

Index

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

Numerics

	503 Service Not Available errors, avoiding, 7.3.1.1

A

	ABS math function, about, C.4.1
	ACOS math function, about, C.4.2
	ADF Business Components
	
	about, 6.1
	application EAR file, deploying, 6.4.3
	AppModule Config, 6.5.1, 7.3.5
	AppModuleDefinition, 6.5.1, 7.3.5
	enabling custom parameters, 6.8
	importing metadata from, 6.5
	JDBC data source for, 6.4.4
	propagating labels and tooltips, 6.9
	properties in connection pool, 7.3.5
	setting up, 6.4
	URL, 6.5.1, 7.3.5
	using ApplCore Grants with, 6.7
	working with, 6

	ADF data security, about, 6.7
	Administration Tool
	
	about, 2.1
	Diagram menu, 2.1.4.6
	Edit menu, 2.1.4.2
	File menu, 2.1.4.1
	Help menu, 2.1.4.8
	icons, 2.1.9
	keyboard shortcuts, G
	main window, 2.1.2
	Manage menu, 2.1.4.4
	opening, 2.1.1
	setting preferences, 2.1.3
	toolbar, 2.1.2
	Tools menu, 2.1.4.5
	version, 2.1.4.8
	View menu, 2.1.4.3
	Window menu, 2.1.4.7

	Administration Tool utilities
	
	Aggregate Persistence, 18.2.9
	Externalize Strings, 18.2.3
	Generate Metadata Dictionary, 18.2.7
	Oracle BI Event Tables, 18.2.2
	Remove Unused Physical Objects, 18.2.8
	Rename Wizard, 18.2.4
	Replace Column or Table in Logical Table Sources, 18.2.1
	Repository Documentation, 18.2.6
	Update Physical Layer, 18.2.5

	AGGREGATE AT aggregate function, about, C.2.1.1
	aggregate functions
	
	about, C.2.1, C.2.1, C.2.2
	AGGREGATE AT, C.2.1.1
	alternative syntax, C.1.4.4
	AVG, C.2.1.2
	AVGDISTINCT, C.2.1.3
	BOTTOMN, C.2.1.4
	computing aggregates of baseline columns, C.1.4.1
	computing aggregates of measure columns, C.1.4.2
	COUNT, C.2.1.5
	COUNT (*), C.2.1.7
	COUNTDISTINCT, C.2.1.6
	display function reset behavior, C.1.4.3
	FIRST, C.2.1.8
	GROUPBYCOLUMN, C.2.1.10
	GROUPBYLEVEL, C.2.1.11
	LAST, C.2.1.12
	MAX, C.2.1.14
	MEDIAN, C.2.1.15
	MIN, C.2.1.16
	NTILE, C.2.1.17
	PERCENTILE, C.2.1.18
	RANK, C.2.1.19
	rules for, C.1.4
	STDDEV, C.2.1.20
	STDDEV_POP, C.2.1.21
	SUM, C.2.1.22
	SUMDISTINCT, C.2.1.23
	TOPN, C.2.1.24
	using FILTER to compute conditional aggregates, C.1.4.5

	aggregate navigation
	
	about aggregate table fragments, 11.6.3
	about WHERE clause filters, 11.3.2
	creating sources for each level of aggregated fact data, 11.5
	specifying aggregate levels for each source, 11.5
	specifying fragmentation content, 11.6

	aggregate persistence
	
	about, 13.1
	default prefix, 13.1
	identifying query candidates, 13.2
	running the specification, 13.6
	troubleshooting, 13.9
	using the Aggregate Persistence Wizard, 13.4
	writing script manually, 13.5

	Aggregate Persistence Wizard, about, 13.4
	aggregate queries, about, C.1.4
	aggregate table fragments
	
	about, 11.6.3
	about configuring a repository to use fragments, 11.6.3
	constructing physical joins for virtual table, 11.6.3.4
	creating SQL virtual table content, 11.6.3.3
	defining Physical layer tables with a SELECT Statement, 11.6.3.2
	specifying aggregate table content, 11.6.3.1

	AGGREGATE_PREFIX configuration option, 13.1
	Aggregation content, group-by list, 11.3.1
	aggregation rules
	
	default rules for measure columns, 9.5.5
	dimension-specific, 9.5.5.1
	Evaluate_Aggr, 9.5.5
	for multidimensional data sources, 9.5.5.2
	for Oracle OLAP, 8.7.1

	AGO time series function, about, C.2.3.1
	alias tables
	
	about, 8.3.2
	creating, 8.3.3.2
	for Essbase, 8.5.2

	aliases
	
	Alias tab, using, 12.6
	merging, D.2.1.5

	Allow direct database requests by default
	
	about, 7.1.2
	recommendations for enabling, 7.1.2.1

	Allow first Connection Pool for Init Blocks option, 2.1.3
	Allow import from repository option, 2.1.3
	Allow logical foreign key join creation option, 2.1.3
	Allow populate queries by default, 7.1.2
	alternate hierarchies, about, 8.5.5
	Analytic Workspace objects, working with, 8.7.2
	Ancestor Reference column type, 8.5.1
	annotations, enabling for Oracle Scorecard and Strategy Management, 15.1
	ApplCore Grants, using with ADF Business Components, 6.7
	application EAR file, for ADF Business Components, 6.4.3
	application module, 6.1
	application roles
	
	about granting privileges for, 14.3.1
	managing, 1.5
	managing in the default policy store, 14.1.1
	permission inheritance, 14.3.1
	setting up placeholder roles, 14.5.1

	ApplSession integrated environment
	
	about client login process, 6.7.1.3
	setting up authentication for, 6.7.2

	AppModule Config, for ADF Business Components, 6.5.1, 7.3.5
	AppModule Definition, for ADF Business Components, 6.5.1, 7.3.5
	architecture
	
	multiuser development, A.2
	Oracle BI Server, 1.1.1
	repository, 1.1.2

	ASCII string function, about, C.3.1
	ASIN math function, about, C.4.3
	ATAN math function, about, C.4.4
	ATAN2 math function, about, C.4.5
	Attribute column type, 8.5.1
	auditing, for data access security, 14
	AuthenticatedUser, about, 14.3
	authentication
	
	cache, 2.1.3
	for ApplSession integration, 6.7.2
	managing, 14.1.1

	Auto Layout option, for Diagrams, 2.1.5
	AVG aggregate function, about, C.2.1.2
	AVGDISTINCT aggregate function, about, C.2.1.3

B

	Based on dimensions option for measures, 9.5.5
	baseline column
	
	behavior with aggregate functions, C.1.4.1
	example, C.1.4.1

	Between SQL logical operator, about, C.1.5.1
	bi-init, 2.1.1, 2.2.1, 2.2.1, 2.6.3, 3.4.1.3, 15.3, 15.3, 17.1.2, 17.2.3, 17.3.2.3.1, A.2.1, E.2.2
	biserverxmlcli, 2.2
	biserverxmlexec, 2.2
	biserverxmlgen, 2.2
	BISystem user, 2.1.3
	BIT_LENGTH string function, about, C.3.2
	blank repository, creating, 17.3.1.3
	BOTTOMN aggregate function, about, C.2.1.4
	branching, in multiuser development, 3.6, A.3.3
	bridge tables
	
	about, 9.8
	modeling in a single dimension, 9.8.2
	modeling in separate dimensions, 9.8.3
	modeling in the Physical layer, 9.8.1
	weight factor for, 9.8

	Browse dialog
	
	about using, 2.1.8
	querying for an object, 2.1.8
	selecting an object in, 2.1.8
	synchronizing an object in the query results list with the tree control list, 2.1.8

	buffer size, setting up, 7.4.1
	bulk creation of metrics, 18.3
	Business Model and Mapping layer
	
	about, 1.1.2, 9
	associating measures with levels in a dimension, 9.5.6
	automatically creating objects for, 9.1.2
	creating logical columns, 9.5
	creating logical table source content definitions, 11.3.1
	defining physical to logical mapping, 11.2
	managing logical table sources, 11
	setting up display folders in, 9.7
	tips for, 1.4.3
	working with logical tables, 9.3

	Business Model Diagram
	
	about using, 2.1.5
	about using to create joins, 9.4
	displaying, 9.2
	displaying qualified names in, 2.1.3
	working with, 9.2

	business models
	
	creating, 9.1.1
	disabling, 9.1.1
	duplicating with subject area, 9.1.3
	planning, 1.2
	understanding, 1.2

C

	Cache Manager
	
	about, 2.1.4.4
	column order, 2.1.3

	Cache menu option, 2.1.4.4
	Cache refresh interval option (authentication cache), 2.1.3
	caching
	
	authentication cache, 2.1.3
	managing, 1.5
	settings for physical tables, 8.3.3.1

	calculated items, creating, 11.2, 11.2
	CALCULATEDMEMBER
	
	examples, C.1.8.4
	rules, C.1.8.2
	syntax, C.1.8.1

	Calculation Wizard
	
	about, 18.3
	setting up, 2.1.3
	using, 18.3

	calculations, for level-based measures, 10.1.2.3
	calendar date/time functions
	
	about, C.5
	CURRENT_DATE, C.5.1
	CURRENT_TIME, C.5.2
	CURRENT_TIMESTAMP, C.5.3
	DAY_OF_QUARTER, C.5.4
	DAYNAME, C.5.5
	DAYOFMONTH, C.5.6
	DAYOFWEEK, C.5.7
	DAYOFYEAR, C.5.8
	HOUR, C.5.9
	MINUTE, C.5.10
	MONTH, C.5.11
	MONTH_OF_QUARTER, C.5.12
	MONTHNAME, C.5.13
	NOW, C.5.14
	QUARTER_OF_YEAR, C.5.15
	SECOND, C.5.16
	TIMESTAMPADD, C.5.17
	TIMESTAMPDIFF, C.5.18
	WEEK_OF_QUARTER, C.5.19
	WEEK_OF_YEAR, C.5.20
	YEAR, C.5.21

	call interface, for connection pools, 7.3.1.1
	CASE (If) conditional expression, about, C.1.6.2
	CASE (Switch) conditional expression, about, C.1.6.1
	CAST conversion function, about, C.6.1, C.6.2
	catalogs, creating, 8.2.1.1
	CEILING math function, about, C.4.6
	certification information, 1.6
	CHAR string function, about, C.3.3
	CHAR_LENGTH string function, about, C.3.4
	character literals, about, C.1.7.1
	Check out objects automatically option, 2.1.3
	checking global consistency, 2.6.1
	checking in changes, 2.5.4
	checking out objects, 2.5.3
	chronological keys
	
	about, 10.1.1
	selecting and sorting, 10.1.2.5
	setting for each level, 10.3.2.2

	circular joins, about and eliminating, 1.4.2
	client applications, enabling connectivity for, 15.5
	Cluster Manager, 2.1.4.4
	Cluster menu option, 2.1.4.4
	Collapse All option, for Diagrams, 2.1.5
	column mapping, logical to physical, 11.2
	column types, for Essbase, 8.5.1
	command-line utilities, 2.2
	Common Enterprise Information Model, about, 1.1.2
	Compare Mode, turning off, 17.1.3
	Compare with Original menu option, 3.4.4
	comparing repositories, 17.1
	complex joins
	
	See physical complex joins

	CONCAT string function, about, C.3.5
	conditional expressions
	
	about, C.1.6
	CASE (If), about and syntax, C.1.6.2
	CASE (Switch), about and syntax, C.1.6, C.1.6.1

	conformed dimensions, 1.2.2.2
	connection pools
	
	about, 1.4.2, 7.2
	automating changes for, 7.3
	blacklisted, 7.2.1
	call interface, 7.3.1.1
	creating connection scripts, 7.3.2
	creating or changing, 7.3
	data source name, 7.3.1.1
	for initialization blocks, 7.2.1
	for standby database configuration, 5.6.3
	maximum number of connections, 7.3.1.1
	permissions for, 7.3.1.1
	persist connection pool property, 7.4
	properties for ADF Business Components, 7.3.5
	require fully qualified table names, 7.3.1.1
	shared logon, 7.3.1.1
	Unicode database type option, 7.3.4
	URL, 7.3.1.2
	write-back properties, 7.3.4
	XML properties, 7.3.3

	connection scripts, in connection pool, 7.3.2
	consistency check
	
	checking repository for consistency, 2.6.2
	checking single object for consistency, 2.6.2

	Consistency Check Manager
	
	about checking repository or objects for consistency, 2.6
	about messages, 2.6.1
	about passing consistency check, 2.6
	checking repository for consistency, 2.6.2
	checking single object for consistency, 2.6.2
	copying inconsistency messages, 2.6.2
	correcting inconsistencies, 2.6.2

	context for dimension-only queries, specifying, 12.1.5, 12.2
	conversion functions
	
	about, C.6
	CAST, C.6.1
	CHOOSE, C.6.2
	IFNULL, C.6.3
	INDEXCOL, C.6.4
	TO_DATETIME, C.6.5
	VALUEOF, C.6.6

	COS math function, about, C.4.7
	COT math function, about, C.4.8
	COUNT aggregate function, about, C.2.1.5
	COUNT(*) aggregate function, about, C.2.1.7
	COUNTDISTINCT aggregate function, about, C.2.1.6
	create aggregates specification, writing manually, 13.5
	Create New Repository Wizard, 5.1
	create view function, about, 8.9.2.1
	create/prepare aggregates syntax, 13.5.3.1
	creating calculated items, 11.2, 11.2
	credential store, managing system credentials in, 14.1.1
	cube variables, working with, 8.4.4
	cubes
	
	about, 1.3.2, 8.4.1
	viewing members, 8.4.5
	working with, 8

	current repository, about, 17.3.1.1
	CURRENT_DATE calendar date/time function, about, C.5.1
	CURRENT_TIME calendar date/time function, about, C.5.2
	CURRENT_TIMESTAMP calendar date/time function, about, C.5.3
	custom authenticators, managing, 14.1.1
	custom properties, enabling for ADF Business Components, 6.8

D

	data access security
	
	about, 14.1
	about applying in offline mode, 14.5
	auditing, 14

	data filters, setting up, 14.2.1
	Data is dense option, 9.5.5
	data modeling
	
	identifying data source content, 1.3
	identifying dimensions, 1.2.2.3
	identifying logical dimension tables, 1.2.2.2
	identifying logical fact tables, 1.2.2.1
	identifying lookup tables, 1.2.2.4
	objectives of, 1.2.1
	planning the business model, 1.2

	data source name, in connection pool, 7.3.1.1
	data sources
	
	connecting on Linux and UNIX using native ODBC drivers, 16.4
	DataDirect Connect drivers, 16.3
	DB2 Connect, 16.8
	Essbase setup, 5.2.5, 16.7
	Hyperion Financial Management setup, 5.2.6
	Microsoft Analysis Services, 5.4
	ODBC DSN setup, 5.2.1
	Oracle Database setup, 5.2.2
	Oracle OLAP setup, 5.2.3
	Oracle RPAS setup, 5.2.8, 16.6
	preconfiguration tasks, 5.2
	SAP/BW setup, 5.2.7
	setup on Linux and UNIX, 16.1
	supported by Oracle Business Intelligence, 1.6
	Teradata setup, 5.2.9, 16.4
	TimesTen setup, 5.2.4
	using native gateways, 16.2
	XML, 5.5

	data types, transforming, 11.2
	database
	
	allowing or disallowing execution privileges, 14.4.4
	features, about, 7.1.3
	features, for driving tables, 9.4.3
	row-level security in, 14.2.2

	database functions
	
	about, C.7
	EVALUATE, C.7.1
	EVALUATE_AGGR, C.7.3
	EVALUATE_ANALYTIC, C.7.2
	EVALUATE_PREDICATE, C.7.4

	database hints
	
	about, 8.10
	about entering SQL comment markers, 8.10.3
	creating, 8.10.3
	index hint, about, 8.10.1.1
	Leading hint, about, 8.10.1.2
	performance considerations, 8.10.2
	Physical layer objects that accept hints, 8.10
	usage examples, 8.10.1

	database objects
	
	about database types, 7.1.1
	assigning ODBC type, 7.1.2
	automatically assigning type, 7.1.1
	creating for standby database configuration, 5.6.2
	creating manually, 7.1.2
	setting up, 7.1
	specifying features for, 7.1.3
	Virtual Private Database option, 7.1.2

	DATABASE system function, about, C.9.2
	databases, supported, 1.6
	DataDirect Connect ODBC drivers, using, 16.3
	DATE data type, changing to, C.6.1
	DATE_DISPLAY_FORMAT configuration option, 2.3
	DATE_TIME_DISPLAY_FORMAT configuration option, 2.3
	datetime literals, about, C.1.7.2
	DAY_OF_QUARTER calendar date/time function, about, C.5.4
	DAYNAME calendar date/time function, about, C.5.5
	DAYOFMONTH calendar date/time function, about, C.5.6
	DAYOFWEEK calendar date/time function, about, C.5.7
	DAYOFYEAR calendar date/time function, about, C.5.8
	DB2 CLI (Unicode) connection protocol, 5.3
	DB2 Connect, on IBM z/OS and s/390 platforms, 16.8
	DB2 Cube Views
	
	deploying cube metadata, F.4.2
	guidelines for materialized query tables (MQTs), F.4.2.3

	DB2 Cube Views Generator
	
	about, F.1, F.4.1
	about input file for, F.2.2
	about output files for, F.2.3
	conversion rules, F.2.5
	exporting metadata into DB2 Cube Views, F.4
	generating import file, F.2
	optional parameters and defaults, F.2.1
	troubleshooting, F.2.4

	DBFeatures.INI file, 7.1.3
	decimal literal, about, C.1.7.3.2
	default prefix, for aggregate persistence, 13.1
	DEFAULT_PRIVILEGES configuration option, 1.4.4, 2.3
	deferring execution of initialization blocks, 19.5.2.1
	DEGREES math function, about, C.4.9
	delegated administration in multiuser development, A.3.3.3
	deleting objects, 2.1.6
	Density option, for Oracle OLAP, 8.7.4
	derived columns, creating, 9.5.4
	Derived from existing columns using an expression option, 9.5.4
	DESCRIPTION system session variable, 19.3.1
	descriptor ID column, assigning to logical column, 9.5.3
	design guidelines for a repository, 1.4
	Diagram menu, about, 2.1.4.6
	Diagrams
	
	about using, 2.1.5
	printing, 2.1.5

	dimensions
	
	about, 1.2.2.3
	about hierarchies in, 10
	automatically creating, 10.1.3
	automatically creating level counts, 10.1.4
	identifying, 1.2.2.3
	with multiple hierarchies, 1.2.2.3.1

	dimension-specific aggregation rules, setting up, 9.5.5.1
	direct database requests, allowing or disallowing, 14.4.4
	DISABLE_CACHE_HIT system session variable, 19.3.1
	DISABLE_CACHE_SEED system session variable, 19.3.1
	DISABLE_PLAN_CACHE_HIT system session variable, 19.3.1
	DISABLE_PLAN_CACHE_SEED system session variable, 19.3.1
	DISABLE_SUBREQUEST_CACHE system session variable, 19.3.1
	Disallow RPD Updates configuration option, 2.3, 2.5.5
	Discard Local Changes menu option, 3.4.4
	Display Column, for Essbase cubes, 8.5.2.1
	display functions
	
	example, C.1.4.3
	reset behavior, C.1.4.3

	Display original names for alias in diagrams option, 2.1.3
	Display qualified names in diagrams option, 2.1.3
	DISPLAYNAME system session variable, 19.3.1
	documentation of repository mappings, generating, 18.2.6
	double column support, enabling, 9.5.3
	dragging and dropping
	
	business models, 12.1.1
	physical tables and columns, 9

	driving tables
	
	about, 9.4.3
	tuning performance, 9.4.3

	DSNs, setting up for the Oracle BI Server, 1.5
	duplicating business model and subject area, 9.1.3
	dynamic name
	
	for physical catalog or physical schema, 8.2.2
	for physical tables, 8.3.3.1

	dynamic repository variables
	
	about, 19.1.2
	initializing, 19.5.1.1

E

	Edit menu, about, 2.1.4.2
	editing objects, 2.1.6
	Entity Objects, 6.1
	equalizerpds utility, 17.2.3
	equalizing objects, 17.2
	equalStringSet parameter, for equalizing objects, 17.2.3
	Essbase
	
	alternate hierarchies, 8.5.5
	associating member attributes, 8.5.4
	client libraries, 5.2.5, 16.7
	column types, 8.5.1
	defining aggregation rules for, 9.5.5.2
	flattening metadata, 8.5.1
	Gen 1 levels, 8.5.1
	Generations, 8.5.1
	importing from, 5.4
	importing UDAs, 5.4
	incremental import, 8.5.1.1
	measure hierarchies, 8.5.6
	modeling UDAs, 8.5.3
	setting up, 5.2.5, 16.7
	SSO using CSS Token, 7.3.1.2
	substitution variables, 8.5.1
	using unqualified member names, 8.5.7
	working with alias tables, 8.5.2
	working with in the Physical layer, 8.5

	ESSBASEPATH, setting, 5.2.5.1
	Estimate Levels, using, 10.1.4
	EVALUATE database function, about, C.7.1
	Evaluate_Aggr aggregation rule, 9.5.5
	EVALUATE_AGGR database function, about, C.7.3
	EVALUATE_ANALYTIC database function, about, C.7.2
	EVALUATE_PREDICATE database function, about, C.7.4
	event polling
	
	setting up for standby database configuration, 5.6.6
	using the Oracle BI Event Tables utility, 18.2.2

	exchanging metadata
	
	about, F.1
	generating import file, F.2, F.2
	with IBM DB2 using DB2 Cube Views, F.4
	with Oracle Database using SQL Access Advisor, F.3

	execution precedence, establishing for initialization blocks, 19.5.4
	EXP math function, about, C.4.10
	Expand All option, for Diagrams, 2.1.5
	Export logical keys option, about using with parameterized SQL queries, 12.2
	Expression Builder
	
	about using, 18.1
	accessing, 18.1.1
	building an expression, 18.1.4.2
	categories, about, 18.1.3
	example expression, 18.1.4
	navigating, 18.1.4.1
	toolbar, 18.1.2

	expression literals
	
	character literals, about and expressing, C.1.7
	decimal, about and expressing, C.1.7.3.2
	integers, about and expressing, C.1.7.3.1

	external aggregation, 8.4.2.1
	External Expression, for ADF Business Components, 6.2
	Externalize Strings utility, using, 18.2.3
	EXTRACTBIT math function, about, C.4.11
	extractprojects utility, 3.4.1.3

F

	feature table
	
	changing entries using Query DBMS, 7.1.3
	restoring default entries for, 7.1.3
	viewing in Features tab of Database dialog, 7.1.3

	file compression, 3.1
	File menu, about, 2.1.4.1
	filters, setting up, 14.2.1
	FIRST aggregate function, about, C.2.1.8
	FIRST_PERIOD time series function, about, C.2.1.9
	Fit option, for Diagrams, 2.1.5
	floating point literal, about, C.1.7.3.3
	FLOOR math function, about, C.4.12
	foreign keys
	
	relationship with primary keys, 8.8.1.1

	fragmentation content
	
	about, 11.6
	specifying, 11.3.1
	specifying multicolumn content descriptions, 11.6.2.1
	specifying parallel content descriptions, 11.6.2.2
	specifying single column range-based predicates, 11.6.2
	specifying single column value-based predicates, 11.6.1
	specifying unbalanced parallel content descriptions, 11.6.2.3

	fragmented data, about, 8.8.1.4
	FROM clause syntax, about, C.1.1.5
	full repository merges, about, 17.3.1
	fully denormalized schemas, about, 1.3.1
	fully qualified names, displaying, 2.1.3
	Fusion Middleware Control
	
	Disallow RPD Updates, 2.3
	Repository File, 2.3
	settings for repository builders, 2.3

G

	Gen 1 levels
	
	about, 8.5.1
	skipping, 2.1.3

	Generate ADF Label option, 6.9.3
	Generate ADF Tooltip option, 6.9.3
	Generate Metadata Dictionary utility, using, 18.2.7
	Generate target DDL in a separate file option, 13.4
	governors, setting up, 14.4
	grains, for time queries, 10.3.1
	grand total dimension hierarchy, example of, 10.1.2.3
	grand total levels, about, 10.1.1
	GROUP BY clause
	
	query behavior with and without, C.1.4.3
	syntax, about, C.1.1.7

	GROUP system session variable, 19.3.1
	GROUPBYCOLUMN aggregate function, about, C.2.1.10
	GROUPBYLEVEL aggregate function, about, C.2.1.11
	groups, managing, 1.5, 14.1.1

H

	hardware requirements, 1.6
	Help menu, about, 2.1.4.8
	help, accessing, 1.4.1
	Hide level based measure option, 2.1.3
	Hide unusable logical table sources in Replace wizard option, 2.1.3, 18.2.1
	hierarchies
	
	about, 1.2.2.3, 10
	about level-based, 10.1.1
	about multiple, 1.2.2.3.1
	determining type, 1.2.2.3
	example of grand total hierarchy, 10.1.2.3
	grand total levels, 10.1.1
	level attributes, about, 10.1.1
	level keys, about, 10.1.1
	level-based measure calculations, about, 10.1.2.3
	levels and distances in parent-child hierarchies, 10.2.1.1
	levels, creating, 10.1.1
	parent-child, about, 10.2.1
	setting up level-based measure calculations, 10.1.2.3
	skip-level, 10.1.1
	time dimensions, about, 10.1.1
	unbalanced, 10.1.1

	hierarchy navigation functions
	
	about, C.8
	IDOF, C.8.1
	ISANCESTOR, C.8.2
	ISCHILD, C.8.3
	ISDESCENDANT, C.8.4
	ISLEAF, C.8.5
	ISPARENT, C.8.6
	ISROOT, C.8.7
	PARENT, C.8.8

	hints
	
	about, 8.10
	creating, 8.10.3
	support for, 8.10

	history for multiuser development, 3.7.1
	HOUR calendar date/time function, about, C.5.9
	HTML tables
	
	XML Gateway, accessing by, 5.5.2.2

	Hyperion Financial Management
	
	Application Builder, 5.2.6
	importing from, 5.4
	POV value, 8.6
	query support, 8.6.1
	setting up, 5.2.6
	SSO using CSS Token, 7.3.1.2
	working with, 8.6

I

	IBM DB2 Connect, configuring queries for UNIX, 16.8
	IBM DB2 Cube Views, 2.2
	
	about, F.1
	using to create DB2 materialized query tables, F.4

	icons, changing, 2.1.9
	IDENTIFIER_QUOTE_CHAR parameter, 16.3.1
	Identity Manager, 2.1.4.4
	Identity menu option, 2.1.4.4
	IDOF hierarchy navigation function, about, C.8.1
	IFNULL conversion function, about, C.6.3
	implicit fact column, setting, 12.1.5
	Import Metadata Wizard, 5.3, 5.4, 5.5.2, 6.5.1
	importing
	
	ADF Business Components, 6.2, 6.5
	data source preconfiguration tasks, 5.2
	from Essbase, 5.4
	from Hyperion Financial Management, 5.4
	from multidimensional data sources, 5.4
	from Oracle OLAP, 5.4
	from Oracle RPAS, 5.4
	from relational data sources, 5.3
	from SAP/BW, 5.4
	from XML data sources, 5.5
	from XMLA, 5.4
	locally, 5.3
	metadata, 5
	XML data using ODBC, 5.5.3

	In SQL logical operator, about, C.1.5.1
	incremental import, for Essbase, 8.5.1.1
	INDEXCOL conversion function, about, 18.1.4.3, C.6.4
	indexing, about index hint instructions, 8.10.1.1
	Informix Database, connecting using DataDirect Connect driver, 16.3.3
	initialization blocks
	
	about connection pools for, 7.2.1
	about using with variables, 19.5.1
	allowing deferred execution of, 19.5.2.1
	associating with variables, 19.5.3
	creating, 19.5.2
	deferring execution, 19.5.1.2
	enabling and disabling, 19.5.6
	execution order, setting, 19.5.4
	initializing dynamic repository variables, 19.5.1.1
	initializing session variables, 19.5.1.2, 19.5.1.2
	Required for authentication option, 19.5.2.1
	row-wize initialization, 19.5.1.3
	rules for deferring execution, 19.5.5
	working with, 19.5

	INSERT string function, about, C.3.6
	installation types, supported, 1.6
	integers literals, about, C.1.7.3.1
	INTERRUPT_ENABLED parameter, 16.8
	Is Null SQL logical operator, about, C.1.5.1
	ISANCESTOR hierarchy navigation function, about, C.8.2
	ISCHILD hierarchy navigation function, about, C.8.3
	ISDESCENDANT hierarchy navigation function, about, C.8.4
	ISLEAF hierarchy navigation function, about, C.8.5
	ISPARENT hierarchy navigation function, about, C.8.6
	ISROOT hierarchy navigation function, about, C.8.7

J

	JDBC data source, for Oracle ADF application, 6.4.4
	JDKs, supported, 1.6
	Job Manager, 2.1.4.4
	Jobs menu option, 2.1.4.4
	Joins Manager
	
	about, 2.1.4.4
	creating logical joins, 9.4.2.1
	creating physical joins, 8.8.3
	using to create joins, 9.4

	Joins menu option, 2.1.4.4

K

	keyboard shortcuts in Administration Tool, G
	KPIs, 1.4.3

L

	labels, for ADF data sources, 6.9.1
	LAST aggregate function, about, C.2.1.12
	LAST_PERIOD time series function, about, C.2.1.13
	Leading hint, about, 8.10.1.2
	Leaf column type, 8.5.1
	LEFT string function, about, C.3.7
	LENGTH string function, about, C.3.8
	level attributes, about, 10.1.1
	level keys, about, 10.1.1
	level-based hierarchies, about, 10.1.1
	level-based measures
	
	about, 10.1.2.3
	calculations, 10.1.2.3
	query results, 10.1.2.3

	lexicographical sorting for logical columns, 9.5.2
	lifecycle management, for repository, A
	Like SQL logical operator, about, C.1.5.1
	limits
	
	limiting maximum run time, 14.4.3
	limiting rows received, 14.4.2
	restricting queries to time periods, 14.4.3

	Linux
	
	about data source setup, 16.1
	connecting to data sources using native ODBC drivers, 16.4
	database setup script, locating, 16.2
	DataDirect Connect ODBC drivers, 16.3

	literals, in SQL, C.1.7
	Load all objects on startup option, about selecting, 2.5.2.1
	Load Decision File option, 17.3.1.2
	LOCALE configuration option, 2.3
	localization, about, 1.5
	localizing Presentation layer object names and descriptions, 18.2.3
	LOCATE string function, about, C.3.9
	LOCATEN string function, about, C.3.10
	LOG math function, about, C.4.13
	LOG10 math function, about, C.4.14
	logging level, setting for BISystem user, 2.1.3
	logging, managing, 1.5
	logical columns
	
	assigning descriptor ID, 9.5.3
	associating with logical levels, 10.1.2.3
	changing sort order for, 9.5.2
	configuring for multicurrency support, 9.5.4.1
	creating, 9.5
	creating derived columns, 9.5.4
	enabling write back on, 9.6
	lexicographical sorting, 9.5.2
	mapping to physical columns, 11.2
	moving or copying, 9.5.7
	unmapping from source, 11.2.1

	logical dimension tables
	
	about, 1.2.2.2
	identifying, 1.2.2.2

	logical dimensions
	
	about, 10
	about including key column, 10.1.2.3
	associating logical columns and tables with, 10.1.2.3
	automatically populating level counts, 10.1.4
	creating, 10.1.2.1
	creating automatically, 10.1.3
	creating logical levels, 10.1.2.2
	creating time dimensions, 10.3.2
	creating with parent-child hierarchies, 10.2.2
	for multidimensional data sources, 10
	modeling time dimensions, 10.3
	with level-based hierarchies, 10.1
	with parent-child hierarchies, 10.2

	logical display folders, setting up, 9.7
	logical fact tables
	
	about, 1.2.2.1
	identifying, 1.2.2.1
	in a single business model, 1.4.3
	joins, 1.2.2.1

	logical foreign key joins, 9.4, 9.4.2
	logical joins
	
	about, 9.4
	about creating, 9.4
	about driving tables, 9.4.3
	cardinality, 9.4.1
	creating, 9.4.2.1
	creating with Joins Manager, 9.4.2.1
	displaying physical tables for, 9.4.4
	displaying with Business Model Diagram, 9.4.1
	tuning performance for driving table, 9.4.3

	logical keys, exporting in Presentation layer, 12.1.4
	logical levels
	
	about keys, 10.1.1
	associating logical columns for, 10.1.2.3
	automatically populating level counts, 10.1.4
	creating, 10.1.2.2
	designating chronological keys, 10.3.2.2
	grand total levels, example, 10.1.2.3
	hierarchy, about, 10.1.1
	populating level counts, 10.1.4
	primary key, adding, 10.1.2.4
	specifying preferred drill path, 10.1.2.6

	logical objects, displaying mapped physical objects for, 9.4.4
	logical operators, C.1.5.1
	Logical SQL, about, C
	logical stars and snowflakes, creating corresponding subject areas for, 12.1.1.1
	logical table source
	
	Allow Unmapped Tables option, 11.1

	logical table sources
	
	about setting up, 11.1
	creating, 11.1
	defining aggregate table content definitions, 11.3
	defining content of, 11.3
	limiting number of rows returned, 11.3.1
	managing, 11
	mapping columns in, 11.2
	merge algorithms for, D.2.1
	setting priority group numbers, 11.1.1
	settings for parent-child hierarchies, 11.4
	using the Replace Column or Table Wizard, 18.2.1
	Where clause filter, using to constrain physical tables, 11.3.2

	logical tables
	
	adding new logical table source, 11.1
	associating with logical dimension, 10.1.2.3
	creating and managing, 9.3
	creating by dragging and dropping, 9.3.1
	creating manually, 9.3.1
	designating as lookup tables, 9.3.1
	key, specifying, 9.3.2
	working with, 9.3

	LOGLEVEL system session variable, 19.3.1
	lookup tables, 1.2.2.4, 2.6.1, 9.3.1
	LOWER string function, about, C.3.11

M

	main window, Administration Tool, 2.1.2
	Manage menu, about, 2.1.4.4
	ManageRepositories permission, 2.5.2.1
	managing authentication, 14.1.1
	mappings, creating between Physical layer and Business Model and Mapping layer, 11.1
	Marketing menu option, 2.1.4.4
	Marquee Zoom option, for Diagrams, 2.1.5
	master repository
	
	about, 3.1

	Materialization option, for Oracle OLAP, 8.7.4
	materialized query tables (MQTs), about, F.4.1
	materialized views
	
	creating, F.3.2.4
	using, F.3

	math functions
	
	about, C.4
	ABS, C.4.1
	ACOS, C.4.2
	ASIN, C.4.3
	ATAN, C.4.4
	ATAN2, C.4.5
	CEILING, C.4.6
	COS, C.4.7
	COT, C.4.8
	DEGREES, C.4.9
	EXTRACTBIT, C.4.11
	FLOOR, C.4.12
	LOG, C.4.13
	LOG10, C.4.14
	MOD, C.4.15
	PI, C.4.16
	POWER, C.4.17
	RADIANS, C.4.18
	RAND, C.4.19
	RANDFROMSEED, C.4.20
	ROUND, C.4.21
	SIGN, C.4.22
	SIN, C.4.23
	SQRT, C.4.24
	TAN, C.4.25
	TRUNCATE, C.4.26

	mathematical operators, about, C.1.5.2
	MAVG running aggregate function, about, C.2.2.1
	MAX aggregate function, about, C.2.1.14
	MAX_PARAMETERS_PER_DRIVE_JOIN parameter, 9.4.3
	MAX_QUERIES_PER_DRIVE_JOIN parameter, 9.4.3
	maximum number of connections, 7.3.1.1
	MaxThreadsPerClient setting, for Microsoft Analysis Services, 7.3.1.1
	measures
	
	about calculations for level-based measures, 10.1.2.3
	associating with levels in a dimension, 9.5.6
	Based on dimensions option, 9.5.5
	behavior with aggregate functions, C.1.4.2
	creating time series measures, 10.3.3
	externally aggregated, 8.4.2.1
	specifying default aggregation rule for, 9.5.5

	MEDIAN aggregate function, about, C.2.1.15
	Member Alias column type, 8.5.1
	member counts, viewing, 8.4.5
	Member Key column type, 8.5.1
	memnor columns, 8.5.1
	memory requirements, 1.6
	menus, about, 2.1.4
	Merge Repository Wizard
	
	rules for, D
	using, 17.3.1.2, 17.3.1.3, 17.3.2.3, D.2

	merging repositories
	
	about, 17.3
	about full merge, 17.3.1
	about patch merge, 17.3.2
	best practices, A.4.3
	choosing merge method, A.3.4
	equalizing objects, 17.2
	merge rules, D
	with a common parent, 17.3.1.2
	without a common parent, 17.3.1.3

	metadata
	
	querying and managing, 17.4

	metadata dictionary, generating, 18.2.7
	Microsoft Analysis Services
	
	avoiding connection errors for, 7.3.1.1
	importing from, 5.4
	MaxThreadsPerClient setting, 7.3.1.1

	Microsoft SQL Server, connecting using DataDirect Connect driver, 16.3.1
	migrating the repository, A.2.1
	MIN aggregate function, about, C.2.1.16
	minimum disk space requirements, 1.6
	MINUTE calendar date/time function, about, C.5.10
	Miscellaneous tab, in Connection Pool dialog, 7.3.5
	MOD math function, about, C.4.15
	modeling
	
	alternate hierarchies, 8.5.5
	best practices for presentation tables, 12.4.1
	bridge tables, 9.8
	Essbase data in the Physical layer, 8.5.1
	Hyperion Financial Management data, 8.6
	Oracle OLAP data, 8.7.1
	parent-child relationship tables, 10.2.3.1
	time series data, 10.3
	UDAs, 8.5.3

	modes, offline and online, 2.5.1
	modified repository, about, 17.3.1.1
	MONTH calendar date/time function, about, C.5.11
	MONTH_OF_QUARTER calendar date/time function, about, C.5.12
	MONTHNAME calendar date/time function, about, C.5.13
	MSUM running aggregate function, about, C.2.2.2
	MUD
	
	history, 3.7.1
	merge, 3.5.1
	shared network directory, 3.3

	multicurrency support, configuring, 9.5.4.1
	multi-database joins, about, 8.8.1.3, 8.8.1.3
	multidimensional data sources
	
	about, 1.3.2
	importing, 5.4

	multilingual schemas, 1.2.2.4
	multiple hierarchies
	
	about, 1.2.2.3.1
	in the Presentation layer, 12.4.1.1

	multiuser development
	
	about, 3.1
	architecture, A.2
	best practices, A.4
	branching, 3.6, A.3.3
	case study, B
	concepts, A.2.1
	delegated administration, A.3.3.3
	governance best practices, A.1.1
	history, about viewing and deleting, 3.7.1
	making changes, 3.4
	merge, about, 3.5.1
	metadata, changing and testing, 3.4.2
	options, 3.8
	planning for deployment, A.1
	platforms, A.2.3
	projects, 3.2, 3.4.1, 3.5, A.3.2
	publishing changes, 3.5
	rolling back, A.5
	sandboxes, A.2.1
	setting directory, 2.1.3
	setting up environment, about, 3.3
	shared network directory, 3.3
	styles, A.2.2
	troubleshooting, A.5
	understanding, A.3

	Multiuser development directory option, 3.3.3

N

	naming restrictions for repository objects, 2.1.7
	NATURAL_JOIN keyword, using in SELECT_PHYSICAL statements, C.1.2.4
	nesting presentation tables, 12.3.1.1
	New Join option, for Diagrams, 2.1.5
	New Table option, for Diagrams, 2.1.5
	No more spool space error (Teradata), 5.2.9.1
	nonsystem session variables, 19.3.2
	normalized schemas, about, 1.3.1
	NOW calendar date/time function, about, C.5.14
	nqcmd utility
	
	disallowing access, 7.1.2.1
	running for cache seeding, 7.1.2.1
	using, 15.3

	NQSConfig.INI
	
	AGGREGATE_PREFIX, 13.1
	DATE_DISPLAY_FORMAT, 2.3
	DATE_TIME_DISPLAY_FORMAT, 2.3
	DEFAULT_PRIVILEGES, 1.4.4, 2.3
	LOCALE, 2.3
	NULL_VALUES_SORT_FIRST, 5.4.1
	options for repository builders, 2.3
	PREVENT_DIVIDE_BY_ZERO, 9.5.4
	TIME_DISPLAY_FORMAT, 2.3
	using, 1.5

	NTILE aggregate function, about, C.2.1.17
	NULL_VALUES_SORT_FIRST configuration option, 5.4.1
	nullable, physical columns, 8.3.4.1
	Number of Cache Entries option (authentication cache), 2.1.3
	Number of elements at this level option, 10.1.2.2
	numeric literals, about, C.1.7.3

O

	OBIEEBroker
	
	deploying as a shared library, 6.4.2
	URL for, 6.5.1, 7.3.5

	object permissions, setting up, 14.3
	objects
	
	checking in, 2.5.4
	checking out, 2.5.3
	deleting, 2.1.6
	editing, 2.1.6
	naming requirements for, 2.1.7
	reordering, 2.1.6
	selecting, 2.1.8
	sorting, 2.1.10

	OCI 10g/11g connection protocol, 5.3
	OCI connections, troubleshooting, 16.2.1
	OCTET_LENGTH string function, about, C.3.12
	ODBC
	
	2.0 and 3.5 connection protocol, 5.3
	data sources, importing metadata from, 5
	DataDirect Connect drivers on Linux and UNIX, 16.3
	native drivers, 16.4

	ODBC DSN
	
	for the Oracle BI Server, 1.5
	setting up for data sources, 5.2.1

	odbc.ini file, 16.3.1, 16.3.2, 16.3.3, 16.4, 16.6
	offline mode, 2.5.1
	online help, accessing, 1.4.1
	online mode, 2.5.2
	opaque views
	
	about, 8.9
	deleting, guidelines for, 8.9.4
	deploying, 8.9.2
	redeploying, guidelines for, 8.9.5
	undeploying, 8.9.3
	when to use, 1.4.2

	operating systems, supported, 1.6
	operators, in SQL, C.1.5
	Options dialog, using, 2.1.3
	Oracle Application Development Framework, about, 6.1
	Oracle BI Event Tables utility, using, 18.2.2
	Oracle BI Scheduler setup, for standby database configuration, 5.6.7
	Oracle BI Server
	
	architecture, 1.1.1
	nonlocal files, about accessing, 5.5.1
	ODBC DSN configuration, 1.5
	starting and stopping, 1.5
	utilities, 2.2

	Oracle BI Server Web services, using, 1.5
	Oracle BI Server XML API
	
	using, 1.5, 2.2
	using to update connection pool settings, 7.3

	Oracle BI Server XML Gateway
	
	See XML Gateway

	Oracle Business Intelligence
	
	home page on OTN, 2.1.4.8
	localizing, 1.5
	logging, 1.5
	new features, Preface
	starting and stopping, 1.5

	Oracle Database
	
	about exchanging metadata with, F.1
	deploying metadata in, F.3.2
	importing from, 5.3
	setting up, 5.2.2
	Table or view not found error, 7.3.1.1
	using stored procedures with, 8.3.1

	Oracle Database Metadata Generator
	
	about, F.1
	about input file for, F.2.2
	about output files for, F.2.3
	conversion rules, F.2.5
	exporting metadata into SQL Access Advisor, F.3
	generating import file, F.2
	optional parameters and defaults, F.2.1
	troubleshooting, F.2.4

	Oracle Database SQL Access Advisor, 2.2
	Oracle instance, initializing shell window for, 2.2.1
	Oracle Marketing Segmentation, 2.1.4.4, 2.1.11
	Oracle OLAP
	
	about, 8.7
	about cubes and columns, 8.7.4
	about dimensions, hierarchies, and levels, 8.7.3
	default aggregation rule, 8.7.1
	Density option, 8.7.4
	importing from, 5.4
	Materialization option, 8.7.4
	setting up, 5.2.3
	working with, 8.7

	Oracle RPAS
	
	about, 5.4.1
	importing from, 5.4
	recommended metadata types for import, 5.4
	setting SQLExtendedFetch option, 5.2.8
	setting up, 5.2.8, 16.6

	Oracle Scorecard and Strategy Management
	
	enabling comments and status overrides for, 15.1
	modeling requirements for, 1.4.3

	Oracle WebLogic Server, managing, 1.5
	OracleADF_HTTP connection type, 6.5.1
	ORDER BY clause syntax, C.1.1.8
	original repository, about, 17.3.1.1
	orphan locks, about, A.5
	Other column type, 8.5.1
	outer joins, modeling, 1.4.3.1
	Outline Sort column type, 8.5.1

P

	Pan option, for Diagrams, 2.1.5
	parallel content descriptions, examples, 11.6.2.2.1
	PARENT hierarchy navigation function, about, C.8.8
	Parent Reference column type, 8.5.1
	parent-child hierarchies
	
	about, 10.2.1
	about levels and distances, 10.2.1.1
	creating dimensions for, 10.2.2
	logical table source settings, 11.4
	maintaining, 10.2.3.2

	parent-child relationship tables
	
	about, 10.2.1.2
	defining, 10.2.3
	modeling, 10.2.3.1

	patch repository merges
	
	about, 17.3.2
	applying patches, 17.3.2.3
	generating patches, 17.3.2.2

	patchrpd utility, about, 17.3.2.3.1
	PERCENTILE aggregate function, about, C.2.1.18
	performance
	
	accelerating by exchanging metadata with databases, F.1
	avoiding extra physical join conditions, 8.8.1.4
	avoiding multi-database joins for, 8.8.1.3
	best physical joins for, 8.8.1.2
	considerations for driving tables, 9.4.3
	defining aggregations correctly, 9.5.4
	defining chronological key at query grain, 10.3.1
	improving using aggregate tables, 13
	improving using database hints, 8.10.2
	improving using query caching, 1.5
	improving using unqualified member names, 8.5.7
	improving with standby database configuration, 5.6
	indexing relational tables when persisting aggregates, Preface
	removing unnecessary objects from Physical layer, 5.4
	setting correct aggregation rules, 8.4.2
	using OCI to connect to Oracle Database, 5.3

	PERIODROLLING time series function, about, C.2.3.2
	permission inheritance in the repository, 14.3.1
	permissions
	
	default, 14.1.1
	for connection pools, 7.3.1.1
	for Presentation layer objects, 12.5
	limiting queries by setting up data filters, 14.2.1
	report for Presentation layer objects, 12.5.1
	required for online mode, 2.5.2.1
	sorting columns, 12.5.2

	PERMISSIONS system session variable, 19.3.1
	persist connection pool
	
	in Database dialog, 7.1.2
	setting up, 7.4

	physical catalogs
	
	creating, 8.2.1.1
	specifying dynamic name, 8.2.2

	physical columns
	
	creating or editing, 8.3.4
	nullable, 8.3.4.1
	row counts for, 8.11
	type, 8.3.4.1
	viewing data, 8.3.5

	physical connection settings, updating, 3.4.2
	physical cube tables, about, 8.4.1
	Physical Diagram
	
	about using, 2.1.5
	about using to specify multi-database joins, 8.8.1.3
	accessing from Business Model and Mapping layer, 9.4.4
	displaying, 8.1
	displaying qualified names in, 2.1.3
	foreign key join or complex join, defining, 8.8.2
	physical joins, about defining, 8.8.2
	working with, 8.1

	physical dimensions, about, 8.4.3.1
	physical display folders, setting up, 8.2.3
	physical hierarchies
	
	about, 8.4.3.2
	adding or removing cube columns, 8.4.3.2.1
	setting the hierarchy type, 8.4.3.2

	physical joins
	
	about, 8.8.1
	about complex joins, 8.8.1.2
	about imported key and foreign key joins, 8.8.1
	about primary key and foreign key relationships, 8.8.1.1
	avoiding unnecessary joins, 8.8.1.4
	creating with Joins Manager, 8.8.3
	defining in the Physical Diagram, 8.8.2
	fragmented data, about, 8.8.1.4
	multi-database joins, about, 8.8.1.3
	working with, 8

	Physical layer
	
	about, 1.1.2
	creating and maintaining, 5
	creating manually, 7.1.2
	hints, about, 8.10
	identifying source content, 1.3
	mapping logical columns to physical columns, 11.2
	modeling bridge tables, 9.8.1
	physical joins, defining with the Joins Manager, 8.8.3
	queries, specifying types sent to a database, 7.1.3
	removing unused objects, 18.2.8
	setting up display folders, 8.2.3
	tips for, 1.4.2
	updating objects in, 18.2.5
	working with dimensions and hierarchies, 8.4
	working with Essbase data sources, 8.5
	working with Hyperion Financial Management data, 8.6
	working with multidimensional sources, 8.4
	working with Oracle OLAP data, 8.7.1
	working with physical tables, 8.3

	physical schemas
	
	about importing, 5
	creating, 8.2.1.2
	specifying dynamic name, 8.2.2

	physical tables
	
	about, 8.3.1
	cache settings, 8.3.3.1
	creating or editing, 8.3.3
	row counts for, 8.11
	setting XML properties for, 8.3.3.3
	specifying columns and keys for, 8.3.4
	table types, 8.3.1
	viewing data, 8.3.5
	virtual physical tables, creating, 8.3.1
	working with, 8, 8.3

	PI math function, about, C.4.16
	platforms, supported, 1.6
	Point of View (POV) value, for Hyperion Financial Management data sources, 8.6
	policies, managing, 14.1.1
	Populate privilege, allowing or disallowing, 14.4.5
	POPULATE SQL, 7.1.2
	PORTALPATH system session variable, 19.3.1
	POSITION string function, about, C.3.13
	POWER math function, about, C.4.17
	preferences, setting, 2.1.3
	preferred drill path, identifying, 10.1.2.6
	PREFERRED_CURRENCY session variable, 9.5.4.1
	presentation columns
	
	about working with, 12.3.2
	Alias tab, using, 12.6
	creating, 12.3.2
	removing, 12.1.2
	renaming, 12.1.3
	reordering, 12.3.2

	presentation hierarchies
	
	about, 12.4
	based on logical dimensions with multiple hierarchies, 12.4.1.1
	creating and managing, 12.4.1
	editing properties for, 12.4.1.2

	Presentation layer
	
	about, 1.1.2, 12
	Alias tab, using, 12.6
	creating, 12.1
	localizing names, 18.2.3
	logical keys, about exporting in the subject area, 12.1.4
	maintaining, 12.1.6
	nested folders in Oracle BI Answers, 1.4.4, 12.3.1.1
	permission report, 12.5.1
	presentation columns, working with, 12.3.2
	removing unnecessary columns, 12.1.2
	renaming presentation columns, 12.1.3
	setting permissions in, 12.5
	tips for, 1.4.4

	presentation levels
	
	about, 12.4
	creating and managing, 12.4.2
	specifying columns for display, 12.4.2

	presentation tables
	
	Alias tab, using, 12.6
	best practices for modeling, 12.4.1
	creating and managing, 12.3.1
	nesting, 12.3.1.1
	reordering columns in, 12.3.2
	reordering in subject area, 12.3.1

	PREVENT_DIVIDE_BY_ZERO configuration option, 9.5.4
	primary key
	
	foreign key, relationship with, 8.8.1.1
	specifying, 8.3.4.2

	Print menu option, 2.1.5
	Print Preview menu option, 2.1.5
	priority group numbers
	
	about, 11.1.1
	example, 11.1.1

	processes, starting and stopping, 1.5
	production environments, moving to, 1.5
	Project Manager, 2.1.4.4
	Project menu option, 2.1.4.4
	projects
	
	about, 3.2.1, A.3.2
	best practices, A.4.2
	checking out, 3.4.1
	creating, 3.2.2
	upgrading, 3.2.3

	Prompt when moving logical columns option, 2.1.3, 9.5.7
	PROXY system session variable, 19.3.1
	prunerpd utility, using, E.2
	pruning repository objects, E.1
	Publish to Network menu option, 3.4.4

Q

	qualified names, displaying, 2.1.3
	QUARTER_OF_YEAR calendar date/time function, about, C.5.15
	queries
	
	aggregate functions, rules for, C.1.4.3
	database, specifying types sent to, 7.1.3
	limiting by maximum run time, 14.4.3
	limiting by number of rows, 14.4.2
	restricting to time periods, 14.4.3

	query caching
	
	cache expiration time, 8.3.3.1
	cache persistence time, 8.3.3.1
	including tables for, 8.3.3.1
	managing, 1.5

	query candidates, identifying for aggregation, 13.2
	Query DBMS button, using to change Feature table entries, 7.1.3
	query limits, setting, 14.4
	Query Related Objects feature, 17.4.2
	Query Repository menu option, 2.1.4.5
	Query Repository tool, 17.4.1
	query workload, creating, F.3.2.3
	querying repository metadata
	
	about, 17.4
	filtering results, 17.4.1.1
	using Query Related Objects, 17.4.2
	using Query Repository tool, 17.4.1

R

	RADIANS math function, about, C.4.18
	ragged hierarchies
	
	See unbalanced hierarchies

	RAND math function, about, C.4.19
	RANDFROMSEED math function, about, C.4.20
	RANK aggregate function, about, C.2.1.19
	RCOUNT running aggregate function, about, C.2.2.4
	rdaadmin client tool, 16.6
	read-only mode, about, 2.5.5
	refresh repository view, 2.1.4.3
	Refresh Subset menu option, 3.4.4
	relational data sources
	
	importing, 5.3
	schema types, 1.3.1

	Remove Unused Physical Objects utility, using, 18.2.8
	Remove unused physical tables after Merge option, 2.1.3
	rename map, for equalizing objects, 17.2.3
	Rename Wizard, using, 18.2.4
	reordering objects, 2.1.6
	REPEAT string function, about, C.3.14
	Replace Column or Table Wizard, using, 18.2.1
	REPLACE string function, about, C.3.15
	repository
	
	applying patches, 17.3.2.3
	architecture, 1.1.2
	checking consistency, 15.2
	comparing with another repository, 17.1
	compressed format, 3.1
	design guidelines, 1.4
	documentation for mappings, 18.2.6
	equalizing objects, 17.2
	generating patches, 17.3.2.2
	layers, 1.1.2
	making available for queries, 15.4
	managing lifecycle for, A
	merging with another repository, 17.3
	migration, A.2.1
	object naming restrictions, 2.1.7
	object permissions, 14.3
	offline mode, 2.5.1
	online mode, 2.5.2
	opening, 2.1.4.1
	original, modified, and current, 17.3.1.1
	pruning unwanted objects, E.1
	query limits, 14.4
	querying, 17.4
	read-only mode, 2.5.5
	refreshing, 2.1.4.3
	rolling back, A.5
	row-level security, 14.2.1
	saving, 15.2
	testing, 15.3
	uploading, 15.4
	using variables in, 19

	repository builders
	
	prerequisite knowledge, 1
	tips for, 1.4

	Repository Documentation utility, using, 18.2.6
	repository file
	
	blank, 17.3.1.3
	create new, 5.1
	options when saving, 2.6.1

	Repository File configuration option, 2.3
	repository objects
	
	equalizing, 17.2
	permissions, setting, 12.5
	renaming, 18.2.4

	repository password, changing, 17.5
	repository variables
	
	about, 19.1
	associating with initialization blocks, 19.5.3
	cache purging considerations, 19.1.2
	creating, 19.2
	dynamic, 19.1.2
	initializing dynamic repository variables, 19.5.1.1
	static, 19.1.1
	using in Expression Builder, 19.2.1

	REQUESTKEY system session variable, 19.3.1
	require fully qualified table names, 7.3.1.1
	Retail Predictive Application Server
	
	See Oracle RPAS

	REVERSE_LTS_PRIORITY session variable, 11.1.1
	REVERSED_LTS_PRIORITY_SA_VEC session variable, 11.1.1
	REVERSIBLE_LTS_PRIORITY_SA_VEC session variable, 11.1.1
	RIGHT string function, about, C.3.16
	RMAX running aggregate function, about, C.2.2.5
	RMIN running aggregate function, about, C.2.2.6
	ROLEGUIDS system session variable, 19.3.1
	ROLES system session variable, 19.3.1
	roles, for physical tables, 8.3.2
	rolling back repository to previous versions, A.5
	RollingRestart ODBC procedure, 2.5.2.2
	Root column type, 8.5.1
	ROUND math function, about, C.4.21
	row counts
	
	displaying, 2.1.3, 8.11
	native database, about updating in, 16.2.2
	updating, 2.1.4.5, 8.11

	row-level security, setting up, 14.2
	row-wise initialization, 19.5.1.3
	RSUM running aggregate function, about, C.2.2.3
	running aggregate functions
	
	about, C.2.2
	MAVG, C.2.2.1
	MSUM, C.2.2.2
	RCOUNT, C.2.2.4
	RMAX, C.2.2.5
	RMIN, C.2.2.6
	RSUM, C.2.2.3

S

	SA System subject area, about, 1.5
	sametaexport, 2.2
	sametaexport utility
	
	about, F.1
	parameters, F.2.1
	running, F.2.1

	SampleAppLite.rpd
	
	about, 2.4
	changing password for, 17.5
	default password for, 2.4

	SampleApp.rpd, about, 2.4
	sandboxes, for multiuser development, A.2.1
	SAP/BW
	
	connection pool properties, 7.3.1.2
	importing from, 5.4
	setting up, 5.2.7

	SAP/BW data sources
	
	working with cube variables for, 8.4.4

	Save Decisions to File option, 17.3.1.2
	saving, the repository, 15.2
	schema objects, creating in Physical layer, 8.2.1.2
	schemas
	
	about types of, 1.3.1
	multilingual, 1.2.2.4
	physical schemas, about importing, 5
	relational, 1.3.1

	scrolling speed, 2.1.3
	SECOND calendar date/time function, about, C.5.16
	security
	
	data access, 14
	data filters, 14.2.1
	managing, 1.5
	object permissions, 14.3
	permission inheritance, 14.3.1
	query limits, 14.4
	row-level, 14.2
	summary of tasks, 14.1.1

	security sensitive session variables, 19.4
	Select option, for Diagrams, 2.1.5
	SELECT statement
	
	about and basic syntax, C.1.1
	conditional expressions, C.1.6
	GROUP BY clause syntax, C.1.1.7
	mathematical operators, C.1.5.2
	ORDER BY clause syntax, C.1.1.8
	rules for queries and aggregate functions, C.1.4
	select list syntax, C.1.1.4
	SQL logical operators, C.1.5.1
	subquery support, C.1.1.3
	usage notes, C.1.1.2
	WHERE clause syntax, C.1.1.6

	SELECT_PHYSICAL statement
	
	about and basic syntax, C.1.2
	aggregate functions not supported in, C.1.2.2
	queries supported by, C.1.2.3
	usage notes, C.1.2.5
	using the NATURAL_JOIN keyword, C.1.2.4

