the order.
For information about SOA composite applications, see Chapter 1, "Introduction to Building Applications with Oracle SOA Suite."
This section describes how to prepare the environment to run the WebLogic Fusion Order Demo application.
Install Oracle JDeveloper 11g Studio Edition to create the WebLogic Fusion Order Demo application. You can download Oracle JDeveloper from:
Ensure that you download and install 11g and that it is the Studio Edition, not the Java Edition. You can verify these details in Oracle JDeveloper from the Help > About menu option.
In order to create and deploy SOA composite applications and projects, you must install the Oracle SOA Suite extension. For instructions on installing this extension for Oracle JDeveloper, see the Oracle Fusion Middleware Installation Guide for Oracle JDeveloper.
Throughout this tutorial, you must view or use content from Fusion Order Demo in your Oracle JDeveloper environment. The Fusion Order Demo is contained within a ZIP file.
To access the ZIP file:
FusionOrderDemo_R1PS5.zip
). You can download the ZIP file from: This tutorial refers to this directory as DEMO_DOWNLOAD_HOME
.
To successfully deploy and run the Fusion Order Demo applications, you must complete an installation for Oracle SOA Suite. Specifically, the domain contains an Administration Server and a Managed Server.
Installing Oracle SOA Suite requires the following
After the domain is created, it contains an Administration Server to host Oracle Enterprise Manager Fusion Middleware Control for performing administrative tasks, a Managed Server to host deployed applications, and, if you configured Oracle BAM, a second Managed Server for the Oracle BAM Server.
For instructions on installing and configuring Oracle SOA Suite, see the Oracle Fusion Middleware Installation Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
After successfully completing the installation process, perform the following additional configuration steps:
JAVA_PROPERTIES
(UNIX) or the SET JAVA_PROPERTIES
(Windows) line: For more information about setting this property, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
On UNIX, as the root user, change directories to directory MW_HOME
/user_projects/domains/
domain_name
/bin
and enter the following command:
On Windows, from the Windows Start menu, select All Programs > Oracle WebLogic > User Projects > domain_name > Stop Admin Server.
On UNIX, from directory MW_HOME
/user_projects/domains/
domain_name
/bin
, enter the following command:
On Windows, from the Windows Start menu, select All Programs > Oracle WebLogic > User Projects > domain_name > Start Admin Server.
When prompted on UNIX, enter your Oracle WebLogic Server user name and password. The password is not visible as you type.
The Administration Server is started when the command window displays the following messages:
Leave the command window open, although you may minimize it. The Administration Server is now running and ready for use.
RUNNING
mode, start the Managed Servers, if they are not running. In a command window, enter the following command all on one line: On UNIX, from directory MW_HOME
/user_projects/domains/
domain_name
/bin
, enter the following command:
On Windows, from directory MW_HOME
\user_projects\domains\
domain_name
\bin
, enter the following command:
Substitute the following values in Table 3-1.
Table 3-1 startManagedWebLogic Values
Value | Description |
---|---|
| The name of the Managed Server. For example:
|
| The URL of the Managed Server. For example:
The port of the Managed Server for hosting SOA applications is typically |
| The Oracle WebLogic Server administrator. For example:
|
| The password of the Oracle WebLogic Server administrator. For example:
|
JAVA_HOME
and PATH
environment variables on the computer with the Oracle SOA Suite installation. Oracle JDeveloper requires changes to these variables for running the scripts that deploy the composite services. You set the JAVA_HOME
variable to include the path to the Oracle WebLogic Server JDK, and set the PATH
variable to include the path to the Oracle WebLogic Server bin
directory for ant
.
On UNIX, use the export
command. For example:
On Windows, perform the following steps to modify the variables:
JAVA_HOME
system variable and ensure that it is set to the location of the Oracle WebLogic Server JDK. If there is no JAVA_HOME
variable defined, click New and in the New System Variable dialog, enter a variable name of JAVA_HOME
and a variable value pointing to the Oracle WebLogic Server JDK, such as C:\weblogic\jdk160_11
. Click OK to set the new system variable.
Path
system variable and ensure that it includes the path to the Oracle WebLogic Server ant\bin
directory. If it does not, add the path to the end of the variable value. For example: Click OK to set the new system variable.
After you have set up the WebLogic Fusion Order Demo application, spend time viewing the WebLogic Fusion Order Demo artifacts in Oracle JDeveloper.
To open the WebLogic Fusion Order Demo in Oracle JDeveloper:
DEMO_DOWNLOAD_HOME
/CompositeServices
and select WebLogic Fusion Order Demo.jws. Click Open. Figure 3-2 shows the Application Navigator after you open the file for the application workspace. It displays the project applications of the WebLogic Fusion Order Demo.
Figure 3-2 Projects of WebLogic Fusion Order Demo Application
Table 3-2 lists and describes the projects in the WebLogicFusionOrderDemo
application workspace.
Table 3-2 Projects in the WebLogic Fusion Order Demo Application
Application | Description |
---|---|
B2BX12OrderGateway | This project contains a composite for Oracle B2B. This composite is not used in this guide. |
| This project contains a build script for deploying all the SOA projects. It also contains templates for seeding JMS connector information, demo topics, and demo users. |
| This project provides the service needed by OrderBookingComposite project to verify the credit card information of a customer. |
ExternalLegacyPartnerSupplierEjb | This project provides an external system to provide price quotes. |
OrderApprovalHumanTask | This project provides a task form for approving orders from the OrderBookingComposite project. |
OrderBookingComposite | This project processes an order submitted in the Store Front module user interface. This project contains the main process for the WebLogic Fusion Order Demo application. It also uses the Oracle BAM adapter and Oracle BAM sensors to send active data into the Oracle BAM dashboard. This composite is not used in this guide. |
OrderSDOComposite | This project simulates the StoreFrontService service of the Store Front module for testing purposes. |
PartnerSupplierComposite | This project contains a composite containing both a BPEL process and spring context for obtaining a quote from a partner warehouse. It is referenced as a service from the composite for the OrderBookingComposite project. The quote request is routed to either the BPEL process or the spring component based on the amount. |
To understand how a composite is designed, examine the main project, OrderBookingComposite, in Oracle JDeveloper.
To view the composite.xml file:
The composite then appears in the SOA Composite Editor in Oracle JDeveloper, as shown in Figure 3-3.
OrderBookingComposite is the main project of the WebLogic Fusion Order Demo application, containing a composite application for processing orders from Global Company. This composite demonstrates how services, both internal to an enterprise, and external at other sites, can be integrated using the SOA architecture paradigm to create one cohesive ordering system.
At the center of OrderBookingComposite composite is the OrderProcessor BPEL process. It orchestrates all the existing services in the enterprise for order fulfillment with the right warehouse, based on the business rules in the process.
Figure 3-4 shows an overview of the OrderBookingComposite composite for the WebLogic Fusion Order Demo application, followed by a step-by-step description of the composite flow for how the application processes an order.
When a new customer registers in Global Company's storefront user interface, the web client sends the customer's information to the internal customer service application called StoreFrontService. StoreFrontService then stores the customer information in a database. The customer can then browse products, add them to their online shopping cart, and place the order. User ngreenbe is the only user not required to register before placing an order.
When a registered customer uses Global Company's storefront user interface, the user interface invokes the StoreFrontService and provides authentication. A registered user fills their shopping cart, and places an order. When the order is submitted, the following events take place:
After an order is placed, the following sequence occurs to complete the order:
Some of the information about the order used later in the process is:
If the credit card is not valid, the BPEL process cancels the order.
If the credit card is valid, the BPEL process sends the order to the RequiresApprovalRule business rule to determine if the order requires approval by management.
ExternalPartnerSupplier
BPEL process or SpringPartnerSupplierMediator
spring component, located in another composite called PartnerSupplierComposite
complete
. While not depicted in Figure 3-4, the OrderBookingComposite composite provides the following processing flow for approved orders:
To aid with the tracking of an order, the OrderBookingComposite composite contains sensors to provide a method for implementing trackable fields on messages. For example, the CreditCardAuthorization service has a composite sensor that indicates if the credit card was authorized. In addition, the OrderProcessor BPEL process also uses sensors for various activities. For example, the Scope_AuthorizeCreditCard scope in the OrderProcessor BPEL process, which verifies that the customer has acceptable credit using the CreditCardAuthorizationService service, uses a sensor for tracking. When you monitor instances of a composite through Oracle Enterprise Manager Fusion Middleware Control, you can monitor the sensors for both the composite and the BPEL process.
In the remaining sections of this chapter, deploy and run the Fusion Order Demo. As a part of it running it, use Oracle Enterprise Manager Fusion Middleware Control to monitor orders processed by the OrderBookingComposite composite. When you monitor an order, you can also view the composite sensors and activity sensors.
This section describes how to deploy the Fusion Order Demo applications in the partition.
To create a connection to an Oracle WebLogic Server:
The Create Application Server Connection Type page displays.
Figure 3-6 Create Application Server Connection
The Authentication page is displayed.
weblogic
for the User Name and the password for that administrator in the Password field. Table 3-3 Configuration Page Fields and Values
Application | Description |
---|---|
Weblogic Hostname (Administration Server) | Name of the DNS name or IP address of the Administration Server of the Oracle WebLogic Server |
Port | The address of the port on which the Administration Server is listening for requests (7001 by default) |
Weblogic Domain | The domain name for Oracle WebLogic Server |
The Test page displays.
The following message should appear:
If the test is unsuccessful, ensure that Oracle WebLogic Server is running, and retry the test.
If you configured an Oracle BAM Server during installation, create a connection to it.
To create a connection to an Oracle BAM Server:
The BAM Connection Wizard displays.
weblogic
for the User Name and the password for that administrator in the Password field. Table 3-4 Oracle BAM Server Connection Information
Field | Description |
---|---|
BAM Web Host | Enter the name of the host on which the Oracle BAM Report Server and web applications are installed. In most cases, the Oracle BAM web applications host, Oracle BAM Server host, and the Oracle WebLogic Server are the same. |
BAM Server Host | Enter the name of the host on which the Oracle BAM Server is installed. |
User Name | Enter the Oracle BAM Server user name. For example:
|
Password | Enter the password of the user name. |
HTTP Port | Enter the port number or accept the default value of |
JNDI Port | Enter the port number or accept the default value of |
Use HTTPS | Select this checkbox to use secure HTTP (HTTPS) to connect to the Oracle BAM Server during design time. Otherwise, HTTP is used. |
The Test page displays.
The following message should appear:
To install the schema for the sample application:
DEMO_DOWNLOAD_HOME
/Infrastructure
and select Infrastructure.jws. Table 3-5 Properties Required to Install the Fusion Order Demo Application
Field | Description |
---|---|
| The root directory where you have Oracle JDeveloper 11g installed. For example:
|
| The base JDBC URL for your database in the format
|
| The port for your database. For example:
|
| The SID of your database. For example:
|
| The administrative user for your database. For example:
|
| The tablespace name for the Fusion Order Demo users. For example:
|
The buildAll command then creates the FOD
user and populates the tables in the FOD
schema. In the Apache Ant - Log, a series of SQL scripts display, followed by:
buildAll:
Total time: nn minutes nn seconds
For more information on the demo schema and scripts, see the README.txt
file in the MasterBuildScript project.
You can deploy the Store Front module as a simple web application or as part of a SOA environment. There is a property defined in the service portion of the Store Front module that is used within one of its pages to determine whether the Submit Order button fires an event that launches a BPEL process. When using the Store Front module within a SOA environment, you must change the default value for this property.
DEMO_DOWNLOAD_HOME
/StoreFrontModule
and select StoreFrontModule.jws. Click Open. Figure 3-8 shows the Application Navigator after you open the file for the application workspace.
Figure 3-8 Application Navigator with StoreFrontModule
true
, and then click OK. Figure 3-10 provides details. Edit the database connection details to point to the correct host name and database SID.
Figure 3-12 Host Name and SID Fields Modifications
To deploy the Store Front module, you first deploy services and then to deploy the application itself.
During deployment, Oracle JDeveloper creates the .jar
and .war
files and then assembles the .ear
file, as specified in the deployment profiles. After the file is assembled, Oracle JDeveloper deploys the .ear
file and unpacks it in a directory on the application server. The directory that is used is dependent on the target environment.
To deploy the Store Front module:
Figure 3-13 StoreFrontService_SDOServices
In this task, you deploy the WebLogic Fusion Order Demo application to an Oracle SOA Suite installation, containing an Oracle WebLogic Server domain with an Administration Server and a Managed Server.
To deploy the WebLogic Fusion Order Demo application:
Figure 3-14 Navigating to sca-build.properties
Table 3-6 Properties Required for Oracle BAM
Field | Description |
---|---|
|
Set to |
|
Set to After deployment is done, set this value back to |
| The DNS name or IP address of the Managed Server for Oracle BAM. For example:
|
| The port of the Managed Server for Oracle BAM. For example:
|
| The Oracle WebLogic Server administrator. For example:
|
| The password of the Oracle WebLogic Server administrator. For example:
|
seed.bam.do
parameter to false
after deployment. Figure 3-15 Navigating to build.properties
Table 3-7 Properties Required for the WebLogic Fusion Order Demo Application
Field | Description |
---|---|
| The root directory in which you have Oracle JDeveloper 11g installed. For example:
|
|
You set this property to |
| The DNS name or IP address of the Administration Server for Oracle SOA Suite for hosting applications. For example:
|
| The port of the Administration Server. For example:
|
| The DNS name or IP address of the Managed Server for Oracle SOA Suite for hosting applications. For example:
|
| The port of the Managed Server for Oracle SOA Suite for hosting applications. For example:
|
| The Oracle WebLogic Server administrator. For example:
|
| The password of the Oracle WebLogic Server administrator. For example:
|
| The name of the Managed Server. For example:
|
| The location of where to store the deployment plans for the adapters. For example:
|
| The location of the Oracle Metadata Repository. Leave the value to Set the value to leave the default value to |
| The partition in which to deploy the composites. For example:
|
ant
targets in the specified sequential order shown in Table 3-8. Table 3-8 ant Targets to Deploy the WebLogic Fusion Order Demo Application
Target | Description |
---|---|
1. validateFodConfigSettings | This script validates the server settings, checks if the servers are up, and also validates the MDS settings. If this script returns without error, proceed with target |
2. server-setup-seed-deploy-test | This script calls the following targets:
|
In the Apache Ant - Log, you should see the following message when the target successfully completes:
BUILD SUCCESSFUL
Total time: nn minutes nn seconds
If you set up Oracle BAM after you run target server-setup-seed-deploy-test
, you can still configure Oracle BAM for Fusion Order Demo by running one of these targets:
server-setup-seed-deploy-test
. seed.bam.do
parameter to false
. You begin the ordering process in the storefront user interface, where you submit an orders.
When an order is submitted, the Application Development Framework Business Component writes the order to the database and raises an NewOrderSubmitted business event using the Events Delivery Network (EDN). The OrderPendingEvent mediator subscribes this event, and initiates the main BPEL process, OrderProcessor, to process the order.
After you submit an order, you use Oracle Enterprise Manager Fusion Middleware Control for the Oracle SOA Suite installation to monitor how the OrderProcessor BPEL process orchestrated the orders. If you submit an order for more than $2,000, you can monitor how it requires human approval.
The instructions for placing orders and monitoring them in detail with Fusion Middleware Control are available from Oracle Technology Network:
If you configured an Oracle BAM server and a Managed Server for it, you can use the Oracle BAM Architect to view data sent to the server. For more information about using Oracle BAM applications, including Oracle BAM Architect, see Oracle Fusion Middleware User's Guide for Oracle Business Activity Monitoring.
To undeploy the WebLogic Fusion Order Demo composite applications:
Table 3-9 Options to Access Undeploy SOA Composite Wizard
From the SOA Infrastructure Menu... | From the SOA Folder in the Navigator... | From the SOA Infrastructure Home Page... | From the SOA Composite Menu... |
---|---|---|---|
|
|
| Select SOA Deployment > Undeploy. |
The Confirmation page appears.
Processing messages display.
This part describes the BPEL process service component.
This part contains the following chapters:
This chapter describes how to get started with Oracle BPEL Process Manager. BPEL process creation is described, along with key BPEL design features such as activities, partner links, adapters, and monitors.
This chapter includes the following sections:
This section provides an introduction to the BPEL process service component in the design environment.
You add BPEL process service components in the SOA Composite Editor.
To add a BPEL process service component:
As a service component in an existing SOA composite application:
In a new application:
This starts the Create SOA Application wizard.
Each method causes the Create BPEL Process dialog shown in Figure 4-1 to appear.
Note: You cannot use BPEL 1.1 and BPEL 2.0 syntax in the same |
Table 4-2 Create BPEL Process Dialog
Field | Description |
---|---|
BPEL Specification | Select the type of BPEL process to create.
|
Name | Enter a name for the BPEL process or accept the default name. The name you enter here becomes the file name for the BPEL, Web Services Description Language (WSDL), and Always use completely unique names when creating BPEL processes. Do not create
|
Namespace | Use the default namespace path or enter a custom path. |
Template | Select a template based on the type of BPEL process service component you want to design. A template provides a basic set of default files in the Application Navigator (
|
Service Name | Accept the default value or enter the name of the service this process is exposing. When you open an invoke, receive, OnMessage, or reply activity, the service name appears by default in the Partner Link field. This name is the same name as the partner link. |
Expose as a SOAP Service | Select this checkbox to create a BPEL process service component that is automatically connected (wired) to an inbound simple object access protocol (SOAP) web service binding component. If you do not select this checkbox, the BPEL process service component is created as a standalone component in the SOA Composite Editor. You can explicitly associate the BPEL process service component with a service at a later time. This checkbox is selected by default. |
Delivery | Set the persistence policy of the process in the delivery layer. This list enables you to specify a value for the
For information about transaction and fault propagation semantics for this property, see Chapter 13, "Transaction and Fault Propagation Semantics in BPEL Processes." For information about changing the value of this property in the Property Inspector, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector." |
Transaction | Set the transaction behavior of the BPEL instance for initiating calls. This list enables you to specify a value for the
Note: This property does not apply for midprocess receive activities. In those cases, another thread in another transaction is used to process the message. This is because a correlation is needed and it is always done asynchronously. For information about transaction and fault propagation semantics for this property, see Chapter 13, "Transaction and Fault Propagation Semantics in BPEL Processes." For information about changing the value of this property in the Property Inspector, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector." |
Input | Accept the default input XSD schema or click the Search icon to select a different XSD. If you click the Search icon, the Type Chooser dialog appears. Browse the imported schemas and select the input element (for example, a purchase order). You can also import an existing schema or WSDL in the Type Chooser dialog |
Output | Accept the default output XSD schema or click the Search icon to select a different XSD. If you click the Search icon, the Type Chooser dialog appears. Browse the imported schemas and select the output element (for example, a purchase order). |
Oracle BPEL Designer displays the sections shown in Figure 4-2.
Each section of this view enables you to perform specific design and deployment tasks. Table 4-3 identifies the sections listed in Figure 4-2.
Table 4-3 Oracle JDeveloper Sections
Element | Description |
---|---|
Application Navigator | Displays the process files of a SOA project. Key files include the following:
|
Designer | Provides a visual view of the BPEL process service component that you design. This view displays when you perform one of the following actions:
As you design the BPEL process service component by dragging activities, creating partner links, and so on, the Design window changes. |
Component Palette | Displays the available activities to add to the BPEL process service component. Activities are the building blocks. The BPEL Constructs and Oracle Extensions selections of the Component Palette display a set of activities that you drag into the designer of the BPEL process service component. The Component Palette displays only those pages relevant to the state of the designer. BPEL Constructs or Oracle Extensions are nearly always visible. However, if you are designing a transformation in a transform activity, the Component Palette only displays selections relevant to that activity, such as String Functions, Mathematical Functions, and Node-set Functions. |
Structure window | Provides a structural view of the data in the BPEL process service component currently selected in the designer. You can perform a variety of tasks from this section, including:
|
Log window | Displays messages about the status of validation and compilation. To ensure that a BPEL process service component validates correctly, you must ensure that the following information is correct:
If deployment is unsuccessful, messages appear that describe the type and location of the error. |
Source window | View the syntax inside the BPEL process service component files. As you drag activities and partner links, and perform other tasks, the syntax in these source files is immediately updated to reflect these changes. |
History window | Displays the revision history of a file and read-only and editable versions of a file side-by-side. |
Property Inspector | Displays details about an activity. Single-click an activity in the Design window to display details. |
Note: To learn more about these sections, you can also place the cursor in the appropriate section and press F1 to display online Help. |
Activities are the building blocks of a BPEL process service component. Oracle BPEL Designer includes a set of activities that you drag into a BPEL process service component. You then double-click an activity to define its attributes (property values). Activities enable you to perform specific tasks within a BPEL process service component. For example, here are several key activities:
Figure 4-7 shows an example of a property window (for this example, an invoke activity). In this example, you invoke a partner link named StoreFrontService and define its attributes.
The invoke activity enables you to specify an operation you want to invoke for the service (identified by its partner link). The operation can be one-way or request-response on a port provided by the service. You can also automatically create variables in an invoke activity. An invoke activity invokes a synchronous service or initiates an asynchronous web service.
The invoke activity opens a port in the process to send and receive data. It uses this port to submit required data and receive a response. For synchronous callbacks, only one port is needed for both the send and the receive functions.
For more information about activities, see Appendix A, "BPEL Process Activities and Services."
For information about copying and pasting activities in the same project or between projects, see Section A.2.2, "Copying and Pasting Activities in BPEL Projects."
A partner link enables you to define the external services with which the BPEL process service component is to interact. You can define partner links as services or references (for example, through a JCA adapter) in the SOA Composite Editor or within a BPEL process service component in Oracle BPEL Designer. Figure 4-8 shows the partner link icon (in this example, named CreditCardAuthorizationService).
A partner link type characterizes the conversational relationship between two services by defining the roles played by each service in the conversation and specifying the port type provided by each service to receive messages within the conversation.
Figure 4-9 shows an example of the attributes of a partner link for a service.
Table 4-4 describes the fields of this dialog.
Table 4-4 Create Partner Link Dialog Fields
Field | Description |
---|---|
Name | A unique and recognizable name you provide for the partner link. |
Process | Displays the BPEL process service component name. |
WSDL URL | The name and location of the WSDL file or Java interface that you select for the partner link. Click the SOA Service Explorer icon (second icon from the left above the WSDL URL field) to access a window for selecting the WSDL file or Java interface to use. Java interfaces display for selection under the References folder with a name of javaEJB. If the component with which you are wiring this partner link uses WSDL files and you select a Java interface and click OK, a message displays indicating that this component requires a WSDL interface. If you click Yes, a compatible WSDL file is created based on the Java interface. For more information about integrating components that use Java interfaces into SOA composite applications, see Chapter 52, "Integrating the Spring Framework in SOA Composite Applications." |
Partner Link Type | The partner link defined in the WSDL file. |
Partner Role | The role performed by the partner link. |
My Role | The role performed by the BPEL process service component. In this case, the BPEL process service component does not have a role because it is a synchronous process. |
Note: The Partner Link Type, Partner Role, and My Role fields in the Create Partner Link dialog are defined and required by the BPEL standard. |
Best Practice: As a best practice, always create and wire Oracle Mediator and BPEL process service components in the SOA Composite Editor, instead of in Oracle BPEL Designer. If you add an Oracle Mediator or BPEL process partner link to your BPEL process in Oracle BPEL Designer and connect either partner link to your BPEL process through an invoke activity, the wiring is not automatically reflected above in the SOA Composite Editor. You must explicitly wire the Oracle Mediator or BPEL process service component to your BPEL process again in the SOA Composite Editor. This is not an issue with human task or business rule partner links in Oracle BPEL Designer; both are also automatically wired in the SOA Composite Editor. |
The method by which you create partner links within the BPEL process in Oracle BPEL Designer impacts how the partner link displays above in the SOA Composite Editor. This section describes this impact. The WSDL file can be on the local operating system or hosted remotely (in which case you need a URL for the WSDL).
Likewise, creating and wiring a service or reference binding component to a BPEL process service component in the SOA Composite Editor causes a partner link to display in Oracle BPEL Designer.
To create a partner link:
Oracle BPEL Designer is displayed.
Figure 4-10 Partner Link Creation in Oracle BPEL Designer
The Create Partner Link dialog appears.
The following sections describe the impact of partner link creation on the SOA Composite Editor.
Table 4-5 describes the impact on the SOA Composite Editor.
Table 4-5 Impact of Partner Link Creation on the SOA Composite Editor
Creating the Following for a BPEL Process in Oracle BPEL Designer... | Displays the Following in the SOA Composite Editor... |
---|---|
A partner link for an outbound adapter |
|
Figure 4-11 shows how this method of creation appears in the SOA Composite Editor.
Table 4-6 describes the impact on the SOA Composite Editor.
Table 4-6 Impact of Partner Link Creation on the SOA Composite Editor
Creating the Following for a BPEL Process in Oracle BPEL Designer... | Displays the Following in the SOA Composite Editor... |
---|---|
A partner link for an inbound adapter |
|
Figure 4-12 shows how this method of creation appears in the SOA Composite Editor.
Table 4-7 describes the impact on the SOA Composite Editor.
Table 4-7 Impact of Partner Link Creation on the SOA Composite Editor
Creating the Following for a BPEL Process in Oracle BPEL Designer... | Displays the Following in the SOA Composite Editor... |
---|---|
A partner link from an abstract WSDL to call a service | A reference handle with an interface and callback interface defined for the BPEL service component |
Table 4-8 describes the impact on the SOA Composite Editor.
Table 4-8 Impact of Partner Link Creation on the SOA Composite Editor
Creating the Following for a BPEL Process in Oracle BPEL Designer... | Displays the Following in the SOA Composite Editor... |
---|---|
A partner link is created from an abstract WSDL to implement a service | A service with an interface and callback interface for the BPEL service component is created. Note: If an external Simple Object Access Protocol (SOAP) reference with the specified interface and callback interface exists in the SOA Composite Editor, you can either create a new external SOAP reference and wire to it or wire to the existing external SOAP reference. |
Figure 4-13 shows how this method of creation appears in the SOA Composite Editor.
Table 4-9 describes the impact on the SOA Composite Editor.
Table 4-9 Impact of Partner Link Creation on the SOA Composite Editor
Creating the Following for a BPEL Process in Oracle BPEL Designer... | Displays the Following in the SOA Composite Editor... |
---|---|
A human task or business rule is created |
|
Figure 4-14 shows how this method of creation appears in the SOA Composite Editor.
Table 4-10 describes the impact on the SOA Composite Editor.
Table 4-10 Impact of Partner Link Creation on the SOA Composite Editor
Creating the Following for a BPEL Process in Oracle BPEL Designer... | Displays the Following in the SOA Composite Editor... |
---|---|
A partner link by dragging an existing human task, business rule, or mediator service component into the BPEL process |
|
Figure 4-15 shows how this method of creation appears in the SOA Composite Editor.
The Partner Link dialog shown in Figure 4-9 also enables you to take advantage of another key feature that Oracle BPEL Process Manager and Oracle JDeveloper provide. Click the Service Wizard icon shown in Figure 4-16 to access the Adapter Configuration wizard.
Adapters enable you to integrate the BPEL process service component (and, therefore, the SOA composite application as a whole) with access to file systems, FTP servers, database tables, database queues, sockets, Java Message Services (JMS), and MQ. You can also integrate with services such as HTTP binding, direct binding, EJB, and others. This wizard enables you to configure the types of services and adapters shown in Figure 4-17 for use with the BPEL process service component:
For information about the service and adapter types, see Chapter 37, "Getting Started with Binding Components."
When you select an adapter type, the Service Name window shown in Figure 4-18 prompts you to enter a name. For this example, File Adapter was selected in Figure 4-17. When the wizard completes, a WSDL file by this service name appears in the Application Navigator for the BPEL process service component (for this example, named USPSShipment.wsdl). The service name must be unique within the project. This file includes the adapter configuration settings you specify with this wizard. Other configuration files (such as header files and files specific to the adapter) are also created and display in the Application Navigator.
The Adapter Configuration wizard windows that appear after the Service Name window are based on the adapter type you selected.
You can also add adapters to your SOA composite application as services or references in the SOA Composite Editor.
For more information about technology adapters, see Oracle Fusion Middleware User's Guide for Technology Adapters.
You can configure BPEL process monitors in Oracle BPEL Designer by selecting Monitor at the top of Oracle BPEL Designer. Figure 4-19 provides details. BPEL process monitors can send data to Oracle BAM for analysis and graphical display through the Oracle BAM adapter.
For more information, see Section 53.3, "Using Oracle BAM Monitor Express With BPEL Processes."
This chapter describes common interaction patterns between a BPEL process service component and an external service, including one-way messages, synchronous and asynchronous interactions, one request - multiple and single responses, one request - mandatory and optional responses, partial processing, and multiple application interactions. It also describes the best use practices for each.
This chapter includes the following sections:
In a one-way message, or fire and forget, the client sends a message to the service (d1 in Figure 5-1), and the service is not required to reply. The client sending the message does not wait for a response, but continues executing immediately. Example 5-1 shows the portType
and operation
part of the BPEL process WSDL file for this environment.
Example 5-1 One-Way WSDL File
Figure 5-1 provides an overview.
BPEL Process Service Component as the Client
As the client, the BPEL process service component needs a valid partner link and an invoke activity with the target service and the message. As with all partner activities, the Web Services Description Language (WSDL) file defines the interaction.
BPEL Process Service Component as the Service
To accept a message from the client, the BPEL process service component needs a receive activity.
In a synchronous interaction, a client sends a request to a service (d1 in Figure 5-2), and receives an immediate reply (d2 in Figure 5-2). A BPEL process service component can be at either end of this interaction, and must be coded based on its role as either the client or the service. For example, a user requests a subscription to an online newspaper and immediately receives email confirmation that their request has been accepted. Example 5-2 shows the portType
and operation
part of the BPEL process WSDL file for this environment.
Example 5-2 Synchronous WSDL File
Figure 5-2 provides an overview.
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of a synchronous transaction, it needs an invoke activity. The port on the client side both sends the request and receives the reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
When the BPEL process service component is on the service side of a synchronous transaction, it needs a receive activity to accept the incoming request, and a reply activity to return either the requested information or an error message (a fault; f1 in Figure 5-2) defined in the WSDL.
For more information about synchronous interactions, see Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process."
In an asynchronous interaction, a client sends a request to a service and waits until the service replies. Example 5-3 shows the portType
and operation
part of the BPEL process WSDL file for this environment.
Example 5-3 Asynchronous WSDL File
Figure 5-3 provides an overview.
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous transaction, it needs an invoke activity to send the request and a receive activity to receive the reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
As with a synchronous transaction, when the BPEL process service component is on the service side of an asynchronous transaction, it needs a receive activity to accept the incoming request and an invoke activity to return either the requested information or a fault. Note the difference between this and responding from a synchronous BPEL process: a synchronous BPEL process uses a reply activity to respond to the client and an asynchronous service uses an invoke activity.
For more information about asynchronous interactions, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."
In an asynchronous interaction with a timeout (which you perform in BPEL with a pick activity), a client sends a request to a service and waits until it receives a reply, or until a certain time limit is reached, whichever comes first. For example, a client requests a loan offer. If the client does not receive a loan offer reply within a specified amount of time, the request is canceled. Figure 5-4 provides an overview.
Figure 5-4 Asynchronous Interaction with Timeout
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of an asynchronous transaction with a timeout, it needs an invoke activity to send the request and a pick activity with two branches: an onMessage branch and an onAlarm branch. If the reply comes after the time limit has expired, the message goes to the dead letter queue. As with all partner activities, the WSDL file defines the interaction.
For more information about asynchronous interactions with a timeout, see Section 15.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting."
BPEL Process Service Component as the Service
The behavior of the BPEL process service component as a service matches the behavior with the asynchronous interaction with the BPEL process service component as the service.
In an asynchronous interaction with a notification time, a client sends a request to a service and waits for a reply, although a notification is sent after a timer expires. The client continues to wait for the reply from the service even after the timer has expired. Figure 5-5 provides an overview.
Figure 5-5 Asynchronous Interaction with a Notification Time
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a scope activity containing an invoke activity to send the request, and a receive activity to accept the reply. The onAlarm handler of the scope activity has a time limit and instructions on what to do when the timer expires. For example, wait 30 minutes, then send a warning indicating that the process is taking longer than expected. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The behavior for the BPEL process service component as the service matches the behavior with the asynchronous interaction with the BPEL process service component as the service.
In this interaction type, the client sends a single request to a service and receives multiple responses in return. For example, the request can be to order a product online, and the first response can be the estimated delivery time, the second response a payment confirmation, and the third response a notification that the product has shipped. In this example, the number and types of responses are expected. Figure 5-6 provides an overview.
Figure 5-6 One Request, Multiple Responses
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs an invoke activity to send the request, and a sequence activity with three receive activities, one for each reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a sequence attribute with three invoke activities, one for each reply.
In an interaction using one request and one of two possible responses, the client sends a single request to a service and receives one of two possible responses. For example, the request can be to order a product online, and the first response can be either an in-stock message or an out-of-stock message. Figure 5-7 provides an overview.
Figure 5-7 One Request, One of Two Possible Responses
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs the following:
As with all partner activities, the WSDL file defines the interaction.
For more information about interactions using one request and one of two possible responses, see Section 15.2, "Creating a Pick Activity to Select Between Continuing a Process or Waiting."
BPEL Process Service Component as the Service
The BPEL service needs a receive activity to accept the message from the client, and a switch activity with two branches, one with an invoke activity sending the in-stock message if the item is available, and a second branch with an invoke activity sending the out-of-stock message if the item is not available.
In this type of interaction, the client sends a single request to a service and receives one or two responses. Here, the request is to order a product online. If the product is delayed, the service sends a message letting the customer know. In any case, the service always sends a notification when the item ships. Figure 5-8 provides an overview.
Figure 5-8 One Request, a Mandatory Response, and an Optional Response
BPEL Process Service Component as the Client
When the BPEL process service component is on the client side of this transaction, it needs a scope activity containing the invoke activity to send the request, and a receive activity to accept the mandatory reply. The onMessage handler of the scope activity is set to accept the optional message and instructions on what to do if the optional message is received (for example, notify you that the product has been delayed). The client BPEL process service component waits to receive the mandatory reply. If the mandatory reply is received first, the BPEL process service component continues without waiting for the optional reply. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The BPEL service needs a scope activity containing the receive activity and an invoke activity to send the mandatory shipping message, and the scope's onAlarm handler to send the optional delayed message if a timer expires (for example, send the delayed message if the item is not shipped in 24 hours).
In partial processing, the client sends a request to a service and receives an immediate response, but processing continues on the service side. For example, the client sends a request to purchase a vacation package, and the service sends an immediate reply confirming the purchase, then continues on to book the hotel, the flight, the rental car, and so on. This pattern can also include multiple shot callbacks, followed by longer-term processing. Figure 5-9 provides an overview.
BPEL Process Service Component as the Client
In this case, the BPEL client is simple; it needs an invoke activity for each request and a receive activity for each reply for asynchronous transactions, or just an invoke activity for each synchronous transaction. Once those transactions are complete, the remaining work is handled by the service. As with all partner activities, the WSDL file defines the interaction.
BPEL Process Service Component as the Service
The BPEL service needs a receive activity for each request from the client, and an invoke activity for each response. Once the responses are finished, the BPEL process service component as the service can continue with its processing, using the information gathered in the interaction to perform the necessary tasks without any further input from the client.
In some cases, there are more than two applications involved in a transaction, for example, a buyer, seller, and shipper. In this case, the buyer sends a request to the seller, the seller sends a request to the shipper, and the shipper sends a notification to the buyer. This A-to-B-to-C-to-A transaction pattern can handle many transactions at the same time. Therefore, a mechanism is required for keeping track of which message goes where. Figure 5-10 provides an overview.
As with all partner activities, the WSDL file defines the interaction.
This kind of coordination can be managed using WS-Addressing or correlation sets. For more information about both, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."
This chapter describes how to manipulate XML data in a BPEL process service component. This chapter provides a variety of examples. Topics include how to work with variables, sequences, and arrays; use XPath expressions; and perform tasks such as mathematical calculations. Supported specifications are also referenced.
This chapter includes the following sections:
Note: Most of the examples in this chapter assume that the WSDL file defining the associated message types is document-literal style rather than the RPC style. There is a difference in how XPath query strings are formed for RPC-style WSDL definitions. If you are working with a type defined in an RPC WSDL file, see Section 6.21, "Understanding Document-Style and RPC-Style WSDL Differences." |
For Oracle BPEL Process Manager samples, see the Oracle SOA Suite samples.
This section provides an introduction to using XML data in BPEL processes.
In a BPEL process service component, most pieces of data are in XML format. This includes the messages passed to and from the BPEL process service component, the messages exchanged with external services, and the local variables used by the process. You define the types for these messages and variables with the XML schema, usually in one of the following:
Therefore, most variables in BPEL are XML data, and any BPEL process service component uses much of its code to manipulate these XML variables. This typically includes performing data transformation between representations required for different services, and local manipulation of data (for example, to combine the results from several service invocations).
BPEL also supports service data object (SDO) variables, which are not in an XML format, but rather in a memory structure format.
The starting point for data manipulation in BPEL is the assign activity, which builds on the XPath standard. XPath queries, expressions, and functions play a large part in this type of manipulation.
In addition, more advanced methods are available that involve using XQuery, XSLT, or Java, usually to do more complex data transformation or manipulation.
This section provides a general overview of how to manipulate XML data in BPEL. It summarizes the key building blocks used in various combinations and provides examples. The remaining sections in this chapter discuss and illustrate how to apply these building blocks to perform specific tasks.
You use the assign activity to copy data from one XML variable to another, or to calculate the value of an expression and store it in a variable. A copy element within the activity specifies the source and target of the assignment (what to copy from and to), which must be of compatible types.
Example 6-1 shows the formal syntax for BPEL version 1.1, as described in the Business Process Execution Language for Web Services Specification:
Example 6-1 Assign Activity for BPEL 1.1
Example 6-2 shows the formal syntax for BPEL version 2.0, as described in the Web Services Business Process Execution Language Specification Version 2.0. The keepSrcElementName
attribute specifies whether the element name of the destination (as selected by the to-spec
) is replaced by the element name of the source (as selected by the from-spec
) during the copy operation. When keepSrcElementName
is set to no
(the default value), the name (that is, the namespace name and local name properties) of the original destination element is used as the name of the resulting element. When keepSrcElementName
is set to yes
, the source element name is used as the name of the resulting destination element.
Example 6-2 Assign Activity for BPEL 2.0
This syntax is described in detail in both specifications. The from-spec
and to-spec
typically specify a variable or variable part, as shown in Example 6-3:
Example 6-3 from-spec and to-spec Attributes
When you use Oracle JDeveloper, you supply assign activity details in a Copy Rules dialog that includes a From section and a To section. This reflects the preceding BPEL source code syntax.
XPath standards play a key role in the assign activity. Brief examples are shown here as an introduction; examples with more context and explanation are provided in the sections that follow.
An XPath query selects a field within a source or target variable part. The from
or to
clause can include a query attribute whose value is an XPath query string. Example 6-4 provides an example:
Example 6-4 query Attribute
The value of the query attribute must be a location path that selects exactly one node. You can find further details about the query
attribute and XPath standards syntax in the Business Process Execution Language for Web Services Specification (section 14.3) or Web Services Business Process Execution Language Specification Version 2.0 (section 8.4), and the XML Path Language (XPath) Specification, respectively.
You use an XPath expression (specified in an expression
attribute in the from
clause) to indicate a value to be stored in a variable. For example:
The expression can be any general expression (that is, an XPath expression that evaluates to any XPath value type). Similarly, the value of an expression attribute must return exactly one node or one object only when it is used in the from
clause within a copy operation. For more information about XPath expressions, see section 9.1.4 of the XML Path Language (XPath) Specification.
Within XPath expressions, you can call the following types of functions:
XPath supports a large number of built-in functions, including functions for string manipulation (such as concat
), numeric functions (like sum
), and others.
For a complete list of the functions built into XPath standards, see section 4 of the XML Path Language (XPath) Specification.
BPEL adds several extension functions to the core XPath core functions, enabling XPath expressions to access information from a process.
http://schemas.xmlsoap.org/ws/2003/03/business-process/
and indicated by the prefix bpws
: For more information, see sections 9.1 and 14.1 of the Business Process Execution Language for Web Services Specification. For more information about getVariableData
, see Section B.2.57.2, "getVariableData."
http://schemas.xmlsoap.org/ws/2003/03/business-process/
. However, the prefix is bpel
: For more information, see section 8.3 of the Web Services Business Process Execution Language Specification Version 2.0. For more information about getVariableProperty
, see Section B.2.57.4, "getVariableProperty (For BPEL 2.0)."
Oracle provides some additional XPath functions that use the capabilities built into BPEL and XPath standards for adding new functions.
These functions are defined in the namespace http://schemas.oracle.com/xpath/extension
and indicated by the prefix ora:
.
Oracle BPEL Process Manager functions are defined in the bpel-xpath-functions-config.xml
and placed inside the orabpel.jar
file. For more information, see Section B.7, "Creating User-Defined XPath Extension Functions" and Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Sophisticated data manipulation can be difficult to perform with the BPEL assign activity and the core XPath functions. However, you can perform complex data manipulation and transformation by using XSLT, Java, or a bpelx
operation under an assign activity (See Section 6.14, "Manipulating XML Data with bpelx Extensions") or as a web service. For XSLT, Oracle BPEL Process Manager includes XPath functions that execute these transformations.
For more information about XPath and XQuery transformation code examples, see Chapter 40, "Creating Transformations with the XSLT Mapper."
Note: Passing large schemas through an assign activity can cause Oracle JDeveloper to freeze up and run low on memory if you right-click the target or source payload node in the Edit Assign dialog and select Expand All Child Nodes. As a workaround, manually expand the payload elements. |
You can specify BPEL data operations to be performed by an underlying data provider service through use of the entity variable. The data provider service performs the data operations in a data store behind the scenes and without use of other data store-related features provided by Oracle SOA Suite (for example, the database adapter). This action enhances Oracle SOA Suite runtime performance and incorporates native features of the underlying data provider service during compilation and runtime.
Note: This feature is only supported in BPEL 1.1 projects. |
The entity variable can be used with an Oracle Application Development Framework (ADF) Business Component data provider service using SDO-based data.
In releases before 11g, variables and messages exchanged within a BPEL business process were a disconnected payload (a snapshot of data returned by a web service) placed into an XML structure. In some cases, the user required this type of fit. In other cases, this fit presented challenges.
The entity variable addresses the following challenges of previous releases:
If the underlying data was not in XML form, data conversion (for example, translating delimited text to XML) was required. If the underlying size of the data was large, the processing potentially impacted performance.
Variables (including WSDL messages) in BPEL processes were disconnected payload. In some cases, this was required. In other cases, you wanted a variable to represent the most recent data being modified by other applications outside Oracle BPEL Process Manager. This meant the disconnected data model provided a stale data set that did not fit all needs. The snapshot also duplicated data, which impacted performance when the data size was large.
Some data conversion implementation required data structure enforcement or business data logic beyond the XML schema. For example, the start date needed to be smaller than the end date. When the variable was a disconnected payload, validation occurred only during related web service invocation. Optionally performing the extra business data logic after certain operations, but before web service invocation, was sometimes preferred.
To address these challenges with Release 11g, you create an entity variable during variable declaration. An entity variable acts as a data handle to access and plug in different data provider service technologies behind the scenes. During compilation and runtime, Oracle BPEL Process Manager delegates data operations to the underlying data provider service.
Table 6-1 provides an example of how data conversion was performed in previous releases (using the database adapter as an example) and in release 11g with the entity variable.
Table 6-1 Data Manipulation Capabilities in Previous and Current Releases
10.1.x Releases | 11g Release When Using the Entity Variable |
---|---|
Data operations such as explicitly loading and saving data were performed by the database adapter in Oracle BPEL Process Manager. All data (for example, of a purchase order) was saved in the database dehydration store. | Data operations such as loading and saving data are performed automatically by the data provider service (the Oracle ADF Business Component application), without asking you to code any service invocation. Oracle BPEL Process Manager stores a key (for example, purchase order ID (POID)) that points to this data. Oracle BPEL Process Manager fetches the key when access to data is requested (the bind entity activity does this). You must explicitly request the data to be bound using the key. Any data changes are persisted by the data provider service in a database that can be different from the dehydration store database. This prevents data duplication. |
Data in variables was in document object model (DOM) form | Data in variables is in SDO form, which provides for a simpler conversion process than DOM, especially when the data provider service understands SDO forms. |
Note: Only BPEL process service components currently allow the use of SDO-formed variables. If your composite application has an Oracle Mediator service component wired with an SDO-based Java binding component reference, the data form of the variable defaults to DOM. In addition, the features described for 10.1.x releases in Table 6-1 are still supported in release 11g. |
The WebLogic Fusion Order Demo application describes use of the entity variable.
This section describes how to create an entity variable and a binding key in Oracle JDeveloper.
In 10.1.x releases of Oracle BPEL Process Manager, all variable data was in DOM form. With release 11g, variable data in SDO form is also supported. DOM and SDO variables in BPEL process service components are implicitly converted to the required forms. For example, an Oracle BPEL process service component using DOM-based variables can automatically convert these variables as required to SDO-based variables in an assign activity, and vice versa. Both form types are defined in the XSD schema file. No user intervention is required.
Entity variables also support SDO-formed data. However, unlike the DOM and SDO variables, the entity variable with SDO-based data enables you to bind a unique key value to data (for example, a purchase order). Only the key is stored in the dehydration store; the data requiring conversion is stored with the service of the Oracle ADF Business Component application. The key points to the data stored in the service. When the data is required, it is fetched from the data provider service and placed into memory. The process occurs in two places: the bind entity activity and the dehydration store. For example, when Oracle BPEL Process Manager rehydrates, it stores only the key for the entity variable; when it wakes up, it does an implicit bind to get the current data.
The SDO binding component service provides the outside world with an entry point to the composite application, as shown in Figure 6-1.
You use the SOA Composite Editor and Oracle BPEL Designer to perform the following tasks:
For more information about using the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."
The SDO binding component reference enables messages to be sent from the composite application to Oracle ADF Business Component application external partners in the outside world, as shown in Figure 6-2.
When the Oracle ADF Business Component application is the external partner link to the outside world, there is no SDO binding component reference in the SOA Composite Editor that you drag into the composite application to create outbound communication. Instead, communication between the composite application and the Oracle ADF Business Component application occurs as follows:
composite.xml
file is automatically updated with reference details (the binding.adf
property) when the Oracle ADF Business Component application service is discovered. You now create an entity variable and select a partner link for the Oracle ADF Business Component application. The following example describes how the OrderProcessor BPEL process service component receives an ID for an order by using a bind entity activity to point to order data in an Oracle ADF Business Component data provider service in the WebLogic Fusion Order Demo application.
To create an entity variable and choose a partner link:
The Create Variable dialog appears.
The Partner Link Chooser dialog appears with a list of available services, including the SDO service called ADF-BC Service.
The dialog looks as shown in Figure 6-3.
You now create a key to point to the order data in the Oracle ADF Business Component data provider service.
To create a binding key:
The Bind Entity dialog appears.
The Variable Chooser dialog appears.
The Specify Key dialog appears. You use this dialog to create a key for retrieving the order ID from the Oracle ADF Business Component data provider service.
Table 6-2 Specify Key Dialog Fields and Values
Field | Value |
---|---|
Key Local Part | Enter the local part of the key. |
Key Namespace URI | Enter the namespace URI for the key. |
Key Value | Enter the key value expression. This expression must match the type of a key. The following examples show expression value keys for a POID key:
The POID key for an entity variable typically comes from another message. If the type of POID key is an integer and the expression result is a string of |
Figure 6-4 shows the Specify Key dialog after completion.
A name-pair value appears in the Unique Keys table, as shown in Figure 6-5. Design is now complete.
After the Bind Entity activity is executed at runtime, the entity variable is ready to be used.
For more information about using SDOs, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. This guide describes how to expose application modules as web services and publish rows of view data objects as SDOs. The application module is the ADF framework component that encapsulates business logic as a set of related business functions.
Standalone SDO-based variables are similar to ordinary BPEL XML-DOM-based variables. The major difference is that the underlying data form is SDO-based, instead of DOM-based. Therefore, SDO-based variables can use some SDO features such as Java API access, an easier-to-use update API, and the change summary. However, SDO usage is also subject to some restrictions that do not exist with XML-DOM-based variables. The most noticeable restriction is that SDO only supports a small subset of XPath expressions.
The syntax for declaring an SDO-based variable is similar to that for declaring BPEL variables. Example 6-5 provides details.
Example 6-5 SDO-based Variable Declaration
If you want to override the automatic detection, use the bpelx:sdoCapable="true|false"
switch. For example, variable deptVar_v
described in Example 6-5 is a regular DOM-based variable. Example 6-6 provides an example of the schema.
Example 6-6 XSD Sample
Oracle BPEL Process Manager supports dual data forms: DOM and SDO. You can interchange the usage of DOM-based and SDO-based variables within the same business process, even within the same expression. The Oracle BPEL Process Manager data framework automatically converts back and forth between DOM and SDO forms.
By using the entity variable XPath rewrite capabilities, Oracle BPEL Process Manager enables some XPath features (for example, variable reference and function calls) that the basic SDO specification does not support. However, there are other limitations on the XPath used with SDO-based variables (for example, there is no support for and
, or
, and not
).
Example 6-7 provides a simple example of converting from XML to SDO.
Example 6-7 XML-to-SDO Conversion
Example 6-8 provides an example of copying from an XPath expression of an SDO variable to a DOM variable.
Example 6-8 Copy from an XPath Expression of an SDO Variable to a DOM Variable
Example 6-9 provides an example of removing a portion of SDO data.
Example 6-9 SDO Data Removal
Note: The
|
It is often useful to assign literal XML to a variable in BPEL, for example, to initialize a variable before copying dynamic data into a specific field within the XML data content for the variable. This is also useful for testing purposes when you want to hard code XML data values into the process.
Example 6-10 assigns a literal result
element to the payload
part of the output
variable:
Example 6-10 Literal Element Assignment
When you copy between variables, you copy directly from one variable (or part) to another variable of a compatible type, without needing to specify a particular field within either variable. In other words, you do not need to specify an XPath query.
Example 6-11 shows two assignments being performed, first copying between two variables of the same type and then copying a variable part to another variable with the same type as that part.
Example 6-11 Copying Between Variables
The BPEL file defines the variables shown in Example 6-12:
Example 6-12 Variable Definition
The WSDL file defines the person
message type shown in Example 6-13:
Example 6-13 Message Type Definition
For more information about this code example, see Section 9.3.2 of the Business Process Execution Language for Web Services Specification. For BPEL 2.0, see Section 8.4.4 of Web Services Business Process Execution Language Specification Version 2.0 for a similar example.
For more information, see Section A.2.3, "Assign Activity."
A variable can optionally be initialized by using an inline from-spec
. Click the Initialize tab in the Create Variable dialog in a BPEL 2.0 project to create this type of variable.
Inline variable initializations are conceptually designed as a virtual sequence activity that includes a series of virtual assign activities, one for each variable being initialized, in the order in which they appear in the variable declarations. Each virtual assign activity contains a single virtual copy operation whose from-spec
is as given in the variable initialization. The to-spec
points to the variable being created. Example 6-14 provides details.
Example 6-14 Variable Initialization with an Inline from-spec
For more information, see section 8.1 of Web Services Business Process Execution Language Specification Version 2.0.
Given the types of definitions present in most WSDL and XSD files, you must go down to the level of copying from or to a field within part of a variable based on the element and message type. This in turn uses XML schema complex types. To perform this action, you specify an XPath query in the from
or to
clause of the assign activity.
In Example 6-15, the ssn
field is copied from the CreditFlow
process's input message into the ssn
field of the credit rating service's input message.
Example 6-15 Field Copying Levels
Example 6-16 shows how the BPEL file defines message type-based variables involved in this assignment:
Example 6-16 BPEL File Definition - Message Type-Based Variables in BPEL 1.1
The crInput
variable is used as an input message to a credit rating service. Its message type, CreditFlowRequestMessage
, is defined in the CreditFlowService.wsdl
file, as shown in Example 6-17:
Example 6-17 CreditFlowRequestMessage Definition
CreditFlowRequest
is defined with a field named ssn
. The message type CreditRatingServiceRequestMessage
is defined in the CreditRatingService.wsdl
file, as shown in Example 6-18:
Example 6-18 CreditRatingServiceRequestMessage Definition
Example 6-19 shows the BPEL 2.0 syntax for how the BPEL file defines message type-based variables involved in the assignment in Example 6-15. Note that /tns:CreditFlowRequest
is not required.
Example 6-19 BPEL File Definition - Message Type-Based Variables in BPEL 2.0
A BPEL process can also use element-based variables. Example 6-20 shows how to use element-based variables in BPEL 1.1. The autoloan
field is copied from the loan application process's input message into the customer
field of a web service's input message.
