Modeling and Implementation Guide for Oracle Business Process Management
11g Release 1 (11.1.1.6.1)
E15176-08
February 2012
Describes how to design and implement business processes using Oracle Business Process Studio.
Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management, 11g Release 1 (11.1.1.6.1)
E15176-08
Copyright © 2001, 2012, Oracle and/or its affiliates. All rights reserved.
Primary Author: Carolina Arce Terceros, Steven Leslie
This software and related documentation are provided under a license agreement containing restrictions on use and disclosure and are protected by intellectual property laws. Except as expressly permitted in your license agreement or allowed by law, you may not use, copy, reproduce, translate, broadcast, modify, license, transmit, distribute, exhibit, perform, publish, or display any part, in any form, or by any means. Reverse engineering, disassembly, or decompilation of this software, unless required by law for interoperability, is prohibited.
The information contained herein is subject to change without notice and is not warranted to be error-free. If you find any errors, please report them to us in writing.
If this is software or related documentation that is delivered to the U.S. Government or anyone licensing it on behalf of the U.S. Government, the following notice is applicable:
U.S. GOVERNMENT RIGHTS Programs, software, databases, and related documentation and technical data delivered to U.S. Government customers are "commercial computer software" or "commercial technical data" pursuant to the applicable Federal Acquisition Regulation and agency-specific supplemental regulations. As such, the use, duplication, disclosure, modification, and adaptation shall be subject to the restrictions and license terms set forth in the applicable Government contract, and, to the extent applicable by the terms of the Government contract, the additional rights set forth in FAR 52.227-19, Commercial Computer Software License (December 2007). Oracle America, Inc., 500 Oracle Parkway, Redwood City, CA 94065.
This software or hardware is developed for general use in a variety of information management applications. It is not developed or intended for use in any inherently dangerous applications, including applications that may create a risk of personal injury. If you use this software or hardware in dangerous applications, then you shall be responsible to take all appropriate fail-safe, backup, redundancy, and other measures to ensure its safe use. Oracle Corporation and its affiliates disclaim any liability for any damages caused by use of this software or hardware in dangerous applications.
Oracle and Java are registered trademarks of Oracle and/or its affiliates. Other names may be trademarks of their respective owners.
Intel and Intel Xeon are trademarks or registered trademarks of Intel Corporation. All SPARC trademarks are used under license and are trademarks or registered trademarks of SPARC International, Inc. AMD, Opteron, the AMD logo, and the AMD Opteron logo are trademarks or registered trademarks of Advanced Micro Devices. UNIX is a registered trademark of The Open Group.
This software or hardware and documentation may provide access to or information on content, products, and services from third parties. Oracle Corporation and its affiliates are not responsible for and expressly disclaim all warranties of any kind with respect to third-party content, products, and services. Oracle Corporation and its affiliates will not be responsible for any loss, costs, or damages incurred due to your access to or use of third-party content, products, or services.
Welcome to Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management. This document describes how to use Oracle Business Process Studio.
This guide is intended for process developers who use the Business Process Studio application to create and implement business processes, and create and configure Oracle BPM projects used to created process-based applications using the Oracle Business Process Management Suite.This manual assumes that you have basic knowledge of business process design and are familiar with Business Process Management Notation (BPMN) 2.0. It also assumes you are familiar with Oracle SOA Suite.
For information about Oracle's commitment to accessibility, visit the Oracle Accessibility Program website at http://www.oracle.com/pls/topic/lookup?ctx=acc&id=docacc
.
Access to Oracle Support
Oracle customers have access to electronic support through My Oracle Support. For information, visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=info
or visit http://www.oracle.com/pls/topic/lookup?ctx=acc&id=trs
if you are hearing impaired.
For more information, see the following Oracle resources:
Oracle Business Process Management
See the following for more information about the Oracle BPM Suite:
Oracle SOA Suite
Oracle SOA and BPM Suite Installation and Administration
The following text conventions are used in this document:
Convention	Meaning
boldface	Boldface type indicates graphical user interface elements associated with an action, or terms defined in text or the glossary.
italic	Italic type indicates book titles, emphasis, or placeholder variables for which you supply particular values.
Monospace type indicates commands within a paragraph, URLs, code in examples, text that appears on the screen, or text that you enter.	
For Release 11.1.1.6.x, this guide has been updated in several ways. The following table lists the sections that have been added or changed. If a feature was not available in the first release of 11.1.1.6.x, the last columns denote which documentation release contains the update.	
For a list of known issues (release notes), see the "Known Issues for Oracle SOA Products and Oracle AIA Foundation Pack" at http://www.oracle.com/technetwork/middleware/docs/soa-aiafp-knownissuesindex-364630.html	
.	
Sections	Changes Made
---	---
Chapter 4 Working with Projects and Project Templates	
Section 4.5, "Using the Oracle BPM Metadata Service (MDS) Repository"	Sections revised and added to describe changes to the BPM Metadata Service (MDS) repository.
Chapter 5 Working with Processes and the Process Editor	
Section 5.2, "Introduction to the Process Editor"	Section revised to describe changes to the proecess editor. This includes changes to the component palette and flow object toolbar.
Section 5.3.2, "How to Change the Highlight Level for Messages in a Process"	Section added to describe the highlight level for messages your processes.
Section 5.4, "Working with Flow Objects in Your Process"	Section revised to describe interface enhancements to Oracle BPM Studio.
Section 5.5, "Working with Draft Processes"	Section added to describe how to work with draft processes in Oracle BPM Studio. A draft process is a process that has one or more flow objects which do not have their implementation defined.
Section 5.7, "Importing and Exporting Process Models"	Section added to describe how to import process models created in other applications. These imported models are converted to BPMN.
Chapter 9 Importing BPMN Processes from a BPA Repository	
Section 9.3, "Merging Changes from an Updated BPA Model"	Section added to describe how to merge changes when you update the BPA model you used to create the BPM process.
Chapter 14 Working with Human Tasks	
Section 14.3, "Updating User Tasks Using Update Tasks"	Section added to describe how use update tasks to update user tasks.
Chapter 24 Communicating Business Processes Using Correlations	
Chapter 24, "Communicating Business Processes Using Correlations"	Chapter added to describe how to use correlations.
Chapter 25 Defining Conversations	
Chapter 25, "Defining Conversations"	New chapter that describes how to define a conversation.
Chapter 27 Getting Started with Human Workflow	
Chapter 27, "Getting Started with Human Workflow"	New chapter that describes the basic concepts of the Human Workflow framework.
Chapter 28 Designing Human Tasks in Oracle BPM	
Chapter 28, "Designing Human Tasks in Oracle BPM"	New chapter that describes how to design a Human Task in Oracle BPM.
Chapter 28, "Configuring a Human Task Using the Human Task Editor"	Added section to describe how to specify the completion criteria for a parallel participant.
Chapter 29 Configuring Human Tasks	
Chapter 29, "Configuring Human Tasks"	New chapter that describes the multiple properties that you can configure in a Human Task.
Appendix B Modifying Running Process Instances in Oracle Business Process Management Workspace	
Appendix A, "Modifying Running Process Instances in Oracle Business Process Management Workspace"	New appendix that describes how to modify running instances in Oracle BPM Process Workspace.
This part provides a general introduction to the Oracle BPM Studio. It also provides an overview of the Oracle BPM Suite and shows how BPM Studio is used within the overall process development life cycle.	
This part contains the following chapters:	
This chapter provides a general overview of the Oracle Business Process Management (BPM) Suite.	
This chapter includes the following sections:	
The Oracle BPM Suite provides an integrated environment for developing, administering, and using business applications centered around business processes.	
The Oracle BPM Suite provides the following:	
See Section 1.2, "Oracle BPM User Personas" for more information on the user personas defined for the Oracle BPM Suite.	
The Oracle BPM Suite provides a seamless integration of all stages of the application development life cycle from design-time and implementation to run-time and application management.	
The Oracle BPM Suite is layered on the Oracle SOA Suite and shares many of the same product components, including:	
Figure 1-1 shows a high-level architectural view of the Oracle BPM Suite.	
Section 1.3, "Oracle BPM Suite Components" provides more information on each of these components shown in Figure 1-1.	
Different stages of the application development life cycle require interaction from different types of users. Table 1-1 outlines the typical users of Oracle BPM Suite and their responsibilities. It also lists the components of the Oracle BPM they would use to perform their work.	
These user personas are used within the examples in this guide.	
Table 1-1 Oracle BPM User Persona	
User Persona	Description
---	---
Process Analyst	Process analysts are responsible for creating the initial flow of a business process and documenting its steps. This also includes identifying and defining the KPIs and high level rules that define the routing artifacts of the business process. This persona may also perform simulations to calculate and estimate ROI. Process analysts typically use the Oracle Business Process Analysis (BPA) Suite or Business Process Composer to create process models. They may also use the Process Analyst role within Oracle BPM Studio.
Process Developer	Process developers are responsible for implementing the process models created by process analysts. Each step in the process requires an implementation. The process developer is responsible for integrating the business process with back-end applications like databases. Process developers typically use Oracle BPM Studio to model and implement the components of a business application. They may occasionally use Business Process Composer for modeling basic processes.
Business Administrator	Business administrators are responsible for administering the BPM infrastructure. Typical activities include the installation and setup of BPM environments and the overall management of the BPM Engines that are hosting business processes. This persona may be delegated responsibilities for administering the organization structure assets like users, groups, organizational units, calendars and holidays. The main tool used by business administrators is the Oracle Enterprise Manager and automated tools like Ant. Business administrators also use Process Workspace to manage organizational units, role assignments and perform other activities like creating workflow advanced routing declarations
Process Owner	Process owners are responsible for controlling and managing deployed business processes. They are responsible for the overall supervision of the running business process. They often use metric analysis tools like dashboards to understand the current state of the managed business processes. Process owners typically use Process Workspace. They also use Business Process Composer to change the behavior of a process by editing Oracle Business Rules. They may also use the Oracle BAM console to view metrics dashboards.
Process Participant	Process participants are the people who use the business applications created with the Oracle BPM Suite. Process participants typically use Process Workspace or Process Spaces.
This section provides a general description of the major components of the Oracle BPM Suite. See Section 1.5, "Introduction to the Application Development Life Cycle" for information on how these components interact within the application development process.	
This section describes the applications and components used to model and implement business processes and process-based business applications.	
The Oracle BPM Suite provides two primary applications for modeling and implementing business processes.	
Note: Oracle BPM can also integrate business processes created using the Oracle Business Process Analysis (BPA) Suite. See Section 1.4, "Oracle Business Process Analysis (BPA) Suite" for more information.	
Oracle BPM Studio is a component of the Oracle BPM Suite that provides a user-friendly environment where process analysts can create business process models and run process simulations. Oracle BPM Studio supports Business Process Management Notation (BPMN) 2.0.	
Oracle BPM Studio also enables process developers to create working process-based applications. These applications are Oracle BPM projects that are integrated as SOA composite applications.	
You can use Oracle BPM Studio to implement business processes with other Oracle components such as adapters, human workflow and business rules. You can then deploy these processes to Oracle BPM run time.	
Oracle BPM Studio is a part of the Oracle JDeveloper IDE. Oracle BPM Studio enables IT users to use a single integrated tool to model and edit business processes, implement the required IT elements, and deploy applications to the run-time environment.	
Oracle BPM Studio also provides a BPM role that enables business users to use a simplified version of Oracle JDeveloper that only displays functionality relevant to process design.	
See the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management for more information.	
Oracle Business Process Composer is a web-based application that enables business users to collaborate with process developers and designers. It provides a user friendly environment for editing processes and process templates created in Oracle BPM Studio.	
Process developers can create a catalog of preconfigured components such as services, tasks, and rules in Oracle BPM Studio. This catalog can be included in project templates that process analysts can use to create new projects using Business Process Composer.	
After creating a project based on a project template, process analysts can incorporate business catalog elements and perform other required edits defined by the project template. Process analysts can then deploy these projects to the Oracle BPM run time.	
Business Process Composer also enables process analysts to create Process Blueprints. These are initial drafts of a process that can be used by process developers who use Oracle BPM Studio to add further implementation details and refinement to the project.	
Business Process Composer also enables you to edit Oracle Business Rules at run time. This is important because policies tend to evolve faster that business processes.	
See the Oracle Fusion Middleware Business Process Composer User's Guide for more information.	
Oracle Metadata Service (MDS) provides a repository that is used to store date about applications deployed within an Oracle Fusion Middleware environment. Oracle BPM uses this repository to store information about deployed applications.	
Oracle BPM also uses a separate MDS partition to share projects and project templates between process analysts and process developers. Figure 1-1, "The Oracle BPM Suite" shows how the MDS repository fits within the overall Oracle BPM architecture.	
Oracle BPM projects are containers for the business processes and related resources used to create a process-based business application. An Oracle BPM project can contain the following:	
Oracle BPM projects are deployed at run time as SOA composite applications. For more information on working with projects and SOA composite applications see the following documentation:	
Oracle BPM run time is responsible for controlling deployed applications. Oracle BPM run time includes the following components.	
The Oracle BPM Engine provides a run-time environment for running business processes. It provides native support for both BPMN and BPEL processes.	
The BPM engine is composed of three separate components:	
The BPMN engine provides an environment for running BPMN processes.	
The BPEL engine provides an environment for running BPEL processes.	
Provides engine functionality that is shared by the BPMN and BPEL engines. Some of the key functionality performed by the process core includes:	
Many end-to-end business processes require human interactions with the process. For example, humans may be needed for approvals, exception management, or performing activities required to advance the business process. The human workflow service provides features such as:	
Oracle Business Rules enable dynamic decisions at runtime allowing you to automate policies, computations, and reasoning while separating decision logic from underlying process orchestration layer. This allows more agile rule maintenance and empowers business analysts with the ability to modify rule logic without programmer assistance and without interrupting business processes.	
Oracle WebLogic Server is an application server that provides a platform for creating and running J2EE-compliant applications.	
The Oracle Enterprise Manager is a web-based application that enables system administrators to control and manage applications running on the Oracle SOA Suite. Enterprise Manager enables business administrators to configure and manage business applications and process instances.	
The following sections describe the components of the Oracle BPM Suite that are used by process participants to perform their day-to-day work. These applications enable process participants to interact with running business applications managed by Oracle BPM run time.	
Oracle Business Process Management Workspace and Oracle Business Process Management Process Spaces allow process participants to interact with the applications you create using Oracle BPM. The Process Workspace user interface provides tabs for each of the following:	
Process Workspace also enables business administrators to configure and maintain organizations and roles. See the Oracle Fusion Middleware User's Guide for Oracle Business Process Management for more information.	
Process Spaces is a collaborative workspace built on top of Web Center Spaces and enables more productivity by increasing collaboration.	
See the Oracle Fusion Middleware User's Guide for Oracle Business Process Management for more information.	
The following sections describe other components of the Oracle BPM Suite.	
Business Process Analytics enables process participants to monitor the performance of a running process-based applications. It measures the key performance indicators defined in a BPM project and stores them in a database. Process participants and analysts can view the metrics stored in the process analytics databases using Process Workspace dashboards or Oracle BAM.	
Guided Business Processes enable process analysts and developers to group the interactive activities in a business process into a set of milestones that are meaningful to the process participants. They outline the steps the process participants have to complete, hiding the complexity of the business process.	
See "Introduction to Guided Business Processes" in Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management	
The Oracle BPA Suite is a separate Oracle product suite based on the Aris platform from IDS Scheer. The Oracle Business Process Analysis (BPA) Suite provides comprehensive modeling, analysis and simulation capabilities for enterprise wide business processes. Oracle BPA supports capturing business architecture artifacts such as strategic objectives, goals, higher level KPIs, risks and controls, and conceptual models such as value chain diagrams.	
Additionally, the Oracle BPA Suite supports the following:	
The business architecture defined by the Oracle BPA Suite is the formal link between strategic objectives and the actual business applications created using Oracle BPM. The Oracle BPA Suite supports modeling of Business Architecture artifacts such as strategy maps, goals, objectives, risk and controls and linking them to business processes.	
This provides the ability to prioritize efforts, justify decisions, and trace activities of the business process improvement initiatives to strategic goals of the business, hence improving business/IT alignment. It provides tremendous value as it offers a clear understanding of which BPM projects to undertake, which processes are currently most strategic to the company, and which services are most aligned with business strategy.	
The Oracle BPA Suite complements the functionality of the Oracle BPM Suite by adding orthogonal dimensions to the modeling phases including organization goals. See the Oracle BPA Quick Start Guide for more information	
Processes created in the Oracle BPA Suite can be imported into the Oracle BPM Suite. Using Oracle BPM Studio, you can integrate your business process with other Oracle technologies including adapters, business rules, and human tasks.	
See the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management for more information on using business processes created in Oracle BPA within Oracle BPM Studio.	
This section outlines the stages of the development life cycle of an Oracle BPM application. It describes how different components of Oracle BPM are used within each stage.	
Figure 1-2 lists the four stages of the application development life cycle, the user personas applicable to each stage, and the Oracle BPM tools and applications that are used.	
Figure 1-2 Stages of the Oracle BPM Application Development Life Cycle	
The first stage of the application development life cycle is process modeling. During this stage a process analyst creates process models based on real-word business processes and problems.	
Oracle BPM provides three distinct tools for modeling business processes. Each tool has a different role within the Oracle BPM Suite. The tool you use depends on your business requirements, the stage of the application development cycle, and your user persona.	
Oracle BPM Studio runs on the Oracle JDeveloper IDE platform. Oracle BPM Studio provides a Process Analyst role that displays a simplified set of JDeveloper functionality that focuses on designing process models.	
Oracle BPM Studio enables process analysts and process developers to design and implement detailed process flows that are deployed to Oracle BPM run time and run as working applications. Additionally, detailed process flows from Oracle BPA Suite or Business Process Composer can be brought inside Oracle BPM Studio for further implementation, then deployed to the Oracle BPM run time.	
Business Process Composer is a collaboration tool that enables process analysts to collaborate with process developers.	
The Oracle BPA Suite enables you to create robust models of your business processes from high-level models of your entire organization down to lower-level business processes that you can implement as running processes.	
See Section 1.6, "Oracle BPM Use Cases" for more information on how each of these tools fit within the typical Oracle BPM uses cases. See Section 3.2, "Overview of the Application Development Life Cycle" for more information on how Oracle Business Process Composer and Oracle BPM Studio interact within the application development life cycle.	
After process analysts model business processes, process developers are responsible for creating business applications based on these models. Using Oracle BPM Studio, process developers implement reusable services and integrate other business systems.	
Implementation may include the following types of tasks generally performed by process developers:	
After a process developer finishes the implementation of the application, it is compiled and deployed like other SOA composite applications. It can be compiled and deployed using Oracle BPM Studio.	
Deployment is the process of transferring an Oracle BPM project from the development environment to the run-time environment. This can be either a testing or production run-time environment.	
After finishing the integration of business processes with back-end systems and reusable services, process developers create and compile a working process-based application. The application is then deployed to Oracle BPM run time.	
Oracle BPM Suite contains the following typical scenarios for deploying to Oracle BPM run time:	
Applications created with Oracle BPM can be deployed directly to the run-time environment like any other SOA composite application. This is typically performed by a process developer using BPM Studio within a test or development environment.	
See the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for more information on deploying SOA composite applications.	
Oracle BPM enables you to deploy projects created from project templates directly to the same run-time environment where Business Process Composer is installed. When creating a project, you can specify an approval workflow that must be completed before the project is deployed.	
You can deploy from Business Process Composer when it is installed in the same server infrastructure as Oracle BPM run time. Deploying from Business Process Composer enables process analysts to easily deploy and test process-based business applications. The is generally done in a testing environment.	
Oracle BPM Studio and Business Process Composer enable you to export applications using a SAR file. The SAR file can be deployed to run time by business administrators using Oracle Enterprise Manager.	
In a production environment, this is generally how applications are deployed.	
Oracle BPM provides customized WLST commands for managing and deploying Oracle BPM projects.	
After an application is deployed, the run-time environment makes the Oracle BPM application available to process participants based on the roles assigned in the organization where the business processes were deployed. This stage is divided into two distinct functions:	
Process participants and process owners are responsible for interacting with the running application using Process Workspace.	
Process analysts and owners can also monitor the process and revise Oracle Business Rules at run time using Business Process Composer.	
Process owners are responsible for monitoring and maintaining running processes using Process Workspace. Process analysts and owners use Oracle Process Analytics to monitor the real-time performance of business processes.	
Process participants who have the necessary permissions can create new processes using Process Workspace orProcess Spaces	
Business administrators are responsible for maintaining running business applications and the overall run-time infrastructure using Oracle Enterprise Manager and the Oracle Weblogic Server administration console.	
This section describes typical uses cases of the Oracle BPM Suite from process modeling to run time.	
This use case involves using Oracle BPM Studio to create project templates. These templates are used by process analysts to create new projects using Business Process Composer.	
Typical Workflow for Using Oracle BPM Studio to Create Project Templates	
Process analyst can use the Process Analyst role in Oracle JDeveloper.	
This use case involves using Oracle BPM Studio to create process models. These models are used to create working business applications that are deployed to the Oracle BPM run time.	
Typical Workflow for Using Oracle BPM Studio to Model Processes	
Process analyst can use the Process Analyst role in Oracle JDeveloper.	
This use case involves creating process blueprints using Business Process Composer. These blueprints are then shared with process developers who import them into Oracle BPM Studio, where they perform further refinement and implementation.	
Typical Workflow for Using Business Process Composer to Create Process Blueprints	
The use case involves using Business Process Composer to edit Oracle Business Rules at run time. After an application is deployed, process analysts and owners can open the deployed project and edit Oracle Business Rules.	
Typical Workflow for Using Business Process Composer to Revise Oracle Business Rules	
This use case involves using the Oracle BPA Suite to model your business processes. These processes can be imported into Oracle BPM Studio.	
Typical Workflow for Using the Oracle BPA Suite and Oracle BPM Suite to Model Processes	
This chapter provides an overview of business process design. It provides a basic introduction of Business Process Management (BPMN). This introduction is primarily designed to introduce the BPMN-specific terminology used within this guide.	
See Chapter 6, "Modeling Business Processes with Oracle BPM" for more detailed information about Oracle's implementation of BPMN 2.0.	
This chapter also describes the Sales Quote example. This project is used throughout the examples within the Oracle BPM documentation set.	
This chapter includes the following sections:	
This section provides a brief introduction to Business Process Management Notation (BPMN). It is primarily designed to introduce the BPMN terminology used throughout this guide.	
Business Process Management Notation (BPMN) is an industry standard notation for defining business processes. Oracle BPM support BPMN 2.0.	
For more information on BPMN see: http://www.bpmn.org	
.	
A business process can be generally defined as a sequence of tasks that after it performed result in a well-defined outcome. As the term business implies, a business process usually represents work that is performed within the context of a company or organization.	
The Sales Quote example project shows an example of a business process. It contains a sequence of task that result either in the approval or rejection of a sales quote.	
Within the context of Oracle BPM, a business process is also something that can be managed by software. Oracle BPM enables you to model real-world business processes like the Sales Quote example and integrate them within an IT environment.	
A process instance refers to the specific instance of a business process. While business process can generally define how an organization performs its work, a process instance refers to the work of a specific person within that organization. In Oracle BPM, this person is referred to as a process participant.	
For example, the Sales Quote example shows the overall definition, or model, of a business process, including the roles of the process participants who are responsible for performing the work. It defines how a sales quote is created and approved and defines the types of people responsible for performing that work.	
In contrast, a process instance refers to a specific sales quote and the specific people responsible for approving it.	
This distinction between process and process instance is important because Oracle BPM enables you to model business processes, convert them into running business applications, and manage the process instances created within those applications.	
Process tokens are an abstract concept in BPMN. They refer to the current point of execution within a process. A business process can have multiple tokens that indicate that the process is running in multiple paths.	
For example, gateways are often used to split the path of a process. Splitting a process path creates multiple process tokens.	
Flow objects are the BPMN components that represent the work performed within a process. The following sections describe the types of flow objects available in BPMN.	
While flow objects are used to define the behavior of a business process, data objects are used to define and store the information used by a business process. Data objects are variables that are defined during the modeling and implementation of a process. A process instance uses these variables to store specific information.	
For example, the Sales Quote example defines several data objects used to store information about the sales quote. At run time, the process instance generate and stores specific values for these variables.	
The Sales Quote project provides real-world examples of different Oracle BPM features. This project is used within the Oracle BPM documentation set to provide examples of the features being described.	
The Sales Quote demo project is shown in Figure 2-1.	
Figure 2-1 The Sales Quote Example Project	
The following sections describe how the Sales Quote example process works. This example can be broken down into the following high-level tasks:	
These high-level tasks are described in the following sections. Within each section, the specific flow objects required to perform each task are detailed.	
The initial flow objects within the Sales Quote project are used to set the initial values for data objects and initiate the process instance as shown in Figure 2-2.	
The Initiate Sales Quote Portion Performs the Following:	
The next set of flow objects in the Sales Quote example determine if a review of corporate business practices is necessary. If a review is required, the process proceeds to a part of the process flow that performs the review. If a review is not required, the process proceeds directly to the approval stage.	
Figure 2-3 shows the BPMN flow objects used to perform the business practice review.	
Figure 2-3 Determine Business Practice Review	
The following procedure demonstrates how a process path passes through the business practice review.	
Determine Business Practice Review	
This stage begins with a business rules task which implements an Oracle Business Rule to determine whether a business practice review is required.	
The next set of flow objects in the Sales Quote example define how the sales quote is approved. After the business practice review is finished, the quote moves to the approval phase as shown in Figure 2-4.	
In this example, the approval process is defined by two separate flows that are executed simultaneously. These are:	
This process path is also split into two paths. In this example, it is possible for the quote to be self approved, which means that the quote is approved based on certain criteria, or it may require explicit approval from a process participant.	
This process path requires a process participant to approve the terms of the sales contract.	
After these parallel process paths complete, they are merged. The process path then proceeds to the approval outcome stage.	
Approve Quote	
Approve Quote	
Set Approve Quote Outcome	
The approvals outcome stage represents the final stage of the Sales Quote example. It begins with a check to determine if the sales quote has been approved.	
If the sales quote is approved, the process proceeds to the final process flow which proceeds to the end event.	
If the sales quote is not approved, the process flow returns to the enter quote task where the quote must be reentered and the process repeats.	
Approvals Outcome	
The approvals outcome is implemented using an exclusive gateway. This gateway contains two outgoing sequence flows which determine the path the process takes out of the exclusive gateway.	
This is implemented with a default sequence flow.	
Finalize Quote	
Save Quote	
End Event	
This is implemented with a conditional sequence flow. The expression used for this conditional sequence flow determines if the process path continues	
This chapter provides a general introduction to Oracle BPM Studio and describes how it is used within the Oracle BPM Suite.	
This chapter includes the following sections:	
Oracle BPM Studio is a component of the Oracle BPM Suite that enables process developers to create process-based applications. It also enables process analysts and developers to model business processes.	
Oracle BPM Studio is part of the Oracle JDeveloper IDE. and shares many of the JDeveloper user interface elements used by the Oracle SOA Suite.	
There are three typical use cases for Oracle BPM Studio:	
See Section 3.2 for information on how these use cases fit into the general workflow of the application development life cycle.	
The JDeveloper environment can be tailored based on the role selected by the user. The modified environment removes unneeded items from JDeveloper, including menus, preferences, New Gallery, and even individual fields on dialogs. The JDeveloper role you select determines which technologies and options are available to you as you work in JDeveloper.Oracle BPM includes the Analyst Role which only includes process design elements that are useful to business analysts.Process developers who need access to the complete functionality of the Oracle BPM and SOA Suites should use the default role.	
This section describes the application development life cycle from the perspective of a process developer using Oracle BPM Studio.	
The different workflows of the application development cycle described in the following sections are divided into the following stages:	
In a real-world application development environment, the distinctions between these stages may not be clearly defined. Process developers may need to add to or change a process when creating an application.	
A final production application may go through several iterations of modeling and implementation before it is deployed as a working application. Additionally, applications may be deployed for testing then passed back to the modeling and implementation stages before being deployed to a production environment.	
Figure 3-1 shows a typical workflow where all stages of application design are performed using Oracle BPM Studio.	
Figure 3-1 Modeling, Implementation, and Deployment from Studio	
The following steps describe each stage of the workflow:	
Figure 3-1 shows a typical workflow for using Business Process Composer to perform the initial stages of the application development life-cycle.	
Figure 3-2 Using Oracle Business Process Composer to Create Project Blueprints	
The following steps describe each stage of this workflow:	
Figure 3-1 shows a typical workflow for using Oracle BPM Studio at the beginning of the workflow to create process templates which are then edited by process analysts using Business Process Composer.	
Figure 3-3 Using BPM Studio to Create Project Templates	
The following steps describe each stage of this workflow:	
Figure 3-4 shows a typical workflow for creating process models using the Oracle BPA Suite, then using Oracle BPM Studio to create and deploy process-based business applications.	
Figure 3-4 Using Studio to Implement Processes from Oracle BPA	
The following steps describe each stage of the workflow:	
Since Oracle BPM Studio is an integrated part of Oracle JDeveloper, the user interface uses many of the same components as other Oracle products. This section describes the various UI components used by Oracle BPM Studio.	
Figure 3-5 shows the layout of Oracle BPM Studio displaying the Request Quote example process.	
The Oracle BPM Project Navigator displays a hierarchical view of the components of an Oracle BPM project. The components displayed in the navigator are related to the modeling and implementation of business processes.	
See Chapter 4, "Working with Projects and Project Templates" for more information.	
Table 3-1 Oracle BPM Project Components	
Component	Description
---	---
Processes	Contains the business processes of this project. These can include both BPMN and BPEL processes.
Activity Guide	Contains the milestones defined for this project.
Organization	Contains the organizational elements defined for this project.
Business Catalog	Contains the business catalog elements defined for this project.
Simulations	Contains the process and project simulation models defined for this project.
Resources	Contains the XSLT transformations of the project.
Figure 3-6 shows the BPM Project Navigator displaying the contents of the Request Quote demo process.	
Like the Project Navigator, the Application Navigator displays a hierarchical view of the components of a project. However, these are lower-level components that include the underlying configuration files, XML files, java classes, and other resources used by a SOA composite application.	
Figure 3-7 shows some of the files of the Sales Quote example that appear in the Application Navigator.	
See the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for more information about the contents of a SOA composite application.	
The process editor enables you to model business processes by dragging and dropping BPMN components, called flow objects, from the Component Palette. Figure 3-8 shows the Request Quote example process opened in the process editor. You can also use the flow object dropdown menus on the toolbar to insert objects.	
The BPM Component Palette contains a list of the BPMN flow objects supported by Oracle BPM. You can model business processes by dragging and dropping these flow objects from the BPM Component Palette to the process editor. See Chapter 6, "Modeling Business Processes with Oracle BPM" for more information on using flow objects to model business processes.	
The BPMN flow objects are grouped in the Component Palette according to type, such as Activities, Events, and Gateways. A group may be further divided into subtypes. Figure 3-9 shows the Activities group in the BPM Component Palette expanded to show two types of activities, Default and Interactive.	
The Property Inspector lets you view and edit the properties of the current process in the process editor, or the properties of a selected flow object in the process, if the object participates in property inspection. The flow objects that can be inspected include activity, business rule, call activity, manual task, receive task, script task, send task, and service task.	
Figure 3-10 shows the properties of the user task Enter Quote in the Property Inspector. The main area of the Property Inspector organizes groups of properties in named sections that can be expanded or collapsed by clicking the + or - icon. Only sections relevant to the selected process or object appear in the Property Inspector, such as General, Advanced and Simulation for a process, and General, Implementation, Data Associations and Simulation for a user task flow object.	
The Oracle BPM MDS Browser allows you to view and use projects and project templates stored in the Oracle BPM MDS repository. For more information about MDS repositories, see Section 4.5, "Using the Oracle BPM Metadata Service (MDS) Repository".	
The Structure window offers a structural view of the data in the component currently selected in the active window of those windows that participate in providing structure: the diagrams, the navigators, the editors and viewers, and the Property Inspector.	
The structure components displayed in the Structure window are usually of components selected in the Project Navigator or Application Navigator.	
You can perform a variety of tasks from the Structure window, including:	
Figure 3-12 shows the Structure window when a BPMN process is selected in the BPM Project Navigator.	
The structure of a process is divided into the following categories in the Structure window: Activities, Business Indicators, Conversations, Correlations, Measurements, Process Data Objects, and Project Data Objects. If the process is a reusable process, two additional categories are provided: Process Input Arguments and Process Output Arguments. A category may have subcategories, for example, Activities is further subdivided into Activities, Gateways, and Events. For information about using flow objects to model business processes, see Chapter 6, "Modeling Business Processes with Oracle BPM".	
The Thumbnail window allows you to display a thumbnail representation of the active business process that is opened in the process editor. Because the Thumbnail view is synchronized with the process editor, it is useful for navigating large processes that do not fit in the process editor window.	
By default the Thumbnail window is located next to the Structure window, as shown in Figure 3-13. A white rectangle on the Thumbnail view shows the section of the process that is currently in view in the process editor. By dragging the white rectangle on the Thumbnail view, you can pan the process in the process editor, change which section of the process to view in the process editor, and quickly navigate to a specific object on the process.	
The Simulation View allows you to run and see the result of project simulation models. Figure 3-14, shows the results of a simulation displayed as a bar chart.	
The Log Window displays messages, errors, and warnings to the BPM project as well as compilation and deployment of SOA composite applications.	
The Documentation Window allows you to create end-user and use case documentation for your processes. You add documentation for the entire process or for each flow object within your process. Figure 3-15 shows the Documentation Window.	
This part describes how to create and use Oracle BPM projects and project templates. It also describes how to create processes and use the process editor.	
This part contains the following chapters:	
This chapter describes how to create and use projects using Oracle BPM Studio.	
This chapter includes the following sections:	
A BPM project is a container for the resources used to create and support business applications created using Oracle BPM. Oracle BPM projects are based on SOA projects but they include additional functionality of the Oracle BPM Suite, including BPMN processes.	
You can create new projects directly in Business Process Composer or you can create and edit projects based on project templates.	
Projects can be shared between Business Process Composer and Oracle BPM Studio or deployed to BPM runtime. See Section 3.2, "Overview of the Application Development Life Cycle" for information on how projects are used within the development life-cycle.	
Each BPM project contains one or more business process and may include other resources used by the business processes or overall application. This can include other reusable resources that allow you to connect your application to other applications and systems.	
The following are the key resources of an Oracle BPM project:	
Each of these resources are accessible from the BPM Project Navigator. Additional application resources are accessible from the Application Navigator.	
Oracle BPM uses the Oracle Metadata Service (MDS) repository to share projects and project templates between other Oracle BPM Studio and Business Process Composer users.	
See Section 3.2, "Overview of the Application Development Life Cycle" for more information on how projects and project templates are shared between BPM Studio and Business Process Composer.	
See Section 4.5, "Using the Oracle BPM Metadata Service (MDS) Repository" for more information on the Oracle BPM MDS repository.	
The following section describes how to create new Oracle BPM projects and perform other project-related tasks. See Section 4.5, "Using the Oracle BPM Metadata Service (MDS) Repository" for information on working with projects in Oracle BPM MDS.	
Oracle BPM projects are created in the same way as other types of SOA composite application components.	
To create a new Oracle BPM project:	
By default a BPM project is created and configured using the Composite With BPMN Process template.	
The new project is created and appears in the navigator. After the project and composite file are created, the Create BPMN Process wizard starts automatically. You can choose to create a new process or cancel the wizard.	
See Section 5.1.2, "How to Create a New Business Process" for more information on creating a new BPMN process.	
You can open an Oracle BPM project directly from the file system. This is generally used to open local projects that you have previously closed.	
Projects that are shared with other users are imported from an exported Oracle BPM project or using Oracle BPM MDS.	
To open a project:	
.jpr	
) file for your project The project appears in the BPM Project Navigator.	
Note: When you open a project from the file system, the project remains in its original location. It is not copied to the Oracle JDeveloper working directory.	
Exported projects enable you to share projects with other Oracle BPM Studio users. This is useful when it is not feasible to share projects by publishing them to Oracle BPM MDS.	
To export a project:	
After you export an Oracle BPM project from Oracle BPM Studio or Oracle Business Business Process Composer, you can import it back to Oracle BPM Studio. This enables you to share projects directly from a file system instead of using Oracle BPM MDS.	
To import a project:	
.exp	
file of the exported project and click Open. You can edit project preferences to configure the behavior of an Oracle BPM project, including the following:	
To edit project preferences:	
For more information on specific project preferences, see the online Help for Project Preferences.	
A project template is an Oracle BPM project that is used as a base for creating new Oracle BPM applications.	
Project templates are created using Oracle BPM Studio. In a project template, process developers can create BPM project that contains all of the required services and other components of the business catalog.	
Project templates can then be published to Oracle BPM MDS where process analysts can use them in Oracle Business Process Composer to create new deployable projects based on the project template.	
The exact changes process analysts can make to an project created from a project template is defined using the edit policies of the project template.	
Project templates allow you to define edit policies for BPMN processes and flow objects within them. Edit policies determine what parts of a process can be changed or edited when creating a new project based on a project template.	
Edit policies are defined at the process level. However, you can also define edit policies for individual flow objects.	
Edit policies allow the creator of a project template to define what elements of a process can and cannot be changed when a project is created from a template.	
Note: Edit policies are defined using Oracle BPM Studio. You cannot change the edit policy settings of processes and elements using Business Process Composer.	
In a project templates, each process contains an edit policy which determines the changes you can make to the process from Oracle Business Process Composer.	
Table 4-1 describes the process level edit policies.	
Table 4-1 Process Level Edit Policies	
Edit Policy	Description
---	---
Flow Sealed	The overall flow of the process cannot be changed. A user can edit specific implementation details, but cannot change the process flow
Activity Sealed	Individual activities (flow objects) within the process cannot be changed. This includes editing flow object properties including assigning components from the business catalog.
Note: If you do not define an edit policy template users can change the process flow, including adding and deleting BPMN flow objects. They may also be able to edit flow objects properties depending on the edit policies you define at the activity (flow object) level.	
Within a process, you can also define edit policies that apply to individual flow objects.	
Table 4-2 Component Level Edit Policies	
Edit Policy	Description
---	---
Sealed	The component cannot be modified
Must implement	Template users are required to implement this component in order to create a deployable project.
Can modify implementation	Template users may redefine this component if necessary.
Use process permission	The component inherits the edit policy of the process.
A project template defines the data objects used within a project. These can be the Oracle BPM default types or complex data objects created by process template developers within Oracle BPM Studio.	
When editing a process template in Business Process Composer, you can add and create new data objects as necessary. However, you can only create new data objects based on types that are already defined in the project template. You cannot create new types of complex data objects.	
Project templates allow you to incorporate elements of the business catalog. This allows you to create reusable services that can be used in each project created based on a project template.	
The following business catalog components can be included in a project template:	
Using Business Process Composer, process analysts can reuse these components within a project by assigning a business catalog component to its corresponding activity within a process.	
When creating a project template that is shared with Business Process Composer, you must create the necessary business catalog components before publishing the template to MDS. Business Process Composer only enables you to create and edit some business catalog components. See Oracle Fusion Middleware Business Process Composer User's Guide for more information.	
The following sections describe how to create project templates and set the edit policies for processes and activities within a process.	
After creating a project template, see Section 4.5, "Using the Oracle BPM Metadata Service (MDS) Repository" for information on publishing it to Oracle BPM MDS.	
After publishing project templates to the Oracle BPM MDS repository, business users can use them to create new deployable BPM projects. See Oracle Fusion Middleware Business Process Composer User's Guide for more information.	
To create a project template:	
After clicking Finish, the new project template appears in the BPM Project Navigator. You can create new processes and define any required edit policies for processes and activities.	
Also, if you plan to share your template with process analysts using Business Process Composer, you should also define any necessary business catalog components before publishing the template to Oracle BPM MDS.	
You can create a project template from an existing BPM project. This enables you to continue developing a BPM project in Oracle BPM Studio while making it available as a project template.	
To create a project template from an existing process:	
Note: After converting a project to a project template, you cannot convert it back to a regular project.	
Setting the edit policies for a process determines the types of process-level changes that can be made to processes within projects created based on project templates.	
To set the edit policies for a process:	
You can set the edit policies at the activity level within a process in a project template.	
Note: Edit policies defined at the activity level override process-level edit policies.	
To set the edit policies for an activity:	
The following sections provide an introduction to the Oracle BPM Metadata Service (MDS) repository. They also provide tasks on how to configure and use it.	
For general information on configuring Oracle MDS see "Managing the Metadata Repository" in Oracle Fusion Middleware Administrator's Guide.	
Oracle Metadata Service (MDS) repository is an Oracle Fusion Middleware component that stores metadata for certain types of deployed applications. Oracle BPM uses this repository when deploying applications to run time.	
For more information on Oracle MDS see "Managing the Metadata Repository" in Oracle Fusion Middleware Administrator's Guide.	
In addition to using Oracle MDS to store information about deployed applications, Oracle BPM also creates a partition in the MDS repository to store projects and project templates.	
This partition is used by both Oracle BPM Studio and Business Process Composer to share project and project templates.	
The Oracle BPM MDS repository contains the following default folders:	
You can create additional subfolders within these folders to organize your projects and project templates.	
The Oracle BPM Metadata Services repository is installed as part of the Oracle BPM run time installation. After this installation is complete, you must configure your Oracle BPM Studio installation to connect to the repository.	
The Oracle BPM Metadata Service browser enables you to view the contents of the Oracle BPM MDS repository and perform related tasks.	
Figure 4-1 shows an example of the Oracle BPM MDS browser.	
You can perform the following tasks using this browser:	
You can configure a connection to the Oracle BPM MDS repository in the BPM MDS Navigator. Before you can configure a BPM MDS connection, you need to have the following created:	
For general information on configuring Oracle MDS see "Managing the Metadata Repository" in Oracle Fusion Middleware Administrator's Guide.	
To configure an Oracle BPM MDS connection:	
This is the connection to Oracle WebLogic Server where SOA is installed.	
Then enter the user name and password in the fields below the selected checkbox.	
The Create Application Server Connection wizard opens.	
This is the database where SOA MDS is installed. If you don't have a connection already set up, click Add to use the Create Database Connection dialog to create one: enter the user name, password, and details of the host where the database is installed.	
Before performing any administrative tasks related to Oracle BPM MDS, you should refresh the repository. This helps ensure that you do not conflict with the work of other Oracle BPM users.	
To refresh the Oracle BPM MDS Repository:	
Publishing a project to the Oracle BPM MDS repository enables you to share projects and project templates with other process analysts and process developers. After a project or project template is published to the repository, it can be accessed by other process analysts and developers using either Oracle BPM Studio or Business Process Composer.	
To publish a project to the Oracle BPM MDS Repository:	
Checking out a project copies a project from Oracle BPM MDS to your local file system. After checking out a project, you can make changes and edit the project locally. You can then republish the project to MDS.	
To checkout a project from Oracle BPM MDS:	
After checking out a project, you can edit it locally on your file system. If you need to ensure that other users do not make changes to the project in the repository, you can lock the project.	
Oracle BPM Studio enables you to lock and unlock projects stored in Oracle BPM MDS. This is useful when you need to make changes to a checked-out project and want to ensure that other users do not edit the project.	
To lock or unlock a project in Oracle BPM MDS:	
WARNING: Unlocking a project that is locked by another may cause the owner of the original lock to lose all changes.	
You can display MDS status information of a project in a tooltip or in a small panel in the BPM MDS Navigator.	
To display the MDS status of a project:	
The tooltip or yellow panel shows MDS information such as the project name, role, status, and the user who has locked the project.	
Figure 4-2 BPM MDS Navigator with Project Status Panel Opened	
This chapter provides information about creating and using business processes in Oracle BPM Studio. It provides a general introduction to business processes and describes the process editor window. It also provides procedural information for creating and using processes, and working with flow objects in processes.	
This chapter includes the following sections:	
Business processes are the core components of process-based business applications created with the Oracle BPM Suite. Although projects are higher level wrappers that contain all the resources of a business application, the processes within the project determine how the application works.	
A business process can be generally defined as a sequence of tasks that after it performed result in a well-defined outcome.	
Business processes are generally created by process analysts who determine the business requirements that must be addressed and define the corresponding process flow.	
This flow is defined by various BPMN flow objects.	
Oracle BPM enables you to create different types of BPMN processes depending on what work the process must perform. Table 5-1 describes the different types of processes supported by Oracle BPM.	
Table 5-1 Process Types	
Process Type	Description
---	---
Synchronous Service	Synchronous services are processes that can be invoked from other processes or services synchronously. In a synchronous service, the calling process waits until the process completes before continuing.
Asynchronous Service	Asynchronous services are processes that can be invoked from other processes or services asynchronously. In an asynchronous service, the calling process does not wait until the process completes before continuing.
Manual Process	Manual processes are processes that require user interaction. Manual processes begin and end with none start and end events.
Reusable Process	A process that can be invoked from a call activity. Reusable processes can only be invoked using the call activity. Reusable processes also begin and end with none start and end events. In Oracle BPM, a reusable process is identified as having only one none start event; in addition there is no initiator node in the process flow. If the none start event is changed to another type or if an initiator node is added to the process flow, the process is no longer considered to be reusable. For example, if a user task with the initiator pattern or a receive task implemented as a create instance is added immediately after the none start event, the process can no longer be reused or called by another process. For more information about start events and reusable processes, see Chapter 6, "Modeling Business Processes with Oracle BPM".
Business processes are created within an Oracle BPM project. You can add one or more processes to your project.	
To create a new business process:	
See Section 5.1.1.1, "Types of Processes" for more information on process types.	
The new process is opened in the process editor.	
New business processes are created with a start and end event connected by a default sequence flow. The type of start and end events depend on the type of process you created.	
After opening an Oracle BPM project, you can open any of the processes it contains. Processes are opened in the process editor window.	
To open a business process:	
The process opens in the process editor window. See Section 5.2, "Introduction to the Process Editor" for more information on working with processes in the process editor.	
You can delete processes from your project. However, you should ensure that there are no remaining references to the deleted process elsewhere in your project.	
To delete a business process from a project:	
When you delete a business process from a project, you must ensure that you remove any references to it from other parts of your process.	
For example, if the deleted process was invoked from another process through a message throw event, you must ensure that you have reconfigured the invoking process so it is no longer referring to the deleted process.	
You can use the Properties dialog to edit the preferences for each process within a project.	
To edit process preferences:	
Note: You can also use the Property Inspector to edit the properties of a process. To open the Property Inspector, choose View > Property Inspector from the main menu. When you select a project in the BPM Project Navigator, the properties of that process will appear in the Property Inspector. For more information about the Property Inspector, see Section 3.3.5, "Property Inspector".	
Figure 5-1 shows an example of the process editor.	
There are two editor tabs at the bottom of each process editor:	
The term 'process editor' refers to the Designer mode of the editor, unless explicitly specified otherwise.	
When a process is opened in the process editor window, a flow object toolbar at the top of the canvas enables you to insert various BPM notations. The status bar below the canvas provides controls that enable you to show and fix errors or warnings, configure the layout, and change the zoom level. The process editor is also synchronized with a view of the process in the Thumbnail window. For more information about thumbnails, see Section 3.3.8, "Thumbnail View".	
Flow Object Toolbar and Dropdown Menus	
The flow object toolbar provides easy access to common BPM flow objects. The flow objects are available through the following dropdown menus on the toolbar:	
The drop-down menus provide the same flow objects as found in the Component Palette. For more information on BPMN flow objects, see Chapter 6, "Modeling Business Processes with Oracle BPM".	
Go To Composite Editor	
This toolbar item opens the SOA Composite Editor.	
Refresh From BPA	
This toolbar item is enabled if the BPM project is created based on a BPMN process stored in a BPA repository.	
Show/Hide Messages	
This status bar item provides assistance to fix common problems found in flow objects. For information on how to use this item, see Section 5.4.5, "How to Display and Fix Errors or Warnings in Flow Objects".	
Highlight Level	
This status bar item enables you to change the severity level of messages to be highlighted in the process by special overlay symbols. For information on how to use this item, see Section 5.3.2, "How to Change the Highlight Level for Messages in a Process".	
Zoom	
This status bar item enables you to change the scale of the process. For information on how to use the zoom tool, see Section 5.3.3, "How to Change the Zoom Level in a Process".	
Layout and Show Grid	
These status bar items enable you to use and configure the automatic layout utility, and turn on or turn off a grid overlay in the process. For more information, see Section 5.3.4, "How to Configure Layout Properties and Use a Grid in a Process".	
You can open one or more processes in the editor window. Each process is identified by a process name in a document tab at the top of the editor window. Only one process can be in focus (active) at any time.	
You can export an entire process design to a PNG file only.	
To export a process:	
When a flow object in a process has an error or a warning message, the flow object icon in the process editor is highlighted by a red error symbol or a yellow warning symbol overlay.	
You can change the severity level of messages to be highlighted in the process. The highlight levels available are:	
Note: The highlight level you set in the process editor affects flow objects in the active process only. Other processes already opened in other process editor tabs are not affected. However the highlight level set in the active process editor does affect all new processes that you subsequently open or create in the same project. This is because the Highlighting Level preference in the Project Preferences dialog is updated to the same value at the time you make the process-level highlight change. To set the severity level of messages to be highlighted for all processes in a project, see Section 4.2.5, "How to Edit Project Preferences".	
To change the highlight level for messages to show in a process:	
Error or warning symbols on the affected flow objects turn off or turn on, according to the level you set.	
The current highlight level in the process is indicated by an icon and a label on the status bar of the process editor: a red 'x' circle for Errors and a yellow '!' (exclamation mark) triangle for Warnings. If no severity level is set, only the label 'None' displays.	
Note: To display messages associated with a flow object in the process, see Section 5.4.5, "How to Display and Fix Errors or Warnings in Flow Objects".	
Three status bar items are provided in the process editor to enable you to change the scale of the active process quickly.	
To change the zoom level in a process:	
You can configure a process to use the automatic layout utility: When automatic layout is turned on, JDeveloper automatically aligns the placement of flow objects horizontally and vertically as they are added to the process. When automatic layout is off, you can use a grid of horizontal and vertical lines in the process background to help you align flow objects.	
You can also activate lanes optimization in the process, which means JDeveloper would remove unnecessary lanes by moving all activities to other named lanes, where possible.	
To use the automatic layout utility and optimize lanes in a process:	
A popup opens. The first button shows either OFF or ON, which refers to the current state of the automatic layout utility.	
Lanes optimization works only when the automatic layout utility is turned on.	
To use a grid in the process:	
Note: With the exception of the Run layout once utility, when you activate or deactivate lanes optimization, automatic layout or the grid in a process, similar configuration settings in the Project Preferences dialog are simultaneously updated to the same values. This means all processes in the project will use the same settings until you change any preference in the dialog or in the process editor status bar. To set the layout or grid preferences in a project, see Section 4.2.5, "How to Edit Project Preferences".	
The following sections provide tasks for adding flow objects to your process and how to work with flow objects within the process editor.	
For more information on BPMN flow objects, see Chapter 6, "Modeling Business Processes with Oracle BPM".	
You can add BPMN flow objects from the Component Palette.	
To add flow objects from the Component Palette:	
For more information on specific flow object properties, see the online Help for the flow object.	
The process editor toolbar contains dropdown menus for the same BPMN flow objects as found in the Component Palette. This is useful when you maximize the process editor window to full screen mode and you cannot use the Component Palette to add flow objects.	
To add flow objects from the process editor toolbar:	
The menu icon on the toolbar changes to the icon of the object you selected. The cursor also changes to the same icon. To deselect the chosen object without adding it to the process, press Esc.	
For more information on specific flow object properties, see the online Help for the flow object.	
Note: The last object you chose from a dropdown menu becomes the default selected object for that menu. The default object is indicated by the menu icon on the toolbar. This means the next time you click that menu icon and then click the canvas, the default object is added to the process.	
You can add BPMN flow objects using a context menu on the process editor canvas.	
To add flow objects from a context menu:	
For more information on specific flow object properties, see the online Help for the flow object.	
You can use the Properties dialog to edit the properties for each flow object within your process.	
To edit the properties of a flow object:	
Note: You can also use the Property Inspector to edit the properties of events and activities. To open the Property Inspector, choose View > Property Inspector from the main menu. When you select a flow object that participates in property inspection, the properties of that object will appear in the Property Inspector. For more information about the Property Inspector, see Section 3.3.5, "Property Inspector".	
When a process or a flow object in the process has an error or a warning, the process icon in the BPM Project Navigator or the flow object icon in the process editor has a red error 'x' circle symbol or a yellow warning '!' (exclamation mark) triangle symbol.	
In the process editor, you can use the message area above the status bar to display error and warning messages related to a flow object or you can display a list of all the errors or warnings in the process. Then you can select a problem for fixing, if a fix suggestion is available.	
To display and fix errors or warnings in flow objects:	
A message area opens above the status bar, as shown in Figure 5-3. The area is gray because no objects are selected in the process yet.	
Figure 5-3 Process Editor With Message Area Expanded	
Messages related to the selected flow object are listed in the message area, as shown in Figure 5-4. Errors have a red 'x' circle symbol; warnings have a yellow '!' triangle symbol.	
Where a fix suggestion is available, a light bulb icon displays in the margin next to the message. Not all problems have fix suggestions. For example, nodes that do not have implementations, or nodes that have problems in user task properties and data associations offer fix suggestions.	
Figure 5-4 Process Editor With Error and Warning Messages	
A popup opens, displaying one or more possible fix suggestions for the problem.	
Note: To display all errors and warnings for all the flow objects that have problems, deselect the selected object in the process editor with the message area already expanded. If the message area is hidden, click Show without selecting any object in the process.	
A flow object marked as Draft means the object has a default implementation where data object values can be set. A Draft flow object is indicated in a process by a gray icon in place of its default color icon.	
Flow objects marked as Draft are considered to be unimplemented. However a process that contains Draft flow objects can still be deployed, but a warning will be issued.	
Only events and activities can be marked as Draft. Events and activities that already have implementations defined can also be marked as Draft. Existing data associations, however, will be removed in the implementation when you change the Draft status.	
Data objects in a Draft flow object can be initialized using custom assignments in the Data Associations dialog, but implementation arguments are not available in the dialog. An error message appears at the top of the Data Associations dialog when you attempt to define data associations in a Draft flow object, as shown in Figure 5-5.	
For more information about data objects and data associations, see Chapter 8, "Handling Information in Your Process Design".	
To mark and unmark a flow object as draft:	
The color of the flow object icon changes to gray.	
The color of the flow object returns to its original color.	
Note: You can also toggle the Draft state of a flow object through the Is Draft checkbox in the Properties dialog of the flow object. For information about how to use the Properties dialog, see Section 5.4.4, "How to Edit Flow Object Properties".	
You can copy and paste one or more flow objects within a process or between processes. Note that sequence flows, boundaries and measurements are copied only if all the following conditions are met:	
Note: You cannot copy and paste objects inside an event subprocess.	
To copy and paste a flow object in a process:	
If Copy does not appear in the context menu, this means the object you selected cannot be copied.	
If you paste outside a swimlane, a new role is added to the process and the new flow object is pasted there. For information about roles and swimlanes, see Section 6.1, "Using Swimlanes to Organize Your Process".	
If necessary, use the Run layout once utility in the Layout popup to align the objects automatically. For more information about automatic layout in the process editor, see Section 5.3.4, "How to Configure Layout Properties and Use a Grid in a Process".	