	SELECT_PHYSICAL system session variable, 19.3.1
	selecting objects, 2.1.8
	semantic models, independent, A.2.2, B.1
	Session Manager, 2.1.4.4
	session variables
	
	about, 19.3
	associating with initialization blocks, 19.5.3
	creating, 19.4
	initializing, about, 19.5.1.2
	naming scheme for ADF data source UI hints, 6.9.2
	nonsystem, 19.3.2
	PREFERRED_CURRENCY, 9.5.4.1
	REVERSE_LTS_PRIORITY, 11.1.1
	REVERSED_LTS_PRIORITY_SA_VEC, 11.1.1
	REVERSIBLE_LTS_PRIORITY_SA_VEC, 11.1.1
	row-wise initialization, 19.5.1.3
	security sensitive, 19.4
	system, 19.3.1
	using for authenticating users, 19.3
	using in Dynamic Name field, 8.2.2
	virtual private databases, 19.4

	Sessions menu option, 2.1.4.4
	shared login, for connection pools, 7.3.1.1
	shared network directory, for MUD, 3.3
	Show Calculation Wizard introduction page option, 2.1.3
	Show Consistency Checker menu option, 2.1.4.5
	Show row count in physical view option, 2.1.3
	Show statusbar option, 2.1.3
	Show tables and dimensions only under display folders option, 2.1.3
	Show toolbar option, 2.1.3
	Show Upgrade ID in Query Repository option, 2.1.3
	SIGN math function, about, C.4.22
	SIN math function, about, C.4.23
	size, of a repository file, 3.1
	SKIN system session variable, 19.3.1
	Skip Gen 1 levels in Essbase drag and drop actions option, 2.1.3
	skip-level hierarchies, about, 10.1.1
	snowflake schemas, about, 1.3.1
	software requirements, 1.6
	sort objects options, 2.1.3
	sorting logical columns, 9.5.2
	SPACE string function, about, C.3.17
	SQL Access Advisor
	
	about, F.1
	using to create materialized views, F.3

	SQL Bypass database
	
	about specifying, 6.3
	setting up, 6.5.1, 7.3.5

	SQL features, specifying, 7.1.3
	SQL functions
	
	aggregate functions, about, C.2.1
	calendar date/time functions, about, C.5
	conversion functions, about, C.6
	database functions, about, C.7
	expressing literals, C.1.7
	hierarchy navigation functions, about, C.8
	math functions, about, C.4
	running aggregate functions, about, C.2.2
	string functions, about, C.3
	system functions, about, C.9
	time series functions, about, C.2.3

	SQL operators, C.1.5
	SQL syntax and semantics
	
	conditional expressions, C.1.6
	FROM clause syntax, about, C.1.1.5
	GROUP BY clause syntax, about, C.1.1.7
	including and setting variables, C.1.9
	ORDER BY clause syntax, about, C.1.1.8
	queries and aggregate functions, rules for, C.1.4
	Select list syntax, C.1.1.4
	Select statement, about and basic syntax, C.1.1
	Select usage notes, C.1.1.2, C.1.1.3
	SQL logical operators, C.1.5.1, C.1.5.2
	WHERE clause syntax, about, C.1.1.6

	SQLExtendedFetch option, setting for Oracle RPAS, 5.2.8
	SQRT math function, about, C.4.24
	SSL, enabling, 14.1.1
	SSO authentication, setting up, 14.1.1
	SSO using CSS Token, for Essbase and Hyperion Financial Management, 7.3.1.2
	standby database configuration
	
	about, 5.6
	creating connection pools for, 5.6.3
	creating database object for, 5.6.2
	Oracle BI Scheduler configuration for, 5.6.7
	setting up event polling with, 5.6.6
	setting up usage tracking with, 5.6.5
	updating write-back scripts, 5.6.4
	using with Oracle Business Intelligence, 5.6.1
	write operations for primary source, 5.6.1

	star schemas, about, 1.3.1
	starting Oracle Business Intelligence processes, 1.5
	static repository variables, 19.1.1
	status bar, about, 2.1.2
	status, enabling overrides for Oracle Scorecard and Strategy Management, 15.1
	STDDEV aggregate function, about, C.2.1.20
	STDDEV_POP aggregate function, about, C.2.1.21
	stopping Oracle Business Intelligence processes, 1.5
	string functions
	
	about, C.3
	ASCII, C.3.1
	BIT_LENGTH, C.3.2
	CHAR, C.3.3
	CHAR_LENGTH, C.3.4
	CONCAT, C.3.5
	EXP, C.4.10
	INSERT, C.3.6
	LEFT, C.3.7
	LENGTH, C.3.8
	LOCATE, C.3.9
	LOCATEN, C.3.10
	LOWER, C.3.11
	OCTET_LENGTH, C.3.12
	POSITION, C.3.13
	REPEAT, C.3.14
	REPLACE, C.3.15
	RIGHT, C.3.16
	SPACE, C.3.17
	SUBSTRING, C.3.18
	TRIMBOTH, C.3.19
	TRIMLEADING, C.3.20
	TRIMTRAILING, C.3.21
	UPPER, C.3.22

	subject areas
	
	Alias tab, using, 12.6
	automatically creating based on logical stars and snowflakes, 12.1.1.1
	creating, 12.1.1
	creating multiple for a single business model, 12.1.1
	duplicating with business model, 9.1.3
	exporting logical keys, 12.1.4
	reordering and sorting tables in, 12.3.1
	setting implicit fact column for, 12.1.5
	working with, 12.2

	subset repository, creating, 3.4.1.2
	substitution variables, for Essbase, 8.5.1
	SUBSTRING string function, about, C.3.18
	SUM aggregate function, about, C.2.1.22
	SUMDISTINCT aggregate function, about, C.2.1.23
	surrogate keys, 1.2.2.2
	Sybase ASE Database, connecting using DataDirect Connect driver, 16.3.2
	system credentials, managing, 14.1.1
	system functions
	
	about, C.9
	DATABASE, C.9.2
	USER, C.9.1

	System logging level option, 2.1.3
	system requirements, 1.6
	system session variables, 19.3.1

T

	Table or view not found, 7.3.1.1
	table types, for physical tables, 8.3.1
	TAN math function, about, C.4.25
	Teradata
	
	No more spool space error, 5.2.9.1
	setting up, 5.2.9, 16.4

	test to production, 1.5
	testing the repository, 15.3
	text strings, using the Externalize Strings utility to translate, 18.2.3
	third-party products, supported, 1.6
	Tile when resizing option, 2.1.3
	time dimensions
	
	about, 10.1.1
	creating, 10.3.2
	for Oracle Scorecard and Strategy Management, 1.4.3
	modeling, 10.3
	selecting and sorting chronological keys, 10.1.2.5

	time series functions
	
	about, 10.3.1, C.2.3
	AGO, 10.3.1, C.2.3.1
	creating measures for, 10.3.3
	FIRST_PERIOD, C.2.1.9
	grains, 10.3.1
	LAST_PERIOD, C.2.1.13
	PERIODROLLING, 10.3.1, C.2.3.2
	TODATE, 10.3.1, C.2.3.3
	using in Expression Builder, 10.3.1

	TIME_DISPLAY_FORMAT configuration option, 2.3
	TIMESTAMPADD calendar date/time function, about, C.5.17
	TIMESTAMPDIFF calendar date/time function, about, C.5.18
	TimesTen
	
	setting up, 5.2.4

	TIMEZONE system session variable, 19.3.1
	tips, for repository builders, 1.4
	title bar, about, 2.1.2
	tnsnames.ora
	
	for Oracle Database setup on UNIX, 16.2
	for the Oracle BI Server, 5.2.2

	TO_DATETIME conversion function, about, C.6.5
	TODATE time series function, about, C.2.3.3
	toolbar
	
	about, 2.1.2
	options for Diagrams, 2.1.5

	Tools menu, about, 2.1.4.5
	tooltips, for ADF data sources, 6.9.1
	TOPN aggregate function, about, C.2.1.24
	transaction boundary, setting up, 7.4.1
	TRIMBOTH string function, about, C.3.19
	TRIMLEADING string function, about, C.3.20
	TRIMTRAILING string function, about, C.3.21
	troubleshooting
	
	DB2 Cube Views Generator, F.2.4
	Oracle Database Metadata Generator, F.2.4

	TRUNCATE math function, about, C.4.26
	Turn off Compare Mode option, 2.1.4.1, 17.1.3

U

	UDA column type, 8.5.1
	UDAs
	
	importing, 5.4
	modeling, 8.5.3

	UI hints, propagating for ADF data sources, 12.3.2
	unbalanced hierarchies, about, 10.1.1
	Undo Publishing menu option, 3.4.4
	Unicode databases, 7.3.4
	UNIX
	
	about data source setup, 16.1
	connecting to data sources using native ODBC drivers, 16.4
	DataDirect Connect ODBC drivers, 16.3
	IBM DB2 Connect for queries, configuring, 16.8
	native databases, about updating row counts, 16.2.2

	unmapping logical columns, 11.2.1
	unqualified member names, using for Essbase, 8.5.7
	Update All Row Counts menu option, 2.1.4.5
	Update Physical Layer Wizard, using, 18.2.5
	upgrade
	
	IDs, 17.2.1

	UPPER string function, about, C.3.22
	URL
	
	for ADF Business Components, 6.5.1, 7.3.5
	for connection pools, 7.3.1.2
	refresh interval, for XML data sources, 7.3.3

	usage tracking
	
	managing, 1.5
	setting up for standby database configuration, 5.6.5

	Use Logical Column Name property, 12.1.3
	user authentication, setting up, 14.1.1
	user interface hints, for ADF data sources, 6.9
	USER system function, about, C.9.1
	USER system session variable, 19.3.1
	USERGUID system session variable, 19.3.1
	USERLOCALE system session variable, 19.3.1
	users, managing, 1.5, 14.1.1
	user.sh file, 16.2, 16.3.1, 16.3.2, 16.3.3, 16.4
	utilities
	
	Aggregate Persistence, 18.2.9
	command-line, 2.2
	equalizerpds, 17.2.3
	Externalize Strings, 18.2.3
	extractprojects, 3.4.1.3
	Generate Metadata Dictionary, 18.2.7
	nqcmd, 15.3
	Oracle BI Event Tables, 18.2.2
	patchrpd, 17.3.2.3.1
	prunerpd, E.2
	Remove Unused Physical Objects, 18.2.8
	Rename Wizard, 18.2.4
	Replace Column or Table in Logical Table Sources, 18.2.1
	Repository Documentation, 18.2.6
	Update Physical Layer, 18.2.5
	validaterpd, 2.6.3

	Utilities menu option, 2.1.4.5

V

	validaterpd utility, 2.6.3
	Value measure, for Hyperion Financial Management data sources, 8.6
	VALUEOF conversion function, about, C.6.6
	Variable Manager, 2.1.4.4
	variables
	
	about repository variables, 19.1
	about session variables, 19.3
	associating with initialization blocks, 19.5.3
	creating repository variables, 19.2
	creating session variables, 19.4
	including and setting in SQL, C.1.9
	using repository variables in Expression Builder, 19.2.1

	Variables menu option, 2.1.4.4
	View Data, 8.3.5
	view links, 6.1
	View menu, about, 2.1.4.3
	View Objects, 6.1
	virtual physical tables, creating using Table Type, 8.3.1
	Virtual Private Database, 7.1.2, 14.2.2

W

	Web services, for Oracle BI Server, 1.5
	WEBGROUPS system session variable, 19.3.1
	WEBLANGUAGE system session variable, 19.3.1
	WebLogic Domain, for ADF Business Components, 6.4.1
	WEEK_OF_QUARTER calendar date/time function, about, C.5.19
	WEEK_OF_YEAR calendar date/time function, about, C.5.20
	Weight Factor, for bridge tables, 9.8
	WHERE clause filters, in aggregate navigation, 11.3.2
	WHERE clause syntax, about, C.1.1.6
	Window menu, about, 2.1.4.7
	wizards
	
	Aggregate Persistence Wizard, 13.4, 18.2.9
	Calculation Wizard, 2.1.3, 18.3
	Create New Repository Wizard, 5.1
	Import Metadata Wizard, 5.3, 5.4, 5.5.2, 6.5.1
	Merge Repository Wizard, 17.3.1.2, 17.3.1.3, 17.3.2.3, D.2
	Rename Wizard, 18.2.4
	Replace Column or Table Wizard, 18.2.1
	Update Physical Layer Wizard, 18.2.5

	write back, enabling on logical columns, 9.6
	write-back properties, for connection pool, 7.3.4
	write-back scripts, updating for standby database configuration, 5.6.4

X

	XML data sources
	
	about URL for, 5.5.1
	importing from, 5.5
	setting connection pool properties for, 7.3.3
	setting physical table properties for, 8.3.3.3
	URL refresh interval, 7.3.3

	XML Gateway
	
	about using, 5.5.2
	examples, 5.5.2.1
	HTML tables, accessing, 5.5.2.2
	refresh interval, 5.5.2
	supported security modes, 5.5.2

	XML ODBC
	
	about using, 5.5.3
	example, 5.5.3.1
	importing XML data, 5.5.3

	XML utilities, 2.2
	XMLA, importing from, 5.4

Y

	YEAR calendar date/time function, about, C.5.21

Z

	Zoom In option, for Diagrams, 2.1.5
	Zoom Out option, for Diagrams, 2.1.5

Contents

Title and Copyright Information

Preface

	Audience
	Documentation Accessibility
	Related Documents
	Conventions

New Features for Oracle BI Metadata Repository Builders

	New Features for Oracle BI EE 11g Release 1 (11.1.1.6)
	New Features for Oracle BI EE 11g Release 1 (11.1.1.5)
	New Features for Oracle BI EE 11g Release 1 (11.1.1.3)

1 Introduction to Building Your Metadata Repository

	About Oracle BI Server and Oracle BI Repository Architecture
	About Oracle BI Server Architecture
	About Layers in the Oracle BI Repository

	Planning Your Business Model
	Analyzing Your Business Model Requirements
	Identifying the Content of the Business Model
	Identifying Logical Fact Tables
	Identifying Logical Dimension Tables
	Identifying Dimensions
	Identifying Lookup Tables

	Identifying the Data Source Content for the Physical Layer
	About Types of Physical Schemas in Relational Data Sources
	About Cubes in Multidimensional Data Sources
	Identifying the Data Source Table Structure

	Guidelines for Designing a Repository
	General Tips for Working on the Repository
	Design Tips for the Physical Layer
	Design Tips for the Business Model and Mapping Layer
	Modeling Outer Joins

	Design Tips for the Presentation Layer

	Topics of Interest in Other Guides
	System Requirements and Certification

2 Before You Begin

	About the Oracle BI Administration Tool
	Opening the Administration Tool
	About the Administration Tool Main Window
	Setting Administration Tool Options
	About Administration Tool Menus
	File Menu
	Edit Menu
	View Menu
	Manage Menu
	Tools Menu
	Diagram Menu
	Window Menu
	Help Menu

	Using the Physical and Business Model Diagrams
	Editing, Deleting, and Reordering Objects in the Repository
	About Naming Requirements for Repository Objects
	Using the Browse Dialog to Browse for Objects
	Changing Icons for Repository Objects
	Sorting Objects in the Administration Tool
	About Features and Options for Oracle Marketing Segmentation

	About the Oracle BI Server Command-Line Utilities
	Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance

	About Options in Fusion Middleware Control and NQSConfig.INI
	About the SampleApp.rpd Demonstration Repository
	Using Online and Offline Repository Modes
	Editing Repositories in Offline Mode
	Opening Repositories in Offline Mode
	Publishing Offline Changes

	Editing Repositories in Online Mode
	Opening Repositories in Online Mode
	Publishing Online Changes
	Guidelines for Using Online Mode

	Checking Out Objects
	Checking In Changes
	About Read-Only Mode

	Checking the Consistency of a Repository or a Business Model
	About the Consistency Check Manager
	Checking the Consistency of Repository Objects
	Using the validaterpd Utility to Check Repository Consistency
	Common Consistency Check Messages

3 Setting Up and Using the Multiuser Development Environment

	About the Multiuser Development Environment
	About the Multiuser Development Process

	Setting Up Projects
	About Projects
	About the Project Dialog

	Creating Projects
	About Converting Older Projects During Repository Upgrade

	Setting Up the Multiuser Development Directory
	Identifying the Multiuser Development Directory
	Copying the Master Repository to the Multiuser Development Directory
	Setting Up a Pointer to the Multiuser Development Directory

	Making Changes in a Multiuser Development Environment
	Checking Out Repository Projects
	About Repository Project Checkout
	Checking Out Projects
	Using the extractprojects Utility to Extract Projects

	About Changing and Testing Metadata
	Refreshing Your Local Project Extract
	About Multiuser Development Menu Options

	Publishing Changes to Multiuser Development Repository Projects
	About the Multiuser Development Merge Process
	How are Multiuser Merges Different from Standard Repository Merges?

	Publishing to the Network
	Enforcing Consistent Repositories When Publishing Changes

	Branching in Multiuser Development
	About Branching
	Using the Multi-Team, Multi-Release Model in Oracle Business Intelligence
	Synchronizing RPD Branches

	Viewing and Deleting History for Multiuser Development
	Viewing Multiuser Development History
	Deleting Multiuser Development History

	Setting Multiuser Development Options

4 Using a Source Control Management System for Repository Development

	About Using a Source Control Management System with the Administration Tool
	About MDS XML

	Setting Up Your System for Repository Development Under Source Control Management
	Creating an SCM Configuration File
	Creating an MDS XML Repository and Checking In Files to the SCM System
	Saving an Existing Repository File in MDS XML Format
	Creating a New Repository in MDS XML Format
	Linking to Source Control Files to Convert Your Repository (Small Repositories Only)

	Using Source Control Management in Day to Day Repository Development
	Updating, Saving, and Checking In Changes for Repositories Under Source Control
	Handling Errors
	Testing Repositories Under Source Control
	Viewing the Source Control Log

5 Importing Metadata and Working with Data Sources

	Creating a New Oracle BI Repository
	Performing Data Source Preconfiguration Tasks
	Setting Up ODBC Data Source Names (DSNs)
	Setting Up Oracle Database Data Sources
	Additional Oracle Database Configuration for Client Installations

	Setting Up Oracle OLAP Data Sources
	Additional Oracle OLAP Configuration for Client Installations

	Setting Up Oracle TimesTen In-Memory Database Data Sources
	Configuring TimesTen Data Sources
	Improving Use of System Memory Resources with TimesTen Data Sources
	Ensuring that OPMN Can Access the TimesTen DLL on Windows

	Setting Up Essbase Data Sources
	Additional Essbase Configuration Steps for Client Installations

	Setting Up Hyperion Financial Management Data Sources
	Additional Hyperion Configuration for Client Installations

	Setting Up SAP/BW Data Sources
	Setting Up Oracle RPAS Data Sources
	Setting Up Teradata Data Sources
	Avoiding Spool Space Errors for Queries Against Teradata Data Sources

	Importing Metadata from Relational Data Sources
	About the Map to Logical Model and Publish to Warehouse Screens

	Importing Metadata from Multidimensional Data Sources
	About Importing Metadata from Oracle RPAS Data Sources

	Importing Metadata from XML Data Sources
	About Using XML as a Data Source
	Importing Metadata from XML Data Sources Using the XML Gateway
	Examples of XML Documents Generated by the Oracle BI Server XML Gateway
	Accessing HTML Tables

	Importing Metadata from XML Data Sources Using XML ODBC
	Example of an XML ODBC Data Source

	Examples of XML Documents

	Using a Standby Database with Oracle Business Intelligence
	About Using a Standby Database with Oracle Business Intelligence
	Creating the Database Object for the Standby Database Configuration
	Creating Connection Pools for the Standby Database Configuration
	Updating Write-Back Scripts in a Standby Database Configuration
	Setting Up Usage Tracking in a Standby Database Configuration
	Setting Up Event Polling in a Standby Database Configuration
	Setting Up Oracle BI Scheduler in a Standby Database Configuration

6 Working with ADF Business Component Data Sources

	What Are ADF Business Components?
	About Operational Reporting with ADF Business Components

	What Happens During Import?
	About Specifying a SQL Bypass Database
	Setting Up ADF Business Component Data Sources
	Creating a WebLogic Domain
	Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server
	Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper
	Setting Up a JDBC Data Source in the WebLogic Server
	Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

	Importing Metadata from ADF Business Component Data Sources
	Performing an Initial Import from ADF Business Component Data Sources
	Using Incremental Import to Propagate Flex Object Changes
	Automatically Mapping Flex Object Changes to the Logical Model
	Manually Mapping Flex Object Changes to the Logical Model

	Using the BI Extender to Propagate Flex Object Changes
	About Propagating Changes to Flex Objects to the Data Warehouse
	Use Cases for Propagating Flexfield Changes

	Performing Preconfiguration Tasks for the BI Extender
	Configuring the biextension.properties File
	Configuring the JavaHost loaders.xml File
	Configuring the opmn.xml File
	Configuring the ContainerMapping.xml File
	Optionally Changing the Location of the BI Extender Files

	Running the BI Extender in a Secured Environment
	Publishing Changes to the Data Warehouse and Propagating Changes to the Repository
	Running the BI Extender to Update Informatica, DAC, and the RPD
	Using DAC to Propagate Flex Object Changes to the Data Warehouse Schema

	Setting Up XSL Transform Files to Customize XML Output to the Oracle BI Extender
	Sample XML Output

	Setting Up and Using ApplCore Grants for ADF Data Security
	Setting Up Oracle Business Intelligence to Use ApplSession
	Setting Up Database Objects and Connection Pools for ApplSession Integration
	Setting Up Initialization Blocks for ApplSession Integration
	About the Client Login Process in an ApplSession Integrated Environment

	Setting Up Authentication for ApplSession Integration
	Setting Up Security Constraints and Security-Related Servlet Filters in web.xml
	Configuring Role-to-Principal Mapping in weblogic-application.xml
	Configuring the Custom Identity Assertion Provider in Oracle WebLogic Server
	Configuring One-Way SSL in Oracle WebLogic Server
	Configuring Two-Way SSL in Oracle WebLogic Server

	Enabling the Ability to Pass Custom Parameters to the ADF Application
	Propagating Labels and Tooltips from ADF Business Component Data Sources
	What are Labels and Tooltips?
	About the Session Variable Naming Scheme for UI Hints
	About Determining the Physical Column for a Presentation Column
	Initializing Session Variables Automatically for Propagating UI Hints
	Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses
	Using XML Code in Initialization Blocks to Query UI Hints

7 Setting Up Database Objects and Connection Pools

	Setting Up Database Objects
	About Database Types in the Physical Layer
	Creating a Database Object Manually in the Physical Layer
	When to Allow Direct Database Requests by Default

	Specifying SQL Features Supported by a Data Source
	Viewing Database Properties for Oracle ADF Business Component Data Sources

	About Connection Pools
	About Connection Pools for Initialization Blocks

	Creating or Changing Connection Pools
	Setting Connection Pool Properties in the General Tab
	Common Connection Pool Properties in the General Tab
	Multidimensional Connection Pool Properties in the General Tab

	Setting Connection Pool Properties in the Connection Scripts Tab
	Setting Connection Pool Properties in the XML Tab
	Setting Connection Pool Properties in the Write Back Tab
	Setting Connection Pool Properties in the Miscellaneous Tab

	Setting Up Persist Connection Pools
	About Setting the Buffer Size and Transaction Boundary

8 Working with Physical Tables, Cubes, and Joins

	Working with the Physical Diagram
	Creating Physical Layer Folders
	Creating Physical Layer Catalogs and Schemas
	Creating Catalogs
	Creating Schemas

	Using a Variable to Specify the Name of a Catalog or Schema
	Setting Up Display Folders in the Physical Layer

	Working with Physical Tables
	About Tables in the Physical Layer
	About Physical Alias Tables
	Creating and Managing Physical Tables and Physical Cube Tables
	Creating or Editing Physical Tables
	Creating Alias Tables
	Setting Physical Table Properties for XML Data Sources

	Creating and Managing Columns and Keys for Relational and Cube Tables
	Creating and Editing a Column in a Physical Table
	Specifying a Primary Key for a Physical Table
	Deleting Physical Columns for All Data Sources

	Viewing Data in Physical Tables or Columns

	Working with Multidimensional Sources in the Physical Layer
	About Physical Cube Tables
	About Measures in Multidimensional Data Sources
	About Externally Aggregated Measures

	Working with Physical Dimensions and Physical Hierarchies
	Working with Physical Dimension Objects
	Working with Physical Hierarchy Objects

	Working with Cube Variables for SAP/BW Data Sources
	Viewing Members in Physical Cube Tables

	Working with Essbase Data Sources
	About Using Essbase Data Sources with Oracle Business Intelligence
	About Incremental Import

	Working with Essbase Alias Tables
	Determining the Value to Use for Display
	Explicitly Defining Columns for Each Alias

	Modeling User-Defined Attributes
	Associating Member Attributes to Dimensions and Levels
	Modeling Alternate Hierarchies
	Modeling Measure Hierarchies
	Improving Performance by Using Unqualified Member Names

	Working with Hyperion Financial Management Data Sources
	About Query Support for Hyperion Financial Management Data Sources

	Working with Oracle OLAP Data Sources
	About Importing Metadata from Oracle OLAP Data Sources
	Working with Oracle OLAP Analytic Workspace (AW) Objects
	Working with Oracle OLAP Dimensions, Hierarchies, and Levels
	Working with Oracle OLAP Cubes and Columns

	Working with Physical Foreign Keys and Joins
	About Physical Joins
	About Primary Key and Foreign Key Relationships
	About Complex Joins
	About Multi-Database Joins
	About Fragmented Data

	Defining Physical Joins with the Physical Diagram
	Defining Physical Joins with the Joins Manager

	Deploying Opaque Views
	About Deploying Opaque Views
	Deploying Opaque View Objects
	Using the Create View SELECT Statement

	Undeploying a Deployed View
	When to Delete Opaque Views or Deployed Views
	When to Redeploy Opaque Views

	Using Hints
	How to Use Oracle Hints
	About the Index Hint
	About the Leading Hint

	About Performance Considerations for Hints
	Creating Hints

	Displaying and Updating Row Counts for Physical Tables and Columns

9 Working with Logical Tables, Joins, and Columns

	Creating the Business Model and Mapping Layer
	Creating Business Models
	Automatically Creating Business Model Objects
	Automatically Creating Business Model Objects for Multidimensional Data Sources

	Duplicating a Business Model and Subject Area

	Working with the Business Model Diagram
	Creating and Managing Logical Tables
	Creating Logical Tables
	Creating and Managing Logical Table Sources

	Specifying a Primary Key in a Logical Table
	Reviewing Foreign Keys for a Logical Table

	Defining Logical Joins
	Defining Logical Joins with the Business Model Diagram
	Defining Logical Joins with the Joins Manager
	Creating Logical Joins with the Joins Manager
	Creating Logical Foreign Key Joins with the Joins Manager

	Specifying a Driving Table
	Identifying Physical Tables That Map to Logical Objects

	Creating and Managing Logical Columns
	Creating Logical Columns
	Basing the Sort for a Logical Column on a Different Column
	Enabling Double Column Support by Assigning a Descriptor ID Column
	Creating Derived Columns
	Configuring Logical Columns for Multicurrency Support

	Setting Default Levels of Aggregation for Measure Columns
	Setting Up Dimension-Specific Aggregate Rules for Logical Columns
	Defining Aggregation Rules for Multidimensional Data Sources

	Associating an Attribute with a Logical Level in Dimension Tables
	Moving or Copying Logical Columns

	Enabling Write Back On Columns
	Setting Up Display Folders in the Business Model and Mapping Layer
	Modeling Bridge Tables
	Creating Joins in the Physical Layer for Bridge and Associated Dimension Tables
	Modeling the Associated Dimension Tables in a Single Dimension
	Modeling the Associated Dimension Tables in Separate Dimensions

10 Working with Logical Dimensions

	Creating and Managing Dimensions with Level-Based Hierarchies
	About Level-Based Hierarchies
	Using Dimension Hierarchy Levels in Level-Based Hierarchies

	Manually Creating Dimensions, Levels, and Keys with Level-Based Hierarchies
	Creating Dimensions in Level-Based Hierarchies
	Creating Logical Levels in a Dimension
	Associating a Logical Column and Its Table with a Dimension Level
	Identifying the Primary Key for a Dimension Level
	Selecting and Sorting Chronological Keys in a Time Dimension
	Adding a Dimension Level to the Preferred Drill Path

	Automatically Creating Dimensions with Level-Based Hierarchies
	Populating Logical Level Counts Automatically

	Creating and Managing Dimensions with Parent-Child Hierarchies
	About Parent-Child Hierarchies
	About Levels and Distances in Parent-Child Hierarchies
	About Parent-Child Relationship Tables
	About Parent-Child Hierarchies Populated with Preaggregated Data

	Creating Dimensions with Parent-Child Hierarchies
	Defining Parent-Child Relationship Tables
	Adding the Parent-Child Relationship Table to the Model
	Maintaining Parent-Child Hierarchies Based on Relational Tables

	Modeling Time Series Data
	About Time Series Functions
	About the AGO Function
	About the TODATE Function
	About the PERIODROLLING Function

	Creating Logical Time Dimensions
	Selecting the Time Option in the Logical Dimension Dialog
	Setting Chronological Keys for Each Level

	Creating AGO, TODATE, and PERIODROLLING Measures

11 Managing Logical Table Sources (Mappings)

	Creating Logical Table Sources
	Setting Priority Group Numbers for Logical Table Sources

	Defining Physical to Logical Table Source Mappings and Creating Calculated Items
	Unmapping a Logical Column from Its Source

	Defining Content of Logical Table Sources
	Verifying that Joins Exist from Dimension Tables to Fact Table
	About WHERE Clause Filters

	Working with Parent-Child Settings in the Logical Table Source
	Setting Up Aggregate Navigation by Creating Sources for Aggregated Fact Data
	Setting Up Fragmentation Content for Aggregate Navigation
	Specifying Fragmentation Content for Single Column, Value-Based Predicates
	Specifying Fragmentation Content for Single Column, Range-Based Predicates
	Specifying Multicolumn Content Descriptions
	Specifying Parallel Content Descriptions
	Specifying Unbalanced Parallel Content Descriptions

	Specifying Fragmentation Content for Aggregate Table Fragments
	Specifying the Aggregate Table Content
	Defining a Physical Layer Table with a Select Statement to Complete the Domain
	Specifying the SQL Virtual Table Content
	Creating Physical Joins for the Virtual Table

12 Creating and Maintaining the Presentation Layer

	Creating and Customizing the Presentation Layer
	Creating Subject Areas
	Automatically Creating Subject Areas Based on Logical Stars and Snowflakes

	Removing Unneeded or Unwanted Columns
	Renaming Presentation Columns to User-Friendly Names
	Exporting Logical Keys in the Subject Area
	Setting an Implicit Fact Column in the Subject Area
	Maintaining the Presentation Layer

	Working with Subject Areas
	Working with Presentation Tables and Columns
	Creating and Managing Presentation Tables
	Nesting Folders in Answers

	Creating and Managing Presentation Columns

	Working with Presentation Hierarchies and Levels
	Creating and Managing Presentation Hierarchies
	Modeling Dimensions with Multiple Hierarchies in the Presentation Layer
	Editing Presentation Hierarchy Objects

	Creating and Managing Presentation Levels

	Setting Permissions for Presentation Layer Objects
	Generating a Permission Report for Presentation Layer Objects
	Sorting Columns in the Permissions Dialog

	Creating Aliases (Synonyms) for Presentation Layer Objects

13 Creating and Persisting Aggregates for Oracle BI Server Queries

	About Aggregate Persistence in Oracle Business Intelligence
	Identifying Query Candidates for Aggregation
	Using Oracle BI Summary Advisor to Identify Query Candidates for Aggregation
	About the Oracle BI Summary Advisor
	Gathering Summary Advisor Statistics
	Generating and Using Summary Advisor Recommendations

	Setting Up the Statistics Database
	Turning On Usage Tracking
	Turning On Summary Advisor Logging
	Using the Oracle BI Summary Advisor Wizard
	Using the Oracle BI Summary Advisor Statistics Generator to Generate Statistics

	Using the Aggregate Persistence Wizard to Generate the Aggregate Specification
	Writing the Create Aggregates Specification Manually
	What Constraints Are Imposed During the Create Process?
	How to Write the Create Aggregates Specification
	Adding Surrogate Keys to Dimension Aggregate Tables
	About the Create/Prepare Aggregates Syntax
	About Surrogate Key Output from Create/Prepare Aggregates

	Running the Aggregate Specification Against the Oracle BI Server
	Life Cycle Use Cases for Aggregate Persistence
	Using Double Buffering to Refresh Highly Available Aggregates
	Troubleshooting Aggregate Persistence

14 Applying Data Access Security to Repository Objects

	About Data Access Security
	Where Do I Find Information About Security Tasks?

	Setting Up Row-Level Security
	Setting Up Row-Level Security (Data Filters) in the Repository
	Setting Up Row-Level Security in the Database

	Setting Up Object Permissions
	About Permission Inheritance for Users and Application Roles

	Setting Query Limits
	Accessing the Query Limits Functionality in the Administration Tool
	Limiting Queries By the Number of Rows Received
	Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods
	Allowing or Disallowing Direct Database Requests
	Allowing or Disallowing the Populate Privilege

	About Applying Data Access Security in Offline Mode
	Setting Up Placeholder Application Roles for Offline Repository Development

	About the List of Users in the Administration Tool

15 Completing Oracle BI Repository Setup

	Configuring the Repository for Oracle Scorecard and Strategy Management
	Saving the Repository and Checking Consistency
	Using nqcmd to Test and Refine the Repository
	Making the Repository Available for Queries
	Creating Data Source Connections to the Oracle BI Server for Client Applications
	Publishing to the User Community

16 Setting Up Data Sources on Linux and UNIX

	About Setting Up Data Sources on Linux and UNIX
	Configuring Data Source Connections Using Native Gateways
	Troubleshooting OCI Connections
	About Updating Row Counts in Native Databases

	Using DataDirect Connect ODBC Drivers on Linux and UNIX
	Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database
	Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database
	Configuring the DataDirect Connect ODBC Driver for Informix Database

	Configuring Database Connections Using Native ODBC Drivers
	Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX
	Configuring Oracle RPAS ODBC Data Sources on AIX UNIX
	Configuring Essbase Data Sources on Linux and UNIX
	Configuring DB2 Connect on IBM z/OS and s/390 Platforms

17 Managing Oracle BI Repository Files

	Comparing Repositories
	Comparing Repositories Using the Compare Dialog
	Comparing Repositories Using comparerpd
	Turning Off Compare Mode

	Equalizing Objects
	About Equalizing Objects
	Using the Equalize Objects Dialog
	Using the equalizerpds Utility
	About Values for TypeName

	Merging Repositories
	Performing Full Repository Merges
	About Full Repository Merges
	Performing Full Repository Merges With a Common Parent
	Performing Full Repository Merges Without a Common Parent

	Performing Patch Merges
	About Patch Merges
	Generating a Repository Patch
	Applying a Repository Patch

	Querying and Managing Repository Metadata
	Querying the Repository
	Constructing a Filter for Query Results

	Querying Related Objects

	Changing the Repository Password

18 Using Expression Builder and Other Utilities

	Using Expression Builder
	About the Expression Builder Dialogs
	About the Expression Builder Toolbar
	About the Categories in the Category Pane
	Setting Up an Expression
	Navigating Within Expression Builder
	Building an Expression
	About the INDEXCOL Conversion Function

	Using Administration Tool Utilities
	Using the Replace Column or Table Wizard
	Using the Oracle BI Event Tables Utility
	Using the Externalize Strings Utility
	Using the Rename Wizard
	Using the Update Physical Layer Wizard
	Generating Documentation of Repository Mappings
	Generating a Metadata Dictionary
	Removing Unused Physical Objects
	Persisting Aggregates
	Using the Oracle BI Summary Advisor Wizard

	Using the Calculation Wizard

19 Using Variables in the Oracle BI Repository

	About Repository Variables
	About Static Repository Variables
	About Dynamic Repository Variables

	Creating Repository Variables
	Using Repository Variables in Expression Builder

	About Session Variables
	About System Session Variables
	About Nonsystem Session Variables

	Creating Session Variables
	Working with Initialization Blocks
	About Using Initialization Blocks with Variables
	Initializing Dynamic Repository Variables
	Initializing Session Variables
	About Row-Wise Initialization

	Creating Initialization Blocks
	Assigning a Name and Schedule to Initialization Blocks
	Selecting and Testing the Data Source and Connection Pool

	Associating Variables with Initialization Blocks
	Establishing Execution Precedence
	When Execution of Session Variable Initialization Blocks Cannot Be Deferred
	Enabling and Disabling Initialization Blocks

A Managing the Repository Lifecycle in a Multiuser Development Environment

	Planning Your Multiuser Development Deployment
	About Business Organization and Governance Process Best Practices
	About Technical Team Roles and Responsibilities

	Multiuser Development Architecture
	About Multiuser Development Concepts
	About Multiuser Development Styles
	Multiuser Development Sandbox Architecture
	Multiuser Development and Lifecycle Management Architecture

	Understanding the Multiuser Development Environment
	About Multiuser Development Environment Task Flow
	About Multiuser Development Projects
	How to Create Branches
	How to Create a Main Branch
	How to Create a Side Branch
	How to Create a Delegated Administration Branch

	Which Merge Utility Should I Use?

	MUD Tips and Best Practices
	Best Practices for Branching
	Best Practices for Setting Up Projects
	Best Practices for Three-Way Merges
	Best Practices for MUD Merges
	Best Practices for Two-Way Merges
	Best Practices for Production Migration
	Best Practices for Application Roles and Users

	Troubleshooting Multiuser Development

B MUD Case Study: Eden Corporation

	About the Eden Corporation Fictional Case Study
	Phase I - Initiating Multiuser Development (MUD)
	Starting Initiative S
	Setting Up MUD Projects
	First Developer Checks Out
	Second Developer Checks Out
	First Developer Publishes Changes
	Second Developer Publishes Changes
	MUD Administrator Test Migration Activities
	Phase I Testing
	Phase I Migration to Production
	Phase I Summary

	Phase II - Branching, Fixing, and Patching
	Setting Up the Second Branch
	Developers Check Out Projects
	Patch Fix for the Main Branch
	Finishing and Merging Phase II Branch
	Phase II Summary

	Phase III - Independent Semantic Model Development
	Security Considerations for Multiple Independent Semantic Models
	Sales Semantic Model Developers Check Out
	HR Semantic Model Developer Builds Content
	Phase III Summary

C Logical SQL Reference

	SQL Syntax and Semantics
	Syntax and Usage Notes for the SELECT Statement
	Basic Syntax for the SELECT Statement
	Usage Notes
	Subquery Support
	SELECT List Syntax
	FROM Clause Syntax
	WHERE Clause Syntax
	GROUP BY Clause Syntax
	ORDER BY Clause Syntax

	Syntax and Usage Notes for SELECT_PHYSICAL
	Syntax for the SELECT_PHYSICAL Statement
	Aggregate Functions Not Supported in SELECT_PHYSICAL Queries
	Queries Supported by SELECT_PHYSICAL
	Using the NATURAL_JOIN Keyword
	Special Usages of SELECT_PHYSICAL

	Limiting and Offsetting Rows Returned
	Limitations of the FETCH and OFFSET Clauses

	Rules for Queries with Aggregate Functions
	Computing Aggregates of Baseline Columns
	Computing Aggregates of Measure Columns
	Display Function Reset Behavior
	Alternative Syntax
	Using FILTER to Compute a Conditional Aggregate

	Operators
	SQL Logical Operators
	Mathematical Operators

	Conditional Expressions
	CASE (Switch)
	CASE (If)

	Expressing Literals
	Character Literals
	Datetime Literals
	Numeric Literals

	Calculated Members
	CALCULATEDMEMBER Syntax
	Rules for the CALCULATEDMEMBER Expression
	Using Solve Order to Control Formula Evaluation Sequence
	Examples of Calculated Members in Queries

	Variables

	Aggregate, Running Aggregate, and Time Series Functions
	Aggregate Functions
	AGGREGATE AT
	AVG
	AVGDISTINCT
	BOTTOMN
	COUNT
	COUNTDISTINCT
	COUNT(*)
	FIRST
	FIRST_PERIOD
	GROUPBYCOLUMN
	GROUPBYLEVEL
	LAST
	LAST_PERIOD
	MAX
	MEDIAN
	MIN
	NTILE
	PERCENTILE
	RANK
	STDDEV
	STDDEV_POP
	SUM
	SUMDISTINCT
	TOPN

	Running Aggregate Functions
	MAVG
	MSUM
	RSUM
	RCOUNT
	RMAX
	RMIN

	Time Series Functions
	AGO
	PERIODROLLING
	TODATE

	String Functions
	ASCII
	BIT_LENGTH
	CHAR
	CHAR_LENGTH
	CONCAT
	INSERT
	LEFT
	LENGTH
	LOCATE
	LOCATEN
	LOWER
	OCTET_LENGTH
	POSITION
	REPEAT
	REPLACE
	RIGHT
	SPACE
	SUBSTRING
	TRIMBOTH
	TRIMLEADING
	TRIMTRAILING
	UPPER

	Math Functions
	ABS
	ACOS
	ASIN
	ATAN
	ATAN2
	CEILING
	COS
	COT
	DEGREES
	EXP
	EXTRACTBIT
	FLOOR
	LOG
	LOG10
	MOD
	PI
	POWER
	RADIANs
	RAND
	RANDFROMSEED
	ROUND
	SIGN
	SIN
	SQRT
	TAN
	TRUNCATE

	Calendar Date/Time Functions
	CURRENT_DATE
	CURRENT_TIME
	CURRENT_TIMESTAMP
	DAY_OF_QUARTER
	DAYNAME
	DAYOFMONTH
	DAYOFWEEK
	DAYOFYEAR
	HOUR
	MINUTE
	MONTH
	MONTH_OF_QUARTER
	MONTHNAME
	NOW
	QUARTER_OF_YEAR
	SECOND
	TIMESTAMPADD
	TIMESTAMPDIFF
	WEEK_OF_QUARTER
	WEEK_OF_YEAR
	YEAR

	Conversion Functions
	CAST
	CHOOSE
	IFNULL
	INDEXCOL
	Example With Hierarchy Levels

	TO_DATETIME
	VALUEOF

	Database Functions
	EVALUATE
	EVALUATE_ANALYTIC
	EVALUATE_AGGR
	EVALUATE_PREDICATE

	Hierarchy Navigation Functions
	IDOF
	ISANCESTOR
	ISCHILD
	ISDESCENDANT
	ISLEAF
	ISPARENT
	ISROOT
	PARENT

	System Functions
	USER
	DATABASE

D Merge Rules

	About the Merge Process
	Merge Rules and Behavior for Full Merges
	Special Merge Algorithms for Logical Table Sources and Other Objects
	Merging Objects that Use the Vector Merge Algorithm
	Merging Logical Table Sources
	Merging Security Filters
	Inferring the Use Logical Column Property for Presentation Columns
	Merging Aliases

	Merge Rules and Behavior for Multiuser Development Merges
	Merge Rules and Behavior for Patch Merges
	Using Patchrpd to Automate the Patch Process

E Deleting Unwanted Objects from the Repository

	About the Object Pruning Utility
	Using the Object Pruning Utility
	Creating the Input File
	Running the prunerpd Utility

	Deletion Rules for the Object Pruning Utility

F Exchanging Metadata with Databases to Enhance Query Performance

	About Exchanging Metadata with Databases
	Generating the Import File
	Running the Generator
	About the Metadata Input File
	About the Output Files
	Troubleshooting Errors from the Generator
	Metadata Conversion Rules and Error Messages
	Conversion Rules for Oracle Databases
	Conversion Rules for IBM DB2 Databases

	Using Materialized Views in the Oracle Database with Oracle Business Intelligence
	About Using the SQL Access Advisor with Materialized Views
	Deploying Metadata for Oracle Database
	Executing the SQL File for Oracle Database
	Defining Constraints for the Existence of Joins
	Creating the Query Workload
	Creating Materialized Views

	Using IBM DB2 Cube Views with Oracle Business Intelligence
	About Using IBM DB2 Cube Views with Oracle Business Intelligence
	Deploying Cube Metadata
	Executing the Alias-SQL File for IBM Cube Views
	Importing the XML File
	Guidelines for Creating Materialized Query Tables (MQTs)

G Administration Tool Keyboard Shortcuts

	Menu Keyboard Shortcuts
	Dialog Keyboard Shortcuts
	Physical Diagram and Business Model Diagram Keyboard Shortcuts

Glossary

Index

Shows the Select Business Measures screen of the Aggregate Persistence Wizard.
Shows a lock file called sales.lck in Windows Explorer.
Shows how a query traverses the layers in an Oracle BI Repository (Presentation layer, Business Model and Mapping layer, and Physical layer). Also shows the client layer (from which the request is generated) and the data source layer.
Shows the Logical Column dialog with the Writeable option selected.
Shows the Compare repositories dialog box for sales.rpd and sales.006.rpd.
Shows the Connection Scripts tab of the Connection Pool dialog, with scripts entered for Execute before query and Execute after query.
Shows the Oracle BI Summary Advisor Statistics Generator screen, with fields and options for usage tracking data, optional filters, and execution mode.
Shows the Browse dialog with three projects.
Shows the Select Input Files screen of the Merge Repository Wizard, with Full Repository Merge and Equalize during merge displayed.
Shows HFM data in the Physical layer, including the Value, Attribute, CellText, and CurrencyType columns. Additional columns based on sub-properties such as IsDerived and IsError are also shown.
Shows the Edit Attribute dialog in JDeveloper with the Label Text and and Tooltip Text options.
Shows the Equalize Objects dialog.
Shows the DAC screen where you can set a Date filter.
Shows the Physical Diagram, with six physical tables displayed with their joins. Tables are shown in expanded view so that columns are visible.
Shows the Connection Scripts tab of the Connection Pool dialog.
Shows the physical joins in the Physical Diagram for the example discussed in this section.
A conceptual representation of a three-way merge between an original file, a modified file (file version 1), and a current file (file version 2) to form a merged file.
Shows an example of setting up a session variable initialization block data source with the Oracle ADF UI hint query.
Shows the XML tab of the Connection Pool dialog.
A conceptual representation of a three-way merge between an original blank file, a modified file (file version 1), and a current file (file version 2) to form a merged file.
Shows the Logical Column dialog for a logical column in the Business Model and Mapping layer, with the default aggregation rule set to Sum. Also shows the Physical Cube Column dialog for a physical cube column in the Physical layer, with the aggregation rule set to Sum.
Shows the Parent-Child Relationship Table Settings dialog in the Administration Tool.
Shows a screen capture of the Logical Level dialog, with a chronological key defined in the Keys tab.
Shows the connection pool dialog for the standby connection pool.
Shows a directory of files, with sales.rpd and sales.006.
Shows the Session Variable Initialization Block dialog for a pillar-specific initialization block. The initialization block name is create_AOL_SESSION_ID_Pillar1, and Allow deferred execution is selected. The selected connection pool is "Pillar1_http"."Pillar1_http_cp," and the target variable is AOL_SESSION_ID_Pillar1_http.
Shows the Simple Development Model branching strategy used in multiuser development. A single main release branch appears, with small quick fixes branching off of it that are then merged back into the main branch.
Shows the Main Window of the Administration Tool, including the Presentation, Business Model and Mapping, and Physical layers.
Shows a flow chart that illustrates the example discussed in the preceding paragraphs.
Shows the Expression Builder dialog for a derived logical column.
Shows the Business Model Diagram, with six logical tables displayed with their joins. Tables are shown in expanded view so that columns are visible.
Shows an incoming Dashboard request (a logical SQL API call), along with the BI Server-generated SQL to the database. The image shows that the return result is different depending on which user generated the query, even though the SQL query generated by the Oracle BI Server is the same.
Shows the Compare repositories dialog.
Shows the Multi-Team, Multi-Release Model branching strategy used in multiuser development. A main release branch appears, with small quick fixes branching off of it that are then merged back into the main branch. A second and third Dev branch appears parallel to the main branch, with changes merged in to the mainline periodically.
Shows the Map to Logical Model screen of the Import Metadata Wizard.
Shows the Write Back tab of the Connection Pool dialog.
Shows the three files that are created in the local repository directory:
Shows the Physical layer of the repository with dimension, fact, and parent-child relationship tables. Also shows the Physical Diagram for those tables with joins created from the dimension table to the parent-child relationship table, and from the parent-child relationship table to the fact tables.
Shows a screen capture of the New Calculations screen of the Calculation Wizard.
Shows the Miscellaneous tab of the Connection Pool dialog.
Shows the query client layer, the Oracle BI Server layer, and the data source layer. Communication between the client layer and server layer is through ODBC. Communication between the server layer and data source layer is through ODBC or native gateway.
The Oracle BI Server accesses the repository file. The Administration Tool client can access the repository through the Oracle BI Server in online mode, or directly in offline mode.
Shows a report that includes the measures Dollars and Dollars QTD. Sample values are provided for Q1, Q2, Q3, and Q4.
Shows the Business Model Diagram with Employee, Jobs, and Facts tables. There are joins between Employee and Facts, and Jobs and Facts.
Shows two database objects: one for the SQL bypass database (Pillar1_bypass), and a second that contains the physical table and column mappings (Pillar1_http).
Shows the Permissions dialog for a column in the Presentation layer with the Write option selected.
Shows a screen capture of Expression Builder with the Month level selected.
Shows a screen capture of the Logical Dimension dialog with the Time option selected.
Shows a flow chart that illustrates a complex permission inheritance model, where some roles are members of other roles.
Shows a Markets presentation table with an associated MarketsDim presentation hierarchy, with presentation levels Region, District, Market, and Market Key.
Shows the Source Control Log window in the Administration Tool.
Shows the Define Merge Strategy screen of the Merge Repository Wizard, with conflicts and decisions displayed.
Shows the Project dialog, with fact tables grouped by Business Model.
Shows the Import Metadata Wizard in the Administration Tool, for an XML data source.
Shows the Import Metadata Wizard in the Administration Tool, for an ADF Business Component data source.
Shows the Database dialog for a standby database configuration.
Shows a Geography dimension in the Business Model and Mapping layer that illustrates the example discussed in the preceding text.
Shows the Select Rules screen of the Rename Wizard.
Shows a report that includes the measures Dollars, Dollars Qago, Dollars QTD, Dollars 3-Period Rolling Sum, and Dollars 3-Period Rolling Avg. Sample values are provided for Q1, Q2, Q3, and Q4.
Shows a swim lane diagram that shows the different stages and activities that happened during Phase I.
Shows the Query Related Objects dialog being used to find related presentation tables.
Shows a report that includes the measures Dollars, Dollars 3-Period Rolling Sum, and Dollars 3-Period Rolling Avg. Sample values are provided for Q1, Q2, Q3, and Q4.
Shows the Physical Diagram with Employee, Assignment, Jobs, and Facts tables. There are joins between Employee and Assignment, Assignment and Jobs, and Jobs and Facts.
Shows the Select Metadata Objects screen of the Import Metadata Wizard for an ADF Business Component data source.
Shows the Logical Table Source dialog for a source called Employee, with mappings to the Assignment, Employee, and Jobs tables.
Shows the process of applying a patch in a development-to-production scenario.
Shows a hierarchy with the following unbalanced branches:
A-Brand 4
B-LOB 3
Type5
The hierarchy shows skips between:
A-Brand 2 and Type 3
A-Brand 2 and Type 4
A-Brand 3 and Product16
A-Brand 3 and Product17
B-LOB 2 and Product 6
B-LOB 2 and Product 7
Shows a swim lane diagram that shows the different stages and activities that happened during Phase II.
Shows the Presentation layer and Business Model and Mapping layer for Sample App. The Business Model and Mapping Layer shows many dimensions, dimension tables, fact tables, and lookup tables. The Presentation layer shows the corresponding subject areas.
Shows true multiuser development. Developers create branches for separate phases of repository development, then merge back into main at various points. After branch merges, the repository is migrated to test and then production.
Shows the Column Mapping tab of the Logical Table Source dialog.
Shows the standby database configuration database object in the Physical layer, with a standby connection pool and a primary connection pool.
Shows the connection pool dialog for the primary connection pool.
Shows a Markets presentation table with an associated MarketsDim presentation hierarchy, with presentation levels All Markets, Total US, Region, District, Market, and Market Key.
Shows an Essbase cube in the Physical layer, with an expanded dimension and measure columns.
Shows the process of applying a patch in an Oracle BI Applications repository upgrade scenario.
Shows a screen capture of the Physical layer with Assignment, Employee, and Jobs tables.
Shows the Business Model and Mapping layer in the Administration Tool. Arrows show where logical columns can be dragged onto the appropriate logical levels.
Shows the Lock Information dialog, with the comment "Deleted unnecessary logical objects."
Shows many-to-one fact table joins in the Business Model Diagram in the Administration Tool.
Shows a screen capture of the Select Columns screen of the Replace Column or Table Wizard.
Shows a presentation table called Product that contains two separate presentation hierarchies: a Product-Category hierarchy with presentation levels Category and Product, and a Product - Country hierarchy with presentation levels Country, Region, City, Supplier, and Product.
Shows the General tab of the Connection Pool dialog, for an Essbase data source.
Shows an incoming Dashboard request (a logical SQL API call), along with the BI Server-generated SQL to the database for two different users: Administrator and Anne Green. The image also shows the return result for the Administrator (all records returned) and for the user Anne Green (only a single record returned).
Shows an example Expression Builder dialog for a derived logical column.
Shows the Logical Table Source dialog for a source called Assignment, with mappings to the Assignment and Employee tables.
Shows a diagram of a Windows-only multiuser development sandbox, with one BI stack and an Administration Tool client on the same computer. Also shows a UNIX development sandbox, with a BI stack running on UNIX, and an Administration Tool on Windows.
Shows the Select Connection Pool screen of the Aggregate Persistence Wizard.
Shows joins between fragmented Sales tables and fragmented Customer tables. The Customer G to Z fragmented table has joins to both Sales A to M and Sales N to Z.
Shows physical content in the repository in the Physical layer. The Physical Diagram is also displayed, showing physical tables and joins.
Shows the shared online development style. Developers work simultaneously against a single online repository, then migrate to test and then production.
Shows the Business Model and Mapping layer in the Administration Tool. A time dimension, H0 Time, is shown with two hierarchies: Fiscal Year and Year.
Shows joins between fragmented Sales tables and fragmented Customer tables. The Sales data is stored in two tables: Sales A to M and Sales N to Z. The Customer data is also stored in two tables: Customer A to M and Customer N to Z.
Shows the serial development style. Developers work independently and hand off repository files to each other, then migrate to test and then production.
Shows the General tab of the Connection Pool dialog, for an OCI data source.
Shows the General tab of the Connection Pool dialog, with Shared logon selected and :USER in the User name field.
Shows a screen capture of Expression Builder with the AGO function selected.
Shows a repository with two separate, independent semantic models, A and B. Each semantic model contains a different set of Presentation, Business Model and Mapping, and Physical layer objects, as well as different sets of variables, users, and so on.
Shows a logical dimension called Product with the hierarchies Category and Country at the top level. The Category hierarchy contains the Product level, while the Country hierarchy contains levels for Region, City, Supplier, and Product.
Shows the Permissiosn dialog in online mode.
Shows the Expression Builder dialog with Logical Tables selected for Category, D7 Orders selected for Logical Tables, and R11 Order Date-Time selected for Columns.
Shows the Import Metadata Wizard in the Administration Tool, for an ODBC 3.5 data source.
Shows an Essbase alternate hierarchy in the Physical layer displayed in the single-hierarchy view.
The Administrator user can see both the Inventory Total and the Booked Amount column, and can generate queries on both columns and see return results. The user Anne Green, however, only sees the Inventory Total column. Even if the SQL query in the Issue SQL field in Oracle Business Intelligence has been modified to include the Booked Amount column, the user-based permissions ensure that an error is returned rather than results for the forbidden column.
Shows the Select Levels screen of the Aggregate Persistence Wizard.
Shows an Essbase alternate hierarchy in the Physical layer displayed in the multi-hierarchy view.
Shows various components involved in a typical repository development lifecycle, including a centralized identity store, MUD administration system, production system, test system, and development sandboxes.
Shows a report that includes the measures Dollars and Dollars Qago. Sample values are provided for Q1, Q2, Q3, and Q4.
Shows the process of creating a patch in an Oracle BI Applications repository upgrade scenario.
Shows a join in the Business Model Diagram, with an arrow pointing to the "one" end of the join.
Shows the Session Variable Initialization Block Dialog for an initialization block called INIT_REVERSIBLE_LTS_PRIORITY_SA_VEC. This initialization block has Row-wise initialization for Variable Target, and the following default initialization string:
SELECT 'REVERSIBLE_LTS_PRIORITY_SA_VEC', SUBJECT_AREA_NAME FROM SA_TABLE WHERE REVERSIBLE=1
Shows a join in the Physical Diagram, with an arrow pointing to the "one" end of the join.
Shows the Import Metadata Wizard (importing from an ADF Business Component OLTP source) propagating flexfield changes to the BI Extender using base XML, upon which XSL transform files are applied. Then, the BI Extender reads information from the Informatica Repository, writes the change to the Informatica server, and propagates the flexfield change to DAC. Finally, the BI Extender propagates the change to the Data Warehouse object in the Physical layer of the repository, and then maps the change to the logical model in the Business Model and Mapping layer. A final step is for the user to propagate the change to the data warehouse database using DAC.
The left side of the image shows the Project dialog with facts grouped by Business Model. The right side of the dialog shows the Project dialog with facts grouped by Subject Area.
Shows a multi-level parent-child hierarchy. Andrew is the top level, with Barbara and Carlos at the next level. Dawn and Emre are at the lowest level. Dawn and Emre are descendants of Barbara but not of Carlos, even though Barbara and Carlos are at the same level.
Shows a swim lane diagram that shows the different stages and activities that happened during Phase III.
Shows the Small Team Development Model branching strategy used in multiuser development. A main release branch appears, with small quick fixes branching off of it that are then merged back into the main branch. A second Dev branch appears parallel to the main branch, with changes merged in to the mainline periodically.
Shows the Import Metadata Wizard in the Administration Tool, for an Essbase data source.
Shows two new files that appear in the master repository directory: sales.000 and sales.mhl.
Shows a flow chart that illustrates the concept that some aggregate information might be available for some data, but not for all, resulting in multiple sources.
Shows the Multi User History dialog, with versions 0 and 1 displayed.
Shows the Publish to Warehouse screen of the Import Metadata Wizard, with User Name/Password fields for Informatica, Database, and DAC.
Shows the process of creating a patch in a development-to-production scenario.
Shows the Business Model Diagram in the Administration Tool, with fact table direct joins.