Example 6-20 Field Copying Levels in BPEL 1.1
Example 6-21 shows how to use element-based variables in BPEL 2.0.
Example 6-21 Field Copying Levels in BPEL 2.0
Example 6-22 shows how the BPEL file defines element-based variables involved in an assignment:
You can assign numeric values in XPath expressions.
Example 6-23 shows how to assign an XPath expression with the integer value of 100
.
You can use simple mathematical expressions like the one in Section 6.8.1, "How To Use Mathematical Calculations with XPath Standards," which increment a numeric value.
In Example 6-24, the BPEL XPath function getVariableData
retrieves the value being incremented. The arguments to getVariableData
are equivalent to the variable, part, and query attributes of the from
clause (including the last two arguments, which are optional).
Example 6-24 XPath Function getVariableData Retrieval of a Value
You can also use $variable
syntax in BPEL 1.1, as shown in Example 6-25:
Example 6-25 $variable Syntax Use in BPEL 1.1
Example 6-26 shows how to use $variable
syntax in BPEL 2.0.
You can assign string literals to a variable in BPEL.
The code in Example 6-27 copies a BPEL 1.1 expression evaluating from the string literal 'GE'
to the symbol field within the indicated variable part. (Note the use of the double and single quotes.)
Example 6-27 Expression Copy in BPEL 1.1
Example 6-28 shows how to perform this expression in BPEL 2.0.
Rather than copying the value of one string variable (or variable part or field) to another, you can first perform string manipulation, such as concatenating several strings.
The concatenation is accomplished with the core XPath function named concat
; in addition, the variable value involved in the concatenation is retrieved with the BPEL XPath function getVariableData
. In Example 6-29, getVariableData
fetches the value of the name
field from the input
variable's payload
part. The string literal 'Hello '
is then concatenated to the beginning of this value.
Example 6-29 XPath Function getVariableData Fetch of Data
Other string manipulation functions available in XPath are listed in section 4.2 of the XML Path Language (XPath) Specification.
You can assign boolean values with the XPath boolean function.
Example 6-30 provides an example of assigning boolean values in BPEL 1.1. The XPath expression in the from
clause is a call to XPath's boolean function true
, and the specified approved field is set to true
. The function false
is also available.
Example 6-30 Boolean Value Assignment in BPEL 1.1
Example 6-31 provides an example of assigning boolean values in BPEL 2.0.
Example 6-31 Boolean Value Assignment in BPEL 2.0
The XPath specification recommends that you use the "true()"
and "false()"
functions as a method for returning boolean constant values.
If you instead use "boolean(true)"
or "boolean(false)"
, the true
or false
inside the boolean function is interpreted as a relative element step, and not as any true
or false
constant. It attempts to select a child node named true
under the current XPath context node. In most cases, the true
node does not exist. Therefore, an empty result node set is returned and the boolean()
function in XPath 1.0 converts an empty node set into a false result. This result can be potentially confusing.
You can assign the current value of a date or time field by using the Oracle BPEL XPath function getCurrentDate
, getCurrentTime
, or getCurrentDateTime
, respectively. In addition, if you have a date-time value in the standard XSD format, you can convert it to characters more suitable for output by calling the Oracle BPEL XPath function formatDate
.
For related information, see section 9.1.2 of the Business Process Execution Language for Web Services Specification and section 8.3.2 of the Web Services Business Process Execution Language Specification Version 2.0.
Example 6-32 shows an example that uses the function getCurrentDate
in BPEL 1.1.
Example 6-32 Date or Time Assignment in BPEL 1.1
Example 6-33 shows an example that uses the function getCurrentDate
in BPEL 2.0.
Example 6-33 Date or Time Assignment in BPEL 2.0
In Example 6-34, the formatDate
function converts the date-time value provided in XSD format to the string 'Jun 10, 2005'
(and assigns it to the string field formattedDate
).
Example 6-34 formatDate Function in BPEL 1.1
Example 6-35 shows how the formatDate
function works in BPEL 2.0.
You can copy to or from something defined as an XML attribute. An at sign (@
) in XPath query syntax refers to an attribute instead of a child element.
The code in Example 6-36 fetches and copies the custId
attribute from this XML data:
Example 6-36 custId Attribute Fetch and Copy Operations
The BPEL 1.1 code in Example 6-37 selects the custId
attribute of the customer field and assigns it to the variable custId
:
Example 6-37 custId Attribute Select and Assign Operations in BPEL 1.1
Example 6-38 shows the equivalent syntax in BPEL 2.0 for selecting the custId
attribute of the customer field and assigning it to the variable custId
:
Example 6-38 custId Attribute Select and Assign Operations in BPEL 2.0
The namespace prefixes in this example are not integral to the example.The WSDL file defines a customer to have a type in which custId
is defined as an attribute, as shown in Example 6-39:
You can perform various operations on XML data in assign activities. The bpelx
extension types described in this section provide this functionality. In Oracle BPEL Designer, you can add bpelx
extension types at the bottom of the Copy Rules tab of an Assign dialog. After creating a copy rule, you select it and then choose a bpelx
extension type from the dropdown list in BPEL 1.1 or the context menu in BPEL 2.0. This changes the copy rule to the selected extension type.
In BPEL 1.1, you select an extension type from the dropdown list, as shown in Figure 6-6.
Figure 6-6 Copy Rule Converted to bpelx Extension in BPEL 1.1
In BPEL 2.0, you select an extension type by right-clicking the copy rule, selecting Change rule type, and then selecting the extension type, as shown in Figure 6-7.
Figure 6-7 Copy Rule Converted to bpelx Extension in BPEL 2.0
For more information, see the online Help for this dialog and Section A.2.3, "Assign Activity."
The bpelx:append
extension in an assign activity enables a BPEL process service component to append the contents of one variable, expression, or XML fragment to another variable's contents. To use this extension, you select a copy rule at the bottom of the Copy Rules tab, then select Append from the dropdown list, as shown in Figure 6-6.
Note: The |
Example 6-40 provides an example of bpelx:append
in a BPEL project that supports BPEL version 1.1.
Example 6-40 bpelx:append Extension in BPEL 1.1
The from-spec
query within bpelx:append
yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec
query.
The to-spec
query must yield one single L-Value element node. Otherwise, a bpel:selectionFailure
fault is generated. The to-spec
query cannot refer to a partner link.
Example 6-41 consolidates multiple bills of material into one single bill of material (BOM) by appending multiple b:part
s for one BOM to b:
part
s of the consolidated BOM.
Example 6-42 provides an example of bpelx:append
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.1.1, "bpelx:append in BPEL 1.1," but the syntax is slightly different.
Note: The |
The bpelx:insertBefore
extension in an assign activity enables a BPEL process service component to insert the contents of one variable, expression, or XML fragment before another variable's contents. To use this extension, you select a copy rule at the bottom of the Copy Rules tab, then select InsertBefore from the dropdown list, as shown in Figure 6-6.
Example 6-43 provides an example of bpelx:insertBefore
in a BPEL project that supports BPEL version 1.1.
Example 6-43 bpelx:insertBefore Extension in BPEL 1.1
The from-spec
query within bpelx:insertBefore
yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec
query.
The to-spec
query of the insertBefore
operation points to one or more single L-Value nodes. If multiple nodes are returned, the first node is used as the reference node. The reference node must be an element node. The parent of the reference node must also be an element node. Otherwise, a bpel:selectionFailure
fault is generated. The node list generated by the from-spec
query selection is inserted before the reference node. The to-spec
query cannot refer to a partner link.
Example 6-44 shows the syntax before the execution of <insertBefore>
. The value of addrVar
is:
Example 6-44 Presyntax Execution
Example 6-45 shows the syntax after the execution:
Example 6-45 Postsyntax Execution
Example 6-46 shows the value of addrVar
:
Example 6-47 provides an example of bpelx:insertBefore
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.2.1, "bpelx:insertBefore in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:insertBefore
extension.
Note: The |
The bpelx:insertAfter
extension in an assign activity enables a BPEL process service component to insert the contents of one variable, expression, or XML fragment after another variable's contents. To use this extension, you select a copy rule at the bottom of the Copy Rules tab, then select InsertAfter from the dropdown list, as shown in Figure 6-6.
Example 6-48 provides an example of bpelx:insertAfter
in a BPEL project that supports BPEL version 1.1.
Example 6-48 bpelx:insertAfter Extension in BPEL 1.1
This operation is similar to the functionality described for Section 6.14.2, "How to Use bpelx:insertBefore," except for the following:
to-spec
query, the last node is used as the reference node. This operation can also be considered a macro of conditional-switch
+
(append
or insertBefore
).
Example 6-49 shows the syntax before the execution of <insertAfter>
. The value of addrVar
is:
Example 6-49 Presyntax Execution
Example 6-50 shows the syntax after the execution:
Example 6-50 Postsyntax Execution
Example 6-51 shows the value of addrVar
:
Example 6-51 addrVar Value
The from-spec
query within bpelx:insertAfter
yields zero or more nodes. The node list is appended as child nodes to the target node specified by the to-spec
query.
Example 6-52 provides an example of bpelx:insertAfter
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.3.1, "bpelx:insertAfter in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:insertAfter
extension.
Example 6-52 bpelx:insertAfter Extension in BPEL 2.0
The bpelx:remove
extension in an assign activity enables a BPEL process service component to remove a variable. In Oracle BPEL Designer, you add the bpelx:remove
extension by dragging the remove icon in the upper right corner of the Copy Rules tab to the target variable you want to remove, and releasing the cursor. Figure 6-8 provides details.
Figure 6-8 Remove Icon in Copy Rules Tab of an Assign Activity
After releasing the cursor, the bpelx:remove
extension is applied to the target variable. Figure 6-9 provides details.
Figure 6-9 bpelx:remove Extension Applied to a Target Variable
Example 6-53 provides an example of bpelx:remove
in a BPEL project that supports BPEL version 1.1.
Example 6-53 bpelx:remove Extension in BPEL 1.1
Node removal specified by the XPath expression is supported. Nodes specified by the XPath expression can be multiple, but must be L-Values. Nodes being removed from this parent can be text nodes, attribute nodes, and element nodes.
The XPath expression can return one or more nodes. If the XPath expression returns zero nodes, then a bpel:selectionFailure
fault is generated.
The syntax of bpelx:target
is similar to and a subset of to-spec
for the copy
operation.
Example 6-54 shows addrVar
with the following value:
Example 6-54 addrVar
After executing the syntax shown in Example 6-55 in the BPEL process service component file, the second address line of Mailstop
is removed:
Example 6-55 Removal of Second Address Line
After executing the syntax shown in Example 6-56 in the BPEL process service component file, both address lines are removed:
Example 6-57 provides an example of bpelx:remove
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.4.1, "bpelx:remove in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:remove
.
The bpelx:rename
extension in an assign activity enables a BPEL process service component to rename an element through use of XSD type casting. In Oracle BPEL Designer, you add the bpelx:rename
extension by dragging the rename icon in the upper right corner of the Copy Rules tab to the target variable you want to remove, and releasing the cursor. The rename icon displays to the right of the remove icon shown in Figure 6-8. After releasing the cursor, the Rename dialog is displayed for renaming the target variable.
Example 6-58 provides an example of bpelx:rename
in a BPEL project that supports BPEL version 1.1.
Example 6-58 bpelx:rename Extension in BPEL 1.1
The syntax of bpelx:target
is similar to and a subset of to-spec
for the copy
operation. The target must return a list of one more element nodes. Otherwise, a bpel:selectionFailure
fault is generated. The element nodes specified in the from-spec
are renamed to the QName
specified by the elementTo
attribute. The xsi:type
attribute is added to those element nodes to cast those elements to the QName
type specified by the typeCastTo
attribute.
Assume you have the employee list shown in Example 6-59:
Example 6-59 xsi:type Attribute
Promotion changes are now applied to Peter Smith
in the employee list in Example 6-60:
Example 6-60 Application of Promotion Changes
After executing the above casting (renaming), the data looks as shown in Example 6-61 with xsi:type
info added to Peter Smith
:
Example 6-61 Data Output
The employee data of Peter Smith
is now invalid, because <approvalLimit>
and <managing>
are missing. Therefore, <append>
is used to add that information. Example 6-62 provides an example.
Example 6-62 Use of append Extension to Add Information
With the execution of both rename
and append
, the corresponding data looks as shown in Example 6-63:
Example 6-64 provides an example of bpelx:rename
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.5.1, "bpelx:rename in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:rename
.
The bpelx:copyList
extension in an assign activity enables a BPEL process service component to perform a copyList
operation of the contents of one variable, expression, or XML fragment to another variable.
To use this extension in BPEL 1.1, you select a copy rule at the bottom of the Copy Rules tab, then select copyList from the dropdown list, as shown in Figure 6-6. To use this extension in BPEL 2.0, you right-click a copy rule, select Change rule type, and select CopyList, as shown in Figure 6-7.
Example 6-65 provides an example of bpelx:copyList
in a BPEL project that supports BPEL version 1.1.
Example 6-65 bpelx:copyList Extension in BPEL 1.1
The from-spec
query can yield a list of either all attribute nodes or all element nodes. The to-spec
query can yield a list of L-value nodes: either all attribute nodes or all element nodes.
All the element nodes returned by the to-spec
query must have the same parent element. If the to-spec
query returns a list of element nodes, all element nodes must be contiguous.
If the from-spec
query returns attribute nodes, then the to-spec
query must return attribute nodes. Likewise, if the from-spec
query returns element nodes, then the to-spec
query must return element nodes. Otherwise, a bpws:mismatchedAssignmentFailure
fault is thrown.
The from-spec
query can return zero nodes, while the to-spec
query must return at least one node. If the from-spec
query returns zero nodes, the effect of the copyList
operation is similar to the remove
operation.
The copylist
operation provides the following features:
to-spec
query. to-spec
query returns a list of element nodes and there are leftover child nodes after removal of those nodes, the nodes returned by the from-spec
query are inserted before the next sibling of the last element specified by the to-spec
query. If there are no leftover child nodes, an append
operation is performed. to-spec
query returns a list of attribute nodes, those attributes are removed from the parent element. The attributes returned by the from-spec
query are then appended to the parent element. For example, assume a schema is defined as shown in Example 6-66.
Example 6-66 Schema
The from
variable contains the content shown in Example 6-67.
Example 6-67 Variable Content
The to
variable contains the content shown in Example 6-68.
Example 6-68 Variable Content
The bpelx:copyList
operation looks as shown in Example 6-69.
Example 6-69 bpelx:copyList
This makes the to
variable as shown in Example 6-70.
Example 6-71 provides an example of bpelx:copyList
syntax in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the functionality is the same as described in Section 6.14.6.1, "bpelx:copyList in BPEL 1.1," but the syntax is slightly different. An extensionAssignOperation
element wraps the bpelx:copyList
extension.
You can assign the following attributes to copy rules in an assign activity.
ignoreMissingFromData
insertMissingToData
keepSrcElementName
At the bottom of the Copy Rules tab of an assign activity, you right-click a selected copy rule to display a menu for choosing the appropriate attribute. Figure 6-10 provides details.
The ignoreMissingFromData
attribute suppresses any bpel:selectionFailure
standard faults. Table 6-3 describes the syntax differences between BPEL versions 1.1 and 2.0.
The insertMissingToData
attribute instructs runtime to complete the (XPath) L-value specified by the to-spec
, if no items were selected. Table 6-4 describes the syntax differences between BPEL versions 1.1 and 2.0.
The keepSrcElementName
attribute enables you to replace the element name of the destination (as selected by the to-spec
) with the element name of the source. This attribute was not implemented in BPEL 1.1. Table 6-5 describes the syntax supported in BPEL version 2.0.
You can verify code and identify invalid XML data in a BPEL project.
You can specify variables in the following message exchange activities:
inputVariable
attribute) and Output field (for an outputVariable
attribute) of an invoke dialog variable
attribute) of a receive activity variable
attribute) of a reply activity The variables referenced by these fields typically must be message type variables in which the QName matches the QName of the input and output message types used in the operation, respectively.
The one exception is if the WSDL operation in the activity uses a message containing exactly one part that is defined using an element. In this case, a variable of the same element type used to define the part can be referenced by the inputVariable
and outputVariable
attributes, respectively, in the invoke activity or the variable
attribute of the receive or reply activity.
Using a variable in this situation must be the same as declaring an anonymous, temporary WSDL message variable based on the associated WSDL message type.
Copying element data between the anonymous, temporary WSDL message variable and the element variable acts as a single virtual assign with one copy operation whose keepSrcElementName
attribute is set to yes
. The virtual assign must follow the same rules and use the same faults as a real assign activity. Table 6-6 provides details.
Table 6-6 Mapping WSDL Message Parts
For The... | The... |
---|---|
| Value of the variable referenced by the attribute sets the value of the part in the anonymous temporary WSDL message variable. |
| Value of the received part in the temporary WSDL message variable sets the value of the variable referenced by the attribute. |
Receive activity | Incoming part's value sets the value of the variable referenced by the variable attribute. |
Reply activity | Value of the variable referenced by the variable attribute sets the value of the part in the anonymous, temporary WSDL message variable that is sent out. For a reply activity sending a fault, the same scenario applies. |
For more information about the keepSrcElementName
attribute, see Section 6.14.7.3, "keepSrcElementName Attribute."
The toParts
element in invoke and reply activities provides an alternative to explicitly creating multipart WSDL messages from the contents of BPEL variables.
When you use the toParts
element, as shown in Example 6-72, an anonymous, temporary WSDL variable is defined based on the type specified by the input message of the appropriate WSDL operation.
The toParts
element acts as a single, virtual assign activity. Each toPart
acts as a copy operation. One toPart
at most exists for each part in the WSDL message definition. Each copy operation copies data from the variable specified in the fromVariable
attribute into the part of the anonymous, temporary WSDL variable referenced in the part
attribute of the toParts
element.
The fromParts
element in receive activities, invoke activities, the onEvent branch of scope activities, and the onMessage branch of pick activities is similar to the toParts
element. The fromParts
element, as shown in Example 6-73, retrieves data from an incoming multipart WSDL message and places the data into individual variables.
Example 6-73 fromParts Element
When a WSDL message is received on an invoke activity that uses fromParts
elements, the message is placed in an anonymous, temporary WSDL variable of the type specified by the output message of the appropriate WSDL operation.
As with the toParts
element, the fromParts
element acts as a single virtual assign activity. Each fromPart
acts as a copy operation. Each copy operation copies the data at the part of the anonymous, temporary WSDL variable referenced in the part attribute of the fromPart
into the variable indicated in the toVariable
attribute.
For both the toParts
and fromParts
elements, the virtual assign activity must follow the same semantics and generate the same faults as a real assign activity.
The presence of a fromParts
element in an invoke activity does not require it to have a fromPart
for every part in the WSDL message definition. Parts not explicitly represented by fromParts
elements are not copied from the anonymous WSDL variable to the variable.
For more information about mapping WSDL message parts with the toParts
and fromParts
elements, see the Web Services Business Process Execution Language Version 2.0 Specification located at the following URL:
This section provides an overview of a simple BPEL process in which a reply activity uses the toParts
elements to copy variable contents. The WSDL and BPEL files used in this example are shown later in Example 6-74 and Example 6-75 of Section 6.17.2, "What Happens When You Map WSDL Message Parts."
How to map WSDL message parts in BPEL 2.0
Figure 6-13 To Parts Section Defined at Bottom of Reply Activity
Example 6-74 shows a .bpel
file for a synchronous request with toPart
elements defined in a reply activity. This maps to the operation defined in the WSDL file shown in Example 6-75. The copy operation copies data from the variable indicated in the fromVariable
attribute into the part of the anonymous, temporary WSDL variable, Var1
.
Example 6-74 BPEL File with ToParts Elements
Example 6-75 WSDL File that Defines the Operation
Example 6-76 shows a .bpel
file with toPart
elements defined in invoke and reply activities. This maps to the operation defined in the WSDL file shown in Example 6-77. The copy operation in the invoke activity copies data from the variable indicated in the fromVariable
attribute into the part of the anonymous, temporary WSDL variable, request
. The copy operation in the reply activity copies data from the variable indicated in the fromVariable
attribute into the part of the anonymous, temporary WSDL variable, output
.
Example 6-76 BPEL File with ToParts Elements
Example 6-77 WSDL File that Defines the Operation
Example 6-78 shows a .bpel
file with fromParts
elements defined in pick and invoke activities. This maps to the operation defined in the WSDL file shown in Example 6-79. The copy operation in the pick activity retrieves data from the variable indicated in the toVariable
attribute into the part of the anonymous, temporary WSDL variable, request
. The copy operation in the invoke activities retrieves data from the variable indicated in the toVariable
attribute into the part of the anonymous, temporary WSDL variable, response
.
Example 6-78 BPEL File with FromParts Elements
Example 6-79 WSDL File that Defines the Operation
You can use the import
element to specify the definitions on which your BPEL process is dependent. When you create a version 2.0 BPEL process, an import
element is added to the .bpel
file, as shown in Example 6-80.
Example 6-80 Import Element
You can also use the import
element to import a schema without a namespace, as shown in Example 6-81.
Example 6-81 Schema Import Without Namespace
You can also use the import
element to import a schema with a namespace, as shown in Example 6-82.
Example 6-82 Schema Import With Namespace
The import
element is provided to declare a dependency on external XML schema or WSDL definitions. Any number of import
elements can appear as children of the process
element. Each import
element can contain the following attributes.
namespace
: Identifies an absolute URI that specifies the imported definitions. This is an optional attribute. If a namespace is specified, then the imported definitions must be in that namespace. If a namespace is not specified, this indicates that external definitions are in use that are not namespace-qualified. The imported definitions must not contain a targetNamespace
specification. location
: Identifies a URI that specifies the location of a document containing important definitions. This is an optional attribute. This can be a relative URI. If no location
attribute is specified, the process uses external definitions. However, there is no statement provided indicating where to locate these definitions. importType
: Identifies the document type to import. This must be an absolute URI that specifies the encoding language used in the document. This is a required attribute. "http://www.w3.org/2001/XMLSchema"
. "http://schemas.xmlsoap.org/wsdl/"
. You can also specify other values for this attribute. For more information, see section 5.4 of the Web Services Business Process Execution Language Specification Version 2.0.
Data sequences are one of the most basic data models used in XML. However, manipulating them can be nontrivial. One of the most common data sequence patterns used in BPEL process service components are arrays. Based on the XML schema, the way you can identify a data sequence definition is by its attribute maxOccurs
being set to a value greater than one or marked as unbounded. See the XML Schema Specification at http://www.w3.org/TR
for more information.
The examples in this section illustrate several basic ways of manipulating data sequences in BPEL. However, there are other associated requirements, such as performing looping or dynamic referencing of endpoints. The following sections describe a particular requirement for data sequence manipulation.
The following two examples illustrate how to use XPath functionality to select a data sequence element when the index of the element you want is known at design time. In these cases, it is the first element.
In Example 6-83, addresses[1]
selects the first element of the addresses data sequence:
Example 6-83 Data Sequence Element Selection
In this query, addresses[1]
is equivalent to addresses[position()=1]
, where position
is one of the core XPath functions (see sections 2.4 and 4.1 of the XML Path Language (XPath) Specification). The query in Example 6-84 calls the position
function explicitly to select the first element of the addresses data sequence. It then selects that address's street
element (which the activity assigns to the variable street1
).
Example 6-84 position Function Use
If you review the definition of the input variable and its payload part in the WSDL file, you go several levels down before coming to the definition of the addresses field. There you see the maxOccurs="unbounded"
attribute. The two XPath indexing methods are functionally identical; you can use whichever method you prefer.
Oracle SOA Suite provides support for SOAP RPC-encoded arrays. This support enables Oracle BPEL Process Manager to operate as a client calling a SOAP web service (RPC-encoded) that uses a SOAP 1.1 array.
Example 6-85 provides an example of a SOAP array payload named myFavoriteNumbers
.
Example 6-85 SOAP Array Payload
In addition, ensure that the schema element attributes attributeFormDefault
and elementFormDefault
are set to "unqualified"
in your schema. Example 6-86 provides details:
Example 6-86 Schema Element Attributes
The following features are not supported:
To use a SOAP-encoded array:
Example 6-87 shows how to prepare SOAP arrays with the bpelx:append
tag in a BPEL project.
bpelx:append
in Example 6-87 is used to add items into the SOAP array. Example 6-87 SOAP Array
SOAP-ENC
tag if the import statement is missing in the WSDL schema element. SOAP-encoded arrays are supported in BPEL projects that use version 2.0 of the BPEL specification. Example 6-88 shows a sample assign activity with a SOAP-encoded array in a BPEL 2.0 project.
Example 6-88 SOAP-Encoded Array in an Assign Activity in BPEL 2.0
Example 6-89 shows a sample invoke activity with a SOAP-encoded array in a BPEL 2.0 project.
A SOAP-encoded array WSDL can declare a SOAP array using a wsdl:arrayType
attribute inside a schema. Example 6-90 provides details.
Example 6-90 SOAP Array Declaration Using a wsdl:arrayType Attribute
Example 6-91 shows how to create and access a SOAP-encoded array in BPEL 1.1.
Example 6-91 SOAP-encoded Array Access in BPEL 1.1
If you must know the runtime size of a data sequence (that is, the number of nodes or data items in the sequence), you can get it by using the combination of the XPath built-in count()
function and the BPEL built-in getVariableData()
function.
The code in Example 6-92 calculates the number of elements in the item
sequence and assigns it to the integer variable lineItemSize
.
Often a dynamic value is needed to index into a data sequence; that is, you must get the nth
node out of a sequence, where the value of n
is defined at runtime. This section covers the methods for dynamically indexing by applying a trailing XPath into expressions.
The dynamic indexing method shown in Example 6-93 applies a trailing XPath to the result of bwps:getVariableData()
, instead of using an XPath as the last argument of bpws:getVariableData()
. The trailing XPath references to an integer-based index variable within the position predicate (that is, [...]
).
Example 6-93 Dynamic Indexing
Assume at runtime that the idx
integer variable holds 2
as its value. The preceding expression within the from
is equivalent to that shown in Example 6-94.
Example 6-94 Equivalent Format
There are some subtle XPath usage differences, when an XPath used trailing behind the bwps:getVariableData()
function is compared with the one used inside the function.Using the same example (where payload
is the message part of element "p:invoice"
), if the XPath is used within the getVariableData()
function, the root element name ("/p:invoice"
) must be specified at the beginning of the XPath.
Example 6-95 provides details.
Example 6-95 Root Element Name Specification
If the XPath is used trailing behind the bwps:getVariableData()
function, the root element name does not need to be specified in the XPath.
For example:
This is because the node returned by the getVariableData()
function is the root element. Specifying the root element name again in the XPath is redundant and is incorrect according to standard XPath semantics.
The bpelx:append
extension in an assign
activity enables BPEL process service components to append new elements to an existing parent element. Example 6-96 provides an example.
Example 6-96 bpelx:append Extension
The bpelx:append
logic in this example appends the payload element of the partInfoResultVar
variable as a child to the payload element of the output
variable. In other words, the payload element of the output
variable is used as the parent element.
You can merge two sequences into a single data sequence. This pattern is common when the data sequences are in an array (that is, the sequence of data items of compatible types).The two append
operations shown in Example 6-97 under assign
demonstrate how to merge data sequences:
Example 6-97 Data Sequences Merges with append Operations
The genEmptyElem
function generates functionality equivalent to an array of an empty element to an XML structure. This function takes the following arguments:
Note the following issues:
QName
of the empty elements. 1
. QName
, which is the xsi:type
of the generated empty name. This xsi:type
pattern matches the SOAPENC:Array
. If it is missing or is an empty string, the xsi:type
attribute is not generated. XSI - nil
, provided the element is XSD-nillable. The default value is false
. If missing or false
, xsi:nil
is not generated. Example 6-98 shows an append
statement initializing a purchase order (PO) document with 10
empty <lineItem>
elements under po
:
Example 6-98 append Statement
The genEmptyElem
function in Example 6-98 can be replaced with an embedded XQuery expression, as shown in Example 6-99.
Example 6-99 Embedded XQuery Expression
The empty elements generated by this function are typically invalid XML data. You perform further data initialization after the empty elements are created. Using the same example above, you can perform the following:
lineItem
elements. copy
operations to replace the empty elements. For example, copy from a web service result to an individual entry in this equivalent array under a flowN activity. For processing in Native Format Builder array identifier environments, information is required about the parent node of a node. Because the reportSAXEvents
API is used, this information is typically not available for outbound message scenarios. Setting nxsd:useArrayIdentifiers
to true
in the native schema enables DOM-parsing to be used for outbound message scenarios. Use this setting cautiously, as it can lead to slower performance for very large payloads. Example 6-100 provides details.
Example 6-100 Array Identifier
Sometimes a service is defined to return a string, but the content of the string is actually XML data. The problem is that, although BPEL provides support for manipulating XML data (using XPath queries, expressions, and so on), this functionality is not available if the variable or field is a string type. With Java, you use DOM functions to convert the string to a structured XML object type. You can use the BPEL XPath function parseEscapedXML
to do the same thing.
For information about parseEscapedXML
, see Section B.2.49, "parseEscapedXML."
The parseEscapedXML
function takes XML data, parses it through DOM, and returns structured XML data that can be assigned to a typed BPEL variable. Example 6-101 provides an example:
Example 6-101 String to XML Element Conversion
The examples shown up to this point have been for document-style WSDL files in which a message is defined with an XML schema element
, as shown in Example 6-102:
Example 6-102 XML Schema element Definition
This is in contrast to RPC-style WSDL files, in which the message is defined with an XML schema type
, as shown in Example 6-103:
Example 6-103 RPC-Style type Definition
This impacts the material in this chapter because there is a difference in how XPath queries are constructed for the two WSDL message styles. For an RPC-style message, the top-level element (and therefore the first node in an XPath query string) is the part name (payload
in Example 6-103). In document-style, the top-level node is the element name (for example, loanApplication
).
Example 6-104 and Example 6-105 show what an XPath query string looks like if an application named LoanServices
were in RPC style.
Example 6-104 RPC-Style WSDL File
BPEL's communication activities (invoke, receive, reply, and onMessage) receive and send messages through specified message variables. These default activities permit one variable to operate in each direction. For example, the invoke activity has inputVariable
and outputVariable
attributes. You can specify one variable for each of the two attributes. This is enough if the particular operation involved uses only one payload message in each direction.
However, WSDL supports multiple messages in an operation. In the case of SOAP, multiple messages can be sent along the main payload message as SOAP headers. However, BPEL's default communication activities cannot accommodate the additional header messages.
Oracle BPEL Process Manager solves this problem by extending the default BPEL communication activities with the bpelx:headerVariable
extension. The extension syntax is as shown in Example 6-106:
Example 6-106 bpelx:headerVariable Extension
This section provides an example of how to create BPEL and WSDL files to receive SOAP headers.
To receive SOAP headers in BPEL:
Example 6-107 WSDL File Contents
bpelx:headerVariable
to receive the headers, as shown in Example 6-108. Example 6-108 bpelx:headerVariable Use
This section provides an example of how to send SOAP headers.
To send SOAP headers in BPEL:
composite.xml
to refer to the HeaderService
. bpelx:inputHeaderVariable
, as shown in Example 6-109. Example 6-109 bpelx:inputHeaderVariable Use
You can extend a version 2.0 BPEL process to add custom extension namespace declarations. With the mustUnderstand
attribute, you can indicate whether the custom namespaces carry semantics that must be understood by the BPEL process.
If a BPEL process does not support one or more of the extensions with mustUnderstand
set to yes
, the process definition is rejected.
Extensions are defined in the extensions
element. Example 6-110 provides details.
Example 6-110 Extension Namespace Declaration Syntax
The contents of an extension
element must be a single element qualified with a namespace different from the standard BPEL namespace.
For more information about extension declarations, see the Web Services Business Process Execution Language Version 2.0 Specification located at the following URL:
To declare extension namespaces:
The Extensions dialog is displayed.
The Extension dialog is displayed.
After you complete your design, the .bpel
process looks as shown in Example 6-111.
This chapter describes how to invoke a synchronous web service from a BPEL process. It demonstrates how to set up the components necessary to perform a synchronous invocation and how these components are coded. It also describes how to specify a timeout value and call a one-way Oracle Mediator with a synchronous BPEL process.
This chapter includes the following sections:
For a simple Hello World sample (bpel-101-HelloWorld
) that takes an input string, adds a prefix of "Hello "
to the string, and returns it, see the Oracle SOA Suite samples.
Synchronous web services provide an immediate response to an invocation. BPEL can connect to synchronous web services through a partner link, send data, and then receive the reply in the same synchronous invocation.
A synchronous invocation requires the following components:
Defines the location and the role of the web services with which the BPEL process service component connects to perform tasks, and the variables used to carry information between the web service and the BPEL process service component. A partner link is required for each web service that the BPEL process service component calls. You can create partner links in several ways, including the following:
Opens a port in the BPEL process service component to send and receive data. For example, this port is used to retrieve information verifying that a customer has acceptable credit using a credit card authorization service. For synchronous callbacks, only one port is needed for both the send and receive functions.
This section examines a synchronous invocation operation using the OrderProcessor.bpel
file in the WebLogic Fusion Order Demo application as an example.
To invoke a synchronous web service:
Figure 7-1 shows the diagram for the Scope_AuthorizeCreditCard scope activity of the OrderProcessor.bpel file in the Fusion Order Demo, which defines a simple set of actions.
Figure 7-1 Diagram of OrderProcessor.bpel
The following actions take place:
Figure 7-2 CreditCardAuthorizationService Partner Link
Figure 7-3 shows the InvokeCheckCreditCard invoke activity.
Figure 7-3 InvokeCheckCreditCard Invoke Activity
Note: The switch activity is replaced by the if activity in BPEL 2.0. |
When you create a partner link and invoke activity, the necessary BPEL code for invoking a synchronous web service is added to the appropriate BPEL and Web Services Description Language (WSDL) files.
In the OrderProcessor.bpel
code, the partner link defines the link name and type, and the role of the BPEL process service component in interacting with the partner service.
From the BPEL source code, the CreditCardAuthorizationService
partner link definition is shown in Example 7-1:
Example 7-1 Partner Link Definition
Variable definitions that are accessible locally in the Scope_AuthorizeCreditCard
scope are shown in Example 7-2. The types for these variables are defined in the WSDL for the process itself.
Example 7-2 Variable Definition
The WSDL file defines the interface to your BPEL process service component: the messages that it accepts and returns, the operations that are supported, and other parameters.
The web service's CreditCardAuthorizationService
.wsdl
file contains two sections that enable the web service to work with BPEL process service components:
partnerLinkType
: Defines the following characteristics of the conversion between a BPEL process service component and the credit card authorization web service:
portType
provided by each for receiving messages within the conversation portType
: A collection of related operations implemented by a participant in a conversation. A port type defines which information is passed back and forth, the form of that information, and so on. A synchronous invocation requires only one port type that both initiates the synchronous process and calls back the client with the response. An asynchronous callback (one in which the reply is not immediate) requires two port types, one to send the request, and another to receive the reply when it arrives.
In this example, the portType
CreditAuthorizationPort
receives the credit card type, credit card number, and purchase amount, and returns the status results.
Example 7-3 provides an example of partnerLinkType
and portType
.
The invoke activity includes the lCreditCardInput
local input variable. The credit card authorization web service uses the lCreditCardInput
input variable. This variable contains the customer's credit card type, credit card number, and purchase amount. The lCreditCardOutput
variable returns status results from the CreditAuthorizationService
service. Example 7-4 provides an example.
The BPEL code shown in Example 7-5 performs the synchronous invocation:
Example 7-5 Synchronous Invocation
You can specify transaction timeout values with the property SyncMaxWaitTime in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. This property defines the maximum time a request and response operation takes before timing out. If the BPEL process service component does not receive a reply within the specified time, then the activity fails.
To specify transaction timeout values:
The SyncMaxWaitTime property applies to durable processes that are called in an asynchronous manner.
Assume you have a BPEL process with the definition shown in Example 7-6. The process is not durable because there are no breakpoint activities.
Example 7-6 Process with No Breakpoint Activities
If a Java client or another BPEL process calls this process, the assign activity is performed and the reply activity sets the output message into a HashMap for the client (actually the delivery service) to retrieve. Since the reply is the last activity, the thread returns to the client side and tries to pick up the reply message. Since the reply message was previously inserted, the client does not wait and returns with the reply.
Assume you have a BPEL process with a breakpoint activity, as shown in Example 7-7.
Example 7-7 Process with Breakpoint Activities
While it is not recommended to have asynchronous activities inside a synchronous process, BPEL does not prevent this type of design.
When the client (or another BPEL process) calls the process, the wait (breakpoint) activity is executed. However, since the wait is processed after some time by an asynchronous thread in the background, the executing thread returns to the client side. The client (actually the delivery service) tries to pick up the reply message, but it is not there since the reply activity in the process has not yet executed. Therefore, the client thread waits for the SyncMaxWaitTime seconds value. If this time is exceeded, then the client thread returns to the caller with a timeout exception.If the wait is less than the SyncMaxWaitTime value, the asynchronous background thread then resumes at the wait and executes the reply. The reply is placed in the HashMap and the waiter (the client thread) is notified. The client thread picks up the reply message and returns.
Therefore, SyncMaxWaitTime only applies to synchronous process invocations when the process has a breakpoint in the middle. If there is no breakpoint, the entire process is executed by the client thread and returns the reply message.
You can expose a synchronous interface in the front end while using an asynchronous callback in the back end to simulate a synchronous reply. This is the default behavior in BPEL processes with the automatic setting of the configuration.transaction
property to requiresNew
in the composite.xml
file. Example 7-8 provides details.
Example 7-8 configuration.transaction Property
RequiresNew
is the recommended value. If you want to participate in the client's transaction, you must set the configuration.transaction
property to Required
.
This chapter describes how to invoke an asynchronous web service from a BPEL process. It demonstrates how to set up the components necessary to perform an asynchronous invocation and how these components are coded. It also describes how to create a dynamic partner link at runtime and use WS-Addressing.
This chapter includes the following sections:
Asynchronous messaging styles are useful for environments in which a service, such as a loan processor, can take a long time to process a client request. Asynchronous services also provide a more reliable fault-tolerant and scalable architecture than synchronous services.
This section introduces asynchronous web service invocation with a company called United Loan. United Loan publishes an asynchronous web service that processes a client's loan application request and then returns a loan offer. This use case discusses how to integrate a BPEL process service component with this asynchronous loan application approver web service.
This use case illustrates the key design concepts for requesting information from an asynchronous service, and then receiving the response. The asynchronous United Loan service in this example is another BPEL process service component. However, the same BPEL call can interact with any properly designed web service. The target web service WSDL file contains the information necessary to request and receive the necessary information.
For the asynchronous web service, the following actions take place (in order of priority):
When the loan request is initiated, a correlation ID unique to the client and partner link initiating the request is also sent to the loan processor web service. The correlation ID ensures that the correct loan offer response is returned to the corresponding loan application requester.
The remaining sections in this chapter provide specific details about the asynchronous functionality.
This section provides an overview of the tasks for adding asynchronous functionality to a BPEL process service component.
You perform the following steps to asynchronously invoke a web service:
These instructions describe how to create a partner link in a BPEL process (for this example, named LoanService) for the loan application approver web service.
To add a partner link for an asynchronous service:
The Create BPEL Process dialog appears.
The Oracle BPEL Designer appears.
The Create Partner Link dialog appears.
Enter a name for the partner link (for this example, LoanService
is entered).
Displays the BPEL process service component name (for this example, LoanBroker
appears).
Enter the name of the Web Services Description Language (WSDL) file to use. Click the SOA Resource Lookup icon above this field to locate the correct WSDL.
Refers to the external service with which the BPEL process service component is to interface. Select from the list (for this example, LoanService
is selected).
Refers to the role of the external source, for example, provider. Select from the list (for this example, LoanServiceProvider
is selected).
Refers to the role of the BPEL process service component in this interaction. Select from the list (for this example, LoanServiceRequester
is selected).
A new partner link for the loan application approver web service (United Loan) appears in the swimlane of the designer.
Follow these instructions to create an invoke activity and a global input variable named request
. This activity initiates the asynchronous BPEL process service component activity with the loan application approver web service (United Loan). The loan application approver web service uses the request
input variable to receive the loan request from the client.
To add an invoke activity:
Go to the Structure window. While this example describes variable creation from the Structure window, you can also create variables by clicking the Add icons to the right of the Input and Output fields of the Invoke dialog.
The Create Variable dialog appears.
Enter the variable name and select Message Type from the options provided:
This option lets you select an XML schema simple type (for example, string, boolean, and so on).
This option enables you to select a WSDL message file definition of a partner link or of the project WSDL file of the current BPEL process service component (for example, a response message or a request message). You can specify variables associated with message types as input or output variables for invoke, receive, or reply activities.
To display the message type, select the Message Type option, and then select its Browse icon to display the Type Chooser dialog. From here, expand the Message Types tree to make your selection. For this example, Message Types > Partner Links > Loan Service > LoanService.wsdl > Message Types > LoanServiceRequestMessage is selected.
This option lets you select an XML schema element of the project schema file or project WSDL file of the current BPEL process service component, or of a partner link.
Figure 8-1 shows the Create Variable dialog.
Click OK.
The Variable Chooser dialog appears, where you can select the variable.
There is no output variable specified because the output variable is returned in the receive operation. The invoke activity is created.
For more information about the invoke activity, see Section 8.2.2.5, "Invoke and Receive Activities."
Follow these steps to create a receive activity and a global output variable named response
. This activity waits for the loan application approver web service's callback operation. The loan application approver web service uses this output variable to send the loan offer result to the client.
To add a receive activity:
Create a variable to hold the receive information by invoking the Create Variable dialog, as you did in Step 3 through Step 7 of Section 8.2.1.2, "Adding an Invoke Activity."
Figure 8-2 shows the Create Variable dialog in BPEL 1.1.
Not : In BPEL projects that support version 2.0 of the BPEL specification, the Create Variable dialog includes an Initialize tab that enables you to initialize the variable type inline (for example, as a variable, expression, literal, partner link, or property). For more information, see Section 6.5.2, "Initializing Variables with an Inline from-spec in BPEL 2.0." |
receive_invoke
. The receive activity and the output variable are created. Because the initial receive activity in the BPEL file (for this example, LoanBroker.bpel) created the initial BPEL process service component instance, a second instance does not need to be created.
In addition to the asynchronous-specific tasks, you must perform the following tasks.
This section describes what happens when you invoke an asynchronous web service.
The portType
section of the WSDL file (in this example, for LoanService
) defines the ports to be used for the asynchronous service.
Asynchronous services have two port types. Each port type performs a one-way operation. In this example, one port type responds to the asynchronous process and the other calls back the client with the asynchronous response. In the example shown in Example 8-1, the portType
LoanServiceCallback
receives the client's loan application request and the portType
LoanService
asynchronously calls back the client with the loan offer response.
Example 8-1 portType Definition
The partnerLinkType
section of the WSDL file (in this example, for LoanService
) defines the following characteristics of the BPEL process service component:
portType
provided for receiving messages within the conversation Partner link types in asynchronous services have two roles: one for the web service provider and one for the client requester.
In the conversation shown in Example 8-2, the LoanServiceProvider
role and LoanService
portType
are used for client request messages and the LoanServiceRequester
role and LoanServiceCallback
portType
are used for asynchronously returning (calling back) response messages to the client.
Example 8-2 partnerLinkType Definition
Two port types are combined into this single asynchronous BPEL process service component: portType="services:LoanService"
of the invoke
activity and portType="services:LoanServiceCallback"
of the receive
activity. Port types are essentially a collection of operations to be performed. For this BPEL process service component, there are two operations to perform: initiate
in the invoke
activity and onResult
in the receive
activity.
To call the service from BPEL, you use the BPEL file to define how the process interfaces with the web service. View the partnerLinks
section. The services with which a process interacts are designed as partner links. Each partner link is characterized by a partnerLinkType
.
Each partner link is named. This name is used for all service interactions through that partner link. This is critical in correlating responses to different partner links for simultaneous requests of the same type.
Asynchronous processes use a second partner link for the callback to the client. In this example, the second partner link, LoanService
, is used by the loan application approver web service. Example 8-3 provides an example.
Example 8-3 partnerLink Definition
The attribute myRole
indicates the role of the client. The attribute partnerRole
role indicates the role of the partner in this conversation. Each partnerLinkType
has a myRole
and partnerRole
attribute in asynchronous processes.
In the composite.xml
file, the loan application approver web service appears, as shown in Example 8-4.
Example 8-4 Loan Application Approver Web Service
For more information, see Section 8.2.1.1, "Adding a Partner Link for an Asynchronous Service" for instructions on creating a partner link.
View the variables
and sequence
sections. Two areas of particular interest concern the invoke
and receive
activities:
invoke
activity invokes a synchronous web service (as discussed in Chapter 7, "Invoking a Synchronous Web Service from a BPEL Process") or initiates an asynchronous service. The invoke
activity includes the request
global input variable defined in the variables
section. The request
global input variable is used by the loan application approver web service. This variable contains the contents of the initial loan application request document.
receive
activity that waits for the asynchronous callback from the loan application approver web service. The receive
activity includes the response
global output variable defined in the variables
section. This variable contains the loan offer response. The receive
activity asynchronously waits for a callback message from a service. While the BPEL process service component is waiting, it is dehydrated, or compressed and stored, until the callback message arrives. Example 8-5 provides an example.
Example 8-5 Invoke and Receive Activities
When an asynchronous service is initiated with the invoke
activity, a correlation ID unique to the client request is also sent, using Web Services Addressing (WS-Addressing) (described in Section 8.4, "Using WS-Addressing in an Asynchronous Service"). Because multiple processes may be waiting for service callbacks, the server must know which BPEL process service component instance is waiting for a callback message from the loan application approver web service. The correlation ID enables the server to correlate the response with the appropriate requesting instance.
You may notice a createInstance
attribute in the initial receive
activity. In this initial receive
activity, the createInstance
element is set to yes
. This starts a new instance of the BPEL process service component. At least one instance startup is required for a conversation. For this reason, you set the createInstance
variable to no
in the second receive
activity.
Example 8-6 shows the source code for the createInstance
attribute:
To automatically maintain long-running asynchronous processes and their current state information in a database while they wait for asynchronous callbacks, you use a database as a dehydration store. Storing the process in a database preserves the process and prevents any loss of state or reliability if a system shuts down or a network problem occurs. This feature increases both BPEL process service component reliability and scalability. You can also use it to support clustering and failover.
You insert this point between the invoke activity and receive activity. You can also explicitly specify a dehydration point with a dehydrate activity. For more information, see Section A.2.9, "Dehydrate Activity."
Oracle SOA Suite provides support for specifying multiple partner link endpoint locations. This capability is useful for failover purposes if the first endpoint is down. To provide an alternate partner link endpoint location, add the location
attribute to the composite.xml
file. Example 8-7 provides an example.
Example 8-7 Alternate Runtime Endpoint Location
If multiple client components invoke a SOA composite application by using its remote WSDL file, the callback response can only be retrieved by the original client calling the remote composite if it has a receive activity. When the original client does not have a receive activity and any of the subsequent clients calling the composite has a receive activity, the response message is lost. It goes into the recovery state of the original client process.
This is the expected behavior. This is because the composite being invoked cannot tell which client has a receive activity or if the client is indeed a BPEL process service component.
Receive activities are a type of inbound message activity (IMA). Other examples of IMAs are as follows:
The BPEL 2.0 specification allows multiple IMAs to work with each other or with other IMAs derived from extension activities. To provide for consistent runtime behavior, the BPEL 2.0 specification allows for correlation sets with the initiate
attribute set to join
.However, Oracle BPEL Process Manager's implementation of the BPEL 2.0 specification does not support this behavior. The only way to support multiple IMAs is by coding them as onMessage branches for a pick activity (that is, setting createInstance
to yes
).Oracle BPEL Process Manager also does not support other forms of multiple IMAs, such as a flow activity with two branches, each with a receive activity and with createInstance
set to yes
and correlation sets with initiate
set to join
.
As a workaround, you must design two different BPEL processes with the two receive activities in alternating order, as follows:
createInstance
set to yes
createInstance
set to yes
. The same also applies for any other combination of IMAs, such as a receive activity and pick activity, or two pick activities.
You can also enter an optional conversation ID value in the Conversation ID field of an invoke activity (and other activities such as a receive activity and the onMessage branch of a pick or scope activity).
The conversation ID identifies a process instance during an asynchronous conversation. By default, the BPEL process service engine generates a unique ID for each conversation (which can span multiple invoke and receive activities), as specified by WSA addressing. If you want, you can specify your own value for the service engine to use. Conversation IDs are implemented with the bpelx:conversationId
extension.
Example 8-8 provides an example of the bpelx:conversationId
extension in a BPEL project that supports BPEL version 1.1. The bpelx:conversationId
extension takes an XPath expression.
Example 8-9 provides an example of the bpelx:conversationId
extension in a BPEL project that supports BPEL version 2.0. The bpelx:conversationId
extension takes a BPEL 2.0 XPath expression.
When you design a SOA composite application, you can face the following challenges:
The dynamic partner link feature enables you to dynamically assign an endpoint reference to a partner link for use at runtime in BPEL versions 1.1 and 2.0. The dynamic partner link provides conditions, similar to a switch activity, that are evaluated at runtime.
To create a dynamic partner link at design time for use at runtime:
portType
. The Create Web Service dialog appears.
When complete, the reference binding component entry in the composite.xml
file that uses the WSDL looks as follows:
Notes:
|
The XML Fragment dialog for BPEL 1.1 appears. If you are using BPEL 2.0, the Literal dialog appears.
Figure 8-4 XML Fragment Dialog in BPEL 1.1
When complete, the BPEL file contains one of the services defined in the WSDL.
Because there can be many active instances at any time, the server must be able to direct web service responses to the correct BPEL process service component instance. You can use WS-Addressing to identify asynchronous messages to ensure that asynchronous callbacks locate the appropriate client.
Figure 8-5 provides an overview of WS-Addressing. WS-Addressing uses Simple Object Access Protocol (SOAP) headers for asynchronous message correlation. Messages are independent of the transport or application used.
Figure 8-5 Callback with WS-Addressing Headers
Figure 8-5 shows how messages are passed along with WS headers so that the response can be sent to the correct destination.
The example in this chapter uses WS-Addressing for correlation. To view the messages, you can use TCP tunneling, which is described in Section 8.4.1.1, "Using TCP Tunneling to See Messages Exchanged Between Programs."
WS-Addressing defines the following information typically provided by transport protocols and messaging systems. This information is processed independently of the transport or application:
The reply-to address specifies the location at which a BPEL client is listening for a callback message.
Use TCP tunneling to view SOAP messages exchanged between the BPEL process service component flow and the web service (including those containing the correlation ID). You can see the exact SOAP messages that are sent to, or received from, services with which a BPEL process service component flow communicates.
You insert a software listener between your BPEL process service component flow and the web service. Your BPEL process service component flow communicates with the listener (called a TCP tunnel). The listener forwards your messages to the web service, and also displays them. Responses from the web service are returned to the tunnel, which displays and forwards them back to the BPEL process service component.
WS-Addressing is a public specification and is the default correlation method supported by Oracle BPEL Process Manager. You do not need to edit the .bpel
and .wsdl
files to use WS-Addressing.
The messages that are exchanged between programs and services can be seen through TCP tunneling. This is particularly useful when you want to see the exact SOAP messages exchanged between the BPEL process service component flow and web services.
To monitor the SOAP messages, insert a software listener between your flow and the service. Your flow communicates with the listener (called a TCP tunnel) and the listener forwards your messages to the service, and displays them. Likewise, responses from the service are returned to the tunnel, which displays them and then forwards them back to the flow.
To see all the messages exchanged between the server and a web service, you need only a single TCP tunnel for synchronous services because all the pertinent messages are communicated in a single request and reply interaction with the service. For asynchronous services, you must set up two tunnels, one for the invocation of the service and another for the callback port of the flow.
Follow these steps to set up a TCP listener for synchronous services initiated by an Oracle BPEL Process Manager process:
tcpmon
) tcpmon
: axis.jar
in your class path. tcpmon
: composite.xml
file, add the endpointURI
property under binding.ws
for your flow to override the endpoint of the service. ant
. The same technique can see SOAP messages passed to invoke a BPEL process service component as a web service from another tool kit such as Axis or .NET.
Follow these steps to set up a TCP listener to display the SOAP messages for callbacks from asynchronous services:
where soa_server is the specific server instance name (for example, AdminServer).
All the SOA composite applications deployed on the server appear.
Follow these steps to set this property on a composite application. This action enables it to apply to all bindings in the composite application.
Ensure the Attributes tab is selected.
where number is the next sequential number beyond the last property. For example, if the property list contains twelve elements, adding a new property causes Element_13 to be displayed.
oracle.webservices.local.optimization
. false
. false
. In the Name column on the Operations tab, click save.