A new business process is created with a start and end event already connected by a sequence flow. As you add flow objects to the process, inserting them anywhere along the sequence flow, JDeveloper automatically connects the new objects into the flow.	
You can, however, create your own sequence flows where they are applicable and needed. For example, you may need to add a gateway with two conditional sequence flows and one default sequence flow.	
For more information about controlling process flow with sequence flows and gateways, see Chapter 6, "Modeling Business Processes with Oracle BPM".	
You can also change the style of the arrowed line used in a sequence flow and move a connected object from one sequence flow to another.	
To connect two objects with a sequence flow:	
The cursor changes to a + plus symbol when it is over an object where an outgoing sequence flow can start. For example, you can start an outgoing flow from a gateway object but not from a start event that already has an outgoing flow.	
As you drag the cursor, a line with an arrow at the end is drawn on the canvas. When the cursor is over an object where an incoming sequence flow can be placed, you should see a + plus symbol.	
By default the two objects are connected by an orthogonal style sequence flow.	
To change the style of a sequence flow:	
The existing style of the selected line is grayed out in the context submenu.	
To move a connected object from one sequence flow to another:	
The connected object in the sequence flow already has incoming and outgoing connecting flows.	
The new point must be located in another sequence flow in the same process. The target flow changes to blue to indicate that you are allowed to insert the dragged object into that new point.	
The selected object is disconnected from the original sequence flow and reconnected into the target sequence flow.	
Oracle BPM enables you to create and deploy draft processes.	
A draft process is a process that has one or more flow objects which do not have their implementation defined. Deploying a draft process enables you to test the parts of your process that have been completed without having to wait until all flow objects have been implemented. Draft processes are created by marking one or more flow objects within the process as draft.	
When you configure a flow object to be a draft, you cannot configure data associations for the flow object. If mark a flow object as draft that you have previously assigned data associations for, the data associations will be lost.	
You can define the implementation details of a draft flow object. However, it is not required. Draft flow object with no implementation defined will no generate errors when the project is validated.	
The documentation editor contains a toolbar and editor pane that enables you to enter the documentation for your process and for the flow objects within your process.	
Oracle BPM enables you to create two different types of documentation:	
Figure 5-6 shows the documentation editor.	
The documentation editor contains a toolbar and a text editor window. The tool bar allows you to select the type of documentation you want to create and allows you to select the language if you have defined additional languages for the product.	
For more information on the documentation editor toolbar see the online Help.	
You can add documentation to your process using the Documentation editor.	
To add documentation to a flow element in a process	
Using Oracle BPM Studio you can import and export process models created in other programs.	
Oracle BPM Studio enables you to import process models and convert them to BPMN notation. You can import process models in the following formats:	
When converting Visio or XPDL processes, you may need to modify the processes before conversion to ensure that they are converted accurately. See "Preparing Processes for Import into BPMN" in the Oracle Fusion Middleware Business Process Composer User's Guide for more information.	
Note: If the original file contains properties and artifacts that are not supported by BPMN, the unsupported elements are not converted and are omitted from the final BPMN process. For example, if the origin file contains loop characteristics on a regular activity, which is not supported in BPMN, the BPMN process will not contain the loop characteristics after conversion.	
To import a process model:	
You can select multiple files to convert simultaneously, but the must all be of the same type.	
After conversion, you can open the processes to see there content.	
Note: The converted processes are accessible via the application project menu.	
Using Oracle BPM Studio you can export BPMN processes to Oracle Tutor. These files are exported as Microsoft Word (.docx) files and contain Oracle Tutor formatting.	
To export a BPMN process to Oracle Tutor:	
The Oracle Tutor file is a step-by-step text version of the process. Each individual process file contains conversion notes for any objects that were altered during conversion.	
This part describes how to use Oracle BPM Studio to model your business processes. It includes a general overview of the application. It also contains a detailed description of Oracle's BPMN 2.0 implementation.	
This part contains the following chapters:	
This chapter describes how to use create and model business processes using Business Process Management Notation and Modeling (BPMN) within the Oracle Business Process Management Suite.	
This chapter provides specific information on about Oracle's implementation of BPMN 2.0. See Chapter 2, "Overview of Business Process Design" for a general introduction to BPMN using the Sales Quote example project. For general information about BPMN, including the formal specification, see http://www.bpmn.org.	
This chapter is organized around different types of tasks your business process must perform. It includes the following sections:	
This section shows you how to organize your process using swimlanes. It also describes how to use roles to determine which members of your business organization are responsible for performing the work of your process-based application.	
A key to designing a business process is determining the people/roles required to complete each of the tasks that require user interaction. Within your process, roles are used to model who is responsible for performing the work performed within your business processes. Roles allow you to define functional categories that represent job functions or responsibilities within your organization.	
The roles defined in you process are also referred to as logical roles. When your Oracle BPM project is deployed to the run time environment, these roles are mapped to LDAP roles that correspond to the users in your real-world organization.	
Roles are assigned to the horizontal swimlanes that display the roles responsible for completing activities and tasks within your process. Business Process Composer enables you to create and edit the required roles within your process and assign them to swimlanes.	
Using Oracle BPM Studio, you can also map roles to specific users using LDAP. Oracle BPM Studio also enables you to create more robust organizational models using organizational units, calendars, and holidays.	
Process analysts are generally responsible for determining what roles are required when designing a business process.	
The Sales Quote example project defines the following roles:	
See Chapter 2, "Introduction to the Sales Quote Example Project" for more information on the Sales Quote example project.	
Swimlanes are the horizontal lines that run across the process editor. All flow objects must be placed within a swimlane.	
Swimlanes can also be used to group flow objects based on the roles defined within your process. Swimlanes that contain user tasks must have roles assigned to them. Swimlanes visually display the role responsible for performing each flow object within your process. Additionally, you can have multiple swimlanes that are assigned to the same role.	
Swimlanes can make your process more readable when you must use the same role in different parts of the same process.	
When you create a new process, Oracle BPM Studio and Business Process Composer create a default swimlane. You can add additional swimlanes to your process as necessary. When adding interactive and manual activities to a process, you must assign a role to the swimlane.	
Note: You cannot remove the role for a swimlane that contains a start or end event.	
Figure 6-1 shows a simple process split across multiple swimlanes. In this example, the SalesRep role is assigned to the first swimlane. The role is indicated by the swimlane label placed at the front end of the lane. Because the Enter Quote user task appears inside the SalesRep swimlane, process participants assigned to the SalesRep role are responsible for performing this task.	
Figure 6-1 A Simple Business Process Split Across Two Swimlanes	
Swimlanes are contained in a pool in the process editor. The name of the process is the label of the pool, which appears immediately before the swimlane labels at the front end of the pool. As you add swimlanes to the process, the pool outline in the process editor will expand to accommodate all swimlanes.	
In a real-world business process, the combination of swimlanes and flow objects within them can be complex. The Sales Quote example project shown in Figure 2-1 is an example of a more complex process using multiple swimlanes.	
You can add new swimlanes and then add your flow objects or you can add a new flow object and create a new swimlane at the same time.	
For each swimlane, you can add a background color to the lane and insert an icon into the swimlane label.	
To add a new swimlane and role from a context menu:	
The new swimlane is created. The process pool is expanded to contain the newly added swimlane.	
To add a new swimlane and role as you add a new flow object:	
You must select either a user or manual task. Only these tasks can be used to create a new swimlane.	
The new swimlane is created. The process pool is expanded to contain the newly added swimlane.	
To add a background color to a swimlane:	
Note: To remove a background color, click the Clear icon next to the swatch.	
To insert an icon into a swimlane label:	
Note: To remove an icon from a swimlane label, click the Clear icon next to the Browse tool.	
Oracle BPM Studio enables you to integrate roles within a complex organization models based on organizational units, calendars and holidays.	
When editing a project or creating a project based on a project template in Business Process Composer, you can access the roles defined within the project. However, you cannot view or edit the organizational information defined within the project.	
Additionally, you can create new roles using Business Process Composer. These roles are incorporated as part of the overall organization information of the project.	
The update task is used to perform operation on one or more Human Tasks. For example, you can use the update task perform actions like reassigning a task to another user.	
Figure 6-2 shows the default notation for the update task.	
See Section 14.3, "Updating User Tasks Using Update Tasks" for more information on implementing the update task.	
This section describes the BPMN flow objects used to define the start and end of process.	
Start events are BPMN flow objects that define the starting point of a process.There are different types of start events that determine how process instances are created.	
End events, in contrast define the end point of a process. There are different types of end events that determine what happens when the process instance is completed.	
Note: In Oracle BPM, all BPMN processes must have at least one start and one end event.	
Since start events define the beginning of a process, they do not have incoming sequence flows. Likewise, end events cannot have outgoing sequence flows.	
However, except the none end and start events, start and end events can have input and output to processes.	
When you create a new process Oracle BPM Studio and Business Process Composer create a default start and end event. The type of start and end event created depends on the type of process you are creating.	
Table 6-1 shows the default start and end events for each process pattern.	
Table 6-1 Default Start and End Events for Each Type of Process	
Process Type	Default Start and End Event Types
---	---
Default process (Oracle BPM Studio only)	Message start and end event
Asynchronous service	Message start and end event
Synchronous service	Message start and end event
Manual process	None start and end event
See Chapter 5, "Working with Processes and the Process Editor" for more information on the different types of processes supported by Oracle BPM.	
Subprocesses contain none start and end events by default. These are the required start and end events and cannot be changed.	
Event subprocesses contain a message start and none end event by default. However, you can change the start event to reflect the type of event you are handling.	
Oracle BPM supports the following ways of triggering a process instance:	
You can define multiple start points in a BPMN process. Multiple start points enable you to specify multiple ways of creating a process instance, depending on which start event is used.	
Figure 6-3 shows an example process that contains both a message start and timer start event.	
Figure 6-3 Using Multiple Start Events within a Process	
This process can be started using a message event when called from another process or service. It can also be started based on a time interval if the process instance must be created automatically.	
Using multiple start events enables you to have multiple ways of starting a process without having to create two separate processes.	
End events mark the end of a process path. When you have only one end event in your process and the token reaches the end event, the process is terminated when the end event is reached.	
When you are using multiple ends it is possible for different tokens to take different paths within a process. In normal cases, all parallel paths must reach an end event before the process is completed.	
However, in the following special cases, a process instance can be terminated before all process paths have completed:	
The none start event is used when no instance trigger is defined. Process analysts can use the none start event as a placeholder when the necessary start event of a process is unknown or is defined and implemented later by process developers.	
Figure 6-4 shows the default notation for the none start event	
None start events are also used to specify the beginning of a process where the process instance is created by another flow object. Although the none start event does not trigger the creation of a process instance, it is required when triggering a process instance using the following flow objects:	
Like other start events, the none start event cannot have incoming sequence flows. It can only have default out-going sequence flows.	
Note: None events are always used to define the beginning of subprocesses.	
Figure 6-5 shows an example of the none start event within the Sales Quote example project. In this example, the none start event defines the start of the process. Additionally, since the process contains a user task implemented with the initiator pattern, the none start event triggers a process instance.	
Figure 6-5 The None Start Event within the Sales Quote Example Process	
In this example, the process instance is created by the Enter Quote user task. This user task is implemented using the Initiator pattern.	
The message start event triggers a process instance when a message is received. This message can be sent from another BPMN or BPEL process or from a service.	
Messages are types of data used for of exchanging information between processes. Just as data objects are used to define the data used within a project, messages are used to define the data used between processes or between a process and a service.	
Figure 6-6 shows the default notation of the message start event.	
Like other start events, the message start event cannot have incoming sequence flows. Message start events require a default outgoing sequence flow.	
You can exposed a BPMN process as service which enables other processes and applications to invoke the process. To expose a process as a service, your process must begin with a message start event. For more information see "Communicating with Other BPMN Processes and Services" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
Figure 6-7 shows a modified version of the Sales Quote process. Here, the process begins with a message start event which initiates the process instance.	
Figure 6-7 The Message Start Event within the Sales Quote Example Process	
The signal start event is similar to a message start event in that it is based on communication from another process or service. However, the message start event responds to a message sent to a specific process. In contrast, the signal start event is a response to a signal broadcast to multiple processes.	
Signals can be broadcast from a BPMN process using the signal throw event. Using a combination of signal throw and signal start events, you can invoke multiple processes simultaneously.	
The signal start and throw events are generally added to a process by process developers. For information on implementing the signal throw event, see "Introduction to Communicating Between Processes Using Signal Events" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
Figure 6-8 shows the default notation for the signal start event.	
The timer start event triggers the creation of a process instance based on a specific time condition. You can configure the timer start event to trigger a process instance based on the following:	
Figure 6-9 shows the default notation for the timer start event.	
The none end event is used to mark the end of a process path. When a token reaches a none end event, it is consumed. If there are no other tokens within the process instance, the instance is complete.	
The none event is used when your process is not required to perform any action after it completes. It can also be used as a place-holder by process analysts, to be changed later during implementation by a process developer.	
Figure 6-10 shows the default notation for the none end event.	
The none end event is always used to mark the end of a subprocess and event subprocess.	
Figure 6-11 shows an example of the none end event within the Sales Quote example process. In this example, the Sales Quote service task is used to perform the task of saving information about the sales quote to a database.	
Figure 6-11 The None End Event within the Sales Quote Example Process	
Since no other work must be performed when the token reaches the end of a process, a none end event is used. After all process tokens reach the none end event, the process instance completes.	
The end error event is used when your the end of a process is the result of some error condition.	
Errors end events are normally used with the error boundary event. The error boundary event is used to alter the process flow based on a specific error. This flow usually ends using an error end event. See Section 6.8.3, "Introduction to the Error Catch Event" for more information on using the error intermediate event.	
Figure 6-12 shows the default notation for the error end event.	
For information implementing the error end event, see the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
The message end event is used to send a message to another process or service when the process is completed. The message end event is always used with either a message start event or message catch event.	
Note: When creating a process that has multiple end events, you must ensure that any tokens that reach a message end event were created by a message start. For example, you cannot use a message end event to end a process instance initiated by a timer start.	
Figure 6-13 shows the default notation for the message end event.	
For information on how implement message throw events, see "Communicating With Other BPMN Processes and Services Using Message Events" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
The terminate end event is used to immediately terminate a process. When a terminate end event is reached, the process ends immediately. There is no error handling or additional clean up performed.	
Most business applications require interaction from process participants within your organization. This interaction can be as simple as entering information into a form or can involve multiple work flows and multiple users.	
This section describes the BPMN flow objects that are used to model how process participants interact with your business processes.	
Many end-to-end business processes require human interactions with the process. For example, humans may be needed for approvals, exception management, or performing activities required to advance the business process.	
Oracle Human Workflow provides comprehensive support for human participation by providing the following features:	
For more information see the Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
Human Tasks are a component of Oracle Human Workflow. Human tasks enable you to interleave human interactions with connectivity to systems and services within an end-to-end process flow. Human tasks are responsible for handling all interactions with users or groups participating in the business process. They do this by creating and tracking tasks for the appropriate users in the organization. Users typically access tasks through a variety of clients, including the Oracle BPM Worklist application, E-mail, portals, or custom applications.	
Human tasks enable process developers to define how process participants interact with process-based applications created using the Oracle BPM and SOA suites.	
Using Human Tasks, process developers can define the interface and workflow for end-user interaction by creating the following:	
Human Tasks are reusable services that can be used within other processes that require the same UI.	
Human tasks are created using Oracle BPM Studio.	
Note: In Business Process Composer, human tasks can be used in projects and project templates created in BPM Studio. You cannot create or edit Human Tasks in Business Process Composer.	
The user task represents a part of your process where a process participant is required to perform work. This can be a simple interaction, such as entering a form, or part of a more complicated workflow that requires input from multiple process participants.	
Figure 6-14 shows the default notation for the user task.	
In the Oracle BPM Suite, process participants interact with your business application using the Process Workspace. The specific user interface elements, including the screens and panels that process participants see, are created using Oracle Human Tasks.	
When designing a process, process analysts often only add the user task to a process diagram. Process developers then create the necessary Human Tasks and implement them as part of creating the overall process-based business application.	
When a token reaches a user task, the corresponding Human Task is performed. The token waits until the Human Task is completed before continuing to the next flow object.	
For information on how implementing user tasks, see "Using Human Tasks" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
Like other flow objects, the user task may contain incoming and outgoing data associations.	
User tasks may also contain incoming and default outgoing sequence flows.	
Note: Using Business Process Composer, you can only assign Human Tasks to User Task that were created as part of a project template in Oracle BPM Studio. You cannot create new human tasks or edit existing ones.	
In the Sales Quote demo process, the Enter Quote task, shown in Figure 6-15, represents the work of entering information about the quote.	
After the end-user enters information about the sales quote the process flow passes through the outgoing sequence flow to the next flow object in the process.	
Oracle BPM Studio enables you to add interactive activities to a process directly from the component palette. Interactive activities are short cuts based the task routing and approval features of Oracle Human Workflow. See "Getting Started with Human Workflow" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for more information.	
Note: Interactive activities are not available from the Business Process Composer component palette. To model user interaction with Business Process Composer, you can add a generic user task to your process. Interactive activities can later be implemented later by process developers using Oracle BPM Studio.	
Table 6-2 shows the interactive activities are available from the Oracle BPM Studio component palette:	
Table 6-2 Interactive Activities	
Pattern	Description
---	---
Complex	Uses a complex routing flow that is defined within the Human Task.
Management	Uses the management chain pattern where the assignee is set to the management chain pattern for the process participant belonging to the group or role assigned to the swim lane.
FYI	Bases assignment on the participant, role, or group defined in the swimlane. Similar to the user interactive activity, but the FYI activity does not wait until completion before continuing.
Group	Uses the group vote pattern. The assignee for the is automatically set to the role/group associated with the Lane. This interactive activity can only be added to swimlanes that are assigned to roles or groups.
Initiator	The initiator pattern is used to create a process instance.
Using Oracle BPM Studio, add Human Tasks to the business catalog. Process analysts can use these in Business Process Composer when working with projects created from project templates.	
Note: You cannot create or edit Human Tasks using Business Process Composer. Human Tasks are created using Oracle BPM Studio	
When adding the user task to a project template to be used within Business Process Composer, you should follow these guidelines:	
The manual task represents a task performed by process participants that is outside of the scope of Oracle BPM. Manual tasks are used as placeholders within your process to show work that is not managed by the BPMN service engine at run time. Additionally, manual tasks do not appear in the Process Workspace application.	
Note: Manual tasks are not managed by Oracle BPM. The Oracle BPM run time does not track the start and completion of the manual task.	
Figure 6-16 shows the default notation for the manual task.	
Manual tasks can only have one default incoming and one default outgoing sequence flow.	
Unlike most BPMN flow objects, the manual task does not allow you to manipulate data objects. Data objects associated with the previous flow element are passed through as-is to the next flow element.	
In the context of the Sales Quote example process, a manual task could be added for printing and signing a copy of a formal contract as shown in Figure 6-17.	
In this example, signing the formal contract is something that you may want to explicitly show as part of your business process. However, since it is not managed by the BPMN Service Engine, a manual task is used.	
Oracle BPM enables you to define interactions across business processes within a process-oriented application. The following sections describe the BPMN flow objects used to model communication between processes.	
This section describes how to use these flow objects to create process models using Business Process Composer. For information on how to implement these flow objects within a process-based application, see the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
The service task enables you to communicate with other processes and services. Process analysts can add the service task when they know that a process must invoke an external service or process.	
Process developers can then implement the necessary services. You can use the service task to invoke the following:	
The service task has similar behavior to the send and receive task pair and the message throw and catch event pair. The primary difference is that the service task is used to invoke processes and service synchronously. When the service task invokes a process or service, the token waits at the service task until a response is returned. After the response is received, the token continues to the next sequence flow in the process.	
See "Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management for more information on how to implement the service task with these types of processes and services.	
Figure 6-18 shows the default notation for the service task.	
Figure 6-19 shows an example of the service task used to save the finalized sales quote to a database.	
Figure 6-19 The Service Task within the Sales Quote Example Process	
The notification task is similar to the service task. It uses a predefined service to perform different types of notification. You can use expressions to determine the users or groups who will receive notifications generated by the notification task.	
For more information on implementing the notification task see Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
These different types of notification are:	
Figure 6-20 The Instant Message Notification Task	
Figure 6-23 The Voicemail Notification Task	
The call activity allows you to call a reusable process from within the current process. The process being called becomes a child process of the calling process. When calling a reusable process, the call activity of the parent process waits until the child process completes before continuing.	
Figure 6-25 shows the default notation for the call activity.	
Data objects of the parent process are not automatically available to the reusable process. Data objects must be passed to and from the child process using argument mapping of the call activity.	
Oracle BPM supports a type of process called reusable processes. In BPMN terminology, this is sometimes referred to as a reusable subprocess. Reusable processes allow you to create processes that can be called from other BPMN processes.	
Reusable processes allow you to create processes that can be called from other BPMN processes. For example all your processes may need to charge a credit card, so you can create a charge credit card reusable subprocess	
Reusable processes have the following characteristics:	
The following figure shows how control flow is passed to a child process and back to the parent process.	
The send task sends a message to a system or process outside the current process. Once this message is sent, the task is complete and running of the process continues to the next task in the process flow.	
The send task is frequently paired with the receive task to invoke a process or service and receive a response in return. The send and receive tasks are used to invoke processes and services asynchronously. If you are invoking a process or service synchronously, use the service task.	
Note: The send and receive tasks perform similar functionality to the throw and catch message events. However, you cannot use the send task to invoke a process that is initiated with a message start event.	
Figure 6-26 shows the default notation for the send task.	
For information on implementing the send task to invoke a process or service, see "Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
See Chapter 6, "Using the Send and Receive Tasks to Communicate Between Processes" for information on using the send and received tasks to communicate between processes.	
In contrast to the send task, the receive task waits for a message from a system or process outside the current process. Once this message is received, the task is complete and running of the process continues to the next task in the process flow.	
Figure 6-27 shows the default notation for the receive task.	
For information on implementing the send task to invoke a process or service, see "Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
See Section 6.4.6, "Using the Send and Receive Tasks to Communicate Between Processes" for information on using the send and received tasks to communicate between processes.	
You can use the receive task to trigger the start of a process. This is useful when you want to invoke a process from another process using a send task.	
To start a process using the receive task, the following conditions must be met:	
The following section describes how to use the send and receive tasks to communicate between processes.	
You can use the send and receive tasks to invoke another BPMN process and receive messages back from it. Processes that begin with a receive task and contain a send task are exposed as services that can be used by other process and services within an Oracle BPM application.	
Figure 6-28 outlines the basic behavior when using send and receive tasks to invoke a process and receive a response.	
Figure 6-28 Using the Send and Receive Tasks to Communicate Between Processes	
The following steps outline a possible scenario when using the send and receive tasks to communicate between processes.	
This is defined by the implementation for the send task.	
The receive task must have the Create Instance property defined. See Section 6.4.5.2.	
The message throw event enables you to send a message to another process or service.	
Figure 6-29 shows the default notation for the message throw event.	
The throw message event can be used to invoke the following types of processes and services:	
Process analysts may add message throw events to a process to define where a process must invoke another process or service. However, process developers are typically responsible for implementing the connectivity with other processes. Additionally, they are typically responsible for creating and implementing the services invoked by the message throw event.	
For information on how implement message throw events, see "Communicating With Other BPMN Processes and Services Using Message Events" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
Message throw events are often used to invoke other BPMN processes by calling the message start event of another process. See Section 6.2.3, "Introduction to the Message Start Event" for more information.	
Message throw events are also frequently used with message catch events to receive a response from the process or service invoked. However, they are always used asynchronously. After the message throw event sends a message to another process or service, the toke immediately moves to the next flow object of the process.	
If your process receives a response synchronously, you should use the service task to invoke the process or service. See Section 6.4.1, "Introduction to the Service Task" for more information.	
Note: The send and receive tasks perform similar functionality to the throw and catch message events. However, you cannot use the message throw event to invoke a process that is initiated with a message receive task.	
The message catch intermediate event enables you to receive a message from another process or service.	
Figure 6-30 shows the default notation for the message catch event.	
The message catch event is frequently used with the message throw event to communicate with another BPMN process. See Section 6.4.9 for information on how message throw events with message catch event.	
For information on how implement message throw events, see "Communicating With Other BPMN Processes and Services Using Message Events" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
You can use combinations of throw and catch events to invoke and communicate with other BPMN processes. When using a throw event to invoke another process, the following conditions must be met:	
If you invoke a synchronous process you should use the service task. See Section 6.4.1, "Introduction to the Service Task" for more information.	
Processes that begin with a message start and end with a message end event are exposed as services that can be used by other process and services within an Oracle BPM application.	
Processes invoked from another process are not considered child processes. This is important to consider when designing processes that use the terminate end event as a process end point. For example, a terminate event in the calling process does not terminate processes invoked with a message throw event	
Figure 6-31 shows the basic behavior when using throw and catch event to invoke a process and receive a response.	
Figure 6-31 Using Message Throw and Catch Events Between Processes	
The following steps outline a possible scenario when using the message throw and catch events to communicate between processes.	
This section describes how to use the business rule task to incorporate Oracle Business Rules within your business processes. See Chapter 16, "Using Business Rules" for information on working with Oracle Business Rules using Business Process Composer.	
Business rules are statements that describe business policies or describe key business decisions.	
The business rule task enables you to incorporate Oracle Business Rules within your process.	
Figure 6-32 shows the default notation for the business rule task.	
There are two primary use cases for incorporating Oracle Business Rules within your business process.	
Structural rules allow you to perform calculations used within your business process. For example, you could use a business rule to calculate a credit score.	
Operative rules are used to make changes to the flow of your process. A typical use of an operative rule is to check perform a check of rule conditions within the rules catalog. Then, as part of the output data association, assign a value to a data object using an expression.	
In this scenario, the business rule task is immediately followed by a gateway which is used to branch the process path according to the value of the data object.	
See Section 6.5.2.1, "The Business Rule Task in Context" for information on how an operation rule is used within the Sales Quote example project.	
Figure 6-33 shows an example of the business rule task within the Sales Quote example process.	
Figure 6-33 The Business Rule Task within the Sales Quote Example Process	
This section describes how to use sequence flows to define the behavior of your business process.	
Sequence flows define the order or sequence that work is performed within a process. Sequence flows connect the flow objects within your process and determine the path a process token follows through your process.	
Incoming sequence flows are the sequence flows that flow into a flow object. Outgoing sequence flows are the sequence flows that determine the process path out of a flow object.	
Most flow objects contain both incoming and outgoing sequence flows. Exceptions to this are start and end events. Start events can only contain outgoing sequence flows. End events can only contain incoming sequence flows. Additionally, event subprocesses do not have either incoming or outgoing sequence flows.	
Unconditional sequence flows represent the normal path between two flow objects. Default sequence flows are displayed as an arrowed line as shown in Figure 6-34.	
Figure 6-34 The Unconditional Sequence Flow	
Most flow objects can contain only one default out going sequence flow. Only parallel gateways can contain multiple unconditional sequence flows which represent the parallel paths of your process.	
Exclusive, inclusive, and conditional gateways cannot have unconditional outgoing sequence flows. These gateways use conditional and default sequence flows to determine the flow of your process.	
Conditional sequence flows are used to control the flow of a process based on certain conditions. Like unconditional sequence flows, conditional sequence flows are displayed by an arrow lined arrow.	
Figure 6-35 shows two outgoing conditional sequence flows and a default sequence flow.	
Figure 6-35 Conditional and Default Sequence Flows	
Not all flow objects can use outgoing conditional sequence flows. Only the following types of gateways can have outgoing conditional sequence flows:	
The conditions used within a conditional sequence flow are defined using expressions. See Section 26.1, "Introduction to Expressions in Oracle BPM" for information on using the expression editor to define expressions.	
Like conditional sequence flows, default sequence flows are used as outgoing sequence flows to exclusive, inclusive, and conditional gateways. Default sequence flows represent the path your process will take out of these gateways when none of the conditions evaluate to true.	
Default sequence flows are represented by an arrowed line with a tic mark on one end as shown in Figure 6-35.	
This section describes how to use gateways to control process flow and behavior.	
Gateways are flow elements that define the flow of your process. Gateways determine the path a token takes through a process. They define control points within your process by splitting and merging paths.	
When possible, gateways are used for paths that are exceptions to or deviate from the default path of the process.	
The following gateways require a split-merge pair:	
When you add one of these gateways to a BPMN process, Oracle BPM Studio automatically creates the split and merge flow objects.	
Although the merge portion of the gateway is required, you do not have to ensure that all paths out of the split return to the merge.	
Although it is possible to have process paths that split at a gateway without merging through the gateway, this is not usually good practice. For more details on the merge behavior of gateways, see the following sections for each gateway type.	
Note: If you delete the merge gateway from a process, the corresponding split is also deleted.	
The exclusive gateway enables you to split your process into two or more paths. However, the process only continues down one of these paths even if multiple outgoing sequence flows are present. Exclusive gateways can have conditional outgoing sequence flows and must have at least one default outgoing sequence flow.	
You can define expressions that are used to determine if your process continues down a conditional sequence flow. If your process has multiple outgoing sequence flows for an exclusive gateway, you can define the order in which they are evaluated. The order of evaluation is configured in the properties of the exclusive gateway.	
If you have an exclusive gateway where more than one conditional evaluates to true, the process will continue down the first conditional sequence flow determined by this order.	
Unlike other gateways, the exclusive gateway does not require a corresponding merge to be explicitly defined in your process after splitting.	
Figure 6-36 shows the default notation for the exclusive gateway.	
Figure 6-37 shows an example of the exclusive gateway used within the Sale Quote example process. Here, the exclusive gateway is used to evaluate whether a review of business practices is required.	
Figure 6-37 The Exclusive Gateway within the Sales Quote Example Process	
This evaluation is determined by the expression defined for the outgoing conditional sequence flow. If this evaluates to true, then the process flow proceeds down the Yes path. If it evaluates to false, then the process flow proceeds down the path of the default outgoing sequence flow.	
When a token reaches an exclusive gateway the outgoing conditional sequence flows are evaluated until one of them evaluates to true. You can define the specific order in which these are evaluated by configuring a property for the exclusive gateway.Based on this configuration, when the first conditional sequence flow evaluates to true, the token moves down this outgoing sequence flow to the next flow object. If you have multiple outgoing conditional sequence flow you can determine the order in which they are evaluated.If none of the outgoing conditional sequence flows evaluate to true, then the token moves down the default outgoing sequence flow. Therefore, you must define a default outgoing sequence flow for the exclusive gateway.	
The exclusive gateway can also merge incoming sequence flows. However, there is no synchronization with other tokens that may be coming from other paths within the process flow.	
Note: If other tokens arrive at an exclusive gateway merge, then they are also passed through as is. If you are synchronizing tokens or perform evaluations on incoming sequence flows, you should use a different type of gateway.	
The inclusive gateway enables you to split your process into two or more paths. Unlike the exclusive gateway, however, a token may flow down one or more of these paths depending on how the outgoing conditional sequence flows are evaluated.	
You can have multiple outgoing conditional sequence flows for an inclusive gateway split. You must define at least one default sequence flow.	
Figure 6-38 shows the default notation for the inclusive gateway split.	
Figure 6-38 The Inclusive Gateway (Split)	
Figure 6-39 shows the default notation for the inclusive gateway merge.	
Figure 6-39 The Inclusive Gateway (Merge)	
The inclusive gateway splits a process similar to the exclusive gateway, but enables tokens to proceed down multiple outgoing sequence flow. When a token arrives at an inclusive gateway, the expressions of its conditional sequence flows are evaluated.	
Next, a token is generated for each of the conditional sequence flows that evaluates to true. A token is generated for the default sequence flow only if none of the conditional sequence flows evaluates to true.	
These tokens are merged at the merge of the inclusive gateway. When a token reaches the merge gateway, it waits until all of the tokens generated by the split have reached the merge. Once all of these tokens have reached the merge of the inclusive gateway, the merge is complete and the token continues to the next sequence flow after the gateway.	
The parallel gateway enables you to split your process into two or more paths when you want your process flow to follow all paths simultaneously. The parallel gateway is useful where your process must perform multiple tasks in parallel.	
Figure 6-40 shows the default notation for the parallel gateway split.	
Figure 6-41 shows the default notation for the parallel gateway merge.	
The Sales Quote example process uses a parallel gateway during the approval stage of the process. Figure 6-42 shows how the parallel gateway is used to perform two process paths simultaneously.s	
Figure 6-42 Example of a Parallel Gateway	
In this example, two different process paths are executed at the same time.	
When a token reaches a parallel gateway, the parallel gateway creates a token for each outgoing sequence flow. The split of the parallel gateway does not evaluate outgoing sequence flows.	
You can also use the parallel gateway to merge process paths split by the parallel gateway. The merge of the parallel gateway waits for a token to arrive from each of the incoming sequence flows. After all tokens arrive, only one token is passed to the outgoing sequence flow.	
Note: You should design your process so that a token arrives for each incoming sequence flow for the merging parallel gateway. If you do not, your process can freeze if the merge is expecting tokens that do not arrive.	
The complex gateway splits a process similar to an inclusive gateway. However, it enables you to define a condition that determines if the instance can continue even if not all of the tokens have arrived at the complex gateway merge.	
For example, you can configure a complex gateway to continue after two or more tokens have arrived. If only two out of the possible conditions in the inclusive gateway evaluate to true the process instance continues to the next activity. However since the inclusive gateway immediately evaluates all the conditional sequence flows, all of the flow objects in these process paths are also run.	
Figure 6-43 shows the default notation for the complex gateway split.	
Figure 6-44 shows the default notation for the complex gateway merge.	
The event-based gateway enables you to branch your process flow based on the possibility that an event may occur. Depending on the context, this may be one of several types of events.	
The event-based gateway enables you to anticipate the possibility that several types of events may occur at a specific point in your process. It is similar to the exclusive gateway, but instead of choosing a path based on expressions, the event-based gateway chooses a path based on the occurrence of an event within your process.	
For example, in an order processing process, you may reach a point in your process when there is no stock currently available. The process may need to wait until stock is available, but cannot wait indefinitely. By using an event-based gateway, your process can wait for a message saying new stock has been received (using a message catch event) or it can continue if no message is received after a certain amount of time has passed (using a timer event)	
Figure 6-45 shows the default notation for the event-based gateway.	
The event-based gateway is different than other gateways in that decisions about process flow are based on an event rather than data-specific conditions.	
The event-based gateway is composed of the following:	
When initiating a process using a message catch event, the process must be invoked using a message throw event.	
Generally only one timer event is used following an event-based gateway.	
You can use the receive task to initiate a process instance following an event-based gateway. However the process must be invoked from a send task within the calling process.	
Note: You cannot mix message events and receive tasks within the same event-based gateway.	
The target elements can only have incoming sequence flows from the event-based gateway. They cannot have sequence flows from other parts of the process.Although the event-based gateway enables you to plan that multiple events may occur in your process, within the process instance, only one event is triggered. When the first event in the event-based gateway is triggered, then the path that follows that event is followed.	
By default, when you add an event-based gateway to a process, it is created with a timer and message catch event.	
Note: If you delete an event-based gateway, any outgoing sequence flows are also deleted. However, the associated events are not deleted.	
You can also use an event-based gateway at the beginning of a process to create a new process instance. This is similar to having multiple start events within a process.	
To enable an event-based gateway to create a new process instance, you must ensure the following:	
Although the event-based gateway can be used to create a new process instance, it does not accept data input from another process. Any data that must be passed to the process instance must be configured using the target events.	
This section describes intermediate events and describes how to use them to control the flow and behavior of your process.	
Unlike start and stop events, intermediate events occur during the flow of your process.	
There are two types of intermediate events:	
Normal flow events occur within the normal flow of your process.	
Boundary events trigger an interruption with your process. Boundary events are associated with flow objects and can be configured to interrupt their normal behavior.	
Boundary events behave similar to sequence flows in that they are used to determine the path a process takes between flow objects.	
Boundary events can be divided into two types: interrupting and non-interrupting.	
Timer catch events enable you to control the flow of your process using a time condition. Possible uses of the time catch event include:	
Figure 6-46 shows the default notation for the timer catch event.	
You can use timer event as boundary events on an activity. Timer events can be defined as either interrupting or non-interrupting boundary events.	
When an interrupting timer event fires, the token leaves the main process flow to follow the flow the timer defines. The flow that an interrupting can return directly to the main process flow.	
When an non-interrupting event fires, a copy of the token is created and passes through the flow the timer event defines. The flow that a non-interrupting event defines cannot return to the main process flow.	
Error catch events are intermediate events used to handle an error that occurs within your process flow. Error catch events are always used as boundary events and can be attached to the following:	
Error catch events are always interrupting, meaning that they interrupt the normal flow of a process.	
Figure 6-47 shows the default notation for the error catch event attached as a boundary event on a service task.	
Figure 6-47 The Error Catch Event as a Boundary Event on a Service Task	
When a service or process fails with an error, the error catch event triggered. This causes the process flow to follow the path of the outgoing sequence flow of the error catch event.	
You can use this flow to define how you handle the error. This is generally handled in two ways:	
Note: If the boundary event is non-interrupting, the boundary flow cannot return to the main flow.	
In Oracle BPM, subprocesses are embedded subprocesses. Subprocesses are contained as part of the parent subprocess. Subprocesses must begin with a none start event and must end with a none end event.	
Subprocesses can be expanded or collapsed. Figure 6-48 shows how a collapsed subprocess appears within a process.	
Figure 6-48 Example of a Collapsed Subprocess	
Figure 6-49 shows how an expanded subprocess appears within a process. When a subprocess is expanded, you can edit the flow objects within. You can also click and drag the edge of the subprocess window to make the window larger or smaller.	
Figure 6-49 Example of an Expanded Subprocess	
Like other types of processes, subprocesses have start and end events and contain their own flow. A subprocess must begin with a none start event and end with a none end event. Subprocesses do not contain swimlanes.	
Subprocesses also behave like activities. They can have incoming and outgoing sequence flows. They also contain data associations that define the data objects used within the subprocesses.	
Subprocesses can also contain timer, message, and boundary events.	
If necessary, your process can contain nested subprocesses. However, you should use nested subprocesses only when necessary to make your process more readable.	
The flow objects within a subprocess cannot have sequence flows that connect to flow objects outside the subprocess.	
Like other flow objects, subprocesses have incoming and outgoing sequence flows.	
Figure 6-50 show an example of a subprocess. In this example, a subprocess is used to group the service task used to process a sales quote.	
This section describes how to use the script task to change the values of data objects within your process.	
The script task is used to change values of data objects within your process. The script task is used when you want to model this explicitly this within your business process or when you must change the values of data objects outside of another flow object. It is often used to set initial values of data objects at the beginning of a process.	
Figure 6-51 shows the default notation for the script task.	
Script tasks are generally added to a process by process developers who are responsible for defining the behavior of data objects within a process and process-based application.	
Figure 6-52 shows two examples of the script task used at the beginning of the Sales Quote example process. The Sales Quote example process uses a script task to set initial values for data objects at the beginning of a the process and to set values for several business indicators.	
Figure 6-52 The Script Task within the Sales Quote Example Project	
Project data objects are data objects that you define in a project, all the processes in that project have those data object defined, though the value changes according to the process using them. In addition, the engine stores the value of those marked as business indicators to the process analytics databases if the project is configured to use them.	
Figure 6-53 shows the data associations used to set initial values for the business indicators.	
Figure 6-53 Data Associations Used by the Set Business Indicators Script Task	
As with other flow objects that accept data associations, you can use expressions to change the values of data objects. Figure 6-54 shows how an expression is used to alter the value of the discount project variable.	
Figure 6-54 Expression Used to Change the Value of Discount Project Variable	
You can measure process performance using measurement marks. Measurement marks enable you to measure a business indicator of type measure at a certain point in the process or in a section of the process.	
For more information on using measurement marks and the Process Analytics database, see "Using Process Analytics" in the Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.	
A measurement mark stores the following data into the Process Analytics databases:	
You can use one measurement mark to measure multiple business indicators.	
When storing the value of a measure business indicator, the BPMN Service Engine also stores the value of the dimensions you defined in your process. Later on, when you build the dashboards to monitor your process, you can use these dimensions to group the values into different categories. For example, in the Sales Quote process you might want to view the total amount of quotes approved by region.	
The types of measurement marks you can define are:	
You can add measurement marks to your business processes by dragging the from the component palette to the process editor canvas.	
To add a single measurement mark to a process:	
Note: You can measure multiple business indicators in the same measurement mark.	
Note: If you do not select a business indicator, then this measurement mark only stores the value of the default business indicators. If you want to add a business indicator without leaving the Measurement Mark Properties dialog, then you can click the New button under the Selected list.	
This section describes how to use Guided Business Processes in Business Process Composer.	
Guided Business Processes provide a guided visual representation of a process flow, improving the user experience by providing process participants with an encapsulated hierarchical view of the business process.	
Guided Business Processes enable process designers to direct process participants to complete a business process through a set of guided steps associated with the process. By following the steps outlined in a Guided Business Process, process participants require less training to complete a business process, and the results of the process are more predictable.	
A Guided Business Process is modeled as an activity guide that is based on a business process. The Activity Guide includes a set of Milestones. A milestone is a contained set of tasks that the process participant has to complete. A milestone is complete when the user successfully runs a specific set of tasks in the milestone.	
Each milestone is a specific set of human workflow tasks. Each human workflow task is itself a task flow that may require the collaboration of multiple participants in various roles. Depending on the nature of the task flows, a participant may save an unfinished task flow and resume it at a later time.	
Using Business Process Composer, you can configure Guided Business Processes and add milestones to them.	
To configure the activity guide for a project:	
Possible values are:	
Possible values are:	
To Create a New Milestone:	
To Add a User Task to a Milestone:	
This chapter describes how to use	
This chapter includes the following sections:	
Using Oracle BPM, you can create an organizational model that mimics your real world organization. During deployment of your project, the components of the modeled organization are mapped to your real-world organization.	
In Oracle BPM, organizations are composed of the following components:	
Organizations are defined at the project level. You can export organizational information to be used within other projects.	
Note: You cannot create organizational charts, calendars, or holidays using Business Process Composer. You can define roles and assign them to swimlanes.	
The organization enables you to create and edit the components within an organization. It contains tabbed pains for each of these components. Figure 7-1show an example of the Organization editor with the Roles tab selected.	
Allow you to define areas of responsibility that represent job functions or responsibilities within your organization. If your process-based application requires human interaction, you will have to define at least one role within your project.	
Roles are abstract and help define and mimic responsibilities of an individual in the Enterprise. They need to be mapped to Participants.	
The Order demo example process defines several roles including: Approvers and Sales Rep. These represent the types of people that perform the work within your process rather than specific people within your organization. Roles are assigned to the vertical swimlanes that show graphically the roles responsible for completing activities and tasks within your process. Roles also contain members which correspond to the end users responsible for using the actual process-based business application.	
An organizational chart defines the structure of your organization. Each project contains one organizational chart that can be divided into multiple organizational units that reflect the structure and hierarchy of an organization.	
Organizational units define the structure of your organization An organizational chart contains one top level and may contain multiple levels of nested organizational units. Figure 7-2 shows how an organization can be structured using organizational units.	
Figure 7-2 Example of Nested Organizational Units	
In this example, MyCompany is the top-level organizational unit. Beneath MyCompany are various levels of nested organizational units.	
For each organizational unit, you can assign members that represent the people within your organization. These are defined in Oracle WebLogic Server and are assigned using the Oracle Identity Service.	
The following: members can be defined:	
Calendars define when the resources in your organization are working. They allow you to define the following:	
You can specify a calendar rule for each organization unit. This allows you to model how your organization is structured across time zones and geographical regions.	
You can define an optional holiday rule for each calendar rule in your organization. Holidays allow you to define the non-working days for a calendar rule. These can be viewed as exceptions to the normal working days you define in a calendar rule.	
You can define two types of holidays:	
The following sections describe how to create and edit roles.	
You can create roles to define who is responsible for performing the activities and tasks within your process. User tasks require you to define roles before you can add them to a process model.	
To create a new role:	
Adding members to a role allows you to define what members of your real-world organization are responsible for performing the activities and tasks within your process. Before performing this task, you should ensure that you have configured a connection to your application server.	
Note: Before performing this task, you should ensure that you have created an Identity Service connection.	
To add members to a role:	
The following sections describe how to create and edit the components of an organization.	
You can create multiple organizational units within an organization.	
To create an organizational unit:	
This defines the top-level organizational unit.	
You can repeat steps 6 and 7 if you need to add additional levels to your organization.	
You can create calendars that can be assigned to an organizational unit.	
To create a calendar:	
You can create holiday rules that can be assigned to a calendar.	
To create a holiday rule:	
This chapter describes how to handle the information in your process using data objects and project data objects. It also shows you how to pass that information along the process and how to transform it when necessary.	
This chapter includes the following sections:	
Generally processes access and store information. Often the process flow is based on the value of this information. In other cases this information is the result of running the tasks in the process.	
Oracle BPM supports the following data structures to keep track of this information:	
Additionally, you can pass information between the different elements of a process using data associations. Data associations enable you to map the values of project and process data objects to the input and output arguments of the flow object implementations.	
The Structure window shows the different data structures in your project: data objects, project data objects, and business indicators. For callable process it also shows arguments.	
Figure 8-1 Shows the Structure window for a process that defines business indicators and process data objects.	
Basic data objects are data objects defined using the basic types. For example, Int, Bool or String.	
Complex data objects allow you to group data. Complex data objects are defined using business objects. See Chapter 13, "Modeling Business Objects" for more information on how to define business objects.	
Business objects allow you to create data structures based on basic data objects. For example, you can create a complex data object called employee that contains different data types for employee name, id, and salary.	
The structure of complex data objects is the same for all the process instances of a process. However the data they contain generally varies between the different instances of the process.	
Figure 8-2 shows the relationship between basic data objects and complex data objects.	
Figure 8-2 Basic Data Objects versus Complex Data Objects	
The main elements of a business process are tasks and information related to those tasks. The information of a process may change as you run the process. This information defines the state of a process at a given time.	
This information determines how the process behaves for a particular instance. According to the value of this information the instance may take one path or another. You may monitor this information or store it to an external system.	
The information of a process may change as the process runs. This information defines the state of a process at a given time.	
The Sales Quote example process uses the following information:	
Oracle BPM uses data objects to store the information related to the process. The value of these variables may or may not change as you run the process.	
Oracle BPM data objects have the following characteristics:	
Data objects store information related to each process instance you create. The value of these data objects is different for every instance in the process. However the structure of the data object is the same for all process instances.	
When you define a process you must define the data object to store information. You must also define in which part of the process you assign a value to these data objects. The value of data objects may come from the user input, from external systems or might be calculated based on other data objects.	
When you create an instance, the Process Engine assigns Null as the default value for all the data objects defined for that process. Later on the activities in the process assign values to these variables.	
In the purchase order process each order has its own total amount, payment type and customer ID. You can model this data by defining data objects that store this process information.	
You can set the type of a data object to the following data types:	
Note: The binary data type is only used to map elements of an XML schema type. You cannot perform any operations with binary data types. You can only pass them between different components and flow objects.	
If you configure a data object to initialize automatically the BPMN Engine assigning it a default value. The default value varies according to the type of the data object.	
Table 8-1 shows the default values for the supported data types.	
You can add new process data objects to the process you are working on. You can also edit or delete them.	
Typically the services in your process modify the value of the data objects in your process, but you might assign them an initial value, or change their value during the process.	
To add a process data object:	
To use a complex type, select <Component>.	
The Browse Types dialog appears.	
To locate a type, enter the name in the Search text box. If the type does not exist, the name you typed appears in red.	
The Browse Types dialog closes and the complete name of the type you selected appears in the field next to the Browse Types button.	
Note: You can also add process data object from the Data Object tree in the Simple Expression Builder, XPath Expression Builder, and Data Association Dialog.	
You can modify the name and type of an existing process data object.	
To edit a process data object:	
A dialog to edit the data object name and type appears.	
You can delete a data object that you do not need or use.	
To delete a data object:	
You can assign values to process data objects using a script task.	
To assign a value to a process data object:	
See Section 8.13, "Introduction to Data Associations" for information on how to define a data association.	
See Section 8.14, "Introduction to Transformations" for information on how to define a transformation.	
Some data, like the status of the process, applies to all the process you define. You can use this data to trigger an event based on its value, or to provide it as input to a service. In both cases the process flow depends on the value of this data.	
Oracle BPM tracks this data using a predefined set of activity instance attributes. You can access these activity instance attributes in the same way you access regular data objects, but you cannot assign them new values.	
You can access activity instance attribute from the following components:	
Table 8-2 provides detailed information about the activity instance attributes available for the different elements of a process.	
Table 8-2 Activity Instance Attributes	
Name	Type
---	---
state	String
In complex gateways	
loopCounter	Int
loopCounter	Int
numberOfInstances	Int
numberOfActiveInstances	Int
numberOfCompletedInstances	Int
numberOfTerminatedInstances	Int
activationCount	Int
Some process elements support activity instance attributes. You can use these activity instance attributes to control the flow of a process. Generally the Process Engine assigns the values of activity instance attributes, however some of them require you to assign them a value.	
You can define data objects for a certain subprocess. These data objects are available only when the subprocess is running. When the instance leaves the subprocess the value of subprocess data objects is lost.	
Using subprocess data objects is a good practice because:	
From within a subprocess you can access process data objects and subprocess data objects. If the name of a subprocess data object matches the name of a process data object, then when you access the data object you obtain the value of the subprocess data object.	
You can add new project data objects to subprocesses. If necessary you can edit or delete them.	
You can add data object to a subprocess. You can only access this data objects from within the subprocess.	
To add a data object to a subprocess:	
The expanded node shows the subnodes Activities, Events and Gateways.	
To use a complex type, select <Component>.	
The Browse Types dialog appears.	
To locate a type, enter the name in the Search text box. If the type does not exist, the name you typed appears in red.	
The Browse Types dialog closes and the complete name of the type you selected appears in the field next to the Browse Types button.	
You can modify the name and type of an existing subprocess data object.	
To edit a data object in a subprocess:	
The expanded node shows the subnodes Activities, Events and Gateways.	
A dialog to edit the data object name and type appears.	
You delete a subprocess data object that you do not need or use. If there are flow objects in your subprocess that use the removed data object, then you must remove these references manually.	
To delete a data object from a subprocess:	
The expanded node shows the subnodes Activities, Events and Gateways.	
The processes in a BPM project often have a set of data they share. For example, the Purchase Order process and the Request Approval process may both track the value of the employee that created the request, or the priority of the request. The value of this data is different for every instance in each of those processes, they only share the necessity to keep track of that data.	
Project data objects allow you to ensure that all the processes in a certain project keep track of a set of data. Then each process has to assign and update the value of this data.	
The main benefit of defining project data objects is that after publishing your project you can configure Process Workspace views to show the values of those variables. This is only possible if you use project data objects.	
Another benefit is that if you change the definition of a data object, then you only have to do it one time, as opposed to having to make those changes in all the processes in the project that define the same data object.	
Note: It is not advisable to change the data type of a project data object after deploying a BPM Project. This can cause problems when the Process Workspace tries to render the value of the instances created before changing the data type.	
Note: Avoid naming a project data object with the same name used for a process data object. If you name a process data object and a project data object with the same name, then the data associations editor does not allow you to access the project data object.	
When you mark a project data object as a business indicator the Process Engine stores its value in the Process Analytics databases. You can use this information to monitor the performance of your business processes.	
For more information about Process Analytics, see Chapter 11, "Using Process Analytics".	
You can add new project data objects to the project you are working on. You can also edit or delete them.	
To add a project data object:	
Note: You cannot use the name of existing process data objects.	
Available types are: String, Int, Real, Decimal, Bool, Time.	
Note: You can also add process data object from the Data Object tree in the Simple Expression Builder, XPath Expression Builder, and Data Association Dialog.	
You can modify the name and type of an existing project data object.	
To edit a project data object:	
A dialog to edit the project data object properties appears.	
You can delete a project data object that you do not use or need. If there are processes in your project that use the deleted project data object, then you must remove these references manually.	
How to delete a project data object:	
You can assign a value to a project data object using a script task.	
To assign a value to a project data object:	
See Section 8.13, "Introduction to Data Associations" for information on how to define a data association.	
See Section 8.14, "Introduction to Transformations" for information on how to define a transformation.	
You can use arguments to pass data between the different components in a process.	
A component may require you to provide certain data when you invoke it. To pass this data you use input arguments.	
When you run a component, it provides it results through its output arguments.	
The process components that may have arguments are:	
When you name a process data object, a project data object or an argument, you should respect the following rules:	
The scope an access varies according to the structure used to store information:	
Data associations are used to pass the information stored in data objects in the following contexts:	
Table Figure 8-4 lists the flow objects where you can define data associations. It also lists the objects implemented.	
Table 8-3 Flow Objects that Accept Data Associations	
Flow Objects	Implementation
---	---
Message start and end events	Services and other BPMN processes
Message throw and catch events	Services and other BPMN processes
Send and receive tasks	Services and other BPMN processes
Script tasks	Do not contain an implementation, are used to pass data objects through data associations.
User tasks	Oracle Human Tasks
Business rule tasks	Oracle Business Rules
Service Tasks	Services and BPMN processes
Error events	Exception
Signal events	Event
You can use data associations to define the input and output from a flow object to an external service or process.	
It is important to note that although the inputs and outputs are defined in the data associations for a flow object, the defined values are passed to the implemented systems and services.	
You can use expressions to evaluate and change the input and output values	
The data associations editor enables you to configure the input and output values passed between a flow object and a its implementation.	
Figure 8-5 shows the data association for the Enter Quote user task in the Sales Quote example.	
Table 8-4 describes the different areas of the data association editor.	
Table 8-4 The Data Association Editor User Interface	
UI Area	Description
---	---
Input Tab	Contains text boxes that display the data objects assigned as inputs to the service or process implemented in the flow object. Next to each text box is an icon that launches the expression editor
Output Tab	Contains text boxes that display the data objects assigned as outputs from the service or process implemented in the flow object.
Flow Object Tree	Contains an Arguments node that lists all the expected argument. According to the tab you selected it lists input or output arguments. You can expand complex data objects to map to specific basic data objects within a complex data object.
Data Objects Tree	Displays all the data objects. This tree contains process data objects, predefined data objects and project data objects.You can expand complex data objects to map to specific basic data objects within a complex data object.
You can use XSL transformations to transform:	
You can combine the use of transformations with the use of data associations only if you apply them over different arguments.	
Note: You must not use transformations and data associations to map the value of an argument simultaneously.	
When you define the transformation you can only use as sources data objects that are based on an business object created using an XML schema or type.	
You can edit the transformations you create using the SOA XLS Editor. See Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for more information on how to use the SOA XLS Editor.	
You can modify the values you use assign to input arguments and output arguments in the implementation of a flow object using XSL transformations.	
You can define an XSLT transformation to transform the data you pass to and from the implementation of a flow object.	
To Define a transformation:	
The Data Associations dialog appears.	
The Create Transformation dialog appears.	
The sources list only contains data objects that are based on a business object created using an XML schema or type.	
The source appears in the Selected Elements list.	
This chapter describes how to create a BPM project using a BPMN process stored in a BPA repository. Importing BPA projects to Oracle BPM enables Process analysts to develop a project using Oracle BPA and then hand it over to process developers for them to complete the implementation details using Oracle BPM Studio.	