G Administration Tool Keyboard Shortcuts

This appendix provides keyboard shortcut information for the Administration Tool. The following sections list Administration Tool menu items and their corresponding keyboard shortcuts, keyboard shortcuts for navigating dialogs, and Physical Diagram and Business Model Diagram keyboard shortcuts.

This appendix contains the following topics:

	
Menu Keyboard Shortcuts

	
Dialog Keyboard Shortcuts

	
Physical Diagram and Business Model Diagram Keyboard Shortcuts

Menu Keyboard Shortcuts

The following sections describe keyboard shortcuts for Administration Tool menu options.

File Menu Shortcuts

	
The shortcut for New is Ctrl + N.

	
The shortcut for Open, and then Offline is Ctrl + F.

	
The shortcut for Open, and then Online is Ctrl + L.

	
The shortcut for Save is Ctrl + S.

	
The shortcut for Check Global Consistency is Ctrl + K.

Edit Menu Shortcuts

	
The shortcut for Cut is Ctrl + X.

	
The shortcut for Copy is Ctrl + C.

	
The shortcut for Paste is Ctrl + V.

	
The shortcut for Delete is Delete.

View Menu Shortcut

	
The shortcut for Refresh is F5.

Tools Menu Shortcuts

	
The shortcut for Show Consistency Checker is Ctrl + E.

	
The shortcut for Query Repository is Ctrl + Q.

General Menu Shortcuts

Table G-1 lists the general keyboard shortcuts available in the Administration Tool menus. Note that you can use the Window menu options to change the focus from the menus to the navigation panes.

Table G-1 Menu Keyboard Shortcuts

	Action	Keyboard Shortcut
	
Quit the application

	
Alt+ F4

	
Move cursor to the menu option

	
Alt + Underlined letter

	
Open application's control menu

	
Alt+ Spacebar

	
View the shortcut menu for the selected item

	
Shift + F10

	
Move through the menu bar

	
Left arrow key

Right arrow key

	
Open a menu option

	
Down arrow key

	
Move through a menu list

	
Up arrow

Down arrow

	
Close the current menu

	
Esc

	
Select or deselect items in a check box or list

	
Spacebar

	
Make noncontinguous selections

	
Ctrl + Up arrow + Spacebar

Dialog Keyboard Shortcuts

Table G-2 lists the keyboard shortcuts available in Administration Tool dialogs.

Table G-2 Dialog Keyboard Shortcuts

	Action	Keyboard Shortcut
	
Move forward through options

	
Tab

	
Move backward through options

	
Shift + Tab

	
Select or deselect an item in a list

	
Shift + Up arrow

Shift + Down arrow

	
Close the current dialog

	
Esc

	
Go to the top of a list

	
Home

	
Go to the bottom of a list

	
End

	
Refresh

	
F5

	
For dialogs with up arrow buttons: Move selected item up in the list

	
Alt + Up arrow

Note: Select a list item before using this shortcut.

	
For dialogs with down arrow buttons: Move selected item down in the list

	
Alt + Down arrow

Note: Select a list item before using this shortcut.

	
For dialogs with plus (add) buttons: Insert item from list

	
Alt + Insert

	
For dialogs with x (delete) buttons: Delete item from list

	
Alt + Delete

	
For dialogs with pencil (edit) buttons: Edit item from list

	
Alt + Enter

	
Browse dialog: Move focus between trees located in left pane

	
F5, F6, Shift + Tab, Tab

	
When a table row has a child row (grid): Expand the child row from the cell displaying the plus icon

This situation occurs in the Define Merge Strategy page of the Merge Repository Wizard.

	
Spacebar

Note: Move the focus to the cell displaying the plus icon before using this shortcut.

	
When a table row has a check box: Select or deselect the check box

This situation occurs in the Define Merge Strategy page of the Merge Repository Wizard.

	
Spacebar

Note: Move the focus to the cell displaying the check box before using this shortcut.

Physical Diagram and Business Model Diagram Keyboard Shortcuts

Table G-3 lists the keyboard shortcuts available in the Physical and Business Model Diagrams. Note that the Physical and Business Model Diagram toolbar options are also available from the Diagram menu.

Table G-3 Diagram Keyboard Shortcuts

	Action	Keyboard Shortcut
	
Pan around the diagram when no diagram objects are selected

	
Arrow keys

	
Select a diagram object: use the arrow keys to move an object under the pointer, then press the spacebar to select the object

	
Spacebar + Arrow keys

	
Open the property dialog for a selected diagram object

	
Enter

	
Cancel current operation

	
Esc

	
Resume default mode (Select) after using Pan or Marquee Zoom

	
Esc

	
Deselect an object

	
Use one of the following methods:

Esc

Press the spacebar when the mouse cursor is not over an object

	
Zoom in

	
+

	
Zoom out

	
-

	
Select the pan tool

	
P

Note that you can also use the arrow keys to pan around the diagram.

	
Revert to auto-layout

	
S

	
Create a new join

	
J

This shortcut selects the New Join option.

	
Create a new table

	
N

This shortcut selects the New Table option. After using this shortcut, you can use the arrow keys and spacebar to pan around the diagram and open the Logical Table dialog for the new table.

	
Select the Marquee Zoom tool

	
Z

This shortcut selects the Marquee Zoom tool.

	
Zoom to fit all objects in the current view

	
F

	
Show all tables in Expanded View, with columns visible

	
1

	
Show all tables in Collapsed View, with columns hidden and only the table name displayed

	
2

14 Applying Data Access Security to Repository Objects

Data access security controls rights to view and modify data. You can use several different methods of data access security with Oracle Business Intelligence: row-level security (implemented either in the repository or in the database), object permissions, and query limits. This chapter provides information about the different types of data access security and explains how to set them up.

Other security tasks, including setting up SSL connections, managing users, groups, and application roles, setting up custom LDAP servers, and managing custom authenticators, are covered in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition. Note that you must create users and application roles before you can implement data access security.

You should plan to implement data access security in the Administration Tool in online mode. If you must perform data access security tasks in offline mode, be sure to read "About Applying Data Access Security in Offline Mode" first.

Data access security auditing is covered by the Oracle Business Intelligence usage tracking feature. See "Managing Usage Tracking" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

This chapter contains the following topics:

	
About Data Access Security

	
Setting Up Row-Level Security

	
Setting Up Object Permissions

	
Setting Query Limits

	
About Applying Data Access Security in Offline Mode

	
About the List of Users in the Administration Tool

About Data Access Security

After developing your metadata repository, you need to set up your data security architecture to control access to source data. Data access security accomplishes the following goals:

	
To protect business data queried from databases

	
To protect your repository metadata (such as measure definitions)

	
To prevent individual users from hurting overall system performance

Oracle Business Intelligence supports three types of data security: row-level security, object permissions, and query limits (governors). Object permissions and query limits are set up in the repository and are enforced only by the Oracle BI Server. Row-level data security, however, can be implemented and enforced in both the repository, and in the database.

Even if you choose to implement row-level security in the database, you should still set up object permissions and query limits in the repository. Although it is possible to provide database-level object restrictions on individual tables or columns, objects to which users do not have access are still visible in all clients, even though queries against them will fail. It is better to set up object permissions in the repository, so that objects to which users do not have access are hidden in all clients.

Because a variety of clients can connect to the Oracle BI Server, you cannot implement or enforce data security in Oracle BI Presentation Services. Oracle BI Presentation Services provides an extensive set of security controls that let you set up privileges to access functionality in the Oracle Business Intelligence user interface, as well as dashboards and analyses objects. However, Oracle BI Presentation Services does not provide data access security. If you only implement security controls in Oracle BI Presentation Services, you will be exposed to SQL injection hacker attacks and other security vulnerabilities. You must provide object-level security in the repository to create rules that apply to all incoming clients.

See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information about the security controls available in Oracle BI Presentation Services.

Where Do I Find Information About Security Tasks?

Oracle Business Intelligence security tasks are covered in this guide, in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition, and in other sources. Table 14-1 summarizes the Oracle Business Intelligence security tasks and where to go for more information.

Table 14-1 Security Tasks in Oracle Business Intelligence

	Task	Location
	
Setting up user authentication with the default authentication provider or an alternative authentication provider

	
"Managing Security Using the Default Security Configuration" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Creating and managing users and groups in the default authentication provider

	
"Managing Users and Groups in the Embedded WebLogic LDAP Server" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Creating application roles and managing policies in the default policy store

	
"Managing the Policy Store" in Oracle Fusion Middleware Application Security Guide

	
Viewing and understanding the default Oracle Business Intelligence permissions used with application roles in the policy store

	
"Default Permissions" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Managing system credentials in the default credential store

	
"Default Credentials" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Applying data access security in offline mode and setting up placeholder application roles

	
"About Applying Data Access Security in Offline Mode"

	
Setting up row-level data security

	
"Setting Up Row-Level Security"

	
Setting repository object permissions

	
"Setting Up Object Permissions"

	
Setting query limits (governors)

	
"Setting Query Limits"

	
Viewing users in the Administration Tool

	
"About the List of Users in the Administration Tool"

	
Setting up single sign-on (SSO)

	
"Enabling SSO Authentication" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Enabling SSL communication

	
"SSL Configuration in Oracle Business Intelligence" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Managing custom authenticators

	
"Authenticating by Using a Custom Authenticator Plug-In" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

Setting Up Row-Level Security

You can choose to set up row-level security in the repository, or in the database. Implementing row-level security in the repository provides many benefits, including the following:

	
All users share the same database connection pool for better performance

	
All users share cache for better performance

	
You can define and maintain security rules that apply across many federated data sources

Implementing row-level security in the database, in contrast, is good for situations where multiple applications share the same database. Note that even when you design and implement row-level security in the database, you should still define and apply object permissions in the repository.

Although it is possible to set up row-level security in both the repository and in the database, you typically do not enforce row-level security in both places unless you have a particular need to do so.

This section contains the following topics:

	
Setting Up Row-Level Security (Data Filters) in the Repository

	
Setting Up Row-Level Security in the Database

Setting Up Row-Level Security (Data Filters) in the Repository

Data filters are a security feature that provide a way to enforce row-level security rules in the repository. Data filters are set up in the repository using the Administration Tool and are applied for a particular application role. You typically do not set up data filters if you have implemented row-level security in the database, because in this case, your row-level security policies are being enforced by the database rather than the Oracle BI Server.

Data filters can be set for objects in both the Business Model and Mapping layer and the Presentation layer. Applying a filter on a logical object impacts all Presentation layer objects that use the object. If you set a filter on a Presentation layer object, it is applied in addition to any filters that might be set on the underlying logical objects.

Figure 14-1 illustrates how data filter rules are enforced in the Oracle BI Server. The security rules are applied to all incoming clients and cannot be breached, even when the Logical SQL query is modified.

In this example, a filter has been applied to an application role. When Anne Green, who is a member of that role, sends a request, the return results are limited based on the filter. Because no filters have been applied to the application roles for the Administrator user, all results are returned. The Oracle BI Server-generated SQL takes into account any data filters that have been defined.

Figure 14-1 Row-Level Security Enforcement in the Oracle BI Server

[image: Description of Figure 14-1 follows]

Description of "Figure 14-1 Row-Level Security Enforcement in the Oracle BI Server"

You should always set up data filters for particular application roles rather than for individual users.

To set up data filters to apply row-level authorization rules for queries:

	
Open your repository in the Administration Tool.

	
Select Manage, then select Identity.

	
In the Identity Manager dialog, in the tree pane, select BI Repository.

	
In the right pane, select the Application Roles tab, then double-click the application role for which you want to set data filters.

Note that if you are in offline mode, no application roles appear in the list unless you have first modified them in online mode. See "About Applying Data Access Security in Offline Mode" for more information.

	
In the Application Role dialog, click Permissions.

	
In the User/Application Role Permissions dialog, click the Data Filters tab.

To create filters, you first add objects on which you want to apply the filters. Then, you provide the filter expression information for the individual objects.

	
To add objects on which you want to apply filters, perform one of the following steps:

	
Click the Add button. Then, browse to locate the object you want, select it, and then click Select.

	
Click the Name field for an empty row. Then, browse to locate the object you want, select it, and then click Select.

	
To enter the filter expression for individual objects, perform one of the following steps:

	
Select the data filter, then click the Expression Builder button. Create the filter expression in Expression Builder, then click OK.

	
Click the Data Filter field for the appropriate filter, then type the filter expression.

For example, you might want to define a filter like "Sample Sales"."D2 Market"."M00 Mkt Key" > 5 to restrict results based on a range of values for another column in the table.

You can also use repository and session variables in filter definitions. Use Expression Builder to include these variables to ensure the correct syntax.

	
Optionally, select a status for each filter from the Status list. You can choose one of the following options:

	
Enabled: The filter is applied to any query that accesses the object.

	
Disabled: The filter is not used and no other filters applied to the object at higher levels of precedence (for example, through an application role) are used.

	
Ignored: The filter is not in use, but any other filters applied to the object (for example, through a different application role) are used. If no other filters are enabled, no filtering occurs.

	
In addition to defining new filters, you can perform other operations in the Data Filters tab. Table 14-2 lists and describes the other buttons and options.

Table 14-2 Data Filters Tab: Buttons and Options

	Option Name	Description
	
Subject Area

	
Select a subject area to only view data filters for that individual subject area, or select All to view all filters.

	
Total Filters

	
Lists the total number of data filters that have been defined for this particular user or application role.

	
Add

[image: Add icon]	
Click Add to open the Browse dialog to add objects on which you want to apply data filters.

	
Delete

[image: Delete icon]	
Select a row and click Delete to remove a filter.

	
Browse

[image: Browse icon]	
Select a row and click Browse to change the object on which the filter is applied.

	
Edit Expression (Expression Builder)

[image: Edit Expression icon]	
Select a row and click Edit Expression to add or change a filter expression for a particular object. You must first add an object before you can apply a filter expression to the row.

	
Find

[image: Find field, Find Down icon, and Find Up icon]	
Enter text in the Find field and click Find Down or Find Up to find a particular string.

	
Click OK, then click OK again to return to the Identity Manager.

Setting Up Row-Level Security in the Database

To set up Oracle Business Intelligence for row-level security that has been implemented in the database, you can configure your connection pools so that the Oracle BI Server passes the credentials for each user to the database. The database then uses the credentials to apply its own row-level security rules to user queries.

Note that the row-level database security described in this section is different from database authentication, a topic discussed in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition. Rather, row-level database security provides database authorization. In other words, it applies access security to particular rows in the database.

Figure 14-2 illustrates how row-level security is enforced in the database for Oracle Business Intelligence queries. The security rules are applied to all incoming clients and cannot be breached, even when the Logical SQL query is modified. In this example, the results returned are different depending on which user generated the query, even though the SQL query generated by the Oracle BI Server is the same. The returned results are based on rules created and enforced in the database.

Figure 14-2 Row-Level Security Enforcement in the Database

[image: Description of Figure 14-2 follows]

Description of "Figure 14-2 Row-Level Security Enforcement in the Database"

In addition to setting up Oracle Business Intelligence for row-level security in the database, you must define your set of users, permissions, and security policies in the database itself. Refer to your database documentation for more information.

To set up Oracle Business Intelligence for row-level access security in the database:

	
Open your repository in the Administration Tool.

	
Double-click the connection pool associated with the database for which you want to set up database-level security.

	
In the General tab of the Connection Pool dialog, select Shared logon, and then enter :USER and :PASSWORD in the User name and Password fields. The :USER and :PASSWORD syntax automatically passes the value of user credentials upon login to the database. Note that the :USER and :PASSWORD syntax does not refer to session variables.

Figure 14-3 shows the General tab of the Connection Pool dialog.

Figure 14-3 Entering Credentials for Database-Level Security in the Connection Pool

[image: Description of Figure 14-3 follows]

Description of "Figure 14-3 Entering Credentials for Database-Level Security in the Connection Pool"

	
Note:

Alternatively, you can use the database session context to pass end user identity to the database. Use a connection pool script to set up session context. Note that this approach does not rely on database authentication.

	
Click OK in the Connection Pool dialog.

	
Double-click the database object for which you want to set up database-level security.

	
In the Database dialog, select Virtual Private Database. Selecting this option ensures that the Oracle BI Server protects cache entries for each user.

	
Click OK in the Database dialog.

After you have set up row-level security in the database, you still need to set up object permissions in the repository for Presentation layer or other objects. You can also set query limits (governors). See "Setting Up Object Permissions" and "Setting Query Limits" for more information.

Setting Up Object Permissions

You can set up object permissions in your repository to control access to Presentation layer and Business Model and Mapping layer objects. You set object permissions using the Administration Tool. There are two approaches to setting object permissions: you can set permissions for particular application roles in the Identity Manager, or you can set permissions for individual objects in the Presentation layer.

This section explains how to set up object permissions for application roles in the Identity Manager. See "Setting Permissions for Presentation Layer Objects" for information about setting object permissions for individual Presentation layer objects.

Setting up object permissions for particular application roles is useful when you want to define permissions for a large set of objects at one time. You should always set up object permissions for particular application roles rather than for individual users.

Figure 14-4 shows how object permissions restrict what users can see. The security rules are applied to all incoming clients and cannot be breached, even when the Logical SQL query is modified. In this example, an application role to which the Administrator belongs has been granted access to the Booked Amount column, so the Administrator can view the returned results. The user Anne Green is not a member of an application role with access to this object and cannot see the column in the Subject Area pane in Answers. Even if the request SQL is modified, results are not returned for this column because of the application role-based object permissions that have been set.

Figure 14-4 Object Permission Enforcement in the Oracle BI Server

[image: Description of Figure 14-4 follows]

Description of "Figure 14-4 Object Permission Enforcement in the Oracle BI Server"

Note the following:

	
If an application role is granted or disallowed permissions on an object from multiple sources (for example, explicitly and through one or more additional application roles), the permissions are applied based on the order of precedence.

	
If you explicitly deny access to an object that has child objects, users who are members of the individual application role are denied access to the child objects. For example, if you explicitly deny access to a particular logical table, you are implicitly denying access to all of the logical columns associated with that table.

	
Object permissions do not apply to repository and session variables, so values in these variables are not secure. Anybody who knows or can guess the name of the variable can use it in an expression in Answers or in a Logical SQL query. Because of this, do not put sensitive data like passwords in session or repository variables.

	
You can control what level of privilege is granted by default to the AuthenticatedUser application role, which is the default application role associated with new repository objects. To do this, set the DEFAULT_PRIVILEGES parameter in the NQSConfig.INI file. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
The AuthenticatedUser application role means "any authenticated user." This role is internal to the Oracle BI repository. It appears in the Permissions dialog for connection pools and Presentation layer objects, but it does not appear in the list of application roles in the Identity Manager.

To set up object permissions for individual application roles:

	
Open your repository in the Administration Tool.

	
Select Manage, then select Identity.

	
In the Identity Manager dialog, in the tree pane, select BI Repository.

	
In the right pane, select the Application Roles tab, then double-click the application role for which you want to set object permissions.

Note that if you are in offline mode, no application roles appear in the list unless you have first modified them in online mode. See "About Applying Data Access Security in Offline Mode" for more information.

	
In the Application Role dialog, click Permissions.

	
In the User/Application Role Permissions dialog, in the Object Permissions tab, select an object by performing one of the following steps:

	
Click the Add button. Then, browse to locate the object you want, select it, and then click Select.

	
Click the Name field for an empty row. Then, browse to locate the object you want, select it, and then click Select.

	
Assign the appropriate permission for each object. You can choose one of the following options:

	
Read: Only allows read access to this object.

	
Read/Write: Provides both read and write access to this object.

	
No Access: Explicitly denies all access to this object.

	
Click OK, then click OK again to return to the Identity Manager.

About Permission Inheritance for Users and Application Roles

Users can have explicitly granted permissions. They can also have permissions granted through membership in application roles, that in turn can have permissions granted through membership in other application roles, and so on. Permissions granted explicitly to a user have precedence over permissions granted through application roles, and permissions granted explicitly to the application role take precedence over any permissions granted through other application roles.

If there are multiple application roles acting on a user or application role at the same level with conflicting security attributes, the user or application role is granted the least restrictive security attribute. Any explicit permissions acting on a user take precedence over any permissions on the same objects granted to that user through application roles.

Filter definitions, however, are always inherited. For example, if User1 is a member of Role1 and Role2, and Role1 includes a filter definition but Role2 does not, the user inherits the filter definition defined in Role1.

Note that you should always define object permissions for application roles rather than for individual users.

Example 14-1 Permission Inheritance 1

You might have a user (User1) who is explicitly granted permission to read a given table (TableA). Suppose also that User1 is a member of Role1, and Role1 explicitly denies access to TableA. The resultant permission for User1 is to read TableA, as shown in Figure 14-5.

Because permissions granted directly to the user take precedence over those granted through application roles, User1 has the permission to read TableA.

Figure 14-5 User Permissions and Application Role Permissions

[image: This image is described in the surrounding text.]

Description of "Figure 14-5 User Permissions and Application Role Permissions"

Example 14-2 Permission Inheritance 2

Consider the situation shown in Figure 14-6.

Figure 14-6 Permissions Example

[image: This image is described in the surrounding text.]

Description of "Figure 14-6 Permissions Example"

These are the resulting permissions:

	
User1 is a direct member of Role1 and Role2, and is an indirect member of Role3, Role4, and Role5.

	
Because Role5 is at a lower level of precedence than Role2, its denial of access to TableA is overridden by the READ permission granted through Role2. The result is that Role2 provides READ permission on TableA.

	
The resultant permissions from Role1 are NO ACCESS for TableA, READ for TableB, and READ for TableC.

	
Because Role1 and Role2 have the same level of precedence and because the permissions in each cancel the other out (Role1 denies access to TableA, Role2 allows access to TableA), the less restrictive level is inherited by User1. In other words, User1 has READ access to TableA.

	
The total permissions granted to User1 are READ access for TableA, TableB, and TableC.

Setting Query Limits

You can manage the query environment by setting query limits (governors) in the repository for particular application roles. You can limit queries by the number of rows received, by maximum run time, and by restricting to particular time periods. You can also allow or disallow direct database requests or the Populate privilege.

You should always set query limits for particular application roles rather than for individual users.

This section contains the following topics:

	
Accessing the Query Limits Functionality in the Administration Tool

	
Limiting Queries By the Number of Rows Received

	
Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods

	
Allowing or Disallowing Direct Database Requests

	
Allowing or Disallowing the Populate Privilege

Accessing the Query Limits Functionality in the Administration Tool

Follow the steps in this section to access the Query Limits tab of the User/Application Role Permissions dialog.

To access the query limits functionality in the Administration Tool for a particular application role:

	
Open your repository in the Administration Tool.

	
Select Manage, then select Identity.

	
In the Identity Manager dialog, in the tree pane, select BI Repository.

	
In the right pane, select the Application Roles tab, then double-click the application role for which you want to set query limits.

Note that if you are in offline mode, no application roles appear in the list unless you have first modified them in online mode. See "About Applying Data Access Security in Offline Mode" for more information.

	
In the Application Role dialog, click Permissions.

	
In the User/Application Role Permissions dialog, click the Query Limits tab.

Limiting Queries By the Number of Rows Received

You can control runaway queries by limiting queries to a specific number of rows.

To limit queries by the number of rows received:

	
Follow the steps in "Accessing the Query Limits Functionality in the Administration Tool" to access the Query Limits tab.

	
In the Max Rows column, type the maximum number of rows for users to retrieve from each source database object.

	
In the Status Max Rows field, select one of the following options for each database:

	
Enable: This limits the number of rows to the value specified. If the number of rows exceeds the Max Rows value, the query is terminated.

	
Disable: Disables any limits set in the Max Rows field.

	
Warn: Does not enforce limits, but logs queries that exceed the set limit in the Query log.

	
Ignore: Limits are inherited from the parent application role. If there is no row limit to inherit, no limit is enforced.

	
Click OK, then click OK again to return to the Identity Manager.

Limiting Queries By Maximum Run Time and Restricting to Particular Time Periods

You can forbid queries during certain time periods, or you can specify the maximum time a query can run on a database.

If you do not select a particular time period, access rights remain unchanged. If you allow or disallow access explicitly in one or more application roles, users are granted the least restrictive access for the defined time periods. For example, if a user is a member of an application role that is explicitly allowed access all day on Mondays, but that user also belongs to another application role that is disallowed access during all hours of every day, then the user has access on Mondays only.

To limit queries by maximum run time, or restrict queries to particular time periods:

	
Follow the steps in "Accessing the Query Limits Functionality in the Administration Tool" to access the Query Limits tab.

	
To specify the maximum time a query can run on a database, in the Max Time (Minutes) column, enter the maximum number of minutes you want queries to run on each database object. Then, in the Status Max Time field, select one of the following options for each database:

	
Enable: This limits the time to the value specified.

	
Disable: Disables any limits set in the Max Time field.

	
Warn: Does not enforce limits, but logs queries that exceed the set time limit in the Query log.

	
Ignore: Limits are inherited from the parent application role. If there is no time limit to inherit, no limit is enforced.

	
To restrict access to a database during particular time periods, in the Restrict column, click the Ellipsis button. Then, in the Restrictions dialog, perform the following steps:

	
To select a time period, click the start time and drag to the end time.

	
To explicitly grant access, click Allow.

	
To explicitly deny access, click Disallow.

	
Click OK.

	
Click OK, then click OK again to return to the Identity Manager.

Allowing or Disallowing Direct Database Requests

You can allow or disallow the ability to execute direct database requests for a particular application role. For the selected role, this privilege overrides the property Allow direct database requests by default for the database object in the Physical layer.

To set the ability to execute direct database requests:

	
Follow the steps in "Accessing the Query Limits Functionality in the Administration Tool" to access the Query Limits tab.

	
For each database object, in the Execute Direct Database Requests field, select one of the following options:

	
Allow: Explicitly grants the ability to execute direct database requests for this database.

	
Disallow: Explicitly denies the ability to execute direct database requests for this database.

	
Ignore: Limits are inherited from the parent application role. If there is no limit to inherit, then direct database requests are allowed or disallowed based on the property Allow direct database requests by default for the database object.

	
Click OK, then click OK again to return to the Identity Manager.

Allowing or Disallowing the Populate Privilege

When a criteria block is cached, the Populate stored procedure writes the Cache/Saved Result Set value to the database. You can grant or deny this privilege to particular application roles. For the selected application role, this privilege overrides the property Allow populate queries by default for the database object in the Physical layer.

Any Oracle Marketing Segmentation user who writes a cache entry or saves a result set must be a member of an application role that has been assigned the POPULATE privilege for the target database. For more information about marketing cache, see the topic about setting up cache for target levels in the documentation for the Oracle Marketing Segmentation application.

To allow or disallow the Populate privilege:

	
Follow the steps in "Accessing the Query Limits Functionality in the Administration Tool" to access the Query Limits tab.

	
For each database object, in the Populate Privilege field, select one of the following options:

	
Allow: Explicitly grants the Populate privilege for this database. For all Marketing data warehouses, select Allow.

	
Disallow: Explicitly denies the Populate privilege for this database.

	
Ignore: Limits are inherited from the parent application role. If there is no limit to inherit, then the Populate privilege is allowed or disallowed based on the property Allow populate queries by default for the database object.

	
Click OK, then click OK again to return to the Identity Manager.

About Applying Data Access Security in Offline Mode

It is strongly recommended that you perform data access security tasks in the Administration Tool in online mode. If you must apply data access security in offline mode, be aware that users and application roles do not appear in the Administration Tool in offline mode unless you have first modified them in the Administration Tool in online mode.

For example, if you open the Administration Tool in offline mode without first making any changes in online mode, you will see zero users and application roles defined. However, if you first modify the users and application roles in online mode (for example, applying object permissions or setting query limits), they will subsequently be available in the Administration Tool in offline mode.

In online mode, you can retrieve the latest list of application roles from the policy store at any time by selecting Action, then selecting Synchronize Application Roles in the Identity Manager.

Setting Up Placeholder Application Roles for Offline Repository Development

Application roles are created and managed in the policy store using the Oracle WebLogic Administration Console and Fusion Middleware Control. These application roles are displayed in the Administration Tool in online mode so that you can use them to set data filters, object permissions, and query limits for particular roles. The application roles in the policy store are retrieved by the Oracle BI Server when it starts.

In some cases, you may want to proceed with setting up data access security in your repository for application roles that have not yet been defined in the policy store. You can do this by creating placeholder application roles in the Administration Tool, then proceeding with setting up data access security in the repository.

If you create placeholder application roles in the Administration Tool, you must eventually add them to the policy store. Run the Consistency Checker to identify application roles that have been defined in the Administration Tool, but that have not yet been added to the policy store. Be sure to use the same name in the policy store that you used for the placeholder role in the Administration Tool.

	
Note:

Use caution when defining and using placeholder roles. If you make changes to a role in offline mode that also exists in the policy store, the changes will be overwritten the next time you connect to the Oracle BI Server.

To create placeholder application roles in the Administration Tool:

	
Open your repository in the Administration Tool.

	
Select Manage, then select Identity.

	
In the Identity Manager dialog, select Action > New > Application Role.

	
In the Application Role dialog, provide the following information:

	
Name: Provide a name for the role.

	
Display Name: Enter the display name for the role.

	
Description: Optionally, provide a description of this application role.

	
Members: Use the Add and Remove buttons to add or remove users and other application roles as appropriate.

	
Permissions: Set object permissions, data filters, and query limits for this application role as appropriate. Refer to the other sections in this chapter for detailed information.

	
Click OK to return to the Identity Manager.

To check for application roles that need to be added to the policy store:

	
Open your repository in online mode in the Administration Tool.

	
Select File, then select Check Global Consistency.

	
Note any entries related to application roles, then add the appropriate roles to the policy store as appropriate. See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for information about adding application roles to the policy store.

	
Optionally, select individual rows and click Copy to copy the entries to a text file.

Alternatively, you can check an individual application role by right-clicking the application role in the Identity Manager dialog and then selecting Check Consistency.

About the List of Users in the Administration Tool

The Identity Manager in the Administration Tool provides a list of users that have been defined for your system. The list of users is retrieved from your authentication provider. The set of users is refreshed when the Oracle BI Server is restarted. To see the user list, select BI Repository in the Identity Manager navigation tree, and then select the Users tab in the right pane.

In online mode, by default, no users are retrieved, because the list of users might be very large. Select Action, then select Set Online User Filter to specify the set of users you want to retrieve.

The filter is empty by default, which means that no users are retrieved. Enter * to retrieve all users, or enter a combination of characters for a specific set of users, such as A* to retrieve all users whose names begin with the letter A. The filter is not case-sensitive.

In offline mode, users do not appear in the list unless you have first modified them in the Administration Tool in online mode. Because of this, you might not see any users in the Administration Tool in offline mode.

Double-click a user in the Users list to open the User dialog. You can do the following in this dialog:

	
In the User tab, you can view the name, display name, and description for the user, as well as the application roles to which this user belongs. You can also set the query logging level for this user. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about setting the query logging level.

	
In the Logons tab, you can provide a list of data source-specific logons. In this tab, you can provide a mapping of credentials that you want to be passed to data sources for this user.

This feature is used when you set up a data source connection with no shared connection pool, so that individual user names are passed directly to data sources. Rather than passing the Oracle Business Intelligence user credentials to the data source, you can map individual users to separate data source-specific credentials.

	
Important:

Do not set object permissions, data filters, or query limits for individual users using the Permissions button. Always use application roles rather than individual users to secure data.

6 Working with ADF Business Component Data Sources

Oracle Business Intelligence supports connecting to ADF Business Components as data sources. This enables Oracle Business Intelligence users to query data from any application that is built using the ADF Framework. For example, because Oracle CRM applications are developed using the ADF Framework, Oracle Business Intelligence users can report on CRM data using an ADF Business Component data source that implements the required ADF Application Programming Interface (API).

By using the ADF components as a data source to the Oracle BI Server, users can quickly integrate operational reporting with any application that is built on top of the ADF Framework.

This chapter contains the following topics:

	
What Are ADF Business Components?

	
What Happens During Import?

	
About Specifying a SQL Bypass Database

	
Setting Up ADF Business Component Data Sources

	
Importing Metadata from ADF Business Component Data Sources

	
Using the BI Extender to Propagate Flex Object Changes

	
Setting Up and Using ApplCore Grants for ADF Data Security

	
Enabling the Ability to Pass Custom Parameters to the ADF Application

	
Propagating Labels and Tooltips from ADF Business Component Data Sources

What Are ADF Business Components?

Oracle Application Development Framework (Oracle ADF) is an object-relational framework that can be used to create J2EE business services and expose underlying database objects. This framework provides an abstraction layer that enables application developers to build applications quickly and efficiently.

When you use Oracle ADF to build service-oriented Java EE applications, you implement your core business logic as one or more business services. These back-end services provide clients with a way to query, insert, update, and delete business data as required, while enforcing appropriate business rules. ADF Business Components are prebuilt application objects that provide a ready-to-use implementation of Java EE design patterns and best practices.

The ADF model is represented through the ADF Business Component constructs called Entity Objects and View Objects, usually constructed and defined during design time:

	
Entity Objects: ADF framework components that represent a row in a database table and simplify modifying its data. Importantly, it enables you to encapsulate domain business logic for those rows to ensure your business policies and rules are consistently validated.

	
View Objects: ADF framework components that encapsulate a SQL query and simplify working with its results. In addition to read-only view objects, there are entity-based view objects that support updatable rows. The view object queries just the data needed for the client-facing task at hand, then cooperates with one or more entity objects in your business domain layer to automatically validate and save changes made to its view rows. Like the read-only view object, an entity-based view object encapsulates a SQL query, can be linked into master/detail hierarchies using view links, and can be used in the data model of your application modules.

Applications built using ADF obtain their data by querying the defined View Objects using the ADF APIs.

The ADF model also includes an application module, which is the transactional component that UI clients use to work with application data. It defines an updatable data model along with top-level procedures and functions (called service methods) related to a logical unit of work related to an end-user task.

The application module serves as a container for multiple View Objects and Entity Objects, and also contains configuration related to the JDBC data source.

About Operational Reporting with ADF Business Components

You can use Oracle Business Intelligence integration with ADF Business Components to generate reports on data within your applications. For example, you can generate reports based on expense report data entered into an Expense Application.

To do this, you would first import the Expense Application metadata into the Oracle BI repository using the Administration Tool, then map the data from the Physical layer to the Business Model and Mapping layer and Presentation layer. After you restart the Oracle BI Server and reload the metadata into Oracle BI Presentation Services, you can log in to Oracle BI Answers and drag and drop the columns to generate a report on the Expense Application data. For example, you can select columns to view a report of your expenses grouped by category.

What Happens During Import?

On import, the required physical tables and complex joins are automatically created. The instances (ViewObject and ViewLink) are imported into Oracle Business Intelligence. During query execution, the definitions retrieved from these instances are used to create the CompositeVO in ADF.These complex joins are 'dummy joins' and are not executed in Oracle Business Intelligence. Instead, they denote ViewLink instances that connect pairs of View Objects in the ADF model. The physical table and complex join names correspond to the fully qualified ViewObject and ViewLink instance names, respectively. This convention allows arbitrary nesting of ApplicationModules in the ADF model.

Note that the External Expression field in the Complex Join dialog for ADF data sources is populated with the join condition defined in the view link.

The name of the automatically generated joins follow a naming convention similar to ViewObjectName1_ViewObjectName2 (for example, AppModuleAM.AP_VO1_AppModuleAM_BU_VO1). The ViewLink instance name appears in the ViewLink Name field of the Complex Join dialog.

The complex joins are only created automatically if a ViewLink instance is available. They are not created for ViewLink definitions. Joins using ViewLink definitions must be created manually. To do this, specify the ViewLink definition name in the ViewLink Name field of the Complex Join dialog.

Alternatively, Oracle Business Intelligence joins between VOs in different ApplicationModules are created upon import from ADF if custom properties are defined on the ApplicationModule. Note the following:

	
The property name format is BI_VIEW_LINK_property_name

	
The property value format is source_VO_instance_name, ViewLink_definition_name, destination_VO_instance_name

Be sure to use the fully qualified VO instance names for the source and destination VOs, as well as the fully qualified package name for the ViewLink definition.

About Specifying a SQL Bypass Database

The Oracle BI Server can automatically create composite View Objects at run time, so that an ad-hoc BI query can reference multiple View Objects in the ADF layer. For improved performance, a SQL bypass query is generated that incorporates the projection columns, filters, and joins required by the BI query.

The SQL Bypass feature directly queries the database so that aggregations and other transformations are pushed down where possible, reducing the amount of data streamed and worked on in Oracle Business Intelligence. When using a SQL Bypass database, the Oracle BI Server gets the VO query from the ADF Business Component data source and then wraps it with the aggregations in the Logical SQL query. The query, including the aggregations, is then executed in the database. Because the database computes the aggregation and less rows are streamed back to Oracle Business Intelligence, using a SQL Bypass database can result in significant performance gains.

Multiple View Objects are modeled as separate BI physical tables and are connected with dummy complex joins. These joins only represent the ViewLinks in the ADF model and are not executed by the Oracle BI Server.

You can specify the name of the SQL Bypass database in the connection pool for the ADF Business Component data source. The SQL Bypass database must be a physical database in the Physical layer of the repository. The database object for the SQL Bypass database must have a valid connection pool, with connection information that points to the same database that is being used by the JDBC Data source defined in the Oracle WebLogic Server that runs the ADF application.

The SQL Bypass database does not need to have any tables under it. After a valid database name is supplied, the SQL Bypass feature is enabled for all queries against that ADF database.

Setting Up ADF Business Component Data Sources

This section explains how to configure your ADF Business Components for use with Oracle Business Intelligence.

See "System Requirements and Certification" for information about supported versions.

This section contains the following topics:

	
Creating a WebLogic Domain

	
Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server

	
Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper

	
Setting Up a JDBC Data Source in the WebLogic Server

	
Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

Creating a WebLogic Domain

Create a WebLogic Domain for your ADF Business Components that supports WebLogic Server, Oracle Application Core (Webapp), and Oracle JRF.

To create a WebLogic domain that supports the required components:

	
Start the WebLogic Configuration Wizard. For example, on Windows, run MW_HOME\wlserver_10.3\common\bin\config.cmd.

	
Select Create a new WebLogic domain and click Next.

	
On the Select Domain Source screen, ensure that Basic WebLogic Server Domain, Oracle JRF, and Oracle Application Core (Webapp) are selected.

	
Follow the remaining steps in the wizard, providing values appropriate for your environment.

	
Click Create on the Configuration Summary screen to create the domain.

You can start and stop the Oracle WebLogic Server for this domain using command-line scripts in the domain directory. For example, on Windows, use the following:

	
MW_HOME\user_projects\domains\domain_name\bin\startWebLogic.cmd

	
MW_HOME\user_projects\domains\domain_name\bin\stopWebLogic.cmd

Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server

The OBIEEBroker shared library is installed as part of your Oracle Business Intelligence installation. You need to deploy the OBIEEBroker library as a shared library in Oracle WebLogic Server by installing it (making its physical file or directory known to Oracle WebLogic Server) and starting it. After the library has been installed and started, other deployed modules can reference the library.

To deploy OBIEEBroker as a shared library in Oracle WebLogic Server:

	
Ensure that Oracle WebLogic Server is running. If it is not running, start it. For example, on Windows, run MW_HOME\user_projects\domains\your_domain\bin\startWebLogic.cmd.

	
Open the WebLogic Server Administration Console. For example, if your Oracle WebLogic Server is running locally on port 7001, go to http://localhost:7001/console.

	
Log in to the WebLogic Server Administration Console with the credentials you created when you set up your WebLogic domain.

	
In the Change Center, click Lock & Edit.

	
On the Home Page, in the left pane, click Deployments.

	
In the right pane, click Install.

	
Using the Install Application Assistant, locate the OBIEEBroker EAR file. You can find this file at:

ORACLE_HOME\bifoundation\javahost\lib\obisintegration\adf\
oracle.bi.integration.adf.ear

	
Click Next.

	
Select Install this deployment as a library and click Next.

	
Select the servers and/or clusters to which you want to deploy the OBIEEBroker library. Make sure to select all servers and clusters to which modules or applications that reference the library are deployed.

	
Click Next.

	
You can optionally update settings about the deployment. Typically, the default values are adequate. Click Help for more information.

	
Click Next, then click Finish to complete the installation.

	
In the Change Center, click Activate Changes.

Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper

Follow the steps in this section to deploy the application EAR file to Oracle WebLogic Server from JDeveloper. Before beginning this procedure, ensure that the following conditions are true:

	
You have an ADF Model project that contains AMs and VOs that will be exposed to Oracle Business Intelligence.

	
You have deployed OBIEEBroker as a shared library in Oracle WebLogic Server. See "Deploying OBIEEBroker as a Shared Library in Oracle WebLogic Server" for more information.

	
Oracle WebLogic Server is running.

To deploy the application EAR file to Oracle WebLogic Server from JDeveloper:

	
Start JDeveloper. For example, on Windows, run MW_HOME\jdeveloper\jdev\bin\jdev.exe.

	
Select File, then select Open to open the project that contains your ADF Business Components in JDeveloper. If prompted, allow JDeveloper to migrate the project to the latest version.

	
Create a new Application Module configuration, as follows:

	
In the Model project, double click the application module, then click the Configurations tab for that application module.

	
Create a new configuration with the following characteristics:

	
Select JDBC DataSource for Connection Type.

	
Keep the default DataSource Name (for example, java:comp/env/jdbc/ApplicationDBDS).

When you set up the JDBC data source in Oracle WebLogic Server in a later step, you use part of this DataSource Name as the JNDI name required by Oracle WebLogic Server. The JNDI name is the DataSource Name without the java:comp/env context prefix (for example, jdbc/ApplicationDBDS).

	
Create a Business Component Archive deployment provide, as follows:

	
In the Projects window, right-click the Model project and choose New.

	
Select Deployment Profiles under General in the left pane, then choose Business Components Archive in the right pane and click OK.

	
Provide a name for the deployment profile (for example, MyApplication_Archive) and click OK.

	
On the Deployment page, click OK.

	
In the Projects window, right-click the Model project and select Deploy > your_deployment_profile_name > Deploy, or use the deployment wizard by selecting Deploy to File.

After the project has been deployed, two jar files are created in the deploy directory for the Model project (for example, MyApplication_Archive_Common.jar and MyApplication_Archive_MiddleTier.jar).

	
Create a new Web Project for the application, as follows:

	
Right-click the global application and select New Project.

	
Select Projects from the left pane, then select Web Project from the right pane.

	
Provide a project name (for example, OBIEEBroker).

	
Click Next until you reach the Web Project Profile page.

	
Modify the Java EE Context Root to a name that better represents your application (for example, MyApplication).

This value determines the URL that you use to connect to the application from Oracle Business Intelligence (for example, http://localhost:7001/MyApplication/obieebroker).

	
Edit the Profile Dependencies of the WAR deployment, as follows:

	
Right-click the Web Project you just created (for example, OBIEEBroker) and select Project Properties.

	
From the left pane, select Deployment. Then, open the WAR File deployment profile on the right pane.

	
Select Profile Dependencies from the left pane. Then, on the right pane, select the Common and MiddleTier deployment profiles of your Model project.

Following this step ensures that the Business Component Archives for the Model project are included in the WAR file.

	
Expand the Web Project and open web.xml. Then, go to the source view of the file.

	
In the web.xml source, replace the content within the <web-app> element with the following:

<context-param>
 <description>This holds the Principals (CSV) that a valid end user should
have (at least one) in order to query the ADF layer from BI.</description>
 <param-name>oracle.bi.integration.approle.whitelist</param-name>
 <param-value>Application_Roles_List</param-value>
</context-param>

<filter>
 <filter-name>ServletADFFilter</filter-name>
 <filter-class>oracle.adf.share.http.ServletADFFilter</filter-class>
</filter>

<filter-mapping>
 <filter-name>ServletADFFilter</filter-name>
 <servlet-name>OBIEEBroker</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
</filter-mapping>

<servlet>
 <servlet-name>OBIEEBroker</servlet-name> <servlet-class>oracle.bi.integration.adf.v11g.obieebroker.OBIEEBroker</servlet-class>
</servlet>

<servlet-mapping>
 <servlet-name>OBIEEBroker</servlet-name>
 <url-pattern>/obieebroker</url-pattern>
</servlet-mapping>

Following this step ensures that the OBIEEBroker servlet will be used to access your application from Oracle Business Intelligence

For application_roles_list, provide a list of application roles in CSV form. For example:

<param-value>FBI_TRANSACTION_ANALYSIS_GENERIC_DUTY, OBIA_ANALYSIS_GENERIC_DUTY,
OBIA_EXTRACT_TRANSFORM_LOAD_DUTY, FUSION_APPS_BI_APPID</param-value>

If you provide a list of application roles, a user's application role is checked before access is allowed to the application. Note that this run-time check requires the following grant to be present in the domain_name/config/fmwconfig/system-jazn-data.xml file for the WebLogic domain:

<grant>
 <grantee>
 <codesource>
 <url>file:${domain.home}/servers/${weblogic.Name}/tmp/
 _WL_user/oracle.bi.integration.adf/-</url>
 </codesource>
 </grantee>
 <permissions>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>IdentityAssertion</name>
 <actions>execute</actions>
 </permission>
 <permission>
 <class>oracle.security.jps.JpsPermission</class>
 <name>AppSecurityContext.setApplicationID.obi</name>
 </permission>
 </permissions>
</grant>

If you do not want application roles to be checked by the OBIEEBroker servlet, use DISABLE_WHITELIST_ROLE_CHECK as the value for the <context-param> in web.xml. For example:

<param-value>DISABLE_BI_WHITELIST_ROLE_CHECK</param-value>

	
Create an EAR deployment profile for the application, as follows:

	
Right-click the global application and select Application Properties.

	
From the left pane, select Deployment, then click New on the right pane to create a new deployment profile.

	
For Archive Type, select EAR File. Then, provide a name for the deployment profile (for example, MyApplication).

The deployment profile name is used as the name displayed in the list of deployments in Oracle WebLogic Server.

	
From the left pane, select Application Assembly. Then, on the right pane, select the webapp deployment profile of your Web Project.

Following this step ensures that the WAR file from your Web Project is included in the EAR file.

	
Under Application Resources, select Descriptors > META-INF > weblogic-application.xml.

	
On the left, select the Libraries tab.

	
Create two new Shared Library References, as follows:

	
Create the first Shared Library Reference with the following characteristics:

	
Library Name: oracle.bi.integration.adf

	
Implementation Version: 11.1.1.2.0

	
Create the second Shared Library Reference with the following characteristics:

	
Library Name: oracle.applcore.model

	
Implementation Version: 11.1.1.0.0

These two Shared Library References create the following entries in the weblogic-application.xml file for the application:

<library-ref>
 <library-name>oracle.bi.integration.adf</library-name>
 <implementation-version>11.1.1.2.0</implementation-version>
</library-ref>
<library-ref>
 <library-name>oracle.applcore.model</library-name>
 <implementation-version>11.1.1.0.0</implementation-version>
</library-ref>

	
Deploy the EAR file to Oracle WebLogic Server by right-clicking the global application, then selecting Deploy > EAR_deployment_profile_name. From the dialog that appears, select Deploy to Application Server and then follow the instructions in the wizard.

	
To verify that the application has been deployed, log in to the WebLogic Server Administration Console and click Deployments under Your Deployed Resources. Verify that your application appears in the list (for example, obieebroker_app_name).

Setting Up a JDBC Data Source in the WebLogic Server

You must set up a JDBC data source in Oracle WebLogic Server for your application.

To set up a JDBC data source in Oracle WebLogic Server:

	
Ensure that Oracle WebLogic Server is running. If it is not running, start it. For example, on Windows, run MW_HOME\user_projects\domains\your_domain\bin\startWebLogic.cmd.

	
Open the WebLogic Server Administration Console. For example, if your Oracle WebLogic Server is running locally on port 7001, go to http://localhost:7001/console.

	
Log in to the WebLogic Server Administration Console with the credentials you created when you set up your WebLogic domain.

	
On the Home Page, select JDBC, then select Data Sources.

	
Click New.

	
Provide information for your data source. For Name and JNDI Name, provide the DataSource Name you specified in the Application Module configuration for the application, without the java:comp/env context prefix (for example, jdbc/ApplicationDBDS). In addition, make sure to select the target on which you want to deploy the data source before exiting the wizard.

	
Click Finish when you are done providing JDBC data source settings.

Setting the Logging Level for the Deployed Application in Oracle WebLogic Server

The log file for the server to which your application is deployed (server_name-diagnostic.log) records information about your deployed application. You can find this file in the server-specific directory within your domain. For example, on Windows, the log file for the AdminServer is located in:

MW_HOME\user_projects\domains\your_domain\servers\AdminServer\logs

To set the logging level for your deployed application:

	
Open the Oracle WebLogic Server file logging.xml for editing. You can find this file in:

MW_HOME\user_projects\domains\your_domain\config\fmwconfig\servers\server_name

	
Within the <loggers> element, add the following child elements:

<logger name="oracle.bi.integration.adf" level="LOG_LEVEL"/>
<logger name="oracle.bi.integration.adf.v11g.obieebroker" level="LOG_LEVEL"/>

Log levels include SEVERE, WARNING, INFO, CONFIG, FINE, FINER, and FINEST. Refer to the Oracle WebLogic Server documentation for information about logger levels.

	
Save and close the file.

	
Restart Oracle WebLogic Server.

Importing Metadata from ADF Business Component Data Sources

This section describes different import scenarios for ADF Business Component data sources. You must complete the steps in "Setting Up ADF Business Component Data Sources" before you can import metadata from ADF sources.

This section contains the following topics:

	
Performing an Initial Import from ADF Business Component Data Sources

	
Using Incremental Import to Propagate Flex Object Changes

	
Automatically Mapping Flex Object Changes to the Logical Model

Performing an Initial Import from ADF Business Component Data Sources

This section describes how to use the Import Metadata Wizard to perform an initial import from ADF Business Component data sources.

To import metadata from an ADF Business Component data source:

	
In the Administration Tool, select File, then select Import Metadata. The Import Metadata Wizard appears.

	
Note:

If you have already defined an existing ADF Business Component data source and connection pool, you can right-click the connection pool in the Physical layer and select Import Metadata. The Import Metadata Wizard appears with the information on the Select Data Source screen pre-filled.

Figure 6-1 shows the Import Metadata Wizard.

Figure 6-1 Import Metadata Wizard: ADF Business Component Data Source

[image: Description of Figure 6-1 follows]

Description of "Figure 6-1 Import Metadata Wizard: ADF Business Component Data Source"

	
In the Select Data Source screen, select OracleADF_HTTP for Connection Type. Then, provide the following values:

	
Select New Connection, or select Existing Connection if you already have a connection pool for this data source. Click Browse to locate and select an existing connection pool. If you select Existing Connection, you do not provide information for Data Source, AppModule Definition, AppModule Config, or URL, and the User Name and Password fields are prefilled.

	
Keep the Data Source field blank to use the default JDBC data source configured in the application module. You only need to provide data source information (a JDBC data source name, such as jdbc/nWindORA05) if you want to use a different data source than the one set up in the application module.

	
For AppModule Definition, provide the fully qualified Java package name of the Root Application Module to which you want to connect, such as oracle.apps.fii.receivables.model.RootAppModule, or snowflakesales.SnowflakeSalesApp.

	
For AppModule Config, provide the name of the configuration you want to use in your connection, such as RootAppModuleShared or SnowflakeSalesAppLocal. See step 3 of "Deploying the Application EAR File to Oracle WebLogic Server from JDeveloper" for more information.

	
For URL, provide the URL to the Oracle Business Intelligence broker servlet, in the format:

http://host:port/APP_DEPLOYMENT_NAME/obieebroker

For example:

http://localhost:7001/MyApp/obieebroker

The URL is case-sensitive.

	
For User Name and Password, provide a valid user name and password for the Oracle ADF application. The user name and password must be set up and authenticated in the Oracle WebLogic Server security realm.

For Oracle Fusion Applications, you must connect as the FUSION_APPS_BI_APPID user.

When you have finished providing information in the Select Data Source screen, click Next. The Select Metadata Objects screen appears.

	
Select the objects you want to import in the Data source view and move them to the Repository View, using the > (Import selected) or >> (Import all) buttons. You can also move objects from the Repository View back to the Data source view, using the < (Remove selected) and << (Remove all) buttons.

To search for a particular item, enter a keyword in the Find box and then click Find Down or Find Up.

Select Show complete structure to view all objects, including those that have already been imported. Deselecting this option shows only the objects that are available for import. When this option is selected, objects that have already been imported appear grayed out.

If this import is creating a new connection to the data source, when you move the items from the Data source view to the Repository View list, the Connection Pool dialog opens, showing the values that you provided in the Select Data Source screen of the Import Metadata Wizard. Optionally, click the Miscellaneous tab of the Connection Pool dialog and provide the name of a SQL Bypass database in the SQL Bypass Database field. Then, click OK. If you do not want to specify a SQL Bypass database, click Cancel.

See "About Specifying a SQL Bypass Database" for more information.

	
Note:

When importing flexfields from Oracle Fusion Applications sources, you must always import both the name_ and name_c attributes for each segment. The name_ attribute contains the value. The name_c attribute contains the code of the value set that the value comes from. Both attributes are mapped to the corresponding dimension VO. You typically use the name_ attribute in reports.

For DFF segments, you can also optionally import:

	
DESC_name_ attribute: contains a description of the value

	
TRAN_name_ attribute: contains translated values, when available

	
Click Finish to close the wizard, or click Next to continue to the Map to Logical Model screen. See "Automatically Mapping Flex Object Changes to the Logical Model" for more information.

	
To validate that your import was successful, expand the database object for the ADF Business Component data source in the Physical layer. Then, right-click a physical table and click View Data. If the appropriate data is displayed, the import completed successfully.

Using Incremental Import to Propagate Flex Object Changes

If you make changes to flexfields in your ADF applications, you can use the Import Metadata Wizard in the Administration Tool to incrementally import the changes to the Physical layer of the Oracle BI repository.

	
Note:

See also the following resources in Oracle Fusion Applications Developer's Guide on designating flexfields as business intelligence-enabled:

	
"Preparing Descriptive Flexfield Business Components for Oracle Business Intelligence"

	
"How to Prepare Key Flexfield Business Components for Oracle Business Intelligence"

The Import Metadata Wizard includes a synchronization feature for ADF Business Component data sources that enables you to import only the changes made to objects. The synchronization feature detects the changed objects, including new joined dimensions (KFF) and new attributes (DFF), so that they can be added automatically, without you having to search for them. The synchronization feature detects the following:

	
Changes in columns

	
Additions or deletions of tables and columns

	
Additions of keys and foreign keys

	
Newly joined tables

Note that new tables that are joined to any existing table are only imported when you select the option Automatically include any missing joined objects on the Select Metadata Objects screen.

After import, the ADF data is modeled as shown in Table 6-1.

Table 6-1 How the ADF Metadata is Modeled in the Oracle BI Repository

	ADF Metadata	Imported BI Metadata
	
Root Application Module

	
Database

	
View Objects

	
Physical Tables

	
View Object Attribute

	
Physical Column

	
View Object Key

	
Physical Key

	
View Links

	
Physical Joins

Note that as data is imported incrementally, modifications to properties of attributes are detected and propagated. For example, if an attribute changes its data type, that change is propagated to the physical layer objects.

To incrementally import metadata for ADF Business Component data sources:

	
In the Administration Tool, in the Physical layer, right-click the connection pool for your ADF OLTP source and select Import Metadata.

The Import Metadata Wizard is displayed, starting at Step 3, Select Metadata Objects.

Figure 6-2 shows the Select Metadata Objects screen of the Import Metadata Wizard.

Figure 6-2 Select Metadata Objects Screen: ADF Business Component Data Source

[image: Description of Figure 6-2 follows]

Description of "Figure 6-2 Select Metadata Objects Screen: ADF Business Component Data Source"

	
Click Synchronize to locate and automatically select all recent changes for import. The Synchronize button is located in the upper right corner of the screen, above the Repository View.

	
Review the selected metadata to locate the new attributes.

	
Click Finish to close the wizard, or click Next to continue to the Map to Logical Model screen. See "Automatically Mapping Flex Object Changes to the Logical Model" for more information.

Automatically Mapping Flex Object Changes to the Logical Model

After importing changes to flexfields in your ADF application, you can use the Map to Logical Model screen of the Import Metadata Wizard in the Administration Tool to automatically propagate the changes to the Business Model and Mapping layer.

If needed, you can override the default mapping behavior during this step by renaming logical tables, splitting a VO into multiple tables, combining multiple VOs into a single logical table, and so on.

To automatically map flex object changes to the logical model:

	
In the Administration Tool, in the Physical layer, right-click the connection pool for your ADF OLTP source and select Import Metadata.

	
Complete the Select Metadata Objects screen and click Next. See "Using Incremental Import to Propagate Flex Object Changes" for more information about this screen.

	
In the Map to Logical Model screen, the Table Mapping and Column Mapping grids display the results of a default drag-and-drop. You can keep the default behavior, or customize the behavior for your needs. For example, you might want to rename tables and columns in the Business Model and Mapping layer, map to an existing logical table, or map a logical column to multiple source columns.

Note that the Column Mapping grid shows alias columns as well as regular columns, so that you can handle customized mappings that include alias columns. The Table Mapping grid enables a single physical table to map to multiple logical tables, and the reverse.

The Table Mapping grid includes a VO Type column. Options include Normal, ETL Only, and Query Only. ETL Only VOs exist only to extend the ETL mappings, and are not used for queries. Logical table sources that reference imported VOs of this type are marked as disabled in the Business Model and Mapping layer. Query Only VOs are only used for queries, and are not passed to the BI Extender for extension into the data warehouse.

The Table Mapping grid also includes a Hierarchy column. Select this option for objects that are hierarchies.

Select Create Logical Joins if the imported tables are being mapped to a new business model that will be created during the Map to Logical Model step. In other words, select this option when the imported logical joins do not already exist. Do not select this option for business models that already have the required logical joins in place. Doing so will create erroneous multiple logical joins.

Figure 6-3 shows the Map to Logical Model screen.

Figure 6-3 Map to Logical Model Screen of Import Metadata Wizard

[image: Description of Figure 6-3 follows]

Description of "Figure 6-3 Map to Logical Model Screen of Import Metadata Wizard"

	
Click Finish to close the wizard, or click Next to continue to the Publish to Warehouse screen. See "Publishing Changes to the Data Warehouse and Propagating Changes to the Repository" for more information.

Manually Mapping Flex Object Changes to the Logical Model

You can choose to skip the logical mapping step in the Import Metadata Wizard, and instead drag and drop the physical objects to the Business Model and Mapping layer. The Administration Tool supports incremental drag-and-drop for ADF Business Component data sources, which enables physical database and schema objects to be dragged and dropped into an existing business model, resulting in updates made only for the incremental changes.