Click Return or click a node in the System MBean Browser pane.
Note: After adding, deleting, or updating a property, you can click the Refresh cached tree data icon in the upper right corner of the System MBean Browser page to see the new data. |
Follow these steps to set this property on a specific binding.
The callbacks from the asynchronous services are shown in the TCP listener.
If you are an Oracle JDeveloper user, you can also use the built-in Packet Monitor to see SOAP messages for both synchronous and asynchronous services.
This chapter describes how to use correlation sets to ensure that asynchronous callbacks locate the appropriate client. It also describes how to use aggregation patterns to route messages to the same instance.
This chapter includes the following sections:
Correlation sets provide another method for directing web service responses to the correct BPEL process service component instance. You can use correlation sets to identify asynchronous messages to ensure that asynchronous callbacks locate the appropriate client.
Correlation sets are a BPEL mechanism that provides for the correlation of asynchronous messages based on message body contents. To use this method, define the correlation sets in your .bpel
file. This method is designed for services that do not support WS-Addressing or for certain sophisticated conversation patterns, for example, when the conversation is in the form A > B > C > A
instead of A > B > A
.
This section describes how to use correlation sets in an asynchronous service with Oracle JDeveloper. Correlation sets enable you to correlate asynchronous messages based on message body contents. You define correlation sets when interactions are not simple invoke-receive activities. This example illustrates how to use correlation sets for a process having three receive activities with no associated invoke activities.
This section describes the steps to perform to use correlation sets in an asynchronous service.
To create a project:
The Create SOA Application Wizard appears.
MyCorrelationSetApp
. MyCorrelationSetComposite
. The Create BPEL Process dialog appears.
Table 9-1 Create BPEL Process Dialog Fields and Values
Field | Value |
---|---|
Name | Enter |
Template | Select Asynchronous BPEL Process. |
Expose as a SOAP Service | Select the checkbox. After process creation, note the SOAP service that appears in the Exposed Services swimlane. This service provides the entry point to the composite application from the outside world. |
You now create three partner links that use the SOAP service.
This section contains these topics:
To create an initial partner link and file adapter service:
Figure 9-1 Adapter Configuration Wizard Startup
In the Service Name field of the Service Name dialog, enter FirstReceive
and click Next.
The URL field (Book1_4.xsd for this example) and the Schema Element field (LoanAppl for this example) are filled in.
You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 9-2:
To create a second partner link and file adapter service:
In the Service Name field of the Service Name dialog, enter SecondFileRead
and click Next. This name must be unique from the one you entered in Step 7 of Section 9.1.1.2.1, "Creating an Initial Partner Link and File Adapter Service."
Read1
. The URL field (Book1_5.xsd for this example) and the Schema Element field (LoanAppResponse for this example) are filled in.
You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 9-3:
To create a third partner link and file adapter service:
ThirdFileRead
and click Next. This name must be unique from the one you entered in Step 7 of Section 9.1.1.2.1, "Creating an Initial Partner Link and File Adapter Service" and Step 6 of Section 9.1.1.2.2, "Creating a Second Partner Link and File Adapter Service." Read2
. This name must be unique. The URL field (Book1_6.xsd for this example) and the Schema Element field (CustResponse for this example) are filled in.
You are returned to the Partner Link dialog. All other fields are automatically completed. The dialog looks as shown in Table 9-4:
You now create three receive activities; one for each partner link. The receive activities specify the partner link from which to receive information.
To create an initial receive activity:
Enter the details described in Table 9-5 to associate the first partner link (FirstReceive) with the first receive activity:
Table 9-5 Receive Dialog Fields and Values
Field | Value |
---|---|
Name |
|
Partner Link | FirstReceive |
Create Instance | Select this checkbox. |
The Operation (Read) field is automatically filled in.
A variable named receiveFirst_Read_InputVariable is automatically created in the Variable field.
To create a second receive activity:
Table 9-6 Receive Dialog Fields and Values
Field | Value |
---|---|
Name |
|
Partner Link | SecondFileRead |
Create Instance | Do not select this checkbox. |
The Operation (Read1) field is automatically filled in.
A variable named receiveSecond_Read1_InputVariable is automatically created in the Variable field.
To create a third receive activity:
Table 9-7 Receive Dialog Fields and Values
Field | Value |
---|---|
Name |
|
Partner Link | ThirdFileRead |
Create Instance | Do not select this checkbox. |
The Operation (Read2) field is automatically filled in.
A variable named receiveThird_Read2_InputVariable is automatically created in the Variable field.
Each receive activity is now associated with a specific partner link.
You now create correlation sets. A set of correlation tokens is a set of properties shared by all messages in the correlated group.
To create an initial correlation set:
CorrelationSet1
. NameCorr
. To create a second correlation set:
CorrelationSet2
. IDCorr
. You now associate the correlation sets with the receive activities. You perform the following correlation set tasks:
To associate the first correlation set with a receive activity:
To associate the second correlation set with a receive activity:
This groups the first and second receive activities into a correlated group.
To associate the third correlation set with a receive activity:
This groups the second and third receive activities into a second correlated group.
Property aliases enable you to map a global property to a field in a specific message part. This action enables the property name to become an alias for the message part and location. The alias can be used in XPath expressions.
You create the following two property aliases for the NameCorr correlation set:
To create property aliases for NameCorr:
In the Structure window of Oracle JDeveloper, right-click Property Aliases.
From the Property list, select NameCorr.
You create the following two property aliases for the IDCorr correlation set:
To create property aliases for IDCorr:
In the Structure window, right-click Property Aliases.
In the Property list, select IDCorr.
Design is now complete.
To review WSDL file content:
The NameCorr
and IDCorr
correlation set properties are defined in the MyCorrelationSet_Properties.wsd
l
file in the Application Navigator. Example 9-1 provides an example.
Example 9-1 Correlation Set Properties
The property aliases are defined in the MyCorrelationSet.wsdl
file, as shown in Example 9-2:
Example 9-2 Property Aliases
Because the BPEL process service component is not created as a web services provider in this example, the MyCorrelationSet.wsdl
file is not referenced in the BPEL process service component. Therefore, you must import the MyCorrelationSet.wsdl
file inside the FirstReceive.wsdl
file to reference the correlation sets defined in the former WSDL. Example 9-3 provides an example.
Do not use the same conversion ID for different revisions of a SOA composite application. When correlation sets are used in a BPEL process, you have explicit control over the conversation ID value. Oracle SOA Suite does not interfere or add restrictions on conversation ID value generation. This situation means that even though it appears that Oracle SOA Suite is generating the same conversation ID for different revisions, you actually control this behavior. Oracle SOA Suite suite does not restrict you from using the same conversation ID for different instances of different revisions.
If you do not use correlation sets, the conversation ID generated is unique and this is not a problem because Oracle SOA Suite decides which conversation ID to generate, and not you.
Oracle SOA Suite does not execute a revision check for callback routing. Routing of callback messages is only based on the following:
The concept of a revision number is applicable to Oracle SOA composite applications, and is not part of the BPEL specification. This is why it is not used as part of the routing decision.
There is another complication in which adding a revision as part of callback routing causes problems. When sending a callback, you also specify the endpoint URL. If the endpoint URL does not contain the composite revision (which is extremely likely), the message is assumed to be routed to the default revision. If Oracle SOA Suite runtime adds a revision check as part of callback routing, the callback for the nondefault revision instance is never possible.
For example, assume you have the following BPEL process:
Assume you perform the following steps:
123
, which generates conv_id = "123"
. This process now invokes a web service through a one-way invoke activity and then waits on the receive_2 activity for a callback to arrive.
A web service sends a callback for the instance for revision 1.0. However, as a part of its URL, it does not specify the revision number. You typically create a callback so that the URL does not use the revision number. This is because web services are external and you cannot change web service settings to continue using a revision tag because it is internal to Oracle SOA Suite and is a concept that the external world does not understand.
Since a revision number is not specified, the SOA server assumes that the revision number must be 2.0 and, if the routing of the callback takes the revision number into account, it cannot forward this callback intended for 1.0 to the correct revision 1.0. Instead, it attempts to route it to the default revision 2.0, which does not have any instance waiting for the callback.
You cannot route callback messages based on revisions. You only receive the option to route callback messages based on the conversion ID (If the correlation set is not used, then even this is not under your control), operation name, and component name.
For these reasons, different instances must use different conversation IDs (which means different input is used for creating a conversion ID) to avoid confusion, and routing should be solely based on a conversation ID.
Assume you have the following scenario:
For a process that has an inbound message activity (IMA) (for example, a receive activity, onMessage branch of a scope or pick activity, or onEvent branch of a scope activity in BPEL 2.0) that uses the fromParts
element with fromPart
defined for each part, correlations cannot be defined because the runtime environment cannot determine the part to which to apply the property alias.
For more information about mapping WSDL message parts with the toParts
and fromParts
elements, see Section 6.17, "Mapping WSDL Message Parts in BPEL 2.0."
Oracle BPEL Process Manager supports a message aggregation feature. When multiple messages are routed to the same process/partner link/operation name, the first message is routed to create a new instance and subsequent messages can be routed to continue the created instance using a midprocess receive activity.
Message aggregation enables you to use the same operation (or event name) in an entry receive activity and a midprocess receive activity.
Notes:
|
You can control the number of instances to create and use to route messages with the reenableAggregationOnComplete
property.
To configure BPEL process instance creation:
Figure 9-2 Selected BPEL Process Service Component
The Create Property dialog is displayed.
bpel.config.reenableAggregationOnComplete
deployment descriptor property. The prefix of bpel.config
is required for this type of deployment descriptor. true
, as described in Table 9-8. Table 9-8 reenableAggregationOnComplete Property Settings
Value | Description | Example |
---|---|---|
| Creates a new instance to handle messages. However, there is a window between messages coming in and instance completion. This can result in messages remaining in the | You invoke messages 1 through 4 for a client using the
|
| This is the default behavior. This setting causes the aggregation feature to be disabled. Only one instance is created. Messages that are not handled by the instance remain in the | You invoke messages 1 through 4 for a client using the You should not attempt to route multiple messages using the same correlation set to one BPEL instance. |
Figure 9-4 shows the completed Create Property dialog.
Example 9-4 shows the reenableAggregationOnComplete
property with the bpel.config
prefix in the composite.xml
file.
Example 9-4 reenableAggregationOnComplete Property in composite.xml File
You create a correlation set as shown in Example 9-5. All messages to Oracle BPEL Process Manager are routed to the same operation name. The messages have the same correlation ID. The interface WSDL does not differentiate between the entry activity (receiveInput
) and the midprocess receive activity (Continue_Receive
). All messages are processed using the initiate
operation. A single instance is created to which to route all messages.
This differs from releases before 11g Release 1 11.1.1.6, in which you needed to define different operation names on the same partner link. The process had to expose two operations and the caller had to choose the correct operation name.
Example 9-5 Correlation with Same Operation in Entry and Midprocess Receive Activities
For event delivery network (EDN) business events, you substitute the operation
attribute with bpelx:eventName
in both the entry and midprocess receive activities.
Information is maintained in the DLV_AGGREGATION
table:
This information can be deleted from this table with the purge scripts or from the Delete With Options dialog in Oracle Enterprise Manager Fusion Middleware Control. For more information about both of these options, see the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
For a BPEL process using correlation sets, the correct routing is performed. The message can be either of the following:
Figure 9-5 shows entry and midprocess receive activities using the same operation (process
).
Figure 9-5 Routing a New Message to a New or Existing Instance
Example 9-6 provides an example the entry and midprocess receive activities using the same operation (process
).
Example 9-6 Routing a New Message to a New or Existing Instance
In the initial scenario in Example 9-6, the following actions occur in BPEL process P1:
101
). Continue_Receive
activity. These messages are marked as callback messages. while
loop are expected. Assume now that additional messages are routed, which can potentially cause race conditions to occur. Table 9-9 provides details.
Table 9-9 Message Delivery Scenarios
Scenario | Description | Marked as Invoke Message | Marked as Callback Message |
---|---|---|---|
1 | Assume the partner now provides message 5 for the same correlation ID ( |
|
|
2 | If messages 4 and 5 are received within a small time window, it is possible that message 4 is closing the instance BPEL process P1 and message 5 is routed as a callback to that instance. This scenario can cause a race condition. For example:
|
|
|
3 | This is similar to scenario 2. However, in this case, messages 7, 8, and 9 are not received. For example:
There are several options for message recovery.
|
|
|
This chapter describes how to use parallel flow in a BPEL process service component. Parallel flows enable a BPEL process service component to perform multiple tasks at the same time. Parallel flow is especially useful when you must perform several time-consuming and independent tasks. This chapter also describes how to customize the number of parallel branches.
This chapter includes the following sections:
For additional information on creating parallel flows in a SOA composite application, see the Fusion Order Demo application, which is described in Chapter 3, "Introduction to the SOA Sample Application."
A BPEL process service component must sometimes gather information from multiple asynchronous sources. Because each callback can take an undefined amount of time (hours or days), it may take too long to call each service one at a time. By breaking the calls into a parallel flow, a BPEL process service component can invoke multiple web services at the same time, and receive the responses as they come in. This method is much more time efficient.
Figure 10-1 shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion Order Demo application. The Retrieve_QuotesFromSuppliers flow activity sends order information to two suppliers in parallel:
The two warehouses return their bids for the order to the flow activity. Here, two asynchronous callbacks execute in parallel. One callback does not have to wait for the other to complete first. Each response is stored in a different global variable.
Branches in flow, flowN, and forEach activities are executed serially in a single thread (that is, the Nth branch is executed only after N-1 execution has completed). Execution is not completely parallel. This is because the branches do not execute in concurrent threads in this mode. Instead, one thread starts executing a flow branch until it reaches a blocking activity (for example, an synchronous invoke). At this point, a new thread is created that starts executing the other branch, and the process continues. This creates the impression that the flow branches are executing in parallel. In this mode, however, if the flow branches do not define a blocking activity, the branches still execute serially.
This design is intended for several reasons:
To achieve pseudo-parallelism, you can configure invoke activities to be nonblocking with the nonBlockingInvoke
deployment descriptor property. When this property is set to true
, the process manager creates a new thread to perform each branch's invoke activity in parallel.
For more information about the nonBlockingInvoke
property, see Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector" and Section "nonBlockingInvoke" of Oracle Fusion Middleware Performance and Tuning Guide.
You can create a parallel flow in a BPEL process service component with the flow activity. The flow activity enables you to specify one or more activities to be performed concurrently. The flow activity also provides synchronization. The flow activity completes when all activities in the flow have finished processing. Completion of this activity includes the possibility that it can be skipped if its enabling condition is false.
Note: Branches in a flow activity are executed serially in a single thread. For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread." |
To create a parallel flow:
The flow activity initially includes two branches, each with a box for functional elements. Populate these boxes as you do a scope activity, either by building a function or dragging activities into the boxes. You can add additional branches by highlighting the flow activity and clicking the Add Sequence icon.
When complete, flow activity design can look as shown in Figure 10-4. This example shows the Retrieve_QuotesFromSuppliers flow activity of the Fusion Order Demo application. Two branches are defined for receiving bids: one for InternalWarehouseService and the other for PartnerSupplierMediator.
Figure 10-4 Flow Activity After Design Completion
A flow activity typically contains many sequence activities. Each sequence is performed in parallel. Example 10-1 shows the syntax for two sequences of the Retrieve_QuotesFromSuppliers
flow activity in the OrderProcessor.bpel
file after design completion. However, a flow activity can have many sequences. A flow activity can also contain other activities. In Example 10-1, each sequence in the flow contains assign, invoke, and receive activities.
Example 10-1 Flow Activity
You can synchronize the execution of activities within a flow activity to ensure that certain activities only execute after other activities have completed. For example, assume you have an invoke activity, verifyFlight
, that is executed in parallel with other invoke activities (verifyHotel
, verifyCarRental
, and scheduleFlight
) when the flow activity begins. However, scheduling a flight is necessary only after verifying that a flight is available. Therefore, you can add a link between the verifyFlight
and scheduleFlight
invoke activities. Links provide a level of dependency indicating that the activity that is the target of the link (scheduleFlight
) is only executed if the activity that is the source of the link (verifyFlight
) has completed.
Example 10-2 provides details. The link name verifyFlight-To-scheduleFlight
is assigned to the source verifyFlight
and target scheduleFlight
invoke activities. If the source verifyFlight
completes execution, the target scheduleFlight
is then executed.
Example 10-2 Link Between Source and Target Activities
Example 10-2 provides an example of link syntax in BPEL version 2.0. The link syntax between BPEL version 1.1 and BPEL version 2.0 is slightly different.
<target>
and <source>
. <targets>
and <sources>
. Table 10-1 provides details.
Table 10-1 Links Syntax in BPEL Version 1.1 and BPEL Version 2.0
BPEL Version 1.1 Example | BPEL Version 2.0 Example |
---|---|
<flow> <links> <link name="XtoY"/> <link name="CtoD"/> </links> <sequence name="X"> <source linkName="XtoY"/> <invoke name="A" .../> <invoke name="B" .../> </sequence> <sequence name"Y"> <target linkName="XtoY"/> <receive name="C" ...> <source linkName="CtoD"/> </receive> <invoke name="E" .../> </sequence> <invoke partnerLink="D" ...> <target linkName="CtoD"/> </invoke> </flow> | <flow> <links> <link name="AtoB"/> </links> <assign name="B"> <targets> <target linkName="AtoB"/> </targets> <copy> <from>concat($output.payload, 'B')</from> <to>$output.payload</to> </copy> </assign> <assign name="A"> <sources> <source linkName="AtoB"/> </sources> <copy> <from>concat($output.payload, 'A')</from> <to>$output.payload</to> </copy> </assign> </flow> |
To create synchronization between activities within a flow activity:
Note: The Sources and Targets tabs are only available in BPEL 2.0 projects. For BPEL 1.1 projects, you must directly edit the BPEL file to use this functionality. |
Enter a name for the link, as shown in Figure 10-5.
A
is defined as the source in Figure 10-6. Each source activity can specify an optional Transition Condition as a safe guard for following the specified link. Click the row in this column to invoke the Browser icon for accessing the Expression Builder dialog for creating a condition. If the Transition Condition column is left blank, it is assumed to evaluate to true.
B
is defined as the target in Figure 10-7. When complete, design can appear similar to that shown in Figure 10-8.
Figure 10-8 Three Flow Activities Synchronized with Links
Example 10-3 shows the .bpel
file after design is complete for three flow activities with links for synchronizing activity execution.
Flow_1
shows a link between simple activities. Flow_1
includes a link named AtoB
. The activity that is the target of the link, assign activity B
, is only executed if the activity that is the source of the link, assign activity A
, has completed.
Flow_2
shows a link between simple activity and composite activity. Flow_2
also includes the link named AtoB
. The activity that is the target of the link, assign activity B
, is only executed if the activity that is the source of the link, scope activity scope1
, has completed.
Flow_3
shows a link between composite activities. Flow_3
also includes the link named AtoB
. The activity that is the target of the link, sequence activity Sequence_1
, is only executed if the activity that is the source of the link, scope activity scope2
, has completed.
Example 10-3 Flow Activities with Links
You can specify an optional join condition in target activities. The value of the join condition is a boolean expression. If a join condition is not specified, the join condition is the disjunction (that is, a logical OR operation) of the link status of all incoming links of this activity.
Oracle BPEL Designer does not provide design support for adding join conditions. To add a join condition, you must manually add the condition to the .bpel
file in Source view in Oracle BPEL Designer.
Example 10-4 provides an example of a join condition.
Example 10-4 Join Condition in Target Activity
This section describes how to customize the number of parallel branches with the following activities:
Note: Branches in flowN and forEach activities are executed serially in a single thread. For more information, see Section 10.1.1, "What You May Need to Know About the Execution of Parallel Flow Branches in a Single Thread." |
In the flow activity, the BPEL code determines the number of parallel branches. However, often the number of branches required is different depending on the available information. The flowN activity creates multiple flows equal to the value of N
, which is defined at runtime based on the data available and logic within the process. An index variable increments each time a new branch is created, until the index variable reaches the value of N
.
The flowN activity performs activities on an arbitrary number of data elements. As the number of elements changes, the BPEL process service component adjusts accordingly.
The branches created by flowN perform the same activities, but use different data. Each branch uses the index variable to look up input variables. The index variable can be used in the XPath expression to acquire the data specific for that branch.
For example, suppose there is an array of data. The BPEL process service component uses a count
function to determine the number of elements in the array. The process then sets N
to be the number of elements. The index variable starts at a preset value (zero is the default), and flowN creates branches to retrieve each element of the array and perform activities using data contained in that element. These branches are generated and performed in parallel, using all the values between the initial index value and N
. flowN terminates when the index variable reaches the value of N
. For example, if the array contains 3
elements, N
is set to 3
. Assuming the index variable begins at 1, the flowN activity creates three parallel branches with indexes 1, 2, and 3.
The flowN activity can use data from other sources as well, including data obtained from web services.
Figure 10-9 shows the runtime flow of a flowN activity in Oracle Enterprise Manager Fusion Middleware Control that looks up three hotels. This is different from the view, because instead of showing the BPEL process service component, it shows how the process has actually executed. In this case, there are three hotels, but the number of branches changes to match the number of hotels available.
Figure 10-9 Oracle Enterprise Manager Fusion Middleware Control View of the Execution of a flowN activity
To create a flowN activity:
Figure 10-10 shows the flowN dialog.
The flowN dialog enables you to:
N
(the number of branches to create) Figure 10-11 shows how a FlowN activity appears with additional activities.
Figure 10-11 FlowN Activity with Additional Activities
The following code shows the .bpel
file that uses the flowN activity to look up information on an arbitrary number of hotels. The following actions take place.
Example 10-5 shows the sequence name.
Example 10-5 Sequence Name
A receive
activity calls the client partner link to get the information that the flowN
activity must define N
times and look up the hotel information. Example 10-6 provides an example.
Example 10-6 Receive Activity
The flowN
activity begins next. After defining a name for the activity of flowN
, N
is defined as a value from the inputVariable
, which is the number of hotel entries. The activity also assigns index
as the index variable. Example 10-7 provides an example.
Example 10-7 FlowN Activity
bpelx:flowN
name="FlowN" N="bpws:getVariableData('NbParallelFlow')The copy rule shown in Example 10-8 then uses the index variable to concatenate the hotel entries into a list:
Example 10-8 Assign Activity
Using the hotel information, an invoke
activity looks up detailed information for each hotel through a web service. Example 10-9 provides an example.
Example 10-9 Invoke Activity
Finally, the BPEL process sends detailed information on each hotel to the client partner link. Example 10-10 provides an example.
You can use a forEach activity to process multiple sets of activities sequentially or in parallel. The forEach activity executes a contained (child) scope activity exactly N+1 times, where N equals a final counter value minus a starting counter value that you specify in the Counter Values tab of the For Each dialog. While other structured activities such as a flow activity can have any type of activity as its contained activity, the forEach activity can only include a scope activity.
When the forEach activity is started, the expressions you specify for the starting counter and final counter values are evaluated. Once the two values are returned, they remain constant for the lifecycle of the activity. Both expressions must return a value containing at least one character. If these expressions do not return valid values, a fault is thrown. If the starting counter value is greater than the final counter value, the contained scope activity is not performed and the forEach activity is considered complete.
During each iteration, the variable specified in the Counter Name field on the General tab is implicitly declared in the forEach activity's contained scope. During the first iteration of the scope, the counter variable is initialized with the starting counter value. The next iteration causes the counter variable to be initialized with the starting counter value, plus one. Each subsequent iteration increments the previously initialized counter variable value by one until the final iteration, where the counter is set to the final counter value. The counter variable is local to the enclosed scope activity. Although its value can be changed during an iteration, that value is lost after each iteration. Therefore, the counter variable value does not impact the value of the next iteration's counter.
The forEach activity supports the following looping iterations:
The forEach activity performs looping iterations sequentially N times over a given set of activities defined within a scope activity. As an example, the forEach activity iterates over an incoming purchase order message where the purchase order message consists of N order items. The enclosed scope activity must be executed N+1 times, with each instance starting only after the previous iteration has completed.
All looping iterations are started at the same time and processed in parallel. Parallel iterations are useful in environments in which sets of independent data are processed or independent interaction with different partners is performed in parallel. To enable parallel looping, you select the Parallel Execution checkbox on the General tab. In these scenarios, execution of the N+1 instances of the contained scope activity occurs in parallel. Each copy of the scope activity has the same counter variable that you specify in the Counter Name field of the General tab declared in the same way as specified for a sequential forEach activity. Each instance's counter variable must be uniquely initialized in parallel with one of the integer values beginning with the starting counter value and proceeding up to and including the final counter value.
Unlike a flow activity, the number of parallel branches is not known at design time with the forEach activity. The specified counter variable iterates through the number of parallel branches, controlled by the starting counter value and final counter value.
You can also specify a completion condition on the Completion tab. This condition enables the forEach activity to execute the condition and complete without executing or finishing all the branches specified. As an example, you send out parallel requests and a sufficient subset of the recipients have responded. A completion condition is optionally specified to prevent the following:
If you do not specify a completion condition, the forEach activity completes when the contained scope has completed.
If a premature termination occurs (due to a fault or the completion condition evaluating to true
), then the N+1 requirement does not apply.
Example 10-11 shows the forEach
activity syntax.
Example 10-11 forEach Activity
Note: The |
To create a forEach activity:
Note the contained scope activity in the forEach activity.
Figure 10-12 Contained Scope Activity in a forEach Activity
Note the Parallel Execution checkbox. If this checkbox is selected, all looping iterations are started at the same time and processed in parallel. The next branch starts even if the previous branch has not completed. If not selected, the next branch does not start until the previous branch has completed.
Figure 10-13 General Tab of the forEach Activity
Figure 10-14 Counter Values Tab of the forEach Activity
Figure 10-15 Completion Tab of the forEach Activity
When complete, the forEach and contained scope activity can appear similar in structure to that shown in Figure 10-16.
Figure 10-16 forEach Activity with Contained and Expanded Scope Activity
Example 10-12 shows the .bpel
file after design is complete for a sequential forEach
activity.
Example 10-12 forEach Activity - Sequential
Example 10-13 shows the .bpel
file after design is complete for a parallel forEach
activity.
Example 10-13 forEach Activity - Parallel
This chapter describes how to use conditional branching in a BPEL process service component. Conditional branching introduces decision points to control the flow of execution of a BPEL process service component. This chapter also describes how to use while and repeatUntil activities to define conditional branching and specify XPath expressions that enable you to bypass execution of activities.
This chapter includes the following sections:
For additional information on creating conditional branching in a SOA composite application, see the Fusion Order Demo application.
BPEL applies logic to make choices through conditional branching. You can use the following activities to design your code to select different actions based on conditional branching:
Enables you to set up two or more branches, with each branch in the form of an XPath expression. If the expression is true, then the branch is executed. If the expression is false, then the BPEL process service component moves to the next branch condition, until it either finds a valid branch condition, encounters an otherwise branch, or runs out of branches. If multiple branch conditions are true, then BPEL executes the first true branch. For information about how to create switch activities, see Section 11.2.1, "Defining Conditional Branching with the Switch Activity in BPEL 1.1."
Enables you to use an if activity when conditional behavior is required for specific activities to decide between two or more branches. The if activity replaces the switch activity that appeared in BPEL 1.1 processes. For information about how to create if activities, see Section 11.2.2, "Defining Conditional Branching with the If Activity in BPEL 2.0."
Enables you to create a while loop to select between two actions. Section 11.3, "Creating a While Activity to Define Conditional Branching" describes while activities.
Many branches are set up, and each branch has a condition in the form of an XPath expression.
You can program a conditional branch to have a timeout. That is, if a response cannot be generated in a specified period, the BPEL flow can stop waiting and resume its activities. Chapter 15, "Using Events and Timeouts in BPEL Processes" explains this feature in detail.
Note: You can also define conditional branching logic with business rules. See Oracle Fusion Middleware User's Guide for Oracle Business Rules and the WebLogic Fusion Order Demo application for details. |
This section describes how to define conditional branching with the following activities:
Assume you designed a flow activity in the BPEL process service component that gathered loan offers from two companies at the same time, but did not compare either of the offers. Each offer was stored in its own global variable. To compare the two bids and make decisions based on that comparison, you can use a switch activity.
Figure 11-1 provides an overview of a BPEL conditional branching process that has been defined in a switch activity.
To create a switch activity:
The Switch activity has two switch case branches by default, each with a box for functional elements. If you want to add more branches, select the entire switch activity, right-click, and select Add Switch Case from the menu.
A dialog for entering a condition is displayed, as shown in Figure 11-3.
In this example, two loan offers from completing loan companies are stored in the global variables loanOffer1
and loanOffer2
. Each loan offer variable contains the loan offer's APR. The BPEL flow must choose the loan with the lower APR. One of the following switch activities takes place:
loanOffer1
has the higher APR, then the first branch selects loanOffer2
by assigning the loanOffer2
payload to the selectedLoanOffer
payload. loanOffer1
does not have the lower APR than loanOffer2
, the otherwise
case assigns the loanOffer1
payload to the selectedLoanOffer
payload. The expression is displayed. The value you entered in the Label field of the dialog becomes the name of the condition branch. Figure 11-4 provides details.
A switch activity, like a flow activity, has multiple branches. In Example 11-1, there are only two branches shown in the .bpel
file after design completion. The first branch, which selects a loan offer from a company named United Loan, is executed if a case condition containing an XPath boolean expression is met. Otherwise, the second branch, which selects the offer from a company named Star Loan, is executed. By default, the switch activity provides two switch cases, but you can add more if you want.
Example 11-1 Switch Activity
You can use an if activity when conditional behavior is required for specific activities to decide between two or more branches. Only one activity is selected for execution from a set of branches. The if activity consists of a list of one or more conditional branches that are considered for execution in the following order:
The first branch whose condition evaluates to true is taken, and its contained activity is performed. If no branch with a condition is taken, then the else branch is taken (if present). The if activity is complete when the contained activity of the selected branch completes, or immediately when no condition evaluates to true and no else branch is specified.
The if activity is a BPEL version 2.0 feature that replaces the switch activity that was included in BPEL version 1.1.
Example 11-2 shows the if activity syntax.
Example 11-2 If Activity
To create an If activity:
The if and else conditions are displayed, as shown in Figure 11-6.
Figure 11-8 elseif Branch of the If Activity
Figure 11-9 shows a completed if activity in which each branch includes contained activities.
Example 11-3 provides an example of the .bpel
file after design completion. The if activity has if, elseif, and else branches defined. The first branch to evaluate to true is executed.
Example 11-3 If Activity
Another way to design your BPEL code to select between multiple actions is to use a while activity to create a while loop. The while loop repeats an activity until a specified success criteria is met. For example, if a critical web service is returning a service busy message in response to requests, you can use the while activity to keep polling the service until it becomes available. The condition for the while activity is that the latest message received from the service is busy, and the operation within the while activity is to check the service again. Once the web service returns a message other than service busy, the while activity terminates and the BPEL process service component continues, ideally with a valid response from the web service.
To create a while activity:
The while activity has icons to allow you to build condition expressions and to validate the while definition. It also provides an area for you to drag an activity to define the while loop.
The activities can be existing or new activities.
5
. Figure 11-10 While Activity with an Expression
Example 11-4 provides an example of the .bpel
file after design completion. The while activity includes a scope activity. The scope activity includes sequence and fault handlers at the top level. The sequence includes invoke and assign activities and fault handlers that define a catchAll
containing assign and wait activities wrapped in a sequence.
The code in Example 11-4 calls an external service. If the external service throws a fault, the fault handler catches the fault and increments the dbStatus
variable value.
Therefore, the exit condition of the while loop is either of the following:
dbStatus
value is set to a value of 10
, which results in the while condition evaluating to false. dbStatus
value is 5
, and the while condition returns false. Example 11-4 While Activity
Note: The while activity code fragment in Example 11-4 uses a BPEL 1.1 construct of <while name="While1"> <condition>$inputVariable.payload/client:counter > 0 </condition> |
If the body of an activity must be performed at least once, use a repeatUntil activity instead of a while activity. The XPath expression condition in the repeatUntil activity is evaluated after the body of the activity completes. The condition is evaluated repeatedly (and the body of the activity processed) until the provided boolean condition is true.
Note: This activity is supported in BPEL version 2.0 projects. |
To create a repeatUntil activity:
The Expression Builder dialog is displayed.
The condition you entered is displayed in the Repeat Until dialog, as shown in Figure 11-11.
Figure 11-11 Completed Repeat Until Dialog
Figure 11-12 repeatUntil Activity Being Expanded
Example 11-5 provides an example of the .bpel
file after design completion. In this scenario, purchase order validation must be performed at least once, then repeatedly, based on evaluating the completion status until the status is updated to 5
.
Example 11-5 repeatUntil Activity
Oracle provides an extension that enables you to specify an XPath expression in an activity in BPEL versions 1.1 and 2.0 that, when evaluated to true, causes that activity to be skipped. This functionality provides an alternative to using a switch activity for conditionally executing activities. The skip condition for activities is specified as follows:
The bpelx:skipCondition
attribute causes an XPath expression to be evaluated immediately upon creation of the activity instance. If the skip expression returns a false boolean value, the activity is executed. If the skip expression returns a true boolean value, the activity is completed immediately and execution moves to the activity immediately following that one.
This construct is equivalent to a switch/case structured activity with a single case element with a condition that is the opposite of the skip condition.
Example 11-6 provides an example of bpelx:skipCondition
attribute use in BPEL 1.1. If myvalue
is 0
, the expression evaluates to true, and the assign activity is skipped. If myvalue
is 10
, the expression evaluates to false, and the copy operation of the assign activity is executed.
Example 11-6 Use of bpelx:skipCondition Attribute in BPEL 1.1
The equivalent functionality used with a switch activity is shown in Example 11-7.
Example 11-7 Equivalent Functionality with a Switch Activity
In BPEL 2.0, the bpelx:skipCondition
syntax appears as a child element of an activity. Example 11-8 provides an example of an assign activity with this convention.
Example 11-8 Use of bpelx:skipCondition Attribute in BPEL 2.0
You can also use built-in and custom XPath functions within the skip condition expression. Example 11-9 provides several examples.
Example 11-9 Built-in and Custom XPath Functions
If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault and thrown from the activity.
An event is added to the BPEL instance audit trail for activities that are bypassed due to the skip condition expression evaluating to true. Even if the skip condition evaluates to false (meaning the activity is performed), the fact that a skip condition expression was evaluated is still logged to the audit trail for debugging purposes.
If the XPath engine fails to evaluate the boolean value, bpws:subLanguageFault
is thrown. This is the same fault thrown when a switch/case condition does not evaluate to a boolean value. This is also logged to the audit trail for debugging purposes.
To specify XPath expressions to bypass activity execution:
Figure 11-13 Skip Condition XPath Expression
The code segment in the .bpel
file defines the specific operation after design completion.
For example, the XPath expression shown in Example 11-10, when evaluated to true (for example, input
is 20
), causes the assign activity to be skipped.
Example 11-10 skipCondition Attribute For Bypassing Activity Execution
This chapter describes how to use fault handling in a BPEL process. Fault handling allows a BPEL process service component to handle error messages or other exceptions returned by outside web services, and to generate error messages in response to business or runtime faults. This chapter also describes how to use the fault management framework to catch faults and perform user-specified actions defined in a fault policy file.
This chapter includes the following sections:
For additional information on creating fault handling in a SOA composite application, see the Fusion Order Demo application.
Fault handlers define how the BPEL process service component responds when web services return data other than what is normally expected (for example, returning an error message instead of a number). An example of a fault handler is where the web service normally returns a credit rating number, but instead returns a negative credit message.
Figure 12-1 provides an example of how a fault handler sets a credit rating variable to -1000
.
The code segment in Example 12-1 defines the fault handler for this operation in the BPEL file:
Example 12-1 Fault Handler Definition
The faultHandlers
tag contains the fault handling code. Within the fault handler is a catch
activity, which defines the fault name and variable, and the copy instruction that sets the creditRating
variable to -1000
.
When you select web services for the BPEL process service component, determine the possible faults that may be returned and set up a fault handler for each one.
This section identifies the standard faults for BPEL 1.1 and BPEL 2.0.
This section identifies the standard faults for BPEL 1.1. Unless otherwise noted below, the Business Process Execution Language for Web Services Specification defines the following standard faults in the namespace of http://schemas.xmlsoap.org/ws/2003/03/business-process/
:
bindingFault
(BPEL extension fault defined in http://schemas.oracle.com/bpel/extension
) conflictingReceive
conflictingRequest
correlationViolation
forcedTermination
invalidReply
joinFailure
mismatchedAssignmentFailure
remoteFault
(BPEL extension fault defined in http://schemas.oracle.com/bpel/extension
) repeatedCompensation
selectionFailure
uninitializedVariable
Standard faults are defined as follows:
messageTypes
The following list specifies the standard faults defined within the WS-BPEL specification. All standard fault names are qualified with the standard WS-BPEL namespace.
ambiguousReceive
completionConditionFailure
conflictingReceive
conflictingRequest
correlationViolation
invalidBranchCondition
invalidExpressionValue
invalidVariables
joinFailure
mismatchedAssignmentFailure
missingReply
missingRequest
scopeInitializationFailure
selectionFailure
subLanguageExecutionFault
uninitializedPartnerRole
uninitializedVariable
unsupportedReference
xsltInvalidSource
xsltStylesheetNotFound
In BPEL 2.0, the order of precedence for catching faults thrown without associated data is as follows:
faultName
value that does not specify a faultVariable
attribute, the fault is sent to the identified catch activity. In BPEL 2.0, the order of precedence for catching faults thrown with associated data is as follows:
faultName
value that does not specify a faultVariable
attribute, the fault is sent to the identified catch activity. faultName
value that has a faultVariable
whose associated faultElement
QName matches the QName of the runtime element data of the single WSDL message part. Then, the fault is sent to the identified catch activity with the faultVariable
initialized to the value in the single part's element.
faultName
value that does not specify a faultVariable
attribute, the fault is sent to the identified catch activity. In this case, the fault value is not available from within the fault handler, but is available to the rethrow activity. faultName
attribute that has a faultVariable
whose type matches the type of the runtime fault data, then the fault is sent to the identified catch activity. faultName
attribute that has a faultVariable
whose associated faultElement's QName matches the QName of the runtime element data of the single WSDL message part, the fault is sent to the identified catch activity with the faultVariable
initialized to the value in the single part's element. A BPEL fault has a fault name called a Qname
(name qualified with a namespace) and a possible messageType
. There are two categories of BPEL faults:
Business faults are application-specific faults that are generated when there is a problem with the information being processed (for example, when a social security number is not found in the database). A business fault occurs when an application executes a throw activity or when an invoke activity receives a fault as a response. The fault name of a business fault is specified by the BPEL process service component. The messageType
, if applicable, is defined in the WSDL. A business fault can be caught with a faultHandler
using the faultName
and a faultVariable
.
Runtime faults are the result of problems within the running of the BPEL process service component or web service (for example, data cannot be copied properly because the variable name is incorrect). These faults are not user-defined, and are thrown by the system. They are generated if the process tries to use a value incorrectly, a logic error occurs (such as an endless loop), a Simple Object Access Protocol (SOAP) fault occurs in a SOAP call, an exception is thrown by the server, and so on.
Several runtime faults are automatically provided. These faults are included in the http://schemas.oracle.com/bpel/extension
namespace. These faults are associated with the messageType
RuntimeFaultMessage
. The WSDL file shown in Example 12-2 defines the messageType
:
Example 12-2 messageType Definition
If a faultVariable
(of messageType
RuntimeFaultMessage
) is used when catching the fault, the fault code can be queried from the faultVariable
, along with the fault summary and detail.
A bindingFault
is thrown inside an activity if the preparation of the invocation fails. For example, the WSDL of the process fails to load. A bindingFault
is not retryable. This type of fault usually must be fixed by human intervention.
Oracle SOA Suite provides a generic fault management framework for handling faults in BPEL processes. If a fault occurs during runtime in an invoke activity in a process, the framework catches the fault and performs a user-specified action defined in a fault policy file associated with the activity. If a fault results in a condition in which human intervention is the prescribed action, you perform recovery actions from Oracle Enterprise Manager Fusion Middleware Control. The fault management framework provides an alternative to designing a BPEL process with catch activities in scope activities.
This section provides an overview of the components that comprise the fault management framework.
The framework looks for fault policy bindings in the same directory as the composite.xml
file of the SOA composite application or in a remote location identified by two properties that you set.
Note: A fault policy configured with the fault management framework overrides any fault handling defined in catch activities of scope activities in the BPEL process. The fault management framework can be configured to rethrow the fault handling back to the catch activities. |
fault-policies.xml
) and fault policy bindings file (fault-bindings.xml
) are placed in either of the following locations: composite.xml
file of the SOA composite application. composite.xml
file. This option is useful if a fault policy must be used by multiple SOA composite applications. This option overrides any fault policy files that are included in the same directory as the composite.xml
file. Example 12-3 provides details about these two properties. In this example, the fault policy files are placed into the SOA Metadata Service (MDS) shared area. See Chapter 22, "Using Oracle Mediator Error Handling" for details about Oracle Mediator fault handling capabilities.
This section describes how to design a fault policy.
Note: The Facades API enables you to programmatically perform the abort, retry (with a success action), continue, rethrow, and replay recovery options. For information, see Oracle Fusion Middleware Infrastructure Management Java API Reference for Oracle SOA Suite. |
A fault policy bindings file associates the policies defined in a fault policy file with the SOA composite application or the component (service component or reference binding component). The framework attempts to identify a fault policy binding in the following order:
composite.xml
file. composite.xml
file. composite.xml
file. During the resolution process, if no action is found that matches the condition, the framework assumes that resolution failed and moves to the next resolution level.
For example, assume an invoke activity faults with faultname="abc"
. There is a policy binding specified in the fault-binding.xml
file:
policy-id-1
policy-id-2
In the fault-bindings.xml
file, the following bindings are also specified:
policy-id-3
policy-id-4
The fault management framework behaves as follows:
policy-id-2
). policy-id-4
). policy-id-3
). policy-id-1
). fault-policies.xml
). This file includes condition
and action
sections for performing specific tasks. Place the file in the same directory as the composite.xml
file or place it in a different location and define the oracle.composite.faultPolicyFile
property. Example 12-4 provides details.
condition
section of the fault policy file. condition
section: faultName
. faultName
. test
section (an XPath expression) and one action
section. test
section (XPath expression) is evaluated for the fault variable available in the fault. action
section has a reference to the action defined in the same file. Table 12-1 provides examples of condition
section use in the fault policy file. All actions defined in the condition
section must be associated with an action in the action
section.
Table 12-1 Use of the condition Section in the Fault Policy File
Condition Example | Fault Policy File Syntax |
---|---|
This condition is checking a fault variable for An | <condition> <test>$fault.code="WSDLReading Error" </test> <action ref="ora-terminate"/> </condition> |
No | <condition> <action ref="ora-rethrow"/> </condition> |
If the | <faultName > . . . </faultName> |
action
section of the fault policy file. Validation of fault policy files is done during deployment. If you change the fault policy, you must redeploy the SOA composite application that includes the fault policy. Table 12-2 provides several examples of action
section use in the fault policy file. You can provide automated recovery actions for some faults. In all recovery actions except retry and human intervention, the framework performs the actions synchronously.
Table 12-2 Use of action Section in the Fault Policy File
Recovery Actions | Fault Policy File Syntax |
---|---|
Retry: Provides the following actions for retrying the activity.
Note: Exponential back off indicates the next retry attempt is scheduled at | <Action id="ora-retry"> <Retry> <retryCount>3</retryCount> <retryInterval>2</retryInterval> <exponentialBackoff/> <retryFailureAction ref="ora-java"/> <retrySuccessAction ref="ora-java"/> </Retry> </Action> Note the following details:
|
Human Intervention: Causes the current activity to stop processing. You can now go to Oracle Enterprise Manager Fusion Middleware Control and perform manual recovery actions on this instance. | <Action id="ora-human-intervention"> <humanIntervention/></Action> |
Terminate Process: Terminates the process | <Action id="ora-terminate"><abort/></Action> |
Java Code: Enables you to execute an external Java class.
For additional information, see Section 12.4.3, "How to Use a Java Action Fault Policy." | <Action id="ora-java"> <!-- this is user provided custom java class--> <javaAction className="mypackage.myClass" defaultAction="ora-terminate"> <returnValue value="REPLAY" ref="ora-terminate"/> <returnValue value="RETRHOW" ref="ora-rethrow-fault"/> <returnValue value="ABORT" ref="ora-terminate"/> <returnValue value="RETRY" ref="ora-retry"/> <returnValue value="MANUAL" ref="ora-human-intervention"/> </javaAction> </Action> |
Rethrow Fault: The framework sends the fault to the BPEL fault handlers (catch activities in scope activities). If none are available, the fault is sent up. | <Action id="ora-rethrow-fault"><rethrowFault/></Action> |
Replay Scope: Raises a replay fault. | <Action id="ora-replay-scope"><replayScope/></Action> |
Note: The preseeded recovery action tag names ( |
Example 12-5 shows a fault policy file with fully-defined condition
and action
sections.
Notes:
|
Example 12-5 Fault Policy File
Note: The fault policy file binding file must be named |
fault-bindings.xml
) that associates the policies defined in the fault policy file with the level of fault policy binding you are using (either a SOA composite application or a component (reference binding component or BPEL process or Oracle Mediator service component). composite.xml
file or place it in a remote location and define the oracle.composite.faultBindingFile
property as shown in Step 2 of Section 12.4.1.2, "Creating a Fault Policy File for Automated Fault Recovery." Example 12-6 shows a fault policy bindings file that associates the fault policies defined in the fault-policies.xml
file with the FusionMidFaults
SOA composite application.
Example 12-6 fault-buildings.xml File
This section provides additional samples of fault policy and fault policy binding files. Example 12-7 shows the fault-policies.xml
file contents.
Example 12-7 fault-policies.xml File
Example 12-8 shows the fault-buildings.xml
file that associates the fault policies defined in fault-policies.xml
.
Example 12-8 Fault Policy Bindings File
If you design a fault policy that uses the action handler for rejected messages, note that only one write action can be performed. Multiple write actions cannot be performed, even if you define multiple rejection handlers, as shown in Example 12-9. In this case, only the first rejection handler defined (for this example, ora-queue
) is executed.
Example 12-9 Fault Policy with Multiple Rejection Handlers
You deploy a fault policy as part of a SOA composite application. After deployment, you can perform the following fault recovery actions from Oracle Enterprise Manager Fusion Middleware Control:
For additional information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for the following:
Note the following details when using the Java action fault policy:
ReturnValue
is specified, the default fault policy is executed, as shown in Example 12-10. Example 12-10 Java Action Fault Policy
Table 12-3 provides an example of ReturnValue
use.
Table 12-3 System Interpretation of Java Action Fault Policy
Code | Description |
---|---|
<ReturnValue value="RETRY" ref="ora-retry"/> | Execute the |
<ReturnValue value="” ref=”ora-rethrow”/> | Fails in validation. |
<javaAction className="mypackage.myclass" defaultAction="ora-human-intervention"> | Execute |
<ReturnValue value="RETRY" ref="ora-retry"/> <ReturnValue value="” ref=””/> | Fails in validation. |
<javaAction className="mypackage.myclass" defaultAction=" ora-human-intervention"> <ReturnValue></ReturnValue> | Fails in validation. |
To invoke a Java class, you can provide a class that implements the IFaultRecoveryJavaClass
interface. IFaultRecoveryJavaClass
is included in the fabric-runtime.jar
file. The package name is oracle.integration.platform.faultpolicy
.
The IFaultRecoveryJavaClass
interface has two methods, as shown in Example 12-11.
Example 12-11 implementation of IFaultRecoveryJavaClass
Note the following details:
handleRetrySuccess
is invoked upon a successful retry attempt. The retry policy chains to a Java action on retrySuccessAction
. handleFault
is invoked to execute a policy of type javaAction
. Example 12-12 shows the data available with IFaultRecoveryContext
:
Example 12-12 Data Available with IFaultRecoveryContext
The service engine implementation of this interface provides more information (for example, Oracle BPEL Process Manager). Example 12-13 provides details.
Example 12-13 Service Engine Implementation of IFaultRecoveryContext
Oracle BPEL Process Manager-specific data is available with IBPELFaultRecoveryContext
, as shown in Example 12-14.
Example 12-14 Oracle BPEL Process Manager-Specific Data
Example 12-15 provides an example of javaAction
implementation.
Example 12-15 Implementation of a javaAction
When you configure a fault policy to recover instances with the ora-retry
action and the number of specified instance retries is exceeded, the instance is marked as open.faulted
(in-flight state). The instance remains active.
Marking instances as open.faulted
ensures that no instances are lost. You can then configure another fault handling action following the ora-retry
action in the fault policy file, such as the following:
ora-human-intervention
action to manually perform instance recovery from Oracle Enterprise Manager Fusion Middleware Control. ora-terminate
action to close the instance (mark it as closed.faulted
) and never retry again. However, if you do not set an action to be performed after an ora-retry
action in the fault policy file and the number of instance retries is exceeded, the instance remains marked as open.faulted
, and recovery attempts to handle the instance.
For example, if no action is defined in the fault policy file shown in Example 12-16 after ora-retry
:
Example 12-16 No Action Defined
The following actions are performed:
open.faulted
(in-flight state). The fault policy retry action may not execute with multiple faults in the same flow. This may be because the retry count has already been reached for any of the previous faults.
For example, assume you define a fault policy with two fault conditions: fault1
and fault2
. For both fault conditions, the retry action is specified with a retry count of three. Assume fault1
occurs and the retry action executes three times. You correct the problem for fault1
by modifying the payload, but ensure that fault2
is to be raised when the instance is resubmitted. You then resubmit the faulted instance using Oracle Enterprise Manager Fusion Middleware Control. You expect the second fault condition, fault2
, to retry three times according to the fault policy specification. However, this does not occur because the maximum number of retries was already executed for the previous fault1
fault condition.
If you are testing retry actions on adapters with both JCA-level retries for the outbound direction and a retry action in the fault policy file for outbound failures, the JCA-level (or binding level) retries are executed within the fault policy retries. For example, assume you have designed the application shown in Figure 12-2:
You specify the retry parameters shown in Example 12-17 in the composite.xml
file:
Example 12-17 Retry Parameters
In the fault policy file for the EQ reference binding component for the outbound direction, you specify the actions shown in Example 12-18.
If an outbound failure occurs, the expected behavior is for the JCA retries to occur within the fault policy retries. When the first retry of the fault policy is executed, the JCA retry is called. In this example, a JCA retry of 2
with an interval of 2
seconds and exponential back off of 2
is executed for every retry of the fault policy:
2
seconds interval) 4
seconds interval) 2
seconds interval) 4
seconds interval) 2
seconds interval) 4
seconds interval) Assume you invoke a SOA composite application with a fault policy/binding defined and see a recoverable fault in Oracle Enterprise Manager Fusion Middleware Control. After you perform a successful fault recovery retry, there is no ora-java option available for selection by default in the After Successful Retry list of the Faults tab of the Instance of process_name page.
This is the expected behavior. For the ora-java option to display, you must explicitly define it in the fault-policies.xml
file during design-time. For example, perform the following steps.
fault-policies.xml
file in which you explicitly add retrySuccessAction ref="ora-java"/>
to the fault-policies.xml
file. If fault recovery is successful, the After Successful Retry list is displayed.
For more information about recovering from faults in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
BPEL runtime faults can be caught as a named BPEL fault. The bindingFault
and remoteFault
can be associated with a message. This action enables the faultHandler
to get details about the faults.
The following procedure shows how to use the provided examples to generate a fault and define a fault handler to catch it. In this case, you modify a WSDL file to generate a fault, and create a catch attribute to catch it.
To catch BPEL runtime faults:
RuntimeFault.wsdl
into your process WSDL. RuntimeFault.wsdl
is seeded into the MDS from soa.mar
inside soa-infra-wls.ear
during its deployment. You may see a copy of soa.mar
in the deployed SOA Infrastructure in the Oracle WebLogic Server domain, which is a JAR/ZIP file containing RuntimeFault.wsdl
.
messageType bpelx:RuntimeFaultMessage
. The catchAll activity is provided to catch possible faults. However, BPEL does not provide a method for obtaining additional information about the captured fault. Use the getFaultAsString()
XPath extension function to obtain additional information.
Example 12-19 shows how to use this function.
A BPEL application can generate and receive fault messages. The throw activity has three elements: its name, the name of the fault, and the fault variable. The fault thrown by a throw activity is internal to BPEL. You cannot use a throw activity on an asynchronous process to communicate with a client. Throw activity syntax includes the throw name, fault name, and fault variable:
To create a throw activity:
The namespace URI for the selected fault displays in the Namespace URI field. Your fault selection also automatically displays in the Local Part field.