This chapter includes the following sections:	
Oracle BPM Studio enables you to create a BPM project based on a BPMN process stored in a BPA repository.	
You can create and implement a BPMN process in BPA and then import it to Oracle BPM. This creates a BPM Project that contains the BPMN process and all of the components used to implement it, such as Human Tasks, Service Adapters and Mediators.	
Figure 9-1 shows a BPMN model of the Sales Quote example implemented in BPA.	
Figure 9-1 BPMN Model of the Sales Quote example process implemented using BPA Architect	
You can create a BPMN model using the BPA Architect application and import it to Oracle BPM. Oracle BPM Studio creates a BPM project that contains the BPMN process you selected and the components used to implement the activities in the BPMN model.	
Before importing a BPA project to BPM, ensure your BPA project respects the following rules:	
Table 9-1 shows how the different BPA constructs are translated to BPMN constructs when importing a project. Gateways and events remain the same. Note that since Oracle BPM Suite does not support pools and message flows, you can only translate one BPA tool at a time.	
Table 9-1 Correspondence Between BPA and BPMN constructs	
BPA Construct	BPMN Construct
---	---
Automated Activity	Service Task
Human Task	User Task
Rules Task	Rules Task
Notification Task	FYI Task
If you want to use a BPA project to create a BPM project in Oracle BPM, then you must configure your BPA project to access it from Oracle BPM.	
To configure a BPA project to use it from Oracle BPM:	
A validation dialog appears.	
A dialog that displays the progress of the conversion appears.	
Before following this procedure ensure that your BPA project is configured to use it from Oracle BPM. See Section 9.2.1, "How to Configure a BPA Project to Use It from Oracle BPM" for information on how to configure a BPA project to use from Oracle BPM.	
To create a BPM project from a BPA project:	
The New Gallery dialog appears.	
The Create Project from a BPA Project wizard appears.	
The Create BPA Blueprint Composite dialog appears.	
See Section 9.2.3, "How to Add a BPA Server" for information on how to add a BPA server.	
The Create BPA Blueprint Composite dialog closes and the selected server appears in the Server field.	
The Summary page appears.	
The BPM project you created from the BPMN model you selected from the BPA repository appears in Oracle BPM Studio.	
Note: You must configure the implementation of certain BPMN flow objects, such as gateways, business rules, and human tasks, in a BPM project created from a BPA project. Not doing so causes errors when building the BPM Project.	
You must define a BPA server from which Oracle BPM obtains the BPA project. After you define a BPA server you can reuse it for all the BPA projects that reside in that BPA server to import them to Oracle BPM.	
To add a BPA server:	
The BPA Server Connection dialog appears.	
The available location types are:	
The Connection Diagnosis field shows you a message with the result of the test.	
The BPA Server Connection dialog closes and the new connection appears in the BPA Servers list in the Create BPA Blueprint Composite dialog.	
Oracle BPM Studio creates a BPM project that contains the BPMN model you chose to import. The BPMN project contains an SOA Composite with the components used to implement the BPMN model such as Human Tasks, Service Adapters, and Mediators. These components also appear in the business catalog as any component in the SOA Composite. See Chapter 12, "Using the Business Catalog" for more information on how components are organized in the business catalog.	
Note that you must configure the implementation of certain BPMN flow objects, such as gateways, business rules, and human tasks, in a BPM project created from a BPA project. Not doing so, causes errors when building the BPM Project.	
After you create a BPMN process based on a BPA model you can make changes to the BPA model and then update the BPMN process.	
Oracle BPM Studio shows the difference between your local BPMN process and the BPMN process that results from importing the updated BPA model, using a graphic. After looking at the graphic you can choose to accept the changes or discard them.	
After updating a BPA model that you used to create a BPMN process, you can update the BPMN process to reflect the changes in the BPA process. The resulting BPMN process shows all the changes you made to the BPA process.	
To merge changes from an updated BPA model:	
The Process Differ dialog appears. Figure 9-2 shows an example of the Process Differ dialog.	
The updated BPMN process shows all the changes you made to the BPA model. The merge only affects the BPMN process and not the rest of the artifacts in the BPM project.	
If you want to revert the changes, close the BPMN process without saving the changes.	
This part describes how to use simulations and Process Analytics to analyze the performance of your business process.	
This part contains the following chapters:	
This chapter describes how to use simulations to predict the behavior of business processes under specified conditions, to verify that the output meets the metric objectives and identify any bottlenecks. It also explains how to run simulations to test the effects of changes on an existing process design.	
This chapter includes the following sections:	
After you define a simulation, you run it in Oracle BPM to determine the efficiency of that definition. Your simulation can reflect either real or anticipated data.	
Using the simulation capabilities of Oracle BPM, you can:	
Before you run a simulation, you must specify the behavior of each element of your process. To define a simulation you must create and configure the following elements in your BPM Project:	
Enables you to define the behavior for an individual process model. Note that, for any given process model, you can have multiple simulation models, so that you can mimic a variety of scenarios.	
Enables you to define the processes and resources that define a simulation scenario.In a simulation definition you specify the processes that participate in the simulation by selecting the simulation models associated to those processes. A process may have multiple simulation models defined for it. If a process has multiple simulations models defined, then you must select one of those models to use in the simulation definition.	
Simulations do not call each individual task within a process. For example, they do not run the service associated to a service task, variables are not assigned values, and external resources are not updated.	
However, simulations mimic the behavior of an activity using the following simulation variables that you can define using the Simulation Editor:	
Simulation models enable you to simulate the behavior of an individual process. They enable you to define how a process behaves as part of a simulation definition.	
You can define multiple simulation models for each process, creating different simulations based on different combinations of resource allocation and activity behavior.	
You can create the simulation model based on a process using the Simulation Wizard or create from scratch.	
To create a simulation model from a business process:	
The Simulation Wizard appears.	
The Simulation Definition wizard page appears.	
Available options are:	
To create and configure a simulation model:	
The Create Simulation Model dialog box appears.	
The simulation model appears under the Simulation Models node in the BPM Project Navigator and the Simulation Model editor opens.	
Note: The process simulation runs until the completes the specified duration or reaches the maximum number of instances.	
Depending on which type of activity you select, the following tab pages appear on the right of the Flow Nodes tree:	
Table 10-1 Options in the Simulation Model Flow Nodes Duration Page	
Option	Description
---	---
Constant	Specifies that the simulation model uses the value specifies in the Period property to calculate the completion time for all the activities in the process.
Uniform	Determines the period required to complete an activity consistently, taking into account the variation specified in the delta property. When you select this option, you are prompted to specify each of the following:
Exponential	Determines how long it takes to complete a simulated activity by specifying how many instances are completed within a specific period. When you select this option, you are prompted to specify:
Normal	Uses the Gauss Bell distribution to determine how long a simulated activity takes to complete. You must specify the mean and standard distribution. When you select this option, you are prompted to specify:
Real	Enables you to specify the amount of time required to complete a simulated activity for a specific time interval. When you select this option, you must specify:
Table 10-2 Properties in the Simulation Model Flow Nodes Cost Page	
Property	Description
---	---
Fixed Base Cost	Defines the cost required to perform the simulated activity
Fixed Base Cost Plus Resource Cost	Calculated based on the defined cost per hour and the time it takes the resource to execute the instance. This property is only available for user tasks.
If the activity contains boundary events, then the flows of the boundary events appear in this page. For more information about configuring boundary events, see Section 10.3, "Configuring Boundary Events".	
If the BPMN process you want to simulate contains boundary events, then you must specify the probability of these events happening.	
You can specify the probabilities for the different boundary events in the Outgoing Flows page.	
The way you specify the probability of a boundary event varies according to the type of the event:	
The probabilities of all the interrupting boundary message and error events for an activity are related. If you add these probabilities the result must always be 1.	
The simulation model editor displays a set of sliders to configure these activities. If you move a slider, the values in the other sliders automatically adjust. You can lock the values by clicking the lock icon next to the slider. When you lock a value the simulations model editor does not modify it when you move the other sliders. The simulation model editor forces you to leave at least two values unlocked.	
The probability of a non-interrupting boundary message or error event is independent from the probability of other events happening. This value of this probability can vary between 0 and 1.	
The simulation model editor displays a slider for each non-interrupting boundary message or error event. You can move this slider to specify any value between 0 and 1.	
To specify the probability of a boundary timer event, you must define the time interval between occurrences of the event. If the implementation of the timer event in the BPMN process uses an expression, then you must define a fixed time interval to use during the simulation. If the implementation of the timer event in the BPMN processes uses a fixed time interval, then redefining the time interval is optional because you can use the interval defined in the BPMN process for the simulation.	
The simulation model editor displays a table for interrupting timer events and another one for non-interrupting timer events. You can redefine the time intervals for each of the events using these tables.	
Figure 10-1 shows the Approve Quote user task with different types of boundary events. Figure 10-2 shows the simulation configuration page for the Approve Quote user task.	
Figure 10-1 The Approve Quote user task with multiple boundary events	
Figure 10-2 Outgoing Flows tab page for the Approve Quote task	
You can create a simulation definition to represent a simulation scenario for a group of simulation models. You can select which simulations model to run from the group of simulation model contained in the simulation definition.	
You can also create a simulation definition after you create a simulation model using the Simulation Wizard. For more information on how to create a simulation model and a simulation definition using the Simulation Wizard, see Section 10.2.1, "How to Create a Simulation Model from a Business Process".	
In a simulation definition, you can customize the following parameters to see how they influence the performance of your project:	
To create and configure a simulation definition:	
The Create Simulation Definition dialog box appears.	
The simulation definition appears under the Simulation Definitions node and the Simulation Definition editor opens. Figure 10-3 shows the Simulation Definition editor.	
Figure 10-3 Simulation Definitions Project Page	
Table 10-3 General Parameters for Simulation Definitions	
Parameter	Description
---	---
Start Time	Defines the start time for the simulation. This time is used only for logging. It is not used for scheduling purposes.
Duration	Defines the period the simulation runs. This interval is specified in months, days, hours, minutes, and seconds.
Let in-flight instances finish before simulation ends	If selected, simulation ends only when the specified number of instances completes. If unselected, simulation stops after the simulation duration is completed. At that point, all incomplete instances are shown in either “in-process” or “queue” status.
Specify the parameters in the Project page as described in Table 10-4.	
Table 10-4 Project Parameters for Simulation Definitions	
Parameter	Description
---	---
Process	Lists the processes that you can include in this simulation.
Model	For each process, lists the model specified in Section 10.2.2, "How to Create and Configure a Simulation Model"
Include in Simulation	Enables you to specify whether to include the process in the simulation
After you specified the parameters in the Project page, select the Resources tab.	
All processes included in the simulation share these resources. The cost of each resource is defined per hour.	
To define the resources click the following buttons:	
Figure 10-4 shows an example of the Resources page.	
Figure 10-4 Simulation Definitions Resources Page	
Note: Ensure you saved the changes before running the simulation. If you do not save the changes, then the simulation engine does not use them when you run the simulation.	
You can pause, stop, or run a simulation to the end. If you stop the simulation, you must restart it from the beginning.	
To run a simulation, you must have created simulation models and at least one simulation definition.	
To run a simulation:	
The simulation begins.	
The animation of the simulation appears in the project editor, and the results appear according to your specifications in the Simulation page.	
Note: If you place the mouse pointer over a column in the chart, a tooltip with the value of the activity or indicator appears.	
The simulation view enables you to configure and run a simulation. Figure 10-5 shows a simulation view.	
Figure 10-5 Example of a Simulations Page	
The toolbar on the Simulations view enables you to:	
Note: If you stop a simulation, you must restart it from the beginning.	
The toolbar on the Chart tab enables you to:	
You can display simulation results either as a chart or as a log file by clicking either the Chart tab or the Log tab in the Simulations window.	
The Log tab displays a log that tracks the movements of all the instances in the simulated process. Each line in the log contains the following information:	
The Chart tab enables you to select a type of chart to display the result of the simulation. You can configure this chart to display the resources to monitor. You can also select the units the chart uses to measure the resources use.	
In the Chart tab you can configure how to display the chart with the results of the simulation by configuring the following:	
Figure 10-6 shows the toolbar for a sample Chart page.	
To analyze the results of the simulation using a chart:	
They available types are:	
A Configuration dialog box appears.	
The available types of indicators are:	
The chart displays the variables and indicators you selected.	
You can generate a simulation report that contains the result of the simulation.	
To generate a simulation report:	
For more information on how to run a simulation, see Section 10.5.1, "How to Run a Simulation".	
The Simulation Report dialog box appears.	
You can specify which activities to include using the following options:	
You can individually select which indicators to display in the report, or select a type of indicator to display all the indicators of that type.	
The preview are shows an example of the graphic you chose.	
Oracle BPM Studio creates a directory using the name and location you selected. This directory contains an HTML file for each of the processes in the simulation.	
The HTML file contains:	
You can view the CSV files with the simulation data and resources data in a spreadsheet application.	
This chapter describes how to use and configure BPM Process Analytics to monitor the activity of the processes in your project. Process Analytics enable you to obtain performance and workload metrics of the processes in your project. You can use this metrics to make decisions about your process.	
This chapter includes the following sections:	
Business Process Analytics enables you to monitor the performance of your deployed processes. It measures the key performance indicators in your project and stores them in a database. Process analysts can view the metrics stored in the Process Analytics databases using Process Workspace dashboards or Oracle BAM, depending on the database you select to store the information.	
Process analysts can monitor standard pre-defined metrics and process specific user-defined metrics. Process developers can define process specific metrics using Business Indicators. Business Indicators are a special type of project data object that the BPMN Service Engine stores to the Process Analytics databases when it runs the BPMN processes.	
Process developers define the key performance indicators you want to monitor while developing your process. After publishing the application business analysts can use the default dashboards Process Workspace provide or create custom dashboards to view the metrics the BPMN Service Engine gathered while running BPMN processes.	
Process Analytics track:	
You can store the key performance indicators in your process using business indicators. By default the BPMN Service Engine stores the values of pre-defined measures and dimensions that are common to all BPMN processes.	
The supported pre-defined measures are:	
The supported pre-defined dimensions are:	
You can also define custom measures according to your needs. To define custom measures you use business indicators. The different types of business indicators enable you to measure specific values, keep track of categories or count the times an instance completes one or more activities.	
Oracle BPM provides you with a set of pre-defined cubes you can use to store the Process Analytics data. Cubes are a structure used to organize a database so that it enables you to analyze data in real time and view it from multiple perspectives.	
You can also choose to store these data to Oracle BAM or use both systems simultaneously.	
Process analytics track the time a process takes to complete and the average time each of the flow objects in that process take to complete.	
Process performance metrics track the time an instance takes to run that process from the start to the end event.	
Activity performance metrics track the time that passes from the moment the process instance arrives at a flow object until it moves to the next flow object in the process.	
Note that when the flow object invokes a synchronous service operation, activity performance metrics include the time it takes to run the synchronous service operation because the process instance does not leave the flow object until it receives an answer from the service. However when the invoked service operation is asynchronous, activity performance metrics do not include the time it takes to run the service operation because the process instance leaves the process after invoking the service without waiting for the service to complete.	
Process analytics track the number of instances sitting in each activity at a certain time. You can view the workload for a certain process, activity or instance.	
Oracle BPM takes snapshots at fixed intervals and stores the number of instances and the value of the business indicators at that moment. To obtain the current workload in the process you must select the information from the most recent snapshot.	
The following list describes the typical tasks you perform when you use Process Analytics in a BPM Project:	
Figure 11-1 shows the cycle the process analytics data goes through after deploying and running a BPMN process.	
When the BPMN Service Engine runs the activity in the process it stores data about the process to the BPM Cubes and Oracle BAM Data Objects. This data comes from the sampling points defined in the project. You can configure which processes in your project, or which activities in your project generate sampling points in these databases.	
You can configure the sampling point generation at the following levels:	
You can configure your project to generate sampling points for all the activities in the processes it contains or only for interactive activities. You can also choose not to generate sampling points for the processes in this project. BPMN processes use this value when they are configured to use the project default settings.	
By default, the project is configured to generate sampling points only for interactive activities.	
You can configure your processes to use a setting for sampling point generation different from the one defined by the project. Generally you do this to improve the performance of the project. For example, if your project contains a process that contains multiple activities and you are not interesting in obtaining process metrics for this process, then you might choose to configure the process to not generate sampling points. Another example is if you are interested in measuring only one process within your project, then you might choose to configure the project to not generate sampling points and configure that particular process to generate sampling points.	
By default, the process is configured to use the project sampling point configuration.	
You can also configure one or more of the activities in your process to use a sampling point setting different from the one used in your process. For example, you might choose to configure all the gateway activities in your process to not generate sampling points because you consider these metrics do not provide relevant information.	
By default activities are configured to use the process sampling point configuration. If in turn, the process is configured to use the project configuration, then the activities use the configuration the project specifies.	
You can configure the sampling point generation at the project level.	
To configure the sampling point generation of a project:	
Option	Description
---	---
Generate Only for Interactive Activities	Generate sampling points only for the user tasks in the processes contained in the project.
Generate for All Activities	Generate sampling points for all the activities in the processes contained in the project.
Do Not Generate	Do not generate sampling points for any of the activities in the processes contained in the project.
All the processes you create within a project use the sampling point configuration defined for that project, unless you edit the process properties to use a different configuration for that specific process.	
You can configure the sampling point generation at a process level.	
To configure sampling point for a Process:	
Option	Description
---	---
Inherit Project Default	The process uses the project sampling point configuration to decide if it generates sampling points.
Generate Only for Interactive Activities	Generate sampling points only for the user tasks in the process.
Generate for All Activities	Generate sampling points for all the activities in the process.
Do Not Generate	Do not generate sampling points for any of the activities in the process.
The BPMN Service Engine uses the defined sampling point configuration to decide whether to store the Process Analytics information, regardless of what the project sampling point configuration indicates. The activities in the process use the process sampling point configuration, unless you edit them to use a different configuration.d	
You can configure the sampling point generation at the activity level.	
To configure the sampling point generation for an activity:	
Option	Description
---	---
Inherit Process Default	The BPMN Service Engine uses the process sampling point configuration to decide if it generates sampling points for this activity.
Generate	Generate sampling points for this activity.
Do Not Generate	Do not generate sampling points for this activity.
Business Indicators are project data objects you use to store the value of the key performance indicators of your process. For your convenience business indicators have their own entry in the structure window.	
Key performance indicators represent relevant information in your process that can help you determine if your process is running as expected.	
The following are examples of common business indicators:	
You can use business indicators to store the value of an indicator you want to measure in your process, or to store a category you want to use to group the values you measured in your process.	
According to the type of information you want to store, you can define your business indicator as a:	
The type of business indicator determines the available data types you can use. Table 11-1 shows the available data types for each business indicator type.	
Table 11-1 Available Data Types for Business Indicator Types	
Business Indicator Type	Allowed Data Types
---	---
Dimension	
Measure	
Counter	
Measures	
Measures store the value of a key performance indicator that you can measure. Measures only allow data types that are continuous. You must use them with measurement marks. The deal amount and the discount percentage are examples of measures in the Sales Quote process.	
Dimensions	
Dimension store the value of a key performance indicator that you can use to group the values of the measure business indicators in your process. If you use a continuous data value to define a dimension, then you must add it at least one range. The Process Analytics database only stores the range value if the data value is a continuous one. The deal range and the industry type are examples of dimensions in the Sales Quote process.	
Counters	
Counters keep track of the number of times an instance completes a certain activity. You must use them with counter marks. The counter variable does not store the actual value, its value is always 1. The value that specifies the number of times an instance completes an activity is updated directly in the Process Analytics databases. To monitor the value of a counter business indicator, you must create a dashboard based on a counter mark that is configured to track this counter business indicator. For more information on how to configure counters, see Section 11.6, "Adding Counters to the Activities in a Process".	
Business indicators enable you to define the key performance indicators to measure in your project.	
To add a business indicator to a project:	
Available options are: Counter, Dimension, Measure.	
The Create dialog appears.	
The maximum length for the name is 28 characters.	
Note: The available data types vary according to the type of business indicator you selected. Table 11-1 shows the available data types for each business indicator type.	
For more information about default values, see Section 8.2.2, "Default Values".	
The Create Business Indicator dialog closes and saves the business indicator you created.	
You can use the business indicators that you added to your project to store data about the processes you want to monitor.	
Some business indicators require you to add different artifacts to your process to indicate the BPMN Service Engine must store their values in the Process Analytics databases.	
The BPMN Service Engine automatically stores the data in the dimension business indicators in the pre-defined and custom sampling points defined for your process.	
Pre-defined measures are always measured in every flow element that is configured to produce sampling points.	
You can add a measurement mark to specify the point, or process sections where you want the BPMN Service Engine to measure and store a custom business indicator of type measurement. For information on how to add a measurement mark, see Section 11.5, "Adding Measurement Marks to Processes".	
You must add a counter mark to those activities where you want the BPMN Service Engine to store the value of the counter business dimension. For information on how to add a counter mark, see Section 11.6, "Adding Counters to the Activities in a Process".	
Measurement marks enable you to measure a business indicator of type measure at a certain point in the process or in a section of the process.	
You can use one measurement mark to measure multiple business indicators.	
Measurement marks store the following data into the Process Analytics databases:	
When storing the value of a measure business indicator, the BPMN Service Engine also stores the value of the dimensions you defined in your process. Later on, when you build the dashboards to monitor your process, you can use these dimensions to group the values into different categories. For example, in the Sales Quote process you might want to view the total amount of quotes approved by region.	
The types of measurement marks you can define are:	
Measurement marks are associated to a flow element. Measurement marks of type interval start track the value of business indicators before running the flow elements that proceeds them. Counter marks, measurement marks of type interval stop and single measurement marks track the value of business indicators after running the flow element that precedes them.	
Single Measurements	
If you defined measure business indicators in your process, then you must add single measurement marks in those points in the process where you want to measure those business indicators. Single measurement marks indicate the BPMN Service Engine that at that point in the process it has to store the value of the measure business indicators associated to that measurement mark. The BPMN Service Engine also stores the values of the default process measures and the dimension business indicators at this point in the process.	
Interval Start and Interval Stop	
If you want to measure a business indicator in a section of your process, then you must use an interval start measurement mark to indicate the start of the section and an interval stop measurement mark to indicate the end of the section. These measurement marks enable you to measure the default business indicators or business indicators you defined in a a section of the process. Generally you use these measurement marks to monitor critical sections of your process. For example, you might want to monitor the amount of instances in a part of the process you identified as a bottle-neck.	
Figure 11-3 Interval Start and Interval Stop Measurement Marks	
You can use single measurement marks to measure business indicators in a specific point in your process.	
To add a single measurement mark to a process:	
Figure 11-4 show the Measurement Mark Properties dialog.	
Note: You can measure multiple business indicators in the same measurement mark.	
Note: If you do not select a business indicator, then Oracle BPM Studio displays a warning message. If you want to add a business indicator without leaving the Measurement Mark Properties dialog, then you can click the New button under the Selected list.	
Figure 11-4 Measurement Mark Properties Dialog	
When the BPMN Service Engine runs a single measurement mark, it stores the current value of the following business indicators in the Process Analytics databases:	
You can use measurement marks to define a section in your process in which to measure certain business indicators.	
Note: You must only define one interval stop measurement mark for each interval start measurement mark. Defining multiple interval stop measurement marks is not supported and may cause unexpected behavior.	
To measure a business indicator in a process section:	
Note: You can measure multiple business indicators in the same measurement mark.	
Note: If you do not select a business indicator, then Oracle BPM Studio displays a warning message. If you want to add a business indicator without leaving the Measurement Mark Properties dialog, then you can click the New button under the Selected list.	
The Start Measurements list replaces the Name text-field.	
The BPMN Service Engine stores the values of the measure business indicators associated with the pair of measurement marks to the Process Analytics databases. It also stores the values for the dimensions and default measures for that process section. The default measures that contain average values provide information about the average value for that section of the process.	
Counter marks enable you to update the value of the counter business indicators defined for your process.	
A counter mark may update multiple counter mark business indicators.	
When a token arrives at an activity that has a counter mark defined, the BPM Service Engine updates the value of its associated counters in the Process Analytics databases. Each time the BPM Service Engine updates a counter business indicator, it adds one unit to the current value.	
Note: The actual value of the counter variable is stored in the Process Analytics databases. You must not use the counter variable in your process to perform any calculations because its default value never changes. The value of the counter variable is always equal to 1.	
Generally you use counter marks for the following:	
Typically you define one counter business indicator for each of the process paths you want to monitor. Then you add counter marks in all the activities that are part of that process path. Finally you associate the counter business indicators that correspond to the paths that activity is part of, to the counter mark.	
You can add a counter mark to an activity to track the number of times the instance runs this activity.	
To add a counter to an activity in your process:	
For more information on how to add a business indicator, see Section 11.4, "Adding Business Indicators to Projects".	
You can add multiple counter business indicators to the same counter mark.	
When the BPMN Service Engine runs an activity with a counter mark, it increases the value of the counter business indicator associated to that counter mark by one, in the Process Analytics databases.	
You can delete a counter mark that you do not use or need.	
To delete a counter mark:	
After you remove the counter mark, when you right-click the activity it does not show the option Delete Counter anymore. Instead, it shows the option New Counter Mark.	
Because you removed the counter mark, when an instance passes through that activity the BPMN Service Engine does not increase the value of the counter business indicator in the Process Analytics databases.	
Analytics view identifier identifies the process analytics view that provides data across all the existing versions of a process. This identifier must be unique across all deployed processes. If you use the same identifier for more than one process, then the process deployment fails.	
You can define an analytics view identifier to use across all the existing versions of a process.	
To define the analytics view identifier:	
Oracle BPM provides a set of pre-defined cubes you can use to monitor the activity of your processes. These pre-defined process cubes are enabled by default.	
If cubes are enabled then when the BPMN Service Engine runs the processes in your project, then it populates the cubes. You can then view the data stored in these cubes using the dashboards provided by the Process Workspace application. For more information about how to build and view dashboards in Process Workspace, see Oracle Fusion Middleware User's Guide for Oracle Business Process Management.	
Process cubes enable process analysts to analyze the process metrics from different perspectives. The perspectives are defined when defining the process. Measures are numeric facts that you can categorize by dimensions. For example, in the Sales Quote example process, you must define a dimension for the product and a measure for the deal amount to analyze the deal amount by product.	
BPM Process Cubes support the following dimensions:	
They also support the following measures:	
Process cubes store the data related to activities in the Task Performance (BPM_CUBE_TASKPERFORMANCE	
) and Workload(BPM_CUBE_WORKLOAD	
) tables. It stores the data related to processes in the Process performance (BPM_CUBE_PROCESSPERFORMANCE	
) and Workload(BPM_CUBE_WORKLOAD	
) tables.	
The workload table contains data about the currently active activity and process instances. The Task and Process performance tables contain data about completed activities and processes respectively.	
The data for task and process performance is computed and persisted when an activity or task is completed. The data for workload is calculated and persisted using a timer based on the configuration of the cubeUpdateFrequency property. You can specify the value for the cubeUpdateFrequency property using Enterprise Manager.	
All the dimensions and measures are stored for the enabled out of the box sampling points. Selected dimensions, measures and counters are stored for user-defined sampling points.	
If you use BPM process cubes to monitor the performance of your project, then you must enable the generation of the process cubes at developing time. When you deploy your application Oracle BPM uses this configuration to enable BPM Process Cubes.	
To enable BPM process cubes in a Project:	
The BPMN Service Engine populates the pre-defined cubes each time it runs an activity or completes a process. The engine uses the sampling points configuration you defined to populate the cubes. If you configure a process not to generate sampling points, then the BPMN Service Engine does not store this information in the pre-defined cubes.	
You can Oracle BAM to monitor the activity of the process in your project, leveraging the capabilities of Oracle BAM while using Oracle BPM.	
You can use Oracle BAM with the pre-defined cubes, or you can choose to disable the latter.	
For more information about Oracle BAM, see Part X Using Oracle Business Activity Monitoring in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
Before enabling Oracle BAM in your project, you must configure Oracle BAM correctly. See chapter "Configuring Oracle BPMN Process Service Components and Engines" in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite, for information on how to configure Oracle BAM to work with Oracle BPM.	
When you deploy a BPM project, Oracle BAM automatically creates the custom and predefined BAM data objects for that BPM project.	
To enable Oracle BAM in a project:	
The BAM Adapter is labeled as eis/bam/soap	
. The JNDI name specifies the connection pool the BAM Adapter uses.	
The default path is /Samples/Monitor Express	
.	
When you run a process that has Oracle BAM enabled the BPMN Service Engine populates Oracle BAM database with information about the business indicators measured in that process. The BPMN Service Engine generates this information based on the Sampling Points preference you defined in your project.	
For more information, see What You Need To Know About Monitor Express Data Objects in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
This part provides a general introduction to the business catalog. It also provides detailed information on each of the components that you can store in the business catalog.	
This part contains the following chapters:	
This chapter describes how to use the business catalog to store and organize the components needed to implement the processes in your BPM Project. It also describes how the artifacts in your BPM project are represented in the business catalog.	
This chapter includes the following sections:	
The business catalog is a repository that stores the components you use to implement some flow objects in BPMN processes.	
The business catalog stores the following types of components:	
Depending on the component you can use them for the implementation of a specific activity or multiple flow objects or to define the data associations of a flow object.	
Table 12-1 shows which flow objects use each of the components in the business catalog for their implementation.	
Table 12-1 Flow Object Implementation	
Component	Flow Objects
---	---
Error	
Business exception	
Event	
Human Task	User task
Business Rule	Business rule task
Service Adapter	
Mediator	
BPEL Process	
Business Object	You can use them as arguments in the data associations of the following:
Depending on the type of component, the business catalog uses two different ways of storing them. You can divide the components by the way the business catalog stores them into the following categories:	
The business catalog stores a file with information about these components. When you open a BPM project, the business catalog reads the file it created to load the component.	
The following components are not synthesized:	
The business catalog generates the component structure dynamically based on an SOA component included in the SOA composite or an XML type or element. You cannot modify these components. Depending on the type of component they appear on a different predefined module. You cannot move the component to another module. To modify or store the component in another module, you must customize the service or the type.	
The business catalog does not store any type of file for synthesized components. It generates the structure of synthesized components dynamically based on the XML or SOA component they represent.	
You cannot modify synthesized components or move them to another module. Because these components are dynamically generated, they automatically reflect any change you make to the XML schema or SOA component they are based on.	
The following components are synthesized:	
The way you add a component to the business catalog varies according to the type of component.	
Note: If you add a component that references resources that are missing or corrupted, the business catalog shows this missing dependencies with an error node. The label of the node displays the path of the resource. For more information on the missing resource place the mouse over the node to display the tooltip, or build the BPM project. Building the BPM project enables you to find the component that requires the missing resources.	
You can organize the Business Objects in the business catalog into different groups using modules. Generally you group all the related components into a module.	
In the Sales Quote example you can create a module named Quotes to store all the components used to manage the information about the quotes used in the process.	
You can nest modules. Nesting modules enables you to create a hierarchical structure that reflects the organization of your components.	
In the Sales Quote example you might want to group all the modules that handle the information in the project into a single module. To do this you can create a module named Data that contains modules like Quotes and Contracts.	
Organizing components using modules has the following benefits:	
You cannot add Business Objects in the root level of the business catalog. You must always create a module where you can store your Business Objects.	
It is a good practice to name the modules using a descriptive identifier. This makes it easier to find a component and makes your project easier to understand for other developers.	
The business catalog contains the following predefined modules:	
These modules are a permanent part of the business catalog and you cannot remove or rename them. Studio does not allow you to create new top level modules with these names.	
You cannot create new modules within these predefined modules. Because the components stored in them are synthesized, you cannot rename them or move them to other modules.	
Figure 12-1 Custom and Predefined Modules	
The business catalog enables you to create new modules to store and organize the Business Objects in your project. You can add a module at the root level of the business catalog or within another module.	
You can create a new module to store the new components you create and the customized services and references.	
To add a new module:	
You can delete the custom modules in the business catalog. You cannot delete the predefined modules. When you delete a module, you also delete all the components within the module.	
You can delete those modules that you do not use or need.	
To delete a module:	
A confirmation message appears.	
When you delete a module, the module and the components within the module are removed from the business catalog.	
If there are any flow objects or components in your project that use any of the deleted components, then this causes errors when you build your BPM project.	
You can customize a synthesized type to change its name for a more descriptive name that helps process analysts and process developers understand the use of the component. When you customize a type you must also provide a user-defined module in which to store the customized type.	
You can customize a synthesized type to change its name and move it to a user defined module.	
To customize a synthesized type:	
The Create Business Object dialog appears.	
The synthesized type in the Types predefined module disappears and a new business object appears in the module you selected for the customized type.	
Oracle BPM Studio automatically replaces all the references to the synthesized type with references to the customized type.	
If you delete the customized type, then the synthesized type appears back in the Types predefined module.	
This chapter describes how to use Business Objects in a BPM Project. Business Objects allow you to manage the data in your process efficiently and enable you to reuse existing components. They reduce the complexity of your process making it easier to maintain.	
This chapter includes the following sections:	
Business Objects allow you to model and develop the business entities that are part of your process using the Object Oriented paradigm.	
Using Business Objects simplifies the management of the data in your process by encapsulating the data and business behavior associated with the business entity it represents.	
A business object is composed of a set of attributes and a set of methods. Attributes store the data related to the entity you are modeling. Methods manipulate the value of these attributes, or perform calculations based on their values.	
Typically Business Objects represent entities in an actual business, but you can also use them to encapsulate business logic that is not associated to any particular entity.	
Generally when your process contains a large number of data objects, you can group those that describe the same identity in a business object. For example, in the Sales Quote example you can group the following data in a Quote object:	
Using Business Objects to manage a group of related data reduces significantly the complexity of your process by replacing multiple process data objects by a single data object of the type of the business object you defined. Additionally it provides you other benefits described in the Section 13.1.2, "Benefits of Modeling Using Business Objects".	
In a Sales Quote example you can identify the following business entities:	
Each of these entities groups a set of highly related data. This data is represented in the attributes of an business object. The attributes define and describe the same business entity. The value of these attributes defines the state of the business object.	
The Business Objects you define in your BPM project are stored in user-defined modules in the business catalog. When you open a business object, its editor shows you its description and the attributes that compose it.	
Oracle BPM Studio provides an editor to view and edit the structure of a business object. The editor enables you to:	
Figure 13-1 shows the Business Object Editor editing a Quote object created manually.	
The way you create a business object determines its characteristics and functionality.	
The following are different ways of creating a business object:	
Using business objects to manage the data in your process provides you the following benefits:	
When you name a business object you should respect the following rules:	
Note: Oracle BPM Studio forces the first letter of the name of a business object to uppercase.	
You can add business objects to your BPM project to store data related to the processes it contains. The business objects you add are stored in the business catalog, for more information about the business catalog, see Chapter 12, "Using the Business Catalog".	
When developing a business object you can modify it, rename it, or delete them. You can also add documentation that helps you identify the functionality of the business object or describes how to use it.	
You can add business objects to the business catalog to model the business entities to store the data in your BPMN process.	
To add a business object:	
Note: You cannot repeat a name within the same module. However you can assign the same name to business objects in different modules.	
The business object appears in the business catalog. You can use this business object to define the type of the following elements in your BPMN process:	
You can modify an existing business object by:	
See Section 13.6.1, "How to Add a Business Object Attribute".	
See Section 13.6.2, "How to Delete a Business Object Attribute".	
See Section 13.6.3, "How to Document a Business Object Attribute".	
You can delete a business object that you do not use or need. If your project contains flow objects or data associations that use the deleted business object, then you must remove them manually.	
To delete a business object:	
A confirmation message appears.	
Oracle BPM Studio removes the business object from the business catalog. If there are any flow objects in your process that use the removed business object, then you must remove these references manually.	
You can add documentation to a business object for other process developers to understand its functionality and data structure.	
To Document a business object:	
See Section 5.6.1, "Introduction to the Documentation Editor", for details on how to create and edit documentation.	
You can use business objects to store data related to your process. To use a business object in your project, add a process data object to your process and set its type to the business object you created. You can update the information in this data object from any of the activities in the process.	
You can create a complex data object in your process that defines its type using a business object.	
To use a business object in a Process:	
See Section 8.3.1, "How to Add a Process Data Object", for information on how to add a process data object.	
Note: When selecting the type of the data object use the Browse More Types... button to display the complete list of types. Then select <Component> to display the list of available business objects.	
The data object you defined has the structure defined in the business object. The type of the data object is the name of the business object. For example, if you define a business object SalesQuote and then create a data object that uses this business object as its type, then the type of the data object is SalesQuote.	
You can assign values to the data objects that use these types using data associations and script tasks.	
You can create a business object based on an XML schema element or complex type. The XML schema element or complex type you use to create your business object has to be part of your BPM Project. You can add an XML schema that contains the element or complex type to your project, or you can use a use a type defined inline in a WSDL file. For the latter you must add the WSDL file to your project by adding an SOA Adapter of type Web Service.	
When you create a business object using an XML schema element, the selected element becomes an attribute of the resulting business object.	
When you create a business object using an XML schema element, the selected element becomes an attribute of the resulting business object.	
If you create a business object based on a schema contained in a WSDL file, then you cannot use the resulting business object as the type of an attribute of another business object.	
Before following this procedure ensure that the business catalog contains the XML schema you want to use as a base for your Business Objects.	
To add a business object based on an XML schema or complex type:	
The Create Business Object Dialog appears.	
You cannot modify or add attributes to the business object. The structure of the business object is based on the structure of the XML schema element or type.	
From the Create Business Object dialog you can add an XML schema to your project.	
To add an XML schema to your BPM project:	
The Type Chooser dialog appears.	
The Import Schema File dialog appears.	
The SOA Resource Browser appears.	
If the XML schema contains references to other types a dialog to confirm their import appears.	
The Browse Resources dialog closes and the Type Chooser dialog appears.	
Attributes store data that defines and describes the business object. The attributes in a business object are equivalent to instance variables in Object Orientation.	
In the Sales Quote example you can identify the following attributes in the Quote object:	
These attributes describe the product and are relevant to the process. The ID or SKU serves to identify the chosen product. The description is probably used to show the user what the product does. And the price is used to show the customer how much the product costs and later in the process to calculate the total amount due.	
When you define an attribute you must specify:	
Additionally you can define the following:	
The following table describes the supported data types for an attribute in a business object:	
Data Type	Description
---	---
Bool	True or false values
Int	Integer numbers
Decimal	Decimal numbers with defined precision
Real	Real numbers
String	Alphanumeric values
Time	Units of time
Interval	Intervals of time
Binary	Binary values (For example: images, files)
Array	A collection of elements of a specified data type
Complex Types	Other business objects
When you name a attribute of a business object you should respect the following rules:	
Note: Studio forces the first letter of the name of an attribute to lowercase.	
To model a business object you must add it attributes. These attributes store the data related to your process. You can add, modify and delete attributes as necessary.	
You can also add them documentation that describes the data they store and provides any necessary information to the user of the business object.	
To model a business object that you created from the start, you must add attributes.	
To add an attribute to an existing business object:	
Note: Another alternative for the previous steps is editing the business object and clicking the Add button in the Attributes section.	
To delete an attribute from an existing BPM Object:	
A confirmation message appears.	
You can add documentation to a business object attribute for other process developers to understand its functionality.	
To document a business object Attribute:	
The Documentation Dialog appears.	
See Section 5.6.1, "Introduction to the Documentation Editor", for details on how to create and edit documentation.	
You can share business objects between different projects by exporting them to a file and then importing them.	
You can choose to export a single business objects or multiple business objects. When exporting multiple business objects you can also export exceptions. The file that contains the exported business object has the extension .bob. If the business object depends on other business objects, then those dependencies are also included in the export file.	
You can import the business objects from the export file in any other project. When you import a business object, Studio also imports the module where it was stored if the module does not exist already.	
To export a business object:	
The Select Object File dialog appears.	
The exported business object file is stored to the selected directory.	
To export multiple business objects:	
The Choose Objects dialog appears.	
The business object or exception appear in the Selected list.	
The Select Object File dialog appears.	
The exported file is stored to the selected directory.	
To import business objects from a file:	
The Select Object File dialog appears.	
The business objects contained in the selected file appear in the business catalog.	
This chapter describes how the business catalog displays and handles human tasks. It also describes how to update a user task using the update task.	
This chapter includes the following sections:	
For detailed information on how to create, edit, and configure human tasks, see Chapter 28, "Designing Human Tasks in Oracle BPM".	
The implementation of user tasks requires you to define a Human Task. You can use an existing Human Task or define a new one.	
If your project contains Human Tasks, then they automatically appear in the business catalog under the HumanTasks predefined module.	
You can add new Human tasks to your project in the following ways:	
When you double click a Human Task component in the business catalog, Oracle BPM Studio opens the SOA Human Task editor. You can edit the Human Task using this editor.	
Figure 14-1 shows a Human Task component in the Sales Quote example.	
Figure 14-1 Human Task components in the Business Catalog	
At run time, when a token arrives at a user task control is passed from the BPMN process to the Oracle Human Workflow. Although both are part of Oracle BPM run time, control is not passed back to the BPMN process until the Human Tasks is completed.	
After the workflow is complete, control is passed back the BPMN process, any required data objects are passed back to the user task, and the token moves to the next sequence flow of the process.	
However human tasks are independent from BPMN processes. If you terminate a BPMN process while it runs a user task, the associated human tasks keeps running independently. For more information see Section 18.1.1, "Understanding the Relationship Between SOA Composites and SOA Components".	
If the process instance leaves the user task before the human tasks is completed, the human task continues running and can you can still access it. This is because human tasks are independent from the BPMN process. Any changes you make to a human task after the process instance left the corresponding user task, do not appear in the audit trail.	
Note: When you define a human task in BPM the callback is implicitly defined.	
Human task patterns allow you to use a predefined flow to create the Human Task. These predefined patterns contain standard process flows that are common to all business processes.	
Oracle BPM supports the following Human Tasks patterns:	
You can add a Human Tasks that uses patterns by selecting the specific user task in the Interactive Activities section in the Component Palette, or you can add a generic user task and when you create the Human Task select the pattern you want to use.	
For more information about Human Task patterns, see Chapter 32, "Using Approval Management".	
Update tasks enable you to update certain properties of specific user tasks in your process. You can choose to update a specific user task, all user tasks or to dynamically generate the ID of the user task to update using an expression. Update tasks do not require you to specify the taskId or the context.	
You can use user tasks to perform the update operations based on the status of your process or the different paths the process instance takes. Update tasks enable you to model the updating sequence in your business process making the process flow easier to understand.	
Update tasks enable you to change the value of some of the properties of the human task used to implement the user task. For a description of the properties involved in the different operations, see Section 28.2, "Creating a Human Task from Oracle BPM Studio".	
Update tasks support the following operations:	
You can update different parameters of user tasks from your business process using an update task.	
To update user tasks using update tasks:	
You can configure an update task to perform different operations over the user tasks you specify.	
To configure an update task:	
The available options are:	
For more information about the available operations, see Section 14.3.1, "Update Task Operations".	
This chapter describes the different service and reference components that you can use in Oracle BPM. It describes how these components appear in the business catalog and how the components in the business catalog relate to the SOA composite that defines these services and references. It also describes how to customize these components to make them easier to understand and more appropriate for business analysts.	
This chapter includes the following sections:	
Some flow objects in Oracle BPM require you to define a service or a reference to implement them. You can define services and references in the SOA composite in your BPM project.	
The business catalog displays the services, components, and references that appear in the SOA composite. When you add a new component in the Exposed Services or External References areas in the composite, it automatically appears in the corresponding predefined module in the business catalog.	
The following SOA components appear as services or references in the business catalog:	
Note: When you define a web service to implement a service task, message events, or send and receive tasks, ensure that the operations it contains do not define arguments of XML types defined within a WSDL. The arguments in the operations in the web service must be primitive types or types defined within an XSD file.	
Services are those components that you can use to implement certain activities and events in your BPMN process.	
The Services predefined module stores the components that display a service handle in the SOA Composite.	
You can use services to implement the following flow objects:	
References are the interfaces that you can use to define the interface of your BPMN processes.	
The References predefined module stores the components that display a reference handle in the SOA composite.	
You can use references to define the process interface using the following flow objects:	
If a service is asynchronous and contains a callback interface, then the component in the business catalog contains a callback inner component. The callback inner component groups all the callback operations in the service.	
After selecting the service component in the business catalog, you can view a list of the operations in the callback component in the Structure window.	
The implementation of message events and receive tasks configured to wait for a callback from the service only enable you to select an operation from the callback inner component of the corresponding service.	
Figure 15-1 shows a service with a callback interface in the business catalog.	
Figure 15-1 Service with Callback Interface	
Service adapters enable you to integrate with other applications and external services. Oracle BPM supports the use of service adapters to integrate your BPMN process with external applications, legacy applications, and external services such as FTP or databases.	
Oracle BPM supports service adapters for the following technologies:	
For a detailed description of service adapters see:	
When you add a SOA service adapter to the SOA composite of a BPM project, the service adapter automatically appears in the business catalog. The business catalog stores the SOA service adapters in different modules depending on the swimlane of the SOA composite where you added the SOA service adapter:	
Depending on the nature of the service adapter, the SOA composite enables you to add the components in the different swimlanes. For example, you must add a file adapter that contains a read operation in the Exposed Services swimlane, but if the file adapter contains a write operation, then you must add it in the External References swimlane.	
Figure 15-2 shows a SOA composite that contains a file adapter with read operation and a file adapter with a write operation. Note that the file adapter that contains the write operation appears under the Services predefined module in the business catalog, while the file adapter that contains the read operation appears under the References predefined module.	
Figure 15-2 Adapter Services in Oracle BPM	
The business catalog stores service adapters under the External module within the Services or References predefined modules. The service adapter is represented as a node. If you select a service adapter in the BPM Project Navigator, then the Structure window displays the operations it contains. If the service adapter is configured as asynchronous, then the Structure window also displays the callback inner object.	
Note: The operations in the service adapters that do not return output arguments may define an element structure Empty as the output argument. This element structure appears in the data association of the flow object that uses the service adapter. Defining output data associations is optional, so are not required to provide a mapping for this element structure.	
Oracle Mediator facilitates the communication among the components within a composite application. These components include BPMN processes.	
You can use Mediator in a BPM project in the following use cases:	
Figure 15-3 Mediator Components in the Business Catalog	
Figure 15-4 shows a BPEL process that invokes a BPMN process through a mediator. Note that the service handle of the mediator connects to the BPEL process and the reference handle connects to the BPMN process.	
Figure 15-4 BPEL Process Using a Mediator to Invoke a BPMN Process	
The Mediator Service	
When you add a mediator to the SOA composite the business catalog generates a mediator service.	
This component represents the mediator service. It contains the operations you invoke to communicate with the mediator. You can invoke the operations defined in this service using service tasks, message events, or send and receive tasks, depending on the type of operation.	
The business catalog stores mediator services in the Mediator module located in the Services predefined module. It creates a separate module for each of the mediator service components. The name of this module is the name of the component.	
Item 2 in Figure 15-3 shows the exposed service Mediator_ep for the mediator component shown in the SOA composite	
The Mediator Interface	
If you select the SOA binding option when creating the mediator, then Oracle JDeveloper creates the service interface. This interface defines the signature of the operations you can use to access the mediator from outside the SOA composite. You can configure your BPMN process to use this interface, so that the BPMN and the mediator have the same interface.	
The business catalog stores service interfaces in the Externals module located in the References predefined module.	
Item 1 in Figure 15-3 shows the exposed service interface component Mediator_ep for the mediator component shown in the SOA composite.	
For information on how to use an interface to define the process interface, see Section 23.5, "Using Message Events with an Interface from the Business Catalog to Define Your Process Interface" and Section 23.9, "Using Send and Receive Tasks with an Interface from the Business Catalog to Define Your Process Interface".	
The Reference Interfaces	
The SOA composite shows an interface for each component the mediator adapts.	
The business catalog stores service interfaces in the Mediator module located in the References predefined module. It creates a separate module for each of the Mediator service components. The name of this module is the name of the component	
Item 1 in Figure 15-3 shows the reference interface component ProcessProcessService for the mediator component shown in the SOA composite.	
For more information on SOA mediators, see part "Using the Oracle Mediator Service Component" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
BPEL processes enable you to model a business process using a standard different from BPMN. Depending on the nature of the process, some processes might be easier to implement in a certain technology. Oracle BPM enables you to integrate the BPEL and BPMN processes in your project, getting the best of the two standards.	
Figure 15-5 shows an SOA composite that contains multiple BPEL processes and how the business catalog displays them.	
Figure 15-5 BPEL Process Components in Business Catalog	
The BPEL Service Component	
When you add a BPEL process to the SOA composite, the BPEL service component appears in the business catalog.	
This component represents the BPEL process service. You can use this component to implement service tasks or message events, or send and receive tasks, depending if the BPEL process is synchronous or asynchronous.	
Figure 15-5 shows how the business catalog displays a BPEL process and its corresponding exposed service interface.	
The business catalog shows the BPEL process service in the BPEL module located in the Services predefined module. It creates a separate module for each of the BPEL process service components. The name of this module is the name of the BPEL process.	
Oracle BPM treats BPEL processes as services. It does not make a distinction between other types of services and BPEL processes.	
For more information on how to invoke synchronous and asynchronous services from a BPMN process, see Section 22.1, "Introduction to Communication with Other BPMN Processes and Services".	
The Exposed Interface	
If you selected the SOA binding option when creating the BPEL process, then the exposed interface appears in the business catalog.	
This interface enables external components to invoke BPEL processes. If you are designing a BPMN process to replace a BPEL process, then you might want to use this interface to define a BPMN process to ensure that you can replace one for the other.	
For information on how to use an interface to define the process interface, see Section 23.5, "Using Message Events with an Interface from the Business Catalog to Define Your Process Interface" and Section 23.9, "Using Send and Receive Tasks with an Interface from the Business Catalog to Define Your Process Interface".	
For more information on BPEL Processes, see Using the BPEL Process Service Component in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
The following flow objects require you to define a service to implement them:	
Service tasks enable you to invoke synchronous services. To implement a service task you must specify a synchronous service in the implementation properties. See Section 22.5, "Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes" for information on how to invoke a synchronous service using a service task.	
Message events enable you to invoke asynchronous services. To implement message events you must specify an asynchronous service in the implementation properties. See Section 22.3, "Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes" for information on how to invoke an asynchronous service using a message events.	
Send and receive tasks enable you to invoke asynchronous services. To implement a send task or a receive task, you must specify an asynchronous service in the implementation properties. See Section 22.7, "Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes" for information on how to invoke a synchronous service using a service task.	
The following flow objects enable you to define an interface using a reference component from the business catalog:	
See Section 23.5, "Using Message Events with an Interface from the Business Catalog to Define Your Process Interface" for more information on how to use an interface from the business catalog to define a process interface using message events.	
See Section 23.9, "Using Send and Receive Tasks with an Interface from the Business Catalog to Define Your Process Interface" for more information on how to to use an interface from the business catalog to define a process interface using receive tasks.	
The interfaces of some services and references you use in your process might be too complex or use names that do not clearly convey their use. These interfaces are not appropriate for a process analyst. You can customize these services and references to hide their complexity and make them more suitable for a business analyst. You might also customize a service or a reference to make your process easier to understand for other process developers.	
Customizing a service or a reference enables you to:	
When you customize a service or a reference, the service or reference disappears from the predefined modules where they were stored and Oracle BPM Studio replaces their uses by the customized component.	
If you delete the customized service or reference, then the service or reference appears back in the corresponding predefined module, unless you remove either of them from the SOA composite.	
Note: If you delete the original service or reference, Oracle BPM Studio does not delete the customized service or reference. You must delete the customized service or reference manually or create a new service or reference with the same name as the one you deleted.	
You can customize a service or a reference to make it more suitable for a business analyst and easier to understand for process developers.	
To customize a service or a reference:	
The Customize Adapter Service dialog box appears.	
See Section 15.7.2, "How to Customize an Operation" for information on how to customize an operation.	
When you customize a service or a reference, optionally you can customize the operations it contains.	
To customize an operation:	
The Edit Operations dialog appears.	
The customized service or reference appears in the module you chose to store it in. The component in the Services or References predefined module disappears.	
If there are any BPMN processes that use the component you customized, Oracle BPM Studio automatically updates the implementation of the activities in those processes to use the customized service or reference.	
If you delete the customized service or reference, then it appears back in the corresponding predefined module.	
This chapter describes how to implement business rule tasks in Oracle BPM. You can use an existing business rule component created using the SOA Business Rule editor, or you can create a new business rule component using the simplified interface Oracle BPM Studio provides.	
This chapter includes the following sections:	
For detailed information about Oracle Business Rules, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
The business rule task requires you to define a business rule to implement it. You can use an existing business rule or define a new one.	
If your project contains business rules, then they automatically appear in the business catalog.	
You can add new business rules to the business catalog in the following ways:	
The business catalog displays the business rules in your project in the predefined module Rules. It stores each rule in a module named as the package of the business rule dictionary.	
When you double-click a business rule component in the business catalog, Oracle BPM Studio opens the SOA Business Rules editor. You can edit the business rule using this editor.	
For information on how to define Oracle Business Rules, see Oracle Fusion Middleware User's Guide for Oracle Business Rules.	
Figure 16-1 shows a business rule component in the Sales Quote example.	
Figure 16-1 Business Rules Components in the Business Catalog	
Business rules enable you to determine the flow of your processes based on a group of rules you define.	
The business rule task enables you to associate the following:	
When a token arrives at a business rule task, the BPMN Service Engine invokes Oracle Business Rules Engine using the input arguments defined in the data association of the business rule task. The business rules engine evaluates the defined rules and returns output that contains the result. The BPMN Service Engine maps the output from the business rules engine to the data objects in the process using the data association defined for the business rule task.	
After a business rule task, you can add an exclusive gateway that determines the flow of the process based on the value of a data object that contains the result of running the business rule task.	
In the Sales Quote example, the business rule task determines the approval flow for each sales quote in the following way:	
Figure 16-2 shows a business rule task in the Sales Quote example.	
Figure 16-2 Business Rule Task in the Sales Quote Example	
You can assign existing business rules to a business rule task. You can implement a business rule task using a business rule that you created using the Business Rule wizard or that existed in the SOA project you used as the basis for the BPM project.	
All the business rule components that your project contains appear in the Rules predefined module in the business catalog. They also appear in the SOA composite. If there are business rule tasks in your BPMN processes that use a business rule component, then the SOA composite shows a wire between them.	
You can reuse existing business rules to implement the business rules tasks in your BPMN processes.	
To assign an existing business rule to a business rule task:	
The Type dialog box appears.	
The Type dialog box closes, and the Business Rule field shows the business rule you selected.	
The Business Rule Task Properties dialog box closes and saves the implementation you selected for the business rule task.	
The business rule task implementation uses the selected business rule component and the selected decision function.	
When the BPMN Service Engine runs the business rule task, it invokes the Oracle Business Rules Engine using the input arguments defined in the business rule task data association. The Oracle Business Rules Engine evaluates the rules using the provided input argument and returns an output argument that contains the result of this evaluation.	
You can launch the Business Rule Editor from a business rule task, to edit the associated business rule.	
To edit the business rule associated to a business rule task:	
The Business Rule Editor appears.	
You can create a business rule using the simplified interface Oracle BPM Studio provides. You can access this interface from the business rule task configuration dialog box.	