Note that the behavior in previous releases was to create new logical objects for every physical object that was dragged and dropped. The new logic includes data source-specific default rules that can enable, for example, logical dimensions and hierarchies to be automatically created.

Using the BI Extender to Propagate Flex Object Changes

You can configure and enable the BI Extender functionality to propagate changes made on Flex objects to your data warehouse.

This section contains the following topics:

	
About Propagating Changes to Flex Objects to the Data Warehouse

	
Performing Preconfiguration Tasks for the BI Extender

	
Running the BI Extender in a Secured Environment

	
Publishing Changes to the Data Warehouse and Propagating Changes to the Repository

	
Setting Up XSL Transform Files to Customize XML Output to the Oracle BI Extender

About Propagating Changes to Flex Objects to the Data Warehouse

You can use the Administration Tool to propagate changes in your ADF applications to Informatica, DAC, and the Physical and Business Model and Mapping layers of the Oracle BI Repository. In this scenario, the BI Extender is the driver that coordinates the information exchange between the ADF objects and the other targets.

The BI Extender feature supports changes made to flexfields in ADF business component data sources. Flexfields are columns within tables that can be reused based on a user-specified context. There are two types of flexfields:

	
Key (KFF). These objects are modeled as dimension VOs. KFF segments are imported as new dimensions joined to an existing fact table.

	
Descriptive (DFF). These objects are modeled as VO attributes. DFF segments are imported as new attributes (on both facts and dimensions) on existing tables.

The BI Extender uses the JavaHost service to propagate flexfield changes. Because of this, JavaHost must be running for this feature to work, and the NQSConfig.INI file on the Administration Tool computer must be configured for the correct JavaHost location.

Figure 6-4 BI Extender Orchestration of Flexfield Object Changes

[image: Description of Figure 6-4 follows]

Description of "Figure 6-4 BI Extender Orchestration of Flexfield Object Changes"

In Figure 6-4, numbers indicate the steps in the flexfield change propagation process. These numbers represent the following steps:

	
The Import Metadata Wizard sends XML containing the flexfield object changes to the BI Extender.

	
XSL transform files are applied to the base XML.

	
The BI Extender retrieves information about mappings from the Informatica repository.

	
The BI Extender uses the mapping information to propagate the flexfield object changes to the Informatica Server.

	
The BI Extender propagates the changes to DAC.

	
The BI Extender propagates the changes to the database object for the data warehouse in the Physical layer of the Oracle BI repository.

	
The BI Extender maps the changes to the logical model.

	
In a separate step, the DAC user goes to the DAC client and synchronizes the changes in DAC with the actual data warehouse.

Use Cases for Propagating Flexfield Changes

The BI Extender supports a variety of use cases for propagating changes made to flexfields. The primary use cases include:

	
New attribute added on a dimension (Dimension DFF - DescriptiveFlexExtensionStandard)

	
New attribute added on a fact (Fact DFF - DescriptiveFlexExtensionStandard)

	
New Dimension added, joined to an existing Fact (Dimension KFF - KeyFlexCreationStandard for dimension, KeyFlexExtensionStandard for the fact foreign key)

	
New Dimension added, joined to an existing Dimension (Dimension on Dimension KFF - KeyFlexCreationStandard on the new dimension, KeyFlexExtensionStandard for the foreign key)

	
Note:

For an example of an Oracle BI Applications KFF use case, see "Configuring GL Segment and GL Account Dimensions" in Oracle Fusion Middleware Installation and Configuration Guide for Oracle Business Intelligence Applications.

In addition to these standard use cases, some more complex, advanced use cases are supported. The following sections describe these advanced use cases.

ETL Only VO A VO that exists only to extend the ETL mappings, and that will not be used for queries. Imported VOs of this type are marked as disabled in the Business Model and Mapping layer. VOs of this type are marked as ETL Only in the Map to Logical Model screen of the Import Metadata Wizard.

Query Only VO A VO that is only to be used for queries. VOs of this type are not passed to the BI Extender. VOs of this type are marked as Query Only in the Map to Logical Model screen of the Import Metadata Wizard.

VOs that Map to Existing Dimensions This occurs when the imported VO is mapped to an existing logical dimension table that already maps to the data warehouse. In this case, the BI Extender uses the existing columns to perform the extensions. A different transformation template (from the specified XSL transform file, discussed in "Setting Up XSL Transform Files to Customize XML Output to the Oracle BI Extender") is applied for this use case, as shown in Table 6-2.

Table 6-2 Normal and Mapped to Existing Transformation Template Names

	Normal Template	"Mapped to Existing" Template
	
KeyFlexCreationStandard

	
KeyFlexCreationExtract

	
DescriptiveFlexCreationStandard

	
DescriptiveFlexCreationExtract

	
KeyFlexHierarchyCreationStandard

	
KeyFlexHierarchyCreationExtract

	
DescriptiveFlexExtensionStandard

	
DescriptiveFlexExtensionExtract

	
KeyFlexExtensionStandard

	
KeyFlexExtensionExtract

Hierarchy VO A special type of VO that is treated differently by the BI Extender. You can specify a Hierarchy VO in the updatehierarchy.xsl file, where you specify the HIERARCHY_NAME and DATASOURCE_NUM_ID (required attributes for Hierarchy VOs). This tells the Administration Tool which VOs are Hierarchy VOs. In the Map to Logical Model screen of the Import Metadata Wizard, the Hierarchy check box appears as selected for each Hierarchy VO.

Striping (W_GL_SEGMENT_D) Some VOs come with predefined filters. These filter definitions are automatically propagated to the appropriate logical table source content filter.

The BI Extender configures the logical table source filters for GL accounts by putting appropriate segment labels in the filters. There is a right-click option for GL-SegmentX dimension tables to pull in the synchronized custom AM properties into the logical table source filter.

Performing Preconfiguration Tasks for the BI Extender

To enable the BI Extender feature, you must configure a connection to Informatica, DAC, and the data warehouse in the biextension.properties file. You also need to provide configuration information in the config.xml file for JavaHost, opmn.xml, and optionally in the ContainerMapping.xml file. The following sections describe the steps needed for this configuration:

	
Configuring the biextension.properties File

	
Configuring the JavaHost loaders.xml File

	
Configuring the opmn.xml File

	
Configuring the ContainerMapping.xml File

	
Optionally Changing the Location of the BI Extender Files

Configuring the biextension.properties File

This section explains how to configure the biextension.properties file.

To configure connections to Informatica, the transactional database, and DAC in biextension.properties:

	
Open the biextension.properties file for editing. You can find this file at:

MW_HOME/Oracle_BI1/bifoundation/javahost/lib/obisintegration/biextender

	
Set the parameters in biextension.properties as needed for your deployment. The infa.* parameters define the connection to Informatica, the db.connection.* parameters define the connection to the transactional database, and the dac.* parameters define the connection to DAC and the data warehouse.

A sample biextension.properties file looks like the following:

This Properties file is used by the BI Extender client to control the behavior
of the client in communication with the actual BI Extender

If defined, additional xsl transformations will be applied to the input document
Separate them by commas. eg. xsl_transforms = replaceNames.xsl, biextension.xsl
xsl_transforms = updatehierarchy.xsl, biextension.xsl

##########################
Connection Information
##########################

infa.connection.sdk.repository = Informatica861
infa.connection.sdk.domainname = Domain_localhost
infa.connection.sdk.installpath = C:\\\\Informatica\\\\PowerCenter8.6.1\\\\CMD_Utilities\\\\PC\\\\server\\\\bin
infa.connection.sdk.ssl_enabled = false

db.connection.type = url
db.connection.repository = Informatica861
db.connection.dbname = XE
db.connection.host = localhost
db.connection.port = 1521
db.connection.dsn = Informatica861
db.connection.driver = oracle.jdbc.driver.OracleDriver
db.connection.url = jdbc:oracle:thin:@localhost:1521:XE
db.connection.ssl_enabled = false

dac.connection.sdk.container = TestContainer
dac.connection.sdk.primarysource = DBConnection_OLTP
dac.connection.sdk.primarytarget = DBConnection_OLAP
dac.connection.sdk.driver = oracle.jdbc.driver.OracleDriver
dac.connection.sdk.url = jdbc:oracle:thin:@localhost:1521:XE
dac.connection.sdk.dbtype = Oracle

Note that for Oracle Database, the driver parameters can use either a service name or SID. For example:

	
jdbc:oracle:thin:@host:port/service name

	
jdbc:oracle:thin:@host:port:SID

	
Save and close the file.

Configuring the JavaHost loaders.xml File

This section explains how to configure the JavaHost loaders.xml file.

To configure the IntegrationServiceCall loader in loaders.xml:

	
Open the JavaHost loaders.xml file for editing. You can find this file at:

ORACLE_HOME\bifoundation\javahost\config

	
Find the Loader section for IntegrationServiceCall. Then, edit the section to include the location of mapfwk.jar, commons-logging-1.0.4.jar, and DAWSystem.jar, as follows:

<Loader>
 <Name>IntegrationServiceCall</Name>
 <Class>oracle.bi.integration.javahost.ServiceCallLoader</Class>
 <ConfigNodePath>ServiceCall</ConfigNodePath>
 <ClassPath>
 {%ORACLE_BIJH_ROOTDIR%}/lib/obisintegration/javahostservice.jar;
 {%ORACLE_BIJH_ROOTDIR%}/lib/obisintegration/aw/11g/ojdbc5.jar;
 C:\InformaticaDeveloperPlatform8.6.1\DesignAPI\lib\mapfwk.jar;
 C:\DAC\lib\commons-logging-1.0.4.jar;
 C:\DAC\DAWSystem.jar
 </ClassPath>
</Loader>

Be sure to replace the path names in each highlighted line with the appropriate path names for your deployment.

	
Save and close the file.

Configuring the opmn.xml File

This section explains how to configure opmn.xml for the BI Extender.

	
Open the opmn.xml file for editing. You can find this file at:

ORACLE_INSTANCE\config\OPMN\opmn

	
Locate the tag <ias-component id="coreapplication_obijh1"> and add a new variable called INFA_DOMAINS_FILE under the <environment> subtag. For example:

</ias-component><ias-component id="coreapplication_obijh1">
 <environment>
 <variable id="ORACLE_BI_OPMNMANAGED" value="true"/>
 <variable id="ORACLE_BI_APPLICATION" value="coreapplication"/>
 ...
 <variable id="INFA_DOMAINS_FILE" value="C:\\Informatica\\
 PowerCenter8.6.1\\domains.infa"/>
 </environment>

Be sure to replace the path name in the highlighted line with the appropriate path name for your deployment.

	
Save and close the file.

	
Use the following commands to restart OPMN and the system components:

opmnctl stopall
opmnctl startall

Configuring the ContainerMapping.xml File

If you have customized your default Oracle BI Applications Informatica ETL mappings, you might need to update your Informatica repository name in ContainerMapping.xml.

To configure ContainerMapping.xml:

	
Make a copy of the Sample.ContainerMapping.xml file and rename the copied file ContainerMapping.xml. You can find Sample.ContainerMapping.xml in:

ORACLE_HOME/bifoundation/javahost/lib/obisintegration/biextender/EM/RS/
infa/EC/obj

	
Open the ContainerMapping.xml file for editing. Note the following about values in the default file:

	
"Informatica861Versioned" is the default Informatica repository name.

	
"SDE_Fusion_Adaptor," "SILOS," and "PLP" are folder names in the repository.

	
"OLTP" and "OLAP" are the database names for the source tables registered in Informatica. These values do not have to match the actual database name. Rather, they are used as a way to folder source tables in Informatica.

	
Make any needed changes to the default values. You typically only need to change the Informatica repository name.

	
Save and close the file.

Optionally Changing the Location of the BI Extender Files

Optionally, you can change the location of the BI Extender files. To do this, move the files from the default location to a new location, then create an operating system environment variable called ORACLE_BI_ETL_EXTENDER and set its value to the value of the new path. The default path for the BI Extender files is:

ORACLE_HOME/bifoundation/javahost/lib/obisintegration/biextender

Running the BI Extender in a Secured Environment

Because the BI Extender makes direct changes to a variety of sensitive targets, it is strongly recommended to run the entire BI Extender process in a secured environment behind a firewall.

To run the BI Extender in a secured environment:

	
Set up the Informatica server for SSL. Refer to the Informatica documentation for more information.

	
Set up the Informatica repository for SSL, including setting up the trusted certificate and exporting the certificate into the "export" file. Refer to the Informatica documentation for more information.

	
Open the biextension.properties file for editing. You can find this file at:

MW_HOME/Oracle_BI1/bifoundation/javahost/lib/obisintegration/biextender

	
Set the following two properties to true:

infa.connection.sdk.ssl_enabled = true
db.connection.ssl_enabled = true

	
Save and close the file.

	
Add the database server root certificate to the JavaHost JVM using the keytool utility to enable JavaHost to authenticate itself with the database server. Use a command similar to the following:

C:\Program Files\Java\jdk1.6.0_12\bin\keytool -import -keystore
"C:\Program Files\Java\jdk1.6.0_12\jre\lib\security\cacerts" -trustcacerts
-file C:\oracle\product\10.2.0\client_1\admin\orcl\wallet3\export -alias
ssl_certificate

In this example, note that:

	
C:\Program Files\Java\jdk1.6.0_12\jre\lib\security\cacerts is the path to the JavaHost JVM's certificate file

	
keytool is the program used to add the certificate

	
C:\oracle\product\10.2.0\client_1\admin\orcl\wallet3\export is the exported root certificate of the database server

	
ssl_certificate is an alias given to this certificate so that it can be identified later

	
When prompted, type "yes" after "Trust this certificate?"

Publishing Changes to the Data Warehouse and Propagating Changes to the Repository

This section explains how to use the BI Extender to propagate the flex object changes to the Informatica server, DAC, the Physical layer, and the logical model. It also explains how to use DAC to make the required schema changes in the data warehouse itself. You must complete the preconfiguration steps in "Performing Preconfiguration Tasks for the BI Extender" before performing the steps in this section.

This section contains the following topics:

	
Running the BI Extender to Update Informatica, DAC, and the RPD

	
Using DAC to Propagate Flex Object Changes to the Data Warehouse Schema

Running the BI Extender to Update Informatica, DAC, and the RPD

This section explains how to run the BI Extender to update Informatica, DAC, and the Oracle BI repository for flex object changes. This section assumes that you have already added a new attribute in your ADF application.

To run the BI Extender to update Informatica, DAC, and the RPD:

	
Ensure that the JavaHost process is running.

	
Open your repository in the Administration Tool.

	
In the Physical layer, right-click the connection pool for your ADF OLTP source and select Import Metadata.

	
Complete the steps in the Select Metadata Objects and Map to Logical Model screens. See "Using Incremental Import to Propagate Flex Object Changes" and "Automatically Mapping Flex Object Changes to the Logical Model" for more information.

	
On the Publish to Warehouse screen, perform the following steps:

	
Select the warehouse database.

	
Enter a user name and password for the Informatica server.

	
Enter a user name and password for the Informatica repository database. This user does not need to have write permission.

	
Enter a user name and password for DAC.

	
Click Connect.

Figure 6-5 shows the Publish to Warehouse screen.

Figure 6-5 Publish to Warehouse Screen of Import Metadata Wizard

[image: Description of Figure 6-5 follows]

Description of "Figure 6-5 Publish to Warehouse Screen of Import Metadata Wizard"

	
Click Finish.

See "About Propagating Changes to Flex Objects to the Data Warehouse" for a description of what happens when you click Finish in the Publish to Warehouse screen.

Using DAC to Propagate Flex Object Changes to the Data Warehouse Schema

After the BI Extender finishes, you need to propagate the necessary schema changes to the data warehouse. This section describes one recommended method of accomplishing this task.

To propagate the schema changes to the data warehouse:

	
In DAC, filter the tables in DAC view to show only those tables that were modified or created by the BI Extender. To do this:

	
Go to the Tools menu and choose UI Preferences.

	
Select Always show Last Updated.

	
Select the Tables tab. Right-click and select Flat Views, then select Table Columns.

	
A dialog opens that shows a Table Columns list in Query mode. Scroll to the right and then double-click the Last Update field.

	
Set the date and time when you started the BI Extender process, and then select After, as shown in Figure 6-6.

Figure 6-6 Setting a Date Filter in DAC

[image: Description of Figure 6-6 follows]

Description of "Figure 6-6 Setting a Date Filter in DAC"

	
Click OK, then click Go. A list of tables and columns that were created and modified after the specified date is shown.

	
Run the DAC functionality to upgrade these tables in the data warehouse using the option Generate DW Table Scripts for Oracle. Make sure to select All records in the list. See "Managing Data Warehouse Schemas" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Data Warehouse Administration Console for more information.

Setting Up XSL Transform Files to Customize XML Output to the Oracle BI Extender

The biextension.properties file specifies the XSL files to be used to transform and customize the default XML generated by the Administration Tool and sent to the BI Extender. By default, the following XSL files are applied:

	
biextension.xsl: Contains default transformations for the Extender. Contains templates for both normal and "mapped to existing" cases.

	
updatehierarchy.xsl: Specifies rules for how Hierarchy VOs should be handled.

	
LastUpdateDate.xsl: Identifies which input columns need to be filtered on the Informatica parameter LastUpdateDate.

All XSL files are located in the same directory as biextension.properties.

In rare cases, you might need to make additional customizations the default XML that is generated by the Administration Tool and sent to the BI Extender. To do this, you can create other XSL files to be applied in addition to the three default XSL files. Note the following:

	
Additional XSL files need to conform to the XML schema defined in the biextension.xsd file, located in the same directory as the biextension.properties file.

	
It is a best practice to define changes in an additional XSL file rather than updating one of the default files.

	
The replaceName.xsl file provides examples on how to do XSL transforms for name changes.

To specify additional XSL files:

	
Open the biextension.properties file for editing. You can find this file at:

ORACLE_HOME/bifoundation/javahost/lib/obisintegration/biextender

	
Add additional XSL files to the xsl_transforms line, as follows:

xsl_transforms = updatehierarchy.xsl,LastUpdateDate.xsl,biextension.xsl,
replaceNames.xsl

	
Save and close the file.

Sample XML Output

Sample base XML output generated by the Administration Tool might look like the following:

<?xml version="1.0" encoding="UTF-8" standalone="no" ?>
<Document>
 <extension mode="KeyFlexCreationStandard" type="Dimension">
 <table name="W_COST_CENTER_D">
 <columns>
 <column datatype="Varchar2(50)" name="COST_CENTER_NAME" type="Attribute">
 <source column="COST_CENTER_NAME" table="SnowflakesalesApp.
 ADF_COST_CENTER_VO"/>
 </column>
 <column datatype="Varchar2(10)" name="COST_CENTER_LOCATION"
 type="Attribute">
 <source column="COST_CENTER_LOCATION" table="SnowflakesalesApp.
 ADF_COST_CENTER_VO"/>
 </column>
 <column datatype="Varchar2(5)" name="COST_CENTER_ID" type="Key">
 <source column="COST_CENTER_ID" table="SnowflakesalesApp.
 ADF_COST_CENTER_VO"/>
 </column>
 </columns>
 </table>
 </extension>
</Document>

Setting Up and Using ApplCore Grants for ADF Data Security

This section explains how to implement ADF data security in the Oracle BI Server. To implement ADF data security, you must have an application with secured View Objects and user setup.

Perform the steps in the following sections:

	
Setting Up Oracle Business Intelligence to Use ApplSession

	
Setting Up Authentication for ApplSession Integration

Setting Up Oracle Business Intelligence to Use ApplSession

When you set up Oracle Business Intelligence to use ApplSession, the following occurs:

	
Pillar-specific AOL sessions are created for data queries. A new AOL session is created for every pillar within a BI session when a data query is fired against the pillar. This AOL session is reused for all subsequent data queries against the same pillar. There are, at most, as many AOL sessions as there are ADF pillars (databases) defined in the Oracle BI repository.

For the examples used in this section, there are three or less AOL sessions ("AOL_SESSION_ID_HCM", "AOL_SESSION_ID_CRM", "AOL_SESSION_ID_FSCM") created within a BI Session for data queries.

	
AOL context variable values are propagated to the newly-created pillar-specific AOL sessions. Presentation Services propagates the AOL context variables when it logs in to the Oracle BI Server.

	
The SQL Bypass query reattaches to the previously created AOL session for that ADF Database.

This section contains the following topics:

	
Setting Up Database Objects and Connection Pools for ApplSession Integration

	
Setting Up Initialization Blocks for ApplSession Integration

	
About the Client Login Process in an ApplSession Integrated Environment

Setting Up Database Objects and Connection Pools for ApplSession Integration

To set up the Oracle BI repository to enable ApplSession integration, you must first configure the appropriate database object and connection pools in the Physical layer.

To set up database objects and connection pools for ApplSession integration:

	
Open your repository in the Administration Tool.

	
Create database objects and connection pools in the physical layer for each pillar, as follows:

	
Create a database object and connection pool for SQL bypass during data queries (for example, Pillar1_bypass).

	
Use the Import Metadata Wizard to create a database object and connection pool that correspond to the application EAR file deployed in WLS (for example, Pillar1_http). This database object contains the physical table and column mappings to VOs and attributes. Be sure to specify the SQL bypass database you want to use during metadata import.

Figure 6-7 shows the pillar-specific database objects.

Figure 6-7 Pillar-Specific Database Objects

[image: Description of Figure 6-7 follows]

Description of "Figure 6-7 Pillar-Specific Database Objects"

	
Open the connection pool for each SQL bypass database and click the Connection Scripts tab. To ensure that SQL bypass queries are issued within the pillar-specific AOL session (for example, "AOL_SESSION_ID_Pillar1_http,") you must provide the appropriate pre-query and post-query scripts, as follows:

	
Expand Execute before query and click New.

	
Enter a pre-query script similar to the following:

BEGIN
 fnd_session_mgmt.attach_session('VALUEOF(NQ_SESSION.AOL_SESSION_ID_Pillar1_http)');
END;

	
Click OK.

	
Expand Execute after query and click New.

	
Enter the following post-query script:

BEGIN
 fnd_session_mgmt.detach_session;
END;

	
Click OK.

	
Click OK in the Connection Pool dialog.

Figure 6-8 shows the Connection Scripts tab of the Connection Pool dialog.

Figure 6-8 Pre-query and Post-query Scripts for the SQL Bypass Connection Pool

[image: Description of Figure 6-8 follows]

Description of "Figure 6-8 Pre-query and Post-query Scripts for the SQL Bypass Connection Pool"

Setting Up Initialization Blocks for ApplSession Integration

Initialization blocks are used to initialize BI session variables. They contain SQL/XML queries that are set up to return columns of values which are then mapped to BI session variables. Initialization blocks typically execute during BI session creation.

In the Initialization Block dialog, you can choose to defer the execution of an initialization block by selecting Allowed deferred execution. A deferred initialization block runs when its target variable is used for the first time within a BI session.

To set up initialization blocks for ApplSession integration:

	
In the Administration Tool, select Manage, then select Variables.

	
Select Action > New > Session > Initialization Block.

	
Provide a name for the initialization block (for example, create_AOL_SESSION_ID_Pillar1). This initialization block creates a new AOL session when a data query is issued against the data source (for example, Pillar1_http).

	
Click Edit Data Source.

	
Select Default initialization string, and provide an XML initialization string similar to the following:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="create_applsession">
 <ContextAttribute>
 <Name><![CDATA[ADDTL_CUSTOM_LEVEL]]></Name>
 <Value><![CDATA[VALUEOF(NQ_SESSION.AOL_ADDTL_CUSTOM_LEVEL)]]></Value>
 </ContextAttribute>
 <ContextAttribute>
 <Name><![CDATA[CLIENT_ENCODING]]></Name>
 <Value><![CDATA[VALUEOF(NQ_SESSION.AOL_CLIENT_ENCODING)]]></Value>
 </ContextAttribute>
 <ContextAttribute>
 <Name><![CDATA[CURRENCY]]></Name>
 <Value><![CDATA[VALUEOF(NQ_SESSION.AOL_CURRENCY)]]></Value>
 </ContextAttribute>
</ADFQuery>

This initialization string causes the OBIEE broker servlet to create a Java AOL session.

The <ContextAttribute> elements represent the name-value pairs of context variables that will be propagated to the newly created AOL session. If no <ContextAttribute> elements are specified in the XML initialization string, default values of the user are used to create the AOL session.

The values provided in the <Value> elements are mapped to the session variables initialized by Presentation Services.

The following list shows a full mapping between AOL context attributes and session variables initialized by Presentation Services:

ACCESSIBILITY_MODE - AOL_ACCESSIBILITY_MODE
ACTION - AOL_ACTION
ADDTL_CUSTOM_LEVEL - AOL_ADDTL_CUSTOM_LEVEL
ANIMATION_ENABLED - AOL_ANIMATION_ENABLED
APPLICATION_LANGUAGE - AOL_APPLICATION_LANGUAGE
CLIENT_ENCODING - AOL_CLIENT_ENCODING
COLOR_CONTRAST - AOL_COLOR_CONTRAST
CURRENCY - AOL_CURRENCY
DATE_FORMAT - AOL_DATE_FORMAT
DECIMAL_SEPARATOR - AOL_DECIMAL_SEPARATOR
EMBEDDED_HELP_ENABLED - AOL_EMBEDDED_HELP_ENABLED
FONT_SIZE - AOL_FONT_SIZE
GROUPING_SEPARATOR - AOL_GROUPING_SEPARATOR
HISTORY_OVERRIDE_USER_NAME - AOL_HISTORY_OVERRIDE_USER_NAME
INDUSTRY - AOL_INDUSTRY
INDUSTRY_IN_TERRITORY - AOL_INDUSTRY_IN_TERRITORY
LANGUAGE - AOL_LANGUAGE
MODULE - AOL_MODULE
NLS_SORT - AOL_NLS_SORT
NUMBER_FORMAT - AOL_NUMBER_FORMAT
PRODUCT - AOL_PRODUCT
PRODUCT_FAMILY - AOL_PRODUCT_FAMILY
TERRITORY - AOL_TERRITORY
TIME_FORMAT - AOL_TIME_FORMAT
TIMEZONE - AOL_TIMEZONE
TRACE_LEVEL - AOL_TRACE_LEVEL

Application-specific, nonstandard variables that do not appear in the preceding list can be propagated in the same manner.

	
Click Browse next to Connection Pool and select the connection pool for the data source (for example, Pillar1_http_cp), then click Select.

	
Click OK in the Session Variable Initialization Block Data Source dialog.

	
Click Edit Data Target, then click New.

	
Create a variable to be initialized by this initialization block. The name must be in the following format:

AOL_SESSION_ID_physical_layer_database_object_for_pillar

For example:

AOL_SESSION_ID_Pillar1_http

	
Click OK in the Session Variable Initialization Variable Target dialog.

	
Select Allowed deferred execution. Selecting this option means that this initialization block only executes when a data query is issued against Pillar1.

	
Click OK in the Session Variable Initialization Block dialog.

	
Repeat the steps in this procedure for each pillar, if you have more than one.

Figure 6-9 shows an example pillar-specific session variable initialization block.

Figure 6-9 Session Variable Initialization Block Dialog for Pillar-Specific Initialization Block

[image: Description of Figure 6-9 follows]

Description of "Figure 6-9 Session Variable Initialization Block Dialog for Pillar-Specific Initialization Block"

About the Client Login Process in an ApplSession Integrated Environment

The following steps provide an example of the client login process when you have integrated Oracle Business Intelligence with ApplSession:

	
A client logs in to the Oracle BI Server with the BI session variables that represent AOL context.

	
The BI Session is established.

	
The client issues a Logical SQL statement that navigates to the database object (for example, Pillar1_http).

	
The initialization block runs and initializes the session variable (for example, create_AOL_SESSION_ID_Pillar1 initializes AOL_SESSION_ID_Pillar1_http).

	
The session variable (for example, AOL_SESSION_ID_Pillar1_http) is attached within the OBIEE broker servlet before querying Composite VO SQL from the database object (for example, Pillar1_http).

	
The Oracle BI Server replans the query with Composite VO SQL.

	
The session variable (for example, AOL_SESSION_ID_Pillar1_http) is attached using the pre-query script in the connection pool before querying data directly from the SQL bypass database object (for example, Pillar1_bypass).

Setting Up Authentication for ApplSession Integration

Oracle Business Intelligence provides a custom identity assertion provider that must be installed in Oracle WebLogic Server. This custom asserter is used to extract a token from the HTTP request from Oracle Business Intelligence. The super user name and password provided in the repository connection pool object, as well as the session user name provided in the BI user session, are extracted from the token.

Authentication is performed in the custom asserter using the super user name and password. After the super user's credentials are authenticated, the custom asserter performs identity assertion using the session's user name. One-way SSL is required to secure the communication channel between Oracle Business Intelligence and Oracle WebLogic Server.

Note that the custom identity assertion provider only allows a user with the user name FUSION_APPS_BI_APPID to perform identity assertion. In other words, the user specified in the connection pool (the ADF HTTP connection pool, not the SQL bypass connection pool) must be FUSION_APPS_BI_APPID.

This section describes the configuration tasks you need to perform in the application before deploying to Oracle WebLogic Server for Oracle Business Intelligence consumption.

Ensure that you have completed the tasks described in "Setting Up ADF Business Component Data Sources" before you perform the steps in the following sections.

This section contains the following topics:

	
Setting Up Security Constraints and Security-Related Servlet Filters in web.xml

	
Configuring Role-to-Principal Mapping in weblogic-application.xml

	
Configuring the Custom Identity Assertion Provider in Oracle WebLogic Server

	
Configuring One-Way SSL in Oracle WebLogic Server

Setting Up Security Constraints and Security-Related Servlet Filters in web.xml

You must set up the CLIENT-CERT authentication method in web.xml to trigger the custom identity assertion provider during log-on. In addition, you need to set up the JPS servlet filter in web.xml for data security to work properly.

To set up the CLIENT-CERT authentication method and servlet filters in web.xml:

	
In JDeveloper, expand the Web Project for OBIEEBroker and open web.xml.

	
Go to the source view of the file.

	
To set up the CLIENT-CERT authentication method, include the following elements under the <web-app> element:

<security-constraint>
 <web-resource-collection>
 <web-resource-name>restricted</web-resource-name>
 <url-pattern>/obieebroker</url-pattern>
 </web-resource-collection>
 <auth-constraint>
 <role-name>EndUsers</role-name>
 </auth-constraint>
</security-constraint>
<login-config>
 <auth-method>CLIENT-CERT</auth-method>
 <realm-name>myrealm</realm-name>
</login-config>
<security-role>
 <role-name>EndUsers</role-name>
</security-role>

Note that the value for <role-name> can be anything. This value will eventually be mapped to principals that exist in the security realm; see "Configuring Role-to-Principal Mapping in weblogic-application.xml" for more information.

	
To set up the JPS servlet filter, include the following <filter> elements before the <filter> element for ServletADFFilter:

<filter>
 <filter-name>JpsFilter</filter-name>
 <filter-class>oracle.security.jps.ee.http.JpsFilter</filter-class>
</filter>

Then, include the following <filter-mapping> elements before the <filter-mapping> element for ServletADFFilter:

<filter-mapping>
 <filter-name>JpsFilter</filter-name>
 <servlet-name>OBIEEBroker</servlet-name>
 <dispatcher>FORWARD</dispatcher>
 <dispatcher>REQUEST</dispatcher>
 <dispatcher>INCLUDE</dispatcher>
</filter-mapping>

Configuring Role-to-Principal Mapping in weblogic-application.xml

You must map the value you provided for <role-name> in web.xml to principals that exist in the security realm. This mapping is defined in weblogic-application.xml.

To configure role-to-principal mapping in weblogic-application.xml:

	
In JDeveloper, under Application Resources, open Descriptors > META-INF > weblogic-application.xml.

	
Include the following <security> element under the <weblogic-application> element:

<security>
 <realm-name>myrealm</realm-name>
 <security-role-assignment>
 <role-name>your_role_name</role-name>
 <principal-name>your_principal_name</principal-name>
 </security-role-assignment>
</security>

Note the following:

	
Replace your_role_name with the actual value you provided for <role-name> in web.xml.

	
Replace your_principal_name with the name of either a BI session end user (for example, joeUser), or an Oracle WebLogic Server group (for example, testUsers).

	
Redeploy the application.

Configuring the Custom Identity Assertion Provider in Oracle WebLogic Server

This section explains how to configure the custom identity assertion provider.

To configure the custom identity assertion provider in Oracle WebLogic Server:

	
Locate the custom identity assertion provider jar file, located in your Oracle Business Intelligence installation directory at:

ORACLE_HOME/bifoundation/javahost/lib/obisintegration/adf/
biadfidentityasserter.jar

	
Copy the jar file to the following Oracle WebLogic Server location:

MW_HOME/wlserver_10.3/server/lib/mbeantypes

	
Restart the Oracle WebLogic Server.

	
Open the WebLogic Server Administration Console. For example, if your Oracle WebLogic Server is running locally on port 7001, go to http://localhost:7001/console.

	
Log in to the WebLogic Server Administration Console with the credentials you created when you set up your WebLogic domain.

	
In the Change Center, click Lock & Edit.

	
In the left pane, select Security Realms, and then click the security realm that you want to configure.

	
Click the Providers tab, then click New.

	
Enter a name (for example, BI-ADF IdentityAsserter) and select BIADFIdentityAsserter for Type.

	
Click OK.

	
In the Change Center, click Activate Changes.

	
Restart the Oracle WebLogic Server.

Configuring One-Way SSL in Oracle WebLogic Server

One-way SSL is required to properly secure the communication between Oracle Business Intelligence and Oracle WebLogic Server.

To configure one-way SSL in Oracle WebLogic Server:

	
From the WebLogic Server Administration Console home page, click Servers under the Environment heading.

	
In the Servers table, the name of the server you want to manage. Then, on the General subtab of the Configuration tab, select SSL Listen Port Enabled.

	
Use the Administration Tool to update the appropriate connection pool object in the Physical layer so that the URL uses https:// instead of http://. Also, update the port number to use the SSL port (7002 by default).

Configuring Two-Way SSL in Oracle WebLogic Server

Optionally, you can set up two-way SSL to secure the communication between Oracle Business Intelligence and the Oracle WebLogic Server.

To set up and test two-way SSL:

	
Create client certificates in the Oracle BI Server, if they do not already exist. See "Creating Certificates and Keys in Oracle Business Intelligence" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
Modify the ADF Oracle WebLogic Server to accept SSL connections and to perform mutual SSL. To do this, perform the following steps in the Oracle WebLogic Server Administration Console:

	
Log in to the Administration Console and click Servers under the Environment heading, then click the server name (for example, AdminServer).

	
In the Change Center, click Lock & Edit to enable configuration changes.

	
In the General tab, select SSL Listen Port Enabled and record the SSL Listen Port number. Then, click Save.

	
Select the SSL tab, then select Advanced. For Two Way Client Cert Behavior, select Client Certs Requested and Enforced. Then, click Save.

	
Select the Keystores tab and record the Trust Keystore that is being used. For example, if the Demo Trust keystore is used, record its location and file name.

	
Click Activate Changes.

	
Ensure that the Certificate Authority (CA) for the Oracle BI Server client certificate is trusted by the ADF Oracle WebLogic Server. To do this, follow these steps:

	
On the Oracle BI Server computer, find the CA file for the client certificate. If the file was generated using the instructions referenced in Step 1, the file will be "cacert.pem" in:

ORACLE_HOME/user_projects/domains/bifoundation_domain/config/fmwconfig
/biinstances/coreapplication/ssl

Copy this file to a known location.

	
On the ADF Oracle WebLogic Server computer, open a command window and go to the location of the trust keystore. You recorded this value in Step 2. For example:

/scratch/user_name/view_storage/user_name_fmw/fmwtools/mw_home/wlserver_10.3/server/lib

Copy the client CA file (for example, cacert.pem), stored in the previous step, to this location.

	
Use the JDK keytool utility to import the client CA into the trust keystore for the ADF server, making it a trusted CA. Use the following command:

keytool -import -file client_CA_file -keystore keystore_file -keystorepass keystore_password

For example:

/scratch/my_name/view_storage/my_name_fmw/jdk6/bin/keytool -import -file
~/Downloads/SSL/cacert.pem -keystore DemoTrust.jks -keystorepass
DemoTrustKeyStorePassPhrase

	
Restart the ADF Oracle WebLogic Server.

	
Update the Physical layer of the Oracle BI repository, as follows:

	
In the Administration Tool, in the Physical layer, open the first ADF connection pool object and select the Miscellaneous tab.

	
Update the URL field to use the https protocol and the SSL port noted in Step 2, and then click OK.

	
Repeat the previous two steps for each additional ADF connection pool object.

	
Save the repository and restart the Oracle BI Server.

	
Configure the Oracle BI Server ODBC DSN to use SSL. For example, on Windows:

	
Open the ODBC Data Source Administrator and select the System DSN tab.

	
Double-click the DSN for the Oracle BI Server. The DSN should start with "coreapplication_OH."

	
Select Use SSL.

	
Click Next, click Next again, and then click Finish.

	
Perform queries against ADF using your Oracle BI Server client of choice (such as nqcmd). The Oracle BI Server should now be communicating with the ADF Oracle WebLogic Server using mutual SSL / client certs.

Enabling the Ability to Pass Custom Parameters to the ADF Application

Some ADF applications have custom properties defined on the ApplicationModule, such as EFFECTIVE_DATE or TREE_VERSION. You can include these custom properties in your application queries, and the Oracle BI Server will pass them to the ADF application. To enable this feature, you must register the custom properties as a static repository variable using the Administration Tool.

You cannot use this feature to pass any custom property to your ADF application. Only certain custom properties, like EFFECTIVE_DATE and TREE_VERSION, are supported.

To register custom properties:

	
Open your repository in the Administration Tool.

	
Select Manage, then select Variables.

	
Select Action > New > Repository > Variable.

	
For Name, enter ADF_PARAM_LIST. Do not enter the name of the custom property as the name of the variable.

	
Ensure that the Type is Static.

	
For Default Initializer, enter the name or names of the custom properties as a character string. If you have multiple custom properties, include them as a comma-delimited list. For example:

'PARAM_EFFECTIVE_DATE'

'PARAM_EFFECTIVE_DATE, ApplicationIdBind, KeyFlexfieldCodeBind'

	
Click OK.

	
Save and close the repository.

After you register the custom properties as a repository variable, you can include these variables in queries. For example:

set variable PARAM_EFFECTIVE_DATE=2001-01-01 : SELECT c1 FROM t1;

or

set variable ApplicationIdBind = '0', KeyFlexfieldCodeBind = 'KFF1' :
select_physical ApplicationID, KeyFlexfieldCode, DataSecurityObjectName,
SegmentLabelCode from adfdb..."AppModule.KFFHierFilterVO1";

Note that when you are including a custom property of type PARAM_EFFECTIVE_DATE, the date format for the property value must be in the format yyyy-mm-dd.

Propagating Labels and Tooltips from ADF Business Component Data Sources

You can propagate user interface hints, such as labels and tooltips, from ADF Business Component data sources to display when users work with analyses. When translated labels and tooltips (based on user locale) are maintained within an ADF Business Component data source, you can query the data source to access this translated data. You use the Administration Tool to configure presentation columns to use when creating analyses.

This section contains the following topics:

	
What are Labels and Tooltips?

	
About the Session Variable Naming Scheme for UI Hints

	
About Determining the Physical Column for a Presentation Column

	
Initializing Session Variables Automatically for Propagating UI Hints

	
Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses

	
Using XML Code in Initialization Blocks to Query UI Hints

What are Labels and Tooltips?

A label is the text that is used in prompts or table headers that precedes the value of a data item. A tooltip is the text that is displayed when a user hovers the mouse pointer over the item. Each attribute of a view object (VO) has an associated label and tooltip. A view object is the Oracle Application Development Framework component that enables a developer to work easily with SQL query results. The propagation of UI hints enables a presentation column in the Administration Tool to use a label and tooltip as its Custom display name and Description respectively.

Figure 6-10 shows the Label Text and Tooltip Text options in the Edit Attribute dialog in Oracle JDeveloper.

Figure 6-10 Edit Attribute Dialog in JDeveloper for Label and Tooltip Options

[image: This graphicshows the label and tooltip options in JDev.]

Description of "Figure 6-10 Edit Attribute Dialog in JDeveloper for Label and Tooltip Options"

About the Session Variable Naming Scheme for UI Hints

Session variable names are generated by the Oracle BI Enterprise Edition broker servlet in Oracle WebLogic Server in the following format:

ADF_UI Hint Type_Database Name_VO's Name_Attribute's Name

Where:

UI Hint Type is either LABEL or TOOLTIP, depending on the UI hint type that the session variable represents.

Database Name is the value of the "database" attribute of the ADFQuery element in the XML query. Special characters such single quotes ('), double quotes ("), and spaces are replaced by the underscore character.

VO's Name is the name of the View Object to which the attribute belongs. Oracle ADF prohibits special characters and spaces in the name.

Attribute's Name is the name of the attribute that the session variable represents. Oracle ADF prohibits special characters and spaces in the name.

Every character in the session variable name is uppercase. For example, the XML query in Example 6-3 generates four session variables with the following names:

ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_FIRSTNAME

ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_FIRSTNAME

ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME

ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME

About Determining the Physical Column for a Presentation Column

As required by the naming scheme for session variables, each presentation column must map to a physical column. When you select Externalize Display Names > Generate ADF Label or Externalize Descriptions > Generate ADF Tooltip for a presentation layer object, then the physical column is located using the following rules:

	
Examine the presentation column and determine its logical column. If the logical column is derived from an existing logical column, then the physical column cannot be found.

	
If the default aggregation rule for the logical column is not None or Sum, then the physical column cannot be found. It does not make sense semantically to use the ADF UI hints for aggregation rules other than Sum.

	
A logical column can be mapped to physical columns by multiple logical table sources. Only logical table sources that are not disabled are searched.

	
Do not search logical table sources that map the logical column using non-trivial expressions (that is, anything more than a physical column name). If no logical table sources are searched, then the physical column cannot be found.

	
From the remaining ordered list of logical table sources, examine the physical column that is mapped by the first logical table source. The physical column must be mapped to a VO attribute. In other words the physical column must be part of a physical database of type OracleADF11g.

	
If this condition is satisfied, then the physical column for obtaining UI hints is found.

	
If this condition is not satisfied, then continue to examine the physical column that is mapped by the next logical table source until the physical column that is mapped to a VO attribute is found.

If all logical table source are searched without satisfying the condition, then the physical column cannot be found.

If the physical column for obtaining UI hints is found using these rules, then the custom display name or description is populated with a session variable that has a name based on a predetermined naming scheme. See "About the Session Variable Naming Scheme for UI Hints" for more information.

If the physical column for obtaining UI hints is not found using these rules, then the Generate ADF Label and Generate ADF Tooltip options are shown as disabled in the right-click menu.

As an alternative to using the physical column found using these rules, you can use XML code in an initialization block to initialize your own session variables with ADF UI hints. You must then enter these session variable names in the Custom display name and Custom description fields manually. See "Using XML Code in Initialization Blocks to Query UI Hints" for more information.

Initializing Session Variables Automatically for Propagating UI Hints

If the Externalize Display Names > Generate ADF Label and Externalize Descriptions > Generate ADF Tooltip options were used to successfully generate the session variable names for UI hints from Oracle ADF, then the session variables are created and initialized when Oracle BI Presentation Services queries them during the session. The variables are not created and initialized during the session logon stage for performance reasons. Instead, the variables are created and initialized when they are needed by a specific query within a session, using the Allow deferred execution feature.

When Presentation Services queries the custom display names and custom descriptions through ODBC, the Oracle BI Server checks if the associated session variables have been created. If they have not been created, then the Oracle BI Server dynamically generates the appropriate XML query (as described in "Using XML Code in Initialization Blocks to Query UI Hints") to query the UI hints from the Oracle ADF data source. The Oracle BI Server uses the UI hints to create and initialize the session variables. As an optimization, the Oracle BI Server queries UI hints per VO; that is, if the Oracle BI Server needs the UI hints of a VO's attributes, then the UI hints for all the attributes under the VO are queried and propagated through session variables.

Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses

The following example shows how you can use UI hints from an Oracle ADF data source when creating analyses.

The following prerequisites must be met:

	
UI hints must have been configured in the Oracle ADF data source.

	
A working repository must have been configured for the Oracle ADF data source in the Administration Tool.

To use UI hints from an Oracle ADF data source when creating analyses:

	
Suppose that the repository contains a presentation column named "LastName." On the General tab of the Presentation Column dialog, the Custom display name and Custom description fields are not selected.

Right-click the column in the Presentation layer and select first Externalize Display Names > Generate ADF Label, then Externalize Descriptions > Generate ADF Tooltip to generate the strings that populate the Custom display name and Custom description fields.

You can also use these options from the right-click menu of a presentation table to generate the strings for all the columns in that table.

	
View the UI hints:

	
Sign in to Oracle Business Intelligence.

	
Create a new analysis using the subject area for which you obtained UI hints.

	
In the Subject Areas pane, expand the Employee folder to see the UI hints that have been propagated from the Oracle ADF data source.

The LastName column displays as "Last Name" (the label value from the Oracle ADF data source). When you hover the mouse pointer over the column, the tip displays as "This is the employee's last name" (the tooltip value from the Oracle ADF data source).

For information about creating analyses, see Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition).

Using XML Code in Initialization Blocks to Query UI Hints

As an alternative to using the automated system described in the previous section, you can use specialized XML code in place of SQL statements in initialization blocks to query the data source for UI hints, within a single repository and subject area. You use the ADFQuery element, which has three attributes that are named mode, database, and locale. The element requires zero or more child elements. The syntax of the element is as follows:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="{Mode}" database="{Database Name}"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
 <ViewObject><![CDATA[{VO Name}]]></ViewObject>
 <Attribute>
 <ViewObject><![CDATA[{Attribute VO Name}]]></ViewObject>
 <Name><![CDATA[{Attribute Name}]]></Name>
 </Attribute>
</ADFQuery>

where

{Mode} specifies what you want to query:

	
label for querying attributes' label

	
tooltip for querying attributes' tooltip

	
ui_hints for querying attributes' label and tooltip

{Database Name}

Use the name of the physical database object in the Administration Tool, which contains the physical columns that correspond to the attributes in the Oracle ADF data source.

{VO Name}

Use the name of the View Object to obtain the UI hints of all attributes in it.

{Attribute VO Name}

Use the name of the View Object that contains the attribute.

{Attribute Name}

Use the name of the attribute that belongs to the associated View Object to obtain the UI hints of this attribute.

Example 6-1 Querying Labels for All View Objects

No child elements must be included in the ADFQuery element, if the UI hints of all attributes in all View Objects are queried. For example, to query the labels of all attributes in all View Objects under the My_orclADF physical database object, use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="label" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
</ADFQuery>

Example 6-2 Querying Tooltips for Specific View Objects

The ADFQuery element can contain zero or more child elements named ViewObject if UI hints of all attributes in specific View Objects are queried. Each ViewObject element has a text content that contains the View Object's name. The ViewObject element is used to specify the View Objects from which the UI hints of all attributes are queried. For example, to query the tooltips of all attributes in the View Object that is named EmployeesView and CustomersView under the My_orclADF physical database object, use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="tooltip" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
 <ViewObject><![CDATA[EmployeesView]]></ViewObject>
 <ViewObject><![CDATA[CustomersView]]></ViewObject>
</ADFQuery>

Example 6-3 Querying UI Hints for Specific Attributes

The ADFQuery element can contain zero or more child elements named Attribute. Each Attribute element has two required child elements named ViewObject and Name. The Attribute element is used to specify the attributes from which the UI hints are queried. The ViewObject child element has a text content that contains the View Object's name. This element specifies the View Object that the attribute belongs to. The Name child element has a text content which contains the attribute's name. For example, to query the labels and tooltips of the attributes named Firstname and Lastname in the EmployeesView View Object under the My_orclADF physical database object, use the following XML code:

<?xml version="1.0" encoding="iso-8859-1" standalone="yes"?>
<ADFQuery mode="ui_hints" database="My_orclADF"
locale="VALUEOF(NQ_SESSION.WEBLANGUAGE)">
 <Attribute>
 <ViewObject><![CDATA[EmployeesView]]></ViewObject>
 <Name><![CDATA[Firstname]]></Name>
 </Attribute>
 <Attribute>
 <ViewObject><![CDATA[EmployeesView]]></ViewObject>
 <Name><![CDATA[Lastname]]></Name>
 </Attribute>
</ADFQuery>

After configuring the initialization blocks, you must manually enter the session variable names in the Custom display name and Custom description text fields for the appropriate presentation column.

Follow the procedure in the example in "Example of Using UI Hints From an Oracle ADF Data Source When Creating Analyses", but replace the first step with the following ones:

	
Create session initialization blocks in the Administration Tool.

	
In the Session Variable Initialization Block Data Source dialog, enter the Initialization string.

In this example, the initialization block queries both the label and tooltip of all attributes in a View Object named EmployeesView. Figure 6-11 shows the setup of a session variable initialization block with an appropriate Oracle ADF UI hint query. "My_orclADF"."Connection Pool" is a connection pool for an Oracle ADF data source.

Figure 6-11 Setting Up a Session Variable Initialization Block Data Source with an Oracle ADF UI Hints Query

[image: Description of Figure 6-11 follows]

Description of "Figure 6-11 Setting Up a Session Variable Initialization Block Data Source with an Oracle ADF UI Hints Query"

	
In the Session Variable Initialization Block dialog, select Row-wise initialization as the Variable Target.

	
Click Test to test the query against the Oracle ADF data source.

In the results window, the first column contains the session variable names that are generated using the naming scheme. The second column contains the label and tooltip values from the Oracle ADF data source.

See "About the Session Variable Naming Scheme for UI Hints" for a description of the naming scheme.

	
Configure a custom display name and a description in presentation columns.

To find the presentation tables that can use the UI hints from the EmployeesView View Object, this example uses the Query Repository feature in the Administration Tool.

	
Right-click a physical table (for example, EmployeesView), then select Query Related Objects > Presentation > Presentation Table from the menu.

The Query Related Objects dialog displays all the related presentation tables.

This example sets up a custom display name and custom description for columns in the Employee presentation table.

Figure 6-12 Using the Query Related Objects Feature to Find the Related Presentation Tables

[image: Description of Figure 6-12 follows]

Description of "Figure 6-12 Using the Query Related Objects Feature to Find the Related Presentation Tables"

	
Select the required presentation table and click Go To.

This displays the selected presentation table.

	
Expand the presentation table to view the presentation columns.

	
Double-click the LastName presentation column to display the Presentation Column dialog.

	
Select Custom display name and enter a value such as the following one:

VALUEOF(NQ_SESSION.ADF_LABEL_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME)

	
Select Custom description and enter a value such as the following one:

VALUEOF(NQ_SESSION.ADF_TOOLTIP_MY_ORCLADF_EMPLOYEESVIEW_LASTNAME)

	
Click OK.

	
Save the changes in the repository and restart the Oracle BI Server.

1 Introduction to Building Your Metadata Repository

This chapter explains how to plan and design your metadata repository, including how to plan your business model, how to work with the physical content for your business model, and general repository design guidelines.

To effectively plan and build your metadata repository, you need to have experience with SQL queries and be familiar with reporting and analysis. You should also have experience with industry-standard data warehouse modeling practices, and be familiar with general relational entity-relationship modeling.

This chapter contains the following topics:

	
About Oracle BI Server and Oracle BI Repository Architecture

	
Planning Your Business Model

	
Identifying the Data Source Content for the Physical Layer

	
Guidelines for Designing a Repository

	
Topics of Interest in Other Guides

	
System Requirements and Certification

About Oracle BI Server and Oracle BI Repository Architecture

The architecture of the Oracle BI Server and the Oracle BI repository provides a layer of abstraction that lets users send simple Logical SQL queries against complex federated data sources.

This section contains the following topics:

	
About Oracle BI Server Architecture

	
About Layers in the Oracle BI Repository

About Oracle BI Server Architecture

The Oracle BI Server is an Oracle Business Intelligence component that processes user requests and queries underlying data sources. The Oracle BI Server maintains the logical data model and provides client access to this model through ODBC.

The Oracle BI Server uses the metadata in the Oracle BI repository to perform the following two tasks:

	
Interpret Logical SQL queries and write corresponding physical queries against the appropriate data sources

	
Transform and combine the physical result sets and perform final calculations

The Oracle BI Server connects to the underlying data sources through either ODBC or through native APIs, such as OCI for Oracle Database.

The Administration Tool client is a Windows application that you can use to create and edit your Oracle BI repository. The Administration Tool can connect directly to the repository in offline mode, or it can connect to the repository through the Oracle BI Server. Some options are only available in online mode. See "Using Online and Offline Repository Modes" for more information.

Figure 1-1 shows how the Oracle BI Server interacts with query clients, data sources, the Oracle BI repository, and the Administration Tool.

Figure 1-1 Oracle BI Server Architecture

[image: Description of Figure 1-1 follows]

Description of "Figure 1-1 Oracle BI Server Architecture"

Example 1-1 shows how the Oracle BI Server interprets and converts Logical SQL queries.

Example 1-1 Logical Requests Are Transformed Into Complex Physical Queries

Assume the Oracle BI Server receives the following simple client request:

SELECT
"D0 Time"."T02 Per Name Month" saw_0,
"D4 Product"."P01 Product" saw_1,
"F2 Units"."2-01 Billed Qty (Sum All)" saw_2
FROM "Sample Sales"
ORDER BY saw_0, saw_1

The Oracle BI Server can then convert the Logical SQL query into a sophisticated physical query, as follows:

WITH SAWITH0 AS (
select T986.Per_Name_Month as c1, T879.Prod_Dsc as c2,
 sum(T835.Units) as c3, T879.Prod_Key as c4
from
 Product T879 /* A05 Product */ ,
 Time_Mth T986 /* A08 Time Mth */ ,
 FactsRev T835 /* A11 Revenue (Billed Time Join) */
where (T835.Prod_Key = T879.Prod_Key and T835.Bill_Mth = T986.Row_Wid)
group by T879.Prod_Dsc, T879.Prod_Key, T986.Per_Name_Month
)
select SAWITH0.c1 as c1, SAWITH0.c2 as c2, SAWITH0.c3 as c3
from SAWITH0
order by c1, c2

About Layers in the Oracle BI Repository

An Oracle BI repository has the following layers:

	
Physical layer. This layer defines the objects and relationships that the Oracle BI Server needs to write native queries against each physical data source. You create this layer by importing tables, cubes, and flat files from your data sources.

Separating the logical behavior of the application from the physical model provides the ability to federate multiple physical sources to the same logical object, enabling aggregate navigation and partitioning, as well as dimension conformance and isolation from changes in the physical sources. This separation also enables the creation of portable BI Applications.

	
Business Model and Mapping layer. This layer defines the business or logical model of the data and specifies the mapping between the business model and the physical schemas. This layer determines the analytic behavior seen by users, and defines the superset of objects and relationships available to users. It also hides the complexity of the source data models.

Each column in the business model maps to one or more columns in the Physical layer. At run time, the Oracle BI Server evaluates Logical SQL requests against the business model, and then uses the mappings to determine the best set of physical tables, files, and cubes for generating the necessary physical queries. The mappings often contain calculations and transformations, and might combine multiple physical tables.

	
Presentation layer. This layer provides a way to present customized, secure, role-based views of a business model to users. It adds a level of abstraction over the Business Model and Mapping layer and provides the view of the data seen by users building requests in Presentation Services and other clients.

You can create multiple subject areas in the Presentation layer that map to a single business model, effectively breaking up the business model into manageable pieces.

Before you build any repository layers in the Administration Tool, it is important to create a high-level design of the Business Model and Mapping layer based on the analytic requirements of your users. After you have a conceptual design to work toward, you can then build your metadata objects.

The typical order is to create the Physical layer objects first, the Business Model and Mapping layer objects next, and the Presentation layer objects last. However, you can work on each layer at any stage. After you complete all three layers, you can set up security when you are ready to begin testing the repository.

Figure 1-2 shows how a Logical SQL query traverses the layers of an Oracle BI repository.

Figure 1-2 Logical SQL Query Traversing the Layers in an Oracle BI Repository

[image: Description of Figure 1-2 follows]

Description of "Figure 1-2 Logical SQL Query Traversing the Layers in an Oracle BI Repository"

Note that a single Oracle BI repository can contain two or more independent semantic models, rather than a single, integrated, enterprise-wide model. A semantic model consists of one business model, its related objects in the Presentation and Physical layers, and additional related objects like variables, initialization blocks, and application roles. A semantic model is also known as a Common Enterprise Information Model.

See also Figure A-4 for a visual representation of multiple semantic models.

Planning Your Business Model

Planning your business model is the first step in developing a usable data model for decision support. After you have followed the planning guidelines in this section, you can begin to create your repository.

Analyzing Your Business Model Requirements

Your first task is to thoroughly understand your business model requirements. You must first understand what business model you want to build before you can determine what the Physical layer needs to have in it.

In a decision support environment, the objective of data modeling is to design a model that presents business information in a manner that parallels business analysts' understanding of the business structure. A successful model allows the query process to become a natural process by enabling analysts to structure queries in the same intuitive fashion as they would ask business questions. This model must be one that business analysts inherently understand and that answers meaningful questions correctly.

Unlike visual SQL tools such as Oracle BI Publisher, the business model defines the analytic behavior of your BI application. In contrast, the Physical layer only provides the components used to assemble a physical query mapped from business model logic.

This requires breaking down your business into several components to answer the following questions:

	
What kinds of business questions are analysts trying to answer?

	
What are the measures required to understand business performance?

	
What are all the dimensions under which the business operates? Or, in other words, what are the dimensions used to break down the measurements and provide headers for the reports?

	
Are there hierarchical elements in each dimension, and what types of relationships define each hierarchy?

After you have answered these questions, you can identify and define the elements of your business model.

Identifying the Content of the Business Model

To determine what content to include in your business model, you must first identify the logical columns on which users need to query. Then, to establish the role played by each column, identify whether it is a measure column or a dimensional attribute. Finally, arrange the logical columns in a dimensional model based on the relevant roles, relationships between columns, and logic.

Businesses are analyzed by relevant dimensional criteria, and the business model is developed from these relevant dimensions. These dimensional models form the basis of the valid business models to use with the Oracle BI Server.

Although not all dimensional models are built around a star schema, it is a best practice to use a simple star schema in the business model layer. In other words, the dimensional model should represent some measurable facts that are viewed in terms of various dimensional attributes.

After you analyze your business model requirements, you need to identify the specific logical tables and hierarchies that you need to include in your business model.