Figure 12-3 provides an example of a completed Throw dialog. This example shows the Throw_Fault_CC_Denied throw activity of the Scope_AuthorizeCreditCard scope activity in the Fusion Order Demo application. This activity throws a fault for orders that are not approved.
Example 12-20 shows the throw activity in the .bpel
file after design completion. The OrderProcessor
process terminates after executing this throw activity.
The rethrow activity rethrows faults originally captured by the immediately enclosing fault handler. Only use the rethrow activity within a fault handler (for example, within catch and catchAll activities). The rethrow activity is used in fault handlers to rethrow the captured fault (that is, the fault name and the fault data (if present) of the original fault). The rethrow activity must ignore modifications to fault data. For example:
Note: This activity is supported in BPEL version 2.0 projects. |
To create a rethrow activity:
When complete, design can look similar to that shown in Figure 12-5.
Figure 12-5 Throw Activity in BPEL Process
Example 12-21 shows the .bpel
file after design is complete for a rethrow activity. The rethrow activity is inside a fault handler (catch activity).
Example 12-21 Rethrow Activity
A BPEL process service component can send a fault to another application to indicate a problem, as opposed to throwing an internal fault. In a synchronous operation, the reply activity can return the fault. In an asynchronous operation, the invoke activity performs this function.
The syntax of a reply activity that returns a fault in a synchronous interaction is shown in Example 12-22:
Example 12-22 Reply Activity
partner-link-name
"port-type-name
"operation-name
"variable-name
" (optional)fault-name
">Always returning a fault in response to a synchronous request is not very useful. It is better to make the activity part of a conditional branch, in which the first branch is executed if the data requested is available. If the requested data is not available, then the BPEL process service component returns a fault with this information.
For more information, see the following chapters:
In an asynchronous interaction, the client does not wait for a reply. The reply activity is not used to return a fault. Instead, the BPEL process service component returns a fault using a callback operation on the same port type that normally receives the requested information, with an invoke activity.
For more information about asynchronous interactions, see Chapter 8, "Invoking an Asynchronous Web Service from a BPEL Process."
A scope activity provides a container and a context for other activities. A scope provides handlers for faults, events, compensation, data variables, and correlation sets. Using a scope activity simplifies a BPEL flow by grouping functional structures. This grouping enables you to collapse them into what appears to be a single element in Oracle BPEL Designer.
Example 12-23 shows a scope named Scope_FulfillOrder
from the WebLogic Fusion Order Demo application. This scope invokes the FulfillOrder
Oracle Mediator component, which determines the shipping method for the order.
Example 12-23 Scope Activity
To create a scope activity:
When complete, scope activity design can look as shown in Figure 12-7. This example shows the Scope_AuthorizeCreditCard scope activity of the Fusion Order Demo application.
Figure 12-7 Scope Activity After Design Completion
You can add descriptive notes to scope activities that provide simple descriptions of the functionality of the scope. You can also change the graphical image of scopes. The notes and images display in Oracle BPEL Designer. This helps to make a scope easier to understand.
To add descriptive notes and images to a scope activity:
The Documentation dialog appears.
Your changes display in Oracle BPEL Designer, as shown in Figure 12-8.
Figure 12-8 Scope with Descriptive Note and Modified Image
Example 12-24 shows the scope activity in the .bpel
file after design completion. The Scope_AuthorizeCreditCard
scope activity consists of activities that perform the following actions:
CreditCardAuthorizationService
service. CreditCardAuthorizationService
service to retrieve customer information. Example 12-24 Scope Activity
Scopes can use a significant amount of CPU and memory and should not be overused. Sequence activities use less CPU and memory and can make large BPEL flows more readable.
If a fault is not handled, it creates a faulted state that migrates up through the application and can throw the entire process into a faulted state. To prevent this from occurring, place the parts of the process that have the potential to receive faults within a scope. The scope activity includes the following fault handling capabilities:
Example 12-25 shows the syntax for catch and catchAll activities. Assume that a fault named x:foo
is thrown. The first catch is selected if the fault carries no fault data. If there is fault data associated with the fault, the third catch is selected if the type of the fault's data matches the type of variable bar
. Otherwise, the default catchAll handler is selected. Finally, a fault with a fault variable whose type matches the type of bar
and whose name is not x:foo
is processed by the second catch. All other faults are processed by the default catchAll handler.
To create a catch activity in a scope:
This creates a catch activity in the right side of the scope activity.
The namespace URI for the selected fault displays in the Namespace URI field. Your fault selection also automatically displays in the Local Part field.
Figure 12-10 provides an example of a Catch dialog. This example shows the selectionFailure catch activity of the Scope_AuthorizeCreditCard scope activity in the Fusion Order Demo application. This catch activity catches orders in which the credit card number is not provided.
Figure 12-11 provides an example of two catch activities for the Scope_AuthorizeCreditCard scope activity. The second catch activity catches credit types that are not valid.
Figure 12-11 Catch Activities in the Designer
Example 12-26 shows the catch
activity in the .bpel
file after design completion. The selectionFailure
catch activity catches orders in which the credit card number is not provided and the InvalidCredit
catch activity catches credit types that are not valid.
Example 12-26 Catch Branch
There is often a need to use an activity that does nothing. An example is when a fault must be caught and suppressed. In this case, you can use the empty activity to insert a no-op instruction into a business process.
To create an empty activity:
The Empty dialog appears, as shown in Figure 12-12.
The syntax for an empty
activity is shown in Example 12-27.
If no catch
or catchAll
is selected, the fault is not caught by the current scope and is rethrown to the immediately enclosing scope. If the fault occurs in (or is rethrown to) the global process scope, and there is no matching fault handler for the fault at the global level, the process terminates abnormally. This is as though a terminate activity (described in Section 12.13.1, "Stopping a Business Process Instance with the Terminate Activity in BPEL 1.1") had been performed.
You can create a replay activity inside a scope activity to re-execute all of the activities inside the scope.
To create a replay activity:
When complete, design of the scope activity can look similar to that shown in Figure 12-14.
Figure 12-14 Replay Activity in a Scope Activity
Example 12-28 shows the .bpel
file after design is complete for a replay activity in a BPEL project that supports BPEL version 2.0. In BPEL 2.0, the replay activity is wrapped in an extensionActivity
element.
Example 12-28 Replay Activity
In BPEL 1.1, the replay activity is coded as a bpelx
extension.
Compensation occurs when the BPEL process service component cannot complete a series of operations after some have completed, and the BPEL process service component must backtrack and undo the previously completed transactions. For example, if a BPEL process service component is designed to book a rental car, a hotel, and a flight, it may book the car and the hotel and then be unable to book a flight for the right day. In this case, the BPEL flow performs compensation by going back and unbooking the car and the hotel.
In a scope activity, the compensation handler can reverse previously completed process steps. The compensation handler can be invoked after successful completion of its associated scope with either of the following activities.
This activity causes the compensation handler of all successfully completed and not yet compensated child scopes to be executed in default order.
This activity causes the compensation handler of one specific successfully completed scope to be executed.
You can invoke a compensation handler by using the compensate activity, which names the scope for which the compensation is to be performed (that is, the scope whose compensation handler is to be invoked). A compensation handler for a scope is available for invocation only when the scope completes normally. Invoking a compensation handler that has not been installed is equivalent to using the empty activity (it is a no-op). This ensures that fault handlers do not have to rely on state to determine which nested scopes have completed successfully. The semantics of a process in which an installed compensation handler is invoked multiple times are undefined.
The ability to explicitly invoke the compensate activity is the underpinning of the application-controlled error-handling framework of Business Process Execution Language for Web Services Specification. You can use this activity only in the following parts of a business process:
For example:
If a scope being compensated by name was nested in a loop, the BPEL process service component invokes the instances of the compensation handlers in the successive iterations in reverse order.
If the compensation handler for a scope is absent, the default compensation handler invokes the compensation handlers for the immediately enclosed scopes in the reverse order of the completion of those scopes.
The compensate form, in which the scope name is omitted in a compensate activity, explicitly invokes this default behavior. This is useful when an enclosing fault or compensation handler must perform additional work, such as updating variables or sending external notifications, in addition to performing default compensation for inner scopes. The compensate activity in a fault or compensation handler attached to the outer scope invokes the default order of compensation handlers for completed scopes directly nested within the outer scope. You can mix this activity with any other user-specified behavior except for the explicit invocation of the nested scope within the outer scope. Explicitly invoking compensation for such a scope nested within the outer scope disables the availability of default-order compensation.
To create a compensate activity:
If an invoke activity has a compensation handler defined inline, then the name of the activity is the name of the scope to be used in the compensate activity. The syntax is shown in Example 12-29:
The compensateScope activity is used to start compensation on a specified inner scope that has already completed successfully. This activity must only be used from within a fault handler, another compensation handler, or a termination handler.
When you create a compensateScope activity, you select a target that must refer to the immediately-enclosed scope. The scope must include a fault handler or compensation handler.
Note: This activity is supported in BPEL 2.0 projects. |
To create a compensateScope activity:
Example 12-30 shows the .bpel
file after design is complete for a compensateScope activity. The compensateScope activity is defined in a catchall fault handler. The scope in which to invoke the compensation handler is defined.
Example 12-30 compensateScope Activity
You can stop a business process instance with either of the following activities:
The terminate activity immediately terminates the behavior of a business process instance within which the terminate activity is performed. All currently running activities must be terminated as soon as possible without any fault handling or compensation behavior. The terminate activity does not send any notifications of the status of a BPEL process service component. If you are going to use the terminate activity, first program notifications to the interested parties.
To create a terminate activity:
The syntax for the terminate
activity is shown in Example 12-31. This stops the business process instance.
You can use the exit activity to immediately end all currently running activities on all parallel branches without involving any termination handling, fault handling, or compensation handling mechanisms. This activity is useful for environments in which there may not be a reasonable way for dealing with unexpected, severe failures.
Note: Any open conversations are also impacted by the exit activity. For example, other partners interacting with the process may wait for a response that never arrives. |
To create an exit activity:
When complete, the exit activity in a BPEL process appears similar to that shown in Figure 12-19.
Figure 12-19 Exit Activity in a BPEL Process
Example 12-32 shows the .bpel
file after design is complete for an exit activity.
Example 12-32 Exit Activity
You can specify an assertion condition in BPEL versions 1.1 and 2.0 that is executed upon receipt of a callback message in request-response invoke activities, receive activities, reply activities, and onMessage branches of pick and scope activities. The assertion specifies an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity. This condition provides an alternative to creating a potentially large number of switch, assign, and throw activities after a partner callback.
You can select when to execute a condition:
The assertion condition is specified as a nested extension element. Example 12-33 shows the postassertion condition schema definition in BPEL 1.1.
Example 12-33 Postassertion Condition Schema Definition in BPEL 1.1
Example 12-34 shows the postassertion condition syntax in BPEL 1.1.
Example 12-34 Postassertion Condition Syntax in BPEL 1.1
Example 12-35 shows the postassertion condition schema definition in BPEL 2.0. Note the differences between BPEL 1.1 and BPEL 2.0.
Example 12-35 Postassertion Condition Schema Definition in BPEL 2.0
Example 12-36 shows the postassertion condition syntax in BPEL 2.0.
Example 12-36 Postassertion Condition Syntax in BPEL 2.0
Example 12-37 shows the preassertion condition schema definition in BPEL 1.1.
Example 12-37 Preassertion Condition Schema Definition in BPEL 1.1
Example 12-38 shows the preassertion condition syntax in BPEL 1.1.
Example 12-38 Preassertion Condition Syntax in BPEL 1.1
Example 12-39 shows the preassertion condition schema definition in BPEL 2.0. Note the differences between BPEL 1.1 and BPEL 2.0.
Example 12-39 Preassertion Condition Schema Definition in BPEL 2.0
Example 12-40 shows the preassertion condition syntax in BPEL 2.0.
Example 12-40 Preassertion Condition Syntax in BPEL 2.0
The bpelx:postAssert
extension specifies the XPath expression to evaluate upon receipt of a callback message from a partner. If the assertion expression returns a false boolean value, the specified fault is thrown from the activity. If the assertion expression returns a true boolean value, no fault is thrown and the activities following the invoke activity, receive activity, or the onMessage branch of pick and scope activities are executed as in a normal BPEL process flow.
The bpelx:preAssert
or bpelx:postAssert
extension is similar to the Java assert
statement. In Java, if the assert
expression does not evaluate to true, an error is reported by the JVM. Similarly, the expression in the bpelx:preAssert
or bpelx:postAssert
extension must evaluate to true; otherwise, the specified fault is thrown.
For example, with the BPEL 1.1 invoke activity shown in Example 12-41, if the XPath expression specified in the assertion condition returns false, the NegativeCredit
fault is thrown.
Example 12-41 Invoke Activity in BPEL 1.1
The optional name
attribute for bpelx:preAssert
or bpelx:postAssert
is used while creating the audit trail event message. The name in this instance enables you to identify the assertion element in case multiple assertions are specified. If no name
attribute is specified, the line number of the assertion element in the BPEL file may be used.
This section describes key assertion condition concepts.
Depending upon the activity, you can specify when to execute a condition by clicking the Add icon in the Assertions tab of invoke, receive, reply, and onMessage branches of pick and scope activities, and selecting either Pre Assert or Post Assert. Based on your selection, the following bpelx
extensions are used:
bpelx:preAssert
: If you select Pre Assert, the condition is executed before the invoke or reply activity send out the outbound message. bpelx:postAssert
: If you select Post Assert, the condition is executed after an invoke activity, receive activity, or onMessage branch receives the inbound message. Example 12-42 shows multiple bpelx:postAssert
extensions in a receive activity in BPEL 1.1:
Example 12-42 bpelx:postAssert Extension in a Receive Activity in BPEL 1.1
Example 12-43 shows multiple bpelx:preAssert
extensions in an invoke activity in BPEL 1.1:
Example 12-43 bpelx:preAssert Extension in a Invoke Activity in BPEL 1.1
For information on using the Assertions tab, see Section 12.14.2, "How to Create Assertion Conditions."
You can specify the faultName
and message
attributes of the bpelx:postAssert
element, as shown in the schema definition in Example 12-44 for BPEL 1.1
Example 12-44 faultName and message Attributes Schema Definition in BPEL 1.1
Example 12-45 shows the syntax for the faultname
and message
attributes.
Example 12-45 faultName and message Attributes Syntax in BPEL 1.1
If you do not specify the faultName
attribute, the fault defaults to bpelx:postAssertFailure
. If the message
attribute is not specified, the message value defaults to the name of the activity.
The specified fault is thrown whenever the assertion condition evaluates to false. Analysis is performed on the faultName
QName
to ensure that it properly resolves to a fault that has been defined in the partner WSDL portType
. The message expression is a general expression that can evaluate to any XPath value type (string, number, or boolean). If a nonstring value is returned, the string equivalent of the value is used.
You can nest multiple assertions in receive activities, invoke activities, and the onMessage branch of pick and scope activities, with evaluation of the assertions continuing in the order in which they were declared until an expression evaluates to false. Example 12-46 provides details.
Example 12-46 Nesting Multiple Assertions in BPEL 1.1
In Example 12-46, the assertion with the expression that checks that the response credit rating is greater than zero is evaluated first. Table 12-4 describes the assertion behavior.
Table 12-4 Assertion Behavior
If The Credit Rating For The Returned Response Is... | Then... |
---|---|
Less than zero | The |
Greater than or equal to zero | The assertion is correct and the second assertion is evaluated. |
Less than 600 | The |
Greater than or equal to 600 | The assertion is correct and no fault is thrown from the invoke activity. |
Any number of assertions can be nested. For no fault to be thrown from the activity, all assertions specified must evaluate to true.
This construct enables you to apply multiple levels of validation on an incoming payload, similar to if...else
if...else
statements in Java.
To enable a fault to always be thrown regardless of validation logic, the assertion expression can be specified as false()
. This is similar to the else
construct in Java.
You can also use built-in and custom XPath functions and $variable
references within the assertion condition. Example 12-47 provides several examples.
Example 12-47 Built-in and Custom XPath Functions in BPEL 1.1
If an error is thrown by the XPath expression evaluation, the error is wrapped with a BPEL fault and thrown from the activity.
Faults that are thrown from a request-response invoke activity, receive activity, or onMessage branch of a pick or scope activity because of a failed assertion evaluation can be caught and handled by BPEL's fault management framework. For information, see Section 12.4, "Using the Fault Management Framework."
Faults that are not caught and handled within a BPEL process flow are thrown from a BPEL component if the component WSDL declares the fault on the operation. If the fault is not declared on the operation, the fault is converted into a FabricInvocationException
, which is a runtime fault. This fault can be caught by any caller components (including BPEL components), but the fault type is no longer the one originally thrown (however, the fault message string still retains traces of the original fault message).
For more information about runtime faults, see Section 12.3, "Introduction to Categories of BPEL Faults."
For more information about fault policies, see Section 12.4, "Using the Fault Management Framework."
Each assertion condition that is evaluated causes an event to be logged to the instance audit trail. The event indicates whether the assertion passed or failed (for failure, the fault name and message are printed). The event also includes the name
attribute specified in the assertion element; if no name
attribute is provided, the line number of the assertion element in the BPEL process flow is used. The assertion condition printed in the audit event helps identify the assertion and better enables debugging of the flow.
If the assertion condition XPath expression does not evaluate to an XML schema boolean type, a bpelx:postAssertFailure
fault is thrown from the activity. An event in the instance audit trail is also logged indicating the error. Example 12-48 provides details.
Example 12-48 Throwing a bpelx:assertFailure Fault in BPEL 1.1
Analysis of the assertion expression is performed by the BPEL compiler and errors are reported if an expression does not evaluate to an XML schema boolean type. For custom XPath functions, this type of analysis is not performed.
You can also create assertion conditions in a standalone assert activity in a BPEL process service component. The assertion specifies an XPath expression that, when evaluated to false, causes a BPEL fault to be thrown from the activity.
The bpelx:assert
extension implements assertions in the standalone assert activity:
For information on using the standalone assert activity, see Section 12.14.2, "How to Create Assertion Conditions."
You can create assertion conditions in the following activities:
To create assertion conditions in invoke activities, receive activities, reply activities, and OnMessage branches:
Figure 12-20 Add Icon of Assertions Tab in BPEL 1.1
Table 12-5 Condition Execution Options
Element | Description |
---|---|
Pre Assert | If selected, the condition is executed before the invoke or reply activity send out the outbound message. |
Post Assert | If selected, the condition is executed after an invoke activity, receive activity, or onMessage branch receives the inbound message. |
Based on your selection, the Pre Assert or Post Assert dialog is displayed.
If you are creating an assertion for a BPEL 2.0 project, perform the following tasks.
Figure 12-21 Add Icon of Assertions Tab in BPEL 2.0
The Assert dialog is displayed.
bpelx:assertFailure
fault is thrown. To create an assertion condition in standalone assert activities:
Figure 12-24 Assert Activity in Component Palette
The Assert dialog looks as shown in Figure 12-25.
You can disable assertions in either of two ways:
bpel.config.disableAsserts
to true
in the composite.xml
file of the SOA composite application, as shown in Example 12-49. For more information about setting System MBean Browser properties, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
The code segment in the .bpel
file defines the specific operation after design completion.
For Example 12-50, the bpelx:assert
condition in the invoke activity, when evaluated to false (for example, a credit rating of 0
is submitted), returns a Negative
Credit
message. If the condition evaluates to true, no fault is thrown from the invoke activity and the remaining activities in the BPEL process flow are executed normally.
Example 12-50 Assertion Condition in an Invoke Activity in BPEL 1.1
In Example 12-51, the bpelx:assert
condition in the standalone assert activity, when evaluated to false, returns a got assertion failure on true expression
message. If the condition evaluates to true, no fault is thrown from the assert activity and the remaining activities in the BPEL process flow are executed normally.
This chapter describes transaction and fault propagation semantics in Oracle BPEL Process Manager. It describes how to configure the transaction behavior for BPEL instances with initiating calls and the execution of one-way invocations.
This chapter includes the following sections:
Transaction semantics in release 11g enable you to use the underlying Java Transaction API (JTA) infrastructure used in the execution of components. This section describes transaction semantics for Oracle BPEL Process Manager
As with previous releases, Oracle BPEL Process Manager by default creates a new transaction on a request basis. That is, if a transaction exists, it is suspended, and a new transaction is created. Upon completion of the child (new) transaction, the master (suspended) transaction resumes.
However, if the request is asynchronous (that is, one-way), the transaction is either:
dlv_message
). There is no message loss. Either the invocation message is inserted into the dehydration store for processing or the consumer is notified through a fault.
In release 10.1.3.x, there were several properties to set on the consuming process (that is, on the partner link) and the providing process. This enabled you to chain an execution into a single global transaction. On the consuming side, you set transaction=participate
on the partner link binding in the bpel.xml
file. On the providing side, you set transaction=participate
in the <configurations>
section of bpel.xml
.
In release 11g, you only must set a new transaction
property on the BPEL component being called (known as the callee process). You add bpel.config.transaction
into a BPEL process service component section in the composite.xml
file (note the required prefix of bpel.config.
). This property configures the transaction behavior for BPEL instances with initiating calls.
Example 13-1 provides details.
Example 13-1 Setting a New Transaction
There are two possible values: required
and requiresNew
. Table 13-1 describes these values and summarizes the behavior of the BPEL instance based on the settings.
Table 13-1 bpel.config.transaction Property Behavior
For... | With bpel.config.transaction Set to required... | With bpel.config.transaction Set to requiresNew... |
---|---|---|
Request/response (initiating) invocations | The caller's transaction is joined (if there is one) or a new transaction is created (if there is not one). | A new transaction is always created and an existing transaction (if there is one) is suspended. |
One-way initiating invocations in which | Invoked messages are processed using the same thread in the same transaction. | A new transaction is always created and an existing transaction (if there is one) is suspended. |
Note: The |
For additional information about setting the bpel.config.transaction
property, see Section 4.1.1, "How to Add a BPEL Process Service Component" and Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."
The following sections describe the transaction and fault behavior of setting bpel.config.transaction
to either required
or requiresNew
.
In Table 13-2, the BPELCaller process calls the BPELCallee process. The BPELCallee process has the property bpel.config.transaction
set to requiresNew
. Table 13-2 describes fault propagation and transaction behavior when bpel.config.transaction
is set to this value.
Table 13-2 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew
If The BPELCallee... | Then The BPELCallee Transaction... | And The BPELCaller... |
---|---|---|
Replies with a fault (that is, it uses | Is saved. | Gets the fault and can catch it. |
Throws a fault that is not handled (that is, it uses | Is rolled back. | Gets the fault and can catch it. |
Replies back with a fault (FaultOne), and then throws a fault (FaultTwo). | Is rolled back. | Gets FaultTwo. |
Throws a | Is rolled back. | Gets a remote fault. |
In Table 13-3, the BPELCaller process calls the BPELCallee process. The BPELCallee process has the property bpel.config.transaction
set to required
. Table 13-3 describes fault propagation and transaction behavior when bpel.config.transaction
is set to this value.
Table 13-3 BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required
If The BPELCallee... | Then The BPELCaller... |
---|---|
Replies with a fault (that is, it uses | Gets the fault and can catch it. The BPELCaller owns the transaction. Therefore, if it catches it, the transaction is committed. If the BPELCaller does not handle it, a global rollback occurs. |
Throws a fault (that is, it uses | Gets the fault and can catch it. |
Replies back with a fault (FaultOne), and then throws a fault (FaultTwo). | Gets FaultTwo. |
Throws (that is, it uses | Gets its transaction rolled back; there is no way to catch it. This fault cannot be handled. |
As an example, assume you create two synchronous processes (BPELMaster and BPELChild) that each use the same database adapter reference to insert the same record (and therefore, causes a permission key (PK) violation). The xADatasourceName
is set for both.
Without bpel.config.transaction
set, after the fault occurs, and it is not handled, BPELChild is rolled back. If BPELMaster has a catch block, its transaction is committed. Therefore, you end up with the record from BPELMaster in the database.
If you do not catch the fault in BPELMaster as well, you get a second rollback (however, in two different transactions).
If bpel.config.transaction
is set to required
for the same test case and no fault handlers are in place, the entire transaction is rolled back based on BPELMaster's unhandled fault.
If you add a fault handler in BPELMaster to catch the fault from BPELChild and throw a rollback fault, the transaction is globally rolled back.
This feature enables you to control transaction boundaries and model end-to-end transactional flows (if your sources and targets are also transactional).
A one-way invocation (with a possible callback) is typically exposed in a WSDL as shown in Example 13-2.
Example 13-2 WSDL Exposure
This causes the BPEL process service engine to split the execution into two parts:
dlv_message
table of the dehydration store occurs (in release 10.1.3.x, it was inserted into the inv_message
table). This has several advantages in terms of scalability, because the service engine's thread pool (invoker threads) executes when a thread is available. However, the disadvantage is that there is no guarantee that it executes immediately.
If you require a synchronous-type call based on a one-way operation, then you can use the onewayDeliveryPolicy
property, which is similar to the deliveryPersistPolicy
property of release 10.1.3.x.
Specify bpel.config.oneWayDeliveryPolicy
in the BPEL process service component section of the composite.xml
file. If this value is not set in composite.xml
, the value for oneWayDeliveryPolicy
in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control is used. The following values are possible.
async.persist
: Messages are persisted in the database hash map. sync.cache
: Messages are stored in memory. sync
: Direct invocation occurs on the same thread. For more information about setting the bpel.config.oneWayDeliveryPolicy
property, see Section 4.1.1, "How to Add a BPEL Process Service Component" and Section C.1.1, "How to Define Deployment Descriptor Properties in the Property Inspector."
Table 13-4 describes the behavior when the main process calls the subprocess asynchronously. Table 13-4 is based on the use cases described in Section 13.1.1.1, "BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to requiresNew" and Section 13.1.1.2, "BPELCaller Calls BPELCallee That Has bpel.config.transaction Set to required."
Table 13-4 Main Process Calls the Subprocess Asynchronously
If... | If The Subprocess Throws Any Fault... | If The Subprocess Throws a bpelx:rollback... |
---|---|---|
(The BPELCallee process runs in a separate thread/transaction.) | The BPELCaller does not get a response because the message is saved in the delivery service. The BPELCallee transaction is rolled back if the fault is not handled. | The BPELCaller does not get a response because the message is saved in the delivery service. The BPELCallee instance is rolled back on the unhandled fault. |
and
(The BPELCallee runs in the same thread, but a different transaction.) | The BPELCaller receives a | The BPELCaller receives a |
and
(The BPELCallee runs in the same thread and the same transaction.) | The BPELCallee faulted. The BPELCaller receives a | The whole transaction is rolled back. |
This chapter describes how to incorporate sections of Java code into BPEL process service components in SOA composite applications. It describes how to add custom classes and JAR files, use the Java embedding activity, embed service data objects (SDOs) with bpelx:exec
, and implement a custom Connection Manager class with a BPEL process.
This chapter includes the following sections:
This chapter explains how to incorporate sections of Java code into a BPEL process. This is particularly useful when there is Enterprise JavaBeans Java code that can perform the necessary function, and you want to use the existing code rather than start over with BPEL.
There are several methods for incorporating Java and Java EE code in BPEL processes:
bpelx:exec
tag bpelx:exec
built-in methods You can wrap the Java code as a SOAP service. This method requires that the Java application have a BPEL-compatible interface. A Java application wrapped as a SOAP service appears as any other web service, which can be used by many different kinds of applications. There are also tools available for writing SOAP wrappers.
A Java application wrapped as a SOAP service has the following drawbacks:
You can embed Java code snippets directly into the BPEL process using the Java BPEL exec
extension bpelx:exec
. The benefits of this approach are speed and transactionality. It is recommended that you incorporate only small segments of code. BPEL is about separation of business logic from implementation. If you remove a lot of Java code in your process, you lose that separation. Java embedding is recommended for short utility-like operations, rather than business code. Place the business logic elsewhere and call it from BPEL.
The server executes any snippet of Java code contained within a bpelx:exec
activity, within its Java Transaction API (JTA) transaction context.The BPEL tag bpelx:exec
converts Java exceptions into BPEL faults and then adds them into the BPEL process.The Java snippet can propagate its JTA transaction to session and entity beans that it calls.
For example, a SessionBeanSample.bpel
file uses the bpelx:exec
tag shown in Example 14-1 to embed the invokeSessionBean
Java bean:
Example 14-1 bpelx:exec Extension
The examples in this chapter focus primarily on how to embed Java code snippets with the bpelx:exec
extension. For BPEL projects that support version 2.0 of the BPEL specification, the syntax is slightly different. The bpelx:exec
extension and Java code are wrapped in an <extensionActivity>
element. Example 14-2 provides details.
Example 14-2 bpelx:exec Extension in BPEL 2.0
When you drag a Java Embedding activity into a BPEL process in Oracle BPEL Designer, the <extensionActivity>
element and bpelx:exec
tag are automatically added.
Example 14-3 shows the import syntax for BPEL 2.0:
Example 14-3 Import Syntax in BPEL 2.0
Note: The BPEL 2.0 import syntax differs from BPEL 1.1, which uses the following syntax: <bpelx:exec import="class/package name" |
Example 14-4 shows a BPEL file with two Java embedding activities for a project that supports BPEL version 2.0.
Example 14-4 Java Embedding Activities in a BPEL File for Version 2.0
For information on using this activity, see Section 14.4, "Using Java Embedding in a BPEL Process in Oracle JDeveloper."
You can use an XML facade to simplify DOM manipulation. Oracle BPEL Process Manager provides a lightweight Java Architecture for XML Binding (JAXB)-like Java object model on top of XML (called a facade). An XML facade provides a Java bean-like front end for an XML document or element that has a schema. Facade classes can provide easy manipulation of the XML document and element in Java programs.
You add the XML facade by using a createFacade
method within the bpelx:exec
statement in the .bpel
file. Example 14-5 provides an example:
Table 14-1 lists a set of bpelx:exec
built-in methods that you can use to read and update scope variables, instance metadata, and audit trails.
Table 14-1 Built in Methods for bpelx:exec
Method Name | Description |
---|---|
| JNDI access |
| Unique ID associated with each instance |
| Title of this instance |
| Status of this instance |
| Set the composite instance title |
| Six indexes can be used for a search |
| Who initiated this instance |
| Second primary key |
| Metadata for generating lists |
| Access preference |
| Add an entry to the audit trail |
| Access file stored in the suitcase |
| Access and update variables stored in the scope |
| Access and update variables |
| Access and update variables |
| Set variable data |
| Set variable data |
| Set variable data |
Not all applications expose a service interface. You may have a scenario in which a business process must use custom Java code. For this scenario, you can:
For example, assume you create a BPEL process service component in a SOA composite application that invokes a service interface through a SOAP reference binding component. For this example, the service interface used is an Oracle Application Development Framework (ADF) Business Component.
The high-level instructions for this scenario are as follows.
To use Java code wrapped in a service interface:
This action generates a WSDL file and XSD file for the service.
Design a BPEL process in which you perform the following tasks:
Create a partner link for the Oracle ADF Business Component service portType
.
For more information on creating Oracle ADF Business Components, see Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
For more information on invoking a SOA composite application, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can add custom classes and JAR files to a SOA composite application. A SOA extension library for adding extension classes and JARs to a SOA composite application is available in the $ORACLE_HOME/soa/modules/oracle.soa.ext_11.1.1
directory. For Oracle JDeveloper, custom classes and JARs are added to the application_name
/project/sca-inf/lib
directory.
If the classes are used in bpelx:exec
, you must also add the JARs with the BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.
To add JARs to BpelcClasspath:
In addition, ensure that the JARs are loaded by the SOA composite application.
To add custom classes:
classes
directory. To add custom JARs:
ant
. In Oracle JDeveloper, you can add the bpelx:exec
activity and copy the code snippet into a dialog.
Note: For custom classes, you must include any JAR files required for embedded Java code in the BpelcClasspath property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. See Section 14.3.1, "How to Add Custom Classes and JAR Files" for instructions. The JAR files are then added to the class path of the BPEL loader. If multiple JAR files are included, they must be separated by a colon ( |
To use Java embedding in a BPEL process in Oracle JDeveloper:
Note: As an alternative to writing Java code in the Java Embedding activity, you can place your Java code in a JAR file, put it in the class path, and call your methods from within the Java Embedding activity. |
If you create and deploy a BPEL process that uses thread.sleep()
in a Java Embedding activity, the executing thread is blocked and the transaction associated with that thread is prevented from committing. This causes BPEL instances to appear only after the wait is over, which is the expected behavior.
Instead, use a wait activity, which releases the resource upon entering the activity and enables the ongoing transaction to commit and the BPEL instance data to hydrate into the data store.
You can embed SDO code in the .bpel
file with the bpelx:exec
tag. In the syntax provided in Example 14-6, mytest.apps.SDOHelper
is a Java class that modifies SDOs.
Example 14-6 Embedding SDO Objects with the bpelx:exec tag
Example 14-7 provides an example of the Java classes modifySDO(o)
and print(o)
that are embedded in the BPEL file.
Example 14-7 Java Classes
When you implement a custom Connection Manager class with the same name as a class used by Oracle BPEL Process Manager, you must ensure that the custom class does not override the class used by Oracle BPEL Process Manager.
For example, assume the following is occurring:
java.lang.NoClassDefFoundError
is occurring at runtime. To configure the BPEL Connection Manager class to take precedence:
This adds the custom Connection Manager JAR file to the classpath.
This chapter describes how to use events and timeouts. It describes how to create a pick activity to select to continue a process or wait, set timeouts for request-response operations on receive activities, create wait activities to set an expiration time, create OnEvent branches in BPEL 2.0 to wait for message arrival, and set timeouts on synchronous processes.
This chapter includes the following sections:
Because web services can take a long time to return a response, a BPEL process service component must be able to time out and continue with the rest of the flow after a period of time.
This chapter provides an example of how to program a BPEL process service component to wait one minute for a response from a web service named Star Loan that provides loan offers. If Star Loan does not respond in one minute, then the BPEL process service component automatically selects an offer from another web service named United Loan. In the real world, the time limit is more like 48 hours. However, for this example, you do not want to wait that long to see if your BPEL process service component is working properly.
Because asynchronous web services can take a long time to return a response, a BPEL process service component must be able to time out, or give up waiting, and continue with the rest of the flow after a certain amount of time.
You can use a pick activity to configure a BPEL flow to either wait a specified amount of time or to continue performing its duties. To set an expiration period for the time, you can use the wait activity.
The pick activity provides two branches, each one with a condition. The branch that has its condition satisfied first is executed. In the following example, one branch's condition is to receive a loan offer, and the other branch's condition is to wait a specified amount of time.
Figure 15-1 provides an overview. The following activities take place (in order of priority):
This condition has code for receiving a reply in the form of a loan offer from the Star Loan web service. The onMessage code matches the code for receiving a response from the Star Loan web service before a timeout was added.
This condition has code for a timeout of one minute. This time is defined as PT1M
, which means to wait one minute before timing out. In this timeout setting:
S
stands for seconds M
for one minute H
for hour D
for day Y
for year In the unlikely event that you want a time limit of 1
year, 3
days, and 15
seconds, you enter it as PT1Y3D15S
. The remainder of the code sets the loan variables selected and approved to false
, sets the annual percentage rate (APR) at 0.0
, and copies this information into the loanOffer
variable.
The time duration format is specified by the BPEL standard. For more detailed information on the time duration format, see the duration section of the most current XML Schema Part 2: Datatypes document at:
Figure 15-1 Overview of the Pick Activity
An onMessage branch is similar to a receive activity in that it receives operations. However, you can define a pick activity with multiple onMessage branches that can wait for similar partner links and port types, but have different operations. Therefore, separate threads and parallel processes can be invoked for each operation. This differs from the receive activity in which there is only one operation. Another difference is that you can create a new instance of a business process with a receive activity (by selecting the Create Instance checkbox), but you cannot do this with a pick activity.
Note: You can also create onMessage branches in BPEL 1.1 scope activities and onAlarm branches in BPEL 1.1 and 2.0 scope activities. Expand the Scope activity in Oracle JDeveloper, and browse the icons on the left side to find the branch you want to add. |
To create a pick activity:
The Pick activity includes an onMessage branch. Figure 15-2 provides an example.
Icons for adding additional onMessage branches and an OnAlarm branch are displayed.
An OnAlarm branch is displayed.
1
minute. Figure 15-5 provides an example. The code segment in Example 15-1 defines the pick
activity for this operation after design completion:
Example 15-1 Pick Activity
Oracle BPEL Process Manager's implementation of BPEL 2.0 does not support simultaneous onMessage branches of a pick activity.
When a process has a pick activity with two onMessage branches as its starting activity (both with initiate
set to join
in their correlation definitions) and an invoking process that posts the invocations one after the other, it is assumed that both invocations reach the same instance of the invoked process. However, in Oracle BPEL Process Manager's implementation of BPEL 2.0, two instances of the invoked process are created for each invocation.
This is the expected behavior, but it differs from what is described in the BPEL 2.0 specification.
For example, assume you have synchronous BPEL process A, which has a flow activity with two parallel branches:
The idea is to create one instance of the invoked process and ensure that the second invocation happens after the first instance is already active and running.
BPEL process B has a pick activity with createInstance
set to yes
. The pick activity has two onMessage branches within it:
Both operations have the same input message type and correlation is defined with initiate
set to join
.The expectation is that the processMessage1 invocation is invoked immediately and the BPEL process B instance is created, which should sleep for ten seconds. After five seconds, the invoking process should then post the processMessage2 invocation to BPEL process B and this invocation should go to the already existing instance instead of creating a new one (since the correlation ID is the same and initiate
is set to join
).
However, for each invocation, a new instance of BPEL process B is created and the result cannot be predicted.
In Oracle BPEL Process Manager's implementation, either one of the two operations (processMessage1 or processMessage2) creates a new instance. This is implemented so that database queries do not need to be made to see if there are already instances created.
The workaround is to create two processes that are initiated by the two different operations.
You can provide a timeout setting for the following types of operations in BPEL versions 1.1 and 2.0:
This provides an alternative to using the onMessage and onAlarm branches of a pick activity to specify a timeout duration for partner callbacks.
Figure 15-6 shows the Timeout tab of a midprocess receive activity in which you set a timeout.
Figure 15-6 Timeout Tab of a Receive Activity
For information about key concepts to understand before setting timeouts for request-reply and in-only operations in receive activities, see Section 15.3.1, "Introducing Timeouts for Request-Reply and In-Only Operations."
For information about how to set a timeout in a receive activity in Oracle JDeveloper, see Section 15.3.2, "How to Set Timeouts in Receive Activities."
The following sections describe request-reply and in-only timeout operations functionality:
bpelx:timeout
fault thrown during an activity timeout You can specify a timeout setting relative from when the activity is invoked. This setting is specified as a relative duration using the syntax shown in Example 15-2 for BPEL 1.1.
Example 15-2 Timeout Settings Relative from When the Activity is Invoked in BPEL 1.1
For BPEL 2.0, the syntax is as shown in Example 15-3.
Example 15-3 Timeout Settings Relative from When the Activity is Invoked in BPEL 2.0
This type uses the bpelx:for
attribute to specify a static value or an XPath expression that must evaluate to an XML schema type duration. Only one of the bpelx:for
or bpelx:until
attributes is permitted for an activity.
If the XPath expression evaluates to a negative duration, the timeout is ignored and an event is logged to the instance audit trail indicating that the duration value is invalid.
Once a valid duration value is retrieved, the expiration date for the activity is set to the current node time (or cluster time after this is available), plus the duration value. For example, the duration value bpelx:for="'PT5M'"
specifies that the activity expects an inbound message to arrive no later than five minutes after the activity has started execution.
Note: The timeout setting attribute does not apply to the onMessage branch of a pick activity because the same functionality currently exists with the onMessage and onAlarm branches of that activity. |
Timeout durations can only be specified on the following:
createInstance="true"
A receive activity can only time out after it has been instantiated, which is not the case with entry receive activities.
You can specify a timeout setting as an absolute deadline for request-response receive activities. This type uses the syntax shown in Example 15-4 for BPEL 1.1.
Example 15-4 Timeout Settings as an Absolute Date Time in BPEL 1.1
For BPEL 2.0, the syntax is as shown in Example 15-5.
Example 15-5 Timeout Settings as an Absolute Date Time in BPEL 2.0
The expected expiration time for the bpelx:until
attribute must be at least two seconds ahead of the current time. Otherwise, the timer scheduling is ignored and skipped, just as if the timer was never specified.
The bpelx:until
attribute specifies a static value or an XPath expression that must evaluate to an XML schema type datetime
or date
. Only one of the bpelx:for
or bpelx:until
attributes is permitted for an activity.
XPath version 1.0 is not XML schema-aware. Therefore, none of the built-in functions of XPath version 1.0 can create or manipulate dateTime
or date
values. However, it is possible to perform one of the following:
XPath version 1.0 treats that literal as a string literal, but the result can be interpreted as a lexical representation of a dateTime
or date
value.
Once a valid datetime
or date
value has been retrieved, the expiration date for the activity is set to the specified date. For example, the datetime
value bpelx:until="'2009-12-24T18:00+01:00'"
specifies that the activity expects an inbound message to arrive no later than Dec 24, 2009 6:00 pm UTC+1 after the activity has started execution.
Note: The timeout setting attribute does not apply to the onMessage branch of a pick activity because the same functionality currently exists with the onMessage and onAlarm branches of the pick activity. |
Timeout dates can only be specified on the following activities:
createInstance="true"
A receive activity can only time out after it has been instantiated, which is not the case with entry receive activities.
The timeout setting for request-response receives, in-only receives (callback), and onMessage branches of pick activities can be set using an XPath expression instead of entering a static duration or datetime
value. In this case, the value of the expression must return either:
datetime
value datetime
type Example 15-6 shows the syntax for using XPath expressions in BPEL 1.1.
Example 15-6 Timeout Settings Computed Dynamically with an XPath Expression in BPEL 1.1
If the returned expression value cannot be interpreted as an XML schema duration or datetime
type, an event is logged in the instance audit trail indicating that an invalid duration and datetime
value was specified, and no activity expiration time can be set.
If a valid XML schema duration or datetime
value is returned from the bpelx:for
or bpelx:until
attribute, a bpelx:timeout
fault is thrown from the timed-out activity. This fault can be caught by any catch or catchAll block and handled like a regular BPEL fault. The message of the fault is the name of the activity. In addition, an event is logged to the instance audit trail indicating that the activity has timed out because the expected callback message failed to be received before the timeout duration.
If the activity receives a callback from the partner before the timeout period, no fault is thrown. If a callback is received while the activity is being timed out, the callback message is not delivered to the activity and it is marked as canceled in the delivery message table. If a timeout action is attempted at the same time that a callback message is handled, the timeout action is ignored. As of 11g Release 1, instances are locked optimistically (as opposed to pessimistic locking in Release 10g). Therefore, the second action in line is still performed.
The bpelx:timeout
fault can be thrown from a BPEL component if the component WSDL declares the fault on the operation. If the fault is not declared on the operation, the fault is converted into a FabricInvocationException
, which is a runtime fault. This fault can be caught by any caller components (including BPEL components), but the fault type is no longer bpelx:timeout
(however, the fault message string still indicates that the fault was originally a timeout fault).
Once a bpelx:timeout
fault is thrown from a timed-out activity, an event is logged to the instance audit trail indicating that the activity has timed out, as opposed to having received the expected callback message from its partner.
Activities that specify a valid timeout duration or datetime
are likely implemented in a similar manner to wait and onAlarm activities with an expiration date for the underlying work item object. If the node that scheduled these activities with the scheduler goes down (either through graceful shutdown or abrupt termination), all these activities must be rescheduled with the scheduler upon server restart.
It is not possible to have a single node (the master node) in the cluster be responsible for rescheduling these activities upon node shutdown.
To set timeouts in receive activities:
This tab enables you to set a timeout for request-response operations, as shown in Figure 15-7.
The code segment in the .bpel
file defines the specific operation after design completion.
For example, if you specified that the activity expects an inbound message to arrive no later than five minutes after the activity has started execution, the syntax displays as shown in Example 15-7.
For example, if you specified that the activity expects an inbound message to arrive no later than January 24, 2010 11:00 AM UTC+1 after the activity has started execution, the syntax displays as shown in Example 15-8.
For example, if you specified an XPath expression to obtain a value for a timeout relative from when the activity is invoked, syntax similar to that shown in Example 15-9 can display.
The wait activity allows a process to wait for a given time period or until a time limit has been reached. Exactly one of the expiration criteria must be specified. A typical use of this activity is to invoke an operation at a certain time. You typically enter an expression that is dependent on the state of a process.
When specifying a time period for waiting, note the following:
2
seconds for wait times is specified with the MinBPELWait property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control. You can set this property to any value and the wait delay is bypassed for any waits less than MinBPELWait. Note: Quartz version 1.6 is supported for scheduling expiration events on wait activities. |
You can specify the minimum time duration for a BPEL process to perform a wait that involves a dehydration. If the wait duration is less than or equal to the value, BPEL continues executing activities in the same thread and transaction.
To create a wait activity:
Exactly one of the expiration criteria must be specified, as shown in Example 15-10 for BPEL 1.1.
Example 15-10 Wait Activity in BPEL 1.1
Example 15-11 shows the BPEL 2.0 syntax.
You can create an onEvent branch in a scope activity that causes a specified event to wait for a message to arrive. For example, assume you have a credit request process that is initiated by a customer's credit request message. The request may be completely processed without the need for further interaction, and the results submitted to the customer. In some cases, however, the customer may want to inquire about the status of the credit request, modify the request content, or cancel the request entirely while it is being processed. You cannot expect these interactions to occur only at specific points in the business order processing. An event handler such as an onEvent branch enables the business process to accept requests (such as status request, modification request, or cancellation request) to arrive in parallel to the primary business logic flow.
The onEvent event handlers are associated with an enclosed scope. The onEvent event handlers are enabled when their scope is initialized and disabled when their scope ends. When enabled, any number of events can occur. They are processed in parallel to the scope's primary activity and in parallel to each other. Message events also represent services operations exposed by a process and modeled as onEvent elements. Event handlers cannot create new process instances. Therefore, message events are always received by a process instance that is already active.
To create an onEvent branch in a scope activity:
This creates an OnEvent branch and an enclosed scope activity.
The OnEvent dialog is displayed, as shown in Figure 15-10.
The Port Type and Operation fields define the port type and operation invoked by the partner to cause the event.
Example 15-12 provides an overview of onEvent
branches in the .bpel
file after design completion. The onEvent branches inquire about the status of the credit request, modify the request content, or cancel the request entirely while it is being processed
Example 15-12 onEvent Branch
For synchronous processes that connect to a remote database, you must increase the SyncMaxWaitTime timeout property in the System MBean Browser of Oracle Enterprise Manager Fusion Middleware Control.
For information on setting this property, see Section 7.3, "Specifying Transaction Timeout Values in Synchronous Processes."
This chapter describes how to coordinate master and detail processes in a BPEL process. This coordination enables you to specify the tasks performed by a master BPEL process and its related detail BPEL processes. This is sometimes referred to as a parent and child relationship.
This chapter includes the following sections:
Master and detail coordinations consist of a one-to-many relationship between a single master process and multiple detail processes.
For example, assume a business process imports sales orders into an application. Each sales order consists of a header (customer information, ship-to address, and so on) and multiple lines (item name, item number, item quantity, price, and so on).
The following tasks are performed to execute the order:
To perform these tasks, create a master process to check and validate each header and multiple BPEL processes to check and validate each line item.
Potential coordination points are as follows:
Figure 16-1 provides an overview of the header and line item validation coordination points between one master process and two detail processes.
Figure 16-1 Master and Detail Coordination Overview (One BPEL Process to Two Detail Processes)
The following BPEL process activities coordinate actions between the master and detail processes:
Both activities are coordinated with label attributes defined in the BPEL process files. Labels are declared per master process definition.
Figure 16-2 provides an overview of the BPEL process flow coordination.
Figure 16-2 Master and Detail Syntax Overview (One BPEL Process to One Detail Process)
As shown in Figure 16-2, each master and detail process includes a signal and receive signal activity. Table 16-1 describes activity responsibilities based on the type of process in which they are defined.
Table 16-1 Master and Detail Process Coordination Responsibilities
If A... | Contains A... | Then... |
---|---|---|
Master process | Signal activity | The master process signals all of its associated detail processes at runtime. |
Detail process | Receive signal activity | The detail process waits until it receives the signal executed by its master process. |
Detail process | Signal activity | The detail process signals its associated master process at runtime that processing is complete. |
Master process | Receive signal activity | The master process waits until it receives the signal executed by all of its detail processes. |
If the signal activity executes before the receive signal activity, the state set by the signal activity is persisted and still effective for a later receive signal activity to read.
The BPEL file for the master process defines coordination with the detail processes. The BPEL file shows that the master process interacts with the partner links of several detail processes. Example 16-1 provides an example.
Example 16-1 BPEL File Definition for the Master Process
A signal activity shows the label value and the detail process coordinated with this master process. The label value (startDetailProcess
) matches with the label value in the receive signal activity of all detail processes. This ensures that the signal is delivered to the correct process. There is one signal process per receive signal process. The master process signals all detail processes at runtime. This syntax shows a signal activity in a BPEL process that supports BPEL version 1.1.
Note: In BPEL 2.0, the signal activity syntax is slightly different. The signal activity is wrapped in an <extensionActivity> <bpelx:signal name="notifyDetailProcess" label="startDetailProcess" to="details"/> </extensionActivity> |
Assign, invoke, and receive activities describe the interaction between the master and detail processes. This example shows interaction between the master process and one of the detail processes (DetailProcess
). Similar interaction is defined in this BPEL file for all detail processes.
In the invoke activity, ensure that the Invoke As Detail checkbox is selected. Figure 16-3 provides details.
This selection creates the partner process instance (DetailProcess
) as a detail instance. You must select this checkbox in the invoke activity of the master process for each detail process with which to interact. Example 16-2 provides an example of the BPEL file contents after you select the Invoke As Detail checkbox.
Example 16-2 bpelx:invokeAsDetail Attribute
The master BPEL process includes a receive signal activity. This activity indicates that the master process waits until it receives a signal from all of its detail processes. The label value (detailProcessComplete
) matches with the label value in the signal activity of each detail process. This ensures that the signal is delivered to the correct process. Example 16-3 provides an example. This syntax shows a receive signal activity in a BPEL process that supports BPEL version 1.1.
Example 16-3 Receive Signal Activity
Note: In BPEL 2.0, the receive signal activity syntax is slightly different. The receive signal activity is wrapped in an <extensionActivity> <bpelx:receiveSignal name="waitForNotifyFromDetailProcess" label="detailProcessComplete" from="details"/> </extensionActivity> |
For environments in which you have one master and multiple detail processes, use the bpelx:detailLabel
attribute for signal correlation. Example 16-4 shows how to use this attribute.
The first invoke activity invokes the DetailsProcess
detail process and associates it with a label of detailProcessComplete0
.
Example 16-4 First Invoke Activity
The second invoke activity invokes the DetailsProcess1
detail process and associates it with a label of detailProcessComplete1
. Example 16-5 provides an example.
Example 16-5 Second Invoke Activity
The third invoke activity invokes the DetailsProcess2
detail process again through a different port and with a different input variable. It associates the DetailsProcess2
detail process with a label of detailProcessComplete1-2
, as shown in Example 16-6.
Example 16-6 Third Invoke Activity
The receive signal activity of the master process shown in Example 16-7 waits for a return signal from detail process DetailProcess0
.
Example 16-7 Receive Signal Activity
The second receive signal activity of the master process shown in Example 16-8 also waits for a return signal from DetailProcess1
and DetailProcess2
.
Example 16-8 Second Receive Signal Activity
Note: If there is only one receive signal activity in the BPEL process, do not specify the |
The BPEL process file of each detail process defines coordination with the master process.
A receive signal activity indicates that the detail process shown in Example 16-9 waits until it receives a signal executed by its master process. The label value (startDetailProcess
) matches with the label value in the signal activity of the master process.
Example 16-9 startDetailProcess Label Value
A signal activity indicates that the detail process shown in Example 16-10 signals its associated master process at runtime that processing is complete. The label value (detailProcessComplete
) matches with the label value in the receive signal activity of each master process.
This section provides an overview of how to define master and detail process coordination in Oracle BPEL Designer. In this example, one master process and one detail process are defined.
Note: This section only describes the tasks specific to master and detail process coordination. It does not describe the standard activities that you define in a BPEL process, such as creating variables, creating assign activities, and so on. |
To create a master process:
Double-click the Signal activity.
This activity signals the detail process to perform processing at runtime.
Enter the details described in Table 16-2:
Table 16-2 Signal Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name (for this example, |
Label | Enter a label name (for this example, |
To | Select details as the type of process to receive this signal. |
Figure 16-4 shows the Signal dialog.
This activity enables the master process to wait until it receives the signal executed by all of its detail processes.
Enter the details shown in Table 16-3:
Table 16-3 Receive Signal Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name (for this example, |
Label | Enter a label name (for this example, |
To | Select details as the type of process from which to receive the signal. |
Figure 16-5 shows the Receive Signal dialog.