The simplified business rule creation interface enables you to create a business rule with one decision function. When you create the business rule, you can configure the following properties:	
Oracle BPM Studio uses this name to create the business rule component.	
Specifies the input and output parameters for the default decision function Oracle BPM Studio automatically adds to the business rule component.	
Oracle BPM Studio uses these parameters to create the data association for the business rule task. The parameters of the decision function must be complex data objects created based on an XML schema. The XML schema must contain only one element. You must not use types from the WSDL.	
Specifies the Java package to which your rule dictionary belongs, for example, com.example.	
Oracle BPM Studio uses this name to add a default decision function to the business rule you create.	
After you create the business rule with the simplified interface you can edit it using the editor included in Oracle SOA Suite.	
You can create a business rule component from Oracle BPM Studio from the Implementation Properties dialog box of a business rule task.	
To create a business rule from Oracle BPM Studio:	
The Create Business Rule dialog box appears.	
See Section 16.3.2, "How to Add Input and Output Arguments When Creating a Business Rule Component" for more information on how to configure the input and output of a business rule.	
See Section 16.3.3, "How to Configure the Advanced Properties When Creating a Business Rule Component" for more information on how to configure the advanced properties of a business rule.	
The Create Business Rule closes and creates the business rule. The Business Rule field in the Business Rules Task Properties dialog box shows the business rule you created.	
The Business Rule Task Properties dialog box, closes and saves the implementation you created for the business rule task.	
The data objects you add as input or output arguments must use business objects based on external types as their types.	
To add input and output arguments when creating a business rule component:	
The Data Object dialog box appears.	
The input or output argument appears in the table.	
To configure the advanced properties when creating a business rule component:	
Oracle BPM Studio creates a business rule component. You can edit this business rule component using the SOA Business Rule editor in the same way you edit a component created using Oracle SOA Suite.	
The business rule task uses the business rule component for its implementation.	
This chapter describes how to use the notification task to communicate with end users of the business process. It describes the different types of notifications tasks and how to configure each of them.	
This chapter includes the following sections:	
The notification task allows you to send different types of notifications to the users of the application.	
It supports the following types of notifications:	
This tasks uses the Oracle Notification Service.	
To configure this task you must provide expressions for the different fields of the notification and in some cases you can use the Identity Lookup browser to select one or more users. When you write the expressions you can use any variables accessible from the notification task context such as process data objects or predifined data objects.	
You can send an e-mail to send a message to users in a certain point of the business process.	
To send an e-mail notification:	
Use the following table to configure the general properties of an e-mail notification. Note that some of the properties are optional.	
Table 17-1 E-Mail Notification General Properties	
Property	Data Type
---	---
From	String
To	String
Bc	String
Bcc	String
Reply	String
Use the following table to configure the content properties of an e-mail notification.	
Table 17-2 E-Mail Notification Content Properties	
Property	Data Type
---	---
Subject	String
Body	String
Use the following table to configure the attachment properties of an e-mail notification. Note that some of the properties are optional.	
Table 17-3 E-Mail Notification Attachment Properties	
Property	Data Type
---	---
Name	String
Mime Type	String
Encoding	String
Value	Any
To configure the header properties you can add one or more headers. Note that configuring header properties is optional.	
To add a header:	
The Create Header dialog appears.	
User notification allows you to send a message to the users in a certain point of the process, using the communication media defined for that user.	
To send an e-mail notification:	
Use the following table to configure the general properties of a user notification. Note that some of the properties are optional.	
Table 17-5 E-Mail Notification General Properties	
Property	Data Type
---	---
To	String
Subject	String
Message	String
You can add one or more properties. Note that configuring properties is optional.	
To add a header:	
The Create Property dialog appears.	
You can send an SMS a message to users in a certain point of the business process.	
To send an e-mail notification:	
Use the following table to configure the general properties of an SMS notification. Note that some of the properties are optional.	
Table 17-7 E-Mail Notification General Properties	
Property	Data Type
---	---
From #	String
To #	String
Subject	String
Body	String
You can send a voice message to users in a certain point of the business process.	
To send an e-mail notification:	
Use the following table to configure the general properties of avoice notification. Note that some of the properties are optional.	
Table 17-8 E-Mail Notification General Properties	
Property	Data Type
---	---
To #	String
Mime Type	String
Body	String
You can send an Instant Message to users in a certain point of the business process.	
To send an e-mail notification:	
Use the following table to configure the general properties of an IM notification. Note that some of the properties are optional.	
Table 17-9 E-Mail Notification General Properties	
Property	Data Type
---	---
To	String
Body	String
This chapter describes how to use SOA Composites to design a BPMN process and integrate it with other SOA components. SOA Composites show the dependencies between a BPMN process and the other components of your BPM project.	
This chapter includes the following sections:	
For detailed information about SOA Composites, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
SOA Composites group interrelated components, enabling the integration of different technologies into a single application. The composite provides a single deployment and management model, end-to-end data security, and unified metadata management to the components it contains.	
BPM projects use the SOA technology. All BPM projects are layered on top of an SOA Composite. They use this composite to store information that describes the relationship between the different components in your BPM project and the services they expose.	
BPMN processes are a component in the SOA Composite. You can view how a BPMN process relates to the rest of the components in the SOA Composite, using the SOA Composite editor.	
The SOA Composite of a BPM project shows the following:	
If the SOA Composite contains components or external references that expose services, then these appear in the business catalog. See Chapter 12, "Using the Business Catalog", for more information about the business catalog.	
When you add a component to the SOA Composite, it automatically appears in the business catalog so that you can use it in your BPM project.	
Reusable processes do not appear in the SOA Composite. When you modify a business process and transform it into a reusable process, it disappears from the SOA Composite. For more information about reusable subprocesses, see Section 22.8, "Introduction to Invoking a Process Using Call Activities".	
The SOA Composite is the unit that you use to deploy your BPM project. The components and dependencies that appear in the SOA Composite specify how to deploy a project. If you remove a process or a wire from the SOA Composite, then even if they still appear in the BPM Project they are ignored when you deploy the project.	
When you run a BPM project the SOA engine creates a SOA composite instance. The SOA composite instance contains an instance of each of the components defined in the SOA composite. For example, if your SOA composite defines a BPMN process and a human Task, then the SOA composite instance contains a BPMN process instance and a human task instance.	
The components in a SOA composite instance are independent from each other. When you terminate one of them, this does not affect the other components in the SOA composite instance. In a SOA composite instance that contains an instance of a BPMN process and an instance of a Human Task, terminating the BPMN process instance does not terminate the Human Task. After terminating the BPMN process, the Human Task instance is still available and you can access it using Oracle BPM Worklist application. But completing that Human Task does not have any effect on the terminated process.	
In a similar way, when an interrupting timer or message boundary event arrives to a user task, the BPMN process instance leaves the user task but the associated Human Task remains available. Because the interrupting timer or message boundary event arrived before the user completes the user task, the human task remains unfinished, and you can still access it thought the Oracle BPM Worklist application. However running that human task does not have any effect on the BPMN process.	
All the SOA components and external references that are exposed as services in the SOA Composite appear in the business catalog in your Business Project.	
If you created your BPM project based on an existing SOA project, then all the components and external references exposed as services in your SOA project automatically appear in the business catalog.	
If there are activities in your BPMN process that use a component in their implementation, then the SOA Composite shows a wire between the BPMN process and the component.	
Wires represent a relationship between a service and a reference. When you save a BPMN process Oracle BPM Studio automatically updates the wires between the BPMN process and the components it uses. Services represent the interface a component exposes. References represent the service interfaces a component requires. For more information about services and references, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
To implement the activities in your BPMN process you must assign them an SOA component. To add these components to your BPM Project you must use the SOA Composite editor. From the SOA Composite editor you can add the following SOA components to your BPM Project:	
If the SOA component that you added to the SOA Composite exposes itself as a service, then the Component appears in the business catalog. You can use any of the components in the business catalog to implement the activities in your BPMN Process. For more information about how to implement BPMN activities, see the chapters in the following parts:	
Figure 18-1 BPMN process in an SOA Composite	
When you add a BPMN process it is automatically added to the SOA Composite. The BPM process appears as a component in the SOA Composite.	
If the BPMN process contains a start event of type message, then the interface of the process appears as an exposed service.	
The SOA Composite shows how your process depends on the different components your BPM Project uses. If an activity in your project uses a service exposed by an SOA component for its implementation, then the SOA component shows a line between the exposed service and the BPMN process. This line represents the wire that links the BPMN Process and the exposed service.	
The status of the components in the SOA composite determine the status of the SOA composite. If an exception occurs in a BPMN process, then the status of the SOA composite is marked as faulted. Even is the BPMN process handles the exception and finishes running successfully, the status of the SOA composite is marked as faulted.	
BPM projects are layered on top of a SOA project. The SOA project contains an SOA Composite. You must use the SOA Composite editor to add SOA components to your BPM project. The SOA components you add to the SOA Composite automatically appear in the business catalog of your BPM project.	
You can open the SOA Composite contained in your BPM project to add new SOA components or edit the existing ones.	
To open the SOA Composite in a BPM project:	
The SOA Composite editor opens.	
BPM projects use the SOA technology, therefore they contain an SOA Composite. You can use the SOA Composite editor to view the dependencies of your BPM processes with other components in your BPM project, or to add new components to your BPM project.	
You can open a BPMN process from the SOA Composite without having to switch to the BPM Project Navigator.	
To open a BPMN process from SOA Composite in a BPM Project:	
The BPMN process editor appears. Any changes you make to a process appear on the SOA Composite.	
You can add new BPMN processes directly from the SOA Composite editor without having to switch to the BPM Project Navigator.	
If you identify the need of a BPMN process while analyzing the business application infrastructure, then you can directly add it without leaving the SOA Composite editor.	
To add a BPMN process from the SOA Composite Editor:	
The BPMN process appears as a component in the SOA Composite editor. The new process appears in the Processes folder in the BPM Project Navigator.	
To edit the BPMN process right-click it and select edit, or double click the BPMN process.	
The SOA Composite editor shows the BPEL processes and the BPMN processes in your project. You can use the Composite editor to design the integration between a BPEL process and a BPMN process.	
To use a BPMN process from a BPEL process you must add the BPMN process as a partner link in the BPEL process. To add the BPM process as a partner link in the BPEL process you must use the SOA Composite editor. After adding the BPMN process as a partner link, you can use the BPEL editor to link the BPMN process to the activities in the BPEL process. For more information about editing BPEL processes, see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
To use a BPEL process from a BPMN process you must add the BPEL process to the SOA Composite. After you do this the BPEL process appears in the business catalog. You can use the BPEL processes in the business catalog to implement the activities in your BPMN process.	
Figure 18-2 BPMN Process as a Partner Link in a BPEL Process	
To use a BPMN process from a BPEL process you must add it as a partner link. Then you can use the BPEL editor to invoke the BPMN process from the activities in the BPEL process.	
To use a BPMN process from a BPEL process, you must first add the BPMN process as a partner link in the BPEL process.	
To add a BPMN process as a partner link in a BPEL process:	
Orange arrows appear to the sides of the BPEL process component. The arrow on the left enables you to add a new service. The arrow on the right enables you to add a new reference.	
A green link appears and all the services exposed by the components in the composite, including those exposed by BPMN processes, turn green.	
If a BPMN process defines a process interface, then you can connect to that process using web services. All the BPMN processes that define a process interface appear in the SOA Composite. For more information about defining a process interface, see Chapter 23, "Defining the Process Interface".	
To connect to a BPMN process using a custom web service client you need the following information:	
http://host:port/soa-infra/services/partition/composite!revision/process.service	
http://host:port/soa-infra/services/partition/composite!revision/process.service?WSDL	
http://host:port/soa-infra	
Table 18-1 describes the information used to construct the previous URLs.	
Table 18-1 URL Field Description	
Field	Description
---	---
Host	The server where the BPMN Service Engine is running.
Port	The port to connect to the BPMN Service Engine.
Partition	The MDS partition where the SOA composite resides.
Composite	The name of the SOA Composite.
Revision	The revision number that indicates the version of the composite. This field is optional. If you do not specify the revision, then the BPMN Service Engine uses the default revision of the composite.
Process	The name of the BPMN process.
You must build your BPM project before deploying it to a BPMN Service Engine. You can build your BPM project from Oracle JDeveloper.	
After you build the BPM project, the Compiler Log window displays the results. If the build is successful, then you can deploy to the BPMN Service Engine.	
If there are any errors, you can select the Compiler tab and click the errors to open the corresponding editor and correct them.	
To build a BPM project:	
Oracle JDeveloper compiles the BPM Project. The Compiler Log window displays the results of the compilation.	
After you successfully build a BPM Project you can deploy it to a BPMN Service Engine. The process of deploying a BPM Project is identical to deploying a SOA Project.	
For more information on how to deploy a SOA Project, see Deploying SOA Composite Applications in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.	
This part describes how to implement the different BPMN flow object that you can use to control the process flow. It also describes how to communicate with other BPMN processes and external services.	
This part contains the following chapters:	
This chapter briefly describes the different flow objects you can use to control flow in a process. It contains links to the chapters that describe these flow objects with more detail. It also contains a description of the markers you can define for subprocesses.	
This chapter includes the following sections:	
Oracle BPM provides different structures to control the flow of a process. These structures enable you to decide which path a process instance takes based on different conditions.	
The structures that allow you to control the flow of a process are:	
Gateways are flow objects that enable you to fork the flow of a process. Depending on the type of gateway the instance follows one ore more outgoing sequence flows coming out of a gateway, or multiple copies are created to run these branches in parallel.	
For more information about gateways, see Section 6.7, "Controlling Process Flow Using Gateways".	
Timer events enable you to define the path a process instance takes based on a time condition. For more information about timer events, see Chapter 20, "Adding Delays, Deadlines, and Time Based Cycles to Your Process".	
Error events enable you to define how a process handles an abnormal situation. You can use error events to define different process flows for each of the errors that may occur in a business process. For more information about error events, see Chapter 21, "Handling Errors".	
Message events enable you to define a process flow based on the occurrence of a certain event. Generally you use message events to asynchronously invoke an external service or another BPMN process. For more information about message events, see Chapter 22, "Communicating With Other BPMN Processes and Services".	
Message events enable you to define a process flow based on the occurrence of a certain event. Generally you use message events to asynchronously invoke an external service or another BPMN process. For more information about message events, see Chapter 22, "Communicating With Other BPMN Processes and Services".	
Loop markers enable you to run a subprocess multiple times based on a certain condition. For more information about loop markers, see Section 19.2, "Introduction to Loop and Multi-Instance Markers in Subprocesses".	
Multi-instance loop markers enable you to run a subprocess for each of the elements in a set of data. For more information about loop markers, see Section 19.2, "Introduction to Loop and Multi-Instance Markers in Subprocesses"	
You can configure subprocesses to run multiple times using loop and multi-instance markers.	
To configure loop and multi-instance makers you must define expressions and conditions that specify how to repeat the subprocess.	
Loop Markers	
Loop markers enable you to run a subprocess multiple times based on condition. You can configure the loop marker to evaluate the condition before or after running the subprocess. You can also configure the loop marker to stop after a certain number of repetitions.	
To configure a loop maker you must write a Loop Condition that determines if the BPMN Service Engine must continue to repeat the subprocess.	
Multi-Instance Markers	
Multi-Instance markers enable you to run a subprocess for each of the elements on a set of data. When the BPMN Service Engine runs a subprocess with a multi-instance loop marker it creates a set of instances, one for each element on the set of data. You can configure the multi-instance marker to process these instances in parallel or sequentially.	
The following fields in a multi-instance loop marker require you to write an expression:	
This expression defines the number of tokens to create in the subprocess.	
This expression determines when to stop repeating the subprocess. The BPM Service Engine evaluates this condition every time a token completes the subprocess. If the condition evaluates to true, it considers the subprocess completed and the instance moves to the next flow object in the process.	
You can configure a loop marker to run a subprocess multiple times.	
To configure loop markers:	
Possible options are Simple or XPath.	
Optionally you can write the condition using the Expression Builder. To launch the Expression Builder click the Expression Builder button next to the text area.	
You can configure a multi-instance marker to run subprocess multiple times based on a set of data.	
To configure multi-instance markers:	
Note: When using parallel mode consider that using process data objects to store information that results from running the subprocess may result in instances overwriting the information. To avoid this use subprocess data objects.	
Possible options are Simple or XPath.	
Optionally you can write the condition using the Expression Builder. To launch the Expression Builder click the Expression Builder button next to the text area.	
Possible options are Simple or XPath.	
Optionally you can write the condition using the Expression Builder. To launch the Expression Builder click the Expression Builder button next to the text area.	
You can select a data object or an attribute in a complex data object to pass to the subprocess. Generally the selected data object is a collection of items.	
Select a data object or an attribute in a complex data object to assign the result of the subprocess.	
This chapter describes how to use timer events to add time conditions to your BPMN process. It describes how to use the different timer events to add delays and deadlines, and to run additional activities.	
This chapter includes the following sections:	
Timer events enable you to control the flow of your process using a time condition.	
You can use timer events for:	
Timer events are not based on the business calendar definitions.	
Oracle BPM enables you to configure timers using:	
You can configure a timer event to fire on a certain date. You can specify a specific date or use a function to calculate the it.	
You can configure a timer event to fire after an elapsed time. You can specify the elapsed time or use a function to calculate it. If the timer event is a start event or a non-interrupting boundary event, then it fires multiple times.	
When you define a timer event as a boundary event you can choose to configure it as interrupting or non-interrupting.	
When an interrupting timer event fires, the token leaves the main process flow to follow the flow the timer defines. The flow an interrupting event defines, can resume the main process flow	
When an non-interrupting event fires, the BPMN Service Engine creates a copy of the token that is running the main process flow and routes that copy through the flow the timer event defines. The flow a non-interrupting event defines cannot resume the main process flow.	
You can add a delay to the process flow by adding an intermediate timer catch event. When the token arrives to the timer event it waits the time specified in the timer event before moving to the next activity in the process.	
For example, in a process that updates multiple data bases you might want to add a timer activity that delays the process a few minutes, to ensure that all databases are updated when the process continues.	
You can configure the intermediate timer catch event to wait until a specific date or to wait for a certain period. In both cases you can choose to use a fixed value or to use an expression that specifies the corresponding date or interval.	
When you configure a timer intermediate event as a cycle, the timer event only runs one time. It waits until the specified interval passes and then the token continues moving through the rest of the process flow.	
You can add a delay between to flow objects.	
To create a delay until a specified date in the process flow:	
See Section 20.7.1, "How to Configure a Timer Event To Use a Specific Date and Time" for more information on how to configure a timer event as time date.	
See Section 20.7.3, "How to Configure a Timer Event to Use an Interval" for more information on how to configure a timer event as cycle.	
A token that arrives to the intermediate timer event remains in the timer event until the time specified by the timer event arrives. If you configure the timer event to use a date, then the token remains in the timer event until the specified date. If you configure the timer event to use a cycle, then the token remains in the timer event until the specified time passes.	
You can add a timer start event to your process to configure it to be triggered based on a time condition. When the time condition specified in the timer start event evaluates to true, the BPMN Service Engine creates a new instance in the process.	
For example, in a process to report working hours you can add a timer start event that creates an instance in the process one time a day.	
You can configure your process to start on a specific date or to periodically create an instance. In both cases you can choose to use a fixed value or to use an expression that specifies the corresponding date or interval	
When deploying a process containing a timer start event specifying a past date, the BPMN Service Engine automatically creates an instance of the process.	
Figure 20-2 Starting a Process Based on a Time Condition	
You can design your process to start when a specific date arrives or to periodically start after a certain elapsed time.	
To design a process to start based on a time condition:	
If you want your process to have multiple start events, then you must select a timer start event from the Start Events section in the Component Palette. Drop the timer start event on you process. Right-click the timer start event and select Properties.	
See Section 20.7.1, "How to Configure a Timer Event To Use a Specific Date and Time" for more information on how to configure a timer event as time date.	
See Section 20.7.3, "How to Configure a Timer Event to Use an Interval" for more information on how to configure a timer event as cycle.	
The BPMN Service Engine creates an instance in the process each time the time condition in the timer start event evaluates to true. If you configure the timer start event to use a specific date, then the BPMN Service Engine creates an instance when the specified date arrives. If you configure the timer start event to use a cycle, then the BPMN Service Engine periodically creates an instance in the process.	
You can configure a deadline for an activity using an interrupting timer catch event configured as a boundary interrupting event that leads to another point of the process. If the token remains in the activity for longer than expected or beyond a certain date, then the timer catch event gets triggered and interrupts the process flow.	
You can configure the deadline to happen on a specific date, or after the token spends a certain time in the activity. In both cases you can specify a fixed date or interval or an expression that calculates the corresponding date or interval.	
For example, in an purchase order process, you might want to configure the activity that gets the credit card approval to wait the approval for a day. And if the approval takes longer, then direct the token to an activity that sends a message to the customer.	
You can configure a deadline for an activity so that the token moves to another activity after the deadline expires. You can specify to which activity the token moves after the deadline expires.	
To configure a deadline for an activity:	
The timer event becomes a boundary event. A sequence flow coming out from the boundary timer catch event appears.	
See Section 20.7.1, "How to Configure a Timer Event To Use a Specific Date and Time" for more information on how to configure a timer event as time date.	
See Section 20.7.3, "How to Configure a Timer Event to Use an Interval" for more information on how to configure a timer event as cycle.	
If the activity is still running when the timer event fires, then the token quits the activity and move to a different point in the process. The timer event fires because a certain date arrives or because the specified period passes, depending on how you configured the timer event.	
You can configure a process deadline for your process using an event subprocess that starts with an interrupting timer start. After a certain time passes or a date arrives, the timer event fires. If the token is still in the process then it moves to the event subprocess.	
The timer event is only active while the token remains in the process.	
You can configure the deadline to happen on a specific date, or after the token spends a certain time in the activity. In both cases you can specify a fixed date or interval or an expression that calculates the corresponding date or interval.	
For example, in a purchase order process, you can configure the process so that if the token stays in the process for more than three months, then it automatically ends the process.	
You might want to use an error end event in the event subprocess, so that the process does not finish running successfully.	
You can configure a deadline for a BPMN process. You can choose to terminate the process flow or to run a group of flow object when the deadline expires.	
To configure a deadline for a BPMN process:	
See Section 20.7.1, "How to Configure a Timer Event To Use a Specific Date and Time" for more information on how to configure a timer event as time date.	
See Section 20.7.3, "How to Configure a Timer Event to Use an Interval" for more information on how to configure a timer event as cycle.	
If the token stays in the process longer than specified by the interrupting timer event, then the timer event fires. When the timer start event in the event subprocess fires the token leaves the process and moves to the event subprocess.	
While running an activity or a process you can run additional activities based on a time condition. You can choose to trigger the additional activities periodically or on a certain date.	
Typically you run additional activities when the activity you are currently running takes a long time to finish. For example, if you run a service that takes twenty hours to update a database, then you might want to send an e-mail to inform progress of the update to the interested parties.	
The timer event is only active while the token remains in the activity.	
You can also run additional activities while a process is running. These activities run in parallel to the main process flow.	
Figure 20-5 Running Additional Activities While an Activity is Running	
You can run a parallel process flow while an activity is running. Generally you design a parallel process flow to trigger after a certain time when you know that the main activity might take long to complete.	
To run additional activities while an activity is running:	
A sequence flow for you to connect to an activity appears.	
If the token is still in the activity when the non-interrupting fires, then the BPMN Service Engine creates a copy of that token and routes it through the flow that the timer event defines. The timer might fire multiple times while the activity in the main process flow is running.	
You can run additional activities while the main process flow is running. Generally you design a parallel process flow to trigger after a certain time when you know your process might take long to complete.	
To run additional activities while a process is running:	
See Section 20.7.1, "How to Configure a Timer Event To Use a Specific Date and Time" for more information on how to configure a timer event as time date.	
See Section 20.7.3, "How to Configure a Timer Event to Use an Interval" for more information on how to configure a timer event as cycle.	
When the timer start event in the event subprocess fires, the BPMN Service Engine creates a copy of the token in the main process flow. The copy of the token in the main process flow follows the additional process flow the subprocess event defines. The timer start event may fire multiple times while the main process flow is running.	
You can configure timer event to fire on a specific date and time, or to fire after a certain time passes. In both cases you can choose to provide a fixed time value or an expression that calculates it.	
You can configure a timer event to use a specific date and time. You can provide the date and time or use an expression to calculate it.	
To configure a timer event to use a specific date and time:	
The following options are available to provide a date:	
See Section 26.4, "Writing Expressions in Timer Events" in Chapter 20, "Adding Delays, Deadlines, and Time Based Cycles to Your Process" for more information.	
Note: The date and time you specify correspond to the time zone the BPMN Service Engine uses.	
The timer event fires on the specified date and time. If you used an expression to specify the date and time, then the engine evaluates this expression to determine when to fire the timer event.	
You can configure a timer event to use an interval. You can specify the interval or use an expression to calculate it.	
To configure a timer event to use an interval:	
See Section 26.4, "Writing Expressions in Timer Events" for more information	
The timer event fires periodically, waiting the time the interval specifies. If the timer event is a start event or a non-interrupting boundary event, then it fires multiple times. If the timer event is an intermediate timer event or an interrupting boundary event, then it waits for the specified interval before firing, but it fires only one time.	
This chapter describes how to handle errors that occur when running a business process. Oracle BPM provides you with an exception component that enables you to model errors and multiple BPMN structures that you can use to handle those errors while running the process.	
This chapter includes the following sections:	
There might be situations when an unexpected problem occurs causing your process to fail. There are two types of errors: system errors and process errors.	
System errors are the consequence of a failure in the software or hardware infrastructure where the BPMN Service Engine is running. A system error can have many causes. The following are examples of problems that can cause a system error:	
To recover from system errors within the process flow you can use system exceptions.	
If you do not handle a system exception in your process, you can recover from them using the fault recovery system provided by Oracle Enterprise Manager. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite for more information about the Oracle Enterprise Manager fault recovery system.	
Process errors are problems that interfere with the regular development of your process. For example, in a purchase order process, if there is no stock for the requested item then you cannot continue with the regular process flow. You can handle these unexpected situations within the process flow. One way to handle the situation in this example by letting the customer cancel the order or save it for later.	
The following are typical examples of unexpected situations within a process:	
When an exception occurs in a process, it affects the state of the SOA composite that contains that BPMN process. For more information on how exceptions affect the state of the SOA composite, see Section 18.1.4, "How Do BPMN Errors Affect the SOA Composite Status".	
Oracle BPM uses business exceptions to represent unexpected situations that can occur while running a business process.	
You can design how to handle an exception as part of the business process, but it is something that occurs outside of the usual flow of a process. The use of business exceptions enables you to create less complicated processes where the main flow follows the typical use cases, and there is a separate flow to handle the process exception.	
Business exceptions are considered a normal part of the process design, rather than an error.	
When you add a component to the business catalog, if the services in the component specify that they can produce errors, then these errors appear as business exceptions in the business catalog in the Errors predefined module.	
An exception can arise when you invoke a service. You can handle these exceptions using a boundary error catch event or an event subprocess.	
You can also define business exceptions in the business catalog. Then, you can use those business exceptions in an error end event that is triggered under a certain condition. The error end event generates the exception, and the parent process can handle the exception.	
System exceptions represent low level errors that may occur while running a process. In some cases you may require to handle this low level errors within your process.	
To handle a system exception within the process flow you must catch the exception and configure the error catch event to use system exceptions.	
System exceptions may occur while running a service or another BPMN process. You also design your process to throw certain system exceptions. The only exception that you can use in a throw or end event is Rollback. All the other supported system exceptions are only available for start of catch error events.	
System exceptions contain an errorInfo attribute of type Any. You can assign any value to this attribute. Because its type is Any this value can belong to any type. Generally you use this attribute to store the cause of the exception or important information for troubleshooting the application.	
You can only view the list of available system exceptions from the Implementation Properties of an error event.	
Table 21-1 describes the supported system exceptions. It also specifies the module where the system exception resides and the error events that can use the specified system exception.	
Table 21-1 System Exceptions	
System Exception	Module
---	---
AssertFailure	Bpel
BindingFault	Bpel
InvalidVariables	Bpel
RemoteFault	Bpel
Timeout	Soap
ConflictingReceive	Soap
ConflictingRequest	Soap
CorrelationViolation	Soap
ForcedTermination	Soap
InvalidReply	Soap
MismatchedAssignmentFailure	Soap
RepeatedCompensation	Soap
SelectionFailure	Soap
UninitializedVariable	Soap
Rollback	Soap
The flow of a system or a business exception depends on where the exception occurred.	
Exceptions can occur while running the following:	
The following describes what happens when the BPMN Service Engine runs a task that causes an exception.	
If the task does not have a boundary catch error event associated with it, then the exception propagates to the process level.	
The following sequence describes what happens when the BPMN Service Engine runs a subprocess that causes an exception.	
If the subprocess ends with an error event, or the exception occurs in a task and is not handled, then the exception propagates to the parent process.	
If the parent process cannot handle the exception, then it propagates it to its parent process. If there is no parent process, then the exception is logged to the Enterprise Manager fault recovery system. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite, for more information about the Enterprise Manager fault recovery system.	
The following sequence describes what happens when the BPMN Service Engine runs a call activity that invokes a reusable subprocess that causes an exception.	
If the subprocess ends with an error event, or the exception occurs in a task and is not handled, then the exception propagates to the parent process.	
If the parent process cannot handle the exception, then it propagates it to its parent process. If there is no parent process, then the exception is logged to the Enterprise Manager fault recovery system. See Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite, for more information about the Enterprise Manager fault recovery system.	
You can handle the exceptions that occur in an activity using the following:	
Boundary error catch events enable you to resume the main process flow after handling the exception.	
If you want to reuse the exception handling flow for multiple tasks in your process, then event subprocesses are more efficient than boundary catch events. Event subprocesses enable you to define a cleaner process with less effort because the catch error event is located within the event subprocess. To reuse an exception handling flow using boundary catch events, you must define a boundary catch event for each of the tasks, and then connect those boundary events to the exception handling flow.	
Figure 21-1 shows a process that handles an error using a boundary error catch event.	
Event subprocesses also enable you to define data objects that you can access only from within the event subprocess, in the same way that subprocesses enable you to define their own data objects.	
Figure 21-2 shows a process that handles an error using a an event subprocess.	
Figure 21-2 Event Subprocess with a Start Error Event	
If you know that running a flow object can cause an exception, then you can design your process to handle the exception using a boundary error catch event.	
To handle an exception using a boundary error catch event:	
After handling the exception, this flow can resume the main process or end the process.	
You can place the event in any part of the border of the task.	
When you drop the error event, a sequence flow appears that you can connect to the exception handling flow.	
For information on how to configure the implementation properties to catch business exceptions, see Section 21.5.5, "How to Configure an Error Event to Catch Business Exceptions".	
For information on how to configure the implementation properties to catch system exceptions, see Section 21.5.6, "How to Configure a Catch Event to Catch System Exceptions".	
If the BPMN Service Engine encounters an error while running a task that has a boundary error catch event attached, then it follows the flow defined by the boundary error catch event. The exception handling flow defined by the boundary error catch event can re-join the main process flow or end the process.	
You can use an event subprocess to handle an exception that can occur while running any of the flow objects in your BPMN process.	
To handle an exception using an event subprocess:	
For information on how to configure the implementation properties to catch business exceptions, see Section 21.5.5, "How to Configure an Error Event to Catch Business Exceptions".	
For information on how to configure the implementation properties to catch system exceptions, see Section 21.5.6, "How to Configure a Catch Event to Catch System Exceptions".	
If the exception handled in the event subprocess occurs while running any of the tasks in the process, then the BPMN Service Engine continues running the exception handling flow defined in the event subprocess.	
You can configure an error event to catch business exceptions. To configure an error event to catch business exceptions you must edit the error event implementation properties.	
To configure the implementation properties of an error event to catch business exceptions:	
If you want to catch a specific business exception:	
The Type dialog box appears.	
The Type dialog box closes and the selected exception appears in the Exception field.	
You can configure an error event to catch system exceptions. To configure an error event to catch system exceptions you must edit the error event implementation properties.	
To configure the implementation properties of an error event to catch system exceptions:	
If you want to catch a specific business exception:	
The Type dialog box appears.	
The tree shows the available system faults. For a list of the supported exception for the different error events, see Table 21-1.	
The Type dialog box closes and the selected exception appears in the Exception field.	
You can only throw business exceptions using an error end event, thus only parent processes can catch these exceptions.	
You can configure your process to throw custom high level exceptions instead of throwing the low-level exceptions that occur while running the task. To throw a high level exception, connect the boundary events in your activities to the end event that throws the error, or finish the subprocess event with an error end event.	
You can use an error end event to configure your BPMN process to throw a business exception.	
To throw an exception:	
You can also throw existing business exceptions or system exceptions.	
See Section 21.6.3, "How to Create a Business Exception" for more information on how to create a business exception.	
The Type dialog box appears.	
The tree shows the available system faults. For a list of the supported exception for the different error events, see Table 21-1.	
The Type dialog box closes and the selected exception appears in the Exception field.	
The BPMN Service Engine interrupts the process and throws the exception to the parent process. If the subprocess has an error catch boundary event attached or the parent process has an event subprocess that can handle the error event, then the parent process can handle the exception. Otherwise the parent process throws the exception to its parent process. If it does not have a parent process, then the BPMN Service Engine logs the exception to the Oracle Enterprise Manager fault handling system.	
You can create a business exception and use it to implement the error events in your BPMN process.	
To create a business exception:	
If the business catalog does not contain a module, then you must create one.	
The Business Exception Editor opens.	
errorInfo	
attribute. See Section 21.6.5, "How to Configure the ErrorInfo Attribute in a Business Exception" for information on how to modify the ErrorInfo attribute.	
The exception appears in the business catalog in the module you selected. You can configure an error end event in your process to throw this exception, or you can configure a boundary error catch event to handle this exception.	
Business exceptions contain an errorInfo attribute that you can use to store relevant information about the situation that caused the exception. You can use the information in this field to help users, process developers, and administrators understand the cause of the error.	
To configure the ErrorInfo attribute in a business exception:	
You can modify the following properties:	
You can handle exceptions that occur in a subprocess in the same way you handle the exceptions in any other BPMN activity.	
When a process communicates with another peer process, running any of the flow objects in the peer process may result in an error. For synchronic operations, the correct form of propagating these errors to the invoking peer process is using message events configured as errors.	
A message event configured as an error communicates to the invoking peer process that an error occurred while running the process. However the audit trail indicates that the process ran successfully because this is an expected error.	
You must define how the invoking peer process handles the exception using one of these options:	
If you do not handle the error in the invoking peer process, the error propagates and the process running does not complete successfully.	
Note: You must always define a path for the instance to follow if there are no error. If you do not define a path for the case where there are no errors the project does not build successfully.	
Difference Between Using Error Events and Error Message Events	
Using error end or throw events to handle errors during interprocess communication is not a good practice. You must only use error events for internal errors that might be handled within the process or propagated to the next level. These errors are not meaningful outside of this process.	
The exceptions occurred while running a peer process do not propagate to the invoking peer process. Eventually the invoking peer process receives a time out notification because the peer process stopped responding.	
If you know running an operation in a process that is used for inter-process communication may result in an error, it is advisable to add a message end or throw event to propagate the error to the invoking peer process.	
The message error implementation requires you to select a business exception. If your project does not define business exceptions, then you must create a business exception. For more information about business exceptions, see Section 21.2, "Using Business Exceptions".	
To handle errors in a peer process using message events:	
If there is an error in the invoked peer process, the error is communicated to the process that invoked it. The invoking peer process must handle the error using error events or the error is propagated to the next level.	
After running the invoked peer process, its status appears as successfully ran because the error message event is part of the expected flow of the process.	
You can handle fault policy errors within a BPM process, treating them as a business exception.	
To handle a fault policy in a BPM process:	
For more information on how to add a boundary event, see ...	
If you defined an exception to handle a fault policy error, then the BPMN Service Engine handles the fault policy error in the way you defined. When the fault policy error occurs in an activity then the instance follows the exception handling flow defined by the boundary error catch event.	
This chapter describes how to develop a BPMN process that communicates with other BPMN processes and services. It shows you how to invoke other processes or services and how to broadcast a message to multiple process and how to configure your process to wait for a specific broadcast message.	
This chapter includes the following sections:	
Oracle BPM provides multiple ways for BPMN processes to communicate with other processes or services:	
They enable you to invoke asynchronous services or asynchronous BPMN processes. You can also use them to define the interface your process exposes to other processes or services.	
See Section 22.2, "Communicating With Other BPMN Processes and Services Using Message Events", for more information about message events.	
They are very similar to message events. You can choose to use one or the other.	
The only difference they have with message events is that they support boundary events.	
They enable you to invoke asynchronous services or asynchronous BPMN processes. You can also use them to define the interface your process exposes to other processes or services.	
See Section 22.6, "Communicating With Other BPMN Processes and Services Using Send and Receive Tasks", for more information about send and receive tasks.	
They enable you to broadcast a message to multiple process. The processes waiting for that specific message react to it.	
See Section 22.11, "Communicating Between Processes Using Signal Events", for more information about signal events.	
Message events, send and receive tasks, and service task use operations to communicate with other BPMN processes or services. These operations can be synchronous or asynchronous.	
The main difference between a synchronous and an asynchronous operation is how they respond when you invoke them.	
When you invoke a synchronous operation, you send a message and then wait for an response before proceeding with the process flow.	
When you invoke an asynchronous operation, you send a message but do not wait for an answer to proceed with the process flow. The asynchronous operation receives the message and starts running. You can obtain the answer of an asynchronous operation by invoking a callback operation. If you invoke the callback operation before the asynchronous operation finishes running, then you must wait for it to complete before getting the answer.	
Message events and send and receive task require you to specify how to associate an operation with its corresponding callback. Conversations allow you to group one or more operations with their callback. A conversation may define multiple operations that you can use to access a BPMN process.	
Message events enable you to communicate with the other BPMN processes and services in your project.	
You can use message events to:	
Note: The send and receive tasks perform similar functionality to the throw and catch message events. However, it is recommended that you do not mix both within a single process.	
The implementation of the different message events varies according to the type of event and their role in the conversation. Table 22-1describes the different implementation of message events.	
Table 22-1 Message Event Implementation	
Event	Initiates Conversation
---	---
Message Start	
Not Available	
Message Throw	
If it continues a start event or a catch event that define an interface:	
If it continues a message throw that invokes a service or a BPMN process:	
Message Catch	
If it continues a start event or a catch event that define an interface:	
If it continues a throw event that invokes a service or a BPMN process:	
Message End	Not Available
If it continues a throw event that invokes a service or a BPMN process:	
You can use message events to invoke asynchronous services and asynchronous BPMN processes.	
To invoke an asynchronous operation from service or BPMN process you must use an intermediate throw message event configured to initiate a conversation.	
When the BPMN Service Engine runs the message throw event, it creates an XML message based on:	
Then it sends the XML message to the service or BPMN process, and continues running the rest of the process flow. It does not wait for the asynchronous service or BPM process to answer.	
The asynchronous service or BPMN process receives the message and runs the requested operation. When it finishes it sends a message with the result of the operation to the BPMN process that invoked it. This message is the callback operation of the asynchronous service or BPMN process.	
The BPMN process that invoked the asynchronous operation must wait for the callback operation to obtain its results. The BPMN process must define a message catch event that waits for the callback operation. This message catch event continues the conversation and uses the message throw event that invoked the operation as the initiator event.	
When a token arrives to the message catch event it might receive an immediate answer if the asynchronous process completed, or might have to wait until the asynchronous process completes to get an answer.	
Figure 22-1 Invoking an Asynchronous Service or BPMN Process Using Message Events	
You can invoke an asynchronous service operation using message events.	
To invoke an asynchronous service operation using message events:	
The Conversation dialog appears.	
The Create Conversation dialog appears.	
You must ensure that the service you select is an asynchronous service.	
The Service dialog appears.	
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.	
You can receive the callback operation that pairs with an asynchronous operation using message events.	
To receive the callback operation of an asynchronous service using message events:	
The Conversation dialog appears.	
The Message Exchange section changes.	
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.	
When you invoke an asynchronous service operation using a message throw event, the BPMN Service Engine does not wait for the service to answer. It continues running the flow objects that follow to the message throw event.	
The BPMN process can obtain the response of the asynchronous service by invoking the service callback operation using a message catch event.	
Even if the service finishes running, the BPMN process does not receive the service response until it invokes the callback operation using a message catch event.	
If the service is still running when the BPMN Service Engine runs the message catch event, then the engine waits for the service operation to complete before passing the token to the next flow object in the process.	
You can invoke a node in an asynchronous BPMN process using message events.	
To invoke an asynchronous BPMN process operation using message events:	
The Conversation dialog appears.	
The Type dialog appears.	
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.	
You can invoke the callback operation that paris with an asynchronous node in a BPMN process using message events.	
To invoke the callback operation of an asynchronous BPMN process using message events:	
The Conversation dialog appears.	
The Message Exchange section changes.	
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.	
When you invoke an asynchronous BPMN process using a message throw event, the BPMN Service Engine does not wait for the BPMN process to answer. It continues running the flow objects that follow to the message throw event.	
The invoking BPMN process can obtain the response of the asynchronous BPMN process by invoking the service callback operation using a message catch event.	
Even if the asynchronous BPMN process finishes running, the invoking BPMN process does not receive the response until it reaches a message catch event that receives a message from the asynchronous BPMN process.	
If the asynchronous BPMN process is still running when the BPMN Service Engine runs the message catch event, then the engine waits for the asynchronous BPMN process to complete before passing the token to the next flow object in the process.	
You can use message catch events configured as boundary events to wait for an event while an activity is running. If the message arrives after the activity finishes running, then the event is not triggered.	
You can configure a boundary message catch event as interrupting or non-interrupting.	
Interrupting boundary message catch events stop running the activity when the expected message arrives. Then the engine starts running the flow defined for the message catch event. The flow defined for interrupting boundary message catch events may resume the main process flow.	
Non-interrupting boundary catch events do not stop running the current activity. When the expected message arrives the engine starts running the flow defined for the message catch event in parallel to the current activity. The flow defined for non-interrupting boundary message catch events cannot resume the main process flow.	
Service tasks enable you to invoke synchronous operations in services and BPMN processes.	
When the BPMN Service Engine runs a service task, it invokes the operation specified in the service task and waits for a response. The BPMN Service Engine does not move the token to the next activity until it receives a response from the synchronous service or BPMN process.	
The services you can use from a service task include BPEL processes, SOA mediators and SOA adapters that expose synchronous operations. You can also use service tasks to invoke other BPMN processes that expose synchronous operations.	
See Section 23.4, "Using Message Events to Define a Synchronous Operation in a BPMN Processes Interface" or Section 23.8, "Using Send and Receive Tasks to Define a Synchronous Operation in a BPMN Process" for more information on how to define synchronous operations in a BPMN process.	
Figure 22-2 Invoking a Synchronous BPMN Process or Service Using a Service Task	
To invoke a synchronous service operation you must use a service task.	
To invoke a synchronous service operation using a service task:	
The Conversation dialog appears.	
The Create Conversation dialog appears.	
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.	
When the BPMN Service Engine runs a service task, it waits for the service to respond before continuing with the process flow. When the service finishes running, it sends the response to the service task.	
If the service operation returns output data, then this data is mapped to the data objects in the project using the service task data association.	
You must invoke a synchronous BPMN process operation using a service task.	
To invoke a synchronous BPMN process operation using a service task:	
The Conversation dialog appears.	
The Create Conversation dialog appears.	
Note: Service tasks only support outbound conversations.	
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.	
When the BPMN Service Engine runs a service task, it waits for the synchronous BPMN process to respond before continuing with the process flow. When the synchronous BPMN process finishes running, it sends the response to the service task.	
If the synchronous BPMN process returns output data, then this data is mapped to the data objects in the project using the service task data association.	
Send and receive tasks enable you to communicate with the other BPMN processes and services in your project.	
The only difference between message events and send and receive tasks is that you can add boundary events to the latter. If you are invoking an asynchronous service and you want to add a deadline using a timer event configured as boundary, then you must use a send and a receive task instead of using message events.	
You can use send and receive tasks to:	
To use a receive task to define the start operation of a process, you must locate it after a none start event and configure it to create instances.	
The implementation of the different message events varies according to the type of event and their role in the conversation. Table 22-1describes the different implementation of message events.	
Note: The send and receive tasks perform similar functionality to the throw and catch message events. However, it is recommended that you do not mix both within a single process.	
Table 22-2 Send and Receive Tasks Implementation	
Task	Initiates Conversation
---	---
Send Task	
If it continues a receive task that defines an interface:	
Receive Task	
If it continues a receive task that defines an interface:	
If it continues a sent task that invokes a service or a BPMN process:	
You can use send and receive tasks to invoke asynchronous operations in services and BPMN processes.
To invoke an asynchronous operation from service or BPMN process you must use a send task configured to initiate a conversation.
When the BPMN Service Engine runs the send task, it creates an XML message based on:
Then it sends the XML message to the service or BPMN process, and continues running the rest of the process flow. It does not wait for the asynchronous service or BPM process to answer.
The asynchronous service or BPMN process receives the message and runs the requested operation. When it finishes it sends a message with the result of the operation to the BPMN process that invoked it. This message is the callback operation of the asynchronous service or BPMN process.
The BPMN process that invoked the asynchronous operation must invoke the callback operation to obtain its results. When it invokes the callback operation it might receive and immediate answer if the asynchronous process completed or might have to wait until the asynchronous process completes to get an answer.
Figure 22-3 Invoking an asynchronous service or BPMN process using send and receive tasks
You can invoke an asynchronous service operation using a send task.
To invoke an asynchronous service operation using the send task:
The Type dialog appears.
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.
You can invoke the callback operation that pairs with an asynchronous service operation using a receive task.
To invoke the callback operation of an asynchronous service:
The Properties section changes, and the Initiator Node list appears.
The content of the Properties section changes, and the Name field and the Operation list appear.
The Type dialog appears.
The Type dialog disappears and the receive task properties dialog shows the service you selected in the Name field.
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.
When you invoke an asynchronous service operation using a send task, the BPMN Service Engine does not wait for the service to answer. It continues running the flow objects that follow to the send task.
The BPMN process can obtain the response of the asynchronous service by invoking the service callback operation using a receive task.
Even if the service finishes running, the BPMN process does not receive the service response until it invokes the callback operation using a receive task
If the service is still running when the BPMN Service Engine runs the receive task, then the engine waits for the service operation to complete before passing the token to the next flow object in the process.
You can use a send task to invoke an asynchronous BPMN process operation.
To invoke an asynchronous BPMN process operation:
The Type dialog appears.
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.
You can use a receive task to invoke the callback operation that pairs with an asynchronous process operation.
To invoke the callback operation of an asynchronous BPMN process:
The Properties section changes, and the Initiator Node list appears.
The content of the Properties section changes, and the Process field and the Node list appear.
The Type dialog appears.
The Type dialog disappears and the receive task properties dialog shows the service you selected in the name field.
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.
When you invoke an asynchronous service operation using a send task, the BPMN Service Engine does not wait for the service to answer. It continues running the flow objects that follow to the send task.
The BPMN process can obtain the response of the asynchronous service by invoking the service callback operation using a receive task.
Even if the service finishes running, the BPMN process does not receive the service response until it invokes the callback operation using a receive task.
If the service is still running when the BPMN Service Engine runs the receive task, then the engine waits for the service operation to complete before passing the token to the next flow object in the process.
You can invoke a process from another process using call activities. The invoked process is a child of the process invoking it.
When you run a call activity, the engine does not create a new token for the reusable process. The token in the parent process passes to the reusable process. When the token completes the child process, it returns to the parent process to continue running the activities that follow the call activity.
The child process must be a reusable process. Reusable processes can be invoked from multiple processes. You can only start a reusable process by invoking it from a call activity.
You cannot access reusable process from other SOA components because they are not part of the SOA composite.
The start event of a reusable process must always be of type none. The end event can be a error or a message event.
You can use call activities to invoke a process from another process. The child process must be a reusable process. You can invoke a reusable process from multiple processes within your BPM project.
You can invoke a process from another process using call activities. The invoked process must be a reusable process.
To invoke a process using call activities:
For information on how to create a reusable process, see Section 5.1.2, "How to Create a New Business Process".
For more information on data associations, see Section 8.13, "Introduction to Data Associations".
For more information on transformations, see Section 8.14, "Introduction to Transformations".
Signal events allow you to broadcast a message to all the processes in a BPM project. Only the processes configured to listen to that signal react.
In the Sales Quote example you might want to trigger a signal when a quote gets approved to trigger all the process that depend on the approval of a quote.
Mediators and BPEL processes also react when a BPMN process broadcasts a signal and they can also trigger a BPMN process by broadcasting a signal.
Oracle BPM uses Oracle Event Delivery Network (EDN) to send and receive signals. For more information about Oracle EDN see "Using Business Events and the Event Delivery Network" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
For information on how to access Event in Oracle BPM, see Chapter 12, "Introduction to the Business Catalog".
The EDN events your SOA project defines automatically appear in the business catalog in the Events predefined module Events. When you add a signal event you can choose which of the events in the business catalog the signal event broadcasts or reacts to.
You can broadcast a signal from a throw intermediate signal event or from a signal end event. In a BPMN process you can only receive a signal in a a signal start event in another process.
The process that broadcasts the message has no information about the receivers. You might add or remove processes that react to a signal without impacting the process that broadcasts the signal.
In a similar way, the process that reacts to a specific message has no information about the processes that broadcast that message. If you add a process that broadcast a message to your project, all the process waiting for that specific message react to it without you having to modify them.
The events you use to broadcast a signal contain a payload that you can use to send information to all the processes configured to react to this specific signal. To assign values to the payload in the event you must configure the signal throw event data association. This data association enables you to pass the relevant data stored in the process and project data objects to the event. When the corresponding processes receive the signal, they must obtain the data in the event using another data association. This data association defines which data objects store the data in the event received in the signal start event.
You can use signal events to communicate a message to all the processes that are configured to wait for that message.
Before following this procedure you must add the events you want to broadcast, to your SOA project.
To broadcast a signal to multiple processes:
If you want to broadcast the signal immediately after the process finished, change the implementation type of the existing end event to signal or add new end event of type signal.
The Type dialog appears.
The Type dialog disappears and the type name appears in the type field.
When the BPMN Engine runs a throw or an end signal event, it published an event to Oracle EDN. Oracle EDN delivers this event to all SOA components configured to listen to that specific signal.
Before following this procedure you must add the events you want to react to, to your SOA project.
To configure your process to react to a specific signal:
The Type dialog appears.
The Type dialog disappears and the type name appears in the type field.
The process does not start until another BPMN process or SOA component broadcasts a specific signal. When a BPMN process or an SOA component broadcasts this signal using Oracle EDN, the process gets triggered by this signal.
This chapter describes how to configure a BPMN process to expose it as a service for other processes or services to invoke it. Oracle BPM enables you to expose the flow objects in the BPMN process as process operations. Other BPMN processes and services can invoke these operations.
This chapter includes the following sections:
This chapter assumes that you are familiar with SOA Composites. For more information about SOA Composites see Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The process interface is a group of operations a BPMN process exposes for other processes or services to use. The SOA Composite shows the BPMN process interface in the Exposed Services section.
You must define an interface for your BPMN process if you want other processes and services to use it. The interface you define contains the operations other processes and services can invoke.
Synchronous process operations define input and output arguments.
When you define an asynchronous processes operation you must also define its corresponding callback operation. The asynchronous operation defines the input arguments and the callback operation defines the output arguments.
You can define the process interface by defining operations in your BPMN Process or you can choose to use an existing interface from the business catalog. You can implement any of these options using message events or send and receive tasks.
The process interface contains the operations that other services and processes can invoke to interact with a BPMN process. These operations may be synchronous or asynchronous.
You can define the process interface using message events or send and receive tasks.
To expose an operation in a BPMN process you can use a message start or message catch event configured as initiators. These message events enable you to define if the operation is synchronous or asynchronous. They also enable you to define the process input.
The process interface must always contain an operation that exposes the start event of a BPMN process. A process or service that invokes this BPMN process must always invoke the operation that corresponds to the start event before invoking any of the operations in the process.
To define the process output, you must configure the message throw or message end event that continue the event that defines the operation. If the operation is asynchronous, then these events also define the callback operation.
If an interface contains an asynchronous operation, then it must also define the callback operation that returns the result of this operation. See Section 23.2.1, "Using Message Events to Define the Callback Interface for BPMN Processes" for more information on how to define a callback operation in a BPMN Process.
Figure 23-1 shows a BPMN process that exposes a message start message event in its interface. It also shows how the SOA Composite editor displays this operation.
Figure 23-1 BPMN Process that exposes a message start event as an operation
In addition, the process interface may contain the operations exposed by the catch message events in the process. Before invoking an operation that corresponds to a catch message event, you must always invoke the operation that corresponds to the message start event.
Figure 23-2 shows a BPMN process that exposes a catch message event in its interface in addition to the message start message event. It also shows how the SOA Composite editor displays this operation.
Figure 23-2 BPMN process that exposes a message start and a message catch event in its interface
A BPMN process must expose a callback operation for each of the asynchronous operations it defines.
The callback operation returns the response to the service or process that invoked the asynchronous operation. The callback operation may define output arguments. If it defines output arguments you must map their values to the data objects in the process using data associations.
You can define a callback operation using a message throw event or a message end event.
See Chapter 22, "Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes", for information on how invoke an asynchronous BPMN process from another BPMN process.
Figure 23-3 shows an end event that exposes the BPMN process callback operation. It also shows how the callback operation appears in the SOA Composite editor.
Note: If you used a send task to expose an operation, then you must use a receive task to define the callback operation. See Section 23.7, "Defining Asynchronous Processes Operations Using Send and Receive Tasks" for more information on how to define a callback operation using send events. |
Figure 23-3 Asynchronous BPMN process that exposes a start operation an its corresponding callback
You can define asynchronous operations in a BPMN Process using message events. If you expose an asynchronous operation, then you must also expose a start operation. The client invoking the asynchronous service must invoke the start operation first to create an instance in the process. The asynchronous operation runs over the created instance.
You must also specify a callback operation for each of the asynchronous operations you define.
You can expose the start event of a BPMN process as an asynchronous operation.
To configure the start operation of a BPMN process as asynchronous:
The Conversation section appears.
For more information on how to define the process input see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
You can expose a callback operation that pairs with an asynchronous operation using message events.
To define the callback operation:
Note: To return the answer when the processes finishes, then add a message end event or change the implementation type of the end to message |
For more information on how to define the process output, see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
When you invoke the process start event you must not wait for a response before continuing with the process flow. To obtain the response you must invoke the process callback operation.
You can invoke asynchronous BPMN processes using message events or send and receive tasks.
See Section 22.3, "Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes" and Section 22.7, "Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes", for more information on how to invoke an asynchronous BPMN process.
In the SOA Composite, the interface of an asynchronous process shows at least two operations: the operation to start the process and its callback operation.
You can expose an intermediate message event as an asynchronous operation.
To add an asynchronous operation to a BPMN process interface:
For more information on how to define output arguments see Section 23.10, "Defining the Process Input and Output".
The asynchronous operation and the corresponding callback operation are available for other processes to invoke them.
The SOA Composite shows the asynchronous operation and its callback in the BPMN process interface.