This section contains the following topics:

	
Identifying Logical Fact Tables

	
Identifying Logical Dimension Tables

	
Identifying Dimensions

	
Identifying Lookup Tables

Identifying Logical Fact Tables

Logical fact tables in the Business Model and Mapping layer contain measures that have aggregations built into their definitions. Logical fact tables are different from physical fact tables in relational models, which instead define facts at the lowest grain of the table.

Measures aggregated from facts must be defined in a logical fact table. Measures are typically calculated data such as dollar value or quantity sold, and they can be specified in terms of dimensions. For example, you might want to determine the sum of dollars for a given product in a given market over a given time period.

Each measure has its own aggregation rule such as SUM, AVG, MIN, or MAX. A business might want to compare values of a measure and need a calculation to express the comparison. Also, aggregation rules can be specific to particular dimensions. The Oracle BI Server lets you define complex, dimension-specific aggregation rules.

You do not explicitly label tables in the Business Model and Mapping layer as fact tables or dimension tables. Rather, the Oracle BI Server treats tables at the "one" end of a join as dimension tables, and tables at the "many" end of a join as fact tables.

Figure 1-3 illustrates the many-to-one joins to a fact table in a Business Model Diagram. In the diagram, all joins have an arrow (indicating the one side) pointing away from the Fact-Pipeline table; no joins are pointing to it. For an example of this in a business model, open a repository in the Administration Tool, right-click a fact table, and select Business Model Diagram > Whole Diagram.

Figure 1-3 Diagram of Fact Table Joins

[image: This image is described in the surrounding text.]

Description of "Figure 1-3 Diagram of Fact Table Joins"

Identifying Logical Dimension Tables

A business uses facts to measure performance by well-established dimensions, for example, by time, product, and market. Every dimension has a set of descriptive attributes. Dimension tables contain attributes that describe business entities (such as Customer Name, Region, Address, Country and so on). Dimension tables also contain primary keys that identify each member. Unlike logical fact tables, which are different from physical fact tables in relational models, logical dimension tables behave very much like relational dimension tables.

Dimension table attributes provide context to numeric data, such as being able to categorize Service Requests. Attributes stored in this dimension might include Service Request Owner, Area, Account, Priority, and so on.

Dimensions in the business model are conformed dimensions. In other words, even if a particular data source has five different instances of a particular Customer table, the business model should only have one table. To achieve this, all five physical source instances of Customer are mapped to a single Customer logical table, with transformations in the logical table source as necessary. Conformed dimensions hide the complexity of the Physical layer from users and enable you to combine data from multiple fact sources at different grains. They also enable you to federate multiple data sources.

Also note that dimension and level keys in the business model should be business keys rather than generated surrogate keys. In other words, use "Customer Name" with values like "Oracle" instead of "Customer Key" with values like "1076823." Using business keys in the business model ensures that all sources for that dimension can be conformed to the same logical dimension table with the same logical key and level key.

Although generated surrogate keys can still exist in the Physical layer, where they are useful for their query performance advantages on joins, you typically do not have surrogate key columns in the Business Model and Mapping layer at all.

Identifying Dimensions

Dimensions are categories of attributes by which the business is defined. Common dimensions are time periods, products, markets, customers, suppliers, promotion conditions, raw materials, manufacturing plants, transportation methods, media types, and time of day. Within a given dimension, there may be many attributes. For example, the time period dimension can contain the attributes day, week, month, quarter, and year. Exactly what attributes a dimension contains depends on the way the business is analyzed.

Dimensions typically contain hierarchies, which are sets top-down relationships between members within a dimension. There are two types of hierarchies: level-based hierarchies (structure hierarchies), and parent-child hierarchies (value hierarchies). Level-based hierarchies are those in which members of the same type occur only at a single level, while members in parent-child hierarchies all have the same type. Oracle Business Intelligence also supports a special type of level-based dimension, called a time dimension, that provides special functionality for modeling time series data.

In level-based hierarchies, levels roll up from lower level to higher level; for example, months can roll up into a year. These rollups occur over the hierarchy elements and span natural business relationships.

In parent-child hierarchies, the business relationships occur between different members of the same real-world type, such as the manager-employee relationship in an organizational hierarchy tree. Parent-child hierarchies do not have explicitly named levels. There is no limit to the number of implicit levels in a parent-child hierarchy.

To define your hierarchies, you define the "contains" relationships in your business (geographical, product, time, and so on) to drive rollup aggregations in all calculations, as well as drill-down navigation in reports and dashboards. For example, if month rolls up into year and an aggregate table exists at the month level, that table can be used to answer questions at the year level by adding up all of the month-level data for a year.

It is important to use the right type of hierarchy for your needs. To determine which type to use, consider the following:

	
Are all the members of the same type (such as employee, assembly, or account), or are they of different types that naturally fall into levels (such as year-quarter-month, continent-country-state/province, or brand-line-product)?

	
Do members have the same set of attributes? For example, in a parent-child hierarchy like Employees, all members might have a Hire Date attribute. In a level-based hierarchy like Time, however, the Day type might have a Holiday attribute, while Month does not.

	
Are the levels fixed at design time (year-quarter-month), or can run-time business transactions add or subtract levels? For example, a level could be added when the current lowest-level employee hires a subordinate, who then becomes the new lowest level.

	
Are there constraints in your primary data source that require a certain hierarchy type? If your primary data source is modeled in one way or the other, you might need to use the same hierarchy type in your business model, regardless of other factors.

See Chapter 10, "Working with Logical Dimensions" for more information.

About Dimensions with Multiple Hierarchies

Sometimes, dimensions can contain multiple hierarchies. For example, time dimensions often have one hierarchy for the calendar year, and another hierarchy for the fiscal year. Note that dimensions with multiple hierarchies must always end with the same leaf table.

Figure 1-4 shows a dimension with multiple hierarchies in the Business Model and Mapping layer of the Administration Tool.

Figure 1-4 Dimension with Multiple Hierarchies

[image: Description of Figure 1-4 follows]

Description of "Figure 1-4 Dimension with Multiple Hierarchies"

Identifying Lookup Tables

When you need to display translated field information from multilingual schemas, you create a logical lookup table that corresponds to a lookup table in the Physical layer. A lookup table stores multilingual data corresponding to rows in the base tables. Before you can use a particular logical lookup table, you must designate it as a lookup table in the General tab of the Logical Table dialog. See "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about localization and lookup tables.

In addition to localization, lookup tables can be used any time you need to display one set of values to users, while using a different, corresponding set of values in the physical query. If necessary, the human-readable value can be looked up in a completely different data source.

Identifying the Data Source Content for the Physical Layer

After you have determined the requirements for your business model, you can look at what data source content you need in the Physical layer. Unlike the Business Model and Mapping layer, which is always dimensional, each physical model mirrors the shape of the source (for example, normalized, cube, and so on).

This section contains the following topics:

	
About Types of Physical Schemas in Relational Data Sources

	
About Cubes in Multidimensional Data Sources

	
Identifying the Data Source Table Structure

About Types of Physical Schemas in Relational Data Sources

You can successfully model any physical schema in the Oracle BI repository, regardless of its type, because the model of any physical source can be broken down into overlapping subsets that are dimensional.

There are four types of physical schemas (models):

	
Star Schemas. A star schema is a set of dimensional schemas (stars) that each have a single fact table with foreign key join relationships to several dimension tables. When you map a star to the business model, you first map the physical fact columns to one or more logical fact tables. Then, for each physical dimension table that joins to the physical fact table for that star, you map the physical dimension columns to the appropriate conformed logical dimension tables.

	
Snowflake Schemas. A snowflake schema is similar to a star schema, except that each dimension is made up of multiple tables joined together. Like star schemas, you first map the physical fact columns to one or more logical tables. Then, for each dimension, you map the snowflaked physical dimension tables to a single logical table. You can achieve this by either having multiple logical table sources, or by using a single logical table source with joins.

	
Normalized Schemas. Normalized schemas distribute data entities into multiple tables to minimize data storage redundancy and optimize data updates. Before mapping a normalized schema to the business model, you need to understand how the distributed structure can be understood in terms of facts and dimensions.

After analyzing the structure, you pick a table that has fact columns and then map the physical fact columns to one or more logical fact tables. Then, for each dimension associated with that set of physical fact columns, you map the distributed physical tables containing dimensional columns to a single logical table. Like with snowflake schemas, you can achieve this by having multiple logical table sources, or by using a single logical table source with joins. Mapping normalized schemas is an iterative process because you first map a certain set of facts, then the associated dimensions, and then you move on to the next set of facts.

Note that when a single physical table has both fact and dimension columns, you may need to create a physical alias table to handle the multiple roles played by that table.

	
Fully Denormalized Schemas. This type of dimensional schema combines the facts and dimensions as columns in one table (or flat file), and is mapped differently than other types of schemas. When you map a fully denormalized schema to the star-shaped business model, you map the physical fact columns from the single physical fact table to multiple logical fact tables in the business model. Then, you map the physical dimension columns to the appropriate conformed logical dimension tables.

About Cubes in Multidimensional Data Sources

Cubes are made up of measures and organized by dimensions. Because they are already dimensional, each cube maps easily to the logical fact and dimension tables in the business model.

Note the following about measures and dimensions:

	
Measures in multidimensional cubes and relational fact columns both map to logical measures in the Business Model and Mapping layer. However, measures in multidimensional cubes already include calculations and aggregations, unlike relational fact columns, which require the calculations and aggregations to be applied in the business model. Rather than treating cubes like relational sources, the Oracle BI Server can take advantage of the pre-aggregated data and powerful calculations in the cube.

	
Multidimensional physical objects and relational physical objects both map to logical dimensions in the Business Model and Mapping layer. However, dimensional and hierarchical semantics are already built into multidimensional data sources, unlike relational sources. The Oracle BI Server can take advantage of the more complete hierarchy and dimensional support in the cube, both during import and at query time.

Identifying the Data Source Table Structure

The Administration Tool provides an interface to map logical tables to the underlying physical tables in your data sources. Before you can map the tables, you need to identify the contents of the physical data sources as it relates to your business model. To do this correctly, you need to identify the following contents of the physical data source:

	
Identify the contents of each table

	
Identify the detail level for each table

	
Identify the table definition for each aggregate table. This lets you set up aggregate navigation. The following detail is required by the Oracle BI Server:

	
The columns by which the table is grouped (the aggregation level)

	
The type of aggregation (SUM, AVG, MIN, MAX, or COUNT)

For information on how to set up aggregate navigation in a repository, see Chapter 11.

	
Identify the contents of each column

	
Identify how each measure is calculated

	
Identify the joins defined in the database

To acquire this information about the data, you could refer to any available documentation that describes the data elements created when the data source was implemented, or you might need to spend some time with the DBA for each data source to get this information. To fully understand all the data elements, you might also need to ask people in the organization who are users of the data, owners of the data, or the application developers of applications that create the data.

Guidelines for Designing a Repository

After analyzing your business model needs and identifying the database content your business needs, you can complete your repository design. This section contains some design best practices that can help you implement a more efficient repository.

Typically, you should not make performance tuning changes until you have imported and tested your databases. These tasks are performed during the final steps in completing the setup of your repository. For more information about these final steps, see Chapter 15.

This section contains the following topics:

	
General Tips for Working on the Repository

	
Design Tips for the Physical Layer

	
Design Tips for the Business Model and Mapping Layer

	
Design Tips for the Presentation Layer

General Tips for Working on the Repository

Follow these recommended design strategies for structuring your Oracle BI repository:

	
If you work in online mode, save backups of the online repository before and after every completed unit of work. If needed, use Copy As on the File menu to make an offline copy containing the changes.

	
Use the Physical Diagrams in the Administration Tool to verify sources and joins.

	
Decide whether you want to set up row-level security controls in the database, or in the repository. This decision determines whether you share connection pools and cache, and may limit the number of separate source databases you want to include in your deployment. See Chapter 14, "Applying Data Access Security to Repository Objects" for more information.

Most dialogs in the Administration Tool have Help that provides information about how to complete a task. To access a help topic, click the Help button in a dialog, or select Help from some menus.

Design Tips for the Physical Layer

The Physical layer contains information about the physical data sources. The most common way to create the schema in the Physical layer is by importing metadata from databases and other data sources. If you import metadata, many of the properties are configured automatically based on the information gathered during the import process. You can also define other attributes of the physical data source, such as join relationships, that might not exist in the data source metadata.

The Physical layer can contain data sources of many different types, including multidimensional, relational, and XML sources. See "System Requirements and Certification" for information about supported databases.

For each data source, there is at least one corresponding connection pool. The connection pool contains data source name (DSN) information used to connect to a data source, the number of connections allowed, timeout information, and other connectivity-related administrative details. See "About Connection Pools" for more information.

The following is a list of tips to use when designing the Physical layer:

	
It is recommended that you use table aliases frequently in the Physical layer to eliminate extraneous joins, including the following:

	
Eliminate all physical joins that cross dimensions (inter-dimensional circular joins) by using aliases.

	
Eliminate all circular joins (intra-dimensional circular joins) in a logical table source in the Physical Model by creating physical table aliases.

For example, say you have a Customer table that can be used to look up ship-to addresses, and using a different join, to look up bill-to addresses. Avoid the circular joins by aliasing the table in the Physical layer so that there is one instance for each purpose, with separate joins.

If you do not eliminate circular joins, you might get erroneous report results. In addition, query performance might be negatively impacted.

	
You might import some tables into the Physical layer that you might not use right away, but that you do not want to delete. To identify tables that you do want to use right away in the Business Model and Mapping layer, you can assign aliases to physical tables before mapping them to the business model layer.

	
Note:

To have the name of a table to which you assigned an alias appear, select Display original name for alias in diagrams in Tools > Options > General.

	
An opaque view (a Physical layer table that consists of a SELECT statement) should be used only if there is no other solution to your modeling problem. Ideally, a physical table should be created, or alternatively a materialized view. Opaque views prevent the Oracle BI Server from generating its own optimized SQL, because they contain fixed SQL statements that are sent to the underlying data source.

Design Tips for the Business Model and Mapping Layer

The Business Model and Mapping layer organizes information by business model. In this layer, each business model is effectively a separate application.

The logical schema defined in each business model must contain at least two logical tables. Relationships need to be defined between all the logical tables. See "About Layers in the Oracle BI Repository" for more information about business model schemas. See Chapter 9 for more information about setting up the Business Model and Mapping layer.

The following is a list of tips to use when designing the Business Model and Mapping layer:

	
Create the business model with one-to-many logical joins between logical dimension tables and the fact tables wherever possible. The business model should ideally resemble a simple star schema in which each fact table is joined directly to its dimensions.

	
Every logical fact table must join to at least one logical dimension table. Note that when the source is a fully denormalized table or flat file, you must map its physical fact columns to one or more logical fact tables, and its physical dimension columns to logical dimension tables.

	
Every logical dimension table should have a dimensional hierarchy associated with it. This rule holds true even if the hierarchy has only one level, such as a scenario dimension {actual, forecast, plan}.

	
When creating level-based measures, make sure that all appropriate fact sources map to the appropriate level in the hierarchy using aggregation content. You set up aggregation content in the Levels tab of the Logical Column dialog for the measure. Note that this is different from the Content tab of the Logical Table Source dialog, which is used to specify the grain of the source tables to which it maps.

You only need to set up aggregation content in the Levels tab of the Logical Column dialog for level-based measures. For measures that are not level based, leave the Logical Level field blank.

	
Typically, logical fact tables should not contain any keys. The only exception is when you need to send Logical SQL queries against the Oracle BI Server from a client that requires keys. In this case, you need to expose those keys in both the logical fact tables, and in the Presentation layer.

	
Normally, all columns in logical fact tables are aggregated measures, except for keys required by external clients, or dummy columns used as a divider. Other non-aggregated columns should instead exist in a logical dimension table.

	
In some situations, you might want to have multiple logical fact tables in a single business model. For Logical SQL queries, the multiple logical fact tables behave as if they are one table.

Reasons to have multiple logical fact tables include:

	
To assign projects. See "Setting Up Projects" for more information.

	
To automatically create small subject areas in the Presentation layer. See "Automatically Creating Subject Areas Based on Logical Stars and Snowflakes" for more information.

	
For organization and simplicity of understanding.

Unlike relational fact tables, logical fact tables can contain measures of different grains. Because of this, grain is not a reason to split up logical fact tables.

	
You can define calculations in either of the following ways:

	
Before the aggregation, in the logical table source. For example:

sum(col_A *(col_B))

	
After the aggregation, in a logical column derived from two other logical columns. For example:

sum(col A) * sum(col B)

You can also define post-aggregation calculations in Answers or in Logical SQL queries.

	
If you plan to use Oracle Scorecard and Strategy Management, it is a best practice to implement at least one time dimension in the Oracle BI repository you are using for your KPIs. This action is necessary because you use KPIs in scorecards to measure progress and performance over time. Note that an individual scorecard automatically picks up any dimension used by KPIs in that scorecard.

	
Aggregate sources should be created as separate logical table sources. For fact aggregates, use the Content tab of the Logical Table Source dialog to assign the correct logical level to each dimension.

	
Each dimension level in a hierarchy must have a unique level key. Also, each logical dimension table must have a unique primary key. Normally, this key is also used as the level key for the lowest hierarchy level.

	
Renaming columns in the Business Model and Mapping layer automatically creates aliases (synonyms) for Presentation layer columns that have the property Use Logical Column Name selected.

	
To prevent problems with aggregate navigation, ensure that each logical level of a dimension hierarchy contains the correct value in the field named Number of elements at this level. Fact sources are selected on a combination of the fields selected as well as the levels in the dimensions to which they map. By adjusting these values, you can alter the fact source selected by the Oracle BI Server. See "Creating Logical Levels in a Dimension" for more information about setting this value.

Modeling Outer Joins

The following guidelines provide tips on how to model outer joins:

	
Due to the nature of outer joins, queries that use them are usually slower. Because of this, define outer joins only when necessary. Where possible, use ETL techniques to eliminate the need for outer joins in the reporting SQL.

	
Outer joins are always defined in the Business Model and Mapping layer. Physical layer joins do not specify inner or outer.

	
You can define outer joins by using logical table joins, or in logical table sources. Which type of outer join you use is determined by whether the physical join maps to a business model join, or to a logical table source join.

	
Be aware that outer joins in logical table sources are always included in a query, even if the none of the columns in one of the mapped physical tables are used.

For example, assume that a logical table source is mapped to physical tables A and B. When no outer joins are defined, if physical table A is not required to satisfy a request, it is not included in the physical query. However, if the logical table source has an outer join defined to table A, table A is still included in the physical query, even if only physical table B is required to satisfy the request.

	
If you must define an outer join, try to create two separate dimensions, one that uses the outer join and one that does not. Make sure to name the dimension with the outer join in a way that clearly identifies it, so that client users can use it as little as possible.

Design Tips for the Presentation Layer

You set up the user view of a business model in the Presentation layer. The names of folders and columns in the Presentation layer can appear in localized language translations. The Presentation layer is the appropriate layer in which to set user permissions. For complete information about working in the Presentation layer, see Chapter 12.

In this layer, you can do the following:

	
You can show fewer columns than exist in the Business Model and Mapping layer. For example, you can exclude the key columns because they have no business meaning.

	
You can organize columns using a different structure from the table structure in the Business Model and Mapping layer.

	
You can display column names that are different from the column names in the Business Model and Mapping layer.

	
You can set permissions to grant or deny users access to individual subject areas, tables, and columns.

	
You can export logical keys to ODBC-based query and reporting tools.

	
You can create multiple subject areas for a single business model.

	
You can create a list of aliases (synonyms) for presentation objects that can be used in Logical SQL queries. This feature lets you change presentation column names without breaking existing reports.

The following is a list of tips to use when designing the Presentation layer:

	
Because there is no automatic way to synchronize all changes between the Business Model and Mapping layer and the Presentation layer, it is best to wait until the Business Model and Mapping layer is relatively stable before adding customizations in the Presentation layer.

	
There are many ways to create subject areas, such as dragging and dropping the entire business model, dragging and dropping incremental pieces of the model, or automatically creating subject areas based on logical stars or snowflakes. See "Creating Subject Areas" for information about each of these methods. Dragging and dropping incrementally works well if certain parts of your business model are still changing.

	
It is a best practice to rename objects in the Business Model and Mapping layer rather than the Presentation layer, for better maintainability. Giving user-friendly names to logical objects rather than presentation objects ensures that the names can be reused in multiple subject areas. Also, it ensures that the names persist even when you need to delete and re-create subject areas to incorporate changes to your business model.

	
Be aware that members in a presentation hierarchy are not visible in the Presentation layer. Instead, you can see hierarchy members in Answers.

	
You can use the Administration Tool to update Presentation layer metadata to give the appearance of nested folders in Answers. See "Nesting Folders in Answers" for more information.

	
When setting up data access security for a large number of objects, consider setting object permissions by role rather than setting permissions for individual columns. See Chapter 14, "Applying Data Access Security to Repository Objects" for details.

	
When setting permissions on presentation objects, you can change the default permission by setting the DEFAULT_PRIVILEGES configuration setting in the NQSConfig.INI file. See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

Topics of Interest in Other Guides

Some topics that may be of interest to metadata repository builders are covered in other guides. Table 1-1 lists these topics, and indicates where to go for more information.

Table 1-1 Topics Covered in Other Guides

	Topic	Where to Go for More Information
	
Starting and stopping Oracle Business Intelligence processes

	
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Using the Oracle BI Server XML API to work with your repository

	
Oracle Fusion Middleware XML Schema Reference for Oracle Business Intelligence Enterprise Edition

	
Using the Oracle BI Server Web services

	
Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Setting up and managing query caching

	
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Managing configuration settings that affect repository development in Fusion Middleware Control and NQSConfig.INI

	
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Managing users, groups, and application roles

	
Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition

	
Moving from test to production environments

	
Oracle Fusion Middleware Administrator's Guide

	
Setting up DSNs for the Oracle BI Server

	
Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Localizing Oracle Business Intelligence deployments

	
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Information about the SA System subject area

	
Oracle Fusion Middleware Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition

	
Managing logging

	
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition

	
Managing usage tracking

	
Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition

	
General information about managing Oracle WebLogic Server

	
Oracle Fusion Middleware Administrator's Guide

System Requirements and Certification

Refer to the system requirements and certification documentation for information about hardware and software requirements, platforms, databases, and other information. Both of these documents are available on Oracle Technology Network (OTN).

The system requirements document covers information such as hardware and software requirements, minimum disk space and memory requirements, and required system libraries, packages, or patches:

http://www.oracle.com/technology/software/products/ias/files/fusion_requirements.htm

The certification document covers supported installation types, platforms, operating systems, databases, JDKs, and third-party products:

http://www.oracle.com/technology/software/products/ias/files/fusion_certification.html

8 Working with Physical Tables, Cubes, and Joins

The Physical layer of the Oracle BI repository contains objects that represent physical data constructs from back-end data sources. The Physical layer defines the objects and relationships available to the Oracle BI Server for writing physical queries. This layer encapsulates data source dependencies to enable portability and federation.

Each data source of the repository model typically has its own discrete physical model in the Physical layer. The top-level object in the Physical layer is a "database," and the type of database determines which features and rules apply to that physical model. For example, a relational database such as "Oracle 11g" has relational objects such as physical tables and joins. In contrast, a multidimensional source such as "Essbase 9" has cube tables and physical hierarchies. Therefore, some sections of this chapter apply to only certain database types.

Physical tables, cubes, joins, and other objects in the Physical layer are typically created automatically when you import metadata from your data sources. After these objects have been imported, you can perform tasks like creating additional join paths that are not in the data source, create alias tables for physical tables that need to serve in different roles, and adjust properties of physical hierarchies from multidimensional data sources.

This chapter contains the following topics:

	
Working with the Physical Diagram

	
Creating Physical Layer Folders

	
Working with Physical Tables

	
Working with Multidimensional Sources in the Physical Layer

	
Working with Essbase Data Sources

	
Working with Hyperion Financial Management Data Sources

	
Working with Oracle OLAP Data Sources

	
Working with Physical Foreign Keys and Joins

	
Deploying Opaque Views

	
Using Hints

	
Displaying and Updating Row Counts for Physical Tables and Columns

Working with the Physical Diagram

In addition to working with Physical layer objects in the right pane of the Administration Tool, you can open the Physical Diagram view to see a graphical model of tables and joins.

	
Note:

The Physical Diagram is typically used with relational and XML sources rather than multidimensional sources. Although the Physical Diagram view for a multidimensional source does display a denormalized table representation of a cube table, the primary means of working with a multidimensional physical model is by working in the physical tree using dimensions, hierarchies and columns.

To access the Physical Diagram, right-click an object in the Physical layer tree view (such as a physical database or table) and select Physical Diagram. Then, select one of the following options:

	
Selected Object(s) Only. Displays only the selected objects. Joins appear only if they exist between the objects that you select.

	
Object(s) and Direct Joins. Displays the selected objects and any tables that join to the objects that you select.

	
Object(s) and All Joins. Displays the selected objects, as well as each object that is related directly or indirectly to the selected object through some join path. If all the objects in a schema are related, then using this option diagrams every table, even if you only select one table.

Note that the Physical Diagram displays only physical tables and joins. It does not display other Physical layer objects, such as connection pools, physical hierarchies, or levels.

Figure 8-1 shows the Physical Diagram.

Figure 8-1 Physical Diagram

[image: Description of Figure 8-1 follows]

Description of "Figure 8-1 Physical Diagram"

You can also open the Physical Diagram by selecting one or more objects in the tree view and then clicking the Physical Diagram button on the toolbar:

[image: Physical Diagram icon]

Only the objects you selected appear. Joins appear only if they exist between the selected objects. Joins are represented by a line with an arrow at the "one" end of the join.

To help you better understand the logical-to-physical mappings in your model, you can view the physical objects that are associated with a particular logical object by selecting one or more business models, logical tables, or logical table sources in the Business Model and Mapping layer tree view and then clicking the Physical Diagram button on the toolbar. Only physical objects that are related to the objects you selected appear. You can view the same information by right-clicking a logical object and selecting Objects and Direct Join(s) within Business Model from the Physical Diagram submenu. You can also choose one of the other Physical Diagram display options.

To add additional tables to the Physical Diagram, leave the Physical Diagram window open and then right-click the table or tables you want to add. Then, select Physical Diagram and choose one of the display options.

Additional options are available in the right-click menu for the graphical tables and joins displayed in the Physical Diagram. For example, you can delete objects or view their properties, or you can add additional related objects using the right-click options Add Direct Joins, Add Tables Joined to Whole Selection, and Add All Joins. You can also select Find in Tree View to locate a particular object in the Physical layer tree view in the right pane, or check out objects in online mode.

You can also right-click an object in the Physical Diagram view and select Hide to hide particular objects in the diagram. Note that this effect is temporary and does not persist.

Use the Print and Print Preview options on the File menu to manage printing options for the Physical Diagram. You can also use the Print option on the toolbar.

See also the following sections:

	
"Using the Physical and Business Model Diagrams" for information about zooming, panning, and controlling the layout of the tables

	
"Defining Physical Joins with the Physical Diagram" for information about defining physical joins

Creating Physical Layer Folders

This section contains the following topics:

	
Creating Physical Layer Catalogs and Schemas

	
Using a Variable to Specify the Name of a Catalog or Schema

	
Setting Up Display Folders in the Physical Layer

Creating Physical Layer Catalogs and Schemas

Catalogs are optional ways to group different schemas. A catalog contains all the schemas (metadata) for a physical database object. A schema contains only the metadata information for a particular user or application. Model the Physical layer after the way your data source is structured.

Note the following:

	
You must create a physical database object before you can create a physical catalog object or a physical schema object.

	
After you implement a certain type of grouping, you cannot change it later. For example, if you decide to implement database > schema > table, you cannot add a catalog afterward.

Creating Catalogs

In the Physical layer of a large repository, administrators can create physical catalogs that contain one or more physical schemas.

To create a catalog:

	
In the Physical layer of the Administration Tool, right-click a physical database and select New Object, then select Physical Catalog.

	
In the Physical Catalog dialog, type a name for the catalog.

	
Type a description for the catalog, and then click OK.

Creating Schemas

The schema object contains tables and columns for a physical schema. Schema objects are optional in the Physical layer of the Administration Tool.

To create a schema:

	
In the Physical layer of the Administration Tool, right-click a physical database or physical catalog and select New Object, then select Physical Schema.

	
In the Physical Schema dialog, type a name.

	
Type a description for the schema, and then click OK.

Using a Variable to Specify the Name of a Catalog or Schema

You can use a variable to specify the names of catalog and schema objects. For example, you have data for multiple clients and you structured the data source so that data for each client was in a separate catalog. You would initialize a session variable named Client, for example, that could be used to set the name for the catalog object dynamically when a user signs on to the Oracle BI Server.

You specify the session variable to use in the Dynamic Name tab of the Physical Catalog or Physical Schema dialog.

	
Note:

The Dynamic Name tab is not active unless at least one session variable is defined.

To specify the session variable to use in the Dynamic Name tab:

	
In the Name column of the Dynamic Name tab, click the name of the session variable that you want to use. The initial value for the variable (if any) is shown in the Default Initializer column.

	
To select the highlighted variable, click Select.

The name of the variable is displayed in the dynamic name field, and the Select button toggles to the Clear button.

To remove assignment for a session variable in the Dynamic Name tab:

	
Click Clear to remove the assignment for the variable as the dynamic name.

The value not assigned is displayed in the dynamic name field, and the Clear button toggles to the Select button.

To sort column entries in the Dynamic Name tab:

	
You can sort the entries in a column by clicking the Name or Default Initializer column heading. Clicking a column heading toggles the order of the entries in that column between ascending and descending order, according to the column type.

Setting Up Display Folders in the Physical Layer

You can create display folders to organize table objects in the Physical layer. They have no effect on query processing. After you create a display folder, the selected tables appear in the folder as a shortcut and in the Physical layer tree as an object. You can hide the objects so that you only view the shortcuts in the display folder. See the information about the Repository tab of the Options dialog in "Setting Administration Tool Options" for more information about hiding these objects.

	
Note:

Deleting a table in a display folder deletes only the shortcut to that object. When you delete a column in a display folder, however, the column is actually deleted.

To set up a physical display folder:

	
In the Physical layer of the Administration Tool, right-click a physical database and select New Object, then select Physical Display Folder.

	
In the Physical Display Folder dialog, type a name for the folder.

	
To add tables to the display folder, click Add. Then, in the Browse dialog, select the fact or physical tables you want to add to the folder and click Select.

Alternatively, you can drag one or more physical tables to the display folder after you close the dialog.

	
Click OK.

Working with Physical Tables

This section explains how to work with physical table objects in the Physical layer of the Oracle BI repository.

Note that both physical tables from relational data sources and physical cube tables from multidimensional data sources both use the Physical Table table type. Many of the tasks described in this section apply to both relational and multidimensional data sources. See also "Working with Multidimensional Sources in the Physical Layer" for additional information specific to multidimensional data sources.

This section contains the following topics:

	
About Tables in the Physical Layer

	
About Physical Alias Tables

	
Creating and Managing Physical Tables and Physical Cube Tables

	
Creating and Managing Columns and Keys for Relational and Cube Tables

	
Viewing Data in Physical Tables or Columns

About Tables in the Physical Layer

A physical table is an object in the Physical layer of the Oracle BI repository that corresponds to a table in a data source. Metadata for physical tables is usually imported from the data source. This metadata enables the Oracle BI Server to access the data source tables with SQL requests.

When you delete a physical table, all dependent objects are deleted (for example, columns, keys, and foreign keys). When you delete a physical cube table, hierarchies are also deleted. The deletion fails if an alias exists on the physical table.

In addition to importing data source tables into the Physical layer, you can create virtual physical tables in the Physical layer, using values in the Table Type field in the Physical Table dialog. Creating virtual tables can provide the Oracle BI Server and the underlying data sources with the proper metadata to perform some advanced query requests.

A virtual physical table can be a stored procedure, or a SELECT statement. A virtual physical table created from a SELECT statement is also called an opaque view. You can define an opaque view, and then deploy it in your data source to create a deployed view. See "Deploying Opaque Views" for more information.

Use the Table Type list in the General tab of the Physical Table dialog to specify the physical table object type. Table 8-1 describes the available object types.

Table 8-1 Table Types for Physical Tables

	Table Type	Description
	
Physical Table

	
Specifies that the physical table object represents a data source table. This table type is used for both relational physical tables and multidimensional cube tables.

	
Stored Proc

	
Specifies that the physical table object is a stored procedure. When you select this option, you type the stored procedure in the text box. Requests for this table will call the stored procedure.

For stored procedures that are data source-specific, select Use database specific SQL. When you select this option, the Database column displays supported data sources by brand, with Default as the root. You can enter data source-specific initialization strings by selecting the database type on the left and entering the corresponding string on the right. The initialization string for the Default option is run when the queried database type does not have a corresponding database-specific string defined.

Stored procedures within an Oracle Database do not typically return result sets. Therefore, they cannot be initiated from within Oracle Business Intelligence. You need to rewrite the procedure as an Oracle function, use it in a SELECT statement in the Administration Tool initialization block, and then associate it with the appropriate Oracle BI Server session variables in the Session Variables dialog.

The following example shows a SQL initialization string using the GET_ROLES function that is associated with the USER, GROUP, and DISPLAYNAME variables. The function takes a user Id as a parameter and returns a semicolon-delimited list of group names:

SELECT user_id, get_roles(user_id), first_name || ' ' || last_name
FROM csx_security_table
WHERE user_id = ':USER' and password = ':PASSWORD'

	
Select

	
Specifies that the physical table object is a SELECT statement. When you select this option, you type the SELECT statement in the text field, and you also need to manually create the table columns. The column names must match the ones specified in the SELECT statement. Column aliases are required for advanced SQL functions, such as aggregates and CASE statements.

Requests for this table will execute the SELECT statement.

For SELECT statements that are data source-specific, select Use database specific SQL. When you select this option, the Database column displays supported data sources by brand, with Default as the root. You can enter data source-specific initialization strings by selecting the database type on the left and entering the corresponding string on the right. The initialization string for the Default option is run when the queried database type does not have a corresponding database-specific string defined.

This type of table is also called an opaque view. See "Deploying Opaque Views" for more information.

About Physical Alias Tables

An alias table (alias) is a physical table that references a different physical table as its source (called the original table). Alias tables can be an important part of designing a Physical layer because they enable you to reuse an existing table more than once, without having to import it several times.

There are two main reasons to create an alias table:

	
To set up multiple tables, each with different keys, names, or joins, when a single data source table needs to serve in different semantic roles. Setting up alias tables in this case is a way to avoid triangular or circular joins.

For example, an order date and a shipping date in a fact table may both point to the same column in the time dimension data source table, but you should alias the dimension table so that each role is presented as a separately labeled alias table with a single join. These separate roles carry over into the business model, so that "Order Date" and "Ship Date" are part of two different logical dimensions. If a single logical query contains both columns, the physical query uses aliases in the SQL statement so that it can include both of them.

You can also use aliases to enable a data source table to play the role of both a fact table, and a dimension table that joins to another fact table (often called a "fan trap").

	
To include best practice naming conventions for physical table names. For example, you can prefix the alias table name with the table type (such as fact, dimension, or bridge), and leave the original physical table names as-is. Some organizations alias all physical tables to enforce best practice naming conventions. In this case, all mappings and joins are based on the alias tables rather than the original tables.

Alias table names appear in physical SQL queries. Using alias tables to provide meaningful table names can make SQL queries referencing those tables easier to read. For example:

WITH
SAWITH0 AS (select sum(T835.Dollars) as c1
from
 FactsRevT835/*AllRevenue(Billed Time Join)*/)
select distinct 0 as c1,
 D1.c1 as c2
from
 SAWITH0 D1
order by c1

In this query, the meaningful alias table name "A11 Revenue (Billed Time Join)" has been applied to the terse original physical table name "FACTSREV." In this case, the alias table name provides information about which role the table was playing each time it appears in SQL queries.

Alias tables can have cache properties that differ from their original tables. To set different cache properties for an alias table, select the option Override Source Table Caching Properties in the Physical Table dialog for the alias table. In alias tables, columns cannot be added, deleted, or modified. Because columns are automatically synchronized, no manual intervention is required.

Synchronization ensures that the original tables and their related alias tables have the same column definitions. For example, if you delete a column in the original table, the column is automatically removed from the alias table.

You cannot delete an original table unless you delete all its alias tables first. Alternatively, you can select the original table and all its alias tables and delete them at the same time.

You can change the original table of an alias table, if the new original table is a superset of the current original table. However, this could result in an inconsistent repository if changing the original table deletes columns that are being used. If you attempt to do this, a warning message appears to let you know that this could cause a problem and lets you cancel the action. Running a consistency check identifies orphaned aliases.

When you edit a physical table or column in online mode, all alias tables and columns must be checked out. The behavior of online checkout uses the following conventions:

	
If an original table or column is checked out, all its alias tables and columns are checked out.

	
If an alias table or column is checked out, its original table and column are checked out.

	
The checkout option is available for online repositories (if not read-only) and for all original and alias tables and columns.

Alias tables inherit some properties from their original tables. A property that is proxied is a value that is always the same as the original table, and cannot be changed. (In other words, the proxied properties are the ones that are dimmed in the alias table dialog.) If the original table changes its value for that particular property, the same change is applied on the alias table.

The following is a list of the properties that are proxied:

	
Cacheable (the inherited property can be overridden)

	
Cache never expires and Cache persistence time (the inherited properties can be overridden)

	
Row Count

	
Last Updated

	
Table Type

	
External Db Specifications

The following is list of the properties that are not proxied:

	
Name

	
Description

	
Display Folder Containers

	
Foreign Keys

	
Columns

	
Note:

Alias tables and original tables never share columns. Aliases and original tables have distinctly different columns that alias each other.

	
Table Keys

	
Complex Joins

	
Source Connection Pool

	
Polling Frequency

	
All XML attributes

Creating and Managing Physical Tables and Physical Cube Tables

Use the General tab of the Physical Table dialog to create or edit physical tables and physical cube tables in the Physical layer of the Administration Tool.

This section contains the following topics:

	
Creating or Editing Physical Tables

	
Creating Alias Tables

	
Setting Physical Table Properties for XML Data Sources

Creating or Editing Physical Tables

This section describes how to create or edit the general properties for a table, including both relational physical tables and physical cube tables.

To create a physical table or edit general properties for tables:

	
In the Physical layer of the Administration Tool, perform one of the following steps:

	
To create a physical table, right-click the physical database or physical catalog and select New Object, then select Physical Table.

If your database object has physical schemas defined, right-click the physical schema and select New Physical Table.

	
To create a physical cube table for a multidimensional data source, right-click the physical database and select New Object, then select Cube Table.

	
Caution:

It is strongly recommended that you import cube tables, not create them manually.

	
To edit an existing physical table, double-click the physical table object in the Physical layer.

	
In the Physical Table dialog, complete the fields using Table 8-2 as a guide.

Table 8-2 General Properties for Physical Tables

	Property	Description
	
Name

	
The name of the physical table.

	
Table Type

	
Physical Table values: Physical Table, Stored Proc (stored procedure), or Select.

Physical Cube Table values: Physical Table or Select.

See Table 8-1 for more information.

	
Use Dynamic Name

	
Select this option to use a session variable to specify the physical table name, similar to catalog and schema objects. This option is available for non-multidimensional data source tables when you select a table type of Physical Table.

You might want to choose this option if you have a multi-tenancy implementation and you want to define a separate physical table name for each customer. Another example would be to select between primary and shadow tables that are valid at different times in your ETL cycle. In both cases, you can assign session variables to dynamically select the appropriate table.

	
Default Initialization String / Use database specific SQL

	
For non-multidimensional data source tables (not alias tables), this option appears if you choose a Table Type of Stored Proc or Select. For multidimensional data source tables, this appears if you choose a Table Type of Select.

When you select this option, you can specify the data source and type the SQL statements.

See Table 8-1 for more information.

	
Cacheable

	
Select this option to include the table in the Oracle BI Server query cache. Typically, you should select this option for tables that do not need to be accessed in real time.

When you select this option, the Cache persistence time settings become active.

Note that there are additional configuration settings that affect the behavior of the query cache. See "Configuring Query Caching" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information.

	
Cache never expires

	
When you select this option, cache entries do not automatically expire. This could be useful when a table is important to a large number of queries users might run. For example, if most of your queries have a reference to an account object, keeping it cached indefinitely could actually improve performance rather than compromise it.

Note that selecting this option does not mean that an entry always remains in the cache. Other invalidation techniques, such as manual purging, LRU (Least Recently Used) replacement, metadata changes, or use of the cache polling table can result in entries being removed from the cache.

	
Cache persistence time

	
How long table entries should persist in the query cache, or in other words, the cache expiration time.

Setting a cache persistence time is useful for OLTP data sources and other data sources that are updated frequently. For example, you could set this option refresh the underlying physical tables daily for a particular dashboard.

If a query references multiple physical tables with different persistence times, the cache entry for the query exists for the shortest persistence time set for any of the tables referenced in the query. This makes sure that no subsequent query gets a cache hit from an expired cache entry.

For more information, see "Troubleshooting Problems with Event Polling Tables" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

	
External name

	
Applies to physical cube tables from multidimensional data sources. The external name is the physical name that is used when referencing the cube table in physical SQL queries. This value must reflect the external name defined in the data source.

	
Display Column

	
For Essbase data sources only. See "Working with Essbase Data Sources" for more information.

	
Hint

	
Available only for some data sources. See "Using Hints" for more information.

Creating Alias Tables

To create an alias table, right-click an existing physical table and select New Object, then select Alias. You can also create aliases on opaque views and stored procedures.

Table 8-3 describes properties that are specific to alias tables. Refer to Table 8-2 for information about other table properties that are shared between physical tables and alias tables.

Table 8-3 Properties Specific to Physical Alias Tables

	Property	Description
	
Source Table

	
Applies to alias tables. Click Select to choose the original physical table from which to create an alias table.

	
Override Source Table Caching Properties

	
Option available for alias tables. When selected, the cacheable properties become available and you can clear or select the appropriate options.

Setting Physical Table Properties for XML Data Sources

Use the XML tab to set or edit properties for an XML data source. The XML tab of the Physical Table dialog provides the same functionality as the XML tab of the Connection Pool dialog. However, setting properties in the Physical Table dialog overrides the corresponding settings in the Connection Pool dialog. See "Setting Connection Pool Properties in the XML Tab" for more information.

Creating and Managing Columns and Keys for Relational and Cube Tables

Each physical table and physical cube table in the Physical layer of the Administration Tool has one or more physical columns. You can use the Columns, Keys, and Foreign Keys tabs in the Physical Table dialog to view, create new, and edit existing columns, keys, and foreign keys that are associated with the table.

The following list describes the buttons that appear in the tabs:

	
New. Lets you create a new object by opening the dialog that corresponds to the tab.

	
Edit. When you select an object and then click Edit, the dialog that corresponds to the tab appears. You can then edit the properties of the object.

	
Delete. Deletes the selected object.

This section contains the following topics:

	
Creating and Editing a Column in a Physical Table

	
Specifying a Primary Key for a Physical Table

	
Deleting Physical Columns for All Data Sources

Creating and Editing a Column in a Physical Table

If the column is imported, the properties of the column are set automatically. The following list contains information about nullable and data type values for columns imported into the Physical layer.

	
Nullable. Indicates whether null values are allowed for the column. If null values can exist in the underlying table, you need to select this option. This allows null values to be returned to the user, which is expected with certain functions and with outer joins. It is generally safe to change a non-nullable value to a nullable value in a physical column.

	
Type. Indicates the data type of the column. Use caution when changing the data type. Setting the values to ones that are incorrect in the underlying data source might cause unexpected results. If there are any data type mismatches, correct them in the repository or reimport the columns that have mismatched data types.

If you reimport columns, you also need to remap any logical column sources that reference the remapped columns. The data type of a logical column in the business model must match the data type of its physical column source. The Oracle BI Server passes these logical column data types to client applications.

Longvarchar and longvarbinary data types are supported for writing complete Logical SQL statements into usage tracking tables for debugging purposes. They are not supported for general-purpose queries, and cannot be displayed in Presentation Services. Use direct SQL utilities to access columns with these data types.

Except when stated otherwise, the characteristics and behavior of a physical cube column are the same as for other physical columns.

	
Note:

Creating, modifying, or deleting a column in an original physical table also creates, modifies, or deletes the same column on all its alias tables.

To create or edit a physical column:

	
In the Physical layer of the Administration Tool, perform one of the following steps:

	
To create a physical column, right-click a physical table and select New Object, then select Physical Column.

	
To create a physical cube column for a multidimensional data source, right-click a physical cube table and select New Object, then select Physical Cube Column.

	
To edit an existing physical column, double-click the physical column object in the Physical layer.

	
In the Physical Column dialog, type a name for the physical column.

For XML data sources, this field stores and displays the unqualified name of a column (attribute) in an XML document.

	
In the Type field, select a data type for the physical column.

	
If applicable, specify the length of the data type.

For multidimensional data sources, if you select VARCHAR, you need to type a value in the Length field.

	
Select the Nullable option if the column is allowed to have null values.

	
In the External Name field, type an external name.

	
Required if the same name (such as STATE) is used in multiple hierarchies.

	
Optional for XML documents. The External Name field stores and displays the fully qualified name of a column (attribute).

	
(Multidimensional data sources) When the physical cube column is a measure, in the Aggregation role list, select the appropriate value.

A new physical cube column is created as a measure by default. See "Working with Multidimensional Sources in the Physical Layer" for information about changing this behavior.

	
Click OK.

Specifying a Primary Key for a Physical Table

Use the Physical Key dialog to specify the column or columns that define the primary key of the physical table.

To specify a primary key for a physical table:

	
In the Physical layer of the Administration Tool, right-click a physical table and select Properties.

	
In the Physical Table dialog, click the Keys tab.

	
In the Keys tab, click New.

	
In the Physical Key dialog, type a name for the key.

	
Select the column that defines the primary key of the physical table.

	
(Optional) Type a description for the key.

	
Click OK.

Deleting Physical Columns for All Data Sources

When you delete a physical column, the following occurs:

	
Multidimensional data sources. If you delete property or key columns from a level, the association is deleted and the column changes to a measure under the parent cube table.

	
Alias tables. Deleting a column in an original physical table deletes the same column on all its alias tables.

Viewing Data in Physical Tables or Columns

You can view the data in a physical table or an individual physical column by right-clicking the object and choosing View Data. In online editing mode, you must check in changes before you can use this option.

View Data is not available for physical cube tables or columns. See "Viewing Members in Physical Cube Tables" for more information.

Because the View Data feature issues a row count, it is not available for data sources that do not support row counts. See "Displaying and Updating Row Counts for Physical Tables and Columns" for more information.

	
Caution:

View Data does not work in online mode if you set the user name and password for connection pools to :USER and :PASSWORD. In offline mode, the Set values for variables dialog appears so that you can populate :USER and :PASSWORD as part of the viewing process.

Working with Multidimensional Sources in the Physical Layer

This section provides information about physical cube tables, dimensions, and hierarchies from multidimensional data sources.

	
About Physical Cube Tables

	
About Measures in Multidimensional Data Sources

	
Working with Physical Dimensions and Physical Hierarchies

	
Working with Cube Variables for SAP/BW Data Sources

	
Viewing Members in Physical Cube Tables

About Physical Cube Tables

Each cube from a multidimensional data source is set up as a physical cube table, a type of physical table. It has all the capabilities of a table, such as physical cube columns and keys (optional) and foreign keys (optional). It also has cube-specific metadata such as hierarchies and levels.

When you import the physical schema, the Oracle BI Server imports the metadata for the cube, including its metrics, hierarchies, and levels. Expanding the hierarchy object in the Physical layer reveals the levels in the hierarchy. In the Physical Cube Table dialog, the Hierarchies tab lists the dimensional hierarchies in the cube.

Each multidimensional catalog in the data source can contain multiple physical cubes. You can import the metadata for one or more of these cubes into your Oracle BI repository. Although it is possible to create a cube table manually, it is recommended that you import metadata for cube tables and their components.

If you do create cubes manually, be sure to build each cube one hierarchy at a time and test each one before building another. For example, create the time hierarchy and a measure, and then test it. When it is correct, create the geography hierarchy and test it. This helps ensure that you have set up each cube correctly, and makes it easier to identify any setup errors.

About Measures in Multidimensional Data Sources

You need to select the aggregation rule for a physical cube column carefully to make sure your measures are correct. Setting it correctly might improve performance.

Always verify aggregation rules after importing cube metadata. Typically, aggregation rules are assigned correctly when you import cube metadata. However, if a measure is a calculated measure, the aggregation rule is reported as None. Therefore, you should examine the aggregation rule for all measures after importing a cube to verify that the aggregation rule has been assigned correctly.

For all measures assigned an aggregation rule value of None, contact the multidimensional data source administrator to verify that the value of the aggregation rule is accurate. If you need to change the aggregation rule, you can change it in the Physical Cube Column dialog.

Use the following guidelines to assign the correct aggregation rule:

	
If the generated physical queries to the database should send an aggregation function, such as SUM(revenue), then set that function as the aggregation rule. With this setting, the Oracle BI Server typically pushes the aggregation to the database in the query, but might also perform aggregations itself in certain situations.

	
If the data for this measure should not be aggregated in the query or by the Oracle BI Server, use the External Aggregation rule. It is important to choose this setting when the measure uses a more complex calculation inside the data source than the Oracle BI Server can replicate with a simple aggregation rule (such as calculations for ratios, consolidations and allocations). This option is also useful when the cube persists a full set of pre-aggregated results.

About Externally Aggregated Measures

In a multidimensional data source, some cubes contain very complex, multi-level based measures. If you assign an aggregation rule of External Aggregation, the Oracle BI Server bypasses its internal aggregation mechanisms and uses the pre-aggregated measures. When imported, these measures are assigned an aggregate value of None.

The following are some guidelines for working with pre-aggregated measures:

	
External aggregation only applies to multidimensional data sources (such as Essbase, Hyperion Financial Management, Microsoft Analysis Services, and SAP/BW) that support these complex calculations.

	
You cannot assign external aggregation to measures from non-multidimensional data sources. If the required aggregation rule is supported by the Oracle BI Server and can be mapped to a relational data source, then it is not complex and does not require external aggregation.

	
There is only one aggregation rule for a logical measure. Therefore, a single logical column cannot federate a noncomplex aggregation rule for a mapping to a non-multidimensional source, with a complex aggregation rule for a mapping to a multidimensional source. Instead, you need to create one logical measure for each source, and then create a third logical measure that derives from the first two.

	
You can mix noncomplex measures from non-multidimensional data sources with noncomplex measures from multidimensional data sources if they are aggregated through the Oracle BI Server.

Working with Physical Dimensions and Physical Hierarchies

Most dimensions and hierarchies are imported into the Physical layer from multidimensional data sources, rather than created manually. If a particular hierarchy is not imported, any columns associated with that hierarchy are also not imported. If users need access to columns that are not imported, first add these columns to the Physical layer by manually creating them, and then associate them with a level in a hierarchy.

Each level in a hierarchy has a level key. The first cube column associated with (added to) the level of a hierarchy is the level key. This must match with the data source definition of the cube. The icon for the column that you select first changes to the key icon after it is associated with the level of a hierarchy.

Oracle Business Intelligence supports unbalanced hierarchies for all multidimensional data sources. In general, you can configure unbalanced hierarchies in the Physical layer by changing the hierarchy type.

You can view and edit properties for physical dimensions and hierarchies by double-clicking physical dimension and physical hierarchy objects in the Physical layer of the Administration Tool. You can also view and edit these objects from the Dimensions and Hierarchies tabs of the Cube Table dialog.

This section contains the following topics:

	
Working with Physical Dimension Objects

	
Working with Physical Hierarchy Objects

Working with Physical Dimension Objects

In the Physical Dimension dialog, you can view and edit the name and description of the dimension. You can also add, remove, or edit hierarchies for that dimension, as well as add, remove, or edit columns that represent dimension properties.

Working with Physical Hierarchy Objects

When you select columns to add to a hierarchy, it is recommended that you select them in hierarchical order, starting with the highest level. If you select multiple columns and bring them into the hierarchy at the same time, the order of the selected group of columns remains the same. After adding columns to the hierarchy, you can change the order of the columns in the Browse dialog.

In the Physical Hierarchy dialog, you can view and edit the name and description of the hierarchy, along with the properties described in Table 8-4. For level-based hierarchies, you can add, remove, edit, or reorder levels. For value-based hierarchies, click the Column tab to add, remove, or edit columns. To specify a key column, double-click a column name.

In the Physical Level dialog, you can view and edit the name, external name, and description of the level. You can also add, remove, or edit columns for that level. To designate a column as a level key, double-click a column name.

You should always review the hierarchy type after import to ensure that it is set appropriately. The way this parameter is set upon import depends on the data source. For example, all Essbase hierarchies are initially set to Unbalanced. Review the hierarchy type for each hierarchy and change it as appropriate.

Typically, you always need to manually set the hierarchy type for parent-child (value) hierarchies, except for Hyperion Financial Management hierarchies, which are always set to Value by default upon import. Review the hierarchy type and change the type to Value as appropriate. Parent-child (value) hierarchies are those in which a business transaction, or a cube refresh, can change the number of levels.

For parent-child hierarchies, you must manually set the physical hierarchy type to Value before dragging metadata to the Business Model and Mapping layer. The hierarchy type in the Business Model and Mapping layer is set automatically based on the physical hierarchy setting. For all other types, you can determine the hierarchy type later, without needing to rebuild the logical model.

You must also ensure that the corresponding logical dimension properties are correct for queries to work. See Chapter 10, "Working with Logical Dimensions" for more information.

For SAP/BW data sources, all hierarchies default to fully balanced hierarchies on import. The hierarchy type for two-level hierarchies (which typically correspond to characteristic primary hierarchies) should not be changed. Review all SAP/BW multi-level (external) hierarchies to determine whether any are parent-child hierarchies, and set them to Value as needed.

Table 8-4 Options in the Physical Hierarchy Dialog

	Property	Description
	
External Name

	
The physical name that is used when referencing the hierarchy in physical MDX queries. This value must reflect the external name defined in the data source.

	
Dimension Name

	
(Dimension Unique Name) Dimension to which the hierarchy belongs.

	
Dimension Type

	
Identifies whether this hierarchy belongs to a time dimension, measure dimension, or other type of dimension.

	
Hierarchy Type

	
Identifies the type of hierarchy, as follows:

	
Fully balanced: A level-based hierarchy with no unbalanced or skip characteristics. Corresponds to a level-based hierarchy in the Business Model and Mapping layer.

	
Unbalanced: Also called ragged. A hierarchy where the leaves (members with no children) do not necessarily have the same depth. Corresponds to a level-based hierarchy with the Ragged option selected in the Business Model and Mapping layer.

	
Ragged balanced: Also called skip. A hierarchy where there are members that do not have a value for a particular ancestor level. Corresponds to a level-based hierarchy with the Skipped Levels option selected in the Business Model and Mapping layer.

	
Network: This hierarchy type is not used.

	
Value: Also called parent-child. A hierarchy of members that all have the same type. This contrasts with level-based hierarchies, where members of the same type occur only at a single level of the hierarchy. Corresponds to a parent-child hierarchy in the Business Model and Mapping layer.

Note: For level-based hierarchies with both unbalanced and skip-level characteristics, choose either Unbalanced or Ragged balanced as the physical hierarchy type. Then, ensure that both Ragged and Skipped Levels are selected for the corresponding logical dimension in the Business Model and Mapping layer.

	
Default member type ALL

	
This option is not used.

	
Use unqualified member name for better performance

	
Select this option when member names (including aliases) are unique in a given hierarchy so that the Oracle BI Server can take advantage of specific MDX syntax to optimize performance.

Adding or Removing Cube Columns in a Hierarchy

After importing a hierarchy, you may need to add or remove a column. If you remove a cube column from a hierarchy, it is deleted from the hierarchy but remains in the cube table and is available for selection to add to other levels.

To add or remove a cube column in an existing hierarchy:

	
In the Physical layer of the Administration Tool, double-click the physical hierarchy that you want to change. The Physical Hierarchy dialog appears.

	
For level-based hierarchies, double-click the level for which you want to add or remove columns. Then, in the Physical Level dialog, you can add, remove, or edit columns. When you are finished, click OK in the Physical Level dialog.

	
For value-based hierarchies, click the Columns tab. You can add, remove, or edit columns, as well as designate member key and parent key columns.

	
Click OK in the Hierarchy dialog.

Working with Cube Variables for SAP/BW Data Sources

In SAP/BW data sources, cube variables are used as a means of parameterizing queries. Cube variable objects are imported into the Physical layer when metadata is imported from Querycubes/Bex Queries in SAP/BW data sources. Typically, you do not edit these objects directly except to keep them synchronized with the Bex queries in the data source, and except to specify overrides for key characteristics values.

The Cube Variables tab of the Cube Table dialog lists the cube variables for the given cube table, along with the cube variable caption. Double-click a cube variable to see more detailed information, or click the Add button to define a new cube variable.

Table 8-5 describes the properties of cube variables for SAP/BW data sources. See your SAP/BW documentation for additional information.

Table 8-5 Cube Variable Properties

	Property	Description
	
Name

	
Name of the cube variable.

	
Caption

	
A description (label or caption) associated with the cube variable, mainly used for display purposes.

	
Variable Type

	
The type of cube variable. Variable types include:

	
SAP_VAR_TYPE_MEMBER: A placeholder for a selection for MEMBER_UNIQUE_NAMES.

	
SAP_VAR_TYPE_HIERARCHY: A placeholder for a HIERARCHY_UNIQUE_NAME.

	
SAP_VAR_TYPE_NUMERIC: A placeholder for a numeric value in formulas.

	
Selection Type

	
The selection type of the cube variable, for cube variables of type SAP_VAR_TYPE_MEMBER.

Selection types include:

	
SAP_VAR_SEL_TYPE_VALUE: The variable is replaced by a single value. Cube variables of type NUMERIC must have this selection type.

	
SAP_VAR_SEL_TYPE_INTERVAL: A placeholder for an interval.

	
SAP_VAR_SEL_TYPE_COMPLEX: A placeholder for a complex selection.

	
Entry Type

	
Indicates whether replacing variables is optional or mandatory. Entry types include:

	
SAP_VAR_INPUT_TYPE_OPTIONAL: Specifying a value is optional for this variable.

	
SAP_VAR_INPUT_TYPE_MANDATORY: You must specify a value for this variable.

	
SAP_VAR_INPUT_TYPE_MANDATORY_NOT_INITIAL: You must specify a value for this variable. An initial field is not a valid entry.

	
Reference Dimension

	
This column contains a DIMENSION_UNIQUE_NAME for the parameter type SAP_VAR_TYPE_HIERARCHY.

	
Reference Hierarchy

	
This column contains a HIERARCHY_UNIQUE_NAME for the variable type SAP_VAR_TYPE_MEMBER.