The master process has now been designed to:
To create a detail process:
In the SOA Composite Editor, create a second BPEL process service component. For this example, the process is named DetailProcess.
This activity enables the detail process to wait until it receives the signal executed by its master process.
Enter the details shown in Table 16-4:
Table 16-4 Receive Signal Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name (for this example, |
Label | Enter a label name (for this example, |
To | Select master as the type of process from which to receive the signal. |
Figure 16-6 shows the Receive Signal dialog.
This activity enables the detail process to signal its associated master process at runtime that processing is complete.
Enter the details described in Table 16-5:
Table 16-5 Signal Dialog Fields and Values
Field | Value |
---|---|
Name | Enter a name (for this example, |
Label | Enter a label name (for this example, |
To | Select master as the destination. |
Figure 16-7 shows the Signal dialog.
The detail process has now been designed to:
To create an invoke activity:
Example 16-11 bpelx:invokeAsdetail Attribute
This attribute creates the partner process (DetailProcess
) as a detail instance.
bpelx:detailLabel
attribute for correlating with the receive signal activity, as shown in Example 16-12. detailProcessComplete0
in the receive signal activity of the master process, as shown in Example 16-13. Master and detail coordination design is now complete.
This chapter describes how to send notifications from a BPEL process using a variety of channels. A BPEL process can be designed to send email, voice message, instant messaging (IM), or short message service (SMS) notifications. A BPEL process can also be designed to consider an end user's channel preference at runtime for selecting the notification channel.
This chapter includes the following sections:
Note: The fax and pager notification channels are not supported in 11g Release 1 (11.1.1). |
Various scenarios may require sending email messages or other types of notifications to users as part of the process flow. For example, certain types of exceptions that cannot be handled automatically may require manual intervention. In this case, a BPEL process can use the notification service to alert users by voice, IM, SMS, or email.
The contact information (email address, phone number, and so on) of the recipient is either static (such as admin@yourcompany.com
) or obtained dynamically during runtime. To obtain the contact information dynamically, XPath expressions can retrieve it from the identity store (LDAP) or extract it from the BPEL payload.
This chapter uses the following terms:
An asynchronous message sent to a user by a specific channel. The message can be sent as an email, voice, IM, or SMS message.
A notification to which the user can respond. For example, workflow sends an email to a manager to approve or reject a purchase order. The manager approves or rejects the request by replying to the email with appropriate content.
Sends email notifications directly from a BPEL process or implicitly from the human task part of a BPEL process. Implicit notifications are modeled from the Human Task Editor.
For sending email notifications directly from a BPEL process, you must explicitly specify the user information in the BPEL process and can be inside or outside of a human task scope.
For sending email notifications implicitly from the human task part of a BPEL process, you only specify the recipient based on the relationship of the user with regards to the task (that is, the creator, assignee, and so on).
Note: Implicit notifications are processed through more layers of code than explicit notifications. If explicit notifications are functioning correctly, it does not mean that implicit notifications also function correctly. |
Oracle User Messaging Service is a new feature for release 11g. The BPEL notification service uses the underlying infrastructure provided by Oracle User Messaging Service to send notifications.
Oracle User Messaging Service also provides the user preference infrastructure for getting the end user's preferred channel during runtime.
For more information on the Oracle User Messaging Service, see Appendix 62, "Oracle User Messaging Service."
Figure 17-1 shows the Oracle User Messaging Service interfaces and supported service types.
Figure 17-1 Service Interfaces and Supported Service Types
For more information about notifications, see the following section:
Notification setup is a multiple-step process that involves three user interface tools. Table 17-1 provides an overview of this process, including the task to perform, the tool to use, and the documentation to which to refer for more specific details.
Table 17-1 Notification Tasks
Task | Description | User Interface | Described In... |
---|---|---|---|
Select a channel for sending notifications in a SOA composite application. | Select a method for sending notifications:
| Selected and configured by the BPEL process designer in Oracle BPEL Designer | Section 17.3, "Selecting Notification Channels During BPEL Process Design" or Section 17.4, "Allowing the End User to Select Notification Channels" |
Configure the driver for the notification channel | You configure drivers on the same Oracle WebLogic Server on which you deploy the SOA composite application. This action enables participants to receive and forward notifications. Driver support is provided for email, IM, SMS, and voice channels. | Configured by the administrator in Oracle Enterprise Manager Fusion Middleware Control | |
Configure the notification mode and actionable accounts for human workflows | If you are using notifications with human workflow, you configure the notification mode and actionable account for email. | Configured by the administrator in Oracle Enterprise Manager Fusion Middleware Control | |
Register the devices used to access messages by specifying user preferences | This action enables workflow participants to receive notification messages. For example, the end user registers email clients and specifies the message content to receive and the channel to use for receiving messages. If no channel is specified, email is used by default. The preferences set in this application are applicable only to that specific end user, and not to other users. | Registered by the end user in the User Messaging Preferences user interface. You can access this interface by selecting Preferences > Notification in Oracle BPM Worklist. | Part XI, "Using Oracle User Messaging Service" |
Oracle JDeveloper includes the email, IM, SMS, and voice channel notification channels in the Component Palette. You can set the exact notification channels to use during design time. For example, a BPEL process can be designed to use the following notification channels:
To select the notification channel during BPEL process design:
Table 17-2 Notification Channels
If You Selected... | See... |
---|---|
| Section 17.3.1, "How To Configure the Email Notification Channel" to configure email notification |
IM | Section 17.3.2, "How to Configure the IM Notification Channel" to configure IM notification |
SMS | Section 17.3.3, "How to Configure the SMS Notification Channel" to configure SMS notification |
Voice | Section 17.3.4, "How to Configure the Voice Notification Channel" to configure voice message notification |
Note: If you delete an email, voice, SMS, or IM activity, any partner link with which it is integrated is not automatically deleted. |
When you select Email from the Component Palette, the Email dialog appears. Figure 17-2 shows the required email notification parameters.
To configure the email notification channel:
Note: For the To, CC, and Bcc fields, separate multiple addresses with a semicolon ( |
Table 17-3 Email Notification Parameters
Name | Description |
---|---|
From Account | The name of the account used to send this message. The default account is named Default and is editable from the Workflow Notification Properties page in Oracle Enterprise Manager Fusion Middleware Control. To add additional accounts, you must use the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. For information on editing this property in Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite. |
To | The email address to which the message is to be delivered. This can be one of the following:
The XPath Expression Builder can get the dynamic email address from the input. See Section 17.3.5, "How to Select Email Addresses and Telephone Numbers Dynamically." |
CC and Bcc | The email addresses to which the message is copied and blind copied. This can be a static or dynamic address, as described for the To address. |
Reply To | The email address to use for replies. This can be a static or dynamic address, as described for the To address. |
Subject | The subject of the email message. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify. |
Body | The message body of the email message. This can be plain text, HTML, or dynamic text, as described for the Subject parameter. |
Multipart message with n attachments | Select to specify email attachments. See Section 17.3.1.1, "Setting Email Attachments." The number of attachments if Multipart message is selected. The number does not include the body. For example, if you have a body and one attachment, specify |
The BPEL fragment that invokes the notification service to send the email message is created.
The WebLogic Fusion Order Demo application uses an email activity in the Scope_NotifyCustomerofCompletion scope. The Oracle User Messaging Service sends the email to a customer when an order is fulfilled. The following details are specified in the Email dialog:
Figure 17-3 provides details.
You can send attachments with an email activity. Each attachment has three elements: name, MIME type, and value. All three elements must be set for each attachment.
To add an attachment to an email message:
Attachment
number
. The BPEL fragment with an assign activity with multiple copy
rules is generated. One of the copy
rules copies the attachment.
An assign activity named EmailParamsAssign appears.
Note the settings in EmailParamsAssign, as shown in Figure 17-4.
Figure 17-4 EmailParamsAssign Assign Activity
For more information about sending attachments using email, see the following documentation:
notification-101
sample, which is available with the Oracle SOA Suite samples. You can format the body of an email message as HTML rather than as straight text. To perform this action, apply an XSLT transform
to generate the email body. Add in the XSLT tag you want to use. Tools such as XMLSpy can provide assistance in writing and testing the XSLT. The MIME type should be string('text/html;charset=UTF-8')
.
The email notification assignment looks as shown in Example 17-1:
If the HTML for the message content of an email activity is generated dynamically, (as with XSLT, file read, and so on), it must be wrapped in a CDATA
function. This prevents conflicts between the XML/HTML content of the message body and BPEL's internal XML data structures.
For example, assume you use the append
operation shown in Example 17-2 for the message content inside the email activity:
Example 17-2 Message Content Inside an Email Activity
For this to work correctly, you must pass the output of the processXSLT()
function to the CDATA()
function, as shown in Example 17-3.
When you drag IM from the Component Palette, the IM dialog appears. Figure 17-5 shows the required IM notification parameters.
To configure the IM notification channel:
Table 17-4 IM Notification Parameters
Name | Description |
---|---|
To | The IM address to which the message is to be delivered. Enter the address manually or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter an account. |
Body | The IM message body. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify. |
The BPEL fragment that invokes the notification service for IM notification is created.
When you select SMS from the Component Palette, the SMS dialog appears. Figure 17-6 shows the required SMS notification parameters.
To configure the SMS notification channel:
Table 17-5 SMS Notification Parameters
Name | Description |
---|---|
From Number | The telephone number from which to send the SMS notification. This can be a static telephone number entered at the time the message is created or a dynamic telephone number from the payload. The XPath Expression Builder can get the dynamic telephone number from the input. See Section 17.3.5, "How to Select Email Addresses and Telephone Numbers Dynamically." |
Telephone Number | Select a method for specifying the telephone number to which to deliver the message:
|
Subject | The subject of the SMS message. This can be plain text or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify. |
Body | The SMS message body. This must be plain text. This can be plain text or dynamic text as described for the Subject parameter. |
The BPEL fragment that invokes the notification service for SMS notification is created.
When you select Voice from the Component Palette, the Voice dialog appears. Figure 17-7 shows the required voice notification parameters.
To configure the voice notification channel:
Table 17-6 Voice Notification Parameters
Name | Description |
---|---|
Telephone Number | The telephone number to which the message is to be delivered. Specify the number through one of the following methods:
The XPath Expression Builder can retrieve the dynamic telephone number from the input. |
Body | The message body. This can be plain text, XML, or dynamic text. The XPath Expression Builder can set dynamic text based on data from process variables that you specify. |
The BPEL fragment that invokes the notification service for voice notification is created.
You may need to set email addresses or telephone numbers dynamically based on certain process variables. You can also look up contact information for a specific user using the built-in XPath functions for the identity service:
For example, to get the email address from variable inputVariable
and part payload
based on XPath /client/BPELProcessRequest/client/mail
:
You can use the XPath Expression Builder to select the function and enter the XPath expression to get an address from the input variable.
The first argument evaluates to the user ID. The second argument is the property name. The third argument is the realm name. Table 17-7 lists the property names that can be used in this XPath function.
Table 17-7 Properties for the Dynamic User XPath Function
Property Name | Description |
---|---|
| Look up a user's email address. |
| Look up a user's telephone number. |
| Look up a user's mobile telephone number. |
| Look up a user's home telephone number. |
The following example gets the email address of the user identified by the variable inputVariable
, part payload
, and queries /client:BPELProcessRequest/client:userID
:
If realmName
is not specified, then the default realm name is used. For example, if the default realm name is jazn.com
, the following XPath expression searches for the user in the jazn.com
realm:
The following XPath expression provides the same functionality as the one above. In this case, however, the realm name of jazn.com
is explicitly specified:
You can select users or groups in Oracle JDeveloper to whom you want to send notifications by browsing the user directory (for example, Oracle Internet Directory) that is configured for use with Oracle BPEL Process Manager. Click the Search icon to the right of the following fields to open the Identity Lookup dialog:
For more information about using the Identity Lookup dialog, see Chapter 34, "Introduction to Human Workflow Services"
You can design a BPEL process in which you do not explicitly select a notification channel during design time, but simply indicate that a notification must be sent. The channel to use for sending notifications is resolved at runtime based on preferences defined by the end user in the User Messaging Preferences user interface of the Oracle User Messaging Service. This moves the responsibility of notification channel selection from the BPEL process designer in Oracle BPEL Designer to the end user. If the end user does not select a preferred channel or rule, email is used by default for sending notifications to that user. Regardless of who selects the channel to use, channel use is still based on the driver installation and configuration performed in the Oracle User Messaging Service section of Oracle Enterprise Manager Fusion Middleware Control by the administrator.
For example, an end user may set their preferences as follows:
Note: You can also set user preferences for sending notifications in human workflows in the Human Task Editor. Set these preferences in the Notification Filters part of the Notification Settings section. These preferences are used to evaluate rules in the task. For more information, see Section 29.8.8, "How to Send Task Attachments with Email Notifications." |
For more information about the User Messaging Preferences user interface, see Chapter 67, "User Messaging Preferences."
To allow the end user to select notification channels:
Table 17-8 User Notification Parameters
Name | Description |
---|---|
To | Enter a valid user for the recipient of this notification message through one of the following methods:
Note: You must specify a user name (for example, |
Subject | Enter a message name or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a subject. If notification is sent through email, this field is used during runtime. This field is ignored if notifications are sent through the voice, SMS, or IM channels. |
Notification Message | Enter the notification message or click the XPath Expression Builder icon to display the Expression Builder dialog to dynamically enter a message to send. |
The Advanced tab of the User Notification dialog enables you to create and send header and name information that may be useful to an end user in creating their own preference rules for receiving notifications. For example:
jcooper
and jstein
in the General tab. Amount
=
payload->salary
Application
=
HR-Application
jcooper
creates the following preference rules in the User Messaging Preferences user interface: jstein
creates the following preference rule in the User Messaging Preferences user interface: Figure 17-9 shows the Advanced tab of the User Notification dialog.
Figure 17-9 User Notification Advanced Parameters
This chapter describes how to use sensors to select BPEL activities, variables, and faults to monitor during runtime in a BPEL process. It also describes how to create sensor actions to publish the values of sensors to an endpoint.
This chapter includes the following sections:
For more information about sensors, see the following sections:
Sensors are used to declare interest in specific events throughout the life cycle of a BPEL process instance. In a business process, that can be the activation and completion of a specific activity or the modification of a variable value in the business process.
When a sensor is triggered, a specific sensor value is created. For example, if a sensor declares interest in the completion of a BPEL scope, the sensor value consists of the name of the BPEL scope and a time stamp value of when the activity was completed. If a sensor value declares interest in a BPEL process variable, then the sensor value consists of the value of the variable at the moment it was modified, a time stamp when the variable was modified, and the activity name and type that modified the BPEL variable.
The data format for sensor values is normalized and well-defined using XML schema.
A sensor action is an instruction on how to process sensor values. When a sensor is triggered by Oracle BPEL Process Manager, a new sensor value for that sensor is created. After that, all the sensor actions associated with that sensor are performed. A sensor action typically persists the sensor value in a database or sends the normalized sensor value data to a JMS queue or topic. For integration with Oracle Business Activity Monitoring, the sensor value can be sent to the BAM adapter.
You can define the following types of sensors, either through Oracle JDeveloper or manually by providing sensor configuration files.
Activity sensors are used to monitor the execution of activities within a BPEL process. For example, they can monitor the execution time of an invoke activity or how long it takes to complete a scope. Along with the activity sensor, you can also monitor variables of the activity.
Variable sensors are used to monitor variables (or parts of a variable) of a BPEL process. For example, variable sensors can monitor the input and output data of a BPEL process.
Fault sensors are used to monitor BPEL faults.
You typically add or edit sensors as part of the BPEL modeling of activities, faults, and variables.
These sensors are exposed through the following public SQL views:
BPEL_ACTIVITY_SENSOR_VALUES
BPEL_FAULT_SENSOR_VALUES
BPEL_VARIABLE_SENSOR_VALUES
These views can be joined with the BPEL_PROCESS_INSTANCES
view to associate the sensor value with the BPEL process instance that created the sensor values. For more information, see Appendix D, "Understanding Sensor Public Views and the Sensor Actions XSD."
When you model sensors in Oracle JDeveloper, two new files are created as part of the BPEL process archive:
bpel_process_name
_
sensor.xml
Contains the sensor definitions of a BPEL process
bpel_process_name
_
sensorAction.xml
Contains the sensor action definitions of a BPEL process
See Section 18.2.2, "How to Configure Sensors" and Section 18.2.3, "How to Configure Sensor Actions" for how these files are created.
After you define sensors for a BPEL process, you must configure sensor actions to publish the sensor data to a specified destination. If no sensor action is defined for a sensor, then nothing happens at runtime.
The following information is required for a sensor action:
The publish type specifies the destination in which the sensor data must be presented. You can publish sensor data to the following destination types.
Publishes the sensor data to the reports schema in the database. The sensor data can then be queried using SQL.
Publishes the sensor data to a JMS queue. The XML data is posted in accordance with the Sensor.xsd
file. This file is included with Oracle JDeveloper in the JDEV_HOME
\jdeveloper\integration\seed\soa\shared\bpel
directory.
Publishes the sensor data to a JMS topic. The XML data is posted in accordance with the same Sensor.xsd
file used with JMS queues.
Publishes the data to a custom Java class.
Uses the JMS adapter to publish to remote queues or topics and a variety of different JMS providers. The JMS queue and JMS topic publish types only publish to local JMS destinations.
The sensors for a sensor action.
Oracle BAM sensors publish information and events from Oracle BPEL Process Manager to Oracle BAM. Oracle BAM can display the data in rich real-time dashboards for end-to-end monitoring of an application. For more information, see Section 53.7, "Integrating BPEL Sensors Using Oracle BAM Sensor Action."
In Oracle JDeveloper, sensor actions and sensors are displayed as part of Monitor view.
To access sensors and sensor actions:
Figure 18-2 shows the sensor actions and sensors in the Structure window.
Figure 18-2 Sensors and Sensor Actions Displayed in Oracle JDeveloper
You typically add or edit sensors as part of the BPEL modeling of activities, faults, and variables.
The following sections describe how to configure sensors and sensor actions.
This section describes how to configure activity, variable, and fault sensors.
To configure an activity sensor:
Assume you are monitoring a loan flow application, and want to know the following:
The solution is to create an activity sensor for the GetCreditRating scope in Oracle BPEL Designer, as shown in Figure 18-4.
Activities that have sensors associated with them are identified with a magnifying glass in Oracle BPEL Designer.
The Evaluation Time list shown in Figure 18-4 controls the point at which the sensor is fired.
The sensor monitors during the activation, completion, fault, compensation, and retry phases.
The sensor is fired just before the activity is executed.
The sensor is fired just after the activity is executed.
The sensor is fired if a fault occurs during the execution of the activity. Select this value only for sensors that monitor simple activities.
The sensor is fired when the associated scope activity is compensated. Select this value only for sensors that monitor scopes.
The sensor is fired when the associated invoke activity is retried.
A new entry is created in the bpel_process_name
_sensor.xml
file, as shown in Example 18-1:
Example 18-1 bpel_process_name_sensor.xml file
To configure a variable sensor:
If you want to record all the incoming loan requests, you can create a variable sensor.
Based on your selection for the Target field, the Output Namespace and Output Datatype fields are automatically filled in.
A new entry is created in the bpel_process_name
_
sensor.xml
file, as shown in Example 18-2:
Example 18-2 bpel_process_name_sensor.xml file
To configure a fault sensor:
If you want to monitor faults (for this example, from the identity service), you can create a fault sensor.
Based on your selection, the Namespace and Local Parts fields are automatically filled in.
A new entry is created in the bpel_process_name
_sensor.xml
file, as shown in Example 18-3:
When you create sensors, you identify the activities, variables, and faults you want to monitor during runtime. If you want to publish the values of the sensors to an endpoint (for example, you want to publish the data of the LoanApplicationSensor variable sensor created in Figure 18-5 to a JMS queue), then create a sensor action, as shown in Figure 18-7, and associate it with the LoanApplicationSensor variable.
To configure a sensor action:
Table 18-1 Sensor Actions Dialog
Field | Description |
---|---|
Name | Enter a name or accept the default name. |
Publish Type | Select the destination to which to publish sensor data. For more information, see section Section 18.1, "Introduction to Sensors." |
JMS Connection Factory | If your publish type is JMS Queue, JMS Topic, or JMS Adapter, specify the connection factory. |
Publish Target | If your publish type is JMS Queue, JMS Topic, Custom, or JMS Adapter, specify the publish target. The publish target represents different things depending on the publish type specified:
|
Filter | Enter filter logic as a boolean expression. A filter enables you to monitor sensor data within a specific range. For an example of a configured filter, see Figure 18-9 and Example 18-6. |
Enable | Deselect this checkbox to disable a sensor action. By default, sensor actions are enabled. If you disable a sensor action by deselecting this checkbox, the action does not publish data. |
A new entry is created in the bpel_process_name
_sensorAction.xml
file, as shown in Example 18-4:
Example 18-4 bpel_process_name_sensorAction.xml file
Note: You cannot specify a |
If you want to publish the values of LoanApplicationSensor and CreditRatingSensor to the reports schema in the database, create an additional sensor action, as shown in Figure 18-8, and associate it with both CreditRatingSensor and LoanApplicationSensor.
Figure 18-8 Creating an Additional Sensor Action
A new entry is created in the bpel_process_name
_sensorAction.xml
file, as shown in Example 18-5:
Example 18-5 bpel_process_name_sensorAction.xml file
The data of one sensor can be published to multiple endpoints. In the two preceding code samples, the data of LoanApplicationSensor was published to a JMS queue and to the reports schema in the database.
If you want to monitor loan requests for which the loan amount is greater than $100,000, you can create a sensor action with a filter, as shown in Figure 18-9. There is no design-time validation of the filter query. You must ensure the query is correct.
Figure 18-9 Creating a Sensor Action with a Filter
A new entry is created in the bpel_process_name
_sensorAction.xml
file, as shown in Example 18-6:
Example 18-6 bpel_process_name_sensorAction.xml file
Notes:
|
If you have special requirements for a sensor action that cannot be accomplished by using the built-in publish types (database, JMS queue, JMS topic, and JMS Adapter), then you can create a sensor action with the custom publish type, as shown in Figure 18-10. The name in the Publish Target field denotes a fully qualified Java class name that must be implemented. For more information, see Section 18.2.5, "How to Create a Custom Data Publisher."
Figure 18-10 Using the Custom Publish Type
The JMS queue and JMS topic publish types only publish to local JMS destinations. If you want to publish sensor data to remote topics and queues, use the JMS adapter publish type, as shown in Figure 18-11.
Figure 18-11 Using the JMS Adapter Publish Type
In addition to enabling you to publish sensor data to remote topics and queues, the JMS adapter supports a variety of different JMS providers, including:
If you select the JMS Adapter publish type, you must create an entry in the weblogic-ra.xml
file, which is updated through editing in the Oracle WebLogic Server Administration Console. Each JMS connection factory (pool) entry created in this console corresponds to one JNDI entry in weblogic-ra.xml
. Update the Sensor Actions dialog with the chosen JNDI name selected during the creation of the JMS connection factory (pool).
For more information about the JMS adapter, see Oracle Fusion Middleware User's Guide for Technology Adapters.
To create a custom data publisher, perform the following steps:
To create a custom data publisher:
The Project Properties dialog appears.
Figure 18-12 provides details.
The package and class name must match the publish target name of the sensor action.
com.oracle.bpel.sensor.DataPublisher
interface. This updates the source file and fills in the methods and import statements of the DataPublisher interface.
The next time that you deploy the BPEL process, the Java class is added to the SOA archive (SAR) and deployed.
Note: Ensure that additional Java libraries needed to implement the data publisher are in the class path. Oracle BPEL Process Manager can execute multiple process instances simultaneously, so ensure that the code in your data publisher is thread safe, or add appropriate synchronization blocks. To guarantee high throughput, do not use shared data objects that require synchronization. |
Oracle JDeveloper automatically updates the composite.xml
file to include appropriate properties for sensors and sensor actions, as shown in Example 18-7:
Example 18-7 composite.xml File
You can specify additional properties with <property name= ...>
, as shown in Example 18-7.
The Oracle Enterprise Manager Fusion Middleware Control provides support for viewing the metadata of sensors, sensor actions, and the sensor data created as part of the process execution.
For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Notes:
|
This part describes the components that comprise the Oracle Mediator service component.
This part contains the following chapters:
This chapter describes Oracle Mediator, which provides transformation, validation, and routing logic to Oracle SOA Suite applications. This chapter also describes how to create a Mediator component and the associated WSDL documents in Oracle JDeveloper.
This chapter includes the following sections:
Oracle Mediator is a service component of the Oracle SOA Suite that provides mediation capabilities such as selective routing, transformation, and validation capabilities, along with various message exchange patterns, such as synchronous, asynchronous, and event publishing or subscriptions.
Mediator provides a lightweight framework to mediate between various components within a composite application, such as business processes, human workflows, and so on, using a Web Services Description Language (WSDL) document as the interface. Mediator converts data to facilitate communication between different interfaces exposed by different components that are wired to build a SOA composite application. For example, Mediator can accept data contained in a text file from an application or service, transform it into a format appropriate for updating a database that serves as a customer repository, and then route and deliver the data to that database.
Mediator facilitates integration between events and services, where service invocations and events can be mixed and matched. You can use a Mediator service component to consume a business event or receive a service invocation. A Mediator service component can evaluate routing rules, perform transformations, validate, and either invoke another service or raise another business event. You can use a Mediator service component to handle returned responses, callbacks, faults, and timeouts.
The following sections describe the primary functions that Oracle Mediator supplies to an Oracle SOA Suite application.
Mediator enables you to define rules based on the message payload or message headers. You can select elements or attributes from the message payload or the message header and, based on the values in those elements or attributes, you can specify an action. For example, Mediator receives a file from an application or service containing data about new customers. Based on the country mentioned in the customer's address, you can route and deliver data to the database storing data for that particular country. Similarly, you can route a message based on the message header.
For more information about header-based routing, see Section 20.3.2.12, "How to Access Headers for Filters and Assignments."
Mediator supports both synchronous and asynchronous request and response interactions. In a synchronous interaction, the client requests a service and then waits for a response to the request. In an asynchronous interaction, the client invokes the service, but does not wait for the response. You can specify a timeout period for an asynchronous interaction and you can specify an action to perform after the timeout period, such as to raise an event or start a process.
For more information about synchronous and asynchronous interactions, see Section 20.3.2.4, "How to Configure Response Messages" and Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."
Mediator lets you specify that a routing rule be executed either in parallel or in sequence. You can configure the execution type from the Routing Rules section of the Mediator Editor.
For more information about sequential and parallel routing of messages, see Section 20.3.2.3, "How to Specify Sequential or Parallel Execution."
When you use the Mediator resequencer, it rearranges streams of related but out-of-sequence messages into their sequential order based on the type of resequencer used and the rules you define. When incoming messages arrive in a random order, the resequencer orders the messages based on sequential or chronological information, and then sends the messages to the target services in the correct order based on the resequencing configuration.
For more information about resequencing messages, see Chapter 23, "Resequencing in Oracle Mediator."
Mediator lets you define data transformation from one XML schema to another. This feature enables data interchange among applications using different schemas. For example, you can transform a comma-delimited file to a database table structure.
For more information about transformations, see Section 20.3.2.9, "How to Create Transformations."
You can configure Mediators to validate the incoming message payload using a Schematron or an XSD file. You can specify Schematron files for each inbound message part and Mediator executes Schematron file validations for those parts.
For more information about validations, see Section 20.3.2.13, "How to Use Semantic Validation" and http://www.schematron.com/
.
Mediator lets you add Java callouts to the routing rules. Java callouts are a way of using of Java code with regular expressions.
For more information about Java callouts, see Section 20.3.2.15, "How to Use Java Callouts."
An event is a message sent because an activity occurred in a business environment. Mediator can both subscribe to and raise business events. You can subscribe to a business event that is generated when a situation of interest occurs. For example, you can subscribe to an event that is generated when a new customer is created and then use this event to start a business process, such as sending a confirmation email. Similarly, you can generate business events when a situation of interest occurs. For example, after a new customer profile is created, you can generate a customer-created event.
For more information about event handling, see Chapter 41, "Using Business Events and the Event Delivery Network."
Dynamic routing separates the control logic of a process from the execution of the process. The control logic determines the path taken by the process. You can create dynamic routing rules using the Mediator Editor.
For more information about dynamic routing, see Section 20.3.3, "How to Create Dynamic Routing Rules."
Mediator supports both manual error handling and error handling based on fault policies. A fault policy consists of conditions and actions, where the conditions specify the action to be carried out for a particular error condition.
For more information about error handling, see Chapter 22, "Using Oracle Mediator Error Handling."
Mediator can echo source messages back to the initial caller after any transformations, validations, assignments, or sequencing operations are performed.
For more information about Mediator echo support, see "To echo a service:" of Section 20.3.2.1, "How to Specify Mediator Services or Events."
Mediator can process messages that consist of multiple parts. Some Remote Procedure Call (RPC) web services contain multiple parts in the SOAP message.
For more information about multiple part message support, see Chapter 21, "Working with Multiple Part Messages in Oracle Mediator."
You can create a Mediator service component in a SOA composite application of Oracle JDeveloper and then configure it using the Mediator Editor. To display the Mediator Editor, double-click the Mediator service component in the SOA Composite Editor. For information about the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."
Figure 19-1 shows the Mediator Editor along with the Application Navigator, Structure, and Messages windows.
Note: Oracle recommends using a Unicode database with |
Each section of the view shown in Figure 19-1 lets you perform specific design and deployment tasks. The sections in this view include the following:
The Application Navigator, shown in the upper left section of Figure 19-1, displays the Mediator file structure. These files appear under the SOA Content folder of the project where you created a Mediator. For more information about the Application Navigator and the composite files, see Table 2-3, "SOA Composite Editor".
The Mediator Editor, shown in the middle of Figure 19-1, provides a visual view of the Mediator. This view appears when you perform one of the following actions:
.mplan
file for the Mediator in the Application Navigator. The Source view displays the source code of a Mediator. Click Source at the bottom of the Mediator Editor to view the source code. The code in Source view is immediately updated to reflect any changes to an a Mediator.
Example 19-1 shows sample Mediator source code:
The History window displays history information about the Mediator file, including a revision history and side-by-side comparisons of read-only and editable versions of a file. Click History at the bottom of the Design window shown in Figure 19-1 to open the History window. Figure 19-2 shows the History view for a Mediator file.
The Property Inspector, shown at the bottom of Figure 19-1, displays details about Mediator properties.
The Structure Window, shown in the lower left section of Figure 19-1, displays a structural view of the data of a Mediator.
The Log Window displays messages about the validation and compilation status.
You can create a Mediator in multiple ways, depending on where you are in your application development process. Follow the appropriate instructions in the following sections to create the component.
You can create a Mediator in a SOA composite application in Oracle JDeveloper at any of the following points in the development cycle:
When you create a Mediator, the Create Mediator dialog appears so you can name the Mediator and select a template for the interface.
To create a composite application with a Mediator:
Figure 19-3 Composite with Mediator Selection in Create SOA Project Wizard
The Create Mediator dialog appears.
To create a Mediator in an existing composite application:
Tip: The Component Palette is to the right of the SOA Composite Editor. |
Figure 19-4 Component Palette with a Mediator Service Component
The Create Mediator dialog appears.
To create a new project with a Mediator:
The New Gallery wizard appears.
Figure 19-5 Create SOA Project Wizard with Composite With Mediator Template Shown
The Create Mediator dialog appears.
To create a Mediator in an existing project:
Figure 19-6 New Gallery Dialog with Mediator Service Component
The Create Mediator dialog appears.
When you create a new Mediator, you can specify an interface template that generates a basic set of default files in the Mediator project. These files provide a framework from which you can design and configure the Mediator. You can create a Mediator with the following interface options:
This creates an empty Mediator and does not create a WSDL file. This method provides you with the flexibility to create the SOA components in the order you want. After you create a Mediator without an interface definition, you must create a service or an event that starts the component.
This bases the interface definition on a WSDL file, which describes the interfaces of a Mediator, such as port types, operations, services, and schemas. The WSDL file can already exist or you can generate one from a schema file.
This defines an interface with a one-way interaction, where the client sends a message to a service and the service does not need to reply.
This creates an interface with synchronous request-response interactions. In a synchronous interaction, a client sends a request to a service and receives an immediate response. The client does not proceed further until the response arrives.
This creates an interface with asynchronous request-response interactions. In an asynchronous interaction, a client sends a request to a service, but does not block and wait for a reply.
This creates a Mediator that subscribes to a business event generated when a situation of interest occurs. A business event consists of message data sent as the result of an occurrence in a business environment. For information about business events, see Chapter 41, "Using Business Events and the Event Delivery Network."
To subscribe to events, the events must be defined in an Event Definition (EDL) file.
You configure the interface definition for a Mediator on the Create Mediator dialog.
To configure the Mediator interface definition:
The Create Mediator dialog appears.
Figure 19-7 and Figure 19-8 illustrate how the properties change on the Create Mediator dialog for different interface types.
Figure 19-7 Synchronous Interface Template Selection on the Create Mediator Dialog
Figure 19-8 Interface Definition from WSDL Template Selection on the Create Mediator Dialog
If you selected Subscribe to Events, do the following:
Figure 19-9 Subscribe to Events Template Selection in Create Mediator Dialog
The Event Chooser dialog appears.
To the right of the Event Definition field, click Search.
The SOA Resource Browser dialog appears.
Select an event definition file (.edl
) and click OK.
The Event field is populated with the events described in the.edl
file that you selected. For more information about creating.edl
files, see Chapter 41, "Using Business Events and the Event Delivery Network."
one and only one: A global (JTA) transaction is used for event delivery. If the event call fails, the transaction is rolled back and the call is retried a configurable number of times.
guaranteed: A local transaction is used to guarantee delivery. There are no retries upon failure.
immediate: Events are delivered on the same thread and on the same transaction as the caller.
By default, event subscriptions run under the security of the event publisher.
The Expression Builder dialog appears.
Figure 19-11 shows a sample Expression Builder dialog.
The expression you created appears in the Filter column of the Create Mediator dialog.
The following table lists and describes the properties you can configure to define an interface. The available properties change depending on the interface type you select, so not all of the listed properties apply to all interface types.
Table 19-1 Mediator Interface Properties
Property | Description |
---|---|
Create Composite Service with SOAP Bindings | Select this option to create an exposed service with SOAP bindings that is automatically connected to your Mediator when the interface is generated. |
WSDL URL | Enter the location of the WSDL file to use when creating the interface from a WSDL file. Do one of the following:
For more information about these options, see Section 19.7, "Generating a WSDL File." |
Port Type | Enter the port type name from the WSDL file. The available port types are parsed from the WSDL file that you specify in the WSDL URL field. |
Callback Port Type | Enter the port type name to which the response message is sent in an asynchronous communication. The available port types are parsed from the WSDL file that you specify in the WSDL URL field. |
Input | Enter the schema element for the input message. Click Search to the right of the field to select the element. By default, the singleString schema element is selected for the input message. For a sample schema, see Example 19-2. |
Output | Enter the schema element for the output message. Click Search to the right of the field to select the element. By default, the singleString schema element is selected for the input message. |
Example 19-2 One-Way Interface Sample Scheme
You can use any XSD schema to specify the format of the input document that Mediator processes. Here is a sample schema:
The Mediator files are generated under the specified application and project in the Application Navigator, and the new Mediator appears in the Mediator Editor in Design view. If you created the Mediator with an interface definition and the WSDL file did not already exist, the new WSDL file is also generated with the same name as the Mediator. If the WSDL file you specified is located in a different directory than the project files, the file and its associated schema files are copied to the Mediator project.
This Mediator has no associated WSDL file, port types, or operations. You must define these separately as described in Section 19.6, "Defining an Interface for a Mediator." Figure 19-12 shows how a Mediator created with no interface definition appears in the Mediator Editor.
Figure 19-12 Mediator with no Interface Definition in the Mediator Editor
The appearance and source code of this Mediator varies depending on the name of the WSDL file and the port types and operations defined by the WSDL file. Figure 19-13 shows a sample Mediator created from a WSDL file.
Figure 19-13 Mediator from WSDL in the Mediator Editor
Figure 19-14 shows how a Mediator created with a one-way interface appears in the Mediator Editor. The arrow to the left of the execute operation represents a one-way operation.
Figure 19-14 One-Way Interface Oracle Mediator in the Mediator Editor
In a synchronous interaction, only one port is defined because the response is sent to the same port as the request. Figure 19-15 shows how a Mediator created with a synchronous interface appears in the Mediator Editor. The arrows to the left of the execute operation in Figure 19-15 represent a synchronous operation.
Figure 19-15 Synchronous Mediator in the Mediator Editor
Figure 19-16 shows how a Mediator created with an asynchronous interface appears in the Mediator Editor. The Port Type field displays the port on which the request message is sent. The Callback Port Type field displays the port to which the response is sent. The arrows to the left of the execute operation in Figure 19-16 represent an asynchronous operation.
Figure 19-16 Asynchronous Mediator in the Mediator Editor
When you view the Mediator in the SOA Composite Editor, the icon on the left side of the Mediator indicates that this Mediator is configured for an event subscription, as shown in Figure 19-17.
Figure 19-17 Mediator Created with the Subscribe to Events Template
When you double-click the Mediator, the Mediator Editor appears, as shown in Figure 19-18.
Figure 19-18 Event Subscription Mediator in the Mediator Editor
After you create a Mediator without an interface definition, you must define the interface by subscribing to events or by defining services. You can define services in the following two ways:
The following procedures describe how to define an interface for an existing Mediator by subscribing to events, by defining services creating a wire in the composite, and by defining services using the Mediator Editor.
To subscribe to events:
To subscribe to events, the events must be defined in an Event Definition (EDL) file.
The Subscribed Events dialog appears.
The Event Chooser dialog appears.
To define services for a Mediator using a wire:
For more information about wires and how to wire a service component to a service, see Section 2.5.1, "How to Wire a Service and a Service Component."
Note: You can also connect a Mediator with a defined interface and defined reference to a service through a wire. However, to connect a Mediator to a service, the interface of the Mediator and of the service must match. |
When you define a service using a wire, the service for the Mediator is automatically defined using the WSDL file from the wire source. For example, if you connect the ReadFile service shown in Figure 19-19 to the CustomerDataRouter Mediator, the CustomerDataRouter Mediator automatically inherits the service definition of the ReadFile service.
Figure 19-19 Connecting Mediator to a Service
For information about how wiring two Mediator service components can cause an infinite loop, see Section 2.5.3, "What You May Need to Know About Adding and Deleting Wires."
To define services for a Mediator in the Mediator Editor:
The Define Service dialog appears, as shown in Figure 19-20.
For information about how to generate a WSDL file, see Section 19.7, "Generating a WSDL File."
You can generate the WSDL file for a message using an XML schema definition (XSD) file or using a sample file. When working with Mediator, you can generate a WSDL file at either of the following times:
The Create WSDL dialog populates standard fields, such as the file name, directory, and namespace; and the dialog changes depending on the interface type you select. You can specify the same or different schema files for the message inputs.
The way you configure a WSDL file depends on the type of interface being defined by the WSDL file. You can define a one-way interface, a synchronous interface, or an asynchronous interface.
To generate a WSDL file for a one-way interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator or when you are defining a service for a Mediator.
Table 19-2 WSDL Properties
Property | Description |
---|---|
File Name | A unique name for the WSDL file. |
Directory | The directory where you want to store the WSDL file. By default, it is stored in the same location as the Mediator file. This must be the current project directory or one of its subdirectories. If the specified directory does not exist, Oracle JDeveloper creates it. |
Namespace | A namespace address for the WSDL file; for example, The namespace that you specify is defined as the |
Port Type | The name of the port type in the WSDL file that contains the operation to use. |
Operation | The name of the action to perform; for example, |
Note: Spaces and special characters are not allowed in an operation name or port type. Only alphabetic and numeric characters are supported, and the first character cannot be a number. |
The Input field appears, as shown in Figure 19-21.
Figure 19-21 Create WSDL Dialog for a One-Way Interface
The Add Message Part dialog appears, as shown in Figure 19-22.
The Type Chooser dialog appears and contains a list of the schema files (XSD files), as shown in Figure 19-23.
If the schema you want to use is not located in the project in which you are working, you can import a schema XSD file or WSDL file into the project using the Import Schema File or Import WSDL icon in the upper right corner of the dialog.
Note: If you want to use a schema XSD file that resides on your local file system, ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory. This ensures that the schema is deployed with the project and is made available at runtime. |
After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list from which you select.
The Add Message Part dialog reappears with the URL and Schema Element fields populated from the Type Chooser dialog. If you selected an XSD simple type, these fields are replaced by a Simple Type field.
The input information appears in the Input field of the Create WSDL dialog.
Note: Partner link types are generally used in BPEL, so you do not need to select Generate partnerlinkType extension for Mediator. |
To generate a WSDL file for a synchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator or when you are defining a service for a Mediator.
The Input, Output, and Fault fields appear, as shown in Figure 19-24.
Figure 19-24 Create WSDL Dialog for a Synchronous Interface
The Add Message Part dialog appears, as shown in Figure 19-25.
The Type Chooser dialog appears and contains a list of the schema files (XSD files), as shown in Figure 19-26.
If the schema you want to use is not located in the project in which you are working, you can import a schema XSD file or WSDL file into the project using the Import Schema File or Import WSDL icon in the upper right corner of the dialog.
Note: If you want to use a schema XSD file that resides on your local file system, ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory. This ensures that the schema is deployed with the project and is made available at runtime. |
After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list from which you can make a selection.
The Add Message Part dialog reappears with the URL and Schema Element fields populated from the Type Chooser dialog. If you selected an XSD simple type, these fields are replaced by a Simple Type element.
The input information appears in the Input field of the Create WSDL dialog.
The output represents the response message and is required in synchronous transactions. Faults are optional.
Note: Partner link types are generally used in BPEL, so you do not need to select Generate partnerlinkType extension for Mediator. |
To generate a WSDL file for an asynchronous interface from an XSD file:
Perform these steps after the Create WSDL dialog appears when you are creating a Mediator or when you are defining a service for a Mediator.
The Input field and Callback section appear, as shown in Figure 19-27.
Figure 19-27 Create WSDL Dialog for an Asynchronous Interface
The Add Message Part dialog appears, as shown in Figure 19-28.
The Type Chooser dialog appears and contains a list of the schema files (XSD files), as shown in Figure 19-29.
If the schema you want to use is not located in the project in which you are working, you can import a schema XSD file or WSDL file into the project using the Import Schema File or Import WSDL icon in the upper right corner of the dialog.
Note: If you want to use a schema XSD file that resides on your local file system, ensure that the XSD file and any XSD files that it imports all reside in the Oracle JDeveloper project directory. This ensures that the schema is deployed with the project and is made available at runtime. |
After you specify a file, Oracle JDeveloper parses it to determine the defined schema elements and displays them in a list from which you can make a selection.
The Add Message Part dialog reappears with the URL and Schema Element fields populated from the Type Chooser dialog. If you selected an XSD simple type, these fields are replaced by a Simple Type element.
The input information appears in the Input field of the Create WSDL dialog.
Note: The callback input represents the response message and is required in asynchronous transactions. |
executeResponse
. Note: Spaces and special characters are not allowed in an operation name or port type. Only alphabetic and numeric characters are supported, and the first character cannot be a number. Both of these fields are required. |
Note: Partner link types are generally used in BPEL, so you do not need to select Generate partnerlinkType extension for Mediator. |
To generate the WSDL file based on a sample file:
You can generate a WSDL file from a file in a native format such as a comma-separated value (CSV) file, a fixed-length file, a document type definition (DTD) file, or a COBOL copybook file. Use the Native Format Builder wizard to generate a WSDL file based on a sample file. The Native Format Builder wizard appears when you click Define Schema for Native Format in the Request, Response, Fault, and Callback tabs of the Create WSDL dialog. A WSDL file is generated after you complete the wizard.
For information about the Native Format Builder wizard, see the Oracle Fusion Middleware User's Guide for Technology Adapters.
After creating a Mediator, you can configure properties for the operation or event subscription specified for the component. On the Mediator Editor, you can specify whether to validate the schemas of inbound messages and you can specify a priority for the operation or event subscription.
To validate inbound message schemas, select the Validate Syntax (XSD) check box for an operation or event subscription in the Routing Rules section of the Mediator Editor.
To specify a priority for an Oracle Mediator component, select a value from zero to nine in the Priority field in the Mediator Editor's Routing Rules section. This determines the order in which messages are retrieved for all Oracle Mediator service components. This property is only valid for parallel routing rules and not sequential. For more information about priorities, see "Basic Principles of Parallel Routing Rules".
You can modify the operations or event subscriptions of a Mediator using the Mediator Editor.
You can modify an Oracle Mediator WSDL file by adding or deleting operations. After modifying the WSDL file, use the Refresh WSDL dialog to synchronize the changes.
To modify operations:
The Refresh WSDL dialog appears. If you have made any modifications to the WSDL file, the Refresh WSDL dialog lists all the operations to delete or add. The Refresh will delete Mediator operation field lists all the operations that have been removed from the WSDL file. The Refresh will add Mediator operation field lists all the new operations that have been added in the WSDL file. Figure 19-30 shows the Refresh WSDL dialog.
The Refresh WSDL dialog is updated based on the operations defined in the specified WSDL file.
You can subscribe to new events, modify existing event subscriptions, and unsubscribe from subscribed events using the Manage Event Subscriptions option in the Mediator Editor.
To modify event subscriptions:
The Subscribed Events dialog appears, as shown in Figure 19-31.
Figure 19-31 The Subscribed Events Dialog
For more information about the Consistency, Run as Roles, and Filter fields of an event, see Section 19.5.1, "How to Configure the Mediator Interface Definition."
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter describes Oracle Mediator routing rules and how to specify routing rules for a Mediator service component. Routing rules include transformation, filtering, validation, mapping, and routing logic.
This chapter includes the following sections:
The following chapter provide additional information about defining routing rules for specific scenarios:
Routing rules are mediation logic or execution logic that you define to achieve the requisite mediation. Mediator lets you route data between service consumers and service providers. As the data flows from service to service, it must be transformed. These two tasks, routing and transformation, are the core responsibilities of Mediator. You can use routing rules to specify how a message processed by a Mediator reaches its next destination. Routing rules specify where a Mediator sends the message, how it sends the message, and what changes should be made to the message structure before sending it to the target service.
A routing rule can be triggered either by a service operation or an event subscription. The service operation can be synchronous, asynchronous, or one-way. Routing rules can be of the following two types:
Static rules do not change depending on the invocation context and are applied consistently.
Dynamic rules let you externalize the routing logic to an Oracle Rules Dictionary, which in turn enables dynamic modification of the routing logic.
For more information about creating routing rules, see Section 20.3.2, "How to Create Static Routing Rules" and Section 20.3.3, "How to Create Dynamic Routing Rules." For information about standard message exchange patterns and how they are handled by Mediator, see Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator."
A static routing rule is not expected to change depending on the invocation context. In this case, the routing can be an echo, a routing to another service, or a publishing of an event.
When you define static rules, you can specify the following types of information:
Mediator sends messages to the target service you specify. This service can either be defined as a WSDL interface or a Java interface. For information about invoking a target service, see Section 20.3.2.1, "How to Specify Mediator Services or Events".
Mediator executes routing rules either sequentially (that is, running in the same thread) or in parallel (running on different threads). For information about specifying an execution type, see Section 20.3.2.3, "How to Specify Sequential or Parallel Execution".
Note: For synchronous service invocations, the routing rule should always be sequential. |
You can define how Mediator handles synchronous reply, callback, and fault messages. For information about handlers, see Section 20.3.2.4, "How to Configure Response Messages," Section 20.3.2.7, "How to Handle Faults," and Section 20.1.1.2, "Static Routing Rule Components."
You can define the following types of static rules for a Mediator:
You can define a filter expression that is applied to the message content (payload or headers). When you define a filter, the contents are analyzed before any service is invoked. For example, you might apply a filter expression that specifies that a service be invoked only if the message includes a customer ID, or if the value for that customer ID matches a certain pattern. For information about specifying filter expressions, see Section 20.3.2.8, "How to Specify an Expression for Filtering Messages".
Mediator can transform message data before forwarding the message to a service. You can define transformations to set a value on the target payload by mapping data or by assigning values.
The XSLT Mapper lets you define transformations that apply to the whole message body to convert messages from one XML schema to another. The Assign Values function works on individual fields. Using this dialog, you can assign values from the message (for example, payload and headers), from a constant, or from various system properties, such as the properties of an adapter present in the data path. For information about defining transformations, see Section 20.3.2.9, "How to Create Transformations" and Section 20.3.2.10, "How to Assign Values".
Mediator can detect any SOAP headers that are used in building the expression for the current routing rule operation. For information about accessing headers, see Section 20.3.2.12, "How to Access Headers for Filters and Assignments" and Section 20.3.2.12.2, "Manual Expression Building for Accessing Properties for Filters and Assignments".
You can specify the Schematron files that Mediator should use to validate different parts of an inbound message. For information about performing Schematron-based validations, see Section 20.3.2.13, "How to Use Semantic Validation".
Custom Java class callouts let you use regular expressions with Java code, when regular expressions alone do not suffice. For information about using Java callouts, see Section 20.3.2.15, "How to Use Java Callouts".
These are your own set of functions that can be used by the XSLT Mapper. For information about using user-defined extension functions, see "To add user-defined extension functions:".
Static routing rules define the following components:
A dynamic routing rule lets you externalize the routing logic to an Oracle Rules Dictionary, which in turn enables dynamic modification of the routing logic in a routing rule. This feature depends on a decision service and Oracle Rules to obtain the routing logic at runtime.
Dynamic routing separates the control logic, which determines the path taken by the process, from the execution of the process. In the dynamic routing scenario, a decision matrix determines the type of Level-2 service to be chosen for each routing. The factors that affect the decision on the type of Level-2 service are channel, customer type, and so on. The solution allows this decision matrix to be modified externally by business analysts without changing the routing. The decision matrix must be evaluated to determine the outbound service.
Dynamic routing rules are described in more detail in Section 20.3.3, "How to Create Dynamic Routing Rules."
Routing rules can be executed sequentially or in parallel. This section describes the basic principles of both types of execution. If an operation or event has both sequential and parallel routing rules, first sequential routing rules are evaluated and actions are performed, and then parallel routings are queued for parallel execution.
Note: If a Mediator service component with a request-response interface has only parallel routing rules, the Mediator service component does not send a response back to the caller. Though you can create this type of Mediator service component, the caller of the Mediator service component does not receive a response at runtime. |
Mediator processes sequential routing rules based on the following principles:
Mediator processes routing rules in parallel based on the following principles:
The messages of each Mediator service component are retrieved in a weighted, round-robin fashion to ensure that all Mediator service components receive parallel processing cycles. This is true even if one or more Mediator service components produce a higher number of messages compared to other components. The weight used is the message priority set when designing a Mediator service component. Higher numbers of parallel processing cycles are allocated to the components that have higher message priority.
You can set the Priority field in the Mediator Editor to indicate the priority of a Mediator service component. Priorities can range from zero to nine, with nine being the highest priority. The default priority is four.
Note: The Priority property is applicable only to parallel routing rules. |
For example, if a Mediator service component has one parallel routing rule, one message is enqueued on the Mediator parallel message dehydration store. The parallel message dispatcher to the store then initiates a transaction, reads the message from the database store, and invokes the target component or service of this routing rule. The transaction initiated by the listener thread is a completely new transaction and is propagated to the target components.
Note: Dehydrating of messages means storing the incoming messages in a database for parallel routing rules so they can be processed later by worker threads. |
Mediator includes a resequencer, which rearranges streams of related but out-of-sequence messages into their sequential order based on the type of resequencer used and the rules you define. When incoming messages arrive in a random order, the resequencer orders the messages based on sequential or chronological information, and then sends the messages to the target services in the correct order based on the resequencing configuration.
For more information about resequencing messages, see Chapter 23, "Resequencing in Oracle Mediator."
Routing rules can only be defined for a Mediator with a defined interface. For more information on how to define an interface, see Section 19.6.1, "How to Define an Interface for a Mediator."
You define the routing rules in the Routing Rules section of the Mediator Editor.
To access the routing rules section:
You can access the Routing Rules section of the Mediator Editor using one of the following methods:
The Mediator file has an MPLAN
extension.
Figure 20-1 shows the Routing Rules section of the Mediator Editor.
Figure 20-1 Mediator Editor- Routing Rules Section
Figure 20-2 lists and describes the icons in the Routing Rules section.
After creating a Mediator component, you associate it with inbound service operations or event subscriptions and with outbound targets. Targets are outbound service operations or event publishing. A target specifies the next service or event to which a Mediator sends messages and also specifies which service operation to invoke. You can specify a service or an event as a target type.