You can define a synchronous operation in your BPMN process using message events. You define the synchronous operation using a message start or catch event, and a message throw or catch that continue the first. The message start or catch event defines the process input. The message throw or end event defines the process output.
If you use a message catch event to define a synchronous operation, then you must also define a start operation. You must invoke the start operation before invoking the synchronous operation, to create an instance in the process. The synchronous operation runs over the created instance.
See Section 22.5, "Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes", for more information on how to invoke a synchronous BPMN process.
Message events enable you to send error message when you define synchronous operations. For more information about error message events, see Section 21.8, "Handling Errors in a Peer Process Using Message Events".
You can expose the message start event of a BPMN process as a synchronous operation.
To configure the start operation of a BPMN process as synchronous using message events:
The Conversation section appears.
For more information on how to define the process input, see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
Note: When adding a synchronous start event, you must also add an end or catch message event that is part of the same conversation. The end or catch message event continue the start event thus they are also synchronous. |
When you expose a start event as a synchronous operation, you must configure the end event of the process as synchronous.
To Configure the end event of a synchronous process:
The Conversation section appears.
The sub-section to define the interface appears in the Properties section.
For more information on how to define the process output, see Section 23.10, "Defining the Process Input and Output".
For more information on how to configure data associations, see Section 8.13, "Introduction to Data Associations".
The process start event exposes a synchronous operation. When you invoke the process start event from a client, you must wait for a response before continuing with the process flow. The service task that invokes the synchronous process waits for the synchronous process to finish before the token moves to the next activity in the process.
You must invoke synchronous operations in a BPMN processes using a service tasks.
See Section 22.5, "Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes", for more information on how to invoke a synchronous BPMN process.
In the SOA Composite, the interface of a synchronous process only shows one operation for the start event.
When configuring the message events that define the interface of your process, you can choose to use an existing interface instead of defining an interface.
You can choose any of the operations from the References predefined module in the business catalog and use it as the interface for your process operations.
The operation from the reference that you choose to define the interface of your operation, determines if your operation is synchronous or asynchronous.
If you define a message start or a message catch event using an interface from the business catalog, then the associated message throw or message end event must also use an interface from the business catalog. If the operation you are defining is asynchronous, then the message throw or message end events can only use callback operations.
Generally you define the process interface using an interface from the business catalog to use a interface that exists in the composite and later on add a wire from this interface to the BPMN process.
You might provide multiple implementations of the same interface. For example you might implement an existing interface in BPEL and BPMN technologies. To implement the BPMN interface you must define the process using an interface from the business catalog.
Figure 23-4 shows how a BPMN process can reuse the interface of a BPEL process to provide a parallel implementation in BPMN. The BPMN process uses the interface of the BPEL process that appears in the business catalog to define its operations. It also shows how the SOA Composite editor indicates that a BPMN process uses another SOA Component to define its interface.
Figure 23-4 Process That Uses an Interface from the Business Catalog
You can use an interface from the business catalog to define the interface of your BPMN process.
To use an interface from the business catalog to define an operation:
The Properties section changes and the Name and Operation appear.
The Type dialog appears.
For more information on how to configure data associations, see Section 8.13, "Introduction to Data Associations".
You can use an interface from the business catalog to define the interface of your BPMN process.
To configure a message end or message throw event to use an interface from the business catalog:
The Properties section changes, the Initiator Node, Name and Operation fields appear.
The Type dialog appears.
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.
The operation you define uses the signature of the operation form the interface in the business catalog. To invoke the operation in the BPMN process you must use the same operation name and input that you use to invoke the operation in the interface from the business catalog. The operation in the BPMN process returns the same output that the operation in the interface from the business catalog.
The SOA composite shows a wire between the BPMN process and the interface used to define its operations.
If you define all the process operations using interfaces from the business catalog, then JDeveloper asks you if it should delete the BPMN process WSDL. Because the BPMN process does not define an interface, but uses existing interfaces, its WSDL is no longer necessary and you can delete it.
The process interface contains the operations that other services and processes can invoke to run a BPMN process. These operations may be synchronous or asynchronous.
You can define the process interface using message events or send and receive tasks.
See Section 23.2, "Using Message Events to Define the BPMN Process Interface", for more information on how to define the process interface using message events.
To expose an operation in a BPMN process you can use a receive task. The receive task enables you to define if the operation is synchronous or asynchronous. It also enables you to define the process input.
The process interface must always contain an operation that exposes a receive task that creates an instance. A process or service that invokes this BPMN process must always invoke this operation before invoking any of the operations in the process.
To define the process output, you must configure the send task that continues the receive that defines the operation. If the operation is asynchronous, then the send task also defines the callback operation.
If an interface contains an asynchronous operation, then it must also define the callback operation that returns the result of this operation. See Section 23.6.1, "Defining the Callback Interface for BPMN Processes Using a Send Task" for more information on how to define a callback operation in a BPMN Process.
In addition, the process interface may contain the operations exposed by the receive tasks in the process. Before invoking an operation that corresponds to a receive task, you must always invoke the operation that corresponds to the received task configured to create an instance.
Figure 23-5 shows a BPMN process that exposes a receive task in its interface in addition to the receive tasks that creates the instance. It also shows how the SOA Composite editor displays these operations.
Figure 23-5 BPMN process that exposes an asynchronous operation defined using send and a receive task
If you used a send task to expose an operation, then you must use a receive task to define the callback operation. See Section 23.6.1, "Defining the Callback Interface for BPMN Processes Using a Send Task" for more information on how to define a callback operation using send events.
A BPMN process must expose a callback operation for each of the asynchronous operations it defines. You can define a callback operation using a send task.
The callback operation returns the response to the service or process that invoked the asynchronous operation. If the service or process is waiting for the answer, then they receive it immediately. If the service or process is not waiting for the answer yet, then they receive it when they get to the part of the process or code that waits for the answer.
The callback operation may define output arguments. If it defines output arguments you must map their values to the data objects in the process using data associations.
Figure 23-5 shows a receive task that exposes the BPMN process callback operation.
You can define asynchronous operations in a BPMN Process using send and receive tasks. If you expose an asynchronous operation, then you must expose a start operation. The process invoking the asynchronous service must invoke the start operation first to create an instance in the process. The asynchronous operation runs over the created instance.
You must also specify a callback operation for each of the asynchronous operations you define.
You can define an asynchronous process operation using send and receive tasks.
To define an asynchronous process operation using send and receive tasks:
For more information on how to define the process output, see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
You can expose a receive task as an asynchronous process operation.
To add an asynchronous process operation using a receive task:
For more information on how to define the process output, see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
You can expose a send task as the callback operation that pairs with an asynchronous process operation.
How to define the callback operation for an asynchronous process using a send task:
You must place the send task after the receive task in the process flow.
For more information on how to define the process output, see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
The asynchronous operation and the corresponding callback operation are available for other processes to invoke them.
When you invoke the process asynchronous operation you defined, you must not wait for a response before continuing with the process flow. To obtain the response you must invoke the process callback operation.
The SOA Composite shows the asynchronous operation and its callback in the BPMN process interface.
You can invoke asynchronous BPMN processes using message events or send and receive tasks.
See Section 22.3, "Using Message Events to Invoke Asynchronous Services and Asynchronous BPMN Processes" and Section 22.7, "Using Send and Receive Tasks to Invoke Asynchronous Services and Asynchronous BPMN Processes", for more information on how to invoke an asynchronous BPMN process.
You can define a synchronous operation in your BPMN process using send and receive tasks. You define the synchronous operation using a receive task and send tasks that continues the receive task. The receive task defines the process input and the send task defines the process output.
If you use a send task to define a synchronous operation, then you must also define a start operation. You must invoke the start operation before invoking the synchronous operation, to create an instance in the process. The synchronous operation runs over the created instance.
See Chapter 22, "Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes", for information on how to invoke a synchronous operation in a BPMN process from another BPMN process.
You can expose send and receive tasks as a synchronous process operation.
To configure a process operation as synchronous:
For more information on how to define the process input, see Section 23.10, "Defining the Process Input and Output".
The SOA Composite uses the name you specify for the operation to display it in the SOA Composite.
The asynchronous operation and the corresponding callback operation are available for other processes to invoke them.
You must invoke synchronous operations in a BPMN processes using a service tasks.
See Section 22.5, "Using Service Tasks to Invoke Synchronous Operations in Services and BPMN Processes", for more information on how to invoke a synchronous BPMN process.
In the SOA Composite, the interface of a synchronous process only shows one operation for the receive task.
When configuring the receive tasks that define the interface of your process, you can choose to use an existing interface instead of defining an interface.
You can choose any of the operations from the components in the business catalog and use it as the interface for your process operations.
The operation from the component in the business catalog that you choose to define the interface of your operation, determines if your operation is synchronous or asynchronous.
If you define a receive task using an interface from the business catalog, then the associated send task must also use an interface from the business catalog. If the operation you are defining is asynchronous, then the message send task can only use callback operations.
Figure 23-6 shows a process that uses a BPEL process from the business catalog to define its operations. It also shows how the SOA Composite editor indicates that a BPMN process uses another SOA Component to define its interface.
Figure 23-6 BPMN Process that uses an interface from the Business Catalog defined using send and receive tasks
You can use an interface from the business catalog to define your BPMN process interface.
To use an interface from the business catalog to define an operation:
The Properties section changes and the Name and Operation appear.
The Type dialog appears.
For more information on how to configure data associations, see Section 8.13, "Introduction to Data Associations".
You can use an interface from the business catalog to define your BPMN process interface.
To configure a message end or message throw event to use an interface from the business catalog:
The Properties section changes, the Initiator Node, Name and Operation fields appear.
The Type dialog appears.
See Section 8.13, "Introduction to Data Associations", for more information on how to configure data associations.
The operation you define uses the signature of the operation form the interface in the business catalog. To invoke the operation in the BPMN process you must use the same operation name and input that you use to invoke the operation in the interface from the business catalog. The operation in the BPMN process returns the same output that the operation in the interface from the business catalog.
The SOA composite shows a wire between the BPMN process and the interface used to define its operations.
If you define all the process operations using interfaces from the business catalog, then JDeveloper asks if it should delete the BPMN process WSDL. Because the BPMN process does not define an interface, but uses existing interfaces, its WSDL is no longer necessary and you can delete it.
When you add operations to a BPMN process, you are defining points in the process that other processes or services can use to communicate with it.
The communication between processes and other processes or services generally requires an input and returns an output.
The flow events that you use you to define the BPMN process operations enable you to define input and output arguments. These input and output arguments define the process input and output.
When you expose operations using message start and end events, or send and receive tasks, you can define the input and output argument they require.
To add input and output arguments to a BPMN process:
The Create Argument dialog appears.
The Browse Type dialog appears.
The Browse Type dialog disappears and the data type you selected appears in the Type field in the Create Argument Dialog.
The argument appears in the Argument Definition table.
You can change the name and the types of the arguments of a BPMN Process.
To edit the input and output arguments of a BPMN process:
The Edit Argument dialog appears.
The argument in the Argument Definition table shows the updated name and type.
You can delete input and output arguments that you do not use or need.
To delete an input or output argument:
The select argument is removed from the Argument Definition table.
This chapter describes how to develop a BPMN process that communicates with other BPMN processes and services using correlations. Correlations are used to identify the instance that receives the message in the peer process.
This chapter includes the following sections:
:Correlations enable business processes to communicate with each other based on the state an instance. The state of all the process data objects in a process defines the state of the instace.
Defining a correlation for a business process enables you to identify an instance in another process through the instance state and send a message to that specific instance.
For example you can use correlations to communicate a sales process with the corresponding shipping and mailing processes. When the customer confirms an order, the shipping process sends a message to the shipping and mailing processes using a correlation that defines that it uses the order ID to locate the instances in both processes.
After you initialize a correlation you cannot change its value because the Service Engine uses this value to localize the instance. If you try to assign a new value to the correlation this produces a Correlation ViolationError.
You can define and initialize multiple correlations for a flow object. The flow object that sends the message can use just one correlation or all the correlations defined for that flow object. If it uses all the existing correlations, then all of the values it sends together with the message must lead to the identification of the same instance.
Some flow objects, like the service task, define two types of correlations: input and output. In those cases you can initialize and use a correlation in the same activity.
The scope of the correlation is the instance of the process or subprocess where it is defined. In the case of subprocess with multi-instance loop conditions the scope of the correlation is each instance of the multi-instance subprocess.
The following list describes the different components of a correlation:
Contains the set of correlation keys defined for a flow object.
Define the properties to use in the correlation. When you define a correlation key you provide a name to identify it. The scope of the correlation key is the project, this means that after you define a correlation key you can use it for the correlation definition of any flow object in that project.
If your BPM project contains BPEL processes, then the correlation keys defined in that BPEL process automatically appear for you to reuse them in your BPM Projects.
Properties are abstractions for very representative attributes in the process, like the order ID, the customer name or the social security number. Properties contain a name to identify the attribute and a data type. Properties only support basic data types.
Enable you to define how to assign a value to the correlation property using expressions. You can use the arguments and predefined variables of the activity to assign values to the correlation property alias.
The following worklow describes the typical procedures you perform when you design a project that contains business processes that communicate with each other using correlations:
For more information on how to define the correlation, see Section 24.4, "Defining Correlations for a BPMN Element".
For more information on how to define the correlation, see Section 24.4, "Defining Correlations for a BPMN Element".
You can define correlations for the following BPMN flow objects that you use to communicate business processes:
You can define multiple correlations for a single flow object. The flow object that sends the message can choose to use just one correlation or use all of them. In the latter it the values it uses to invoke the correlation lead to the identification of the same instace.
You can define a correlation while you are defining the properties of a flow object. Studio provides two modes for defining correlations: simple and advanced. To define a correlation that contains just one property use the simple mode. If the correlation you define contains more that one correlation key each with multiple properties, then use advanced mode.
To define a correlation for a flow object:
The Properties dialog appears.
The Correlation Definition dialog appears.
Simple mode allows you to define a correlation that contains just one property. This mode simplifies the definition of the correlation by creating parts of the correlation automatically based on the information you define for that property.
To define a correlation using simple mode:
If the Property list is empty, create a new property:
Available types are: String, Int, Real, Decimal, Bool, Time.
To define a complex expression, click the Expression Builder button next to the Correlation Property Alias text box. For more information see ...
Advanced mode enables you to define multiple correlation keys with multiple correlation properties.
To define a correlation usind advanced mode:
The Correlation Keys table appears.
The Create CorrelationKey dialog appears.
For more information on how to define a new correlation key, see Section 24.5.2, "How to Configure a Correlation Key".
To define a complex expression, click the Expression Builder button next to the property text box. For more information see ..
The Correlation Definition dialog closes and the Correlations icon appear in colours now.
You define correlation keys at project level, this enables you to reuse correlation keys across the processes in your project. You can also decide to create correlation keys before adding the flow objects that use them. For both of these cases you must create correlation keys from the Structure view.
You can create a correlation key at a project level and later use that correlation key to define the correlations of your flow objects.
To create a correlation key:
The Create Correlation Key dialog appears.
You can configure the properties that compose the correlation keys you define.
To configure a correlation key:
The Create Correlation Property dialog appears.
Available types are: String, Int, Real, Decimal, Bool, Time.
The selected property appear in the Selected list.
This chapter describes how to create and configure conversations in your BPM project. it also describes how to view and use a collaboration diagram.
This chapter includes the following sections:
Conversations group the message exchange between two or more processes. The message exchange between processes is called collaboration.
Conversations define the state of a collaboration between two participants. You must use them when a process needs to have multiple parallel conversations with different instances of the same process or service, for example within a multi-instance subprocess.
A process instance may need to communicate with different instances in another process. For example, a procurement process may need to interact with two different instance in a supplier process, each representing a different item. You can model this message exchange using conversations.
Within a process you can define multiple conversations that you can reuse amongst the flow objects in that process.
The members of the collaboration are called participants. The participants in a collaboration can be one of the following:
Collaboration diagrams allows you to view the process flow together with the interactions your process has with other participants in the conversation.
Your BPM project defines a conversation by default. If you do not want to define multiple conversations you must use this default conversation to gather all the message exchange amongst the processes in your project.
You can only define one default conversation per project. However you can modifiy your project to use a different default conversation than the one it uses by default. For more information on how to do this, see.
The different types of conversations allow you to specify the different types of interaction your process can stablish with other processes or services.
The following list describes the different types of conversations:
For more information on how to communicate your process with other processes or services, see the following chapters:
Conversations enable you to group the message exchange between the processes in your BPM project.
You can create a conversation to model the message exchange between a process instance and the instances in another process or service.
To create a conversation:
The Create Conversation dialog appears.
Available types are:
For more information about the different types of conversations, see
You can change the project default conversation.
To change the project default conversation:
The Edit Conversation dialog appears.
The Edit Conversation dialog appears.
The BPMN elements you use to communicate a process with other processes or services require you to define a conversation. The defined conversation groups the messages exchanged between the processes and services within a BPM project.
The BPMN elements that require you to define a conversation are:
To define a conversation for a BPMN element:
The Properties dialog appears.
The Conversation dialog appears.
To search for a conversation, enter part of the name or the complete name in the Search field.
To create a new conversation, click the New button. For more information on how to create a new conversation, see Section 25.3, "Creating Conversations".
The Message Exchange section displays different fields according to the type of conversation you selected.
For more information on how to configure the Message Exchange section, see
The collaboration diagram shows the flow of your process and how that process interacts with other processes or services in the same diagram.
You can view the collaborations in your process using the collaboration diagram.
To view the collaboration diagram:
The collaboration diagram for the selected process appears.
You can hide a collaboration so that you are able to focus on the rest of the collaborations in the diagram.
To hide a collaboration:
The selected participant disappears from the Collaboration Diagram.
This chapter describes how to write expressions and conditions for the BPMN elements that require them. Oracle BPM provides you with two different types of expressions editors that adjust to requirements of different users. This chapter describes the expression language used by each of these expression builders and the operations you can use in the expressions you write.
This chapter includes the following sections:
Some BPM elements require you to write a condition or an expression that defines their behavior. For example, you might want to control the flow of your process using a conditional sequence flow that ensures that all expenses above 500 dollars are approved by a manager.
Oracle BPM provides you two ways of writing these expressions and conditions:
The Simple Expression Builder uses dot notation and its syntax is very similar to Java. The XPATH Expression Builder uses standard XPATH language.
After writing an expression in simple expression language you can convert it to XPath and vice versa. When you convert an expression from one language to another, the expression editor removes any operators and parenthesis that do not affect the meaning of the expression.
Oracle BPM uses expressions to configure the following BPMN elements:
The results of the expression vary according to the type of element you are configuring. Table 26-1 describes the expression required by each of the BPM elements.
Table 26-1 Expression Types
BPMN Element | Expression Type |
---|---|
Conditional Sequence Flow | Condition that when evaluated results in a boolean value. |
Complex Gateway | Condition that when evaluated results in a boolean value. |
Timer Event | Time Date: expression that when evaluated results in a DateTime value. Cycle: expression that when evaluated results in an Interval value. |
Data Associations | Expression that when evaluated results in a value of the same type as the argument in the data association. |
User Task Advanced Properties | Expression that when evaluated results in a String value. |
Loop Marker | Condition that when evaluated results in a boolean value. |
Multi-Instance Marker | Loop Cardinality: expression that when evaluated results in an Int value. Completion Condition: Condition that when evaluated results in a boolean value. |
The configuration dialogs of the BPM elements that support expressions contain an embedded expression editor and a button to launch the expression builder. The latter is more suitable when you are working with long expressions. Both expression builders enable you to browse the available variables. The XPATH expression builder also enables you to browse the available functions.
To implement a conditional sequence flow you must provide a condition. When the token arrives to the conditional sequence flow, the BPMN Server Engine evaluates the condition in the conditional sequence flow to determine which sequence flow the token should follow.
Generally the condition is based on the values of the project and process data object, but this is not a requirement. The condition must result in a boolean value when the compiler evaluates it. If you write a condition that does not result in a boolean value, then the Simple Expression Builder prompts an error.
You must define an expression to implement a conditional sequence flow.
To implement a conditional sequence flow:
If you are working with complex conditions, then you can launch the expression builder by clicking the Launch Expression Builder button next to the text area.
To implement a complex gateway you must provide a condition that specifies when the gateway releases the tokens that arrive to it. Each time a new token arrives to the complex gateway the BPMN Service Engine evaluates this condition. If the condition evaluates to true, then the complex gateway releases all the tokens that arrived until that moment.
Generally the condition is based on the number of tokens that arrived to the complex gateway. For example you might want the gateway to release the tokens after two tokens arrive to the merge gateway.
Example 26-1 shows a condition that configures the gateway to release the tokens that arrived to it after two tokens arrive to the merge gateway.
You must define an expression to implement a gateway.
To implement a complex gateway:
If you are working with complex conditions, then you can launch the expression builder by clicking the Launch Expression Builder button next to the text area.
To implement a timer event you can choose to specify a date or an interval, or to write an expression that calculates the date or the interval.
Generally you use expressions in those cases where the date or the interval are not fixed.
The following examples show expressions that you can use in a timer event to express a date:
'now' + '30m'
deadline - '1day'
arrivalDate.dateTime + '1h'
The following examples show expressions that you can use in a timer event to express an interval:
waitToRetry.interval()
period(deadline)
You can use an expression to calculate a date or an interval in the implementation of a timer event.
To use an expression in a timer event:
If you are working with complex expressions, then you can launch the expression builder by clicking the Launch Expression Builder button next to the text area. The Expression Builder where you can write the expression appears.
You can use expressions in data associations to modify the input and output values before associating them with the activity implementation arguments.
Generally you use expressions when there is a mismatch between the data objects and the activity implementation arguments. The following examples describe situations where you can use expressions in a data association:
For example, the service your activity invokes uses a different product ID than the one you use in the process. In this case you can use an expression to adapt the content of the product ID data object to the value your services require.
For example, the service your activity invokes uses a String to store the state of the order and your service requires you to specify the state of the order with an Int value. In this case you use an expression that calculates the Int value that corresponds to the state the String specifies.
You can use expressions in data associations to modify the values of the arguments or data objects before mapping them.
To use an expression in a data association:
The type of expression you can use depends on the type of data association you select.
The Data Associations dialog appears.
If you are working with complex expressions, then you can launch the expression builder by clicking the Expression Builder button next to the input or output text area. The Expression Builder where you can write the expression appears.
You can configure subprocesses to run multiple times using loop and multi-instance markers.
To configure loop and multi-instance makers you must define expressions and conditions that specify how to repeat the subprocess.
Loop Markers
Loop markers enable you to run a subprocess multiple times based on condition. You can configure the loop marker to evaluate the condition before or after running the subprocess. You can also configure the loop marker to stop after a certain number of repetitions.
To configure a loop maker you must write a Loop Condition that determines if the BPMN Service Engine must continue to repeat the subprocess.
Multi-Instance Markers
Multi-Instance markers enable you to run a subprocess for each of the elements on a set of data. When the BPMN Service Engine runs a subprocess with a multi-instance loop marker it creates a set of instances, one for each element on the set of data. You can configure the multi-instance marker to process these instances in parallel or sequentially.
The following fields in a multi-instance loop marker require you to write an expression:
This expression defines the number of tokens to create in the subprocess.
This expression determines when to stop repeating the subprocess. The BPM Service Engine evaluates this condition every time a token completes the subprocess. If the condition evaluates to true, it considers the subprocess completed and the instance moves to the next flow object in the process.
You can configure a loop marker to run a subprocess multiple times.
To configure loop markers:
Possible options are Simple or XPath.
Optionally you can write the condition using the Expression Builder. To launch the Expression Builder click the Expression Builder button next to the text area.
You can configure a multi-instance marker to run subprocess multiple times based on a set of data.
To configure multi-instance markers:
Possible options are Simple or XPath.
Optionally you can write the condition using the Expression Builder. To launch the Expression Builder click the Expression Builder button next to the text area.
Possible options are Simple or XPath.
Optionally you can write the condition using the Expression Builder. To launch the Expression Builder click the Expression Builder button next to the text area.
You can select a data object or an attribute in a complex data object to pass to the subprocess. Generally the selected data object is a collection of items.
Select a data object or an attribute in a complex data object to assign the result of the subprocess.
The Simple Expression Builder contains a text area for you to type the expression and a list of variables that you can use.
The Simple Expression Builder supports the following features:
The Simple Expression Builder highlights the syntax in your expressions to make them easier to read and understand. It uses different colors for the different data type values.
If you wait a few seconds after you type the dot to invoke a method, then the Simple Expression Builder shows a list with the available functions that you can invoke over that data object. If you want the Simple Expression Builder to complete the expression for you, then you can press Ctrl + Space
.
The Simple Expression Builder checks the expressions as you write. It underlines with a red waved line those expressions that do not compile. To find out the cause of the error place the cursor over the red wavy line and wait for a tooltip with the error description to appear.
Figure 26-1 show the Simple Expression Builder dialog.
You can use a data objects in your expressions to perform calculations based on them.
To use a data object in an expression:
The selected data object appears in the Expression text area.
To use a function in an expression, you can select the expression from the expression list in the simple expression builder, or you can type the function name in the Expression text area. If you write part of the name and press Crtl+Space
, then the expression builder completes the name of the function.
To use a function in an expression using the simple expression builder:
The Description field shows a description of the function.
The selected function appears in the Expression text area.
The Simple Expression Builder enables you to create expressions using the following operator types:
You can use these operators to write expressions and conditions to drive your process flow. Generally these expressions perform their calculations based on the data objects in your process. You can write expressions and conditions using the value of the data objects, but you cannot modify their value.
The following examples of expressions use operators:
totalAmount - discount
deadlineExpired and orderStatus !=complete
activationCount > 3
unitsSold <= 1200
'now' + '2m'
deadline - '1h'
not formComplete
Table 26-1, Table 26-2, Table 26-3, Table 26-4 and Table 26-5 describe the supported operators in the Simple Expression Builder.
Table 26-2 Arithmetic Operators
Operator | Name | Description |
---|---|---|
+ | Addition | Adds numeric data types. Concatenates Strings. Add an interval value to a DateTime value. |
- | Subtraction | Subtracts numeric data types. Subtracts an interval value from a DateTime value. |
* | Multiplication | Multiplies numeric data types. |
/ | Division | Divides numeric data types. |
rem | Remainder | Calculates the remainder of a division in which the divisor does not exactly divide the dividend. |
() | Precedence | Indicates the order of evaluation of an arithmetic expression. |
Table 26-3 Unary Operators
Operator | Name | Description |
---|---|---|
+ | Plus | Has no effect on the value of the numeric operand. Use it to indicate explicitly that a certain value is positive. |
- | Minus | Negates an arithmetic expression. Inverts the sign of a number. |
not | Not | Logical complement operator. Negates the value of a boolean expression. |
Table 26-4 Equality and Relational Operators
Operator | Name | Description |
---|---|---|
= | Equal | Returns true if the first operand equals the second operand. |
!= | Not Equal | Returns true if the first operand is not equal to the second operand. |
> | Greater Than | Returns true if the first operand is greater than the second operand. |
>= | Greater Than or Equal to | Returns true if the first operand is greater than or equal to the second operand. |
< | Less Than | Returns true if the first operand is less than the second operand. |
<= | Less Than or Equal to | Returns true if the first operand is less than or equal to the second operand. |
Table 26-5 Conditional Operators
Operator | Name | Description |
---|---|---|
and | Conditional And | Returns true if both operands evaluate to true. |
or | Conditional Or | Returns true if one operand evaluates to true. |
The precedence of the operators indicates the order in which the compiler evaluates them. You can change the precedence of the operators in an expression by using parenthesis.
The precedence of the operators in the Simple Expression Builder is:
The Simple Expression Builder supports functions that you can use to calculate and manipulate your expressions and conditions.
The following sections describe the functions the Simple Expression Builder supports:
These functions enable you to manipulate String variables and literals, and perform calculations based on them.
Returns the number of characters in this String.
Signature:
Int length(String stringToMeasure)
Arguments:
-
Examples:
name.length()
length(name)
name.length
Concatenates one or more Strings.
Examples:
name + " " + lastName
"Oracle " + "BPM"
These functions enable you to perform calculations using numeric data types. The available numeric data types are Real, Decimal, and Int.
Returns the largest Int value that is smaller than the numeric value used for invoking this function. You can use this function with Real and Decimal data types.
Signature:
Int floor(Real number)
Int floor(Decimal number)
Arguments:
-
Examples:
number.floor()
floor(number)
number.floor
floor(totalAmount/3)
temperature.floor()
Returns the smallest Int value that is greater than the numeric value used for invoking this function. You can use this function with Real and Decimal data types.
Signature:
Int ceil(Real number)
Int ceil(Decimal number)
Arguments:
-
Examples:
number.ceil()
ceil(number)
number.ceil
Returns the closest Int value to this number. If there are two Int values that are equally close, then it returns the greater one. You can use this function with Real and Decimal data types.
Signature:
Int round(Real number)
Int round(Decimal number)
Arguments:
-
Examples:
number.round()
round(number)
number.round
These functions enable you to manipulate time variables and literals, and perform calculations based on them. The available time data types are DateTime and Interval.
Special notation for the system current date and time.
Examples:
setReceivedDate('now'
)
Adds an interval to a DateTime variable or value.
Examples:
today + '1d3h'
now + 3d
vacationStartingDate + '1M'
Subtracts an interval to a DateTime variable or value.
Examples:
today - '2d3h25m'
now - age
expirationDate - '7d'
Returns the year of this DateTime variable.
Signature:
Int year(DateTime date)
Arguments:
-
Examples:
today.year()
year(today)
today.year
Returns the month of this DateTime variable.
Signature:
Int month(DateTime date)
Arguments:
-
Examples:
today.month()
month(today)
today.month
Returns the day of this DateTime variable.
Signature:
Int day(DateTime date)
Arguments:
-
Examples:
today.day()
day(today)
today.day
Returns the hour of this DateTime variable.
Signature:
Int hours(DateTime date)
Arguments:
-
Examples:
today.hours()
hours(today)
today.hours
Returns the minutes of this DateTime variable.
Signature:
Int minutes(DateTime date)
Arguments:
-
Examples:
today.minutes()
minutes(today)
today.minutes
Oracle BPM enables you to write expressions using SOA XPath Expression Builder. This expression builder supports standard XPath language.
The XPath Expression Builder displays a list of the available variables that you can use in your expression. It also displays a list with the functions you can use in your expressions. When you select a function you can preview its syntax and description before adding it to your expression.
For more information about the functions supported for XPath see "Appendix B XPath Extension Functions" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Additionally Oracle BPM supports a group of BPM Extension Functions.
Figure 26-2 shows XPath Expression Builder.
You can add variables to an XPath expression to perform calculations based on them.
To add a variable to an XPath expression:
The selected variable appears in the expression text area.
You can invoke a function in an XPath expression. The XPath Expression Builder enables you to brow a list of functions grouped by functionality.
To use a function in an XPath expression:
The list of available functions for the selected category appears below the Function list.
The selected function appears in the expression text area.
Some service operations may require or return arguments of type array. These arrays can be collections simple types or complex types.
To provide a parameter of type array to a service operation, you can:
For more information about defining array literals, see Section 26.12.4, "Using Array Literals".
Generally when a process operation returns an argument of type array you assign one of the elements of the array or an attribute of one of the elements to a data object using data association. For more information about data associations, see Section 8.13.1, "Introduction to the Data Association Editor".
Example 26-2 shows an expression that accesses an element of an array. In this example the name of the array is persons and the element to access is the third element in the array.
Note that The index of the first element in the array is 1. For example to access the first element in the persons array you must write the following expression: persons[1]
Simple expression language also enables you to access the attribute of the elements within the array. For example you could invoke a service operation that returns an array of persons and access the name attribute of the first element in the array to a process data object, using data associations.
Example 26-3 shows an expression that accesses an attribute of an element of an array. In this example the name of the array is persons, the element to access is the third element in the array and the attribute to access is the name of the person
Simple expression language enables you to obtain the length of an array to use it in your process logic. This is typical when defining the loop cardinality of multi-instance markers. For more information about multi-instance markers, see Section 26.6, "Writing Conditions in Loop and Multi-Instance Markers in Subprocesses".
To obtain the length of an array you must invoke the length function.
Example 26-3 shows an expression that obtains the length of an array. In this example the name of the array is persons. Note that even if the example uses parentheses after the function name but, you can omit them because this function does not require any parameters.
Literals enable you to express a certain value. You can use literals to assign a value to data object or to pass a parameter to a method you are invoking. To assign a value to a data object you can use data associations or a script task.
Simple expression language supports the following types of literals:
You can assign a value to data object of type String using literals. You can also use String literals to provide a parameter of type String to a method.
To define a String literal you must write a word or a set of words enclosed by double quotes. A String can also contain numbers.
The following list shows examples of String literals:
You can assign a value to a data object of type Time using literals. You can also use time literals to provide a parameter of type time to a method.
Time literals enable you to define a date using different levels of precision.
The following list uses an example date to show the different time literals that you can use to specify a variable of type Time:
'13:30'
'13:30:23'
'13:30:23.001023'
'13:30:23.001023Z
' '13:30:23.001023-05'
'13:30:23.001023-3:30'
'1979-02-19'
'1979-02-19 13:30'
'1979-02-19 13:30:23'
'1979-02-19 13:30:23.001023'
'1979-02-19 13:30:23.001023Z'
'1979-02-19 13:30:23.001023-05'
'1979-02-19 13:30:23.001023-3:30'
'1979-02-19T13:30'
'1979-02-19T13:30:23'
'1979-02-19T13:30:23.001023'
'1979-02-19T13:30:23.001023Z'
'1979-02-19T13:30:23.001023-05'
'1979-02-19T13:30:23.001023-3:30'
'19790219T'
'19790219T133023.001023-330'
You can assign a value to a data object of type Interval using literals. You can also use interval literals to provide a parameter of type interval to a method.
Interval literals enable you to define a date using different levels of precision.
To define a time literal you must use a combination of values and followed by their time unit enclosed by single quotes.
Table 26-6 shows the available time unit fields.
Table 26-6 Time Unit Suffixes
Time Unit Suffix	Description
Y | Year |
M | Month |
d or D | Day |
h or H | Hour |
m | Minutes |
s or S | Seconds |
x | Microseconds |
Table 26-7 shows examples of interval literals:
You can assign a value to a data object of type Interval using literals. You can also use interval literals to provide a parameter of type interval to a method.
To define an array literal you must provide a list of values separated by comas and enclosed by brackets. You can also specify the values using literals or attributes from data objects.
The following list shows examples of array literals:
The BPM Extension Functions enable you to access the following elements using XPath:
In XPath this is the only way of accessing the value of the described elements in your BPMN process.
Returns the value of a specific activity instance attribute. See Section 8.4, "Introduction to Activity Instance Attributes" for more information about the supported activity instance attributes.
Signature:
bpmn:getActivityInstanceAttribute(activityName, attributeName)
Arguments:
activity name
- The name of the activity that contains the activity instance attribute.
attributeName
- The name of the activity instance attribute for which you want to find out the value.
Examples:
bpmn:getActivityInstanceAttribute(userTask, priority)
bpmn:getActivityInstanceAttribute(userTask, title)
Returns the value of a specific input argument in a data association.
Signature:
bpmn:getDataInput(dataInputName)
Arguments:
dataInputName
- String that contains the name of the data input argument.
Examples:
Returns the value of a specific data object.
Signature:
bpmn:getDataObject(dataObjectName)
Arguments:
dataObjectName
- String that contains the name of the data object whose value you want to obtain.
Examples:
bpmn:getDataObject(discount)
bpmn:getDataObject(approveTermsOutcome)
Returns the value of a specific data output argument in a data association.
Signature:
pmn:getDataOutput(dataOutputName)
Arguments:
dataOutputName
- String that contains the name of the data output argument.
Examples:
Returns value of a specific activity instance attribute in a gateway. See Section 8.4, "Introduction to Activity Instance Attributes" for more information about the supported activity instance attributes for gateways.
Signature:
bpmn:getGatewayInstanceAttribute(gatewayName, attributeName)
Arguments:
gatewayName
- String that contains the name of the gateway that contains the attribute whose value you want to obtain.
attributeName
- String that contains the name of the attribute whose value you want to obtain.
Examples:
Returns value that corresponds to a process activity instance attribute. See Section 8.4, "Introduction to Activity Instance Attributes" for more information about the supported activity instance attributes.
Signature:
bpmn:getProcessInstanceAttribute(attributeName)
Arguments:
attributeName
- String that contains the name of the process instance attribute whose value you want to find out.
Examples:
bpmn:getProcessInstanceAttribute(owner)
This part provides on overview on how to use human interaction components in BPM Projects.
This part contains the following chapters:
This chapter describes for developers the human workflow concepts, features, and architecture. Use cases for human workflow are provided. Instructions for designing your first workflow from start to finish are also provided.
This chapter includes the following sections:
Many end-to-end business processes require human interactions with the process. For example, humans may be needed for approvals, exception management, or performing activities required to advance the business process. The human workflow component provides the following features:
Figure 27-1 provides an overview of human workflow.
In Figure 27-1, the following actions occur:
For information about portlets, see
This section introduces you to key human workflow design time and runtime concepts. This section also provides an overview of the three main stages of human workflow design.
Before designing a human task, it is important to understand the design and runtime concepts. A typical task consists of a subject, priority, task participants, task parameters or data, deadlines, notifications or reminders, and task forms. This section provides an overview of key concepts.
Note: Human workflow design-time tasks are performed in a graphical editor known as the Human Task Editor. The tutorial in describes how to use this editor. |
Human workflow supports declarative assignment and routing of tasks. In the simplest case, a task is assigned to a single participant (user or group). However, there are many situations in which more detailed task assignment and routing is necessary (for example, when a task must be approved by a management chain or worked and voted on by a set of people in parallel, as shown in Figure 27-2). Human workflow provides declarative, pattern-based support for such scenarios.
A participant is a user or set of users in the assignment and routing policy definition. In Figure 27-2, each block with an icon representing people is a participant.
In simple cases, a participant maps to a user, group, or role. However, as discussed in Section 27.2.1.1, "Task Assignment and Routing," workflow supports declarative patterns for common routing scenarios such as management chain and group vote.The following participant types are available:
This is the simple case where a participant maps to a user, group, or role.
For example, a vacation request is assigned to a manager. The manager must act on the request task three days before the vacation starts. If the manager formally approves or rejects the request, the employee is notified with the decision. If the manager does not act on the task, the request is treated as rejected. Notification actions similar to the formal rejection are taken.
This participant indicates that a set of people must work in parallel. This pattern is commonly used for voting.
For example, multiple users in a hiring situation must vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.
This participant indicates that a set of users must work in sequence. While working in sequence can be specified in the routing policy by using multiple participants in sequence, this pattern is useful when the set of people is dynamic. The most common scenario for this is management chain escalation, which is done by specifying that the list is based on a management chain within the specification of this pattern.
This participant also maps to a single user, group, or role, just as in single approver. However, this pattern indicates that the participant just receives a notification task and the business process does not wait for the participant's response. FYI participants cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
For example, a regional sales office is notified that a candidate for employment has been approved for hire by the regional manager and their candidacy is being passed onto the state wide manager for approval or rejection. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
For more information, see Section 29.4, "Assigning Task Participants."
A task is work that must be done by a user. When you create a task, you assign humans to participate in and act upon the task. Participants can perform actions upon tasks during runtime from Oracle BPM Worklist, such as approving a vacation request, rejecting a purchase order, providing feedback on a help desk request, or some other action. There are three types of participants:
You can assign individual users to act upon tasks. For example, you may assign users jlondon
or jstein
to a particular task. Users are defined in an identity store configured with the SOA Infrastructure. These users can be in the embedded LDAP of Oracle WebLogic Server, Oracle Internet Directory, or a third party LDAP directory.
You can assign groups to act upon tasks. Groups contain individual users who can claim and act upon a task. For example, users jcooper
and fkafka
may be members of the group LoanAgentGroup
that you assign to act upon the task.
As with users, groups are defined in the identity store of the SOA Infrastructure.
You can assign users who are members of application roles to claim and act upon tasks.
Application roles consist of users or other roles grouped logically for application-level authorizations. These roles are application-specific and are defined in the application Java policy store rather than the identity store. These roles are used by the application directly and are not necessarily known to a Java EE container.
Application roles define policy. Java permissions can be granted to application roles. Therefore, application roles define a set of permissions granted to them directly or indirectly through other roles (if a role is granted to a role). The policy can contain grants of application roles to enterprise groups or users. In the jazn-data.xml
file of the file-based policy store, these roles are defined in <app-role>
elements under <policy-store>
and written to system-jazn-data.xml
at the farm level during deployment. You can also define these roles after deployment using Oracle Enterprise Manager Fusion Middleware Control. You can set a task owner or approver to an application role at design time if the role has been previously deployed.
For more information about Oracle BPM Worklist, see Section 27.2.1.6, "Task Forms."
In processes dealing with significant variance, you cannot always determine all participants. Human workflow enables you to specify that a participant can invite other participants as part of performing the task.
For more information, see Section 29.5.1.1, "Allowing All Participants to Invite Other Participants."
By default, a task goes from starting to final participant according to the flow defined in the routing policy (as shown in Figure 27-2). However, sometimes a certain outcome at a particular step within a task's routing flow makes it unnecessary or undesirable to continue presenting the task to the next participants. For example, if an approval is rejected by the first manager, it does not need to be routed to the second manager. Human workflow supports specifying that a task or subtask be completed when a certain outcome occurs.
For more information, see Section 29.5.1.2, "Stopping Routing of a Task to Further Participants."
There are different methods for assigning users, groups, and application roles to tasks.
You can assign users, groups, and application roles statically (or by browsing the identity service). The values can be either of the following:
jstein
, CentralLoanRegion
, or ApproverRole
). jstein
, wfaulk
, cdickens
). You can assign users, groups, and application roles dynamically in the following ways:
For example, suppose that the potential assignees comprise the user jcooper
, the group LoanAgent
, and the application role Developers
. Suppose further that the requested type is user
. Applying this task-assignment pattern selects a single user from the user jcooper
, and from all members of the group LoanAgent
, and from all users with the application role Developers
.
For example, suppose that the potential assignees comprise the user jcooper
, the group LoanAgent
, and the application role Developers
. Suppose further that the requested type is user
. Applying this task-assignment pattern selects the user jcooper
, and one user from the group LoanAgent
, and one user with the application role Developers
.
By using XPath expressions. These expressions enable you to dynamically determine assignment to users not included in the participant type. Here you create a list of potential assignees, one of whom must then claim the task.
For example, you may have a business requirement to create a dynamic list of task approvers specified in a payload variable. The XPath expression can resolve to zero or more XML nodes. Each node value can be either of the following:
,
). For example, if the task has a payload message attribute named po
within which the task approvers are stored, you can use the following XPath expression:
/task:task/task:payload/po:purchaseOrder/po:approvers
ids:getManager('jstein', 'jazn.com')
This returns the manager of jstein
.
ids:getReportees('jstein', 2, 'jazn.com')
This returns all reportees of jstein
up to two levels.
ids:getUsersInGroup('LoanAgentGroup', false, 'jazn.com')
This returns all direct and indirect users in the group LoanAgentGroup
.
You can use both options simultaneously—for example, you can use an XPath expression to dynamically select a group, and then apply a task-assignment pattern to dynamically select a user from that group.
You can create the list of task participants with complex expressions. The result of using business rules is the same as using XPath expressions.
A task has multiple stakeholders. Participants are the users defined in the assignment and routing section of the task definition. These users are the primary stakeholders that perform actions on the task.
In addition to the participants specified in the assignment and routing policy, human workflow supports additional stakeholders:
This participant has business administration privileges on the task. This participant can be specified as part of the task definition or from the invoking process (and for a particular instance). The task owner can act upon tasks they own and also on behalf of any other participant. The task owner can change both the outcome of the task and the assignments.
For more information, see Section 29.2.7, "How to Specify a Task Owner" to specify an owner in the Human Task Editor or to specify an owner in the Advanced tab of the Human Task dialog.
The person who initiates the process (for example, the initiator files an expense report for approval). This person can review the status of the task using initiated task filters. Also, a useful concept is for including the initiator as a potential candidate for request-for-information from other participants.
For more information, see
This participant can review the status of the task and add comments and attachments.
This participant can view all tasks and take certain actions such as reassigning a test, suspending a task to handle errors, and so on. The task admin cannot change the outcome of a task.
While the task admin cannot perform the types of actions that a task participant can, such as approve, reject, and so on, this participant type is the most powerful because it can perform actions such as reassign, withdraw, and so on.
When an error occurs, the task is assigned to this participant (for example, the task is assigned to a nonexistent user). The error assignee can perform task recovery actions from Oracle BPM Worklist, the task form in which you perform task actions during runtime.
For more information, see Section 29.5.4, "How to Configure the Error Assignee."
Human workflow supports the specification of deadlines associated with a task. You can associate the following actions with deadlines:
The task can be reminded multiple times based on the time after the assignment or the time before the expiration.
The task is escalated up the management hierarchy.
The task has expired.
The task is automatically renewed.
For more information, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can configure your human task to use notifications. Notifications enable you to alert interested users to changes in the state of a task during the task lifecycle. For example, a notification is sent to an assignee when a task has been approved or withdrawn.
You can specify for notifications to be sent to different types of participants for different actions. For example, you can specify the following:
You can specify the contents of the notification message and the notification channel to use for sending the message.
You can configure email notification messages to be actionable, meaning that a task assignee can act upon a task from within the email.
For example, you may send the message shown in Example 27-1 by email when a task assignee requests additional information before they can act upon a task:
Example 27-1 Email Message
During runtime, you can mark a message sender's address as spam and also display a list of bad or invalid addresses. These addresses are automatically removed from the bad address list.
For more information about notifications, see the following:
Task forms provide you with a way to interact with a task. Oracle BPM Worklist displays all worklist tasks that are assigned to task assignees in the task form. When you drill down into a specific task, the task form displays the contents of the task to the user's worklist. For example, an expense approval task may show a form with line items for various expenses, and a help desk task form may show details such as severity, problem location, and so on.
The integrated development environment of Oracle SOA Suite includes Oracle Application Development Framework (Oracle ADF) for this purpose. With Oracle ADF, you can design a task form that depicts the human task in the SOA composite application.
ADF-based task forms can be automatically generated. Advanced users can design their own task forms by using ADF data controls to lay out the content on the page and connect to the workflow service engine at execution time to retrieve task content and act on tasks.
You can create task forms in JSF, .NET, or any other client technologies using the APIs.
Integration with Microsoft Excel for initiating and acting on tasks is also provided.
For more information, see the following:
This section describes advanced human workflow concepts.
You can use Oracle Business Rules to dynamically alter the routing flow. If used, each time a participant completes their step, the associated rules are invoked and the routing flow can be overridden from the rules.
For more information, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
You can use Oracle Business Rules to dynamically build a list of users, groups, and roles to associate with a participant.
For more information, see Section 29.4, "Assigning Task Participants."
A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel.
For more information, see Section 29.4, "Assigning Task Participants."
You can specify access rules that determine the parts of a task that assignees can view and update. For example, you can configure the task payload data to be read by assignees. This action enables only assignees (and nobody else) to have read permissions. No one, including assignees, has write permissions.
For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content."
While human workflow supports detailed behavior that can be declaratively specified, in some advanced situations, more extensible behavior may be required. Task callbacks enable such extensibility; these callbacks can either be handled in the invoking BPEL process or a Java class.
For more information, see Section 29.11.1, "How to Specify Callback Classes on Task Status."
Oracle BPM Worklist provides several out-of-the-box reports for task analysis:
Analysis of tasks assigned to users' groups or reportees' groups that have not yet been acquired.
Analysis of tasks assigned to a user, reportees, or their groups, based on priority.
Analysis of the time taken to complete tasks from assignment to completion based on users' groups or reportees' groups.
Analysis of assigned tasks and completed tasks in a given time period for a user, reportees, or their groups.
The time an assignee takes to perform a task.
You can view an audit trail of actions performed by the participants in the task and a snapshot of the task payload and attachments at various points in the workflow. The short history for a task lists all versions created by the following tasks:
For more information, see
Human workflow modeling consists of three stages of modeling, as described in Table 27-1.
Table 27-1 Stages of Human Workflow Modeling
Step | Description | For More Information... |
---|---|---|
1 | You create and define contents of the human task in the Human Task Editor, including defining a participant type, routing policy, escalation and expiration policy, notification, and so on. | |
2 | You associate the human task definition with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow. | |
3 | You create a task form. This form displays the task details on which you act at runtime in Oracle BPM Worklist. |
This section provides an introduction to use cases for human workflow. After that, a tutorial guides you through the design of a human task from start to finish.
The following sections describe multiple use cases for workflow services.
A vacation request process may start with getting the vacation details from a user and then routing the request to their manager for approval. User details and the organizational hierarchy can be looked up from a user directory or identity store. This scenario is shown in Figure 27-3.
Figure 27-3 Assigning Tasks to a User or Role from a Directory
A task can be routed through multiple users with a group vote, management chain, or sequential list of approvers participant type. For example, consider a loan request that is part of the loan approval flow. The loan request may first be assigned to a loan agent role. After a specific loan agent acquires and accepts the loan, the loan may be routed further through multiple levels of management if the loan amount is greater that $100,000. This scenario is shown in Figure 27-4.
Figure 27-4 Flow Patterns and Routing Policies
You can use these types as building blocks to create complex workflows.
A high-priority task can be assigned to a certain user or role based on the task type through use of custom escalation functions. However, if the user does not act on it in a certain time, the task may expire and in turn be escalated to the manager for further action. As part of the escalation, you may also notify the users by email, telephone voice message, or SMS. Similarly, a manager may delegate tasks from one reportee to another to balance the load between various task assignees. All tasks defined in BPEL have an associated expiration date. Additionally, you may specify escalation or renewal policies, as shown in Figure 27-5. For example, consider a support call, which is part of a help desk service request process. A high-priority task may be assigned to a certain user, and if the user does not respond in two days, the task is routed to the manager for further action.
A user may decide to have another user perform tasks on their behalf. Tasks can be explicitly delegated from the Oracle BPM Worklist or can be automatically delegated. For example, a manager sets up a vacation rule saying that all their high priority tasks are automatically routed to one of their direct reports while the manager is on vacation. In some cases, tasks can be routed to different individuals based on the content of the task. Another example of automatic routing is to allocate tasks among multiple individuals belonging to a group. For example, a help desk supervisor decides to allocate all tasks for the western region based on a round robin basis or assign tasks to the individual with the lowest number of outstanding tasks (the least busy).
An employee named James in the human resources department requests new hardware that costs $5000. The company may have a policy that all hardware expenses greater than $3000 must go through manager and vice president approval, and then review by the director of IT. In this scenario, the workflow can be configured to automatically determine the manager of James, the vice president of the human resources department, and the director of IT. The purchase order is routed through these three individuals for approval before the hardware is purchased.
This section provides an overview of human workflow architecture. The following topics are discussed:
Starting with release 11g, all human task metadata is stored and managed in the Metadata Service (MDS) repository. The workflow service consists of many services that handle various aspects of human interaction with a business process.
Figure 27-6 shows the following workflow service components:
The task service provides task state management and persistence of tasks. In addition to these services, the task service exposes operations to update a task, complete a task, escalate and reassign tasks, and so on. The task service is used by Oracle BPM Worklist to retrieve tasks assigned to users. This service also determines if notifications are to be sent to users and groups when the state of the task changes. The task service consists of the following services.
The task routing service offers services to route, escalate, and reassign the task. The service makes these decisions by interpreting a declarative specification in the form of the routing slip.
The task query service queries tasks for a user based on a variety of search criterion such as keyword, category, status, business process, attribute values, history information of a task, and so on.
The task metadata service exposes operations to retrieve metadata information related to a task.
The identity service is a thin web service layer on top of the Oracle Application Server 11g security infrastructure or any custom user repository. It enables authentication and authorization of users and the lookup of user properties, roles, group memberships, and privileges.
The notification service delivers notifications with the specified content to the specified user through any of the following channels: email, telephone voice message, IM, and SMS. See for more information.
The user metadata service manages metadata related to workflow users, such as user work queues, preferences, vacations, and delegation rules.
The runtime config service provides methods for managing metadata used in the task service runtime environment. It principally supports management of task payload mapped attribute mappings.
The evidence service supports storage and nonrepudiation of digitally-signed workflow tasks.
Figure 27-7 shows the interactions between the services and the business process.
Figure 27-7 Workflow Services and Business Process Interactions
There are two ways in which to use a human task:
In most cases, you associate your human task with a BPEL process. The BPEL process integrates a series of activities (including the human task activity) and services into an end-to-end process flow.
You can also create the human task as a standalone component only in the SOA Composite Editor and not associate it with a BPEL process. Standalone human task service components are useful for environments in which there is no need for any automated activity in an application. In the standalone case, the client can create the task themselves.
During runtime, the business logic and processing rules of the human task service component are executed by the human workflow service engine. Each service component (BPEL process, human workflow, decision service (business rules), and Oracle Mediator) has its own service engine container for performing these tasks. All human task service components, regardless of the SOA composite application of which they are a part, are executed in this single human task service engine.
For more information about configuring, monitoring, and managing the human workflow service engine, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This chapter describes how to design human tasks using the different editors available in Oracle BPM. It also describes how associate Human Task with the user tasks in your BPM project.
This chapter includes the following sections:
For information on how Oracle BPM shows human tasks in the Business Catalog, see Section 14, "Working with Human Tasks".
For more information on how to define Human Tasks using Oracle SOA Suite, see the following chapters in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite:
Human tasks enable you to model the interaction with the end user in a a BPM process. You must use human tasks to implement the user tasks in your process.
Oracle BPM Suite provides different editors that you can use according to the requirements of the Human Task you are modeling.
Some human tasks features are only available when using them from Oracle BPM Suite. For more information about this, see Section 28.7, "Configuring a Human Task Using the Human Task Editor".
There are different approaches to working with Human Tasks in Oracle BPM:
The approach you choose depends on how you plan your work, how you divide it between the developers in your team and the complexity of the Human Tasks you are developing.
Creating the Human Task Using the User Task Properties Dialog
For more information see Section 28.2, "Creating a Human Task from Oracle BPM Studio".
Creating the Human Task Using the Human Task Editor:
For more information see Section 28.4, "Creating a Human Task from the SOA Composite Editor".
For more information see .
For more information see Section 28.5, "Implementing a User Task with an Existing Human Task".
Using an existing Human Task:
For more information, see Chapter 28, "How to Implement a User Task With an Existing Human Task".
You can create a simple Human Task using Oracle BPM Studio. The simplified interface Oracle BPM Studio provides hides the complexity of the Human Task editor by exposing the most important fields to configure a Human Task used in a business process. After you create the Human Task using the Create Human Task dialog, you can edit it using the Human Task editor if needed.
Figure 28-1 shows the Create Human Task dialog.
The Create Human Task dialog enables you to define the following properties:
Defines the name of the Human Task that is displayed to end-users in the Oracle Process Workspace and Oracle BPM Worklist applications.
Specifies a priority for the Human Task. Valid values are between 1 (highest priority) and 5 (lowest priority). The default value is 3.
Specifies the outcome possible outcome arguments of the Human Task. Oracle BPM Worklist displays the possible outcomes you select as the available tasks to perform at run time.
Define the Human Task payload. The Human Task data association is based on the parameters of the Human Task. The data association maps the data objects as input arguments.
Specifies a String data object to store the outcome argument of the Human Task. You can only select one data object. The value of this outcome is one of the values defined in the Outcomes property.