	
Default Low

	
This property contains a default value for the variable or is zero.

	
Default High

	
This property contains a default value for the variable or is zero. This property is only important for variables with the selection type SAP_VAR_SEL_TYPE_INTERVAL and SAP_VAR_SEL_TYPE_SELECTION.

	
Override Default Low

	
Provide a default value for the cube variable in this field if the Default Low is zero.

You must specify a value for this property for mandatory variables that do not specify a default value.

	
Override Default High

	
Provide a default value for the cube variable in this field if the Default High is zero.

You must specify a value for this property for mandatory variables that do not specify a default value.

Viewing Members in Physical Cube Tables

You can view members of hierarchies or levels in the Physical layer of repositories. To view members, the repository must be open in online mode. The list of members by level in the hierarchy can help you determine if the connection pool is set up properly. You might want to reduce the time it takes to return data or the size of the returned data by specifying a starting point (Starting from option) and the number of rows you want returned (Show option).

To view members:

	
Open the Administration Tool in online mode.

	
In the Physical layer, right-click a hierarchy or level.

	
Select View Members.

A window opens showing the number of members in the hierarchy and a list of the levels. You might need to enlarge the window and the columns to view all the returned data.

	
Click Query to display results.

	
When finished, click Close.

Working with Essbase Data Sources

This section describes how Essbase data is modeled by default in the Physical layer of the Oracle BI repository, and describes the tasks you can perform to model the data in different ways.

This section contains the following topics:

	
About Using Essbase Data Sources with Oracle Business Intelligence

	
Working with Essbase Alias Tables

	
Associating Member Attributes to Dimensions and Levels

	
Modeling Alternate Hierarchies

	
Modeling Measure Hierarchies

	
Improving Performance by Using Unqualified Member Names

About Using Essbase Data Sources with Oracle Business Intelligence

When you import metadata from Essbase data sources, the cube metadata is mapped to the Physical layer in a way that supports the Oracle Business Intelligence logical model. Metadata that applies to all members of the dimension, such as aliases, are modeled as dimension properties by default. Level-based properties, such as outline sort/memnor information, are mapped as separate physical cube columns in the dimension.

The following physical column types are used for Essbase metadata:

	
Member Alias: Indicates an Alias column.

	
UDA: Indicates the column is a User Defined Attribute (UDA).

	
Outline Sort: Indicates the column is of memnor type, used for outline sorts in the logical layer. Imported at the lowest level of each dimension.

	
Attribute: Indicates the column is of attribute type, for attribute dimensions.

	
Other: The type is different than those listed, or unknown.

	
Ancestor Reference: References the ancestor of a dimension.

	
Member Key: Indicates the column is a member key.

	
Leaf: Indicates that the column is the lowest member of the hierarchy.

	
Root: Indicates that the column is the root member of the hierarchy.

	
Parent Reference: References the parent of a dimension.

The column types Outline Sort, Ancestor Reference, Member Key, Leaf, Root, and Parent Reference are used internally by the system and should not be changed.

Figure 8-2 shows Essbase data that has been imported into the Physical layer.

Figure 8-2 Essbase Data Modeled in the Physical Layer

[image: Description of Figure 8-2 follows]

Description of "Figure 8-2 Essbase Data Modeled in the Physical Layer"

There are different options in the Physical layer that let you control how you want to model certain types of metadata. Choose the option that best meets the needs of your user base. For example, many types of Essbase metadata are modeled as dimension properties by default in the Physical layer. This multidimensional structure works best with the new hierarchical reporting style introduced in the current release.

Alternatively, you can choose to flatten the Essbase metadata in the Physical layer for ease of use with the attribute-style reporting supported in previous releases of Oracle Business Intelligence.

The following list summarizes some of these modeling options:

	
Aliases. Aliases are modeled as dimension properties by default, but you can also choose to flatten them using the Create Columns for Alias Table feature. See "Working with Essbase Alias Tables" for more information.

	
UDAs. UDAs are modeled as dimension properties by default, but you can also choose to flatten them using the Create Columns for UDA feature. See "Modeling User-Defined Attributes" for more information.

	
Alternate Hierarchies. Alternate hierarchies are modeled as separate hierarchies by default, but you can choose to view them in as a single hierarchy using the Convert to single hierarchy view feature. See "Modeling Alternate Hierarchies" for more information.

	
Measure Hierarchies. By default, measures are imported as a single measure column that represents all the measures, but you can also choose to view each measure as an individual column using the Convert measure dimension to flat measures feature. See "Modeling Measure Hierarchies" for more information.

Note the following additional information about using Essbase data sources with Oracle Business Intelligence:

	
Substitution variables. Essbase substitution variables are automatically retrieved and populated into corresponding Oracle BI Server session variables. Depending on the scope of the Essbase variable, the naming convention for the Oracle BI Server variable is as follows:

Server instance scope: server_name:var_name

Application scope: server_name:app_name:var_name

Cube scope: server_name:app_name:cube_name:var_name

A single initialization block is also created in the repository for the Essbase variables. Set the appropriate refresh interval in the initialization block to reflect anticipated update cycles for Essbase variables.

	
Essbase Generations. Essbase Generations are mapped to physical level objects.

	
Time series functions. The Oracle BI Server time series functions AGO, TODATE, and PERIODROLLING are pushed down to Essbase to take advantage of the native capabilities of the Essbase server.

	
Database functions. You can use the database SQL functions EVALUATE and EVALUATE_AGGREGATE to leverage functions specific to Essbase data sources. See "Examples Using EVALUATE_AGGREGATE and EVALUATE to Leverage Unique Essbase Functions" for more information.

Note that EVALUATE_PREDICATE is not supported for use with Essbase data sources.

	
Gen 1 levels. By default, Gen 1 levels are included when you drag and drop an Essbase cube or dimension from the Physical layer to the Business Model and Mapping layer. However, because Gen 1 levels are not usually needed for analysis, you can choose to exclude Gen 1 levels when you drag and drop Essbase objects to your business model. To do this, select Skip Gen 1 levels in Essbase drag and drop actions in the General tab of the Options dialog. See "Setting Administration Tool Options" for more information.

	
Hierarchy types. For Essbase data sources, all hierarchies are imported as Unbalanced by default. Review the Hierarchy Type property for each physical hierarchy and change the value if necessary. Supported hierarchy types for Essbase are Unbalanced, Fully balanced, and Value.

About Incremental Import

You can choose to incrementally import Essbase metadata. In other words, you can perform an initial import, and then import again. You might want to import incrementally when information in the data source has changed, or when your first import only included a subset of the metadata. Note the following about incremental import:

	
When you re-import metadata that already exists in the Physical layer, a message appears, warning you that your Physical objects will be overwritten.

	
If you delete data in the source, re-importing the metadata does not automatically perform the deletion in the Physical layer. Instead, you must manually delete the corresponding Physical objects.

	
If you rename an object in the source, the renamed object is imported as a new object. In this case, both the old object and the new (renamed) object are displayed in the Physical layer.

	
In general, customizations that you have performed on the Physical layer data, such as determining the alias column to use for display, are retained after an incremental import. If you want to revert to the default imported view, you must delete the existing Physical layer objects and then re-import the metadata.

Working with Essbase Alias Tables

Essbase cubes support the concept of aliases, which are alternate names for members or shared members. For example, the member name might be a product code (100), with a default alias for the product name (Cola) and an additional alias for the long name (Cherry Cola). Often, members have separate aliases for each user language to enable users to view member names in their own language.

In the Essbase cube, aliases are stored in alias tables that map a specific set of alias names to member names. Typically, a Default alias table exists for each cube.

This section contains the following topics:

	
Determining the Value to Use for Display

	
Explicitly Defining Columns for Each Alias

Determining the Value to Use for Display

When you import metadata from Essbase into the Oracle BI repository, the Essbase cube table object in the Physical layer has a property that determines which value to display for members: the member name, the default alias name, or some other alias name. By default, the columns display the default alias name.

To change the value to display for members:

	
In the Physical layer of the Administration Tool, double-click an Essbase cube table.

	
In the General tab of the Cube Table dialog, choose the appropriate value for Display Column. You can select Member Name, or you can select Alias and then choose an alias table name from the list.

	
Click OK.

Explicitly Defining Columns for Each Alias

Aliases are modeled as dimension properties in the Physical layer after import. If you want to work with more than one alias, such as when you want to flatten attributes for reporting purposes or externalize strings for translation, you can explicitly define columns for each alias. You can define alias columns at the cube, dimension, or hierarchy level.

To explicitly define columns for each alias:

	
In the Administration Tool, in the Physical layer, right-click the cube table, physical dimension, or physical hierarchy for which you want to define alias columns.

	
Select Create Columns for Alias Table. Then, from the sub-list, select the alias table for which you want to create columns.

Note that the Fetch button is not used.

	
Click Create.

	
Drag the new alias columns to the appropriate location in the Business Model and Mapping layer.

If you want to externalize strings for translation based on the alias columns, see "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

Modeling User-Defined Attributes

Essbase supports the concept of user-defined attributes (UDAs). A UDA is essentially any arbitrary textual string that can be associated with any member from a dimension. A member can have multiple strings associated to it.

You can choose whether to import UDAs in the Import Metadata Wizard. If you choose to import UDAs, then by default, each UDA is modeled as a dimension property in the Physical layer of the repository.

You can also choose to model each UDA as a separate physical column. To do this, perform one of the following tasks:

	
To model all UDAs in a cube as separate physical columns, right-click the cube table and select Create columns for UDA. All UDAs in the cube are modeled as separate physical columns.

	
To model all UDAs in a dimension as separate physical columns, right-click the dimension object and select Create columns for UDA, then select All UDAs. All UDAs in the dimension are modeled as separate physical columns.

	
To model a particular UDA in a dimension as a separate physical column in each level, right-click the dimension object and select Create columns for UDA, then select the specific UDA you want to model. The selected UDA is modeled as a separate physical column for each level.

Associating Member Attributes to Dimensions and Levels

Member attributes are not automatically associated to corresponding dimensions and levels during the import process. To manually create the association, map the member attribute to the appropriate logical table. In other words, drag and drop the columns from the attribute dimension in the Physical layer to the appropriate logical tables in the Business Model and Mapping layer.

Modeling Alternate Hierarchies

By default, alternate hierarchies are modeled as separate hierarchies in the Physical layer. You can choose to view them as separate hierarchies (called the multi-hierarchy view), or as a single hierarchy.

To view alternate hierarchies as a single hierarchy, right-click the dimension object containing the alternate hierarchies and select Convert to single hierarchy view. To return to the multi-hierarchy view, right-click the dimension object again and select Convert to multi-hierarchy view.

For example, Figure 8-3 shows the multi-hierarchy view for an alternate hierarchy.

Figure 8-3 Essbase Alternate Hierarchy Displayed in Multi-Hierarchy View

[image: Description of Figure 8-3 follows]

Description of "Figure 8-3 Essbase Alternate Hierarchy Displayed in Multi-Hierarchy View"

Figure 8-4 shows the single-hierarchy view for the same alternate hierarchy.

Figure 8-4 Essbase Alternate Hierarchy Displayed in Single-Hierarchy View

[image: Description of Figure 8-4 follows]

Description of "Figure 8-4 Essbase Alternate Hierarchy Displayed in Single-Hierarchy View"

Modeling Measure Hierarchies

By default, measures are imported as measure hierarchies. In other words, the cube contains a single measure column that represents all the measures.

Alternatively, you can choose to flatten the measure hierarchy to view each measure as an individual column. To do this, right-click the cube object and select Convert measure dimension to flat measures.

Improving Performance by Using Unqualified Member Names

When member names (including aliases) are unique in a given hierarchy, the Oracle BI Server can take advantage of specific MDX syntax to optimize performance. To enable this capability, select Use unqualified member name for better performance in the Hierarchy dialog.

The import process cannot identify that member names are unique for a given hierarchy, so it is the responsibility of the administrator to confirm uniqueness. Note that query errors may result if a hierarchy is specified as having unique members when it does not.

	
Note:

If you find that the Oracle BI Server is generating incorrect queries for Essbase, check to see whether there are duplicate member names in a given hierarchy. If there are, ensure that the option Use unqualified member name for better performance is not selected for that hierarchy, or perform the following steps:

	
From the Essbase outline, update each offending member variable by adding a prefix or suffix to make the member name unique.

	
Update SQL queries as necessary, if references are made to data within SQL.

	
Reload the data and members in the Essbase outline.

Working with Hyperion Financial Management Data Sources

When you import data from Hyperion Financial Management data sources, both measures and dimensions are imported into the Physical layer. The Hyperion Financial Management hypercube model is exposed in the Physical layer in the following ways:

	
There is only one measure in Hyperion Financial Management, called Value. This measure is modeled as a single fact column in the Physical layer, also called Value.

	
The Value measure has three base properties: CellText, CurrencyType, and Attribute. These properties are all represented as additional fact columns.

	
The Attribute property has additional sub-properties, such as IsReadOnly. These properties are also exposed as additional columns.

Figure 8-5 shows how Hyperion Financial Management data is modeled in the Physical layer.

Figure 8-5 Hyperion Financial Management Metadata in the Physical Layer

[image: Description of Figure 8-5 follows]

Description of "Figure 8-5 Hyperion Financial Management Metadata in the Physical Layer"

All Hyperion Financial Management dimensions are modeled as parent-child hierarchies in the Physical layer. Shared members, alternate hierarchies, and unbalanced hierarchies are supported.

Dimension member properties are exposed as columns (such as Name, Description, ShortName, and so on). An additional column called Sort Order is also displayed for each dimension. This column contains custom sort information retrieved from the Hyperion Financial Management data source.

Each Hyperion Financial Management dimension has a corresponding Point of View (POV) value that provides customized information for different users. This POV value is exposed as the Default Member in the Hierarchies tab of the Dimension dialog. Although the Default Member field is populated upon import, note that the default values may need to be updated according to the needs of the user base.

	
Note:

Do not select the Default member type ALL option for Hyperion Financial Management hierarchies.

About Query Support for Hyperion Financial Management Data Sources

Both member queries (dimensional browsing) and data queries (measure analysis) are supported for Hyperion Financial Management data sources.

Most Logical SQL functions are performed in the Oracle BI Server. However, you should use EVALUATE_PREDICATE to access the following functions specific to Hyperion Financial Management:

	
PeriodOffset (used to access prior or future periods through an offset)

	
NA Suppression functions specific to Hyperion Financial Management (SuppressDerived, SuppressInvalidIntersection, SuppressMissing, SuppressNoAccess, SuppressZero, SuppressError)

	
Base function (returns the leaf members below a given ancestor member)

	
CommonChildren

	
User-defined functions

See "EVALUATE_PREDICATE" for detailed information about syntax and usage.

Note that there is no native support for time series functions. Time series functions are only supported through data modeling.

Working with Oracle OLAP Data Sources

Oracle Database has an OLAP Option that provides an embedded, full-featured online analytical processing server. The OLAP Option is used in the following roles:

	
A summary management solution to SQL-based business intelligence tools and applications.

	
A calculation engine that provides SQL-based business intelligence tools with rich analytic content.

	
A full-featured multidimensional server, servicing dimensionally oriented business intelligence tools and applications.

Oracle Business Intelligence supports Oracle OLAP as a data source. When you import metadata from an Oracle OLAP source, the Oracle OLAP objects appear in the Physical layer of the Administration Tool. This section provides information about the Physical layer Oracle OLAP objects.

See Oracle OLAP User's Guide for more information about Oracle OLAP.

This section contains the following topics:

	
About Importing Metadata from Oracle OLAP Data Sources

	
Working with Oracle OLAP Analytic Workspace (AW) Objects

	
Working with Oracle OLAP Dimensions, Hierarchies, and Levels

	
Working with Oracle OLAP Cubes and Columns

About Importing Metadata from Oracle OLAP Data Sources

This section provides important information about using the Administration Tool to import metadata from Oracle OLAP, as follows:

	
For Oracle OLAP cubes with multi-language metadata, only the default language is imported.

	
Only dimensions that contain at least one hierarchy are imported.

	
Multiple hierarchies in a single query are not supported. If a query includes columns from multiple hierarchies in a given dimension, the Oracle BI Server returns an error.

	
The default aggregation rule in the Business Model and Mapping layer for Oracle OLAP measures is External Aggregation. The External Aggregation rule means that the Oracle BI Server is not aware of the underlying aggregation rule for the specific measure and will not compute it internally. Instead, the Oracle BI Server will always ship the query to the underlying multidimensional data source for aggregation.

In some cases, you may want to set the aggregation rule for a measure to something other than External Aggregation. For example, you may have federated multiple data sources, or you may want to perform higher-level aggregation along dimension attributes that are not represented by a level in Oracle OLAP. In both of these cases, you can change the default aggregation rule to match the rule in the underlying data source or sources. Note that the aggregation is still performed in the Oracle OLAP data source where possible.

See "System Requirements and Certification" for the latest information about the versions of Oracle OLAP supported by Oracle Business Intelligence.

Working with Oracle OLAP Analytic Workspace (AW) Objects

You can view Oracle OLAP Analytic Workspace (AW) objects in the Physical layer of the Administration Tool. These objects correspond to the analytic workspace object in the Oracle OLAP metadata, and are similar to physical catalog and physical schema objects. Analytic workspaces are containers for storing related cubes. You create dimensions, cubes, and other dimensional objects within the context of an analytic workspace.

Oracle OLAP Analytic Workspace objects have properties for Name, Description, and Dynamic Name. You can use the Dynamic Name tab to provide a variable that specifies the name of the Analytic Workspace object. Note that the Dynamic Name tab is not active unless at least one session variable is defined. See "Using a Variable to Specify the Name of a Catalog or Schema" for more information.

Working with Oracle OLAP Dimensions, Hierarchies, and Levels

Oracle OLAP dimensions are lists of unique values that identify and categorize data. They form the edges of a cube, and thus of the measures within the cube. In a report, the dimension values (or their descriptive attributes) provide labels for the rows and columns. There are three types of Oracle OLAP dimensions:

	
Level-based dimensions. Members of level-based dimensions naturally group into levels based on their type, such as 'month' and 'year.' Most dimensions are level-based.

	
Value-based dimensions. These dimensions have parent-child relationships among their members, but the members are all the same type (like 'Employee' or 'Account'), so these relationships do not form meaningful levels.

	
List or flat dimensions. These dimensions have no levels or hierarchies.

	
Note:

Oracle Business Intelligence does not support dimensions that have no hierarchies (flat dimensions). Importing flat dimensions from an Oracle OLAP data source will result in an error. If you have flat dimensions, replace them with single-level hierarchies in the data source before importing them into Oracle Business Intelligence.

On the General tab of the Oracle OLAP Dimension dialog, you can view and edit the name and description of the dimension, along with the following dimension properties:

	
Time. Indicates that this dimension is a time dimension.

	
Ragged. Indicates that this dimension contains a hierarchy that has at least one member with a different base, creating a "ragged" base level for the hierarchy.

	
Skipped levels. Indicates that this dimension contains a hierarchy that has at least one member whose parents are more than one level above it, creating a hole in the hierarchy. An example of a skip-level hierarchy is City-State-Country, where at least one city has a country as its parent (for example, Washington D.C. in the United States).

	
External Name. The physical name that is used when referencing the dimension in physical SQL queries. This value must reflect the external name defined in the data source.

	
Cache properties. Select Cacheable to include this dimension in the Oracle BI Server query cache. To specify that cache entries do not expire, select Cache never expires. Alternatively, you can select Cache persistence time and enter a value to specify how long entries should persist in the query cache. Note that if a query references multiple physical objects with different persistence times, the cache entry for the query exists for the shortest persistence time set for any of the tables referenced in the query. This makes sure that no subsequent query gets a cache hit from an expired cache entry.

The Columns and Hierarchies tabs of the Oracle OLAP Dimension dialog list the dimension members and hierarchies that belong to the dimension. In the Columns tab, you can add or remove columns, as well as edit particular columns. In the Hierarchies tab, you can add, remove, or edit hierarchies. You can also use the type (key) button to select the default hierarchy for the dimension.

Dimensions can contain one or more hierarchies. Most hierarchies are level-based and consist of one or more levels of aggregation. Members roll up into the next higher level in a many-to-one relationship, and these members roll up into the next higher level, and so forth to the top level. Ragged and skip-level hierarchies are also supported.

Dimensions can also contain value-based hierarchies, which are parent-child hierarchies that do not support levels. For example, an employee dimension might have a parent-child relationship that identifies each employee's supervisor. However, levels that group together first-, second-, and third-level supervisors and so forth may not be meaningful for analysis.

For value-based hierarchies, the Nullable option is selected by default for the root member physical cube column. This option must be selected for the root member for value-based hierarchies to work correctly.

Multiple hierarchies for a dimension typically share the base-level dimension members and then branch into separate hierarchies. They can share the top level if they use all the same base members and use the same aggregation operators. Otherwise, they need different top levels to store different aggregate values.

In the Oracle OLAP Hierarchy dialog, you can view and edit the name, external name, and description of the hierarchy. For level-based hierarchies, you can add, remove, edit, or reorder levels. For value-based hierarchies, you can add, remove, or edit columns. To specify a key column, double-click a column name.

In the Oracle OLAP Level dialog, you can view and edit the name, external name, and description of the level. You can also add, remove, or edit columns for that level. To designate a column as a level key, double-click a column name.

Working with Oracle OLAP Cubes and Columns

Oracle OLAP cubes are informational objects that identify measures with the exact same dimensions and thus are candidates for being processed together at all stages: data loading, aggregation, storage, and querying. Cubes define the shape of your business measures. They are defined by a set of ordered dimensions. The dimensions form the edges of a cube, and the measures are the cells in the body of the cube.

Oracle OLAP cubes have properties similar to other cubes. On the General tab of the Oracle OLAP Cube dialog, you can view and edit the name and description of the cube, along with the following cube properties:

	
External Name. The physical name that is used when referencing the cube in physical SQL queries. This value must reflect the external name defined in the data source.

	
Density and Materialization. For Oracle OLAP 10g cubes that are sparse and fully materialized, you should specify values for these properties to optimize queries. If you set the Density option to Sparse and the Materialization option to Fully Materialized, the Oracle BI Server generates a loop clause to skip empty cells. Note that if you leave the Density option blank, the Oracle BI Server assumes the data is sparse.

If you set these options, make sure that you set them to reflect the actual properties of the data source. Do not specify that the data is sparse and fully materialized unless this is true for your data source.

You do not need to set these values for Oracle OLAP 11g cubes. For these objects, optimization happens automatically.

	
Cache properties. Select Cacheable to include this cube in the Oracle BI Server query cache. To specify that cache entries do not expire, select Cache never expires. Alternatively, you can select Cache persistence time and enter a value to specify how long entries should persist in the query cache. Note that if a query references multiple physical objects with different persistence times, the cache entry for the query exists for the shortest persistence time set for any of the tables referenced in the query. This makes sure that no subsequent query gets a cache hit from an expired cache entry.

The Columns tab of the Oracle OLAP Cube dialog lists the columns that belong to the cube. You can add or remove columns, as well as edit particular columns.

Oracle OLAP columns can be measures, calculated measures, attributes, or level keys. Oracle OLAP columns have the same properties as other physical columns. See "Creating and Editing a Column in a Physical Table" for more information about physical column properties like Type, Length, and Nullable.

Working with Physical Foreign Keys and Joins

You can create physical foreign keys and complex joins using either the Physical Diagram, or the Joins Manager. Note that you do not create joins for multidimensional data sources.

This section contains the following topics:

	
About Physical Joins

	
Defining Physical Joins with the Physical Diagram

	
Defining Physical Joins with the Joins Manager

About Physical Joins

All valid physical joins need to be configured in the Physical layer of the Administration Tool.

When you import keys in a physical schema, the primary key-foreign key joins are automatically defined. Any other joins within each data source or between data sources have to be explicitly defined to express relationships between tables in the Physical layer.

Imported key and foreign key joins do not have to be used in metadata. Joins that are defined to enforce referential integrity constraints can result in incorrect joins being specified in queries. For example, joins between a multipurpose lookup table and several other tables can result in unnecessary or invalid circular joins in the SQL queries issued by the Oracle BI Server.

This section contains the following topics:

	
About Primary Key and Foreign Key Relationships

	
About Complex Joins

	
About Multi-Database Joins

	
About Fragmented Data

About Primary Key and Foreign Key Relationships

A primary key and foreign key relationship defines a one-to-many relationship between two tables. A foreign key is a column or a set of columns in one table that references the primary key columns in another table. The primary key is defined as a column or set of columns where each value is unique and identifies a single row of the table.

Note that there are two cases where multiple foreign key columns in a table point to the same table:

	
When the primary key of the foreign table is "concatenated," meaning that it consists of a set of columns. This is a single join between two tables that happens to use multiple columns.

	
When you have created an alias to the foreign table, because the foreign table needs to serve in different roles. In this case, each foreign key joins to a primary key in one role-playing alias or the other. See"About Physical Alias Tables" for more information.

You can specify primary key and foreign keys in the Physical Diagram, or by using the Keys and Foreign Keys tabs of the Physical Table dialog. Also refer to "Defining Physical Joins with the Physical Diagram" and "Creating and Managing Columns and Keys for Relational and Cube Tables" for more information.

About Complex Joins

In the Physical layer of the repository, complex joins are joins over nonforeign key and primary key columns. In other words, physical complex joins are joins that use an expression rather than key column relationships. When you create a complex join in the Physical layer, you specify the expression for the join.

For most data sources, foreign key joins are preferred for performance reasons. Complex joins are usually not as performant because they do not use key column relationships to form the join. The exception is ADF business component data sources, which use physical complex joins exclusively to denote ViewLink instances that connect pairs of View Objects in the ADF model.

About Multi-Database Joins

A multi-database join is defined as a table under one metadata database object that joins to a table under a different metadata database object. You need to specify multi-database joins to combine the data from different databases. Use the Physical Diagram to specify multi-database joins. See "Defining Physical Joins with the Physical Diagram" for more information.

Multi-database joins can be created between tables in most types of databases and are performed within the Oracle BI Server. Note that you cannot create multi-database joins to tables in Oracle OLAP data sources.

While the Oracle BI Server has several strategies for optimizing the performance of multi-database joins, these joins are significantly slower than joins between tables within the same database. For this reason, you should avoid them whenever possible.

About Fragmented Data

Fragmented data is data from a single domain that is split between multiple tables. For example, a data source might store sales data for customers with last names beginning with the letter A through M in one table and last names from N through Z in another table. With fragmented tables, you need to define all of the join conditions between each fragment and all the tables to which it relates. Figure 8-6 shows the physical joins with a fragmented sales table and a fragmented customer table where they are fragmented the same way (A through M and N through Z).

Figure 8-6 Fragmented Tables Example

[image: This image is described in the surrounding text.]

Description of "Figure 8-6 Fragmented Tables Example"

In some cases, you might have a fragmented fact table and a fragmented dimension table, but the fragments might be across different values. In this case, in addition to the joins created in Figure 8-6, you need to define a one-to-many join from Customer A to F and from Customer G to Z to Sales A to M, as shown in Figure 8-7.

Figure 8-7 Joins for Fragmented Tables Example

[image: This image is described in the surrounding text.]

Description of "Figure 8-7 Joins for Fragmented Tables Example"

	
Note:

Avoid adding join conditions where they are not necessary (for example, between Sales A to M and Customer N to Z in Figure 8-6). Extra join conditions can cause performance degradations.

Defining Physical Joins with the Physical Diagram

You can define foreign keys and complex joins between tables, whether or not the tables are in the same data source. When you use the Physical Diagram to create joins, the Administration Tool determines what type of join to create based on the selected object types and the join expression.

If you do not want the Administration Tool to automatically determine what type of join to create, use the Joins manager to explicitly create the join. See "Defining Physical Joins with the Joins Manager" for more information.

To define a physical foreign key join or a complex join with the Physical Diagram:

	
In the Physical layer of the Administration Tool, select one or more tables and choose one of the Physical Diagram commands from the right-click menu.

	
Click the New Join button on the Administration Tool toolbar:

[image: New Join icon]

	
In the Physical Diagram, left-click the first table in the join (the table representing many in the one-to-many join) to select it.

	
Move the cursor to the table to which you want to join (the table representing one in the one-to-many join), and then left-click the second table to select it.

The Physical Foreign Key dialog appears. Although physical foreign key joins are the default join type, the object type might change to a complex join after you define the join and click OK, depending on the join information.

	
Select the joining columns from the left and the right tables.

The SQL join conditions appear in the expression pane.

The driving table option is shown in this dialog, but it is not available for selection because the Oracle BI Server implements driving tables only in the Business Model and Mapping layer. See "Specifying a Driving Table" for more information about driving tables.

	
For complex joins, you can optionally set the cardinality for each side of the join (for example, N, 0,1, 1, or Unknown).

To set the cardinality to unknown, you only need to select Unknown for one side of the join. For example, choosing unknown-to-1 is equivalent to unknown-to-unknown and appears as such the next time you open the dialog for this join.

	
If appropriate, specify a database hint. See "Using Hints" for more information.

	
If you are creating a complex join for ADF Business Component ViewObject or ViewLink instances, specify the ViewLink instance name or the ViewLink definition name in the ViewLink Name field.

	
To open Expression Builder, click the button to the right of the Expression pane. The expression displays in the Expression pane.

The default join expression for ViewObject or ViewLink instances is arbitrary and has no meaning.

	
Click OK to apply the selections.

In the Physical Diagram, the join is represented by a line between the two selected tables, with an arrow at the "one" end of the join. Figure 8-8 shows a join in the Physical Diagram.

Figure 8-8 Join in the Physical Diagram

[image: Description of Figure 8-8 follows]

Description of "Figure 8-8 Join in the Physical Diagram"

Defining Physical Joins with the Joins Manager

You can use the Joins Manager to view join relationships and to create physical foreign key joins and complex joins.

To define a physical foreign key join or complex join with the Joins Manager:

	
In the Administration Tool toolbar, select Manage, then select Joins.

	
In the Joins Manager dialog, perform one of the following tasks:

	
Select Action > New > Complex Join.

The Complex Join dialog appears.

	
Select Action > New > Physical Foreign Key. Then, in the Browse dialog, double-click a table.

	
In the Complex Join or Physical Foreign Key dialog, type a name for the join.

	
Click the Browse button for the Table field on the left side of the dialog, and then locate the table that the foreign key references.

	
Select the columns in the left table that the key references.

	
Select the columns in the right table that make up the foreign key columns.

	
For complex joins, you can optionally set the cardinality for each side of the join (for example, N, 0,1, 1, or Unknown).

To set the cardinality to unknown, you only need to select Unknown for one side of the join. For example, choosing unknown-to-1 is equivalent to unknown-to-unknown and appears as such the next time you open the dialog for this join.

	
If appropriate, specify a database hint. See "Using Hints" for more information.

	
If you are creating a complex join for ADF Business Component ViewObject or ViewLink instances, specify the ViewLink instance name or the ViewLink definition name in the ViewLink Name field.

	
To open Expression Builder, click the button to the right of the Expression pane. The expression displays in the Expression pane.

The default join expression for ViewObject or ViewLink instances is arbitrary and has no meaning.

	
Click OK to save your work.

Deploying Opaque Views

An opaque view is a Physical layer table that consists of a SELECT statement. When you need a new table, you should create a physical table or a materialized view. An opaque view should be used only if there is no other solution. See Appendix F, "Exchanging Metadata with Databases to Enhance Query Performance" for more information about materialized views.

This section contains the following topics:

	
About Deploying Opaque Views

	
Deploying Opaque View Objects

	
Undeploying a Deployed View

	
When to Delete Opaque Views or Deployed Views

	
When to Redeploy Opaque Views

About Deploying Opaque Views

In the repository, opaque views appear as view tables in the data source, but the view does not actually exist until you deploy it. You deploy an opaque view in the data source using the Deploy Views utility. After deploying an opaque view, it is called a deployed view. Opaque views can be used without deploying them, but the Oracle BI Server has to generate a more complex query when an opaque view is encountered.

	
Note:

Data sources such as XLS and nonrelational data sources do not support opaque views and cannot run the view deployment utility.

To verify that opaque views are supported by a data source, check whether the CREATE_VIEW_SUPPORTED SQL feature is selected in the Database dialog, in the Features tab. See "Specifying SQL Features Supported by a Data Source" for instructions.

Deploying Opaque View Objects

In offline mode, the Deploy Views utility is available when importing from data sources with ODBC and DB2 CLI data sources. Oracle Native (client) drivers are also supported in the offline mode for deploying views. In online mode, view deployment is available for supported data sources using Import through server (the settings on the client are ignored).

Using the Create View SELECT Statement

The SQL statement for deploying opaque views in the Physical layer of the repository is available for supported data sources. To determine which of your data sources support opaque views, contact your system administrator or consult your data source documentation.

Only repository variables can be used in the definition. An error is generated if a session variable is used in the view definition.

Syntax

CREATE VIEW view_name AS select_statement,

Where:

	
select_statement is the user-entered SQL in the opaque view object. If SQL is invalid, the create view statement fails during view deployment.

	
view_name is one of the two following formats: schema.viewname, or viewname. The connection pool settings determine if the schema name is added.

For opaque view objects, the right-click menu contains the Deploy View(s) option. When you select Deploy View(s), the Create View SQL statement executes and attempts to create the deployed view objects. The following list describes the ways you can initiate view deployment and the results of each method:

	
Right-click a single opaque view object. When you select Deploy View(s), the Create View SQL statement executes and attempts to create a deployed view for the object.

	
Right-click several objects. If at least one of the selected objects is an opaque view object, the right-click menu contains the Deploy View(s) option. When you select Deploy View(s), the Create View SQL statement executes and attempts to create the deployed views for any qualifying objects.

	
Right-click a physical schema or physical catalog. If any opaque view object exists in the schema or catalog, the right-click menu contains the Deploy View(s) option. When you select Deploy View(s), the Create View SQL statements for all qualifying objects execute and attempt to create deployed views for the qualifying objects contained in the selected schema or catalog.

During deployment, names are assigned to the views. If you change the preassigned name, the new name must be alphanumeric and no more than 18 characters. If these guidelines are not followed, the object name is automatically transformed to a valid name using the following Name Transform algorithm:

	
All non-alphanumeric characters are removed.

	
If there are 16 or more characters after Step 1, the first 16 characters are kept.

	
Two digits starting from 00 to 99 are appended to the name to make the name unique in the corresponding context.

After the deployment process completes, the following occurs:

	
Views that have been successfully and unsuccessfully deployed appear in a list.

	
For unsuccessful deployments, a brief reason appears in the list.

	
If deployment is successful, the object type of the opaque view changes from Select to None and the deployed view is treated as a regular table.

If you change the type back to Select, the associated opaque views are dropped from the data source, or an error message appears. See "When to Delete Opaque Views or Deployed Views" for information about deleting deployed views.

	
In the Administration Tool, the view icon changes to the deployed view icon for successfully deployed views.

To deploy an opaque view:

	
In the Physical layer of the Administration Tool, right-click the opaque view that you want to deploy.

	
In the right-click menu, select Deploy View(s).

	
In the View Deployment - Deploy View(s) dialog, perform the following steps:

	
In the New Table Name column, you can optionally change the new deployed view names.

If the change does not conform to the naming rules, a new name is assigned and the dialog appears again so that you can accept or change it. This action repeats until all names pass validation.

	
If you do not want to deploy one or more of the views, clear the appropriate rows.

	
If there are multiple connection pools defined for the physical database, in the Select Connection Pool dialog, choose a connection pool and click Select.

The SQL statement (CREATE VIEW) executes, and the View Deployment Messages dialog appears.

	
In the View Deployment Messages dialog, you can search for views using Find and Find Again, or copy the contents.

	
When you are finished, click OK.

Undeploying a Deployed View

Running the Undeploy Views utility against a deployed view deletes the views and converts the table back to an opaque view with its original SELECT statement.

To undeploy a deployed view:

	
In the Physical layer of the Administration Tool, right-click a physical database, catalog, schema, or table.

If a deployed view exists that is related to the selected object, the right-click menu contains the Undeploy View(s) option.

	
Select Undeploy View(s).

A list of views to be undeployed appears.

	
If you do not want to undeploy one or more of the views, clear the appropriate rows.

	
In the View Deployment - Undeploy View(s) dialog, click OK to remove the views.

A message appears if the undeployment was successful.

	
In the View Deployment Messages dialog, you can search for undeployed views using Find and Find Again, or you can copy the contents.

	
When you are finished, click OK.

When to Delete Opaque Views or Deployed Views

Use the following guidelines to remove opaque or deployed view objects in the repository:

	
Removing an undeployed opaque view in the repository. If the opaque view has not been deployed, you can delete it from the repository.

	
Removing a deployed view. When you deploy an opaque view, a view table is created physically in both the data source and the repository. Therefore, you must undeploy the view before deleting it. You use the Undeploy Views utility in the Administration Tool. This removes the opaque view from the back-end data source, changes the Table Type from None to Select, and restores the SELECT statement of the object in the Physical layer of repository.

	
Caution:

Do not manually delete the view table in the data source. If deleted, the Oracle BI Server cannot query the view object. When you undeploy the view, it is removed automatically from the data source.

When to Redeploy Opaque Views

After removing an opaque view, you can choose to redeploy it. The Administration Tool does not distinguish between a first-time deployment and a redeployment. Make sure that you remove a deployed view before deploying the opaque view again. Failure to do this causes the deploy operation to fail, and an error message is returned from the data source.

Using Hints

Hints are instructions placed within a SQL statement that tell the data source query optimizer the most efficient way to execute the statement. Hints override the optimizer's execution plan, so you can use hints to improve performance by forcing the optimizer to use a more efficient plan. Hints are only supported for Oracle Database data sources.

Using the Administration Tool, you can add hints to a repository, in both online and offline modes, to optimize the performance of queries. When you add a hint to the repository, you associate it with Physical layer objects. When the object associated with the hint is queried, the Oracle BI Server inserts the hint into the SQL statement.

Table 8-6 shows the physical objects with which you can associate hints. It also shows the Administration Tool dialog that corresponds to the physical object. Each of these dialogs contains a Hint field, into which you can type a hint to add it to the repository.

Table 8-6 Physical Layer Objects That Accept Hints

	Database Object	Dialog
	
Complex join

	
Complex Join

	
Physical foreign key

	
Physical Foreign Key

	
Physical table

	
Physical Table - General tab

Hints are only supported when the Table Type is set to Physical Table. For other table types, the hint text is ignored. For physical tables with a table type of Select, you can provide the hint text as part of the SQL statement entered in the Default Initialization String field.

How to Use Oracle Hints

This section provides a few examples of how to use Oracle hints with the Oracle BI Server. For more information about Oracle hints, see Oracle Database SQL Language Reference for the version of the Oracle Database that you use.

About the Index Hint

The Index hint instructs the optimizer to scan a specified index rather than a table. Example 8-1 explains how you would use the Index hint.

Example 8-1 Index Hint

You find queries against the ORDER_ITEMS table to be slow. You review the execution plan of the query optimizer and find the FAST_INDEX index is not being used. You create an Index hint to force the optimizer to scan the FAST_INDEX index rather than the ORDER_ITEMS table. The syntax for the Index hint is index(table_name, index_name). To add this hint to the repository, go to the Physical Table dialog in the Administration Tool and type the following text in the Hint field:

index(ORDER_ITEMS, FAST_INDEX)

About the Leading Hint

The Leading hint forces the optimizer to build the join order of a query with a specified table. The syntax for the Leading hint is leading(table_name). If you were creating a foreign key join between the Products table and the Sales Fact table and wanted to force the optimizer to begin the join with the Products table, you would go to the Physical Foreign Key dialog in the Administration Tool and type the following text in the Hint field:

leading(Products)

About Performance Considerations for Hints

Hints that are well researched and planned can result in significantly better query performance. However, hints can also negatively affect performance if they result in a suboptimal execution plan. Follow these guidelines to create hints to optimize query performance:

	
You should only add hints to a repository after you have tried to improve performance in the following ways:

	
Added physical indexes (or other physical changes) to the Oracle Database.

	
Made modeling changes within the server.

	
Avoid creating hints for physical table and join objects that are queried often. If you drop or rename a physical object that is associated with a hint, you must also alter the hints accordingly.

Creating Hints

The following procedure explains how to add hints to the repository using the Administration Tool.

To create a hint:

	
In the Administration Tool, go to one of the following dialogs:

	
Physical Table—General tab

	
Physical Foreign Key

	
Complex Join

	
Type the text of the hint in the Hint field and click OK.

For a description of available Oracle hints and hint syntax, see Oracle Database SQL Language Reference for the version of the Oracle Database that you use.

	
Note:

Although hints are identified using SQL comment markers (/* or --), do not type SQL comment markers when you type the text of the hint. The Oracle BI Server inserts the comment markers when the hint is executed.

Displaying and Updating Row Counts for Physical Tables and Columns

When you request row counts, the Administration Tool retrieves the number of rows from the data source for all or selected tables and columns (distinct values are retrieved for columns) and stores those values in the repository. The time this process takes depends upon the number of row counts retrieved.

When updating all row counts, the Updating Row Counts window appears while row counts are retrieved and stored. If you click Cancel, the retrieve process stops after the in-process table (and its columns) have been retrieved. Row counts include all tables and columns for which values were retrieved before the cancel operation.

Updating all row counts for a large repository might take a long time to complete. Therefore, you sometimes might want to update only selected table and column counts.

Row counts are not available for the following:

	
Stored Procedure object types

	
XML data sources and XML Server data sources

	
Multidimensional data sources

	
Data sources that do not support the COUNTDISTINCT function, such as Microsoft Access and Microsoft Excel, or data sources for which COUNT_STAR_SUPPORTED has been disabled in the database features table

	
In online mode, Update Row Count does not work with connection pools in which the session variables :USER and :PASSWORD are set as the user name and password.

In offline mode, the Set values for variables dialog appears so that you can populate the session variables :USER and :PASSWORD.

	
In online mode, after importing or manually creating a physical table or column, the Oracle BI Server does not recognize the new objects until you check them in. Therefore, Update Row Count is not available in the menu until you check in these objects.

To display row counts in the Physical layer:

	
In the Administration Tool, select Tools, then select Options.

	
In the General tab of the Options dialog, select Show row count in physical view, and then click OK.

To update selected row counts in the Physical layer:

	
In the Physical layer of the Administration Tool, right-click a single table or column. You can select multiple objects and then right-click.

	
In the shortcut menu, select Update Row Count.

To update all row counts in the Physical layer:

	
In the Administration Tool, select Tools, then select Update All Row Counts. If the repository is open in online mode, the Check Out Objects window might open.

	
Click Yes to check out the objects.

Any row counts that have changed since the last update are refreshed.

4 Using a Source Control Management System for Repository Development

The Administration Tool provides the ability to integrate with third-party source control management systems for Oracle BI repository development. It delivers this functionality through the ability to save repository metadata as a set of XML documents in MDS XML format rather than as a single binary repository file (RPD). Using this integration, you can configure the Administration Tool to work with your own source control management system and save your repository output as MDS XML.

This chapter contains the following topics:

	
About Using a Source Control Management System with the Administration Tool

	
Setting Up Your System for Repository Development Under Source Control Management

	
Using Source Control Management in Day to Day Repository Development

About Using a Source Control Management System with the Administration Tool

You can choose to integrate the Administration Tool with a third-party source control management system, such as Subversion or Rational ClearCase, during your repository development process. This feature is centered around the following integration points:

	
Converting your binary RPD file to a set of MDS XML documents. Rather than using a single large binary repository file, you can save your repository in MDS XML format. In this format, each repository object, such as a connection pool, physical table, or business model, is represented in its own XML file. The set of XML files that make up your repository can then be managed in your source control management system.

	
Setting up a software configuration management (SCM) configuration file. You can use the SCM Configuration Editor in the Administration Tool to specify commands specific to your SCM system, such as Add File, Delete, and Check Out, as well as environment variables required by your SCM system.

	
Designating your repository as under source control. The first time you open your MDS XML repository in the Administration Tool, you are prompted to specify whether the repository is a standalone MDS XML repository, or whether it is under source control. Choose Use Source Control to enable SCM integration for this repository in the Administration Tool.

About MDS XML

MDS XML format is typically used for repositories under source control. MDS XML is not the same XML format that was used in previous releases to represent the Oracle BI repository in XML format. The previous Oracle BI Server XML schema, based on the xudml1.xsd XML schema file in ORACLE_HOME/bifoundation/server/bin, represents the Oracle BI repository in one large XML file. MDS XML, in contrast, represents the Oracle BI repository across a set of XML files, rather than in a single file.

For example, each repository connection pool is stored in its own file, with an XML representation like the following:

<?xml version="1.0" encoding="UTF-8" ?>
<ConnectionPool mdsid="m80ca62c5-0bd5-0000-714b-e31d00000000"
name="SampleApp_Lite_Xml" xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance" xmlns="http://www.oracle.com/obis/repository"
password="94F9321C85340FC48E4D9093AA941FF28844074B88D5AA6364E4815DEED7F9B
8792EF452219C2155DB68F61EE1555B4FA886F77E060E2E17F45AD8D18CAB2E4D3EFA15B75E
30D8B4BFA8C7B2D70552BD" timeout="4294967295" maxConnDiff="10" maxConn="10"
dataSource="VALUEOF(BI_EE_HOME)/sample/SampleAppFiles/Data" type="Default"
reqQualifedTableName="false" isSharedLogin="false"
isConcurrentQueriesInConnection="false" isCloseAfterEveryRequest="true"
xmlRefreshInterval="2147483647" outputType="xml" ignoreFirstLine="false"
bulkInsertBufferSize="0" transactionBoundary="0" xmlaUseSession="false"
multiThreaded="false" supportParams="false" isSiebelJDBSecured="false"
databaseRef="/oracle/bi/server/base/Database/Sample App Lite Data_80ca62c4
-0bcf-0000-714b-e31d00000000.xml#m80ca62c4-0bcf-0000-714b-e31d00000000"
>
<Description>
<![CDATA[
SampleAppLite connection pool to XML datasource. This connection pool points the
database to the location where physical XML files are stored. The location uses
the value of an RPD variable : BI_EE_HOME.
This variable needs to be correctly set in order for the server to connect to the
files.
]]>
</Description>
</ConnectionPool>

The SampleAppLite repository will generate MDS XML files in a structure like the following:

[image: Shows the directory structure for SampleAppLite in MDS XML.]

Note that there is not a one-to-one relationship between repository objects in the Administration Tool and the set of files produced as XML output. For example, physical columns appear as independent objects in the Administration Tool, but in MDS XML they are considered part of the Physical Table object.

See "About the Oracle BI Server MDS XML API" in Oracle Fusion Middleware XML Schema Reference for Oracle Business Intelligence Enterprise Edition for full information about the MDS XML schema representation of repository objects.

Setting Up Your System for Repository Development Under Source Control Management

This section explains how to set up an SCM configuration file with commands specific to your SCM system, as well as how to generate an MDS XML repository and check it into your SCM system.

This section contains the following topics:

	
Creating an SCM Configuration File

	
Creating an MDS XML Repository and Checking In Files to the SCM System

Creating an SCM Configuration File

To integrate the Administration Tool with your source control management system, you must create an XML configuration file based on your specific SCM system. The configuration file contains the SCM system commands for adding, deleting, checking out, and renaming files. The Administration Tool will issue these commands to the SCM system when repository objects are created or updated, resulting in corresponding new or changed MDS XML files.

	
Note:

The Administration Tool does not commit the changes to the SCM system. The repository developer must always check the files into the SCM system directly. This way, the repository developer can view any conflicts or make merge decisions in the SCM environment rather than the Administration Tool environment.

To create a configuration file for your SCM system:

	
Open the Administration Tool and select Tools, then select Options.

	
Select the Source Control tab.

	
Click New to create a new configuration file. The Specify new configuration file window is displayed.

Note: This procedure assumes that you do not have an open MDS XML repository in the Administration Tool. If you create or edit an SCM configuration file while an MDS XML repository is open, you must ensure that Use Source Control is selected to enable the New or Edit buttons.

	
Provide a file name and click Save. The file must have the XML file extension.

The default location for SCM configuration files is ORACLE_INSTANCE/config/OracleBIServerComponent/coreapplication_obisn. Although templates are also available in this location, do not select a template file during this step. Instead, you can load a template in the next step.

	
To load a template configuration file, click Load in the SCM Configuration Editor. Then, select a template file (for example, scm-conf-svn.template) and click Open.

Unless it is your intention to modify the configuration file template itself, ensure that Edit in Configuration Editor is not selected. If you select this option, the file name displayed in the Configuration File field in the SCM Configuration Editor changes from the file name you provided in step 4 to the template file name, and changes are saved by default to the template file.

	
In the SCM Configuration Editor, provide an optional description, then enter or edit commands for your system in the Commands subtab. For longer commands, click the ellipsis button to enter commands in the Command Editor window.

Use the ${file}, ${filelist}, ${from}, and ${to} tokens to define the commands. You can also use the List File option in conjunction with the ${filelist} command to set the behavior. The tokens can be used as follows:

	
${file} specifies that a command must be run sequentially, one file at a time. ${file} is required for the Add Folder and Add File commands.

	
The behavior of ${filelist} varies, depending on whether List File is selected:

	
${filelist} without List File selected causes the Administration Tool to group as many files as possible for the given command (such as Pre-Delete, Delete, or Check-out), staying under the 32k character limit for launching a process. Execution is repeated until all files have been processed.

	
${filelist} with List File selected enables the Administration Tool to create a temporary list of files to be used with the given command (such as Pre-Delete, Delete, or Check-out). Always select List File for SCM systems that support it. It results in much faster operations.

You can use either ${file} or ${filelist} for Pre-Delete, Delete, and Checkout. List File only works in conjunction with ${filelist}.

	
${from} and ${to} are used to specify the original file name and new file name in Rename commands.

Not all SCM systems support file rename operations natively. If this is the case, leave the Rename field blank rather than attempting to construct a rename operation by concatenating different commands. The Administration Tool will do this for you with greater efficiency.

	
Note:

Some SCM systems do not include commands for working with folders. If this is the case, leave Add Folder blank. The Administration Tool always creates folders for you when needed.

Even if your SCM system does include folder management commands, the Administration Tool does not remove folders. You must remove folders directly in the SCM system if necessary.

Figure 4-1 shows the Commands tab of the SCM Configuration Editor.

Figure 4-1 Commands Tab of SCM Configuration Editor

[image: Surrounding text describes Figure 4-1 .]

	
Select the Environment Variables subtab, and then specify environment variables required by your SCM system.

You can paste environment variables directly from your operating system variable list, paste environment variables from the clipboard, or manually add environment variables. Table 4-1 describes the options available for managing environment variables in the Environment Variables subtab.

Table 4-1 Options for Managing Environment Variables in the SCM Configuration Editor

	Option	Description
	
Paste environment variables

[image: Paste environment variables icon]	
Enables you to paste environment variables directly from your operating system. Click this option to open a window where you can enter filter criteria, then click OK. Enter * in the filter window to paste all environment variables.

	
Paste from clipboard

[image: Paste from clipboard icon]	
Enables you to paste text from the clipboard. To use this option, copy text in the following format:

variable_name1=variable_value1

variable_name2=variable_value2

Each environment variable must be on its own line.

	
Add

[image: Add icon]	
Adds a row to the table so that you can manually enter environment variables. Provide the variable name in the Variable column, and its definition in the Value column. Leading and trailing white space is trimmed. You can use %VAR% in the variable definition to reference a previously defined variable.

	
Delete

[image: Delete icon]	
Deletes the given row in the environment variables table.

Note that you should not store security-sensitive environment variables in the configuration file. If security-sensitive variables are required by your SCM system, to avoid the security risk, you can launch the Administration Tool from a DOS window with any security-sensitive variables already set.

	
Click Test in the Environment Variables subtab to open the Test SCM Configuration window. Then, enter a command and click Execute to test a particular command. If the environment is correct, the correct output should appear after executing the command.

	
Select the Post-save comment subtab to enter text that will appear after changes are saved in the Administration Tool. This capability is a way to remind developers to check files directly into their SCM system after saving. For example, a post-save comment might be:

Files have been synchronized to source control. Remember to check in changes after testing.

	
Click OK to save the configuration file, or click Save As to save a copy if you loaded and modified a template configuration file.

Creating an MDS XML Repository and Checking In Files to the SCM System

To integrate with an SCM system, you must convert your Oracle BI repository to MDS XML format. Use one of the following options to create an MDS XML repository and check it into your source control system:

	
Saving an Existing Repository File in MDS XML Format

	
Creating a New Repository in MDS XML Format

	
Linking to Source Control Files to Convert Your Repository (Small Repositories Only)

Saving an Existing Repository File in MDS XML Format

If you have an existing repository file, follow these steps to convert it to MDS XML:

	
Open your existing repository file (RPD) in the Administration Tool in offline mode.

	
Select File, then select Save As, then select MDS XML Documents.

	
Select a root location for your MDS XML repository files, and then click OK.

	
Perform the necessary steps in your source control management system to add and check in the files.

Use the specialized commands for bulk file import, available for most SCM systems. These commands are optimized to deliver entire trees of files to source control in a very efficient way. For example, in Subversion, use the following command:

svn import module_name -m "Initial import"

The steps described in this section are the recommended method for initial import.

Creating a New Repository in MDS XML Format

To create a new repository in MDS XML format, follow these steps:

	
Open the Administration Tool and select File, then select New Repository to open the Create New Repository Wizard.

	
Select the MDS XML Documents option in the wizard. Complete the other wizard steps.

	
Perform the necessary steps in your source control management system to add and check in the files. For large repositories, use the specialized commands for bulk file import for your SCM system.

Linking to Source Control Files to Convert Your Repository (Small Repositories Only)

For very small repositories, you can use the Link to Source Control Files method to convert a binary RPD file to MDS XML format:

	
Ensure that you have an SCM configuration file defined. See "Creating an SCM Configuration File" for more information.

	
Create an empty root folder for the MDS XML repository.

	
Open your existing RPD file in the Administration Tool in offline mode.

	
Select File, then select Source Control, then select Link to Source Control Files.

	
Select the root folder you created, and the appropriate SCM configuration file.

	
Click Save. An MDS XML repository is created, and the necessary add file operations are performed in your source control system.

	
Commit the changes in your SCM system.

	
Note:

Using the Link to Source Control Files method to initially import your repository is only recommended for very small repositories. This method is too slow for large repositories (tens of thousands of files) because the Administration Tool imports the files one at a time using the standard "add file" command, rather than using specialized commands for bulk file import.

Note also that the repeated invocation of the "add file" command might increase the chances of transient errors. If these occur, you might need to restart the process a few times before all files are successfully imported to source control.

Using Source Control Management in Day to Day Repository Development

This section describes typical scenarios that occur during day to day repository development.

This section contains the following topics:

	
Updating, Saving, and Checking In Changes for Repositories Under Source Control

	
Handling Errors

	
Testing Repositories Under Source Control

	
Viewing the Source Control Log

Updating, Saving, and Checking In Changes for Repositories Under Source Control

After your MDS XML repository is set up under source control, follow these steps to update, save, and check in changes to your repository:

	
Ensure that you have a local copy of your working MDS XML repository files that are under source control by issuing the appropriate commands in your SCM system. For example, for Subversion, you can issue the command svn info as shown in the following example text:

C:\myProj\repos>svn info Path: . Working Copy Root Path: C:\myProj\repos URL: file:///C:/SVN/myProj/trunk/sample1 Repository Root: file:///C:/SVN/myProj Repository UUID: 6b995c92-3ec0-fa4b-9d58-c98e54f41792 Revision: 3 Node Kind: directory Schedule: normal Last Changed Author: joe_userLast Changed Rev: 2 Last Changed Date: 2011-11-19 15:20:42 -0600 (Sat, 19 Nov 2011)

	
Open your MDS XML repository in the Administration Tool in offline mode. To do this, select File, then select Open, then select MDS XML.

	
Select the root folder location for your MDS XML files and click OK.

	
If this is the first time you have opened this MDS XML repository in the Administration Tool, you are prompted to specify whether this repository is a standalone MDS XML repository, or whether it is under source control. Select Use Source Control and click OK.

This choice is saved for this repository. To view the status of this repository at any time, select Tools, then select Options, then select the Source Control tab.

	
After you make changes to your repository, select File, then select Save, or click Save on the toolbar. The Administration Tool displays a list of changes. For example:

[image: Shows a message displaying a summary of changes.]

	
Click Yes. The Administration Tool runs the necessary commands in the SCM system.

After you accept the changes, you cannot cancel. Canceling in the middle would leave an inconsistent repository. You must wait for the SCM commands to be executed.

Note also that when the Administration Tool issues the SCM commands, they may be rearranged into the most optimal order.

	
Check in the changes directly in your SCM system.

Handling Errors

Sometimes, errors might occur when the Administration Tool delivers changes to the SCM system, such as an expired label or network problem. If errors occur, perform the following steps:

	
In the Administration Tool, select File, then select Save As to save the repository to a temporary location in RPD format or MDS XML format. Close the Administration Tool.

	
Note:

Saving to a binary RPD is the simplest option for transient problems like network errors, where you just need to try again later. Saving as MDS XML is required when some sort of work is required to fix the problem, such as merging conflicting changes.

	
Take action to resolve the issue. For example, refresh an expired label or test/bring up a failed network connection.

In the case of an expired label, you also need to merge the contents of the refreshed label with the temporary saved MDS XML repository. Use a third-party merge tool to do this.

For detailed information about the MDS XML representation of repository objects so that you can successfully make merge decisions, see Oracle Fusion Middleware XML Schema Reference for Oracle Business Intelligence Enterprise Edition.

	
Open the saved repository in the Administration Tool.

	
Select File, then select Source Control, then select Link to Source Control.

	
Click Save to save changes from the saved repository into the MDS XML files under source control.

Steps 4 and 5 of this procedure cause the Administration Tool to keep memory objects loaded from the saved RPD file or MDS XML files, but to then consider them to belong to the source control MDS XML repository instead. When you click Save, the Administration Tool saves the memory objects to the source control repository.

Testing Repositories Under Source Control

During the course of repository development, you will need to perform testing in online mode to validate your repository. You can only load an Oracle BI repository in RPD format into the Oracle BI Server to make it available for queries. Because of this, you must save your development MDS XML repository in RPD format from time to time when you want to perform online testing. To do this, open your MDS XML repository in offline mode and select Save As, then select Repository.

See "Making the Repository Available for Queries" for more information about uploading repositories.

Viewing the Source Control Log

The Source Control Log window shows the commands that the Administration Tool issues to your SCM system. It also shows any post-save text you specified in the Post-save comment tab of the SCM Configuration Editor.

By default, the Source Control Log window appears when SCM commands are being executed. Alternatively, you can select File, then select Source Control, then select View Logs to see the Source Control Log window.