You can also echo source messages back to the initial caller after any transformation, validations, assignments, or sequencing operations are performed. An echo can only be specified if the Mediator component has a synchronous or asynchronous interface. Whether the echo is synchronous or asynchronous depends on the WSDL file of the caller. The echo option is only available for inbound service operations and is not available for event subscriptions.
The purpose of the echo option is to expose all the Mediator functionality as a callable service without having to route it to any other service. For example, you can call a Mediator to perform a transformation, a validation, or an assignment, and then echo the Mediator back to your application without routing it anywhere else.
You can specify multiple routings for an inbound operation or event. Each routing is mapped to one target service invocation or event. Therefore, to specify multiple service invocations or raise multiple events, you must specify one routing rule for each target. For example, you can invoke an operation based on a message payload from the following operations defined in a service:
To do this action, you must create four routing rules, one for each operation. Later, when you specify a filter expression for each rule, you can specify which target and operation is applied to each message instance based on the message payload, as shown in Figure 20-3.
Figure 20-3 Multiple Routings for an Inbound Operation
To invoke a service:
To perform this step, the target service must be defined in a WSDL document or a Java interface.
The Target Type dialog appears, as shown in Figure 20-4.
The Target Services dialog appears, as shown in Figure 20-5.
In the Target Services dialog, navigate to and then select an operation provided by a service.
Note: You can select a service defined by a WSDL file or a Java interface. A service can consist of multiple operations, as shown in Figure 20-5. |
A new Static Routing section appears where you can define the routing rule.
To trigger an event:
The Target Type dialog appears, as shown in Figure 20-4.
The Event Chooser dialog appears.
To the right of the Event Definition field, click Search.
The SOA Resource Browser dialog appears.
.edl
) file and click OK. The Event field is populated with the events defined in the selected file, as shown in Figure 20-6.
Note: Instead of browsing for an existing event definition file, you can create a new file by clicking Create new event definition (edl) file and completing the fields in the Create Event Definition File dialog. |
A new Static Routing section appears where you can define the routing rule.
To echo a service:
The Target Type dialog is displayed, as shown in Figure 20-7.
Note: The Echo button only appears on the Target Type dialog if the interface is synchronous or asynchronous. |
Figure 20-8 shows a routing rule with a synchronous echo. An asynchronous echo has an icon with a dotted line on the return.
Figure 20-8 Sample Mediator Supporting Echo Operation
The echo option has the following limitations:
Note: The echo option is not available for Mediator interfaces having request/reply/fault/callback WSDL files or for one-way WSDL files. |
Note: The echo option is only available for synchronous operations when the routing rule is sequential because parallel routing rules are not supported for Mediators with synchronous operations. |
false
. Instead, it returns a null
response. Note: The asynchronous echo option is available only when the routing rule is parallel. If you use the echo option, then sequential routing rules are not supported for Mediators with asynchronous operations. |
A routing rule can be executed either in parallel or sequentially. To specify an execution type for a routing rule, select the Sequential or Parallel execution type in the Routing Rules section.
In the Mediator routing rules, you can specify how to handle the response messages in synchronous and asynchronous interactions. For synchronous interactions, you can specify the transformations and assignments for the response and the fault message. You can forward the response and the fault message to another service or event, or you can send them back to the initial caller, if the initial caller is expecting responses and faults.
For asynchronous interactions, you can specify transformations and assignments, and a timeout period for receiving the response. The timeout period can be specified in seconds, hours, days, months, or years. By default, the timeout period is infinite. If a callback response does not come within the specified timeout period, a timeout response can be forwarded to another service, to another event, or back to the initial caller.
You cannot route a Mediator response to a two-way service. If you want to route a response to a two-way service, you should use a one-way Mediator between the first Mediator and the two-way service. The response should first be forwarded to the one-way Mediator, which in turn should call the two-way service.
Notes:
|
To specify a timeout period for asynchronous processing:
The following steps are performed in the Routing Rules section of the Mediator Editor.
The Target Type dialog appears.
If you selected Service or Event, the Target Service or the Event Chooser appears depending on your selection.
The timeout response is forwarded to the specified service or event.
Note: If the number of routing rules is larger and the time taken to execute the routing rules exceeds the transaction timeout, you must set the transaction timeout to a value that is greater than the time taken to execute all the routing rules. |
Callback messages might arrive before the initiating transaction is completed. In this case, correlation in Mediator fails. If you have an issue with premature callbacks, you can use the oracle.tip.mediator.callback.correlationWaitDuratino_in_seconds
property to set a time period in seconds for which the callback thread waits before retrying the callback.
You define the property in the composite.xml
file in the component
element that defines the Mediator component. In the example shown below, the wait time before retrying is 15 seconds.
A single Mediator cannot handle multiple callbacks. If you have a composite application with a Mediator that receives multiple callbacks, the behavior of the composite application is undetermined. For example, in the scenario shown in Figure 20-9, AsyncMediator forwards the callback response from AsyncEchoMediator1 and AsyncEchoMediator2 to FileInMediator. In such a flow, the AsyncMediator might return the callback from both AsyncEchoMediator1 and AsyncEchoMediator2, or from either one of them. The exact behavior is random and unpredictable.
Figure 20-9 Sample Mediator Handling Multiple Callback
If you create a new routing rule in which the target service operation has one or more faults, you still see a single fault routing section in the Mediator Editor. If the source Mediator service component supports one or more faults, then the fault is routed back to the caller by default. You can choose the source and target fault names to be routed. You can also use the service browser to route the fault to another target.
To define an additional fault routing:
The following steps are performed in the Routing Rules section of the Mediator Editor.
Another fault section appears in the routing rule box.
Figure 20-11 shows a second fault being routed to a file adapter service.
Figure 20-11 Second Fault Added to Routing Rules
Note: You can route the same fault to multiple targets using different transformations. |
To remove a fault routing section:
The following steps are performed in the Routing Rules section of the Mediator Editor.
The filter expression routing rule lets you filter messages based on their payload. If the filter expression for a given message instance evaluates to true, the message is delivered to the target service or event specified within the routing rule.
For example, you route your data to customers in two different countries, such as US and Canada, but you only want notices regarding the MOBILE product line to be sent to US customers and the LANDLINE product line to customers in Canada. To implement this routing, you must define a routing rule for each component and operation pair that sends messages to the target customers. In addition, you specify filter expressions for the routing rules that send messages to the customers in the US or Canada.
You can also define filter expression message properties or message headers.
Filter Expression Message Properties
Two examples of filter expression message properties are shown in Example 20-1.
Example 20-1 Filter Expression Message Properties
Filter Expression Message Headers
Two examples of filter expression message headers are shown in Example 20-2.
Example 20-2 Filter Expression Message Headers
For the preceding filter expression message headers to work, you must add the attribute shown in Example 20-3 to the root element of the .mplan
file.
Example 20-3 Attribute to Add
To specify an expression for filtering messages:
You can use the Expression Builder to graphically create a filter expression. The Expression Builder dialog contains the components and controls that assist you in designing a filter expression.
The Expression Builder dialog appears, as shown in Figure 20-13.
The following table describes each of the fields in the Expression Builder dialog:
Table 20-1 Expression Builder Fields
Field | Description |
---|---|
Expression | This field contains the actual expression used to filter messages. You can enter the filter expression either manually or by using the Variable field and the Functions palette. Using the icons on the upper right side of this field, you can undo the last edit made, redo the last edit made, or clear the entire Expression field. |
Variables | This field contains the message defined for a Mediator component. Oracle JDeveloper parses the Mediator WSDL file and presents the message definition in the Variables field. The input message is stored in the If the input message consists of multiple parts, use |
Functions Palette | This list provides a list of functions that you can include in an expression. When you select a function, a preview of how that function appears when added to the Expression field appears in the Content Preview field, and a description of the function appears in the Description field. |
Content Preview | This field indicates how a value selected from the Variables field or Functions palette appears when it is inserted into the Expression field. |
Description | This field describes the value selected from the Variables field or Functions Palette. |
To specify a filter expression on a message payload:
The Expression Builder dialog is displayed.
For example, the CustomerId element is shown selected in Figure 20-14.
Figure 20-14 Expression Builder Dialog – Variables Element Selected
The expression is added in the Expression field, as shown in Figure 20-15.
Figure 20-15 Expression Builder Dialog – Variables Element Inserted
Functions are grouped in categories that are listed when you click the down arrow in the Functions list. For example, if you click the down arrow and select Logical Functions, the list appears as shown in Figure 20-15.
The XPath expression for the selected function is inserted into the Expression field.
In this example, the Customer ID must equal1001
to evaluate to true, as shown in Figure 20-16.
Figure 20-16 Sample Expression Builder Dialog – Value Entered
The expression is added to the Routing Rules section.
To modify or delete a filter expression, double-click the Add Filter Expression icon, and then modify or delete the expression in the Expression field of the Expression Builder.
Oracle JDeveloper provides an XSLT Mapper that lets you specify a mapper file (XSL file) to transform data from one XML schema (expressed as an XSD file) to another. The XSLT Mapper enables data interchange among applications using different schemas. For example, you can map an incoming purchase order schema to an outgoing invoice schema. After you define an XSL file, you can reuse it in multiple routing rule specifications.
To create a transformation:
The Request Transformation Map dialog appears. You can select an existing XSL file or create a new XSL file with the XSLT Mapper to perform the required transformation.
In case of synchronous reply or fault message, the Reply Transformation Map dialog or the Fault Transformation Map dialog contains an Include Request in the Reply Payload option, as shown in Figure 20-18.
Figure 20-18 Reply Transformation Map Dialog
$initial
variable that contains the original message of a synchronous interaction, select the Include Request in the Reply Payload option. The variable is created, as shown in Figure 20-19.
Figure 20-19 Initial Variable in XSL File
Note: An initial message can also consist of multiple parts. Use |
For information about the XSLT Mapper, see Chapter 40, "Creating Transformations with the XSLT Mapper."
To add user-defined extension functions:
You can use the Expression Builder to include user-defined extension functions.
xpath-function.xml
file on the server. $BEAHOME/user_projects/domains/soainfra/autodeploy/soa-infra/APP-INF/lib
directory. .mplan
file of the project as follows: Mediator
element. Expression
element. This is shown in Figure 20-20.
Figure 20-20 Project .mplan file – Modified to Use User-Defined Extension Functions
You can use the Assign Values field to propagate the headers, payload, and properties of a message from source to target. Figure 20-21 shows the Assign Values dialog that is displayed when you click the Assign Values icon in the Routing Rules section.
To set the properties of the target message:
The Assign Value dialog is displayed, as shown in Figure 20-22.
For more information about the Expression Builder dialog, see Section 20.3.2.8, "How to Specify an Expression for Filtering Messages."
Figure 20-23 shows a sample Assign Value dialog in which a constant value is specified as an expression.
Figure 20-23 Populated Assign Value Dialog
Notes:
|
Table 20-2 through Table 20-4 list the various possibilities of assignment on constants and properties, payloads, and headers of a message from source to target.
Table 20-2 Possibilities on Constants and Properties
Source | Target | Example |
---|---|---|
Property | Property |
|
Constant | Property |
|
Table 20-3 Possibilities on Payload
Source | Target | Example |
---|---|---|
XPath Expression | Property |
|
XPath Expression (below part level) | Property |
|
Property | XPath Expression (below part level) |
|
Constant | XPath Expression (below part level) |
|
XPath Expression | XPath Expression |
|
XPath Expression (below part level) | XPath Expression (below part level) |
|
Table 20-4 Possibilities on Header
Source | Target | Example |
---|---|---|
XPath Expression (below part level) | Property |
|
Property | XPath Expression (below part level) |
|
Constant | XPath Expression (below part level) |
|
Constant | XPath Expression (below part level) |
|
XPath Expression | XPath Expression |
|
XPath Expression (below part level) | XPath Expression (below part level) |
|
Note the following issues about the assign activity.
<copy>
element. Example 20-4 XPath Expression Referring to a Leaf Node
Note: A leaf node is a node with no child nodes. |
.xsd
file. Example 20-5 provides details. Example 20-5 Target XPath Expression Pointing to a Leaf Node
In this example, $out.request/inp1:request/ProductReq/Make
refers to the leaf node.
Example 20-9 One Child Node of the Source is Propagated into a Target
In this case, the source element evaluated from $in.body/imp1:request/ProductReq
does not contain a complete tree structure that starts from the root element, but contains only a child node. Example 20-10 provides details.
passThroughHeader
property is set, then copy
element in the assign activity. Example 20-11 provides details. Example 20-11 Multiple Source Nodes Assigned to the Same Target Node
In Example 20-11, the first copy
element does not have any effect because the second copy
element overwrites it.
When the Expression Builder is invoked from a Mediator, either for defining a filter or for defining an assignment source or target, the WSDL file is parsed. This automatically detects any SOAP headers for the current routing rule operation and makes them visible as variables under the in
or out
folder as header./ns_elementName/
, as shown in Figure 20-24. Here, ns
is the namespace prefix and elementName
is the root element name for the header schema.
The following scenarios provide details.
Scenario 1: Namespace Prefixes wsse and ns1 Are Already Defined
Assume the namespace prefixes wsse
and ns1
are already defined in the WSDL file or the .mplan
file. You can then write an XPath expression as follows:
Scenario 2: Schema Without a Namespace Predefined in the WSDL File
Assume you want to use a schema that does not have a namespace predefined in the WSDL file. The Expression Builder is then enhanced to allow you to enter {full_namespace}
instead of a prefix. The Expression Builder then generates a unique prefix and the prefix definition is added to the .mplan
file.
For example, enter the expression in the Expression Builder shown in Example 20-12:
Example 20-12 Expression
The .mplan
file contains the content shown in Example 20-13.
Example 20-13 Contents of .mplan File
Figure 20-24 Expression Builder Dialog - Automatic Header Detection
By default, SOAP headers are not passed through by Mediator. You must add the passThroughHeader
endpoint property to the corresponding Mediator routing service:
For example, to add this property, you can modify the composite.xml
file, as shown in Example 20-14.
Example 20-14 passThroughHeader Property
For the headers to pass through, the source and the target must have the same QName (name and namespace). If the source and the target have different QNames, then either a transformation or part-level assignment must be performed.
It is important to note that, with a passthrough
Mediator (without a transformation or assign), if the source and target part QNames are not identical, then Mediator passes through the message payloads to the target service without any error. However, this can result in an error in the target service because the message payloads are not reconstructed according to the message structure of the target service.
Notes:
|
There are use cases in which the header schemas cannot be determined from the WSDL files. For example, security headers that are appended to a message, or the headers for a Mediator that are created using an abstract WSDL file. To access these headers, you must manually enter the XPath expression into the Expression Builder.
The syntax for header expressions is shown in Example 20-15.
Example 20-15 Header Expressions Syntax
Therefore, for the header shown in Example 20-16.
Example 20-16 Header Syntax
The filter expression is as follows:
The assignment expression is as shown in Example 20-17.
Example 20-17 Assignment Expression
For the preceding expressions to work, you must add the attribute shown in Example 20-18 to the root element of the .mplan
file.
An example of a filter expression is as follows.
An example of an assignment expression is as follows.
You can specify Schematron files for validating an inbound message and its various parts. Schematron version 1.5 is the supported version.
Perform the following steps for specifying a Schematron schema to validate an inbound message and its various parts.
To use semantic validation:
The Validations dialog is displayed.
The Add Validation dialog is displayed.
The SOA Resource Browser dialog is displayed.
Notes:
|
The Add Validation dialog is updated, as shown in Figure 20-25.
The Validation dialog is updated, as shown in Figure 20-26.
For more information about building a Schematron schema, see the resources available at
Note: In semantic validation, if you check for the length of each element name, then the element name may change for a different set of inputs. This happens when there are white spaces between nodes because the parser treats the white spaces as test nodes. |
Mediator automatically propagates attachments to target receivers for Mediator components that are pass-through (that is, they do not contain a transformation or assign rule), and it does not propagate attachments for Mediator component that are not pass-through. The passThroughAttachment
property lets you override the pass-through settings just for attachments. Setting this property to true
copies all attachments to the target receiver implicitly.
Use this property to propagate attachments when the Mediator component in not pass-through, or use it to block attachments when the Mediator component is pass-through. To implement the pass-through attachment override, add the property to the project's composite.xml
file in the component
element for the Mediator component. Set the property to true to override a Mediator component that is not pass-through; set it to false to override a pass-through component.
Example 20-19 Setting Attachments to Pass Through
Java callouts enable you to use external Java classes to manipulate messages flowing through the Mediator. Only one Java callout is supported per operation or event subscription. The callout class must implement the oracle.tip.mediator.common.api.IjavaCallout
interface. Callouts are available for both static and dynamic routings. Figure 20-27 shows a sample Mediator with two operations, in which both the operations have one routing rule each and the first operation has a callout class.
Figure 20-27 Sample Mediator Supporting Java Callout
To make Java callout classes available:
You must ensure that the Java callout class is available on the server. You can use any of the following methods for this:
SCA-INF/classes
folder. SCA-INF/lib
folder. $DOMAIN_HOME/lib
folder. If you want to make the Java callout class available to multiple Mediators, copy the JAR file containing the Java class to the $DOMAIN_HOME/lib
folder.
To enter the Java class for the callout:
You can either manually enter the Java class or select a class from the Class Browser.
The standard Oracle JDeveloper class browser appears, as shown in Figure 20-29.
The class browser is filtered so it only displays classes that implement the oracle.tip.mediator.common.api.IjavaCallout
interface.
To set the payload root element (when using a filter expression):
If you have a Java callout in Mediator and use a filter expression in the same Mediator, you must set the root element for the payload, as shown in Example 20-20.
Example 20-20 Setting the Root Element for the Payload
To enable domain value map and cross reference functions:
To use domain value map functions or cross reference functions in a Java callout, you must add the soa-xpath-exts.jar
file to the project and import the necessary Java classes into your code.
The Project Properties dialog appears.
Figure 20-30 Libraries and Classes on the Project Properties Dialog
The Add Archive or Directory dialog appears, as shown in Figure 20-31.
Figure 20-31 Add Archive or Directory Dialog
<JDEV_HOME>/jdeveloper/soa/modules/oracle.soa.fabric_11.1.1/soa-xpath-exts.jar
, and then click Select. The JAR file appears in the Classpath Entries list.
Notes: When using domain value map functions, import the following into your Java class:
When using cross reference (xref) functions, import the following into your Java class:
|
Mediator Java Callout API
The Java callout API defines two interfaces: oracle.tip.mediator.common.api.IjavaCallout
and oracle.tip.mediator.common.api.CalloutMediatorMessage
.
Table 20-5 lists and describes the methods in the oracle.tip.mediator.common.api.IjavaCallout
interface.
Table 20-5 Description of Methods in the IjavaCallout Interface
Method | Description |
---|---|
| This method is invoked when the callout implementation class is instantiated for the first time. |
| This method is called before Mediator starts executing the cases. You can customize this method to include validations and enhancements. |
| This method is called before Mediator starts executing any particular case. You can customize this method to include case-specific validations and enhancements. |
| This method is called before Mediator finishes executing callback handling. You can customize this method to perform callback auditing and custom fault tracking. |
| This method is called after Mediator finishes executing the cases. You can customize this method to perform response auditing and custom fault tracking. Post-processing methods are called after all sequential routing rules are executed and do not wait for parallel routing rules to complete. |
| This method is called after Mediator starts executing the cases. You can customize this method to perform response auditing and custom fault tracking. |
| This method is called after Mediator finishes executing callback handling. You can customize this method to perform callback auditing and custom fault tracking. |
Note: If you change the message properties of a Mediator by using a Java callout in the <assign> <copy target="$out.property.jca.file.FileName" expression="$in.property.jca.file.FileName"/> </assign> |
Table 20-6 discusses the methods in the CalloutMediatorMessage
interface.
Table 20-6 Description of Methods in the CalloutMediatorMessage Interface
Method | Description |
---|---|
| This method sets a payload of the Mediator messages. |
| This method adds a property to the Mediator messages. |
| This method adds a header to the Mediator messages. |
| This method retrieves Mediator message properties by providing the property name. |
| This method retrieves Mediator message properties. |
| This method retrieves the instance ID of the Mediator messages. This instance ID is the Mediator instance ID created for that particular message. |
| This method retrieves a payload of the Mediator messages. |
| This method retrieves a header of the Mediator messages. |
| This method retrieves a componentDN for the Mediator service component. |
Notes:
|
Footnote 1 Dummy implementation of an interface means that the implementation class provides definitions for all the methods declared in the particular interface, but one or more defined methods may have an empty method body. Extending a dummy implementation class is much easier because you can choose to override only a subset of the methods, unlike implementing an interface and defining all the methods.
Sample Java Callout Class
Example 20-21 shows a sample Java callout class:
Example 20-21 Sample Java Callout Class
The basic idea behind dynamic routing is to separate the control logic, which determines the path taken by the process, from the execution of the process. In the dynamic routing scenario, a decision matrix determines the type of Level-2 service to be chosen for each routing. The factors that affect the decision on the type of Level-2 service are channel, customer type, and so on. The solution allows this decision matrix to be modified externally by business analysts without changing the routing. The decision matrix must be evaluated to determine the outbound service.
How to create dynamic routing rules:
Figure 20-32 Mediator Editor Displaying Dynamic Routing Rule Option
This creates a new business rule service component that is wired to the Mediator service component within the SOA composite of the Mediator service component. The wire links between the business rule service component and the Mediator service component are considered implementation details and are shown as dotted lines in the SOA Composite Editor, as shown in Figure 20-33.
Figure 20-33 SOA Composite Editor with Wire Links Between the Business Rule and Mediator Service Components
The business rule service component includes a rule dictionary. The rule dictionary is a metadata container for the rule engine artifacts, such as fact types, rulesets, rules, decision tables and so on. As part of creating the business rule service component, the rule dictionary is preinitialized with the following data.
The fact type model is the data model that can be used for modeling rules. The rule dictionary is populated with a fact type model that corresponds to the input of a phase activity in a BPEL process, and some fixed data model that is required as part of the contract between the Mediator service component and the business rule service component.
A ruleset is a container of rules used as a kind of grouping mechanism for rules. A ruleset can be exposed as a service. As part of creating the business rule service component, one ruleset is created within the rule dictionary.
From a rule engine perspective, a decision table is a collection of rules with the same fact type model elements in the condition and action part of the rules. The decision table enables you to visualize rules in a tabular format. As part of creating the business rule service component, a new decision table is created within the ruleset.
As part of creating the business rule service component, a decision service is created to expose the ruleset as a service of the business rule service component. The service interface is used by the Mediator service component to evaluate the decision table.
After all the required artifacts of the phase activity are created, the wizard starts modeling the phase decision matrix (PDM). The wizard launches the Business Rules Designer of Oracle JDeveloper and enables you to edit the phase decision matrix. Figure 20-34 shows a sample decision table within the Business Rules Designer.
Figure 20-34 Sample Decision Table Within the Rule Designer
The Mediator Editor looks as shown in Figure 20-35 after the dynamic routing option is chosen.
Figure 20-35 Mediator Editor with a Dynamic Routing Rule
The changes in Source view are as follows.
The switch
element contains the decision service reference and operation details to enable the Mediator service component to invoke the decision service in runtime for obtaining the dynamic routing decisions. Dynamic decisions are returned by the business rule service engine user configuration at runtime.
External service invocation contains an extra attribute called bindingInfo, which contains binding information to make the invocation dynamic.
Note the following limitations on using dynamic routing rules with Mediator:
composite.xml
file. This endpoint is overridden by Mediator in runtime through an NM property. Therefore, outbound services can be called only over SOAP. Mediator processes messages depending on the conditions specified in the routing rules. In some cases, a Mediator may not process an incoming message because the message does not satisfy any of the conditions specified in the routing rules. You can define a default routing rule for such messages. The default routing rule is executed when none of the conditions of other routing rules are satisfied.
A default routing rule is the same as the routing rules discussed in Section 20.3.2, "How to Create Static Routing Rules." The only difference between a default routing rule and other routing rules is that a default routing rule does not have any condition associated with it. Otherwise, a default routing rule is the same as other routing rules in every other aspect, such as target service, response handling, fault handling, and so on.
Notes:
|
A default routing rule can be either a sequential rule or a parallel rule. A default routing rule, whether sequential or parallel, is guaranteed to be executed when no other routing rule condition is satisfied. When the default rule is executed, the Mediator audit trail shows that the filter conditions of all the routing rules failed, and the filter condition of the default routing rule passed and was executed. Example 20-22 provides details.
Example 20-22 Default Rule Scenarios
You can define all routing rules, including default routing rules, as either sequential or parallel routing rules, so the expected behavior of routing rules varies. The following sections discuss each combination and the expected behavior:
Sequential Default Routing Rule
You can have the following possible scenarios with a sequential default routing rule:
In this case, the server first evaluates the filter condition of parallel rules before evaluating the default routing rule filter condition. If none of the other filter conditions are matched, then the default sequential routing rule is executed.
Parallel Default Routing Rule
You can have the following possible scenarios with a parallel default routing rule:
Note: The fact that the default routing rule is executed automatically implies that the default routing rule is the only case that was executed for the given Mediator service component. Similarly, if a Mediator service component has one routing rule without any filter condition and also has a default routing rule, then the default routing rule is never executed. |
The target of the default routing rule is the same as the supported targets of any other existing routing rule. This indicates that the target can be a service, an event, or an echo. Similarly, the response from the default routing rule target service can be forwarded or returned to the original caller. If the target service returns a fault, then the fault is handled in the same way as it is handled in any other routing rule.
Note: If exceptions occur while evaluating or executing other routing rules, then the default routing rule is not executed. |
Schematron validation, transformation, and assign functionality for the default routing rule works in the same way as other routing rules.
The current behavior of a pre-Java callout or post-Java callout works in the same way as for other routing rules. For the purpose of Java callouts, the default routing rule is considered another routing rule. Therefore, for the scenarios in which the default routing rule is executed, the postRouting()
callback method occurs only after the default routing rule is executed.
Note: The post-Java callouts occur after the execution of sequential rules and do not wait for the parallel rules to complete execution. Therefore, if the default routing rule is sequential, then the |
To set a routing rule as the default one, click the Set as Default Routing Rule icon shown on Figure 20-2. The .mplan
file changes, as shown in Figure 20-36.
Figure 20-36 .mplan File of a Mediator with a Default Routing Rule
The following two tutorials give you step-by-step instructions for creating two of the Mediator sample projects provided on the Oracle SOA Suite samples page
. They illustrate how to define routing rules for the Mediators you create.
The CustomerRouter use case provides an overview of how to use a Mediator in a SOA composite sample application to route messages. To download the sample files mentioned in this section, see the Oracle SOA Suite samples page
.
The files are provided in the Basic Routing Sample for Mediator.
The CustomerRouter use case consists of the following steps:
Figure 20-37 provides an overview of the CustomerRouter use case.
Figure 20-37 Overview of CustomerRouter Use Case
This section provides the design-time tasks for creating, building, and deploying the use case.
The New Gallery dialog appears.
The Create SOA Application wizard appears.
CustomerRouter
and then click Next. The Name your project page appears.
CustomerRouterProject
and click Next. The Configure SOA settings page appears.
The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank palette.
The Create Mediator dialog is displayed.
CustomerRouter
. A Mediator with name CustomerRouter is created.
You must create a file adapter service named ReadCust to read the XML files from a directory.
Note: Mediator may process the same file twice when run against Oracle Real Application Clusters (Oracle RAC) planned outages. This is because a file adapter is a non-XA compliant adapter. Therefore, when it participates in a global transaction, it may not follow the XA interface specification of processing each file only once. |
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
ReadCust
. The Adapter Interface page is displayed.
The Operation page is displayed.
ReadFile
. The File Directories page is displayed.
C:\Customer\In
. The File Filtering page is displayed.
*.xml
, and then click Next. The File Polling page is displayed.
The Messages page is displayed.
The Type Chooser dialog is displayed.
The Import Schema File dialog is displayed.
The Adapter Configuration wizard appears, as shown in Figure 20-39.
Figure 20-39 Adapter Configuration Wizard – Messages page
The Finish page is displayed.
The Adapter Configuration wizard Welcome page is displayed.
The Service Name page is displayed.
USCustomer
. The Adapter Interface page is displayed.
The Operation page is displayed.
The Operation page is displayed.
WriteFile
. The File Configuration page is displayed.
For example, C:\Customer\out
.
customer_%SEQ%.xml
and click Next. The Messages page is displayed.
The Type Chooser dialog is displayed.
The Import Schema File dialog is displayed.
The Finish page is displayed.
CanadaCustomer
in a similar way by using the CanCustomer.xsd
file. Figure 20-40 shows how the SOA Composite Editor appears after performing this task.
Figure 20-40 Mediator Service Component with Adapter Services and References
You must specify the path that messages take from the ReadCust adapter service to external references.
This specifies the file adapter service to invoke the CustomerRouter Mediator while reading a file from the input directory.
Figure 20-41 Connecting the ReadCust Service to the CustomerRouter Mediator
In the Routing Rules section, click Add to the extreme right side of ReadFile, and then click static routing rule.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Routing Rules section is displayed.
The Expression Builder dialog is displayed.
The Country node is added in the Expression field, as shown in Figure 20-43.
The <<Filter Expression>> field of the Routing Rules section is populated with the expression.
The Request Transformation Map dialog is displayed, as shown in Figure 20-44.
A CustomerData_To_Customer.xsl file is added, as shown in Figure 20-45.
Figure 20-45 CustomerData_To_Customer.xsl File – Initially
The Auto Map Preferences dialog is displayed.
The Auto Map Preferences dialog is shown in Figure 20-46.
The CustomerData_To_Customer.xsl file appears, as shown in Figure 20-47.
Figure 20-47 CustomerData_To_Customer.xsl Tab – Auto Mapped Connections
From the File menu, select Save All.
Note: For repeating the steps, you must re-enter the Mediator Editor by closing it or by clicking the CustomerRouter.mplan tab above the editor. |
After performing all the steps described in this section, the SOA Composite Editor appears, as shown in Figure 20-37.
An application server connection is required for deploying your SOA composite application. For information about creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
Deploying the CustomerRouterProject composite application to an application server consists of following steps:
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
After deploying the CustomerRouterProject
application, you can run it by copying the input XML files to the input folder. The payload files are written to the specified output directories.
For monitoring the running instance, you can use Oracle Enterprise Manager Fusion Middleware Control at the following URL:
where hostname
is the host on which you installed the Oracle SOA Suite infrastructure and port_number
is the port of the server on which Oracle Enterprise Manager Fusion Middleware Control is installed.
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
This sample demonstrates an asynchronous request response scenario using Mediator. This composite has a client BPEL process invoking a Mediator, which invokes a server BPEL process. All the invocations are done as an asynchronous request response.
Figure 20-48 provides an overview of the AsyncMediator use case.
Figure 20-48 Overview of AsyncMediator Use Case
To download the sample files mentioned in this section, see the Oracle SOA Suite samples page
.
This section provides the design-time tasks for creating, building, and deploying the use case. These tasks should be performed in the order in which they are presented.
The New Gallery dialog appears.
The Create SOA Application wizard appears.
AsyncMediator
and then click Next. The Name your project page appears.
AsyncMediatorSample
and click Next. The Configure SOA settings page appears.
The Application Navigator of Oracle JDeveloper is populated with the new application and the project, and the SOA Composite Editor contains a blank palette.
The Create BPEL Process dialog is displayed.
ServerBPELProcess
. The Create Mediator dialog is displayed.
Mediator
. A Mediator with name Mediator is created, as shown in Figure 20-49.
Figure 20-49 Mediator and ServerBPELProcess in the Composite Window
The Mediator Editor is displayed.
The Target Type dialog is displayed.
The Target Services dialog is displayed.
The Request Transformation Map dialog is displayed.
The XSLT Mapper is displayed and a target file named singleString_To_process.xsl is added.
The Auto Map Preferences dialog is displayed.
The XSLT Mapper displays, as shown in Figure 20-51.
Figure 20-51 singleString_To_process.xsl Window
The Request Transformation Map dialog is displayed.
The XSLT Mapper is displayed and a target file named processResponse_To_singleString.xsl is added.
The Auto Map Preferences dialog is displayed.
The Create BPEL Process dialog is displayed.
ClientBPELProcess
. ClientBPELProcess is created in the SOA Composite Editor.
InvokeMediator
. InvokeMediator_execute_InputVariable_1
and click OK. The Invoke dialog is displayed. ReceiveFromMediator
. AssignRequest
. Figure 20-52 The Create Copy Operation Dialog
Figure 20-53 The Oracle JDeveloper - ClientBPELProcess.bpel
Figure 20-54 The Create Copy Operation Dialog
Figure 20-55 The Oracle JDeveloper - ServerBPELProcess.bpel
An application server connection is required for deploying your SOA composite application. For information on creating an application server connection, see Section 43.7.1.1.1, "Creating an Application Server Connection."
Deploying the EventMediatorApp composite application to Oracle WebLogic Server consists of following steps:
For detailed information about these steps, see Section 43.7.1, "Deploying a Single SOA Composite in Oracle JDeveloper."
This chapter describes how to define routing rules for multiple part (multipart) messages for an Oracle Mediator service component, including defining filters, transformations, and validations.
This chapter includes the following sections:
For more information on routing rules, see Chapter 20, "Creating Oracle Mediator Routing Rules."
Mediator includes support for importing multipart WSDL files in the Mediator Editor and for working with multipart source and target messages, which include multipart filter expression building, multipart schema validation, and transformations between multipart source and target messages for requests, replies, faults, and callbacks.
The Mediator Editor with a multipart source looks similar to Figure 21-1.
Figure 21-1 Mediator Editor for a Multipart Source
This section describes how to work with different types of multipart messages.
If you specify a filter expression for a multipart message, then the Expression Builder displays all message parts under the in variable, as shown in Figure 21-2:
Figure 21-2 Expression Builder for a Multipart Request Source
If you add a validation for a multiple part message, then the Add Validation dialog displays a list of parts from which you can choose one part, as shown in Figure 21-3. You specify a Schematron file for each request message part. Oracle Mediator then processes the Schematron files for the parts.
Figure 21-3 Add Validation Dialog for a Multipart Request Source
If you create a new mapper file for a multipart message, then the generated mapper file shows multiple source parts in the XSLT Mapper, as shown in Figure 21-4:
Figure 21-4 XSLT Mapper for a Multipart Request Source
If you assign values using a source expression and invoke the Expression Builder from the Assign Value dialog, the Expression Builder displays all message parts under the in variable, as shown in Figure 21-2. This is the same as specifying filter expressions.
The method to create transformations and assign values to multipart reply, fault, and callback source messages is the same as working with request source messages.
Note: You cannot specify filter expressions or add validations for reply, fault, and callback messages. |
If a routing target (that is, a request, reply, fault, or callback) has a multipart message, then the transformation is handled in a slightly different way. This is because the XSLT Mapper does not support multipart targets. In such a case, the Mediator creates and coordinates a separate mapper file for each target part, as shown in Figure 21-5:
Figure 21-5 Request Transformation Map for a Multipart Routing Target
This chapter describes the error handling capabilities of Oracle Mediatorand provides instructions for defining error handling for both business faults and system faults.
This chapter includes the following sections:
Mediator provides sophisticated error handling capabilities that enable you to configure a Mediator service component for error occurrences and corresponding corrective actions. Error handling enables an Mediator to handle errors that occur during the processing of messages and also the exceptions returned by outside web services. You can handle both business faults and system faults with Mediator.
Business faults are application-specific and are explicitly defined in the service WSDL file. You can handle business faults by defining the fault handlers in Oracle JDeveloper at design time. System faults occur because of some problem in the underlying system such as a network not being available. Mediator provides fault policy-based error handling for system faults.
Fault policies enable you to handle errors automatically or through human intervention. Mediator fault policy-based error handling consists of the following three components:
A fault policy defines error conditions and corresponding actions. Fault policies are defined in the fault-policies.xml
file. The fault-policies.xml
file should be created based on the XML schema defined in Section 22.4.1, "Schema Definition File for fault-policies.xml."
Note: Fault policies are applicable to parallel routing rules only. For sequential routing rules, the fault goes back to the caller directly and the policies are not applied. It is the responsibility of the caller to handle the fault. If the caller is an adapter, then you can define rejection handlers on the inbound adapter to take care of the messages that error out (that is, the rejected messages). For more information about rejection handlers, see Oracle Fusion Middleware User's Guide for Technology Adapters. |
A sample fault policy file is shown in Example 22-1:
Example 22-1 Sample Fault Policy File
The two components of the fault policy (conditions and actions) are described in the following sections.
Conditions identify error or fault conditions along with a reference to the actions to be taken. You can use conditions to identify the action to be taken when a particular error or fault condition occurs. For example, for a particular error occurring because of a service not being available, you can perform an action such as a retry. Similarly, for another error occurring because of the failure of Schematron validation, you can perform the action of human intervention. This fault can be recovered manually by editing the payload and then resubmitting it through Oracle Enterprise Manager Fusion Middleware Control.
Conditions are defined in the fault-policies.xml
file, as shown in Example 22-2:
Example 22-2 Conditions
Identifying Fault Types Using Conditions
You can categorize the faults that can be captured using conditions into the following types:
For all Mediator-specific faults, the Mediator service engine throws only one fault, namely {http://schemas.oracle.com/mediator/faults}mediatorFault
. Every Mediator fault is wrapped into this fault. The errors or faults generated by a Mediator can be captured by using the format shown in Example 22-3:
Example 22-3 Oracle Mediator-Specific Faults
These errors or faults can be captured by defining an XPath condition, which is based on the fault payload. Example 22-4 provides details.
Example 22-4 Business Faults and SOAP Faults
When a reference service returns a business fault, the fault can be handled in the Mediator service component. The returned fault can be forwarded to another component, redirected to an adapter service such as a file adapter, or an event can be raised. However, if both a fault policy and fault handler are defined for a business fault, then the fault policy takes precedence over the fault handler. In such a case, the fault handlers in the Mediator service component are ignored, if the fault policy is successfully executed.
The errors or faults generated by an adapter can be captured by using the format shown in Example 22-5:
Example 22-5 Capturing Errors or Faults Generated by an Adapter
Actions specify the tasks to perform when an error occurs. Mediator provides a list of actions that you can use in a fault policy. These predefined actions are described in the following list:
Table 22-1 Retry Action Options
Option | Description |
---|---|
Retry Count | Retry N times. |
Retry Interval | Delay in seconds for a retry. |
Exponential Backoff | Retry interval increase with an exponential backoff. |
Retry Failure Action | Chain to this action if a retry N times fails. |
Retry Success Action | Chain to this action if a retry succeeds. |
Note: Exponential backoff indicates that the next retry attempt is scheduled at 2 x the delay, where delay is the current retry interval. For example, if the current retry interval is |
Example 22-6 shows how to specify the retry action:
Example 22-6 Retry Action
If you set the retry Interval in the fault policy to a duration of less than 30 seconds, then the retry may not happen within the specified intervals. This is because the default value of the org.quartz.scheduler.idleWaitTime
property is 30 seconds, and the scheduler waits for 30 seconds before retrying for available triggers, when the scheduler is otherwise idle. If the retry interval is set to a value of less than 30 seconds, then latency is expected.
If you want the system to use a retry interval that is less than 30 seconds, add the following property under the section <property name="quartzProperties">
in the fabric-config-core.xml
file:
oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass
interface. You can specify this action as shown in Example 22-7: Note: The implemented Java class must implement a method that returns a string. The policy can be chained to a new action based on the returned string. |
Example 22-7 Customized Java Class Calling
For more information, see Example 22-8 and Example 22-9.
Example 22-8 oracle.integration.platform.faultpolicy.IFaultRecoveryJavaClass Interface
Example 22-9 oracle.integration.platform.faultpolicy.IFaultRecoveryContext Interface
Mediator Service Engine Implementation
Example 22-10 shows the Oracle Mediator service engine implementation of the IFaultRecoveryContext
interface.
Example 22-10 IFaultRecoveryContext Interface Implementation
You can use the methods shown in Example 22-11 to retrieve additional Oracle Mediator-specific data available with the MediatorRecoveryContext
class:
Example 22-11 Methods for Retrieving Data
Example 22-12 shows how to retrieve data using the CalloutMediatorMessage
interface:
Example 22-12 Data Retrieval Using the CalloutMediatorMessage Interface
Fault bindings associate fault policies with composites or components, and are defined in the fault-bindings.xml
file. Create the fault-bindings.xml
file based on the XML schema defined in Section 22.4.2, "Schema Definition File for fault-bindings.xml."
Fault policies can be created at the following levels:
Note: Human intervention is the default action for errors that do not have a fault policy defined. |
A sample fault binding file is shown in Example 22-15.
You can specify an action for an error type or error group while defining the conditions in a fault policy. In the previous examples, medns:mediatorFault
indicates that the error is a Mediator error, whereas medns:TYPE_FATAL_MESH
refers to an error group. An error group consists of one or more child error types. TYPE_ALL
is an error group that contains all Mediator errors.
The following list describes various error groups contained in the TYPE_ALL
error group:
TYPE_DATA
: Contains errors related to data handling. TYPE_DATA_ASSIGN
: Contains errors related to data assignment. TYPE_DATA_FILTERING
: Contains errors related to data filtering. TYPE_DATA_TRANSFORMATION
: Contains errors that occur during a transformation. TYPE_DATA_VALIDATION
: Contains errors that occur during payload validation. TYPE_METADATA
: Contains errors related to Mediator metadata. TYPE_METADATA_FILTERING
: Contains errors that occur while processing the filtering conditions. TYPE_METADATA_TRANSFORMATION
: Contains errors that occur while getting the metadata for a transformation. TYPE_METADATA_VALIDATION
: Contains errors that occur during validation of metadata for Mediator (.mplan
file). TYPE_METADATA_COMMON
: Contains other errors that occur during the handling of metadata. TYPE_FATAL
: Contains fatal errors that are not easily recoverable. TYPE_FATAL_DB
: Contains database-related fatal errors, such as a Datasource not found
error. TYPE_FATAL_CACHE
: Contains Mediator cache-related fatal errors. TYPE_FATAL_ERRORHANDLING
: Contains fatal errors that occur during error handling such as Resubmission queues not available
. TYPE_FATAL_MESH
: Contains fatal errors from the Service Infrastructure such as Invoke service not available
. TYPE_FATAL_MESSAGING
: Contains fatal messaging errors arising from the Service Infrastructure. TYPE_FATAL_TRANSACTION
: Contains fatal errors related to transactions such as Commit can't be called on a transaction which is marked for rollback
. TYPE_FATAL_TRANSFORMATION
: Contains fatal transformation errors such as an error occurring because of the XPath functions used in a transformation. TYPE_TRANSIENT
: Contains transient errors that can be recovered on a retry. TYPE_TRANSIENT_MESH
: Contains errors related to the Service Infrastructure. TYPE_TRANSIENT_MESSAGING
: Contains errors related to JMS such as enqueuing and dequeuing. TYPE_INTERNAL
: Contains internal errors. You can enable error handling for an Oracle Mediator by using the fault-policies.xml
and fault-bindings.xml
files.
To use error handling for a Mediator service component:
fault-policies.xml
file based on the schema defined in Section 22.4.1, "Schema Definition File for fault-policies.xml." fault-bindings.xml
file based on the schema defined in Section 22.4.2, "Schema Definition File for fault-bindings.xml." fault-policies.xml
and the fault-bindings.xml
file to your SOA composite application project directory. All the fault policies for a composite are loaded when the first error occurs. At runtime, Mediator checks whether there is any policy defined for the current error. If a fault policy is defined, then Mediator performs the action according to the configuration in the fault policies file. If there is no fault policy defined, then the default action of human intervention is performed.
Apart from policy-based recovery using the fault policy file, you can also perform fault recovery actions on Oracle Mediator faults identified as recoverable in Oracle Enterprise Manager Fusion Middleware Control. This can be performed in the following ways:
For more information about fault recovery using Oracle Enterprise Manager Fusion Middleware Control, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This section describes the schema files for the fault-policies.xml
and fault-bindings.xml
files.
The fault-policies.xml
file should be based on the XSD file shown in Example 22-16.
Example 22-16 XSD File for fault-policies.xml
The fault-bindings.xml
file should be based on the XSD file shown in Example 22-17.
Example 22-17 XSD File for fault-bindings.xml
The script content on this page is for navigation purposes only and does not alter the content in any way.
This chapter describes message resequencing concepts in Oracle Mediator, and provides instructions for configuring standard resequencing, first-in/first-out resequencing, and best effort resequencing.
This chapter includes the following sections:
The resequencer in Mediator rearranges a stream of related but out-of-sequence messages into a sequential order. When incoming messages arrive, they may be in a random order. The resequencer orders the messages based on sequential or chronological information, and then sends the messages to the target services in an orderly manner. The sequencing is performed based on the sequencing strategy selected.
The resequencer works with two central concepts: groups and sequence IDs. The sequence ID is an identifying part of the message, and messages are rearranged based on this identifier. The messages arriving for resequencing are split into groups and the messages within a group are sequenced according to the sequence ID. Sequencing within a group is independent of the sequencing of messages in any other group. Groups in themselves are not dependent on each other and can be processed independently of each other.
As an example, messages attached to certain groups arrive to a Mediator service component in the following order:
msg9(a), msg8(b), msg7(a), msg6(c), msg5(a), msg4(b), msg3(c), msg2(b), msg1(a)
Table 23-1 shows how the Mediator sorts the messages into groups. The order of the messages in each group depends on the type of resequencer used.
Table 23-1 Messages Sorted into Groups
Group c | Group b | Group a |
---|---|---|
msg6(c), msg3(c) | msg8(b), msg4(b), msg2(b) | msg9(a), msg7(a), msg5(a), msg1(a) |
All the groups are processed independently of each other and any error occurring in ones group does not affect the processing of other groups.
Groups and sequence IDs are identified through XPath expressions in the message payload and header. You specify XPath expressions that point to the elements in the message payload on which grouping is done and on which sequencing is done.
In the message payload shown in Figure 23-1, CustomerId
is the field on which to base instance sequencing and CustomerName
is the field on which to base grouping.
Note: Resequencing is supported only for Mediator components that have a request operation and a request-callback operation in the WSDL file. In other words, resequencing is not allowed by the user interface if the WSDL operation has a synchronous reply element. For more information about these operations, see Chapter 24, "Understanding Message Exchange Patterns of an Oracle Mediator." |
Mediator can resequence the incoming messages in a user-specified order. This implementation enables you to specify three types of resequencing orders:
The standard resequencer supports a standard resequencer pattern. The following sections describe the standard resequencer and how it processes messages.
The standard resequencer is useful for applications that use identifiers from a simple numeric identifier sequence in their messages. The standard resequencer receives a stream of messages that might not arrive in order; it then stores the out-of-sequence messages until a complete sequence based on the sequence IDs is received. The in-sequence messages are then processed asynchronously based on their sequence ID.
It is important to note that the messages to outbound services of the standard resequencer Mediator service component are guaranteed to arrive in sequence.
When using the standard resequencer in Mediator, you must always specify a group XPath expression and a sequence ID XPath expression. These specify where the Mediator resequencer can find the group and the sequence ID in the messages. You must also supply the sequence numbering in terms of the start sequence ID and the sequence ID incremental delta. This numbering is used to form each group. In addition to the group, sequence ID, and increment properties, you can also specify a time period, in seconds, to wait for the expected messages.
Table 23-2 shows how groups are formed differently for two different values of the incremental delta.
Table 23-2 Groups Formed Differently for Two Different Values
Start SequenceID | Incremental Delta | Group1 | Group2 | ... | Groupn |
---|---|---|---|---|---|
1 | 1 | 1,2,3,4,5,... | 1,2,3,4,5,... | ... | 1,2,3,4,5,...n |
1 | 5 | 1,5,10,15,... | 1,5,10,15,... | ... | 1,5,10,15,... |
Notes:
|
Footnote 1 The timeout period is the time period in seconds to wait for an expected message.
The FIFO resequencer supports a standard first in, first out (FIFO) pattern. The following sections describe the FIFO resequencer and how it processes messages.
The FIFO resequencer is useful for applications that need sequencing based on the time the messages arrive to the Mediator. The FIFO resequencer receives a stream of messages that are in order and processes them in sequence for each group based on the arrival time of the messages.
It is important to note that the messages to outbound services of the Mediator acting as a FIFO resequencer are guaranteed to arrive in order based on arrival time. Therefore, the messages are delivered in the order they were stored in the resequencer data store.
When using the FIFO resequencer, you must always specify a group XPath expression. However, you do not need to specify a sequence ID because the messages are processed according to the time of arrival to the Mediator service component that is configured for FIFO resequencing. The group XPath expression specifies where the FIFO resequencer should find the group information in the message to group the messages. No further configuration is needed for a FIFO pattern.
Table 23-3 illustrates the behavior of the FIFO resequencer where msgX(Y,Z)
indicates that the message arrives as message number X to the Mediator service component and the message contains sequenceID
Y and group Z.
Table 23-3 FIFO Resequencer Behavior
Incoming Messages | Sequenced Messages |
---|---|
msg03(2,c) msg06(1,c) msg07(5,a) msg10(3,a) msg10(3,c) msg02(7,a) msg05(9,a) msg12(4,c) | msg12(4,c),msg10(3,c),msg06(1,c),msg03(2,c) msg05(9,a), msg02(7,a), msg10(3,a), msg07(5,a) |
As shown in Table 23-3, the messages are sequenced based on their time of arrival and the sequenceID
is not used for sequencing.
Note: When using the FIFO resequencer, use a single-threaded inbound adapter to avoid unpredictable results. For example, when you use the file/FTP adapter, the database adapter, or the AQ adapter in front of a Mediator service component that is configured as a FIFO resequencer, configure the adapter for single-threaded processing. Otherwise, unpredictable results occur because the arrival time of each message is calculated when the message arrives to the Mediator service component instead when it arrives to the adapter service. |
The Mediator resequencer supports a best effort pattern. The following sections describe the best effort resequencer and how it processes messages.
The best effort pattern is useful for applications that produce a large number of messages in a short period of time and cannot provide information to the resequencer about the identifier to use for sequencing. Typically, the identifier used for sequencing in such scenarios is of a dateTime
type or numeric
type. Using the dateTime
field as the sequence ID XPath enables you to control the sequencing. The messages are expected to be sent in sequence by the applications, thus the date and time the messages are sent can be used for sequencing. The Mediator makes the best effort to ensure that the messages are delivered in sequence.
The best effort resequencer can reorder messages based on no knowledge about the increment of the sequence ID. This situation means that unlike the standard resequencer, you do not need to define the increment of the sequence ID for the best effort resequencer in advance. When the messages are processed, they are processed in sequence based on the specified sequence ID and the messages that have arrived, whether a true sequence is received. The sequence IDs are either numeric
or dateTime
. Therefore, sequencing occurs on the numeric order or the dateTime
order of the sequence IDs.
The best effort resequencer processes messages asynchronously based on one of two message selection strategies: Maximum rows selected or time window. The messages selected and processed at any one time are based either on the maximum number of rows you specify or on a window of time in which they arrive.
Maximum Rows Selected
When the best effort resequencer is configured to use a maximum number of rows, it performs the following steps whenever new messages are available in the resequencer database:
maxRowsRetrieved
parameter from the ordered messages above. Time Window
When the best effort resequencer is configured to use a time window instead of a maximum number rows, the messages to select and process at one time are based on a period of time you specify plus an optional buffer time. Each message belongs to a specific time window, and messages that are part of one time window are processed separately from messages belonging to a different time window.
In addition to the time window, you can specify a buffer time, which is an overlap between two sequential time windows that allows messages that arrive a little late to be associated with the first time window. By default, the buffer time is 10% of the time window you specify.
When the best effort resequencer is configured to use a time window, groups are processed in an iterative manner and messages are processed in the following steps:
It is important to note that the messages to outbound services of the Mediator service component configured for best effort resequencing are not guaranteed to arrive in order of a sequence ID. At any given time, a snapshot of the available messages is taken and sequencing is performed only on those messages. Therefore, unlike a standard resequencer, it is not guaranteed that a message with a lesser sequence ID value is sent before a message that ha a greater sequence ID value but that arrived earlier. Messages with a lesser sequence ID value that arrive later might be processed in the following cycle when a snapshot of available messages is taken again and the messages are reordered.
When using the best effort resequencer, you must specify a group XPath expression, a sequence ID XPath expression, and the data type of the sequence ID (numeric
or dateTime
). These specify where the resequencer should find the group and the sequence ID in the messages and how to handle the sequence ID. In addition, you must specify either a maximum number of rows to select for each resequencing batch or a time window during which the messages included in one batch arrive.
Unlike the standard resequencer, the best effort resequencer has no knowledge about how the sequence is built. No further information is used by the best effort resequencer to perform its responsibilities.
Table 23-4 illustrates the behavior of the best effort resequencer when it is configured to use the maximum number of rows to determine which messages to process. In this example, msgX(Y,Z)
indicates that the message arrives as message number X to the Mediator service component and the message contains sequenceID
Y and group
Z.