You can create a Human Task from the User Task Properties dialog in Oracle BPM Studio.
To create a Human Task from Oracle BPM Studio:
The Properties - User Task dialog appears.
Figure 28-2 shows the Properties - User Task dialog.
The Create Human Task dialog appears.
Figure 28-1 shows the Create Human Task dialog.
For more information about Human Task patterns, see Chapter 32, "Using Approval Management".
See Section 28.2.2, "How to Configure the Outcome of a Human Task" for information on how to configure the outcome of a Human Task.
See Section 28.2.3, "How to Add a Parameter to Human Task" for information on how to configure the outcome of a Human Task.
See Section 28.2.4, "How to Configure the Outcome Target of a Human Task" for information on how to configure the outcome of a Human Task.
The Create Human Task dialog closes and the Human Task field in the User Task Properties dialog shows the Human Task you created.
The User Task Properties closes and saves the implementation you configured for the user task.
When you create a Human Task from Oracle BPM Studio you can configure the outcome of the Human Task. The outcome values you configure appear as the available actions of the Human Task in Oracle BPM Worklist.
To configure the outcome of a Human Task:
The Outcomes dialog appears.
The Outcomes dialog closes and the selected outcomes appear in the Create Human Task dialog, in the Outcomes field.
You can add multiple parameters to a Human Task to build the Human Task payload. Oracle BPM Studio uses this parameters to create the data association of the user task that uses the Human Task.
To add a parameter to a Human Task:
The Data Objects dialog appears.
The selected data object appears in the Parameters table.
When you create a Human Task you must define an outcome target. The outcome target maps the result of the Human Task to a String data object in your BPM project.You can base the flow of your process on the value of the outcome target using an exclusive gateway.
To configure the outcome target of a Human Task
The Data Objects dialog appears.
To add a new data object, right-click the Data Objects node and select Add.
The selected data object appears in the Outcome Target field.
The Human Task automatically appears in the HumanTasks predefined module in the business catalog. You can use the Human Task to implement the user task you are editing or other user tasks in the BPM project.
You can edit the created Human Task using the Human Task editor to configure implementation details.
You can edit a Human Task using the User Task Properties dialog or the Human Task editor. Generally you use the Human Task editor for complex human tasks.
Figure 28-2 shows the User Task Properties dialog.
The User Task Properties dialog enables you to define properties using plain text, simple expressions and XPATH expressions:
Defines the name of the Human Task that is displayed to end-users in the Oracle Process Workspace and Oracle BPM Worklist applications.
Specifies a priority for the Human Task. Valid values are between 1 (highest priority) and 5 (lowest priority). The default value is 3.
Restarts the approval process from the beginning
Specifies the user who initiates a task. The initiator can view their created tasks from Oracle BPM Worklist and perform specific tasks, such as withdrawing or suspending a task.
Specifies the User ID of the task owner
Defines a user-defined ID for the task. For example, if the task is meant for approving a purchase order, the purchase order ID can be set as the identification key of the task. Tasks can be searched from Oracle BPM Worklist using the identification key. This attribute has no default value.
This field is required if you are using multiple realms. You cannot have assignees from multiple realms working on the same task.
Specifies the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates.
To edit a Human Task using the User Task Properties dialog:
The user task properties dialog box appears.
You can add a Human Task to your BPM project from the SOA Composite editor. Typically you do this when you design human tasks before modeling the user tasks in a BPMN process.
You can add a user task to a BPM project using the SOA Composite editor.
To create a Human Task from the SOA Composite Editor:
The Create Human Task dialog appears.
The Human Task component appears in the Component area of the SOA Composite.
The Human Task you created is available to implement the user tasks in your BPM project. For more information on how to do this, see Section 28.5, "Implementing a User Task with an Existing Human Task".
You can create a Human Task using the Human Task editor and then assign that Human Task to the implementation of a user task.
You must also define how the data objects in your BPM process map to the input and output arguments of the Human Task. You can do this using data associations or transformation. For more information on data associations and transformations, see Chapter 8, "Handling Information in Your Process Design".
You can implement a user task using an existing Human Task that you created for another user task or using the Human Task editor.
To implement a user task with an existing Human Task:
The Properties - User Task dialog appears.
The Browse Human Tasks dialog appears.
The Browse Human Tasks dialog closes and the selected Human Task appears in the Human Task field.
The user task uses the existing Human Task for its implementation.
The SOA Composite displays the relationship between the BPMN process and the Human task by adding a wire between them.
When the BPMN Service Engine runs the user task implementation it invokes the Human Workflow Service with the parameters defined in the data association of the user task. When the Human Workflow Service finishes running the Human Tasks it provides the result to the BPMN Service Engine using the defined data association.
To associate the process payload to the Human Task payload you must configure the Human Task, the user task and start events in the BPMN process and create a business object based on the payload xsd file.
To associate the process payload to the Human Task payload:
The Type Chooser dialog opens.
Configuring complex human tasks usually requires you to use the Human Task Editor to edit them. This allows you to edit properties that are not displayed when you use the simplified interface that Orable BPM provides.
Figure 28-3 shows the Human Task editor.
You can edit a Human Task used in your BPM project using the Human Task editor. Generally you use the Human Task editor to edit complex human tasks.
To edit a Human Task using the Human Task Editor:
The Human Task editor appears.
This section covers how to configure those properties that are only available when using human tasks from Oracle BPM Suite.
The rest of the properties are shared with Oracle SOA Suite. For more information on how to configure these properties, see section Creating the Human Task Definition with the Human Task Editor in the chapter Designing Human Tasks from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The Human Task editor enables you to configure the following sets of properties:
Enables you to define basic information such as the title, description, priority and owner.
Note that you can localize the title of a Human Task by selecting the Translation option from the list next to the title field and then clicking Build and Internationalized title. For more information on how to define the resource bundle, see section "Specifying Multilingual Settings and Style Sheets" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
For more information on how to configure these properties, see section "Specifying the Title, Description, Outcome, Priority, Category, Owner, and Application Context" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Enables you to define the message elements that compose the structure of the task payload.
For more information on how to configure these properties, see section "Specifying the Task Payload Data Structure" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
Enables you to assign a participant to the task and to configure routing policies to drive the task through the defined workflow.
For more information on how to configure these properties, see section "Assigning Task Participants" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
Enables you to configure the presentation used to display the Human Task, using stylesheets and multilingual settings.
For more information on how to configure these properties, see section "Specifying Multilingual Settings and Style Sheets" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
Enables you to specify the duration and expiration of a task.
For more information on how to configure these properties, see section "Escalating, Renewing, or Ending the Task" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
Enables you to configure how to notify the user when the status of the task changes.
For more information on how to configure these properties, see section "Specifying Participant Notification Preferences" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
For information on how to specify an e-mail address for the recipient of the notification, see Section 28.7.1, "How to Specify an E-mail Address for the Recipient of a Notification".
Enables you to configure access policies and restrictions for the content of the Human Task.
For more information on how to configure these properties, see section "Specifying Access Policies and Task Actions on Task Content" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
Enables you to specify how to handle BPEL callbacks.d
For more information on how to configure these properties, see section "Specifying Java or Business Event Callbacks" from Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite
Enables you to configure the Human Task to store task attachments in Oracle UCM Repository. For more information, see Section 28.7.2, "How to Configure Oracle UCM Repository to Store Task Attachments".
Some human tasks features are only available when using humans tasks from an Oracle BPM Suite Installation.
When you use human tasks from an Oracle BPM Suite installation you must take into account the following considerations:
When using the Human Task editor in a BPM Suite installation, you can specify an e-mail address for the recipient of a Notification.
To specify an e-mail address for the recipient of a notification:
The Recipient list is an editable list, when you double click it, it becomes a text field.
Optionally you can use the buttons next to the Recipient text field to look up the e-mail address in an application server or to specify the e-mail address using XPath.
Note: When sending a notification to a recipient specified using an e-mail address, the notification service uses the user context of an assignee to obtain the task information to include in the notification. |
You can configure Human Tasks to store attachments in the UCM repository. These attachments may contain one or more meta-data properties. You can assign values to these properties or configure them to allow the user to provide the value.
To configure Oracle UCM Repository for task attachments:
The Human Task Editor appears.
A section to configure meta-data properties appears. The table already contains the mandatory standard meta-data: Security Group and Document Type.
Editable: the user can provide a value in the task form when uploading the attachment.
Hidden: the value does not appear in the task form
Read-Only: the value appears in the task form but the user cannot modify it
Note: custom metadata is does not apper in the task form, so you must map the value to task payload or provide a static value. |
This chapter describes how to configure the different properties of a human task. It covers basic properties, task payload data structure, participant assignment, routing policies, localization, escalation, notification preferences, access policies and task actions, restrictions and Java and business event callbacks.
This chapter includes the following sections:
For information about troubleshooting human workflow issues, see section "Human Workflow Troubleshooting" of Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This section describes how to access the sections of the Human Task Editor. Brief descriptions are provided of each section and references are provided to more specific information.
To access the sections of the Human Task Editor:
The Human Task Editor consists of the main sections shown on the left side in Figure 29-1. These sections enable you to design the metadata of a human task.
Instructions for using these main sections of the Human Task Editor to create a workflow task are listed in Table 29-1.
Table 29-1 Human Task Editor
Section | Description | See... |
---|---|---|
General (title, description, outcomes, category, priority, owner, and application context) | Enables you to define task details such as title, task outcomes, owner, and other attributes. | |
Data | Enables you to define the structure (message elements) of the task payload (the data in the task). | Section 29.3, "Specifying the Task Payload Data Structure" |
Assignment | Enables you to assign participants to the task and create a policy for routing the task through the workflow. | Section 29.4, "Assigning Task Participants" Section 29.5, "Selecting a Routing Policy" |
Presentation | Enables you to specify the following settings:
| Section 29.6, "Specifying Multilingual Settings and Style Sheets" |
Deadlines | Enables you to specify the expiration duration of a task, custom escalation Java classes, and due dates. | Section 29.7, "Escalating, Renewing, or Ending the Task" |
Notification | Enables you to create and send notifications when a user is assigned a task or informed that the status of the task has changed. | Section 29.8, "Specifying Participant Notification Preferences" |
Access | Enables you to specify access rules for task content and task actions, workflow signature policies, and assignment restrictions. | Section 29.9, "Specifying Access Policies and Task Actions on Task Content" Section 29.9.2, "How to Specify a Workflow Digital Signature Policy" Section 29.10, "Specifying Restrictions on Task Assignments" |
Events | Enables you to specify callback classes and task and routing assignments in BPEL callbacks. | Section 29.11, "Specifying Java or Business Event Callbacks" |
Documents | Enables you to store task attachments as documents in a content management system. | Section 29.12, "Storing Documents in Oracle Enterprise Content Management" |
This section contains these topics:
To specify the title, description, outcome, priority, category, owner, and application context:
Figure 29-2 shows the General section of the Human Task Editor.
This section enables you to specify details such as the task title, description, task outcomes, task category, task priority, and task owner.
Figure 29-2 Human Task Editor — General Section
Instructions for configuring the following subsections of the General section are listed in Table 29-2:
Table 29-2 Human Task Editor — General Section
For This Subsection... | See... |
---|---|
Title | Section 29.2.2, "How to Specify a Task Title" |
Description | Section 29.2.3, "How to Specify a Task Description" |
Outcomes | Section 29.2.4, "How to Specify a Task Outcome" |
Priority | Section 29.2.5, "How to Specify a Task Priority" |
Category | Section 29.2.6, "How to Specify a Task Category" |
Owner | Section 29.2.7, "How to Specify a Task Owner" |
Application Context | Section 29.2.8, "How To Specify an Application Context" |
To specify a task title:
Enter an optional task title. The title defaults to this value only if the initiated task does not have a title set in it. The title provides a visual identifier for the task. The task title displays in Oracle BPM Worklist or Oracle BPM Workspace. You can also search on titles in Oracle BPM Worklist.
Vacation Request Approved
). Approval Required for Order Id:
), place the cursor one blank space to the right of the text and click the icon to the right of this field. This displays the Expression Builder for dynamically creating the remaining portion of the title. After completing the dynamic portion of the name, click OK to return to this field. The complete name is displayed. For example: The expression is resolved during runtime with the exact order ID value from the task payload.
If you enter a title in the Task Title field of the General tab of the Create Human Task dialog described in the title you enter here is overridden.
You can optionally specify a description of the task in the Description field of the General section. The description enables you to provide additional details about a task. For example, if the task title is Computer Upgrade Request
, you can provide additional details in this field, such as the model of the computer, amount of CPU, amount of RAM, and so on. The description does not display in Oracle BPM Worklist.
Task outcomes capture the possible outcomes of a task. Oracle BPM Worklist displays the outcomes you specify here as the possible task actions to perform during runtime. Figure 29-3 provides details.
Figure 29-3 Outcomes in Oracle BPM Worklist
You can specify the following types of task outcomes:
The task outcomes can also have runtime display values that are different from the actual outcome value specified here. This permits outcomes to be displayed in a different language in Oracle BPM Worklist. For more information about internationalization, see Section 29.6.2, "How to Specify Multilingual Settings."
To specify a task outcome:
The Outcomes dialog shown in Figure 29-4 displays the possible outcomes for tasks. APPROVE and REJECT are selected by default.
Table 29-3 Outcomes Dialog
Field | Description |
---|---|
Select one or more outcomes | Select additional task outcomes or deselect the default outcomes. |
Add icon | Click to invoke a dialog for adding custom outcomes. In the Name field of the dialog, enter a custom name, and click OK. Your outcome displays in the Outcomes field. Notes: Be aware of the following naming restrictions:
|
Outcomes Requiring Comment | Click to select an outcome to which an assignee adds comments in Oracle BPM Worklist at runtime. The assignee must add the comments and perform the action without saving the task at runtime. |
Default Outcome | Select the default outcome for this outcome. |
The seeded and custom outcomes selected here display for selection in the Majority Voted Outcome section of the parallel participant type.
Specify the priority of the tasks. Priority can be 1 through 5, with 1 being the highest. By default, the priority of a task is 3. This priority value is overridden by any priority value you select in the General tab of the Create Human Task dialog. You can filter tasks based on priority and create views on priorities in Oracle BPM Worklist.
To specify a task priority:
For more information about specifying a priority value in the Create Human Task dialog, see
You can optionally specify a task category in the Category field of the General section. This categorizes tasks created in a system. For example, in a help desk environment, you may categorize customer requests as either software-related or hardware-related. The category displays in Oracle BPM Worklist. You can filter tasks based on category and create views on categories in Oracle BPM Worklist.
To specify a task category:
The task owner can view the tasks belonging to business processes they own and perform operations on behalf of any of the assigned task participant types. Additionally, the owner can also reassign, withdraw, or escalate tasks. The task owner can be considered the business administrator for a task. The task owner can also be specified in the Advanced tab of the Create Human Task dialog described in The task owner specified in the Advanced tab overrides any task owner you enter here.
For more information about the task owner, see Section 27.2.1.3, "Task Stakeholders."
To specify a task owner:
For example:
po
within which the owner
is stored, you can specify an XPath expression such as: /task:task/task:payload/po:purchaseOrder/po:owner
ids:getManager('jstein', 'jazn.com')
The manager of jstein
is the task owner.
For more information about users, groups, and application roles, see Section 27.2.1.1.3, "Participant Assignment."
Task owners can be selected by browsing the user directory (Oracle Internet Directory, Java AuthoriZatioN (JAZN)/XML, LDAP, and so on) or a list of application roles configured for use with Oracle SOA Suite.
To specify a task owner statically through the user directory or a list of application roles:
Note: By default, group names in human tasks are case sensitive. Therefore, if you select Group and enter a name in upper case text (for example, |
Figure 29-5 Specify a Task Owner By Browsing the User Directory or Application Roles
If you selected User or Group, the Identity Lookup dialog shown in Figure 29-6 appears.
To select a user or group, you must first create an application server connection by clicking the Add icon. Note the following restrictions:
myhost.us.oracle.com
). If you select a connection configured only with the hostname (for example, myhost
), the Realm list may not display the available realms. If the existing connection does not include the domain name, perform the following steps: jcooper, j*, *,
and so on. Clicking the Lookup icon to the right of the User Name field fetches all the users that match the search criteria. Figure 29-7 provides details. One or more users or groups can be highlighted and selected by clicking Select. Figure 29-7 Identity Lookup with Realm Selected
Figure 29-8 User Hierarchy in Identity Lookup Dialog
Your selection displays in the Owner field.
If you selected Application Role, the Select an Application Role dialog appears.
Task owners can be selected dynamically in the Expression Builder dialog.
To specify a task owner dynamically:
Figure 29-11 Specify a Task Owner Dynamically
This displays the Expression Builder dialog shown in Figure 29-12:
Your selection displays in the Owner field.
For more information, see the following:
You can specify the name of the application that contains the application roles used in the task. This indicates the context in which the application role operates. If you do not explicitly create a task, but end up having one, you can set up the context.
Figure 29-13 shows the Data section of the Human Task Editor.
This section enables you to specify the structure (message elements) of the task payload (the data in the task) defined in the XSD file. You create parameters to represent the elements in the XSD file. This makes the payload data available to the workflow task. For example:
Task payload data consists of one or more elements or types. Based on your selections, an XML schema definition is created for the task payload.
Figure 29-13 Human Task Editor — Parameters Section
To specify the task payload data structure:
The Add Task Parameter dialog is displayed, as shown in Figure 29-14.
Enter the details described in Table 29-5:
Table 29-5 Add Task Parameter Dialog Fields and Values
Field | Description |
---|---|
Parameter Type | Select Type or Element and click the Search icon to display the Type Chooser dialog for selecting the task parameter. |
Parameter Name | Accept the default name or enter a custom name. This field only displays if Type is the selected parameter type. |
Editable via worklist | Select this checkbox to enable users to edit this part of the task payload in Oracle BPM Worklist. For example, for a loan approval task, the APR attribute may need to be updated by the user reviewing the task, but the SSN field may not be editable. You can also specify access rules that determine the parts of a task that participants can view and update. For more information, see Section 29.9.1, "How to Specify Access Policies on Task Content." |
Note: You can only define payload mapped attributes (previously known as flex field mappings) in Oracle BPM Worklist for payload parameters that are simple XML types (string, integer, and so on) or complex types (for example, a purchase order, and so on). If you must search tasks using keywords or define views or delegation rules based on task content, then you must use payload parameters based on simple XML types. These simple types can be mapped to flex columns in Oracle BPM Worklist. |
Your selection displays in the Data section.
Figure 29-16 shows the Assignment section of the Human Task Editor. This section enables you to select a participant type that meets your business requirements. While configuring the participant type, you build lists of users, groups, and application roles to act upon tasks.
Figure 29-16 Human Task Editor — Assignment Section
You can easily mix and match participant types to create simple or complex workflow routing policies. You can also extend the functionality of a previously configured human task to model more complex workflows.
A participant type is grouped in a block under a stage (for example, named Stage1 in Figure 29-16). A stage is a way of organizing the approval process for blocks of participant types. You can have one or more stages in sequence or in parallel. Within each stage, you can have one or more participant type blocks in sequence or in parallel. The up and down keys enable you to rearrange the order of your participant type blocks.
For example:
Each of the participant types has an associated editor that you use for configuration tasks. The sequence in which the assignees are added indicates the execution sequence.
To specify a different stage name or have a business requirement that requires you to create additional stages, perform the following steps. Creating additional stages is an advanced requirement that may not be necessary for your environment.
This section contains these topics:
For more information about participant types, see Section 27.2.1.1, "Task Assignment and Routing."
To specify a stage name and add parallel and sequential blocks:
The stage is named Stage1 by default. If you want, you can change the name.
The Edit dialog shown in Figure 29-17 appears.
A second stage is added in parallel to the first stage, as shown in Figure 29-19.
A sequential stage is added below the selected block.
You create participant types within these blocks.
To assign task participants:
or
The Edit Participant Type dialog appears. This dialog enables you to select a specific participant type.
Table 29-6 Participant Types
Participant Type | For a Description of this Participant Type, See... | For Instructions on Configuring this Participant Type, See... |
---|---|---|
| Section 27.2.1.1.2, "Participant Type" | Section 29.4.3, "How to Configure the Single Participant Type" Section 29.4.4, "How to Configure the Parallel Participant Type" Section 29.4.5, "How to Configure the Serial Participant Type" Section 29.4.6, "How to Configure the FYI Participant Type" |
Figure 29-22 shows the Edit Participant Type dialog for the single participant type. Figure 29-23 shows the expanded Advanced section.
Figure 29-22 Edit Participant Type — Single Type
Figure 29-23 Edit Participant Type — Single Type (Expanded Advanced Section)
To be dynamically assigned to a task, a single participant can be selected from a group, an application role, or a participant list.
To configure the single participant type:
Approval Manager
, Primary Reviewers
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the single participant type are listed in Table 29-7:
Table 29-7 Edit Participant Type — Single Type
For This Subsection... | See... |
---|---|
Participant List | Section 29.4.3.1, "Creating a Single Task Participant List" |
Limit allocated duration to (under the Advanced section) | Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task" |
Allow this participant to invite other participants (under the Advanced section) | Section 29.4.3.3, "Inviting Additional Participants to a Task" |
Specify skip rule (under the Advanced section) | Section 29.4.3.4, "Bypassing a Task Participant" |
Users assigned to a participant list can act upon tasks. In a single-task participant list, only one user is required to act on the task. You can specify either a single user or a list of users, groups, or application roles for this pattern. If a list is specified, then all users on the list are assigned the task. You can specify either that one of them must manually claim and act upon the task, or that one user from the list is automatically selected by an assignment pattern. When one user acts on the task, the task is withdrawn from the task list of other assignees.
You can create several types of lists for the single user participant, and for the parallel, serial, and FYI user participants, for example:
These lists enable you to statically or dynamically select users, groups, or application roles as task assignees.
Management chains are typically used for serial approvals through multiple users in a management chain hierarchy. Therefore, this list is most likely useful with the serial participant type. This is typically the case if you want all users in the hierarchy to act upon the task. Management chains can also be used with the single participant type. In this case, however, all users in the hierarchy get the task assigned at the same time. As soon as one user acts on the task, it is withdrawn from the other users.
For example, a purchase order is assigned to a manager. If the manager approves the order, it is assigned to their manager. If that manager approves it, it is assigned to their manager, and so on until three managers approve the order. If any managers reject the request or the request expires, the order is rejected if you specify an abrupt termination condition. Otherwise, the task flow continues to be routed.
Business rules enable you to create the list of task participants with complex expressions. For example, you create a business rule in which a purchase order request below $5000 is sent to a manager for approval. However, if the purchase order request exceeds $5000, the request is sent to the manager of the manager for approval. Two key features of business rules are facts and action types, which are described in Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
When you select a participant type, a dialog box enables you to choose an option for building your list of task participant assignees (users, groups, or application roles), as shown in Figure 29-24. The three selections described above are available: Names and expressions, Management Chain, and Rule-based.
Figure 29-24 Build a List of Participants
After selecting an option, you dynamically assign task participant assignees (users, groups, or application roles) and a data type, as shown in Figure 29-25.
Figure 29-25 Assignment of Task Assignees
This section describes how to create these lists of participants.
Select a method for statically or dynamically assigning a user, group, or application role as a task participant.
For conceptual information, see the following:
To create participant lists consisting of value-based names and expressions:
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
Figure 29-26 Selecting and Configuring an Assignment Pattern
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.
The dialog refreshes to display the fields shown in Figure 29-27.
Figure 29-27 Value-Based Names and Expressions
Click the Add icon and select a user, group, or application role as a task participant.
The Identification Type column of the Participant Names table displays your selection of user, group, or application role.
To change your selection in the Identification Type column, click it to invoke a dropdown list.
If your selection is an application role, click the Browse icon to display the Select an Application Role dialog for selecting an application role. To search for application roles, you must first create a connection to the application server. When searching, you must specify the application name to find the name of the role. The task definition can refer to only one application name. You cannot use application roles from different applications as assignees or task owners.
bpws:getVariableData(...)
expression or the ids:getManager()
XPath function. The Value column displays the value you specified.
To manually enter a value, click the field in the Value column and specify a value.
Select a method for statically or dynamically assigning management chain parameters as task participants.
For conceptual information about the following:
To create participant lists based on value-based management chains:
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.
The dialog refreshes to display the fields shown in Figure 29-28.
Figure 29-28 Value-Based Management Chains
2
and the task is initially assigned to user jcooper
, both the user jstein
(manager of jcooper
) and the user wfaulk
(manager of jstein
) are included in the list (apart from jcooper
, the initial assignee). A ruleset provides a unit of execution for rules and for decision tables. In addition, rulesets provide a unit of sharing for rules; rules belong to a ruleset. Multiple rulesets can be executed in order. This is called rule flow. The ruleset stack determines the order. The order can be manipulated by rule actions that push and pop rulesets on the stack. In rulesets, the priority of rules applies to specify the order of firing of rules in the ruleset. Rulesets also provide an effective date specification that identifies that the ruleset is always active, or that the ruleset is restricted based on a time and date range, or a starting or ending time and date.
The method by which you create a ruleset is based on how you access it. This is described in the following section.
To specify participant lists based on rulesets:
Business rules can define the participant list. There are two options for using business rules:
Figure 29-29 provides details.
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
A particular pattern may enable you to specify input parameters that control how the pattern is evaluated. For example, as shown in Figure 29-26, the Most Productive pattern enables you to specify the Time Period (in days) over which the productivity is calculated. Input values can be static, or can be dynamically set by using an XPath expression. Not all patterns accept parameters.
Figure 29-30 provides details.
To find out more about each assignment pattern, and to select and configure it, click Assignment Pattern. The Assignment Pattern dialog box appears. Figure 29-26 shows an example of an Assignment Pattern dialog box.
When you specify an application server connection in the Application Server field, the assignment patterns are loaded into the Assignment Pattern list. When you select one of the patterns from the Assignment Pattern list, a description of your selection appears in the text box.
If you want the assignment pattern to consider all types of tasks, then select Use tasks of all types to evaluate pattern criteria. Otherwise, the pattern considers only this task type when determining the selected user. For example, to assign a vacation request task to the least busy user, and you select Use tasks of all types to evaluate pattern criteria, then all assigned tasks are taken into consideration when determining the least busy user. If you do not select Use tasks of all types to evaluate pattern criteria, then only assigned vacation request tasks are considered when determining the least busy user.
Both options create a rule dictionary, if one is not already created, and preseed several rule functions and facts for easy specifications of the participant list. In the rule dictionary, the following rule functions are seeded to create participant lists:
CreateResourceList
CreateManagementChainList
The Task
fact is asserted by the task service for basing rule conditions.
After the rule dictionary is created, the Oracle Business Rules Designer is displayed.
The parameters for the rule functions are similar to the ones in Oracle JDeveloper modeling. In addition to the configurations in Oracle JDeveloper, some additional options are available in the Oracle Business Rules Designer for the following attributes:
An example of rules specifying management chain-based participants is shown in Figure 29-32.
If multiple rules are fired, the list builder created by the rule with the highest priority is selected.
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.
To specify a time limit for acting on a task:
Figure 29-33 Advanced Section of Edit Participant Type — Single Type
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.
This is also known as ad hoc routing. If this option is selected, Adhoc Route is added to the Actions list in Oracle BPM Worklist at runtime.
To invite additional participants to a task:
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.
To bypass a task:
This action displays an icon for accessing the Expression Builder dialog for building a condition.
The expression to bypass a task participant must evaluate to a boolean value. For example, /task:task/task:payload/order:orderAmount < 1000 is a valid XPath expression for skipping a participant.
For more information about creating dynamic rule conditions, see Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules."
Figure 29-34 and Figure 29-35 display the upper and lower sections of the Parallel dialog.
This participant type is used when multiple users, working in parallel, must act simultaneously, such as in a hiring situation when multiple users vote to hire or reject an applicant. You specify the voting percentage that is needed for the outcome to take effect, such as a majority vote or a unanimous vote.
For example, a business process collects the feedback from all interviewers in the hiring process, consolidates it, and assigns a hire or reject request to each of the interviewers. At the end, the candidate is hired if the majority of interviewers vote for hiring instead of rejecting.
Figure 29-34 Edit Participant Type — Parallel Type (Upper Section of Dialog)
Figure 29-35 Edit Participant Type — Parallel Type (Lower Section of Dialog)
To assign participants to the parallel participant type:
Approval Manager
, Primary Reviewers
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the parallel participant type are listed in Table 29-8:
Table 29-8 Edit Participant Type — Parallel Type
For This Subsection... | See... |
---|---|
Vote Outcome | Section 29.4.4.1, "Specifying the Voting Outcome" |
Participant List | Section 29.4.4.2, "Creating a Parallel Task Participant List" |
Limit allocated duration to (under the Advanced section) | Section 29.4.4.3, "Specifying a Time Limit for Acting on a Task" |
Allow this participant to invite other participants (under the Advanced section) | Section 29.4.4.4, "Inviting Additional Participants to a Task" |
Specify skip rule (under the Advanced section) | Section 29.4.4.5, "Bypassing a Task Participant" |
You can specify a voted-upon outcome that overrides the default outcome selected in the Default Outcome list. This outcome takes effect if the required percentage is reached. Outcomes are evaluated in the order listed in the table.
To specify group voting details:
The Any outcome enables you to determine the outcome dynamically at runtime. For example, if you select Any and set the outcome percentage to 60
, then at runtime, whichever outcome reaches 60% becomes the final voted outcome. If 60% of assignees vote to reject the outcome, then it is rejected.
From the list in the Outcome Type column, select a method for determining the outcome of the final task.
51
) or a unanimous vote (100
)). For example, assume there are two possible outcomes (ACCEPT and REJECT) and five subtasks. If two subtasks are accepted and three are rejected, and the required acceptance percentage is 50%, the outcome of the task is rejected. Figure 29-36 provides details. This functionality is nondeterministic. For example, selecting a percentage of 30% when there are two subtasks does not make sense.
If selected, the outcome of the task can be computed early with the outcomes of the completed subtasks, enabling the pending subtasks to be withdrawn. For example, assume four users are assigned to act on a task, the default outcome is APPROVE, and the consensus percentage is set at 50. If the first two users approve the task, the third and fourth users do not need to act on the task, since the consensus percentage value has been satisfied.
If selected, the workflow waits for all responses before an outcome is initiated.
Users assigned to the list of participants can act upon tasks. You can create several types of lists:
For information about creating these lists of participants, see section Section 29.4.3.1, "Creating a Single Task Participant List."
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.
To specify a time limit for acting on a task:
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.
To invite additional participants to a task:
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.
To bypass a task participant:
This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.
For information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."
Figure 29-37 displays the Serial dialog. Figure 29-38 shows the expanded Advanced section.
This participant type enables you to create a list of sequential participants for a workflow. For example, if you want a document to be reviewed by John, Mary, and Scott in sequence, use this participant type. For the serial participant type, they can be any list of users or groups.
Figure 29-37 Edit Participant Type — Serial Type
Figure 29-38 Edit Participant Type — Serial Type (Expanded Advanced Section)
To configure the serial participant type:
Approval Manager
, Primary Reviewers
, and so on). Instructions for configuring the following subsections of the Edit Participant Type dialog for the serial participant type are listed in Table 29-9.
Table 29-9 Edit Participant Type — Serial Type
For This Subsection... | See... |
---|---|
Participant List | Section 29.4.5.1, "Creating a Serial Task Participant List" |
Limit allocated duration to (under the Advanced section) | Section 29.4.5.2, "Specifying a Time Limit for Acting on a Task" |
Allow this participant to invite other participants (under the Advanced section) | Section 29.4.5.3, "Inviting Additional Participants to a Task" |
Specify skip rule (under the Advanced section) | Section 29.4.5.4, "Bypassing a Task Participant" |
Users assigned to the list of participants can act upon tasks. You can create several types of lists:
See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.
You can specify the amount of time a user, group, or application role receives to act on a task. If the user, group, or role does not act in the time specified, the global escalation and renewal policies that you set in the Deadlines section (known as the routing slip level) of the Human Task Editor are applied. For example, if the global policy is set to escalate the task and this participant does not act in the duration provided, the task is escalated to the manager or another user, as appropriate.
To specify a time limit for acting on a task:
For more information about setting the global escalation and renewal policies in the Deadlines section of the Human Task Editor, see Section 29.7, "Escalating, Renewing, or Ending the Task."
You can allow a task assignee to invite other participants into the workflow before routing it to the next assignee in this workflow. For example, assume the approval workflow goes from James Cooper to John Steinbeck. If this option is checked, James Cooper can decide to first route it to Irving Stone before it goes to John Steinbeck.
To invite additional participants to a task:
Note: For the serial participant type, additional participants can be invited as follows:
|
You can bypass a task participant (user, group, or application role) if a specific condition is satisfied. For example, if a user submits a business trip expense report that is under a specific amount, no approval is required by their manager.
To bypass a task participant:
This action displays an icon for accessing the Expression Builder dialog for building a condition. The expression must evaluate to a boolean value.
For more information about a valid XPath expression for skipping a participant, see Section 29.4.3.4, "Bypassing a Task Participant."
Figure 29-39 displays the Edit Participant Type dialog for the FYI type. This dialog also includes a Participants Exclusion List at the bottom that is not displayed in Figure 29-39.
This participant type is used when a task is sent to a user, but the business process does not wait for a user response; it just continues. FYIs cannot directly impact the outcome of a task, but in some cases can provide comments or add attachments.
For example, a magazine subscription is due for renewal. If the user does not cancel the current subscription before the expiration date, the subscription is renewed. This user is reminded weekly until the request expires or the user acts on it.
Figure 29-39 Edit Participant Type — FYI Type
To configure the FYI participant type:
Approval Manager
, Primary Reviewers
, and so on). Users assigned to the list of participants can act upon tasks. You can create several types of lists:
See section Section 29.4.3.1, "Creating a Single Task Participant List" for instructions on creating these lists of participants.
After you configure a participant type and are returned to the Human Task Editor, click the Task will go from starting to final participant icon, as shown in Figure 29-40.
Figure 29-40 Human Task Editor — Assignment Section
This displays the Configure Assignment dialog shown in Figure 29-41 for specifying a method for routing your task through the workflow.
Table 29-10 describes the routing policy methods provided.
Table 29-10 Routing Policy Method
Routing Policy Selection | Use This Policy In Environments Where... | Section |
---|---|---|
Route task to all participants, in order specified This selection enables you to specify the following suboptions: | A task must be routed to each of the participants in the order in which they appear. This is predetermined, default routing. For example, in a hiring process, if three users interview and provide review feedback, then the task is sent to the human resources department. | Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" |
| A participant can select users or groups as the next assignee (ad hoc) when approving the task. | Section 29.5.1.1, "Allowing All Participants to Invite Other Participants" |
| A participant in a task can accept or reject it, thus ending the workflow without the task being sent to any other participant. For example, a manager rejects a purchase order, meaning that purchase order is not sent to their manager for review. | Section 29.5.1.2, "Stopping Routing of a Task to Further Participants" |
| Note: This option is for environments in which you have multiple stages and participants working in parallel. Participants perform subtasks in parallel, and one group's rejection or approval of a subtask does not cause the other group's subtask to also be rejected or approved. | Section 29.5.1.3, "Enabling Early Completion in Parallel Subtasks" |
| Note: This option is for environments in which you have multiple stages and participants working in parallel. Participants perform subtasks in parallel, and one group's rejection or approval of a subtask causes the other group's subtask to also be rejected or approved. | Section 29.5.1.4, "Completing Parent Subtasks of Early Completing Subtasks" |
Use Advanced Rules | The participants to whom the task is routed are determined by the business rule logic that you model. For example, a loan application task is designed to go through a loan agent, their manager, and then the senior manager. If the loan agent approves the loan, but their manager rejects it, the task is returned to the loan agent. | Section 29.5.2, "How to Specify Advanced Task Routing Using Business Rules" |
Use External Routing | The participants in a task are dynamically determined. For example, a company's rules may require the task participants to be determined and then retrieved from a back-end database during runtime. | Section 29.5.3, "How to Use External Routing" |
Assignment tab | A participant is assigned a failed task for the purposes of recovery. | Section 29.5.4, "How to Configure the Error Assignee" |
You can select to have a task reviewed by all selected participants. This is known as default routing because the task is routed to each of the participants in the order in which they appear. This type of routing differs from state machine-based routing.
To route tasks to all participants in the specified order:
Figure 29-42 Route a Task to All Participants
See the following tasks to define a routing policy:
This checkbox is the equivalent of the ad hoc workflow pattern of pre-10.1.3 Oracle BPEL Process Manager releases. This applies when there is at least one participant. In this case, each user selects users or groups as the next assignee when approving the task.
To allow all participants to invite other participants:
You can specify conditions under which to complete a task early, regardless of the other participants in the workflow.
For example, assume an expense report goes to the manager, and then the director. If the first participant (manager) rejects it, you can end the workflow without sending it to the next participant (director).
To abruptly complete a condition:
The Abrupt Completion Details dialog appears.
There are two methods for specifying the abrupt completion of a task:
If outcomes are specified, any time the selected task outcome occurs, the task completes. If both outcome and routing condition are specified, the workflow service performs a logical OR
operation on the two.
An early completion XPath expression is not evaluated until at least one user has acted upon the task.
You can click the icon to the right of the Complete task when a participant chooses: <outcome> checkbox to edit this information.
You can use this option in the following environments:
For example, assume there are two parallel subgroups, each in separate stages. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. However, the second parallel group continues to act upon headers in the purchase order. In this scenario, the entire task does not complete early. Figure 29-44 provides details.
Figure 29-44 Early Completion of Parallel Subtasks
You can use this option in the following environments:
For example, assume there are two parallel subgroups, each in separate stages, as shown in Figure 29-44. One group acts upon lines of a purchase order. The other group acts upon headers of the same purchase order. If participant ApproveLines.Participant2 of the first group rejects a line, all other task participants in the first group stop acting upon tasks. In addition, the second parallel group stops acting upon headers in the purchase order. In this scenario, the entire task completes early.
Use advanced routing rules to create complex workflow routing scenarios. The participant types (single, parallel, serial, and FYI) are used to create a linear flow from one set of users to another with basic conditions such as abrupt termination, skipping assignees, and so on. However, there is often a need to perform more complex back and forth routing between multiple individuals in a workflow. One option is to use the BPEL process as the orchestrator of these tasks. Another option is to specify it declaratively using business rules. This section describes how you can model such complex interactions by using business rules with the Human Task Editor.
You can define state machine routing rules using Oracle Business Rules. This action enables you to create Oracle Business Rules that are evaluated:
This action enables you to override the standard task routing slip method described in Section 29.5.1, "How to Route Tasks to All Participants in the Specified Order" and build complex routing behavior into tasks.
Using Oracle Business Rules, you define a set of rules (called a ruleset) that relies on business objects, called facts, to determine which action to take.
A fact is an object with certain business data. Each time a routing slip assignee sets the outcome of a task, instead of automatically routing the task to the next assignee, the task service performs the following steps:
Rules can test values in the asserted facts and specify the routing behavior by setting values in a TaskAction
fact type.
Table 29-11 describes the fact types asserted by the task service.
Table 29-11 Fact Types Asserted By the Task Service
Fact Type | Description |
---|---|
| This fact contains the current state of the workflow task instance. All task attributes can be tested against it. The task fact also contains the current task payload. This fact enables you to construct tests against payload values and task attribute values. |
| This fact describes the previous task outcome and the assignee who set the outcome. The previous outcome fact contains the following attributes:
|
| This fact is not intended for writing rule tests against it. Instead, it is updated by the ruleset, and returned to the task service to indicate how the task should be routed. Rules should not directly update the |
Some fact types can only be used in workflow routing rules, while others can only be used in workflow participant rules. Table 29-12 describes where you can use each type.
Table 29-12 Use of Fact Types
Fact Type | Can Use in Routing Rules? | Can Use in Participant Rules? |
---|---|---|
| Yes | Yes |
| Yes | No |
| Yes | No |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
| No | Yes |
To instruct the task service on how to route the task, rules can specify one of many task actions. This is done by updating the TaskAction
fact asserted into the rule session. However, rules should not directly update the TaskAction
fact. Instead, rules should call one of the action RL functions, passing the TaskAction
fact as a parameter. These functions handle the actual updates to the fact. For example, to specify an action of go forward, you must add a call
GO_FORWARD(TaskAction)
to the action part of the rule.
Each time a state machine routing rule is evaluated, the rule takes one of the actions shown in Table 29-13:
Table 29-13 Business Rule Actions
Action | Description | Parameters |
---|---|---|
| Goes to the next participant in the routing slip (default behavior). | None |
| Goes back to the previous participant in the routing slip (the participant before the one that just set the task outcome). | None |
| Goes to a specific participant in the routing slip. |
A string that identifies the label of the participant (for example, |
| Finishes routing and completes the task. The task is marked as completed, and no further routing is required. | None |
| Escalates and reassigns the task according to the task escalation policy (usually to the manager of the current assignee). | None |
This section describes how to use rules to implement custom routing behavior with a simple example. A human workflow task is created for managing approvals of expense requests. The outcomes for the task are approve and reject. The task definition includes an ExpenseRequest
payload element. One of the fields of ExpenseRequest
is the total amount of the expense request. The routing slip for the task consists of three single participants (assignee1
, assignee2
, and assignee3
).
By default, the task gets routed to each of the assignees, with each assignee choosing to approve or reject the task.
Instead of this behavior, the necessary routing behavior is as follows:
This behavior is implemented using the following rules. When a rule dictionary is generated for advanced routing rules, it is created with a template rule that implements the default GO_FORWARD
behavior. You can edit this rule, and make copies of the template rule by right-clicking and selecting Copy Rule in the Oracle Business Rules Designer.
If the amount is greater than $100 and the previous assignee approved the task, it is not necessary to provide a rule for routing a task to each of the assignees in turn. This is the default behavior that is reverted to if none of the rules in the ruleset are triggered:
Figure 29-46 Push Back On The Rejected Rule
Assignee1
rejected rule (Figure 29-47): Figure 29-47 Completion of the Assignee1 Rejected Rule
For information about iterative design, see the workflow-106-IterativeDesign
sample available with the Oracle SOA Suite samples.
For human workflow, business rule artifacts are now stored in two rules dictionaries. This is useful for scenarios in which you must customize your applications. For example, you create and ship version 1 of an application to a customer. The customer then customizes the rulesets in the application with Oracle SOA Composer. Those customizations are now stored in a different rules dictionary than the base rules dictionary. The rules dictionary that stores the customized rulesets links with the rules in the base dictionary. When you later ship version 2 of the application, the base rule dictionary may contain additional changes introduced in the product. The ruleset customization changes previously performed by the customer are preserved and available with the new changes in the base dictionary. When an existing application containing a task using rules is opened, if the rules are in the old format using one dictionary, they are automatically upgraded and divided into two rules dictionaries:
For more information about customizations, see
To create advanced routing rules:
This starts the Oracle Business Rules Designer with a preseeded repository containing all necessary fact definitions, as shown in Figure 29-49. A decision service component is created for the dictionary, and is associated with the task service component.
This automatically creates a fully-wired decision service in the human task and the associated rule repository and data model.
For more information about business rules, see the following documentation:
You configure an external routing service that dynamically determines the participants in the workflow. If this routing policy is specified, all other participant types are ignored. It is assumed that the external routing service provides a list of participant types (single approver, serial approver, parallel approver, and so on) at runtime to determine the routing of the task.
Use this option if you do not want to use any of the routing rules to determine task assignees. In this case, all the logic of task assignment is delegated to the external routing service.
Note: If you select Use External Routing in the Configure Assignment dialog, specify a Java class, and click OK to exit, the next time you open this dialog, the other two selections (Route task to all participants, in order specified and Use Advanced Rules) no longer appear in the dropdown list. To access all three selections again, you must delete the entire assignment. |
To use external routing
Figure 29-50 Selection of Use External Routing
The External Routing dialog appears, as shown in Figure 29-51.
org.mycompany.tasks.RoutingService
class name). This class must implement the following interface: Tasks can error for reasons such as incorrect assignments. When such errors occur, the task is assigned to the error assignee, who can perform corrective actions. Recoverable errors are as follows:
The following errors are not recoverable. In these cases, the task is moved to the terminating state ERRORED
.
GOTO
participant from state machine rules During modeling of workflow tasks, you can specify error assignees for the workflow. If error assignees are specified, they are evaluated and the task is assigned to them. If no error assignee is specified at runtime, an administration user is discovered and is assigned the alerted task. The error assignee can perform one of the following actions:
Route the task to the actual users assigned to the task. Ad hoc routing allows the task to be routed to users in sequence, parallel, and so on.
Reassign the task to the actual users assigned to this task
Indicate that this task cannot be rectified.
If there are any errors in evaluating the error assignees, the task is marked as being in error.
This dialog enables you to specify the users or groups to whom the task is assigned if an error in assignment has occurred.
To configure the error assignee:
The Identification Type column of the Starting Participant table displays your selection of user, group, or application role.
The SharePayloadAcrossAllParallelApprovers System MBean Browser boolean property in Oracle Enterprise Manager Fusion Middleware Control determines whether to share the payload of subtasks in the root task. By default, this property is set to true. If set to true, the All task participants share the same payload (better performance and less storage space) option is used. If this property is set to false, the Each parallel participant has a local copy of the payload option is used. To change this property, perform the following steps:
The payload for the subtasks is stored in their root task. This situation means that the payload of the root task is shared across all its subtasks. Internally, this option provides better performance and storage space consumption. Less storage space is consumed because the payload of the root task is shared across all its subtasks.
Each subtask has its own copy of the payload. Internally, this option provides lesser performance and storage space consumption because more storage space is consumed.
For more information about users, groups, or application roles, see Section 27.2.1.1.3, "Participant Assignment."
The Presentation section shown in Figure 29-53 enables you to specify resource bundles for displaying task details in different languages in Oracle BPM Worklist and WordML and custom style sheets for attachments.
To specify WordML style sheets for attachments:
You can specify resource bundles for displaying task details in different languages in Oracle BPM Worklist. Resource bundles are supported for the following task details:
message(key)
format. hwf:getTaskResourceBundleString(taskId, key, locale?)
XPath extension function to obtain the internationalized string from the specified resource bundle. The locale of the notification recipient can be retrieved with the function hwf:getNotificationProperty(propertyName)
. Resource bundles can also simply be property files. For example, a resource bundle that configures a display name for task outcomes can look as follows:
APPROVE=Approve
REJECT=Reject
To specify multilingual settings:
The Resource Details dialog shown in Figure 29-54 appears.
.properties
-based resource bundle file. If the resource bundle is outside of the composite project, you are prompted to place a local copy in SCA-INF/lib
.
If the resource bundle file is not in the composite class loader (directly under SCA-INF/classes
or in a JAR file in SCA-INF/lib
), you must specify its location. For example, if the resource bundle is accessible from a location outside of the composite class loader (for example, an HTTP location such as http://
host
:
port
/bundleApp/taskBundles.jar
), then this location must be specified in this field.
For more information, see
Figure 29-55 shows the Deadlines section of the Human Task Editor.
You can specify the expiration duration of a task in this global policy section (also known as the routing slip level). If the expiration duration is specified at the routing slip level instead of at the participant type level, then this duration is the expiration duration of the task across all the participants. However, if you specify expiration duration at the participant type level (through the Limit allocated duration to checkbox), then those settings take precedence over settings specified in the Deadlines section (routing slip level).
You can also specify that a task be escalated to a user's manager after a specified time period. For more information, see Section 29.4.3.2, "Specifying a Time Limit for Acting on a Task."
Figure 29-55 Human Task Editor — Deadlines Section
This section provides an overview of how specifying the expiration duration at this level makes this setting the expiration duration of the task across all the participants.
For example, participant LoanAgentGroup and participant Supervisor have three days to act on the task between them, as shown in Figure 29-56:
If there is no expiration specified at either the participant level or this routing slip level, then that task has no expiration duration.
If expiration duration is specified at any level of the participants, then for that participant, the participant expiration duration is used. However, the global expiration duration is still used for the participants that do not have participant level expiration duration. The global expiration duration is always decremented by the time elapsed in the task.
The policy for interpreting the participant level expiration for the participants is described as follows:
Each assignment in the management chain gets the same expiration duration as the one specified in the serial. The duration is not for all the assignments resulting from this assignment. If the task expires at any of the assignments in the management chain, the escalation and renewal policy is applied.
Note: When the parent task expires in a parallel task, the subtasks are withdrawn if those tasks have not expired or completed. |
You can specify for a task to never expire.
To specify a policy to never expire:
You can specify for a task to expire. When the task expires, either the escalation policy or the renewal policy at the routing slip level is applied. If neither is specified, the task expires. The expiration policy at the routing slip level is common to all the participants.
To specify for a task to expire:
The expiration policy for parallel participants is interpreted as follows:
Figure 29-57 indicates that the task expires in three days.
You can extend the expiration period when the user does not respond within the allotted time. You do this by specifying the number of times the task can be renewed upon expiration (for example, renew it an additional three times) and the duration of each renewal (for example, three days for each renewal period).
To extend an expiration policy period:
In Figure 29-58, when the task expires, it is renewed at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.
You can escalate a task if a user does not respond within the allotted time. For example, if you are using the escalation hierarchy configured in your user directory, the task can be escalated to the user's manager. If you are using escalation callbacks, the task is escalated to whoever you have defined. When a task has been escalated the maximum number of times, it stops escalating. An escalated task can remain in a user inbox even after the task has expired.
To escalate a task policy:
Number of management levels to which to escalate the task. This field is required.
The title of the highest approver (for example, self, manager, director, or CEO). These titles are compared against the title of the task assignee in the corresponding user repository. This field is optional.
The escalation policy specifies the number of times the task can be escalated on expiration and the renewal duration. In Figure 29-59, when the task expires, it is escalated at most three times. It does not matter if the task expired at the LoanAgentGroup participant or the Supervisor participant.
This option allows a custom escalation rule to be plugged in for a particular workflow. For example, to assign the task to a current user's department manager on task expiration, you can write a custom task escalation function, register it with the workflow service, and use that function in task definitions.
The default escalation rule is to assign a task to the manager of the current user. To add a new escalation rule, follow these steps.
To specify escalation rules:
This implementation must be available in the class path for the server.
The Workflow Task Service Properties page appears.
DepartmentSupervisor
oracle.bpel.services.workflow.assignment.dynamic.patterns.DepartmentSupervisor
For more information, see
A due date indicates the date by which the task should be completed. The due date is different from the expiration date. When a task expires it is either marked expired or automatically escalated or renewed based on the escalation policy. The due date is generally a date earlier than the expiration date and an indication to the user that the task is about to expire.
You can enter a due date for a task, as shown in Figure 29-55. A task is considered overdue after it is past the specified due date. This date is in addition to the expiration policy. A due date can be specified irrespective of whether an expiration policy has been specified. The due date enables Oracle BPM Worklist to display a due date, list overdue tasks, filter overdue tasks in the inbox, and so on. Overdue tasks can be queried using a predicate on the TaskQueryService.queryTask(...)
API.
To specify a due date:
Note the following details:
.task
file (using the Human Task Editor). This is to allow to-do tasks without task definitions to set a due date during initiation of the task. A due date that is set in the task (a runtime object) overrides a due date that is set in the .task
file. .task
file is ignored. .task
file is evaluated and set on the task. .task
file, there is no due date on the task. Note: You cannot specify business rules for to-do tasks. |
For more information, see
Figure 29-60 shows the General tab of the Notification section of the Human Task Editor (when fully expanded).
Notifications indicate when a user or group is assigned a task or informed that the status of the task has changed. Notifications can be sent through email, voice message, instant message, or SMS. Notifications are sent to different types of participants for different actions. Notifications are configured by default with default messages. For example, a notification message is sent to indicate that a task has completed and closed. You can create your own or modify existing configurations.
Note: Embedded LDAP does not support group email addresses. Therefore, when a task is assigned to a group ID, emails are sent to all of its members instead of to the group email address. |
Figure 29-60 Human Task Editor — General Tab of Notification Section
To specify participant notification preferences:
Instructions for configuring the following subsections of the General tab of the Notification section are listed in Table 29-15.
Table 29-15 Human Task Editor — General Tab of Notification Section
For This Subsection... | See... |
---|---|
Task Status Recipient | Section 29.8.1, "How to Notify Recipients of Changes to Task Status" |
Notification Header | Section 29.8.2, "How to Edit the Notification Message" |
For information about the notification service, see
Figure 29-61 Notification Section - Advanced Tab
Instructions for configuring the following subsections of the Advanced tab of the Notification section are listed in Table 29-16.
Table 29-16 Human Task Editor — Advanced Tab of Notification Section
For This Subsection... | See... |
---|---|
Reminders | Section 29.8.3, "How to Set Up Reminders" |
Encoding | Section 29.8.4, "How to Change the Character Set Encoding" |
Make notifications secure (exclude details) | Section 29.8.5, "How to Secure Notifications to Exclude Details" |
Show worklist URL in notifications | Section 29.8.6, "How to Display the Oracle BPM Worklist URL in Notifications" |
Make notifications actionable | Section 29.8.7, "How to Make Email Messages Actionable" |
Send task attachments with email notifications | Section 29.8.8, "How to Send Task Attachments with Email Notifications" |
Group notification configuration | Section 29.8.9, "How to Send Email Notifications to Groups and Application Roles" |
Notification header attributes | Section 29.8.10, "How to Customize Notification Headers" |
Three default status types display in the Task Status column: Assign, Complete, and Error. You can select other status types for which to receive notification messages.
To notify recipients of changes to task status:
When a task is in an alerted state, you can notify recipients. However, none of the notification recipients (assignees, approvers, owner, initiator, or reviewer) can move the task from an alerted state to an error state; they only receive an FYI notification of the alerted state. The owner can reassign, withdraw, delete, or purge the task, or ask the error assignee to move the task to an error state if the error cannot be resolved. Only the error assignee can move a task from an alerted state to an error state.
You configure the error assignee on the Assignment tab of the Configure Assignment dialog under the Task will go from starting to final participant icon in the Assignment section. For more information, see Section 29.5.4, "How to Configure the Error Assignee."
When the task is assigned to users or a group. This captures the following actions:
Notifications can be sent to users involved in the task in various capacities. This includes when the task is assigned to a group, each user in the group is sent a notification if there is no notification endpoint available for the group.
The users or groups to whom the task is currently assigned.
The user who created the task.
The users who have acted on the task up to this point. This applies in a serial participant type in which multiple users have approved the task and a notification must be sent to all of them.
The task owner
The user who can add comments and attachments to a task.
For more information, see
A default notification message is available for delivery to the selected recipient. If you want, you can modify the default message text.
To edit the notification message:
The Edit Notification Message dialog shown in Figure 29-62 appears.
Figure 29-62 Edit Notification Message Dialog
This message applies to all the supported notification channels: email, voice, instant messaging, and SMS. Email messages can also include the worklist task detail defined in this message. The channel by which the message is delivered is based upon the notification preferences you specify.
For more information about notification preference details, see
You can send task reminders, which can be based on the time the task was assigned to a user or the expiration time of a task. The number of reminders and the interval between the reminders can also be configured.
To set up reminders:
For more information, see
Unicode is a universally-encoded character set that enables information from any language to be stored using a single character set. Unicode provides a unique code value for every character, regardless of the platform, program, or language. You can use the default setting of UTF-8 or you can specify a character set with a Java class.