Figure 4-2 shows the Source Control Log window.

Figure 4-2 Source Control Log Window

[image: Description of Figure 4-2 follows]

Description of "Figure 4-2 Source Control Log Window"

You can choose the following options for this dialog:

	
Close when commands finish: Causes the log window to close automatically when commands are complete, unless errors occur.

	
Only show dialog when errors occur: Hides the window during SCM command execution unless errors occur. By default, the Source Control Log appears automatically when SCM commands are being executed unless this option is selected.

The text displayed in the Source Control Log is persistent until you close the repository. This means that all SCM command output is available for view, regardless of whether the dialog is open during individual operations.

The Source Control Log does have a 32K character limit. When the window buffer becomes full, then the oldest commands are removed from the Source Control Log display to make room for the latest command output. To see the full output, go to the Administration Tool log at:

ORACLE_INSTANCE/diagnostics/logs/OracleBIServerComponent/coreapplication_obisn/
user_name_NQSAdminTool.log

	
Note:

While SCM commands are being executed, the Close button is disabled until the SCM commands have finished or have stopped with an error (unless Only show dialog when errors occur has been selected).

[image: Oracle Corporation]

2 Before You Begin

This chapter provides an overview of the Administration Tool, and explains other concepts that you need to know before beginning to build your metadata repository.

This chapter contains the following topics:

	
About the Oracle BI Administration Tool

	
About the Oracle BI Server Command-Line Utilities

	
About Options in Fusion Middleware Control and NQSConfig.INI

	
About the SampleApp.rpd Demonstration Repository

	
Using Online and Offline Repository Modes

	
Checking the Consistency of a Repository or a Business Model

About the Oracle BI Administration Tool

The Oracle BI Administration Tool is a Windows application that you can use to create and edit repositories.

This section describes the Administration Tool main window, how to set preferences, Administration Tool menus, and other related information.

This section contains the following topics:

	
Opening the Administration Tool

	
About the Administration Tool Main Window

	
Setting Administration Tool Options

	
About Administration Tool Menus

	
Using the Physical and Business Model Diagrams

	
Editing, Deleting, and Reordering Objects in the Repository

	
About Naming Requirements for Repository Objects

	
Using the Browse Dialog to Browse for Objects

	
Changing Icons for Repository Objects

	
Sorting Objects in the Administration Tool

	
About Features and Options for Oracle Marketing Segmentation

Opening the Administration Tool

To open the Administration Tool, choose Start > Programs > Oracle Business Intelligence > BI Administration.

	
Note:

Do not open the Administration Tool by double-clicking a repository file. The resulting Administration Tool window is not initialized to your Oracle instance, and errors will result.

You can also launch the Administration Tool from the command line, as follows:

	
In Windows Explorer, go to the location appropriate for your install type:

	
Client installations:

ORACLE_HOME/bifoundation/server/bin

	
All other installations:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

	
Double-click bi-init.cmd (or bi-init.bat for client installations) to display a command prompt that is initialized to your Oracle instance.

	
At the command prompt, type admintool and press Enter.

About the Administration Tool Main Window

The main window of the Administration Tool shows a graphical representation of the three layers of a repository (the Physical layer, Business Model and Mapping layer, and Presentation layer). See "About Layers in the Oracle BI Repository" for more information.

The Administration Tool main window also contains the following:

	
Menus. See "About Administration Tool Menus" for more information.

	
Toolbar. Provides access to global functionality such as Open and Save, and also includes functions for the Physical Diagram and Business Model Diagram.

	
Status bar. Provides contextual information about the current dialog or selected object, as well as other useful information.

	
Title bar. In online mode, displays the DSN for the Oracle BI Server to which you are connected. In offline mode, displays one of the following:

	
RPD files: The name of the open repository (for example, SampleAppLite).

	
MDS XML files: The format and root folder location (for example, MDS XML C:\Root_Folder).

Figure 2-1 shows the Administration Tool main window.

Figure 2-1 Example Administration Tool Main Window

[image: This image is an example of the populated screen.]

Description of "Figure 2-1 Example Administration Tool Main Window"

Setting Administration Tool Options

You can use the Options dialog to set preferences and options for the Administration Tool.

To set Administration Tool options:

	
In the Administration Tool, select Tools, then select Options to display the Options dialog.

	
On the General tab, select the options you want to choose.

Table 2-1 describes the options on the General tab.

Table 2-1 Options on the General Tab

	Option	Action When Selected
	
Tile when resizing

	
Automatically tiles the layer panes of the repository when you resize the Administration Tool. When this option is selected, the Cascade and Tile options are not available in the Windows menu of the Administration Tool.

	
Display qualified names in diagrams

	
Displays fully qualified names in the Physical Diagram and Business Model Diagram. For example, selecting this option displays "B - Sample Fcst Data"..."B02 Market" rather than B02 Market in the Physical Diagram.

Selecting this option can help identify objects by including the name of the parent database or business model, but it can also make the diagram harder to read because the fully qualified names are longer.

Note: If you choose not to select this option, you can still see fully qualified names by moving the cursor over an object in the diagram, or by selecting an object in the diagram and then viewing the text in the status bar.

	
Display original names for alias in diagrams

	
Displays the names of original physical tables rather than the names of alias tables in the Physical diagram. Select this option when you want to identify the original table rather than the alias table name.

	
Show Calculation Wizard introduction page

	
Displays the Calculation Wizard introduction page. The introduction page also contains an option to suppress its display in the future.

Use the Calculation Wizard to create new calculation columns that compare two existing columns and to create metrics in bulk (aggregated), including existing error trapping for NULL and divide by zero logic. See "Using the Calculation Wizard" for more information.

	
Check out objects automatically

	
Automatically checks out an object when you double-click it. If you do not select this option, you are prompted to check out objects before you can edit them.

This option only applies when the Administration Tool is open in online mode. See "Editing Repositories in Online Mode" for more information.

	
Show row count in physical view

	
Displays row counts for physical tables and columns in the Physical layer. Row counts are not initially displayed until they are updated. To update the counts, select Tools > Update All Row Counts. You can also right-click a table or column in the Physical layer and select the option Update Row Count.

Note: Row counts are not shown for items that are stored procedure calls (from the Table Type list in the General tab of the Physical Table dialog). Row counts are not available for XML, XML Server, or multidimensional data sources. When you are working in online mode, you cannot update row counts on any new objects until you check them in.

	
Show toolbar

	
When selected, displays the Administration Tool toolbar.

	
Show statusbar

	
When selected, displays the Administration Tool status bar.

	
Prompt when moving logical columns

	
Lets you ignore, specify an existing, or create a new logical table source for a moved column.

	
Remove unused physical tables after Merge

	
Executes a utility to clean the repository of unused physical objects. It might make the resulting repository smaller.

	
Allow import from repository

	
When selected, the Import from Repository option on the File menu becomes available.

Note: By default, the Import from Repository option on the File menu is disabled and this option will not be supported in the future. It is recommended that you create projects in the repository that contain the objects that you want to import, and then use repository merge to bring the projects into your current repository. See "Merging Repositories" for more information.

	
Allow logical foreign key join creation

	
When selected, provides the capability to create logical foreign key joins with the Joins Manager. This option is provided for compatibility with previous releases and is generally not recommended.

	
Skip Gen 1 levels in Essbase drag and drop actions

	
When selected, excludes Gen 1 levels when you drag and drop Essbase cubes or dimensions from the Physical layer to the Business Model and Mapping layer. Often, Gen 1 levels are not needed for analysis, so they can be excluded from the business model.

See "Working with Essbase Data Sources" for more information.

	
Hide unusable logical table sources in Replace wizard

	
By default, the Replace Wizard shows all logical table sources, even ones that are not valid for replacement. When this option is selected, unusable logical table sources are hidden in the Replace Wizard screens. Click Info for details on why a logical table source that maps to that column does not appear in the list.

Selecting this option might result in the Wizard page loading more quickly, especially for large repositories.

	
Allow first Connection Pool for Init Blocks

	
By default, when you select a connection pool for an initialization block, the first connection pool under the database object in the Physical layer does not show up as available for selection. This behavior ensures that you cannot use the same connection pool for initialization blocks that you use for queries. If the same connection pool is used for initialization blocks and for queries, then queries might be blocked whenever initialization blocks run. Alternatively, initialization blocks used for authentication might be blocked by long-running queries, causing delayed or hanging logins.

Select this option to change the default behavior and allow the first connection pool to be selected for initialization blocks. Note that selecting this option is not a best practice and might cause performance issues.

See "About Connection Pools for Initialization Blocks" for more information.

	
Show Upgrade ID in Query Repository

	
Upgrade IDs are not displayed by default in the Query Repository dialog. When this option is selected, Upgrade IDs are displayed as a column in the Query Repository results. In addition, you can set a filter on Upgrade ID to search for a particular value.

This option is useful for MDS XML format repositories in which the Upgrade ID is included in the file name.

	
On the Repository tab, you can set the following options:

	
Show tables and dimensions only under display folders. You can create display folders to organize objects in the Physical and Business Model and Mapping layers. They have no metadata meaning. After you create a display folder, the selected objects appear in the folder as a shortcut and in the database or business model tree as an object. You can hide the objects so that only the shortcuts appear in the display folder.

See "Setting Up Display Folders in the Physical Layer" and "Setting Up Display Folders in the Business Model and Mapping Layer" for more information about creating display folders.

	
Hide level based measure. By default, each level of a dimension hierarchy in the Business Model and Mapping layer shows both dimension columns that are assigned to that level, and level-based measures that have been fixed at that level. Level-based measures are objects that are not part of the dimension table, but that have been explicitly defined as being at a particular level.

Hiding level-based measures in dimension hierarchies can reduce clutter. Note that the measures are still visible in the logical fact tables.

See Example 10-1, "Level-Based Measure Calculations" for more information about level-based measures.

	
System logging level. This option determines the default query logging level for the internal BISystem user. The BISystem user owns the Oracle BI Server system processes and is not exposed in any user interface.

A query logging level of 0 (the default) means no logging. Set this logging level to 2 to enable query logging for internal system processes like event polling and initialization blocks.

See "Managing the Query Log" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about the query log and query logging levels.

	
LDAP. If you are using any alternative LDAP servers, the Oracle BI Server maintains an authentication cache in memory for user identifiers and properties, which improves performance when using LDAP to authenticate large numbers of users. Disabling the authentication cache can slow performance when hundreds of sessions are being authenticated. Note that the authentication cache is not used for Oracle WebLogic Server's embedded directory server.

Properties for the authentication cache include:

	
Cache refresh interval. The interval at which the authentication cache entry for a logged on user is refreshed.

	
Number of Cache Entries. The maximum number of entries in the authentication cache, preallocated when the Oracle BI Server starts. If the number of users exceeds this limit, cache entries are replaced using the LRU algorithm. If this value is 0, then the authentication cache is disabled.

You need to specify some additional LDAP properties when you are using a secure connection to your LDAP server. In other words, provide the following information when you have selected SSL on the Advanced tab of the LDAP Server dialog:

	
Key file name. The name of the key file that holds the client certificate and Certificate Authority (CA) certificate.

	
Password and Confirm password. The password for the key file.

Note that the authentication cache properties and key file properties are shared for all defined LDAP server objects.

	
On the Sort Objects tab, specify which repository objects appear in the Administration Tool in alphabetical order. For example, if you want the database objects that appear in the Physical layer to appear in alphabetical order, select the Database option.

	
On the Source Control tab, you can create or edit a configuration file to integrate with a source control management system, as well as view and change the status of an MDS XML repository (either Standalone or Use Source Control). See "Creating an SCM Configuration File" for more information.

	
On the Cache Manager tab, select the columns you want to display in the Cache Manager. To change the order of columns in the Cache Manager, select an item, then use the Up and Down buttons to change its position.

	
On the Multiuser tab, specify the path to the multiuser development directory and the name of the local developer for this Administration Tool. See "Setting Up a Pointer to the Multiuser Development Directory" for more information.

	
On the More tab, you can set the scrolling speed for Administration Tool dialogs. To set the scrolling speed, position the cursor on the slider.

	
Click OK when you are finished setting preferences.

About Administration Tool Menus

The Administration Tool includes menus for File, Edit, View, Manage, Tools, Diagram, Window, and Help. These menus are described in the following sections.

File Menu

The File menu provides options to work with repositories, like Open and Save, as well as several server-related options like Check Out All that are only active when a repository is open in online mode. The File menu also provides a list of recently opened repositories.

Table 2-2 lists the options in the File menu.

Table 2-2 File Menu Options

	Menu Option	Description
	
New Repository

	
Opens the Create New Repository Wizard and closes the currently open repository, if any. If a repository is currently open with unsaved changes, you are prompted to save them before proceeding.

See "Creating a New Oracle BI Repository" for more information.

	
Open

	
Provides the following options:

	
Offline: Select this option to open an RPD file in offline mode.

	
MDS XML: Select this option to open a repository in MDS XML format in offline mode.

	
Online: Select this option to open an RPD file in online mode.

See "Using Online and Offline Repository Modes" and "About MDS XML" for more information.

	
Multiuser

	
Provides options to check out projects in a multiuser development environment and view multiuser development history.

See Chapter 3, "Setting Up and Using the Multiuser Development Environment" for more information.

	
Source Control

	
Provides options for MDS XML format repositories that are integrated with your source control management system.

See Chapter 4, "Using a Source Control Management System for Repository Development" for more information.

	
Close

	
Closes the currently open repository. If you have unsaved changes, you are prompted to save them.

	
Save

	
Saves your latest changes.

	
Save As

	
Provides the following options:

	
Repository: Opens the Save As dialog so that you can save the repository in RPD format.

	
MDS XML Documents: Opens the Browse For Folder dialog so that you can specify the root folder location for MDS XML output.

The new repository remains open in the Administration Tool.

	
Copy As

	
Provides the following options:

	
Repository: Opens the Save Copy As dialog so that you can copy the repository to a different file in RPD format.

	
MDS XML Documents: Opens the Browse For Folder dialog so that you can specify the root folder location for MDS XML output.

The current repository, not the new repository, remains open in the Administration Tool.

	
Change Password

	
Lets you change the repository password for the currently open repository.

See "Changing the Repository Password" for more information.

	
Print Preview

	
Used with the Physical and Business Model Diagrams. Provides a preview of how the diagram will look when printed.

	
Print

	
Prints the Physical or Business Model Diagram.

	
Import Metadata

	
Opens the Import Metadata Wizard.

See the following sections for more information:

	
"Importing Metadata from Relational Data Sources"

	
"Importing Metadata from Multidimensional Data Sources"

	
"Working with ADF Business Component Data Sources"

	
"Importing Metadata from XML Data Sources"

	
Compare

	
Prompts you to select the repository with which you want to compare the currently open repository and opens the Compare repositories dialog.

See "Comparing Repositories" for more information.

	
Turn off Compare Mode

	
Turns off any highlighted changed objects. This option is only available if you have turned on compare mode by choosing Mark in the Compare repositories dialog.

	
Merge

	
Opens the Merge Repository Wizard.

See "Merging Repositories" for more information.

	
Check Global Consistency

	
Checks the repository for consistency and opens the Consistency Check Manager.

See "Checking the Consistency of a Repository or a Business Model" for more information.

	
Check Out All

	
Checks out all repository objects. This option is only available in online mode.

	
Check In Changes

	
Checks in all repository objects. This option is only available in online mode.

	
Undo All Changes

	
Rolls back all changes made since the last check-in. This option is only available in online mode.

	
Exit

	
Closes the currently open repository and then closes the Administration Tool. If you have unsaved changes, you are prompted to save them.

Edit Menu

The Edit menu provides access to the following basic editing functions for repository objects: Cut, Copy, Paste, Duplicate, and Delete. You can also choose Properties to view and edit properties for a selected object.

View Menu

The View menu options let you hide or display the panes that show the three layers of the repository (Presentation, Business Model and Mapping, and Physical). You can also display the Business Model Diagram and Physical Diagram.

Choose Refresh to refresh the repository view. This feature can be useful in online mode to reveal changes made by other clients. It can also be used in either online or offline mode when the repository view has become out of sync and does not display a recent change or addition. Refreshing the repository view collapses any expanded objects in the tree panes and helps reduce clutter.

Manage Menu

The Manage menu enables you to access the management functions described in Table 2-3.

Table 2-3 Manage Menu Options

	Menu Option	Description
	
Jobs

	
Opens the Job Manager. The Job Manager is the management interface to Oracle BI Scheduler. This option is available when a repository is open in online mode.

See "Using Oracle BI Scheduler Job Manager" in Oracle Fusion Middleware Scheduling Jobs Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
Sessions

	
Opens the Session Manager. In the Session Manager, you can monitor activity on the system, including the current values of repository and session variables. This option is available when a repository is open in online mode.

See "Managing Server Sessions" in Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
Cache

	
Opens the Cache Manager. The Cache Manager enables you to monitor and manage the cache. This option is available when a repository is open in online mode and caching is enabled.

See "Using the Cache Manager" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about enabling the cache and using the Cache Manager.

	
Clusters

	
Opens the Cluster Manager. The Cluster Manager monitors and manages the operations and activities of the cluster. This option is available when the Oracle BI Cluster Server is installed.

See "Using the Cluster Manager" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
Identity

	
Opens the Identity Manager. The Identity Manager provides access to data access security functions and other identity-related options.

See Chapter 14, "Applying Data Access Security to Repository Objects" for more information.

	
Joins

	
Opens the Joins Manager. The Joins Manager enables you to work with both physical and logical joins in a list format. The Joins Manager provides an alternative to working with joins in the Physical and Business Model Diagrams and shows all join types in one place.

See "Defining Physical Joins with the Joins Manager" and "Defining Logical Joins with the Joins Manager" for more information.

	
Variables

	
Opens the Variable Manager. The Variable Manager enables you to create, edit, or delete variables and initialization blocks.

See Chapter 19, "Using Variables in the Oracle BI Repository" for more information.

	
Projects

	
Opens the Project Manager. The Project Manager enables you to create, edit, or remove projects or project elements. Project elements include subject areas (formerly called presentation catalogs), logical fact tables, groups, users, variables, and initialization blocks. You use projects during multiuser development.

See "Setting Up Projects" for more information.

	
Marketing

	
Applies to the Oracle Marketing Segmentation product. For information about using the Marketing options in Oracle Business Intelligence, see Oracle Marketing Segmentation Guide.

Tools Menu

The Tools menu options enable you to access the functions described in Table 2-4.

Table 2-4 Tools Menu Options

	Menu Option	Description
	
Update All Row Counts

	
Updates row counts in the Physical layer.

See "Displaying and Updating Row Counts for Physical Tables and Columns" for more information.

	
Show Consistency Checker

	
Opens the Consistency Check Manager.

See "Checking the Consistency of a Repository or a Business Model" for more information.

	
Query Repository

	
Opens the Query Repository dialog.

See "Querying and Managing Repository Metadata" for more information.

	
Utilities

	
Opens the Utilities dialog, which lets you select from a list of Administration Tool utilities.

See "Using Administration Tool Utilities" for more information.

	
Options

	
Opens the Options dialog, which lets you customize Administration Tool display preferences and other options.

See "Setting Administration Tool Options" for more information.

Diagram Menu

The Diagram menu options are available when working with the Physical Diagram or Business Model Diagram. The options enable you to select elements, create new joins, create new tables, and perform other diagram operations. Every toolbar option for the diagrams has an Diagram menu equivalent.

Window Menu

The Window menu options enable you to cascade or tile open layer windows and toggle among them.

Help Menu

The Help menu provides the following options:

	
Help Topics. Access the Help system for the Administration Tool.

	
Oracle BI on the Web. Access the Oracle Business Intelligence home page on the Oracle Technology Network (OTN).

	
About Oracle BI Administration Tool. Obtain version information about the Administration Tool.

Using the Physical and Business Model Diagrams

You can use the Physical and Business Model Diagrams in the Administration Tool to see a graphical view of physical and logical tables and joins. You can choose to view tables in expanded mode, with columns visible, or in collapsed mode, where only the name of the table is displayed. This section describes the layout and navigation capabilities for both diagrams.

After launching the Physical or Business Model Diagram, you can use toolbar options to zoom, pan, and control the layout of the tables. Table 2-5 describes the available toolbar options.

Table 2-5 Toolbar Options for the Physical and Business Model Diagrams

	Option Name	Description
	
Auto Layout

[image: Auto Layout icon]	
Select this option to revert to an automatically assigned symmetric table layout. Any customizations you have made to the layout (by manually moving individual tables) will be lost.

	
Expand All

[image: Expand All icon]	
Select this option to show all tables in expanded view, with columns showing. Tables in expanded view appear like the following:

[image: Table object in diagrams in expanded view]
Note the following additional features for expanded tables:

	
Use the scrollbar to scroll down the full list of columns.

	
Click a column heading to sort based on that column.

	
Double-click a table in expanded view to launch the Properties dialog for that object.

	
Click the Collapse icon in the upper right corner to collapse an individual table object.

	
To resize expanded tables, select a table, mouse over a handle, and then click and drag the handle.

	
Collapse All

[image: Collapse All icon]	
Select this option to show all tables in collapsed view, with only the table name showing. Tables in collapsed view appear like the following:

[image: Table object in diagrams in collapsed view]
You can double-click an individual table in collapsed view to expand only that object.

	
Marquee Zoom

[image: Marquee Zoom icon]	
Select this option to use the Marquee Zoom tool, which lets you select a particular region to which you want to zoom. To use Marquee Zoom, left-click, hold, and drag to define a rectangular region where you want to zoom.

	
Zoom Out

[image: Zoom Out icon]	
Select this option to cause the diagram view to zoom out one level.

	
Zoom In

[image: Zoom In icon]	
Select this option to cause the diagram view to zoom in one level.

	
Fit

[image: Fit icon]	
Select this option to cause the layout to dynamically adjust to the current diagram window size so that all objects fit in the window.

	
Pan

[image: Pan icon]	
Select this option to use the Pan tool, which lets you pan around the current layout. Left-click, hold, and drag to move the view.

This option is especially useful when the diagram layout exceeds the available space.

	
Select

[image: Select icon]	
Select this option to enable the ability to select objects in the diagram. You can double-click a join or expanded table object to access the Properties dialog, or you can select a particular table and drag it to a new location. Note that location information is not saved after you close the diagram or choose Auto Layout.

You can select multiple objects using the SHIFT or CTRL keys. Press SHIFT and select multiple objects, or click and drag to define an area where you want all objects selected. Press CTRL to individually add or remove particular objects to the selection set.

	
New Table

[image: New Table icon]	
Select this option to create a new physical or logical table while in the diagram view. Left-click the background to launch the Properties dialog for the new object, and then provide details as necessary. For physical tables, you first need to select the parent object under which the new table will be created (such as a schema, catalog, or database object).

See also the following sections:

	
"Creating and Managing Physical Tables and Physical Cube Tables"

	
"Creating Logical Tables"

	
New Join

[image: New Join icon]	
Select this option to create a new join while in the diagram view. First, left-click the first table in the join (the table representing many in the one-to-many join). Then, move the cursor to the table to which you want to join (the table representing one in the one-to-many join), and then left-click the second table to select it. Provide details in the Properties dialog for the new object as necessary.

Joins in the Physical and Business Model Diagrams are represented by a line with an arrow at the "one" end of the join. Note that this display is different from the line with crow's feet at the "many" end of the join that was used in previous releases.

See also the following sections:

	
"Defining Physical Joins with the Physical Diagram"

	
"Defining Logical Joins with the Business Model Diagram"

Note the following additional features of the Physical and Business Model Diagrams:

	
All toolbar options for the diagram, such as Select, New Table, and New Join, are also available from the Diagram menu.

	
Moving the mouse over a table causes the fully-qualified name for that table to appear in the status bar.

	
You can have both the Physical Diagram and Business Model Diagram windows open at the same time.

	
Any customizations you have made to the layout (by manually moving individual tables) are lost after you close the diagram or choose Auto Layout.

	
You can cause fully-qualified table names to appear in diagrams by setting a preference in the Options dialog. See "Setting Administration Tool Options" for more information.

	
You can use the Print and Print Preview options on the File menu to manage printing options for the diagrams. You can also use the Print option on the toolbar.

See also the following sections for more information about using the Physical and Business Model Diagrams:

	
"Physical Diagram and Business Model Diagram Keyboard Shortcuts"

	
"Working with the Physical Diagram"

	
"Working with the Business Model Diagram"

Editing, Deleting, and Reordering Objects in the Repository

This section provides information about editing, deleting, and reordering objects.

	
To edit objects, double-click an object, or right-click an object and select Properties. Then, complete the fields in the dialog that is displayed. In some dialogs, you can click Edit to open the appropriate dialog.

	
To delete objects, select one or more objects and click Delete, or press the delete key. You can also right-click an object and select Delete.

	
To reorder objects, drag and drop an object to a new location. Note the following:

	
Reordering is only possible for certain objects and in certain dialogs.

	
In some dialogs, you can use an up or down arrow to move objects to a new location.

	
In the Administration Tool main window, you can drag and drop an object onto its parent to duplicate the object. For top-level objects like business models and subject areas, drag and drop the object onto white space to duplicate it.

About Naming Requirements for Repository Objects

All repository object names must follow these requirements:

	
Names cannot be longer than 128 characters

	
Names cannot contain leading or trailing spaces

	
Names cannot contain single quotes, question marks, or asterisks

Note that repository object names can include multibyte characters.

Using the Browse Dialog to Browse for Objects

The Browse dialog appears in many situations in the Administration Tool. You use it to find and select an object.

The Browse dialog is accessible from several dialogs that let you make a selection from among existing objects.

The left pane of the Browse dialog lets you browse the tree view for a particular object. It contains the following parts:

	
A tree listing all of the objects in the Presentation layer, Business Model and Mapping layer, or the Physical layer of a repository.

	
Tabs at the bottom of the left pane let you select a layer. Some tabs might not appear if objects from those layers are not appropriate for the task you are performing.

The right pane of the Browse dialog lets you search for the object you want. It contains the following parts:

	
Query enables you to query objects in the repository by name and type. The Name field accepts an asterisk (*) as the wildcard character, so you can query for partial matches.

	
The Show Qualified Names option lets you identify to which parents an object belongs.

	
View lets you view properties of a selected object in read-only mode.

Note that in general, the left pane and the right pane of the Browse dialog are not connected. Rather, the panes provide alternate methods to locate the object you want.

The exception to this is the Synchronize Contents feature, which lets you synchronize an object from the query results list with the tree view. This feature is a helpful contextual tool that locates a particular object in the tree view.

Table 2-6 lists and describes the tasks you can perform in the Browse dialog.

Table 2-6 Tasks You Can Perform in the Browse Dialog

	Task	Description
	
Querying for an object

	
Follow these steps to query for an object:

	
Select the object type from the Type list.

	
Type the name of the object, or a part of the name and the wildcard character (*), in the Name field. For example:

- To search for logical tables that have names beginning with the letter Q, select Logical Tables from the Type list, and then type Q* in the Name field.

- To search for logical tables that have names ending with the letters dim, type *dim in the name field.

	
Click Query.

Relevant objects appear in the query results list.

	
Selecting an object

	
Use the tree view in the left pane or the filtered view in the right pane to locate the object you want, then double-click the object.

The Browse dialog closes, and the object is displayed in the previous dialog.

	
Synchronizing an object in the query results list with the tree view

	
Select an object in the Query list and then click the Synchronize Contents button.

The object you selected is highlighted in the tree view in the left pane.

	
Finding multiple occurrences of an object in the tree view

	
Select an object in the tree view, such as a logical column, then click the down arrow button.

The next occurrence of that object is highlighted in the tree view.

Changing Icons for Repository Objects

In the Administration Tool, you can change the icon that represents a particular object in the repository. Changing the icon for a particular object does not have any functional effect, and is not visible in Answers or other clients. This feature is intended as a useful way to visually distinguish objects for the convenience of repository developers.

For example:

	
You can use a special icon for objects that are in the Business Model and Mapping layer, but not the Presentation layer, for easier maintenance of the repository.

	
You can mark objects that are logical calculations with a separate icon.

	
You can choose an icon to visually distinguish tables in the Presentation layer that appear as nested folders in Answers.

	
You can use an icon to denote objects in a logical table that pertain to a specific functional area, or that are sourced from a particular logical table source.

You can only change the icon for individual objects. You cannot globally change the icon for all objects of a particular type.

To change the icon for a particular repository object:

	
In the Administration Tool, right-click an object in the Physical, Business Model and Mapping, or Presentation layer (for example, a particular logical table).

	
Select Set Icon.

	
In the Select Icon dialog, select the icon you want to use for that object and click OK.

Sorting Objects in the Administration Tool

Many dialogs in the Administration Tool show lists of objects, such as a list of physical columns in the Physical Table dialog, a list of logical levels for Preferred Drill Path in the Logical Level dialog, and a list of presentation hierarchies in the Presentation Table dialog.

You can click the header to sort the objects in ascending or descending order. An up arrow or down arrow icon is displayed next to the header name, indicating how the list has been sorted.

Each list also has a default order that is persisted from session to session. The default order appears when you view a list in a dialog for the first time each session. The default order is displayed when there is no ascending or descending arrow icon in the header. Click the header three times to toggle between ascending, descending, and default order. In some cases, the default order is the ascending or descending order.

Some dialogs provide the capability to move items up or down in a list. In these dialogs, if you click Up or Down while the list is sorted in ascending or descending order, the selected item moves, and the resulting order becomes the new default order. Note that clicking the header eliminates any manually determined order.

About Features and Options for Oracle Marketing Segmentation

Some features and options in the Administration Tool are for use by organizations that have the Oracle Marketing Segmentation product. For information about these features and options, see Oracle Marketing Segmentation Guide.

Note that additional information about Oracle Marketing Segmentation features is provided in the Presentation Services Help.

About the Oracle BI Server Command-Line Utilities

You can use a variety of command-line utilities with the Oracle BI Server to make programmatic changes to your repository file, run sample queries, delete unwanted repository objects, and perform other tasks.

Table 2-7 describes the Oracle BI Server command-line utilities.

Table 2-7 Oracle BI Server Command-Line Utilities

	Utility Name	Description	Where to Go for More Information
	
XML utilities (biserverxmlgen, biserverxmlexec, biserverxmlcli)

	
Primarily used to leverage the Oracle BI Server XML API for metadata migration, programmatic metadata generation and manipulation, metadata patching, and other functions.

The XML utilities include:

	
biserverxmlgen: generates XML from an existing RPD file. Also includes an option to generate repositories in MDS XML format.

	
biserverxmlexec: executes the XML in offline mode to create or modify a repository file.

	
biserverxmlcli: executes the XML against the Oracle BI Server.

	
Oracle Fusion Middleware XML Schema Reference for Oracle Business Intelligence Enterprise Edition

	
comparerpd

	
Used to compare two repositories and generate an XML patch file.

	
"Comparing Repositories Using comparerpd"

	
equalizerpds

	
Used to equalize objects in two repositories that have the same name, but different upgrade IDs. Running this utility before merging repositories prevents unintended renaming during the merge.

	
"Equalizing Objects"

	
extractprojects

	
Used to extract projects from a given repository.

	
"Using the extractprojects Utility to Extract Projects"

	
nqcmd

	
Used to run test queries against the repository. Connects using an Oracle BI Server ODBC DSN.

	
"Using nqcmd to Test and Refine the Repository"

	
patchrpd

	
Used to apply an XML patch file. This utility is especially useful for patching repository files on Linux or UNIX systems.

	
"Using patchrpd to Apply a Patch"

	
prunerpd

	
Used to delete unwanted repository objects from your repository file, such as databases, tables, columns, initialization blocks, and variables.

	
"Deleting Unwanted Objects from the Repository"

	
sametaexport

	
Used to generate the information necessary for the Oracle Database SQL Access Advisor or IBM DB2 Cube Views tool to preaggregate relational data and improve query performance.

	
"Exchanging Metadata with Databases to Enhance Query Performance"

	
validaterpd

	
Used to check the consistency of a repository.

	
"Using the validaterpd Utility to Check Repository Consistency"

Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance

Before running any of the Oracle BI Server command-line utilities, you must first run bi-init to launch a command prompt or shell window that is initialized to your Oracle instance. Then, run the appropriate command-line tool from the resulting shell window with the desired options.

This utility is called bi-init.sh on Linux and UNIX systems, bi-init.bat on client installations of the Administration Tool, and bi-init.cmd for all other Windows installation types.

For example, on Windows:

	
In Windows Explorer, go to the location appropriate for your install type:

	
Client installations:

ORACLE_HOME/bifoundation/server/bin

	
All other installations:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup

	
Double-click bi-init.cmd (or bi-init.bat for client installations) to display a command prompt that is initialized to your Oracle instance.

	
At the command prompt, type the name of the command-line utility you want to run with the desired options. For example, to run extractprojects, enter the following:

extractprojects -B base_repository_name -O output_repository_name {-I input_project_name} [-P repository_password] [-L]

About Options in Fusion Middleware Control and NQSConfig.INI

Many configuration settings that affect the Administration Tool and repository development are managed in either Fusion Middleware Control, or the NQSConfig.INI configuration file. Repository developers must be familiar with Fusion Middleware Control and NQSConfig.INI configuration settings to effectively work with the Administration Tool and with their repositories.

Some of the most common configuration settings that affect repository development include:

	
Repository File: This option is set in Fusion Middleware Control. It controls the current published repository.

	
Disallow RPD Updates: This option is set in Fusion Middleware Control. It controls whether the Administration Tool opens in read-only mode, in both offline and online mode.

	
LOCALE: This option is set in NQSConfig.INI. It specifies the locale in which data is returned from the server and determines the localized names of days and months.

	
DATE_TIME_DISPLAY_FORMAT, DATE_DISPLAY_FORMAT, TIME_DISPLAY_FORMAT: These options are set in NQSConfig.INI. They control the display of date/time formats.

	
DEFAULT_PRIVILEGES: This option is set in NQSConfig.INI. It determines the default privilege (NONE or READ) granted to users and application roles for repository objects without explicit permissions set.

See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for full information about Fusion Middleware Control and NQSConfig.INI configuration settings.

About the SampleApp.rpd Demonstration Repository

Oracle Business Intelligence provides a sample repository called SampleApp.rpd that provides best practices for modeling many different types of objects described in this guide.

A basic version of SampleApp.rpd, called SampleAppLite.rpd, is automatically installed as the default repository when you install Oracle BI Enterprise Edition. SampleAppLite.rpd is located in the following directory:

ORACLE_INSTANCE\bifoundation\OracleBIServerComponent\coreapplication_obisn\repository

The full version of SampleApp.rpd contains many additional examples and features. This version can be found on the Oracle Technology Network at:

http://oracle.com/technetwork/middleware/bi-foundation/obiee-samples-167534.html

The default password for SampleAppLite.rpd is Admin123. For security reasons, you must immediately change this default password the first time you open SampleAppLite.rpd in the Administration Tool. See "Changing the Repository Password" for more information.

Using Online and Offline Repository Modes

You can open a repository for editing in either online or offline mode. The tasks you can perform depend on the mode in which you opened the repository.

To open a repository, you must enter the repository password. This password is specific to each repository and is used to encrypt the repository.

This section contains the following topics:

	
Editing Repositories in Offline Mode

	
Editing Repositories in Online Mode

	
Checking Out Objects

	
Checking In Changes

	
About Read-Only Mode

Editing Repositories in Offline Mode

Use offline mode to view and modify a repository while it is not loaded into the Oracle BI Server. If you attempt to open a repository in offline mode while it is loaded into the Oracle BI Server, the repository opens in read-only mode. Only one Administration Tool session at a time can edit a repository in offline mode. See "About Read-Only Mode" for more information.

You do not need to enter a user name and password to open a repository in offline mode. You only need to enter the repository password.

This section contains the following topics:

	
Opening Repositories in Offline Mode

	
Publishing Offline Changes

Opening Repositories in Offline Mode

Follow these steps to open an RPD-format repository in offline mode:

	
In the Administration Tool, select File > Open > Offline.

	
Go to the repository you want to open, and then select Open.

	
In the Open Offline dialog, enter the repository password, and then click OK.

If the server is running and the repository you are trying to open is loaded, the repository opens in read-only mode. If you want to edit the repository while it is loaded, you must open it in online mode. Also, if you open a repository in offline mode and then start the server, the repository becomes available to users. Any changes you make become available only when the server is restarted.

When you open an RPD-format repository in the Administration Tool in offline mode, the title bar displays the name of the open repository (for example, SampleAppLite).

You can also open MDS XML format repositories in offline mode, as follows:

	
In the Administration Tool, select File > Open > MDS XML.

	
Select the root folder location for your MDS XML files and click OK.

	
If this is the first time you have opened this MDS XML repository in the Administration Tool, you are prompted to specify whether this repository is a standalone MDS XML repository, or whether it is under source control. Select the appropriate option and click OK.

When you open an MDS XML format repository in the Administration Tool, the title bar displays the format and root folder location (for example, MDS XML C:\Root_Folder).

Publishing Offline Changes

Follow these steps to publish changes made to your repository in offline mode:

	
Upload the repository using Fusion Middleware Control. See "Configuring Repositories" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about how to perform this task.

You cannot upload MDS XML format repositories. To publish changes made to MDS XML repositories, you must first convert the repository to RPD format.

	
Restart all Oracle BI Server instances. You do not need to restart other BI system components.

	
In Presentation Services, click the Reload Files and Metadata link from the Administration page.

Editing Repositories in Online Mode

Use online mode to view and modify a repository while it is loaded into the Oracle BI Server. The Oracle BI Server must be running to open a repository in online mode. There are certain things you can do in online mode that you cannot do in offline mode. In online mode, you can perform the following tasks:

	
Manage scheduled jobs

	
Manage user sessions

	
Manage the query cache

	
Manage clustered servers

	
Use the Oracle BI Summary Advisor (Oracle Exalytics Machine deployments only)

This section contains the following topics:

	
Opening Repositories in Online Mode

	
Publishing Online Changes

	
Guidelines for Using Online Mode

Opening Repositories in Online Mode

Follow these steps to open a repository in online mode:

	
In the Administration Tool, select File > Open > Online to display the Open Online Repository dialog.

The Oracle BI Server DSNs that have been configured on your computer are displayed in the dialog. If no additional DSNs have been configured for this version of the Oracle BI Server, you might see only the default DSN that is configured for you during installation.

See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for information about how to create an ODBC DSN for the Oracle BI Server.

	
Enter the repository password for the repository currently loaded in the Oracle BI Server.

You can use Repository tab of the Deployment page in Fusion Middleware Control to view the name of the current repository.

	
Provide a valid user name and password.

The user you provide must have the ManageRepositories permission. See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for more information.

	
If you expect to work extensively with the repository (for example, you plan to check out many objects), select the Load all objects on startup option. This loads all objects immediately, rather than as selected. The initial connect time might increase slightly, but opening items in the tree and checking out items is faster.

	
Select the appropriate DSN and click OK.

When you open a repository in the Administration Tool in online mode, the title bar displays the DSN for the Oracle BI Server to which you are connected, not the name of the current repository.

Publishing Online Changes

Changes made using the Administration Tool in online mode are available immediately for a single-node deployment.

In a clustered deployment, changes are published to the repository publishing directory, specified on the Repository tab of the Deployment page in Fusion Middleware Control. The master Oracle BI Server consumes these changes automatically, but you must restart all slave Oracle BI Servers for them to get the latest changes, and then reload metadata in Presentation Services by clicking the Reload Files and Metadata link from the Administration page.

You can restart the slave Oracle BI Servers using the RollingRestart ODBC procedure, or you can restart the slave servers using Fusion Middleware Control:

	
To use the RollingRestart ODBC procedure, enter the following in nqcmd:

call RollingRestart(timeout);

where timeout is the number of seconds to wait for each slave Oracle BI Server to restart before moving on to the next one.

For example:

call RollingRestart(300);

In this example, the system waits five minutes for each Oracle BI Server to restart. If the given Oracle BI Server restarts sooner, the system moves on to the next one immediately.

See "Using nqcmd to Test and Refine the Repository" for more information about using nqcmd.

	
Note:

you must run the RollingRestart procedure directly against the master Oracle BI Server. Because the DSN created upon install for each Oracle BI Server is clustered by default, you must manually create a non-clustered DSN for the master Oracle BI Server to run the procedure against.

See "Integrating Other Clients with Oracle Business Intelligence" in Oracle Fusion Middleware Integrator's Guide for Oracle Business Intelligence Enterprise Edition for information about how to create an ODBC DSN for the Oracle BI Server.

In addition, RollingRestart will not work if automatic restart of components has been disabled in OPMN. See Oracle Fusion Middleware Oracle Process Manager and Notification Server Administrator's Guide for more information.

	
To restart the slave servers using Fusion Middleware Control, first use the Cluster Manager in the Administration Tool in online mode to determine which Oracle BI Server is the master, and which are the slaves. Then, use the Process tab of the Availability page Fusion Middleware Control to restart the slave Oracle BI Servers. See "Using Fusion Middleware Control to Start and Stop Oracle Business Intelligence System Components and Java Components" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information.

It is a best practice to avoid making other configuration changes in Fusion Middleware Control or the configuration files when using the RollingRestart ODBC procedure or when restarting the slave Oracle BI Servers in Fusion Middleware Control. Because only the slave servers are restarted, a situation might result where the master Oracle BI Server has a different set of configuration settings loaded than the slave Oracle BI Servers. If this occurs, restart the master Oracle BI Server.

Guidelines for Using Online Mode

Use online mode only for small changes that do not require running consistency checks. Running consistency checks against the full online repository can take a long time. Instead, make more complex changes that require consistency checks in offline mode against a project extract of the repository.

Table 2-8 provides guidelines for when to perform online and offline edits.

Table 2-8 Guidelines for Online and Offline Repository Edits

	Mode	Use This Mode For...	Example Use Cases
	
Online

	
	
Changes that do not require running a consistency check

	
Small changes that are required to fix things in a running system

	
Changes that need to be deployed quickly

	
	
Renaming Presentation layer metadata

	
Reorganizing Presentation layer metadata

	
Offline

	
	
Full-scale development or customization activities that require running consistency checks multiple times and iterating

	
	
Customizing existing fact or dimension tables

	
Adding new fact or dimension tables

In addition, you should limit the number of concurrent online users. The best practice is to have only one user working in online mode at a time. Even when users have different objects checked out, there might be dependencies between the objects that can cause conflicts when the changes are checked in. In general, only one user should make online changes in a single business model at a time.

If you must have multiple concurrent users in online mode, do not have more than five users. For situations where you need more than five users, use the multiuser development environment. See Chapter 3, "Setting Up and Using the Multiuser Development Environment" for more information.

Even with a single user making changes, be aware that online mode is riskier than offline mode because you are working against a running server. If you check in changes that are not consistent, it might cause the Oracle BI Server to shut down. When you work in online mode, make sure to have a backup of the latest repository so that you can revert to it if needed. You can also use File > Undo All Changes to roll back all changes made since the last check-in.

Checking Out Objects

When you are working in a repository open in online mode, you are prompted to check out objects when you attempt to perform various operations. Select the objects you want to check out and click Yes to check out the objects.

If you are performing a task in a wizard, the Checkout screen displays a summary of the objects that need to be checked out to complete the operation. Click Next to check out the objects and complete the task.

Checking In Changes

When you are working in a repository open in online mode, you are prompted to perform a consistency check before checking in the changes you make to a repository.

If you have made changes to a repository and then attempt to close the repository without first checking in your changes, a dialog opens automatically asking you to select an action to take. If you move an object from beneath its parent and then attempt to delete the parent, you are prompted to check in changes before the delete is allowed to proceed.

Use the Check in Changes dialog to make changes available immediately for use by other applications. Applications that query the Oracle BI Server after you have checked in the changes will recognize them immediately. Applications that are currently querying the server will recognize the changes the next time they access any items that have changed.

To make changes available and have them saved to disk immediately:

	
In the Administration Tool, select File, then select Check In Changes.

If the Administration Tool detects an invalid change, a message is displayed to alert you to the nature of the problem. Correct the problem and perform the check-in again. Note that you can select a message row and click Go To, or double-click a message row, to go directly to the affected object.

You must save changes to persist the changes to disk. You must check in changes before you can save, but you do not need to save to check in changes.

About Read-Only Mode

Only one component (either the Oracle BI Server, or a single Administration Tool client in offline mode) can have a repository open in read/write mode at a time. If a second component opens a repository that is already in use, the repository is opened in read-only mode.

For example, assume the Oracle BI Server loads a repository in read/write mode. Any number of Administration Tool clients connecting to that repository in online mode will also get read/write mode, because they are accessing the repository through the Oracle BI Server. However, Administration Tool clients opening that repository in offline mode will get read-only mode, because the repository is already open for read/write through the Oracle BI Server.

Alternatively, assume an Administration Tool client opens a repository offline in read/write mode. When the Oracle BI Server starts, it will get read-only mode, as will any Administration Tool clients connecting to that repository in either offline or online modes. To enable the server to load the repository in read/write mode in this situation, you must first close the Administration Tool client that has the repository locked, and then restart the Oracle BI Server.

The Administration Tool also opens a repository in read-only mode when Oracle Business Intelligence has been clustered, and the Administration Tool is connected in online mode to a slave server. This occurs because the Master BI Server holds a lock on the repository. To avoid this situation when running in a clustered environment, ensure that the Oracle BI Server ODBC DSN used by the Administration Tool has been configured to point to the Cluster Controllers rather than to a particular Oracle BI Server.

In addition, the Administration Tool opens repositories in read-only mode when the configuration setting Disallow RPD Updates has been selected in Fusion Middleware Control. See "Using Fusion Middleware Control to Disallow RPD Updates" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about this configuration setting.

Checking the Consistency of a Repository or a Business Model

Repository metadata must pass a consistency check before you can make the repository available for queries. The Consistency Check Manager lets you enable and disable rules for consistency checks, find and fix inconsistent objects, and limit the consistency check to specific objects. You can also use the validaterpd utility to check the validity of all metadata objects.

This section contains the following topics:

	
About the Consistency Check Manager

	
Checking the Consistency of Repository Objects

	
Using the validaterpd Utility to Check Repository Consistency

	
Common Consistency Check Messages

About the Consistency Check Manager

The Consistency Check Manager checks the validity of your repository to ensure that it can load at run time, and to identify any syntax or semantic errors that may cause queries to fail.

In addition, invalid objects are deleted during Consistency Checks. This behavior might result in deleted expressions and filters on logical table sources and logical columns. Invalid references can occur when objects were deleted in the Physical layer without properly accounting for the references in the Business Model and Mapping layer objects.

Each time you save the repository, a dialog asks if you want to check global consistency. You have the following options:

	
Yes. Checks global consistency and then saves the repository file.

	
No. Does not check global consistency and then saves the repository file.

	
Cancel. Does not check global consistency and does not save the repository file.

The Consistency Check Manager does not check the validity of objects outside the metadata using the connection. It only checks the consistency of the metadata and not any mapping to the physical objects outside the metadata. If the connection is not working or objects have been deleted in the database, the Consistency Check Manager does not report these errors.

If you use lookup tables to store translated field names with multilingual schemas, note that consistency checking rules are relaxed for the lookup tables. See "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about localization and lookup tables.

The consistency checker returns the following types of messages:

	
Errors. These messages describe errors that need to be fixed. Use the information in the message to correct the inconsistency, then run the consistency checker again. The following is an example of an error message:

[38082] Type of Hierarchy '"0RT_C41"..."0RT_C41/MDF_BW_Q02"."Product Hierarchy for Material MARA"' in Cube Table '"0RT_C41"..."0RT_C41/MDF_BW_Q02"' needs to be set.

If you disable an object and it is inconsistent, a message is displayed, asking if you want to make the object unavailable for queries.

	
Warnings. These messages indicate conditions that may or may not be errors. For example, you might receive a warning message about a disabled join that was intentionally disabled to eliminate a circular join condition. Other messages may warn of inconsistent values, or feature table changes that do not match the defaults. The following is an example of a warning message:

[39024] Dimension '"Paint"."MarketDim"' has defined inconsistent values in its levels' property 'Number of elements'.

In the Consistency Check Manager, you can sort the rows of messages by clicking the column headings. Additionally, the status bar provides a summary of all the rows displayed.

	
Note:

After upgrading from a previous software version and checking the consistency of your repository, you might notice messages that you had not received in previous consistency checks. This typically indicates inconsistencies that had been undetected before the upgrade, not new errors.

Checking the Consistency of Repository Objects

You can use the Administration Tool to check consistency in the following ways:

	
To check consistency for all objects in the repository, select File, then select Check Global Consistency.

	
To check the consistency of a particular repository object, such as a physical database, business model, or subject area, right-click the object and select Check Consistency.

	
If you already have the Consistency Check Manager open, you can check global consistency by clicking Check All Objects.

To view the Consistency Check Manager without performing a global consistency check, select Tools, then select Show Consistency Checker. If you have checked consistency in the current session, the messages from the last check appear in the Messages pane.

To check the consistency of a repository:

	
In the Administration Tool, select File, then select Check Global Consistency. The Consistency Check Manager is displayed, listing any messages relating to the current repository.

	
Note:

If you disable an object and it is inconsistent, a dialog appears, asking whether you want to make the object unavailable for queries.

	
To edit the repository to correct inconsistencies, double-click a row to open the properties dialog for that object, or select a row and click Go To. Then, correct the inconsistency and click OK.

	
To copy the messages so that you can paste them in another file such as a spreadsheet, select one or more rows and click Copy. Note that clicking Copy without any rows selected copies all messages.

	
To check consistency again, click Check All Objects to perform a global check. Or click the Refresh button in the top right corner to check only the objects that were listed as inconsistent in the last check.

	
When finished, click Close.

To check the consistency of a single object in a repository:

	
In the Administration Tool, right-click an object, then select Check Consistency.

If the object is not consistent, a list of messages appears.

	
To edit the repository to correct inconsistencies, double-click any cell in a row to open the properties dialog for that object. Then, correct the inconsistency and click OK.

	
To copy the messages so that you can paste them in another file such as a spreadsheet, click Copy.

	
To check consistency of the object again, click the refresh button at the top right corner of the dialog.

If you click Check All Objects, all objects in the repository are checked.

Using the validaterpd Utility to Check Repository Consistency

You can use the Oracle BI Server utility validaterpd to check the validity of all metadata objects in a repository. Running this utility performs the same validation checks as the Consistency Check Manager in the Administration Tool.

The validaterpd utility is available on both Windows and UNIX systems. However, you can only use validaterpd with binary repositories in RPD format.

Before running validaterpd, you must first run bi-init to launch a command prompt that is properly initialized. See "Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance" for more information.

Syntax

The validaterpd utility takes the following parameters:

validaterpd -R repository_name -O output_file_name [-P repository_password] [-8]

Where:

repository_name is the name and path of the repository that you want to validate.

output_file_name is the name and path of a text file where the validation results will be recorded.

repository_password is the password for the repository that you want to validate.

Note that the repository_password argument is optional. If you do not provide the password argument, you are prompted to enter the password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide password arguments either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.

-8 specifies UTF-8 encoding in the output file.

Example

The following example generates an output file called results.txt that contains validation information for the repository called repository.rpd:

validaterpd -R repository.rpd -O results.txt
Give password: my_rpd_password

	
Note:

Be sure to provide the full pathnames to your repository files, both the input file and the output file, if they are located in a different directory.

Common Consistency Check Messages

Table 2-9 provides information about some commonly seen consistency check warnings and errors. Note that Table 2-9 provides a partial list only and does not show all possible warnings and errors.

Table 2-9 Common Consistency Check Messages

	Validation Rule Example	Type	Description
	
[14031] The content filter of a source for logical table: FACT_TABLE_NAME references multiple dimensions.

	
Error

	
The given logical table has a logical table source with a WHERE clause filter that references multiple dimensions. A WHERE clause with multiple dimensions is invalid.

	
[38126] 'Logical Table' '"Technology - WFA"."Fact WFA WO "' has name with leading or trailing space(s).

	
Error

	
Identifies an object with leading or trailing spaces in the object name.

Repository objects can no longer have leading or trailing spaces in their names. Leading and trailing spaces in object names can cause query and reporting issues.

	
[38012] Logical column DIM_Start_Date.YEAR_QUARTER_NBR does not have a physical data type mapping, nor is it a derived column.

[38001] Logical column DIM_Start_Date.YEAR_QUARTER_NBR has no physical data source mapping.

	
Error

	
Logical columns that are not mapped to any logical table source are reported as consistency errors, because the logical table source mappings are invalid and would cause queries to fail.

Both of the given validation rules are related to the same issue.

	
[39062] Initialization Block 'Authorization' uses Connection Pool '"My_DB".

"My_CP"' which is used for report queries. This may impact query performance.

	
Warning

	
Indicates that the same connection pool is being used for both queries and for initialization blocks. This configuration is not recommended. Instead, create a dedicated connection pool for initialization blocks. Otherwise, query performance might suffer, or user logins might hang if authorization initialization blocks cannot run.

	
[39028] The features in Database 'MyDB' do not match the defaults. This can cause query problems.

	
Warning

	
Some database feature defaults were changed in this release of Oracle BI EE. Unless you have specific customizations to your feature set, it is recommended that you reset your database features to the new defaults.

	
[39003] Missing functional dependency association for column: DIM_Offer_End_Date.CREATE_DT.

	
Warning

	
This warning indicates that the given column is only mapped to logical table sources that are disabled. The warning brings this issue to the repository developer's attention in case the default behavior is not desired.

	
[39059] Logical dimension table MY_DIM has a source MY_DIM_DAILY at level Daily that joins to a higher level fact source MY_FACT_SUM.MTHLY_SUM

	
Warning

	
Even though this fact logical table source has an aggregate grain set in this dimension, no join was found that connects to any logical table source in this dimension (or a potentially invalid join was found).

This means that either no join exists at all, or it does exist but is potentially invalid because it connects a higher-level fact source to a lower-level dimensional source. Such joins are potentially invalid because if followed, they might lead to double counting in query answers.

For example, consider Select year, yearlySales. Even if a join exists between monthTable and yearlySales table on yearId, it should not be used because such a join would overstate the results by a factor of 12 (the number of months in each year).

If you get a 39059 warning after upgrading, verify that the join is as intended and does not result in incorrect double counting. If the join is as intended, then ignore the 39059 warning.

	
[39055] Fact table "HR"."FACT - HC Budget" is not joined to tables in logical dimension "HR"."DIM - HR EmployeeDim". This will cause problems when extracting project(s).

	
Warning

	
This warning indicates that there is a physical join between the given fact and dimension sources, but there is not a corresponding logical join between the fact table and the dimension table.

	
[39054] Fact table "Sales - STAR"."Fact - STAR Statistics" is not joined to logical dimension table "Sales - STAR"."Dim - Plan". This will cause problems when extracting project(s).

	
Warning

	
This warning indicates that the aggregation content filter "Group by Level" in the logical table source of a fact table references logical dimension tables that are not joined to that fact table. If that fact table is extracted in the extract/MUD process, the dimensions that are not joined will not be extracted. In this case, the aggregation content of the extracted logical table source would not be the same as in the original logical table source.

	
[39057] There are physical tables mapped in Logical Table Source ""HR"."Dim - Schedule"."SCH_DEFN"" that are not used in any column mappings or expressions.

	
Warning

	
This warning indicates that the given logical table source has irrelevant tables added that are not used in any mapping. This situation will not cause any errors.

E Deleting Unwanted Objects from the Repository

If your repository contains many objects that you do not need, you can use the command-line pruning utility, prunerpd, to delete the unwanted objects. This appendix explains how the pruning utility works and how to use it.

Note that you can only use prunerpd with binary repositories in RPD format.

This appendix contains the following topics:

	
About the Object Pruning Utility

	
Using the Object Pruning Utility

	
Deletion Rules for the Object Pruning Utility

About the Object Pruning Utility

If you have a large number of extraneous or unwanted objects in your repository, you can delete the unwanted objects using the prunerpd command-line utility. You can use prunerpd on both Windows and UNIX systems.

You can delete unwanted repository objects such as databases, tables, columns, initialization blocks, and variables. However, note that the pruning utility does not remove objects from the Oracle BI Presentation Catalog.

Deleting objects from the repository has a cascading effect. For example, if a physical column is deleted, then any mapped logical columns are deleted, as well as any associated presentation columns. See "Deletion Rules for the Object Pruning Utility" for more information.

Using the Object Pruning Utility

You must first create the input file that contains the list of repository objects to be deleted. Then, you must run the utility at the command line, passing the input file as an argument

This section contains the following topics:

	
Creating the Input File

	
Running the prunerpd Utility

Creating the Input File

The prune utility accepts the list of repository objects you want to delete as a text file. The utility can accept multiple input files at a time. The syntax rules for the input file are shown in Table E-1.

	
Note:

Object names in the input file must match the fully qualified name that is used in the repository. Wildcards (such as "*" and "?") are not supported in the object name.

Table E-1 Syntax Rules for Input File

	Object Type	Example	Action
	
Database

	
D "Paint"

	
Deletes the database named "Paint."

	
Table

	
	
T "W_AGREE_D"

	
T "DB"."Catalog"."Schema"."Table"

	
	
Deletes the table or alias named "W_AGREE_D" from the Physical layer.

	
Deletes the table or alias named "Table" from the schema named "Schema," contained in the catalog named "Catalog," located in the database named "DB," from the Physical layer.

	
Column

	
C "W_AGREE_MD"."AGREE_CD"

	
Deletes the column named "AGREE_CD" located in a table or alias named "W_AGREE_D" from the Physical layer.

	
Initialization block

	
I "External Metadata Strings"

	
Deletes the initialization block named "External Metadata Strings."

	
Variable

	
V CURR_USER

	
Deletes the variable named "CURR_USER."

For example, a text file that contains instructions to delete a database named "Stock Quotes" and a physical column named "S_NQ_ACCT"."USER_NAME" would include the following entry:

D "Stock Quotes" C "S_NQ_ACCT"."USER_NAME"

Use white space as a delimiter in the input file (a single space, tab, or multiple spaces).

Running the prunerpd Utility

Before running prunerpd, you must first run bi-init to launch a command prompt that is properly initialized. See "Running bi-init to Launch a Shell Window Initialized to Your Oracle Instance" for more information.

Syntax

The prunerpd utility accepts the following parameters:

prunerpd -s source_rpd [-p rpd_password] -f input_file -o output_rpd -l output_log_file -e error_log_file [-8]

Where:

source_rpd is the name and location of the target repository file.

rpd_password is the repository password for the source repository.