Table 23-4 Best Effort Resequencer Behavior Based on Maximum Rows
Group C | Sequenced Messages |
---|---|
msg03(1,c) msg06(2,c) msg10(3,c) msg12(4,c) | msg12(4,c),msg10(3,c),msg06(2,c),msg03(1,c) |
Note: For the best effort resequencer to work correctly, the messages must arrive in sequence or nearly in sequence. Otherwise, they are not resequenced correctly. If the messages do not arrive close together, set the value of the |
Table 23-5 illustrates the behavior of the best effort resequencer when it is configured to process messages based on the time period in which they arrive. In this example, the time window is 10 minutes, the buffer is 10% (one minute), and msgX(Y)
indicates that the message arrives as message number X to the Mediator service component and the message contains the sequence ID Y. The first message arrives at 2:00:00, which starts the time window. The time window lasts until 2:10:00, but with the addition of the buffer time, messages that arrived until 2:11:00 are processed.
Table 23-5 Best Effort Resequencer Behavior Based on a Time Window
Group CMessage/Time | Sequenced Messages |
---|---|
msg01(04)/2:00:00 msg02(05)/2:00:20 msg03(01)/2:00:30 msg04(03)/2:00:50 msg05(07)/2:04:20 msg06(02)/2:04:45 msg07(13)/2:05:10 msg08(08)/2:05:40 msg09(06)/2:08:40 msg10(12)/2:09:20 msg11(10)/2:10:30 msg12(09)/2:10:40 msg13(14)/2:10:50 msg14(11)/2:13:00 | msg03(01), msg06(02), msg04(03), msg01(04), msg02(05), msg09(06), msg05(07), msg08(08), msg12(09), msg11(10), msg10(12), msg07(13) |
Note: In the above example, the resequencer identified the maximum sequence ID for the time window as 13 (from message 7). Message 13 arrived within the buffer time, but has a sequence ID of 14. It is not processed with the original group, but instead begins a new time window at its arrival time of 2:10:50. Message 14 arrived too late and is included in the second time window. |
You can configure the resequencer using Oracle JDeveloper. This section describes how to configure the resequencer in Oracle JDeveloper.
You can define resequencing at either the service component level or the operation level. For Mediator service components with only one operation, configuring resequencing at the operation or service component level results in the same behavior. For Mediator service components having multiple operations, specifying the resequencing at the service component level applies the same resequencing rules to all the operations, and messages arriving at any operation are resequenced. By default, the resequencing level is operations.
To specify the resequencing level:
Figure 23-2 Mediator Editor with Resequence Level Field
If you choose component, the Resequence field under each operation no longer appears and the Resequence Mode field appears under the Resequence Level field so you can set the resequencing mode for the service component. By default, the resequencing mode is set to off.
When you select a resequencing mode, the Resequence Options box appears under the service component or operation, as shown in Figure 23-3. If the Resequence Mode field for an operation is set to off, the Resequence Options box disappears.
Figure 23-3 Mediator Editor with Resequence Options Section
The options in the Resequence Options section change depending on the resequencing mode you select.
This section provides instructions on how to configure the three different types of resequencing strategies.
To configure a standard resequencer:
The Resequence Options box appears and includes the options for the standard resequencer, as shown in Figure 23-4.
Figure 23-4 Oracle Mediator with Resequence Mode set to Standard
Note: You can either enter the XPath expressions directly in the Group and ID fields or you can click Invoke Expression Builder to the right of each field. This launches the Expression Builder, which provides graphical assistance in creating field expressions and adding functions. |
Table 23-6 Standard Resequencing Options
Field Name | Description | Default Value | Mandatory |
---|---|---|---|
Group | The XPath that points to the field in the incoming message on which grouping is done. If you are editing the MPLAN file directly, the corresponding element is named | component_name-operation | N |
ID | The XPath that points to the field in the incoming message on which resequencing is done. If you are editing the MPLAN file directly, the corresponding element is named | N/A | Y |
Timeout | The time period in seconds to wait for an expected message. The resequencer locks the group as timed-out if a time out occurs. If you are editing the MPLAN file directly, the corresponding element is named | 0Foot 1 | N |
Start | The starting number of the ID sequence. If you are editing the MPLAN file directly, the corresponding element is named | 1 | N |
Increment | The increment of the ID sequence. If you are editing the MPLAN file directly, the corresponding element is named | 1 | N |
Footnote 1 This default value means that the timeout never happens for a group by default.
To configure a FIFO resequencer:
The Resequence Options box appears and includes the option for the standard resequencer, as shown in Table 23-6.
Figure 23-5 Oracle Mediator with Resequence Mode set to FIFO
Notes: If you are modifying the |
To configure a best effort resequencer:
The Resequence Options box appears and includes the option for the standard resequencer, as shown in Figure 23-6.
Figure 23-6 Oracle Mediator with Resequence Mode set to Best Effort
Tip: You can specify either a maximum number of rows to process at one time or a time window for the messages. You cannot specify both. |
For instructions, see “Configuring Resequenced Messages” in the Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Table 23-7 Best Effort Resequencing Options
Field Name | Description | Default Value | Mandatory |
---|---|---|---|
Group | The XPath that points to the field in the incoming message on which grouping is performed. If you are editing the MPLAN file directly, the corresponding element is named | component_name-operation | N |
ID | The XPath that points to the field in the incoming message that contains the ID on which resequencing is performed. If you are editing the MPLAN file directly, the corresponding element is named | N/A | Y |
Datatype | The data type of the sequence ID. The ordering process is based on the data type. Supported values are datetime and numeric. If you are editing the MPLAN file directly, the corresponding element is named | Numeric | Y |
Time Window | The length of time in minutes to wait after a message arrives to select messages from the data store for resequencing. You must specify a time window or the maximum rows (described below), but not both. If you are editing the MPLAN file directly, the corresponding element is named | 0 | N |
Max Rows | Number of in-sequence messages that the resequencer should pick from the data store at a time. If you are editing the MPLAN file directly, the corresponding element is named | 5 | N |
This chapter describes common message exchange patterns between an Oracle Mediator service component and other applications.
This chapter includes the following sections:
Notes: The following exchange patterns show the default handling of responses, faults, and callbacks by Oracle JDeveloper when a routing rule is created. Keep in mind the following points for all cases:
|
In a one-way interaction, the Mediator is invoked, but it does not send a response back to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-1:
Table 24-1 Response When Mediator's WSDL Is a One-way Interaction
Routing Rule Target Type | Response |
---|---|
Request | No response. |
Request Response | Response is forwarded to another target or event. |
Request Response Fault | Response and fault are forwarded to another target or event. |
Request Callback | Callback is forwarded to another target or event. |
Request Response Callback | Response and callback are forwarded to another target or event. |
Request Response Fault Callback | Response, fault, and callback are forwarded to another target or event. |
Figure 24-1 illustrates the one-way message exchange pattern.
Figure 24-1 One-way Message Exchange Pattern
The one.way.returns.fault
property controls how faults and one-way messages are handled for one-way interface SOAP calls. You can add this property to the service binding component of the web service section for one-way web services in the composite.xml
file. This property is not applicable to references. It is applicable only to services and only to the binding.ws
binding type. Table 24-2 provides more details on this property.
Table 24-2 one.way.returns.fault Property
If one.way.returns.fault Is... | Then... |
---|---|
Set to . . . <service name="Mediator1_2" ui:wsdlLocation="ReadFile.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/file /LocalSandbox/Project1/ReadFile%2F#wsdl.interface(Read_ ptt)"/> <binding.ws port="http://xmlns.oracle.com/pcbpel/adapter/file /LocalSandbox/Project1/ReadFile%2F#wsdl.endpoint (Mediator1/Read_pt)"> <property name="one.way.returns.fault" type="xs:string" many="false" override="may">true</property> </binding.ws> </service> . . . | Any fault that occurs during downstream processing returns a SOAP fault to the client and an HTTP response code of 500. (The same behavior as 11g Release 1.) |
Set to . . . <service name="Mediator1_2" ui:wsdlLocation="ReadFile.wsdl"> <interface.wsdl interface="http://xmlns.oracle.com/pcbpel/adapter/file/ Local Sandbox/Project1/ReadFile%2F#wsdl.interface(Read_ ptt)"/> <binding.ws port="http://xmlns.oracle.com/pcbpel/adapter/file/LocalSan dbox/Project1/ReadFile%2F#wsdl.endpoint(Mediator1/Read_ pt)"> <property name="one.way.returns.fault" type="xs:string" many="false" override="may">false</property> </binding.ws> </service> . . . | Any fault that occurs during downstream processing returns only an HTTP response code of 500. No SOAP fault is returned to the client. |
Not set (the default case) | Any fault that occurs during downstream processing returns a SOAP fault to the client and an HTTP response code of 500. (The same behavior as 11g Release 1.) |
To add the one.way.returns.fault property:
one.way.returns.fault
property. The Create Property dialog is displayed.
one.way.returns.fault
. true
or false
. In a request-reply interaction, the Mediator is invoked and sends a reply to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-3:
Table 24-3 Response When Mediator's WSDL Is a Request Reply
Routing Rule Target Type | Response |
---|---|
Request | There is no response from the target, but there should be at least one sequential routing rule with a request-response service. |
Request Response | The response is sent back to the caller. The response can be forwarded to another target or event, but there should be at least one sequential routing rule that returns a response back to the caller. |
Request Response Fault | The response is sent back to the caller. The fault is forwarded to another target or event. |
Request Callback | There is no response from the target, but there should be at least one sequential routing rule with a request-response service. The callback is forwarded to another target or event. |
Request Response Callback | The response is sent back to the caller. The callback is forwarded to another target or event. |
Request Response Fault Callback | The response is sent back to the caller. The callback and fault are forwarded to another target or event. |
Figure 24-2 illustrates the request-reply message exchange pattern.
Figure 24-2 Request-Reply Message Exchange Pattern
In a request-reply-fault interaction, the Mediator is invoked and sends a reply and one or more faults back to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-4:
Table 24-4 Response When Mediator's WSDL Is a Request Reply Fault
Routing Rule Target Type | Response |
---|---|
Request | There should be at least one sequential routing rule with a request-response-fault service. Mediator returns |
Request Response | The response is sent back to the caller. Any exception in Mediator message processing may result in a fault. |
Request Response Fault | The response and fault are sent back to the caller. Any exception in Mediator message processing may result in a fault. |
Request Callback | There is no response from the target, but there should be at least one sequential routing rule with a request-response service. Mediator returns |
Request Response Callback | The response is sent back to the caller. Any exception in Mediator message processing may result in a fault. |
Request Response Fault Callback | The response and fault are sent back to the caller. Any exception in Mediator message processing may result in a fault. |
Figure 24-3 illustrates the request-reply-fault message exchange pattern.
Figure 24-3 Request-Reply-Fault Message Exchange Pattern
In a request-callback interaction, the Mediator is invoked and may send an asynchronous reply to the caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-5:
Table 24-5 Response When Mediator's WSDL Is a Request Callback
WSDL of the Routing Rule Target | Response |
---|---|
Request | There should be at least one sequential routing rule with a request-callback service. No callback is sent to the caller if there is no routing rule with a defined callback. |
Request Response | The response is sent back to the caller, as a callback, in a separate thread. You can create additional routing rules to forward the response to another target or event. |
Request Response Fault | The response is sent back to the caller, as a callback, in a separate thread. The fault is forwarded to another target or event. As above, you can create additional routing rules to forward the response to another target or event. |
Request Callback | The callback is sent back to the caller. |
Request Response Callback | The callback is sent back to the caller, and the response is forwarded to another target or event. |
Request Response Fault Callback | The callback is sent back to the caller. The response and fault are forwarded to another target or event. |
Figure 24-4 illustrates the request-callback message exchange pattern.
Figure 24-4 Request-Callback Message Exchange Pattern
In a request-reply-callback interaction, the Mediator is invoked and sends a response and an asynchronous reply to the initial caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-6:
Table 24-6 Response When Mediator's WSDL Is a Request Response Callback
Routing Rule Target Type | Response |
---|---|
Request | There should be at least one sequential routing rule that returns a response. No callback is sent to the caller if there is no routing rule with a defined callback. |
Request Response | There should be at least one sequential routing rule that returns a response. No callback is sent if there is no routing rule with a defined callback. |
Request Response Fault | There should be at least one sequential routing rule that returns a response. No callback is sent to the caller if there is no routing rule with a defined callback. The fault is forwarded to another target or event. |
Request Callback | There should be at least one sequential routing rule that returns a response. Mediator returns |
Request Response Callback | The response and callback are sent back to the caller. |
Request Response Fault Callback | The response and callback are sent back to the caller. The fault is forwarded to another target or event. |
Figure 24-5 illustrates the request-reply-callback message exchange pattern.
Figure 24-5 Request-Reply-Callback Message Exchange Pattern
In a request-reply-fault-callback interaction, the Mediator is invoked and sends a response, an asynchronous reply, and one or more fault types to the initial caller. Depending on the type of routing rule target, the responses, faults, and callbacks are handled as shown in Table 24-7:
Table 24-7 Response to a Request Response Fault Callback Mediator
WSDL of the Routing Rule Target | Response |
---|---|
Request | There should be at least one sequential routing rule with a request-callback service and at least one sequential routing rule that returns a response. No callback or response is sent unless the required routing rules are defined. |
Request Response | There should be at least one sequential routing rule with a request-callback service and at least one sequential routing rule that returns a response. No callback or response is sent unless the required routing rules are defined. |
Request Response Fault | There should be at least one sequential routing rule with a request-callback service and at least one sequential routing rule that returns a response. No callback or response is sent unless the required routing rules are defined. |
Request Callback | There should be at least one sequential routing rule that returns a response. Mediator returns |
Request Response Callback | The response and callback are sent back to the caller. Any exception in Mediator message processing may result in a fault. |
Request Response Fault Callback | The response, fault, and callback are sent back to the caller. |
Figure 24-6 illustrates the request-reply-fault-callback message exchange pattern.
Figure 24-6 Request-Reply-Fault-Callback Message Exchange Pattern
This part describes how to use the business rules service component.
This part contains the following chapters:
This chapter describes how to use a business rule service component to integrate a SOA composite application with Oracle Business Rules. A business rule service component is also called a decision component. You can add business rules as part of a SOA composite application or as part of a BPEL process.
This chapter includes the following sections:
For more examples of using Oracle Business Rules, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
A decision component, also called a business rule service component, supports use of Oracle Business Rules in a SOA composite application. Decision components support the following SOA composite usage:
For more information, see Chapter 20, "Creating Oracle Mediator Routing Rules."
For more information, see Section 28.4, "Associating Human Tasks with BPEL Processes."
You can create a SOA composite application that includes BPEL process, business rule, and human task service components. These components are complementary technologies. BPEL processes focus on the orchestration of systems, services, and people. Business rules focus on decision making and policies. Human tasks enable you to model a workflow that describes the tasks for users or groups to perform as part of an end-to-end business process flow.
Some examples of where business rules can be used include:
Rules can perform intelligent routing within the business process based on service level agreements or other guidelines. For example, if the customer requires a response within one day, send a loan application to the QuickLoan loan agency only. If the customer can wait longer, then route the request to three different loan agencies.
There are typically many conditions that must be evaluated as part of a business process. However, the parameters to these conditions can be changed independently of the process. For example, you provide loans only to customers with a credit score of at least 650. This value may be changed dynamically based on new guidelines set by business analysts.
Rules can validate input documents or apply additional constraints on requests. For example, a new customer request must always be accompanied with an employment verification letter and bank account details.
Rules are frequently used for human tasks in the business process:
For more information about creating business rules in the Human Task editor of a human task component, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
You can create a business rules service component in the SOA composite application of Oracle JDeveloper and then design it by using the Business Rules Designer, which is displayed when you double-click a business rule in the SOA Composite Editor.
The Business Rules Designer consists of the following main sections shown in Figure 25-1. These sections enable you to work with business rules in Oracle JDeveloper.
Figure 25-1 Rules Designer in Oracle JDeveloper
The Application Navigator displays the files in the project. Each project can only contain one composite. But each composite can have multiple components of either the same type or different types (Business Rules, BPEL process, Oracle Mediator, and human workflow).
As you design business rules, additional files, folders, and elements can appear in the Application Navigator.
The Rules Designer window provides a visual view of the selected dictionary component. You use the Rules Designer navigation tabs to select different parts of the dictionary with which to work. The rules designer window displays when you perform one of the following actions:
Table 25-1 describes where you can find information about working with a dictionary with Rules Designer.
Table 25-1 Rules Designer Navigation Areas Descriptions
For more information about the Rules Designer navigation areas and its descriptions, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
The Structure window offers a structural view of the data in the Business Rule dictionary currently selected in the Rules Designer window. You can perform a variety of tasks from this section, by selecting an element and right-clicking on the element, including:
Figure 25-2 shows the Structure window.
Figure 25-2 Structure Window with Rules Designer Dictionary
Rules Designer displays the status of dictionary validation in the business rule validation log, as shown in Figure 25-3.
When a dictionary is invalid, Rules Designer produces a list of warning messages and lists the associated dictionary objects that you can use to locate the dictionary object and to correct the problem. You can safely ignore the validation warnings that you see when you create rules using Rules Designer. The validation warnings are removed as you create the rules, but are shown during the intermediate steps. To test or deploy rules, the associated dictionary must not display warnings.
For more information on business rules validation, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
Figure 25-3 Rules Designer Business Rule Validation Log
This section describes how to get started with business rules and provides a brief introduction to the main sections of Oracle JDeveloper that you use to design business rules.
You can add Business Rule components using the SOA Composite Editor.
To create a Business Rule component:
As a service component in an existing SOA composite application:
In a new application:
This starts the Create SOA Application wizard.
Table 25-3 Restrictions on Naming a SOA Project
Create an Application Named... | With a SOA Project Named... |
---|---|
|
|
|
|
During deployment, the second deployed project (composite) overwrites the first deployed project (composite).
Each method causes the Create Business Rules dialog shown in Figure 25-4 to appear.
You can use a decision component, also called a business rule service component, to execute business rules in a BPEL process.
You add business rules to a BPEL process using a Business Rule component. When you add a business rule component to a BPEL process, you must include input and output variables to provide input to the rules and obtain results back from the business rules.
A business rule component enables you to execute business rules and make business decisions based on the rules. To create a business rule component, also called a decision component, you drag-and-drop a Business Rule from the component palette into the BPEL process.
To add a business rule to a BPEL process:
receiveInput
and callbackClient
as shown in Figure 25-5. Figure 25-5 Adding A Business Rule to a BPEL Process
receiveInput
and callbackClient
, as shown in Figure 25-6. Figure 25-6 Drag-and-drop a Business Rule into a BPEL Process
GetCreditRating
, as shown in Figure 25-7. If you previously created a dictionary, under the Dictionary tab, in the Dictionary field, select an existing dictionary. Figure 25-7 Business Rule Added to Auto Loan BPEL Process
GetCreditRating
, the input is a rating request document. The output is generated when you run the business rules, and for this example is a rating document. For example, in BPEL you can create two new variables, RatingRequest
and Rating
that carry the input and output data for the GetCreditRating
rules. Enter a name for the Oracle Business Rules dictionary. For example, enter GetCreditRating
, as shown in Figure 25-8.
Figure 25-8 Adding GetCreditRating Business Rule Dictionary
Add inputs for business rule:
This displays the Add Input Variable dialog box.
This displays the Create Variable dialog box.
RatingRequest
as shown in Figure 25-10. ratingrequest
type. Add any needed types using the Type Chooser. CreditRatingTypes.xsd
. Also import any other required schema for your application. Add outputs for business rule:
GetCreditRating
in the same way you created the input variable. Rating.
CreditRatingTypes.xsd
and select the element type rating
. This displays the Create Business Rules dialog, as shown in Figure 25-11.
Figure 25-11 Create Business Rules Dialog with Input and Output Variables
Set options and create decision service and business rules dictionary:
CreditRatingService
. Figure 25-12 Rules Designer Canvas Where You Work with Business Rules
For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
When you add business rules to a BPEL process, Oracle JDeveloper creates a decision component to control and run the business rules using the Business Rule Service Engine.
A decision component consists of the following:
This web service lets business processes assert and retract facts as part of the process. In some cases, all facts can be asserted from the business process as one unit. In other cases, the business process can incrementally assert facts and eventually consult the rule engine for inferences. Therefore, the service supports both stateless and stateful interactions.
You can create a variety of such decision components.
For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
After you create an application, a project, and a rules dictionary, the rules dictionary appears in the structure pane in Oracle JDeveloper and Rules Designer opens in the main canvas.
As part of the create Business Rule dialog you either select an existing dictionary or a new rule dictionary is created with the following pre-loaded data:
Note: When you create inputs and outputs for a business rule, the XML fact type that is created in the associated dictionary is named based on the schema types for the inputs and outputs that you supply in the Create Business Rules dialog. When you specify schema type for the input and the output, Rules Designer defines fact types and aliases associated with your type selections for input and output. If you only use a single type for both the input and the output, then the decision component creates a single fact that is shown in the Rules Designer Facts tab. This fact represents the fact type you specified and uses an alias name that is a concatenation of both the input variable name and the output variable name. In Rules Designer you can rename this alias if you do not like the default naming scheme for the fact type. |
When you add business rules to a BPEL process Oracle JDeveloper creates a decision Service that supports calling Oracle Business Rules with the inputs you supply, and returning the outputs with results. The decision service provides access to Oracle Business Rules Engine at runtime as a web service. For more information, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
A decision component running in a business rules service engine supports either stateful or stateless operation. The Reset Session checkbox in the Create Business Rules dialog provides support for these two modes of operation.
By default the Reset Session checkbox is selected which indicates stateless operation. Stateless operation means that, at runtime, the rule session is released after the decision component invocation.
When Reset Session is unselected, the underlying Oracle Business Rules object is kept in the memory of the business rules service engine at a separate location (so that it is not given back to the Rule Session Pool when the operation is finished). A subsequent use of the decision component re-uses the cached RuleSession object, with all its state information from the callFunctionStateful
invocation, and then releases it back to the Rule Session pool after the callFunctionStateless
operation is finished. Thus, when Reset Session is unselected the rule session is saved for a subsequent request and a sequence of decision service invocations from the same BPEL process should always end with a stateless invocation.
To work with Oracle Business Rules in a SOA composite application, you create an application and add business rules.
The business rule service component enables you to integrate your SOA composite application with business rules. This creates a business rule dictionary and enables you to execute business rules and make business decisions based on the rules.
After creating a project in Oracle JDeveloper, you must create a Business Rule Service component within the project. When you add a business rule you can create input and output variables to provide input to the service component and to obtain results from the service component.
To use business rules with Oracle JDeveloper, you do the following:
To work with Oracle Business Rules in a SOA composite application you use Oracle JDeveloper to create an application, a project, and then add a business rule component.
To create a SOA application with business rules:
composite.xml
to launch the SOA composite editor. Figure 25-13 Adding Business Rules to a SOA Composite Application
Figure 25-14 Adding Business Rules to a SOA Composite and Creating a Dictionary
Add inputs for business rules:
order.xsd
schema file, and click OK. Figure 25-15 Importing Schema for Input to Business Rules
Use the Type Chooser dialog navigator to locate and select the input from the schema and click OK. For example, select the CustomerOrder
element as the input.
Add outputs for business rules:
OrderApproval
from the order.xsd
and click OK. Figure 25-16 Create Business Rules Dialog with Input and Output
Set options and create decision service and business rules dictionary:
Figure 25-17 Business Rule Component in SOA Composite
Figure 25-18 Rules Designer Showing New Dictionary for SOA Composite Application
For information on Rules Designer, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.
You can specify one or more decision functions as inputs for calling Oracle Business Rules as a component in a composite application. For example, you can specify a particular decision function as the input when multiple decision functions are available in an Oracle Business Rules dictionary.
To specify a decision function in a composite application:
Figure 25-19 Selecting a Business Rule Component in a Composite Application
Figure 25-20 Selecting a Decision Function Port in a Business Rule Component
Figure 25-21 Update Interface Dialog for a Decision Function in a Business Rule Decision Port
You run business rules as part of a decision component within a SOA composite application. The business rules are executed by the Business Rule Service Engine. You can use Oracle Enterprise Manager Fusion Middleware Control to monitor the Business Rule Service Engine and to test a SOA composite application that includes a decision component. For more information, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
To test a standalone decision service component by using Oracle Enterprise Manager Fusion Middleware Control, you must provide the name of the decision service as the value of the payload name field in the Test Web Service page as shown in Figure 25-22.
Figure 25-22 Invoking a Standalone Test Decision Service
'name' in payload should be the decision service name as can be seen in the sample .decs
file in Figure 25-23.
Without the decision service name, it would not be possible to invoke the standalone decision service with just the payload and endpoint details.
You can use Oracle ADF Business Components Fact Types and ActionTypes
from the Business Rules Service Engine. Typically, a decision component can be used within a SOA composite and wired to a BPEL component and the Oracle Business Rules rules act on XML types. The Business Rules Service Engine is called as a web service with a payload containing instances of the XML schema types, and the service engine returns a response similarly.
It is also possible to use Oracle ADF Business Components Fact Types from a decision component. Instead of loading the Oracle ADF Business Components Fact Type instances and passing them to the Business Rules Service Engine, you call the Business Rules Service Engine with configuration information describing how the Oracle ADF Business Components view object rows can be loaded. Special Oracle Business Rules decision functions in the DecisionPointDictionary
and classes in the Oracle Business Rules SDK Decision Point API then load the rows and assert Oracle ADF Business Components fact type instances. When working with Oracle ADF Business Components Fact Types, you write rules that use user-defined Java classes which inherit from ActionType to affect action, such as modifying the Oracle ADF Business Components fact type instances such that they update their underlying database rows.
A decision component requires an XML document as input. The Oracle Business Rules Decision Point dictionary provides an XML Fact Type called SimpleDecisionPointInput
that serves as this input. The primary key(s) of Oracle ADF Business Components are passed to the business rule service component. The business rule service component invokes a user-defined decision function which it invokes to load the Oracle ADF Business Components view object instances, asserts them in the rules engine, and then marshals the results in the following order:
ActionType
to update the business component. ActionTypes
is optional. For specific instructions on how to use Oracle ADF Business Components Fact Types and ActionTypes
from the Business Rules Service Engine, see the source code for Oracle Business Rules-specific samples available with the Oracle SOA Suite samples.
This chapter describes how to use different Oracle Business Rules declarative components and task flows to develop high-performance, interactive, and multitiered applications that are also easy to maintain. It describes how to use the Oracle Business Rules Editor declarative component and the Oracle Business Rules Dictionary Editor declarative component and task flow. It also describes how to localize the ADF-based web application.
This chapter includes the following sections:
Declarative components are reusable, composite user interface (UI) components that comprise other existing Application Development Framework (ADF) Faces components. Consider an application that contains multiple JSF pages. On a particular page, a set of specific components is used in multiple parts of that page. In this scenario, if you make any changes to any of the components in the set, you typically must replicate the changes in multiple parts of the page. This approach makes it difficult to maintain the consistency of the structure and layout of the page. However, by defining a declarative component that comprises the given set of components, you can reuse that composite declarative component in multiple places or pages. Declarative components, thereby, save time and ensure integrity across pages because when you make any changes to the components, the JSF pages using them automatically get updated.
ADF task flows are reusable components that provide a modular and transactional method in specifying the control flow in an application. You can use a set of reusable task flows as an alternative to representing an application as a single large JSF page flow, thereby providing modularity. Each task flow contains a part of the entire navigational plan of the application. The nodes in a task flow are called activities. Apart from navigation, task flow activities can also call methods on managed beans or call another task flow without invoking any particular page. This facilitates reuse because business logic can be invoked independently of the page being displayed.
This section discusses the Oracle Business Rules Editor declarative component. It also provides information on how to create and run an application using the Rules Editor component, and then deploy the application. In addition, this section lists the supported tags and the localization process for the application.
The Oracle Business Rules Editor is a declarative component that can be embedded in any ADF-based web application. The component renders the user interface for rules editing and handles all events associated with rules editing. The Rules Editor uses the Rules SDK2 API to create and edit rules.
Note: You should not confuse the Rules Editor with the Rules Dictionary Editor. The Rules Editor is used to edit rules inside a specified ruleset. In fact, the Rules Editor is embedded within the Rules Dictionary Editor. For more information about the Rules Dictionary Editor, see Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component." |
Using the Rules Editor, you can edit rules and decision tables that are part of a single ruleset. You are required to specify a RuleSetModel
object, which is a wrapper around the Rules SDK ruleset object, as a parameter to the Rules Editor component. If multiple rulesets are required to be modified, multiple Rules Editor components must be instantiated, one for each ruleset.
The Rules Editor component performs the following functions:
Figure 26-2 Simple Tests or Conditions in a Rule
Figure 26-12 Validation Panel to Manage Error Messages
Note: Once all the edits are done, the component user is responsible for saving the ruleset. |
This section lists the steps for creating and running a sample application by using the Rules Editor component.
The prerequisite for using the Rules Editor component to create ADF-based web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.
To create a sample application by using the Rules Editor:
The first task is to create a sample application.
The steps are:
useRulesDCApp
, and click Next as shown in Figure 26-13. Figure 26-13 Creating a Generic Application
useRulesDC
in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-14. In the Project Properties dialog box:
Figure 26-16 Selecting Oracle Rules and Rules Editor Component
This adds the Rules SDK and the Rules Editor Component tag libraries to the project.
You have to ensure that all the required tag libraries are added:
Figure 26-17 Checking the Required Tag Libraries
To create the RuleSetModel object:
The Rules Editor component requires a oracle.bpel.rulesdc.model.impl.RuleSetModel
object. The component uses this object to read the rules and the decision tables that exist in the ruleset. Therefore, the next task is to create a managed bean called SomeBean.java
that creates a RuleSetModel
object.
The steps are:
SomeBean.java
, and click OK to create the Java class in your project, as shown in Figure 26-18. SomeBean.java
, provide a method that returns the RuleSetModel
object. You must specify the location of the rules file here. The following is a sample of the SomeBean.java
file: <your rules file here>
";faces-config.xml
file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. SomeBean.java
by entering someBean
in the Bean Name field and selecting session from the Scope list, as shown in Figure 26-19. Figure 26-19 Specifying the Bean Name and Scope
The ADF/JSF framework makes multiple calls to SomeBean.java
to render the user interface. For example, someBean.ruleSetModel
is called multiple times. So, it is better to create the RuleSetModel
object once, cache it, and return it each time instead of re-creating it.
To create the .jspx file for the Rules Editor Component tag:
The next task is to create the .jspx
file to include the Rules Editor component tag.
The steps are:
useRulesDC.jspx
as the file name, as shown in Figure 26-20. RulesCompLib is displayed in the Component Palette of Oracle JDeveloper as shown in Figure 26-21.
Figure 26-21 Rules Editor Component Library in the Component Palette
This is because you have added the Rules Editor Component tag library when creating the sample application.
Rulesdc
tag. You can drag and drop the Rulesdc
tag into the .jspx
file. You can also add the Rulesdc
tag in the .jspx
file manually as shown: To refer to the oracle.rules and the oracle.soa.rules_editor_dc.webapp shared libraries:
After creating the .jspx
file, you must refer to the oracle.rules
and oracle.soa.rules_editor_dc.webapp
shared libraries from the weblogic-application.xml
file.
The steps are:
weblogic-application.xml
file by browsing to Application Resources, then Descriptors, and then META-INF. oracle.rules
shared library as shown in Figure 26-22. Figure 26-22 Referring to the oracle.rules Shared Library
weblogic.xml
, select Libraries from the left panel. oracle.soa.rules_editor_dc.webapp
as the library name, as shown in Figure 26-23. Figure 26-23 Adding the Rules Editor Component Library
oracle.rules
shared library to the embedded Oracle WebLogic Server: http://
host
:
port
/console/login/LoginForm.jsp
). Figure 26-24 Deploying the oracle.rules Shared Library
oracle.soa.rules_editor_dc.webapp
shared library to Oracle WebLogic Server: Figure 26-25 Deploying oracle.soa.rules_editor_dc.webapp Shared Library
oracle.soa.rules_editor_dc.webapp is added to the list of deployments as shown in Figure 26-26.
Figure 26-26 oracle.soa.rules_editor_dc.webapp Added to the Deployment List
To run the sample Rules Editor application:
The last task is running the sample application.
This starts the sample application on a web browser, as shown in Figure 26-27.
Figure 26-27 Running the Sample Application
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic Server, perform the following:
http://
host
:
port
/console/login/LoginForm.jsp
). Figure 26-28 Adding the Oracle Rules Editor Component
This step enables you to refer to these libraries, but does not deploy these libraries by default. Therefore, the JARs are not included in your project WAR file.
weblogic-application.xml
: weblogic.xml
in the project WAR file: For more information about creating an EAR file, see "How to Create an EAR File for Deployment" in Oracle Fusion Middleware Java EE Developer's Guide for Oracle Application Development Framework.
For role-based authorization, Rules DC implements custom JAAS permissions (extending the oracle.adf.share.security.authorization.ADFPermission
class to ensure that the permission can be used by ADF security).
If a Rules Editor application supports ADF security, which means there is support for role-based authentication and authorization, then security is enforced by implementing custom JAAS permissions (by extending the oracle.adf.share.security.authorization.ADFPermission
class to ensure that the permission can be used by ADF security). You have to create ADF security policies by granting the following permissions to the user roles based on your application requirement:
oracle.rules.adf.permission.AddRulePermission
: Displays the Add Rule button; if the permission is not granted, the Add Rule button is not visible to the user. oracle.rules.adf.permission.DeleteRulePermission
: Displays the Delete Rule button; if the permission is not granted, the Delete Rule button is not visible to the user. oracle.rules.adf.permission.EditRulePermission
: Displays the Edit Rule button for rules inside a ruleset; if the permission is not granted, then the rules are view-only. oracle.rules.adf.permission.AddDTPermission
: Displays the Add Decision Table button; if the permission is not granted, the Add Decision Table button is not visible to the user. oracle.rules.adf.permission.DeleteDTPermission
: Displays the Delete Decision Table button; if the permission is not granted, the Delete Decision Table button is not visible to the user. oracle.rules.adf.permission.EditDTPermission
: Displays the Edit Decision Table button for decision tables within a ruleset; if the permission is not granted, the decision tables are view-only. oracle.rules.adf.permission.RulesEditorPermission
: A global permission that sets all the preceding permissions to true
. For example, to grant the delete rule permission to a role, specify the following code in the jazn-data.xml
file of the application:
If you do not want to use the individual permissions, such as AddRulePermission
or DeleteRulePermission
, you can set the RulesEditorPermission
in the jazn-data.xml
file to set global permissions.
This section lists the tags and attributes that are supported by the Rules Editor component.
Table 26-1 lists the supported facets.
Table 26-1 Supported Facets of the Rules Editor Component
Name | Description |
---|---|
| Used to render specific user interfaces. This facet is used to display the rule condition and pattern (in advanced mode), which is the |
| Used to render specific user interfaces. This facet is used to display the rule action, which is the |
Table 26-2 lists the supported attributes.
Table 26-2 Supported Attributes of the Rules Editor Component
Name | Type | Required | Default Value | Supports EL? | Description |
---|---|---|---|---|---|
|
| no | Gets from the locale | yes | If specified, the date style is used in all |
|
| no | Based on locale | yes | Specifies the decimal separators. This is used in number formatting. If specified, this attribute overrides the decimal separator based on locale. |
|
| no |
| yes | If |
|
| no |
| yes | If |
|
| no |
| yes | If |
|
| no |
| yes | Displays the editable ruleset name by default. You can choose to hide this by setting it to |
|
| no | 5 | yes | Specifies the number of columns to be displayed at a time in a decision table. This works only when rules are columnar. |
|
| no |
| yes | Number of rows to be displayed at a time in the decision table. A scroll bar is displayed if the number of rows increases over the specified height. |
| j | no |
| yes | If |
|
| no |
| yes | If |
|
| no | Based on Locale | yes | Specifies the grouping separators. This is used in Number Formatting. If specified, this attribute overrides the grouping separator based on locale. |
|
| no |
| yes | Used for Localization |
|
| no |
| yes | Used to customize the default |
|
| yes | - | Only EL | Wrapper around the Rules SDK ruleset object.You can use the |
| j | no |
| yes | Specifies the number of rules to be displayed in a page. It is used in |
|
| no |
| yes | Displays the add and delete decision table links by default. You can choose to hide these by setting this to |
| j | no |
| yes | Displays the validation panel by default. You can choose to hide this by setting this to |
|
| no |
| yes | Used to customize the default |
|
| no | Gets from the locale | yes | If specified, the time style is used in all |
|
| no |
| yes | Used for localization. |
|
| no |
| yes | If |
This section discusses the Oracle Business Rules Dictionary Editor declarative component. It also provides information on how to create and run an application using the Rules Dictionary Editor component, and then deploy the application. In addition, this section lists the supported tags and the localization process for the application.
The Oracle Business Rules Dictionary Editor is a composite declarative component that can be embedded in any ADF-based web application. It enables you to edit business rules metadata artifacts, such as globals, bucketsets, and rulesets, by using the Rules SDK2 API.
Note: Do not confuse the Rules Dictionary Editor with the Rules Editor. The Rules Editor edits rules inside a specified ruleset. In fact, the Rules Editor is embedded within the Rules Dictionary Editor. For more information about the Rules Editor, see Section 26.2, "Using the Oracle Business Rules Editor Declarative Component." |
The Rules Dictionary Editor task flow uses the Rules Dictionary Editor Component to create applications. Typically, you should either use the Rules Dictionary Editor component or the Rules Dictionary Editor task flow, but not both. For more information on the Rules Dictionary Editor task flow, see Section 26.4, "Using the Oracle Business Rules Dictionary Editor Task Flow."
The Rules Dictionary Editor component performs the following:
final
attribute set to true
by using the Globals Editor, as shown in Figure 26-29. The Globals Editor enables you to edit only the name, description, and value of globals. It does not allow creation or deletion of globals. However, it supports validation of globals.
Bucketset Editor enables you to perform CRUD (create, read, update, and delete) operations on bucketsets and buckets inside a bucketset. It also supports validation of bucketsets.
The Rules Dictionary Editor enables you to edit only rules inside a selected ruleset. It does not allow creation or deletion of rulesets.
This section lists the steps for creating and running a sample application by using the Rules Dictionary Editor component.
The prerequisite for using the Rules Dictionary Editor component to create ADF-based web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.
To create a sample application by using the Rules Dictionary Editor:
The first task is to create a sample application.
The steps are:
useRuleDictDCApp
, and click Next as shown in Figure 26-32. Figure 26-32 Creating a Generic Application
useRuleDictDC
in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-33. Click Finish to create the project.
In the Project Properties dialog box:
Figure 26-35 Selecting Oracle Rules and Rules Dictionary Component
This adds the Rules SDK and the Rules Dictionary Editor tag libraries to the project.
You have to ensure that all the required tag libraries are added:
Figure 26-36 Checking the Required Tag Libraries for Rules Dictionary Editor
To create the RuleDictionaryModel object:
The Rules Dictionary Editor component requires a oracle.bpel.ruledictionarydc.model.impl.RuleDictionaryModel
object. The component uses this object to read globals, bucketsets, and rulesets information from the dictionary. Therefore, the next task is to create a managed bean named SomeBean.java
that creates a RuleDictionaryModel
object.
The steps are:
SomeBean.java
, and click OK to create the Java class in your project, as shown in Figure 26-37. SomeBean.java
, provide a method that returns the RuleDictionaryModel
object. You must specify the location of the rules file here. The following is a sample of the SomeBean.java
file: faces-config.xml
file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. SomeBean.java
by entering someBean
in the Bean Name field and selecting session from the Scope list, as shown in Figure 26-38. Figure 26-38 Specifying the Bean Name and Scope
The ADF/JSF framework makes multiple calls to SomeBean.java
to render the user interface. For example, someBean.ruleDictModel
is called multiple times. Therefore, it is better to create the RuleDictModel
object once, cache it, and return it each time instead of re-creating it.
To create the .jspx file for the Rules Dictionary Editor Component tag:
The next task is to create the .jspx
file to include the Rules Dictionary Editor Component tag.
The steps are:
useRuleDictDC.jspx
as the file name, as shown in Figure 26-39. Figure 26-39 Specifying the Name of the JSF Page
RuleDictionaryDC is displayed in the Component Palette of Oracle JDeveloper, as shown in Figure 26-40.
Figure 26-40 Rule Dictionary Editor Library in the Component Palette
This is because you have added Rules Dictionary Component when creating the sample application.
ruleDictionaryDC
tag.You can drag and drop the RuleDictionaryDC
tag into the .jspx
file. You can also add the RuleDictionaryDC
tag in the .jspx
file manually as shown: To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:
After creating the .jspx
file, you must refer to the oracle.rules
and oracle.soa.rules_editor_dc.webapp
shared libraries from the weblogic-application.xml
file.
The steps are:
weblogic-application.xml
file by browsing to Application Resources, then Descriptors, and then META-INF. oracle.rules
shared library, as shown in Figure 26-41. Figure 26-41 Referring to the oracle.rules Shared Library
oracle.soa.rules_dict_dc.webapp
as the library name, as shown in Figure 26-42. Figure 26-42 Adding the Rules Dictionary Component Library
oracle.rules
shared library to the embedded Oracle WebLogic Server: Figure 26-43 Deploying the oracle.rules Shared Library
oracle.soa.rules_dict_dc.webapp
shared library to Oracle WebLogic Server: Figure 26-44 Deploying oracle.soa.rules_editor_dc.webapp Shared Library
oracle.soa.rules_dict_dc.webapp
is added to the list of deployments, as shown in Figure 26-45.
Figure 26-45 oracle.soa.rules_dict_dc.webapp Added to the Deployment List
To run the sample Rules Dictionary Editor application:
The last task is running the sample application.
To run the sample application, from Oracle JDeveloper, right-click the useRuleDictDC.jspx file, and select Run. This starts the sample application on a web browser, as shown in Figure 26-46.
Figure 26-46 Running the Sample Rules Dictionary Editor Application
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic Server, perform the following:
http://
host
:
port
/console/login/LoginForm.jsp
) and ensure that oracle.rules
is displayed in the deployments list. oracle.soa.rules_dict_dc.webapp
is displayed in the deployments list. Figure 26-47 Adding the Oracle Rules Dictionary Component
This step enables you to refer to these libraries, but does not deploy these libraries by default. Therefore, the JAR files are not included in your project war file.
weblogic-application.xml
: weblogic.xml
in the project WAR file: This section lists the attributes that are supported by the Rules Dictionary Editor component.
Table 26-3 lists the supported attributes.
Table 26-3 Supported Rules Dictionary Editor Attributes
Name | Type | Required | Default Value | Supports EL? | Description |
---|---|---|---|---|---|
|
| no | Gets it from the locale | yes | If specified, the date style is used in all |
|
| no | Based on Locale | yes | Specifies the decimal separators. This is used in number formatting. If specified, this attribute overrides the decimal separator based on locale. |
|
| no |
| yes | If |
|
| no |
| yes | Disables the add, edit, and delete operations for the Inputs table in the decision function editor window. |
|
| no |
| yes | Disables the add, edit, and delete operations for the Outputs table in the decision function editor window. |
|
| no |
| yes | If |
|
| no |
| yes | If |
|
| no |
| yes | Displays the Add Decision Function button. |
|
| no |
| yes | Displays the Delete Decision Function button. |
|
| no |
| yes | Displays the editable ruleset name by default. You can choose to hide this name by setting to |
|
| no |
| yes | If |
|
| no |
| yes | If |
|
| no |
| yes | Number of columns to be displayed at a time in the decision table. This works only when rules are columnar. |
|
| no |
| yes | Number of rows to be displayed at a time in the decision table. A scroll bar is displayed if the number of rows increases over the specified height. |
|
| no | Based on Locale | yes | Specifies the grouping separators. This is used in number formatting. If specified, this attribute overrides the grouping separator based on locale. |
|
| no |
| yes | Used for localization |
|
| yes | - | Only EL | Wrapper around the Rules SDK dictionary object.You can use the |
|
| no |
| yes | Specifies the number of rules to be displayed in a page. It is used in |
|
| no | - | yes | Switches to the specified tab name (either GLOBALS, BUCKETSETS, DESC_FUNCS, or the ruleset name). |
|
| no |
| yes | Displays the Add and Delete decision table buttons. |
|
| no |
| yes | Displays the validation panel by default. You can choose to hide this panel by setting to |
|
| no | Gets it from the locale | yes | If specified, the time style is used in all |
|
| no |
| yes | Used for localization. |
|
| no |
| yes | If |
This section discusses the Oracle Business Rules Dictionary Editor task flow. It also provides information on how to create and run an application using the Rules Dictionary Editor task flow, and then deploy the application.
The Oracle Rules Dictionary Editor Task Flow is basically a wrapper around the Rules Dictionary Editor declarative component. The task flow is used in ADF-based web applications that require a task flow instead of a declarative component. For more information on the Rules Dictionary Editor component, see Section 26.3, "Using the Oracle Business Rules Dictionary Editor Declarative Component."
This section lists the steps for creating and running a sample application by using the Oracle Rules Dictionary Editor task flow.
The prerequisites for using the Oracle Rules Dictionary Editor task flow to create ADF-based web applications is having a running installation of Oracle SOA Suite and Oracle JDeveloper on your computer.
To create a sample application by using the Oracle Rules Dictionary Editor task flow:
The first task is to create a sample application.
The steps are:
useRuleDictTaskFlowApp
, and click Next as shown in Figure 26-48. Figure 26-48 Creating a Generic Task Flow Application
useRuleDictTaskFlow
in the Project Name field and ensure that ADF Faces is selected in the Project Technologies tab, as shown in Figure 26-49. Figure 26-49 Creating a Task Flow Project
In the Project Properties dialog box:
Figure 26-50 Choosing Tab Libraries for the Task Flow Application
Figure 26-51 Adding the Rules SDK and Rules Dictionary Task Flow
oracle.integration.console.metadata.model.share.MetadataDetails
interface, which is defined in soaComposerTemplates.jar
. For more information on the MetadataDetails
interface, see Section I.1, "The MetadataDetails Interface." The steps are:
MyMetaDataDetails
. MetadataDetails
interface in the Implements box under Optional Attributes, and click OK to create the Java class in your project, as shown in Figure 26-52. Figure 26-52 Creating a Java Class That Implements the MetadataDetails Interface
The following is a sample of the content of the MyMetaDataDetails.java
file:
<path of Rules file>
";MyNLSPreferences
that implements the oracle.integration.console.metadata.model.share.NLSPreferences
interface, which is defined in soaComposerTemplates.jar
. For more information about the NLS Preferences interface, see Section I.2, "The NLSPreferences Interface."
The following sample of MyNLSPreferences.java
implements the NLSPreferences
interface:
MyBean.java
to return the implementation of MetadataDetails
and NLSPreferences
. It also returns the oracle.integration.console.metadata.model.share.MetadataDetailsMode
object and provides event handlers such as toggleMode()
, saveDictionary()
, saveNoValidateDictionary()
, and validate()
. The following is a sample of the MyBean.java
file:
faces-config.xml
file in Overview mode and click the + button under Managed Beans to display the Create Managed Bean dialog box. MyBean.java
by entering MyBean
in the Bean Name field and selecting session
from the Scope list, as shown in Figure 26-53. Figure 26-53 Specifying the Bean Name and Scope in the Task Flow Application
To add a Rules Dictionary Editor task flow in a .jspx file:
The next task is to create the .jspx
file to include the Rules Dictionary Editor component tag.
The steps are:
Figure 26-54 Creating the JSF Page File to Include the Rules Dictionary Editor Task Flow
useRuleDictTaskFlow.jspx
as the file name, as shown in Figure 26-55. Figure 26-55 Specifying the Name of the JSF Page for the Task Flow
adflibRuleDictionaryTaskFlow.jar is displayed in the Component Palette of Oracle JDeveloper, as shown in Figure 26-56.
Figure 26-56 Rules Dictionary Task Flow JAR in the Component Palette
This is because you have added the Oracle Rules Dictionary Task Flow shared library when creating the sample application.
Figure 26-57 Dragging and Dropping the Region
The following is a sample of the useRuleDictTaskFlow.jspx
file with the task flow added:
In the preceding sample, you can find code snippets for rendering the following buttons to the page:
To edit the pagedef.xml file:
After you add the task flow to the .jspx
file, you must edit the useRuleDictTaskFlowPageDef.xml
file. The pagedef.xml
file is created when you drop the Rules Dictionary task flow into the .jspx
page.
The following is a sample of the pagedef.xml
file along with all the parameters that must be passed to the rules dictionary task flow:
To refer to the oracle.rules and the oracle.soa.rules_dict_dc.webapp shared libraries:
The next task is to refer to the oracle.rules
and oracle.soa.rules_dict_dc.webapp
shared libraries from the weblogic-application.xml
file.
For more information on referring to the shared libraries, see Section 26.3.2, "How to Create and Run a Sample Application by Using the Rules Dictionary Editor Component."
To run the sample task flow application:
The last task is running the sample application in the embedded Oracle WebLogic Server.
This starts the sample application in a web browser, as shown in Figure 26-58.
Figure 26-58 Running the Sample Rules Dictionary Editor Task Flow Application
When you are ready to deploy your application EAR file to the standalone Oracle WebLogic Server, perform the following:
http://
host
:
port
/console/login/LoginForm.jsp
). oracle.rules
is displayed in the deployments list. oracle.soa.rules_dict_dc.webapp
is displayed in the deployments list. weblogic-application.xml
: weblogic.xml
in the project WAR file: You can localize an application that is created using the Rules Editor component, Rules Dictionary Editor component, or Rules Dictionary Editor task flow.
The steps are:
faces-config.xml
in the project that uses the Rules Editor component. The faces-config.xml
file must have the following code within the <application>
tag to support the available resource bundles: f:view
tag in the application using the component as shown: The locale specified here should be the same as the one passed to the component using the locale
attribute.
This part describes how to use the human workflow service component.
This part contains the following chapters:
This chapter describes for developers the human workflow concepts, features, and architecture. Use cases for human workflow are provided. Instructions for designing your first workflow from start to finish are also provided.
This chapter includes the following sections:
Many end-to-end business processes require human interactions with the process. For example, humans may be needed for approvals, exception management, or performing activities required to advance the business process. The human workflow component provides the following features:
Figure 27-1 provides an overview of human workflow.
In Figure 27-1, the following actions occur:
For information about portlets, see Chapter 36, "Configuring Task List Portlets."
This section introduces you to key human workflow design time and runtime concepts. This section also provides an overview of the three main stages of human workflow design.
Before designing a human task, it is important to understand the design and runtime concepts. A typical task consists of a subject, priority, task participants, task parameters or data, deadlines, notifications or reminders, and task forms. This section provides an overview of key concepts.
Note: Human workflow design-time tasks are performed in a graphical editor known as the Human Task Editor. The tutorial in Chapter 31, "Human Workflow Tutorial" describes how to use this editor. |
Human workflow supports declarative assignment and routing of tasks. In the simplest case, a task is assigned to a single participant (user or group). However, there are many situations in which more detailed task assignment and routing is necessary (for example, when a task must be approved by a management chain or worked and voted on by a set of people in parallel, as shown in Figure 27-2). Human workflow provides declarative, pattern-based support for such scenarios.
A participant is a user or set of users in the assignment and routing policy definition. In Figure 27-2, each block with an icon representing people is a participant.
In simple cases, a participant maps to a user, group, or role. However, as discussed in Section 27.2.1.1, "Task Assignment and Routing," workflow supports declarative patterns for common routing scenarios such as management chain and group vote.The following participant types are available:
This is the simple case where a participant maps to a user, group, or role.
For example, a vacation request is assigned to a manager. The manager must act on the request task three days before the vacation starts. If the manager formally approves or rejects the request, the employee is notified with the decision. If the manager does not act on the task, the request is treated as rejected. Notification actions similar to the formal rejection are taken.
This participant indicates that a set of people must work in parallel. This pattern is commonly used for voting.
For example, multiple users in a hiring situation must vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.
This participant indicates that a set of users must work in sequence. While working in sequence can be specified in the routing policy by using multiple participants in sequence, this pattern is useful when the set of people is dynamic. The most common scenario for this is management chain escalation, which is done by specifying that the list is based on a management chain within the specification of this pattern.
This participant also maps to a single user, group, or role, just as in single approver. However, this pattern indicates that the participant just receives a notification task and the business process does not wait for the participant's response. FYI participants cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
For example, a regional sales office is notified that a candidate for employment has been approved for hire by the regional manager and their candidacy is being passed onto the state wide manager for approval or rejection. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
For more information, see Section 29.4, "Assigning Task Participants."
A task is work that must be done by a user. When you create a task, you assign humans to participate in and act upon the task. Participants can perform actions upon tasks during runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a purchase order, providing feedback on a help desk request, or some other action. There are three types of participants:
You can assign individual users to act upon tasks. For example, you may assign users jlondon
or jstein
to a particular task. Users are defined in an identity store configured with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third party LDAP directory.