To change the character set encoding
To secure notifications, make messages actionable, and send attachments:
If selected, a default notification message is used. There are no HTML worklist task details, attachments, or actionable links in the email. Only the task number is in the message.
For more information, see
You can configure whether to display the Oracle BPM Worklist URL in email notification messages.
To display the Oracle BPM Worklist URL in notifications:
To make email messages actionable:
Note: FYI tasks are not actionable and cannot be acknowledged from email messages. |
For more information about additional configuration details, see
For more information about configuring outbound and inbound emails, see Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
You can send task attachments with email notifications.
To send task attachments with email notifications:
You can send email notifications to groups and application roles to which tasks are assigned.
To send email notifications to groups and application roles:
Each user in the group or application role receives an individual email notification. This is the default selection.
In addition, the Use separate task forms based on locale checkbox is automatically selected.
A shared notification email is generated once for a user locale in a group or application role, thereby saving time in notification email content generation. The email is sent to all users in the group or application role.
Notes:
|
Custom notification headers are used to specify name and value pairs to identify key fields within the notification. These entries can be used by users to define delivery preferences for their notifications. For example:You can set Name to ApprovalType and value to Expense or Name to Priority and value to High.Users can then specify delivery preferences in Oracle BPM Worklist. These preferences can be based on the contents of the notification.
The rule-based notification service is only used to identify the preferred notification channel to use. The address for the preferred channel is still obtained from the identity service.
To customize notification headers:
For more information about preferences, see the following sections:
When using the Human Task editor in a BPM Suite installation, you can specify an e-mail address for the recipient of a Notification.
To specify an e-mail address for the recipient of a notification:
The Recipient list is an editable list, when you double click it, it becomes a text field.
Optionally you can use the buttons next to the Recipient text field to look up the e-mail address in an application server or to specify the e-mail address using XPath.
Note: When sending a notification to a recipient specified using an e-mail address, the notification service uses the user context of an assignee to obtain the task information to include in the notification. |
You can specify access rules on task content and actions to perform on that content.
You can specify access rules that determine the parts of a task that participants can view and update. Access rules are enforced by the workflow service by applying rules on the task object during the retrieval and update of the task.
Note: Task content access rules and task actions access rules exist independently of one another. |
Access rules are computed based on the following details:
TaskMetadataService.getVisibilityRules()
contains one key for each. Similarly, if the participant does not have read permissions on DATES
, the task does not contain any of the following task attributes: START_DATE
END_DATE
ASSIGNED_DATE
SYSTEM_END_DATE
CREATED_DATE
EXPIRATION_DATE
ALL_UPDATED_DATE
TaskMetadataService.getVisibilityRules()
contains one key for each of the following. Similarly, if the participant does not have read permissions on ASSIGNEES
, the task does not contain any of the following task attributes: ASSIGNEES
ASSIGNEE_USERS
ASSIGNEE_GROUPS
ACQUIRED_BY
TaskMetadataService.getVisibilityRules()
. TaskMetadataService.getVisibilityRules()
are prefixed by ITaskMetadataService.TASK_VISIBILITY_ATTRIBUTE_PAYLOAD_MESSAGE_ATTR_PREFIX (PAYLOAD)
. An application can also create pages to display or not display task attributes based on the access rules. This can be achieved by retrieving a participant's access rules by calling the API on oracle.bpel.services.workflow.metadata.ITaskMetadataService
. Example 29-1 provides details.
Example 29-1 API Call
For more information about this method, see Oracle Fusion Middleware Workflow Services Java API Reference for Oracle BPEL Process Manager.
You can specify the privileges that specific users (such as the task creator or owner) have for acting on specific task content (such as a payload).
To specify user privileges for acting on task content:
Figure 29-63 Configure Task Content Access
Table 29-17 Highest Privilege Levels for Users of Task Content
Task Content | Individual with Read Access | Individual with Write Access |
---|---|---|
Assignees | Admin, Approvers, Assignees, Creator, Owner, Reviewers | -- |
Attachments | Admin, Approvers | Assignees, Creator, Owner, Reviewers |
Comments | Admin, Approvers | Assignees, Creator, Owner, Reviewers |
Dates | Admin, Approvers, Assignees, Creator, Owner, Reviewers | -- |
Flexfields | Admin, Approvers, Reviewers | Assignees, Creator, Owner |
History | Admin, Approvers, Assignees, Creator, Owner, Reviewers | -- |
Payload | Admin, Approvers, Reviewers | Assignees, Creator, Owner |
Reviewers | Admin, Approvers, Assignees, Creator, Owner, Reviewers | -- |
Payload elements | Inherited from payload | Inherited from payload |
For example, if you accept the default setting of ASSIGNEES, CREATOR, and OWNER with write access, ADMIN, APPROVERS, and REVIEWERS with read access, and PUBLIC with no access to the PAYLOAD task content, the dialog appears as shown in Figure 29-63.
Displays the task content as a whole (for example, displays only one payload or reviewer).
Displays the content as individual elements (for example, displays all payloads (such as p1, p2, and p3) and all reviewers assigned to this task (such as jstein, wfaulk, and cdickens).
Note: Access rules are always applied on top of what the system permits, depending on who is performing the action and the current state of the task. |
You can specify the actions (either access or no access) that specific users (such as the task creator or owner) have for acting on the task content (such as a payload) that you specified in the Configure Task Content Access dialog.
To specify actions for acting upon tasks:
Figure 29-64 Selection of Add Action Access Rule
Displays the task actions as a whole (for example, displays only one approval or rejection).
Displays the content actions as individual elements. (for example, displays all approvals or rejections).
Digital signatures provide a mechanism for the nonrepudiation of digitally-signed human tasks. This ability to mandate that a participant acting on a task signs the details and their action before the task is updated ensures that they cannot repudiate it later.
Note: If digital signatures are enabled for a task, actionable emails are not sent during runtime. This is the case even if actionable emails are enabled during design time. |
To specify a workflow digital signature policy:
Participants can send and act upon tasks without providing a signature. This is the default policy.
Participants specify a signature before sending tasks to the next participant. Participants must reenter their password while acting on a task. The password is used to generate the digital signature. A digital signature authenticates the identity of the message sender or document signer. This ensures that the original content of the sent message is unchanged.
Participants must possess a digital certificate for the nonrepudiation of digitally-signed human tasks. A digital certificate establishes the participant's credentials. It is issued by a certification authority (CA). It contains the following:
The CA names and CA CRL and URLs of the issuing authorities must be configured separately.
For more information, see
To use digital signatures, you must specify CAs you consider trustworthy in the System MBean Browser in Oracle Enterprise Manager Fusion Middleware Control. Only certificates issued from such CAs are considered valid by human workflow.
To specify a certificate authority:
You must validate these values before using them.
You can restrict the users to which a task can be reassigned or routed by using a callback class.
The user community seeded in a typical LDAP directory can represent the whole company or division. However, it may be necessary at times to limit the potential list of users to associate with a task based on the scope or importance of the task or associated data. For example, in a large company with thousands of users, only a few people have the ability to approve and create purchase orders. Specifically for such tasks, the users that can be chosen for ad hoc routing and reassignment should not be the whole company. Instead, only a few users who are relevant or have the right privilege should be chosen. This can be achieved by the restricted assignment functionality. This is implemented as a callback class that can implement the logic to choose the right set of users dynamically based on the task object that is passed containing the instance data.
To specify restrictions on task assignments:
The Configure Restricted Assignment dialog appears.
oracle.bpel.services.workflow.task.IRestrictedAssignmentCallback
interface. You can specify Java or business event callbacks.
You can register callbacks for the workflow service to call when a particular stage is reached during the lifecycle of a task. Two types of callbacks are supported:
oracle.bpel.services.workflow.task.IRoutingSlipCallback
. Make the callback class available in the class path of the server. To specify callback classes on task status:
The following state change callbacks are available for selection:
Select if the callback class must be called on any assignment change, including standard routing, reassignment, delegation, escalation, and so on. If a callback is required when a task has an outcome update (that is, one of the approvers in a chain approves or rejects the task), this option must be selected.
Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on).
Select if the callback class must finally be called when the task is completed and control is about to be passed to the initiator (such as the BPEL process initiating the task).
Select if the callback class must be called to enable business event callbacks in a human workflow task. When the event is raised, it contains the name of the completed stage, the outcome for the completed stage, and a snapshot of the task when the callback is invoked.
Select if the callback class must be called on any update (including payload, comments, attachments, priority, and so on) on a subtask (one of the tasks in a parallel-and-parallel scenario).
If your Oracle JDeveloper installation is updated to include both the BPEL and BPM extensions, then the following content callbacks are also available for selection:
Select if the callback class must be called to store the comments in a schema other than the WFCOMMENT
column.
Select if the callback class must be called to store the comments in a schema other than the WFATTACHMENT
column.
Select if the callback class must be called to validate either the task or payload before updating, approving, and so on.
To specify Java callbacks:
oracle.bpel.services.workflow.task.IRoutingSlipCallback
. Figure 29-66 provides details. Figure 29-66 CallBack Details Dialog with Java Selected
To specify business event callbacks:
Figure 29-67 CallBack Details Dialog with Business Events Selected
A preseeded, static event definition language (EDL) file (JDev_Home
\jdeveloper\integration\seed\soa\shared\workflow
\HumanTaskEvent.edl
) provides the list of available business events to which to subscribe. These business events correspond to the callbacks you select in the Callback Details dialog. You must now create an Oracle Mediator service component in which you reference the EDL file and subscribe to the appropriate business event.
Note: A file-based MDS connection is required so that the EDL file can be located. The location for the file-based MDS is |
The SOA Resource Browser dialog appears.
The Event Chooser is now populated with EDL file business events available for selection.
You can have multiple human tasks available for subscribing to the event. For example, assume you performed the following:
To distinguish between events for TaskA and TaskB and ensure that an event is processed only by the intended Oracle Mediator, you can add a static routing filter:
This only invokes this routing when the sending component is TaskA.
The Oracle Mediator service component is now populated with the business event to which to subscribe. You can also subscribe to other business events defined in the same EDL file now or at a later time.
See the following documentation for additional details about business events and callbacks:
In general, the BPEL process calls into the workflow component to assign tasks to users. When the workflow is complete, the human workflow service calls back into the BPEL process. However, if you want fine-grained callbacks (for example, onTaskUpdate
or onTaskEscalated
) to be sent to the BPEL process, you can use the Allow task and routing customization in BPEL callbacks option.
Make sure to manually refresh the BPEL diagram for this callback setting.
To specify task and routing customizations in BPEL callbacks:
This creates the while, pick, and onMessage branch of a pick activity for BPEL callback customizations inside the task scope activity.
For more information about specifying task and routing customizations, see
A user talk activity (in Oracle BPEL Designer) has an invoke activity followed by a receive or pick activity. Deselecting the Disable BPEL callbacks checkbox enables you to invoke the task service without waiting for a reply.
To disable BPEL callbacks:
Figure 29-69 shows the Documents section of the Human Task Editor.
Figure 29-69 Human Task Editor — Documents Section
You can configure Human Tasks to store attachments in the UCM repository. These attachments may contain one or more metadata properties. You can assign values to these properties or configure them to allow the user to provide the value.
To configure Oracle UCM Repository for task attachments:
The Human Task Editor appears.
A section to configure metadata properties appears. The table already contains the mandatory standard metadata: Security Group and Document Type.
Editable: the user can provide a value in the task form when uploading the attachment.
Hidden: the value does not appear in the task form
Read-Only: the value appears in the task form but the user cannot modify it
Note: custom metadata does not appear in the task form, so you must map the value to a task payload or provide a static value. |
This chapter describes how to use Guided Business Processes to organize the activities in your process into milestones. You can use milestones to make your process easier to run for inexperienced users. Guided Business Processes hide the complexity of the process and guide the end-user through the tasks that are relevant to them.
Guided Business Process enable you to group the interactive activities in your BPM process into a set of milestones that are meaningful to the process participants. They outline the steps the process participants have to complete, hiding the complexity of the business process.
Guided Business Processes provide a guided visual representation of a process flow, improving the user experience by providing end users with an encapsulated hierarchical view of the business process.
Guided Business Processes enable directing end users to complete a business process through a guided set of steps associated with the process. By following the steps outlined in a Guided Business Process, end users require less training to complete a business process, and the results of the process are more predictable.
A Guided Business Process is modeled as an activity guide that is based on a business process. The Activity Guide includes a set of Milestones. A milestone is a contained set of tasks that the end user has to complete. A milestone is complete when the user successfully runs a specific set of tasks in the milestone.
Each milestone is a specific set of human workflow tasks. Each human workflow task is itself a task flow that may require the collaboration of multiple participants in various roles. Depending on the nature of the task flows, a participant may save an unfinished task flow and resume it at a later time.
Leveraging Service-Oriented Architecture
Service-Oriented Architecture is the foundation for Guided Business Processes. Guided Business Processes use SOA composite processes, leveraging the following SOA functionality:
When to Use Guided Business Processes
Guided Business Processes enable running large-scale, long-running, multiuser processes that consume and reuse taskflows built by other teams. For example, the finance and human resources departments of an organization may access the same human taskflows in different business processes. Using Guided Business Processes enables re-using existing taskflows in a large composite, creating a more meaningful business process for end users.
Oracle SOA infrastructure provides access to re-usable services that you can use in your business processes. Guided Business Processes leverage existing services, processes and task flows to create long-running, multiuser processes.
Guided Business Processes provide the following functions and features:
For example, a long process with one hundred tasks can be broken down into ten or twenty Milestones. End users need only step through a few Milestones rather than, say, one hundred individual tasks.
Guided Business Processes: Design Time and Run Time
Guided Business Processes consist of both design time components and run time interfaces.
Guided Business Processes use Oracle Business Process Management to provide a comprehensive, standards-based, easy-to-use solution for creating, deploying, and managing composite application business processes with both automated and human workflow steps—all in a service-oriented architecture.
Guided Business Processes leverage features of Oracle Fusion Middleware, such as security, scalability and high availability. The following features enable composite processes to be exposed as Guided Business Processes:
Developing Guided Business Processes involves creating a composite application which contains a SOA project with a BPM Project. The BPM process exposed as a Guided Business Process, consists of an Activity Guide that contains milestone activities. A separate client application must also be developed as an end user interface for the Guided Business Process.
You can develop a user interface for Guided Business Processes using any of the following:
A Guided Business Process is a BPMN process that orchestrates a set of human tasks and provides a common user interface to complete and track these tasks. To define a Guided Business Process you create an Activity Guide that comprises the following components:
Activity Guides with a simple, sequential process execution must complete all Milestones. Similarly, all Human Task components within a milestone must be completed to complete the milestone.
Activity Guides containing branching and conditional logic may sometimes complete execution without necessarily completing all Milestones. Similarly, some Human Task components within these Milestones may be skipped as well.
Guided Business Processes rely on Oracle Business Process Management to orchestrate tasks, combining Oracle Business Process Management, worklist applications, and human task flows to link disparate human tasks to a greater long-running process.
At run time, Guided Business Processes manifest as BPMN process instances orchestrating ADF task flows within Milestones. The run-time engine for BPMN guided business processes is the BPMN Service Engine. The BPMN engine delegates all human task operations to Human Workflow services.
You can view the process instances organized into an Activity Guide using a custom application developed with Oracle ADF UI, Oracle WebCenter Portal UI or Guided Business Process access APIs. The process instances that you view in an Guided Business Process client also appear in the Oracle BPM Worklist application, but they are not organized into milestones.
As shown in Figure 30-4, the Guided Business Process run-time architecture is composed of the client, business logic and data tiers.
Run time support includes the Guided Business Process Query, Guided Business Process Metadata and Guided Business Process Instance Management services. The run time components interface with Oracle Business Process Management and the Human Workflow Service.
You can use any of the following as a basis for a Guided Business Process client application:
The Guided Business Process run time front end, or client application, enables end users to follow the task flow defined at design time in the Activity Guide. Using the client application, end users can:
You can manage and access a Guided Business Process using the following:
Features of the Run-Time User Interface
Following are some features of the run-time user interface:
Conditions are set to determine which branch executes. If the flow branching is determined by a condition, then the milestone branching node displays as an ellipsis ("...") in the Activity Guide tree. The milestones to be completed for the selected branch display only when the switch executes at real time.
For more information on how to configure the ShowRefreshButton property, see Section 30.7, "Configuring Activity Guide Properties".
The business logic tier includes the following components:
Guided Business Process Metadata Service
The SOA composite associated with an Guided Business Process drives it at run time. As such, no run-time environment data is stored in the Guided Business Process metadata. The Guided Business Process Metadata Service locates and retrieves the Guided Business Process definition at run time from the Metadata Service (MDS).
Guided Business Process Query Service
The Guided Business Process query service retrieves the Guided Business Process instance information based on specified search criteria. The query service uses the existing workflow service to query Guided Business Process data. The Guided Business Process query service is registered to the workflow service locator as an additional workflow service.
Guided Business Process Instance Management
Guided Business Process run-time states are maintained as separate objects, enabling Guided Business Processes to have a state separate from the SOA composites with which they are associated. The related SOA composite instances are managed by an SOA composite run-time manager.
Guided Business Process Instance Schema
A schema defines the structure of Guided Business Process instances. The schema represents Guided Business Process data persisted to the database at run time.
Human Workflow Service
Workflow services enable you to interleave human interactions with connectivity to systems and services within an end-to-end process flow. In BPMN workflow services are linked to the BPMN process using a user task. The process assigns a task to a user or role and waits for a response. The users act on the task using Oracle BPM Worklist.The Human Workflow Service is responsible for handling all interactions with users or groups participating in the business process. It does this by creating and tracking tasks for the appropriate users in the organization. Users typically access tasks through a variety of clients, including Oracle BPM Worklist application, Process Workspace, e-mail, portals, or custom applications.
For more information about the Human Workflow Service, see the chapter "Introduction to Human Workflow" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Oracle Business Process Management persists Guided Business Processes, BPMN process and task instances to the database at run time. Oracle Metadata Repository (MDS) stores the schemas of available services, including BPMN processes, task and Guided Business Process metadata. The schemas are used when instantiating a Guided Business Process.
The following use cases show you different situations where to use Guided Business Processes:
Many public sector organizations process forms manually, a labor intensive and environmentally wasteful procedure.
For example, a state agency must provide, collect and process various forms to issue fishing and hunting licenses. The state agency hires additional outside contractors for the summer and fall season to handle the increase of license applications more efficiently while avoiding information loss or negligence.
Rather than manually processing the license applications, the end-to-end form processing procedure can be modeled as a Guided Business Process with two Milestones.
The following outline of an example form processing using Guided Business Process is generic, and can be adapted to enable end-to-end processing of similar forms:
Milestone 1: Filling in and Submitting an Application
Applicants on the state Web site for the Department of Fishing and Hunting can click the Apply button to fill in and submit an application for a fishing or hunting license.
The milestone includes the following tasks:
Milestone 2: Application Processing and Result Notification
Applications for hunting licenses require review and manual approval or rejection.
The milestone includes the following tasks:
With its intuitive guided user experience, the Guided Business Process maximizes the efficiency of the license application process while increasing the productivity of license approvers. In addition, the Guided Business Process enables monitoring the end-to-end application process at both the front- and back-end levels.
In the loan-origination industry, banks must consider several business factors: process consolidation, regulatory compliance and faster product delivery, for example. Loan products change frequently, often depending on state or region where the loan is offered.
The following example focuses on a subset of loan origination. As such, only specific processes are illustrated.
Business Process Flow
In this example, the business process flow for an online loan application procedure is as follows:
These processes rely on several interrelated services and procedures, as illustrated in Figure 30-5.
Although these processes appear simple, completing them involves many business challenges.
Increasingly, the interactions between real human actors in software must be coordinated. Humans are key participants in almost every software system, especially in collaborative processes and composite applications. Some common challenges are presented when involving humans interaction with structured workflow systems.
Deciding whether to grant a loan might entail working through a large set of rules based on the customer's credit history, income and other factors. These factors must be coordinated with several business process determined by the bank. Underwriters are alerted to approve or reject an applicant, depending on several factors, including the applicant's personal details and external data requests from third-party services.
A mortgage application Guided Business Process might include several milestones. The following Guided Business Process outline illustrates a mortgage application procedure.
Milestone 1: Loan Application
A potential customer registers on the loan provider Web site and applies for the loan through a series of guided tasks.
Milestone 2: Application Processing
Once the loan application process has completed, the loan is processed and reviewed for approval.
Milestone 3: Closing
Once the loan has been approved it is ready for closing.
The milestone includes the following tasks:
The following standards and guidelines apply to Guided Business Processes:
The following describes the main workflow of developing a Guided Business Process:
Guided Business Processes allow you to organize your processes into milestones. These milestones are meaningful to the end-user and hide the complexity of the process by showing them only relevant information to their tasks.
You can create a Guided Business Process and organize the tasks in your process into a set of milestones. Using milestones enables you to run your process and track its completion in a more efficient way.
The following list describes some features you can use:
Conditions are set to determine which branch executes. If the flow branching is determined by a condition, the milestone branching node displays as an ellipsis ("...") in the Activity Guide tree. The milestones to be completed for the selected branch display only when the switch executes at real time.
Configuring tasks as required or optional enables task filtering by required or optional task type at run time.
If previous milestones have completed, then end users can complete parallel milestones in any order.
To develop a BPMN Guided Business Process you must first create a BPMN process. Then you can develop the Guided Business Process based on the BPMN process.
You can only define one Guided Business Process per project. The Guided Business Process is based on a BPMN process in the project. This process is the root process.
You can develop a Guided Business Process based on a BPMN process.
To develop a BPMN Guided Business Process:
You can add the user tasks in the BPMN process to the milestones in the Guided Business Process. When you finish building the Guided Business Process, you can access the BPMN process using a Guided Business Process client.
You can add a new milestone to an existing Guided Business Process.
To add a new milestone to a Guided Business Process:
The New Milestone dialog appears.
At run time, the activity guide tree uses this value to show the percentage of completed tasks over the total tasks, in the progress indicator.
The Guided Business Process displays a new milestone. You can add the user tasks in the root process to the new milestone.
You can add a user task to a milestone in the Guided Business Process.
To add a user task to a milestone:
The Add User Task to Milestone dialog appears.
If you did not create the milestone, you can create it using the Add button next to the Milestone list.
You can run the user task from a Guided Business Process client. The user task appears under the milestone in the activity guide tree.
Ensure that your Guided Business Process contains at least two milestones. If it contains only one milestone, the Move to Milestone option is grayed out.
To move a user task to another milestone:
The Move to Milestone dialog appears.
The previous milestone does not list the user task anymore. The user task appears in the new milestone.
Ensure that your Guided Business Process contains at least two milestones. If it contains only one milestone, the Move to Milestone option is grayed out.
To order the milestones in a BPMN Guided Business Process:
The milestones appear in the order you arranged them in the activity guide tree.
You can delete a task from a Guided Business Process.
To delete a task from a Guided Business Process:
A confirmation message appears.
You cannot access that task from the Guided Business Process. The milestone that contained it does not list that task anymore.
You can delete a milestone that you do not use or need from the Guided Business Process.
To delete a milestone:
A confirmation message appears.
The milestone does not appear in the Guided Business Process. All the user tasks in the milestone are deleted from the Guided Business Process. You cannot access these tasks from the Guided Business Process anymore.
You can configure a task as optional so that it is not required to complete the Guided Business Process.
To configure an optional task:
The Edit User Task dialog appears.
By default all task are required unless you configure them to be optional.You must configure a skip button for the tasks you configure as optional.
When a group of users is assigned to a certain task, anybody in the group can claim that task. If after claiming the task the user decides not to complete it, then he can skip the task. When a user skips a task, the tasks is assigned back to the group so that the other users in the group can claim it and complete it.
To configure a parallel task flow you must use gateways in the BPMN process. See Chapter 6, "Modeling Business Processes with Oracle BPM" for more information on how to use gateways.
To branch the task flow you must use gateways and conditional sequence flows in the BPMN process. See Chapter 6, "Modeling Business Processes with Oracle BPM" for more information on how to use gateways and conditional sequence flows.
You can configure a task to display a blocked icon and message when it is not available for the end user to run it.
To configure a task to display a blocked icon and message:
The Edit User Task dialog appears.
When the current task is completed and the next task is not instantiated, the activity guide tree displays a blocked icon. If you defined an explanation message, it appears as a tooltip when you locate the cursor over the blocked icon.
You can configure a custom icon for the Activity Guide tree to display next to the Activity Guide node.
To configure an icon for a Guided Business Process:
The Browse Icons dialog appears.
The icon path appears in the Edit Activity Guide dialog.
The activity guide tree uses this icon to identify the activity guide node. If you do not specify an icon, then the activity guide node does not display an icon.
You can configure a custom icon for the Activity Guide tree to display next to each milestone.
To configure an icon for a milestone:
The Browse Icons dialog appears.
The icon path appears in the Edit Milestone dialog.
The activity guide tree uses this icon to identify the milestone nodes. If you do not specify an icon, then the milestone nodes do not display an icon.
You can configure the display mode for a Guided Business Process to specify how to display the milestone and task links.
To configure the display mode for a Guided Business Process:
Display Mode | Description |
---|---|
Always | Always display the milestone and task links for all the milestones in this Guided Business Process. |
When Instantiated | Display the milestone and task links only when one or more of the user tasks in the milestone are instantiated, for all the milestones in the Guided Business Process. |
The milestones and tasks within the Guided Business Process use this configuration to display the milestone and tasks links. If the milestone and tasks are configured to used another configuration then the Guided Business Process configuration is ignored.
You can configure the display mode for a milestone, to specify how to display the milestone and tasks links.
Display Mode | Description |
---|---|
Default | Use the Guided Business Process configuration. |
Always | Always display the milestone link. |
When Instantiated | Display the milestone link only when one or more of the user tasks in the milestone are instantiated. Use this mode for milestones located after a conditional gateway so that the activity guide tree does not display the milestone until the BPM Service Engine evaluates the condition. |
The milestone links are displayed according to this configuration, regardless of the Guided Business Process configuration.
You can configure the display mode for a user task to specify how to display the task link.
To configure the display mode for a user task:
Display Mode | Description |
---|---|
Default | Use the milestone configuration. |
Always | Always display the task link when the milestone that contains it is visible. If the user task is not instantiated, then the link is grayed out. |
When Instantiated | Display tasks only when the user task is instantiated. Use this mode for user tasks located after a conditional gateway so that the activity guide tree does not display the user task until the BPM Service Engine evaluates the condition. |
The task links are displayed according to this configuration, regardless of the Guided Business Process configuration and the milestone configuration. The tasks links appear when the milestone is visible.
You can configure the task access mode for a Guided Business Process to specify when to display the task links enabled.
To configure the task access mode for a Guided Business Process:
Task Access Mode | Description |
---|---|
Active Only | The link to the task is enabled only when the task is active and the user can update it. When you complete the task the link to the task is grayed out. |
Any State | The link to the task is always enabled after you instantiate the task, even after you complete the task. |
After the task is completed, the Guided Business Process uses this configuration to display the links. If the task mode is active only, the tasks links are grayed out. If the task mode is any state, the tasks links remain enabled and a message appears when you try to run the task.
You can localize a BPMN Guided Business Process so that the client can display it in different locales.
To localize a BPMN Guided Business Process:
The Edit Translatable Strings dialog appears.
The Create Resource Bundle dialog appears.
The Edit Translatable Strings dialog shows the resource bundle you created.
The Create a New Key dialog appears.
The Edit Translatable Strings dialog appears.
The Create a New Key dialog appears.
You can localize a milestone so that the client can display it in different locales.
To localize a milestone:
The Edit Translatable Strings dialog appears.
The Create a New Key dialog appears.
The Edit Translatable Strings dialog appears.
The Create a New Key dialog appears.
In a user task you can localize the following elements:
This procedure shows you how to localize the blocked text. You can also localize the title and description of the user task following the standard procedure for localizing flow objects.
To localize a user task:
The Edit Translatable Strings dialog appears.
The Create a New Key dialog appears.
You can customize Activity Guides behavior by configuring their properties. To configure these properties you must edit the Activity Guide properties file.
Generally you name this file activityguide.properties
. If you choose another name then you must provide its value to the ag-tasktree-task-flow using the parameter AGPropsBeanName
.
Table 30-1 shows the properties you can specify in this file.
Example 30-1 shows a typical Activity Guide properties file:
Table 30-1 Activity Guide Properties
Property | Description | Possible Values |
---|---|---|
ServerConnectionMode | Specifies the mode for the transmission of data. |
|
WorklistHttpURL | Only required when using digital signatures. Specifies the URL to access the Oracle BPM Worklist application. | http://host:port/integration/worklisapp |
SelectionFilter | Specifies the filter used to filter the processes in an activity guide. |
|
AGDefinitionFilter | Specifies the definition ID used to filter the process in an activity guide. The activity guide only displays those processes that match this ID. | activity guide definition ID |
AGInstanceOrdering | Specifies the order used to display the processes in the activity guide. For example: CREATION_DATE:ASC |
Default value: ASC |
AGInstanceID | Specifies the instance ID used to display the activity guide tree. For example: 10001 | activity guide instance ID |
CustomPredicate1 | Specifies an additional predicate to filter the list of processes in an activity guide. For example: CREATOR, EQ, jstein | column name, operator, value |
CustomPredicate2 | Specifies a different additional predicate to filter the list of processes in an activity guide. This predicate is used with CustomPredicate1 | column name, operator, value |
ShowAllAGTreeNodesProperties | Specifies if the activity guide shows a section at the top that describes the properties of activity guides, milestones and tasks. |
Default value: true |
ShowRefreshButton | Specifies if the regional area displays a refresh button. |
Default value: false |
AGTasksPopupTaskFlowID | Specifies the content to display in the task pop-up. | fully qualified TaskFlow ID |
HideAGTreeRootNode | Hides the Guided Business Process title on the Activity Guide Tree root node. |
Default value: false |
ShowCustomBlockedIcon | Specifies if the Guided Business Process shows the custom task blocked icon. |
Default value: false |
Example 30-1 An Activity Guide Properties File
Guided Business Process are deployed to the application server in the same way as an SOA composite process. However, Guided Business Processes must be deployed to a standalone instance of Oracle WebLogic Server rather than the embedded Oracle WebLogic Server included with JDeveloper.
Deploying a Guided Business Process to Oracle WebLogic Server involves the following main steps:
To deploy an Guided Business Process:
Following are the main steps in deploying an Guided Business Process:
To deploy a Guided Business Process using JDeveloper:
To deploy a Guided Business Process using an Ant script:
For more information about deploying an SOA composite to the application server, see "Deploying SOA Applications with Enterprise Manager" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The Guided Business Process runs on WLS. You can view the Guided Business Process using Oracle Enterprise Manager Application Server Control console.
For more information about deploying SOA applications to WLS, see " Deploying SOA Applications with Enterprise Manager" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You can create an instance of the deployed Guided Business Process in the Oracle Enterprise Manager Application Server Control console. This is useful for testing purposes.
To create a Guided Business Process instance:
This chapter explains how to build a client application to display your process instances using the milestones you defined when creating your Guided Business Process.
This chapter includes the following sections:
Guided Business Processes provide you with predefined ADF tasksflows that you can use to build an ADF application to display and run Guided Business Processes.
If the provided ADF taskflows do not satisfy your requirements, then you can use the set of APIs that Guided Business Processes provide, to obtain the information that your UI client applications displays. These APIs allow you to obtain data about the milestones and tasks using web services and Enterprise Java Beans.
A Guided Business Process client application provides a user interface for the Guided Business Process task flow. The client application can be developed in a simple ADF JSPX page in any configuration. Typically, a client application includes a region displaying the Activity Guide tree and another region displaying the details of the specific node selected from the tree.
One way to display these two regions is to include a dynamic region on the left side of a JSPX page and a human task flow on the right. However, any configuration is possible.
To develop a Guided Business Process client application:
A file browser dialog box opens.
oracle.bpm.activityguide-ui.jar
file located under <JDEV_HOME>/jdeveloper/soa/modules
. Note: Dragging and dropping a task flow automatically creates a region for that task flow. |
Note: Generally you name this file |
For more information on Activity Guide properties, see Section 30.7, "Configuring Activity Guide Properties".
If using identity propagation to secure the Activity Guide, then the properties WorkflowAdminUser
and WorkflowAdminPassword
are not required.
AGTasksPopupTaskFlowID
: Use this parameter to display a task flow summary in ADF dynamic regions. Enter the relevant task flow ID.
If this parameter is not set then the popup shows the value of OutputText
as the default task summary.
If you provide an invalid task flow region ID, then the Guided Business Process does not render the region and logs a message in the server log.
ShowRefreshButton
. Set its value to true to enable the display of a refresh button, and false or any other value to disable the refresh button. ShowRefreshButton
and set its value to true. This task flow parameter overrides the value of the parameter set in the Activity Guide properties
file. If the value of the ShowRefreshButton
parameter is 'empty
' or 'null
', then the property ShowRefreshButton
in the file activityguide.properties
defines if the refresh button is shown. If the activityguide.properties
file does not specify a value for this property then the refresh button is not shown in the client.
Example 31-1 illustrates adding a ShowRefreshButton
parameter to the tree task flow.
Example 31-1 Add the ShowRefreshButton
Parameter to the Tree Task Flow
adfc-config.xml
to include the location of the activity.properties
file. This should be the absolute path to the activityguide.properties file. An example adfc-config.xml
is shown in Example 31-2.
Example 31-2 adfc-config.xml
File with Reference to activityguide.properties
File
Example 31-3 Workflow Services Client Configuration File
A JDeveloper application with an ADF Web project is created. The application includes the following:
activityguide.properties
file. At run time, the Oracle ADF application displays the Guided Business Process developed at design time. A contextual event mechanism in the common ADF layer handles communication between the Activity Guide tree and Activity Guide node details, respectively.
When you select a Guided Business Process instance, the Activity Guide tree displays the information for the Activity Guides, milestones, and tasks in that Guided Business Process instance.
Alternatively, you can configure the AGInstanceID property in the activityguide.properties file for the JSF Page to render the following information for a particular Guided Business Process instance:
When selecting a milestone node in the Activity Guide tree, it retrieves or refreshes the sub-tree beneath the milestone.
When selecting a task node in the Activity Guide tree, it displays detailed task information for the task.
Securing the Guided Business Process client application ensures that only users with proper credentials can complete the tasks outlined in the Guided Business Process. Security features include authentication, authorization and policy enforcement.
If you localize a Guided Business Process client application then you can run the client in all the supported languages you defined.
If you want to localize a Guided Business Process application you must localize the following components when you design a Guided Business Process:
The Guided Business Process automatically translates String that are part of the user interface, such as "display title" or Description. Guided Business Processes support the following locales:
See Section 31.4.1, "How to Configure the Supported Locales for a Guided Business Process Client Application" for more information on how to localize a Guided Business Process.
Before configuring a Guided Business Process application to support additional locales, ensure that you provided the required bundles for those locales when developing the Guided Business Process.
To configure the supported locales for a Guided Business Process Client application:
<f:view locale= #{view.locale}>
faces-config.xml
file located under Project_Root /public_html/WEB-INF
. Example 31-4 shows how the faces-config.xml
file looks after adding a set of supported locales.
Example 31-4 faces-config.xml file
Guided Business Processes provide you a set of APIs that enable you to get details about the available milestones and the tasks that compose them. If the predefined Activity Guide ADF taskflows do not satisfy your requirements then you can use these APIs to obtain the information that you display in the client application.
This API is designed to support the following user navigation scenarios in an application displaying a Guided Business Process:
Display a list of Guided Business Process instances using a filter. Available filters are:
MY
: Guided Business Process instances containing active tasks assigned to the user. REPORTEES
: Guided Business Process instances containing active tasks assigned to reportees to the current user. PREVIOUS
: Guided Business Process instances containing completed tasks assigned to the user, and instances in which a particular task is reassigned to another user. ADMIN
: Guided Business Process instances visible to the Guided Business Process administrator. Active instances can be assigned to any user. Note: The BPMAGAdmin role maps to a user with an Administrator role assigned. This role enables the user to query for all the Guided Business Process instances available in the server, including completed, active, and instances with errors. The configuration file located in $DOMAIN_HOME/config/fmwconfig/system-jazn-data.xml contains the definition of this role. |
Note: The Guided Business Process APIs enables retrieving detailed task information by providing the task ID, but do not retrieve the task information. Other APIs, such as the Workflow service APIs, are required for this purpose. For more information about Workflow services, see "Introduction to Human Workflow Services" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. |
Table 31-1 Guided Business Process Query Service API
Method | Description |
---|---|
| Returns a list of AGDisplayInfo objects with fields defined in The You can assign the String parameter
As milestones and tasks are not visible from the Activity Guide instance views, it is recommended not to include the |
| Returns the The You can assign the String parameter
The String parameter
|
| Returns the display information for a milestone in an Activity Guide instance. The You can assign the String parameter
The String parameter
|
The following table describes the JNDI names for the Guided Business Process Enterprise Java Beans.
Service Name | JNDI Names for the Enterprise JavaBeans |
---|---|
Activity Guide MetaData Store |
|
Activity Guide Query Service |
|
APIs enable accessing the Guided Business Process query and Metadata Services from within a custom application.
The following example illustrates the use of Java APIs to access Guided Business Process run-time services:
Example 31-5 Accessing the Guided Business Process Run-Time Service Using EJB
For more information regarding the EJB and Web Service APIS, see the Javadoc.
Guided Business Processes use a log file to store information about the different operations they perform. This file contains log messages that track the application behavior and possible errors that might occur while running the application.
You can use the information in this log file to find out the cause of an unexpected behavior in your application.
The importance of the log messages varies according to their level. The level of the messages used for debugging purposes is different to the level of the messages that contain warnings or errors.
You can configure Guided Business Process Logging to log only certain level of messages according to your needs.
You can configure Guided Business Processes to generate a log file on the client side.
To enable client side logging:
<DOMAIN_HOME>/config/fmwconfig/servers/
Server Name logging.xml
file for editing. <loggers>
element: You can configure Guided Business Processes to generate a log on the server side.
To enable server-side logging:
<DOMAIN_HOME>/config/fmwconfig/servers/
Server Name logging.xml
file for editing. <loggers>
element: <logger name="oracle.bpm.services.activityguide.query" level="NOTIFICATION:1" useParentHandlers='true'>
Log messages contain a level that identifies the severity of the problem.
Table 28-3 shows the available log levels. The Severity column describes the common term used to identify a certain severity. The Log Level Value common specifies the value that you must use in the logging.xml file.
Table 31-2 Log Level Values
Severity | Log Level Value | Description |
---|---|---|
Fatal | INCIDENT_ERROR:1 | Indicates a serious problem caused by unknown reasons. Users cannot fix the problem by themselves, they must contact Oracle Support. |
Severe | ERROR:1 | Indicates a serious problem that requires immediate attention from the System Administrator |
Warning | WARNING:1 | Indicates a potential problem. The System Administrator should review these log messages. |
Information | NOTIFICATION:1 | Indicates a major lifecycle event such as the activation or deactivation of a primary sub-component or feature. |
Configuration | NOTIFICATION:16 | Specifies a normal event occurred at a lower level. |
Fine | TRACE:1 | Specifies trace or debug information for events that are meaningful to end users of the product, such as public API entry/exit points. |
Finer | TRACE:16 | Specifies a detailed trace or debug information that can help Oracle Support diagnose problems with a particular subsystem. |
You can configure Guided Business Process Logging to specify the level of detail of the information stored in the Guided Business Process logs.
To set the log level must change the value of the attribute level in the logger element in the logging.xml file.
When you set the log level to a certain severity, all the messages that correspond to higher severities are also stored. For example, if you set the log level to severe, then the log messages of severity fatal are also logged.
Log messages are stored in the following file: <DOMAIN HOME>/servers/<Server Name>/logs/
Server Name-diagnostic.log
You can view the file that contains the log messages using a text editor.
A log message contains information that helps you identify the problems in your Guided Business Process application.
Table 28-3 describes the items that compose a log message.
Table 31-3 Log Message Items
Log Message Item | Description |
---|---|
Date and Time | Specifies the date and time when this log message was generated. |
Message Type | Specifies the severity of the message. |
Execution Context ID (ECID) | A global unique identifier and a sequence number that correspond to the thread where the originating component is running. You can use it to correlate messages from multiple components that may be involved in the same thread. |
Application Name | Specifies the name of the application that generated the log message. |
Class Package Name | Specifies the package of the class that generated the log message. |
Message ID | Specifies a short identifier that uniquely identifies the message. |
Message Text | Describes the event. This message is localized, thus it displays in the language that corresponds to the locale of your system. |
When you read a log file you must look for the message text, this text describes what happened. The message type helps you identify how serious the problem is. For more information about the different message types, see Table 31-2.
You can use the date and time of the log message to identify the action that caused the problem.
Note: before contacting Oracle Support make sure you can provide them the message ID and the execution context ID. |
Example 31-6 Log Message Example
Example 28-12 shows a notification log message that contains information about a loginUserId change. In this example the different log message items are:
This chapter describes the approval management extensions available for the human workflow services of Oracle SOA Suite. The human workflow service is responsible for handling all interactions with users or groups participating in the business process. It does this by creating and tracking tasks for the appropriate users in the organization. Users typically access tasks through a variety of clients, including Oracle BPM Worklist, email, portals, or custom applications. Approval management extensions enable you to define complex task routing slips for human workflow by taking into account business documents and associated rules to determine the approval hierarchy for a work item. Additionally, approval management extensions let you define multi-stage approvals with associated list builders based on supervisor or position hierarchies. You define the approval task in the Human Task Editor of Oracle JDeveloper, and associate the task with a BPEL process.
For more information about human tasks, see the following chapter and appendix in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite:
This chapter includes the following sections:
Approval Management extensions extend human workflow services with complex approval patterns. It serves as a sophisticated "Assignment Manager" for human workflow. Some of the key workflow features that are provided include:
AMX provides the following additional features:
Figure 32-1 shows the key AMX and human task integration components. These components are described in subsequent sections of this chapter.
The human workflow service enables users to model human interactions as part of a business process. The human workflow service handles requests based on task and rules metadata. It consists of the following set of core services:
These services are described in detail in the chapter "Designing Task Display Forms for Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. AMX serves as a sophisticated assignment manager within human workflow allowing you to model complex approval patterns based on business rules.
The core components required for approval management include the following:
This task editor is used to define the metadata for a human task and the routing slip. The task editor lets you define such things as task parameters, outcomes, expiration and escalation, and notification settings. Some of the components added by AMX include the ability to do the following:
Some of the key services that are required for handling complex approvals include the following:
Oracle BPM Worklist is a web-based application that lets users access tasks assigned to them and perform actions based on their roles in the approval process. Oracle BPM Worklist supports the following profiles:
As described earlier, AMX extends human workflow services with additional functionality to handle complex approval patterns.
Some human workflow concepts with which you must be familiar are the following:
These concepts are described in the following chapters in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite:
The sections that follow describe new concepts introduced to handle complex approvals.
A task handles approvals. A different task is created for each approval requirement based on the business served by it. For example, an approve new expense report task or an approve new purchase order task.
Some of the standard metadata for a task include the following:
Figure 32-2 shows the various stages in a sample approval pattern.
These are described in more detail in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The approval pattern consists of four stages:
Header approval runs in parallel with line approval and receipt verification. After these stages run, the payment stage runs.
Each of the four stages has list builders. Multiple list builders in a stage can run in serial or parallel to one another. One or more approvers can exist within each list builder. Figure 32-3 illustrates these concepts.
These concepts are described in the sections that follow.
ADF Business Components objects can be exposed easily as Service Data Objects (SDOs) through the service interface. This provides a flexible way to accept business entities. Subsequently, supporting SDOs natively, enables us to accept multiple business entities. This also lays the foundation for future Flexfield SDO support. Since an SDO is a structured XML, you can pass it in as static XML through the task payload.
A collection is defined in an entity parameter for the task. It enables access to a portion of the business entity as an XML fragment retrieved by an XPATH expression. Keys allow us to identify the primary keys in this fragment.
An entity parameter is the definition that tells us how to access an SDO or a static XML. An entity parameter captures the following information for an SDO:
An entity parameter captures the following information for a static XML:
For example, an expense voucher can have hierarchical groupings of header, lines, and cost centers. For approval policy purposes, you may only define a collection on header and lines if these are the only components required for determining the set approvers. It is not necessary to map as collections those parts of the business document that are not necessary to define rules.
For more information, see "Implementing Business Services with Application Modules" and "Integrating Service-Enabled Application Modules" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework.
A stage is a set of approvals related to a collection. The same collection can be associated with multiple approval stages.
Figure 32-4 illustrates the mapping of stages and collections.
Each approval stage is associated with a collection. In Figure 32-4, there are four stages in the approval.
A compound approval may consist of multiple stages and then can be modeled in serial or parallel with each other. Each stage consists of list builders to determine the list of approvers.
Optionally, each list builder can be associated with an approval policy, that is, a set of rules. At run time, the appropriate set of approvals are returned based on the list builders used within the stage and on the associated policies.
As described in Section 32.2.3, each approval stage consists of list builders to determine the actual list of approvers. The following list builders are supported.
Enables you to construct a list using static names, or names coming from XPath expressions.
Includes predefined approver groups in the approver list. Approval groups can be static or dynamic.
Ascends the supervisory hierarchy, starting at a given approver and continuing until an approver with a sufficient job level is found.
Ascends the position hierarchy, starting at a given approver's position and continuing until a position with a sufficient job level is found.
Ascends the primary supervisory hierarchy, starting at the requester or at a given approver, and generates a chain that has a fixed number of approvers in it.
Enables you to construct a list based on management relationships in the corresponding user directory.
The management chain participant type only supports parallel routing when the first assignee in the management chain is a single user. You cannot specify parallel participants such as a set of users or a group, as the initial assignees in the management chain.
Enables you to model rules that return different list-builder types based on different conditions. For example, if you model a supervisory list builder with rules, the rule can return only the supervisory list builder. If you model a rule-based list builder, the rule can return different list-builder types.
Note: The Approval Groups, Job Level, Position, and Supervisory list builders are specific to AMX, and are described in detail in Section 32.3.6.3, "How to Model and Configure List Builders." For information about the Names and Expressions, Management Chain, and Rule-based list builders, see "Creating a Single Task Participant List" in the "How to Assign Task Participants" section in the "Creating the Human Task Definition with the Human Task Editor" chapter in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. |
Most of the standard human task operations also are available on AMX-based tasks. Some of the common operations include the following:
Note: The position list builder does not allow the approver to delegate, escalate or perform adhoc insertions. |
See the section "Acting on Tasks: The Task Details Page," in the chapter "Using Oracle BPM Worklist Application" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite for a complete list of actions.
Approvers of a task can be defined either inline in a task definition or by using business rules to specify the list builders that identify the actual approvers of a task. In addition, you can use business rules to specify approver substitution and list modifications. These rules are defined with the help of Oracle Business Rules and can vary between organizations. Typically, however, they are defined by the customer.
Business rules are a combination of conditions and actions. Optionally, priority and validity periods can be defined for these rules. In Human Workflow rules, rule conditions are defined using fact types that correspond to the task, and to the task message and entity attributes (which are XML representations of SDO objects). Rule actions consist of approver list builders and their parameters. Approver list builders move up a particular hierarchy and construct or modify the approver list according to the parameters defined. Approver list builders are implemented as XML (JAXB) fact types.
For more information about these concepts, see the chapter "Overview of Oracle Business Rules" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
A list creation policy includes rule conditions and actions that create the list builders.
The following example rules illustrate the configuration of the Supervisory list-builder parameters that create an approver list based on an SDO-based fact type.
Example 32-1 Rule 1
Example 32-2 Rule 2
For more information, see Section 32.3.6.4.1, "How to Create Lists."
Users, groups, and application roles appearing in a list can be substituted using list substitution. List substitution is available from Rules Designer and does not require any configuration in JDeveloper.
The following example rule illustrates approver-substitution usage.
Example 32-3 Approver-Substitution Usage
This rule implies that if the expense item amount is less than 4000, then substitute approver "jcooper," if present in the approver list, with approver "jstein."
For more information, see Section 32.3.6.4.2, "How to Make Approver Substitutions."
Job Level and Position lists can be extended or truncated from rules. List modification is applied after list creation.
The following example rule illustrates list-modification usage.
Example 32-4 List-Modification Usage
This rule implies that if the expense item amount is greater than 3000, and if the final approver in the approver list is of Job Level 3, then extend the approver list by at least two relative levels.
For more information, see Section 32.3.6.4.3, "How to Make List Modifications."
You design approval management tasks by defining a human task that provides the ability to model multi-stage approvals and determine the appropriate approvers based on approval policies for a business object and the associated HR hierarchy provider.
This section describes the overall modeling process and the specifics of the process you use to model approval management tasks in JDeveloper.
The modeling process for designing approval management tasks includes the following:
Creating a human task definition includes the following tasks:
Some of these procedures are discussed in the sections that follow. For information about those that are not discussed, see "Creating the Human Task Definition with the Human Task Editor" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
You also must create a task display using an ADF task flow to display the details of the approval. ADF task flows are used to model the user interface for the task details page. For more information, see "Designing Task Display Forms for Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Before designing approval management tasks, you must satisfy the following prerequisites:
Some general information, including task title, outcomes, priority, owner, and category, is not specific to AMX.
For more information about these, see "How to Specify the Task Title, Priority, Outcome, and Owner" in the section "Creating the Human Task Definition with the Human Task Editor" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The title attribute of the task object contains a user-friendly value that mainly is descriptive in nature. In AMX, the task title can be globalized so that it renders in the user's preferred language.
Title is defined in the *.task
file for design time and in the WorkflowTask.xsd
file for run time. Currently, the definition of these elements in both of these files are simple xsd:string types. For globalization, the structure and usage of these elements change to accommodate a mechanism that provides translatable, formatted strings.
The design-time metadata for these elements is enhanced to contain a value element and an optional set of parameters. Messages defined as an XPath expression or static have their information stored in the value element and require no parameters. Messages defined that rely on information in a resource bundle have a key stored in the value element with some parameters also defined.
The Human Task Editor provides a mechanism in the Expression Builder to enable the user to specify the resource key and parameters and, at the same time, generate the appropriate design time XML in the taskDefinition.
Figure 32-5 shows the globalization icon in the Human Task Editor.
The following procedure explains how to add translatable strings. It assumes that a resource bundle has been specified.
Figure 32-6 shows the Create a New Key dialog, which displays when the plus sign (+) on the Edit Translatable Strings dialog is clicked.
Figure 32-7 shows the Edit Translatable Strings dialog after a new key has been added.
Figure 32-8 shows the completed Edit Translatable Strings dialog.
Note: The title value, or a definition of the title value can be set in two places: in the TaskDefinition XML (|
Specifying task parameters includes the following tasks:
An SDO service can be invoked from workflow services to retrieve the SDO as XML. This invocation is in the form of a SOA web service call. When the SDO service WSDL URL is available, a web service reference should be added using the Create Web Service dialog.
To create a reference, enter the WSDL URL and select the port type from the available port types, as shown in Figure 32-9.
For information about creating SDOs, see "Introduction to References" in the section "Introduction to the SOA Composite Editor" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The following procedure enables you to accept a service data object (SDO).
This allows Fabric to create all the necessary wiring to a specific URL that points to a WSDL.
This creates task parameters representing the input and output to the SDO web service.
The following procedure enables you to accept static XML.
Collections are references to specific parts of a task message attribute, both static-XML based and entity attributes. After defined, collections can then be associated with stages to identify a stage as acting on a collection.
Defining a collection involves defining the name of the collection and the XPath to the collection element. If the collection is defined for an entity attribute, the keys for the collection element have to be specified as well. Each key has to be a direct child of the collection element. Figure 32-11 shows how collections are defined.
When you define a collection, JDeveloper automatically determines if it should be repeating element or not. This information is used when collections are associated with a stage. A non-repeating collection can be associated with a singular stage. A repeating collection, when associated with a stage, repeats the stage in parallel for each element in the collection at run time. For information about how the collection information is used in a stage, see Section 32.3.6.1, "How to Model and Configure Stages."
Human workflow provides task-message attributes that you can use for storing use-case-specific data, such as data extracted from a task's payload. These attributes are also known as flexfield attributes or mapped flexfield attributes.
Mapped flexfield attributes allow payload values to be displayed as columns in the task listing, rather than being hidden in the task details. These values are stored in the human workflow database schema, and you can use them in queries, view definitions, and assignment rule definitions.
There are two types of message attributes:
Table 32-1 summarizes the 60 available protected flexfield attributes.
Table 32-1 Protected Flexfield Attributes
Name | Description |
---|---|
ProtectedTextAttribute1 - ProtectedTextAttribute20 | Stores text data, up to 2000 characters. The content in these fields is checked during keyword searches in the Oracle BPM Worklist and through the task-query service. |
ProtectedFormAttribute1 - ProtectedFormAttribute10 | Stores text data, up to 2000 characters. The content in these fields is not checked during keyword searches in the Oracle BPM Worklist. |
ProtectedURLAttribute1 - ProtectedURLAttribute10 | Stores text data, up to 200 characters. The content in these fields is not checked during keyword searches in the Oracle BPM Worklist. |
ProtectedDateAttribute1 - ProtectedDateAttribute10 | Stores date information. |
ProtectedNumberAttribute1 - ProtectedNumberAttribute10 | Stores number information. |
Attribute labels are user-defined properties that allow a meaningful string to be applied to a particular flexfield attribute. The label should reflect the data to store in the attribute. For example, “CustomerName” for “ProtectedTextAttribute1,” “OrderNumber” for “ProtectedNumberAttribute2,” or “OrderDate” for “ProtectedDateAttribute1.”
A flexfield attribute can have multiple attribute labels defined for it. For example, the attribute “ProtectedTextAttribute1” could have the labels “CusomerName,” “PartId” and “EmployeeDepartment”.
Attribute-label mappings for protected attributes are defined at design time in the Human Task Editor. They define a mapping between a particular task component and an attribute label, and also specify how the value of the attribute should be populated. The same attribute label can be re-used in multiple mappings. This allows task components to map data having the same semantic meaning into a common attribute identified by a common label.
For example, PurchaseOrder, LoanRequest and ServiceRequest tasks all could define mappings to the “CustomerName” label. By sharing the same attribute labels across multiple task components, it is possible to construct worklist queries that query multiple task types and display or filter values from the common attribute labels. For example, it would be possible to construct a query that selected PurchaseOrder, LoanRequest, and ServiceRequest tasks, and then displayed the “CustomerName” as a column in the worklist task listing.
For more information, see Section 32.5.2, "How to Create Mapped Attribute Labels."
You define attribute-label mappings in the Mapped Attributes section of the Human Task Editor, as shown in Figure 32-12.
Use the following procedure to define attribute-label mappings:
The Attribute dropdown list populates with the available attribute labels from the specified server.
Note: The list does not include any labels for flexfield attributes to which this task component is being mapped. |
Usually, this XPath expression selects a value from the tasks's payload, but you can specify any valid expression that evaluates to a simple type, such as a string, a date, or a number.
Be aware that specifying an XPath expression is not mandatory. You may prefer to set the value of the underlying flexfield-attribute value yourself. For example, you can add a custom assign activity to the BPEL process that initiates the task, or manipulate the Task object through the workflow service APIs.
Specifying routing and approval policies includes the following tasks:
Based on functional needs, you can add and arrange multiple stages in a structure that can be a combination of sequential and parallel stages. This section describes how to create sequential and parallel stages.