The password argument is optional. If you do not provide a password argument, you are prompted to enter a password when you run the command. To minimize the risk of security breaches, Oracle recommends that you do not provide a password argument either on the command line or in scripts. Note that the password argument is supported for backward compatibility only, and will be removed in a future release.

input_file is the input file name (in text format) that contains the list of repository objects to be removed. Separate multiple file names by spaces. Enclose spaces within a filename with double quotes (" ").

output_rpd is the name and location of the output repository file, also known as the pruned repository.

output_log_file is the name and location of the output log file. All actions performed on the repository are written to this file, including descriptions. The output log file is in XML format. Other messages, such as progress indicators, are sent to the standard output stream.

error_log_file is the name and location of the error log file. The pruning utility writes exceptions and errors to this log. The error log file is in XML format. Other errors are sent to the standard output error stream.

-8 specifies UTF-8 encoding.

Example

prunerpd -s C:/OBI/Server/Repository/BIApps.rpd
-f "C:/Remove Oracle EBS Objects.txt"
-o "C:/OBI/Server/Repository/BIApps Pruned.rpd"
-l "C:/temp/BIApps Prunning.log" -e "C:/temp/ BIApps Prunning.err"
Give password: my_repos_password

Deletion Rules for the Object Pruning Utility

Deleting repository objects has a cascading effect. This section describes the deletion rules.

Physical Layer Rules

	
If a physical column or a table is deleted, then all of the affected keys, foreign keys, and complex joins are deleted as well. The internal obsolete attribute definition (attr defn) that links a logical column to a physical column is also removed.

	
Empty schemas, catalogs, and databases are removed.

	
If a table is deleted, then all its columns are deleted.

Logical Table Rules

	
If a regular column (not an aggregate or derived column) is not mapped in any logical source, then it is deleted. The keys, including the level key and the logical key, are also removed.

	
If the source column for a derived column or its referenced variable is deleted (corrupted), then the column is removed.

	
If an aggregate rule or override aggregate rule for an aggregate column is corrupted (due to a logical column deletion), then the column is removed.

	
If a logical table is removed (because its underlying physical table was deleted), then the keys, foreign keys, logical joins, sources, and source folder are removed.

	
If a logical table source does not have any valid mapping, then it is deleted.

	
If a logical table source is retained, but its aggregate content or filters are corrupted, then the corresponding expressions are set to null. The join specification is also removed.

	
If a logical table, dimension, or business model is empty (contains no meaningful child), then it is deleted.

Presentation Layer Rules

	
If a logical column is removed (because its underlying physical column was deleted), then any corresponding presentation columns are removed.

	
If a presentation table or subject area does not contain children, then it is removed.

Security Rules

	
If a security filter for a user or application role becomes corrupt due to deletion, then the filter is removed. If all filters are removed for a user or application role, then the internal privilege object is deleted.

	
Even if all filters for an application role are deleted, the application role is still maintained.

	
To remove an application role from the repository, you must explicitly delete it. See Oracle Fusion Middleware Security Guide for Oracle Business Intelligence Enterprise Edition for information about deleting application roles.

Variable Rules

	
Initialization blocks are deleted if the underlying connection pool is deleted.

	
Repository and session variables are deleted if the associated initialization blocks are deleted.

	
If a session variable is deleted and its parent initialization block does not contain variables, then the initialization block is removed.

	
If an initialization block is deleted, then its variables are removed.

Marketing Rules

	
Qualified list items are deleted if the associated cache catalog, GUID column, or qualified column is deleted.

	
Target levels are deleted if the associated catalog (Segmentation Catalog name) is deleted.

	
List catalogs are deleted if the associated catalog, table, or column is deleted.

	
Conforming dimensions are deleted if the associated catalog, table, or column is deleted.

16 Setting Up Data Sources on Linux and UNIX

Most repository development is performed on Windows, because the Administration Tool runs only on Windows. When you move to a production system, however, you can choose to run the Oracle BI Server on a Linux or UNIX platform. This chapter describes how to set up data sources for use with Oracle Business Intelligence when the Oracle BI Server is running on Linux or UNIX.

See "System Requirements and Certification" for information about supported Linux and UNIX platforms.

This chapter contains the following topics:

	
About Setting Up Data Sources on Linux and UNIX

	
Configuring Data Source Connections Using Native Gateways

	
Using DataDirect Connect ODBC Drivers on Linux and UNIX

	
Configuring Database Connections Using Native ODBC Drivers

	
Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX

	
Configuring Oracle RPAS ODBC Data Sources on AIX UNIX

	
Configuring Essbase Data Sources on Linux and UNIX

	
Configuring DB2 Connect on IBM z/OS and s/390 Platforms

About Setting Up Data Sources on Linux and UNIX

When the Oracle BI Server is running on Linux or UNIX, most data source connections are for query-only access. The Administration Tool is used for importing objects and is a Windows-only tool. Because of this, data source connections for import must be set up on Windows.

Note that some data source connections on Linux and UNIX do support write operations for special functions, like data source connections for write-back, usage tracking, and annotations for Oracle Scorecard and Strategy Management.

When the Oracle BI Server is running on Linux or UNIX and you need to update database object settings (such as the database type) or connection pool settings, you can copy the repository file to a Windows computer, make the changes using the Administration Tool on Windows, and then copy the repository file back to the Linux or UNIX computer.

There are three types of data source connections on Linux and UNIX platforms:

	
Native data source gateway connections, such as OCI for Oracle Database or DB2 CLI for IBM DB2

	
ODBC connections using the DataDirect Connect ODBC drivers that are bundled with Oracle Business Intelligence

	
Native ODBC connections using external drivers, such as for Teradata data sources

Note that you cannot have a single repository that contains both DataDirect Connect ODBC connections and native ODBC connections.

Configuring Data Source Connections Using Native Gateways

You can connect to both Oracle Database and DB2 using native gateways (OCI and DB2 CLI, respectively).

For Oracle Database, note the following:

	
The Oracle BI Server uses the Oracle Call Interface (OCI) to connect to the database. OCI is installed by default with Oracle BI Enterprise Edition. You must use the bundled version to connect.

	
In the tnsnames.ora file, the Oracle Database alias (the defined entry name) must match the Data Source Name used in the repository connection pools of all physical Oracle databases.

When connecting to an Oracle Database data source, you can include the entire connect string, or you can use the net service name defined in the tnsnames.ora file. If you choose to enter only the net service name, you must set up a tnsnames.ora file in the following location within the Oracle Business Intelligence environment, so that the Oracle BI Server can locate the entry:

ORACLE_HOME/network/admin

	
You must also edit the user.sh file to set environment variables for the database client.

For DB2, you must install the appropriate database client on the computer running the Oracle BI Server, then edit the user.sh file to set environment variables for the database client.

To edit the user.sh file to set environment variables for Oracle Database or DB2:

	
Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

	
Include the appropriate environment variable settings for the database client of your choice. Make sure to point to the appropriate libraries, depending on whether you are using a 32-bit or 64-bit database. See Example 16-1 for sample values.

	
Save and close the file.

Example 16-1 Sample user.sh Entries for Oracle Database and DB2 (32-Bit)

This example shows sample entries in user.sh for Oracle Database and DB2 on various platforms.

###
Linux: Oracle BI 32 bit mode
##
#set +u

Oracle Parameters
#---------------------------
Make sure that Oracle DB 32 bit Client is installed
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LD_LIBRARY_PATH=$ORACLE_HOME/lib:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH

If you have Linux 64 bit Platform, and would like to run Oracle BI 32 bit
then you must install Oracle DB 64 bit client, and this client comes with
32 bit libraries under $ORACLE_HOME/lib32. The LD_LIBRARY_PATH in this case
shall be like this:
#LD_LIBRARY_PATH=$ORACLE_HOME/lib32:$LD_LIBRARY_PATH
#export LD_LIBRARY_PATH

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 32 lib file
#. /DB2ISTANCE/sqllib/db2profile
#---------------------------

###
Solaris: Oracle BI 64 bit mode
###
#set +u

Oracle Parameters
#---------------------------
Make sure to install Oracle DB 64 bit Client
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LD_LIBRARY_PATH_64=$ORACLE_HOME/lib:$LD_LIBRARY_PATH_64:/opt/j2se/jre/lib/sparc
#export LD_LIBRARY_PATH_64
#---------------------------

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 64 lib file
#. /DB2ISTANCE/sqllib/db2profile
#LD_LIBRARY_PATH_64=/DB2ISTANCE/sqllib/lib:$LD_LIBRARY_PATH_64
#export LD_LIBRARY_PATH_64
#---------------------------

###
HPUX Itanium: Oracle BI 64 bit mode
###
#set +u

Oracle Parameters
#---------------------------
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#SHLIB_PATH=$ORACLE_HOME/lib:$SHLIB_PATH:/opt/j2se/jre/lib/hp700
#export SHLIB_PATH
#---------------------------

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 64 lib file
#. /DB2ISTANCE/sqllib/db2profile
#SHLIB_PATH=/DB2ISTANCE/sqllib/lib:$SHLIB_PATH
#export SHLIB_PATH
#---------------------------

###
AIX: Oracle BI 64 bit mode
###
#set +u

Oracle Parameters
#---------------------------
#ORACLE_HOME=/export/home/oracle/10g
#export ORACLE_HOME
#TNS_ADMIN=$ORACLE_HOME/network/admin
#export TNS_ADMIN
#PATH=$ORACLE_HOME/bin:/opt/bin:$PATH
#export PATH
#LIBPATH=$ORACLE_HOME/lib:$LIBPATH:/opt/j2se/jre/lib/sparc
#export LIBPATH
#---------------------------

DB2 Parameters
#---------------------------
#make sure the /DB2ISTANCE/sqllib/lib points to 64 lib file
#. /DB2ISTANCE/sqllib/db2profile
#---------------------------

Note that the shell script excerpts shown are examples only and are not recommendations for particular software platforms. See "System Requirements and Certification" for information about supported software platforms.

Troubleshooting OCI Connections

If you are having trouble connecting to an Oracle Database using OCI, check to ensure that the following conditions are true:

	
The computer running the Oracle BI Server must use Oracle Call Interface (OCI) to connect to the database.

	
If you choose not to use the entire connect string in the repository connection pool, you must ensure that a valid tnsnames.ora file is set up in the following location within the Oracle Business Intelligence environment, so that the Oracle BI Server can locate the entry:

ORACLE_HOME/network/admin

	
If you choose not to use the entire connect string in the repository connection pool, ensure that the net service name in the tnsnames.ora file matches the Data Source Name used in the connection pool.

For example, in the following example of a tnsnames.ora entry, the corresponding Oracle BI repository connection pool Data Source Name is ITQA2.

ITQA2 =
 (DESCRIPTION =
 (ADDRESS_LIST =
 (ADDRESS = (PROTOCOL = TCP)(HOST = ITQALAB2)(PORT = 1521))
 (CONNECT_DATA =
 (SERVICE_NAME = ITQALAB2.corp)
)
)

The following procedure shows how to check repository database and connection pool settings against the Oracle tnsnames.ora settings.

To check that the repository database and connection pool settings are correct:

	
Open your repository in the Administration Tool.

	
In the Physical layer, double-click the database you want to check to display the Database dialog.

	
On the General tab, in the Data source definition: Database field, ensure that the appropriate Oracle Database version is selected. Then, click OK.

	
Open the Connection Pool dialog for this data source. You might need to expand the database object in the Physical layer to see the connection pool object.

	
In the Connection Pool dialog, check that the following is true:

	
The Call interface field displays the appropriate value for the release of the Oracle Database you are using.

	
The Data source name field displays the Oracle Database net service name that you defined in the tnsnames.ora entry.

	
The User name and password fields contain the correct values.

Change the values if necessary, then click OK.

	
In the Oracle Business Intelligence environment, open the tnsnames.ora file located in the following directory:

ORACLE_HOME/network/admin

	
Check that a valid net service name exists with the following characteristics:

	
Matches the connection pool settings for the Data Source Name

	
Specifies the targeted Oracle physical database

About Updating Row Counts in Native Databases

This topic applies if both of the following are true:

	
You are using the Update Rowcount functionality in the Administration Tool in offline mode.

	
You are running a heterogeneous environment, such as the Oracle BI Server on UNIX, while remote administrators run the Administration Tool on Windows computers.

When using the Update Rowcount functionality in offline mode, the Administration Tool uses local data sources on the client computer, not the server data sources. Therefore, Oracle Database or DB2 clients must be configured on the Windows computer running the Administration Tool so that the following conditions are true:

	
Data sources point to the same database identified in the Oracle Business Intelligence user.sh file on the UNIX server.

	
The name of the local data source must also match the name of the data source defined in the Connection Pool object in the physical layer of the Oracle BI repository (.rpd) file.

If these conditions are not true, and if the server and client data sources are pointing at different databases, then erroneous updated row counts or incorrect results appear.

Using DataDirect Connect ODBC Drivers on Linux and UNIX

Oracle Business Intelligence provides DataDirect Connect ODBC drivers and driver managers for Linux and UNIX operating systems for connectivity to Microsoft SQL Server, Sybase ASE, and Informix databases.

After Oracle Business Intelligence is installed, the DataDirect Connect ODBC 32-bit drivers are installed in ORACLE_HOME/bifoundation/odbc/lib. The 64-bit drivers are installed in ORACLE_HOME/bifoundation/odbc/lib64.

Note that communication between database clients and servers is typically independent of the widths and data paths. In other words, the 32-bit database drivers can communicate with 64-bit database servers, and vice versa.

You do not need to set the ODBCINI environment variable to set up the DataDirect Connect ODBC drivers. This variable is set automatically during installation.

Refer to "System Requirements and Certification" for information about supported operating systems, databases, and driver versions for the DataDirect Connect ODBC drivers.

This section contains the following topics:

	
Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database

	
Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database

	
Configuring the DataDirect Connect ODBC Driver for Informix Database

Configuring the DataDirect Connect ODBC Driver for Microsoft SQL Server Database

The name of the DataDirect ODBC driver file to connect to a Microsoft SQL Server database is SEmsss23.so (SEmsss23.sl on HP-UX PA-RISC). See "System Requirements and Certification" for supported versions of Microsoft SQL Server.

To configure the DataDirect Connect ODBC Driver to connect to Microsoft SQL Server:

	
Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

	
In the section for your operating system, include the appropriate library path environment variable for the DataDirect Connect libraries. Make sure to point to the appropriate library, depending on whether you are using a 32-bit or 64-bit database. Note the following:

	
For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

	
For HP-UX, the library path variable is SHLIB_PATH.

	
For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the 32-bit driver on Linux:

##
Linux: Oracle BI 32 bit mode
##

#SQLServer 2000 Parameters
#---------------------------------------
LD_LIBRARY_PATH=/user/local/Oracle_BI1/bifoundation/odbc/lib:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

	
Save and close the file.

	
Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

	
Create an entry for your database, ensuring that the ODBC connection name is identical to the data source name specified in the connection pool defined in the repository. Be sure to set the Driver parameter to the file name and location of the DataDirect Connect driver for Microsoft SQL Server. In the following example, the Driver parameter is set to the 64-bit DataDirect Connect driver, and the data source name is SQLSERVER_DB.

[SQLSERVER_DB]
Driver=/usr/Oracle_BI1/bifoundation/odbc/lib64/SEmsss23.so
Description=DataDirect 5.1 SQL Server Wire Protocol
Address=111.111.111.111,1433
AlternateServers=
AnsiNPW=Yes
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=dbschema_name
LoadBalancing=0
LogonID=
Password=
QuoteID=No
ReportCodePageConversionErrors=0

	
Save and close the odbc.ini file.

	
Open your repository in the Administration Tool on a Windows computer.

	
In the Physical layer, double-click the database object for the Microsoft SQL Server database.

	
Click the Features tab and scroll to the IDENTIFIER_QUOTE_CHAR parameter. Then, replace the value for this parameter with ' ' (single quotes). The default value is double quotes (" ").

	
Click OK.

	
Save and close the repository.

	
On the Linux or UNIX computer, shut down Oracle Business Intelligence.

	
Copy the repository from the Windows computer to the Linux or UNIX computer.

	
Start Oracle Business Intelligence on the Linux or UNIX computer.

Configuring the DataDirect Connect ODBC Driver for Sybase ASE Database

The name of the DataDirect ODBC driver file to connect to a Sybase ASE database is SEase23.so. See "System Requirements and Certification" for information about supported versions of Sybase ASE.

To configure the DataDirect Connect ODBC Driver to connect to Sybase ASE Database:

	
Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

	
In the section for your operating system, include the appropriate library path environment variable for the DataDirect Connect libraries. Make sure to point to the appropriate library, depending on whether you are using a 32-bit or 64-bit database. Note the following:

	
For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

	
For HP-UX, the library path variable is SHLIB_PATH.

	
For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the 32-bit driver on Linux:

LD_LIBRARY_PATH=/user/local/Oracle_BI1/bifoundation/odbc/lib:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

	
Save and close the file.

	
Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

	
Create an entry for your database, ensuring that the ODBC connection name is identical to the data source name specified in the connection pool defined in the repository. Be sure to set the Driver parameter to the file name and location of the DataDirect Connect driver for Sybase ASE Database. For NetworkAddress, provide the IP address or fully qualified host name and the port number.

In the following example, the Driver parameter is set to the 64-bit DataDirect Connect driver, and the data source name is SybaseASE_DB.

[SybaseASE_DB]
Driver=/usr/Oracle_BI1/bifoundation/odbc/lib64/SEase23.so
Description=DataDirect 5.3 Sybase Wire Protocol
AlternateServers=
ApplicationName=
ApplicationUsingThreads=1
ArraySize=50
AuthenticationMethod=0
Charset=
ConnectionRetryCount=0
ConnectionRetryDelay=3
CursorCacheSize=1
Database=Paint
DefaultLongDataBuffLen=1024
EnableDescribeParam=0
EnableQuotedIdentifiers=0
EncryptionMethod=0
GSSClient=native
HostNameInCertificate=
InitializationString=
Language=
LoadBalancing=0
LogonID=my_id
NetworkAddress=111.111.111.111,5005
OptimizePrepare=1
PacketSize=0
Password=
RaiseErrorPositionBehavior=0
ReportCodePageConversionErrors=0
SelectMethod=0
ServicePrincipalName=
TruncateTimeTypeFractions=0
TrustStore=
TrustStorePassword=
ValidateServerCertificate=1
WorkStationID=

	
Save and close the odbc.ini file.

Configuring the DataDirect Connect ODBC Driver for Informix Database

The name of the DataDirect ODBC driver file to connect to an Informix database is SEifcl23.so. See "System Requirements and Certification" for information about supported versions of Informix.

To configure the DataDirect Connect ODBC Driver to connect to Informix:

	
Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

	
In the section for your operating system, include the appropriate library path environment variable for the DataDirect Connect libraries. Make sure to point to the appropriate library, depending on whether you are using a 32-bit or 64-bit database. Note the following:

	
For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

	
For HP-UX, the library path variable is SHLIB_PATH.

	
For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for the 32-bit driver on Linux:

LD_LIBRARY_PATH=/user/local/Oracle_BI1/bifoundation/odbc/lib:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

	
Save and close the file.

	
Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

	
Create an entry for your database, ensuring that the ODBC connection name is identical to the data source name specified in the connection pool defined in the repository. Be sure to set the Driver parameter to the file name and location of the DataDirect Connect driver for Informix. Also, you must specify the HostName parameter (you can use the fully qualified host name or the IP address) and the PortNumber parameter.

In the following example, the Driver parameter is set to the 64-bit DataDirect Connect driver, and the data source name is Informix_DB.

[Informix_DB]
Driver=/usr/Oracle_BI1/bifoundation/odbc/lib64/SEifcl23.so
Description=DataDirect Informix Wire Protocol
AlternateServers=
ApplicationUsingThreads=1
CancelDetectInterval=0
ConnectionRetryCount=0
ConnectionRetryDelay=3
Database=
HostName=111.111.111.111
LoadBalancing=0
LogonID=informix
Password=mypassword
PortNumber=1526
ReportCodePageConversionErrors=0
ServerName=
TrimBlankFromIndexName=1

	
Save and close the odbc.ini file.

Configuring Database Connections Using Native ODBC Drivers

Oracle Business Intelligence bundles UNIX ODBC drivers for some data sources, but not all. For these data sources, including Teradata and Oracle TimesTen In-Memory Database, you must install your own ODBC driver, then update the user.sh and odbc.ini files to configure the data source.

If you are using Teradata, see also "Avoiding Spool Space Errors for Queries Against Teradata Data Sources" for related information.

To configure a database connection using a native ODBC driver:

	
Install the ODBC driver for your data source.

	
Open the user.sh file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/user.sh

	
In the section for your operating system, include the appropriate library path environment variable for the native ODBC driver. Make sure to point to the appropriate library, depending on whether you are using a 32-bit or 64-bit database. Note the following:

	
For Solaris and Linux, the library path variable is LD_LIBRARY_PATH.

	
For HP-UX, the library path variable is SHLIB_PATH.

	
For AIX, the library path variable is LIBPATH.

For example, to set the library path variable for Teradata on Linux:

LD_LIBRARY_PATH=/usr/odbc/lib:/usr/lpp/tdodbc/odbc/drivers:$ LD_LIBRARY_PATH
export LD_LIBRARY_PATH

Note that for Teradata in particular, you need to put /usr/odbc/lib at the beginning of the library path variable before all other entries. This step is only required for Teradata.

	
Save and close the file.

	
Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

	
Create an entry for your database, ensuring that the ODBC connection name is identical to the data source name specified in the connection pool defined in the repository. Be sure to set the Driver parameter to the file name and location of the native ODBC driver for your database, with the library suffix appropriate for your operating system (for example, .so for Solaris and AIX, or .sl for HP-UX).

The following example provides details for a Teradata data source on Solaris, with a data source name of Terav502.

[Terav502]
Driver=/usr/odbc/drivers/tdata.so
Description=NCR 3600 running Teradata V2R5.2
DBCName=172.20.129.42
LastUser=
Username=
Password=
Database=
DefaultDatabase=name_of_target_database_or_user

Note that the DefaultDatabase parameter can be left empty only if you have selected the option Require fully qualified table names in the General tab of the Connection Pool dialog for this data source in the Administration Tool.

	
Still in the odbc.ini file, add an entry to the section [ODBC Data Sources] with the details appropriate for your data source. The following example provides details for a Teradata data source with a data source name of Terav502.

Terav502=tdata.so

	
Using the Administration Tool, open the repository and add the new DSN you created as the Connection Pool Data source name for the appropriate physical databases. See "Creating or Changing Connection Pools" for more information.

	
Restart the Oracle BI Server.

Setting Up Oracle TimesTen In-Memory Database on Linux and UNIX

To set up Oracle TimesTen In-Memory Database data sources, first follow the instructions in "Configuring TimesTen Data Sources" to set up your TimesTen data source. Make sure to go to the section "Configuring Database Connections Using Native ODBC Drivers" in step 4 of the procedure to obtain the correct steps for Linux and UNIX systems.

Next, review the best practices described in "Improving Use of System Memory Resources with TimesTen Data Sources" and implement them as needed.

Finally, if the user that starts OPMN does not have the path to the TimesTen DLL ($TIMESTEN_HOME/lib) in their operating system LD_LIBRARY_PATH variable (or SHLIB_PATH and LIBPATH on HP-UX and AIX, respectively), you must add the TimesTen DLL path as a variable in the opmn.xml file.

To update opmn.xml to include TimesTen variables on Linux and UNIX:

	
Open opmn.xml for editing. You can find opmn.xml at:

ORACLE_INSTANCE/config/OPMN/opmn/opmn.xml

	
Locate the ias-component tag for the Oracle BI Server process. For example:

<ias-component id="coreapplication_obis1" inherit-environment="true">

	
Under the Oracle BI Server ias-component tag, add the required TimesTen variable TIMESTEN_DLL, and also update the LD_LIBRARY_PATH variable (or equivalent), as shown in the following example. Replace the example values with the correct path for your TimesTen client:

<ias-component id="coreapplication_obis1" inherit-environment="true">
 <environment>
 ...
 <variable id="TIMESTEN_DLL" value="$TIMESTEN_HOME/lib/libttclient.so" />
 <variable id="LD_LIBRARY_PATH" value="$TIMESTEN_HOME/lib:$ORACLE_HOME/
 bifoundation/server/bin$:$ORACLE_HOME/bifoundation/web/bin$:
 $ORACLE_HOME/clients/epm/Essbase/EssbaseRTC/bin$:" append="true" />
 ...
</environment>

	
Save and close the file.

	
Restart OPMN.

	
Repeat these steps on each computer that runs the Oracle BI Server process. If you are running multiple Oracle BI Server instances on the same computer, be sure to update the ias-component tag appropriately for each instance in opmn.xml (for example, ias-component id="coreapplication_obis1", ias-component id="coreapplication_obis2", and so on).

Configuring Oracle RPAS ODBC Data Sources on AIX UNIX

You can access Oracle RPAS ODBC data sources when the Oracle BI Server is running on an AIX UNIX platform. To configure this database connection, first update the odbc.ini file to configure the Oracle RPAS ODBC data source, then use the rdaadmin tool to define dimension tables as not normalized at run time.

See "Setting Up Oracle RPAS Data Sources" for information about configuring Oracle RPAS ODBC data sources on Windows.

To configure Oracle RPAS ODBC as a data source on AIX UNIX:

	
Log on as a separate telnet session.

	
Open the odbc.ini file. You can find this file at:

ORACLE_INSTANCE/bifoundation/OracleBIApplication/coreapplication/setup/odbc.ini

	
In the RPAS data source section, edit the values. For example:

[RPAS Sample]
Data Source Name=RPAS Sample
Driver=[client RPASClient/lib/raix/oaodbc.so
DriverUnicodeType=1
Description=OpenRDA DSN

The Data Source Name you provide must match the value entered for DATABASE: in Step 3 of the following procedure. Also, you must add the line DriverUnicodeType=1 as shown in the preceding example.

To use the rdaadmin client tool to define dimension tables as not normalized at run time:

	
Locate the rdaadmin client tool in the following location:

/bin/rdaadmin

	
Run the rdaadmin client tool by typing the following command:

rdaadmin

	
Enter appropriate text when prompted, as follows:

DATABASE: [Oracle_RPAS_database_name]

The database name must match the name given for the Data Source Name in the previous task (for example, RPAS Sample).

ADDRESS: [ip_address]

PORT: [port_number]

An example port number value is 1707.

CONNECT_STRING: [NORMALIZE_DIM_TABLES=NO]

This value treats dimension tables as not normalized at run time.

TYPE: []

SCHEMA_PATH: []

REMARKS: []

	
The RPAS environment variable OPENRDA should be declared in the Oracle BI Server session on UNIX. For example, declare the variable as follows using the 64 bit rdaadmin client tool:

OPENRDA_INI=/rpasclient64/config/raix/openrda.ini export OPENRDA_INI

Configuring Essbase Data Sources on Linux and UNIX

The Oracle BI Server uses the Essbase client libraries to connect to Essbase data sources. The Essbase client libraries are installed by default with Oracle BI Enterprise Edition. No additional configuration is required to enable Essbase data source access for full installations of Oracle BI Enterprise Edition.

However, for HP-UX Itanium systems, the following additional steps are required:

	
Define ESSLANG and LANG.

For example:

ESSLANG=English_UnitedStates.UTF-8@Binary
export ESSLANG
LANG=en_US.utf8
export LANG

	
Comment out LOCALE, SORT_ORDER_LOCALE, and SORT_TYPE in the NQSConfig.ini file. For example:

[GENERAL]
// Localization/Internationalization parameters.
// LOCALE="English-usa";
// SORT_ORDER_LOCALE="English-usa";
// SORT_TYPE="binary";

Configuring DB2 Connect on IBM z/OS and s/390 Platforms

IBM DB2 Connect does not support the option of automatically disconnecting when an application using it receives an interrupt request.

When the native database uses DB2 Connect workstation, then you must change the setting of the parameter INTERRUPT_ENABLED. This parameter must be changed on any Oracle Business Intelligence computer if the database or any data source resides on IBM DB2 on a mainframe running z/OS or s/390 platforms.

	
Note:

If IBM DB2 is used, DB2 Connect must be installed on the Oracle BI Server computer. The version of DB2 Connect must match the most recent DB2 instance that was configured as a data source.

To configure the INTERRUPT_ENABLED parameter:

	
Configure a database alias to be used as the native CLI Data Source Name. For example, create a new database entry using DB2 Configuration Assistant.

	
Using the database alias created and the name of the actual target DB2 database, set the INTERRUPT_ENABLED parameter using the following syntax:

uncatalog dcs db local_dcsnamecatalog dcs db local_dcsname as target_dbname parms \",,INTERRUPT_ENABLED\"

where:

	
local_dcsname represents the local name of the host or database (database alias name)

	
target_dbname represents the name of database on the host or database system

	
Note:

Be sure to use backslashes to pass the quotation marks as part of the string.

The following example uses an OS390 DB2 instance:

uncatalog dcs db DB2_390
catalog dcs db DB2_390 as Q10B parms \",,INTERRUPT_ENABLED,,,,,\"
catalog database DB2_390 as DB2_390 at node NDE1EF20 authentication dcs

9 Working with Logical Tables, Joins, and Columns

The Business Model and Mapping layer of the Oracle BI repository defines the business, or logical, model of the data and specifies the mapping between the business model and the Physical layer schemas. Business models are always dimensional, unlike objects in the Physical layer, which reflect the organization of the data sources. The Business Model and Mapping layer can contain one or more business models. Each business model contains logical tables, columns, and joins.

Even though similar terminology is used for logical table and physical table objects, such as the concept of keys, logical tables and joins in the Business Model and Mapping layer have their own set of rules that differ from those of relational models. For example, logical fact tables are not required to have keys, and logical joins can represent many possible physical joins.

Logical tables, joins, mappings, and other objects in the Business Model and Mapping layer are typically created automatically when you drag and drop objects from the Physical layer to a particular business model. After these objects have been created, you can perform tasks like creating additional logical joins, performing calculations and transformations on columns, and adding and removing keys from dimension and fact tables.

This chapter contains the following sections:

	
Creating the Business Model and Mapping Layer

	
Working with the Business Model Diagram

	
Creating and Managing Logical Tables

	
Defining Logical Joins

	
Creating and Managing Logical Columns

	
Enabling Write Back On Columns

	
Setting Up Display Folders in the Business Model and Mapping Layer

	
Modeling Bridge Tables

Creating the Business Model and Mapping Layer

After creating all of the elements of the Physical layer, you can drag tables or columns from the Physical layer to a business model in the Business Model and Mapping layer to create logical objects in the metadata.

This section contains the following topics:

	
Creating Business Models

	
Automatically Creating Business Model Objects

	
Duplicating a Business Model and Subject Area

Creating Business Models

The Business Model and Mapping layer of the Administration Tool can contain one or more business models. A business model contains the business model definitions and the mappings from logical to physical tables for the business model.

When you work in a repository in offline mode, remember to save your repository from time to time. You can save a repository in offline mode even though the business models may be inconsistent.

To create a business model:

	
In the Administration Tool, right-click in the Business Model and Mapping layer below any existing objects.

	
Select the option New Business Model from the shortcut menu.

	
Specify a name for the business model.

	
New business models are disabled by default. If you want to make the corresponding Presentation layer available for queries, deselect Disabled.

	
Note:

The business model should be consistent before you deselect this option.

	
Optionally, type a description of the business model.

	
Click OK.

After you create a business model, you can create business model objects by dragging and dropping objects from the Physical layer. See the next section for more information.

Automatically Creating Business Model Objects

To automatically map objects in the Business Model and Mapping layer to sources in the Physical layer, you can drag and drop Physical layer objects to a particular business model in the logical layer. When you drag a physical table to the Business Model and Mapping layer, a corresponding logical table is created. For each physical column in the table, a corresponding logical column is created. If you drag multiple tables at once, a logical join is created for each physical join, but only the first time the tables are dragged onto a new business model.

Automatically Creating Business Model Objects for Multidimensional Data Sources

Setting up objects in the Business Model and Mapping layer for multidimensional data sources is similar to setting up logical layer objects for a relational data source. To create the business model layer, you can drag and drop the Physical layer cube to the logical layer. Oracle Business Intelligence automatically creates a fully configured and consistent business model that retains metrics, attributes and dimensions.

	
Note:

For Essbase data sources, it is recommended that you create a separate business model for each Essbase cube. To do this, drag each cube individually to the Business Model and Mapping layer.

Duplicating a Business Model and Subject Area

This feature lets you select a business model and its corresponding subject area (or a subject area and its corresponding business model), make a copy, and assign new names to the duplicates. Note that aliases are not copied.

To copy a business model and subject area:

	
Perform one of the following steps:

	
In the Business Model and Mapping layer of the Administration Tool, right-click a business model and select Duplicate with Subject Area.

	
In the Presentation layer of the Administration Tool, right-click a subject area and select Duplicate with Business Model.

	
In the Copy Business Model and Subject Area dialog, select the business model and corresponding subject area you want to copy.

	
Specify new names for the business model and subject area in the appropriate name fields, and then click OK.

The copied business model appears in the Business Model and Mapping layer, and the copied subject area appears in the Presentation layer.

Working with the Business Model Diagram

In addition to working with Business Model and Mapping layer objects in the middle pane of the Administration Tool, you can open the Business Model Diagram to see a graphical model of logical tables and joins.

To access the Business Model Diagram, right-click an object in the Business Model and Mapping layer (such as a dimension or fact table) and select Business Model Diagram. Then, select one of the following options:

	
Whole Diagram. Displays all logical tables and joins in the business model.

	
Selected Tables Only. Displays only the selected logical tables. Logical joins appear only if they exist between the objects that you selected. This option is only available when you select one or more logical tables.

	
Selected Tables and Direct Joins. Displays the selected logical tables and any logical tables that join to the tables that you selected. This option is only available when you select one or more logical tables.

	
Selected Fact Tables and Dimensions. Displays the selected logical tables and their associated logical dimensions. This option is only available when your selection includes at least one fact table.

Note that the Business Model Diagram displays only logical tables and joins. It does not display other Business Model and Mapping layer objects, such as business models, dimensions, or hierarchies. Joins are represented by a line with an arrow at the "one" end of the join.

Figure 9-1 Business Model Diagram

[image: Description of Figure 9-1 follows]

Description of "Figure 9-1 Business Model Diagram"

To add additional tables to the Business Model Diagram, leave the Business Model Diagram window open and then right-click the table or tables you want to add. Then, select Business Model Diagram and choose one of the display options.

Additional options are available in the right-click menu for the graphical tables and joins displayed in the Business Model Diagram. For example, you can delete objects or view their properties, or you can add additional related objects using the right-click options Add Direct Joins, Add Tables Joined to Whole Selection, and Add All Joins. You can also select Find in Tree View to locate a particular object in the Business Model and Mapping layer view in the middle pane, or check out objects in online mode.

You can also right-click an object in the Business Model Diagram view and select Hide to hide particular objects in the diagram. Note that this effect is temporary and does not persist.

Use the Print and Print Preview options on the File menu to manage printing options for the Business Model Diagram. You can also use the Print option on the toolbar.

See also the following sections:

	
"Using the Physical and Business Model Diagrams" for information about zooming, panning, and controlling the layout of the tables

	
"Defining Logical Joins with the Business Model Diagram" for information about defining logical joins

Creating and Managing Logical Tables

Logical tables exist in the Business Model and Mapping layer. The logical schema defined in each business model must contain at least two logical tables, and you must define relationships between them.

Each logical table has one or more logical columns and one or more logical table sources associated with it. You can change the logical table name, reorder the logical table sources, and configure the logical keys, both primary and foreign.

This section contains the following topics:

	
Creating Logical Tables

	
Specifying a Primary Key in a Logical Table

	
Reviewing Foreign Keys for a Logical Table

Creating Logical Tables

Typically, you create logical tables by dragging and dropping a physical table from the Physical layer to a business model in the Business Model and Mapping layer. If a table does not exist in your physical schema, you need to create the logical table manually.

Drag and drop operations are usually the fastest method for creating objects in the Business Model and Mapping layer. If you drag and drop physical tables from the Physical layer to the Business Model and Mapping layer, the columns belonging to the table are also copied. After you drag and drop objects into the Business Model and Mapping layer, you can modify them in any way necessary without affecting the objects in the Physical layer.

When you drag physical tables (with key and foreign key relationships defined) to a business model, logical keys and joins are created that mirror the keys and joins in the Physical layer. This occurs only if the tables that you drag include the table with the foreign keys. Additionally, if you create new tables or subsequently drag additional tables from the Physical layer to the Business Model and Mapping layer, the logical mappings between the new or newly dragged tables and the previously dragged tables must be created manually.

See "Defining Logical Joins with the Joins Manager" and "Defining Logical Joins with the Business Model Diagram" for more information about joins.

To create a logical table by dragging and dropping:

	
In the Administration Tool, select one or more table objects in the Physical layer.

You must include the table with the foreign keys if you want to preserve the keys and joins from the Physical layer.

	
Drag and drop the table objects to a business model in the Business Model and Mapping layer.

When you drop them, the table objects, including the physical source mappings, are created automatically in the Business Model and Mapping layer.

To create a logical table manually:

	
In the Business Model and Mapping layer of the Administration Tool, right-click the business model in which you want to create the table and select New Object > Logical Table.

The Logical Table dialog appears.

	
In the General tab, type a name for the logical table.

	
If this is a lookup table, select the option Lookup table. A lookup table stores multilingual data corresponding to rows in the base tables. See "Localizing Oracle Business Intelligence" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about localization and lookup tables.

	
Optionally, type a description of the table.

	
Click OK.

After creating a logical table manually, you must create all keys and joins manually.

Creating and Managing Logical Table Sources

You can add a new logical table source, edit or delete an existing table source, create or change mappings to the table source, and define when to use logical tables sources and how content is aggregated. See Chapter 11, "Managing Logical Table Sources (Mappings)" for instructions about how to perform these tasks.

Specifying a Primary Key in a Logical Table

After creating tables in the Business Model and Mapping layer, you specify a primary key for each dimension table. Logical dimension tables must have a logical primary key. Logical keys can be composed of one or more logical columns.

	
Note:

It is recommended that you do not specify logical keys for logical fact tables.

To specify a primary key in a logical table:

	
In the Business Model and Mapping layer of the Administration Tool, double-click a table.

	
In the Logical Table dialog, select the Keys tab and then click New.

	
In the Logical Key dialog, type a name for the key and select the column that defines the key of the logical table.

	
Click OK.

Reviewing Foreign Keys for a Logical Table

It is recommended that you do not use foreign key joins in logical tables. If you must create these joins, you must first enable the option Allow logical foreign key join creation in the Options dialog. See "Creating Logical Foreign Key Joins with the Joins Manager" for more information.

The Foreign Keys tab of the Logical Table dialog exists so that you can view logical foreign keys you might have had in a previous release of Oracle Business Intelligence.

Defining Logical Joins

Relationships between logical tables are expressed by logical joins. Logical joins are conceptual, rather than physical, joins. In other words, they do not join to particular keys or columns. A single logical join can correspond to many possible physical joins.

A key property of a logical join is cardinality. Cardinality expresses how rows in one table are related to rows in the table to which it is joined. A one-to-many cardinality means that for every row in the first logical dimension table, there are 0, 1, or many rows in the second logical table. The Administration Tool considers a table to be a logical fact table if it is at the Many end of all logical joins that connect it to other logical tables.

Specifying the logical table joins is required so that the Oracle BI Server can have the necessary metadata to translate a logical request against the business model to SQL queries against the physical data sources. The logical join information provides the Oracle BI Server with the many-to-one relationships between the logical tables. This logical join information is used when the Oracle BI Server generates queries against the underlying databases.

You do not need to create logical joins in the Business Model and Mapping layer if both of the following statements are true:

	
You create the logical tables by simultaneously dragging and dropping all required physical tables to the Business Model and Mapping layer.

	
The logical joins are the same as the joins in the Physical layer.

However, you will probably have to create some logical joins in the Business Model and Mapping layer, because you will rarely drag and drop all physical tables simultaneously except in very simple models.

You can create logical joins using either the Joins Manager or the Business Model Diagram. When you create a complex join in the Physical layer, you can specify expressions and the specific columns on which to create the join. When you create a logical join in the Business Model and Mapping layer, you cannot specify expressions or columns on which to create the join. The existence of a join in the Physical layer does not require a matching join in the Business Model and Mapping layer.

	
Note:

It is recommended that you do not have foreign keys for logical tables. However, for backward compatibility, you can create logical foreign key joins using the Joins Manager if you select Allow logical foreign key join creation in the Options dialog.

A logical key for a fact table must be made up of the key columns that join to the attribute tables. Logical foreign key joins may be needed if the Oracle BI Server is to be used as an ODBC data source for certain third-party query and reporting tools.

This section contains the following topics:

	
Defining Logical Joins with the Business Model Diagram

	
Defining Logical Joins with the Joins Manager

	
Specifying a Driving Table

	
Identifying Physical Tables That Map to Logical Objects

Defining Logical Joins with the Business Model Diagram

The Business Model Diagram shows logical tables and any defined joins between them. You can use the Business Model Diagram to define logical joins between tables.

To define a logical join with the Business Model Diagram:

	
In the Administration Tool, right-click a business model and select Business Model Diagram, then select Whole Diagram.

	
Click the New Join button on the Administration Tool toolbar:

[image: New Join icon]

	
In the Business Model Diagram, left-click the first table in the join (the table representing many in the one-to-many join) to select it.

	
Move the cursor to the table to which you want to join (the table representing one in the one-to-many join), and then left-click the second table to select it.

The Logical Join dialog appears.

	
(Optional) To specify a driving table for the key, select a table from the Driving table list, and an applicable cardinality.

This option is useful for optimizing the manner in which the Oracle BI Server processes multi-database inner joins when one table is very small and the other table is very large. Do not select a driving table unless multi-database joins are going to occur. See "Specifying a Driving Table" for more information about driving tables.

	
Caution:

Use extreme caution in deciding whether to specify a driving table. Driving tables are used for query optimization only under rare circumstances and when the driving table is extremely small (fewer than 1000 rows). Choosing a driving table incorrectly can lead to severe performance degradation.

	
Select the join type from the Type list, or keep the default value.

	
Set the Cardinality for each side of the join, or keep the default values.

	
Click OK to save your work.

In the Business Model Diagram, the join is represented by a line between the two selected tables, with an arrow at the "one" end of the join. Figure 9-2 shows a join in the Business Model Diagram.

Figure 9-2 Join in the Business Model Diagram

[image: Description of Figure 9-2 follows]

Description of "Figure 9-2 Join in the Business Model Diagram"

Defining Logical Joins with the Joins Manager

You can use the Joins Manager to view logical join relationships and to create logical joins. You can also use the Joins Manager to create logical foreign key joins if you select Allow logical foreign key join creation in the Options dialog, although this is not recommended.

This section contains the following topics:

	
Creating Logical Joins with the Joins Manager

	
Creating Logical Foreign Key Joins with the Joins Manager

Creating Logical Joins with the Joins Manager

Logical joins are recommended over logical foreign key joins in the Business Model and Mapping layer.

To create a logical join with the Joins Manager:

	
In the Administration Tool, select Manage, then select Joins.

The Joins Manager dialog appears.

	
Select Action > New > Logical Join.

The Logical Join dialog appears.

	
Type a name for the logical join.

	
In the Table lists on the left and right side of the dialog, select the tables that the logical join references.

	
(Optional) To specify a driving table for the key, select a table from the Driving list, and an applicable cardinality.

This option is useful for optimizing the manner in which the Oracle BI Server processes multi-database inner joins when one table is very small and the other table is very large. Do not select a driving table unless multi-database joins are going to occur. See "Specifying a Driving Table" for more information about driving tables.

	
Caution:

Use extreme caution in deciding whether to specify a driving table. Driving tables are used for query optimization only under rare circumstances and when the driving table is extremely small, that is, less than 1000 rows. Choosing a driving table incorrectly can lead to severe performance degradation.

	
Select the join type from the Type list, or keep the default value.

	
Set the Cardinality for each side of the join, or keep the default values.

	
Click OK.

Creating Logical Foreign Key Joins with the Joins Manager

Logical foreign key joins might be needed if the Oracle BI Server is to be used as an ODBC data source for certain third-party query and reporting tools. Typically, you should not create logical foreign keys. This capability is in the Administration Tool to provide compatibility with previous releases.

To create a logical foreign key join with the Joins Manager:

	
In the Administration Tool, select Tools, then select Options.

	
In the General tab of the Options dialog, select Allow logical foreign key join creation.

	
Click OK.

	
Select Manage, then select Joins to display the Joins Manager.

	
Select Action > New > Logical Foreign Key.

	
In the Browse dialog, double-click a table to display the Logical Foreign Key dialog.

	
Type a name for the foreign key.

	
In the Table list on the left side of the dialog, select the table that the foreign key references.

	
Select the columns in the left table that the foreign key references.

	
Select the columns in the right table that make up the foreign key columns.

	
(Optional) To specify a driving table for the key, select a table from the Driving list, and an applicable cardinality.

This option is useful for optimizing the manner in which the Oracle BI Server processes multi-database inner joins when one table is very small and the other table is very large. Do not select a driving table unless multi-database joins are going to occur. See "Specifying a Driving Table" for more information about driving tables.

	
Caution:

Use extreme caution in deciding whether to specify a driving table. Driving tables are used for query optimization only under rare circumstances and when the driving table is extremely small, that is, less than 1000 rows. Choosing a driving table incorrectly can lead to severe performance degradation.

	
Select the join type from the Type list, or keep the default value.

	
Set the Cardinality for each side of the join, or keep the default values.

	
Enter an expression for the join, or click the Expression Builder button to define the expression in Expression Builder.

	
Click OK to save your work.

Specifying a Driving Table

You can specify a driving table for logical joins from the Logical Joins window. Driving tables are useful for optimizing the manner in which the Oracle BI Server processes cross-database joins when one table is very small and the other table is very large. Specifying driving tables leads to query optimization only when the number of rows being selected from the driving table is much smaller than the number of rows in the table to which it is being joined.

	
Caution:

To avoid problems, only specify driving tables when the driving table is extremely small - less than 1000 rows.

When you specify a driving table, the Oracle BI Server uses it if the query plan determines that its use will optimize query processing. The small table (the driving table) is scanned, and parameterized queries are issued to the large table to select matching rows. The other tables, including other driving tables, are then joined together.

	
Caution:

If large numbers of rows are being selected from the driving table, specifying a driving table could lead to significant performance degradation or, if the MAX_QUERIES_PER_DRIVE_JOIN limit is exceeded, the query terminates.

In general, driving tables can be used with inner joins, and for outer joins when the driving table is the left table for a left outer join, or the right table for a right outer join. Driving tables are not used for full outer joins. See "Defining Logical Joins" for instructions on specifying a driving table.

There are two entries in the database features table that control and tune driving table performance.

	
MAX_PARAMETERS_PER_DRIVE_JOIN

This is a performance tuning parameter. In general, the larger its value, the fewer parameterized queries need to be generated. Values that are too large can result in parameterized queries that fail due to back-end database limitations. Setting the value to 0 (zero) turns off drive table joins.

	
MAX_QUERIES_PER_DRIVE_JOIN

This is used to prevent runaway drive table joins. If the number of parameterized queries exceeds its value, the query is terminated and an error message is returned to the user.

Identifying Physical Tables That Map to Logical Objects

The Physical Diagram shows the physical tables that map to the selected logical object and the physical joins between each table.

One of the joins options, Object(s) and Direct Joins within Business Model, is unique to the logical layer. It creates a physical diagram of the tables that meet both of the following conditions:

	
Tables in the selected objects and tables that join directly

	
Tables that are mapped (exist in logical table sources in the business model) in the business model

To open the Physical Diagram for a logical object:

	
In the Business Model and Mapping layer of the Administration Tool, right-click a business model, logical table, or logical table source.

	
Select Physical Diagram and then one of the joins options.

	
Click and drag any object to more clearly view the relationship lines, such as one-to-many.

Creating and Managing Logical Columns

Many logical columns are automatically created by dragging tables from the Physical layer to the Business Model and Mapping layer. Other logical columns, especially ones that involve calculations based on other logical columns, can be created later.

Logical columns are displayed in a tree structure expanded out from the logical table to which they belong. If the column is a primary key column or participates in a primary key, the column is displayed with a key icon. If the column has an aggregation rule, it is displayed with a ruler icon. You can also reorder logical columns in the Business Model and Mapping layer.

This section contains the following topics:

	
Creating Logical Columns

	
Basing the Sort for a Logical Column on a Different Column

	
Enabling Double Column Support by Assigning a Descriptor ID Column

	
Creating Derived Columns

	
Setting Default Levels of Aggregation for Measure Columns

	
Associating an Attribute with a Logical Level in Dimension Tables

	
Moving or Copying Logical Columns

Creating Logical Columns

The following procedure explains how to create logical columns in the Business Model and Mapping layer.

To create a logical column:

	
In the Business Model and Mapping layer, right-click a logical table.

	
From the shortcut menu, select New Object, then select Logical Column.

	
In the General tab, type a name for the logical column.

The name of the business model and the associated logical table appear in the Belongs to Table field.

	
Select Writeable to enable write back for this column. See "Enabling Write Back On Columns" for more information.

	
Optionally, you can assign a different column on which to base the sort order for a column. See "Basing the Sort for a Logical Column on a Different Column" for details.

	
Optionally, you can assign a descriptor ID column for this column. See "Enabling Double Column Support by Assigning a Descriptor ID Column" for details.

	
Optionally, on the Column Source tab, you can specify that this logical column is derived from other logical columns. See "Creating Derived Columns" for details.

	
Optionally, on the Aggregation tab, you can set column aggregation. See "Setting Default Levels of Aggregation for Measure Columns" for details.

	
Optionally, on the Levels tab, you can associate attributes with a logical level. Measures can be associated with levels from multiple dimensions and always aggregate to the levels specified. See "Associating an Attribute with a Logical Level in Dimension Tables" for details.

	
Click OK.

Basing the Sort for a Logical Column on a Different Column

For a logical column, you can specify a different column on which to base the sort. This changes the sort order of a column when you do not want to order the values lexicographically. Lexicographical sort arranges the results in alphabetic order such as in a dictionary. In this type of sort, numbers are ordered by their alphabetic spelling and not divided into a separate group.

For example, if you sorted on month (using a column such as MONTH_NAME), the results would be returned as February, January, March, and so on, in lexicographical sort order. However, you might want months to be sorted in chronological order. Therefore, your table should have a month key (such as MONTH_KEY) with values of 1 (January), 2 (February), 3 (March), and so on. To achieve the desired sort, you set the Sort order column field for the MONTH_NAME column to be MONTH_KEY. Then, a request to order by MONTH_NAME would return January, February, March, and so on.

To assign a different column on which to base the sort order for a column:

	
In the Logical Column dialog, in the General tab, click Set next to the Sort order column field.

	
In the Browse dialog, select a column.

	
To view the column details, click View to open the Logical Column dialog for that column, and then click Cancel.

You can make some changes in this dialog. If you make changes, click OK to accept the changes instead of Cancel.

	
In the Browse dialog, click OK.

Enabling Double Column Support by Assigning a Descriptor ID Column

When multilingual columns are based on a lookup function, it is common to specify the non-translated lookup key column as the descriptor ID column of the translated column. Assigning a descriptor ID column enables Double Column Support, a feature which helps in defining language-independent filters. For example, in Answers, users see the display column, but the query filters on the hidden descriptor ID column.

For more information, see "Supporting Multilingual Data" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

Note that double columns are also used for other purposes, like modeling spatial columns.

To assign a Descriptor ID column to a display column:

	
In the Logical Column dialog, in the General tab, click Set next to the Descriptor ID column field.

	
In the Browse dialog, select a key column.

	
To view the column details, click View to open the Logical Column dialog for that column, and then click Cancel.

You can make some changes in this dialog. If you make changes, click OK to accept the changes instead of Cancel.

	
In the Browse dialog, click OK.

Creating Derived Columns

Some columns are derived from other logical columns as a way to apply post-aggregation calculations to measures. To do this, you specify the derived column expression in the Column Source tab of the Logical Column dialog.

You can also create a set of derived columns using the Calculation Wizard. See "Using the Calculation Wizard" for more information.

Note that if the parameter PREVENT_DIVIDE_BY_ZERO is set to YES in NQSConfig.INI, the Oracle BI Server prevents errors in divide-by-zero situations, even for Answers column calculations. The Oracle BI Server creates a divide-by-zero prevention expression using nullif() or a similar function when it writes the physical SQL. Because of this, you do not have to use CASE statements to avoid divide-by-zero errors, as long as PREVENT_DIVIDE_BY_ZERO is set to YES (the default value).See Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition for more information about NQSConfig.INI settings.

You can also apply calculations pre-aggregation. See "Defining Physical to Logical Table Source Mappings and Creating Calculated Items" for more information.

To specify a derived column:

	
In the Logical Column dialog, select the Column Source tab.

	
Select the option Derived from existing columns using an expression.

	
Click the Expression Builder button to open Expression Builder.

	
In the Expression Builder - Derived logical column dialog, specify the expression from which the logical column should be derived.

	
Note:

To optimize performance, do not define aggregations in Expression Builder. Instead, use the Aggregation tab of the Logical Column dialog. See "Setting Default Levels of Aggregation for Measure Columns" for more information.

	
Click OK.

Note that you can display data from multilingual database schemas by using Expression Builder to create a lookup function. For more information, see "Supporting Multilingual Data" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

Configuring Logical Columns for Multicurrency Support

You can configure logical columns so that Oracle Business Intelligence users can select the currency in which they prefer to view currency columns in analyses and dashboards. You can set up this feature so that all users see the same static list of currency options, or you can provide a dynamic list of currency options that changes based on a Logical SQL statement you specify.

To configure logical columns for multicurrency support:

	
Create a session variable named PREFERRED_CURRENCY, along with an initialization block to use in the variable. Make sure to select Enable any user to set the value when you create the session variable. Note that when you use session variables in an expression for Oracle BI Presentation Services, you must preface their names with NQ_SESSION.

See "Creating Session Variables" and "Creating Initialization Blocks" for detailed information about setting up session variables and initialization blocks.

	
Edit any logical columns that display currency values to use the appropriate conversion factor using the PREFERRED_CURRENCY session variable. To do this, double-click the appropriate logical column in the Business Model and Mapping layer, select the Column Source tab, and create a derived expression that uses the PREFERRED_CURRENCY variable.

For example, the following logical column expression uses the value of the NQ_SESSION.PREFERRED_CURRENCY variable to switch between different currency columns. Note that the currency columns are expected to have the appropriate converted values.

INDEXCOL(CASE VALUEOF(NQ_SESSION.PREFERRED_CURRENCY) WHEN 'gc1' THEN 0
WHEN 'gc2' THEN 1 WHEN 'orgc' THEN 2 WHEN 'lc1' THEN 3 ELSE 4 END,
"Paint"."Sales Facts"."USDCurrency",
"Paint"."Sales Facts"."DEMCurrency" ,
"Paint"."Sales Facts"."EuroCurrency" ,
"Paint"."Sales Facts"."JapCurrency" ,
"Paint"."Sales Facts"."USDCurrency")

	
If you want to provide a dynamic list of currency options, create a table in your data source that provides the entries you want to display for the user-preferred currency. This table must include the following columns:

	
The first column contains the values used to set the session variable PREFERRED_CURRENCY. Each value in this column is a string that uniquely identifies the currency (for example, gc2).

	
The second column contains currency tags from the file currencies.xml. The displayMessage values for each tag are used to populate the Currency box and currency prompts (for example, int:euro-1). The currencies.xml file is located in ORACLE_HOME\bifoundation\web\display.

	
You can optionally provide a third column that contains the values used to set the presentation variable currency.userPreference. Each value in this column is a string that identifies the currency (for example, Global Currency 2). If you omit this column, then the values for the displayMessage attributes for the corresponding currency tags in the currencies.xml file are used.

Table 9-1 shows a sample table with user-preferred currency entries.

Table 9-1 Sample Table for Dynamically Displaying the Preferred Currency

	UserPreference	CurrencyTag	UserPreferenceName
	
char

	
char

	
char

	
orgc1

	
loc:en-BZ

	
Org currency

	
gc2

	
int:euro-1

	
Global currency 2

	
lc1

	
int:DEM

	
Ledger currency

	
gc1

	
int:USD

	
Global Currency 1

Additional configuration is required in Oracle BI Presentation Services to enable this feature. For full information about the Oracle BI Presentation Services configuration, see "Defining User-Preferred Currency Options" in Oracle Fusion Middleware System Administrator's Guide for Oracle Business Intelligence Enterprise Edition.

Setting Default Levels of Aggregation for Measure Columns

You need to specify aggregation rules for mapped logical columns that are measures. Aggregation should only be performed on measure columns, with the possible exception of the aggregation COUNT and COUNTDISTINCT. Measure columns should exist only in logical fact tables.

You can optionally select different aggregation rules for different dimensions that are associated with this logical column. For example, if someone queries the aggregate column along with one dimension, you may want to use one type of aggregation rule, whereas with another dimension, you may want to use a different aggregation rule.

When the default aggregation rule is Count Distinct, you can optionally specify an override aggregation expression for specific logical table sources. For example, you may want to specify override aggregation expressions when you are querying different aggregate table sources that already contain some level of aggregation. If you do not specify any override, then the default rule prevails.

You can choose the aggregation rule Evaluate_Aggr to enable queries to call custom functions in the data source. For information about this function and other aggregation rules, see Appendix C. See also "Defining Aggregation Rules for Multidimensional Data Sources" for additional information about setting aggregation for multidimensional sources.

By default, data is considered sparse. However, on rare occasions you might have a logical table source with dense data. A logical table source is considered to have dense data if it has a row for every combination of its associated dimension levels. When setting up aggregate rules for a measure column, you can specify that data is dense only if all the logical table sources to which it is mapped are dense.

	
Note:

The default aggregation rule set for a column in the Oracle BI repository can be overridden in Answers. See "Aggregation Rules and Functions" in Oracle Fusion Middleware User's Guide for Oracle Business Intelligence Enterprise Edition (Oracle Fusion Applications Edition) for more information.

To specify a default aggregation rule for a measure column:

	
In the Business Model and Mapping layer, double-click a logical column.

	
In the Logical Column dialog, click the Aggregation tab.

	
In the Aggregation tab, choose one of the following options:

	
For measures in which the additivity is the same in all dimensions (in other words, for fully-additive or non-additive measures), select one of the aggregate functions from the Default Aggregation Rule list.

The function you select is always applied when a user or an application requests the column in a query, unless an override aggregation expression has been specified.

When you select Count Distinct as the default aggregation rule, you can specify an override aggregation expression for specific logical table sources. Choose this option when you have more than one logical table source mapped to a logical column and you want to apply a different aggregation rule to each source.

Click the Add button to select logical table sources for which you want to specify individual aggregation rules. In the Browse dialog, select the logical table source you want to add, and click OK. Then, in the Formula list for that logical table source, select the aggregation rule you want to use.

	
Select Based on dimensions if your measure has different additivity for different dimensions (in other words, for semi-additive measures). For example, select this option for inventory units that sum in all dimensions