You can assign groups to act upon tasks. Groups contain individual users who can claim and act upon a task. For example, users jcooper
and fkafka
may be members of the group LoanAgentGroup
that you assign to act upon the task.
As with users, groups are defined in the identity store of the SOA Infrastructure.
You can assign users who are members of application roles to claim and act upon tasks.
Application roles consist of users or other roles grouped logically for application-level authorizations. These roles are application-specific and are defined in the application Java policy store rather than the identity store. These roles are used by the application directly and are not necessarily known to a Java EE container.
Application roles define policy. Java permissions can be granted to application roles. Therefore, application roles define a set of permissions granted to them directly or indirectly through other roles (if a role is granted to a role). The policy can contain grants of application roles to enterprise groups or users. In the jazn-data.xml
file of the file-based policy store, these roles are defined in <app-role>
elements under <policy-store>
and written to system-jazn-data.xml
at the farm level during deployment. You can also define these roles after deployment using Oracle Enterprise Manager Fusion Middleware Control. You can set a task owner or approver to an application role at design time if the role has been previously deployed.
For more information about Oracle BPM Worklist, see Section 27.2.1.6, "Task Forms."
In processes dealing with significant variance, you cannot always determine all participants. Human workflow enables you to specify that a participant can invite other participants as part of performing the task.
For more information, see Section 29.5.1.1, "Allowing All Participants to Invite Other Participants."
By default, a task goes from starting to final participant according to the flow defined in the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at a particular step within a task's routing flow makes it unnecessary or undesirable to continue presenting the task to the next participants. For example, if an approval is rejected by the first manager, it does not need to be routed to the second manager. Human workflow supports specifying that a task or subtask be completed when a certain outcome occurs.
For more information, see Section 29.5.1.2, "Stopping Routing of a Task to Further Participants."
There are different methods for assigning users, groups, and application roles to tasks.
You can assign users, groups, and application roles statically (or by browsing the identity service). The values can be either of the following:
jstein
, CentralLoanRegion
, or ApproverRole
). jstein
, wfaulk
, cdickens
). You can assign users, groups, and application roles dynamically in the following ways:
For example, suppose that the potential assignees comprise the user jcooper
, the group LoanAgent
, and the application role Developers
. Suppose further that the requested type is user
. Applying this task-assignment pattern selects a single user from the user jcooper
, and from all members of the group LoanAgent
, and from all users with the application role Developers
.
For example, suppose that the potential assignees comprise the user jcooper
, the group LoanAgent
, and the application role Developers
. Suppose further that the requested type is user
. Applying this task-assignment pattern selects the user jcooper
, and one user from the group LoanAgent
, and one user with the application role Developers
.
By using XPath expressions. These expressions enable you to dynamically determine assignment to users not included in the participant type. Here you create a list of potential assignees, one of whom must then claim the task.
For example, you may have a business requirement to create a dynamic list of task approvers specified in a payload variable. The XPath expression can resolve to zero or more XML nodes. Each node value can be either of the following:
,
). For example, if the task has a payload message attribute named po
within which the task approvers are stored, you can use the following XPath expression:
/task:task/task:payload/po:purchaseOrder/po:approvers
ids:getManager('jstein', 'jazn.com')
This returns the manager of jstein
.
ids:getReportees('jstein', 2, 'jazn.com')
This returns all reportees of jstein
up to two levels.
ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')
This returns all direct and indirect users in the group LoanAgentGroup
.
You can use both options simultaneously—for example, you can use an XPath expression to dynamically select a group, and then apply a task-assignment pattern to dynamically select a user from that group.
You can create the list of task participants with complex expressions. The result of using business rules is the same as using XPath expressions.
A task has multiple stakeholders. Participants are the users defined in the assignment and routing section of the task definition. These users are the primary stakeholders that perform actions on the task.
In addition to the participants specified in the assignment and routing policy, human workflow supports additional stakeholders:
This participant has business administration privileges on the task. This participant can be specified as part of the task definition or from the invoking process (and for a particular instance). The task owner can act upon tasks they own and also on behalf of any other participant. The task owner can change both the outcome of the task and the assignments.
For more information, see Section 29.2.7, "How to Specify a Task Owner" to specify an owner in the Human Task Editor or Section 28.4.4.2, "Specifying a Task Owner" to specify an owner in the Advanced tab of the Human Task dialog.
The person who initiates the process (for example, the initiator files an expense report for approval). This person can review the status of the task using initiated task filters. Also, a useful concept is for including the initiator as a potential candidate for request-for-information from other participants.
For more information, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."
This participant can review the status of the task and add comments and attachments.
This participant can view all tasks and take certain actions such as reassigning a test, suspending a task to handle errors, and so on. The task admin cannot change the outcome of a task.
While the task admin cannot perform the types of actions that a task participant can, such as approve, reject, and so on, this participant type is the most powerful because it can perform actions such as reassign, withdraw, and so on.
When an error occurs, the task is assigned to this participant (for example, the task is assigned to a nonexistent user). The error assignee can perform task recovery actions from Oracle BPM Worklist, the task form in which you perform task actions during runtime.
For more information, see Section 29.5.4, "How to Configure the Error Assignee."
Human workflow supports the specification of deadlines associated with a task. You can associate the following actions with deadlines:
The task can be reminded multiple times based on the time after the assignment or the time before the expiration.
The task is escalated up the management hierarchy.
The task has expired.
The task is automatically renewed.
For more information, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can configure your human task to use notifications. Notifications enable you to alert interested users to changes in the state of a task during the task lifecycle. For example, a notification is sent to an assignee when a task has been approved or withdrawn.
You can specify for notifications to be sent to different types of participants for different actions. For example, you can specify the following:
You can specify the contents of the notification message and the notification channel to use for sending the message.
You can configure email notification messages to be actionable, meaning that a task assignee can act upon a task from within the email.
For example, you may send the message shown in Example 27-1 by email when a task assignee requests additional information before they can act upon a task:
Example 27-1 Email Message
During runtime, you can mark a message sender's address as spam and also display a list of bad or invalid addresses. These addresses are automatically removed from the bad address list.
For more information about notifications, see the following:
Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all worklist tasks that are assigned to task assignees in the task form. When you drill down into a specific task, the task form displays the contents of the task to the user's worklist. For example, an expense approval task may show a form with line items for various expenses, and a help desk task form may show details such as severity, problem location, and so on.
The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task form that depicts the human task in the SOA composite application.
ADF-based task forms can be automatically generated. Advanced users can design their own task forms by using ADF data controls to lay out the content on the page and connect to the workflow service engine at execution time to retrieve task content and act on tasks.
You can create task forms in JSF, .NET, or any other client technologies using the APIs.
Integration with Microsoft Excel for initiating and acting on tasks is also provided.
For more information, see the following:
This section describes advanced human workflow concepts.
You can use Oracle Business Rules to dynamically alter the routing flow. If used, each time a participant completes their step, the associated rules are invoked and the routing flow can be overridden from the rules.
For more information, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
You can use Oracle Business Rules to dynamically build a list of users, groups, and roles to associate with a participant.
For more information, see Section 29.4, "Assigning Task Participants."
A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel.
For more information, see Section 29.4, "Assigning Task Participants."
You can specify access rules that determine the parts of a task that assignees can view and update. For example, you can configure the task payload data to be read by assignees. This action enables only assignees (and nobody else) to have read permissions. No one, including assignees, has write permissions.
For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content."
While human workflow supports detailed behavior that can be declaratively specified, in some advanced situations, more extensible behavior may be required. Task callbacks enable such extensibility; these callbacks can either be handled in the invoking BPEL process or a Java class.
For more information, see Section 29.11.1, "How to Specify Callback Classes on Task Status."
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:
Analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired.
Analysis of tasks assigned to a user, reportees, or their groups, based on priority.
Analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.
Analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.
The time an assignee takes to perform a task.
You can view an audit trail of actions performed by the participants in the task and a snapshot of the task payload and attachments at various points in the workflow. The short history for a task lists all versions created by the following tasks:
For more information, see Chapter 32, "Using Oracle BPM Worklist."
Human workflow modeling consists of three stages of modeling, as described in Table 27-1.
Table 27-1 Stages of Human Workflow Modeling
Step | Description | For More Information... |
---|---|---|
1 | You create and define contents of the human task in the Human Task Editor, including defining a participant type, routing policy, escalation and expiration policy, notification, and so on. | Section 28.1.1, "Introduction to Creating a Human Task Definition." |
2 | You associate the human task definition with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow. | Section 28.1.2, "Introduction to Associating the Human Task Definition with a BPEL Process." |
3 | You create a task form. This form displays the task details on which you act at runtime in Oracle BPM Worklist. | Section 28.1.3, "Introduction to Generating the Task Form." |
This section provides an introduction to use cases for human workflow. After that, a tutorial guides you through the design of a human task from start to finish.
The following sections describe multiple use cases for workflow services.
A vacation request process may start with getting the vacation details from a user and then routing the request to their manager for approval. User details and the organizational hierarchy can be looked up from a user directory or identity store. This scenario is shown in Figure 27-3.
Figure 27-3 Assigning Tasks to a User or Role from a Directory
A task can be routed through multiple users with a group vote, management chain, or sequential list of approvers participant type. For example, consider a loan request that is part of the loan approval flow. The loan request may first be assigned to a loan agent role. After a specific loan agent acquires and accepts the loan, the loan may be routed further through multiple levels of management if the loan amount is greater that $100,000. This scenario is shown in Figure 27-4.
Figure 27-4 Flow Patterns and Routing Policies
You can use these types as building blocks to create complex workflows.
A high-priority task can be assigned to a certain user or role based on the task type through use of custom escalation functions. However, if the user does not act on it in a certain time, the task may expire and in turn be escalated to the manager for further action. As part of the escalation, you may also notify the users by email, telephone voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to another to balance the load between various task assignees. All tasks defined in BPEL have an associated expiration date. Additionally, you may specify escalation or renewal policies, as shown in Figure 27-5. For example, consider a support call, which is part of a help desk service request process. A high-priority task may be assigned to a certain user, and if the user does not respond in two days, the task is routed to the manager for further action.
A user may decide to have another user perform tasks on their behalf. Tasks can be explicitly delegated from the Oracle BPM Worklist or can be automatically delegated. For example, a manager sets up a vacation rule saying that all their high priority tasks are automatically routed to one of their direct reports while the manager is on vacation. In some cases, tasks can be routed to different individuals based on the content of the task. Another example of automatic routing is to allocate tasks among multiple individuals belonging to a group. For example, a help desk supervisor decides to allocate all tasks for the western region based on a round robin basis or assign tasks to the individual with the lowest number of outstanding tasks (the least busy).
An employee named James in the human resources department requests new hardware that costs $5000. The company may have a policy that all hardware expenses greater than $3000 must go through manager and vice president approval, and then review by the director of IT. In this scenario, the workflow can be configured to automatically determine the manager of James, the vice president of the human resources department, and the director of IT. The purchase order is routed through these three individuals for approval before the hardware is purchased.
This section provides an overview of human workflow architecture. The following topics are discussed:
Starting with release 11g, all human task metadata is stored and managed in the Metadata Service (MDS) repository. The workflow service consists of many services that handle various aspects of human interaction with a business process.
Figure 27-6 shows the following workflow service components:
The task service provides task state management and persistence of tasks. In addition to these services, the task service exposes operations to update a task, complete a task, escalate and reassign tasks, and so on. The task service is used by Oracle BPM Worklist to retrieve tasks assigned to users. This service also determines if notifications are to be sent to users and groups when the state of the task changes. The task service consists of the following services.
The task routing service offers services to route, escalate, and reassign the task. The service makes these decisions by interpreting a declarative specification in the form of the routing slip.
The task query service queries tasks for a user based on a variety of search criterion such as keyword, category, status, business process, attribute values, history information of a task, and so on.
The task metadata service exposes operations to retrieve metadata information related to a task.
The identity service is a thin web service layer on top of the Oracle Application Server 11g security infrastructure or any custom user repository. It enables authentication and authorization of users and the lookup of user properties, roles, group memberships, and privileges.
The notification service delivers notifications with the specified content to the specified user through any of the following channels: email, telephone voice message, IM, and SMS. See Section 34.2, "Notifications from Human Workflow" for more information.
The user metadata service manages metadata related to workflow users, such as user work queues, preferences, vacations, and delegation rules.
The runtime config service provides methods for managing metadata used in the task service runtime environment. It principally supports management of task payload mapped attribute mappings.
The evidence service supports storage and nonrepudiation of digitally-signed workflow tasks.
Figure 27-7 shows the interactions between the services and the business process.
Figure 27-7 Workflow Services and Business Process Interactions
There are two ways in which to use a human task:
In most cases, you associate your human task with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow.
You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.
During runtime, the business logic and processing rules of the human task service component are executed by the human workflow service engine. Each service component (BPEL process, human workflow, decision service (business rules), and Oracle Mediator) has its own service engine container for performing these tasks. All human task service components, regardless of the SOA composite application of which they are a part, are executed in this single human task service engine.
For more information about configuring, monitoring, and managing the human workflow service engine, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to create a human task, save it and associate it with a BPEL process. It also describes how to delete a human task and remove its association with a BPEL process.
This chapter includes the following sections:
To use the Human Task Editor, you must understand human task design concepts, including the following:
For information about human task concepts, see Chapter 27, "Getting Started with Human Workflow."
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
Oracle SOA Suite provides a graphical tool, known as the Human Task Editor, for modeling your task metadata. The modeling process consists of the following:
This section provides a brief overview of these modeling tasks and provides references to specific modeling instructions.
For more information about using the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."
For information about available samples, see Chapter 31, "Human Workflow Tutorial"
You define the metadata for the human task in either of two ways:
For more information, see Section 28.2, "Creating Human Tasks."
The Human Task Editor enables you to specify human task metadata such as task outcome, payload structure, assignment and routing policy, expiration and escalation policy, notification settings. This information is saved to a metadata task configuration file with a .task
extension. In addition, some workflow patterns may also need to use the Oracle Business Rules Designer to define task routing policies or the list of approvers.
After you create a Human Task you can configure its metadata using the Human Task Editor. For a detailed description of the metadata and configuration procedures, see Chapter 29, "Configuring Human Tasks".
You can associate the .task
file that consists of the human task settings with a BPEL process in Oracle BPEL Designer. Association is made with a human task that you drag into your BPEL process flow for configuring, as shown in Figure 28-1.
Figure 28-1 Dragging a Human Task into a BPEL Process
You also specify the task definition, task initiator, task priority, and task parameter mappings that carry the input data to a BPEL variable. You can also define advanced features, such as the scope and global task variables names (instead of accepting the default names), task owner, identification key, BPEL callback customizations, and whether to extend the human task to include other workflow tasks.
When association is complete, a task service partner link is created. The task service exposes the operations required to act on the task.
You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.
For more information, see Section 28.4, "Associating Human Tasks with BPEL Processes."
You can generate a task form using the Oracle Application Development Framework (ADF). This form is used for displaying the task details on which you act at runtime in Oracle BPM Worklist.
For information on generating the task form, see Chapter 30, "Designing Task Forms for Human Tasks."
The Human Task Editor enables you to define the metadata for the task. The editor enables you to specify human task settings, such as task outcome, payload structure, assignment and routing policy, expiration and escalation policy, notification settings, and so on.
You create a human task service component in the SOA Composite Editor or in Oracle BPEL Designer. After creation, you design the component in the Human Task Editor. The method by which you create the human task service component determines whether the component can be associated later with a BPEL process service component or is a standalone component in the SOA Composite Editor.
You can create a human task using the SOA Composite Editor. Generally you use this method to create human tasks to use as standalone components.
To create a human task service component in the SOA Composite Editor:
The list refreshes to display service components and service adapters.
The Create Human Task dialog appears.
The name you enter becomes the .task
file name.
Figure 28-3 Standalone Human Task Component
This web service provides external customers with an entry point into the human task service component of the SOA composite application.
For more information about creating a human task service component in the SOA Composite Editor, see Chapter 2, "Developing SOA Composite Applications with Oracle SOA Suite."
You can create a human task using Oracle BPEL Designer. Generally you use this method when you want to create a human task to use it from a BPEL process.
To create a human task in Oracle BPEL Designer:
The Create Human Task dialog appears.
The name you enter becomes the .task
file name.
The Human Task Editor appears.
Note: You can also create a human task that you later associate with a BPEL process by selecting New from the File main menu, then selecting SOA Tier > Service Components > Human Task. |
When a human task is created, the following folders and files appear:
.task
extension. This file appears in the Application Navigator under SOA_Project_Name > SOA Content. You can re-edit the settings in this file by double-clicking the following: .task
file in the Application Navigator in either the SOA Composite Editor or Oracle BPEL Designer This reopens the .task
file in the Human Task Editor.
Figure 28-4 shows these folders and files.
For information about available samples, see Chapter 31, "Human Workflow Tutorial".
You can save your human task changes at any time. The task can be re-edited at a later time by double-clicking the metadata task configuration .task
file in the Application Navigator.
To exit the Human Task Editor and save your changes:
.task
metadata task configuration file. To associate the human task service component created in the SOA Composite Editor with a BPEL process, follow these instructions. When association is complete, a task service partner link is created in Oracle BPEL Designer. The task service exposes the operations required to act on a task.
For more information about creating a human task, see Section 28.2, "Creating Human Tasks."
There are two ways to associate a human task service component with a BPEL process:
To associate a human task with a BPEL process:
.task
file of the human task service component. The Human Task dialog appears.
Figure 28-6 Task Definition List Selection
The .task
file of the human task service component is associated with the BPEL process.
Note: After you complete association of your human task activity with a BPEL process and close the Create Human Task dialog, you can always re-access this dialog by double-clicking the human task activity in Oracle BPEL Designer. |
If you delete the wire between a BPEL process and the human task service component that it invokes, the invoke activity of the human workflow is deleted from the BPEL process. However, the taskSwitch switch activity for taking action (contains the approve, reject, and otherwise task outcomes) is still there. This is by design for the following reasons:
If you then drag and drop a human task service component into the BPEL process to use the same taskSwitch switch activity, a new taskSwitch switch activity is created. You then have two switch activities in the BPEL process with the same name. To determine which one to delete, you must go into the approve, reject, and otherwise task outcomes of the taskSwitch switch activities to determine which is the older, modified switch and which is the newer switch.
Figure 28-7 shows the General tab that displays after you select the human task.
Figure 28-7 Human Task — General Tab (After Selection)
The General tab of the Human Task activity enables you to perform the tasks shown in Table 28-1:
Table 28-1 Human Task - General Tab
For this Field... | See... |
---|---|
Task Title | Section 28.4.3.1, "Specifying the Task Title" |
Initiator Priority | Section 28.4.3.2, "Specifying the Task Initiator and Task Priority" |
Task Parameters | Section 28.4.3.3, "Specifying Task Parameters" |
The title displays the task in Oracle BPM Worklist during runtime. This is a mandatory field. Your entry in this field overrides the task title you entered in the Task Title field of the General section of the Human Task Editor described in Section 29.2.2, "How to Specify a Task Title."
To specify the task title:
You can also combine static text and dynamic expressions in the same title. To include dynamic text, place your cursor at the appropriate point in the text and click the icon on the right to invoke the Expression Builder dialog.
You can specify a task initiator. The initiator is the user who initiates a task. The initiator can view their created tasks from Oracle BPM Worklist and perform specific tasks, such as withdrawing or suspending a task.
To specify the task initiator and task priority:
jcooper
) or click the icon to display the Expression Builder dialog for dynamically specifying an initiator. This field is optional. If not specified, the initiator defaults to the task owner specified on the Advanced tab of the Human Task dialog. The initiator defaults to bpeladmin
if a task owner is also not specified. For more information about specifying the priority in the Human Task Editor, see Section 29.2.2, "How to Specify a Task Title."
The task parameter table shown in Figure 28-8 displays a list of task parameters after you complete the Task Title and Initiator fields.
To specify task parameters:
The Task Parameters dialog appears.
The Human Task dialog shown in Figure 28-10 appears as follows.
Figure 28-11 shows the Advanced tab.
Figure 28-11 Create Human Task — Advanced Tab
The Advanced tab of the Human Task activity enables you to perform the tasks shown in Table 28-2:
Table 28-2 Human Task - Advanced Tab
For this Field... | See... |
---|---|
Scope Name Global Task Variable Name | Section 28.4.4.1, "Specifying a Scope Name and a Global Task Variable Name" |
Owner | Section 28.4.4.2, "Specifying a Task Owner" |
Identification Key | Section 28.4.4.3, "Specifying an Identification Key" |
Identity Context | Section 28.4.4.4, "Specifying an Identity Context" |
Application Context | Section 28.4.4.5, "Specifying an Application Context" |
Include task history from | Section 28.4.4.6, "Including the Task History of Other Human Tasks" |
You are automatically provided with default scope and global task variable names during human task activity creation. However, you can specify custom names that are used to name the scope and global variable during human task activity creation.
To specify a scope name and a global task variable name:
This BPEL scope encapsulates the entire interaction with the workflow service and BPEL variable manipulation.
This is the name of the BPEL task variable used for the workflow interaction.
The task owner can view tasks belonging to business processes they own and perform operations on behalf of any of the task assignees. Additionally, the owner can also reassign, withdraw, or escalate tasks.
If you do not specify a task initiator on the General tab of the Human Task dialog, it defaults to the owner specified here.
To specify a task owner:
The identification key can be used as a user-defined ID for the task. For example, if the task is meant for approving a purchase order, the purchase order ID can be set as the identification key of the task. Tasks can be searched from Oracle BPM Worklist using the identification key. This attribute has no default value.
To specify an identification key:
The identity realm name is used for the task when multiple realms are configured. You cannot have assignees from multiple realms working on the same task. This field is required if you are using multiple realms.
To specify an identity context
The stripe name of the application contains the application roles used in the task.
To specify an application context
This feature enables one human task to be continued with another human task. There are many scenarios in which you have related tasks in a single BPEL process. For example, assume you have the following:
The participant of the second task may want to see the approval history, comments, and attachments created when the manager approved the purchase. You can link these different tasks in the BPEL process by chaining the second task to the first task with this option.
For chained tasks, the title of the new task cannot be set from the task metadata (.task
file). For example, assume existing Task A is chained with new task Task B, and Task B has a new title set in the Human Task Editor; this title is not recognized. Therefore, if the chained task requires a different title, it must be set in the task instance before calling the task service reinitiate
operation. If a BPEL process is initiating the tasks, set the task title before the workflow service APIs are called. If a Java program is calling the workflow APIs programatically, then it must set the title.
To include the task history of other tasks:
When a human task is continued with another human task, the following information is carried over to the new workflow:
In the Include task history from list, all existing workflows are listed.
For example, a hiring process is used to hire new employees. Each interviewer votes to hire or not hire a candidate. If 75% of the votes are to hire, then the candidate is hired; otherwise, the candidate is rejected. If the candidate is to be hired, an entry in the HR database is created and the human resources contact completes the hiring process. The HR contact also must see the interviewers and the comments they made about the candidate. This process can be modeled using a parallel participant type for the hiring. If the candidate is hired, a database adapter is used to create the entry in the HR database. After this action, a simple workflow can include the task history from the parallel participant type so that the hiring request, history, and interviewer comments are carried over. This simple workflow is assigned to the HR contact.
This option is applicable when the payload attributes in the XML files of the human tasks involved in this extended workflow are different. For example, the payload attribute for the human task whose history you are including has three extra attributes than the payload of the other human task.
This option is applicable when the payload attributes in the XML files of the human tasks involved in this extended workflow are the same.
When you have completed modeling the human task activity, the human task is generated in the designer.
Figure 28-12 shows how a workflow interaction is modeled. Figure 28-12 also illustrates the interaction when no BPEL callbacks are modeled. In this case, after a task is complete, the BPEL process is called back with the completed task. No intermediary events are propagated to the BPEL process instance. It is recommended that any user customizations be done in the first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.
Figure 28-12 Workflow Interaction Modeling
Click the Expand icon next to the human task activity in Oracle BPEL Designer to display its contents, as shown in Figure 28-13.
Figure 28-13 Expanding the Human Task Activity
If intermediary events must be propagated to the BPEL process instance, select the Allow task and routing customization in BPEL callbacks checkbox in the Events section of the Human Task Editor. When this option is selected, the workflow service invokes callbacks in the BPEL instance during each update of the task. The callbacks are listed in the TaskService.wsdl
file and described as follows:
onTaskCompleted
This callback is invoked when the task is completed, expired, withdrawn, or errored.
onTaskAssigned
This callback is invoked when the task is assigned to a new set of assignees due to the following actions:
onTaskUpdated
This callback is invoked for any other update to the task that does not fall in the onTaskComplete
or onTaskAssigned
callback. This includes updates on tasks due to a request for information, a submittal of information, an escalation, a reassign, and so on.
onSubTaskUpdated
This callback is invoked for any update to a subtask.
Figure 28-14 shows how a workflow interaction with callbacks is modeled. After this task is initiated, a while loop is used to receive messages until the task is complete. The while loop contains a pick with four onMessage branches — one for each of the above-mentioned callback operations. The workflow interaction works fine even if nothing is changed in the onMessage branches, meaning that customizations in the onMessage branches are not required.
In this scenario, a workflow context is captured in the BPEL instance. This context can be used for all interaction with the workflow services. For example, to reassign a task if it is assigned to a group, then you need the workflow context for the reassignTask
operation on the task service.
It is recommended that any user customizations be performed in the first assign, AssignTaskAttributes, and that AssignSystemTaskAttributes not be changed.
Figure 28-14 Workflow Interaction Modeling (with Callbacks)
If you must change a generated human task activity, note the following details:
If the task outcomes in the Human Task Editor are modified, you must edit the human task activity and click OK. The switch case is then updated based on the changes to the outcomes.
Deleting a partner link that was generated by a human task (for example, human_task_name.TaskService in the Partner Links swimlane) causes the human task to become unusable. If you delete the partner link, you must delete the human task activity in Oracle BPEL Designer and start over again.
In many cases, the outcome of a task determines the flow of the business process. To facilitate modeling of the business logic, when a user task is generated, a BPEL switch activity is also generated with prebuilt BPEL case activities. By default, one case branch is created for each outcome selected during creation of the task. An otherwise branch is also generated in the switch to represent cases in which the task is withdrawn, expired, or in error.
The task carries a payload in it. If the payload is set from a business process variable, then an assign activity with the name copyPayloadFromTask
is created in each of the case and otherwise branches to copy the payload from the task back to its source. If the payload is expressed as other XPath expressions (such as ora:getNodes(...)
), then this assign is not created because of the lack of a process variable to copy the payload back. If the payload does not require modification, then this assign can be removed.
By default, the switch activity contains case statements for the outcomes only. The other task conclusions are captured in the otherwise branch. These conclusions are as follows:
If business logic must be added for each of these other conclusions, then case statements can be added for each of the preceding conditions. The case statements can be created as shown in the following BPEL segment. The XPath conditions for the other conclusions in the case activities for each of the preceding cases are shown in bold in Example 28-1.
Example 28-1 XPath Conditions for Other Conclusions in the Case Activities
To enable text files to be attached to a human task, you must set a flag that describes whether the content of text attachments is encoded. This flag is named isContentEncoded
.You can set this flag by customizing the BPEL code in any Human Workflow sample that includes a human task. To do this customization, in the .bpel
file in the sample, enter the following copy rule in the BPEL assign activity code:
Once you have entered this copy rule, you can either save the file and continue designing the BPEL process or, if you have finished designing, you can deploy the process.
This chapter describes how to configure the different properties of a human task. It covers basic properties, task payload data structure, participant assignment, routing policies, localization, escalation, notification preferences, access policies and task actions, restrictions and Java and business event callbacks.
This chapter includes the following sections:
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This section describes how to access the sections of the Human Task Editor. Brief descriptions are provided of each section and references are provided to more specific information.
To access the sections of the Human Task Editor:
The Human Task Editor consists of the main sections shown on the left side in Figure 29-1. These sections enable you to design the metadata of a human task.
Instructions for using these main sections of the Human Task Editor to create a workflow task are listed in Table 29-1.
Table 29-1 Human Task Editor
Section | Description | See... |
---|---|---|
General (title, description, outcomes, category, priority, owner, and application context) | Enables you to define task details such as title, task outcomes, owner, and other attributes. | |
Data | Enables you to define the structure (message elements) of the task payload (the data in the task). | Section 29.3, "Specifying the Task Payload Data Structure" |
Assignment | Enables you to assign participants to the task and create a policy for routing the task through the workflow. | Section 29.4, "Assigning Task Participants" Section 29.5, "Selecting a Routing Policy" |
Presentation | Enables you to specify the following settings:
| Section 29.6, "Specifying Multilingual Settings and Style Sheets" |
Deadlines | Enables you to specify the expiration duration of a task, custom escalation Java classes, and due dates. | Section 29.7, "Escalating, Renewing, or Ending the Task" |
Notification | Enables you to create and send notifications when a user is assigned a task or informed that the status of the task has changed. | Section 29.8, "Specifying Participant Notification Preferences" |
Access | Enables you to specify access rules for task content and task actions, workflow signature policies, and assignment restrictions. | Section 29.9, "Specifying Access Policies and Task Actions on Task Content" Section 29.9.2, "How to Specify a Workflow Digital Signature Policy" Section 29.10, "Specifying Restrictions on Task Assignments" |
Events | Enables you to specify callback classes and task and routing assignments in BPEL callbacks. | Section 29.11, "Specifying Java or Business Event Callbacks" |
Documents | Section 29.12, "Storing Documents in Oracle Enterprise Content Management" |
This section contains these topics:
To specify the title, description, outcome, priority, category, owner, and application context:
Figure 29-2 shows the General section of the Human Task Editor.
This section enables you to specify details such as the task title, description, task outcomes, task category, task priority, and task owner.
Figure 29-2 Human Task Editor — General Section
Instructions for configuring the following subsections of the General section are listed in Table 29-2:
Table 29-2 Human Task Editor — General Section
For This Subsection... | See... |
---|---|
Title | Section 29.2.2, "How to Specify a Task Title" |
Description | Section 29.2.3, "How to Specify a Task Description" |
Outcomes | Section 29.2.4, "How to Specify a Task Outcome" |
Priority | Section 29.2.5, "How to Specify a Task Priority" |
Category | Section 29.2.6, "How to Specify a Task Category" |
Owner | Section 29.2.7, "How to Specify a Task Owner" |
Application Context | Section 29.2.8, "How To Specify an Application Context" |
To specify a task title:
Enter an optional task title. The title defaults to this value only if the initiated task does not have a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle BPM Worklist. You can also search on titles in Oracle BPM Worklist.
Vacation Request Approved
). Approval Required for Order Id:
), place the cursor one blank space to the right of the text and click the icon to the right of this field. This displays the Expression Builder for dynamically creating the remaining portion of the title. After completing the dynamic portion of the name, click OK to return to this field. The complete name is displayed. For example: The expression is resolved during runtime with the exact order ID value from the task payload.
If you enter a title in the Task Title field of the General tab of the Create Human Task dialog described in Section 28.4.3.1, "Specifying the Task Title," the title you enter here is overridden.
You can optionally specify a description of the task in the Description field of the General section. The description enables you to provide additional details about a task. For example, if the task title is Computer Upgrade Request
, you can provide additional details in this field, such as the model of the computer, amount of CPU, amount of RAM, and so on. The description does not display in Oracle BPM Worklist.
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the outcomes you specify here as the possible task actions to perform during runtime. Figure 29-3 provides details.
Figure 29-3 Outcomes in Oracle BPM Worklist
You can specify the following types of task outcomes:
The task outcomes can also have runtime display values that are different from the actual outcome value specified here. This permits outcomes to be displayed in a different language in Oracle BPM Worklist. For more information about internationalization, see Section 29.6.2, "How to Specify Multilingual Settings."
To specify a task outcome:
The Outcomes dialog shown in Figure 29-4 displays the possible outcomes for tasks. APPROVE and REJECT are selected by default.
Table 29-3 Outcomes Dialog
Field | Description |
---|---|
Select one or more outcomes | Select additional task outcomes or deselect the default outcomes. |
Add icon | Click to invoke a dialog for adding custom outcomes. In the Name field of the dialog, enter a custom name, and click OK. Your outcome displays in the Outcomes field. Notes: Be aware of the following naming restrictions:
|
Outcomes Requiring Comment | Click to select an outcome to which an assignee adds comments in Oracle BPM Worklist at runtime. The assignee must add the comments and perform the action without saving the task at runtime. |
Default Outcome | Select the default outcome for this outcome. |
The seeded and custom outcomes selected here display for selection in the Majority Voted Outcome section of the parallel participant type.
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By default, the priority of a task is 3. This priority value is overridden by any priority value you select in the General tab of the Create Human Task dialog. You can filter tasks based on priority and create views on priorities in Oracle BPM Worklist.
To specify a task priority:
For more information about specifying a priority value in the Create Human Task dialog, see Section 28.4.3.2, "Specifying the Task Initiator and Task Priority."
You can optionally specify a task category in the Category field of the General section. This categorizes tasks created in a system. For example, in a help desk environment, you may categorize customer requests as either software-related or hardware-related. The category displays in Oracle BPM Worklist. You can filter tasks based on category and create views on categories in Oracle BPM Worklist.
To specify a task category:
The task owner can view the tasks belonging to business processes they own and perform operations on behalf of any of the assigned task participant types. Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner can be considered the business administrator for a task. The task owner can also be specified in the Advanced tab of the Create Human Task dialog described in Section 28.4.4.2, "Specifying a Task Owner." The task owner specified in the Advanced tab overrides any task owner you enter here.
For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."
To specify a task owner:
For example:
po
within which the owner
is stored, you can specify an XPath expression such as: /task:task/task:payload/po:purchaseOrder/po:owner
ids:getManager('jstein', 'jazn.com')
The manager of jstein
is the task owner.
For more information about users, groups, and application roles, see Section 27.2.1.1.3, "Participant Assignment."
Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use with Oracle SOA Suite.
To specify a task owner statically through the user directory or a list of application roles:
Note: By default, group names in human tasks are case sensitive. Therefore, if you select Group and enter a name in upper case text (for example, |
Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles
If you selected User or Group, the Identity Lookup dialog shown in Figure 29-6 appears.
To select a user or group, you must first create an application server connection by clicking the Add icon. Note the following restrictions:
myhost.us.oracle.com
). If you select a connection configured only with the hostname (for example, myhost
), the Realm list may not display the available realms. If the existing connection does not include the domain name, perform the following steps: jcooper, j*, *,
and so on. Clicking the Lookup icon to the right of the User Name field fetches all the users that match the search criteria. Figure 29-7 provides details. One or more users or groups can be highlighted and selected by clicking Select. Figure 29-7 Identity Lookup with Realm Selected
Figure 29-8 User Hierarchy in Identity Lookup Dialog
Your selection displays in the Owner field.
If you selected Application Role, the Select an Application Role dialog appears.
Task owners can be selected dynamically in the Expression Builder dialog.
To specify a task owner dynamically:
Figure 29-11 Specify a Task Owner Dynamically
This displays the Expression Builder dialog shown in Figure 29-12:
Your selection displays in the Owner field.
For more information, see the following:
You can specify the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates. If you do not explicitly create a task, but end up having one, you can set up the context.
Figure 29-13 shows the Data section of the Human Task Editor.
This section enables you to specify the structure (message elements) of the task payload (the data in the task) defined in the XSD file. You create parameters to represent the elements in the XSD file. This makes the payload data available to the workflow task. For example:
Task payload data consists of one or more elements or types. Based on your selections, an XML schema definition is created for the task payload.
Figure 29-13 Human Task Editor — Parameters Section
To specify the task payload data structure:
The Add Task Parameter dialog is displayed, as shown in Figure 29-14.
Enter the details described in Table 29-5:
Table 29-5 Add Task Parameter Dialog Fields and Values
Field | Description |
---|---|
Parameter Type | Select Type or Element and click the Search icon to display the Type Chooser dialog for selecting the task parameter. |
Parameter Name | Accept the default name or enter a custom name. This field only displays if Type is the selected parameter type. |
Editable via worklist | Select this checkbox to enable users to edit this part of the task payload in Oracle BPM Worklist. For example, for a loan approval task, the APR attribute may need to be updated by the user reviewing the task, but the SSN field may not be editable. You can also specify access rules that determine the parts of a task that participants can view and update. For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content." |
Note: You can only define payload mapped attributes (previously known as flex field mappings) in Oracle BPM Worklist for payload parameters that are simple XML types (string, integer, and so on) or complex types (for example, a purchase order, and so on). If you must search tasks using keywords or define views or delegation rules based on task content, then you must use payload parameters based on simple XML types. These simple types can be mapped to flex columns in Oracle BPM Worklist. |
Your selection displays in the Data section.
Figure 29-16 shows the Assignment section of the Human Task Editor. This section enables you to select a participant type that meets your business requirements. While configuring the participant type, you build lists of users, groups, and application roles to act upon tasks.
Figure 29-16 Human Task Editor — Assignment Section
You can easily mix and match participant types to create simple or complex workflow routing policies. You can also extend the functionality of a previously configured human task to model more complex workflows.
A participant type is grouped in a block under a stage (for example, named Stage1 in Figure 29-16). A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel. The up and down keys enable you to rearrange the order of your participant type blocks.
For example:
Each of the participant types has an associated editor that you use for configuration tasks. The sequence in which the assignees are added indicates the execution sequence.
To specify a different stage name or have a business requirement that requires you to create additional stages, perform the following steps. Creating additional stages is an advanced requirement that may not be necessary for your environment.
This section contains these topics:
For more information about participant types, see Section 27.2.1.1, "Task Assignment and Routing."
To specify a stage name and add parallel and sequential blocks:
The stage is named Stage1 by default. If you want, you can change the name.
The Edit dialog shown in Figure 29-17 appears.
A second stage is added in parallel to the first stage, as shown in Figure 29-19.
A sequential stage is added below the selected block.
You create participant types within these blocks.
To assign task participants:
or
The Edit Participant Type dialog appears. This dialog enables you to select a specific participant type.
Table 29-6 Participant Types
Participant Type | For a Description of this Participant Type, See... | For Instructions on Configuring this Participant Type, See... |
---|---|---|
| Section 27.2.1.1.2, "Participant Type" | Section 29.4.3, "How to Configure the Single Participant Type" Section 29.4.4, "How to Configure the Parallel Participant Type" Section 29.4.5, "How to Configure the Serial Participant Type" Section 29.4.6, "How to Configure the FYI Participant Type" |
Figure 29-22 shows the Edit Participant Type dialog for the single participant type. Figure 29-23 shows the expanded Advanced section.
Figure 29-22 Edit Participant Type — Single Type
Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)
To be dynamically assigned to a task, a single participant can be selected from a group, an application role, or a participant list.
To configure the single participant type:
Approval Manager
, Primary Reviewers
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the single participant type are listed in Table 29-7:
Table 29-7 Edit Participant Type — Single Type
For This Subsection... | See... |
---|---|
Participant List | Section 29.4.3.1, "Creating a Single Task Participant List" |
Limit allocated duration to (under the Advanced section) | Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task" |
Allow this participant to invite other participants (under the Advanced section) | Section 29.4.3.3, "Inviting Additional Participants to a Task" |
Specify skip rule (under the Advanced section) | Section 29.4.3.4, "Bypassing a Task Participant" |
Users assigned to a participant list can act upon tasks. In a single-task participant list, only one user is required to act on the task. You can specify either a single user or a list of users, groups, or application roles for this pattern. If a list is specified, then all users on the list are assigned the task. You can specify either that one of them must manually claim and act upon the task, or that one user from the list is automatically selected by an assignment pattern. When one user acts on the task, the task is withdrawn from the task list of other assignees.
You can create several types of lists for the single user participant, and for the parallel, serial, and FYI user participants, for example:
These lists enable you to statically or dynamically select users, groups, or application roles as task assignees.
Management chains are typically used for serial approvals through multiple users in a management chain hierarchy. Therefore, this list is most likely useful with the serial participant type. This is typically the case if you want all users in the hierarchy to act upon the task. Management chains can also be used with the single participant type. In this case, however, all users in the hierarchy get the task assigned at the same time. As soon as one user acts on the task, it is withdrawn from the other users.
For example, a purchase order is assigned to a manager. If the manager approves the order, it is assigned to their manager. If that manager approves it, it is assigned to their manager, and so on until three managers approve the order. If any managers reject the request or the request expires, the order is rejected if you specify an abrupt termination condition. Otherwise, the task flow continues to be routed.
Business rules enable you to create the list of task participants with complex expressions. For example, you create a business rule in which a purchase order request below $5000 is sent to a manager for approval. However, if the purchase order request exceeds $5000, the request is sent to the manager of the manager for approval. Two key features of business rules are facts and action types, which are described in Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
When you select a participant type, a dialog box enables you to choose an option for building your list of task participant assignees (users, groups, or application roles), as shown in Figure 29-24. The three selections described above are available: Names and expressions, Management Chain, and Rule-based.
Figure 29-24 Build a List of Participants
After selecting an option, you dynamically assign task participant assignees (users, groups, or application roles) and a data type, as shown in Figure 29-25.
Figure 29-25 Assignment of Task Assignees
This section describes how to create these lists of participants.
Select a method for statically or dynamically assigning a user, group, or application role as a task participant.
For conceptual information, see the following:
To create participant lists consisting of value-based names and expressions:
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
Figure 29-26 Selecting and Configuring an Assignment Pattern
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.
The dialog refreshes to display the fields shown in Figure 29-27.
Figure 29-27 Value-Based Names and Expressions
Click the Add icon and select a user, group, or application role as a task participant.
The Identification Type column of the Participant Names table displays your selection of user, group, or application role.
To change your selection in the Identification Type column, click it to invoke a dropdown list.
If your selection is an application role, click the Browse icon to display the Select an Application Role dialog for selecting an application role. To search for application roles, you must first create a connection to the application server. When searching, you must specify the application name to find the name of the role. The task definition can refer to only one application name. You cannot use application roles from different applications as assignees or task owners.
bpws:getVariableData(...)
expression or the ids:getManager()
XPath function. The Value column displays the value you specified.
To manually enter a value, click the field in the Value column and specify a value.
Select a method for statically or dynamically assigning management chain parameters as task participants.
For conceptual information about the following:
To create participant lists based on value-based management chains:
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.
The dialog refreshes to display the fields shown in Figure 29-28.
Figure 29-28 Value-Based Management Chains
2
and the task is initially assigned to user jcooper
, both the user jstein
(manager of jcooper
) and the user wfaulk
(manager of jstein
) are included in the list (apart from jcooper
, the initial assignee). A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.
The method by which you create a ruleset is based on how you access it. This is described in the following section.
To specify participant lists based on rulesets:
Business rules can define the participant list. There are two options for using business rules:
Figure 29-29 provides details.
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.
Figure 29-30 provides details.
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
Both options create a rule dictionary, if one is not already created, and preseed several rule functions and facts for easy specifications of the participant list. In the rule dictionary, the following rule functions are seeded to create participant lists:
CreateResourceList
CreateManagementChainList
The Task
fact is asserted by the task service for basing rule conditions.
After the rule dictionary is created, the Oracle Business Rules Designer is displayed.
The parameters for the rule functions are similar to the ones in Oracle JDeveloper modeling. In addition to the configurations in Oracle JDeveloper, some additional options are available in the Oracle Business Rules Designer for the following attributes:
An example of rules specifying management chain-based participants is shown in Figure 29-32.
If multiple rules are fired, the list builder created by the rule with the highest priority is selected.
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.
To specify a time limit for acting on a task:
Figure 29-33 Advanced Section of Edit Participant Type — Single Type
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.
This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the Actions list in Oracle BPM Worklist at runtime.
To invite additional participants to a task:
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.
To bypass a task:
This action displays an icon for accessing the Expression Builder dialog for building a condition.
The expression to bypass a task participant must evaluate to a boolean value. For example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath expression for skipping a participant.
For more information about creating dynamic rule conditions, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
Figure 29-34 and Figure 29-35 display the upper and lower sections of the Parallel dialog.
This participant type is used when multiple users, working in parallel, must act simultaneously, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.
For example, a business process collects the feedback from all interviewers in the hiring process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.
Figure 29-34 Edit Participant Type — Parallel Type (Upper Section of Dialog)
Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)
To assign participants to the parallel participant type:
Approval Manager
, Primary Reviewers
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the parallel participant type are listed in Table 29-8:
Table 29-8 Edit Participant Type — Parallel Type
For This Subsection... | See... |
---|---|
Vote Outcome | Section 29.4.4.1, "Specifying the Voting Outcome" |
Participant List | Section 29.4.4.2, "Creating a Parallel Task Participant List" |
Limit allocated duration to (under the Advanced section) | Section 29.4.4.3, "Specifying a Time Limit for Acting on a Task" |
Allow this participant to invite other participants (under the Advanced section) | Section 29.4.4.4, "Inviting Additional Participants to a Task" |
Specify skip rule (under the Advanced section) | Section 29.4.4.5, "Bypassing a Task Participant" |
You can specify a voted-upon outcome that overrides the default outcome selected in the Default Outcome list. This outcome takes effect if the required percentage is reached. Outcomes are evaluated in the order listed in the table.
To specify group voting details:
The Any outcome enables you to determine the outcome dynamically at runtime. For example, if you select Any and set the outcome percentage to 60
, then at runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees vote to reject the outcome, then it is rejected.
From the list in the Outcome Type column, select a method for determining the outcome of the final task.
51
) or a unanimous vote (100
)). For example, assume there are two possible outcomes (ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and three are rejected, and the required acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-36 provides details. This functionality is nondeterministic. For example, selecting a percentage of 30% when there are two subtasks does not make sense.
If selected, the outcome of the task can be computed early with the outcomes of the completed subtasks, enabling the pending subtasks to be withdrawn. For example, assume four users are assigned to act on a task, the default outcome is APPROVE, and the consensus percentage is set at 50. If the first two users approve the task, the third and fourth users do not need to act on the task, since the consensus percentage value has been satisfied.
If selected, the workflow waits for all responses before an outcome is initiated.
Users assigned to the list of participants can act upon tasks. You can create several types of lists:
For information about creating these lists of participants, see section Section 29.4.3.1, "Creating a Single Task Participant List."
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.
To specify a time limit for acting on a task:
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.
To invite additional participants to a task:
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.
To bypass a task participant:
This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.
For information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."
Figure 29-37 displays the Serial dialog. Figure 29-38 shows the expanded Advanced section.
This participant type enables you to create a list of sequential participants for a workflow. For example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use this participant type. For the serial participant type, they can be any list of users or groups.
Figure 29-37 Edit Participant Type — Serial Type
Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)
To configure the serial participant type:
Approval Manager
, Primary Reviewers
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the serial participant type are listed in Table 29-9.
Table 29-9 Edit Participant Type — Serial Type
For This Subsection... | See... |
---|---|
Participant List | Section 29.4.5.1, "Creating a Serial Task Participant List" |
Limit allocated duration to (under the Advanced section) | Section 29.4.5.2, "Specifying a Time Limit for Acting on a Task" |
Allow this participant to invite other participants (under the Advanced section) | Section 29.4.5.3, "Inviting Additional Participants to a Task" |
Specify skip rule (under the Advanced section) | Section 29.4.5.4, "Bypassing a Task Participant" |
Users assigned to the list of participants can act upon tasks. You can create several types of lists:
See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.
To specify a time limit for acting on a task:
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.
To invite additional participants to a task:
Note: For the serial participant type, additional participants can be invited as follows:
|
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.
To bypass a task participant:
This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.
For more information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."
Figure 29-39 displays the Edit Participant Type dialog for the FYI type. This dialog also includes a Participants Exclusion List at the bottom that is not displayed in Figure 29-39.
This participant type is used when a task is sent to a user, but the business process does not wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
For example, a magazine subscription is due for renewal. If the user does not cancel the current subscription before the expiration date, the subscription is renewed. This user is reminded weekly until the request expires or the user acts on it.
Figure 29-39 Edit Participant Type — FYI Type
To configure the FYI participant type:
Approval Manager
, Primary Reviewers
, and so on). Users assigned to the list of participants can act upon tasks. You can create several types of lists:
See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.
After you configure a participant type and are returned to the Human Task Editor, click the Task will go from starting to final participant icon, as shown in Figure 29-40.
Figure 29-40 Human Task Editor — Assignment Section
This displays the Configure Assignment dialog shown in Figure 29-41 for specifying a method for routing your task through the workflow.
Table 29-10 describes the routing policy methods provided.
Table 29-10 Routing Policy Method
Routing Policy Selection | Use This Policy In Environments Where... | Section |
---|---|---|
Route task to all participants, in order specified This selection enables you to specify the following suboptions: | A task must be routed to each of the participants in the order in which they appear. This is predetermined, default routing. For example, in a hiring process, if three users interview and provide review feedback, then the task is sent to the human resources department. | Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" |
| A participant can select users or groups as the next assignee (ad hoc) when approving the task. | Section 29.5.1.1, "Allowing All Participants to Invite Other Participants" |
| A participant in a task can accept or reject it, thus ending the workflow without the task being sent to any other participant. For example, a manager rejects a purchase order, meaning that purchase order is not sent to their manager for review. | Section 29.5.1.2, "Stopping Routing of a Task to Further Participants" |
| Note: This option is for environments in which you have multiple stages and participants working in parallel. Participants perform subtasks in parallel, and one group's rejection or approval of a subtask does not cause the other group's subtask to also be rejected or approved. | Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks" |
| Note: This option is for environments in which you have multiple stages and participants working in parallel. Participants perform subtasks in parallel, and one group's rejection or approval of a subtask causes the other group's subtask to also be rejected or approved. | Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks" |
Use Advanced Rules | The participants to whom the task is routed are determined by the business rule logic that you model. For example, a loan application task is designed to go through a loan agent, their manager, and then the senior manager. If the loan agent approves the loan, but their manager rejects it, the task is returned to the loan agent. | Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules" |
Use External Routing | The participants in a task are dynamically determined. For example, a company's rules may require the task participants to be determined and then retrieved from a back-end database during runtime. | Section 29.5.3, "How to Use External Routing" |
Assignment tab | A participant is assigned a failed task for the purposes of recovery. | Section 29.5.4, "How to Configure the Error Assignee" |
You can select to have a task reviewed by all selected participants. This is known as default routing because the task is routed to each of the participants in the order in which they appear. This type of routing differs from state machine-based routing.
To route tasks to all participants in the specified order:
Figure 29-42 Route a Task to All Participants
See the following tasks to define a routing policy:
This checkbox is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager releases. This applies when there is at least one participant. In this case, each user selects users or groups as the next assignee when approving the task.
To allow all participants to invite other participants:
You can specify conditions under which to complete a task early, regardless of the other participants in the workflow.
For example, assume an expense report goes to the manager, and then the director. If the first participant (manager) rejects it, you can end the workflow without sending it to the next participant (director).
To abruptly complete a condition:
The Abrupt Completion Details dialog appears.
There are two methods for specifying the abrupt completion of a task:
If outcomes are specified, any time the selected task outcome occurs, the task completes. If both outcome and routing condition are specified, the workflow service performs a logical OR
operation on the two.
An early completion XPath expression is not evaluated until at least one user has acted upon the task.
You can click the icon to the right of the Complete task when a participant chooses: <outcome> checkbox to edit this information.
You can use this option in the following environments:
For example, assume there are two parallel subgroups, each in separate stages. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. However, the second parallel group continues to act upon headers in the purchase order. In this scenario, the entire task does not complete early. Figure 29-44 provides details.
Figure 29-44 Early Completion of Parallel Subtasks
You can use this option in the following environments:
For example, assume there are two parallel subgroups, each in separate stages, as shown in Figure 29-44. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. In addition, the second parallel group stops acting upon headers in the purchase order. In this scenario, the entire task completes early.
Use advanced routing rules to create complex workflow routing scenarios. The participant types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to another with basic conditions such as abrupt termination, skipping assignees, and so on. However, there is often a need to perform more complex back and forth routing between multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of these tasks. Another option is to specify it declaratively using business rules. This section describes how you can model such complex interactions by using business rules with the Human Task Editor.
You can define state machine routing rules using Oracle Business Rules. This action enables you to create Oracle Business Rules that are evaluated:
This action enables you to override the standard task routing slip method described in Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" and build complex routing behavior into tasks.
Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business objects, called facts, to determine which action to take.
A fact is an object with certain business data. Each time a routing slip assignee sets the outcome of a task, instead of automatically routing the task to the next assignee, the task service performs the following steps:
Rules can test values in the asserted facts and specify the routing behavior by setting values in a TaskAction
fact type.
Table 29-11 describes the fact types asserted by the task service.
Table 29-11 Fact Types Asserted By the Task Service
Fact Type | Description |
---|---|
| This fact contains the current state of the workflow task instance. All task attributes can be tested against it. The task fact also contains the current task payload. This fact enables you to construct tests against payload values and task attribute values. |
| This fact describes the previous task outcome and the assignee who set the outcome. The previous outcome fact contains the following attributes:
|