Use the following procedure to create a stage:
If you chose to create a sequential stage, the Assignment and Routing section looks like Figure 32-15.
If you chose to create a parallel stage, the Assignment and Routing section looks like Figure 32-16.
Double-click the stage you just created, or select the stage and click the Edit icon.
The Edit dialog displays, as shown in Figure 32-17.
Do the following:
Inside each stage you either can edit the default task participant or add new task participants. Task participants are assigned based on routing patterns, which can be any of the following:
For information on participant types and assigning task participants to a stage, see "How to Assign Task Participants" in the "Creating Human Task Definitions with the Human Task Editor" section in the "Designing Human Tasks" chapter in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
After selecting a routing pattern, you also must select and model a list builder. This process is discussed in more detail in Section 32.3.6.3, "How to Model and Configure List Builders."
Stage uses a combination of list builders to generate the approver list. For more information, see Section 32.2.3, "Stages" and Section 32.2.4, "List Builders." You can only use each type of list builder only one time per stage. You can arrange these approver list builders in either sequential or parallel order. The order you select governs the order in which those approvers included in approver lists that are generated by list builders are assigned an approval task.
The following list builders are specific to AMX:
Note: For information about modeling other list builders, see "Creating a Single Task Participant List" in the "How to Assign Task Participants" section in the "Creating the Human Task Definition with the Human Task Editor" chapter in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite. |
Table 32-2 describes the AMX-specific list builders and the options available to them.
Table 32-2 List-Builder Options
Option Name | Description | List Builder |
---|---|---|
Value-based | Specifies constraints to build the list of participants based on provided values. | All Except Position |
Rule-based | Specifies constraints to build the list of participants based on rules that are defined in the Rule Editor. | All |
Name | The name of the approval group to use. | Approval Groups |
Allow Empty Groups | Allows the use of approval groups with no members. | Approval Groups |
List Ruleset | Name of the ruleset specifying constraints for building participant list. | All |
Starting Participant | The first participant in a list, usually a manager. | Job Level Position Supervisory |
Top Participant | The last participant in the approval. Approval does not go beyond this participant in a hierarchy. | Job Level Position Supervisory |
Number of Levels | A positive number specifying the number of levels to traverse for Supervisory, or the number of job level for Job Level and Position. This number can be an absolute value, or a value relative to starting point or creator. | Job Level Position Supervisory |
Relative to | A positive number specifying the number of levels to traverse for Supervisory, or the number of job level for Job Level and Position. Possible values are: starting point, creator and absolute. | Job Level Position |
Include all managers at last level | If the job level equals that of the previously calculated last participant in the list then it includes the next manager in the list. | Job Level |
Utilized Participants | Utilizes only the participants specified in this option from the calculated list of participants. Available options are: Everyone, First and Last manager, Last manager. | Job Level Position |
Auto Action Enabled | Specifies if the list builder automatically acts on task based on the next option. | Supervisory Job Level Position |
Auto Action | Specifies the outcome to be set. It can be null if auto action is not enabled. | Supervisory Job Level Position |
If you do not configure the hierarchy provider plug-in, then the position list builder does not work.
When you define a hierarchy extension, if you do not define the property mustUseSpecifiedProvider
then its default value is true
..
You can configure the Supervisory and Job Level list builders not to throw an exception when there is a problem with the hierarchy plug in. To configure the list builders, you must add the mustUseSpecifiedProvider
property to the workflow-identity-config.xml
configuration file, and set the value attribute to false
.
By default, the workflow-identity-config.xml
file does not include the mustUseSpecifiedProvider
property. If this property is present and its value is false
, then, then the Supervisory and Job Level list builders use the LDAP management chain when there is a problem with the hierarchy plugin.
Example 32-5 shows a workflow-identity-config.xml
file that specifies the mustUseSpecifiedProvider property. The value of this property is set to true so that the Supervisory and Job Level builders fail when the hierarchy plug in is not available.
Example 32-5 workflow-identity-config.xml Configuration File
Approval groups are a statically defined or a dynamically generated list of approvers. Approval groups usually are configured by the process owner using the worklist application. Typically, they are used to model subject matter experts outside the transaction's managerial chain of authority, such as human resources or legal counsel, that must act on a task before or after management approval.
Static approval groups are predetermined lists of approvers, while dynamic approval groups generate approver lists at run time. Dynamic approval groups require:
Note: In Drop 8, an approval group is a flat list. Serial and parallel patterns no longer are defined. |
For more information, see Section 32.5, "Using Approval Management Features of the Oracle BPM Worklist and Process Workspace."
Two views of the Approval Groups list builder are shown in Figure 32-19 and Figure 32-20.
To model an Approval Groups list builder, first specify if the list builder's attributes are to be value-based or rule-based, and then select the options on the corresponding dialog. For information about the options, see Table 32-2.
The Job Level list builder ascends the supervisory hierarchy, starting at a given approver and continuing until an approver with a sufficient job level is found.
Two views of the Job Level list builder are shown in Figure 32-21 and Figure 32-22.
To model a Job Level list builder, first specify if the list builder's attributes are to be value-based or rule-based, and then select the options on the corresponding dialog. For information about the options, see Table 32-2.
The Position list builder ascends the position hierarchy, starting at the requester's or at a given approver's position, and goes up a specified number of levels or to a specific position.
Figure 32-23 shows a view of the Position list builder.
To model a Position list builder, first specify if the list builder's attributes are to be value-based or rule-based, and then select the options on the corresponding dialog. For information about the options, see Table 32-2.
The Supervisory list builder ascends the primary supervisory hierarchy, starting at the requester or at a given approver, and generates a chain that has a fixed number of approvers in it.
Two views of the Position list builder are shown in Figure 32-24 and Figure 32-25.
To model a Supervisory list builder, first specify if the list builder's attributes are to be value-based or rule-based, and then select the options on the corresponding dialog. For information about the options, see Table 32-2.
Approvers of a task can be defined either inline in a task definition or by using business rules to specify the list builders that identify the actual approvers of a task. In addition, you can use business rules to specify approver substitution and list modifications. These rules are defined with the help of Oracle Business Rules and can vary between organizations. Typically, however, they are defined by the customer.
Business rules are a combination of conditions and actions. Optionally, priority and validity periods can be defined for these rules. In Human Workflow rules, rule conditions are defined using fact types that correspond to the task, and to the task message and entity attributes (which are XML representation of SDO objects). Rule actions consist of approver list builders and their parameters. Approver list builders move up a particular hierarchy and construct or modify the approver list according to the parameters defined. Approver list builders are implemented as XML (JAXB) fact types.
For more information about these concepts, see the chapter "Overview of Oracle Business Rules" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The sections that follow explain list creation, approver substitution, list modification, and repeating node attributes using Oracle Business Rules.
You can use business rules to define the list builders you want to use. There are two types of business rules:
In the rule dictionary, rule functions are seeded to facilitate the creation of list builders. These functions are the following:
In Rules Designer, model your conditions and, in the action part, "call" one of the functions above to complete building your lists, as shown in Figure 32-28.
The parameters for the rule functions are similar to the ones in JDeveloper modeling. In addition to the configurations in JDeveloper, some additional options are available in Rules Designer for the following attributes:
Figure 32-30 and Figure 32-31 show examples of rules.
Note: If multiple rules fire, the list builder created by the rule with the highest priority is selected. If the rules have the same priority, they are fired in random order, the first one fired is selected. |
WARNING: An improper or incomplete rules definition in a list-creation rule set can cause run-time errors. Errors can be caused by the following:
Ensure that rules are properly defined to handle all conditions. |
Table 32-3 "Substitute" Function Parameters
Parameter | Description |
---|---|
fromId | The ID of the user/group/application role from which to substitute. |
toId | The ID of the user/group/application role which to substitute to. |
ruleName | Used to create an assignment reason. Rule set name + "_" + rule name is used as a key to look up the resource bundle for a translatable reason for assignment. This resource is looked up first in the project resource bundle, then in the custom resource bundle, and last in the system resource bundle. |
substitutionRules | An object that is a holder for all the substitutions. Clicking this option shows a pre-asserted fact 'SubstitutionRules' object to be used as the parameter. |
Figure 32-32 shows a sample approver-substitution action.
List modification enables you to extend or truncate the Job Level and Position list builders from rules. List modification is applied after the list is created. This feature does not require any configuration from JDeveloper. In each rule dictionary there is a pre-seeded rule set named "ModificationRules." This rule set is called only when the Job Level and Position list builders are asserted in the list that created the rule sets. Only the highest priority applicable rule is applied.
In Rules Designer, rule functions are seeded to facilitate list modifications. These functions are the following:
These rule functions are shown in Figure 32-33.
Extend and truncate parameters are listed in Table 32-4 and Table 32-5.
Table 32-4 "Extend" Function Parameters
Parameter | Description |
---|---|
ifFinalApproverLevel | The level at which final approver is at or below. |
extendBy | The number of levels to add to the final job level. |
ruleName | Used to create an assignment reason. Rule set name + "_" + rule name is used as a key to look up the resource bundle for a translatable reason for assignment. This resource is looked up first in the project resource bundle, then in the custom resource bundle, and last in the system resource bundle. |
lists | An object that is a holder for all the lists that are built. Clicking this option shows a pre-asserted fact 'Lists' object to be used as the parameter. |
Table 32-5 "Truncate" Function Parameters
Parameter | Description |
---|---|
afterLevel | The level after which to truncate. |
ruleName | Used to create an assignment reason. Rule set name + "_" + rule name is used as a key to look up the resource bundle for a translatable reason for assignment. This resource is looked up first in the project resource bundle, then in the custom resource bundle, and last in the system resource bundle. |
lists | An object that is a holder for all the lists that are built. Clicking this option shows a pre-asserted fact 'Lists' object to be used as the parameter. |
Figure 32-34 shows a sample list-modification action.
When defining a business rule, you can base a rule condition on an attribute that comes from a repeating node. For example, there can be multiple line items for each purchase-order header in a purchase-order scenario. In this case, PurchaseOrderHeader is a non-repeating node, and PurchaseOrderLines is a repeating node.
When defining a rule like the following:
IF line item's amount is <50000, THEN create supervisory list containing jcooper up to two levels
the amount is an attribute of line, that is, it is an attribute of a repeating node.
Use the following procedure to define repeating-node attributes:
A list of facts displays, as shown in Figure 32-35.
A rule-definition section displays, as shown in Figure 32-37.
Assignment context is information that is present in the task. During a task's life cycle, it progresses through various assignees. As the context of the task assignees changes, the assignment-context value also changes.
When browsing through the history of a task, you can see the various assignment contexts that the task contained during its life cycle. The Oracle BPM Worklist uses assignment context when it displays task history.
You configure assignment context in the Add (or Edit) Participant Type dialog in JDeveloper in the following ways:
In this case, the assignment context is configured implicitly, behind the scenes. The Rules layer resolves the list of assignees based on the rule. As the task progresses through the various assignees, the assignment context value is computed based on the rule.
In this case, you can customize assignment contexts by entering your own information into the Assignment Conext fields. Figure 32-40 shows the fields.
Table 32-6 contains field descriptions.
Table 32-6 Assignment-Context Field Descriptions
Field | Description |
---|---|
Name | Assignment-context name, which can be whatever you choose. This is a string field. |
Value | Assignment-context value, which can be whatever you choose. This is a string field. |
Type | Associated with the Value field. Possible values are:
|
A task can be assigned multiple times to one user during the task life cycle. The Human Task Editor enables you to configure how often a user sees the task.
The following procedure explains how to configure task-approval aggregation.
Figure 32-41 shows the tab selected in the dialog.
When the task is aggregated and assigned to a user, the task has a collection table in the Oracle BPM Worklist that diplays all the collections in the task the user is approving. After the user performs an action, the action is recorded and then replayed to all the user's assignments, either in the stage or task.
An aggregated task is a proxy task for all the regular assignments. Only the following actions are permitted on an aggregated task:
The user can perform additional actions on the individual tasks, such as escalate, but those actions are not be recorded and played back for other tasks. Those actions are treated as actions on an individual task and not on an aggregated task.
This feature is not specific to AMX. For more information, see "Designing Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Note: Escalation is only applicable to management chain. |
This feature is not specific to AMX. For more information, see "Designing Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Using advanced settings includes the following tasks:
Callbacks are mechanisms that allow you to do the following:
Use the following procedure to add callbacks:
The Callback Details dialog opens, as shown in Figure 32-42.
Additional entry fields display, as shown in Figure 32-43.
Access rules restrict the actions that a user can perform by overriding default actions and permissions. At run time, the system checks every operation in a task against any defined access rules to see if a user is permitted to make changes, such as approve, add, delete, and so on If the user is not permitted to make changes, the operation errors out with an appropriate error message.
In AMX, access rules can be defined for Groups and Application Roles. For example, if an access rule is defined to restrict the "Withdraw" action for a group called Operators, then any user belonging to that group is not allowed to withdraw the task. Similarly, if an access rule is defined to restrict the "Withdraw" action for an application role called SOAAuditViewer, then any user who has been granted the SOAAuditViewer application role is not allowed to withdraw the task.
To define a security access rule:
The Configure Task Content Access dialog displays, as shown in Figure 32-45.
A second Configure Task Content Access dialog displays.
The Identity Lookup dialog displays.
The selected groups are added to the access rule, as shown in Figure 32-48.
Use the same procedure to define access rules for Application Groups, with the following exceptions:
For more information, see the section "Specifying Access Rules on Task Content" in the chapter "Designing Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Table 32-7 shows the end-to-end workflow examples included in the ORACLE_HOME\samples\soa-infra\workflow
directory.
In addition to the demonstration features listed in the table, all samples show the use of worklist applications and workflow notifications.
Table 32-7 End-to-End Samples
Sample | Description | Location |
---|---|---|
Expense Line Approval | Illustrates line-level approval with approval policy defined. |
|
Employee Hiring | Illustrates ad-hoc insertion capabilities for an approval having two stages - Approval Group List Builder in "Order" voting regime and a Supervisory list builder. |
|
Purchase Order Approval | Illustrates the Purchase Order approval scenario with header and line-level approvals. |
|
Employee Transfer | Illustrates the Employee Transfer scenario from one team to another through parallel job level participants. |
|
Self Approval | Illustrates how to implement self-approval through auto-action rules. |
|
Position List Builder | Illustrates the use of the Position list builder. |
|
The Oracle BPM Worklist enables users to perform various approval-management tasks, including the following:
The human workflow service creates tasks for users to interact with the business process. Each task has two parts—the task metadata and the task form. The task form is used to display the contents of the task to the user's worklist.
The task form is designed in JDeveloper with Oracle Application Development Framework (Oracle ADF). For more information, see "Designing Task Display Forms for Human Tasks," in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Oracle BPM Worklist displays all worklist tasks that are assigned to a user or a group. When a worklist user drills down into a specific task, the task display form renders the details of that task. For example, an expense approval task may show a form with line items for various expenses, and a help desk task form may show details such as severity, problem location, and so on.
The sections that follow describe the task form in the Oracle BPM Worklist that users with administrator rights use to manage tasks. Figure 32-50 shows what a task form looks like.
The Header view, shown in Figure 32-51, is created in JDeveloper using the header drop handler.
By default, the drop handler includes the Header fields listed in Table 32-8. However, you can include or remove any of the fields based on the use case.
Table 32-8 Header Fields
Field | Description |
---|---|
Task Number | The number automatically assigned to the task. |
State | The current status of the task. |
Outcome | The user outcome. For examaple, if the user clicks Approve, the Outcome field displays "Approve." |
Priority | The priority level assigned to the task. |
Creator | The user who originated the task. |
Created | The task's creation date. |
Updated | The date the task was last updated. |
Expires | The date the task expires. |
Assignees | The name(s) of the administrator(s) to whom the task has been assigned. |
Acquired By | The name of the user who claims the task before any action is taken on it. |
Due Date | The date by which the task is due. |
The Header also contains custom and system actions. Custom actions are those that depend on task metadata outcomes. For example, if the metadata contains Approve and Reject outcomes, then Approve andReject appear in the Header as custom actions. If the metadata contains more than two outcomes, then the custom actions appear in the Header as a dropdown list instead of separate buttons. In Figure 32-51, Approve and Reject appear as separate buttons. This indicates that the task metadata includes Approve and Reject outcomes.
System actions, such as Escalate, Suspend, and Resume, always appear in a dropdown list. The actions that appear depend on what the user is doing. For example, after a task has been initiated it can be withdrawn. Subsequently, if a user logs into the Oracle BPM Worklist to view the details of an initiated task "Withdraw" appears in the list containing the available actions.
Table 32-9 lists all the actions the administrator can perform from the Header and their descriptions.
Table 32-9 Header Actions
Action | Description |
---|---|
Reject | Enables the administrator to reject the task. |
Approve | Enables the user to approve the task. |
Delegate | Enables the administrator to assign a task to another person to act on his or her behalf. |
Reassign | Enables the administrator to transfer a task to another administrator. |
Suspend | Enables the administrator to suspend the task to work on it at a later time. |
Resume | Enables the administrator to resume a suspended task. |
Withdraw | Enables the administrator to withdraw an initiated task. |
Escalate | Enables the administrator to escalate a task to a supervisor. |
Delete | Enables the administrator to delete a task. Appears for all "To Do" tasks. |
Purge | Enables the administrator to purge a task. Appears for all "To Do" tasks. |
Go | Enables the administrator to "go" to the action selected from the dropdown list. |
Save | Enables the administrator to save the task. |
The Task Payload view, shown in Figure 32-52, displays the details of the task parameters and provides the ability to update them. Any parameter that has been designed based on SDOs also can be viewed here. While the values of the general parameters are based on what was passed to the task or update by any user, the values of the SDO-based parameters reflect the current value of the business object as it was updated in the underlying application.
For more information, see "Designing Task Display Forms for Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
The Task History view, shown in Figure 32-53, provides a graphical and tabular view of events in the task life cycle. In addition, if the Edit Approver Configuration option was selected in the designer, special controls in the tabular view that allow futire approvers to be edited are available. Any approver added manually can be deleted and new approvers can be added. Approver changes made in the tabular view are immediately reflected in the graphical view. When the task is saved or a custom action, such as approve or reject, is performed on the task, all approver-related changes also are saved.
If the Allow all participants to edit future participants option is selected while configuring the approval task, the history region displays additional actions that allow a participant to edit the future participants list. For more information, see Section 32.3.3, "Specifying General Information."
Figure 32-54 shows the addition of the Apply and Reset buttons.
Table 32-10 describes all additional approval-task actions.
Table 32-10 Edit Future Participants List Actions
Action | Description |
---|---|
Add | Enabled when the user selects a future participant. When this option is selected, the Add Participant dialog opens and the user can insert ad- hoc participants. |
Edit | Enabled when the user selects a participant that has been inserted ad hoc. When this option is selected, the Edit Participant dialog opens and user can move the position of an inserted participant. |
Delete | Enabled when the user selects a participant that has been inserted ad hoc. When this option is selected, the corresponding participant is deleted. |
Apply | Persists the edits to the future participant list. |
Reset | Resets the edits from the future participant to a system-generated list. |
Table 32-11 lists the actions the administrator can perform from the Task History view and their descriptions.
Table 32-11 Task History Actions
Action | Description |
---|---|
Task Snapshot | Displays the task details for the selected version. |
Full task actions | If checked, displays the full task-action history. If unchecked, displays only action history. By default, the box is unchecked. |
All parent tasks | If checked, displays the parent task in a sub-task view. If unchecked, displays only the sub-task history. By default, the box is checked. |
Show future approvers | If checked, displays the future approver with history. By default, the box is unchecked. |
The Comments and Attachments view, shown in Figure 32-55, is created in JDeveloper using the task data control drop handler. It includes a text-entry field in which to enter comments about the task, and the functionality to attach supporting documents.
Mapped attributes are those that you can use for storing use-case-specific data, such as data extracted from a task's payload. You can view and create mapped attribute labels on the server using the Oracle BPM Worklist.
Note: You must have the workflow.mapping.protectedFlexfield privilege to create protected flexfield attributes. The default administrative user, weblogic, has this privilege. |
For more information, see Section 32.3.5, "Specifying Mapped Attributes."
To view attribute labels:
The page displays a list of existing attribute labels. You can filter the list by selecting an attribute type from the dropdown list. Clicking a specific label displays the list of mappings the attribute uses in the Details panel.
To create an attribute label:
To delete an attribute label:
To delete an attribute label, first select it from the list of attribute labels. Then click the Delete (-) button.
Note: Attribute labels can be deleted only if they are not used in any mappings. |
If attribute labels have been defined on one server and must be re-created on another, you can use the user metadata migration utility to export a list of protected attribute labels from the server on which they were defined to an XML file. The utility then can deploy the attribute labels from this file to a new server. This eliminates the necessity to manually re-create the attribute labels manually in the Oracle BPM Worklist. For more information, see Section 32.6, "Using the User Metadata Migration Utility."
When attribute labels are displayed to end users, for example in the task listing page of the Oracle BPM Worklist, the label name specified when the label was created is used. In cases where users of different nationalities may see the label, a translation of the label name appropriate to Oracle BPM Worklist user's locale can be displayed instead. Translations of attribute labels can be customized using the WorkflowLabels.properties resource bundle.
For more information, see "Internationalization of Attribute Labels" in the chapter "Introduction to Human Workflow Services" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
An approval group consists of a name and a predefined set of users configured to act on a task in a certain pattern. This pattern is similar to a human workflow routing slip pattern where users can act on tasks in serial or parallel. An approval group also can contain a nested approval group in the pattern.
The name of an approval group is needed when specifying the approval group list builder as discussed in Section 32.3.6.3.1, "How to Model an Approval Groups List Builder." The pattern configured in the approval group is used by default to order the users who must act on the task. However, when creating the list builder, the default pattern can be overridden by specifying the voting regime.
The sections that follow describe the Oracle BPM Worklist user interface that enables users with administrator rights to manage approval groups.
From the Oracle BPM Worklist home page, click the Approval Groups tab. A page similar to the one shown in Figure 32-58 appears.
The graphic shows that the "DisbursementTeam" approval group has two users, "bpalmer" and "rjames." The users act on a task in a specific sequence configuration.
You can search for an approval group either by user name or group name.
To search by user name:
A list of all approval groups to which the user belongs displays in the left navigation pane, as shown in Figure 32-59.
Clicking on the approval group name refreshes the details pane on the right with the structure of that group.
To search by group name:
A list of all matching approval groups displays in the left navigation pane, as shown in Figure 32-59.
Clicking on the approval group name refreshes the Details pane on the right with the structure of that group.
The following procedure explains how to add a static approval group.
A page similar to the one shown in Figure 32-62 appears.
You now can add members to the new approval group.
Members of a static approval group either can be users or other approval groups. The following procedure explains how to add a new user member to an approval group.
The other icons enable you to edit, delete, and reorder members in the approval sequence.
The Add to Group pop-up dialog appears, as shown in Figure 32-63.
The dialog closes and the new member appears in the Members section of the Details pane.
If you click the magnifying glass, an Identity Browser pop-up dialog appears, as shown in Figure 32-64.
The Identity Browser dialog refreshes and the search results appear, as shown in Figure 32-65.
The details for that user appear in the Details section of the dialog.
A node representing the selected user appears in the approval group structure in the Members section of the Details pane, as shown in Figure 32-66.
You can add more members to the approval group by repeating the steps above. The resulting approval group structure looks similar to the one shown in Figure 32-67.
The following procedure explains how to delete a member from an approval group.
The approval group structure refreshes and the member node has been deleted.
The following procedure explains to to change the sequence order of an approval group.
Figure 32-68 and Figure 32-69 show the positions of rjames and jstein before and after a move.
The following procedure explains how to nest approval groups, that is, add an approval group to another approval group.
Another Add to Group dialog appears.
Its structure appears in the right pane, as shown in Figure 32-70.
The new approval group appears in the approval group's structure, as shown in Figure 32-71.
The following procedure explains how to rename an approval group.
The name change also is reflected in other approvals groups in which this approval group is nested.
Dynamic Approval Groups provide a way to create approval groups through a custom Java class at run time. This requires the following:
to define a dynamic approval group, the customer must define an implementation class using the interface file IDynamicApprovalGroup.java
, defined by AMX for dynamic approval groups in the package oracle.bpel.services.workflow.task. This contains only one public method that gets the approval group members. The Task object is the only input parameter. The primary key list can be obtained from the task task/systemAttributes/collectionTarget.
Example 32-6 Implementation Class
Figure 32-72 shows a code snippet for a sample dynamic approval group class.
For more information, see Section 32.5.3.9.4, "How to Add a Dynamic Approval Group."
To make the class file available in a globally well-known directory that is part of the SOA class path, you must place your class files in the following WebLogic Server directory:
$BEAHOME/AS11gR1SOA/soa/modules/oracle.soa.ext_11.1.1/classes
For example, for the Java class oracle.apps.DynamicAG , the path would be $BEAHOME/AS11gR1SOA/soa/modules/oracle.soa.ext_11.1.1/classes/oracle/apps/DynamicAG.class
. You must restart WebLogic Server after you place your class files there.
The following procedure explains how to add a dynamic approval group approval group.
A page similar to the one shown in Figure 32-74 appears.
The following procedure explains how to delete an approval group.
A confirmation dialog appears.
The approval group is deleted.
Note: If the approval group you deleted is nested in other approval groups, it also is deleted from those parent groups. |
Task Configuration in the Oracle BPM Worklist lets business users and administrators review the rules that have been configured out of the box by the workflow designer. These pre-defined rules can be modified to customize the approval flow for a specific customer at any point in time based on the customer's applicable corporate policies.
For example, if a corporate policy requiring two levels of approvals for expense amounts greater than 1000 is changed to a policy requiring three levels, the customer can use this web-based application to change the rule rather than having its IT department first modify the rule in the underlying process and then deploy it again. Any change made to the rule is applied starting with the next instance; instances that are in progress use the current rule definitions.
Task Configuration enables you to edit the event driven and data-driven rules associated with an approval flow at run time; that is, when the workflow is deployed. The Event Driven and Data Driven tabs are accessible by clicking the main Task Configuration tab of the Administration section of the application. A screen similar to the one shown in Figure 32-76 displays.
The Tasks to be configured panel on the left lists all workflow tasks that have been configured to use approval-flow rules. It also provides a search capability. In the view mode, the right panel displays the default configuration and rules for overriding the approval-flow list builder configuration. The rule configurations are displayed based on the stages defined in the approval flow.
This section contains information about event-driven settings, that is, task metadata.
Figure 32-77 shows an event-driven task configuration page.
Use the following procedure to edit an event-driven setting.
The main page refreshes in edit mode, as shown in Figure 32-78.
WARNING: An improper or incomplete rules definition in a list-creation rule set can cause run-time errors. Errors can be caused by the following:
Ensure that rules are properly defined to handle all conditions. |
Approval aggregation requirements can be any of the following, as shown in Figure 32-79:
Defining expiration and escalation policies in the Oracle BPM Worklist is very similar to how it is done in the Human Task Editor. For more information, see the section "How to Escalate, Renew, or End the Task" in the chapter "Designing Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Note: If you set the expiration time to 0 days 0 hours 0 minutes, then the task expires immediately after you deploy it. |
Creating or updating notification settings for a task in the Oracle BPM Worklist s very similar to how it is done in the Human Task Editor. For more information, see the section "How to Specify Participant Notification Preferences" in the chapter "Designing Human Tasks" in Oracle Fusion Middleware Developer's Guide for Oracle SOA Suite.
Access-rule settings can be set to control the actions a user can perform, and is very similar to how it can be done in the Human Task Editor. Content and action permissions can be specified based on the logical role of a user, such as creator (inititator), owner, assignee, and reviewers.
For more information, see Section 32.3.9.2, "How to Define Security Access Rules."
Use the following procedure to edit a data-driven setting, that is, a rule or condition.
The right panel refreshes in edit mode, as shown in Figure 32-83 and Figure 32-84.
The rule name appears as the rule reason in the history graph. If you defined a resource bundle, then the rule name is used to obtain the resource bundle and a translated text is displayed.
The changes are saved to the rule definitions in the rules dictionary.
Section 32.5.4.2.1, "How to Add a Variable" and Section 32.5.4.2.2, "How to Define Conditions" discuss additional editing tasks.
Use the following procedure to add a variable.
The Add Variable window displays, as shown in Figure 32-85.
The types displayed in the list correspond to those that are available in the rule dictionary (built-in and others that have been registered).
The variable can now be used to define conditions.
You can set the left and right sides of a condition by selecting operands from condition browsers. Clicking the magnifying glass icon displays the browsers. Figure 32-86 shows the left condition browser.
The operator for comparing the operands of the condition changes based on the type of operand selected for the left side of the condition. Figure 32-87 shows the right condition browser.
You also can define more complex conditions using the Expression Builder.
For more information, see the section "Creating ADF Data Binding EL Expressions" in Oracle Fusion Middleware Fusion Developer's Guide for Oracle Application Development Framework. Also, see the section "Creating EL Expressions" in Oracle Fusion Middleware Web User Interface Developer's Guide for Oracle Application Development Framework.
You can specify an assertion by selecting the appropriate rule function from the dropdown list.
The task listing region in the Oracle BPM Worklist is available as standalone, reusable component that you can use to display a list of tasks in an embedding application. It is provided as an ADF library that you can include in the embedding application.
Figure 32-88 shows the task listing region.
The task listing region is exposed as a portlet and can be embedded in other applications.
The consumer application is developed using JDeveloper. The task list portlet then is embedded in a page in the consumer application. At run time, the login credentials passed to the consumer application are propagated to the WSRP producer and the portlet content is displayed on the page. The standalone task list portlet is deployed on the WLS PORTLET server, which would contact the remote WLS SOA server for workflow services. A separate portlet ear is provided for deployment on the portlet server.
Any consumer can use the task list portlet after registering to the portlet producer (WLS Portlet server).
To embed the task listing region in an application:
The task list ADF library adflibTaskListTaskFlow.jar
file must be in the class path. This jar is available in JDeveloper in the Oracle BPM Worklist Components library.
adflibTaskListTaskFlow.jar
task flow in the project's class path. Create a .jspx
page. You can name it something like "testSample.jspx."
.jspx
page as a region. The Edit Task Flow Binding dialog displays.
Example 32-7 shows what is created in testSamplePagedef.xml
.
Example 32-7 testSamplePagedef.xml Code
weblogic-application.xml
: Note: Add the libraries appropriately if you have oracle.soa.workflow.wc installed on your server. |
Create an EAR deployment profile, build an ear and deploy it.
http://server:port/TaskListTaskFlowSample-ViewController-context-root/faces/testSample.jspx
. The dropdown list contains all available servers. Selecting any combination of servers refreshes the task list to display all tasks that belong to those servers.
If "showServerColumn" was passed as true, the server column, indicating the server to which the task belongs, displays in the task.
The following procedure is required if you run your application on a non-SOA server.
To deploy on a non-SOA server:
http://
remote_hostname:remote_port
/console, where remote_hostname
and remote_port
are the host name and port for the remote non-SOA WLS server. $ADE_VIEW_ROOT
with the actual directory. For example: $ADE_VIEW_ROOT
/fmwtools/fmwtools_home/jdeveloper/soa/modules/oracle.soa.workflow_11.1.1
.
http://
remote_hostname:remote_port
/console, where remote_hostname
and remote_port
are the host name and port for the remote non-SOA WLS server. ForeignJNDIProvider-SOA
. soa_hostname
and soa_port
with the host name and port for the SOA WLS server. - Initial Context Factory: weblogic.jndi.WLInitialContextFactory
- Provider URL: t3://soa_hostname:soa_port/soa-infra
- User: weblogic
- Password: weblogic
Note: The Provider URL is referring to the soa-infra application, not the domain. Do not change soa-infra to soa. |
Navigate to http://
remote_hostname:remote_port
/console, where remote_hostname
and remote_port
are the host name and port for the remote non-SOA WLS server.
ForeignJNDIProvider-SOA
. - Name: RuntimeConfigService
- Local JNDI Name: RuntimeConfigService
- Remote JNDI Name: RuntimeConfigService
Click OK.
- ejb/bpel/services/workflow/TaskServiceBean
- ejb/bpel/services/workflow/TaskMetadataServiceBean
- TaskReportServiceBean
- TaskEvidenceServiceBean
- TaskQueryService
- UserMetadataService
Note: Specify "ejb/bpel/services/workflow/" for ejb/bpel/services/workflow/TaskServiceBean and ejb/bpel/services/workflow/TaskMetadataServiceBean only. |
system-jazn-data.xml
on the remote non-SOA WLS server to include the grant for bpm-services.jar
, as shown in Example 32-8. If you are deploying the ADF Task Flow for Human Task to the integrated WLS server, then you can locate the system-jazn-data.xml
file in $ADE_VIEW_ROOT/system11.1.1.1.32.53.26/DefaultDomain/config/fmwconfig
. Important: Be sure to replace $ADE_VIEW_ROOT with the actual path.. For example, /scratch/skaneshi/view_storage/skaneshi_d7b4/fmwtools/fmwtools_home/jdeveloper/soa/modules/oracle.soa.workflow_11.1.1/bpm-services.jar
.
Example 32-8 bpm-services.jar Grant Code
If you are using the task flow in the federated mode, you must put wf_client_config.xml
in the class path of the application. For more information, see Section 32.5.5.2, "How to Use Task Listing Region Parameters."
You also must enable global trust between the two servers. This is done so that the authenticated user is passed to all the federated servers defined in the client configuration file.
Important: You must restart all the servers. |
To use the task flow in the federated mode:
Perform the following procedure for all the servers defined in wf_client_config.xml
:
Note: You must use this password for all SOA servers. |
Example 32-9 shows sample wf_client_config.xml
code.
Note: Put |
Example 32-9 Sample wf_client_config.xml Code
Task listing region parameters control the display behavior of the embedded region. This section describes these parameters.
Display Parameters
The task list displays in federated mode if this paramater is passed as true. To run the task flow in federated mode, you must pass the list of federated servers to the task flow using one of these options:
wf_client_config.xml
in the class path (APP-INF\classes\wf_client_config.xml
at the ear level or the WEB-INF\classes of the web application). The client configuration file contains all federated server details. For more information, see Section 32.5.5.1.2, "How to Use the Task Flow in the Federated Mode." This parameter displays a list of servers if the task flow is run in federated mode. Construct a JAXB object (WorkflowServicesClientConfigurationType) using the code shown below, and then pass it as a parameter to the task flow. Ensure that you set one server as the "default," as indicated (in bold type) in the code.
A default server is used when you have many servers defined in wf_client_config.xml
or in the JAXB object. However, the workflow client is preferred for a single server. There are a few legacy APIs that do not take the server name as parameter. To support these APIs, you must define one single server as default server; otherwise these APIs do not work.
Example 32-10 Defining a Single Server
If the task flow is run in federated mode, the server column in the task list, by default, is not displayed. To display the column, this parameter must be passed as true.
This is a workflow context token string and is used to create workflow context inside the task flow. If the application Single Sign On is enabled or is secured using ADF security, this parameter is not required. The workflow context is shown below.
The views panel displays only if passed as true. By default, it is not displayed.
The task details panel displays only if passed as true. By default, it is not displayed.
This string enables task details in the task listing region to display in an inline frame. If action is taken on the task details page, the action refreshes the task listing area with the p age URL in which the task flow/portlet is contained.
Since the task flow does not know the URL of the container page, the URL must be passed as a parameter. Get the parameter by calling the getRequestURL()
method on the request object. You can pass the full URL either by calling the getRequestURL()
method on the request object, or by passing the URL using the following format:
A string parameter that passes the locale source. It can be from the browser (BROWSER) or from the identity context (IDENTITY).
The action dropdown does not display only if passed as false. By default, it is displayed.
The view filter dropdown does not display only if passed as false. By default, it is displayed.
Specifies if the Actions menu displays the TODO action. To hide the TODO action, set this parameter to false. By default the Actions menu inclueds the TODO action.
The assignment filter dropdown does not display only if passed as false. By default, it is displayed.
The status filter dropdown does not display only if passed as false. By default, it is displayed.
The search box does not display only if passed as false. By default, it is displayed.
This comma-delineated list of strings enables the list of columns to be displayed in the region in the order specified.
This string specifies the name of the column to be used for sorting tasks by default in the region.
This string specifies the sort order for sorting tasks, that is ascending (ASC) or descending (DESC).
Filter Parameters
This string specifies the value to be used as the selection of the assignment filter for tasks. If not set, the values default to My and Group. For more information, see Section 32.5.5.2.1, "Using Assigment Filter Constraints."
This string specifies the value to be used as the selection of the view name to filter the tasks. If not set, the value defaults to Inbox.
A strings parameter that specifies the comma-delineated list of the task type(s) to be used for filtering the tasks that are displayed.
A string that specifies the operator (and/or) to be used as the predicate join criterion for the field-specified in Attribute Filter list.
A string parameter that specifies the comma-delineated list of name value pairs to be used to filter tasks based on attribute values. (The name is task column name and value is column value.)
Example
If the user wants to see the task with attribute filter values as priority = 1 and status = ASSIGNED and promoted flexfield textAttribute1 = NorthAmerica, then the user would set the values as the following:
The attribute filter operator would be the following:
The following is a list of assignment filter constraints:
The list below contains the column constants that can be passed in thedisplayColumnList parameter. The constant value is the value that should be passed. For example, for TITLE_COLUMN = "title"
, the "title" should be passed, not "TITLE_COLUMN".
Primary Column Contraints
Other Column Constraints
The History component is an ADF declarative UI component used to render the past and future participants for an initiated task, and for a task before initiation. The component can edit the future participants, and can be embedded in any ADF page. Parameters are the following:
If any of the first three parameters are passed as null, or if the correlation ID of a task object is null, the component does not show the approval list. Instead, it shows a message explaining the possible cause why it failed to show the approval list. The last two parameters are used to indicate whether tabular or graphical views are to be shown. By default, both tabular and graphical views are shown. The value true/false can be passed to last two parameters.
The user metadata migration utility, hwfMigrator, is a tool that automates the process of migrating Workflow user-configurable data from one SOA server to another by executing a shell script.
For more information about the user metadata migration utility, see Moving Human Workflow Data from a Test to a Production Environment in Oracle Fusion Middleware Administrator's Guide for Oracle SOA Suite and Oracle Business Process Management Suite.
This part contains appendices that describe administrative features of Oracle BPM.
This part contains the following appendices:
This appendix describes how process owners and Process Workspace administrators can alter the flow of running process instances in Process Workspace. It also describes how they can migrate instances in Process Workspace.
This section contains these topics:
You can move the token of a running process instance from a current activity to another, but only within the following structural constraints:
To alter the flow of a running process instance:
If you select a single process instance, then the Alter Flow dialog box appears as shown in the example in Figure A-1.
Figure A-1 Altering the Flow of a Process Instance
By default, the Alter Flow dialog box shows only the Process and Project data attributes. When you select one of the open activities, it shows the data objects within the context of that open activity. For example, if the open activity is a subprocess, then the Alter Flow dialog box displays any subprocess level data objects.
For information about correlation keys, see Chapter 24, "Communicating Business Processes Using Correlations".
Note:
|
If a new implementation of the same composite revision is deployed, and the previously deployed composite has some components with the newer BPM process definition, then the affected components go into suspended state. To resume a suspended component, either migrate or suspend process instances that are in the pending migration state.
Oracle BPM provides a way to retain the existing running instances for a process when it is redeployed. To do this, while redeploying the process in Fusion Middleware Control Console, select Keep running instances. If the redeployment succeeds, then the instance goes into pending migration state and the process component is suspended.
This section details how to migrate a pending migration instance and how to resume a suspended component. It contains these topics:
You can migrate a process instance in either of two ways:
To migrate process instances:
The elements in this dialog box change depending on your selection. If you select Migrate as is, only the Comments field is available. If you select a single instance and then select Make changes and migrate, then the Migrate dialog box appears as shown in Figure A-2.
If you select Make changes and migrate, you can do any or all of the following:
Note:
|
For information about correlation keys, see Chapter 24, "Communicating Business Processes Using Correlations".
If, for some reason, the migration fails, the Migration Confirmation dialog box tells you why, as shown in Figure A-3.
Figure A-3 Migration Confirmation: Failure Message
If a new implementation of the same composite revision is deployed, and the previously deployed composite has some components with the newer BPM process definition, then the affected components go into suspended state. To resume a suspended component, either migrate or suspend process instances that are in the pending migration state.
Unless you resume the component—either explicitly or automatically when all pending migration instance are resumed—the new task instances are not created as a result of the token having been moved.
All suspended components are listed in the Pending Components panel, as shown in the example in Figure A-4.
Figure A-4 Pending Components Panel in the Process Tracking Tab Page
To resume a suspended component:
If there are instances that cannot be migrated-as-is, and you want to resume the component, then select Leave non-migrated instances as suspended. If you do not select this option, and there are instances that cannot be migrated as-is, then the component can not be resumed.
Note: You can initiate a process instance even if a component is suspended. In this case, however, the requests are queued and are not processed until the component is resumed. |
If you are redeploying a process, and, during design time, the Keep running instance option is selected, then redeployment fails in the following scenarios:
If you do not want redeployment to fail in these scenarios, then you must set the force.deploy
flag manually by editing the composite.xml
file in Oracle JDeveloper. To set force.deploy
at the component level, enter the following:
To set the force.deploy
at the composite level, you can use the same .xml
element as a child of the composite element as shown in the example in Figure A-6.
Figure A-6 Setting the force.deploy Property in Oracle JDeveloper
This appendix describes how to integrate Oracle BPM with Business Intelligence using process star schema views. It also contains reference material for standard and process specific views.
This appendix contains these topics:
Oracle BPM provides process star schema views. These provide access to the BPM Process Cubes data and can be used by any external BI tool for analysis and reporting purposes.
If cubes are enabled, the the BPM process cubes is populated when BPMN Service engine runs the processes in your project. To view the data stored in these process star schema, you use the dashboards provided by Oracle Business Process Management Workspace.
For more information about generating process metrics, see Oracle Fusion Middleware Modeling and Implementation Guide for Oracle Business Process Management.
For information about how process metrics are displayed in Process Workspace, see Oracle Fusion Middleware User's Guide for Oracle Business Process Management.
Note: Data in the process star schema is not permanent. It can be deleted as a result of process undeployment. It can result from data expiration configuration in Enterprise Manager. It can also result from executing a purge script to delete a large number of instances at a system level. Oracle recommends that, for any historic analysis or reporting needs, process star schema data be pulled from a separate data warehouse at a periodic time interval. Also, for performance reasons, Oracle recommends against analyzing data directly over process star schema views. |
During Oracle BPM installation, standard facts and dimension views are created on top of the process star schema.
This section contains these topics:
During installation, the following dimension views are created:
Standard views contain information about standard metrics—for example, the cycle-time and the number of instances for such standard dimensions as process, activity, and participant. These views contain process and activity data about all available processes. Standard fact views are created during installation time.
Standard views are organized as follows:
Table B-1 lists and describes the standard fact views and their corresponding tables.
Table B-1 Standard Fact View Tables
View | Description | Table |
---|---|---|
Task Performance | Provides information on standard metrics for completed activities, completed intervals, measurement marks and counters for both in-flight and completed processes. | |
Process Performance | Provides information on standard metrics for completed processes. | |
Active Activity Instances | Provides information on standard metrics for in-flight activity and interval instances. This information is relevant only for the snapshot time at which the view is queried. As processes move forward, information in this view changes to reflect the new state. | |
Active Process Instances | Provides information on standard metrics for in-flight process instances. This information is relevant only for the snapshot time at which the view is queried. As processes move forward, information in this view changes to reflect the new state. | |
Table B-2 lists the standard dimension views and the corresponding tables.
BPM_ACTIVITY_PERFORMANCE_V is the standard task performance view.
This view contains a record corresponding to each of the following for both in-flight and completed processes.
Following columns form the unique key for this view
Following metrics information is available as part of this view
Table B-3 BPM_ACTIVITY_PERFORMANCE_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
ACTIVITY_ID | NUMBER | Activity Id. References BPM_ACTIVITY_DEFINTION_V.ACTIVITYID |
ACTIVITY_LABEL | VARCHAR2 | Activity Label |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
ACTIVITY_DISCRIMINATOR | VARCHAR2 | Used for determining if this record corresponds to a faulted activity. For faulted task performance records, the value of this column is set to "INSTANCE_FAULT" |
ACTIVITY_ROLE_ID | NUMBER | Role Id. References BPM_ROLE_DEFINTION_V.ROLEID |
ACTIVITY_ROLE_NAME | VARCHAR2 | Role Name associated with the activity instance |
ACTIVITY_START_TIME | TIMESTAMP | Time at which activity instance started execution |
ACTIVITY_END_TIME | TIMESTAMP | Time at which activity instance finished execution |
ACTIVITY_RUNNING_TIME_IN_MSEC | NUMBER | Duration in millisecs for which activity instance executed |
ACTIVITY_PARTICIPANT | VARCHAR2 | Participant user associated with the activity instance |
ACTIVITY_PRIORITY | NUMBER | Priority of activity instance (not available in PS2) |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
BPM_PROCESS_PERFORMANCE_V is the standard process performance view.
This view contains a record for the following
Following columns form the unique key
Following metrics information is available as part of this view
Table B-4 BPM_PROCESS_PERFORMANCE_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_DISCRIMINATOR | VARCHAR2 | Used for determining if this record corresponds to a faulted process. For faulted process performance records, the value of this column is set to "INSTANCE_SYSTEM_FAULT" |
PROCESS_START_TIME | TIMESTAMP | Time at which process instance started execution |
PROCESS_END_TIME | TIMESTAMP | Time at which process instance finished execution |
PROCESS_RUNNING_TIME_IN_MSEC | NUMBER | Duration in millisecs for which process instance executed |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
BPM_ACTIVITY_INSTANCE_V view provides information about each in-flight running activity instance across all processes.
This view contains a record corresponding to each in-flight activity instance.
Following columns form the unique key for this view
Following metrics information is available as part of this view
Table B-5 BPM_ACTIVITY_INSTANCE_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
ACTIVITY_ID | NUMBER | Activity Id. References BPM_ACTIVITY_DEFINTION_V.ACTIVITYID |
ACTIVITY_LABEL | VARCHAR2 | Activity Label |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_THREAD_ID | NUMBER | Thread id of Process thread executing the activity |
ACTIVITY_ROLE_NAME | VARCHAR2 | Role Name associated with the activity instance |
ACTIVITY_PARTICIPANT | VARCHAR2 | Participant user associated with the activity instance |
ACTIVITY_PRIORITY | NUMBER | Priority of activity instance |
ACTIVITY_START_TIME | TIMESTAMP | Time at which activity instance started execution |
PROCESS_START_TIME | TIMESTAMP | Time at which process instance started execution |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
BPM_PROCESS_INSTANCE_V view provides information about each in-flight process instance across all processes.
This view contains a record corresponding to each in-flight process instance.
Following columns form the unique key for this view
Following metrics information is available as part of this view
Table B-6 BPM_PROCESS_INSTANCE_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_START_TIME | TIMESTAMP | Time at which process instance started execution |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
BPM_PROCESS_DEFINITION_V view provides the information about BPMN processes.
Table B-7 BPM_PROCESS_DEFINITION_V
Column Name | Data Type | Description |
---|---|---|
PROCESSID | NUMBER | Process id. |
PROCESSNAME | VARCHAR2 | Name of the process |
DOMAINNAME | VARCHAR2 | Domain name |
COMPOSITENAME | VARCHAR2 | Composite name |
REVISION | VARCHAR2 | Composite Revision |
SCALABEL | VARCHAR2 | Composite SCA Label |
COMPOSITEDN | VARCHAR2 | Composite DN |
LABEL | VARCHAR2 | Process Label (BPMN NAME) |
PROCESSTYPE | VARCHAR2 | Type of the process (e.g. 'BPMN' etc) |
STATUS | SMALLINT | Process deployment status. " 1" = Deployed "-1" = Undeployed |
UNDEPLOYDATE | TIMESTAMP | Process undeployment date |
BPM_ACTIVITY_DEFINITION_V view provides the information about activities corresponding to all available BPMN processes.
Table B-8 BPM_ACTIVITY_DEFINITION_V
Column Name | Data Type | Description |
---|---|---|
ACTIVITYID | NUMBER | Activity id. |
PROCESSID | NUMBER | Process Id. Refers to BPM_PROCESS_DEFINTION_V.PROCESSID |
ACTIVITYNAME | VARCHAR2 | Name of the Activity (BPMN ID) |
ACTIVITYTYPE | VARCHAR2 | Type of activity (UserTask, Gateway, Event, Measurement Interval etc.) |
LABEL | VARCHAR2 | Activity label (BPMN NAME) |
BPM_ROLE_DEFINITION_V view provides the information about roles corresponding to all available BPMN processes
To capture any business dimensions and measures specified for a given Oracle BPM project, you must create views specific to each process.
A process-specific view provides access to data across all corresponding process versions. It has columns for business indicators across all process versions.
For a given process, Oracle Business Process Management resolves all business indicators to their corresponding flex columns across all process versions. It then creates all the process-specific views.
When a BPMN process is deployed, the corresponding process-specific views are created.
When a BPMN process is undeployed, the corresponding process specific views are either:
These views use the following naming convention:
Table B-10
View | Table |
---|---|
Task Performance | |
Process Performance | BPM_PRCS_PERF_< IDENTIFIER >_V |
Active Activity Instances | |
Active Process Instances | |
Note:
|
BPM_ACTV_PERF_<IDENTIFIER>_V is the process specific task performance view.
This view contains a record corresponding to each of the following for both in-flight and completed processes.
Following columns form the unique key for this view
Following metrics information is available as part of this view
Table B-11 BPM_ACTV_PERF_<IDENTIFIER>_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | Process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
ACTIVITY_ID | NUMBER | Activity Id. References BPM_ACTIVITY_DEFINTION_V.ACTIVITYID |
ACTIVITY_LABEL | VARCHAR2 | Activity Label |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_THREAD_ID | VARCHAR2 | Id of the thread executing the activity. Parallel activities in a process are executed by different thread and hence will have different thread id. |
ACTIVITY_DISCRIMINATOR | VARCHAR2 | Used for determining if this record corresponds to a faulted activity. For faulted task performance records, the value of this column is set to "INSTANCE_FAULT". For counter records, the value of this column is set to 'MEASUREMENT_COUNTER' |
ACTIVITY_ROLE_ID | NUMBER | Role Id. References BPM_ROLE_DEFINTION_V.ROLEID |
ACTIVITY_ROLE_NAME | VARCHAR2 | Role Name associated with the activity instance |
ACTIVITY_START_TIME | TIMESTAMP | Time at which activity instance started execution |
ACTIVITY_END_TIME | TIMESTAMP | Time at which activity instance finished execution |
ACTIVITY_RUNNING_TIME_IN_MSEC | NUMBER | Duration in millisecs for which activity instance executed |
ACTIVITY_PARTICIPANT | VARCHAR2 | Participant user associated with the activity instance |
ACTIVITY_PRIORITY | NUMBER | Priority of activity instance |
ECID | VARHCAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
D_<dimension1…n> | VARCHAR2 / NUMBER / TIMESTAMP | Dimension business indicators associated with the activity instance. These may indirectly refer to some functional tables |
R_<dimension1…n> | VARCHAR2 | Range information corresponding to numeric/date type dimension business indicators associated with the activity instance |
M_<measure1…n> | NUMBER | Measure business indicators associated with the activity instance |
C_<counter1…n> | NUMBER | Counter business indicator associated with the activity instance |
BPM_PRCS_PERF_< IDENTIFIER >_V is the process specific process performance view.
This view contains a record for the following
Following metrics information is available as part of this view
Table B-12 BPM_PRCS_PERF_< IDENTIFIER >_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | Process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_DISCRIMINATOR | VARCHAR2 | Used for determining if this record corresponds to a faulted process. For faulted process performance records, the value of this column is set to "INSTANCE_SYSTEM_FAULT" |
PROCESS_START_TIME | TIMESTAMP | Time at which process instance started execution |
PROCESS_END_TIME | TIMESTAMP | Time at which process instance finished execution |
PROCESS_RUNNING_TIME_IN_MSEC | NUMBER | Duration in millisecs for which process instance executed |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
D_<dimension1…n> | VARCHAR2 / NUMBER / TIMESTAMP | Dimension business indicators associated with the process instance. These may indirectly refer to some functional tables |
R_<dimension1…n> | VARCHAR2 | Range information corresponding to numeric/date type dimension business indicators associated with the process instance |
M_<measure1…n> | NUMBER | Measure business indicators associated with instance |
BPM_ACTV_INST_<IDENTIFIER>_V view provides information about each in-flight running activity instance corresponding to a particular process.
This view contains a record corresponding to each in-flight activity and interval instance.
Following columns form the unique key for this view
Following metrics information is available as part of this view
Table B-13 BPM_ACTV_INST_<IDENTIFIER>_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | Process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
ACTIVITY_ID | NUMBER | Activity Id. References BPM_ACTIVITY_DEFINTION_V.ACTIVITYID |
ACTIVITY_LABEL | VARCHAR2 | Activity Label |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_THREAD_ID | NUMBER | Thread id of Process thread executing the activity |
ACTIVITY_ROLE_NAME | VARCHAR2 | Role Name associated with the activity instance |
ACTIVITY_PARTICIPANT | VARCHAR2 | Participant user associated with the activity instance |
ACTIVITY_PRIORITY | NUMBER | Priority of activity instance |
ACTIVITY_START_TIME | TIMESTAMP | Time at which activity instance started execution |
PROCESS_START_TIME | TIMESTAMP | Time at which process instance started execution |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
D_<dimension1…n> | VARCHAR2 / NUMBER / TIMESTAMP | Dimension business indicators associated with the activity instance. These may indirectly refer to some functional tables |
R_<dimension1…n> | VARCHAR2 | Range info for numeric/date type dimensions |
M_<measure1…n> | NUMBER | Measure Bis associated with the activity instance |
BPM_PRCS_INST_<IDENTIFIER>_V view provides information about each in-flight running process instance corresponding to a particular process.
This view contains a record corresponding to each in-flight process instance.
Following columns form the unique key for this view
Following metrics information is available as part of this view
Table B-14 BPM_PRCS_INST_<IDENTIFIER>_V
Column Name | Data Type | Description |
---|---|---|
SEQUENCE_ID | NUMBER | Numeric sequence |
PROCESS_ID | NUMBER | Process id. References BPM_PROCESS_DEFINTION_V.PROCESSID |
PROCESS_NAME | VARCHAR2 | Name of the process |
REVISION | VARCHAR2 | Revision of the process |
PROCESS_INSTANCE_ID | VARCHAR2 | Instance Id of the bpmn process instance. Refers to CUBE_INSTANCE.CIKEY |
COMPOSITE_INSTANCE_ID | VARCHAR2 | Instance Id of the SCA composite instance. Refers to COMPOSITE_INSTANCE.ID |
PROCESS_START_TIME | TIMESTAMP | Time at which process instance started execution |
ECID | VARCHAR2 | ECID can be used to correlate all the processes across different composites involved in a single business flow and achieve end to end tracking |
D_<dimension1…n> | VARCHAR2 / NUMBER / TIMESTAMP | Dimension business indicators associated with the activity instance. These may indirectly refer to some functional tables |
R_<dimension1…n> | VARCHAR2 | Range info for numeric/date type dimensions |
M_<measure1…n> | NUMBER | Measure Business indicators associated with the activity instance |
 Copyright © 2001, 2012, Oracle and/or its affiliates. All rights reserved. |